Science.gov

Sample records for early larval zebrafish

  1. The behavior of larval zebrafish reveals stressor-mediated anorexia during early vertebrate development.

    PubMed

    De Marco, Rodrigo J; Groneberg, Antonia H; Yeh, Chen-Min; Treviño, Mario; Ryu, Soojin

    2014-01-01

    The relationship between stress and food consumption has been well documented in adults but less so in developing vertebrates. Here we demonstrate that an encounter with a stressor can suppress food consumption in larval zebrafish. Furthermore, we provide indication that food intake suppression cannot be accounted for by changes in locomotion, oxygen consumption and visual responses, as they remain unaffected after exposure to a potent stressor. We also show that feeding reoccurs when basal levels of cortisol (stress hormone in humans and teleosts) are re-established. The results present evidence that the onset of stress can switch off the drive for feeding very early in vertebrate development, and add a novel endpoint for analyses of metabolic and behavioral disorders in an organism suitable for high-throughput genetics and non-invasive brain imaging.

  2. The behavior of larval zebrafish reveals stressor-mediated anorexia during early vertebrate development

    PubMed Central

    De Marco, Rodrigo J.; Groneberg, Antonia H.; Yeh, Chen-Min; Treviño, Mario; Ryu, Soojin

    2014-01-01

    The relationship between stress and food consumption has been well documented in adults but less so in developing vertebrates. Here we demonstrate that an encounter with a stressor can suppress food consumption in larval zebrafish. Furthermore, we provide indication that food intake suppression cannot be accounted for by changes in locomotion, oxygen consumption and visual responses, as they remain unaffected after exposure to a potent stressor. We also show that feeding reoccurs when basal levels of cortisol (stress hormone in humans and teleosts) are re-established. The results present evidence that the onset of stress can switch off the drive for feeding very early in vertebrate development, and add a novel endpoint for analyses of metabolic and behavioral disorders in an organism suitable for high-throughput genetics and non-invasive brain imaging. PMID:25368561

  3. A zebrafish larval model reveals early tissue-specific innate immune responses to Mucor circinelloides.

    PubMed

    Voelz, Kerstin; Gratacap, Remi L; Wheeler, Robert T

    2015-11-01

    Mucormycosis is an emerging fungal infection that is clinically difficult to manage, with increasing incidence and extremely high mortality rates. Individuals with diabetes, suppressed immunity or traumatic injury are at increased risk of developing disease. These individuals often present with defects in phagocytic effector cell function. Research using mammalian models and phagocytic effector cell lines has attempted to decipher the importance of the innate immune system in host defence against mucormycosis. However, these model systems have not been satisfactory for direct analysis of the interaction between innate immune effector cells and infectious sporangiospores in vivo. Here, we report the first real-time in vivo analysis of the early innate immune response to mucormycete infection using a whole-animal zebrafish larval model system. We identified differential host susceptibility, dependent on the site of infection (hindbrain ventricle and swim bladder), as well as differential functions of the two major phagocyte effector cell types in response to viable and non-viable spores. Larval susceptibility to mucormycete spore infection was increased upon immunosuppressant treatment. We showed for the first time that macrophages and neutrophils were readily recruited in vivo to the site of infection in an intact host and that spore phagocytosis can be observed in real-time in vivo. While exploring innate immune effector recruitment dynamics, we discovered the formation of phagocyte clusters in response to fungal spores that potentially play a role in fungal spore dissemination. Spores failed to activate pro-inflammatory gene expression by 6 h post-infection in both infection models. After 24 h, induction of a pro-inflammatory response was observed only in hindbrain ventricle infections. Only a weak pro-inflammatory response was initiated after spore injection into the swim bladder during the same time frame. In the future, the zebrafish larva as a live whole

  4. Toxic effects of magnesium oxide nanoparticles on early developmental and larval stages of zebrafish (Danio rerio).

    PubMed

    Ghobadian, Mehdi; Nabiuni, Mohammad; Parivar, Kazem; Fathi, Mojtaba; Pazooki, Jamileh

    2015-12-01

    Magnesium oxide nanoparticles (MgONPs) are used in medicine, manufacturing and food industries. Because of their extensive application in our daily lives, environmental exposure to these nanoparticles is inevitable. The present study examined the effects of MgONPs on zebrafish (Danio rerio) early developmental stages. The results showed that, at different concentrations, MgONPs induced cellular apoptosis and intracellular reactive oxygen species. The hatching rate and survival of embryos decreased in a dose dependent manner. The 96-h LC50 value of MgONPs on zebrafish survival was 428 mg/l and the 48-h EC50 value of MgONPs on zebrafish embryo hatching rate was 175 mg/l. Moreover different types of malformation were observed in exposed embryos. The results demonstrate the toxic effects of MgONPs on zebrafish embryos and emphasize the need for further studies.

  5. Cardiac and Metabolic Physiology of Early Larval Zebrafish (Danio rerio) Reflects Parental Swimming Stamina

    PubMed Central

    Gore, Matthew; Burggren, Warren W.

    2012-01-01

    Swimming stamina in adult fish is heritable, it is unknown if inherited traits that support enhanced swimming stamina in offspring appear only in juveniles and/or adults, or if these traits actually appear earlier in the morphologically quite different larvae. To answer this question, mature adult zebrafish (Danio rerio) were subjected to a swimming performance test that allowed separation into low swimming stamina or high swimming stamina groups. Adults were then bred within their own performance groups. Larval offspring from each of the two groups, designated high (LHSD) and low stamina-derived larvae (LLSD), were then reared at 27°C in aerated water (21% O2). Routine (fH,r) and active (fH,a) heart rate, and routine (Ṁo2,r) and active (Ṁo2,a) mass-specific oxygen consumption were recorded from 5 days post fertilization (dpf) through 21 dpf, and gross cost of transport and factorial aerobic metabolic scope were derived from Ṁo2 measurements. Heart rate generally ranged between 150 and 225 bpm in both LHSD and LLSD populations. However, significant (P < 0.05) differences existed between the LLSD and LHSD populations at 5 and 14 dpf in fH,r and at days 10 and 15 dpf in fH,a. Ṁo2,r was 0.04–0.32 μmol mg−1 h−1, while Ṁo2,a was 0.2–1.2 μmol mg−1 h−1. Significant (P < 0.05) differences between the LLSD and LHSD populations in Ṁo2,r occurred at 7, 10, and 21 dpf and in Ṁo2,a at 7 dpf. Gross cost of transport was ∼6–10 μmol O2·μg−1 m−1 at 5 dpf, peaking at 14–19 μmol O2 μg−1 m−1 at 7–10 dpf, before falling again to 5–6 μmol O2 μg−1 m−1 at 21 dpf, with gross cost of transport significantly higher in the LLSD population at 7 dpf. Collectively, these data indicate that inherited physiological differences known to contribute to enhanced stamina in adult parents also appear in their larval offspring well before attainment of juvenile or adult features. PMID

  6. Spinal cord transection in the larval zebrafish.

    PubMed

    Briona, Lisa K; Dorsky, Richard I

    2014-05-21

    Mammals fail in sensory and motor recovery following spinal cord injury due to lack of axonal regrowth below the level of injury as well as an inability to reinitiate spinal neurogenesis. However, some anamniotes including the zebrafish Danio rerio exhibit both sensory and functional recovery even after complete transection of the spinal cord. The adult zebrafish is an established model organism for studying regeneration following spinal cord injury, with sensory and motor recovery by 6 weeks post-injury. To take advantage of in vivo analysis of the regenerative process available in the transparent larval zebrafish as well as genetic tools not accessible in the adult, we use the larval zebrafish to study regeneration after spinal cord transection. Here we demonstrate a method for reproducibly and verifiably transecting the larval spinal cord. After transection, our data shows sensory recovery beginning at 2 days post-injury (dpi), with the C-bend movement detectable by 3 dpi and resumption of free swimming by 5 dpi. Thus we propose the larval zebrafish as a companion tool to the adult zebrafish for the study of recovery after spinal cord injury.

  7. Behavorial assessments of larval zebrafish neurotoxicology

    EPA Science Inventory

    Fishes have long been a popular organism in ecotoxicology research, and are increasingly used in human health research as an alternative animal model for chemical screening. Our laboratory incorporates a zebrafish (Danio rerio) embryo/larval assay to screen chemicals for developm...

  8. Behavorial assessments of larval zebrafish neurotoxicology

    EPA Science Inventory

    Fishes have long been a popular organism in ecotoxicology research, and are increasingly used in human health research as an alternative animal model for chemical screening. Our laboratory incorporates a zebrafish (Danio rerio) embryo/larval assay to screen chemicals for developm...

  9. Adaptive locomotor behavior in larval zebrafish.

    PubMed

    Portugues, Ruben; Engert, Florian

    2011-01-01

    In this study we report that larval zebrafish display adaptive locomotor output that can be driven by unexpected visual feedback. We develop a new assay that addresses visuomotor integration in restrained larval zebrafish. The assay involves a closed-loop environment in which the visual feedback a larva receives depends on its own motor output in a way that resembles freely swimming conditions. The experimenter can control the gain of this closed feedback loop, so that following a given motor output the larva experiences more or less visual feedback depending on whether the gain is high or low. We show that increases and decreases in this gain setting result in adaptive changes in behavior that lead to a generalized decrease or increase of motor output, respectively. Our behavioral analysis shows that both the duration and tail beat frequency of individual swim bouts can be modified, as well as the frequency with which bouts are elicited. These changes can be implemented rapidly, following an exposure to a new gain of just 175 ms. In addition, modifications in some behavioral parameters accumulate over tens of seconds and effects last for at least 30 s from trial to trial. These results suggest that larvae establish an internal representation of the visual feedback expected from a given motor output and that the behavioral modifications are driven by an error signal that arises from the discrepancy between this expectation and the actual visual feedback. The assay we develop presents a unique possibility for studying visuomotor integration using imaging techniques available in the larval zebrafish.

  10. Adaptive Locomotor Behavior in Larval Zebrafish

    PubMed Central

    Portugues, Ruben; Engert, Florian

    2011-01-01

    In this study we report that larval zebrafish display adaptive locomotor output that can be driven by unexpected visual feedback. We develop a new assay that addresses visuomotor integration in restrained larval zebrafish. The assay involves a closed-loop environment in which the visual feedback a larva receives depends on its own motor output in a way that resembles freely swimming conditions. The experimenter can control the gain of this closed feedback loop, so that following a given motor output the larva experiences more or less visual feedback depending on whether the gain is high or low. We show that increases and decreases in this gain setting result in adaptive changes in behavior that lead to a generalized decrease or increase of motor output, respectively. Our behavioral analysis shows that both the duration and tail beat frequency of individual swim bouts can be modified, as well as the frequency with which bouts are elicited. These changes can be implemented rapidly, following an exposure to a new gain of just 175 ms. In addition, modifications in some behavioral parameters accumulate over tens of seconds and effects last for at least 30 s from trial to trial. These results suggest that larvae establish an internal representation of the visual feedback expected from a given motor output and that the behavioral modifications are driven by an error signal that arises from the discrepancy between this expectation and the actual visual feedback. The assay we develop presents a unique possibility for studying visuomotor integration using imaging techniques available in the larval zebrafish. PMID:21909325

  11. Navigational strategies underlying phototaxis in larval zebrafish.

    PubMed

    Chen, Xiuye; Engert, Florian

    2014-01-01

    Understanding how the brain transforms sensory input into complex behavior is a fundamental question in systems neuroscience. Using larval zebrafish, we study the temporal component of phototaxis, which is defined as orientation decisions based on comparisons of light intensity at successive moments in time. We developed a novel "Virtual Circle" assay where whole-field illumination is abruptly turned off when the fish swims out of a virtually defined circular border, and turned on again when it returns into the circle. The animal receives no direct spatial cues and experiences only whole-field temporal light changes. Remarkably, the fish spends most of its time within the invisible virtual border. Behavioral analyses of swim bouts in relation to light transitions were used to develop four discrete temporal algorithms that transform the binary visual input (uniform light/uniform darkness) into the observed spatial behavior. In these algorithms, the turning angle is dependent on the behavioral history immediately preceding individual turning events. Computer simulations show that the algorithms recapture most of the swim statistics of real fish. We discovered that turning properties in larval zebrafish are distinctly modulated by temporal step functions in light intensity in combination with the specific motor history preceding these turns. Several aspects of the behavior suggest memory usage of up to 10 swim bouts (~10 sec). Thus, we show that a complex behavior like spatial navigation can emerge from a small number of relatively simple behavioral algorithms.

  12. Navigational strategies underlying phototaxis in larval zebrafish

    PubMed Central

    Chen, Xiuye; Engert, Florian

    2014-01-01

    Understanding how the brain transforms sensory input into complex behavior is a fundamental question in systems neuroscience. Using larval zebrafish, we study the temporal component of phototaxis, which is defined as orientation decisions based on comparisons of light intensity at successive moments in time. We developed a novel “Virtual Circle” assay where whole-field illumination is abruptly turned off when the fish swims out of a virtually defined circular border, and turned on again when it returns into the circle. The animal receives no direct spatial cues and experiences only whole-field temporal light changes. Remarkably, the fish spends most of its time within the invisible virtual border. Behavioral analyses of swim bouts in relation to light transitions were used to develop four discrete temporal algorithms that transform the binary visual input (uniform light/uniform darkness) into the observed spatial behavior. In these algorithms, the turning angle is dependent on the behavioral history immediately preceding individual turning events. Computer simulations show that the algorithms recapture most of the swim statistics of real fish. We discovered that turning properties in larval zebrafish are distinctly modulated by temporal step functions in light intensity in combination with the specific motor history preceding these turns. Several aspects of the behavior suggest memory usage of up to 10 swim bouts (~10 sec). Thus, we show that a complex behavior like spatial navigation can emerge from a small number of relatively simple behavioral algorithms. PMID:24723859

  13. GROWTH AND BEHAVIOR OF LARVAL ZEBRAFISH Danio ...

    EPA Pesticide Factsheets

    Because Zebrafish (Danio rerio) have become a popular and important model for scientific research, the capability to rear larval zebrafish to adulthood is of great importance. Recently research examining the effects of diet (live versus processed) have been published. In the current study we examined whether the larvae can be reared on a processed diet alone, live food alone, or the combination while maintaining normal locomotor behavior, and acceptable survival, length and weight at 14 dpf in a static system. A 14 day feeding trial was conducted in glass crystallizing dishes containing 500 ml of 4 ppt Instant Ocean. On day 0 pdf 450 embryos were selected as potential study subjects and placed in a 26○C incubator on a 14:10 (light:dark) light cycle. At 4 dpf 120 normally developing embryos were selected per treatment and divided into 3 bowls of 40 embryos (for an n=3 per treatment; 9 bowls total). Treatment groups were: G (Gemma Micro 75 only), R (L-type marine rotifers (Brachionus plicatilis) only) or B (Gemma and rotifers). Growth (length), survival, water quality and rotifer density were monitored on days 5-14. On day 14, weight of larva in each bowl was measured and 8 larva per bowl were selected for use in locomotor testing. This behavior paradigm tests individual larval zebrafish under both light and dark conditions in a 24-well plate.After 14 dpf, survival among the groups was not different (92-98%). By days 7 -14 R and B larvae were ~2X longer

  14. Behavioral analysis of the escape response in larval zebrafish

    NASA Astrophysics Data System (ADS)

    Feng, Ruopei; Girdhar, Kiran; Chemla, Yann; Gruebele, Martin

    The behavior of larval zebrafish is of great interest because the limited number of locomotor neurons in larval zebrafish couples with its rich repertoire of movements as a vertebrate animal. Current research uses a priori-selected parameters to describe their swimming behavior while our lab has built a parameter-free model based on singular value decomposition analysis to characterize it. Our previous work has analyzed the free swimming of larval zebrafish and presented a different picture from the current classification of larval zebrafish locomotion. Now we are extending this work to the studies of their escape response to acoustic stimulus. Analysis has shown intrinsic difference in the locomotion between escape response and free swimming.

  15. Maternal cortisol stimulates neurogenesis and affects larval behaviour in zebrafish

    PubMed Central

    Best, Carol; Kurrasch, Deborah M.; Vijayan, Mathilakath M.

    2017-01-01

    Excess glucocorticoid transferred from stressed mother to the embryo affects developing vertebrate offspring, but the underlying programming events are unclear. In this study, we tested the hypothesis that increased zygotic glucocorticoid deposition, mimicking a maternal stress scenario, modifies early brain development and larval behaviour in zebrafish (Danio rerio). Cortisol was microinjected into the yolk at one cell-stage, to mimic maternal transfer, and the larvae [96 hours post-fertilization (hpf)] displayed increased activity in light and a reduction in thigmotaxis, a behavioural model for anxiety, suggesting an increased propensity for boldness. This cortisol-mediated behavioural phenotype corresponded with an increase in primary neurogenesis, as measured by incorporation of EdU at 24 hpf, in a region-specific manner in the preoptic region and the pallium, the teleostean homolog of the hippocampus. Also, cortisol increased the expression of the proneural gene neurod4, a marker of neurogenesis, in a region- and development-specific manner in the embryos. Altogether, excess zygotic cortisol, mimicking maternal stress, affects early brain development and behavioural phenotype in larval zebrafish. We propose a key role for cortisol in altering brain development leading to enhanced boldness, which may be beneficial in preparing the offspring to a stressful environment and enhancing fitness. PMID:28098234

  16. The neural basis of visual behaviors in the larval zebrafish.

    PubMed

    Portugues, Ruben; Engert, Florian

    2009-12-01

    We review visually guided behaviors in larval zebrafish and summarise what is known about the neural processing that results in these behaviors, paying particular attention to the progress made in the last 2 years. Using the examples of the optokinetic reflex, the optomotor response, prey tracking and the visual startle response, we illustrate how the larval zebrafish presents us with a very promising model vertebrate system that allows neurocientists to integrate functional and behavioral studies and from which we can expect illuminating insights in the near future.

  17. The neural basis of visual behaviors in the larval zebrafish

    PubMed Central

    Portugues, Ruben; Engert, Florian

    2015-01-01

    We review visually guided behaviors in larval zebrafish and summarise what is known about the neural processing that results in these behaviors, paying particular attention to the progress made in the last 2 years. Using the examples of the optokinetic reflex, the optomotor response, prey tracking and the visual startle response, we illustrate how the larval zebrafish presents us with a very promising model vertebrate system that allows neurocientists to integrate functional and behavioral studies and from which we can expect illuminating insights in the near future. PMID:19896836

  18. Heart dissection in larval, juvenile and adult zebrafish, Danio rerio.

    PubMed

    Singleman, Corinna; Holtzman, Nathalia G

    2011-09-30

    Zebrafish have become a beneficial and practical model organism for the study of embryonic heart development, however, work examining post-embryonic through adult cardiac development has been limited. Examining the changing morphology of the maturing and aging heart are restricted by the lack of techniques available for staging and isolating juvenile and adult hearts. In order to analyze heart development over the fish's lifespan, we dissect zebrafish hearts at numerous stages and photograph them for further analysis. The morphological features of the heart can easily be quantified and individual hearts can be further analyzed by a host of standard methods. Zebrafish grow at variable rates and maturation correlates better with fish size than age, thus, post-fixation, we photograph and measure fish length as a gauge of fish maturation. This protocol explains two distinct, size dependent dissection techniques for zebrafish, ranging from larvae 3.5 mm standard length (SL) with hearts of 100 μm ventricle length (VL), to adults, with SL of 30 mm and VL 1mm or larger. Larval and adult fish have quite distinct body and organ morphology. Larvae are not only significantly smaller, they have less pigment and each organ is visually very difficult to identify. For this reason, we use distinct dissection techniques. We used pre-dissection fixation procedures, as we discovered that hearts dissected directly after euthanization have a more variable morphology, with very loose and balloon like atria compared with hearts removed following fixation. The fish fixed prior to dissection, retain in vivo morphology and chamber position (data not shown). In addition, for demonstration purposes, we take advantage of the heart (myocardial) specific GFP transgenic Tg(myl7:GFP)(twu34), which allows us to visualize the entire heart and is particularly useful at early stages in development when the cardiac morphology is less distinct from surrounding tissues. Dissection of the heart makes

  19. Automated measurement of zebrafish larval movement

    PubMed Central

    Cario, Clinton L; Farrell, Thomas C; Milanese, Chiara; Burton, Edward A

    2011-01-01

    Abstract The zebrafish is a powerful vertebrate model that is readily amenable to genetic, pharmacological and environmental manipulations to elucidate the molecular and cellular basis of movement and behaviour. We report software enabling automated analysis of zebrafish movement from video recordings captured with cameras ranging from a basic camcorder to more specialized equipment. The software, which is provided as open-source MATLAB functions, can be freely modified and distributed, and is compatible with multiwell plates under a wide range of experimental conditions. Automated measurement of zebrafish movement using this technique will be useful for multiple applications in neuroscience, pharmacology and neuropsychiatry. PMID:21646414

  20. Microarray Noninvasive Neuronal Seizure Recordings from Intact Larval Zebrafish

    PubMed Central

    Meyer, Michaela; Dhamne, Sameer C.; LaCoursiere, Christopher M.; Tambunan, Dimira; Poduri, Annapurna; Rotenberg, Alexander

    2016-01-01

    Zebrafish epilepsy models are emerging tools in experimental epilepsy. Zebrafish larvae, in particular, are advantageous because they can be easily genetically altered and used for developmental and drug studies since agents applied to the bath penetrate the organism easily. Methods for electrophysiological recordings in zebrafish are new and evolving. We present a novel multi-electrode array method to non-invasively record electrical activity from up to 61 locations of an intact larval zebrafish head. This method enables transcranial noninvasive recording of extracellular field potentials (which include multi-unit activity and EEG) to identify epileptic seizures. To record from the brains of zebrafish larvae, the dorsum of the head of an intact larva was secured onto a multi-electrode array. We recorded from individual electrodes for at least three hours and quantified neuronal firing frequency, spike patterns (continuous or bursting), and synchrony of neuronal firing. Following 15 mM potassium chloride- or pentylenetetrazole-infusion into the bath, spike and burst rate increased significantly. Additionally, synchrony of neuronal firing across channels, a hallmark of epileptic seizures, also increased. Notably, the fish survived the experiment. This non-invasive method complements present invasive zebrafish neurophysiological techniques: it affords the advantages of high spatial and temporal resolution, a capacity to measure multiregional activity and neuronal synchrony in seizures, and fish survival for future experiments, such as studies of epileptogenesis and development. PMID:27281339

  1. Chemical modulation of memory formation in larval zebrafish

    PubMed Central

    Wolman, Marc A.; Jain, Roshan A.; Liss, Laura; Granato, Michael

    2011-01-01

    Whole organism–based small-molecule screens have proven powerful in identifying novel therapeutic chemicals, yet this approach has not been exploited to identify new cognitive enhancers. Here we present an automated high-throughput system for measuring nonassociative learning behaviors in larval zebrafish. Using this system, we report that spaced training blocks of repetitive visual stimuli elicit protein synthesis–dependent long-term habituation in larval zebrafish, lasting up to 24 h. Moreover, repetitive acoustic stimulation induces robust short-term habituation that can be modulated by stimulation frequency and instantaneously dishabituated through cross-modal stimulation. To characterize the neurochemical pathways underlying short-term habituation, we screened 1,760 bioactive compounds with known targets. Although we found extensive functional conservation of short-term learning between larval zebrafish and mammalian models, we also discovered several compounds with previously unknown roles in learning. These compounds included a myristic acid analog known to interact with Src family kinases and an inhibitor of cyclin dependent kinase 2, demonstrating that high-throughput chemical screens combined with high-resolution behavioral assays provide a powerful approach for the discovery of novel cognitive modulators. PMID:21876167

  2. Dexamethasone-induced hepatomegaly and steatosis in larval zebrafish.

    PubMed

    Yin, Guojun; Cao, Liping; Du, Jinliang; Jia, Rui; Kitazawa, Takio; Kubota, Akira; Teraoka, Hiroki

    2017-01-01

    Fish hepatobiliary syndrome, characterized by hepatomegaly and fatty liver, has been frequently reported in many cultured fish species and has caused a dramatic economic loss in China. Glucocorticoids are thought to be important non-nutritional factors for hepatomegaly and fatty liver development. In the present study, a dexamethasone-induced zebrafish model of fatty liver and hepatomegaly was established, and the role of glucocorticoid receptor (GR) in the development of hepatomegaly and fatty liver was investigated using developing zebrafish. Exposure of larval zebrafish at 5 days post fertilization (dpf) to dexamethasone for 24 hr caused significant increases of liver size and number of fish with hepatic steatosis at 6 dpf. The increase of liver size caused by dexamethasone was significantly reversed by treatment with RU486, a GR antagonist, and by gene knock-down with a morpholino against the GR. The dexamethasone-induced hepatic steatosis was also inhibited by treatment with RU486. Overall, the results highlight larval zebrafish as a useful model for stress-induced liver failure.

  3. Auditory sensitivity of larval zebrafish (Danio rerio) measured using a behavioral prepulse inhibition assay

    PubMed Central

    Bhandiwad, Ashwin A.; Zeddies, David G.; Raible, David W.; Rubel, Edwin W.; Sisneros, Joseph A.

    2013-01-01

    SUMMARY Zebrafish (Danio rerio) have become a valuable model for investigating the molecular genetics and development of the inner ear in vertebrates. In this study, we employed a prepulse inhibition (PPI) paradigm to assess hearing in larval wild-type (AB) zebrafish during early development at 5–6 days post-fertilization (d.p.f.). We measured the PPI of the acoustic startle response in zebrafish using a 1-dimensional shaker that simulated the particle motion component of sound along the fish's dorsoventral axis. The thresholds to startle-inducing stimuli were determined in 5–6 d.p.f. zebrafish, and their hearing sensitivity was then characterized using the thresholds of prepulse tone stimuli (90–1200 Hz) that inhibited the acoustic startle response to a reliable startle stimulus (820 Hz at 20 dB re. 1 m s−2). Hearing thresholds were defined as the minimum prepulse tone level required to significantly reduce the startle response probability compared with the baseline (no-prepulse) condition. Larval zebrafish showed greatest auditory sensitivity from 90 to 310 Hz with corresponding mean thresholds of −19 to −10 dB re. 1 m s−2, respectively. Hearing thresholds of prepulse tones were considerably lower than previously predicted by startle response assays. The PPI assay was also used to investigate the relative contribution of the lateral line to the detection of acoustic stimuli. After aminoglycoside-induced neuromast hair-cell ablation, we found no difference in PPI thresholds between treated and control fish. We propose that this PPI assay can be used to screen for novel zebrafish hearing mutants and to investigate the ontogeny of hearing in zebrafish and other fishes. PMID:23966590

  4. Intrinsic Properties of Larval Zebrafish Neurons in Ethanol

    PubMed Central

    Ikeda, Hiromi; Delargy, Alison H.; Yokogawa, Tohei; Urban, Jason M.; Burgess, Harold A.; Ono, Fumihito

    2013-01-01

    The behavioral effects of ethanol have been studied in multiple animal models including zebrafish. Locomotion of zebrafish larvae is resistant to high concentrations of ethanol in bath solution. This resistance has been attributed to a lower systemic concentration of ethanol in zebrafish when compared with bath solution, although the mechanism to maintain such a steep gradient is unclear. Here we examined whether the intrinsic properties of neurons play roles in this resistance. In order to minimize the contribution of metabolism and diffusional barriers, larvae were hemisected and the anterior half immersed in a range of ethanol concentrations thereby ensuring the free access of bath ethanol to the brain. The response to vibrational stimuli of three types of reticulospinal neurons: Mauthner neurons, vestibulospinal neurons, and MiD3 neurons were examined using an intracellular calcium indicator. The intracellular [Ca2+] response in MiD3 neurons decreased in 100 mM ethanol, while Mauthner neurons and vestibulospinal neurons required >300 mM ethanol to elicit similar effects. The ethanol effect in Mauthner neurons was reversible following removal of ethanol. Interestingly, activities of MiD3 neurons displayed spontaneous recovery in 300 mM ethanol, suggestive of acute tolerance. Finally, we examined with mechanical vibration the startle response of free-swimming larvae in 300 mM ethanol. Ethanol treatment abolished long latency startle responses, suggesting a functional change in neural processing. These data support the hypothesis that individual neurons in larval zebrafish brains have distinct patterns of response to ethanol dictated by specific molecular targets. PMID:23658822

  5. Development of the larval lymphatic system in zebrafish.

    PubMed

    Jung, Hyun Min; Castranova, Daniel; Swift, Matthew R; Pham, Van N; Venero Galanternik, Marina; Isogai, Sumio; Butler, Matthew G; Mulligan, Timothy S; Weinstein, Brant M

    2017-06-01

    The lymphatic vascular system is a hierarchically organized complex network essential for tissue fluid homeostasis, immune trafficking and absorption of dietary fats in the human body. Despite its importance, the assembly of the lymphatic network is still not fully understood. The zebrafish is a powerful model organism that enables study of lymphatic vessel development using high-resolution imaging and sophisticated genetic and experimental manipulation. Although several studies have described early lymphatic development in the fish, lymphatic development at later stages has not been completely elucidated. In this study, we generated a new Tg(mrc1a:egfp)(y251) transgenic zebrafish that uses a mannose receptor, C type 1 (mrc1a) promoter to drive strong EGFP expression in lymphatic vessels at all stages of development and in adult zebrafish. We used this line to describe the assembly of the major vessels of the trunk lymphatic vascular network, including the later-developing collateral cardinal, spinal, superficial lateral and superficial intersegmental lymphatics. Our results show that major trunk lymphatic vessels are conserved in the zebrafish, and provide a thorough and complete description of trunk lymphatic vessel assembly. © 2017. Published by The Company of Biologists Ltd.

  6. Optical trapping of otoliths drives vestibular behaviours in larval zebrafish.

    PubMed

    Favre-Bulle, Itia A; Stilgoe, Alexander B; Rubinsztein-Dunlop, Halina; Scott, Ethan K

    2017-09-20

    The vestibular system, which detects gravity and motion, is crucial to survival, but the neural circuits processing vestibular information remain incompletely characterised. In part, this is because the movement needed to stimulate the vestibular system hampers traditional neuroscientific methods. Optical trapping uses focussed light to apply forces to targeted objects, typically ranging from nanometres to a few microns across. In principle, optical trapping of the otoliths (ear stones) could produce fictive vestibular stimuli in a stationary animal. Here we use optical trapping in vivo to manipulate 55-micron otoliths in larval zebrafish. Medial and lateral forces on the otoliths result in complementary corrective tail movements, and lateral forces on either otolith are sufficient to cause a rolling correction in both eyes. This confirms that optical trapping is sufficiently powerful and precise to move large objects in vivo, and sets the stage for the functional mapping of the resulting vestibular processing.The neural circuits of the vestibular system, which detects gravity and motion, remain incompletely characterised. Here the authors use an optical trap to manipulate otoliths (ear stones) in zebrafish larvae, and elicit corrective tail movements and eye rolling, thus establishing a method for mapping vestibular processing.

  7. Predicting developmental neurotoxicity in rodents from larval zebrafish - - and vice versa

    EPA Science Inventory

    The complexity of standard mammalian developmental neurotoxicity tests limits evaluation of large numbers of chemicals. Less complex, more rapid assays using larval zebrafish are gaining popularity for evaluating the developmental neurotoxicity of chemicals; there remains, howeve...

  8. Predicting developmental neurotoxicity in rodents from larval zebrafish - - and vice versa

    EPA Science Inventory

    The complexity of standard mammalian developmental neurotoxicity tests limits evaluation of large numbers of chemicals. Less complex, more rapid assays using larval zebrafish are gaining popularity for evaluating the developmental neurotoxicity of chemicals; there remains, howeve...

  9. Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio).

    PubMed

    Cong, Lin; Wang, Zeguan; Chai, Yuming; Hang, Wei; Shang, Chunfeng; Yang, Wenbin; Bai, Lu; Du, Jiulin; Wang, Kai; Wen, Quan

    2017-09-20

    The internal brain dynamics that link sensation and action are arguably better studied during natural animal behaviors. Here we report on a novel volume imaging and 3D tracking technique that monitors whole brain neural activity in freely swimming larval zebrafish (Danio rerio). We demonstrated the capability of our system through functional imaging of neural activity during visually evoked and prey capture behaviors in larval zebrafish.

  10. Atrazine and its main metabolites alter the locomotor activity of larval zebrafish (Danio rerio).

    PubMed

    Liu, Zhenzhen; Wang, Yueyi; Zhu, Zhihong; Yang, Enlu; Feng, Xiayan; Fu, Zhengwei; Jin, Yuanxiang

    2016-04-01

    Atrazine (ATZ) and its main chlorometabolites, i.e., diaminochlorotriazine (DACT), deisopropylatrazine (DIP), and deethylatrazine (DE), have been widely detected in aquatic systems near agricultural fields. However, their possible effects on aquatic animals are still not fully understood. In this study, it was observed that several developmental endpoints such as the heart beat, hatchability, and morphological abnormalities were influenced by ATZ and its metabolites in different developmental stages. In addition, after 5 days of exposure to 30, 100, 300 μg L(-1) ATZ and its main chlorometabolites, the swimming behaviors of larval zebrafish were significantly disturbed, and the acetylcholinesterase (AChE) activities were consistently inhibited. Our results also demonstrate that ATZ and its main chlorometabolites are neuroendocrine disruptors that impact the expression of neurotoxicity-related genes such as Ache, Gap43, Gfap, Syn2a, Shha, Mbp, Elavl3, Nestin and Ngn1 in early developmental stages of zebrafish. According to our results, it is possible that not only ATZ but also its metabolites (DACT, DIP and DE) have the same or even more toxic effects on different endpoints of the early developmental stages of zebrafish.

  11. Optogenetic elevation of endogenous glucocorticoid level in larval zebrafish

    PubMed Central

    De Marco, Rodrigo J.; Groneberg, Antonia H.; Yeh, Chen-Min; Castillo Ramírez, Luis A.; Ryu, Soojin

    2013-01-01

    The stress response is a suite of physiological and behavioral processes that help to maintain or reestablish homeostasis. Central to the stress response is the hypothalamic-pituitary-adrenal (HPA) axis, as it releases crucial hormones in response to stress. Glucocorticoids (GCs) are the final effector hormones of the HPA axis, and exert a variety of actions under both basal and stress conditions. Despite their far-reaching importance for health, specific GC effects have been difficult to pin-down due to a lack of methods for selectively manipulating endogenous GC levels. Hence, in order to study stress-induced GC effects, we developed a novel optogenetic approach to selectively manipulate the rise of GCs triggered by stress. Using this approach, we could induce both transient hypercortisolic states and persistent forms of hypercortisolaemia in freely behaving larval zebrafish. Our results also established that transient hypercortisolism leads to enhanced locomotion shortly after stressor exposure. Altogether, we present a highly specific method for manipulating the gain of the stress axis with high temporal accuracy, altering endocrine and behavioral responses to stress as well as basal GC levels. Our study offers a powerful tool for the analysis of rapid (non-genomic) and delayed (genomic) GC effects on brain function and behavior, feedbacks within the stress axis and developmental programming by GCs. PMID:23653595

  12. Transcriptomic Characterization of Temperature Stress Responses in Larval Zebrafish

    PubMed Central

    Long, Yong; Li, Linchun; Li, Qing; He, Xiaozhen; Cui, Zongbin

    2012-01-01

    Temperature influences nearly all biochemical, physiological and life history activities of fish, but the molecular mechanisms underlying the temperature acclimation remains largely unknown. Previous studies have identified many temperature-regulated genes in adult tissues; however, the transcriptional responses of fish larvae to temperature stress are not well understood. In this study, we characterized the transcriptional responses in larval zebrafish exposed to cold or heat stress using microarray analysis. In comparison with genes expressed in the control at 28°C, a total of 2680 genes were found to be affected in 96 hpf larvae exposed to cold (16°C) or heat (34°C) for 2 and 48h and most of these genes were expressed in a temperature-specific and temporally regulated manner. Bioinformatic analysis identified multiple temperature-regulated biological processes and pathways. Biological processes overrepresented among the earliest genes induced by temperature stress include regulation of transcription, nucleosome assembly, chromatin organization and protein folding. However, processes such as RNA processing, cellular metal ion homeostasis and protein transport and were enriched in genes up-regulated under cold exposure for 48 h. Pathways such as mTOR signalling, p53 signalling and circadian rhythm were enriched among cold-induced genes, while adipocytokine signalling, protein export and arginine and praline metabolism were enriched among heat-induced genes. Although most of these biological processes and pathways were specifically regulated by cold or heat, common responses to both cold and heat stresses were also found. Thus, these findings provide new interesting clues for elucidation of mechanisms underlying the temperature acclimation in fish. PMID:22666345

  13. Transcriptomic characterization of temperature stress responses in larval zebrafish.

    PubMed

    Long, Yong; Li, Linchun; Li, Qing; He, Xiaozhen; Cui, Zongbin

    2012-01-01

    Temperature influences nearly all biochemical, physiological and life history activities of fish, but the molecular mechanisms underlying the temperature acclimation remains largely unknown. Previous studies have identified many temperature-regulated genes in adult tissues; however, the transcriptional responses of fish larvae to temperature stress are not well understood. In this study, we characterized the transcriptional responses in larval zebrafish exposed to cold or heat stress using microarray analysis. In comparison with genes expressed in the control at 28 °C, a total of 2680 genes were found to be affected in 96 hpf larvae exposed to cold (16 °C) or heat (34 °C) for 2 and 48h and most of these genes were expressed in a temperature-specific and temporally regulated manner. Bioinformatic analysis identified multiple temperature-regulated biological processes and pathways. Biological processes overrepresented among the earliest genes induced by temperature stress include regulation of transcription, nucleosome assembly, chromatin organization and protein folding. However, processes such as RNA processing, cellular metal ion homeostasis and protein transport and were enriched in genes up-regulated under cold exposure for 48 h. Pathways such as mTOR signalling, p53 signalling and circadian rhythm were enriched among cold-induced genes, while adipocytokine signalling, protein export and arginine and praline metabolism were enriched among heat-induced genes. Although most of these biological processes and pathways were specifically regulated by cold or heat, common responses to both cold and heat stresses were also found. Thus, these findings provide new interesting clues for elucidation of mechanisms underlying the temperature acclimation in fish.

  14. Silver Exposure in Developing Zebrafish (Danio rerio): Persistent Effects on Larval Behavior and Survival

    PubMed Central

    Powers, Christina M.; Yen, Jerry; Linney, Elwood A.; Seidler, Frederic J.; Slotkin, Theodore A.

    2010-01-01

    The increased use of silver nanoparticles in consumer and medical products has led to elevated human and environmental exposures. Silver nanoparticles act as antibacterial/antifungal agents by releasing Ag+ and recent studies show that Ag+ impairs neural cell replication and differentiation in culture, suggesting that in vivo exposures could compromise neurodevelopment. To determine whether Ag+ impairs development in vivo, we examined the effects of exposure on survival, morphological, and behavioral parameters in zebrafish embryos and larvae. Methods We exposed zebrafish from 0–5 days post-fertilization to concentrations of Ag+ ranging from 10 nM to 100 µM in order to assess effects on survival and early embryonic development. We then tested whether concentrations below the threshold for dysmorphology altered larval behavior and subsequent survival. Ag+ concentrations ≥3 µM significantly reduced embryonic survival, whereas 1 µM delayed hatching with no effect on survival. Reducing the concentration to as low as 0.1 µM delayed the inflation of the swim bladder without causing gross dysmorphology or affecting hatching. At this concentration, swimming activity was impaired, an effect that persisted past the point where swim bladder inflation became normal; in contrast, general motor function was unaffected. The early behavioral impairment was then predictive of subsequent decreases in survival. Ag+ is a developmental toxicant within concentrations only slightly above allowable levels. At low concentrations, Ag+ acts as a neurobehavioral toxicant even in the absence of dysmorphology. PMID:20116428

  15. Early Retinoic acid deprivation in developing zebrafish results in microphthalmia

    PubMed Central

    Le, Hong-Gam T.; Dowling, John E.; Cameron, D. Joshua

    2013-01-01

    Vitamin A deficiency causes impaired vision and blindness in millions of children around the world. Previous studies in zebrafish have demonstrated that retinoic acid (RA), the acid form of vitamin A, plays a vital role in early eye development. The objective of this study was to describe the effects of early RA deficiency by treating zebrafish with diethylaminobenzaldehyde (DEAB), a potent inhibitor of the enzyme retinaldehyde dehydrogenase (Raldh) that converts retinal to RA. Zebrafish embryos were treated for 2 hours beginning at 9 hours post-fertilization (hpf). Gross morphology and retinal development were examined at regular intervals for 5 days after treatment. The optokinetic reflex (OKR) test, visual background adaptation (VBA) test, and the electroretinogram (ERG) were performed to assess visual function and behavior. Early treatment of zebrafish embryos with 100 μM DEAB (9hr) resulted in reduced eye size and this microphthalmia persisted through larval development. Retinal histology revealed that DEAB eyes, had significant developmental abnormalities but had relatively normal retinal lamination by 5.5 days post-fertilization (dpf). However, the fish showed neither, an OKR or VBA response. Further, the retina did not respond to light as measured by the ERG. We conclude that early deficiency of RA during eye development causes microphthalmia as well as other visual defects, and that timing of the RA deficiency is critical to the developmental outcome. PMID:23013828

  16. Properties of the Visible Light Phototaxis and UV Avoidance Behaviors in the Larval Zebrafish.

    PubMed

    Guggiana-Nilo, Drago A; Engert, Florian

    2016-01-01

    For many organisms, color is an essential source of information from visual scenes. The larval zebrafish has the potential to be a model for the study of this topic, given its tetrachromatic retina and high dependence on vision. In this study we took a step toward understanding how the larval zebrafish might use color sensing. To this end, we used a projector-based paradigm to force a choice of a color stimulus at every turn of the larva. The stimuli used spanned most of the larval spectral range, including activation of its Ultraviolet (UV) cone, which has not been described behaviorally before. We found that zebrafish larvae swim toward visible wavelengths (>400 nm) when choosing between them and darkness, as has been reported with white light. However, when presented with UV light and darkness zebrafish show an intensity dependent avoidance behavior. This UV avoidance does not interact cooperatively with phototaxis toward longer wavelengths, but can compete against it in an intensity dependent manner. Finally, we show that the avoidance behavior depends on the presence of eyes with functional UV cones. These findings open future avenues for studying the neural circuits that underlie color sensing in the larval zebrafish.

  17. Properties of the Visible Light Phototaxis and UV Avoidance Behaviors in the Larval Zebrafish

    PubMed Central

    Guggiana-Nilo, Drago A.; Engert, Florian

    2016-01-01

    For many organisms, color is an essential source of information from visual scenes. The larval zebrafish has the potential to be a model for the study of this topic, given its tetrachromatic retina and high dependence on vision. In this study we took a step toward understanding how the larval zebrafish might use color sensing. To this end, we used a projector-based paradigm to force a choice of a color stimulus at every turn of the larva. The stimuli used spanned most of the larval spectral range, including activation of its Ultraviolet (UV) cone, which has not been described behaviorally before. We found that zebrafish larvae swim toward visible wavelengths (>400 nm) when choosing between them and darkness, as has been reported with white light. However, when presented with UV light and darkness zebrafish show an intensity dependent avoidance behavior. This UV avoidance does not interact cooperatively with phototaxis toward longer wavelengths, but can compete against it in an intensity dependent manner. Finally, we show that the avoidance behavior depends on the presence of eyes with functional UV cones. These findings open future avenues for studying the neural circuits that underlie color sensing in the larval zebrafish. PMID:27594828

  18. Nitrogenous Waste Handling by Larval Zebrafish Danio rerio in Alkaline Water.

    PubMed

    Kumai, Yusuke; Harris, Jessica; Al-Rewashdy, Hasanen; Kwong, Raymond W M; Perry, Steve F

    2015-01-01

    Although adult fish excrete their nitrogenous waste primarily as ammonia, larval fish may excrete a higher proportion as urea, an evolutionary strategy that lessens nitrogenous waste toxicity during early development. Previous studies firmly established that ammonia excretion is inhibited in adult fish acutely exposed to alkaline water. This study was designed to test the hypothesis that total nitrogen excretion is maintained in larval zebrafish raised in alkaline water (pH ∼ 10.0) as a result of compensatory adjustments to urea and/or ammonia transport pathways. Raising zebrafish in alkaline water from 0 to 4 d postfertilization (dpf) reduced ammonia excretion at 4 dpf, whereas urea excretion was elevated by 141%. The increase in urea excretion at 4 dpf served to maintain total nitrogen excretion constant, despite the persistent inhibition of ammonia excretion. Whole body ammonia and urea contents were not significantly altered by exposure to alkaline water. Protein and mRNA expression of Rhcg1, an apically expressed ammonia-conducting channel, were significantly elevated after 4-d exposure to alkaline water, whereas the mRNA expression of Rhag, Rhbg, and urea transporter were unaffected. The acute exposure to alkaline water of 4-dpf larvae reared in control water caused a rapid inhibition of ammonia excretion that had partially recovered within 6 h of continued exposure. The partial recovery of ammonia excretion despite continued exposure to alkaline water suggested an increased ammonia excretion capacity. In agreement with an increased capacity to excrete ammonia, the transfer of larvae back to the control (normal pH) water was accompanied by increased rates of ammonia excretion. Urea excretion was not stimulated during 6-h exposure to alkaline water. Following both chronic and acute exposure to alkaline water, the rate of uptake of methylamine (an ammonia analog) was significantly elevated, consistent with increased protein expression of the apical ammonia

  19. An optimized whole-body cortisol quantification method for assessing stress levels in larval zebrafish.

    PubMed

    Yeh, Chen-Min; Glöck, Mario; Ryu, Soojin

    2013-01-01

    Glucocorticoids serve important regulatory functions for many physiological processes and are critical mediators of the stress response. The stress response is a set of bodily processes aimed at counteracting a state of threatened homeostasis. Proper stress response is critical for the survival of an animal, however prolonged or abnormal stress response can be detrimental and is implicated in a number of human diseases such as depression and metabolic diseases. To dissect the underlying mechanism of this complex and important response, the zebrafish, Danio rerio offer important advantages such as ease of genetic manipulations and high-throughput behavioral analyses. However, there is a paucity of suitable methods to measure stress level in larval zebrafish. Therefore, an efficient low-cost method to monitor stress hormone levels will greatly facilitate stress research in zebrafish larvae. In this study, we optimized sample collection as well as cortisol extraction methods and developed a home-made ELISA protocol for measuring whole-body cortisol level in zebrafish larvae. Further, using our customized protocols, we characterized the response of larval zebrafish to a variety of stressors. This assay, developed for efficient cortisol quantification, will be useful for systematic and large-scale stress analyses in larval zebrafish.

  20. An Optimized Whole-Body Cortisol Quantification Method for Assessing Stress Levels in Larval Zebrafish

    PubMed Central

    Yeh, Chen-Min; Glöck, Mario; Ryu, Soojin

    2013-01-01

    Glucocorticoids serve important regulatory functions for many physiological processes and are critical mediators of the stress response. The stress response is a set of bodily processes aimed at counteracting a state of threatened homeostasis. Proper stress response is critical for the survival of an animal, however prolonged or abnormal stress response can be detrimental and is implicated in a number of human diseases such as depression and metabolic diseases. To dissect the underlying mechanism of this complex and important response, the zebrafish, Danio rerio offer important advantages such as ease of genetic manipulations and high-throughput behavioral analyses. However, there is a paucity of suitable methods to measure stress level in larval zebrafish. Therefore, an efficient low-cost method to monitor stress hormone levels will greatly facilitate stress research in zebrafish larvae. In this study, we optimized sample collection as well as cortisol extraction methods and developed a home-made ELISA protocol for measuring whole-body cortisol level in zebrafish larvae. Further, using our customized protocols, we characterized the response of larval zebrafish to a variety of stressors. This assay, developed for efficient cortisol quantification, will be useful for systematic and large-scale stress analyses in larval zebrafish. PMID:24223943

  1. Loss of cftr function leads to pancreatic destruction in larval zebrafish.

    PubMed

    Navis, Adam; Bagnat, Michel

    2015-03-15

    The development and function of many internal organs requires precisely regulated fluid secretion. A key regulator of vertebrate fluid secretion is an anion channel, the cystic fibrosis transmembrane conductance regulator (CFTR). Loss of CFTR function leads to defects in fluid transport and cystic fibrosis (CF), a complex disease characterized by a loss of fluid secretion and mucus buildup in many organs including the lungs, liver, and pancreas. Several animal models including mouse, ferret and pig have been generated to investigate the pathophysiology of CF. However, these models have limited accessibility to early processes in the development of CF and are not amenable for forward genetic or chemical screens. Here, we show that Cftr is expressed and localized to the apical membrane of the zebrafish pancreatic duct and that loss of cftr function leads to destruction of the exocrine pancreas and a cystic fibrosis phenotype that mirrors human disease. Our analyses reveal that the cftr mutant pancreas initially develops normally, then rapidly loses pancreatic tissue during larval life, reflecting pancreatic disease in CF. Altogether, we demonstrate that the cftr mutant zebrafish is a powerful new model for pancreatitis and pancreatic destruction in CF. This accessible model will allow more detailed investigation into the mechanisms that drive CF of the pancreas and facilitate development of new therapies to treat the disease.

  2. Behavioral and physiological indicators of stress coping styles in larval zebrafish.

    PubMed

    Tudorache, Christian; ter Braake, Anique; Tromp, Mara; Slabbekoorn, Hans; Schaaf, Marcel J M

    2015-01-01

    Different individuals cope with stressors in different ways. Stress coping styles are defined as a coherent set of individual behavioral and physiological differences in the response to a stressor which remain consistent across time and context. In the present study, we have investigated coping styles in larval zebrafish (Danio rerio) at 8 days post-fertilization. Larvae were separated into two groups, according to the emergence sequence from a darkened into a novel well-lit environment, early (EE) and late (LE) emergers. We used brief periods of netting as a stressor. Swimming behavior and kinematics before and after netting stress were analyzed, as were whole-body cortisol levels before and at 10, 30 and 60 min after the stress event. The results show that general swimming activity was different between EE and LE larvae, with lower baseline cumulative distance and more erratic swimming movements in EE than in LE larvae. EE larvae showed a faster recovery to baseline levels after stress than LE larvae. Cortisol baseline levels were not different between EE and LE larvae, but peak levels after stress were higher and the recovery towards basal levels was faster in EE than in LE larvae. This study shows that coping styles are manifest in zebrafish larvae, and that behavior and swimming kinematics are associated with different cortisol responses to stress. A better understanding of the expression of coping styles may be of great value for medical applications, animal welfare issues and conservation.

  3. Loss of cftr function leads to pancreatic destruction in larval zebrafish

    PubMed Central

    Navis, Adam; Bagnat, Michel

    2016-01-01

    The development and function of many internal organs requires precisely regulated fluid secretion. A key regulator of vertebrate fluid secretion is an anion channel, the cystic fibrosis transmembrane conductance regulator (CFTR). Loss of CFTR function leads to defects in fluid transport and cystic fibrosis (CF), a complex disease characterized by a loss of fluid secretion and mucus buildup in many organs including the lungs, liver, and pancreas. Several animal models including mouse, ferret and pig have been generated to investigate the pathophysiology of CF. However, these models have limited accessibility to early processes in the development of CF and are not amenable for forward genetic or chemical screens. Here, we show that Cftr is expressed and localized to the apical membrane of the zebrafish pancreatic duct and that loss of cftr function leads to destruction of the exocrine pancreas and a cystic fibrosis phenotype that mirrors human disease. Our analyses reveal that the cftr mutant pancreas initially develops normally, then rapidly loses pancreatic tissue during larval life, reflecting pancreatic disease in CF. Altogether, we demonstrate that the cftr mutant zebrafish is a powerful new model for pancreatitis and pancreatic destruction in CF. This accessible model will allow more detailed investigation into the mechanisms that drive CF of the pancreas and facilitate development of new therapies to treat the disease. PMID:25592226

  4. DRUG EFFECTS ON THE LOCOMOTOR ACTIVITY OF LARVAL ZEBRAFISH.

    EPA Science Inventory

    As part of an effort to develop a rapid in vivo screen for EPA’s prioritization of toxic chemicals, we have begun to characterize the locomotor activity of zebrafish (Danio rerio) larvae and the effects of prototype drugs. Zebrafish larvae (6-7 days post-fertilization) were indiv...

  5. DRUG EFFECTS ON THE LOCOMOTOR ACTIVITY OF LARVAL ZEBRAFISH.

    EPA Science Inventory

    As part of an effort to develop a rapid in vivo screen for EPA’s prioritization of toxic chemicals, we have begun to characterize the locomotor activity of zebrafish (Danio rerio) larvae and the effects of prototype drugs. Zebrafish larvae (6-7 days post-fertilization) were indiv...

  6. River waters induced neurotoxicity in an embryo-larval zebrafish model.

    PubMed

    García-Cambero, Jesús Pablo; Catalá, Myriam; Valcárcel, Yolanda

    2012-10-01

    Some investigations have revealed an increased release of psychoactive drugs into the aquatic environments near big cities. However, despite the alert generated by the presence of such neurotoxic compounds, there is a lack of studies evaluating the impact on living organisms. One solution consists in the development of bioassays able to address specific risks, such as neurotoxicity, but on the other hand suitable to assess complex matrices like river samples. The objective of this work was to assess surface water toxicity by means of a zebrafish embryo-larval combined toxicity assay, which is based on a variety of toxicological endpoints, especially those related to neurodevelopment. For such a purpose, we selected the Tagus River in which a previous monitoring study revealed the presence of psychoactive drugs. Results showed that most of the toxicological endpoints evaluated remained unaltered in the exposed embryos, except for the tail length that was larger in the exposed larvae, and the locomotor activity in the 6-day larvae, which was decreased in four groups of exposure (n=5 sampling points). In the absence of systemic toxicity, changes in larval locomotion are indicative of neurotoxicity. This result suggests that the Tagus River can convey neurotoxic compounds at levels that may represent an early and specific threat over the aquatic species of vertebrates, what can have dramatic consequences under the ecological point of view.

  7. Functional Assays and Alternative Species: Using Larval Zebrafish in Developmental Neurotoxicity Screening

    EPA Science Inventory

    The U.S. Environmental Protection Agency is developing and evaluating methods to screen and prioritize large numbers of chemicals for developmental toxicity. Towards this goal, we are exploring methods to detect developmental neurotoxicants in very young larval zebrafish. We have...

  8. Strain-Specific Changes in Locomotor Behavior in Larval Zebrafish Elicited by Cholinergic Challenge

    EPA Science Inventory

    Some studies have compared the baseline behavior of different strains of larval zebrafish (Danio rerio), but there is sparse information on strain-specific responses to chemical challenges. The following study examines both the basal activity and response to a pharmacological cha...

  9. Correlating Whole Brain Neural Activity with Behavior in Head-Fixed Larval Zebrafish.

    PubMed

    Orger, Michael B; Portugues, Ruben

    2016-01-01

    We present a protocol to combine behavioral recording and imaging using 2-photon laser-scanning microscopy in head-fixed larval zebrafish that express a genetically encoded calcium indicator. The steps involve restraining the larva in agarose, setting up optics that allow projection of a visual stimulus and infrared illumination to monitor behavior, and analysis of the neuronal and behavioral data.

  10. Strain-Specific Changes in Locomotor Behavior in Larval Zebrafish Elicited by Cholinergic Challenge

    EPA Science Inventory

    Some studies have compared the baseline behavior of different strains of larval zebrafish (Danio rerio), but there is sparse information on strain-specific responses to chemical challenges. The following study examines both the basal activity and response to a pharmacological cha...

  11. Functional Assays and Alternative Species: Using Larval Zebrafish in Developmental Neurotoxicity Screening

    EPA Science Inventory

    The U.S. Environmental Protection Agency is developing and evaluating methods to screen and prioritize large numbers of chemicals for developmental toxicity. Towards this goal, we are exploring methods to detect developmental neurotoxicants in very young larval zebrafish. We have...

  12. The zebrafish early arrest mutants.

    PubMed

    Kane, D A; Maischein, H M; Brand, M; van Eeden, F J; Furutani-Seiki, M; Granato, M; Haffter, P; Hammerschmidt, M; Heisenberg, C P; Jiang, Y J; Kelsh, R N; Mullins, M C; Odenthal, J; Warga, R M; Nüsslein-Volhard, C

    1996-12-01

    This report describes mutants of the zebrafish having phenotypes causing a general arrest in early morphogenesis. These mutants identify a group of loci making up about 20% of the loci identified by mutants with visible morphological phenotypes within the first day of development. There are 12 Class I mutants, which fall into 5 complementation groups and have cells that lyse before morphological defects are observed. Mutants at three loci, speed bump, ogre and zombie, display abnormal nuclei. The 8 Class II mutants, which fall into 6 complementation groups, arrest development before cell lysis is observed. These mutants seemingly stop development in the late segmentation stages, and maintain a body shape similar to a 20 hour embryo. Mutations in speed bump, ogre, zombie, specter, poltergeist and troll were tested for cell lethality by transplanting mutant cells into wild-type hosts. With poltergeist, transplanted mutant cells all survive. The remainder of the mutants tested were autonomously but conditionally lethal: mutant cells, most of which lyse, sometimes survive to become notochord, muscles, or, in rare cases, large neurons, all cell types which become postmitotic in the gastrula. Some of the genes of the early arrest group may be necessary for progression though the cell cycle; if so, the survival of early differentiating cells may be based on having their terminal mitosis before the zygotic requirement for these genes.

  13. Calcium Imaging of Neuronal Activity in Free-Swimming Larval Zebrafish.

    PubMed

    Muto, Akira; Kawakami, Koichi

    2016-01-01

    Visualization of neuronal activity during animal behavior is a critical step in understanding how the brain generates behavior. In the model vertebrate zebrafish, imaging of the brain has been done mostly by using immobilized fish. Here, we describe a novel method to image neuronal activity of the larval zebrafish brain during prey capture behavior. We expressed a genetically encoded fluorescent calcium indicator, GCaMP, in the optic tectum of the midbrain using the Gal4-UAS system. Tectal activity was then imaged in unrestrained larvae during prey perception. Since larval zebrafish swim only intermittently, detection of the neuronal activity is possible between swimming bouts. Our method makes functional brain imaging under natural behavioral conditions feasible and will greatly benefit the study of neuronal activities that evoke animal behaviors.

  14. Motivated state control in larval zebrafish: behavioral paradigms and anatomical substrates.

    PubMed

    Horstick, Eric J; Mueller, Thomas; Burgess, Harold A

    2016-06-01

    Over the course of each day, animals prioritize different objectives. Immediate goals may reflect fluctuating internal homeostatic demands, prompting individuals to seek out energy supplies or warmth. At other times, the environment may present temporary challenges or opportunities. Homeostatic demands and environmental signals often elicit persistent changes in an animal's behavior to meet needs and challenges over extended periods of time. These changes reflect the underlying motivational state of the animal. The larval zebrafish has been established as an effective genetically tractable vertebrate system to study neural circuits for sensory-motor reflexes. Fewer studies have exploited zebrafish to study brain circuits that control motivated behavior. In part this is because appropriate conceptual frameworks, anatomical knowledge, and behavioral paradigms are not yet well established. This review sketches a general conceptual framework for studying motivated state control in animal models, how this applies to larval zebrafish, and the current knowledge on neuroanatomical substrates for state control in this model.

  15. Identification of environmental stressors and validation of light preference as a measure of anxiety in larval zebrafish.

    PubMed

    Bai, Yiming; Liu, Harrison; Huang, Bo; Wagle, Mahendra; Guo, Su

    2016-09-15

    Larval zebrafish, with a simple and transparent vertebrate brain composed of ~100 K neurons, is well suited for deciphering entire neural circuit activity underlying behavior. Moreover, their small body size (~4-5 mm in length) is compatible with 96-well plates, making larval zebrafish amenable to high content screening. Despite these attractive features, there is a scarcity of behavioral characterizations in larval zebrafish compared to other model organisms as well as adult zebrafish. In this study, we have characterized the physiological and behavioral responses of larval zebrafish to several easily amenable stimuli, including heat, cold, UV, mechanical disturbance (MD), and social isolation (SI). These stimuli are selected based on their perceived aversive nature to larval zebrafish. Using a light/dark choice paradigm, in which larval zebrafish display an innate dark avoidance behavior (i.e. scotophobia), we find that heat, cold and UV stimuli significantly enhance their dark avoidance with heat having the most striking effect, whereas MD and SI have little influence on the behavior. Surprisingly, using the cortisol assay, a physiological measure of stress, we uncover that all stimuli but heat and SI significantly increase the whole body cortisol levels. These results identify a series of stressors that can be easily administered to larval zebrafish. Those stimuli that elicit differential responses at behavioral and physiological levels warrant further studies at circuit levels to understand the underlying mechanisms. The findings that various stressors enhance while anxiolytics attenuate dark avoidance further reinforce that the light/dark preference behavior in larval zebrafish is fear/anxiety-associated.

  16. The innate immune cell response to bacterial infection in larval zebrafish is light-regulated.

    PubMed

    Du, Lucia Y; Darroch, Hannah; Keerthisinghe, Pramuk; Ashimbayeva, Elina; Astin, Jonathan W; Crosier, Kathryn E; Crosier, Philip S; Warman, Guy; Cheeseman, James; Hall, Christopher J

    2017-10-04

    The circadian clock, which evolved to help organisms harmonize physiological responses to external conditions (such as the light/dark cycle, LD), is emerging as an important regulator of the immune response to infection. Gaining a complete understanding of how the circadian clock influences the immune cell response requires animal models that permit direct observation of these processes within an intact host. Here, we investigated the use of larval zebrafish, a powerful live imaging system, as a new model to study the impact of a fundamental zeitgeber, light, on the innate immune cell response to infection. Larvae infected during the light phase of the LD cycle and in constant light condition (LL) demonstrated enhanced survival and bacterial clearance when compared with larvae infected during the dark phase of the LD cycle and in constant dark condition (DD). This increased survival was associated with elevated expression of the zebrafish orthologues of the mammalian pro-inflammatory cytokine genes, Tumour necrosis factor-α, Interleukin-8 and Interferon-γ, and increased neutrophil and macrophage recruitment. This study demonstrates for the first time that the larval zebrafish innate immune response to infection is enhanced during light exposure, suggesting that, similar to mammalian systems, the larval zebrafish response to infection is light-regulated.

  17. Genetic Analysis of Histamine Signaling in Larval Zebrafish Sleep

    PubMed Central

    Oikonomou, Grigorios

    2017-01-01

    Abstract Pharmacological studies in mammals and zebrafish suggest that histamine plays an important role in promoting arousal. However, genetic studies using rodents with disrupted histamine synthesis or signaling have revealed only subtle or no sleep/wake phenotypes. Studies of histamine function in mammalian arousal are complicated by its production in cells of the immune system and its roles in humoral and cellular immunity, which can have profound effects on sleep/wake states. To avoid this potential confound, we used genetics to explore the role of histamine in regulating sleep in zebrafish, a diurnal vertebrate in which histamine production is restricted to neurons in the brain. Similar to rodent genetic studies, we found that zebrafish that lack histamine due to mutation of histidine decarboxylase (hdc) exhibit largely normal sleep/wake behaviors. Zebrafish containing predicted null mutations in several histamine receptors also lack robust sleep/wake phenotypes, although we are unable to verify that these mutants are completely nonfunctional. Consistent with some rodent studies, we found that arousal induced by overexpression of the neuropeptide hypocretin (Hcrt) or by stimulation of hcrt-expressing neurons is not blocked in hdc or hrh1 mutants. We also found that the number of hcrt-expressing or histaminergic neurons is unaffected in animals that lack histamine or Hcrt signaling, respectively. Thus, while acute pharmacological manipulation of histamine signaling has been shown to have profound effects on zebrafish and mammalian sleep, our results suggest that chronic loss of histamine signaling due to genetic mutations has only subtle effects on sleep in zebrafish, similar to rodents. PMID:28275716

  18. 4-dimensional functional profiling in the convulsant-treated larval zebrafish brain.

    PubMed

    Winter, Matthew J; Windell, Dylan; Metz, Jeremy; Matthews, Peter; Pinion, Joe; Brown, Jonathan T; Hetheridge, Malcolm J; Ball, Jonathan S; Owen, Stewart F; Redfern, Will S; Moger, Julian; Randall, Andrew D; Tyler, Charles R

    2017-07-26

    Functional neuroimaging, using genetically-encoded Ca(2+) sensors in larval zebrafish, offers a powerful combination of high spatiotemporal resolution and higher vertebrate relevance for quantitative neuropharmacological profiling. Here we use zebrafish larvae with pan-neuronal expression of GCaMP6s, combined with light sheet microscopy and a novel image processing pipeline, for the 4D profiling of chemoconvulsant action in multiple brain regions. In untreated larvae, regions associated with autonomic functionality, sensory processing and stress-responsiveness, consistently exhibited elevated spontaneous activity. The application of drugs targeting different convulsant mechanisms (4-Aminopyridine, Pentylenetetrazole, Pilocarpine and Strychnine) resulted in distinct spatiotemporal patterns of activity. These activity patterns showed some interesting parallels with what is known of the distribution of their respective molecular targets, but crucially also revealed system-wide neural circuit responses to stimulation or suppression. Drug concentration-response curves of neural activity were identified in a number of anatomically-defined zebrafish brain regions, and in vivo larval electrophysiology, also conducted in 4dpf larvae, provided additional measures of neural activity. Our quantification of network-wide chemoconvulsant drug activity in the whole zebrafish brain illustrates the power of this approach for neuropharmacological profiling in applications ranging from accelerating studies of drug safety and efficacy, to identifying pharmacologically-altered networks in zebrafish models of human neurological disorders.

  19. Optogenetics in a transparent animal: circuit function in the larval zebrafish.

    PubMed

    Portugues, Ruben; Severi, Kristen E; Wyart, Claire; Ahrens, Misha B

    2013-02-01

    Optogenetic tools can be used to manipulate neuronal activity in a reversible and specific manner. In recent years, such methods have been applied to uncover causal relationships between activity in specified neuronal circuits and behavior in the larval zebrafish. In this small, transparent, genetic model organism, noninvasive manipulation and monitoring of neuronal activity with light is possible throughout the nervous system. Here we review recent work in which these new tools have been applied to zebrafish, and discuss some of the existing challenges of these approaches.

  20. Behavorial Screens for Detecting Developmental Neurotoxicity in Larval Zebrafish

    EPA Science Inventory

    As part of the EPA's effort to develop an in vivo, vertebrate screen for toxic chemicals, we have characterized basic behaviors of 6-day post-fertilization (dpf) zebrafish (Danio rerio) larvae in a microtiter plate format. Our main goal is to develop a convenient, reproducible me...

  1. Acute Neuroactive Drug Exposures alter Locomotor Activity in Larval Zebrafish

    EPA Science Inventory

    As part of the development of a rapid in vivo screen for prioritization of toxic chemicals, we have begun to characterize the locomotor activity of zebrafish (Danio rerio) larvae by assessing the acute effects of prototypic drugs that act on the central nervous system. Initially,...

  2. Acute Neuroactive Drug Exposures alter Locomotor Activity in Larval Zebrafish

    EPA Science Inventory

    As part of the development of a rapid in vivo screen for prioritization of toxic chemicals, we have begun to characterize the locomotor activity of zebrafish (Danio rerio) larvae by assessing the acute effects of prototypic drugs that act on the central nervous system. Initially,...

  3. Behavorial Screens for Detecting Developmental Neurotoxicity in Larval Zebrafish

    EPA Science Inventory

    As part of the EPA's effort to develop an in vivo, vertebrate screen for toxic chemicals, we have characterized basic behaviors of 6-day post-fertilization (dpf) zebrafish (Danio rerio) larvae in a microtiter plate format. Our main goal is to develop a convenient, reproducible me...

  4. Acute neuroactive drug exposures alter locomotor activity in larval zebrafish

    EPA Science Inventory

    In an effort to develop a rapid in vivo screen for EPA's prioritization of toxic chemicals, we are characterizing the locomotor activity of zebrafish (Danio rerio) larvae after exposure to prototypic drugs that act on the central nervous system. MPTP (1-methyl-4phenyl- 1 ,2,3,6-...

  5. Acute neuroactive drug exposures alter locomotor activity in larval zebrafish

    EPA Science Inventory

    In an effort to develop a rapid in vivo screen for EPA's prioritization of toxic chemicals, we are characterizing the locomotor activity of zebrafish (Danio rerio) larvae after exposure to prototypic drugs that act on the central nervous system. MPTP (1-methyl-4phenyl- 1 ,2,3,6-...

  6. Biological impacts of glyphosate on morphology, embryo biomechanics and larval behavior in zebrafish (Danio rerio).

    PubMed

    Zhang, Shuhui; Xu, Jia; Kuang, Xiangyu; Li, Shibao; Li, Xiang; Chen, Dongyan; Zhao, Xin; Feng, Xizeng

    2017-08-01

    All of these days, residues of herbicides such as glyphosate are widely distributed in the environment. The ubiquitous use of glyphosate has drawn extensive attention to its toxicity as an organic pollutant. In this study, we employed larval zebrafish as an animal model to evaluate the effect of different concentrations of glyphosate on early development via morphological, biomechanics, behavioral and physiological analyses. Morphological results showed that an obvious delay occurred in the epiboly process and body length, eye and head area were reduced at concentrations higher than 10 mg/L. The expression of ntl (no tail) shortened and krox20 (also known as Egr2b, early growth response 2b) changed as the glyphosate concentration increased, but there was no change in the expression of shh (sonic hedgehog). In addition, biomechanical analysis of the elasticity of chorion indicated that treated embryos' surface tension was declined. Furthermore, a 48-h locomotion test revealed that embryonic exposure to glyphosate significantly elevated locomotor activities, which is probably attributed to motoneuronal damage. The decreased surface tension of chorion and the increased locomotive activities may contribute to the hatching rates after glyphosate treatment. Our study enriches the researches of evaluating glyphosate toxicity and probablely plays a warning role in herbicides used in farming. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. GROWTH AND BEHAVIOR OF LARVAL ZEBRAFISH Danio rerio FED A PROCESSED DIET, LIVE FOOD, OR THE COMBINATION

    EPA Science Inventory

    Because Zebrafish (Danio rerio) have become a popular and important model for scientific research, the capability to rear larval zebrafish to adulthood is of great importance. Recently research examining the effects of diet (live versus processed) have been published. In the cu...

  8. GROWTH AND BEHAVIOR OF LARVAL ZEBRAFISH Danio rerio FED A PROCESSED DIET, LIVE FOOD, OR THE COMBINATION

    EPA Science Inventory

    Because Zebrafish (Danio rerio) have become a popular and important model for scientific research, the capability to rear larval zebrafish to adulthood is of great importance. Recently research examining the effects of diet (live versus processed) have been published. In the cu...

  9. Using the Larval Zebrafish Locomotor Asssay in Functional Neurotoxicity Screening: Light Brightness and the Order of Stimulus Presentation Affect the Outcome

    EPA Science Inventory

    We are evaluating methods to screen/prioritize large numbers of chemicals using 6 day old zebrafish (Danio rerio) as an alternative model for detecting neurotoxic effects. Our behavioral testing paradigm simultaneously tests individual larval zebrafish under sequential light and...

  10. Using the Larval Zebrafish Locomotor Asssay in Functional Neurotoxicity Screening: Light Brightness and the Order of Stimulus Presentation Affect the Outcome

    EPA Science Inventory

    We are evaluating methods to screen/prioritize large numbers of chemicals using 6 day old zebrafish (Danio rerio) as an alternative model for detecting neurotoxic effects. Our behavioral testing paradigm simultaneously tests individual larval zebrafish under sequential light and...

  11. Transcriptomic characterization of cold acclimation in larval zebrafish

    PubMed Central

    2013-01-01

    Background Temperature is one of key environmental parameters that affect the whole life of fishes and an increasing number of studies have been directed towards understanding the mechanisms of cold acclimation in fish. However, the adaptation of larvae to cold stress and the cold-specific transcriptional alterations in fish larvae remain largely unknown. In this study, we characterized the development of cold-tolerance in zebrafish larvae and investigated the transcriptional profiles under cold stress using RNA-seq. Results Pre-exposure of 96 hpf zebrafish larvae to cold stress (16°C) for 24 h significantly increased their survival rates under severe cold stress (12°C). RNA-seq generated 272 million raw reads from six sequencing libraries and about 92% of the processed reads were mapped to the reference genome of zebrafish. Differential expression analysis identified 1,431 up- and 399 down-regulated genes. Gene ontology enrichment analysis of cold-induced genes revealed that RNA splicing, ribosome biogenesis and protein catabolic process were the most highly overrepresented biological processes. Spliceosome, proteasome, eukaryotic ribosome biogenesis and RNA transport were the most highly enriched pathways for genes up-regulated by cold stress. Moreover, alternative splicing of 197 genes and promoter switching of 64 genes were found to be regulated by cold stress. A shorter isoform of stk16 that lacks 67 amino acids at the N-terminus was specifically generated by skipping the second exon in cold-treated larvae. Alternative promoter usage was detected for per3 gene under cold stress, which leading to a highly up-regulated transcript encoding a truncated protein lacking the C-terminal domains. Conclusions These findings indicate that zebrafish larvae possess the ability to build cold-tolerance under mild low temperature and transcriptional and post-transcriptional regulations are extensively involved in this acclimation process. PMID:24024969

  12. Using whole mount in situ hybridization to examine thyroid hormone deiodinase expression in embryonic and larval zebrafish: a tool for examining OH-BDE toxicity to early life stages.

    PubMed

    Dong, Wu; Macaulay, Laura J; Kwok, Kevin W H; Hinton, David E; Stapleton, Heather M

    2013-05-15

    Polybrominated diphenyl ethers (PBDEs) and their oxidative metabolites (hydroxylated PBDEs; OH-BDEs) are known endocrine disrupting contaminants that have been shown to disrupt thyroid hormone regulation both in mammals and in fish. The purpose of this study was to determine the precise organ and tissue locations that express genes critical to thyroid hormone regulation in developing zebrafish (Danio rerio), and to determine the effects of an OH-BDE on their expression. While RT-PCR can provide quantitative data on gene expression, it lacks spatial sensitivity to examine localized gene expression; and, isolation of organs from zebrafish embryos is technically difficult, if not impossible. For this reason, the present study used whole mount in situ hybridization to simultaneously localize and quantify gene expression in vivo. While PBDEs and OH-BDEs have been shown to inhibit the activity and expression of deiodionases, a family of enzymes that regulate thyroid hormone concentrations intracellularly, it is unclear whether or not they can affect regional expression of the different isoforms during early development. In this study we investigated deiodinase 1 (Dio1), deiodinase 2 (Dio2), and deiodinase 3 (Dio3) mRNA expression at the following life stages (2, 8, and 1k-cells; 50%-epiboly, 6 and 18-somites, 22, 24, 48, 72 hpf and/or 10 dpf) in zebrafish and found life stage specific expression of these genes that were highly localized. To demonstrate the use of this technique for investigating potential endocrine disrupting effects, zebrafish embryos were exposed to 1, 10 and 100nM 6-OH-BDE-47. Significant increases in mean intensity of Dio1 and Dio3 expression in the periventricular zone of brain and pronephric duct, respectively (quantified by measuring intensity of coloration using ImageJ analysis software) were observed, suggesting localized response at the HPT axis with the possibility of impacting neurodevelopment. Our results demonstrate effects of OH-BDEs on

  13. 3D Finite Element Electrical Model of Larval Zebrafish ECG Signals

    PubMed Central

    Crowcombe, James; Dhillon, Sundeep Singh; Hurst, Rhiannon Mary; Egginton, Stuart; Müller, Ferenc; Sík, Attila; Tarte, Edward

    2016-01-01

    Assessment of heart function in zebrafish larvae using electrocardiography (ECG) is a potentially useful tool in developing cardiac treatments and the assessment of drug therapies. In order to better understand how a measured ECG waveform is related to the structure of the heart, its position within the larva and the position of the electrodes, a 3D model of a 3 days post fertilisation (dpf) larval zebrafish was developed to simulate cardiac electrical activity and investigate the voltage distribution throughout the body. The geometry consisted of two main components; the zebrafish body was modelled as a homogeneous volume, while the heart was split into five distinct regions (sinoatrial region, atrial wall, atrioventricular band, ventricular wall and heart chambers). Similarly, the electrical model consisted of two parts with the body described by Laplace’s equation and the heart using a bidomain ionic model based upon the Fitzhugh-Nagumo equations. Each region of the heart was differentiated by action potential (AP) parameters and activation wave conduction velocities, which were fitted and scaled based on previously published experimental results. ECG measurements in vivo at different electrode recording positions were then compared to the model results. The model was able to simulate action potentials, wave propagation and all the major features (P wave, R wave, T wave) of the ECG, as well as polarity of the peaks observed at each position. This model was based upon our current understanding of the structure of the normal zebrafish larval heart. Further development would enable us to incorporate features associated with the diseased heart and hence assist in the interpretation of larval zebrafish ECGs in these conditions. PMID:27824910

  14. 3D Finite Element Electrical Model of Larval Zebrafish ECG Signals.

    PubMed

    Crowcombe, James; Dhillon, Sundeep Singh; Hurst, Rhiannon Mary; Egginton, Stuart; Müller, Ferenc; Sík, Attila; Tarte, Edward

    2016-01-01

    Assessment of heart function in zebrafish larvae using electrocardiography (ECG) is a potentially useful tool in developing cardiac treatments and the assessment of drug therapies. In order to better understand how a measured ECG waveform is related to the structure of the heart, its position within the larva and the position of the electrodes, a 3D model of a 3 days post fertilisation (dpf) larval zebrafish was developed to simulate cardiac electrical activity and investigate the voltage distribution throughout the body. The geometry consisted of two main components; the zebrafish body was modelled as a homogeneous volume, while the heart was split into five distinct regions (sinoatrial region, atrial wall, atrioventricular band, ventricular wall and heart chambers). Similarly, the electrical model consisted of two parts with the body described by Laplace's equation and the heart using a bidomain ionic model based upon the Fitzhugh-Nagumo equations. Each region of the heart was differentiated by action potential (AP) parameters and activation wave conduction velocities, which were fitted and scaled based on previously published experimental results. ECG measurements in vivo at different electrode recording positions were then compared to the model results. The model was able to simulate action potentials, wave propagation and all the major features (P wave, R wave, T wave) of the ECG, as well as polarity of the peaks observed at each position. This model was based upon our current understanding of the structure of the normal zebrafish larval heart. Further development would enable us to incorporate features associated with the diseased heart and hence assist in the interpretation of larval zebrafish ECGs in these conditions.

  15. Ototoxin-induced cellular damage in neuromasts disrupts lateral line function in larval zebrafish.

    PubMed

    Buck, Lauren M J; Winter, Matthew J; Redfern, William S; Whitfield, Tanya T

    2012-02-01

    The ototoxicity of a number of marketed drugs is well documented, and there is an absence of convenient techniques to identify and eliminate this unwanted effect at a pre-clinical stage. We have assessed the validity of the larval zebrafish, or more specifically its lateral line neuromast hair cells, as a microplate-scale in vivo surrogate model of mammalian inner ear hair cell responses to ototoxin exposure. Here we describe an investigation of the pathological and functional consequences of hair cell loss in lateral line neuromasts of larval zebrafish after exposure to a range of well known human and non-human mammalian ototoxins. Using a previously described histological assay, we show that hair cell damage occurs in a concentration-dependent fashion following exposure to representatives from a range of drug classes, including the aminoglycoside antibiotics, salicylates and platinum-based chemotherapeutics, as well as a heavy metal. Furthermore, we detail the optimisation of a semi-automated method to analyse the stereotypical startle response in larval zebrafish, and use this to assess the impact of hair cell damage on hearing function in these animals. Functional assessment revealed robust and significant attenuation of the innate startle, rheotactic and avoidance responses of 5 day old zebrafish larvae after treatment with a number of compounds previously shown to induce hair cell damage and loss. Interestingly, a startle reflex (albeit reduced) was still present even after the apparent complete loss of lateral line hair cell fluorescence, suggesting some involvement of the inner ear as well as the lateral line neuromast hair cells in this reflex response. Collectively, these data provide evidence to support the use of the zebrafish as a pre-clinical indicator of drug-induced histological and functional ototoxicity. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Positive taxis and sustained responsiveness to water motions in larval zebrafish

    PubMed Central

    Groneberg, Antonia H.; Herget, Ulrich; Ryu, Soojin; De Marco, Rodrigo J.

    2015-01-01

    Larval zebrafish (Danio rerio) have become favored subjects for studying the neural bases of behavior. Here, we report a highly stereotyped response of zebrafish larvae to hydrodynamic stimuli. It involves positive taxis, motion damping and sustained responsiveness to flows derived from local, non-stressful water motions. The response depends on the lateral line and has a high sensitivity to stimulus frequency and strength, sensory background and rearing conditions—also encompassing increased threshold levels of response to parallel input. The results show that zebrafish larvae can use near-field detection to locate sources of minute water motions, and offer a unique handle for analyses of hydrodynamic sensing, sensory responsiveness and arousal with accurate control of stimulus properties. PMID:25798089

  17. Positive taxis and sustained responsiveness to water motions in larval zebrafish.

    PubMed

    Groneberg, Antonia H; Herget, Ulrich; Ryu, Soojin; De Marco, Rodrigo J

    2015-01-01

    Larval zebrafish (Danio rerio) have become favored subjects for studying the neural bases of behavior. Here, we report a highly stereotyped response of zebrafish larvae to hydrodynamic stimuli. It involves positive taxis, motion damping and sustained responsiveness to flows derived from local, non-stressful water motions. The response depends on the lateral line and has a high sensitivity to stimulus frequency and strength, sensory background and rearing conditions--also encompassing increased threshold levels of response to parallel input. The results show that zebrafish larvae can use near-field detection to locate sources of minute water motions, and offer a unique handle for analyses of hydrodynamic sensing, sensory responsiveness and arousal with accurate control of stimulus properties.

  18. High cholesterol diet induces IL-1β expression in adult but not larval zebrafish.

    PubMed

    Yoon, Yina; Yoon, Jihye; Jang, Man-Young; Na, Yirang; Ko, Youngho; Choi, Jae-Hoon; Seok, Seung Hyeok

    2013-01-01

    Recently, it has been demonstrated that high cholesterol diet induced hypercholesterolemia and vascular lipid oxidation and accumulation in zebrafish larvae, suggesting that zebrafish is a new promising atherosclerosis model in addition to mouse models. However, up to date, there was no report regarding inflammatory cytokine expression during the lipid accumulation in zebrafish larva and adult fish. In this study, we first demonstrated the expression levels of IL-1β and TNF-α in high cholesterol diet (HCD)-fed zebrafish larvae, and found that although HCD induced vascular lipid accumulation, the cytokine expressions in the larvae were not changed by HCD. Furthermore, there was no significant difference in leukocyte accumulation in vessels between control and HCD fed group. But prolonged HCD induced IL-1β expression in spleen and liver compared to those of control zebrafish, and produced very early stage of fatty streak lesion in dorsal aorta of 19 week HCD-fed zebrafish. These results indicate that HCD induced hypercholesterolemia and atherosclerotic changes in zebrafish are very early stage, and suggest the necessity of the generation of mutant zebrafish having a disruption in a lipid metabolism-related gene leading to severe hypercholesterolemia and advanced atherosclerosis.

  19. High Cholesterol Diet Induces IL-1β Expression in Adult but Not Larval Zebrafish

    PubMed Central

    Jang, Man-Young; Na, Yirang; Ko, Youngho; Choi, Jae-Hoon; Seok, Seung Hyeok

    2013-01-01

    Recently, it has been demonstrated that high cholesterol diet induced hypercholesterolemia and vascular lipid oxidation and accumulation in zebrafish larvae, suggesting that zebrafish is a new promising atherosclerosis model in addition to mouse models. However, up to date, there was no report regarding inflammatory cytokine expression during the lipid accumulation in zebrafish larva and adult fish. In this study, we first demonstrated the expression levels of IL-1β and TNF-α in high cholesterol diet (HCD)-fed zebrafish larvae, and found that although HCD induced vascular lipid accumulation, the cytokine expressions in the larvae were not changed by HCD. Furthermore, there was no significant difference in leukocyte accumulation in vessels between control and HCD fed group. But prolonged HCD induced IL-1β expression in spleen and liver compared to those of control zebrafish, and produced very early stage of fatty streak lesion in dorsal aorta of 19 week HCD-fed zebrafish. These results indicate that HCD induced hypercholesterolemia and atherosclerotic changes in zebrafish are very early stage, and suggest the necessity of the generation of mutant zebrafish having a disruption in a lipid metabolism-related gene leading to severe hypercholesterolemia and advanced atherosclerosis. PMID:23825600

  20. Distinct responses of Purkinje neurons and roles of simple spikes during associative motor learning in larval zebrafish

    PubMed Central

    Harmon, Thomas C; Magaram, Uri; McLean, David L; Raman, Indira M

    2017-01-01

    To study cerebellar activity during learning, we made whole-cell recordings from larval zebrafish Purkinje cells while monitoring fictive swimming during associative conditioning. Fish learned to swim in response to visual stimulation preceding tactile stimulation of the tail. Learning was abolished by cerebellar ablation. All Purkinje cells showed task-related activity. Based on how many complex spikes emerged during learned swimming, they were classified as multiple, single, or zero complex spike (MCS, SCS, ZCS) cells. With learning, MCS and ZCS cells developed increased climbing fiber (MCS) or parallel fiber (ZCS) input during visual stimulation; SCS cells fired complex spikes associated with learned swimming episodes. The categories correlated with location. Optogenetically suppressing simple spikes only during visual stimulation demonstrated that simple spikes are required for acquisition and early stages of expression of learned responses, but not their maintenance, consistent with a transient, instructive role for simple spikes during cerebellar learning in larval zebrafish. DOI: http://dx.doi.org/10.7554/eLife.22537.001 PMID:28541889

  1. Crypt cells are involved in kin recognition in larval zebrafish.

    PubMed

    Biechl, Daniela; Tietje, Kristin; Gerlach, Gabriele; Wullimann, Mario F

    2016-04-18

    Zebrafish larvae imprint on visual and olfactory kin cues at day 5 and 6 postfertilization, respectively, resulting in kin recognition later in life. Exposure to non-kin cues prevents imprinting and kin recognition. Imprinting depends on MHC class II related signals and only larvae sharing MHC class II alleles can imprint on each other. Here, we analyzed which type of olfactory sensory neuron (OSN) detects kin odor. The single teleost olfactory epithelium harbors ciliated OSNs carrying OR and TAAR gene family receptors (mammals: main olfactory epithelium) and microvillous OSNs with V1R and V2R gene family receptors (mammals: vomeronasal organ). Additionally, teleosts exhibit crypt cells which possess microvilli and cilia. We used the activity marker pERK (phosphorylated extracellular signal regulated kinase) after stimulating 9 day old zebrafish larvae with either non-kin conspecific or food odor. While food odor activated both ciliated and microvillous OSNs, only the latter were activated by conspecific odor, crypt cells showed no activation to both stimuli. Then, we tested imprinted and non-imprinted larvae (full siblings) for kin odor detection. We provide the first direct evidence that crypt cells, and likely a subpopulation of microvillous OSNs, but not ciliated OSNs, play a role in detecting a kin odor related signal.

  2. Crypt cells are involved in kin recognition in larval zebrafish

    PubMed Central

    Biechl, Daniela; Tietje, Kristin; Gerlach, Gabriele; Wullimann, Mario F.

    2016-01-01

    Zebrafish larvae imprint on visual and olfactory kin cues at day 5 and 6 postfertilization, respectively, resulting in kin recognition later in life. Exposure to non-kin cues prevents imprinting and kin recognition. Imprinting depends on MHC class II related signals and only larvae sharing MHC class II alleles can imprint on each other. Here, we analyzed which type of olfactory sensory neuron (OSN) detects kin odor. The single teleost olfactory epithelium harbors ciliated OSNs carrying OR and TAAR gene family receptors (mammals: main olfactory epithelium) and microvillous OSNs with V1R and V2R gene family receptors (mammals: vomeronasal organ). Additionally, teleosts exhibit crypt cells which possess microvilli and cilia. We used the activity marker pERK (phosphorylated extracellular signal regulated kinase) after stimulating 9 day old zebrafish larvae with either non-kin conspecific or food odor. While food odor activated both ciliated and microvillous OSNs, only the latter were activated by conspecific odor, crypt cells showed no activation to both stimuli. Then, we tested imprinted and non-imprinted larvae (full siblings) for kin odor detection. We provide the first direct evidence that crypt cells, and likely a subpopulation of microvillous OSNs, but not ciliated OSNs, play a role in detecting a kin odor related signal. PMID:27087508

  3. Rhodopsin expression in the zebrafish pineal gland from larval to adult stage.

    PubMed

    Magnoli, Domenico; Zichichi, Rosalia; Laurà, Rosaria; Guerrera, Maria Cristina; Campo, Salvatore; de Carlos, Felix; Suárez, Alberto Álvarez; Abbate, Francesco; Ciriaco, Emilia; Vega, Jose Antonio; Germanà, Antonino

    2012-03-09

    The zebrafish pineal gland plays an important role in different physiological functions including the regulation of the circadian clock. In the fish pineal gland the pinealocytes are made up of different segments: outer segment, inner segment and basal pole. Particularly, in the outer segment the rhodopsin participates in the external environment light reception that represents the first biochemical step in the melatonin production. It is well known that the rhodopsin in the adult zebrafish is well expressed in the pineal gland but both the expression and the cellular localization of this protein during development remain still unclear. In this study using qRT-PCR, sequencing and immunohistochemistry the expression as well as the protein localization of the rhodopsin in the zebrafish from larval (10 dpf) to adult stage (90 dpf) were demonstrated. The rhodopsin mRNA expression presents a peak of expression at 10 dpf, a further reduction to 50 dpf before increasing again in the adult stage. Moreover, the cellular localization of the rhodopsin-like protein was always localized in the pinealocyte at all ages examined. Our results demonstrated the involvement of the rhodopsin in the zebrafish pineal gland physiology particularly in the light capture during the zebrafish lifespan.

  4. Toxicity evaluation of β-diketone antibiotics on the development of embryo-larval zebrafish (Danio rerio).

    PubMed

    Wang, Huili; Che, Baoguang; Duan, Ailian; Mao, Jingwen; Dahlgren, Randy A; Zhang, Minghua; Zhang, Hongqin; Zeng, Aibing; Wang, Xuedong

    2014-10-01

    This study evaluated the effects of β-diketone antibiotics (DKAs) on the development of embryo-larval zebrafish (Danio rerio). When exposure to DKAs, developmental malformations, such as hatching delay, curved body axis, pericardial edema, uninflated swim bladder and yolk sac edema, were observed at 120 h postfertilization (hpf). The estimated 120 hpf nominal concentrations of no observed effect concentration and lowest observed effect concentration for DKAs were 18.75 and 37.50 mg/L, respectively, suggesting that DKAs have much lower toxicity than other persistent pollutants. Following DKA exposure, embryonic heart rates were significantly reduced as compared to the controls at 48 and 60 hpf. The peak bending motion frequency appeared 1 h earlier than in control embryos. The 2.34 and 9.38-mg/L treatment groups had a higher basal swim rate than control groups at 120 hpf in both light and light-to-dark photoperiod experiments. The occurrence of high speed swim rates was enhanced approximately threefold to sevenfold in the 2.34 and 9.38 mg/L treatments compared to the control. Glutathione (GSH) concentrations in the 2.34 and 9.38-mg/L treatments were significantly higher than the control at 72 hpf, suggesting that GSH production was induced at the end of the hatching period. When exposed to DKAs, zebrafish superoxide dismutase enzyme (SOD) activities were significantly inhibited in the early embryonic period, demonstrating that the clearing ability in zebrafish was lower than the generation rate of free radicals. In summary, the combined DKAs were developmentally toxic to zebrafish in their early life stages and had the ability to impair individual behaviors that are of great importance in the assessment of their ecological fitness.

  5. Episodic swimming in the larval zebrafish is generated by a spatially distributed spinal network with modular functional organization

    PubMed Central

    Wiggin, Timothy D.; Anderson, Tatiana M.; Eian, John; Peck, Jack H.

    2012-01-01

    Despite the diverse methods vertebrates use for locomotion, there is evidence that components of the locomotor central pattern generator (CPG) are conserved across species. When zebrafish begin swimming early in development, they perform short episodes of activity separated by periods of inactivity. Within these episodes, the trunk flexes with side-to-side alternation and the traveling body wave progresses rostrocaudally. To characterize the distribution of the swimming CPG along the rostrocaudal axis, we performed transections of the larval zebrafish spinal cord and induced fictive swimming using N-methyl-d-aspartate (NMDA). In both intact and spinalized larvae, bursting is found throughout the rostrocaudal extent of the spinal cord, and the properties of fictive swimming observed were dependent on the concentration of NMDA. We isolated series of contiguous spinal segments by performing multiple spinal transections on the same larvae. Although series from all regions of the spinal cord have the capacity to produce bursts, the capacity to produce organized episodes of fictive swimming has a rostral bias: in the rostral spinal cord, only 12 contiguous body segments are necessary, whereas 23 contiguous body segments are necessary in the caudal spinal cord. Shorter series of segments were often active but produced either continuous rhythmic bursting or sporadic, nonrhythmic bursting. Both episodic and continuous bursting alternated between the left and right sides of the body and showed rostrocaudal progression, demonstrating the functional dissociation of the circuits responsible for episodic structure and fine burst timing. These findings parallel results in mammalian locomotion, and we propose a hierarchical model of the larval zebrafish swimming CPG. PMID:22572943

  6. Effects of larval-juvenile treatment with perchlorate and co-treatment with thyroxine on zebrafish sex ratios

    USGS Publications Warehouse

    Mukhi, S.; Torres, L.; Patino, R.

    2007-01-01

    The objective of this study was to determine the effect of larval-juvenile exposure to perchlorate, a thyroid hormone synthesis inhibitor, on the establishment of gonadal sex ratios in zebrafish. Zebrafish were exposed to untreated water or water containing perchlorate at 100 or 250 ppm for a period of 30 days starting at 3 days postfertilization (dpf). Recovery treatments consisted of a combination of perchlorate and exogenous thyroxine (T4; 10 nM). Thyroid histology was assessed at the end of the treatment period (33 dpf), and gonadal histology and sex ratios were determined in fish that were allowed an additional 10-day period of growth in untreated water. As expected, exposure to perchlorate caused changes in thyroid histology consistent with hypothyroidism and these effects were reversed by co-treatment with exogenous T4. Perchlorate did not affect fish survival but co-treatment with T4 induced higher mortality. However, relative to the corresponding perchlorate concentration, co-treatment with T4 caused increased mortality only at a perchlorate concentration of 100 ppm. Perchlorate alone or in the presence of T4 suppressed body length at 43 dpf relative to control values. Perchlorate exposure skewed the sex ratio toward female in a concentration-dependent manner, and co-treatment with T4 not only blocked the feminizing effect of perchlorate but also overcompensated by skewing the sex ratio towards male. Moreover, co-treatment with T4 advanced the onset of spermatogenesis in males. There was no clear association between sex ratios and larval survival or growth. We conclude that endogenous thyroid hormone plays a role in the establishment of gonadal sex phenotype during early development in zebrafish. ?? 2006 Elsevier Inc. All rights reserved.

  7. Episodic swimming in the larval zebrafish is generated by a spatially distributed spinal network with modular functional organization.

    PubMed

    Wiggin, Timothy D; Anderson, Tatiana M; Eian, John; Peck, Jack H; Masino, Mark A

    2012-08-01

    Despite the diverse methods vertebrates use for locomotion, there is evidence that components of the locomotor central pattern generator (CPG) are conserved across species. When zebrafish begin swimming early in development, they perform short episodes of activity separated by periods of inactivity. Within these episodes, the trunk flexes with side-to-side alternation and the traveling body wave progresses rostrocaudally. To characterize the distribution of the swimming CPG along the rostrocaudal axis, we performed transections of the larval zebrafish spinal cord and induced fictive swimming using N-methyl-d-aspartate (NMDA). In both intact and spinalized larvae, bursting is found throughout the rostrocaudal extent of the spinal cord, and the properties of fictive swimming observed were dependent on the concentration of NMDA. We isolated series of contiguous spinal segments by performing multiple spinal transections on the same larvae. Although series from all regions of the spinal cord have the capacity to produce bursts, the capacity to produce organized episodes of fictive swimming has a rostral bias: in the rostral spinal cord, only 12 contiguous body segments are necessary, whereas 23 contiguous body segments are necessary in the caudal spinal cord. Shorter series of segments were often active but produced either continuous rhythmic bursting or sporadic, nonrhythmic bursting. Both episodic and continuous bursting alternated between the left and right sides of the body and showed rostrocaudal progression, demonstrating the functional dissociation of the circuits responsible for episodic structure and fine burst timing. These findings parallel results in mammalian locomotion, and we propose a hierarchical model of the larval zebrafish swimming CPG.

  8. Hydrogen sulfide promotes calcium uptake in larval zebrafish.

    PubMed

    Kwong, Raymond W M; Perry, Steve F

    2015-07-01

    Hydrogen sulfide (H2S) can act as a signaling molecule for various ion channels and/or transporters; however, little is known about its potential involvement in Ca(2+) balance. Using developing zebrafish (Danio rerio) as an in vivo model system, the present study demonstrated that acute exposure to H2S donors increased Ca(2+) influx at 4 days postfertilization, while chronic (3-day) exposure caused a rise in whole body Ca(2+) levels. The mRNA expression of Ca(2+)-transport-related genes was unaffected by H2S exposure, suggesting that posttranscriptional modifications were responsible for the altered rates of Ca(2+) uptake. Indeed, treatment of fish with the protein kinase A inhibitor H-89 abolished the H2S-mediated stimulation of Ca(2+) influx, suggesting that H2S increased Ca(2+) influx by activating cAMP-protein kinase A pathways. Cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE) are two key enzymes in the endogenous synthesis of H2S. Using an antisense morpholino knockdown approach, we demonstrated that Ca(2+) influx was reduced in CBS isoform b (CBSb)- but not in CSE-deficient fish. Interestingly, the reduction in Ca(2+) influx in CBSb-deficient fish was observed only in fish that were acclimated to low-Ca(2+) water (i.e., 25 μM Ca(2+); control: 250 μM Ca(2+)). Similarly, mRNA expression of cbsb but not cse was increased in fish acclimated to low-Ca(2+) water. Results from whole-mount immunohistochemistry further revealed that CBSb was expressed in Na(+)-K(+)-ATPase-rich cells, which are implicated in Ca(2+) uptake in zebrafish larvae. Collectively, the present study suggests a novel role for H2S in promoting Ca(2+) influx, particularly in a low-Ca(2+) environment.

  9. Hydrogen sulfide promotes calcium uptake in larval zebrafish

    PubMed Central

    Perry, Steve F.

    2015-01-01

    Hydrogen sulfide (H2S) can act as a signaling molecule for various ion channels and/or transporters; however, little is known about its potential involvement in Ca2+ balance. Using developing zebrafish (Danio rerio) as an in vivo model system, the present study demonstrated that acute exposure to H2S donors increased Ca2+ influx at 4 days postfertilization, while chronic (3-day) exposure caused a rise in whole body Ca2+ levels. The mRNA expression of Ca2+-transport-related genes was unaffected by H2S exposure, suggesting that posttranscriptional modifications were responsible for the altered rates of Ca2+ uptake. Indeed, treatment of fish with the protein kinase A inhibitor H-89 abolished the H2S-mediated stimulation of Ca2+ influx, suggesting that H2S increased Ca2+ influx by activating cAMP-protein kinase A pathways. Cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE) are two key enzymes in the endogenous synthesis of H2S. Using an antisense morpholino knockdown approach, we demonstrated that Ca2+ influx was reduced in CBS isoform b (CBSb)- but not in CSE-deficient fish. Interestingly, the reduction in Ca2+ influx in CBSb-deficient fish was observed only in fish that were acclimated to low-Ca2+ water (i.e., 25 μM Ca2+; control: 250 μM Ca2+). Similarly, mRNA expression of cbsb but not cse was increased in fish acclimated to low-Ca2+ water. Results from whole-mount immunohistochemistry further revealed that CBSb was expressed in Na+-K+-ATPase-rich cells, which are implicated in Ca2+ uptake in zebrafish larvae. Collectively, the present study suggests a novel role for H2S in promoting Ca2+ influx, particularly in a low-Ca2+ environment. PMID:25948733

  10. Spinal interneurons differentiate sequentially from those driving the fastest swimming movements in larval zebrafish to those driving the slowest ones

    PubMed Central

    McLean, David L.; Fetcho, Joseph R.

    2009-01-01

    Studies of neuronal networks have revealed few general principles that link patterns of development with later functional roles. While investigating the neural control of movements, we recently discovered a topographic map in the spinal cord of larval zebrafish that relates the position of motoneurons and interneurons to their order of recruitment during swimming. Here, we show that the map reflects an orderly pattern of differentiation of neurons driving different movements. First, we use high-speed filming to show that large amplitude swimming movements with bending along much of the body appear first, with smaller, regional swimming movements emerging later. Next, using whole-cell patch recordings, we demonstrate that the excitatory circuits that drive large amplitude, fast swimming movements at larval stages are present and functional early on in embryos. Finally, we systematically assess the orderly emergence of spinal circuits according to swimming speed using transgenic fish expressing the photoconvertible protein, Kaede, to track neuronal differentiation in vivo. We conclude that a simple principle governs the development of spinal networks in which the neurons driving the fastest, most powerful swimming in larvae develop first with ones that drive increasingly weaker and slower larval movements layered on over time. Because the neurons are arranged by time of differentiation in the spinal cord, the result is a topographic map that represents the speed/strength of movements at which neurons are recruited and the temporal emergence of networks. This pattern may represent a general feature of neuronal network development throughout the brain and spinal cord. PMID:19864569

  11. Effects of lorazepam and WAY-200070 in larval zebrafish light/dark choice test.

    PubMed

    Chen, Fengjiao; Chen, Sijie; Liu, Shanshan; Zhang, Cuizhen; Peng, Gang

    2015-08-01

    Zebrafish larvae spend more time in brightly illuminated area when placed in a light/dark testing environment. Here we report that the anxiolytic drugs lorazepam and diazepam increased the time larval fish spent in the dark compartment in the light/dark test. Lorazepam did not affect the visual induced optokinetic response of larval fish. Gene expression levels of c-fos and crh were significantly increased in the hypothalamus of fish larvae underwent light/dark choice behavior, whilst lorazepam treatment alleviated the increased c-fos and crh expressions. Furthermore, we found estrogen receptor β gene expression level was increased in fish larvae underwent light/dark choice. We next examined effects of estrogen receptor modulators (estradiol, BPA, PHTPP, and WAY-200070) in the light/dark test. We identified WAY-200070, a highly selective ERβ agonist significantly altered the light/dark choice behavior of zebrafish larvae. Further investigation showed WAY-200070 treatment caused a reduction of crh expression level in the hypothalamus, suggesting activation of ERβ signaling attenuate the stress response. Interestingly, WAY-200070 treatment caused marked increase of c-fos expression in the habenula of fish larvae underwent behavior test. These results suggest WAY-200070 activation of ERβ mediated signaling may regulate anxiety related behavior in zebrafish through modulation of neuronal activity in habenula.

  12. How body torque and Strouhal number change with swimming speed and developmental stage in larval zebrafish.

    PubMed

    van Leeuwen, Johan L; Voesenek, Cees J; Müller, Ulrike K

    2015-09-06

    Small undulatory swimmers such as larval zebrafish experience both inertial and viscous forces, the relative importance of which is indicated by the Reynolds number (Re). Re is proportional to swimming speed (vswim) and body length; faster swimming reduces the relative effect of viscous forces. Compared with adults, larval fish experience relatively high (mainly viscous) drag during cyclic swimming. To enhance thrust to an equally high level, they must employ a high product of tail-beat frequency and (peak-to-peak) amplitude fAtail, resulting in a relatively high fAtail/vswim ratio (Strouhal number, St), and implying relatively high lateral momentum shedding and low propulsive efficiency. Using kinematic and inverse-dynamics analyses, we studied cyclic swimming of larval zebrafish aged 2-5 days post-fertilization (dpf). Larvae at 4-5 dpf reach higher f (95 Hz) and Atail (2.4 mm) than at 2 dpf (80 Hz, 1.8 mm), increasing swimming speed and Re, indicating increasing muscle powers. As Re increases (60 → 1400), St (2.5 → 0.72) decreases nonlinearly towards values of large swimmers (0.2-0.6), indicating increased propulsive efficiency with vswim and age. Swimming at high St is associated with high-amplitude body torques and rotations. Low propulsive efficiencies and large yawing amplitudes are unavoidable physical constraints for small undulatory swimmers. © 2015 The Author(s).

  13. How body torque and Strouhal number change with swimming speed and developmental stage in larval zebrafish

    PubMed Central

    van Leeuwen, Johan L.; Voesenek, Cees J.; Müller, Ulrike K.

    2015-01-01

    Small undulatory swimmers such as larval zebrafish experience both inertial and viscous forces, the relative importance of which is indicated by the Reynolds number (Re). Re is proportional to swimming speed (vswim) and body length; faster swimming reduces the relative effect of viscous forces. Compared with adults, larval fish experience relatively high (mainly viscous) drag during cyclic swimming. To enhance thrust to an equally high level, they must employ a high product of tail-beat frequency and (peak-to-peak) amplitude fAtail, resulting in a relatively high fAtail/vswim ratio (Strouhal number, St), and implying relatively high lateral momentum shedding and low propulsive efficiency. Using kinematic and inverse-dynamics analyses, we studied cyclic swimming of larval zebrafish aged 2–5 days post-fertilization (dpf). Larvae at 4–5 dpf reach higher f (95 Hz) and Atail (2.4 mm) than at 2 dpf (80 Hz, 1.8 mm), increasing swimming speed and Re, indicating increasing muscle powers. As Re increases (60 → 1400), St (2.5 → 0.72) decreases nonlinearly towards values of large swimmers (0.2–0.6), indicating increased propulsive efficiency with vswim and age. Swimming at high St is associated with high-amplitude body torques and rotations. Low propulsive efficiencies and large yawing amplitudes are unavoidable physical constraints for small undulatory swimmers. PMID:26269230

  14. A dedicated visual pathway for prey detection in larval zebrafish

    PubMed Central

    Semmelhack, Julia L; Donovan, Joseph C; Thiele, Tod R; Kuehn, Enrico; Laurell, Eva; Baier, Herwig

    2014-01-01

    Zebrafish larvae show characteristic prey capture behavior in response to small moving objects. The neural mechanism used to recognize objects as prey remains largely unknown. We devised a machine learning behavior classification system to quantify hunting kinematics in semi-restrained animals exposed to a range of virtual stimuli. Two-photon calcium imaging revealed a small visual area, AF7, that was activated specifically by the optimal prey stimulus. This pretectal region is innervated by two types of retinal ganglion cells, which also send collaterals to the optic tectum. Laser ablation of AF7 markedly reduced prey capture behavior. We identified neurons with arbors in AF7 and found that they projected to multiple sensory and premotor areas: the optic tectum, the nucleus of the medial longitudinal fasciculus (nMLF) and the hindbrain. These findings indicate that computations in the retina give rise to a visual stream which transforms sensory information into a directed prey capture response. DOI: http://dx.doi.org/10.7554/eLife.04878.001 PMID:25490154

  15. Acute and Chronic Toxicity of Nitrate to Early Life Stages of Zebrafish--Setting Nitrate Safety Levels for Zebrafish Rearing.

    PubMed

    Learmonth, Cândida; Carvalho, António Paulo

    2015-08-01

    Recirculating aquaculture systems (RAS) have been widely used for zebrafish rearing, allowing holding of many thousands of fish at high densities. Water quality in RAS largely depends on biofilters that ultimately convert the extremely toxic ammonia excreted by fish into the much less toxic nitrate. However, when water renewal is minimal in RAS, nitrate can accumulate to high enough levels to negatively impact fish welfare and performance. Therefore, the setting of safety levels of nitrate for zebrafish should be a priority to avoid unwanted effects in both the intensive production of this species and research outputs. The present study aimed to define nitrate safety levels for zebrafish based on acute and chronic toxicity bioassays in early life stages of this species. Acute bioassays revealed ontogenetic changes in response to high nitrate levels. Based on NOEC (no observed effect concentration) values, safety levels should be set at 1450, 1855, and 1075 mg/L NO3(-)-N to prevent acute lethal effects in embryos, newly-hatched larvae, and swim-up larvae, respectively. In the chronic bioassay, larvae were exposed to nitrate concentrations of 50, 100, 200, and 400 mg/L NO3(-)-N during the entire larval period (23 days). No negative effects were observed either on larval performance or condition at concentrations up to 200 mg/L NO3(-)-N. However, at 400 mg/L NO3(-)-N, survival drastically decreased and fish showed reduced growth and evidence of morphological abnormalities. Accordingly, a safety level of 200 mg/L NO3(-)-N is recommended during the larval rearing of zebrafish to prevent negative impacts on juvenile production.

  16. Methods for culturing saltwater rotifers (Brachionus plicatilis) for rearing larval zebrafish.

    PubMed

    Lawrence, Christian; Sanders, Erik; Henry, Eric

    2012-09-01

    The saltwater rotifer, Brachionus plicatilis, is widely used in the aquaculture industry as a prey item for first-feeding fishes due to its ease of culture, small size, rapid reproductive rate, and amenability to enrichment with nutrients. Despite the distinct advantages of this approach, rotifers have only been sporadically utilized for rearing larval zebrafish, primarily because of the common misconception that maintaining cultures of rotifers is difficult and excessively time-consuming. Here we present simple methods for maintaining continuous cultures of rotifers capable of supporting even the very largest zebrafish aquaculture facility, with minimal investments in materials, time, labor, and space. Examples of the methods' application in one large, existing facility is provided, and troubleshooting of common problems is discussed.

  17. Early life perfluorooctanesulphonic acid (PFOS) exposure impairs zebrafish organogenesis

    PubMed Central

    Chen, Jiangfei; Tanguay, Robert L.; Tal, Tamara L.; Bai, Chenglian; Tilton, Susan C.; Jin, Daqing; Yang, Dongren; Huang, Changjiang; Dong, Qiaoxiang

    2014-01-01

    As a persistent organic contaminant, perfluorooctanesulphonic acid (PFOS) has been widely detected in the environment, wildlife, and humans. The present study revealed that zebrafish embryos exposed to 16 µM PFOS during a sensitive window of 48–96 hour post-fertilization (hpf) disrupted larval morphology at 120 hpf. Malformed zebrafish larvae were characterized by uninflated swim bladder, less developed gut, and curved spine. Histological and ultrastructural examination of PFOS-exposed larvae showed structural alterations in swim bladder and gut. Whole genome microarray was used to identify the early transcripts dysregulated following exposure to 16 µM PFOS at 96 hpf. In total, 1,278 transcripts were significantly misexpressed (p < 0.05) and 211 genes were changed at least two-fold upon PFOS exposure in comparison to the vehicle exposed control group. A PFOS-induced network of perturbed transcripts relating to swim bladder and gut development revealed that misexpression of genes were involved in organogenesis. Taken together, early life stage exposure to PFOS perturbs various molecular pathways potentially resulting in observed defects in swim bladder and gut development. PMID:24667235

  18. Movement and function of the pectoral fins of the larval zebrafish (Danio rerio) during slow swimming.

    PubMed

    Green, Matthew H; Ho, Robert K; Hale, Melina E

    2011-09-15

    Pectoral fins are known to play important roles in swimming for many adult fish; however, their functions in fish larvae are unclear. We examined routine pectoral fin movement during rhythmic forward swimming and used genetic ablation to test hypotheses of fin function in larval zebrafish. Fins were active throughout bouts of slow swimming. Initiation was characterized by asymmetric fin abduction that transitioned to alternating rhythmic movement with first fin adduction. During subsequent swimming, fin beat amplitude decreased while tail beat amplitude increased over swimming speeds ranging from 1.47 to 4.56 body lengths per second. There was no change in fin or tail beat frequency with speed (means ± s.d.: 28.2±3.5 and 29.6±1.9 Hz, respectively). To examine potential roles of the pectoral fins in swimming, we compared the kinematics of finless larvae generated with a morpholino knockdown of the gene fgf24 to those of normal fish. Pectoral fins were not required for initiation nor did they significantly impact forward rhythmic swimming. We investigated an alternative hypothesis that the fins function in respiration. Dye visualization demonstrated that pectoral fin beats bring distant fluid toward the body and move it caudally behind the fins, disrupting the boundary layer along the body's surface, a major site of oxygen absorption in larvae. Larval zebrafish also demonstrated more fin beating in low oxygen conditions. Our data reject the hypothesis that the pectoral fins of larval zebrafish have a locomotor function during slow, forward locomotion, but are consistent with the hypothesis that the fins have a respiratory function.

  19. Acute Administration of Dopaminergic Drugs has Differential Effects on Locomotion in Larval Zebrafish

    PubMed Central

    Irons, T.D.; Kelly, P.; Hunter, D.L.; MacPhail, R.C.; Padilla, S.

    2013-01-01

    Altered dopaminergic signaling causes behavioral changes in mammals. In general, dopaminergic receptor agonists increase locomotor activity, while antagonists decrease locomotor activity. In order to determine if zebrafish (a model organism becoming popular in pharmacology and toxicology) respond similarly, the acute effects of drugs known to target dopaminergic receptors in mammals were assessed in zebrafish larvae. Larvae were maintained in 96-well microtiter plates (1 larva/well). Non-lethal concentrations (0.2–50 µM) of dopaminergic agonists (apomorphine, SKF-38393, and quinpirole) and antagonists (butaclamol, SCH-23390, and haloperidol) were administered at 6 days post-fertilization (dpf). An initial experiment identified the time of peak effect of each drug (20–260 minutes post-dosing, depending on the drug). Locomotor activity was then assessed for 70 minutes in alternating light and dark at the time of peak effect for each drug to delineate dose-dependent effects. All drugs altered larval locomotion in a dose-dependent manner. Both the D1- and D2-like selective agonists (SKF-38393 and quinpirole, respectively) increased activity, while the selective antagonists (SCH-23390 and haloperidol, respectively) decreased activity. Both selective antagonists also blunted the response of the larvae to changes in lighting conditions at higher doses. The nonselective drugs had biphasic effects on locomotor activity: apomorphine increased activity at the low dose and at high doses, while butaclamol increased activity at low to intermediate doses, and decreased activity at high doses. This study demonstrates that (1) larval zebrafish locomotion can be altered by dopamine receptor agonists and antagonists, (2) receptor agonists and antagonists generally have opposite effects, and (3) drugs that target dopaminergic receptors in mammals appear, in general, to elicit similar locomotor responses in zebrafish larvae. PMID:23274813

  20. A genetic screen for zebrafish mutants with hepatic steatosis identifies a locus required for larval growth.

    PubMed

    Hugo, Sarah E; Schlegel, Amnon

    2017-03-01

    In a screen for zebrafish larval mutants with excessive liver lipid accumulation (hepatic steatosis), we identified harvest moon (hmn). Cytoplasmic lipid droplets, surrounded by multivesicular structures and mitochondria whose cristae appeared swollen, are seen in hmn mutant hepatocytes. Whole body triacylglycerol is increased in hmn mutant larvae. When we attempted to raise mutants, which were morphologically normal at the developmental stage that the screen was conducted, to adulthood, we observed that most hmn mutants do not survive to the juvenile period when raised. An arrest in growth occurs in the late larval period without obvious organ defects. Maternal zygotic mutants have no additional defects, suggesting that the mutation affects a late developmental process. The developmental window between embryogenesis and the metamorphosis remains under-studied, and hmn mutants might be useful for exploring the molecular and anatomic processes occurring during this transition period.

  1. Persisting Effects of a PBDE Metabolite, 6-OH-BDE-47, on Larval and Juvenile Zebrafish Swimming Behavior

    PubMed Central

    Macaulay, Laura J; Bailey, Jordan M.; Levin, Edward D.; Stapleton, Heather M.

    2015-01-01

    Polybrominated diphenyl ethers (PBDEs) are persistent organic pollutants that are widely detected in the environment, biota, and humans. In mammals, PBDEs can be oxidatively metabolized to form hydroxylated polybrominated diphenyl ethers (OH-BDEs). While studies have examined behavioral deficits or alterations induced by exposure to PBDEs in both rodents and fish, no study to date has explored behavioral effects from exposure to OH-BDEs, which have been shown to have greater endocrine disrupting potential compared to PBDEs. In the present study, zebrafish (Danio rerio) were exposed during embryonic and larval development (0-6 days post fertilization, dpf) to a PBDE metabolite, 6-hydroxy, 2,2’,4,4’ tetrabromodiphenyl ether (10-50 nM) and then examined for short and long-term behavioral effects. Exposed zebrafish tested as larvae (6 dpf) showed an altered swimming response to light-dark transitions, exhibiting hypoactivity in light periods compared to control fish. When fish exposed from 0-6 dpf were tested as juveniles (45 dpf), they showed an increased fear response and hyperactivity in response to tests of novel environment exploration and habituation learning. These results demonstrate that early life exposure to a PBDE metabolite can have immediate or later life (more than a month after exposure) effects on activity levels, habituation, and fear/anxiety. PMID:25979796

  2. Developmental Neurotoxicity of Methamidophos in the Embryo-Larval Stages of Zebrafish

    PubMed Central

    He, Xiaowei; Gao, Jiawei; Dong, Tianyu; Chen, Minjian; Zhou, Kun; Chang, Chunxin; Luo, Jia; Wang, Chao; Wang, Shoulin; Chen, Daozhen; Zhou, Zuomin; Tian, Ying; Xia, Yankai; Wang, Xinru

    2016-01-01

    Methamidophos is a representative organophosphate insecticide. The knowledge of its developmental neurotoxicity is limited, especially for zebrafish in the early stages of their life. Four hour post-fertilization (hpf) zebrafish embryos were exposed to several environmentally relevant concentrations of methamidophos (0, 25, and 500 μg/L) for up to 72 hpf. Locomotor behavior was then studied in the zebrafish larvae at this timepoint. Acridine orange (AO) staining was carried out in the zebrafish larvae, and the mRNA levels of genes associated with neural development (mbp and syn2a) were analyzed by reverse transcription-polymerase chain reaction (RT-PCR). The number of escape responders for mechanical stimulation was significantly decreased in exposed groups. AO staining showed noticeable signs of apoptosis mainly in the brain. In addition, the mRNA levels of mbp and syn2a were both significantly down-regulated in exposed groups. Our study provides the first evidence that methamidophos exposure can cause developmental neurotoxicity in the early stages of zebrafish life, which may be caused by the effect of methamidophos on neurodevelopmental genes and the activation of cell apoptosis in the brain. PMID:28036051

  3. Single-Cell Reconstruction of Oxytocinergic Neurons Reveals Separate Hypophysiotropic and Encephalotropic Subtypes in Larval Zebrafish

    PubMed Central

    Gutierrez-Triana, Jose Arturo; Knerr, Boris

    2017-01-01

    Oxytocin regulates a diverse set of processes including stress, analgesia, metabolism, and social behavior. How such diverse functions are mediated by a single hormonal system is not well understood. Different functions of oxytocin could be mediated by distinct cell groups, yet it is currently unknown whether different oxytocinergic cell types exist that specifically mediate peripheral neuroendocrine or various central neuromodulatory processes via dedicated pathways. Using the Brainbow technique to map the morphology and projections of individual oxytocinergic cells in the larval zebrafish brain, we report here the existence of two main types of oxytocinergic cells: those that innervate the pituitary and those that innervate diverse brain regions. Similar to the situation in the adult rat and the adult midshipman, but in contrast to the situation in the adult trout, these two cell types are mutually exclusive and can be distinguished based on morphological and anatomical criteria. Further, our results reveal that complex oxytocinergic innervation patterns are already established in the larval zebrafish brain. PMID:28317020

  4. Interaction of mercury and selenium in the larval stage zebrafish vertebrate model.

    PubMed

    MacDonald, Tracy C; Korbas, Malgorzata; James, Ashley K; Sylvain, Nicole J; Hackett, Mark J; Nehzati, Susan; Krone, Patrick H; George, Graham N; Pickering, Ingrid J

    2015-08-01

    The compounds of mercury can be more toxic than those of any other non-radioactive heavy element. Despite this, environmental mercury pollution and human exposure to mercury are widespread, and are increasing. While the unusual ability of selenium to cancel the toxicity of mercury compounds has been known for nearly five decades, only recently have some aspects of the molecular mechanisms begun to be understood. We report herein a study of the interaction of mercury and selenium in the larval stage zebrafish, a model vertebrate system, using X-ray fluorescence imaging. Exposure of larval zebrafish to inorganic mercury shows nano-scale structures containing co-localized mercury and selenium. No such co-localization is seen with methylmercury exposure under similar conditions. Micro X-ray absorption spectra support the hypothesis that the co-localized deposits are most likely comprised of highly insoluble mixed chalcogenide HgSxSe(1-x) where x is 0.4-0.9, probably with the cubic zincblende structure.

  5. Quantification of larval zebrafish motor function in multiwell plates using open-source MATLAB applications.

    PubMed

    Zhou, Yangzhong; Cattley, Richard T; Cario, Clinton L; Bai, Qing; Burton, Edward A

    2014-07-01

    This article describes a method to quantify the movements of larval zebrafish in multiwell plates, using the open-source MATLAB applications LSRtrack and LSRanalyze. The protocol comprises four stages: generation of high-quality, flatly illuminated video recordings with exposure settings that facilitate object recognition; analysis of the resulting recordings using tools provided in LSRtrack to optimize tracking accuracy and motion detection; analysis of tracking data using LSRanalyze or custom MATLAB scripts; and implementation of validation controls. The method is reliable, automated and flexible, requires <1 h of hands-on work for completion once optimized and shows excellent signal:noise characteristics. The resulting data can be analyzed to determine the following: positional preference; displacement, velocity and acceleration; and duration and frequency of movement events and rest periods. This approach is widely applicable to the analysis of spontaneous or stimulus-evoked zebrafish larval neurobehavioral phenotypes resulting from a broad array of genetic and environmental manipulations, in a multiwell plate format suitable for high-throughput applications.

  6. A High-Content Larval Zebrafish Brain Imaging Method for Small Molecule Drug Discovery.

    PubMed

    Liu, Harrison; Chen, Steven; Huang, Kevin; Kim, Jeffrey; Mo, Han; Iovine, Raffael; Gendre, Julie; Pascal, Pauline; Li, Qiang; Sun, Yaping; Dong, Zhiqiang; Arkin, Michelle; Guo, Su; Huang, Bo

    2016-01-01

    Drug discovery in whole-organisms such as zebrafish is a promising approach for identifying biologically-relevant lead compounds. However, high content imaging of zebrafish at cellular resolution is challenging due to the difficulty in orienting larvae en masse such that the cell type of interest is in clear view. We report the development of the multi-pose imaging method, which uses 96-well round bottom plates combined with a standard liquid handler to repose the larvae within each well multiple times, such that an image in a specific orientation can be acquired. We have validated this method in a chemo-genetic zebrafish model of dopaminergic neuron degeneration. For this purpose, we have developed an analysis pipeline that identifies the larval brain in each image and then quantifies neuronal health in CellProfiler. Our method achieves a SSMD* score of 6.96 (robust Z'-factor of 0.56) and is suitable for screening libraries up to 105 compounds in size.

  7. A High-Content Larval Zebrafish Brain Imaging Method for Small Molecule Drug Discovery

    PubMed Central

    Liu, Harrison; Chen, Steven; Huang, Kevin; Kim, Jeffrey; Mo, Han; Iovine, Raffael; Gendre, Julie; Pascal, Pauline; Li, Qiang; Sun, Yaping; Dong, Zhiqiang; Arkin, Michelle; Guo, Su

    2016-01-01

    Drug discovery in whole-organisms such as zebrafish is a promising approach for identifying biologically-relevant lead compounds. However, high content imaging of zebrafish at cellular resolution is challenging due to the difficulty in orienting larvae en masse such that the cell type of interest is in clear view. We report the development of the multi-pose imaging method, which uses 96-well round bottom plates combined with a standard liquid handler to repose the larvae within each well multiple times, such that an image in a specific orientation can be acquired. We have validated this method in a chemo-genetic zebrafish model of dopaminergic neuron degeneration. For this purpose, we have developed an analysis pipeline that identifies the larval brain in each image and then quantifies neuronal health in CellProfiler. Our method achieves a SSMD* score of 6.96 (robust Z’-factor of 0.56) and is suitable for screening libraries up to 105 compounds in size. PMID:27732643

  8. A larval zebrafish model of bipolar disorder as a screening platform for neuro-therapeutics.

    PubMed

    Ellis, Lee David; Soanes, Kelly Howard

    2012-08-01

    Modelling neurological diseases has proven extraordinarily difficult due to the phenotypic complexity of each disorder. The zebrafish has become a useful model system with which to study abnormal neurological and behavioural activity and holds promise as a model of human disease. While most of the disease modelling using zebrafish has made use of adults, larvae hold tremendous promise for the high-throughput screening of potential therapeutics. The further development of larval disease models will strengthen their ability to contribute to the drug screening process. Here we have used zebrafish larvae to model the symptoms of bipolar disorder by treating larvae with sub-convulsive concentrations of the GABA antagonist pentylenetetrazol (PTZ). A number of therapeutics that act on different targets, in addition to those that have been used to treat bipolar disorder, were tested against this model to assess its predictive value. Carbamazepine, valproic acid, baclofen and honokiol, were found to oppose various aspects of the PTZ-induced changes in activity. Lidocaine and haloperidol exacerbated the PTZ-induced activity changes and sulpiride had no effect. By comparing the degree of phenotypic rescue with the mechanism of action of each therapeutic we have shown that the low-concentration PTZ model can produce a number of intermediate phenotypes that model symptoms of bipolar disorder, may be useful in modelling other disease states, and will help predict the efficacy of novel therapeutics.

  9. A Zebrafish Larval Model to Assess Virulence of Porcine Streptococcus suis Strains

    PubMed Central

    Zaccaria, Edoardo; Cao, Rui; Wells, Jerry M.; van Baarlen, Peter

    2016-01-01

    Streptococcus suis is an encapsulated Gram-positive bacterium, and the leading cause of sepsis and meningitis in young pigs resulting in considerable economic losses in the porcine industry. It is also considered an emerging zoonotic agent. In the environment, both avirulent and virulent strains occur in pigs, and virulent strains appear to cause disease in both humans and pigs. There is a need for a convenient, reliable and standardized animal model to assess S. suis virulence. A zebrafish (Danio rerio) larvae infection model has several advantages, including transparency of larvae, low cost, ease of use and exemption from ethical legislation up to 6 days post fertilization, but has not been previously established as a model for S. suis. Microinjection of different porcine strains of S. suis in zebrafish larvae resulted in highly reproducible dose- and strain-dependent larval death, strongly correlating with presence of the S. suis capsule and to the original virulence of the strain in pigs. Additionally we compared the virulence of the two-component system mutant of ciaRH, which is attenuated for virulence in both mice and pigs in vivo. Infection of larvae with the ΔciaRH strain resulted in significantly higher survival rate compared to infection with the S10 wild-type strain. Our data demonstrate that zebrafish larvae are a rapid and reliable model to assess the virulence of clinical porcine S. suis isolates. PMID:26999052

  10. BDNF Expression in Larval and Adult Zebrafish Brain: Distribution and Cell Identification

    PubMed Central

    Cacialli, Pietro; Gueguen, Marie-Madeleine; Coumailleau, Pascal; D’Angelo, Livia; Kah, Olivier; Lucini, Carla; Pellegrini, Elisabeth

    2016-01-01

    Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, has emerged as an active mediator in many essential functions in the central nervous system of mammals. BDNF plays significant roles in neurogenesis, neuronal maturation and/or synaptic plasticity and is involved in cognitive functions such as learning and memory. Despite the vast literature present in mammals, studies devoted to BDNF in the brain of other animal models are scarse. Zebrafish is a teleost fish widely known for developmental genetic studies and is emerging as model for translational neuroscience research. In addition, its brain shows many sites of adult neurogenesis allowing higher regenerative properties after traumatic injuries. To add further knowledge on neurotrophic factors in vertebrate brain models, we decided to determine the distribution of bdnf mRNAs in the larval and adult zebrafish brain and to characterize the phenotype of cells expressing bdnf mRNAs by means of double staining studies. Our results showed that bdnf mRNAs were widely expressed in the brain of 7 days old larvae and throughout the whole brain of mature female and male zebrafish. In adults, bdnf mRNAs were mainly observed in the dorsal telencephalon, preoptic area, dorsal thalamus, posterior tuberculum, hypothalamus, synencephalon, optic tectum and medulla oblongata. By combining immunohistochemistry with in situ hybridization, we showed that bdnf mRNAs were never expressed by radial glial cells or proliferating cells. By contrast, bdnf transcripts were expressed in cells with neuronal phenotype in all brain regions investigated. Our results provide the first demonstration that the brain of zebrafish expresses bdnf mRNAs in neurons and open new fields of research on the role of the BDNF factor in brain mechanisms in normal and brain repairs situations. PMID:27336917

  11. Direct visualization of replication dynamics in early zebrafish embryos.

    PubMed

    Kuriya, Kenji; Higashiyama, Eriko; Avşar-Ban, Eriko; Okochi, Nanami; Hattori, Kaede; Ogata, Shin; Takebayashi, Shin-Ichiro; Ogata, Masato; Tamaru, Yutaka; Okumura, Katsuzumi

    2016-05-01

    We analyzed DNA replication in early zebrafish embryos. The replicating DNA of whole embryos was labeled with the thymidine analog 5-ethynyl-2'-deoxyuridine (EdU), and spatial regulation of replication sites was visualized in single embryo-derived cells. The results unveiled uncharacterized replication dynamics during zebrafish early embryogenesis.

  12. A multi-endpoint in vivo larval zebrafish (Danio rerio) model for the assessment of integrated cardiovascular function.

    PubMed

    Parker, Thomas; Libourel, Paul-Antoine; Hetheridge, Malcolm J; Cumming, Robert I; Sutcliffe, Thomas P; Goonesinghe, Alexander C; Ball, Jonathan S; Owen, Stewart F; Chomis, Yann; Winter, Matthew J

    2014-01-01

    Despite effective in vitro preclinical strategies to identify cardiovascular (CV) liabilities, there remains a need for early functional assessment prior to complex in vivo mammalian models. The larval zebrafish (Danio rerio, Zf) has been suggested for this role: previous data suggest that cardiac electrophysiology and vascular ultrastructure are comparable with mammals, and also indicate responsiveness of individual Zf CV system endpoints to some functional modulators. Little information is, however, available regarding integrated functional CV responses to drug treatment. Consequently, we developed a novel larval Zf model capable of simultaneous quantification of chronotropic, inotropic and arrhythmic effects, alongside measures of blood flow and vessel diameter. Non-invasive video analysis of the heart and dorsal aorta of anaesthetized and agarose-embedded larval ZF was used to measure multiple cardiovascular endpoints, simultaneously, following treatment with a range of functional modulators of CV physiology. Changes in atrial and ventricular beat frequencies were detected in response to acute treatment with cardio-stimulants (adrenaline and theophylline), and negative chrono/inotropes (cisapride, haloperidol, terfenadine and verapamil). Arrhythmias were also observed including terfenadine-induced 2:1 atrial-ventricular (A-V) block, a previously proposed hERG surrogate measure. Significant increases in blood flow were detected in response to adrenaline and theophylline exposure; and decreases after cisapride, haloperidol, terfenadine, and verapamil treatment. Using dorsal aorta (DA) blood flow and ventricular beat rate, surrogate stoke volumes were also calculated for all compounds. These data support the use of this approach for CV function studies. Moreover the throughput and compound requirements (approximately 3 compounds/person effort/week and <10 mg) make our approach potentially suitable for higher throughput drug safety and efficacy applications

  13. Visualizing the population dynamics of microbial communities in the larval zebrafish gut

    NASA Astrophysics Data System (ADS)

    Parthasarathy, Raghuveer

    In each of our digestive tracts, trillions of microbes representing hundreds of different species colonize local environments, reproduce, and compete with one another. The resulting ecosystems influence many aspects their host's development and health. Little is known about how gut microbial communities vary in space and time: how they grow, fluctuate, and respond to various perturbations. To address this and investigate microbial colonization of the vertebrate gut, we apply light sheet fluorescence microscopy to a model system that combines a realistic in vivo environment with a high degree of experimental control: larval zebrafish with defined subsets of commensal bacterial species. Light sheet microscopy enables three-dimensional imaging with high resolution over the entire intestine, providing visualizations that would be difficult or impossible to achieve with other techniques. Quantitative analysis of image data enables measurement of bacterial abundances and distributions. I will describe this approach and focus especially on recent experiments in which a colonizing bacterial species is challenged by the invasion of a second species, which leads to the decline of the first group. Imaging reveals dramatic population collapses that differentially affect the two species due to their different biogeographies and morphologies. The collapses are driven by the peristaltic motion of the zebrafish intestine, indicating that the physical activity of the host environment can play a major role in mediating inter-species competition. role in mediating inter-species competition. Supported by the National Science Foundation under Grant No. 0922951 and the National Institutes of Health under Award Number 1P50GM098911.

  14. Manipulation of BK channel expression is sufficient to alter auditory hair cell thresholds in larval zebrafish

    PubMed Central

    Rohmann, Kevin N.; Tripp, Joel A.; Genova, Rachel M.; Bass, Andrew H.

    2014-01-01

    Non-mammalian vertebrates rely on electrical resonance for frequency tuning in auditory hair cells. A key component of the resonance exhibited by these cells is an outward calcium-activated potassium current that flows through large-conductance calcium-activated potassium (BK) channels. Previous work in midshipman fish (Porichthys notatus) has shown that BK expression correlates with seasonal changes in hearing sensitivity and that pharmacologically blocking these channels replicates the natural decreases in sensitivity during the winter non-reproductive season. To test the hypothesis that reducing BK channel function is sufficient to change auditory thresholds in fish, morpholino oligonucleotides (MOs) were used in larval zebrafish (Danio rerio) to alter expression of slo1a and slo1b, duplicate genes coding for the pore-forming α-subunits of BK channels. Following MO injection, microphonic potentials were recorded from the inner ear of larvae. Quantitative real-time PCR was then used to determine the MO effect on slo1a and slo1b expression in these same fish. Knockdown of either slo1a or slo1b resulted in disrupted gene expression and increased auditory thresholds across the same range of frequencies of natural auditory plasticity observed in midshipman. We conclude that interference with the normal expression of individual slo1 genes is sufficient to increase auditory thresholds in zebrafish larvae and that changes in BK channel expression are a direct mechanism for regulation of peripheral hearing sensitivity among fishes. PMID:24803460

  15. Rheotaxis of Larval Zebrafish: Behavioral Study of a Multi-Sensory Process

    PubMed Central

    Olive, Raphaël; Wolf, Sébastien; Dubreuil, Alexis; Bormuth, Volker; Debrégeas, Georges; Candelier, Raphaël

    2016-01-01

    Awake animals unceasingly perceive sensory inputs with great variability of nature and intensity, and understanding how the nervous system manages this continuous flow of diverse information to get a coherent representation of the environment is arguably a central question in systems neuroscience. Rheotaxis, the ability shared by most aquatic species to orient toward a current and swim to hold position, is an innate and robust multi-sensory behavior that is known to involve the lateral line and visual systems. To facilitate the neuroethological study of rheotaxic behavior in larval zebrafish we developed an assay for freely swimming larvae that allows for high experimental throughtput, large statistic and a fine description of the behavior. We show that there exist a clear transition from exploration to counterflow swim, and by changing the sensory modalities accessible to the fishes (visual only, lateral line only or both) and comparing the swim patterns at different ages we were able to detect and characterize two different mechanisms for position holding, one mediated by the lateral line and one mediated by the visual system. We also found that when both sensory modalities are accessible the visual system overshadows the lateral line, suggesting that at the larval stage the sensory inputs are not merged to finely tune the behavior but that redundant information pathways may be used as functional fallbacks. PMID:26941620

  16. Prey Capture Behavior Evoked by Simple Visual Stimuli in Larval Zebrafish

    PubMed Central

    Bianco, Isaac H.; Kampff, Adam R.; Engert, Florian

    2011-01-01

    Understanding how the nervous system recognizes salient stimuli in the environment and selects and executes the appropriate behavioral responses is a fundamental question in systems neuroscience. To facilitate the neuroethological study of visually guided behavior in larval zebrafish, we developed “virtual reality” assays in which precisely controlled visual cues can be presented to larvae whilst their behavior is automatically monitored using machine vision algorithms. Freely swimming larvae responded to moving stimuli in a size-dependent manner: they directed multiple low amplitude orienting turns (∼20°) toward small moving spots (1°) but reacted to larger spots (10°) with high-amplitude aversive turns (∼60°). The tracking of small spots led us to examine how larvae respond to prey during hunting routines. By analyzing movie sequences of larvae hunting paramecia, we discovered that all prey capture routines commence with eye convergence and larvae maintain their eyes in a highly converged position for the duration of the prey-tracking and capture swim phases. We adapted our virtual reality assay to deliver artificial visual cues to partially restrained larvae and found that small moving spots evoked convergent eye movements and J-turns of the tail, which are defining features of natural hunting. We propose that eye convergence represents the engagement of a predatory mode of behavior in larval fish and serves to increase the region of binocular visual space to enable stereoscopic targeting of prey. PMID:22203793

  17. Early redox, Src family kinase, and calcium signaling integrate wound responses and tissue regeneration in zebrafish.

    PubMed

    Yoo, Sa Kan; Freisinger, Christina M; LeBert, Danny C; Huttenlocher, Anna

    2012-10-15

    Tissue injury can lead to scar formation or tissue regeneration. How regenerative animals sense initial tissue injury and transform wound signals into regenerative growth is an unresolved question. Previously, we found that the Src family kinase (SFK) Lyn functions as a redox sensor in leukocytes that detects H(2)O(2) at wounds in zebrafish larvae. In this paper, using zebrafish larval tail fins as a model, we find that wounding rapidly activated SFK and calcium signaling in epithelia. The immediate SFK and calcium signaling in epithelia was important for late epimorphic regeneration of amputated fins. Wound-induced activation of SFKs in epithelia was dependent on injury-generated H(2)O(2). A SFK member, Fynb, was responsible for fin regeneration. This work provides a new link between early wound responses and late regeneration and suggests that redox, SFK, and calcium signaling are immediate "wound signals" that integrate early wound responses and late epimorphic regeneration.

  18. Zebrafish: an emerging technology for in vivo pharmacological assessment to identify potential safety liabilities in early drug discovery

    PubMed Central

    Barros, T P; Alderton, W K; Reynolds, H M; Roach, A G; Berghmans, S

    2008-01-01

    The zebrafish is a well-established model organism used in developmental biology. In the last decade, this technology has been extended to the generation of high-value knowledge on safety risks of novel drugs. Indeed, the larval zebrafish appear to combine advantages of whole organism phenotypic assays and those (rapid production of results with minimal resource engagement) of in vitro high-throughput screening techniques. Thus, if appropriately evaluated, it can offer undeniable advantages in drug discovery for identification of target and off-target effects. Here, we review some applications of zebrafish to identify potential safety liabilities, particularly before lead/candidate selection. For instance, zebrafish cardiovascular system can be used to reveal decreases in heart rate and atrial–ventricular dissociation, which may signal human ether-a-go-go-related gene (hERG) channel blockade. Another main area of interest is the CNS, where zebrafish behavioural assays have been and are further being developed into screening platforms for assessment of locomotor activity, convulsant and proconvulsant liability, cognitive impairment, drug dependence potential and impaired visual and auditory functions. Zebrafish also offer interesting possibilities for evaluating effects on bone density and gastrointestinal function. Furthermore, available knowledge of the renal system in larval zebrafish can allow identification of potential safety issues of drug candidates on this often neglected area in early development platforms. Although additional validation is certainly needed, the zebrafish is emerging as a versatile in vivo animal model to identify off-target effects that need investigation and further clarification early in the drug discovery process to reduce the current, high degree of attrition in development. PMID:18552866

  19. Developmental benzo[a]pyrene (B[a]P) exposure impacts larval behavior and impairs adult learning in zebrafish.

    PubMed

    Knecht, Andrea L; Truong, Lisa; Simonich, Michael T; Tanguay, Robert L

    Polycyclic aromatic hydrocarbons (PAHs) are produced from incomplete combustion of organic materials or fossil fuels, and are present in crude oil and coal; therefore, they are ubiquitous environmental contaminants present in urban air, dust, soil, and water. It is widely recognized that PAHs pose risks to human health, especially for the developing fetus and infant where PAH exposures have been linked to in-utero mortality, cardiovascular effects, and lower intelligence. Using the zebrafish model, we evaluated the developmental toxicity of benzo[a]pyrene (B[a]P). Zebrafish embryos were exposed from 6 to 120h post fertilization (hpf) to 0.4 and 4μM B[a]P. The Viewpoint Zebrabox systems were used to evaluate larval photomotor response (LPR) activity and we identified that exposure to 4μM B[a]P resulted in a hyperactive LPR phenotype. To evaluate the role of aryl hydrocarbon receptor (AHR) in this larval phenotype, we exposed ahr2(hu2334) null larvae to 4μM B[a]P. Though ahr2(hu2334) larvae did not display hyperactive swimming, these larvae had a decrease in LPR activity, suggesting that AHR2 plays a role in B[a]P induced larval hyperactivity. To determine if developmental B[a]P exposures would produce adult behavioral deficits, a subset of exposed animals was raised to adulthood and tested in a conditioned stimulus test using shuttleboxes. Developmentally exposed B[a]P zebrafish exhibited decreased learning and memory. Together this data demonstrates that developmental B[a]P exposure adversely impacts larval behavior, and learning in adult zebrafish.

  20. Investigation of the effects of estrogen on skeletal gene expression during zebrafish larval head development

    PubMed Central

    Walker, Benjamin S.; Lassiter, Christopher S.; Jónsson, Zophonías O.

    2016-01-01

    The development of craniofacial skeletal structures requires well-orchestrated tissue interactions controlled by distinct molecular signals. Disruptions in normal function of these molecular signals have been associated with a wide range of craniofacial malformations. A pathway mediated by estrogens is one of those molecular signals that plays role in formation of bone and cartilage including craniofacial skeletogenesis. Studies in zebrafish have shown that while higher concentrations of 17-β estradiol (E2) cause severe craniofacial defects, treatment with lower concentrations result in subtle changes in head morphology characterized with shorter snouts and flatter faces. The molecular basis for these morphological changes, particularly the subtle skeletal effects mediated by lower E2 concentrations, remains unexplored. In the present study we address these effects at a molecular level by quantitative expression analysis of sets of candidate genes in developing heads of zebrafish larvae treated with two different E2 concentrations. To this end, we first validated three suitable reference genes, ppia2, rpl8 and tbp, to permit sensitive quantitative real-time PCR analysis. Next, we profiled the expression of 28 skeletogenesis-associated genes that potentially respond to estrogen signals and play role in craniofacial development. We found E2 mediated differential expression of genes involved in extracellular matrix (ECM) remodelling, mmp2/9/13, sparc and timp2a, as well as components of skeletogenic pathways, bmp2a, erf, ptch1/2, rankl, rarab and sfrp1a. Furthermore, we identified a co-expressed network of genes, including cpn1, dnajc3, esr1, lman1, rrbp1a, ssr1 and tram1 with a stronger inductive response to a lower dose of E2 during larval head development. PMID:27069811

  1. Passive and Active Microrheology of the Intestinal Fluid of the Larval Zebrafish.

    PubMed

    Taormina, Michael J; Hay, Edouard A; Parthasarathy, Raghuveer

    2017-08-22

    The fluids of the intestine serve as a physical barrier to pathogens, a medium for the diffusion of nutrients and metabolites, and an environment for commensal microbes. The rheological properties of intestinal mucus have therefore been the subject of many investigations, thus far limited to in vitro studies due to the difficulty of measurement in the natural context of the gut. This limitation especially hinders our understanding of how the gut microbiota interact with the intestinal space, since examination of this calls not only for in vivo measurement techniques, but for techniques that can be applied to model organisms in which the microbial state of the gut can be controlled. We have addressed this challenge with two complementary approaches. We performed passive microrheological measurements using thermally driven nanoparticles and active microrheology using micron-scale ellipsoidal magnetic microparticles, in both cases using light-sheet fluorescence microscopy to optically access the intestinal bulb of the larval zebrafish, a model vertebrate. We present viscosity measurements in germ-free animals (devoid of gut microbes), animals colonized by a single bacterial species, and conventionally reared animals, and find that in all cases, the mucin-rich intestinal liquid is well described as a Newtonian fluid. Surprisingly, despite known differences in the number of secretory cells in germ-free zebrafish and their conventional counterparts, the fluid viscosity for these two groups is very similar, as measured with either technique. Our study provides, to our knowledge, the first in vivo microrheological measurements of the intestinal space in living animals, and we comment on its implications for timescales of host-microbe interactions in the gut. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. Quercetin, a natural product supplement, impairs mitochondrial bioenergetics and locomotor behavior in larval zebrafish (Danio rerio).

    PubMed

    Zhang, Ji-Liang; Laurence Souders, Christopher; Denslow, Nancy D; Martyniuk, Christopher J

    2017-07-15

    Quercetin is a natural product that is sold as a supplement in health food stores. While there are reported benefits for this flavonoid as a dietary supplement due to antioxidant properties, the full scope of its biological interactions has not been fully addressed. To learn more about the mechanisms of action related to quercetin, we exposed zebrafish (Danio rerio) embryos to 1 and 10μg/L quercetin for 96h starting at 3h post fertilization. Quercetin up to 10μg/L did not induce significant mortality in developing fish, but did increase prevalence of an upward-curved dorsal plane in hatched larvae. To determine whether this developmental defect was potentially related to mitochondrial bioenergetics during development, we measured oxygen consumption rate in whole embryos following a 24-hour exposure to quercetin. Basal mitochondrial and ATP-linked respiration were decreased at 1 and 10μg/L quercetin, and maximal respiration was decreased at 10μg/L quercetin, suggesting that quercetin impairs mitochondrial bioenergetics. This is proposed to be related to the deformities observed during development. Due to the fact that ATP production was affected by quercetin, larval behaviors related to locomotion were investigated, as well as transcriptional responses of six myogenesis transcripts. Quercetin at 10μg/L significantly reduced the swimming velocity of zebrafish larvae. The expression levels of both myostatin A (mstna) and myogenic differentiation (myoD) were also altered by quercetin. Mstna, an inhibitory factor for myogenesis, was significantly increased at 1μg/L quercetin exposure, while myoD, a stimulatory factor for myogenesis, was significantly increased at 10μg/L quercetin exposure. There were no changes in transcripts related to apoptosis (bcl2, bax, casp3, casp7), but we did observe a decrease in mRNA levels for catalase (cat) in fish exposed to each dose, supporting an oxidative stress response. Our data support the hypothesis that quercetin may affect

  3. Textile dyes induce toxicity on zebrafish early life stages.

    PubMed

    de Oliveira, Gisele Augusto Rodrigues; de Lapuente, Joaquín; Teixidó, Elisabet; Porredón, Constança; Borràs, Miquel; de Oliveira, Danielle Palma

    2016-02-01

    Textile manufacturing is one of the most polluting industrial sectors because of the release of potentially toxic compounds, such as synthetic dyes, into the environment. Depending on the class of the dyes, their loss in wastewaters can range from 2% to 50% of the original dye concentration. Consequently, uncontrolled use of such dyes can negatively affect human health and the ecological balance. The present study assessed the toxicity of the textile dyes Direct Black 38 (DB38), Reactive Blue 15 (RB15), Reactive Orange 16 (RO16), and Vat Green 3 (VG3) using zebrafish (Danio rerio) embryos for 144 h postfertilization (hpf). At the tested conditions, none of the dyes caused significant mortality. The highest RO16 dose significantly delayed or inhibited the ability of zebrafish embryos to hatch from the chorion after 96 hpf. From 120 hpf to 144 hpf, all the dyes impaired the gas bladder inflation of zebrafish larvae, DB38 also induced curved tail, and VG3 led to yolk sac edema in zebrafish larvae. Based on these data, DB38, RB15, RO16, and VG3 can induce malformations during embryonic and larval development of zebrafish. Therefore, it is essential to remove these compounds from wastewater or reduce their concentrations to safe levels before discharging textile industry effluents into the aquatic environment. © 2015 SETAC.

  4. Zebrafish Craniofacial Development: A Window into Early Patterning.

    PubMed

    Mork, Lindsey; Crump, Gage

    2015-01-01

    The formation of the face and skull involves a complex series of developmental events mediated by cells derived from the neural crest, endoderm, mesoderm, and ectoderm. Although vertebrates boast an enormous diversity of adult facial morphologies, the fundamental signaling pathways and cellular events that sculpt the nascent craniofacial skeleton in the embryo have proven to be highly conserved from fish to man. The zebrafish Danio rerio, a small freshwater cyprinid fish from eastern India, has served as a popular model of craniofacial development since the 1990s. Unique strengths of the zebrafish model include a simplified skeleton during larval stages, access to rapidly developing embryos for live imaging, and amenability to transgenesis and complex genetics. In this chapter, we describe the anatomy of the zebrafish craniofacial skeleton; its applications as models for the mammalian jaw, middle ear, palate, and cranial sutures; the superior imaging technology available in fish that has provided unprecedented insights into the dynamics of facial morphogenesis; the use of the zebrafish to decipher the genetic underpinnings of craniofacial biology; and finally a glimpse into the most promising future applications of zebrafish craniofacial research. © 2015 Elsevier Inc. All rights reserved.

  5. Zebrafish Craniofacial Development: A Window into Early Patterning

    PubMed Central

    Mork, Lindsey; Crump, Gage

    2016-01-01

    The formation of the face and skull involves a complex series of developmental events mediated by cells derived from the neural crest, endoderm, mesoderm, and ectoderm. Although vertebrates boast an enormous diversity of adult facial morphologies, the fundamental signaling pathways and cellular events that sculpt the nascent craniofacial skeleton in the embryo have proven to be highly conserved from fish to man. The zebrafish Danio rerio, a small freshwater cyprinid fish from eastern India, has served as a popular model of craniofacial development since the 1990s. Unique strengths of the zebrafish model include a simplified skeleton during larval stages, access to rapidly developing embryos for live imaging, and amenability to transgenesis and complex genetics. In this chapter, we describe the anatomy of the zebrafish craniofacial skeleton; its applications as models for the mammalian jaw, middle ear, palate, and cranial sutures; the superior imaging technology available in fish that has provided unprecedented insights into the dynamics of facial morphogenesis; the use of the zebrafish to decipher the genetic underpinnings of craniofacial biology; and finally a glimpse into the most promising future applications of zebrafish craniofacial research. PMID:26589928

  6. Acute exposure to tris (2-butoxyethyl) phosphate (TBOEP) affects growth and development of embryo-larval zebrafish.

    PubMed

    Liu, Yiran; Wu, Ding; Xu, Qinglong; Yu, Liqin; Liu, Chunsheng; Wang, Jianghua

    2017-10-01

    Tris (2-butoxyethyl) phosphate (TBOEP), is used as a flame retardant worldwide. It is an additive in materials and can be easily discharged into the surrounding environment. There is evidence linking TBOEP exposure to abnormal development and growth in zebrafish embryos/larvae. Here, using zebrafish embryo as a model, we investigated toxicological effects on developing zebrafish (Danio rerio) caused by TBOEP at concentrations of 0, 20, 200, 1000, 2000μg/L starting from 2h post-fertilization (hpf). Our findings revealed that TBOEP exposure caused developmental toxicity, such as malformation, growth delay and decreased heart rate in zebrafish larvae. Correlation analysis indicated that inhibition of growth was possibly due to down-regulation of expression of genes related to the growth hormone/insulin-like growth factor (GH/IGF) axis. Furthermore, exposure to TBOEP significantly increased thyroxine (T4) and 3,5,3'-triiodothyronine (T3) in whole larvae. In addition, changed expression of genes involved in the hypothalamic-pituitary-thyroid (HPT) axis was observed, indicating that perturbation of HPT axis might be responsible for the developmental damage and growth delay induced by TBOEP. The present study provides a new set of evidence that exposure of embryo-larval zebrafish to TBOEP can cause perturbation of GH/IGF axis and HPT axis, which could result in developmental impairment and growth inhibition. Copyright © 2017. Published by Elsevier B.V.

  7. Larval zebrafish rapidly sense the water flow of a predator's strike.

    PubMed

    McHenry, M J; Feitl, K E; Strother, J A; Van Trump, W J

    2009-08-23

    Larval fishes have a remarkable ability to sense and evade the feeding strike of a predator fish with a rapid escape manoeuvre. Although the neuromuscular control of this behaviour is well studied, it is not clear what stimulus allows a larva to sense a predator. Here we show that this escape response is triggered by the water flow created during a predator's strike. Using a novel device, the impulse chamber, zebrafish (Danio rerio) larvae were exposed to this accelerating flow with high repeatability. Larvae responded to this stimulus with an escape response having a latency (mode=13-15 ms) that was fast enough to respond to predators. This flow was detected by the lateral line system, which includes mechanosensory hair cells within the skin. Pharmacologically ablating these cells caused the escape response to diminish, but then recover as the hair cells regenerated. These findings demonstrate that the lateral line system plays a role in predator evasion at this vulnerable stage of growth in fishes.

  8. Larval Zebrafish Model for FDA-Approved Drug Repositioning for Tobacco Dependence Treatment

    PubMed Central

    Cousin, Margot A.; Ebbert, Jon O.; Wiinamaki, Amanda R.; Urban, Mark D.; Argue, David P.; Ekker, Stephen C.; Klee, Eric W.

    2014-01-01

    Cigarette smoking remains the most preventable cause of death and excess health care costs in the United States, and is a leading cause of death among alcoholics. Long-term tobacco abstinence rates are low, and pharmacotherapeutic options are limited. Repositioning medications approved by the U.S. Food and Drug Administration (FDA) may efficiently provide clinicians with new treatment options. We developed a drug-repositioning paradigm using larval zebrafish locomotion and established predictive clinical validity using FDA-approved smoking cessation therapeutics. We evaluated 39 physician-vetted medications for nicotine-induced locomotor activation blockade. We further evaluated candidate medications for altered ethanol response, as well as in combination with varenicline for nicotine-response attenuation. Six medications specifically inhibited the nicotine response. Among this set, apomorphine and topiramate blocked both nicotine and ethanol responses. Both positively interact with varenicline in the Bliss Independence test, indicating potential synergistic interactions suggesting these are candidates for translation into Phase II clinical trials for smoking cessation. PMID:24658307

  9. Fin-tail coordination during escape and predatory behavior in larval zebrafish.

    PubMed

    McClenahan, Phil; Troup, Michael; Scott, Ethan K

    2012-01-01

    Larval zebrafish innately perform a suite of behaviors that are tightly linked to their evolutionary past, notably escape from threatening stimuli and pursuit and capture of prey. These behaviors have been carefully examined in the past, but mostly with regard to the movements of the trunk and tail of the larvae. Here, we employ kinematics analyses to describe the movements of the pectoral fins during escape and predatory behavior. In accord with previous studies, we find roles for the pectoral fins in slow swimming and immediately after striking prey. We find novel roles for the pectoral fins in long-latency, but not in short-latency C-bends. We also observe fin movements that occur during orienting J-turns and S-starts that drive high-velocity predatory strikes. Finally, we find that the use of pectoral fins following a predatory strike is scaled to the velocity of the strike, supporting a role for the fins in braking. The implications of these results for central control of coordinated movements are discussed, and we hope that these results will provide baselines for future analyses of cross-body coordination using mutants, morphants, and transgenic approaches.

  10. Whole-field visual motion drives swimming in larval zebrafish via a stochastic process.

    PubMed

    Portugues, Ruben; Haesemeyer, Martin; Blum, Mirella L; Engert, Florian

    2015-05-01

    Caudo-rostral whole-field visual motion elicits forward locomotion in many organisms, including larval zebrafish. Here, we investigate the dependence on the latency to initiate this forward swimming as a function of the speed of the visual motion. We show that latency is highly dependent on speed for slow speeds (<10 mm s(-1)) and then plateaus for higher values. Typical latencies are >1.5 s, which is much longer than neuronal transduction processes. What mechanisms underlie these long latencies? We propose two alternative, biologically inspired models that could account for this latency to initiate swimming: an integrate and fire model, which is history dependent, and a stochastic Poisson model, which has no history dependence. We use these models to predict the behavior of larvae when presented with whole-field motion of varying speed and find that the stochastic process shows better agreement with the experimental data. Finally, we discuss possible neuronal implementations of these models.

  11. Whole-brain serial-section electron microscopy in larval zebrafish.

    PubMed

    Hildebrand, David Grant Colburn; Cicconet, Marcelo; Torres, Russel Miguel; Choi, Woohyuk; Quan, Tran Minh; Moon, Jungmin; Wetzel, Arthur Willis; Scott Champion, Andrew; Graham, Brett Jesse; Randlett, Owen; Plummer, George Scott; Portugues, Ruben; Bianco, Isaac Henry; Saalfeld, Stephan; Baden, Alexander David; Lillaney, Kunal; Burns, Randal; Vogelstein, Joshua Tzvi; Schier, Alexander Franz; Lee, Wei-Chung Allen; Jeong, Won-Ki; Lichtman, Jeff William; Engert, Florian

    2017-05-18

    High-resolution serial-section electron microscopy (ssEM) makes it possible to investigate the dense meshwork of axons, dendrites, and synapses that form neuronal circuits. However, the imaging scale required to comprehensively reconstruct these structures is more than ten orders of magnitude smaller than the spatial extents occupied by networks of interconnected neurons, some of which span nearly the entire brain. Difficulties in generating and handling data for large volumes at nanoscale resolution have thus restricted vertebrate studies to fragments of circuits. These efforts were recently transformed by advances in computing, sample handling, and imaging techniques, but high-resolution examination of entire brains remains a challenge. Here, we present ssEM data for the complete brain of a larval zebrafish (Danio rerio) at 5.5 days post-fertilization. Our approach utilizes multiple rounds of targeted imaging at different scales to reduce acquisition time and data management requirements. The resulting dataset can be analysed to reconstruct neuronal processes, permitting us to survey all myelinated axons (the projectome). These reconstructions enable precise investigations of neuronal morphology, which reveal remarkable bilateral symmetry in myelinated reticulospinal and lateral line afferent axons. We further set the stage for whole-brain structure-function comparisons by co-registering functional reference atlases and in vivo two-photon fluorescence microscopy data from the same specimen. All obtained images and reconstructions are provided as an open-access resource.

  12. Whole-brain serial-section electron microscopy in larval zebrafish

    NASA Astrophysics Data System (ADS)

    Hildebrand, David Grant Colburn; Cicconet, Marcelo; Torres, Russel Miguel; Choi, Woohyuk; Quan, Tran Minh; Moon, Jungmin; Wetzel, Arthur Willis; Scott Champion, Andrew; Graham, Brett Jesse; Randlett, Owen; Plummer, George Scott; Portugues, Ruben; Bianco, Isaac Henry; Saalfeld, Stephan; Baden, Alexander David; Lillaney, Kunal; Burns, Randal; Vogelstein, Joshua Tzvi; Schier, Alexander Franz; Lee, Wei-Chung Allen; Jeong, Won-Ki; Lichtman, Jeff William; Engert, Florian

    2017-05-01

    High-resolution serial-section electron microscopy (ssEM) makes it possible to investigate the dense meshwork of axons, dendrites, and synapses that form neuronal circuits. However, the imaging scale required to comprehensively reconstruct these structures is more than ten orders of magnitude smaller than the spatial extents occupied by networks of interconnected neurons, some of which span nearly the entire brain. Difficulties in generating and handling data for large volumes at nanoscale resolution have thus restricted vertebrate studies to fragments of circuits. These efforts were recently transformed by advances in computing, sample handling, and imaging techniques, but high-resolution examination of entire brains remains a challenge. Here, we present ssEM data for the complete brain of a larval zebrafish (Danio rerio) at 5.5 days post-fertilization. Our approach utilizes multiple rounds of targeted imaging at different scales to reduce acquisition time and data management requirements. The resulting dataset can be analysed to reconstruct neuronal processes, permitting us to survey all myelinated axons (the projectome). These reconstructions enable precise investigations of neuronal morphology, which reveal remarkable bilateral symmetry in myelinated reticulospinal and lateral line afferent axons. We further set the stage for whole-brain structure-function comparisons by co-registering functional reference atlases and in vivo two-photon fluorescence microscopy data from the same specimen. All obtained images and reconstructions are provided as an open-access resource.

  13. Direction selectivity in the larval zebrafish tectum is mediated by asymmetric inhibition

    PubMed Central

    Grama, Abhinav; Engert, Florian

    2012-01-01

    The extraction of the direction of motion is an important computation performed by many sensory systems and in particular, the mechanism by which direction-selective retinal ganglion cells (DS-RGCs) in the retina acquire their selective properties, has been studied extensively. However, whether DS-RGCs simply relay this information to downstream areas or whether additional and potentially de novo processing occurs in these recipient structures is a matter of great interest. Neurons in the larval zebrafish tectum, the largest retino-recipent area in this animal, show direction-selective (DS) responses to moving visual stimuli but how these properties are acquired is still unknown. In order to study this, we first used two-photon calcium imaging to classify the population responses of tectal cells to bars moving at different speeds and in different directions. Subsequently, we performed in vivo whole cell electrophysiology on these DS tectal neurons and we found that their inhibitory inputs were strongly biased toward the null direction of motion, whereas the excitatory inputs showed little selectivity. In addition, we found that excitatory currents evoked by a stimulus moving in the preferred direction occurred before the inhibitory currents whereas a stimulus moving in the null direction evoked currents in the reverse temporal order. The membrane potential modulations resulting from these currents were enhanced by the spike generation mechanism to generate amplified direction selectivity in the spike output. Thus, our results implicate a local inhibitory circuit in generating direction selectivity in tectal neurons. PMID:22969706

  14. Assessment of microplastic-sorbed contaminant bioavailability through analysis of biomarker gene expression in larval zebrafish.

    PubMed

    Sleight, Victoria A; Bakir, Adil; Thompson, Richard C; Henry, Theodore B

    2017-03-15

    Microplastics (MPs) are prevalent in marine ecosystems. Because toxicants (termed here "co-contaminants") can sorb to MPs, there is potential for MPs to alter co-contaminant bioavailability. Our objective was to demonstrate sorption of two co-contaminants with different physicochemistries [phenanthrene (Phe), log10Kow=4.57; and 17α-ethinylestradiol (EE2), log10Kow=3.67] to MPs; and assess whether co-contaminant bioavailability was increased after MP settlement. Bioavailability was indicated by gene expression in larval zebrafish. Both Phe and EE2 sorbed to MPs, which reduced bioavailability by a maximum of 33% and 48% respectively. Sorption occurred, but was not consistent with predictions based on co-contaminant physicochemistry (Phe having higher log10Kow was expected to have higher sorption). Contaminated MPs settled to the bottom of the exposures did not lead to increased bioavailability of Phe or EE2. Phe was 48% more bioavailable than predicted by a linear sorption model, organism-based measurements therefore contribute unique insight into MP co-contaminant bioavailability.

  15. Fin-Tail Coordination during Escape and Predatory Behavior in Larval Zebrafish

    PubMed Central

    McClenahan, Phil; Troup, Michael; Scott, Ethan K.

    2012-01-01

    Larval zebrafish innately perform a suite of behaviors that are tightly linked to their evolutionary past, notably escape from threatening stimuli and pursuit and capture of prey. These behaviors have been carefully examined in the past, but mostly with regard to the movements of the trunk and tail of the larvae. Here, we employ kinematics analyses to describe the movements of the pectoral fins during escape and predatory behavior. In accord with previous studies, we find roles for the pectoral fins in slow swimming and immediately after striking prey. We find novel roles for the pectoral fins in long-latency, but not in short-latency C-bends. We also observe fin movements that occur during orienting J-turns and S-starts that drive high-velocity predatory strikes. Finally, we find that the use of pectoral fins following a predatory strike is scaled to the velocity of the strike, supporting a role for the fins in braking. The implications of these results for central control of coordinated movements are discussed, and we hope that these results will provide baselines for future analyses of cross-body coordination using mutants, morphants, and transgenic approaches. PMID:22359680

  16. Shared versus specialized glycinergic spinal interneurons in axial motor circuits of larval zebrafish

    PubMed Central

    Liao, James C.; Fetcho, Joseph R.

    2008-01-01

    The neuronal networks in spinal cord can produce a diverse array of motor behaviors. In aquatic vertebrates such as fishes and tadpoles, these include escape behaviors, swimming across a range of speeds, and struggling. We addressed the question of whether these behaviors are accomplished by a shared set of spinal interneurons activated in different patterns or, instead, involve specialized spinal interneurons that may shape the motor output to produce particular behaviors. We used larval zebrafish because they are capable of several distinct axial motor behaviors using a common periphery and a relatively small set of spinal neurons, easing the task of exploring the extent to which cell types are specialized for particular motor patterns. We performed targeted in vivo whole-cell patch recordings in 3 day post fertilization larvae to reveal the activity pattern of four commissural glycinergic interneuron types during escape, swimming and struggling behaviors. While some neuronal classes were shared among different motor patterns, we found others that were active only during a single one. These specialized neurons had morphological and functional properties consistent with a role in shaping key features of the motor behavior in which they were active. Our results, in combination with other evidence from excitatory interneurons, support the idea that patterns of activity in a core network of shared spinal neurons may be shaped by more specialized interneurons to produce an assortment of motor behaviors. PMID:19036991

  17. Effects of Dechlorane Plus exposure on axonal growth, musculature and motor behavior in embryo-larval zebrafish.

    PubMed

    Chen, Xiangping; Dong, Qiaoxiang; Chen, Yuanhong; Zhang, Zhenxuan; Huang, Changjiang; Zhu, Yaxian; Zhang, Yong

    2017-03-10

    Developmental neurobehavioral toxicity of Dechlorane Plus (DP) was investigated using the embryo-larval stages of zebrafish (Danio rerio). Normal fertilized embryos were waterborne exposed to DP at 15, 30, 60 μg/L beginning from 6 h post-fertilization (hpf). Larval teratology, motor activity, motoneuron axonal growth and muscle morphology were assessed at different developmental stages. Results showed that DP exposure significantly altered embryonic spontaneous movement, reduced touch-induced movement and free-swimming speed and decreased swimming speed of larvae in response to dark stimulation. These changes occurred at DP doses that resulted no significant teratogenesis in zebrafish. Interestingly, in accord with these behavioral anomalies, DP exposure significantly inhibited axonal growth of primary motoneuron and induced apoptotic cell death and lesions in the muscle fibers of zebrafish. Furthermore, DP exposure at 30 μg/L and 60 μg/L significantly increased reactive oxygen species (ROS) and malondialdehyde (MDA) formation, as well as the mRNA transcript levels of apoptosis-related genes bax and caspase-3. Together, our data indicate that DP induced neurobehavioral deficits may result from combined effects of altered neuronal connectivity and muscle injuries.

  18. Impact of a novel protein meal on the gastrointestinal microbiota and the host transcriptome of larval zebrafish Danio rerio

    PubMed Central

    Rurangwa, Eugene; Sipkema, Detmer; Kals, Jeroen; ter Veld, Menno; Forlenza, Maria; Bacanu, Gianina M.; Smidt, Hauke; Palstra, Arjan P.

    2015-01-01

    Larval zebrafish was subjected to a methodological exploration of the gastrointestinal microbiota and transcriptome. Assessed was the impact of two dietary inclusion levels of a novel protein meal (NPM) of animal origin (ragworm Nereis virens) on the gastrointestinal tract (GIT). Microbial development was assessed over the first 21 days post egg fertilization (dpf) through 16S rRNA gene-based microbial composition profiling by pyrosequencing. Differentially expressed genes in the GIT were demonstrated at 21 dpf by whole transcriptome sequencing (mRNAseq). Larval zebrafish showed rapid temporal changes in microbial colonization but domination occurred by one to three bacterial species generally belonging to Proteobacteria and Firmicutes. The high iron content of NPM may have led to an increased relative abundance of bacteria that were related to potential pathogens and bacteria with an increased iron metabolism. Functional classification of the 328 differentially expressed genes indicated that the GIT of larvae fed at higher NPM level was more active in transmembrane ion transport and protein synthesis. mRNAseq analysis did not reveal a major activation of genes involved in the immune response or indicating differences in iron uptake and homeostasis in zebrafish fed at the high inclusion level of NPM. PMID:25983694

  19. Developing methods based on light sheet fluorescence microscopy for biophysical investigations of larval zebrafish

    NASA Astrophysics Data System (ADS)

    Taormina, Michael J.

    Adapting the tools of optical microscopy to the large-scale dynamic systems encountered in the development of multicellular organisms provides a path toward understanding the physical processes necessary for complex life to form and function. Obtaining quantitatively meaningful results from such systems has been challenging due to difficulty spanning the spatial and temporal scales representative of the whole, while also observing the many individual members from which complex and collective behavior emerges. A three-dimensional imaging technique known as light sheet fluorescence microscopy provides a number of significant benefits for surmounting these challenges and studying developmental systems. A thin plane of fluorescence excitation light is produced such that it coincides with the focal plane of an imaging system, providing rapid acquisition of optically sectioned images that can be used to construct a three-dimensional rendition of a sample. I discuss the implementation of this technique for use in larva of the model vertebrate Danio rerio (zebrafish). The nature of light sheet imaging makes it especially well suited to the study of large systems while maintaining good spatial resolution and minimizing damage to the specimen from excessive exposure to excitation light. I show the results from a comparative study that demonstrates the ability to image certain developmental processes non-destructively, while in contrast confocal microscopy results in abnormal growth due to phototoxicity. I develop the application of light sheet microscopy to the study of a previously inaccessible system: the bacterial colonization of a host organism. Using the technique, we are able to obtain a survey of the intestinal tract of a larval zebrafish and observe the location of microbes as they grow and establish a stable population in an initially germ free fish. Finally, I describe a new technique to measure the fluid viscosity of this intestinal environment in vivo using

  20. Embryotoxicity of nitrophenols to the early life stages of zebrafish (Danio rerio).

    PubMed

    Ceylan, Zeynep; Şişman, Turgay; Yazıcı, Zehra; Altıkat, Aysun Özen

    2016-08-01

    The nitrophenols (NPs) are water-soluble compounds. These compounds pose a significant health threat since they are priority environmental pollutants. In this study, 2-Nitrophenol (2NP) and 2,4-dinitrophenol (DNP) were examined for embryo and early life stage toxicity in zebrafish (Danio rerio). Acute toxicity and teratogenicity of 2NP and DNP were tested for 4 days using zebrafish embryos. The typical lesions observed were no somite formation, incomplete eye and head development, tail curvature, weak pigmentation (≤48 hours postfertilization (hpf)), kyphosis, scoliosis, yolk sac deformity, and nonpigmentation (72 hpf). Also, embryo and larval mortality increased and hatching success decreased. The severity of abnormalities and mortalities were concentration- and compound-dependent. Of the compounds tested, 2,4-DNP was found to be highly toxic to the fish embryos following exposure. The median lethal concentrations and median effective concentrations for 2NP are 18.7 mg/L and 7.9 mg/L, respectively; the corresponding values for DNP are 9.65 mg/L and 3.05 mg/L for 48 h. The chorda deformity was the most sensitive endpoint measured. It is suggested that the embryotoxicity may be mediated by an oxidative phosphorylation uncoupling mechanism. This article is the first to describe the teratogenicity and embryotoxicity of two NPs to the early life stages of zebrafish.

  1. Silver Nanoparticles Alter Zebrafish Development and Larval Behavior: Distinct Roles for Particle Size, Coating and Composition

    PubMed Central

    Powers, Christina M.; Slotkin, Theodore A.; Seidler, Frederic J.; Badireddy, Appala R.; Padilla, Stephanie

    2011-01-01

    Silver nanoparticles (AgNPs) act as antibacterials by releasing monovalent silver (Ag+) and are increasingly used in consumer products, thus elevating exposures in human and wildlife populations. In vitro models indicate that AgNPs are likely to be developmental neurotoxicants with actions distinct from those of Ag+. We exposed developing zebrafish (Danio rerio) to Ag+ or AgNPs on days 0–5 post-fertilization and evaluated hatching, morphology, survival and swim bladder inflation. Larval swimming behavior and responses to different lighting conditions were assessed 24 hr after the termination of exposure. Comparisons were made with AgNPs of different sizes and coatings: 10 nm citrate-coated AgNP (AgNP-C), and 10 or 50 nm polyvinylpyrrolidone-coated AgNPs (AgNP-PVP). Ag+ and AgNP-C delayed hatching to a similar extent but Ag+ was more effective in slowing swim bladder inflation, and elicited greater dysmorphology and mortality. In behavioral assessments, Ag+ exposed fish were hyperresponsive to light changes, whereas AgNP-C exposed fish showed normal responses. Neither of the AgNP-PVPs affected survival or morphology but both evoked significant changes in swimming responses to light in ways that were distinct from Ag+ and each other. The smaller AgNP-PVP caused overall hypoactivity whereas the larger caused hyperactivity. AgNPs are less potent than Ag+ with respect to dysmorphology and loss of viability, but nevertheless produce neurobehavioral effects that highly depend on particle coating and size, rather than just reflecting the release of Ag+. Different AgNP formulations are thus likely to produce distinct patterns of developmental neurotoxicity. PMID:21315816

  2. Coordination of Fictive Motor Activity in the Larval Zebrafish Is Generated by Non-Segmental Mechanisms

    PubMed Central

    Wiggin, Timothy D.; Peck, Jack H.; Masino, Mark A.

    2014-01-01

    The cellular and network basis for most vertebrate locomotor central pattern generators (CPGs) is incompletely characterized, but organizational models based on known CPG architectures have been proposed. Segmental models propose that each spinal segment contains a circuit that controls local coordination and sends longer projections to coordinate activity between segments. Unsegmented/continuous models propose that patterned motor output is driven by gradients of neurons and synapses that do not have segmental boundaries. We tested these ideas in the larval zebrafish, an animal that swims in discrete episodes, each of which is composed of coordinated motor bursts that progress rostrocaudally and alternate from side to side. We perturbed the spinal cord using spinal transections or strychnine application and measured the effect on fictive motor output. Spinal transections eliminated episode structure, and reduced both rostrocaudal and side-to-side coordination. Preparations with fewer intact segments were more severely affected, and preparations consisting of midbody and caudal segments were more severely affected than those consisting of rostral segments. In reduced preparations with the same number of intact spinal segments, side-to-side coordination was more severely disrupted than rostrocaudal coordination. Reducing glycine receptor signaling with strychnine reversibly disrupted both rostrocaudal and side-to-side coordination in spinalized larvae without disrupting episodic structure. Both spinal transection and strychnine decreased the stability of the motor rhythm, but this effect was not causal in reducing coordination. These results are inconsistent with a segmented model of the spinal cord and are better explained by a continuous model in which motor neuron coordination is controlled by segment-spanning microcircuits. PMID:25275377

  3. Visual Threat Assessment and Reticulospinal Encoding of Calibrated Responses in Larval Zebrafish.

    PubMed

    Bhattacharyya, Kiran; McLean, David L; MacIver, Malcolm A

    2017-09-25

    All visual animals must decide whether approaching objects are a threat. Our current understanding of this process has identified a proximity-based mechanism where an evasive maneuver is triggered when a looming stimulus passes a subtended visual angle threshold. However, some escape strategies are more costly than others, and so it would be beneficial to additionally encode the level of threat conveyed by the predator's approach rate to select the most appropriate response. Here, using naturalistic rates of looming visual stimuli while simultaneously monitoring escape behavior and the recruitment of multiple reticulospinal neurons, we find that larval zebrafish do indeed perform a calibrated assessment of threat. While all fish generate evasive maneuvers at the same subtended visual angle, lower approach rates evoke slower, more kinematically variable escape responses with relatively long latencies as well as the unilateral recruitment of ventral spinal projecting nuclei (vSPNs) implicated in turning. In contrast, higher approach rates evoke faster, more kinematically stereotyped responses with relatively short latencies, as well as bilateral recruitment of vSPNs and unilateral recruitment of giant fiber neurons in fish and amphibians called Mauthner cells. In addition to the higher proportion of more costly, shorter-latency Mauthner-active responses to greater perceived threats, we observe a higher incidence of freezing behavior at higher approach rates. Our results provide a new framework to understand how behavioral flexibility is grounded in the appropriate balancing of trade-offs between fast and slow movements when deciding to respond to a visually perceived threat. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Involvement of the calcium-sensing receptor in calcium homeostasis in larval zebrafish exposed to low environmental calcium.

    PubMed

    Kwong, Raymond W M; Auprix, Dan; Perry, Steve F

    2014-02-15

    The involvement of the calcium-sensing receptor (CaSR) in Ca(2+) homeostasis was investigated in larval zebrafish, Danio rerio. The expression of CaSR mRNA was first observed at 3 h posfertilization (hpf) and increased with development until plateauing at ∼48 hpf. At 4 dpf, CaSR mRNA was increased in fish acclimated to low Ca(2+) water (25 μM vs. 250 μM in normal water). Using immunohistochemistry and confocal microscopy, we demonstrated that the CaSR is expressed in the olfactory epithelium, neuromasts, ionocytes on the yolk sac epithelium, and corpuscles of Stannius. Results of double immunohistochemistry and/or in situ hybridization indicated that the CaSR is localized to a subset of mitochondrion-rich ionocytes enriched with Na(+)/K(+)-ATPase and epithelial Ca(2+) channel (ecac). Translational knockdown of the CaSR prevented 4 dpf larvae from regulating whole body Ca(2+) levels when exposed to a low Ca(2+) environment. Further, the increases in ecac mRNA expression and Ca(2+) influx, normally associated with exposure to low-Ca(2+) water, were prevented by CaSR knockdown. These findings demonstrate that larval zebrafish lacking the CaSR lose their ability to regulate Ca(2+) when confronted with a low-Ca(2+) environment. Results from real-time PCR suggested that the mRNA expression of the hypocalcemic hormone stanniocalcin (stc-1) remained elevated in the CaSR morphants following acclimation to low-Ca(2+) water. Overall, the results suggest that the CaSR is critical for Ca(2+) homeostasis in larval zebrafish exposed to low environmental Ca(2+) levels, possibly owing to its modulation of stanniocalcin mRNA expression.

  5. Fibroblast growth factor signaling is required for early somatic gonad development in zebrafish.

    PubMed

    Leerberg, Dena M; Sano, Kaori; Draper, Bruce W

    2017-09-01

    The vertebrate ovary and testis develop from a sexually indifferent gonad. During early development of the organism, primordial germ cells (the gamete lineage) and somatic gonad cells coalesce and begin to undergo growth and morphogenesis to form this bipotential gonad. Although this aspect of development is requisite for a fertile adult, little is known about the genetic regulation of early gonadogenesis in any vertebrate. Here, we provide evidence that fibroblast growth factor (Fgf) signaling is required for the early growth phase of a vertebrate bipotential gonad. Based on mutational analysis in zebrafish, we show that the Fgf ligand 24 (Fgf24) is required for proliferation, differentiation, and morphogenesis of the early somatic gonad, and as a result, most fgf24 mutants are sterile as adults. Additionally, we describe the ultrastructural elements of the early zebrafish gonad and show that distinct somatic cell populations can be identified soon after the gonad forms. Specifically, we show that fgf24 is expressed in an epithelial population of early somatic gonad cells that surrounds an inner population of mesenchymal somatic gonad cells that are in direct contact with the germ cells, and that fgf24 is required for stratification of the somatic tissue. Furthermore, based on gene expression analysis, we find that differentiation of the inner mesenchymal somatic gonad cells into functional cell types in the larval and early juvenile-stage gonad is dependent on Fgf24 signaling. Finally, we argue that the role of Fgf24 in zebrafish is functionally analogous to the role of tetrapod FGF9 in early gonad development.

  6. Quantification of larval zebrafish motor function in multi-well plates using open-source MATLAB® applications

    PubMed Central

    Zhou, Yangzhong; Cattley, Richard T.; Cario, Clinton L.; Bai, Qing; Burton, Edward A.

    2014-01-01

    This article describes a method to quantify the movements of larval zebrafish in multi-well plates, using the open-source MATLAB® applications LSRtrack and LSRanalyze. The protocol comprises four stages: generation of high-quality, flatly-illuminated video recordings with exposure settings that facilitate object recognition; analysis of the resulting recordings using tools provided in LSRtrack to optimize tracking accuracy and motion detection; analysis of tracking data using LSRanalyze or custom MATLAB® scripts; implementation of validation controls. The method is reliable, automated and flexible, requires less than one hour of hands-on work for completion once optimized, and shows excellent signal:noise characteristics. The resulting data can be analyzed to determine: positional preference; displacement, velocity and acceleration; duration and frequency of movement events and rest periods. This approach is widely applicable to analyze spontaneous or stimulus-evoked zebrafish larval neurobehavioral phenotypes resulting from a broad array of genetic and environmental manipulations, in a multi-well plate format suitable for high-throughput applications. PMID:24901738

  7. Defective cranial skeletal development, larval lethality and haploinsufficiency in Myod mutant zebrafish

    PubMed Central

    Hinits, Yaniv; Williams, Victoria C.; Sweetman, Dylan; Donn, Thomas M.; Ma, Taylur P.; Moens, Cecilia B.; Hughes, Simon M.

    2012-01-01

    Summary Myogenic regulatory factors of the myod family (MRFs) are transcription factors essential for mammalian skeletal myogenesis. Here we show that a mutation in the zebrafish myod gene delays and reduces early somitic and pectoral fin myogenesis, reduces miR-206 expression, and leads to a persistent reduction in somite size until at least the independent feeding stage. A mutation in myog, encoding a second MRF, has little obvious phenotype at early stages, but exacerbates the loss of somitic muscle caused by lack of Myod. Mutation of both myod and myf5 ablates all skeletal muscle. Haploinsufficiency of myod leads to reduced embryonic somite muscle bulk. Lack of Myod causes a severe reduction in cranial musculature, ablating most muscles including the protractor pectoralis, a putative cucullaris homologue. This phenotype is accompanied by a severe dysmorphology of the cartilaginous skeleton and failure of maturation of several cranial bones, including the opercle. As myod expression is restricted to myogenic cells, the data show that myogenesis is essential for proper skeletogenesis in the head. PMID:21798255

  8. Homeostatic response to sleep/rest deprivation by constant water flow in larval zebrafish in both dark and light conditions.

    PubMed

    Aho, Vilma; Vainikka, Maija; Puttonen, Henri A J; Ikonen, Heidi M K; Salminen, Tiia; Panula, Pertti; Porkka-Heiskanen, Tarja; Wigren, Henna-Kaisa

    2017-03-02

    Sleep-or sleep-like states-have been reported in adult and larval zebrafish using behavioural criteria. These reversible quiescent periods, displaying circadian rhythmicity, have been used in pharmacological, genetic and neuroanatomical studies of sleep-wake regulation. However, one of the important criteria for sleep, namely sleep homeostasis, has not been demonstrated unequivocally. To study rest homeostasis in zebrafish larvae, we rest-deprived 1-week-old larvae with a novel, ecologically relevant method: flow of water. Stereotyped startle responses to sensory stimuli were recorded after the rest deprivation to study arousal threshold using a high-speed camera, providing an appropriate time resolution to detect species-specific behavioural responses occurring in a millisecond time-scale. Rest-deprived larvae exhibited fewer startle responses than control larvae during the remaining dark phase and the beginning of the light phase, which can be interpreted as a sign of rest homeostasis-often used as equivalent of sleep homeostasis. To address sleep homeostasis further, we probed the adenosinergic system, which in mammals regulates sleep homeostasis. The adenosine A1 receptor agonist, cyclohexyladenosine, administered during the light period, decreased startle responses and increased immobility bouts, while the adenosine antagonist, caffeine, administered during the dark period, decreased immobility bouts. These results suggest that the regulation of sleep homeostasis in zebrafish larvae consists of the same elements as that of other species.

  9. Effects of Wall Vessel Rotation on the Growth of Larval Zebrafish Inner Ear Otoliths

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyan; Anken, Ralf H.; Wang, Gaohong; Hilbig, Reinhard; Liu, Yongding

    2011-01-01

    Stimulus dependence is a general feature of developing sensory systems. It has been shown earlier that the growth of otoliths of late-stage Cichlid fish ( Oreochromis mossambicus) and Zebrafish ( Danio rerio) was slowed down by hypergravity, whereas microgravity during spaceflight yielded an opposite effect, i.e., larger than 1 g otoliths, in Swordtail ( Xiphophorus helleri) late-stage embryos. Using ground-based techniques to apply simulated weightlessness, long-term clinorotation (exposure on a fast-rotating clinostat with one axis of rotation for 7 days) led to larger than 1 g otoliths in late-stage Cichlid fish, which is fully in line with the results obtained on Swordtails from spaceflight. Hitherto, early-staged fish have not yet been subjected to (simulated or real) long-term (i.e., more than 3 or 4 days) weightlessness to investigate otolith growth. The present study was carried out in order to fill this gap. Therefore, we subjected Zebrafish at a somite-stage to Wall Vessel Rotation (WVR; a method regarded to provide simulated weightlessness), when the anlage of the inner ear already is present (10 h post fertilisation, hpf). Siblings were maintained under WVR for 3, 6, 9 and 12 days. Further short-term experiments (3 days) were carried out on 10 hpf animals as well as on very early larvae (1 K cell stage, 3 hpf) at two different rotation speeds. WVR (both rotation speeds) had no effect on otolith biogenesis in both stages as all otoliths were present after the experiments. In comparison with 1 g controls, WVR had significantly increased otolith growth (normalised by fish length) after 3 and 6 days of exposure, but significant differences of otolith growth between experimental animals and controls were not found after 9 and 12 days. In conclusion, WVR (at least within a time-span of exposure of up to 6 days) brings, comparable to the situation in real microgravity, a kind of feedback mechanism into action, resulting in larger otoliths. Later, possible

  10. Persistent behavioral effects following early life exposure to retinoic acid or valproic acid in zebrafish

    PubMed Central

    Bailey, Jordan M.; Oliveri, Anthony N.; Karbhari, Nishika; Brooks, Roy A.J.; De La Rocha, Amberlene J.; Janardhan, Sheila; Levin, Edward D.

    2015-01-01

    BACKGROUND Moderate to severe dysregulation in retinoid signaling during early development is associated with a constellation of physical malformations and/or neural tube defects, including spina bifida. It is thought that more subtle dysregulation of this system, which might be achievable via dietary (i.e. hypervitaminosis A) or pharmacological (i.e. valproic acid) exposure in humans, will manifest on behavioral domains including sociability, without overt physical abnormalities. METHODS During early life, zebrafish were exposed to low doses of two chemicals that disrupt retinoid signaling. From 0-5 dpf, larvae were reared in aqueous solutions containing retinoic acid (0, 0.02, 0.2 or 2 nM) or valproic acid (0, 0.5, 5.0 or 50 uM). One cohort of zebrafish was assessed using a locomotor activity screen at 6-dpf; another was reared to adulthood and assessed using a neurobehavioral test battery (startle habituation, novel tank exploration, shoaling, and predator escape/avoidance). RESULTS There was no significant increase in the incidence of physical malformation among exposed fish compared to controls. Both retinoic acid and valproic acid exposures during development disrupted larval activity with persisting behavioral alterations later in life, primarily manifesting as decreased social affiliation. CONCLUSIONS Social behavior and some aspects of motor function were altered in exposed fish; the importance of examining emotional or psychological consequences of early life exposure to retinoid acting chemicals is discussed. PMID:26439099

  11. Persistent behavioral effects following early life exposure to retinoic acid or valproic acid in zebrafish.

    PubMed

    Bailey, Jordan M; Oliveri, Anthony N; Karbhari, Nishika; Brooks, Roy A J; De La Rocha, Amberlene J; Janardhan, Sheila; Levin, Edward D

    2016-01-01

    Moderate to severe dysregulation in retinoid signaling during early development is associated with a constellation of physical malformations and/or neural tube defects, including spina bifida. It is thought that more subtle dysregulation of this system, which might be achievable via dietary (i.e. hypervitaminosis A) or pharmacological (i.e. valproic acid) exposure in humans, will manifest on behavioral domains including sociability, without overt physical abnormalities. During early life, zebrafish were exposed to low doses of two chemicals that disrupt retinoid signaling. From 0 to 5dpf, larvae were reared in aqueous solutions containing retinoic acid (0, 0.02, 0.2 or 2nM) or valproic acid (0, 0.5, 5.0 or 50μM). One cohort of zebrafish was assessed using a locomotor activity screen at 6-dpf; another was reared to adulthood and assessed using a neurobehavioral test battery (startle habituation, novel tank exploration, shoaling, and predator escape/avoidance). There was no significant increase in the incidence of physical malformation among exposed fish compared to controls. Both retinoic acid and valproic acid exposures during development disrupted larval activity with persisting behavioral alterations later in life, primarily manifesting as decreased social affiliation. Social behavior and some aspects of motor function were altered in exposed fish; the importance of examining emotional or psychological consequences of early life exposure to retinoid acting chemicals is discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Early life stage toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in zebrafish (Danio rerio)

    SciTech Connect

    Henry, T.R.; Hornung, M.W.; Abnet, C.C.; Peterson, R.E.

    1995-12-31

    TCDD and related compounds cause toxicity in fish early life stages, characterized by edema, regional ischemia, craniofacial malformations, growth retardation and mortality. Determining the mechanism of these effects requires understanding normal early life stage development, which has been studied extensively in the zebrafish. Establishing zebrafish as a model for TCDD developmental toxicity requires demonstration that TCDD adversely affects zebrafish early life stages. Toxicity of TCDD to zebrafish early life stages was characterized by exposing newly fertilized eggs for 1 hr to water containing acetone or graded concentrations of [{sup 3}H]-TCDD and observed for signs of toxicity at 12 hr intervals for 240 hr post fertilization (hpf). TCDD did not increase embryo mortality during the egg stage (0--48 hpf) nor did it affect the time to hatching (48--96 hpf). At the highest TCDD egg doses (4.5--6.5 ng/g) the earliest sign of toxicity was pericardial edema (72 hpf) followed by the onset of yolk sac edema (96 hpf) onset of mortality (132 hpf). At lower egg doses the same effects were seen but after a longer delay period. Other signs of toxicity included craniofacial malformations, cranial edema and loss of swimming activity prior to death. To determine the dose-response relationship for pericardial and yolk sac edema and larval mortality the cumulative incidence of each effect was determined at 240 hpf. The ED{sub 50}s (95% fiducial limits) for pericardial edema and yolk sac edema were 2.1 6 (1.82--2.48) and 2.43 (2.12--2.72) ng TCDD/g egg, respectively. The LD{sub 50} was 2.45 (1.94--2.89) ng TCDD/g egg. In conclusion, the signs of TCDD early life stage toxicity in zebrafish are essentially identical to those in other fish species, however, larger egg doses of TCDD are required to elicit the effects.

  13. Conservation and Early Expression of Zebrafish Tyrosine Kinases Support the Utility of Zebrafish as a Model for Tyrosine Kinase Biology

    PubMed Central

    Challa, Anil Kumar

    2013-01-01

    Abstract Tyrosine kinases have significant roles in cell growth, apoptosis, development, and disease. To explore the use of zebrafish as a vertebrate model for tyrosine kinase signaling and to better understand their roles, we have identified all of the tyrosine kinases encoded in the zebrafish genome and quantified RNA expression of selected tyrosine kinases during early development. Using profile hidden Markov model analysis, we identified 122 zebrafish tyrosine kinase genes and proposed unambiguous gene names where needed. We found them to be organized into 39 nonreceptor and 83 receptor type, and 30 families consistent with human tyrosine kinase family assignments. We found five human tyrosine kinase genes (epha1, bmx, fgr, srm, and insrr) with no identifiable zebrafish ortholog, and one zebrafish gene (yrk) with no identifiable human ortholog. We also found that receptor tyrosine kinase genes were duplicated more often than nonreceptor tyrosine kinase genes in zebrafish. We profiled expression levels of 30 tyrosine kinases representing all families using direct digital detection at different stages during the first 24 hours of development. The profiling experiments clearly indicate regulated expression of tyrosine kinases in the zebrafish, suggesting their role during early embryonic development. In summary, our study has resulted in the first comprehensive description of the zebrafish tyrosine kinome. PMID:23234507

  14. Conservation and early expression of zebrafish tyrosine kinases support the utility of zebrafish as a model for tyrosine kinase biology.

    PubMed

    Challa, Anil Kumar; Chatti, Kiranam

    2013-09-01

    Tyrosine kinases have significant roles in cell growth, apoptosis, development, and disease. To explore the use of zebrafish as a vertebrate model for tyrosine kinase signaling and to better understand their roles, we have identified all of the tyrosine kinases encoded in the zebrafish genome and quantified RNA expression of selected tyrosine kinases during early development. Using profile hidden Markov model analysis, we identified 122 zebrafish tyrosine kinase genes and proposed unambiguous gene names where needed. We found them to be organized into 39 nonreceptor and 83 receptor type, and 30 families consistent with human tyrosine kinase family assignments. We found five human tyrosine kinase genes (epha1, bmx, fgr, srm, and insrr) with no identifiable zebrafish ortholog, and one zebrafish gene (yrk) with no identifiable human ortholog. We also found that receptor tyrosine kinase genes were duplicated more often than nonreceptor tyrosine kinase genes in zebrafish. We profiled expression levels of 30 tyrosine kinases representing all families using direct digital detection at different stages during the first 24 hours of development. The profiling experiments clearly indicate regulated expression of tyrosine kinases in the zebrafish, suggesting their role during early embryonic development. In summary, our study has resulted in the first comprehensive description of the zebrafish tyrosine kinome.

  15. Activation and inhibition of tph2 serotonergic neurons operate in tandem to influence larval zebrafish preference for light over darkness.

    PubMed

    Cheng, Ruey-Kuang; Krishnan, Seetha; Jesuthasan, Suresh

    2016-02-12

    Serotonergic neurons have been implicated in a broad range of processes, but the principles underlying their effects remain a puzzle. Here, we ask how these neurons influence the tendency of larval zebrafish to swim in the light and avoid regions of darkness. Pharmacological inhibition of serotonin synthesis reduces dark avoidance, indicating an involvement of this neuromodulator. Calcium imaging of tph2-expressing cells demonstrates that a rostral subset of dorsal raphe serotonergic neurons fire continuously while the animal is in darkness, but are inhibited in the light. Optogenetic manipulation of tph2 neurons by channelrhodopsin or halorhodopsin expression modifies preference, confirming a role for these neurons. In particular, these results suggest that fish prefer swimming in conditions that elicits lower activity in tph2 serotonergic neurons in the rostral raphe.

  16. Activation and inhibition of tph2 serotonergic neurons operate in tandem to influence larval zebrafish preference for light over darkness

    PubMed Central

    Cheng, Ruey-Kuang; Krishnan, Seetha; Jesuthasan, Suresh

    2016-01-01

    Serotonergic neurons have been implicated in a broad range of processes, but the principles underlying their effects remain a puzzle. Here, we ask how these neurons influence the tendency of larval zebrafish to swim in the light and avoid regions of darkness. Pharmacological inhibition of serotonin synthesis reduces dark avoidance, indicating an involvement of this neuromodulator. Calcium imaging of tph2-expressing cells demonstrates that a rostral subset of dorsal raphe serotonergic neurons fire continuously while the animal is in darkness, but are inhibited in the light. Optogenetic manipulation of tph2 neurons by channelrhodopsin or halorhodopsin expression modifies preference, confirming a role for these neurons. In particular, these results suggest that fish prefer swimming in conditions that elicits lower activity in tph2 serotonergic neurons in the rostral raphe. PMID:26868164

  17. Vascular wall shear stress in zebrafish model of early atherosclerosis

    NASA Astrophysics Data System (ADS)

    Choi, Woorak; Seo, Eunseok; Yeom, Eunseop; Lee, Sang Joon

    2016-11-01

    Although atherosclerosis is a multifactorial disease, the role of hemodynamic force has strong influence on the outbreak of the disease. Low and oscillating wall shear stress (WSS) is associated with the incidence of atherosclerosis. Many researchers have investigated relationships between WSS and the occurrence of atherosclerosis using in vitro and in vivo models. However, these models possess technological limitations in mimicking real biophysiological conditions and monitoring the temporal progression of atherosclerosis. In this study, a hypercholesterolaemic zebrafish model was established as a novel model to resolve these technical limitations. WSS in blood vessels of 15 days post-fertilisation zebrafish was measured using a micro PIV technique, and the spatial distribution of lipids inside blood vessels was quantitatively visualized using a confocal microscopy. As a result, lipids are mainly deposited in the regions of low WSS. The oscillating WSS is not induced by blood flows in the zebrafish disease model. The present hypercholesterolaemic zebrafish model would be useful for understanding the effect of WSS on the early stage of atherosclerosis. This work was supported by the National Research Foundation of Korea (NRF) under a Grant funded by the Korean government (MSIP) (No. 2008-0061991).

  18. Toxicity of hexahydro-1,3,5-trinitro-1,3,5-triazine to larval zebrafish (Danio rerio)

    USGS Publications Warehouse

    Mukhi, S.; Pan, X.; Cobb, G.P.; Patino, R.

    2005-01-01

    Hexahydro-1,3,5-trinitro-1,3,5-triazine, a cyclonitramine commonly known as RDX, is used in the production of military munitions. Contamination of soil, sediment, and ground and surface waters with RDX has been reported in different places around the world. Acute and subacute toxicities of RDX have been relatively well documented in terrestrial vertebrates, but among aquatic vertebrates the information available is limited. The objective of this study was to characterize the acute toxicity of RDX to larval zebrafish. Mortality (LC50) and incidence of vertebral column deformities (EC50) were two of the end points measured in this study. The 96-h LC50 was estimated at 22.98 and 25.64 mg l-1 in two different tests. The estimated no-observed-effective- concentration (NOEC) values of RDX on lethality were 13.27 ?? 0.05 and 15.32 ?? 0.30 mg l-1; and the lowest-observed-effective- concentration (LOEC) values were 16.52 ?? 0.05 and 19.09 ?? 0.23 mg l-1 in these two tests, respectively. The 96-h EC50 for vertebral deformities on survivors from one of the acute lethality tests was estimated at 20.84 mg l-1, with NOEC and LOEC of 9.75 ?? 0.34 and 12.84 ?? 0.34 mg l-1, respectively. Behavioral aberrations were also noted in this acute toxicity study, including the occurrence of whirling movement and lethargic behavior. The acute effects of RDX on survival, incidence of deformities, and behavior of larval zebrafish occurred at the high end of the most frequently reported concentrations of RDX in aquatic environments. The chronic effects of RDX in aquatic vertebrates need to be determined for an adequate assessment of the ecological risk of environmental RDX. ?? 2005 Elsevier Ltd. All rights reserved.

  19. A novel method for rearing first-feeding larval zebrafish: polyculture with Type L saltwater rotifers (Brachionus plicatilis).

    PubMed

    Best, Jason; Adatto, Isaac; Cockington, Jason; James, Althea; Lawrence, Christian

    2010-09-01

    Promoting high rates of growth and survival can be a major challenge in zebrafish culture, especially during the first-feeding stage. Here we describe a new rearing technique in which zebrafish larvae are polycultured in static tanks with Type "L" saltwater rotifers (Brachionus plicatilis) for the first 5 days of feeding (days 5-9 postfertilization). To demonstrate the effectiveness of this technique, we conducted rearing trials using fish from two different strains: AB and nacre. Growth, survival, water quality, and rotifer density were assayed daily through the polyculture phase (days 5-9), and during the transition to standard rearing conditions (days 10-12). After that point, once the fish were fully integrated onto recirculating systems, parameters were measured once per week out to day 30. In all trials, the fish displayed high rates of growth and survival throughout the three phases (polyculture, transition, and recirculating flow), indicating that this method may be employed during the critical first-feeding stage to help improve rearing performance in zebrafish facilities. Additionally, water quality parameters observed during the polyculture phase of the trials reveal that early zebrafish larvae are much more tolerant of elevated levels of ammonia and salinity than previously believed.

  20. Developmental Exposure to Organophosphate Flame Retardants Elicits Overt Toxicity and Alters Behavior in Early Life Stage Zebrafish (Danio rerio)

    PubMed Central

    Dishaw, Laura V.; Hunter, Deborah L.; Padnos, Beth; Padilla, Stephanie; Stapleton, Heather M.

    2014-01-01

    Organophosphate flame retardants (OPFRs) are common replacements for the phased-out polybrominated diphenyl ethers (PBDEs) and have been detected at high concentrations in environmental samples. OPFRs are structurally similar to organophosphate pesticides and may adversely affect the developing nervous system. This study evaluated the overt toxicity, uptake, and neurobehavioral effects of tris (1,3-dichloro-2-propyl) phosphate (TDCPP), tris (2-chloroethyl) phosphate (TCEP), tris (1-chloro-2-propyl) phosphate (TCPP), and tris (2,3-dibromopropyl) phosphate (TDBPP) in early life stage zebrafish. Chlorpyrifos was used as a positive control. For overt toxicity and neurobehavioral assessments, zebrafish were exposed from 0 to 5 days postfertilization (dpf). Hatching, death, or malformations were evaluated daily. Teratogenic effects were scored by visual examination on 6 dpf. To evaluate uptake and metabolism, zebrafish were exposed to 1 µM of each organophosphate (OP) flame retardant and collected on 1 and 5 dpf to monitor accumulation. Larval swimming activity was measured in 6 dpf larvae to evaluate neurobehavioral effects of exposures below the acute toxicity threshold. TDBPP elicited the greatest toxicity at >1 µM. TDCPP and chlorpyrifos were overtly toxic at concentrations ≥10 µM, TCEP, and TCPP were not overtly toxic at the doses tested. Tissue concentrations increased with increasing hydrophobicity of the parent chemical after 24 h exposures. TDCPP and TDBPP and their respective metabolites were detected in embryos on 5 dpf. For all chemicals tested, developmental exposures that were not overtly toxic significantly altered larval swimming activity. These data indicate that OPFRs adversely affect development of early life stage zebrafish. PMID:25239634

  1. Fluid dynamics of the larval zebrafish pectoral fin and the role of fin bending in fluid transport.

    PubMed

    Green, Matthew H; Curet, Oscar M; Patankar, Neelesh A; Hale, Melina E

    2013-03-01

    Larval zebrafish beat their pectoral fins during many behaviors including low-speed swimming and prey tracking; however, little is known about the functions of these fin movements. Previously, we found experimental support for the function of larval fins in mixing of fluid near the body, which may enhance respiration by diffusion of dissolved oxygen across the skin. Here we use computational fluid dynamics to analyze fluid flow due to the pectoral fin movement. The pectoral fins bend along their proximodistal axis during abduction (fin extension), but remain nearly rigid during adduction (fin flexion). We hypothesize that this asymmetry in bending is critical for fluid mixing near the body and test the effects of fin bending with our simulations. For normal fin beats, we observed similar flow patterns in simulations and experiments. Flow patterns showed fluid stretching and folding, indicative of mixing. When proximodistal bending was removed from fin motion, fins were less effective at transporting fluid in a posterior direction near the body surface, but lateral mixing of fluid near the body was unaffected. Our results suggest that fin bending enhances posterior transport of fluid along the body surface, which may act to aid respiration in combination with lateral stretching and folding of fluid.

  2. Joint acute and endocrine disruptive toxicities of malathion, cypermethrin and prochloraz to embryo-larval zebrafish, Danio rerio.

    PubMed

    Guo, Dongmei; Wang, Yanhua; Qian, Yongzhong; Chen, Chen; Jiao, Bining; Cai, Leiming; Wang, Qiang

    2017-01-01

    It remains a daunting challenge to determine ecotoxicological risks of exposure to mixtures of endocrine disrupting chemicals (EDCs) in environmental toxicology. In the present study, we investigated acute and endocrine disruptive toxicities of cypermethrin (CPM), malathion (MAL), prochloraz (PRO) and their binary mixtures of MAL + CPM and MAL + PRO to the early life stages of zebrafish. In the acute lethal toxicity test, three pesticides exhibited different levels of toxicity to zebrafish larvae, and the order of toxicity was as follows: CPM > PRO > MAL. The binary mixture of MAL + CPM displayed a synergistic effect on zebrafish larvae after exposure for 24, 48, 72 and 96 h. However, binary mixture of MAL + PRO showed an antagonistic effect. To evaluate the estrogenic effect, the expression of genes in the hypothalamic-pituitary-gonadal axis was assessed after zebrafish embryos were exposed to CPM, MAL, PRO and their binary mixtures from blastula stage (1 h post-fertilization, 1 hpf) to 14 dpf (14 d post-fertilization). Our data indicated that the transcription patterns of many key genes (vtg1, vtg2, era, erβ1, erβ2, cyp19a1a and cyp19a1b) were affected in hatched zebrafish after exposure to CPM, MAL and PRO. Moreover, following exposure to binary mixtures of 1000 μg/L MAL +4 μg/L CPM and 1000 μg/L MAL +900 μg/L PRO, the gene expressions were significantly changed compared with the individual pesticides. Our data provided a better understanding of bidirectional interactions of toxic response induced by these pesticides. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Studies of the Variables Affecting Behavior of Larval Zebrafish for Developmental Neurotoxicity Testing

    EPA Science Inventory

    The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize large numbers of chemicals for developmental toxicity. We are exploring methods to detect developmentally neurotoxic chemicals using zebrafish behavior at 6 days of age. The behavioral paradig...

  4. Developmental Exposure to a Dopaminergic Toxicant Produces Altered Locomotor Activity in Larval Zebrafish

    EPA Science Inventory

    In an effort to develop a rapid in vivo screen for EPA’s prioritization of toxic chemicals, we are characterizing the locomotor activity of zebrafish (Danio rerio) larvae after developmental exposure to various classes of prototypic drugs that act on the central nervous system. ...

  5. Behavioral repertoire of larval zebrafish: Baseline activity and response to drug treatment.

    EPA Science Inventory

    As part of the EPA’s effort to develop an in vivo, vertebrate screen for toxic chemicals, we have begun to characterize basic behaviors of 6-day post-fertilization (dpf) zebrafish (Danio rerio) larvae in a microtiter plate format. Our main goal is to develop a method for rapidly ...

  6. Drugs Targeting the Dopaminergic Nervous System Alter Locomotion in Larval Zebrafish

    EPA Science Inventory

    As part of an effort at the US Environmental Protection Agency to develop a rapid in vivo screen for prioritization of toxic chemicals, we have begun to characterize the locomotor activity of zebrafish (Danio rerio) larvae. This includes assessing the acute effects of drugs that ...

  7. Drugs that Target Dopamine Receptors: Changes in Locomotor Activity in Larval Zebrafish

    EPA Science Inventory

    As part of an effort at the US Environmental Protection Agency to develop a rapid in vivo screen for prioritization of toxic chemicals, we have begun to characterize the locomotor activity of zebrafish (Danio rerio) larvae. This includes assessing the acute effects of drugs known...

  8. Targeting the-Dopaminergic Nervous System: Altering Behavior in Larval Zebrafish

    EPA Science Inventory

    Zebrafish (Dania rerio) are becoming an important model system in studying the effects of environmental chemicals on behavior. In order to develop a rapid in vivo screen to prioritize toxic chemicals, we have begun assessing the acute locomotor effects of drugs that act on the do...

  9. Locomotion in Larval Zebrafish: Influence of Time of Day, Lighting and Ethanol

    EPA Science Inventory

    The increasing use of zebrafish (Danio rerio) in developmental research highlights the need for a detailed understanding of their behavior. Behavior represents the unique interface between intrinsic and extrinsic forces that determine an organism’s health and survival. We studied...

  10. Assessing Locomotor Activity in Larval Zebrafish: Influence of Extrinsic and Intrinsic Variables

    EPA Science Inventory

    The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize large numbers of chemicals for developmental toxicity. We are exploring methods to detect developmentally neurotoxic chemicals using zebrafish behavior at 6 days of age. The behavioral paradig...

  11. Studies on the Behavior of Larval Zebrafish for Developmental Neurotoxicity Screening

    EPA Science Inventory

    The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize large numbers of chemicals for developmental toxicity. We are exploring methods to detect developmentally neurotoxic chemicals using zebrafish behavior at 6 days of age. The behavioral paradig...

  12. Studies of the Variables Affecting Behavior of Larval Zebrafish for Developmental Neurotoxicity Testing*

    EPA Science Inventory

    The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize large numbers of chemicals for developmental toxicity. We are exploring methods to screen for developmentally neurotoxic chemicals using zebrafish behavior at 6 days of age. The behavioral par...

  13. Behavioral repertoire of larval zebrafish: Baseline activity and response to drug treatment.

    EPA Science Inventory

    As part of the EPA’s effort to develop an in vivo, vertebrate screen for toxic chemicals, we have begun to characterize basic behaviors of 6-day post-fertilization (dpf) zebrafish (Danio rerio) larvae in a microtiter plate format. Our main goal is to develop a method for rapidly ...

  14. Studies on the Behavior of Larval Zebrafish for Developmental Neurotoxicity Screening

    EPA Science Inventory

    The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize large numbers of chemicals for developmental toxicity. We are exploring methods to detect developmentally neurotoxic chemicals using zebrafish behavior at 6 days of age. The behavioral paradig...

  15. Studies of the Variables Affecting Behavior of Larval Zebrafish for Developmental Neurotoxicity Testing*

    EPA Science Inventory

    The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize large numbers of chemicals for developmental toxicity. We are exploring methods to screen for developmentally neurotoxic chemicals using zebrafish behavior at 6 days of age. The behavioral par...

  16. The Effects of Acute Exposure to Neuroactive Drugs on the Locomotor Activity of Larval Zebrafish

    EPA Science Inventory

    In an effort to develop a rapid in vivo screen for EPA’s prioritization of toxic chemicals, we have begun to characterize the locomotor activity of zebrafish (Danio rerio) larvae using prototypic drugs that act on the central nervous system. Initially, we chose to define the beh...

  17. Assessing Locomotor Activity in Larval Zebrafish: Influence of Extrinsic and Intrinsic Variables

    EPA Science Inventory

    The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize large numbers of chemicals for developmental toxicity. We are exploring methods to detect developmentally neurotoxic chemicals using zebrafish behavior at 6 days of age. The behavioral paradig...

  18. Locomotion in Larval Zebrafish: Influence of Time of Day, Lighting and Ethanol

    EPA Science Inventory

    The increasing use of zebrafish (Danio rerio) in developmental research highlights the need for a detailed understanding of their behavior. Behavior represents the unique interface between intrinsic and extrinsic forces that determine an organism’s health and survival. We studied...

  19. The Effects of Acute Exposure to Neuroactive Drugs on the Locomotor Activity of Larval Zebrafish

    EPA Science Inventory

    In an effort to develop a rapid in vivo screen for EPA’s prioritization of toxic chemicals, we have begun to characterize the locomotor activity of zebrafish (Danio rerio) larvae using prototypic drugs that act on the central nervous system. Initially, we chose to define the beh...

  20. Drugs that Target Dopamine Receptors: Changes in Locomotor Activity in Larval Zebrafish

    EPA Science Inventory

    As part of an effort at the US Environmental Protection Agency to develop a rapid in vivo screen for prioritization of toxic chemicals, we have begun to characterize the locomotor activity of zebrafish (Danio rerio) larvae. This includes assessing the acute effects of drugs known...

  1. Targeting the-Dopaminergic Nervous System: Altering Behavior in Larval Zebrafish

    EPA Science Inventory

    Zebrafish (Dania rerio) are becoming an important model system in studying the effects of environmental chemicals on behavior. In order to develop a rapid in vivo screen to prioritize toxic chemicals, we have begun assessing the acute locomotor effects of drugs that act on the do...

  2. Drugs Targeting the Dopaminergic Nervous System Alter Locomotion in Larval Zebrafish

    EPA Science Inventory

    As part of an effort at the US Environmental Protection Agency to develop a rapid in vivo screen for prioritization of toxic chemicals, we have begun to characterize the locomotor activity of zebrafish (Danio rerio) larvae. This includes assessing the acute effects of drugs that ...

  3. Studies of the Variables Affecting Behavior of Larval Zebrafish for Developmental Neurotoxicity Testing

    EPA Science Inventory

    The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize large numbers of chemicals for developmental toxicity. We are exploring methods to detect developmentally neurotoxic chemicals using zebrafish behavior at 6 days of age. The behavioral paradig...

  4. Developmental Exposure to a Dopaminergic Toxicant Produces Altered Locomotor Activity in Larval Zebrafish

    EPA Science Inventory

    In an effort to develop a rapid in vivo screen for EPA’s prioritization of toxic chemicals, we are characterizing the locomotor activity of zebrafish (Danio rerio) larvae after developmental exposure to various classes of prototypic drugs that act on the central nervous system. ...

  5. Biased gene expression in early honeybee larval development

    PubMed Central

    2013-01-01

    Background Female larvae of the honeybee (Apis mellifera) develop into either queens or workers depending on nutrition. This nutritional stimulus triggers different developmental trajectories, resulting in adults that differ from each other in physiology, behaviour and life span. Results To understand how these trajectories are established we have generated a comprehensive atlas of gene expression throughout larval development. We found substantial differences in gene expression between worker and queen-destined larvae at 6 hours after hatching. Some of these early changes in gene expression are maintained throughout larval development, indicating that caste-specific developmental trajectories are established much earlier than previously thought. Within our gene expression data we identified processes that potentially underlie caste differentiation. Queen-destined larvae have higher expression of genes involved in transcription, translation and protein folding early in development with a later switch to genes involved in energy generation. Using RNA interference, we were able to demonstrate that one of these genes, hexamerin 70b, has a role in caste differentiation. Both queen and worker developmental trajectories are associated with the expression of genes that have alternative splice variants, although only a single variant of a gene tends to be differentially expressed in a given caste. Conclusions Our data, based on the biases in gene expression early in development together with published data, supports the idea that caste development in the honeybee consists of two phases; an initial biased phase of development, where larvae can still switch to the other caste by differential feeding, followed by commitment to a particular developmental trajectory. PMID:24350621

  6. Further characterisation of differences between TL and AB zebrafish (Danio rerio): Gene expression, physiology and behaviour at day 5 of the larval stage.

    PubMed

    van den Bos, Ruud; Mes, Wouter; Galligani, Pietro; Heil, Anthony; Zethof, Jan; Flik, Gert; Gorissen, Marnix

    2017-01-01

    Zebrafish (Danio rerio) have become popular as model organism in research. Many strains are readily available, which not only differ morphologically, but also genetically, physiologically and behaviourally. Here, we focus on the AB and Tupfel long-fin (TL) strain for which we have previously shown that adults differ in baseline hypothalamus-pituitary-interrenal (HPI)-axis activity (AB higher than TL) affecting inhibitory avoidance behaviour (absent in AB). To assess whether strain differences are already present in early life stages, we compared baseline HPI-axis related gene expression as well as cortisol levels, (neuro)development related as well as (innate) immune system related gene expression, and light-dark as well as startle behaviour in larvae 5 days post fertilisation. The data show that AB and TL larvae differ in baseline HPI-axis activity (AB higher than TL), expression of (neuro)development and immune system related genes (AB higher than TL), habituation to acoustic/vibrational stimuli (AB habituate faster than TL) and light-dark induced changes in motor behaviour (AB stronger than TL). Our data show that already in larval stages differences exist between zebrafish of the AB and TL strain confirming and extending data of earlier studies. To what extent the mutation in connexin 41.8, leading to spots rather than stripes in TL, but also (possibly) affecting eye, heart and brain function, is involved in the expression of (some of) these differences needs to be studied. These results emphasise that differences between strains need to be taken into account to enhance reproducibility both within, and between, laboratories.

  7. Further characterisation of differences between TL and AB zebrafish (Danio rerio): Gene expression, physiology and behaviour at day 5 of the larval stage

    PubMed Central

    van den Bos, Ruud; Mes, Wouter; Galligani, Pietro; Heil, Anthony; Zethof, Jan; Flik, Gert; Gorissen, Marnix

    2017-01-01

    Zebrafish (Danio rerio) have become popular as model organism in research. Many strains are readily available, which not only differ morphologically, but also genetically, physiologically and behaviourally. Here, we focus on the AB and Tupfel long-fin (TL) strain for which we have previously shown that adults differ in baseline hypothalamus-pituitary-interrenal (HPI)-axis activity (AB higher than TL) affecting inhibitory avoidance behaviour (absent in AB). To assess whether strain differences are already present in early life stages, we compared baseline HPI-axis related gene expression as well as cortisol levels, (neuro)development related as well as (innate) immune system related gene expression, and light-dark as well as startle behaviour in larvae 5 days post fertilisation. The data show that AB and TL larvae differ in baseline HPI-axis activity (AB higher than TL), expression of (neuro)development and immune system related genes (AB higher than TL), habituation to acoustic/vibrational stimuli (AB habituate faster than TL) and light-dark induced changes in motor behaviour (AB stronger than TL). Our data show that already in larval stages differences exist between zebrafish of the AB and TL strain confirming and extending data of earlier studies. To what extent the mutation in connexin 41.8, leading to spots rather than stripes in TL, but also (possibly) affecting eye, heart and brain function, is involved in the expression of (some of) these differences needs to be studied. These results emphasise that differences between strains need to be taken into account to enhance reproducibility both within, and between, laboratories. PMID:28419104

  8. Early zebrafish development: It’s in the maternal genes

    PubMed Central

    Abrams, Elliott W.; Mullins, Mary C.

    2009-01-01

    Summary The earliest stages of embryonic development in all animals examined rely on maternal gene products that are generated during oogenesis and supplied to the egg. The period of maternal control of embryonic development varies among animals according to the onset of zygotic transcription and the persistence of maternal gene products. This maternal regulation has been little studied in vertebrates, due to the difficulty in manipulating maternal gene function and lack of basic molecular information. However, recent maternal-effect screens in the zebrafish have generated more than 40 unique mutants that are providing new molecular entry points to the maternal control of early vertebrate development. Here we discuss recent studies of 12 zebrafish mutant genes that illuminate the maternal molecular controls on embryonic development, including advances in the regulation of animal-vegetal polarity, egg activation, cleavage development, body plan formation, tissue morphogenesis, microRNA function and germ cell development. PMID:19608405

  9. A Fluorescence-Based Assay for Proteinuria Screening in Larval Zebrafish (Danio rerio).

    PubMed

    Hanke, Nils; King, Benjamin L; Vaske, Bernhard; Haller, Hermann; Schiffer, Mario

    2015-10-01

    Analysis of genes compromising the glomerular filtration barrier in rodent models using transgenic or knockdown approaches is time- and resource-consuming and often leads to unsatisfactory results. Therefore, it would be beneficial to have a selection tool indicating that your gene of interest is in fact associated with proteinuria. Zebrafish (Danio rerio) is a rapid screening tool to study effects in glomerular filtration barrier integrity after genetic manipulation. We use either injection of high-molecular-weight dextrans or a transgenic fluorescent fish line [Tg(l-fabp:DBP:EGFP)] expressing a vitamin D-binding protein fused with eGFP for indirect detection of proteinuria. A loss of high-molecular-weight proteins from the circulation of the fish into the urine can be identified by monitoring fluorescence intensity in the zebrafish eye. Paired with an optimized analysis method, this assay provides an effective screening solution to detect filtration barrier damage with proteinuria before moving to a mammalian system.

  10. Targeted Laser Ablation of the Zebrafish Larval Heart Induces Models of Heart Block, Valvular Regurgitation, and Outflow Tract Obstruction

    PubMed Central

    Matrone, Gianfranco; Maqsood, Sana; Taylor, Jonathan; Mullins, John J.; Tucker, Carl S.

    2014-01-01

    Abstract Mammalian models of cardiac disease have provided unique and important insights into human disease but have become increasingly challenging to produce. The zebrafish could provide inexpensive high-throughput models of cardiac injury and repair. We used a highly targeted laser, synchronized to fire at specific phases of the cardiac cycle, to induce regional injury to the ventricle, atrioventricular (AV) cushion, and bulbus arteriosus (BA). We assessed the impact of laser injury on hearts of zebrafish early larvae at 72 h postfertilization, to different regions, recording the effects on ejection fraction (EF), heart rate (HR), and blood flow at 2 and 24 h postinjury (hpi). Laser injury to the apex, midzone, and outflow regions of the ventricle resulted in reductions of the ventricle EF at 2 hpi with full recovery of function by 24 hpi. Laser injury to the ventricle, close to the AV cushion, was more likely to cause bradycardia and atrial–ventricular dysfunction, suggestive of an electrical conduction block. At 2 hpi, direct injury to the AV cushion resulted in marked regurgitation of blood from the ventricle to the atrium. Laser injury to the BA caused temporary outflow tract obstruction with cessation of ventricle contraction and circulation. Despite such damage, 80% of embryos showed complete recovery of the HR and function within 24 h of laser injury. Precision laser injury to key structures in the zebrafish developing heart provides a range of potentially useful models of hemodynamic overload, injury, and repair. PMID:25272304

  11. Early Zebrafish Embryogenesis Is Susceptible to Developmental TDCPP Exposure

    PubMed Central

    McGee, Sean P.; Cooper, Ellen M.; Stapleton, Heather M.

    2012-01-01

    Background: Chlorinated phosphate esters (CPEs) are widely used as additive flame retardants for low-density polyurethane foams and have frequently been detected at elevated concentrations within indoor environmental media. Objectives: To begin characterizing the potential toxicity of CPEs on early vertebrate development, we examined the developmental toxicity of four CPEs used in polyurethane foam: tris(1,3-dichloro-2-propyl) phosphate (TDCPP), tris(2-chloroethyl) phosphate (TCEP), tris(1-chloro-2-propyl) phosphate (TCPP), and 2,2-bis(chloromethyl)propane-1,3-diyl tetrakis(2-chlorethyl) bis(phosphate) (V6). Methods: Using zebrafish as a model for vertebrate embryogenesis, we first screened the potential teratogenic effects of TDCPP, TCEP, TCPP, and V6 using a developmental toxicity assay. Based on these results, we focused on identification of susceptible windows of developmental TDCPP exposure as well as evaluation of uptake and elimination of TDCPP and bis(1,3-dichloro-2-propyl)phosphate (BDCPP, the primary metabolite) within whole embryos. Finally, because TDCPP-specific genotoxicity assays have, for the most part, been negative in vivo and because zygotic genome remethylation is a key biological event during cleavage, we investigated whether TDCPP altered the status of zygotic genome methylation during early zebrafish embryogenesis. Results: Overall, our findings suggest that the cleavage period during zebrafish embryogenesis is susceptible to TDCPP-induced delays in remethylation of the zygotic genome, a mechanism that may be associated with enhanced developmental toxicity following initiation of TDCPP exposure at the start of cleavage. Conclusions: Our results suggest that further research is needed to better understand the effects of a widely used and detected CPE within susceptible windows of early vertebrate development. PMID:23017583

  12. Cross-species pharmacological characterization of the allylglycine seizure model in mice and larval zebrafish.

    PubMed

    Leclercq, Karine; Afrikanova, Tatiana; Langlois, Melanie; De Prins, An; Buenafe, Olivia E; Rospo, Chiara C; Van Eeckhaut, Ann; de Witte, Peter A M; Crawford, Alexander D; Smolders, Ilse; Esguerra, Camila V; Kaminski, Rafal M

    2015-04-01

    Treatment-resistant seizures affect about a third of patients suffering from epilepsy. To fulfill the need for new medications targeting treatment-resistant seizures, a number of rodent models offer the opportunity to assess a variety of potential treatment approaches. The use of such models, however, has proven to be time-consuming and labor-intensive. In this study, we performed pharmacological characterization of the allylglycine (AG) seizure model, a simple in vivo model for which we demonstrated a high level of treatment resistance. (d,l)-Allylglycine inhibits glutamic acid decarboxylase (GAD) - the key enzyme in γ-aminobutyric acid (GABA) biosynthesis - leading to GABA depletion, seizures, and neuronal damage. We performed a side-by-side comparison of mouse and zebrafish acute AG treatments including biochemical, electrographic, and behavioral assessments. Interestingly, seizure progression rate and GABA depletion kinetics were comparable in both species. Five mechanistically diverse antiepileptic drugs (AEDs) were used. Three out of the five AEDs (levetiracetam, phenytoin, and topiramate) showed only a limited protective effect (mainly mortality delay) at doses close to the TD50 (dose inducing motor impairment in 50% of animals) in mice. The two remaining AEDs (diazepam and sodium valproate) displayed protective activity against AG-induced seizures. Experiments performed in zebrafish larvae revealed behavioral AED activity profiles highly analogous to those obtained in mice. Having demonstrated cross-species similarities and limited efficacy of tested AEDs, we propose the use of AG in zebrafish as a convenient and high-throughput model of treatment-resistant seizures. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Afferent and motoneuron activity in response to single neuromast stimulation in the posterior lateral line of larval zebrafish

    PubMed Central

    Haehnel-Taguchi, Melanie; Akanyeti, Otar

    2014-01-01

    The lateral line system of fishes contains mechanosensory receptors along the body surface called neuromasts, which can detect water motion relative to the body. The ability to sense flow informs many behaviors, such as schooling, predator avoidance, and rheotaxis. Here, we developed a new approach to stimulate individual neuromasts while either recording primary sensory afferent neuron activity or swimming motoneuron activity in larval zebrafish (Danio rerio). Our results allowed us to characterize the transfer functions between a controlled lateral line stimulus, its representation by primary sensory neurons, and its subsequent behavioral output. When we deflected the cupula of a neuromast with a ramp command, we found that the connected afferent neuron exhibited an adapting response which was proportional in strength to deflection velocity. The maximum spike rate of afferent neurons increased sigmoidally with deflection velocity, with a linear range between 0.1 and 1.0 μm/ms. However, spike rate did not change when the cupula was deflected below 8 μm, regardless of deflection velocity. Our findings also reveal an unexpected sensitivity in the larval lateral line system: stimulation of a single neuromast could elicit a swimming response which increased in reliability with increasing deflection velocities. At high deflection velocities, we observed that lateral line evoked swimming has intermediate values of burst frequency and duty cycle that fall between electrically evoked and spontaneous swimming. An understanding of the sensory capabilities of a single neuromast will help to build a better picture of how stimuli are encoded at the systems level and ultimately translated into behavior. PMID:24966296

  14. Effects of embryonic exposure to polychlorinated biphenyls (PCBs) on larval zebrafish behavior

    PubMed Central

    Lovato, Ava K.; Creton, Robbert; Colwill, Ruth M.

    2015-01-01

    Developmental disorders such as anxiety, autism, and attention deficit hyperactivity disorders have been linked to exposure to polychlorinated biphenyls (PCBs), a ubiquitous anthropogenic pollutant. The zebrafish is widely recognized as an excellent model system for assessing the effects of toxicant exposure on behavior and neurodevelopment. In the present study, we examined the effect of sub-chronic embryonic exposure to the PCB mixture, Aroclor (A) 1254 on anxiety-related behaviors in zebrafish larvae at 7 days post-fertilization (dpf). We found that exposure to low concentrations of A1254, from 2 to 26 hours post-fertilization (hpf) induced specific behavioral defects in two assays. In one assay with intermittent presentations of a moving visual stimulus, 5 ppm and 10 ppm PCB-exposed larvae displayed decreased avoidance behavior but no significant differences in thigmotaxis or freezing relative to controls. In the other assay with intermittent presentations of a moving visual stimulus and a stationary visual stimulus, 5 ppm and 10 ppm PCB-exposed larvae had elevated baseline levels of thigmotaxis but no significant differences in avoidance behavior relative to controls. The 5 ppm larvae also displayed higher terminal levels of freezing relative to controls. Collectively, our results show that exposure to ecologically valid PCB concentrations during embryonic development can induce functional deficits and alter behavioral responses to a visual threat. PMID:26561944

  15. Effects of starvation on the expression of feeding related neuropeptides in the larval zebrafish hypothalamus.

    PubMed

    Shanshan, Liu; Cuizhen, Zhang; Gang, Peng

    2016-09-01

    Vertebrate feeding behavior is regulated by neuropeptide Y (NPY), GALANIN and GMAP prepropeptide (GAL), agouti related neuropeptide (AGRP) and proopiomelanocortin (POMC) in the hypothalamus. However, there are few studies on the relationship between these neuropeptides and feeding in zebrafish larvae. In the present study, real-time quantitative PCR and in situ hybridization were applied to examine the expression levels of npy, galanin, agrp and pomca in the hypothalamus of zebrafish larvae after starvation and re-feeding. The results showed the expression of agrp and galanin increased significantly after starvation compared to the control group, whilst the expression of pomca decreased significantly compared to control. If the animals were re-fed for two days after starvation, the expression of pomca, agrp and galanin showed no significant difference from the control. Expression of npy did not alter in either condition. These results indicate that starvation increases expression levels of agrp and galanin, and reduces the pomca expression. In addition, these starvation-induced changes can be reversed by re-feeding.

  16. Vegfa Impacts Early Myocardium Development in Zebrafish

    PubMed Central

    Zhu, Diqi; Fang, Yabo; Gao, Kun; Shen, Jie; Zhong, Tao P.; Li, Fen

    2017-01-01

    Vascular endothelial growth factor A (Vegfa) signaling regulates cardiovascular development. However, the cellular mechanisms of Vegfa signaling in early cardiogenesis remain poorly understood. The present study aimed to understand the differential functions and mechanisms of Vegfa signaling in cardiac development. A loss-of-function approach was utilized to study the effect of Vegfa signaling in cardiogenesis. Both morphants and mutants for vegfaa display defects in cardiac looping and chamber formation, especially the ventricle. Vegfa regulates the heart morphogenesis in a dose-dependent manner. Furthermore, the initial fusion of the bilateral myocardium population is delayed rather than endocardium. The results demonstrate that Vegfa signaling plays a direct impact on myocardium fusion, indicating that it is the initial cause of the heart defects. The heart morphogenesis is regulated by Vegfa in a dose-dependent manner, and later endocardium defects may be secondary to impaired myocardium–endocardium crosstalk. PMID:28230770

  17. Developmental exposures to waterborne abused drugs alter physiological function and larval locomotion in early life stages of medaka fish.

    PubMed

    Liao, Pei-Han; Hwang, Chiu-Chu; Chen, Te-Hao; Chen, Pei-Jen

    2015-08-01

    Environmental pollution by neuroactive pharmaceuticals from wastewater discharge is a major threat to aquatic ecosystems. However, the ecotoxicologic effect of waterborne abused drugs remains unclear. Embryos of medaka fish (Oryzias latipes) were exposed to aqueous solutions of 2 hallucinogenic drugs, ketamine (KET) and methamphetamine (MET) (0.004-40μM) to assess developmental toxicity, oxidative stress and behavioral alteration in early life stages. The environmentally relevant concentration (0.004μM) of both KET and MET significantly delayed blood circulation and hatching time in embryos and altered larval swimming behavior (e.g., maximum velocity and relative turn angle). KET and MET induced similar oxidative stress responses in embryos, which were unrecoverable in hatchlings in drug-free solutions. Early life exposure to the 2 drugs conferred distinct patterns in larval locomotion: KET induced hyperactivity and a less tortuous swimming path, but MET-treated larvae showed hypoactivity and a clockwise swimming direction at high doses. The alteration in locomotor responses were generally similar in mammals and zebrafish. We report sensitive biomarkers (e.g., heartbeat, hatching and swimming behavior) by developmental stage of medaka that reflect environmentally relevant exposures of abused drugs. They could be useful for ecological risk assessment of waterborne neuroactive drugs. The toxicity results implicate a potential ecotoxicological impact of controlled or abused drugs on fish development and populations in aquatic environments.

  18. Differentially transcriptional regulation on cell cycle pathway by silver nanoparticles from ionic silver in larval zebrafish (Danio rerio).

    PubMed

    Kang, Jae Soon; Bong, Jinjong; Choi, Jin-Soo; Henry, Theodore B; Park, June-Woo

    2016-10-28

    Silver nanoparticles (AgNPs) have a strong antibacterial activity and the relevant modes of actions have regarded as direct or indirect causes of toxicity observed in the environment. In this study, the transcriptomic profiles in larval zebrafish (Danio rerio) exposed to AgNPs (about 50 nm in size) and AgNO3 as a comparative ionic silver were investigated and analyzed using differential expressed gene (DEG), Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway analyses. Results indicated that underlying molecular mechanisms are different each other. Interestingly, the global gene expression profiling showed that cell cycle pathway is affected by both AgNPs and dissolved Ag(+), however its regulation pattern was opposite each other. To the best of our knowledge, the up-regulation of cell cycle pathway by AgNPs and down-regulation by Ag(+) is the first reporting and suggests the distinguished toxicological perspective from a well-known hypothesis that Ag(+) mainly regulates the cell cycle. This study provides novel insights onto the genotoxicological mechanisms of AgNPs. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Brd4 Associates with Mitotic Chromosomes Throughout Early Zebrafish Embryogenesis

    PubMed Central

    Toyama, Reiko; Rebbert, Martha L.; Dey, Anup; Ozato, Keiko; Dawid, Igor B.

    2008-01-01

    Brd4 is a member of the BET (bromodomains and extraterminal) subfamily of bromodomain proteins that includes chromatin-modifying proteins and transcriptional regulators. Brd4 has a role in cell cycle progression, making it indispensable in mouse embryos and cultured cells. The N-terminal domain of Brd4 participates in a fusion oncogene. Brd4 associates with acetylated histones in chromatin, and this association persists during mitosis implicating Brd4 in epigenetic memory. Brd4 sequence, particularly the bromodomains and ET domain, is conserved in the zebrafish and Xenopus laevis proteins reported here. Brd4 is expressed and localized on mitotic chromosomes in early zebrafish embryos before and after the midblastula transition (MBT), indicating that the Brd4-chromosome association is a conserved property that is maintained even prior to zygotic transcription. The association of Brd4 with acetylated histones may also be conserved in early embryos as we found that histones H3 and H4 are already acetylated during pre-MBT stages. PMID:18498094

  20. Neural control and modulation of swimming speed in the larval zebrafish.

    PubMed

    Severi, Kristen E; Portugues, Ruben; Marques, João C; O'Malley, Donald M; Orger, Michael B; Engert, Florian

    2014-08-06

    Vertebrate locomotion at different speeds is driven by descending excitatory connections to central pattern generators in the spinal cord. To investigate how these inputs determine locomotor kinematics, we used whole-field visual motion to drive zebrafish to swim at different speeds. Larvae match the stimulus speed by utilizing more locomotor events, or modifying kinematic parameters such as the duration and speed of swimming bouts, the tail-beat frequency, and the choice of gait. We used laser ablations, electrical stimulation, and activity recordings in descending neurons of the nucleus of the medial longitudinal fasciculus (nMLF) to dissect their contribution to controlling forward movement. We found that the activity of single identified neurons within the nMLF is correlated with locomotor kinematics, and modulates both the duration and oscillation frequency of tail movements. By identifying the contribution of individual supraspinal circuit elements to locomotion kinematics, we build a better understanding of how the brain controls movement.

  1. Neural control and modulation of swimming speed in the larval zebrafish

    PubMed Central

    Marques, João C.; O'Malley, Donald M.; Orger, Michael B.; Engert, Florian

    2014-01-01

    Summary Vertebrate locomotion at different speeds is driven by descending excitatory connections to central pattern generators in the spinal cord. To investigate how these inputs determine locomotor kinematics, we used whole-field visual motion to drive zebrafish to swim at different speeds. Larvae match the stimulus speed by utilizing more locomotor events, or modifying kinematic parameters such as the duration and speed of swimming bouts, the tail-beat frequency, and choice of gait. We used laser ablations, electrical stimulation, and activity recordings in descending neurons of the nucleus of the medial longitudinal fasciculus (nMLF) to dissect their contribution to controlling forward movement. We found that the activity of single identified neurons within the nMLF is correlated with locomotor kinematics, and modulates both the duration and oscillation frequency of tail movements. By identifying the contribution of individual supraspinal circuit elements to locomotion kinematics we build a better understanding of how the brain controls movement. PMID:25066084

  2. Teratogenic, bioenergetic, and behavioral effects of exposure to total particulate matter on early development of zebrafish (Danio rerio) are not mimicked by nicotine

    PubMed Central

    Massarsky, Andrey; Jayasundara, Nishad; Bailey, Jordan M.; Oliveri, Anthony N.; Levin, Edward D.; Prasad, G.L.; Di Giulio, Richard T.

    2016-01-01

    Cigarette smoke has been associated with a number of pathologies; however, the mechanisms leading to developmental effects are yet to be fully understood. The zebrafish embryo is regarded as a ‘bridge model’; however, not many studies examined its applicability to cigarette smoke toxicity. This study examined the effects of total particulate matter (TPM) from 3R4F reference cigarettes on the early development of zebrafish (Danio rerio). Zebrafish embryos were exposed to two concentrations of TPM (0.4 and 1.4 μg/mL equi-nicotine units) or nicotine at equivalent doses. The exposures began at 2 h post-fertilization (hpf) and lasted until 96 hpf. Several physiological parameters were assessed during or after the exposure. We show that TPM increased mortality, delayed hatching, and increased the incidence of deformities in zebrafish. TPM exposure also increased the incidence of hemorrhage and disrupted the angiogenesis of the major vessels in the brain. Moreover, TPM exposure reduced the larval body length, decreased the heart rate, and reduced the metabolic rate. Biomarkers of xenobiotic metabolism and oxidative stress were also affected. TPM-exposed zebrafish also differed behaviorally: at 24 hpf the embryos had a higher frequency of spontaneous contractions and at 144 hpf the larvae displayed swimming hyperactivity. This study demonstrates that TPM disrupts several aspects of early development in zebrafish. The effects reported for TPM were not attributable to nicotine, since embryos treated with nicotine alone did not differ significantly from the control group. Collectively, our work illustrates the utility of zebrafish as an alternative model to evaluate the toxic effects of cigarette smoke constituents. PMID:26391568

  3. Early life stage and genetic toxicity of stannous chloride on zebrafish embryos and adults: toxic effects of tin on zebrafish.

    PubMed

    Şişman, Turgay

    2011-06-01

    Humans are exposed to stannous chloride (SnCl(2)), known as tin chloride, present in packaged food, soft drinks, biocides, dentifrices, etc. Health effects in children exposed to tin and tin compounds have not been investigated yet. Therefore, we evaluated the possible teratogenic effects and genotoxic of SnCl(2) in zebrafish (Danio rerio) adults and their embryos. In the embryo-larval study, SnCl(2) showed embryo toxicity and developmental delay after exposure to the various concentrations of 10-250 μM for 120 h. Teratogenic effects including morphological malformations of the embryos and larvae were observed. The embryos exposed to 100 μM displayed tail deformation at 28 hpf and the larvae exposed to 50 μM showed reduced body growth, smaller head and eyes, bent trunk, mild pericardial edema, and smaller caudal fin at 96 hpf. The results of the teratological study show that SnCl(2) induced a significant decrease in the number of living embryos and larvae. Regarding the chromosome analysis, SnCl(2) induced a dose-dependent increase in the micronucleus (MN) frequency in peripheral erythrocytes of adult zebrafish. In blood cells, the 25 μM dose of SnCl(2) caused a nonsignificant increase in the total chromosomal aberrations, but the high doses significantly increased the total number of chromosomal aberrations compared with the control groups. Overall, the results clearly indicate that SnCl(2) is teratogenic and genotoxic to zebrafish.

  4. Impact of co-exposure with butachlor and triadimefon on thyroid endocrine system in larval zebrafish.

    PubMed

    Cao, Chuyan; Wang, Qiangwei; Jiao, Fang; Zhu, Guonian

    2016-09-01

    Butachlor (BTL) and triadimefon (TDF), the widely used herbicide and fungicide, are unavoidable enter into the aquatic environment. However, there were limited study regarding to the joint toxicity of these two pesticides on fish at present. To evaluate the potential thyroid-disrupting toxicity and exposed to different concentrations of BTL mixed with TDF. Zebrafish embryo (n=3) were exposed to 0.01 and 0.05 fold of LC50 from the acute joint toxicity test, of which 0.32mg/L (BTL) and 9.41mg/L (TDF) for single or mixture agents (BTL: 0.0064mg/L, 0.032mg/L; TDF: 0.1882mg/L, 0.9410mg/L; co-exposure: 0.0032mg/L BTL+0.0941mg/L TDF, 0.016mg/l BTL+0.4705mg/L TDF) after 10-day post-fertilization. Hatching, malformation, survival rates and thyroid hormones (THs), genes expression involved in HPT-axis of embryos were measured and detected in control and separately/co-exposure treatments. THs contents were evaluated by ELISA kit and the expression levels of genes were determined by RT-PCR. Hatching, malformation and survival rates of embryos exposed to single BTL exhibited no statistically significant difference from the control besides decreased of high concentration in survival rates. Exposure to TDF reduced hatching, survival rate and increased malformation. The combined exposure to BTL and TDF resulted in greater adverse effects on embryonic development. BTL exposure significantly increased free T3 and T4 contents. Elevated free T3 content was also observed in the larvae exposed with single BTL. Co-exposure of the two pesticides caused greater enhanced of T3 and T4 levels. Furthermore, gene data showed BTL up-regulated the mRNA expression of tpo, tshβ, tg, ttr, dio2, TDF up-regulated the mRNA expression of tpo, trα, ttr, dio2 and down-regulated trβ gene. The mixture of the two pesticides caused up-regulation mRNA expression of trα, trβ, tg, ttr, dio2. BTL and TDF resulted in adverse effects on zebrafish embryonic development and caused thyroid endocrine disruption

  5. Early dioxin exposure causes toxic effects in adult zebrafish.

    PubMed

    Baker, Tracie R; Peterson, Richard E; Heideman, Warren

    2013-09-01

    The acute effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure have been well documented in many vertebrate species. However, less is known about the consequences in adulthood from sublethal exposure during development. To address this, we exposed zebrafish to sublethal levels of TCDD (1h; 50 pg/ml), either in early embryogenesis (day 0) or during sexual determination (3 and 7 weeks), and assessed the effects later in adulthood. We found that exposure during embryogenesis produced few effects on the adults themselves but did affect the offspring of these fish: Malformations and increased mortality were observed in the subsequent generation. Zebrafish exposed during sexual development showed defects in the cranial and axial skeleton as adults. This was most clearly manifested as scoliosis caused by malformation of individual vertebrae. These fish also showed defects in reproduction, producing fewer eggs with lower fertilization success. Both males and females were affected, with males contributing to the decrease in egg release from the females and exposed females contributing to fertilization failure. TCDD exposure at 3 and 7 weeks produced feminization of the population. Surprisingly, part of this was due to the appearance of fish with clearly female bodies, yet carrying testes in place of ovaries. Our results show that exposures that produce little if any impact during development can cause severe consequences during adulthood and present a model for studying this process.

  6. Dose-dependent effects of gamma radiation on the early zebrafish development and gene expression

    PubMed Central

    Brede, Dag Anders; Skjerve, Eystein; Nourizadeh-Lillabadi, Rasoul; Lind, Ole Christian; Christensen, Terje; Berg, Vidar; Teien, Hans-Christian; Salbu, Brit; Oughton, Deborah Helen; Aleström, Peter; Lyche, Jan Ludvig

    2017-01-01

    Ionizing radiation from natural sources or anthropogenic activity has the potential to cause oxidative stress or genetic damage in living organisms, through the ionization and excitation of molecules and the subsequent production of free radicals and reactive oxygen species (ROS). The present work focuses on radiation-induced biological effects using the zebrafish (Danio rerio) vertebrate model. Changes in developmental traits and gene expression in zebrafish were assessed after continuous external gamma irradiation (0.4, 3.9, 15 and 38 mGy/h) with corresponding controls, starting at 2.5 hours post fertilization (hpf) and lasting through embryogenesis and the early larval stage. The lowest dose rate corresponded to recommended benchmarks at which adverse effects are not expected to occur in aquatic ecosystems (2–10 mGy/day). The survival observed at 96 hours post fertilization (hpf) in the 38 mGy/h group was significantly lower, while other groups showed no significant difference compared to controls. The total hatching was significantly lower from controls in the 15 mGy/h group and a delay in hatching onset in the 0.4 mGy/h group was observed. The deformity frequency was significantly increased by prolonged exposure duration at dose rates ≥ 0.4 mGy/h. Molecular responses analyzed by RNA-seq at gastrulation (5.5 hpf transcriptome) indicate that the radiation induced adverse effects occurred during the earliest stages of development. A dose-response relationship was found in the numbers of differentially regulated genes in exposure groups compared to controls at a total dose as low as 1.62 mGy. Ingenuity Pathway Analysis identified retinoic acid receptor activation, apoptosis, and glutathione mediated detoxification signaling as the most affected pathways in the lower dose rate (0.54 mGy/h), while eif2 and mTOR, i.e., involved in the modulation of angiogenesis, were most affected in higher dose rates (5.4 and 10.9 mGy/h). By comparing gene expression data, myc

  7. Effects of embryonic exposure to polychlorinated biphenyls (PCBs) on anxiety-related behaviors in larval zebrafish

    PubMed Central

    Gonzalez, Sarah T.; Remick, Dylan; Creton, Robbert; Colwill, Ruth M.

    2016-01-01

    The zebrafish (Danio rerio) is an excellent model system for assessing the effects of toxicant exposure on behavior and neurodevelopment. In the present study, we examined the effects of sub-chronic embryonic exposure to polychlorinated biphenyls (PCBs), a ubiquitous anthropogenic pollutant, on anxiety-related behaviors. We found that exposure to the PCB mixture, Aroclor (A) 1254, from 2 to 26 hours post-fertilization (hpf) induced two statistically significant behavioral defects in larvae at 7 days post-fertilization (dpf). First, during 135 min of free swimming, larvae that had been exposed to 2 ppm, 5 ppm or 10 ppm A1254 exhibited enhanced thigmotaxis (edge preference) relative to control larvae. Second, during the immediately ensuing 15-min visual startle assay, the 5 ppm and 10 ppm PCB-exposed larvae reacted differently to a visual threat, a red ‘bouncing’ disk, relative to control larvae. These results are consistent with the anxiogenic and attention-disrupting effects of PCB exposure documented in children, monkeys and rodents and merit further investigation. PMID:26748073

  8. Rheotaxis in Larval Zebrafish Is Mediated by Lateral Line Mechanosensory Hair Cells

    PubMed Central

    Suli, Arminda; Watson, Glen M.; Rubel, Edwin W.; Raible, David W.

    2012-01-01

    The lateral line sensory system, found in fish and amphibians, is used in prey detection, predator avoidance and schooling behavior. This system includes cell clusters, called superficial neuromasts, located on the surface of head and trunk of developing larvae. Mechanosensory hair cells in the center of each neuromast respond to disturbances in the water and convey information to the brain via the lateral line ganglia. The convenient location of mechanosensory hair cells on the body surface has made the lateral line a valuable system in which to study hair cell damage and regeneration. One way to measure hair cell survival and recovery is to assay behaviors that depend on their function. We built a system in which orientation against constant water flow, positive rheotaxis, can be quantitatively assessed. We found that zebrafish larvae perform positive rheotaxis and that, similar to adult fish, larvae use both visual and lateral line input to perform this behavior. Disruption or damage of hair cells in the absence of vision leads to a marked decrease in rheotaxis that recovers upon hair cell repair or regeneration. PMID:22359538

  9. Effects of embryonic exposure to polychlorinated biphenyls (PCBs) on anxiety-related behaviors in larval zebrafish.

    PubMed

    Gonzalez, Sarah T; Remick, Dylan; Creton, Robbert; Colwill, Ruth M

    2016-03-01

    The zebrafish (Danio rerio) is an excellent model system for assessing the effects of toxicant exposure on behavior and neurodevelopment. In the present study, we examined the effects of sub-chronic embryonic exposure to polychlorinated biphenyls (PCBs), a ubiquitous anthropogenic pollutant, on anxiety-related behaviors. We found that exposure to the PCB mixture, Aroclor (A) 1254, from 2 to 26h post-fertilization (hpf) induced two statistically significant behavioral defects in larvae at 7 days post-fertilization (dpf). First, during 135min of free swimming, larvae that had been exposed to 2ppm, 5ppm or 10ppm A1254 exhibited enhanced thigmotaxis (edge preference) relative to control larvae. Second, during the immediately ensuing 15-min visual startle assay, the 5ppm and 10ppm PCB-exposed larvae reacted differently to a visual threat, a red 'bouncing' disk, relative to control larvae. These results are consistent with the anxiogenic and attention-disrupting effects of PCB exposure documented in children, monkeys and rodents and merit further investigation.

  10. Loss of the Habenula Intrinsic Neuromodulator Kisspeptin1 Affects Learning in Larval Zebrafish

    PubMed Central

    Cheng, Ruey-Kuang

    2017-01-01

    Abstract Learning how to actively avoid a predictable threat involves two steps: recognizing the cue that predicts upcoming punishment and learning a behavioral response that will lead to avoidance. In zebrafish, ventral habenula (vHb) neurons have been proposed to participate in both steps by encoding the expected aversiveness of a stimulus. vHb neurons increase their firing rate as expectation of punishment grows but reduce their activity as avoidance learning occurs. This leads to changes in the activity of raphe neurons, which are downstream of the vHb, during learning. How vHb activity is regulated is not known. Here, we ask whether the neuromodulator Kisspeptin1, which is expressed in the ventral habenula together with its receptor, could be involved. Kiss1 mutants were generated with CRISPR/Cas9 using guide RNAs targeted to the signal sequence. Mutants, which have a stop codon upstream of the active Kisspeptin1 peptide, have a deficiency in learning to avoid a shock that is predicted by light. Electrophysiology indicates that Kisspeptin1 has a concentration-dependent effect on vHb neurons: depolarizing at low concentrations and hyperpolarizing at high concentrations. Two-photon calcium imaging shows that mutants have reduced raphe response to shock. These data are consistent with the hypothesis that Kisspeptin1 modulates habenula neurons as the fish learns to cope with a threat. Learning a behavioral strategy to overcome a stressor may thus be accompanied by physiological change in the habenula, mediated by intrinsic neuromodulation. PMID:28534042

  11. Alternative methods for toxicity assessments in fish: comparison of the fish embryo toxicity and the larval growth and survival tests in zebrafish and fathead minnows.

    PubMed

    Jeffries, Marlo K Sellin; Stultz, Amy E; Smith, Austin W; Rawlings, Jane M; Belanger, Scott E; Oris, James T

    2014-11-01

    An increased demand for chemical toxicity evaluations has resulted in the need for alternative testing strategies that address animal welfare concerns. The fish embryo toxicity (FET) test developed for zebrafish (Danio rerio) is one such alternative, and the application of the FET test to other species such as the fathead minnow (Pimephales promelas) has been proposed. In the present study, the performances of the FET test and the larval growth and survival (LGS; a standard toxicity testing method) test in zebrafish and fathead minnows were evaluated. This required that testing methods for the fathead minnow FET and zebrafish LGS tests be harmonized with existing test methods and that the performance of these testing strategies be evaluated by comparing the median lethal concentrations of 2 reference toxicants, 3,4-dicholoraniline and ammonia, obtained via each of the test types. The results showed that procedures for the zebrafish FET test can be adapted and applied to the fathead minnow. Differences in test sensitivity were observed for 3,4-dicholoraniline but not ammonia; therefore, conclusions regarding which test types offer the least or most sensitivity could not be made. Overall, these results show that the fathead minnow FET test has potential as an alternative toxicity testing strategy and that further analysis with other toxicants is warranted in an effort to better characterize the sensitivity and feasibility of this testing strategy. © 2014 SETAC.

  12. The Role of Aquaporin and Tight Junction Proteins in the Regulation of Water Movement in Larval Zebrafish (Danio rerio)

    PubMed Central

    Kwong, Raymond W. M.; Kumai, Yusuke; Perry, Steve F.

    2013-01-01

    Teleost fish living in freshwater are challenged by passive water influx; however the molecular mechanisms regulating water influx in fish are not well understood. The potential involvement of aquaporins (AQP) and epithelial tight junction proteins in the regulation of transcellular and paracellular water movement was investigated in larval zebrafish (Danio rerio). We observed that the half-time for saturation of water influx (Ku) was 4.3±0.9 min, and reached equilibrium at approximately 30 min. These findings suggest a high turnover rate of water between the fish and the environment. Water influx was reduced by the putative AQP inhibitor phloretin (100 or 500 μM). Immunohistochemistry and confocal microscopy revealed that AQP1a1 protein was expressed in cells on the yolk sac epithelium. A substantial number of these AQP1a1-positive cells were identified as ionocytes, either H+-ATPase-rich cells or Na+/K+-ATPase-rich cells. AQP1a1 appeared to be expressed predominantly on the basolateral membranes of ionocytes, suggesting its potential involvement in regulating ionocyte volume and/or water flux into the circulation. Additionally, translational gene knockdown of AQP1a1 protein reduced water influx by approximately 30%, further indicating a role for AQP1a1 in facilitating transcellular water uptake. On the other hand, incubation with the Ca2+-chelator EDTA or knockdown of the epithelial tight junction protein claudin-b significantly increased water influx. These findings indicate that the epithelial tight junctions normally act to restrict paracellular water influx. Together, the results of the present study provide direct in vivo evidence that water movement can occur through transcellular routes (via AQP); the paracellular routes may become significant when the paracellular permeability is increased. PMID:23967101

  13. The role of aquaporin and tight junction proteins in the regulation of water movement in larval zebrafish (Danio rerio).

    PubMed

    Kwong, Raymond W M; Kumai, Yusuke; Perry, Steve F

    2013-01-01

    Teleost fish living in freshwater are challenged by passive water influx; however the molecular mechanisms regulating water influx in fish are not well understood. The potential involvement of aquaporins (AQP) and epithelial tight junction proteins in the regulation of transcellular and paracellular water movement was investigated in larval zebrafish (Danio rerio). We observed that the half-time for saturation of water influx (K(u)) was 4.3±0.9 min, and reached equilibrium at approximately 30 min. These findings suggest a high turnover rate of water between the fish and the environment. Water influx was reduced by the putative AQP inhibitor phloretin (100 or 500 μM). Immunohistochemistry and confocal microscopy revealed that AQP1a1 protein was expressed in cells on the yolk sac epithelium. A substantial number of these AQP1a1-positive cells were identified as ionocytes, either H⁺-ATPase-rich cells or Na⁺/K⁺-ATPase-rich cells. AQP1a1 appeared to be expressed predominantly on the basolateral membranes of ionocytes, suggesting its potential involvement in regulating ionocyte volume and/or water flux into the circulation. Additionally, translational gene knockdown of AQP1a1 protein reduced water influx by approximately 30%, further indicating a role for AQP1a1 in facilitating transcellular water uptake. On the other hand, incubation with the Ca²⁺-chelator EDTA or knockdown of the epithelial tight junction protein claudin-b significantly increased water influx. These findings indicate that the epithelial tight junctions normally act to restrict paracellular water influx. Together, the results of the present study provide direct in vivo evidence that water movement can occur through transcellular routes (via AQP); the paracellular routes may become significant when the paracellular permeability is increased.

  14. Full Transcriptome Analysis of Early Dorsoventral Patterning in Zebrafish

    PubMed Central

    Horváth, Balázs; Molnár, János; Nagy, István; Tóth, Gábor; Wilson, Stephen W.; Varga, Máté

    2013-01-01

    Understanding the molecular interactions that lead to the establishment of the major body axes during embryogenesis is one of the main goals of developmental biology. Although the past two decades have revolutionized our knowledge about the genetic basis of these patterning processes, the list of genes involved in axis formation is unlikely to be complete. In order to identify new genes involved in the establishment of the dorsoventral (DV) axis during early stages of zebrafish embryonic development, we employed next generation sequencing for full transcriptome analysis of normal embryos and embryos lacking overt DV pattern. A combination of different statistical approaches yielded 41 differentially expressed candidate genes and we confirmed by in situ hybridization the early dorsal expression of 32 genes that are transcribed shortly after the onset of zygotic transcription. Although promoter analysis of the validated genes suggests no general enrichment for the binding sites of early acting transcription factors, most of these genes carry “bivalent” epigenetic histone modifications at the time when zygotic transcription is initiated, suggesting a “poised” transcriptional status. Our results reveal some new candidates of the dorsal gene regulatory network and suggest that a plurality of the earliest upregulated genes on the dorsal side have a role in the modulation of the canonical Wnt pathway. PMID:23922899

  15. Ca2+ signalling and early embryonic patterning during zebrafish development.

    PubMed

    Webb, Sarah E; Miller, Andrew L

    2007-09-01

    1. It has been proposed that Ca2+ signalling, in the form of pulses, waves and steady gradients, may play a crucial role in key pattern-forming events during early vertebrate development. 2. With reference to the embryo of the zebrafish (Danio rerio), herein we review the Ca2+ transients reported from the cleavage to segmentation periods. This time-window includes most of the major pattern-forming events of early development, which transform a single-cell zygote into a complex multicellular embryo with established primary germ layers and body axes. 3. Data are presented to support our proposal that intracellular Ca2+ waves are an essential feature of embryonic cytokinesis and that propagating intercellular Ca2+ waves (both long and short range) may play a crucial role in: (i) the establishment of the embryonic periderm and the coordination of cell movements during epiboly, convergence and extension; (ii) the establishment of the basic embryonic axes and germ layers; and (iii) definition of the morphological boundaries of specific tissue domains and embryonic structures, including future organ anlagen. 4. The potential downstream targets of these Ca2+ transients are also discussed, as well as how they may integrate with other pattern-forming signalling pathways known to modulate early developmental events.

  16. Effects of embryonic ethanol exposure at low doses on neuronal development, voluntary ethanol consumption and related behaviors in larval and adult zebrafish: Role of hypothalamic orexigenic peptides.

    PubMed

    Sterling, M E; Chang, G-Q; Karatayev, O; Chang, S Y; Leibowitz, S F

    2016-05-01

    Embryonic exposure to ethanol is known to affect neurochemical systems in rodents and increase alcohol drinking and related behaviors in humans and rodents. With zebrafish emerging as a powerful tool for uncovering neural mechanisms of numerous diseases and exhibiting similarities to rodents, the present report building on our rat studies examined in zebrafish the effects of embryonic ethanol exposure on hypothalamic neurogenesis, expression of orexigenic neuropeptides, and voluntary ethanol consumption and locomotor behaviors in larval and adult zebrafish, and also effects of central neuropeptide injections on these behaviors affected by ethanol. At 24h post-fertilization, zebrafish embryos were exposed for 2h to ethanol, at low concentrations of 0.25% and 0.5%, in the tank water. Embryonic ethanol compared to control dose-dependently increased hypothalamic neurogenesis and the proliferation and expression of the orexigenic peptides, galanin (GAL) and orexin (OX), in the anterior hypothalamus. These changes in hypothalamic peptide neurons were accompanied by an increase in voluntary consumption of 10% ethanol-gelatin and in novelty-induced locomotor and exploratory behavior in adult zebrafish and locomotor activity in larvae. After intracerebroventricular injection, these peptides compared to vehicle had specific effects on these behaviors altered by ethanol, with GAL stimulating consumption of 10% ethanol-gelatin more than plain gelatin food and OX stimulating novelty-induced locomotor behavior while increasing intake of food and ethanol equally. These results, similar to those obtained in rats, suggest that the ethanol-induced increase in genesis and expression of these hypothalamic peptide neurons contribute to the behavioral changes induced by embryonic exposure to ethanol.

  17. Effects of embryonic ethanol exposure at low doses on neuronal development, voluntary ethanol consumption and related behaviors in larval and adult zebrafish: Role of hypothalamic orexigenic peptides

    PubMed Central

    Sterling, M.E.; Chang, G.-Q.; Karatayev, O.; Chang, S.Y.; Leibowitz, S.F.

    2016-01-01

    Embryonic exposure to ethanol is known to affect neurochemical systems in rodents and increase alcohol drinking and related behaviors in humans and rodents. With zebrafish emerging as a powerful tool for uncovering neural mechanisms of numerous diseases and exhibiting similarities to rodents, the present report building on our rat studies examined in zebrafish the effects of embryonic ethanol exposure on hypothalamic neurogenesis, expression of orexigenic neuropeptides, and voluntary ethanol consumption and locomotor behaviors in larval and adult zebrafish, and also effects of central neuropeptide injections on these behaviors affected by ethanol. At 24 h post-fertilization, zebrafish embryos were exposed for 2 h to ethanol, at low concentrations of 0.25% and 0.5%, in the tank water. Embryonic ethanol compared to control dose-dependently increased hypothalamic neurogenesis and the proliferation and expression of the orexigenic peptides, galanin (GAL) and orexin (OX), in the anterior hypothalamus. These changes in hypothalamic peptide neurons were accompanied by an increase in voluntary consumption of 10% ethanol-gelatin and in novelty-induced locomotor and exploratory behavior in adult zebrafish and locomotor activity in larvae. After intracerebroventricular injection, these peptides compared to vehicle had specific effects on these behaviors altered by ethanol, with GAL stimulating consumption of 10% ethanol-gelatin more than plain gelatin food and OX stimulating novelty-induced locomotor behavior while increasing intake of food and ethanol equally. These results, similar to those obtained in rats, suggest that the ethanol-induced increase in genesis and expression of these hypothalamic peptide neurons contribute to the behavioral changes induced by embryonic exposure to ethanol. PMID:26778786

  18. Rearing Conditions Differentially Affect the Locomotor Behavior of Larval Zebrafish, but not Their Response to Valproate-Induced Developmental Neurotoxicity*

    EPA Science Inventory

    Zebrafish (Danio rerio) are widely used in developmental research, but still not much is known about the role of the environment in their development. Zebrafish are a highly social organism; thus exposure to, or isolation from, social environments may have profound developmental ...

  19. Rearing Conditions Differentially Affect the Locomotor Behavior of Larval Zebrafish, but not Their Response to Valproate-Induced Developmental Neurotoxicity*

    EPA Science Inventory

    Zebrafish (Danio rerio) are widely used in developmental research, but still not much is known about the role of the environment in their development. Zebrafish are a highly social organism; thus exposure to, or isolation from, social environments may have profound developmental ...

  20. Rearing Conditions Differentially Affect the Locomotor Behavior of Larval Zebrafish, but not their Response to Valproate-Induced Developmental Neurotoxicity

    EPA Science Inventory

    Zebrafish (Dania rerio) are widely used in developmental research, but little is known about the role environment may play in their development. Zebrafish are a highly social organism; thus exposure to or isolation from social environments may have profound effects. Details of re...

  1. Cellular dynamics of regeneration reveals role of two distinct Pax7 stem cell populations in larval zebrafish muscle repair

    PubMed Central

    Pipalia, Tapan G.; Koth, Jana; Roy, Shukolpa D.; Hammond, Christina L.; Kawakami, Koichi

    2016-01-01

    ABSTRACT Heterogeneity of stem cells or their niches is likely to influence tissue regeneration. Here we reveal stem/precursor cell diversity during wound repair in larval zebrafish somitic body muscle using time-lapse 3D confocal microscopy on reporter lines. Skeletal muscle with incision wounds rapidly regenerates both slow and fast muscle fibre types. A swift immune response is followed by an increase in cells at the wound site, many of which express the muscle stem cell marker Pax7. Pax7+ cells proliferate and then undergo terminal differentiation involving Myogenin accumulation and subsequent loss of Pax7 followed by elongation and fusion to repair fast muscle fibres. Analysis of pax7a and pax7b transgenic reporter fish reveals that cells expressing each of the duplicated pax7 genes are distinctly localised in uninjured larvae. Cells marked by pax7a only or by both pax7a and pax7b enter the wound rapidly and contribute to muscle wound repair, but each behaves differently. Low numbers of pax7a-only cells form nascent fibres. Time-lapse microscopy revealed that the more numerous pax7b-marked cells frequently fuse to pre-existing fibres, contributing more strongly than pax7a-only cells to repair of damaged fibres. pax7b-marked cells are more often present in rows of aligned cells that are observed to fuse into a single fibre, but more rarely contribute to nascent regenerated fibres. Ablation of a substantial portion of nitroreductase-expressing pax7b cells with metronidazole prior to wounding triggered rapid pax7a-only cell accumulation, but this neither inhibited nor augmented pax7a-only cell-derived myogenesis and thus altered the cellular repair dynamics during wound healing. Moreover, pax7a-only cells did not regenerate pax7b cells, suggesting a lineage distinction. We propose a modified founder cell and fusion-competent cell model in which pax7a-only cells initiate fibre formation and pax7b cells contribute to fibre growth. This newly discovered cellular

  2. Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebrafish (Danio rerio) early developmental stage.

    PubMed

    Zhu, Xiaoshan; Zhu, Lin; Duan, Zhenghua; Qi, Ruiqi; Li, Yan; Lang, Yupeng

    2008-02-15

    With the emergence of manufactured nanomaterials, it is urgent to carry out researches on their potential environmental impacts and biological effects. To better understand the potential ecotoxicological impacts of metal oxide nanoparticles released to aquatic environments, the zebrafish 96-h embryo-larval bioassay was used to assess and compare the developmental toxicities of nanoscale zinc oxide (nZnO), titanium dioxide (nTiO(2)) and alumina (nAl(2)O(3)) aqueous suspensions. Toxicological endpoints such as zebrafish embryos or larvae survival, hatching rate and malformation were noted and described within 96 h of exposure. Meanwhile, a comparative experiment with their bulk counterparts (i.e., ZnO/bulk, TiO(2)/bulk and Al(2)O(3)/bulk) was conducted to understand the effect of particle size on their toxicities. The results showed that: (i) both nZnO and ZnO/bulk aqueous suspensions delayed zebrafish embryo and larva development, decreased their survival and hatching rates, and caused tissue damage. The 96-h LC(50) of nZnO and ZnO/bulk aqueous suspensions on the zebrafish survival are 1.793 mg/L and 1.550 mg/L respectively; and the 84-h EC(50) on the zebrafish embryo hatching rate are 2.065 mg/L and 2.066 mg/L respectively. Serious tissue ulceration was found on zebrafish larvae exposed to nZnO and ZnO/bulk aqueous suspensions. (ii) In contrast, neither nTiO(2) and TiO(2)/bulk nor nAl(2)O(3) and Al(2)O(3)/bulk showed any toxicity to zebrafish embryos and larvae under the same experimental condition. It revealed that the metal oxide nanoparticles with different chemical composition have different zebrafish developmental toxicities. (iii) Exposures of nTiO(2), nZnO and nAl(2)O(3) produced toxic effects on zebrafish embryos and larvae, which was not different from the effects caused by exposing to their bulk counterparts. This is the first study about the developmental toxicity of metal oxide nanoparticles, and the results demonstrate that nZnO is very toxic to

  3. A novel early onset phenotype in a zebrafish model of merosin deficient congenital muscular dystrophy

    PubMed Central

    Smith, Sarah J.; Wang, Jeffrey C.; Gupta, Vandana A.; Dowling, James J.

    2017-01-01

    Merosin deficient congenital muscular dystrophy (MDC1A) is a severe neuromuscular disorder with onset in infancy that is associated with severe morbidities (particularly wheelchair dependence) and early mortality. It is caused by recessive mutations in the LAMA2 gene that encodes a subunit of the extracellular matrix protein laminin 211. At present, there are no treatments for this disabling disease. The zebrafish has emerged as a powerful model system for the identification of novel therapies. However, drug discovery in the zebrafish is largely dependent on the identification of phenotypes suitable for chemical screening. Our goal in this study was to elucidate novel, early onset abnormalities in the candyfloss (caf) zebrafish, a model of MDC1A. We uncovered and characterize abnormalities in spontaneous coiling, the earliest motor movement in the zebrafish, as a fully penetrant change specific to caf mutants that is ideal for future drug testing. PMID:28241031

  4. Larval cases of caddisfly (Insecta: Trichoptera) affinity in Early Permian marine environments of Gondwana.

    PubMed

    Mouro, Lucas D; Zatoń, Michał; Fernandes, Antonio C S; Waichel, Breno L

    2016-01-14

    Caddisflies (Trichoptera) are small, cosmopolitan insects closely related to the Lepidoptera (moths and butterflies). Most caddisflies construct protective cases during their larval development. Although the earliest recognisable caddisflies date back to the early Mesozoic (Early and Middle Triassic), being particularly numerous and diverse during the Late Jurassic and Early Cretaceous, the first records of their larval case constructions are known exclusively from much younger, Early to Middle Jurassic non-marine deposits in the northern hemisphere. Here we present fossils from the Early Permian (Asselian-Sakmarian) marine deposits of Brazil which have strong morphological and compositional similarity to larval cases of caddisflies. If they are, which is very probable, these finds not only push back the fossil record of true caddisflies, but also indicate that their larvae constructed cases at the very beginning of their evolution in marine environments. Since modern caddisflies that construct larval cases in marine environments are only known from eastern Australia and New Zealand, we suggest that this marine ecology may have first evolved in western Gondwana during the Early Permian and later spread across southern Pangea.

  5. Larval cases of caddisfly (Insecta: Trichoptera) affinity in Early Permian marine environments of Gondwana

    PubMed Central

    Mouro, Lucas D.; Zatoń, Michał; Fernandes, Antonio C.S.; Waichel, Breno L.

    2016-01-01

    Caddisflies (Trichoptera) are small, cosmopolitan insects closely related to the Lepidoptera (moths and butterflies). Most caddisflies construct protective cases during their larval development. Although the earliest recognisable caddisflies date back to the early Mesozoic (Early and Middle Triassic), being particularly numerous and diverse during the Late Jurassic and Early Cretaceous, the first records of their larval case constructions are known exclusively from much younger, Early to Middle Jurassic non-marine deposits in the northern hemisphere. Here we present fossils from the Early Permian (Asselian–Sakmarian) marine deposits of Brazil which have strong morphological and compositional similarity to larval cases of caddisflies. If they are, which is very probable, these finds not only push back the fossil record of true caddisflies, but also indicate that their larvae constructed cases at the very beginning of their evolution in marine environments. Since modern caddisflies that construct larval cases in marine environments are only known from eastern Australia and New Zealand, we suggest that this marine ecology may have first evolved in western Gondwana during the Early Permian and later spread across southern Pangea. PMID:26765261

  6. Larval cases of caddisfly (Insecta: Trichoptera) affinity in Early Permian marine environments of Gondwana

    NASA Astrophysics Data System (ADS)

    Mouro, Lucas D.; Zatoń, Michał; Fernandes, Antonio C. S.; Waichel, Breno L.

    2016-01-01

    Caddisflies (Trichoptera) are small, cosmopolitan insects closely related to the Lepidoptera (moths and butterflies). Most caddisflies construct protective cases during their larval development. Although the earliest recognisable caddisflies date back to the early Mesozoic (Early and Middle Triassic), being particularly numerous and diverse during the Late Jurassic and Early Cretaceous, the first records of their larval case constructions are known exclusively from much younger, Early to Middle Jurassic non-marine deposits in the northern hemisphere. Here we present fossils from the Early Permian (Asselian–Sakmarian) marine deposits of Brazil which have strong morphological and compositional similarity to larval cases of caddisflies. If they are, which is very probable, these finds not only push back the fossil record of true caddisflies, but also indicate that their larvae constructed cases at the very beginning of their evolution in marine environments. Since modern caddisflies that construct larval cases in marine environments are only known from eastern Australia and New Zealand, we suggest that this marine ecology may have first evolved in western Gondwana during the Early Permian and later spread across southern Pangea.

  7. Association of Early Atherosclerosis with Vascular Wall Shear Stress in Hypercholesterolemic Zebrafish

    PubMed Central

    Lee, Sang Joon; Choi, Woorak; Seo, Eunseok; Yeom, Eunseop

    2015-01-01

    Although atherosclerosis is a multifactorial disease, the role of hemodynamic information has become more important. Low and oscillating wall shear stress (WSS) that changes its direction is associated with the early stage of atherosclerosis. Several in vitro and in vivo models were proposed to reveal the relation between the WSS and the early atherosclerosis. However, these models possess technical limitations in mimicking real physiological conditions and monitoring the developmental course of the early atherosclerosis. In this study, a hypercholesterolaemic zebrafish model is proposed as a novel experimental model to resolve these limitations. Zebrafish larvae are optically transparent, which enables temporal observation of pathological variations under in vivo condition. WSS in blood vessels of 15 days post-fertilisation zebrafish was measured using a micro particle image velocimetry (PIV) technique, and spatial distribution of lipid deposition inside the model was quantitatively investigated after feeding high cholesterol diet for 10 days. Lipids were mainly deposited in blood vessel of low WSS. The oscillating WSS was not induced by the blood flows in zebrafish models. The present hypercholesterolaemic zebrafish would be used as a potentially useful model for in vivo study about the effects of low WSS in the early atherosclerosis. PMID:26561854

  8. Optimisation of Embryonic and Larval ECG Measurement in Zebrafish for Quantifying the Effect of QT Prolonging Drugs

    PubMed Central

    Dhillon, Sundeep Singh; Dóró, Éva; Magyary, István; Egginton, Stuart; Sík, Attila; Müller, Ferenc

    2013-01-01

    Effective chemical compound toxicity screening is of paramount importance for safe cardiac drug development. Using mammals in preliminary screening for detection of cardiac dysfunction by electrocardiography (ECG) is costly and requires a large number of animals. Alternatively, zebrafish embryos can be used as the ECG waveform is similar to mammals, a minimal amount of chemical is necessary for drug testing, while embryos are abundant, inexpensive and represent replacement in animal research with reduced bioethical concerns. We demonstrate here the utility of pre-feeding stage zebrafish larvae in detection of cardiac dysfunction by electrocardiography. We have optimised an ECG recording system by addressing key parameters such as the form of immobilization, recording temperature, electrode positioning and developmental age. Furthermore, analysis of 3 days post fertilization (dpf) zebrafish embryos treated with known QT prolonging drugs such as terfenadine, verapamil and haloperidol led to reproducible detection of QT prolongation as previously shown for adult zebrafish. In addition, calculation of Z-factor scores revealed that the assay was sensitive and specific enough to detect large drug-induced changes in QTc intervals. Thus, the ECG recording system is a useful drug-screening tool to detect alteration to cardiac cycle components and secondary effects such as heart block and arrhythmias in zebrafish larvae before free feeding stage, and thus provides a suitable replacement for mammalian experimentation. PMID:23579446

  9. Amino acid composition in eyes from zebrafish (Danio rerio) and sardine (Sardina pilchardus) at the larval stage.

    PubMed

    Falco, Francesca; Barra, Marco; Cammarata, Matteo; Cuttitta, Angela; Jia, Sichao; Bonanno, Angelo; Mazzola, Salvatore; Wu, Guoyao

    2016-01-01

    A comparative study was performed to identify differences in the amino acid composition of the eyes from zebrafish (Danio rerio) and sardine (Sardina pilchardus) larvae and their link to the environmental adaption of the species. Amino acids in the acidic hydrolysates of eyes from 11 zebrafish and 12 sardine were determined with the use of high-performance liquid chromatography involving precolumn derivatization with ortho-phthalaldehyde. Differences in the content of most amino acids were detected between zebrafish and sardine. These amino acids were aspartate, glutamate, serine, glycine, threonine, arginine, methionine, valine, phenylalanine, isoleucine, leucine and lysine. Of particular note, the percentage of methionine in zebrafish eyes was much higher than that in sardine, whereas the opposite was observed for glutamate and glycine. These results indicate that zebrafish and sardine likely have experienced differences in adaptation to environmental changes. We suggest that the amino acid composition of eyes represents a powerful tool to discriminate between species characterized by different lifestyle and inhabiting different environments.

  10. Attributing Effects of Aqueous C60 Nano-Aggregates to Tetrahydrofuran Decomposition Products in Larval Zebrafish by Assessment of Gene Expression

    PubMed Central

    Henry, Theodore B.; Menn, Fu-Min; Fleming, James T.; Wilgus, John; Compton, Robert N.; Sayler, Gary S.

    2007-01-01

    Background C60 is a highly insoluble nanoparticle that can form colloidal suspended aggregates in water, which may lead to environmental exposure in aquatic organisms. Previous research has indicated toxicity from C60 aggregate; however, effects could be because of tetrahydrofuran (THF) vehicle used to prepare aggregates. Objective Our goal was to investigate changes in survival and gene expression in larval zebrafish Danio rerio after exposure to aggregates of C60 prepared by two methods: a) stirring and sonication of C60 in water (C60–water); and b) suspension of C60 in THF followed by rotovaping, resuspension in water, and sparging with nitrogen gas (THF–C60). Results Survival of larval zebrafish was reduced in THF–C60 and THF–water but not in C60–water. The greatest differences in gene expression were observed in fish exposed to THF–C60 and most (182) of these genes were similarly expressed in fish exposed to THF–water. Significant up-regulation (3- to 7-fold) of genes involved in controlling oxidative damage was observed after exposure to THF–C60 and THF–water. Analyses of THF–C60 and THF–water by gas chromatography–mass spectrometry did not detect THF but found THF oxidation products γ-butyrolactone and tetrahydro-2-furanol. Toxicity of γ-butyrolactone (72-hr lethal concentration predicted to kill 50% was 47 ppm) indicated effects in THF treatments can result from γ-butyrolactone toxicity. Conclusion This research is the first to link toxic effects directly to a THF degradation product (γ-butyrolactone) rather than to C60 and may explain toxicity attributed to C60 in other investigations. The present work was first presented at the meeting “Overcoming Obstacles to Effective Research Design in Nanotoxicology” held 24–26 April 2006 in Cambridge, Massachusetts, USA. PMID:17637923

  11. Global gene expression in larval zebrafish (Danio rerio) exposed to selective serotonin reuptake inhibitors (fluoxetine and sertraline) reveals unique expression profiles and potential biomarkers of exposure.

    PubMed

    Park, June-Woo; Heah, Tze Ping; Gouffon, Julia S; Henry, Theodore B; Sayler, Gary S

    2012-08-01

    Larval zebrafish (Danio rerio) were exposed (96 h) to selective serotonin reuptake inhibitors (SSRIs) fluoxetine and sertraline and changes in transcriptomes analyzed by Affymetrix GeneChip Zebrafish Array were evaluated to enhance understanding of biochemical pathways and differences between these SSRIs. The number of genes differentially expressed after fluoxetine exposure was 288 at 25 μg/L and 131 at 250 μg/L; and after sertraline exposure was 33 at 25 μg/L and 52 at 250 μg/L. Same five genes were differentially regulated in both SSRIs indicating shared molecular pathways. Among these, the gene coding for FK506 binding protein 5, annotated to stress response regulation, was highly down-regulated in all treatments (results confirmed by qRT-PCR). Gene ontology analysis indicated at the gene expression level that regulation of stress response and cholinesterase activities were influenced by these SSRIs, and suggested that changes in transcription of these genes could be used as biomarkers of SSRI exposure.

  12. Combinatorial analysis of calcium-binding proteins in larval and adult zebrafish primary olfactory system identifies differential olfactory bulb glomerular projection fields.

    PubMed

    Kress, Sigrid; Biechl, Daniela; Wullimann, Mario F

    2015-07-01

    In the zebrafish (Danio rerio) olfactory epithelium, the calcium-binding proteins (CBPs) calretinin and S100/S100-like protein are mainly expressed in ciliated or crypt olfactory sensory neurons (OSNs), respectively. In contrast parvalbumin and calbindin1 have not been investigated. We present a combinatorial immunohistological analysis of all four CBPs, including their expression in OSNs and their axonal projections to the olfactory bulb in larval and adult zebrafish. A major expression of calretinin and S100 in ciliated and crypt cells, respectively, with some expression of S100 in microvillous cells is confirmed. Parvalbumin and calbindin1 are strongly expressed in ciliated and microvillous cells, but not in crypt cells. Moreover, detailed combinatorial double-label experiments indicate that there are eight subpopulations of zebrafish OSNs: S100-positive crypt cells (negative for all other three CBPs), parvalbumin only, S100 and parvalbumin, parvalbumin and calbindin1, and parvalbumin and calbindin1 and calretinin-positive microvillous OSNs, as well as a major parvalbumin and calbindin1 and calretinin, and minor parvalbumin and calbindin1 and calretinin-only-positive ciliated OSN populations. CBP-positive projections to olfactory bulb are consistent with previous reports of ciliated OSNs projecting to dorsal and ventromedial glomerular fields and microvillous OSNs to ventrolateral glomerular fields. We newly describe parvalbumin-positive fibers to the mediodorsal field which is calretinin free, with its anterior part showing additionally calbindin1-positive fibers, but absence thereof in the posterior part, indicating an origin from microvillous OSNs in both parts. One singular glomerulus (mdG2) exhibits S100 and parvalbumin-positive fibers, apparently originating from all crypt cells plus some microvillous OSNs. Arguments for various olfactory labeled lines are discussed.

  13. Environmental concentrations of the cocaine metabolite benzoylecgonine induced sublethal toxicity in the development of plants but not in a zebrafish embryo-larval model.

    PubMed

    García-Cambero, J P; García-Cortés, H; Valcárcel, Y; Catalá, M

    2015-12-30

    Several studies have found cocaine and its main active metabolite benzoylecgonine (BE) in the aquatic environment and drinking water, derived from its consumption by humans as well as the inability of water treatment processes to eliminate it. A few studies have already investigated the ecotoxicology of BE to aquatic invertebrates, but none has still addressed the effects of BE on aquatic vertebrates or vascular plants. The goal of this publication is to provide information on the toxicity of environmental concentrations of BE during animal and vascular plant development, in order to contribute to a better understanding of the potential risk of this substance for the environment. BE induced alterations in mitochondrial activity and DNA levels of fern spores at environmental concentrations (1 ng L(-1)), which could disrupt gametophyte germination. However, BE at concentrations ranging from 1 ng L(-1) to 1 mg L(-1) did not disturb morphogenesis, hatching, heartbeat rate or larval motility in a zebrafish embryo-larval model. Adverse effects on ferns agree with the allelophathic role described for alkaloids and their unspecific interference with plant germination. Therefore, the anthropogenic dispersion of alkaloid allelochemicals may pose a risk for biodiversity and irrigated food production that should be further investigated.

  14. Acute effects of ethanol or d-amphetamine on the locomotor activity of larval zebrafish in a microtiter plate format.

    EPA Science Inventory

    As part of an effort to develop a rapid in vivo screen for EPA’s prioritization of toxic chemicals, we have begun to characterize the locomotor activity of zebrafish (Danio rerio) larvae. We are assessing the acute effects of prototypic drugs that are known to act on the central ...

  15. Acute effects of ethanol or d-amphetamine on the locomotor activity of larval zebrafish in a microtiter plate format.

    EPA Science Inventory

    As part of an effort to develop a rapid in vivo screen for EPA’s prioritization of toxic chemicals, we have begun to characterize the locomotor activity of zebrafish (Danio rerio) larvae. We are assessing the acute effects of prototypic drugs that are known to act on the central ...

  16. Diatom diet selectivity by early post-larval abalone Haliotis diversicolor supertexta under hatchery conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Yuyu; Gao, Yahui; Liang, Junrong; Chen, Changping; Zhao, Donghai; Li, Xuesong; Li, Yang; Wu, Wenzhong

    2010-11-01

    Benthic diatoms constitute the primary diet of abalone during their early stages of development. To evaluate the dietary preferences of early post-larval abalone, Haliotis diversicolor supertexta, we analyzed the gut contents of post-larvae that settled on diatom films. We compared the abundance and species diversity of diatom assemblages in the gut to those of the epiphytic diatom assemblages on the attachment films, and identified 40 benthic diatom species in the gut contents of post-larvae 12 to 24 d after settlement. The most abundant taxa in the gut contents were Navicula spp., Amphora copulate, and Amphora coffeaeformis. Navicula spp. accounted for 64.0% of the cell density. In the attachment films, we identified 110 diatom species belonging to 38 genera. Pennate diatoms were the dominant members including the species Amphiprora alata, Cocconeis placentula var. euglypta, Cylindrotheca closterium, Navicula sp. 2, and A. coffeaeformis. Nano-diatoms (<20 μm in length) accounted for a considerable proportion of the total species number and cell density of the diatom assemblages in the gut contents and on the films. This suggests that nano-diatoms are important to the efficient production of abalone seed. The difference of the composition and abundance of diatoms between in the guts and on the biofilms suggests that early post-larval grazing was selective. An early post-larval abalone preferred nano-diatoms and the genera Navicula and Amphora during the month after settlement.

  17. Acute toxicity and histopathological effects of naproxen in zebrafish (Danio rerio) early life stages.

    PubMed

    Li, Qian; Wang, Peipei; Chen, Ling; Gao, Hongwen; Wu, Lingling

    2016-09-01

    Zebrafish (Danio rerio) embryos and larvae were selected to investigate the potential risk and aquatic toxicity of a widely used pharmaceutical, naproxen. The acute toxicity of naproxen to embryos and larvae was measured, respectively. The histopathology was investigated in the liver of zebrafish larvae after 8-day embryo-larvae exposure to naproxen. The values of 96-h LC50 were 115.2 mg/L for embryos and 147.6 mg/L for larvae, indicating that zebrafish embryos were more sensitive than larvae to naproxen exposure. Large suites of symptoms were induced in zebrafish (D. rerio) early life stages by different dosages of naproxen, including hatching inhibition, lower heart rate, and morphological abnormalities. The most sensitive sub-lethal effect caused by naproxen was pericardial edema, the 72-h EC50 values of which for embryos and larvae were 98.3 and 149.0 mg/L, respectively. In addition, naproxen-treated zebrafish larvae exhibited histopathological liver damage, including swollen hepatocytes, vacuolar degeneration, and nuclei pycnosis. The results indicated that naproxen is a potential threat to aquatic organisms.

  18. Preliminary Evaluation on the Effects of Feeds on the Growth and Early Reproductive Performance of Zebrafish (Danio rerio)

    PubMed Central

    2012-01-01

    This study evaluated the effects of several commercially available feeds and different feeding regimes on the growth and early reproductive performance of zebrafish (Danio rerio). Juvenile zebrafish (n= 20; 5.06 ± 0.69 mg) were stocked into each of 24 tanks (volume, 2 L); 3 tanks were assigned to each of 8 feeding combinations for a period of 60 d. At the end of 60 d, 2 male and 2 female fish from each tank were pooled by dietary treatment (n = 6) and used to evaluate the effects of feeding combinations on early reproductive performance. Zebrafish fed dietary treatments 3 and 7 had significantly greater weight gain than zebrafish fed diet 5. Mean spawning success was significantly greater in zebrafish fed the control diet (Artemiaonly) than in those fed diet 1. Mean hatch rates were greater in zebrafish fed the control feed and diets 1, 2, 3, 5, and 6 than zebrafish fed diet 4. Additional results suggest that female zebrafish are sexually mature after 90 d post fertilization and that fertilization rates are the limiting factor in early reproduction. PMID:23043806

  19. Preliminary evaluation on the effects of feeds on the growth and early reproductive performance of zebrafish (Danio rerio).

    PubMed

    Gonzales, John M

    2012-07-01

    This study evaluated the effects of several commercially available feeds and different feeding regimes on the growth and early reproductive performance of zebrafish (Danio rerio). Juvenile zebrafish (n = 20; 5.06 ± 0.69 mg) were stocked into each of 24 tanks (volume, 2 L); 3 tanks were assigned to each of 8 feeding combinations for a period of 60 d. At the end of 60 d, 2 male and 2 female fish from each tank were pooled by dietary treatment (n = 6) and used to evaluate the effects of feeding combinations on early reproductive performance. Zebrafish fed dietary treatments 3 and 7 had significantly greater weight gain than zebrafish fed diet 5. Mean spawning success was significantly greater in zebrafish fed the control diet (Artemia only) than in those fed diet 1. Mean hatch rates were greater in zebrafish fed the control feed and diets 1, 2, 3, 5, and 6 than zebrafish fed diet 4. Additional results suggest that female zebrafish are sexually mature after 90 d post fertilization and that fertilization rates are the limiting factor in early reproduction.

  20. Effects of gamma radiation on the early developmental stages of Zebrafish (Danio rerio).

    PubMed

    Praveen Kumar, M K; Shyama, S K; Kashif, Shamim; Dubey, S K; Avelyno, D'costa; Sonaye, B H; Kadam Samit, B; Chaubey, R C

    2017-08-01

    The zebrafish is gaining importance as a popular vertebrate model organism and is widely employed in ecotoxicological studies, especially for the biomonitoring of pollution in water bodies. There is limited data on the genetic mechanisms governing the adverse health effects in regards to an early developmental exposure to gamma radiation. In the present study zebrafish (Danio rerio) embryos were exposed to 1, 2.5, 5, 7.5 and 10Gy of gamma radiation at 3h post fertilization (hpf). Different developmental toxicity endpoints were investigated. Further, expression of genes associated with the development and DNA damage i.e. (sox2 sox19a and p53) were evaluated using Quantitative PCR (qPCR). The significant changes in the expression of sox2 sox19a and p53 genes were observed. This data was supported the developmental defects observed in the zebrafish embryo exposed to gamma radiation such as i.e. increased DNA damage, decreased hatching rate, increase in median hatching time, decreased body length, increased mortality rate, increased morphological deformities. Further, study shows that the potential ecotoxicological threat of gamma radiation on the early developmental stages of zebrafish. Further, it revealed that the above parameters can be used as predictive biomarkers of gamma radiation exposure. Copyright © 2017. Published by Elsevier Inc.

  1. Comparative Analysis of Transcriptional Profile Changes in Larval Zebrafish Exposed to Zinc Oxide Nanoparticles and Zinc Sulfate.

    PubMed

    Kim, Ryeo-Ok; Choi, Jin Soo; Kim, Byoung-Chul; Kim, Woo-Keun

    2017-02-01

    Many studies of the toxic effects of zinc oxide nanoparticles (ZnO NPs) in aquatic organisms have been performed because of increasing ZnO NP use. However, the toxicological pathways are not understood. In this study, ZnO NPs were found to be more toxic than ZnSO4 to zebrafish larvae, but ZnO NP toxicity did not involve transcript alterations. Biological processes affected by ZnO NPs and ZnSO4 were investigated by performing ingenuity pathway analysis on differently expressed genes in larvae exposed to sub-lethal ZnO NP and ZnSO4 concentrations. We identified upregulated and downregulated differently expressed genes in fish exposed to ZnO NPs and ZnSO4, and found that ZnO NPs slightly induced cell differentiation and pathways associated with the immune system and activated several key genes involved in cancer cell signaling. The results may be key to predicting and elucidating the mechanisms involved in ZnO NP and ZnSO4 toxicity in zebrafish larvae.

  2. Effects of simulated microgravity on the development of the swimbladder and buoyancy control in larval zebrafish (Danio rerio).

    PubMed

    Lindsey, Benjamin W; Dumbarton, Tristan C; Moorman, Stephen J; Smith, Frank M; Croll, Roger P

    2011-06-01

    The gas-filled swimbladder of teleost fishes provides hydrodynamic lift which counteracts the high density of other body tissues, and thereby allows the fish to achieve neutral buoyancy with minimal energy expenditure. In this study, we examined whether the absence of a constant direction gravitational vector affects the ontogeny of the swimbladder and buoyancy control in zebrafish (Danio rerio). We exposed fertilized eggs to simulated microgravity (SMG) in a closed rotating wall vessel with control eggs placed in a similar but nonrotating container. All eggs hatched in both groups. At 96 hr of postfertilization (hpf), all larvae were removed from the experimental and control vessels. At this point, 62% of the control larvae, but only 14% of SMG-exposed larvae, were observed to have inflated their swimbladder. In addition, the mean volume of the inflated swimbladders was significantly greater in the control larvae compared with larvae raised in SMG. After transfer to open stationary observation tanks, larvae with uninflated swimbladders in both groups swam to the surface to complete inflation, but this process was significantly delayed in larvae exposed to SMG. Initial differences in swimbladder inflation and volume between groups disappeared by 144 hpf. Furthermore, there were no apparent changes in patterns of development and maturation of swimbladder musculature, vasculature, or innervation resulting from SMG exposure at later stages of ontogeny. These data indicate that, despite a transient delay in swimbladder inflation in zebrafish larvae exposed to SMG, subsequent swimbladder development in these animals proceeded similarly to that in normal larvae.

  3. Early detection monitoring for larval dreissenid mussels: How much plankton sampling is enough?

    USGS Publications Warehouse

    Counihan, Timothy D.; Bollens, Stephen M.

    2017-01-01

    The development of quagga and zebra mussel (dreissenids) monitoring programs in the Pacific Northwest provides a unique opportunity to evaluate a regional invasive species detection effort early in its development. Recent studies suggest that the ecological and economic costs of a dreissenid infestation in the Pacific Northwest of the USA would be significant. Consequently, efforts are underway to monitor for the presence of dreissenids. However, assessments of whether these efforts provide for early detection are lacking. We use information collected from 2012 to 2014 to characterize the development of larval dreissenid monitoring programs in the states of Idaho, Montana, Oregon, and Washington in the context of introduction and establishment risk. We also estimate the effort needed for high-probability detection of rare planktonic taxa in four Columbia and Snake River reservoirs and assess whether the current level of effort provides for early detection. We found that the effort expended to monitor for dreissenid mussels increased substantially from 2012 to 2014, that efforts were distributed across risk categories ranging from high to very low, and that substantial gaps in our knowledge of both introduction and establishment risk exist. The estimated volume of filtered water required to fully census planktonic taxa or to provide high-probability detection of rare taxa was high for the four reservoirs examined. We conclude that the current level of effort expended does not provide for high-probability detection of larval dreissenids or other planktonic taxa when they are rare in these reservoirs. We discuss options to improve early detection capabilities.

  4. Early detection monitoring for larval dreissenid mussels: how much plankton sampling is enough?

    PubMed

    Counihan, Timothy D; Bollens, Stephen M

    2017-03-01

    The development of quagga and zebra mussel (dreissenids) monitoring programs in the Pacific Northwest provides a unique opportunity to evaluate a regional invasive species detection effort early in its development. Recent studies suggest that the ecological and economic costs of a dreissenid infestation in the Pacific Northwest of the USA would be significant. Consequently, efforts are underway to monitor for the presence of dreissenids. However, assessments of whether these efforts provide for early detection are lacking. We use information collected from 2012 to 2014 to characterize the development of larval dreissenid monitoring programs in the states of Idaho, Montana, Oregon, and Washington in the context of introduction and establishment risk. We also estimate the effort needed for high-probability detection of rare planktonic taxa in four Columbia and Snake River reservoirs and assess whether the current level of effort provides for early detection. We found that the effort expended to monitor for dreissenid mussels increased substantially from 2012 to 2014, that efforts were distributed across risk categories ranging from high to very low, and that substantial gaps in our knowledge of both introduction and establishment risk exist. The estimated volume of filtered water required to fully census planktonic taxa or to provide high-probability detection of rare taxa was high for the four reservoirs examined. We conclude that the current level of effort expended does not provide for high-probability detection of larval dreissenids or other planktonic taxa when they are rare in these reservoirs. We discuss options to improve early detection capabilities.

  5. Hearing Assessment in Zebrafish During the First Week Postfertilization

    PubMed Central

    Yao, Qi; DeSmidt, Alexandra A.; Tekin, Mustafa; Liu, Xuezhong

    2016-01-01

    Abstract The zebrafish (Danio rerio) is a valuable vertebrate model for human hearing disorders because of many advantages in genetics, embryology, and in vivo visualization. In this study, we investigated auditory function of zebrafish during the first week postfertilization using microphonic potential recording. Extracellular microphonic potentials were recorded from hair cells in the inner ear of wild-type AB and transgenic Et(krt4:GFP)sqet4 zebrafish at 3, 5, and 7 days postfertilization in response to 20, 50, 100, 200, 300, and 400-Hz acoustic stimulation. We found that microphonic threshold significantly decreased with age in zebrafish. However, there was no significant difference of microphonic responses between wild-type and transgenic zebrafish, indicating that the transgenic zebrafish have normal hearing like wild-type zebrafish. In addition, we observed that microphonic threshold did not change with the recording electrode location. Furthermore, microphonic threshold increased significantly at all tested stimulus frequencies after displacement of the saccular otolith but only increased at low frequencies after displacement of the utricular otolith, showing that the saccule rather than the utricle plays the major role in larval zebrafish hearing. These results enhance our knowledge of early development of auditory function in zebrafish and the factors affecting hearing assessment with microphonic potential recording. PMID:26982161

  6. Hearing Assessment in Zebrafish During the First Week Postfertilization.

    PubMed

    Yao, Qi; DeSmidt, Alexandra A; Tekin, Mustafa; Liu, Xuezhong; Lu, Zhongmin

    2016-04-01

    The zebrafish (Danio rerio) is a valuable vertebrate model for human hearing disorders because of many advantages in genetics, embryology, and in vivo visualization. In this study, we investigated auditory function of zebrafish during the first week postfertilization using microphonic potential recording. Extracellular microphonic potentials were recorded from hair cells in the inner ear of wild-type AB and transgenic Et(krt4:GFP)(sqet4) zebrafish at 3, 5, and 7 days postfertilization in response to 20, 50, 100, 200, 300, and 400-Hz acoustic stimulation. We found that microphonic threshold significantly decreased with age in zebrafish. However, there was no significant difference of microphonic responses between wild-type and transgenic zebrafish, indicating that the transgenic zebrafish have normal hearing like wild-type zebrafish. In addition, we observed that microphonic threshold did not change with the recording electrode location. Furthermore, microphonic threshold increased significantly at all tested stimulus frequencies after displacement of the saccular otolith but only increased at low frequencies after displacement of the utricular otolith, showing that the saccule rather than the utricle plays the major role in larval zebrafish hearing. These results enhance our knowledge of early development of auditory function in zebrafish and the factors affecting hearing assessment with microphonic potential recording.

  7. Control of morphogenetic cell movements in the early zebrafish myotome.

    PubMed

    Daggett, David F; Domingo, Carmen R; Currie, Peter D; Amacher, Sharon L

    2007-09-15

    As the vertebrate myotome is generated, myogenic precursor cells undergo extensive and coordinated movements as they differentiate into properly positioned embryonic muscle fibers. In the zebrafish, the "adaxial" cells adjacent to the notochord are the first muscle precursors to be specified. After initially differentiating into slow-twitch myosin-expressing muscle fibers, these cells have been shown to undergo a remarkable radial migration through the lateral somite, to populate the superficial layer of slow-twitch muscle of the mature myotome. Here we characterize an earlier set of adaxial cell behaviors; the transition from a roughly 4x5 array of cuboidal cells to a 1x20 stack of elongated cells, prior to the migration event. We find that adaxial cells display a highly stereotypical series of behaviors as they undergo this rearrangement. Furthermore, we show that the actin regulatory molecule, Cap1, is specifically expressed in adaxial cells and is required for the progression of these behaviors. The requirement of Cap1 for a cellular apical constriction step is reminiscent of similar requirements of Cap during apical constriction in Drosophila development, suggesting a conservation of gene function for a cell biological event critical to many developmental processes.

  8. Toxicogenomic and Phenotypic Analyses of Bisphenol-A Early-Life Exposure Toxicity in Zebrafish

    PubMed Central

    Lam, Siew Hong; Hlaing, Mya Myintzu; Zhang, Xiaoyan; Yan, Chuan; Duan, Zhenghua; Zhu, Lin; Ung, Choong Yong; Mathavan, Sinnakaruppan; Ong, Choon Nam; Gong, Zhiyuan

    2011-01-01

    Bisphenol-A is an important environmental contaminant due to the increased early-life exposure that may pose significant health-risks to various organisms including humans. This study aimed to use zebrafish as a toxicogenomic model to capture transcriptomic and phenotypic changes for inference of signaling pathways, biological processes, physiological systems and identify potential biomarker genes that are affected by early-life exposure to bisphenol-A. Phenotypic analysis using wild-type zebrafish larvae revealed BPA early-life exposure toxicity caused cardiac edema, cranio-facial abnormality, failure of swimbladder inflation and poor tactile response. Fluorescent imaging analysis using three transgenic lines revealed suppressed neuron branching from the spinal cord, abnormal development of neuromast cells, and suppressed vascularization in the abdominal region. Using knowledge-based data mining algorithms, transcriptome analysis suggests that several signaling pathways involving ephrin receptor, clathrin-mediated endocytosis, synaptic long-term potentiation, axonal guidance, vascular endothelial growth factor, integrin and tight junction were deregulated. Physiological systems with related disorders associated with the nervous, cardiovascular, skeletal-muscular, blood and reproductive systems were implicated, hence corroborated with the phenotypic analysis. Further analysis identified a common set of BPA-targeted genes and revealed a plausible mechanism involving disruption of endocrine-regulated genes and processes in known susceptible tissue-organs. The expression of 28 genes were validated in a separate experiment using quantitative real-time PCR and 6 genes, ncl1, apoeb, mdm1, mycl1b, sp4, U1SNRNPBP homolog, were found to be sensitive and robust biomarkers for BPA early-life exposure toxicity. The susceptibility of sp4 to BPA perturbation suggests its role in altering brain development, function and subsequently behavior observed in laboratory animals exposed

  9. Exposure to 1,2-Propanediol Impacts Early Development of Zebrafish (Danio rerio) and Induces Hyperactivity.

    PubMed

    Massarsky, Andrey; Abdel, Ayham; Glazer, Lilah; Levin, Edward D; Di Giulio, Richard T

    2017-03-07

    The use of electronic cigarettes (e-cigarettes) is increasing as an alternative to tobacco burning cigarettes; however, their safety remains to be fully determined. The long-term effects of e-cigarettes are unknown, including the effects of maternal e-cigarette use on pre- and postnatal development. Additional research on the safety of e-cigarettes is needed. Especially useful would be information from high- and moderate-throughput economic model systems. This study investigates the effects of 1,2-propanediol, which was identified as the main component of e-cigarette liquid, on early development of zebrafish (an in vivo high-throughput model system that was recently proposed for the study of tobacco cigarette and e-cigarette toxicity). Zebrafish embryos were exposed to 1.25% or 2.5% 1,2-propanediol from 6 to 72 h post-fertilization (hpf). We show that exposure to 1,2-propanediol did not significantly affect mortality. Hatching success was significantly lower in 2.5% 1,2-propanediol-exposed embryos at 48 hpf, but at 72 hpf no significant differences were noted. Moreover, exposure to 1,2-propanediol reduced growth and increased the incidence of string heart, pericardial edema, and yolk sac edema. Most importantly, developmental exposure to 1.25% 1,2-propanediol caused hyperactive swimming behavior in larvae. This study demonstrates that 1,2-propanediol has adverse impacts on early development in zebrafish.

  10. Molecular psychiatry of zebrafish

    PubMed Central

    Stewart, Adam Michael; Ullmann, Jeremy F.P.; Norton, William H.J.; Brennan, Caroline H.; Parker, Matthew O.; Gerlai, Robert; Kalueff, Allan V.

    2014-01-01

    Due to their well-characterized neural development and high genetic homology to mammals, zebrafish (Danio rerio) have emerged as a powerful model organism in the field of biological psychiatry. Here, we discuss the molecular psychiatry of zebrafish, and its implications for translational neuroscience research and modeling CNS disorders. In particular, we outline recent genetic and technological developments allowing for in-vivo examinations, high-throughput screening and whole-brain analyses in larval and adult zebrafish. We also summarize the application of these molecular techniques to the understanding of neuropsychiatric disease, outlining the potential of zebrafish for modeling complex brain disorders, including attention-deficit/hyperactivity disorder (ADHD), aggression, post-traumatic stress and substance abuse. Critically evaluating the advantages and limitations of larval and adult fish tests, we suggest that zebrafish models become a rapidly emerging new field in modern biological psychiatry research. PMID:25349164

  11. Proanthocyanidins from Spenceria ramalana and their effects on AGE formation in vitro and hyaloid-retinal vessel dilation in larval zebrafish in vivo.

    PubMed

    Lee, Ik-Soo; Yu, Song Yi; Jung, Seung-Hyun; Lee, Yu-Ri; Lee, Yun Mi; Kim, Joo-Hwan; Sun, Hang; Kim, Jin Sook

    2013-10-25

    Three new A-type proanthocyanidins (1-3), ent-epiafzelechin-(2α→O→7,4α→8)-ent-afzelechin 3'-O-β-D-glycopyranoside (1), ent-epiafzelechin-(2α→O→7,4α→8)-ent-epiafzelechin-(2α→O→7,4α→8)-ent-afzelechin (2), and ent-epiafzelechin-(2α→O→7,4α→8)-ent-epicatechin-(2α→O→7,4α→8)-ent-afzelechin (3), and three known compounds (4-6) were isolated from the whole plant of Spenceria ramalana. The structures of the new proanthocyanidins were established by spectroscopic and chemical studies. The inhibitory effects of compounds 1-6 on the formation of advanced glycation end products were examined in vitro. Compounds 3 and 6 showed the strongest inhibition, with IC50 values of 17.4 ± 0.5 and 14.1 ± 1.6 μM, respectively. The effects of these isolates on the dilation of hyaloid-retinal vessels induced by high glucose (HG) in larval zebrafish were also investigated. Compound 3 reduced the dilation of HG-induced hyaloid-retinal vessels most effectively. This compound reduced the diameters of HG-induced hyaloid-retinal vessels by about 157.7% and 164.1% at 10 and 20 μM, respectively, versus the HG-treated control group.

  12. Gold nanorods induce early embryonic developmental delay and lethality in zebrafish (Danio rerio).

    PubMed

    Mesquita, Bárbara; Lopes, Isabel; Silva, Susana; Bessa, Maria João; Starykevich, Maksim; Carneiro, Jorge; Galvão, Tiago L P; Ferreira, Mário G S; Tedim, João; Teixeira, João Paulo; Fraga, Sónia

    2017-07-11

    Due to their unique electronic and optical features, gold nanoparticles (AuNP) have received a great deal of attention for application in different fields such as catalysis, electronics, and biomedicine. The large-volume manufacturing predicted for future decades and the inevitable release of these substances into the environment necessitated an assessment of potential adverse human and ecological risks due to exposure to AuNP. Accordingly, this study aimed to examine the acute and developmental toxicity attributed to a commercial suspension of Au nanorods stabilized with cetyltrimethylammonium bromide (CTAB-AuNR) using early embryonic stages of zebrafish (Danio rerio), a well-established model in ecotoxicology. Zebrafish embryos were exposed to CTAB-AuNR (0-150 µg/L) to determine for developmental assessment until 96 hr post fertilization (hpf) and lethality. Uptake of CTAB-AuNR by embryos and nanoparticles potential to induce DNA damage was also measured at 48 and 96 hpf. Analysis of the concentration-response curves with cumulative mortality at 96 hpf revealed a median lethal concentration (LC50,96h) of 110.2 μg/L. At sublethal concentrations, CTAB-AuNR suspensions were found to produce developmental abnormalities such as tail deformities, pericardial edema, decreased body length, and delayed eye, head, and tail elongation development. Further, less than 1% of the initial concentration of CTAB-AuNR present in the exposure media was internalized by zebrafish embryos prior to (48 hpf) and after hatching (96 hpf). In addition, no marked DNA damage was detected in embryos after exposure to CTAB-AuNR. Overall, CTAB-AuNR suspensions produced lethal and sublethal effects on zebrafish embryos with possible repercussions in fitness of adult stages. However, these results foresee a low risk for fish since the observed effects occurred at concentrations above the levels expected to find in the aquatic environment.

  13. Effects of temperature on embryonic and early larval growth and development in the rough-skinned newt (Taricha granulosa).

    PubMed

    Smith, Geoffrey D; Hopkins, Gareth R; Mohammadi, Shabnam; M Skinner, Heather; Hansen, Tyler; Brodie, Edmund D; French, Susannah S

    2015-07-01

    We investigated the effects of temperature on the growth and development of embryonic and early larval stages of a western North American amphibian, the rough-skinned newt (Taricha granulosa). We assigned newt eggs to different temperatures (7, 14, or 21°C); after hatching, we re-assigned the newt larvae into the three different temperatures. Over the course of three to four weeks, we measured total length and developmental stage of the larvae. Our results indicated a strong positive relationship over time between temperature and both length and developmental stage. Importantly, individuals assigned to cooler embryonic temperatures did not achieve the larval sizes of individuals from the warmer embryonic treatments, regardless of larval temperature. Our investigation of growth and development at different temperatures demonstrates carry-over effects and provides a more comprehensive understanding of how organisms respond to temperature changes during early development.

  14. Zebrafish Noxa promotes mitosis in early embryonic development and regulates apoptosis in subsequent embryogenesis.

    PubMed

    Zhong, J-X; Zhou, L; Li, Z; Wang, Y; Gui, J-F

    2014-06-01

    Noxa functions in apoptosis and immune system of vertebrates, but its activities in embryo development remain unclear. In this study, we have studied the role of zebrafish Noxa (zNoxa) by using zNoxa-specifc morpholino knockdown and overexpression approaches in developing zebrafish embryos. Expression pattern analysis indicates that zNoxa transcript is of maternal origin, which displays a uniform distribution in early embryonic development until shield stage, and the zygote zNoxa transcription is initiated from this stage and mainly localized in YSL of the embryos. The zNoxa expression alterations result in strong embryonic development defects, demonstrating that zNoxa regulates apoptosis from 75% epiboly stage of development onward, in which zNoxa firstly induces the expression of zBik, and then cooperates with zBik to regulate apoptosis. Moreover, zNoxa knockdown also causes a reduction in number of mitotic cells before 8 h.p.f., suggesting that zNoxa also promotes mitosis before 75% epiboly stage. The effect of zNoxa on mitosis is mediated by zWnt4b in early embryos, whereas zMcl1a and zMcl1b suppress the ability of zNoxa to regulate mitosis and apoptosis at different developmental stages. In addition, mammalian mouse Noxa (mNoxa) mRNA was demonstrated to rescue the arrest of mitosis when zNoxa was knocked down, suggesting that mouse and zebrafish Noxa might have similar dual functions. Therefore, the current findings indicate that Noxa is a novel regulator of early mitosis before 75% epiboly stage when it translates into a key mediator of apoptosis in subsequent embryogenesis.

  15. Functional characterization of chitinase-3 reveals involvement of chitinases in early embryo immunity in zebrafish.

    PubMed

    Teng, Zinan; Sun, Chen; Liu, Shousheng; Wang, Hongmiao; Zhang, Shicui

    2014-10-01

    The function and mechanism of chitinases in early embryonic development remain largely unknown. We show here that recombinant chitinase-3 (rChi3) is able to hydrolyze the artificial chitin substrate, 4-methylumbelliferyl-β-D-N,N',N″-triacetylchitotrioside, and to bind to and inhibit the growth of the fungus Candida albicans, implicating that Chi3 plays a dual function in innate immunity and chitin-bearing food digestion in zebrafish. This is further corroborated by the expression profile of Chi3 in the liver and gut, which are both immune- and digestion-relevant organs. Compared with rChi3, rChi3-CD lacking CBD still retains partial capacity to bind to C. albicans, but its enzymatic and antifungal activities are significantly reduced. By contrast, rChi3-E140N with the putative catalytic residue E140 mutated shows little affinity to chitin, and its enzymatic and antifungal activities are nearly completely lost. These suggest that both enzymatic and antifungal activities of Chi3 are dependent on the presence of CBD and E140. We also clearly demonstrate that in zebrafish, both the embryo extract and the developing embryo display antifungal activity against C. albicans, and all the findings point to chitinase-3 (Chi3) being a newly-identified factor involved in the antifungal activity. Taken together, a dual function in both innate immunity and food digestion in embryo is proposed for zebrafish Chi3. It also provides a new angle to understand the immune role of chitinases in early embryonic development of animals.

  16. Correct anteroposterior patterning of the zebrafish neurectoderm in the absence of the early dorsal organizer

    PubMed Central

    2011-01-01

    Background The embryonic organizer (i.e., Spemann organizer) has a pivotal role in the establishment of the dorsoventral (DV) axis through the coordination of BMP signaling. However, as impaired organizer function also results in anterior and posterior truncations, it is of interest to determine if proper anteroposterior (AP) pattern can be obtained even in the absence of early organizer signaling. Results Using the ventralized, maternal effect ichabod (ich) mutant, and by inhibiting BMP signaling in ich embryos, we provide conclusive evidence that AP patterning is independent of the organizer in zebrafish, and is governed by TGFβ, FGF, and Wnt signals emanating from the germ-ring. The expression patterns of neurectodermal markers in embryos with impaired BMP signaling show that the directionality of such signals is oriented along the animal-vegetal axis, which is essentially concordant with the AP axis. In addition, we find that in embryos inhibited in both Wnt and BMP signaling, the AP pattern of such markers is unchanged from that of the normal untreated embryo. These embryos develop radially organized trunk and head tissues, with an outer neurectodermal layer containing diffusely positioned neuronal precursors. Such organization is reflective of the presumed eumetazoan ancestor and might provide clues for the evolution of centralization in the nervous system. Conclusions Using a zebrafish mutant deficient in the induction of the embryonic organizer, we demonstrate that the AP patterning of the neuroectoderm during gastrulation is independent of DV patterning. Our results provide further support for Nieuwkoop's "two step model" of embryonic induction. We also show that the zebrafish embryo can form a radial diffuse neural sheath in the absence of both BMP signaling and the early organizer. PMID:21575247

  17. Embryonic, larval, and early juvenile development of the tropical sea urchin, Salmacis sphaeroides (Echinodermata: Echinoidea).

    PubMed

    Rahman, M Aminur; Yusoff, Fatimah Md; Arshad, A; Shamsudin, Mariana Nor; Amin, S M N

    2012-01-01

    Salmacis sphaeroides (Linnaeus, 1758) is one of the regular echinoids, occuring in the warm Indo-West Pacific, including Johor Straits, between Malaysia and Singapore. In order to investigate the developmental basis of morphological changes in embryos and larvae, we documented the ontogeny of S. sphaeroides in laboratory condition. Gametes were obtained from adult individuals by 0.5 M KCl injection into the coelomic cavity. Fertilization rate at limited sperm concentration (10(-5) dilution) was 96.6 ± 1.4% and the resulting embryos were reared at 24°C. First cleavage (2-cell), 4-cell, 8-cell, 16-cell, 32-cell, and multicell (Morulla) stages were achieved 01.12, 02.03, 02.28, 02.51, 03.12, and 03.32 h postfertilization. Ciliated blastulae with a mean length of 174.72 ± 4.43 μm hatched 08.45 h after sperm entry. The gastrulae formed 16.15 h postfertilization and the archenteron elongated constantly while ectodermal red-pigmented cells migrated synchronously to the apical plate. Pluteus larva started to feed unicellular algae in 2 d, grew continuously, and finally attained metamorphic competence in 35 d after fertilization. Metamorphosis took approximately 1 h 30 min from attachment to the complete resorption of larval tissues and the development of complete juvenile structure with adult spines, extended tubefeet and well-developed pedicellaria, the whole event of which usually took place within 1 d postsettlement. This study represents the first successful investigation on embryonic, larval, and early juvenile development of S. sphaeroides. The findings would greatly be helpful towards the understanding of ontogeny and life-history strategies, which will facilitate us to develop the breeding, seed production, and culture techniques of sea urchins in captive condition.

  18. Embryonic, Larval, and Early Juvenile Development of the Tropical Sea Urchin, Salmacis sphaeroides (Echinodermata: Echinoidea)

    PubMed Central

    Rahman, M. Aminur; Yusoff, Fatimah Md.; Arshad, A.; Shamsudin, Mariana Nor; Amin, S. M. N.

    2012-01-01

    Salmacis sphaeroides (Linnaeus, 1758) is one of the regular echinoids, occuring in the warm Indo-West Pacific, including Johor Straits, between Malaysia and Singapore. In order to investigate the developmental basis of morphological changes in embryos and larvae, we documented the ontogeny of S. sphaeroides in laboratory condition. Gametes were obtained from adult individuals by 0.5 M KCl injection into the coelomic cavity. Fertilization rate at limited sperm concentration (10−5 dilution) was 96.6 ± 1.4% and the resulting embryos were reared at 24°C. First cleavage (2-cell), 4-cell, 8-cell, 16-cell, 32-cell, and multicell (Morulla) stages were achieved 01.12, 02.03, 02.28, 02.51, 03.12, and 03.32 h postfertilization. Ciliated blastulae with a mean length of 174.72 ± 4.43 μm hatched 08.45 h after sperm entry. The gastrulae formed 16.15 h postfertilization and the archenteron elongated constantly while ectodermal red-pigmented cells migrated synchronously to the apical plate. Pluteus larva started to feed unicellular algae in 2 d, grew continuously, and finally attained metamorphic competence in 35 d after fertilization. Metamorphosis took approximately 1 h 30 min from attachment to the complete resorption of larval tissues and the development of complete juvenile structure with adult spines, extended tubefeet and well-developed pedicellaria, the whole event of which usually took place within 1 d postsettlement. This study represents the first successful investigation on embryonic, larval, and early juvenile development of S. sphaeroides. The findings would greatly be helpful towards the understanding of ontogeny and life-history strategies, which will facilitate us to develop the breeding, seed production, and culture techniques of sea urchins in captive condition. PMID:23055824

  19. Larval and early juvenile fish distribution and assemblage structure in the Canadian Beaufort Sea during July-August, 2005

    NASA Astrophysics Data System (ADS)

    Paulic, Joclyn E.; Papst, Michael H.

    2013-11-01

    The distribution and composition of marine larval and early juvenile fish were investigated during a multidisciplinary project conducted in the nearshore Canadian Beaufort Sea in July and August, 2005. Larvae were sampled using replicate bongo net (500 μm) tows within 50 m water depth. A total of 458 larval fish representing seven families were captured.Multivariate statistical analyses revealed two distinct larval assemblages that were closely correlated to water mass category. The two larval fish assemblages were defined as coastal and estuarine. The coastal assemblage was dominated by Pacific Herring (Clupea pallasii) and was found in the shallow intense plume water mass. This area is greatly influenced by the Mackenzie River outflow. The estuarine assemblage was dominated by Arctic Cod (Boreogadus saida) and was typically found within the diffuse plume and oceanic water masses. Other larval fish families that were represented in the estuarine assemblage were Cottidae, Stichaeidae, Liparidae and Agonidae. Species richness and abundance was greater along the Toker transect in Kugmallit Bay than the Paktoa transect northwest of Garry Island in the Mackenzie Bay.

  20. Early life-stage test in zebrafish versus a growth test in rainbow trout to evaluate toxic effects

    SciTech Connect

    Bresch, H. )

    1991-05-01

    The aim of the work presented in this paper was to compare toxic threshold concentrations of three substances obtained from growth test in rainbow trout (Salmo gairdneri) with data from early life-stages in zebrafish. The growth test was conducted over a period of 7 wk in case of 4-chloroaniline and 4 wk in case of 3,4-dichloroaniline and diazinon. The data from the experiment in zebrafish originate from life-cycle studies; here, only the results obtained within the first 6 wk of development after fertilization are considered. These time limits have been set, as in the FRG a growth test in rainbow trout extending over 4 wk and an early life-stage test in zebrafish extending over 6 wk are being discussed for the Chemical Act.

  1. Social Preference Deficits in Juvenile Zebrafish Induced by Early Chronic Exposure to Sodium Valproate

    PubMed Central

    Liu, Xiuyun; Zhang, Yinglan; Lin, Jia; Xia, Qiaoxi; Guo, Ning; Li, Qiang

    2016-01-01

    Prenatal exposure to sodium valproate (VPA), a widely used anti-epileptic drug, is related to a series of dysfunctions, such as deficits in language and communication. Clinical and animal studies have indicated that the effects of VPA are related to the concentration and to the exposure window, while the neurobehavioral effects of VPA have received limited research attention. In the current study, to analyze the neurobehavioral effects of VPA, zebrafish at 24 h post-fertilization (hpf) were treated with early chronic exposure to 20 μM VPA for 7 h per day for 6 days or with early acute exposure to 100 μM VPA for 7 h. A battery of behavioral screenings was conducted at 1 month of age to investigate social preference, locomotor activity, anxiety, and behavioral response to light change. A social preference deficit was only observed in animals with chronic VPA exposure. Acute VPA exposure induced a change in the locomotor activity, while chronic VPA exposure did not affect locomotor activity. Neither exposure procedure influenced anxiety or the behavioral response to light change. These results suggested that VPA has the potential to affect some behaviors in zebrafish, such as social behavior and the locomotor activity, and that the effects were closely related to the concentration and the exposure window. Additionally, social preference seemed to be independent from other simple behaviors. PMID:27812327

  2. Toxicity Assessment of Iron Oxide Nanoparticles in Zebrafish (Danio rerio) Early Life Stages

    PubMed Central

    Zhu, Xiaoshan; Tian, Shengyan; Cai, Zhonghua

    2012-01-01

    Iron oxide nanoparticles have been explored recently for their beneficial applications in many biomedical areas, in environmental remediation, and in various industrial applications. However, potential risks have also been identified with the release of nanoparticles into the environment. To study the ecological effects of iron oxide nanoparticles on aquatic organisms, we used early life stages of the zebrafish (Danio rerio) to examine such effects on embryonic development in this species. The results showed that ≥10 mg/L of iron oxide nanoparticles instigated developmental toxicity in these embryos, causing mortality, hatching delay, and malformation. Moreover, an early life stage test using zebrafish embryos/larvae is also discussed and recommended in this study as an effective protocol for assessing the potential toxicity of nanoparticles. This study is one of the first on developmental toxicity in fish caused by iron oxide nanoparticles in aquatic environments. The results will contribute to the current understanding of the potential ecotoxicological effects of nanoparticles and support the sustainable development of nanotechnology. PMID:23029464

  3. Taurine homeostasis requires de novo synthesis via cysteine sulfinic acid decarboxylase during zebrafish early embryogenesis.

    PubMed

    Chang, Yen-Chia; Ding, Shih-Torng; Lee, Yen-Hua; Wang, Ya-Ching; Huang, Ming-Feng; Liu, I-Hsuan

    2013-02-01

    Cysteine sulfinic acid decarboxylase (Csad) is the rate-limiting enzyme in the de novo biosynthesis of taurine. There are a number of physiological roles of taurine, such as bile salt synthesis, osmoregulation, lipid metabolism, and oxidative stress inhibition. To investigate the role of de novo synthesis of taurine during embryonic development, zebrafish csad was cloned and functionally analyzed. Semi-quantitative RT-PCR showed that csad transcripts are maternally deposited, while whole-mount in situ hybridization demonstrated that csad is expressed in yolk syncytial layer and various embryonic tissues such as notochord, brain, retina, pronephric duct, liver, and pancreas. Knockdown of csad significantly reduced the embryonic taurine level, and the affected embryos had increased early mortality and cardiac anomalies. mRNA coinjection and taurine supplementation rescued the cardiac phenotypes suggesting that taurine originating from the de novo synthesis pathway plays a role in cardiac development. Our findings indicated that the de novo synthesis pathway via Csad plays a critical role in taurine homeostasis and cardiac development in zebrafish early embryos.

  4. Social Preference Deficits in Juvenile Zebrafish Induced by Early Chronic Exposure to Sodium Valproate.

    PubMed

    Liu, Xiuyun; Zhang, Yinglan; Lin, Jia; Xia, Qiaoxi; Guo, Ning; Li, Qiang

    2016-01-01

    Prenatal exposure to sodium valproate (VPA), a widely used anti-epileptic drug, is related to a series of dysfunctions, such as deficits in language and communication. Clinical and animal studies have indicated that the effects of VPA are related to the concentration and to the exposure window, while the neurobehavioral effects of VPA have received limited research attention. In the current study, to analyze the neurobehavioral effects of VPA, zebrafish at 24 h post-fertilization (hpf) were treated with early chronic exposure to 20 μM VPA for 7 h per day for 6 days or with early acute exposure to 100 μM VPA for 7 h. A battery of behavioral screenings was conducted at 1 month of age to investigate social preference, locomotor activity, anxiety, and behavioral response to light change. A social preference deficit was only observed in animals with chronic VPA exposure. Acute VPA exposure induced a change in the locomotor activity, while chronic VPA exposure did not affect locomotor activity. Neither exposure procedure influenced anxiety or the behavioral response to light change. These results suggested that VPA has the potential to affect some behaviors in zebrafish, such as social behavior and the locomotor activity, and that the effects were closely related to the concentration and the exposure window. Additionally, social preference seemed to be independent from other simple behaviors.

  5. Alternative haplotypes of antigen processing genes in zebrafish diverged early in vertebrate evolution

    PubMed Central

    McConnell, Sean C.; Hernandez, Kyle M.; Wcisel, Dustin J.; Kettleborough, Ross N.; Stemple, Derek L.; Andrade, Jorge; de Jong, Jill L. O.

    2016-01-01

    Antigen processing and presentation genes found within the MHC are among the most highly polymorphic genes of vertebrate genomes, providing populations with diverse immune responses to a wide array of pathogens. Here, we describe transcriptome, exome, and whole-genome sequencing of clonal zebrafish, uncovering the most extensive diversity within the antigen processing and presentation genes of any species yet examined. Our CG2 clonal zebrafish assembly provides genomic context within a remarkably divergent haplotype of the core MHC region on chromosome 19 for six expressed genes not found in the zebrafish reference genome: mhc1uga, proteasome-β 9b (psmb9b), psmb8f, and previously unknown genes psmb13b, tap2d, and tap2e. We identify ancient lineages for Psmb13 within a proteasome branch previously thought to be monomorphic and provide evidence of substantial lineage diversity within each of three major trifurcations of catalytic-type proteasome subunits in vertebrates: Psmb5/Psmb8/Psmb11, Psmb6/Psmb9/Psmb12, and Psmb7/Psmb10/Psmb13. Strikingly, nearby tap2 and MHC class I genes also retain ancient sequence lineages, indicating that alternative lineages may have been preserved throughout the entire MHC pathway since early diversification of the adaptive immune system ∼500 Mya. Furthermore, polymorphisms within the three MHC pathway steps (antigen cleavage, transport, and presentation) are each predicted to alter peptide specificity. Lastly, comparative analysis shows that antigen processing gene diversity is far more extensive than previously realized (with ancient coelacanth psmb8 lineages, shark psmb13, and tap2t and psmb10 outside the teleost MHC), implying distinct immune functions and conserved roles in shaping MHC pathway evolution throughout vertebrates. PMID:27493218

  6. Nanog suppresses the expression of vasa by directly regulating nlk1 in the early zebrafish embryo.

    PubMed

    Liu, Yanhua; Xue, Weiwei; Zhu, Lin; Ye, Ding; Zhu, Xiaoqin; Wang, Huannan; Sun, Yonghua; Deng, Fengjiao

    2017-07-28

    Nanog is a homeodomain transcription factor that is essential for maintenance of pluripotency and self-renewal of embryonic stem cells (ESCs). In the present study, we demonstrate that zebrafish Nanog (zNanog) directly binds to the promoter region of zebrafish nlk1 (znlk1) by ChIP-Seq analysis and that it up-regulates the expression of znlk1 in fibroblast-like embryonic cells of Danio rerio (ZEM-2S cells) and in zebrafish embryos at 30% epiboly both at the mRNA and protein levels. In addition, compared with control (MO-C) embryos at 30% epiboly, the mRNA and protein expression of vasa and the numbers of vasa-positive cells were increased in embryos injected with zNanog morpholino (MO-zNanog). Further, injection of znlk1 mRNA into zNanog-depleted embryos restored the expression of vasa and the number of vasa-positive cells. These data indicated that zNanog up-regulates the expression of znlk1 through directly binding to the znlk1 promoter, thereby suppressing the expression of vasa. Vasa is a marker gene for PGCs. Our results suggest that zNanog plays a role in restraint of PGC cell number through regulating the expression of znlk1 in the early embryonic development. The current results provide fundamental information to support further investigation regarding the regulatory mechanism of zNanog during the development of PGCs. Copyright © 2017. Published by Elsevier B.V.

  7. The alcohol-sensitive period during early octavolateral organ development in zebrafish (Danio rerio).

    PubMed

    Zamora, Lilliann Y; Miguel, Kayla C; Lu, Zhongmin

    2017-01-20

    Fetal alcohol exposure can cause Fetal Alcohol Spectrum Disorders (FASD), completely preventable developmental disabilities characterized by permanent birth defects. However, specific gestational timing when developing organs are most sensitive to alcohol exposure is unclear. In this study, we examined the temporal effects of embryonic alcohol exposure on octavolateral organs in zebrafish (Danio rerio), including inner ears and lateral line neuromasts that function in hearing, balance, and hydrodynamic detection, respectively. To determine an alcohol-sensitive period in the first 24 hours post fertilization (hpf), Et(krt4:EGFP)(sqet4) zebrafish that express green fluorescent protein in sensory hair cells were treated in 2% alcohol for 2, 3, and 5-hours. Octavolateral organs of control and alcohol-exposed larvae were examined at 3, 5, and 7 days post fertilization (dpf). Using confocal and light microscopy, we found that alcohol-exposed larvae had significantly smaller otic vesicles and saccular otoliths than control larvae at 3 dpf. Only alcohol-exposed larvae from 12-17 hpf had smaller otic vesicles at 5 dpf, smaller saccular otoliths at 7 dpf and fewer saccular hair cells, neuromasts and hair cells per neuromast at 3 dpf. In addition, auditory function was assessed by microphonic potential recordings from inner ear hair cells in response to 200-Hz stimulation. Hearing sensitivity was reduced for alcohol-exposed larvae from 7-12 and 12-17 hpf. Our results show that 12-17 hpf is an alcohol-sensitive time window when morphology and function of zebrafish octavolateral organs are most vulnerable to alcohol exposure. This study implies that embryonic alcohol exposure timing during early development can influence severity of hearing deficits. © 2017 Wiley Periodicals, Inc.

  8. Toxicity and cardiac effects of carbaryl in early developing zebrafish (Danio rerio) embryos

    SciTech Connect

    Lin, C.C.; Hui, Michelle N.Y.; Cheng, S.H. E-mail: bhcheng@cityu.edu.hk

    2007-07-15

    Carbaryl, an acetylcholinesterase inhibitor, is known to be moderately toxic to adult zebrafish and has been reported to cause heart malformations and irregular heartbeat in medaka. We performed experiments to study the toxicity of carbaryl, specifically its effects on the heart, in early developing zebrafish embryos. LC50 and EC50 values for carbaryl at 28 h post-fertilization were 44.66 {mu}g/ml and 7.52 {mu}g/ml, respectively, and 10 {mu}g/ml carbaryl was used in subsequent experiments. After confirming acetylcholinesterase inhibition by carbaryl using an enzymatic method, we observed red blood cell accumulation, delayed hatching and pericardial edema, but not heart malformation as described in some previous reports. Our chronic exposure data also demonstrated carbaryl-induced bradycardia, which is a common effect of acetylcholinesterase inhibitors due to the accumulation of acetylcholine, in embryos from 1 day post-fertilization (dpf) to 5 dpf. The distance between the sinus venosus, the point where blood enters the atrium, and the bulbus arteriosus, the point where blood leaves the ventricle, indicated normal looping of the heart tube. Immunostaining of myosin heavy chains with the ventricle-specific antibody MF20 and the atrium-specific antibody S46 showed normal development of heart chambers. At the same time, acute exposure resulted in carbaryl-induced bradycardia. Heart rate dropped significantly after a 10-min exposure to 100 {mu}g/ml carbaryl but recovered when carbaryl was removed. The novel observation of carbaryl-induced bradycardia in 1- and 2-dpf embryos suggested that carbaryl affected cardiac function possibly through an alternative mechanism other than acetylcholinesterase inhibition such as inhibition of calcium ion channels, since acetylcholine receptors in zebrafish are not functional until 3 dpf. However, the exact nature of this mechanism is currently unknown, and thus further studies are required.

  9. Loss of vhl in the zebrafish pronephros recapitulates early stages of human clear cell renal cell carcinoma.

    PubMed

    Noonan, Haley R; Metelo, Ana M; Kamei, Caramai N; Peterson, Randall T; Drummond, Iain A; Iliopoulos, Othon

    2016-08-01

    Patients with von Hippel-Lindau (VHL) disease harbor a germline mutation in the VHL gene leading to the development of several tumor types including clear cell renal cell carcinoma (ccRCC). In addition, the VHL gene is inactivated in over 90% of sporadic ccRCC cases. 'Clear cell' tumors contain large, proliferating cells with 'clear cytoplasm', and a reduced number of cilia. VHL inactivation leads to the stabilization of hypoxia inducible factors 1a and 2a [HIF1a and HIF2a (HIF2a is also known as EPAS1)] with consequent up-regulation of specific target genes involved in cell proliferation, angiogenesis and erythropoiesis. A zebrafish model with a homozygous inactivation in the VHL gene (vhl(-/-)) recapitulates several aspects of the human disease, including development of highly vascular lesions in the brain and the retina and erythrocytosis. Here, we characterize for the first time the epithelial abnormalities present in the kidney of the vhl(-/-) zebrafish larvae as a first step in building a model of ccRCC in zebrafish. Our data show that the vhl(-/-) zebrafish kidney is characterized by an increased tubule diameter, disorganized cilia, the dramatic formation of cytoplasmic lipid vesicles, glycogen accumulation, aberrant cell proliferation and abnormal apoptosis. This phenotype of the vhl(-/-) pronephros is reminiscent of clear cell histology, indicating that the vhl(-/-) mutant zebrafish might serve as a model of early stage RCC. Treatment of vhl(-/-) zebrafish embryos with a small-molecule HIF2a inhibitor rescued the pronephric abnormalities, underscoring the value of the zebrafish model in drug discovery for treatment of VHL disease and ccRCC.

  10. Loss of vhl in the zebrafish pronephros recapitulates early stages of human clear cell renal cell carcinoma

    PubMed Central

    Noonan, Haley R.; Metelo, Ana M.; Kamei, Caramai N.; Peterson, Randall T.; Drummond, Iain A.

    2016-01-01

    ABSTRACT Patients with von Hippel–Lindau (VHL) disease harbor a germline mutation in the VHL gene leading to the development of several tumor types including clear cell renal cell carcinoma (ccRCC). In addition, the VHL gene is inactivated in over 90% of sporadic ccRCC cases. ‘Clear cell’ tumors contain large, proliferating cells with ‘clear cytoplasm’, and a reduced number of cilia. VHL inactivation leads to the stabilization of hypoxia inducible factors 1a and 2a [HIF1a and HIF2a (HIF2a is also known as EPAS1)] with consequent up-regulation of specific target genes involved in cell proliferation, angiogenesis and erythropoiesis. A zebrafish model with a homozygous inactivation in the VHL gene (vhl−/−) recapitulates several aspects of the human disease, including development of highly vascular lesions in the brain and the retina and erythrocytosis. Here, we characterize for the first time the epithelial abnormalities present in the kidney of the vhl−/− zebrafish larvae as a first step in building a model of ccRCC in zebrafish. Our data show that the vhl−/− zebrafish kidney is characterized by an increased tubule diameter, disorganized cilia, the dramatic formation of cytoplasmic lipid vesicles, glycogen accumulation, aberrant cell proliferation and abnormal apoptosis. This phenotype of the vhl−/− pronephros is reminiscent of clear cell histology, indicating that the vhl−/− mutant zebrafish might serve as a model of early stage RCC. Treatment of vhl−/− zebrafish embryos with a small-molecule HIF2a inhibitor rescued the pronephric abnormalities, underscoring the value of the zebrafish model in drug discovery for treatment of VHL disease and ccRCC. PMID:27491085

  11. The Zebrafish G12 Gene is required for Nuclear Positioning and Cell Migrations during Early Development

    NASA Technical Reports Server (NTRS)

    Reinsch, S. S.; Conway, G. C.

    2003-01-01

    After fertilization Zebrafish embryos undergo synchronous cleavage to form a blastula of cells sitting upon a single multinucleate yolk cell. At the beginning of gastrulation these cells undergo extensive cell migrations to form the major body axes. We have discovered a gene, G12, which is required for cell migrations and positioning of nuclei in the large syncytial yolk cell. Overexpression of a G12-GFP fusion protein is not toxic and shows that the protein localizes inside the yolk cell to the yolk nuclei, microtubules, and to the margin between the blastomeres and the large yolk cell. Morpholino (MO) injection into the 1-cell embryo or into just the yolk syncytium conipletely inhibits cell migrations, doming of the yolk cell, and positioning of nuclei around the margin. This effect can be partially rescued by injection of G12-GFP encoding RNA. Given the known role of microtubules in nuclear positioning of yolk nuclei in Zebrafish, we investigated the microtubules in morpholiiio injected and rescued embryos. We find that microtubules are sparse and disorganized in MO-injected embryos and are restored to normal organization upon G12-GFP rescue. G12 plays a pivotal role in organization of inicrotubules during early development. G12 is highly conserved in vertebrates and two homologues exist in the human genome. One of the human hoinologues is amplified in aggressive breast tumors.

  12. The Zebrafish G12 Gene is required for Nuclear Positioning and Cell Migrations during Early Development

    NASA Technical Reports Server (NTRS)

    Reinsch, S. S.; Conway, G. C.

    2003-01-01

    After fertilization Zebrafish embryos undergo synchronous cleavage to form a blastula of cells sitting upon a single multinucleate yolk cell. At the beginning of gastrulation these cells undergo extensive cell migrations to form the major body axes. We have discovered a gene, G12, which is required for cell migrations and positioning of nuclei in the large syncytial yolk cell. Overexpression of a G12-GFP fusion protein is not toxic and shows that the protein localizes inside the yolk cell to the yolk nuclei, microtubules, and to the margin between the blastomeres and the large yolk cell. Morpholino (MO) injection into the 1-cell embryo or into just the yolk syncytium conipletely inhibits cell migrations, doming of the yolk cell, and positioning of nuclei around the margin. This effect can be partially rescued by injection of G12-GFP encoding RNA. Given the known role of microtubules in nuclear positioning of yolk nuclei in Zebrafish, we investigated the microtubules in morpholiiio injected and rescued embryos. We find that microtubules are sparse and disorganized in MO-injected embryos and are restored to normal organization upon G12-GFP rescue. G12 plays a pivotal role in organization of inicrotubules during early development. G12 is highly conserved in vertebrates and two homologues exist in the human genome. One of the human hoinologues is amplified in aggressive breast tumors.

  13. Combinatorial activity of Flamingo proteins directs convergence and extension within the early zebrafish embryo via the planar cell polarity pathway.

    PubMed

    Formstone, Caroline J; Mason, Ivor

    2005-06-15

    The seven-transmembrane protocadherin, Flamingo, functions in a number of processes during Drosophila development, including planar cell polarity (PCP). To assess the role(s) of Flamingo1/Celsr1 (Fmi1) during vertebrate embryogenesis we have exploited the zebrafish system, identifying two Fmi1 orthologues (zFmi1a and zFmi1b) and employing morpholinos to induce mis-splicing of zebrafish fmi1 mRNAs, to both imitate mutations identified in Drosophila flamingo and generate novel aberrant Flamingo proteins. We demonstrate that in the zebrafish gastrula, Fmi1 proteins function in concert with each other and with the vertebrate PCP proteins, Wnt11 and Strabismus, to mediate convergence and extension during gastrulation, without altering early dorso-ventral patterning. We show that zebrafish Fmi1a promotes extension of the entire antero-posterior axis of the zebrafish gastrula including prechordal plate and ventral diencephalic precursors. However, while we show that control over axial extension is autonomous, we find that Fmi1a is not required within lateral cells undergoing dorsal convergence.

  14. Soybean Meal and Soy Protein Concentrate in Early Diet Elicit Different Nutritional Programming Effects on Juvenile Zebrafish.

    PubMed

    Perera, Erick; Yúfera, Manuel

    2016-02-01

    There is now strong evidence that early nutrition plays an important role in shaping later physiology. We assessed here whether soy protein concentrate (SPC) or soybean meal (SBM) in early diet would modify zebrafish responses to these products in later life. We fed zebrafish larvae with SPC-, SBM-, or a control-diet for the first 3 days of feeding and then grew all larvae on the control diet up to juveniles. Finally, we assessed the expression in juveniles of genes involved in inflammation/immunity, the breakdown of extracellular matrix, luminal digestion, and intestinal nutrient absorption/trafficking. First feeding SBM had wider, stronger, and more persistent effects on gene expression with respect to SPC. Juveniles fed with SPC at first feeding were more prone to inflammation after refeeding with SPC than fish that never experienced SPC before. Conversely, zebrafish that faced SBM at first feeding were later less responsive to refeeding with SBM through inflammation and had higher expression of markers of peptide absorption and fatty acid transport. Results indicate that some features of inflammation/remodeling, presumably at the intestine, and nutrient absorption/transport in fish can be programmed by early nutrition. These findings sustain the rationale of using zebrafish for depicting molecular mechanisms involved in nutritional programming.

  15. A comparison of spring larval fish assemblages in the Strait of Georgia (British Columbia, Canada) between the early 1980s and late 2000s

    NASA Astrophysics Data System (ADS)

    Guan, Lu; Dower, John F.; McKinnell, Skip M.; Pepin, Pierre; Pakhomov, Evgeny A.; Hunt, Brian P. V.

    2015-11-01

    The concentration and composition of the larval fish assemblage in the Strait of Georgia (British Columbia, Canada) has changed between the early 1980s (1980 and 1981) and the late 2000s (2007, 2009 and 2010). During both periods, the spring larval fish assemblages were dominated by pelagic species: Clupea pallasi (Pacific herring), Merluccius productus (Pacific hake), Leuroglossus schmidti (northern smoothtongue) and Theragra chalcogramma (walleye Pollock). The average concentration of Merluccius productus, Theragra chalcogramma, Leuroglossus schmidti, and Sebastes spp. declined between the early 1980s and the late 2000s; in contrast, the absolute concentration and proportion of Pleuronectidae and several demersal fish taxa increased in the spring larval assemblage. Examination of the associations between larval fish assemblages and environmental fluctuations suggests that large-scale climate processes are potential contributors to variations in overall larval concentrations of the dominant taxa and assemblage composition in the Strait of Georgia.

  16. Transparent things: cell fates and cell movements during early embryogenesis of zebrafish.

    PubMed

    Solnica-Krezel, L; Stemple, D L; Driever, W

    1995-11-01

    Development of an animal embryo involves the coordination of cell divisions, a variety of inductive interactions and extensive cellular rearrangements. One of the biggest challenges in developmental biology is to explain the relationships between these processes and the mechanisms that regulate them. Teleost embryos provide an ideal subject for the study of these issues. Their optical lucidity combined with modern techniques for the marking and observation of individual living cells allow high resolution investigations of specific morphogenetic movements and the construction of detailed fate maps. In this review we describe the patterns of cell divisions, cellular movements and other morphogenetic events during zebrafish early development and discuss how these events relate to the formation of restricted lineages.

  17. The fish embryo toxicity test as a replacement for the larval growth and survival test: A comparison of test sensitivity and identification of alternative endpoints in zebrafish and fathead minnows.

    PubMed

    Jeffries, Marlo K Sellin; Stultz, Amy E; Smith, Austin W; Stephens, Dane A; Rawlings, Jane M; Belanger, Scott E; Oris, James T

    2015-06-01

    The fish embryo toxicity (FET) test has been proposed as an alternative to the larval growth and survival (LGS) test. The objectives of the present study were to evaluate the sensitivity of the FET and LGS tests in fathead minnows (Pimephales promelas) and zebrafish (Danio rerio) and to determine if the inclusion of sublethal metrics as test endpoints could enhance test utility. In both species, LGS and FET tests were conducted using 2 simulated effluents. A comparison of median lethal concentrations determined via each test revealed significant differences between test types; however, it could not be determined which test was the least and/or most sensitive. At the conclusion of each test, developmental abnormalities and the expression of genes related to growth and toxicity were evaluated. Fathead minnows and zebrafish exposed to mock municipal wastewater-treatment plant effluent in a FET test experienced an increased incidence of pericardial edema and significant alterations in the expression of genes including insulin-like growth factors 1 and 2, heat shock protein 70, and cytochrome P4501A, suggesting that the inclusion of these endpoints could enhance test utility. The results not only show the utility of the fathead minnow FET test as a replacement for the LGS test but also provide evidence that inclusion of additional endpoints could improve the predictive power of the FET test.

  18. Transcriptional and morphological effects of tamoxifen on the early development of zebrafish (Danio rerio).

    PubMed

    Xia, Liang; Zheng, Liang; Zhou, Jun Liang

    2016-06-01

    Tamoxifen is a widely used anticancer drug with both an estrogen agonist and antagonist effect. This study focused on its endocrine disrupting effect, and overall environmental significance. Zebrafish embryos were exposed to different concentrations (0.5, 5, 50 and 500 µg l(-1) ) of tamoxifen for 96 h. The results showed a complex effect of tamoxifen on zebrafish embryo development. For the 500 µg l(-1) exposure group, the heart rate was decreased by 20% and mild defects in caudal fin and skin were observed. Expressions of a series of genes related to endocrine and morphological changes were subsequently tested through quantitative real-time polymerase chain reaction. Bisphenol A as a known estrogen was also tested as an endocrine-related comparison. Among the expression of endocrine-related genes, esr1, ar, cyp19a1b, hsd3b1 and ugt1a1 were all increased by tamoxifen exposure, similar to bisphenol A. The cyp19a1b is a key gene that controls estrogen synthesis. Exposure to 0.5, 5, 50 and 500 µg l(-1) of tamoxifen caused upregulation of cyp19a1b expression to 152%, 568%, 953% and 2024% compared to controls, higher than the effects from the same concentrations of bisphenol A treatment, yet vtg1 was suppressed by 24% from exposure to 500 µg l(-1) tamoxifen. The expression of metabolic-related genes such as cyp1a, cyp1c2, cyp3a65, gpx1a, gstp1, gsr and genes related to observed morphological changes such as krt17 were also found to be upregulated by high concentrations of tamoxifen. These findings indicated the potential environmental effect of tamoxifen on teleost early development. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Apoptosis-related genes induced in response to ketamine during early life stages of zebrafish.

    PubMed

    Félix, Luís M; Serafim, Cindy; Valentim, Ana M; Antunes, Luís M; Matos, Manuela; Coimbra, Ana M

    2017-09-05

    Increasing evidence supports that ketamine, a widely used anaesthetic, potentiates apoptosis during development through the mitochondrial pathway of apoptosis. Defects in the apoptotic machinery can cause or contribute to the developmental abnormalities previously described in ketamine-exposed zebrafish. The involvement of the apoptotic machinery in ketamine-induced teratogenicity was addressed by assessing the apoptotic signals at 8 and 24 hpf following 20min exposure to ketamine at three stages of early zebrafish embryo development (256 cell, 50% epiboly and 1-4 somites stages). Exposure at the 256-cell stage to ketamine induced an up-regulation of casp8 and pcna at 8 hpf while changes in pcna at the mRNA level were observed at 24 hpf. After the 50% epiboly stage exposure, the mRNA levels of casp9 were increased at 8 and 24 hpf while aifm1 was affected at 24 hpf. Both tp53 and pcna expressions were increased at 8 hpf. After exposure during the 1-4 somites stage, no meaningful changes on transcript levels were observed. The distribution of apoptotic cells and the caspase-like enzymatic activities of caspase-3 and -9 were not affected by ketamine exposure. It is proposed that ketamine exposure at the 256-cell stage induced a cooperative mechanism between proliferation and cellular death while following exposure at the 50% epiboly, a p53-dependent and -independent caspase activation may occur. Finally, at the 1-4 somites stage, the defence mechanisms are already fully in place to protect against ketamine-insult. Thus, ketamine teratogenicity seems to be dependent on the functional mechanisms present in each developmental stage. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Lnx2 ubiquitin ligase is essential for exocrine cell differentiation in the early zebrafish pancreas

    PubMed Central

    Won, Minho; Ro, Hyunju; Dawid, Igor B.

    2015-01-01

    The gene encoding the E3 ubiquitin ligase Ligand of Numb protein-X (Lnx)2a is expressed in the ventral-anterior pancreatic bud of zebrafish embryos in addition to its expression in the brain. Knockdown of Lnx2a by using an exon 2/intron 2 splice morpholino resulted in specific inhibition of the differentiation of ventral bud derived exocrine cell types, with little effect on endocrine cell types. A frame shifting null mutation in lnx2a did not mimic this phenotype, but a mutation that removed the exon 2 splice donor site did. We found that Lnx2b functions in a redundant manner with its paralog Lnx2a. Inhibition of lnx2a exon 2/3 splicing causes exon 2 skipping and leads to the production of an N-truncated protein that acts as an interfering molecule. Thus, the phenotype characterized by inhibition of exocrine cell differentiation requires inactivation of both Lnx2a and Lnx2b. Human LNX1 is known to destabilize Numb, and we show that inhibition of Numb expression rescues the Lnx2a/b-deficient phenotype. Further, Lnx2a/b inhibition leads to a reduction in the number of Notch active cells in the pancreas. We suggest that Lnx2a/b function to fine tune the regulation of Notch through Numb in the differentiation of cell types in the early zebrafish pancreas. Further, the complex relationships among genotype, phenotype, and morpholino effect in this case may be instructive in the ongoing consideration of morpholino use. PMID:26392552

  1. Lnx2 ubiquitin ligase is essential for exocrine cell differentiation in the early zebrafish pancreas.

    PubMed

    Won, Minho; Ro, Hyunju; Dawid, Igor B

    2015-10-06

    The gene encoding the E3 ubiquitin ligase Ligand of Numb protein-X (Lnx)2a is expressed in the ventral-anterior pancreatic bud of zebrafish embryos in addition to its expression in the brain. Knockdown of Lnx2a by using an exon 2/intron 2 splice morpholino resulted in specific inhibition of the differentiation of ventral bud derived exocrine cell types, with little effect on endocrine cell types. A frame shifting null mutation in lnx2a did not mimic this phenotype, but a mutation that removed the exon 2 splice donor site did. We found that Lnx2b functions in a redundant manner with its paralog Lnx2a. Inhibition of lnx2a exon 2/3 splicing causes exon 2 skipping and leads to the production of an N-truncated protein that acts as an interfering molecule. Thus, the phenotype characterized by inhibition of exocrine cell differentiation requires inactivation of both Lnx2a and Lnx2b. Human LNX1 is known to destabilize Numb, and we show that inhibition of Numb expression rescues the Lnx2a/b-deficient phenotype. Further, Lnx2a/b inhibition leads to a reduction in the number of Notch active cells in the pancreas. We suggest that Lnx2a/b function to fine tune the regulation of Notch through Numb in the differentiation of cell types in the early zebrafish pancreas. Further, the complex relationships among genotype, phenotype, and morpholino effect in this case may be instructive in the ongoing consideration of morpholino use.

  2. Developmental activation of the capability to undergo checkpoint-induced apoptosis in the early zebrafish embryo.

    PubMed

    Ikegami, R; Hunter, P; Yager, T D

    1999-05-15

    In this study, we demonstrate the developmental activation, in the zebrafish embryo, of a surveillance mechanism which triggers apoptosis to remove damaged cells. We determine the time course of activation of this mechanism by exposing embryos to camptothecin, an agent which specifically inhibits topoisomerase I within the DNA replication complex and which, as a consequence of this inhibition, also produces strand breaks in the genomic DNA. In response to an early (pre-gastrula) treatment with camptothecin, apoptosis is induced at a time corresponding approximately to mid-gastrula stage in controls. This apoptotic response to a block of DNA replication can also be induced by early (pre-MBT) treatment with the DNA synthesis inhibitors hydroxyurea and aphidicolin. After camptothecin treatment, a high proportion of cells in two of the embryo's three mitotic domains (the enveloping and deep cell layers), but not in the remaining domain (the yolk syncytial layer), undergoes apoptosis in a cell-autonomous fashion. The first step in this response is an arrest of the proliferation of all deep- and enveloping-layer cells. These cells continue to increase in nuclear volume and to synthesize DNA. Eventually they become apoptotic, by a stereotypic pathway which involves cell membrane blebbing, "margination" and fragmentation of nuclei, and cleavage of the genomic DNA to produce a nucleosomal ladder. Fragmentation of nuclei can be blocked by the caspase-1,4,5 inhibitor Ac-YVAD-CHO, but not by the caspase-2,3,7[, 1] inhibitor Ac-DEVD-CHO. This suggests a functional requirement for caspase-4 or caspase-5 in the apoptotic response to camptothecin. Recently, Xenopus has been shown to display a developmental activation of the capability for stress- or damaged-induced apoptosis at early gastrula stage. En masse, our experiments suggest that the apoptotic responses in zebrafish and Xenopus are fundamentally similar. Thus, as for mammals, embryos of the lower vertebrates exhibit the

  3. The ontogeny of sleep-wake cycles in zebrafish: a comparison to humans

    PubMed Central

    Sorribes, Amanda; Þorsteinsson, Haraldur; Arnardóttir, Hrönn; Jóhannesdóttir, Ingibjörg Þ.; Sigurgeirsson, Benjamín; de Polavieja, Gonzalo G.; Karlsson, Karl Æ.

    2013-01-01

    Zebrafish (Danio rerio) are used extensively in sleep research; both to further understanding of sleep in general and also as a model of human sleep. To date, sleep studies have been performed in larval and adult zebrafish but no efforts have been made to document the ontogeny of zebrafish sleep–wake cycles. Because sleep differs across phylogeny and ontogeny it is important to validate the use of zebrafish in elucidating the neural substrates of sleep. Here we describe the development of sleep and wake across the zebrafish lifespan and how it compares to humans. We find power-law distributions to best fit wake bout data but demonstrate that exponential distributions, previously used to describe sleep bout distributions, fail to adequately account for the data in either species. Regardless, the data reveal remarkable similarities in the ontogeny of sleep cycles in zebrafish and humans. Moreover, as seen in other organisms, zebrafish sleep levels are highest early in ontogeny and sleep and wake bouts gradually consolidate to form the adult sleep pattern. Finally, sleep percentage, bout duration, bout number, and sleep fragmentation are shown to allow for meaningful comparisons between zebrafish and human sleep. PMID:24312015

  4. An In Vivo Method to Quantify Lymphangiogenesis in Zebrafish

    PubMed Central

    Hoffman, Scott J.; Psaltis, Peter J.; Clark, Karl J.; Spoon, Daniel B.; Chue, Colin D.; Ekker, Stephen C.; Simari, Robert D.

    2012-01-01

    Background Lymphangiogenesis is a highly regulated process involved in the pathogenesis of disease. Current in vivo models to assess lymphangiogenesis are largely unphysiologic. The zebrafish is a powerful model system for studying development, due to its rapid growth and transparency during early stages of life. Identification of a network of trunk lymphatic capillaries in zebrafish provides an opportunity to quantify lymphatic growth in vivo. Methods and Results Late-phase microangiography was used to detect trunk lymphatic capillaries in zebrafish 2- and 3-days post-fertilization. Using this approach, real-time changes in lymphatic capillary development were measured in response to modulators of lymphangiogenesis. Recombinant human vascular endothelial growth factor (VEGF)-C added directly to the zebrafish aqueous environment as well as human endothelial and mouse melanoma cell transplantation resulted in increased lymphatic capillary growth, while morpholino-based knockdown of vegfc and chemical inhibitors of lymphangiogenesis added to the aqueous environment resulted in decreased lymphatic capillary growth. Conclusion Lymphatic capillaries in embryonic and larval zebrafish can be quantified using late-phase microangiography. Human activators and small molecule inhibitors of lymphangiogenesis, as well as transplanted human endothelial and mouse melanoma cells, alter lymphatic capillary development in zebrafish. The ability to rapidly quantify changes in lymphatic growth under physiologic conditions will allow for broad screening of lymphangiogenesis modulators, as well as help define cellular roles and elucidate pathways of lymphatic development. PMID:23028871

  5. Single and joint toxic effects of five selected pesticides on the early life stages of zebrafish (Denio rerio).

    PubMed

    Wang, Yanhua; Lv, Lu; Yu, Yijun; Yang, Guiling; Xu, Zhenlan; Wang, Qiang; Cai, Leiming

    2017-03-01

    Instead of individual ones, pesticides are usually detected in water environment as mixtures of contaminants. Laboratory tests were conducted in order to investigate the effects of individual and joint pesticides (phoxim, atrazine, chlorpyrifos, butachlor and λ-cyhalothrin) on zebrafish (Denio rerio). Results from 96-h semi-static toxicity test indicated that λ-cyhalothrin had the greatest toxicity to the three life stages (embryonic, larval and juvenile stages) of D. rerio with LC50 values ranging from 0.0031 (0.0017-0.0042) to 0.38 (0.21-0.53) mg a.i. L(-1), followed by butachlor and chlorpyrifos with LC50 values ranging from 0.45 (0.31-0.59) to 1.93 (1.37-3.55) and from 0.28 (0.13-0.38) to 13.03 (7.54-19.71) mg a.i. L(-1), respectively. In contrast, atrazine showed the least toxicity with LC50 values ranging from 6.09 (3.34-8.35) to 34.19 (24.42-51.9) mg a.i. L(-1). The larval stage of D. rerio was a vulnerable period to most of the selected pesticides in the multiple life stages tested. Pesticide mixtures containing phoxim and λ-cyhalothrin exerted synergistic effects on the larvae of D. rerio. Moreover, the binary mixture of phoxim-atrazine also displayed synergistic response to zebrafish. It has been assumed that most chemicals are additive in toxicity. Therefore, it is crucial to clarify the synergistic interaction for pesticide regulators and environment managers. In the present study, our data provided a clear picture on ecological risk of these pesticide mixtures to aquatic organisms. Moreover, joint effects play a more important role than individual ones, which require more attention when defining standard for water environment quality and risk assessment protocols. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Using the Larval Zebrafish Locomotor Assay in Functional Neurotoxicity Screening: Light Intensity and the Order of Stimulus Presentation Affect the Outcome

    EPA Science Inventory

    The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize large numbers of chemicals using 6 day old zebrafish (Danio rerio) as an alternative test model for detecting neurotoxic chemicals. We use a behavioral testing paradigm that simultaneously tes...

  7. Using the Larval Zebrafish Locomotor Assay in Functional Neurotoxicity Screening: Light Intensity and the Order of Stimulus Presentation Affect the Outcome

    EPA Science Inventory

    The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize large numbers of chemicals using 6 day old zebrafish (Danio rerio) as an alternative test model for detecting neurotoxic chemicals. We use a behavioral testing paradigm that simultaneously tes...

  8. Tris(1,3-dichloro-2-propyl)phosphate Induces Genome-Wide Hypomethylation within Early Zebrafish Embryos

    PubMed Central

    2016-01-01

    Tris(1,3-dichloro-2-propyl)phosphate (TDCIPP) is a high-production volume organophosphate-based plasticizer and flame retardant widely used within the United States. Using zebrafish as a model, the objectives of this study were to determine whether (1) TDCIPP inhibits DNA methyltransferase (DNMT) within embryonic nuclear extracts; (2) uptake of TDCIPP from 0.75 h postfertilization (hpf, 2-cell) to 2 hpf (64-cell) or 6 hpf (shield stage) leads to impacts on the early embryonic DNA methylome; and (3) TDCIPP-induced impacts on cytosine methylation are localized to CpG islands within intergenic regions. Within this study, 5-azacytidine (5-azaC, a DNMT inhibitor) was used as a positive control. Although 5-azaC significantly inhibited zebrafish DNMT, TDCIPP did not affect DNMT activity in vitro at concentrations as high as 500 μM. However, rapid embryonic uptake of 5-azaC and TDCIPP from 0.75 to 2 hpf resulted in chemical- and chromosome-specific alterations in cytosine methylation at 2 hpf. Moreover, TDCIPP exposure predominantly resulted in hypomethylation of positions outside of CpG islands and within intragenic (exon) regions of the zebrafish genome. Overall, these findings provide the foundation for monitoring DNA methylation dynamics within zebrafish as well as identifying potential associations among TDCIPP exposure, adverse health outcomes, and DNA methylation status within human populations. PMID:27574916

  9. Tris(1,3-dichloro-2-propyl)phosphate Induces Genome-Wide Hypomethylation within Early Zebrafish Embryos.

    PubMed

    Volz, David C; Leet, Jessica K; Chen, Albert; Stapleton, Heather M; Katiyar, Neerja; Kaundal, Rakesh; Yu, Yang; Wang, Yinsheng

    2016-09-20

    Tris(1,3-dichloro-2-propyl)phosphate (TDCIPP) is a high-production volume organophosphate-based plasticizer and flame retardant widely used within the United States. Using zebrafish as a model, the objectives of this study were to determine whether (1) TDCIPP inhibits DNA methyltransferase (DNMT) within embryonic nuclear extracts; (2) uptake of TDCIPP from 0.75 h postfertilization (hpf, 2-cell) to 2 hpf (64-cell) or 6 hpf (shield stage) leads to impacts on the early embryonic DNA methylome; and (3) TDCIPP-induced impacts on cytosine methylation are localized to CpG islands within intergenic regions. Within this study, 5-azacytidine (5-azaC, a DNMT inhibitor) was used as a positive control. Although 5-azaC significantly inhibited zebrafish DNMT, TDCIPP did not affect DNMT activity in vitro at concentrations as high as 500 μM. However, rapid embryonic uptake of 5-azaC and TDCIPP from 0.75 to 2 hpf resulted in chemical- and chromosome-specific alterations in cytosine methylation at 2 hpf. Moreover, TDCIPP exposure predominantly resulted in hypomethylation of positions outside of CpG islands and within intragenic (exon) regions of the zebrafish genome. Overall, these findings provide the foundation for monitoring DNA methylation dynamics within zebrafish as well as identifying potential associations among TDCIPP exposure, adverse health outcomes, and DNA methylation status within human populations.

  10. A role for GnRH in early brain regionalization and eye development in zebrafish.

    PubMed

    Wu, Sheng; Page, Louise; Sherwood, Nancy M

    2006-09-26

    Gonadotropin-releasing hormone (GnRH) is a highly conserved peptide that is expressed early in brain development in vertebrates. In zebrafish, we detected GnRH mRNA within 2h post fertilization by RT-PCR. To determine if GnRH is involved in development, we used gene knockdown techniques to block translation of gnrh2 or gnrh3 mRNA after which the expression patterns for gene markers were examined at 24h post fertilization with in situ hybridization. First, loss of either GnRH2 or GnRH3 affected regionalization of the brain as shown by a change in expression of fgf8 or pax2.1 genes in the midbrain-hindbrain boundary or diencephalon-midbrain boundary. Second, lack of GnRH2 and/or GnRH3 altered gene markers expressed in the formation of the eye cup (pax2.1, pax6.1, mab21l2 and meis1.1) or eye stalk (fgf8 and pax2.1). Third, knockdown of GnRH2 affected the size and shape of the midbrain and expression of gene markers therein. Results from assays with the TUNEL method and caspase-3 and -9 activity showed the brain and eye changes were unlikely to result from secondary apoptotic cell death before 24h post fertilization. These experiments suggest that GnRH loss-of-function affects early brain and eye formation during development.

  11. Caudal migration and proliferation of renal progenitors regulates early nephron segment size in zebrafish

    PubMed Central

    Naylor, Richard W.; Dodd, Rachel C.; Davidson, Alan J.

    2016-01-01

    The nephron is the functional unit of the kidney and is divided into distinct proximal and distal segments. The factors determining nephron segment size are not fully understood. In zebrafish, the embryonic kidney has long been thought to differentiate in situ into two proximal tubule segments and two distal tubule segments (distal early; DE, and distal late; DL) with little involvement of cell movement. Here, we overturn this notion by performing lineage-labelling experiments that reveal extensive caudal movement of the proximal and DE segments and a concomitant compaction of the DL segment as it fuses with the cloaca. Laser-mediated severing of the tubule, such that the DE and DL are disconnected or that the DL and cloaca do not fuse, results in a reduction in tubule cell proliferation and significantly shortens the DE segment while the caudal movement of the DL is unaffected. These results suggest that the DL mechanically pulls the more proximal segments, thereby driving both their caudal extension and their proliferation. Together, these data provide new insights into early nephron morphogenesis and demonstrate the importance of cell movement and proliferation in determining initial nephron segment size. PMID:27759103

  12. Two classes of deleterious recessive alleles in a natural population of zebrafish, Danio rerio.

    PubMed Central

    McCune, Amy R.; Houle, David; McMillan, Kyle; Annable, Rebecca; Kondrashov, Alexey S.

    2004-01-01

    Natural populations carry deleterious recessive alleles which cause inbreeding depression. We compared mortality and growth of inbred and outbred zebrafish, Danio rerio, between 6 and 48 days of age. Grandparents of the studied fish were caught in the wild. Inbred fish were generated by brother-sister mating. Mortality was 9% in outbred fish, and 42% in inbred fish, which implies at least 3.6 lethal equivalents of deleterious recessive alleles per zygote. There was no significant inbreeding depression in the growth, perhaps because the surviving inbred fish lived under less crowded conditions. In contrast to alleles that cause embryonic and early larval mortality in the same population, alleles responsible for late larval and early juvenile mortality did not result in any gross morphological abnormalities. Thus, deleterious recessive alleles that segregate in a wild zebrafish population belong to two sharply distinct classes: early-acting, morphologically overt, unconditional lethals; and later-acting, morphologically cryptic, and presumably milder alleles. PMID:15451692

  13. Inhibition of signaling between human CXCR4 and zebrafish ligands by the small molecule IT1t impairs the formation of triple-negative breast cancer early metastases in a zebrafish xenograft model

    PubMed Central

    Tulotta, Claudia; Stefanescu, Cristina; Beletkaia, Elena; Bussmann, Jeroen; Tarbashevich, Katsiaryna; Schmidt, Thomas; Snaar-Jagalska, B. Ewa

    2016-01-01

    ABSTRACT Triple-negative breast cancer (TNBC) is a highly aggressive and recurrent type of breast carcinoma that is associated with poor patient prognosis. Because of the limited efficacy of current treatments, new therapeutic strategies need to be developed. The CXCR4-CXCL12 chemokine signaling axis guides cell migration in physiological and pathological processes, including breast cancer metastasis. Although targeted therapies to inhibit the CXCR4-CXCL12 axis are under clinical experimentation, still no effective therapeutic approaches have been established to block CXCR4 in TNBC. To unravel the role of the CXCR4-CXCL12 axis in the formation of TNBC early metastases, we used the zebrafish xenograft model. Importantly, we demonstrate that cross-communication between the zebrafish and human ligands and receptors takes place and human tumor cells expressing CXCR4 initiate early metastatic events by sensing zebrafish cognate ligands at the metastatic site. Taking advantage of the conserved intercommunication between human tumor cells and the zebrafish host, we blocked TNBC early metastatic events by chemical and genetic inhibition of CXCR4 signaling. We used IT1t, a potent CXCR4 antagonist, and show for the first time its promising anti-tumor effects. In conclusion, we confirm the validity of the zebrafish as a xenotransplantation model and propose a pharmacological approach to target CXCR4 in TNBC. PMID:26744352

  14. Role of two genes encoding PACAP in early brain development in zebrafish.

    PubMed

    Wu, Sheng; Adams, Bruce A; Fradinger, Erica A; Sherwood, Nancy M

    2006-07-01

    To study the role of pituitary adenylate cyclase-activating polypeptide (PACAP) in early brain development, we examined PACAP and its receptors for first expression and then separately knocked down the two forms of PACAP in zebrafish where development is rapid and observable. We injected morpholinos (antisense oligonucleotides) into fertilized eggs to block PACAP. Morphological changes in the brain were observed in embryos at 27 h post fertilization (hpf). Using in situ hybridization of early brain marker genes, we found that the most striking effects were an increase in pax2.1 expression in eye stalks associated with absence of either form of PACAP or an increase in eng2 and fgf8 in the midbrain-hindbrain boundary after loss of PACAP2. These marker genes are among the earliest factors in the formation of the midbrain-hindbrain boundary, an early organizing center. We suggest that PACAP is a target gene with feedback inhibition on pax2.1, eng2, or fgf8 in specific brain areas. In the hindbrain, the absence of either form of PACAP had little effect, as shown by expression of ephA4 and meis1.1. During midbrain development, our evidence suggests that PACAP1 can activate mbx. In both the diencephalon and/or forebrain, lack of PACAP1 or PACAP2 led to an increase in fgf8, again suggesting a suppressive effect of PACAP during development on these important genes that help to define cells in the forebrain. The early expression of transcripts for PACAP and its receptors by 0.5-6 hpf make both PACAP1 and PACAP2 candidates for factors that influence brain development.

  15. Toxicological and behavioral responses as a tool to assess the effects of natural and synthetic dyes on zebrafish early life.

    PubMed

    Abe, Flavia R; Mendonça, Jacqueline N; Moraes, Luiz A B; Oliveira, Gisele A R de; Gravato, Carlos; Soares, Amadeu M V M; Oliveira, Danielle P de

    2017-07-01

    Organic dyes extracted from natural sources have been widely used to develop safety and eco-friendly dyes as an alternative to synthetic ones, since the latter are usually precursors of mutagenic compounds. Thereby, toxicity tests to non-target organisms are critical step to develop harmless dyes to environment and in this context, zebrafish early life stages are becoming an important alternative model. We aimed to assess the toxic effects of the synthetic dye Basic Red 51 (BR51, used in cosmetic industry), the natural dye erythrostominone (ERY, a potential commercial dye extracted from fungi) and its photodegradation product (DERY), using zebrafish early life assays. Developmental malformations on embryos and behavioral impairment on larvae were explored. Our results showed that embryos exposed to BR51 and ERY exhibited a large yolk sac (LOEC = 7.5 mg L(-1)), possibly due to a deformity or delayed resorption. ERY also induced pericardial and yolk sac edemas at high concentrations (LOEC = 15 and 30 mg L(-1), respectively). Moreover, larvae swan less distance and time when exposed to ERY (LOEC = 7.5 mg L(-1)) and BR51 (LOEC = 1.875 mg L(-1)). The lowest larvae locomotion have been associated with impairment of the yolk sac, important tissue of the energy source. Interestingly, DERY did not affect neither development nor behavior of zebrafish, showing that ERY photodegradation is sufficient to prevent its toxic effects. In conclusion, both natural and synthetic dyes impaired development and behavior of zebrafish early life, therefore, a simple treatment of the natural dye can prevent the aquatic life impact. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Trophic transfer of Cd from larval chironomids (Chironomus riparius) exposed via sediment or waterborne routes, to zebrafish (Danio rerio): tissue-specific and subcellular comparisons.

    PubMed

    Béchard, K M; Gillis, P L; Wood, C M

    2008-12-11

    Zebrafish were fed chironomid larvae (8% wet weight daily ration) for 7 days, followed by 3 days of gut clearance in a static-renewal system. Regardless of whether the chironomids had been loaded with Cd via a waterborne exposure or sediment exposure, they had similar subcellular distributions of Cd, with the largest areas of storage being metal rich granules (MRG)>organelles (ORG)>enzymes (ENZ) except that sediment-exposed chironomids had significantly more Cd in the metallothionein-like protein (MTLP) fraction, and significantly less Cd in the cellular debris (CD) fraction. When zebrafish fed sediment-exposed chironomids (153+/-11 microg Cd/g dry weight) were compared directly to zebrafish fed waterborne exposed chironomids (288+/-12microg Cd/g dry weight), identical whole-body Cd levels were observed, despite the difference in the concentration in the food source. Thus trophic transfer efficiency (TTE) of Cd was significantly greater from sediment-exposed chironomids (2.0+/-0.5%) than from waterborne-exposed chironomids (0.7+/-0.2%). Subsequent tests with waterborne exposed chironomids loaded to comparable Cd concentrations, as well as with Cd-spiked manufactured pellets, demonstrated that TTEs were concentration-independent. In all treatments, zebrafish exhibited similar subcellular storage of Cd, with the greatest uptake occurring in the ORG fraction followed by the ENZ fraction. However, neither trophically available metal (TAM) nor metabolically available fractions (MAF) were good predictors for the TTEs found in this study. Tissue Cd concentrations were highest in the kidney and gut tissue, then liver, but lower in the gill, and carcass. Overall, the gut and carcass contributed >/=71% to total body burdens on a mass-weighted basis. This study presents evidence that Cd may be acquired by fish from natural diets at levels of environmental relevance for contaminated sites, and that the exposure route of the prey influences the TTE.

  17. Impairment of the tRNA-splicing endonuclease subunit 54 (tsen54) gene causes neurological abnormalities and larval death in zebrafish models of pontocerebellar hypoplasia.

    PubMed

    Kasher, Paul R; Namavar, Yasmin; van Tijn, Paula; Fluiter, Kees; Sizarov, Aleksander; Kamermans, Maarten; Grierson, Andrew J; Zivkovic, Danica; Baas, Frank

    2011-04-15

    Pontocerebellar hypoplasia (PCH) represents a group (PCH1-6) of neurodegenerative autosomal recessive disorders characterized by hypoplasia and/or atrophy of the cerebellum, hypoplasia of the ventral pons, progressive microcephaly and variable neocortical atrophy. The majority of PCH2 and PCH4 cases are caused by mutations in the TSEN54 gene; one of the four subunits comprising the tRNA-splicing endonuclease (TSEN) complex. We hypothesized that TSEN54 mutations act through a loss of function mechanism. At 8 weeks of gestation, human TSEN54 is expressed ubiquitously in the brain, yet strong expression is seen within the telencephalon and metencephalon. Comparable expression patterns for tsen54 are observed in zebrafish embryos. Morpholino (MO) knockdown of tsen54 in zebrafish embryos results in loss of structural definition in the brain. This phenotype was partially rescued by co-injecting the MO with human TSEN54 mRNA. A developmental patterning defect was not associated with tsen54 knockdown; however, an increase in cell death within the brain was observed, thus bearing resemblance to PCH pathophysiology. Additionally, N-methyl-N-nitrosourea mutant zebrafish homozygous for a tsen54 premature stop-codon mutation die within 9 days post-fertilization. To determine whether a common disease pathway exists between TSEN54 and other PCH-related genes, we also monitored the effects of mitochondrial arginyl-tRNA synthetase (rars2; PCH1 and PCH6) knockdown in zebrafish. Comparable brain phenotypes were observed following the inhibition of both genes. These data strongly support the hypothesis that TSEN54 mutations cause PCH through a loss of function mechanism. Also we suggest that a common disease pathway may exist between TSEN54- and RARS2-related PCH, which may involve a tRNA processing-related mechanism.

  18. A Model of Excitotoxic Brain Injury in Larval Zebrafish: Potential Application for High-Throughput Drug Evaluation to Treat Traumatic Brain Injury.

    PubMed

    McCutcheon, Victoria; Park, Eugene; Liu, Elaine; Wang, Youdong; Wen, Xiao-Yan; Baker, Andrew J

    2016-06-01

    Traumatic brain injury (TBI) is a leading cause of death and morbidity with no effective therapeutic treatments for secondary injury. Preclinical drug evaluation in rodent models of TBI is a lengthy process. In this regard, the zebrafish has numerous advantages to address the technical and time-dependent obstacles associated with drug evaluation. We developed a reproducible brain injury using glutamate excitoxicity in zebrafish larvae, a known initiator of delayed cell death in TBI. Glutamate challenge resulted in dose-dependent lethality over an 84-h observation period. We report significant decrease in locomotion (p < 0.0001) and mean velocity (p < 0.001) with 10 μM glutamate application as measured through automated 96-well plate behavioral analysis. Application of the NMDA receptor antagonist MK-801 (400 nM) or the calpain inhibitor, MDL-28170 (20 μM), resulted in significant recovery of locomotor function. A secA5-YFP transgenic line was used to visualize the localization of cell death due to glutamate exposure in vivo using confocal fluorescence microscopy. Our results indicate that zebrafish larvae exhibit responses to excitotoxic injury and pharmacotherapeutic intervention with pathophysiological relevance to mammalian excitotoxic brain injury. This system has potential to be applied as a high-throughput drug screening model to quickly identify candidate lead compounds for further evaluation.

  19. Gene expression patterns during the early stages of chemically induced larval metamorphosis and settlement of the coral Acropora millepora.

    PubMed

    Siboni, Nachshon; Abrego, David; Motti, Cherie A; Tebben, Jan; Harder, Tilmann

    2014-01-01

    The morphogenetic transition of motile coral larvae into sessile primary polyps is triggered and genetically programmed upon exposure to environmental biomaterials, such as crustose coralline algae (CCA) and bacterial biofilms. Although the specific chemical cues that trigger coral larval morphogenesis are poorly understood there is much more information available on the genes that play a role in this early life phase. Putative chemical cues from natural biomaterials yielded defined chemical samples that triggered different morphogenetic outcomes: an extract derived from a CCA-associated Pseudoalteromonas bacterium that induced metamorphosis, characterized by non-attached metamorphosed juveniles; and two fractions of the CCA Hydrolithon onkodes (Heydrich) that induced settlement, characterized by attached metamorphosed juveniles. In an effort to distinguish the genes involved in these two morphogenetic transitions, competent larvae of the coral Acropora millepora were exposed to these predictable cues and the expression profiles of 47 coral genes of interest (GOI) were investigated after only 1 hour of exposure using multiplex RT-qPCR. Thirty-two GOI were differentially expressed, indicating a putative role during the early regulation of morphogenesis. The most striking differences were observed for immunity-related genes, hypothesized to be involved in cell recognition and adhesion, and for fluorescent protein genes. Principal component analysis of gene expression profiles resulted in separation between the different morphogenetic cues and exposure times, and not only identified those genes involved in the early response but also those which influenced downstream biological changes leading to larval metamorphosis or settlement.

  20. Gene Expression Patterns during the Early Stages of Chemically Induced Larval Metamorphosis and Settlement of the Coral Acropora millepora

    PubMed Central

    Siboni, Nachshon; Abrego, David; Motti, Cherie A.; Tebben, Jan; Harder, Tilmann

    2014-01-01

    The morphogenetic transition of motile coral larvae into sessile primary polyps is triggered and genetically programmed upon exposure to environmental biomaterials, such as crustose coralline algae (CCA) and bacterial biofilms. Although the specific chemical cues that trigger coral larval morphogenesis are poorly understood there is much more information available on the genes that play a role in this early life phase. Putative chemical cues from natural biomaterials yielded defined chemical samples that triggered different morphogenetic outcomes: an extract derived from a CCA-associated Pseudoalteromonas bacterium that induced metamorphosis, characterized by non-attached metamorphosed juveniles; and two fractions of the CCA Hydrolithon onkodes (Heydrich) that induced settlement, characterized by attached metamorphosed juveniles. In an effort to distinguish the genes involved in these two morphogenetic transitions, competent larvae of the coral Acropora millepora were exposed to these predictable cues and the expression profiles of 47 coral genes of interest (GOI) were investigated after only 1 hour of exposure using multiplex RT–qPCR. Thirty-two GOI were differentially expressed, indicating a putative role during the early regulation of morphogenesis. The most striking differences were observed for immunity-related genes, hypothesized to be involved in cell recognition and adhesion, and for fluorescent protein genes. Principal component analysis of gene expression profiles resulted in separation between the different morphogenetic cues and exposure times, and not only identified those genes involved in the early response but also those which influenced downstream biological changes leading to larval metamorphosis or settlement. PMID:24632854

  1. Effects of Simulated Microgravity on Otolith Growth of Larval Zebrafish using a Rotating-Wall Vessel: Appropriate Rotation Speed and Fish Developmental Stage

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyan; Anken, Ralf; Liu, Liyue; Wang, Gaohong; Liu, Yongding

    2017-02-01

    Stimulus dependence is a general feature of developing animal sensory systems. In this respect, it has extensively been shown earlier that fish inner ear otoliths can act as test masses as their growth is strongly affected by altered gravity such as hypergravity obtained using centrifuges, by (real) microgravity achieved during spaceflight or by simulated microgravity using a ground-based facility. Since flight opportunities are scarce, ground-based simulators of microgravity, using a wide variety of physical principles, have been developed to overcome this shortcoming. Not all of them, however, are equally well suited to provide functional weightlessness from the perspective of the biosystem under evaluation. Therefore, the range of applicability of a particular simulator has to be extensively tested. Earlier, we have shown that a Rotating-Wall Vessel (RWV) can be used to provide simulated microgravity for developing Zebrafish regarding the effect of rotation on otolith development. In the present study, we wanted to find the most effective speed of rotation and identify the appropriate developmental stage of Zebrafish, where effects are the largest, in order to provide a methodological basis for future in-depth analyses dedicated to the physiological processes underlying otolith growth at altered gravity. Last not least, we compared data on the effect of simulated microgravity on the size versus the weight of otoliths, since the size usually is measured in related studies due to convenience, but the weight more accurately approximates the physical capacity of an otolith. Maintaining embryos at 10 hours post fertilization for three days in the RWV, we found that 15 revolutions per minute (rpm) yielded the strongest effects on otolith growth. Maintenance of Zebrafish staged at 10 hpf, 1 day post fertilization (dpf), 4 dpf, 7 dpf and 14 dpf for three days at 15 rpm resulted in the most prominent effects in 7 dpf larvae. Weighing versus measuring the size of otoliths

  2. Effects of Simulated Microgravity on Otolith Growth of Larval Zebrafish using a Rotating-Wall Vessel: Appropriate Rotation Speed and Fish Developmental Stage

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyan; Anken, Ralf; Liu, Liyue; Wang, Gaohong; Liu, Yongding

    2016-10-01

    Stimulus dependence is a general feature of developing animal sensory systems. In this respect, it has extensively been shown earlier that fish inner ear otoliths can act as test masses as their growth is strongly affected by altered gravity such as hypergravity obtained using centrifuges, by (real) microgravity achieved during spaceflight or by simulated microgravity using a ground-based facility. Since flight opportunities are scarce, ground-based simulators of microgravity, using a wide variety of physical principles, have been developed to overcome this shortcoming. Not all of them, however, are equally well suited to provide functional weightlessness from the perspective of the biosystem under evaluation. Therefore, the range of applicability of a particular simulator has to be extensively tested. Earlier, we have shown that a Rotating-Wall Vessel (RWV) can be used to provide simulated microgravity for developing Zebrafish regarding the effect of rotation on otolith development. In the present study, we wanted to find the most effective speed of rotation and identify the appropriate developmental stage of Zebrafish, where effects are the largest, in order to provide a methodological basis for future in-depth analyses dedicated to the physiological processes underlying otolith growth at altered gravity. Last not least, we compared data on the effect of simulated microgravity on the size versus the weight of otoliths, since the size usually is measured in related studies due to convenience, but the weight more accurately approximates the physical capacity of an otolith. Maintaining embryos at 10 hours post fertilization for three days in the RWV, we found that 15 revolutions per minute (rpm) yielded the strongest effects on otolith growth. Maintenance of Zebrafish staged at 10 hpf, 1 day post fertilization (dpf), 4 dpf, 7 dpf and 14 dpf for three days at 15 rpm resulted in the most prominent effects in 7 dpf larvae. Weighing versus measuring the size of otoliths

  3. The Polycomb Group Protein Pcgf1 Is Dispensable in Zebrafish but Involved in Early Growth and Aging

    PubMed Central

    Le Bourhis, Xuefen; Angrand, Pierre-Olivier

    2016-01-01

    Polycomb Repressive Complex (PRC) 1 regulates the control of gene expression programs via chromatin structure reorganization. Through mutual exclusion, different PCGF members generate a variety of PRC1 complexes with potentially distinct cellular functions. In this context, the molecular function of each of the PCGF family members remains elusive. The study of PCGF family member expression in zebrafish development and during caudal fin regeneration reveals that the zebrafish pcgf genes are subjected to different regulations and that all PRC1 complexes in terms of Pcgf subunit composition are not always present in the same tissues. To unveil the function of Pcgf1 in zebrafish, a mutant line was generated using the TALEN technology. Mutant pcgf1-/- fish are viable and fertile, but the growth rate at early developmental stages is reduced in absence of pcgf1 gene function and a significant number of pcgf1-/- fish show signs of premature aging. This first vertebrate model lacking Pcgf1 function shows that this Polycomb Group protein is involved in cell proliferation during early embryogenesis and establishes a link between epigenetics and aging. PMID:27442247

  4. Ooplasmic segregation in the zebrafish zygote and early embryo: pattern of ooplasmic movements and transport pathways.

    PubMed

    Fuentes, Ricardo; Fernández, Juan

    2010-08-01

    Patterns of cytoplasmic movements and organization of transport pathways were examined in live or fixed zygotes and early zebrafish embryos using a variety of techniques. The zygote blastodisc grows by accumulation of ooplasm, transported to the animal pole from distinct sectors of ecto- and endoplasm at different speeds and developmental periods, using specific pathways or streamers. Slow transport (5 microm/min) occurs during the first interphase along short streamers, whereas fast transport (9.6-40 microm/min) takes place during the first cleavage division along axial and meridional streamers. Interconnections between streamers allow cargoes to change their speed and final destination. A similar sequence of events occurs during the following divisions. A complex network of microtubules and actin filaments in the endo- and ectoplasm appears to be involved in the transport of inclusions and mRNAs. Actin-dependent intermittent pulsations provoked high-speed back-and-forth movements of cytoplasm that may contribute to redistribution of organelles and maternal determinants.

  5. The Impact of Seawater Saturation State on Early Skeletal Development in Larval Corals: Insights into Scleractinian Biomineralization

    NASA Astrophysics Data System (ADS)

    Cohen, A. L.; McCorkle, D. C.; de Putron, S.

    2007-12-01

    contrast to the fine, closed, densely packed spherulitic bundles accreted in the control system, larvae in the lower Omega treatments produced a disorganized conglomerate of large, highly faceted crystals, consistent with slow growth under low saturation state conditions. Our results suggest that the coral calcification response to changes in seawater saturation state is linked to a physiological limitation on the organism's ability to elevate the saturation state of seawater within the calcifying space. Further, our data indicate that ocean acidification due to fossil fuel CO2 emissions will likely have a strong negative effect on the recruitment and early skeletal development of larval corals over the next several decades.

  6. Early embryonic ethanol exposure impairs shoaling and the dopaminergic and serotoninergic systems in adult zebrafish.

    PubMed

    Buske, Christine; Gerlai, Robert

    2011-01-01

    Fetal alcohol syndrome (FAS) is a devastating disorder accompanied by numerous morphological and behavioral abnormalities. Human FAS has been modeled in laboratory animals including the zebrafish. Recently, embryonic exposure to low doses of ethanol has been shown to impair behavior without any gross morphological alterations in zebrafish. The exposed zebrafish showed reduced responses to animated conspecific images. The effect of embryonic ethanol exposure, however, has not been investigated in a real shoal and the potential mechanisms underlying the behavioral impairment are also unknown. Here we show that a 2h long immersion in 0.25% and 0.50% (vol/vol) alcohol at 24h post fertilization significantly increases the distance among members of freely swimming groups of zebrafish when measured at 70 days post fertilization. We also show that this impaired behavior is accompanied by reduced levels of dopamine, DOPAC, serotonin and 5HIAA as quantified by HPLC from whole brain extracts. Our results demonstrate that even very low concentrations of alcohol applied for a short period of time during the development of zebrafish can impair behavior and brain function. We argue that the observed behavioral impairment is not likely to be due to altered performance capabilities, e.g. motor function or perception, but possibly to social behavior itself. We also argue that our neurochemical data represent the first step towards understanding the mechanisms of this abnormality in zebrafish, which may lead to better modeling of, and ultimately perhaps better therapies for human FAS.

  7. Lineage relationship of direct-developing melanocytes and melanocyte stem cells in the zebrafish.

    PubMed

    Tryon, Robert C; Higdon, Charles W; Johnson, Stephen L

    2011-01-01

    Previous research in zebrafish has demonstrated that embryonic and larval regeneration melanocytes are derived from separate lineages. The embryonic melanocytes that establish the larval pigment pattern do not require regulative melanocyte stem cell (MSC) precursors, and are termed direct-developing melanocytes. In contrast, the larval regeneration melanocytes that restore the pigment pattern after ablation develop from MSC precursors. Here, we explore whether embryonic melanocytes and MSCs share bipotent progenitors. Furthermore, we explore when fate segregation of embryonic melanocytes and MSCs occurs in zebrafish development. In order to achieve this, we develop and apply a novel lineage tracing method. We first demonstrate that Tol2-mediated genomic integration of reporter constructs from plasmids injected at the 1-2 cell stage occurs most frequently after the midblastula transition but prior to shield stage, between 3 and 6 hours post-fertilization. This previously uncharacterized timing of Tol2-mediated genomic integration establishes Tol2-mediated transposition as a means for conducting lineage tracing in zebrafish. Combining the Tol2-mediated lineage tracing strategy with a melanocyte regeneration assay previously developed in our lab, we find that embryonic melanocytes and larval regeneration melanocytes are derived from progenitors that contribute to both lineages. We estimate 50-60 such bipotent melanogenic progenitors to be present in the shield-stage embryo. Furthermore, our examination of direct-developing and MSC-restricted lineages suggests that these are segregated from bipotent precursors after the shield stage, but prior to the end of convergence and extension. Following this early fate segregation, we estimate approximately 100 embryonic melanocyte and 90 MSC-restricted lineages are generated to establish or regenerate the zebrafish larval pigment pattern, respectively. Thus, the dual strategies of direct-development and MSC-derived development

  8. Lineage Relationship of Direct-Developing Melanocytes and Melanocyte Stem Cells in the Zebrafish

    PubMed Central

    Tryon, Robert C.; Higdon, Charles W.; Johnson, Stephen L.

    2011-01-01

    Previous research in zebrafish has demonstrated that embryonic and larval regeneration melanocytes are derived from separate lineages. The embryonic melanocytes that establish the larval pigment pattern do not require regulative melanocyte stem cell (MSC) precursors, and are termed direct-developing melanocytes. In contrast, the larval regeneration melanocytes that restore the pigment pattern after ablation develop from MSC precursors. Here, we explore whether embryonic melanocytes and MSCs share bipotent progenitors. Furthermore, we explore when fate segregation of embryonic melanocytes and MSCs occurs in zebrafish development. In order to achieve this, we develop and apply a novel lineage tracing method. We first demonstrate that Tol2-mediated genomic integration of reporter constructs from plasmids injected at the 1–2 cell stage occurs most frequently after the midblastula transition but prior to shield stage, between 3 and 6 hours post-fertilization. This previously uncharacterized timing of Tol2-mediated genomic integration establishes Tol2-mediated transposition as a means for conducting lineage tracing in zebrafish. Combining the Tol2-mediated lineage tracing strategy with a melanocyte regeneration assay previously developed in our lab, we find that embryonic melanocytes and larval regeneration melanocytes are derived from progenitors that contribute to both lineages. We estimate 50–60 such bipotent melanogenic progenitors to be present in the shield-stage embryo. Furthermore, our examination of direct-developing and MSC-restricted lineages suggests that these are segregated from bipotent precursors after the shield stage, but prior to the end of convergence and extension. Following this early fate segregation, we estimate approximately 100 embryonic melanocyte and 90 MSC-restricted lineages are generated to establish or regenerate the zebrafish larval pigment pattern, respectively. Thus, the dual strategies of direct-development and MSC

  9. Early Exposure of Bay Scallops (Argopecten irradians) to High CO2 Causes a Decrease in Larval Shell Growth

    PubMed Central

    White, Meredith M.; McCorkle, Daniel C.; Mullineaux, Lauren S.; Cohen, Anne L.

    2013-01-01

    Ocean acidification, characterized by elevated pCO2 and the associated decreases in seawater pH and calcium carbonate saturation state (Ω), has a variable impact on the growth and survival of marine invertebrates. Larval stages are thought to be particularly vulnerable to environmental stressors, and negative impacts of ocean acidification have been seen on fertilization as well as on embryonic, larval, and juvenile development and growth of bivalve molluscs. We investigated the effects of high CO2 exposure (resulting in pH = 7.39, Ωar = 0.74) on the larvae of the bay scallop Argopecten irradians from 12 h to 7 d old, including a switch from high CO2 to ambient CO2 conditions (pH = 7.93, Ωar = 2.26) after 3 d, to assess the possibility of persistent effects of early exposure. The survival of larvae in the high CO2 treatment was consistently lower than the survival of larvae in ambient conditions, and was already significantly lower at 1 d. Likewise, the shell length of larvae in the high CO2 treatment was significantly smaller than larvae in the ambient conditions throughout the experiment and by 7 d, was reduced by 11.5%. This study also demonstrates that the size effects of short-term exposure to high CO2 are still detectable after 7 d of larval development; the shells of larvae exposed to high CO2 for the first 3 d of development and subsequently exposed to ambient CO2 were not significantly different in size at 3 and 7 d than the shells of larvae exposed to high CO2 throughout the experiment. PMID:23596514

  10. Kaempferol suppresses lipid accumulation by inhibiting early adipogenesis in 3T3-L1 cells and zebrafish.

    PubMed

    Lee, Yeon-Joo; Choi, Hyeon-Son; Seo, Min-Jung; Jeon, Hui-Jeon; Kim, Kui-Jin; Lee, Boo-Yong

    2015-08-01

    Kaempferol is a flavonoid present in Kaempferia galanga and Opuntia ficus indica var. saboten. Recent studies have suggested that it has anti-oxidant, anti-inflammatory, anti-cancer, and anti-obesity effects. In this study, we focused on the anti-adipogenic effects of kaempferol during adipocyte differentiation. The results showed that kaempferol inhibits lipid accumulation in adipocytes and zebrafish. Oil Red O and Nile Red staining showed that the number of intracellular lipid droplets decreased in adipocytes and zebrafish treated with kaempferol. LPAATθ (lysophosphatidic acid acyltransferase), lipin1, and DGAT1 (triglyceride synthetic enzymes) and FASN and SREBP-1C (fatty acid synthetic proteins) showed decreased expression levels in the presence of kaempferol. In addition, treatment of kaempferol showed an inhibitory activity on cell cycle progression. Kaempferol delayed cell cycle progression from the S to G2/M phase through the regulation of cyclins in a dose-dependent manner. Kaempferol blocked the phosphorylation of AKT (protein kinase B) and mammalian target of rapamycin (mTOR) signaling pathway during the early stages of adipogenesis. In addition, kaempferol down-regulated pro-early adipogenic factors such as CCAAT-enhancer binding proteins β (C/EBPβ), and Krüppel-like factors (KLFs) 4 and 5, while anti-early adipogenic factors, such as KLF2 and pref-1(preadipocyte factor-1), were upregulated. These kaempferol-mediated regulations of early adipogenic factors resulted in the attenuation of late adipogenic factors such as C/EBPα and peroxisome proliferator-activated receptor γ (PPARγ). These results were supported in zebrafish based on the decrease in lipid accumulation and expression of adipogenic factors. Our results indicated that kaempferol might have an anti-obesity effect by regulating lipid metabolism.

  11. Zebrafish as an early stage screening tool to study the systemic circulation of nanoparticulate drug delivery systems in vivo.

    PubMed

    Sieber, Sandro; Grossen, Philip; Detampel, Pascal; Siegfried, Salome; Witzigmann, Dominik; Huwyler, Jörg

    2017-08-26

    Nanomedicines have gained much attention for the delivery of small molecules or nucleic acids as treatment options for many diseases. However, the transfer from experimental systems to in vivo applications remains a challenge since it is difficult to assess their circulation behavior in the body at an early stage of drug discovery. Thus, innovative and improved concepts are urgently needed to overcome this issue and to close the gap between empiric nanoparticle design, in vitro assessment, and first in vivo experiments using rodent animal models. This study was focused on the zebrafish as a vertebrate screening model to assess the circulation in blood and extravasation behavior of nanoparticulate drug delivery systems in vivo. To validate this novel approach, monodisperse preparations of fluorescently labeled liposomes with similar size and zeta potential were injected into transgenic zebrafish lines expressing green fluorescent protein in their vasculature. Phosphatidylcholine-based lipids differed by fatty acid chain length and saturation. Circulation behavior and vascular distribution pattern were evaluated qualitatively and semi-quantitatively using image analysis. Liposomes composed of lipids with lower transition temperature (<28°C) as well as PEGylated liposomes showed longer circulation times and extravasation. In contrast, liposomes composed of lipids with transition temperatures>28°C bound to venous parts of the vasculature. This circulation patterns in the zebrafish model did correlate with published and experimental pharmacokinetic data from mice and rats. Our findings indicate that the zebrafish model is a useful vertebrate screening tool for nanoparticulate drug delivery systems to predict their in vivo circulation behavior with respect to systemic circulation time and exposure. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Spatial and temporal expression of zebrafish glutathione peroxidase 4 a and b genes during early embryo development.

    PubMed

    Mendieta-Serrano, Mario A; Schnabel, Denhí; Lomelí, Hilda; Salas-Vidal, Enrique

    2015-01-01

    Antioxidant cellular mechanisms are essential for cell redox homeostasis during animal development and in adult life. Previous in situ hybridization analyses of antioxidant enzymes in zebrafish have indicated that they are ubiquitously expressed. However, spatial information about the protein distribution of these enzymes is not available. Zebrafish embryos are particularly suitable for this type of analysis due to their small size, transparency and fast development. The main objective of the present work was to analyze the spatial and temporal gene expression pattern of the two reported zebrafish glutathione peroxidase 4 (GPx4) genes during the first day of zebrafish embryo development. We found that the gpx4b gene shows maternal and zygotic gene expression in the embryo proper compared to gpx4a that showed zygotic gene expression in the periderm covering the yolk cell only. Following, we performed a GPx4 protein immunolocalization analysis during the first 24-h of development. The detection of this protein suggests that the antibody recognizes GPx4b in the embryo proper during the first 24 h of development and GPx4a at the periderm covering the yolk cell after 14-somite stage. Throughout early cleavages, GPx4 was located in blastomeres and was less abundant at the cleavage furrow. Later, from the 128-cell to 512-cell stages, GPx4 remained in the cytoplasm but gradually increased in the nuclei, beginning in marginal blastomeres and extending the nuclear localization to all blastomeres. During epiboly progression, GPx4b was found in blastoderm cells and was excluded from the yolk cell. After 24 h of development, GPx4b was present in the myotomes particularly in the slow muscle fibers, and was excluded from the myosepta. These results highlight the dynamics of the GPx4 localization pattern and suggest its potential participation in fundamental developmental processes. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Toxicity of effluents from gasoline stations oil-water separators to early life stages of zebrafish Danio rerio.

    PubMed

    Alves, Romulo Nepomuceno; Mariz, Célio Freire; Paulo, Driele Ventura de; Carvalho, Paulo S M

    2017-07-01

    Used petroleum hydrocarbons and gasoline stations runoff are significant sources of polycyclic aromatic hydrocarbons (PAHs) to aquatic ecosystems. Samples of the final effluent of oil-water-separators were collected at gasoline stations in the metropolitan region of Recife, Brazil, before release to sewage or rainwater systems. Effluent soluble fractions (ESF) were prepared and bioassays were performed according to the Fish Embryo Toxicity Test. The test involved exposing zebrafish Danio rerio embryos to dilutions of the ESFs for 96 h, with daily examination of lethality and sublethal morphological effects integrated through the General Morphology Score (GMS), based on the achievement of developmental hallmarks. Frequencies of abnormalities were recorded after exposures. ESF LC50-96h (lethal concentration to 50% of exposed embryos) in the most toxic effluent achieved 8.9% (v/v), equivalent to 11 μg phenanthrene equivalents L(-1). GMS scores indicated significantly delayed embryo-larval development at ESF dilutions of 10% and 20% from effluents of all gas stations. Major abnormalities detected after the 96 h exposure included the presence of a yolk sac not fully absorbed coupled with the lack of an inflated swim bladder, lack of both pectoral fins, and the failure to develop a protruding mouth. Effective equivalent PAH concentrations that induce a 50% frequency of larvae without an inflated swim bladder (EC50) were 4.9 μg phenanthrene L(-1), 21.8 μg naphthalene L(-1), and 34.1 μg chrysene L(-1). This study shows that PAHs in ESFs from gas stations oil water separators are toxic to zebrafish, contributing to the toxicity of urban storm waters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Proteomics Identification of Potential Candidates Involved in Cell Proliferation for Early Stage of Brain Regeneration in the Adult Zebrafish.

    PubMed

    Lim, Fei Tieng; Ogawa, Satoshi; Smith, A Ian; Parhar, Ishwar S

    2017-02-01

    The central nervous system (CNS) of the non-mammalian vertebrates has better neuroregenerative capability as compared with the mammalian CNS. Regeneration of habenula was observed 40 days after damage in zebrafish. During the early stage of regeneration, we found a significant increase of apoptotic cells on day-1 post-damage and of proliferative cells on day-3 post-damage. To identify the molecular factor(s) involved in the early stages of neuroregeneration, differentially expressed proteins during sham, 20- and 40-h post-habenula damage were investigated by proteomic approach by using two-dimensional differential gel electrophoresis (2D-DIGE) coupled with Matrix-Assisted Laser Desorption/Ionization-Time-of-Flight (MALDI-ToF) and tandem mass spectrometry. Protein profiles revealed 17 differentially (>1.5-fold) expressed proteins: 10 upregulated, 4 downregulated, 2 proteins were found to be downregulated at the early stage but upregulated at a later stage, and 1 protein was found to be upregulated at 2 different time points. All proteins identified can be summarized under few molecular processes involved in the early stages of neuroregeneration in zebrafish CNS: apoptosis regulation (Wnt inhibitory factor 1 [WIF1]), neuroprotection (metallothionein), cell proliferation (Spred2, ependymin, Lhx1, and Wnts), differentiation (Spred2, Lhx9, and Wnts), and morphogenesis (cytoplasmic actins and draculin). These protein profiling results suggest that drastic molecular changes occur in the neuroregenerative process during this period, which includes cell proliferation, differentiation, and protection.

  15. Inner Ear Formation during the Early Larval Development of Xenopus Laevis

    PubMed Central

    Quick, Quincy A.; Serrano, Elba E.

    2010-01-01

    The formation of the eight independent endorgan compartments (sacculus, utricle, horizontal canal, anterior canal, posterior canal, lagena, amphibian papilla, and basilar papilla) of the Xenopus laevis inner ear is illlustrated as the otic vesicle develops into a complex labyrinthine structure. The morphology of transverse sections and whole mounts of the inner ear was assessed in seven developmental stages (28, 31, 37, 42, 45, 47, 50) using brightfield and laser scanning confocal microscopy. The presence of mechanosensory hair cells in the sensory epithelia was determined by identification of stereociliary bundles in cryosectioned tissue and whole mounts of the inner ear labeled with the fluorescent F-actin probe, Alexa-488 phalloidin. Between stages 28 and 45 the otic vesicle grows in size, stereociliary bundles appear and increase in number, and the pars inferior and pars superior become visible. The initial formation of vestibular compartments with their nascent stereociliary bundles is seen by larval stage 47, and all eight vestibular and auditory compartments with their characteristic sensory fields are present by larval stage 50. Thus in Xenopus, inner ear compartments are established between stages 45 and 50, a two week period during which the ear quadruples in length in the anteroposterior dimension. The anatomical images presented here demonstrate the morphological changes that occur as the otic vesicle forms the auditory and vestibular endorgans of the inner ear. These images provide a resource for investigations of gene expression patterns in Xenopus during inner ear compartmentalization and morphogenesis. PMID:16217737

  16. A SoxC gene related to larval shell development and co-expression analysis of different shell formation genes in early larvae of oyster.

    PubMed

    Liu, Gang; Huan, Pin; Liu, Baozhong

    2017-06-01

    Among the potential larval shell formation genes in mollusks, most are expressed in cells surrounding the shell field during the early phase of shell formation. The only exception (cgi-tyr1) is expressed in the whole larval mantle and thus represents a novel type of expression pattern. This study reports another gene with such an expression pattern. The gene encoded a SoxC homolog of the Pacific oyster Crassostrea gigas and was named cgi-soxc. Whole-mount in situ hybridization revealed that the gene was highly expressed in the whole larval mantle of early larvae. Based on its spatiotemporal expression, cgi-soxc is hypothesized to be involved in periostracum biogenesis, biomineralization, and regulation of cell proliferation. Furthermore, we investigated the interrelationship between cgi-soxc expression and two additional potential shell formation genes, cgi-tyr1 and cgi-gata2/3. The results confirmed co-expression of the three genes in the larval mantle of early D-veliger. Nevertheless, cgi-gata2/3 was only expressed in the mantle edge, and the other two genes were expressed in all mantle cells. Based on the spatial expression patterns of the three genes, two cell groups were identified from the larval mantle (tyr1 (+)/soxc (+)/gata2/3 (+) cells and tyr1 (+)/soxc (+)/gata2/3 (-) cells) and are important to study the differentiation and function of this tissue. The results of this study enrich our knowledge on the structure and function of larval mantle and provide important information to understand the molecular mechanisms of larval shell formation.

  17. Epilepsy, Behavioral Abnormalities, and Physiological Comorbidities in Syntaxin-Binding Protein 1 (STXBP1) Mutant Zebrafish

    PubMed Central

    Grone, Brian P.; Marchese, Maria; Hamling, Kyla R.; Kumar, Maneesh G.; Krasniak, Christopher S.; Sicca, Federico; Santorelli, Filippo M.; Patel, Manisha; Baraban, Scott C.

    2016-01-01

    Mutations in the synaptic machinery gene syntaxin-binding protein 1, STXBP1 (also known as MUNC18-1), are linked to childhood epilepsies and other neurodevelopmental disorders. Zebrafish STXBP1 homologs (stxbp1a and stxbp1b) have highly conserved sequence and are prominently expressed in the larval zebrafish brain. To understand the functions of stxbp1a and stxbp1b, we generated loss-of-function mutations using CRISPR/Cas9 gene editing and studied brain electrical activity, behavior, development, heart physiology, metabolism, and survival in larval zebrafish. Homozygous stxbp1a mutants exhibited a profound lack of movement, low electrical brain activity, low heart rate, decreased glucose and mitochondrial metabolism, and early fatality compared to controls. On the other hand, homozygous stxbp1b mutants had spontaneous electrographic seizures, and reduced locomotor activity response to a movement-inducing “dark-flash” visual stimulus, despite showing normal metabolism, heart rate, survival, and baseline locomotor activity. Our findings in these newly generated mutant lines of zebrafish suggest that zebrafish recapitulate clinical phenotypes associated with human syntaxin-binding protein 1 mutations. PMID:26963117

  18. Development of cryopreservation protocols for early stage zebrafish (Danio rerio) ovarian follicles using controlled slow cooling.

    PubMed

    Tsai, S; Rawson, D M; Zhang, T

    2009-05-01

    Cryopreservation of germplasm of aquatic species offers many benefits to the fields of aquaculture, conservation and biomedicine. Although successful fish sperm cryopreservation has been achieved with many species, there has been no report of successful cryopreservation of fish embryos and late stage oocytes which are large, chilling sensitive and have low membrane permeability. In the present study, cryopreservation of early stage zebrafish ovarian follicles was studied for the first time using controlled slow freezing. The effect of cryoprotectant, freezing medium, cooling rate, method for cryoprotectant removal, post-thaw incubation time and ovarian follicle developmental stage were investigated. Stages I and II ovarian follicles were frozen in 4M methanol and 3M DMSO in either L-15 medium or KCl buffer. Ovarian follicle viability was assessed using trypan blue, FDA+PI staining and ADP/ATP assay. The results showed that KCl buffer was more beneficial than L-15 medium, methanol was more effective than DMSO, optimum cooling rates were 2-4 degrees C/min, stepwise removal of cryoprotectant improved ovarian follicle viability significantly and stage I ovarian follicles were more sensitive to freezing. The results also showed that FDA+PI staining and ADP/ATP assay were more sensitive than TB staining. The highest follicle viabilities after post-thaw incubation for 2h obtained with FDA+PI staining were 50.7+/-4.0% although ADP/ATP ratios of the cryopreserved follicles were significantly increased indicating increased cell damage. Studies are currently being carried out on in vitro maturation of these cryopreserved ovarian follicles.

  19. Upregulation of leukemia inhibitory factor (LIF) during the early stage of optic nerve regeneration in zebrafish.

    PubMed

    Ogai, Kazuhiro; Kuwana, Ayaka; Hisano, Suguru; Nagashima, Mikiko; Koriyama, Yoshiki; Sugitani, Kayo; Mawatari, Kazuhiro; Nakashima, Hiroshi; Kato, Satoru

    2014-01-01

    Fish retinal ganglion cells (RGCs) can regenerate their axons after optic nerve injury, whereas mammalian RGCs normally fail to do so. Interleukin 6 (IL-6)-type cytokines are involved in cell differentiation, proliferation, survival, and axon regrowth; thus, they may play a role in the regeneration of zebrafish RGCs after injury. In this study, we assessed the expression of IL-6-type cytokines and found that one of them, leukemia inhibitory factor (LIF), is upregulated in zebrafish RGCs at 3 days post-injury (dpi). We then demonstrated the activation of signal transducer and activator of transcription 3 (STAT3), a downstream target of LIF, at 3-5 dpi. To determine the function of LIF, we performed a LIF knockdown experiment using LIF-specific antisense morpholino oligonucleotides (LIF MOs). LIF MOs, which were introduced into zebrafish RGCs via a severed optic nerve, reduced the expression of LIF and abrogated the activation of STAT3 in RGCs after injury. These results suggest that upregulated LIF drives Janus kinase (Jak)/STAT3 signaling in zebrafish RGCs after nerve injury. In addition, the LIF knockdown impaired axon sprouting in retinal explant culture in vitro; reduced the expression of a regeneration-associated molecule, growth-associated protein 43 (GAP-43); and delayed functional recovery after optic nerve injury in vivo. In this study, we comprehensively demonstrate the beneficial role of LIF in optic nerve regeneration and functional recovery in adult zebrafish.

  20. Lrrc10 is required for early heart development and function in zebrafish

    PubMed Central

    Kim, Ki-Hyun; Antkiewicz, Dagmara S.; Yan, Long; Eliceiri, Kevin W.; Heideman, Warren; Peterson, Richard E.; Lee, Youngsook

    2007-01-01

    Leucine-rich Repeat Containing protein 10 (LRRC10) has recently been identified as a cardiac-specific factor in mice. However, the function of this factor remains to be elucidated. In this study, we investigated the developmental roles of Lrrc10 using zebrafish as an animal model. Knockdown of Lrrc10 in zebrafish embryos (morphants) using morpholinos caused severe cardiac morphogenic defects including a cardiac looping failure accompanied by a large pericardial edema, and embryonic lethality between day 6 and 7 post fertilization. The Lrrc10 morphants exhibited cardiac functional defects as evidenced by a decrease in ejection fraction and cardiac output. Further investigations into the underlying mechanisms of the cardiac defects revealed that the number of cardiomyocyte was reduced in the morphants. Expression of two cardiac genes was deregulated in the morphants including an increase in atrial natriuretic factor, a hallmark for cardiac hypertrophy and failure, and a decrease in cardiac myosin light chain 2, an essential protein for cardiac contractility in zebrafish. Moreover, a reduced fluorescence intensity from NADH in the morphant heart was observed in live zebrafish embryos as compared to control. Taken together, the present study demonstrates that Lrrc10 is necessary for normal cardiac development and cardiac function in zebrafish embryos, which will enhance our understanding of congenital heart defects and heart disease. PMID:17601532

  1. Caffeine Induces High Expression of cyp-35A Family Genes and Inhibits the Early Larval Development in Caenorhabditis elegans

    PubMed Central

    Min, Hyemin; Kawasaki, Ichiro; Gong, Joomi; Shim, Yhong-Hee

    2015-01-01

    Intake of caffeine during pregnancy can cause retardation of fetal development. Although the significant influence of caffeine on animal development is widely recognized, much remains unknown about its mode of action because of its pleiotropic effects on living organisms. In the present study, by using Caenorhabditis elegans as a model organism, the effects of caffeine on development were examined. Brood size, embryonic lethality, and percent larval development were investigated, and caffeine was found to inhibit the development of C. elegans at most of the stages in a dosage-dependent fashion. Upon treatment with 30 mM caffeine, the majority (86.1 ± 3.4%) of the L1 larvae were irreversibly arrested without further development. In contrast, many of the late-stage larvae survived and grew to adults when exposed to the same 30 mM caffeine. These results suggest that early-stage larvae are more susceptible to caffeine than later-stage larvae. To understand the metabolic responses to caffeine treatment, the levels of expression of cytochrome P450 (cyp) genes were examined with or without caffeine treatment using comparative micro-array, and it was found that the expression of 24 cyp genes was increased by more than 2-fold (p < 0.05). Among them, induction of the cyp-35A gene family was the most prominent. Interestingly, depletion of the cyp-35A family genes one-by-one or in combination through RNA interference resulted in partial rescue from early larval developmental arrest caused by caffeine treatment, suggesting that the high-level induction of cyp-35A family genes can be fatal to the development of early-stage larvae. PMID:25591395

  2. The effect of larval and early adult experience on behavioural plasticity of the aphid parasitoid Aphidius ervi (Hymenoptera, Braconidae, Aphidiinae).

    PubMed

    Villagra, Cristian A; Pennacchio, Francesco; Niemeyer, Hermann M

    2007-11-01

    The relevance of the integration of preimaginal and eclosion experiences on the subsequent habitat preferences and mate finding by the adult has been rarely tested in holometabolous insects. In this work, the effect of larval and early adult experiences on the behavioural responses of adult males of the aphid parasitoid, Aphidius ervi, towards volatiles from the host-plant complex (HPC) and from conspecific females were evaluated. Two experience factors were considered: host diet (normal diet=ND; artificial diet=AD), and eclosion, i.e. extraction or non-extraction of the parasitoid larva from the parasitised aphid (extracted=EX; non-extracted=NE). Thus, four treatments were set up: ND/NE, ND/EX, AD/NE and AD/EX. Glass Y-tube olfactometers were used to investigate the responses of adult A. ervi males to the odour sources used. Males from the ND/NE treatment showed a shorter latency to the first choice of olfactometer arms, displayed a marked preference towards the HPC olfactometer arm, and spent more time in the HPC arm than males from the other treatments. Only the interaction of host diet and eclosion experiences proved to be relevant in explaining the differences in latency to first choice, time spent in olfactometers arms, and behaviours displayed in the olfactometer arms. These results show the importance of the integration of larval and eclosion experiences in the development of stereotyped responses of the adults. This process may involve memory retention from the preimaginal and emergence period, but further research is needed to disentangle the contribution of each stage. The response to conspecific females was much less affected by the treatments in relation to first arm choice and times in olfactometer arms, suggesting a pheromone-mediated behaviour, even though a prompter and more intense wing fanning courtship behaviour was registered in the ND/NE males compared to males from the AD/NE treatment. These results show that sexual behaviours are less

  3. The effect of larval and early adult experience on behavioural plasticity of the aphid parasitoid Aphidius ervi (Hymenoptera, Braconidae, Aphidiinae)

    NASA Astrophysics Data System (ADS)

    Villagra, Cristian A.; Pennacchio, Francesco; Niemeyer, Hermann M.

    2007-11-01

    The relevance of the integration of preimaginal and eclosion experiences on the subsequent habitat preferences and mate finding by the adult has been rarely tested in holometabolous insects. In this work, the effect of larval and early adult experiences on the behavioural responses of adult males of the aphid parasitoid, Aphidius ervi, towards volatiles from the host-plant complex (HPC) and from conspecific females were evaluated. Two experience factors were considered: host diet (normal diet=ND; artificial diet=AD), and eclosion, i.e. extraction or non-extraction of the parasitoid larva from the parasitised aphid (extracted=EX; non-extracted=NE). Thus, four treatments were set up: ND/NE, ND/EX, AD/NE and AD/EX. Glass Y-tube olfactometers were used to investigate the responses of adult A. ervi males to the odour sources used. Males from the ND/NE treatment showed a shorter latency to the first choice of olfactometer arms, displayed a marked preference towards the HPC olfactometer arm, and spent more time in the HPC arm than males from the other treatments. Only the interaction of host diet and eclosion experiences proved to be relevant in explaining the differences in latency to first choice, time spent in olfactometers arms, and behaviours displayed in the olfactometer arms. These results show the importance of the integration of larval and eclosion experiences in the development of stereotyped responses of the adults. This process may involve memory retention from the preimaginal and emergence period, but further research is needed to disentangle the contribution of each stage. The response to conspecific females was much less affected by the treatments in relation to first arm choice and times in olfactometer arms, suggesting a pheromone-mediated behaviour, even though a prompter and more intense wing fanning courtship behaviour was registered in the ND/NE males compared to males from the AD/NE treatment. These results show that sexual behaviours are less

  4. Learning and memory in zebrafish larvae.

    PubMed

    Roberts, Adam C; Bill, Brent R; Glanzman, David L

    2013-01-01

    Larval zebrafish possess several experimental advantages for investigating the molecular and neural bases of learning and memory. Despite this, neuroscientists have only recently begun to use these animals to study memory. However, in a relatively short period of time a number of forms of learning have been described in zebrafish larvae, and significant progress has been made toward their understanding. Here we provide a comprehensive review of this progress; we also describe several promising new experimental technologies currently being used in larval zebrafish that are likely to contribute major insights into the processes that underlie learning and memory.

  5. Learning and memory in zebrafish larvae

    PubMed Central

    Roberts, Adam C.; Bill, Brent R.; Glanzman, David L.

    2013-01-01

    Larval zebrafish possess several experimental advantages for investigating the molecular and neural bases of learning and memory. Despite this, neuroscientists have only recently begun to use these animals to study memory. However, in a relatively short period of time a number of forms of learning have been described in zebrafish larvae, and significant progress has been made toward their understanding. Here we provide a comprehensive review of this progress; we also describe several promising new experimental technologies currently being used in larval zebrafish that are likely to contribute major insights into the processes that underlie learning and memory. PMID:23935566

  6. Histone deacetylase-4 is required during early cranial neural crest development for generation of the zebrafish palatal skeleton

    PubMed Central

    2012-01-01

    Background Histone deacetylase-4 (Hdac4) is a class II histone deacetylase that inhibits the activity of transcription factors. In humans, HDAC4 deficiency is associated with non-syndromic oral clefts and brachydactyly mental retardation syndrome (BDMR) with craniofacial abnormalities. Results We identify hdac4 in zebrafish and characterize its function in craniofacial morphogenesis. The gene is present as a single copy, and the deduced Hdac4 protein sequence shares all known functional domains with human HDAC4. The zebrafish hdac4 transcript is widely present in migratory cranial neural crest (CNC) cells of the embryo, including populations migrating around the eye, which previously have been shown to contribute to the formation of the palatal skeleton of the early larva. Embryos injected with hdac4 morpholinos (MO) have reduced or absent CNC populations that normally migrate medial to the eye. CNC-derived palatal precursor cells do not recover at the post-migratory stage, and subsequently we found that defects in the developing cartilaginous palatal skeleton correlate with reduction or absence of early CNC cells. Palatal skeletal defects prominently include a shortened, clefted, or missing ethmoid plate, and are associated with a shortening of the face of young larvae. Conclusions Our results demonstrate that Hdac4 is a regulator of CNC-derived palatal skeletal precursors during early embryogenesis. Cleft palate resulting from HDAC4 mutations in human patients may result from defects in a homologous CNC progenitor cell population. PMID:22676467

  7. Effect of PMA-induced protein kinase C activation on development and apoptosis in early zebrafish embryos.

    PubMed

    Hrubik, Jelena; Glisic, Branka; Samardzija, Dragana; Stanic, Bojana; Pogrmic-Majkic, Kristina; Fa, Svetlana; Andric, Nebojsa

    2016-12-01

    Protein kinase C (PKC) isoforms have been implicated in several key steps during early development, but the consequences of xenobiotic-induced PKC activation during early embryogenesis are still unknown. In this study, zebrafish embryos were exposed to a range of phorbol 12-myristate 13-acetate (PMA) concentrations (0-200μg/L) at different time points after fertilization. Results showed that 200μgPMA/L caused development of yolk bags, cardiac edema, slow blood flow, pulsating blood flow, slow pulse, elongated heart, lack of tail fins, curved tail, and coagulation. PMA exposure decreased survival rate of the embryos starting within the first 24h and becoming more pronounced after prolonged exposure (96h). PMA increased the number of apoptotic cells in the brain region as demonstrated by acridine orange staining and caused up-regulation of caspase 9 (casp9) and p53 up-regulated modulator of apoptosis (puma) mRNA in whole embryos. PMA caused oxidative stress in the embryos as demonstrated by decreased mRNA expression of catalase and superoxide dismutase 2. Inhibition of Pkc with GF109203X improved overall survival rate, reduced apoptosis in the brain and decreased expression of casp9 and puma in the PMA-exposed embryos. However, Pkc inhibition neither prevented development of deformities nor reversed oxidative stress in the PMA-exposed embryos. These data suggest that direct over-activation of Pkc during early embryogenesis of zebrafish is associated with apoptosis and decreased survival rate of the embryos.

  8. Loss of the small heat shock protein αA-crystallin does not lead to detectable defects in early zebrafish lens development.

    PubMed

    Posner, Mason; Skiba, Jackie; Brown, Mary; Liang, Jennifer O; Nussbaum, Justin; Prior, Heather

    2013-11-01

    Alpha crystallins are small heat shock proteins essential to normal ocular lens function. They also help maintain homeostasis in many non-ocular vertebrate tissues and their expression levels change in multiple diseases of the nervous and cardiovascular system and during cancer. The specific roles that α-crystallins may play in eye development are unclear. Studies with knockout mice suggested that only one of the two mammalian α-crystallins is required for normal early lens development. However, studies in two fish species suggested that reduction of αA-crystallin alone could inhibit normal fiber cell differentiation, cause cataract and contribute to lens degeneration. In this study we used synthetic antisense morpholino oligomers to suppress the expression of zebrafish αA-crystallin to directly test the hypothesis that, unlike mammals, the zebrafish requires αA-crystallin for normal early lens development. Despite the reduction of zebrafish αA-crystallin protein to undetectable levels by western analysis through 4 days of development we found no changes in fiber cell differentiation, lens morphology or transparency. In contrast, suppression of AQP0a expression, previously shown to cause lens cataract, produced irregularly shaped lenses, delay in fiber cell differentiation and lens opacities detectable by confocal microscopy. The normal development observed in αA-crystallin deficient zebrafish embryos may reflect similarly non-essential roles for this protein in the early stages of both zebrafish and mammalian lens development. This finding has ramifications for a growing number of researchers taking advantage of the zebrafish's transparent external embryos to study vertebrate eye development. Our demonstration that lens cataracts can be visualized in three-dimensions by confocal microscopy in a living zebrafish provides a new tool for studying the causes, development and prevention of lens opacities.

  9. Deiodinase knockdown during early zebrafish development affects growth, development, energy metabolism, motility and phototransduction.

    PubMed

    Bagci, Enise; Heijlen, Marjolein; Vergauwen, Lucia; Hagenaars, An; Houbrechts, Anne M; Esguerra, Camila V; Blust, Ronny; Darras, Veerle M; Knapen, Dries

    2015-01-01

    Thyroid hormone (TH) balance is essential for vertebrate development. Deiodinase type 1 (D1) and type 2 (D2) increase and deiodinase type 3 (D3) decreases local intracellular levels of T3, the most important active TH. The role of deiodinase-mediated TH effects in early vertebrate development is only partially understood. Therefore, we investigated the role of deiodinases during early development of zebrafish until 96 hours post fertilization at the level of the transcriptome (microarray), biochemistry, morphology and physiology using morpholino (MO) knockdown. Knockdown of D1+D2 (D1D2MO) and knockdown of D3 (D3MO) both resulted in transcriptional regulation of energy metabolism and (muscle) development in abdomen and tail, together with reduced growth, impaired swim bladder inflation, reduced protein content and reduced motility. The reduced growth and impaired swim bladder inflation in D1D2MO could be due to lower levels of T3 which is known to drive growth and development. The pronounced upregulation of a large number of transcripts coding for key proteins in ATP-producing pathways in D1D2MO could reflect a compensatory response to a decreased metabolic rate, also typically linked to hypothyroidism. Compared to D1D2MO, the effects were more pronounced or more frequent in D3MO, in which hyperthyroidism is expected. More specifically, increased heart rate, delayed hatching and increased carbohydrate content were observed only in D3MO. An increase of the metabolic rate, a decrease of the metabolic efficiency and a stimulation of gluconeogenesis using amino acids as substrates may have been involved in the observed reduced protein content, growth and motility in D3MO larvae. Furthermore, expression of transcripts involved in purine metabolism coupled to vision was decreased in both knockdown conditions, suggesting that both may impair vision. This study provides new insights, not only into the role of deiodinases, but also into the importance of a correct TH balance

  10. Neurochemical measurements in the zebrafish brain

    PubMed Central

    Jones, Lauren J.; McCutcheon, James E.; Young, Andrew M. J.; Norton, William H. J.

    2015-01-01

    The zebrafish is an ideal model organism for behavioral genetics and neuroscience. The high conservation of genes and neurotransmitter pathways between zebrafish and other vertebrates permits the translation of research between species. Zebrafish behavior can be studied at both larval and adult stages and recent research has begun to establish zebrafish models for human disease. Fast scan cyclic voltammetry (FSCV) is an electrochemical technique that permits the detection of neurotransmitter release and reuptake. In this study we have used in vitro FSCV to measure the release of analytes in the adult zebrafish telencephalon. We compare different stimulation methods and present a characterization of neurochemical changes in the wild-type zebrafish brain. This study represents the first FSCV recordings in zebrafish, thus paving the way for neurochemical analysis of the fish brain. PMID:26441575

  11. Persistent Adverse Effects on Health and Reproduction Caused by Exposure of Zebrafish to 2,3,7,8-Tetrachlorodibenzo-p-dioxin During Early Development and Gonad Differentiation

    PubMed Central

    King Heiden, Tisha C.; Spitsbergen, Jan; Heideman, Warren; Peterson, Richard E.

    2009-01-01

    Little is understood regarding the impacts of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure during early development on the health, survival, and reproductive capability of adults. Here we use zebrafish to determine whether early life stage exposure to TCDD induces toxicity in adult zebrafish and their offspring. Zebrafish were exposed to graded concentrations of TCDD (0–400 pg/ml) via waterborne exposure for 1 h/week from 0 to 7 weeks of age. The heart and swim bladder were identified as being most sensitive to TCDD exposure during early development. Subtle developmental toxic responses collectively impaired survival, and only zebrafish in the 0, 25, and 50 pg TCDD/ml groups survived to adulthood. Surviving fish exhibited TCDD toxicity in craniofacial structures (i.e., operculum and jaw), heart, swim bladder, and ovary. Exposure to 25 pg TCDD/ml impaired egg production (40% of control), fertility (90% of control), and gamete quality. TCDD-treated males contributed more than females to impaired reproductive capacity. Transgenerational effects were also discovered in that offspring from parents exposed to TCDD during early life stages showed a 25% increase in mortality compared with the F1 of dimethyl sulfoxide fish, reduced egg production (30–50% of control) and fertility (96% of control). Thus, adverse effects resulting from TCDD exposure during early life stages for one generation of zebrafish were sufficient to cause adverse health and reproductive effects on a second generation of zebrafish. In the environment, transgenerational effects such as these may contribute to population declines for the most TCDD sensitive fish species. PMID:19279074

  12. Acute toxicity of aromatic and non-aromatic fractions of naphthenic acids extracted from oil sands process-affected water to larval zebrafish.

    PubMed

    Scarlett, A G; Reinardy, H C; Henry, T B; West, C E; Frank, R A; Hewitt, L M; Rowland, S J

    2013-09-01

    The toxicity of oil sands process-affected water (OSPW) has regularly been attributed to naphthenic acids, which exist in complex mixtures. If on remediation treatment (e.g., ozonation) or on entering the environment, the mixtures of these acids all behave in the same way, then they can be studied as a whole. If, however, some acids are resistant to change, whilst others are not, or are less resistant, it is important to establish which sub-classes of acids are the most toxic. In the present study we therefore assayed the acute toxicity to larval fish, of a whole acidified OSPW extract and an esterifiable naphthenic acids fraction, de-esterified with alkali: both fractions were toxic (LC50 ∼5-8mgL(-1)). We then fractionated the acids by argentation solid phase extraction of the esters and examined the acute toxicity of two fractions: a de-esterified alicyclic acids fraction, which contained, for example, adamantane and diamantane carboxylic acids, and an aromatic acids fraction. The alicyclic acids were toxic (LC50 13mgL(-1)) but the higher molecular weight aromatic acids fraction was somewhat more toxic, at least on a weight per volume basis (LC50 8mgL(-1); P<0.05) (for comparison, the monoaromatic dehydroabietic acid had a LC50 of ∼1mgL(-1)). These results show how toxic naphthenic acids of OSPW are to these larval fish and that on a weight per volume basis, the aromatic acids are at least as toxic as the 'classical' alicyclic acids. The environmental fates and other toxic effects, if any, of the fractions remain to be established. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. A role for non-muscle myosin II function in furrow maturation in the early zebrafish embryo.

    PubMed

    Urven, Lance E; Yabe, Taijiro; Pelegri, Francisco

    2006-10-15

    Cytokinesis in early zebrafish embryos involves coordinated changes in the f-actin- and microtubule-based cytoskeleton, and the recruitment of adhesion junction components to the furrow. We show that exposure to inhibitors of non-muscle myosin II function does not affect furrow ingression during the early cleavage cycles but interferes with the recruitment of pericleavage f-actin and cortical beta-catenin aggregates to the furrow, as well as the remodeling of the furrow microtubule array. This remodeling is in turn required for the distal aggregation of the zebrafish germ plasm. Embryos with reduced myosin activity also exhibit at late stages of cytokinesis a stabilized contractile ring apparatus that appears as a ladder-like pattern of short f-actin cables, supporting a role for myosin function in the disassembly of the contractile ring after furrow formation. Our studies support a role for myosin function in furrow maturation that is independent of furrow ingression and which is essential for the recruitment of furrow components and the remodeling of the cytoskeleton during cytokinesis.

  14. A simplified method for identifying early CRISPR-induced indels in zebrafish embryos using High Resolution Melting analysis.

    PubMed

    Samarut, Éric; Lissouba, Alexandra; Drapeau, Pierre

    2016-08-04

    The CRISPR/Cas9 system has become a regularly used tool for editing the genome of many model organisms at specific sites. However, two limiting steps arise in the process of validating guide RNA target sites in larvae and adults: the time required to identify indels and the cost associated with identifying potential mutant animals. Here we have combined and optimized the HotSHOT genomic DNA extraction technique with a two-steps Evagreen PCR, followed by a high-resolution melting (HRM) assay, which facilitates rapid identification of CRISPR-induced indels. With this technique, we were able to genotype adult zebrafish using genomic DNA extracted from fin-clips in less than 2 h. We were also able to obtain a reliable and early read-out of the effectiveness of guide RNAs only 4 h after the embryos were injected with the constructs for the CRISPR/Cas9 mutagenic system. Furthermore, through mutagenesis kinetic assay, we identified that the 2-cell stage is the earliest time point at which indels can be observed. By combining an inexpensive and rapid genomic DNA extraction method with an HRM-based assay, our approach allows for high-throughput genotyping of adult zebrafish and embryos, and is more sensitive than standard PCR approaches, permitting early identification of CRISPR-induced indels and with applications for other model organisms as well.

  15. Early embryo and larval development of inviable intergeneric hybrids derived from Crassostrea angulata and Saccostrea cucullata

    NASA Astrophysics Data System (ADS)

    Su, Jiaqi; Wang, Zhaoping; Zhang, Yuehuan; Yan, Xiwu; Li, Qiongzhen; Yu, Ruihai

    2016-06-01

    To detect the intergeneric hybridization between the oyster Crassostrea angulata and Saccostrea cucullata coexisting along the southern coast of China, reciprocal crosses were conducted between the two species. Barriers for sperm recognizing, binding, penetrating the egg, and forming the pronucleus were detected by fluorescence staining. From the results, although fertilization success was observed in hybrid crosses, the overall fertilization rate was lower than that of intraspecific crosses. A large number of hybrid larvae died at 6-8 d after hatching, and those survived could not complete metamorphosis. C. angulata ♀× S. cucullata ♂ larvae had a growth rate similar to that of the maternal species, whereas S. cucullata ♀ × C. angulata ♂ larvae grew the slowest among all crosses. Molecular genetics analysis revealed that hybrid progeny were amphimixis hybrids. This study demonstrated that hybrid embryos generated by crossing C. angulata and S. cucullata could develop normally to the larval state, but could not complete metamorphosis and then develop to the spat stage. Thus, there is a post-reproductive isolation between C. angulata and S. cucullata.

  16. EVALUATING THE EFFECTS OF FLY ASH EXPOSURE ON FISH EARLY LIFE STAGES: FATHEAD MINNOW EMBRYO-LARVAL TESTS

    SciTech Connect

    Greeley Jr, Mark Stephen; Elmore, Logan R; McCracken, Kitty

    2012-05-01

    On December 22, 2008, a dike containing fly ash and bottom ash in an 84-acre complex of the Tennessee Valley Authority's (TVA) Kingston Steam Plant in East Tennessee failed and released a large quantity of ash into the adjacent Emory River. Ash deposits extended as far as 4 miles upstream (Emory River mile 6) of the Plant, and some ash was carried as far downstream as Tennessee River mile 564 ({approx}4 miles downstream of the Tennessee River confluence with the Clinch River). A byproduct of coal burning power plants, fly ash contains a variety of metals and other elements which, at sufficient concentrations and in specific forms, can be toxic to biological systems. The effects of fly ash contamination on exposed fish populations depend on the magnitude and duration of exposure, with the most significant risk considered to be the effects of specific ash constituents, especially selenium, on fish early life stages. Uptake by adult female fish of fly ash constituents through the food chain and subsequent maternal transfer of contaminants to the developing eggs is thought to be the primary route of selenium exposure to larval fish (Woock and others 1987, Coyle and others 1993, Lemly 1999, Moscatello and others 2006), but direct contact of the fertilized eggs and developing embryos to ash constituents in river water and sediments is also a potential risk factor (Woock and others 1987, Coyle and others 1993, Jezierska and others 2009). To address the risk of fly ash from the Kingston spill to the reproductive health of downstream fish populations, ORNL has undertaken a series of studies in collaboration with TVA including: (1) a field study of the bioaccumulation of fly ash constituents in fish ovaries and the reproductive condition of sentinel fish species in reaches of the Emory and Clinch Rivers affected by the fly ash spill; (2) laboratory tests of the potential toxicity of fly ash from the spill area on fish embryonic and larval development (reported in the current

  17. Early life stage trimethyltin exposure induces ADP-ribosylation factor expression and perturbs the vascular system in zebrafish

    PubMed Central

    Chen, Jiangfei; Huang, Changjiang; Truong, Lisa; La Du, Jane; Tilton, Susan C.; Waters, Katrina M.; Lin, Kuanfei; Tanguay, Robert L; Dong, Qiaoxiang

    2012-01-01

    Trimethyltin chloride (TMT) is an organotin contaminant, widely detected in aqueous environments, posing potential human and environmental risks. In this study, we utilized the zebrafish model to investigate the impact of transient TMT exposure on developmental progression, angiogenesis, and cardiovascular development. Embryos were waterborne exposed to a wide TMT concentration range from 8 to 96 hours post fertilization (hpf). The TMT concentration that led to mortality in 50% of the embryos (LC50) at 96 hpf was 8.2 μM; malformations in 50% of the embryos (EC50) was 2.8 μM. The predominant response observed in surviving embryos was pericardial edema. Additionally, using the Tg (fli1a: EGFP) y1 transgenic zebrafish line to non-invasively monitor vascular development, TMT exposure led to distinct disarrangements in the vascular system. The most susceptible developmental stage to TMT exposure was between 48–72 hpf. High density whole genome microarrays were used to identify the early transcriptional changes following TMT exposure from 48 to 60 hpf or 72 hpf. In total, 459 transcripts were differentially expressed at least 2-fold (P < 0.05) by TMT compared to control. Using Ingenuity Pathway Analysis (IPA) tools, it was revealed that the transcripts misregulated by TMT exposure were clustered in numerous categories including metabolic and cardiovascular disease, cellular function, cell death, molecular transport, and physiological development. In situ localization of highly elevated transcripts revealed intense staining of ADP-ribosylation factors arf3 and arf5 in the head, trunk, and tail regions. When arf5 expression was blocked by morpholinos, the zebrafish did not display the prototypical TMT-induced vascular deficits, indicating that the induction of arf5 was necessary for TMT-induced vascular toxicity. PMID:23000284

  18. Analysis of early embryonic great-vessel microcirculation in zebrafish using high-speed confocal μPIV.

    PubMed

    Chen, Chia-Yuan; Patrick, Michael J; Corti, Paola; Kowalski, William; Roman, Beth L; Pekkan, Kerem

    2011-01-01

    In the developing cardiovascular system, hemodynamic vascular loading is critical for angiogenesis and cardiovascular adaptation. Normal zebrafish embryos with transgenically-labeled endothelial and red blood cells provide an excellent in vivo model for studying the fluid-flow induced vascular loading. To characterize the developmental hemodynamics of early embryonic great-vessel microcirculation in the zebrafish embryo, two complementary studies (experimental and numerical) are presented. Quantitative comparison of the wall shear stress (WSS) at the first aortic arch (AA1) of wild-type zebrafish embryos during two consecutive developmental stages is presented, using time-resolved confocal micro-particle image velocimetry (μPIV). Analysis showed that there was significant WSS difference between 32 and 48 h post-fertilization (hpf) wild-type embryos, which correlates with normal arch morphogenesis. The vascular distensibility of the arch wall at systole and the acceleration/deceleration rates of time-lapse phase-averaged streamwise blood flow curves were also analyzed. To estimate the influence of a novel intermittent red-blood cell (RBC) loading on the endothelium, a numerical two-phase, volume of fluid (VOF) flow model was further developed with realistic in vivo conditions. These studies showed that near-wall effects and cell clustering increased WSS augmentation at a minimum of 15% when the distance of RBC from arch vessel wall was less than 3 μm or when RBC cell-to-cell distance was less than 3 μm. When compared to a smooth wall, the WSS augmentation increased by a factor of ~1.4 due to the roughness of the wall created by the endothelial cell profile. These results quantitatively highlight the contribution of individual RBC flow patterns on endothelial WSS in great-vessel microcirculation and will benefit the quantitative understanding of mechanotransduction in embryonic great vessel biology, including arteriovenous malformations (AVM).

  19. Developmental and Persistent Toxicities of Maternally Deposited Selenomethionine in Zebrafish (Danio rerio).

    PubMed

    Thomas, Jith K; Janz, David M

    2015-08-18

    The objectives of this study were (1) to establish egg selenium (Se) toxicity thresholds for mortality and deformities in early life stages of zebrafish (Danio rerio) after exposure to excess selenomethionine (SeMet, the dominant chemical species of Se in diets) via in ovo maternal transfer and (2) to investigate the persistent effects of developmental exposure to excess SeMet on swim performance and metabolic capacities in F1-generation adult zebrafish. Adult zebrafish were fed either control food (1.3 μg Se/g, dry mass or d.m.) or food spiked with increasing measured concentrations of Se (3.4, 9.8, or 27.5 μg Se/g, d.m.) in the form of SeMet for 90 d. In ovo exposure to SeMet increased mortality and deformities in larval zebrafish in a concentration-dependent fashion with threshold egg Se concentrations (EC10s) of 7.5 and 7.0 μg Se/g d.m., respectively. Impaired swim performance and greater respiration and metabolic rates were observed in F1-generation zebrafish exposed in ovo to 6.8 and 12.7 μg Se/g d.m and raised to adulthood in clean water. A species sensitivity distribution (SSD) based on egg Se developmental toxicity thresholds suggests that zebrafish are the most sensitive fish species studied to date.

  20. In vitro levamisole selection pressure on larval stages of Haemonchus contortus over nine generations gives rise to drug resistance and target site gene expression changes specific to the early larval stages only.

    PubMed

    Sarai, Ranbir S; Kopp, Steven R; Knox, Malcolm R; Coleman, Glen T; Kotze, Andrew C

    2015-06-30

    There is some evidence that resistance to levamisole and pyrantel in trichostrongylid nematodes is due to changes in the composition of nicotinic acetylcholine receptors (nAChRs) which represent the drug target site. Altered expression patterns of genes coding for nAChR subunits, as well as the presence of truncated versions of several subunits, have been implicated in observed resistances. The studies have mostly compared target sites in worm isolates of very different genetic background, and hence the ability to associate the molecular changes with drug sensitivity alone have been clouded to some extent. The present study aimed to circumvent this issue by following target site gene expression pattern changes as resistance developed in Haemonchus contortus worms under laboratory selection pressure with levamisole. We applied drug selection pressure to early stage larvae in vitro over nine generations, and monitored changes in larval and adult drug sensitivities and target site gene expression patterns. High level resistance developed in larvae, with resistance factors of 94-fold and 1350-fold at the IC50 and IC95, respectively, in larval development assays after nine generations of selection. There was some cross-resistance to bephenium (70-fold increase in IC95). The expression of all the putative subunit components of levamisole-sensitive nAChRs, as well as a number of ancillary protein genes, particularly Hco-unc-29.1 and -ric-3, were significantly decreased (up to 5.5-fold) in the resistant larvae at generation nine compared to the starting population. However, adult worms did not show any resistance to levamisole, and showed an inverse pattern of gene expression changes, with many target site genes showing increased expression compared to the starting population. A comparison of the larval/adult drug sensitivity data with the known relationships for field-derived isolates indicated that the adults of our selected population should have been highly resistant

  1. An in vivo evaluation of acute toxicity of cobalt ferrite (CoFe2O4) nanoparticles in larval-embryo Zebrafish (Danio rerio).

    PubMed

    Ahmad, Farooq; Liu, Xiaoyi; Zhou, Ying; Yao, Hongzhou

    2015-09-01

    The broad spectrum applications of CoFe2O4 NPs have attracted much interest in medicine, environment and industry, resulting in exceedingly higher exposures to humans and environmental systems in succeeding days. Their health effects and potential biological impacts need to be determined for risk assessment. Zebrafish (Danio rerio) embryos were exposed to environmentally relevant doses of nano-CoFe2O4 (mean diameter of 40nm) with a concentration range of 10-500μM for 96h. Acute toxic end points were evaluated by survival rate, malformation, hatching delay, heart dysfunction and tail flexure of larvae. Dose and time dependent developmental toxicity with severe cardiac edema, down regulation of metabolism, hatching delay and tail/spinal cord flexure and apoptosis was observed. The biochemical changes were evaluated by ROS, Catalase (CAT), Lipid peroxidation (LPO), Acid phophatase (AP) and Glutatione s- transferase (GST). An Agglomeration of NPs and dissolution of ions induces severe mechanical damage to membranes and oxidative stress. Severe apoptosis of cells in the head, heart and tail region with inhibition of catalase confirms ROS induced acute toxicity with increasing concentration. Increased activity of GST and AP at lower concentrations of CoFe2O4 NPs demonstrates the severe oxidative stress. Circular dichroism (CD) spectra indicated the weak interactions of NPs with BSA and slight changes in α-helix structure. In addition, CoFe2O4 NPs at lower concentrations do not show any considerable interference with assay components and analytical instruments. The results are possible elucidation of pathways of toxicity induced by these particles, as well as contributing in defining the protocols for risk assessment of these nanoparticles. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Using Touch-evoked Response and Locomotion Assays to Assess Muscle Performance and Function in Zebrafish

    PubMed Central

    Williams, Caitlin; Bryson-Richardson, Robert J.

    2016-01-01

    Zebrafish muscle development is highly conserved with mammalian systems making them an excellent model to study muscle function and disease. Many myopathies affecting skeletal muscle function can be quickly and easily assessed in zebrafish over the first few days of embryogenesis. By 24 hr post-fertilization (hpf), wildtype zebrafish spontaneously contract their tail muscles and by 48 hpf, zebrafish exhibit controlled swimming behaviors. Reduction in the frequency of, or other alterations in, these movements may indicate a skeletal muscle dysfunction. To analyze swimming behavior and assess muscle performance in early zebrafish development, we utilize both touch-evoked escape response and locomotion assays. Touch-evoked escape response assays can be used to assess muscle performance during short burst movements resulting from contraction of fast-twitch muscle fibers. In response to an external stimulus, which in this case is a tap on the head, wildtype zebrafish at 2 days post-fertilization (dpf) typically exhibit a powerful burst swim, accompanied by sharp turns. Our method quantifies skeletal muscle function by measuring the maximum acceleration during a burst swimming motion, the acceleration being directly proportional to the force produced by muscle contraction. In contrast, locomotion assays during early zebrafish larval development are used to assess muscle performance during sustained periods of muscle activity. Using a tracking system to monitor swimming behavior, we obtain an automated calculation of the frequency of activity and distance in 6-day old zebrafish, reflective of their skeletal muscle function. Measurements of swimming performance are valuable for phenotypic assessment of disease models and high-throughput screening of mutations or chemical treatments affecting skeletal muscle function. PMID:27842370

  3. Insulin-like growth factor-2 regulates early neural and cardiovascular system development in zebrafish embryos.

    PubMed

    Hartnett, Lori; Glynn, Catherine; Nolan, Catherine M; Grealy, Maura; Byrnes, Lucy

    2010-01-01

    The insulin-like growth factor (IGF) family is essential for normal embryonic growth and development and it is highly conserved through vertebrate evolution. However, the roles that the individual members of the IGF family play in embryonic development have not been fully elucidated. This study focuses on the role of IGF-2 in zebrafish embryonic development. Two igf-2 genes, igf-2a and igf-2b, are present in the zebrafish genome. Antisense morpholinos were designed to knock down both igf-2 genes. The neural and cardiovascular defects in IGF-2 morphant embryos were then examined further using wholemount in situ hybridisation, TUNEL analysis and O-dianisidine staining. Knockdown of igf-2a or igf-2b resulted in ventralised embryos with reduced growth, reduced eyes, disrupted brain structures and a disrupted cardiovascular system, with igf-2b playing a more significant role in development. During gastrulation, igf-2a and igf-2b are required for development of anterior neural structures and for regulation of genes critical to dorsal-ventral patterning. As development proceeds, igf-2a and igf-2b play anti-apoptotic roles. Gene expression analysis demonstrates that igf-2a and igf-2b play overlapping roles in angiogenesis and cardiac outflow tract development. Igf-2b is specifically required for cardiac valve development and cardiac looping. Injection of a dominant negative IGF-1 receptor led to similar defects in angiogenesis and cardiac valve development, indicating IGF-2 signals through this receptor to regulate cardiovascular development. This is the first study describing two functional igf-2 genes in zebrafish. This work demonstrates that igf-2a and igf-2b are critical to neural and cardiovascular development in zebrafish embryos. The finding that igf-2a and igf-2b do not act exclusively in a redundant manner may explain why both genes have been stably maintained in the genome.

  4. Locomotor development of zebrafish (Danio rerio) under novel hydrodynamic conditions.

    PubMed

    Danos, Nicole

    2012-02-01

    The kinematics, neuromuscular control, and hydrodynamic aspects of normal locomotor activity in larval zebrafish have been extensively studied. Although locomotion depends heavily on the fluid properties of water, we have little knowledge of what sensory and developmental cues zebrafish larvae receive from their interaction with the fluid medium in which they grow. In this study, I manipulate the viscosity of water in which larvae grow until 5 and 7 days postfertilization (dpf) and record the kinematics of routine turns in their growth medium. Larvae are then transferred to a new medium of different viscosity and filmed again after short and long acclimation periods. Four hypotheses are tested: (1) larval kinematics are constrained by muscle activation patterns, (2) larval kinematics are guided by kinematic objectives, (3) routine turning control is independent of early locomotor experience, and (4) response to novel fluid environment is independent of developmental stage. The results indicate that a kinematic parameter, stage 1 angle, correlates with the kinematics of stage 1 while muscle activation patterns likely constrain stage 2. Development of this behavior is not dependent on locomotor experience both at 5 and 7 dpf, although the two age groups respond differently to increased viscosity. © 2012 WILEY PERIODICALS, INC.

  5. Changes in Olfactory Receptor Expression Are Correlated With Odor Exposure During Early Development in the zebrafish (Danio rerio).

    PubMed

    Calfún, Cristian; Domínguez, Calixto; Pérez-Acle, Tomás; Whitlock, Kathleen E

    2016-05-01

    We have previously shown that exposure to phenyl ethyl alcohol (PEA) causes an increase in the expression of the transcription factor otx2 in the olfactory epithelium (OE) of juvenile zebrafish, and this change is correlated with the formation of an odor memory of PEA. Here, we show that the changes in otx2 expression are specific to βPEA: exposure to αPEA did not affect otx2 expression. We identified 34 olfactory receptors (ORs) representing 16 families on 4 different chromosomes as candidates for direct regulation of OR expression via Otx2. Subsequent in silico analysis uncovered Hnf3b binding sites closely associated with Otx2 binding sites in the regions flanking the ORs. Analysis by quantitative polymerase chain reaction and RNA-seq of OR expression in developing zebrafish exposed to different isoforms of PEA showed that a subset of ORs containing both Otx2/Hnf3b binding sites were downregulated only in βPEA-exposed juveniles and this change persisted through adult life. Localization of OR expression by in situ hybridization indicates the downregulation occurs at the level of RNA and not the number of cells expressing a given receptor. Finally, analysis of immediate early gene expression in the OE did not reveal changes in c-fos expression in response to either αPEA or βPEA.

  6. Use of a highly transparent zebrafish mutant for investigations in the development of the vertebrate auditory system (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wisniowiecki, Anna M.; Mattison, Scott P.; Kim, Sangmin; Riley, Bruce; Applegate, Brian E.

    2016-03-01

    Zebrafish, an auditory specialist among fish, offer analogous auditory structures to vertebrates and is a model for hearing and deafness in vertebrates, including humans. Nevertheless, many questions remain on the basic mechanics of the auditory pathway. Phase-sensitive Optical Coherence Tomography has been proven as valuable technique for functional vibrometric measurements in the murine ear. Such measurements are key to building a complete understanding of auditory mechanics. The application of such techniques in the zebrafish is impeded by the high level of pigmentation, which develops superior to the transverse plane and envelops the auditory system superficially. A zebrafish double mutant for nacre and roy (mitfa-/- ;roya-/- [casper]), which exhibits defects for neural-crest derived melanocytes and iridophores, at all stages of development, is pursued to improve image quality and sensitivity for functional imaging. So far our investigations with the casper mutants have enabled the identification of the specialized hearing organs, fluid-filled canal connecting the ears, and sub-structures of the semicircular canals. In our previous work with wild-type zebrafish, we were only able to identify and observe stimulated vibration of the largest structures, specifically the anterior swim bladder and tripus ossicle, even among small, larval specimen, with fully developed inner ears. In conclusion, this genetic mutant will enable the study of the dynamics of the zebrafish ear from the early larval stages all the way into adulthood.

  7. Environmental conditions, early life stages distributions and larval feeding of patagonian sprat Sprattusfuegensis and common sardine Strangomerabentincki in fjords and channels of the northern Chilean patagonia

    NASA Astrophysics Data System (ADS)

    Contreras, Tabit; Castro, Leonardo R.; Montecinos, Sandra; Gonzalez, Humberto E.; Soto, Samuel; Muñoz, Maria I.; Palma, Sergio

    2014-12-01

    We assessed ontogenetic changes in distribution and feeding of the Patagonian sprat Sprattus fuegensis and common sardine Strangomera bentincki, and their association with environmental characteristics (hydrography, larval food, gelatinous zooplankton predators), and actual feeding from inshore to offshore areas of the Chilean Patagonia. During the springs of 2007 and 2008, S. bentincki egg and larvae were present north of the Taitao Peninsula (47°S) and S. fuegensis was found to the south of the peninsula. Along the inshore-offshore axis, distributions also differed: while eggs and early larval stages of S. bentincki occurred inshore and seawards, larger larvae occurred mostly seawards. The opposite was observed in S. fuegensis. However, distributions of both species followed the same rule, determined by the size of their prey: eggs and early larval stages occurred in areas of higher abundance of small prey sizes, and larger larvae coincided with the highest abundances of larger prey sizes. No relationship was detected between potential gelatinous predators and the egg and larval distributions of both fish species. Mean ingested prey sizes in both species increased as larvae grew, while maintaining the capacity to feed on small sized items. This ontogenetic feeding pattern and the distributions linked to prey seem to be beneficial in order to take advantage of short term food pulses and to overcome the strong changes in environmental conditions east to west from fjords to open waters.

  8. Expression of Immune-Related Genes during Loach (Misgurnus anguillicaudatus) Embryonic and Early Larval Development

    PubMed Central

    Lee, Jang Wook; Kim, Jung Eun; Goo, In Bon; Hwang, Ju-Ae; Im, Jea Hyun; Choi, Hye-Sung; Lee, Jeong-Ho

    2015-01-01

    Early life stage mortality in fish is one of the problems faced by loach aquaculture. However, our understanding of immune system in early life stage fish is still incomplete, and the information available is restricted to a few fish species. In the present work, we investigated the expression of immune-related transcripts in loach during early development. In fishes, recombination-activating gene 1 (RAG-1) and sacsin (SACS) have been considered as immunological function. In this study, the expression of the both genes was assessed throughout the early developmental stages of loach using real-time PCR method. maRAG-1 mRNA was first detected in 0 dph, observed the increased mostly until 40 dph. Significant expression of maRAG-1 was detected in 0 to 40 dph. These patterns of expression may suggest that the loach start to develop its function after hatching. On the other hand, maSACS was detected in unfertilized oocyte to molura stages and 0 to 40 dph. maSACS mRNA transcripts were detected in unfertilized oocytes, suggesting that they are maternally transferred. PMID:26973969

  9. Development of social behavior in young zebrafish.

    PubMed

    Dreosti, Elena; Lopes, Gonçalo; Kampff, Adam R; Wilson, Stephen W

    2015-01-01

    Adult zebrafish are robustly social animals whereas larva is not. We designed an assay to determine at what stage of development zebrafish begin to interact with and prefer other fish. One week old zebrafish do not show significant social preference whereas most 3 weeks old zebrafish strongly prefer to remain in a compartment where they can view conspecifics. However, for some individuals, the presence of conspecifics drives avoidance instead of attraction. Social preference is dependent on vision and requires viewing fish of a similar age/size. In addition, over the same 1-3 weeks period larval zebrafish increasingly tend to coordinate their movements, a simple form of social interaction. Finally, social preference and coupled interactions are differentially modified by an NMDAR antagonist and acute exposure to ethanol, both of which are known to alter social behavior in adult zebrafish.

  10. Development of social behavior in young zebrafish

    PubMed Central

    Dreosti, Elena; Lopes, Gonçalo; Kampff, Adam R.; Wilson, Stephen W.

    2015-01-01

    Adult zebrafish are robustly social animals whereas larva is not. We designed an assay to determine at what stage of development zebrafish begin to interact with and prefer other fish. One week old zebrafish do not show significant social preference whereas most 3 weeks old zebrafish strongly prefer to remain in a compartment where they can view conspecifics. However, for some individuals, the presence of conspecifics drives avoidance instead of attraction. Social preference is dependent on vision and requires viewing fish of a similar age/size. In addition, over the same 1–3 weeks period larval zebrafish increasingly tend to coordinate their movements, a simple form of social interaction. Finally, social preference and coupled interactions are differentially modified by an NMDAR antagonist and acute exposure to ethanol, both of which are known to alter social behavior in adult zebrafish. PMID:26347614

  11. Sequential antagonism of early and late Wnt-signaling by zebrafish colgate promotes dorsal and anterior fates.

    PubMed

    Nambiar, Roopa M; Henion, Paul D

    2004-03-01

    The establishment of the vertebrate body plan involves patterning of the ectoderm, mesoderm, and endoderm along the dorsoventral and antero-posterior axes. Interactions among numerous signaling molecules from several multigene families, including Wnts, have been implicated in regulating these processes. Here we provide evidence that the zebrafish colgate(b382) (col) mutation results in increased Wnt signaling that leads to defects in dorsal and anterior development. col mutants display early defects in dorsoventral patterning manifested by a decrease in the expression of dorsal shield-specific markers and ectopic expression of ventrolaterally expressed genes during gastrulation. In addition to these early patterning defects, col mutants display a striking regional posteriorization within the neuroectoderm, resulting in a reduction in anterior fates and an expansion of posterior fates within the forebrain and midbrain-hindbrain regions. We are able to correlate these phenotypes to the overactivation of Wnt signaling in col mutants. The early dorsal and anterior patterning phenotypes of the col mutant embryos are selectively rescued by inactivation of Wnt8 function by morpholino translational interference. In contrast, the regionalized neuroectoderm posterioriorization phenotype is selectively rescued by morpholino-mediated inactivation of Wnt8b. These results suggest that col-mediated antagonism of early and late Wnt-signaling activity during gastrulation is normally required sequentially for both early dorsoventral patterning and the specification and patterning of regional fates within the anterior neuroectoderm.

  12. Actions of Bisphenol A and Bisphenol S on the Reproductive Neuroendocrine System During Early Development in Zebrafish.

    PubMed

    Qiu, Wenhui; Zhao, Yali; Yang, Ming; Farajzadeh, Matthew; Pan, Chenyuan; Wayne, Nancy L

    2016-02-01

    Bisphenol A (BPA) is a well-known environmental, endocrine-disrupting chemical, and bisphenol S (BPS) has been considered a safer alternative for BPA-free products. The present study aims to evaluate the impact of BPA and BPS on the reproductive neuroendocrine system during zebrafish embryonic and larval development and to explore potential mechanisms of action associated with estrogen receptor (ER), thyroid hormone receptor (THR), and enzyme aromatase (AROM) pathways. Environmentally relevant, low levels of BPA exposure during development led to advanced hatching time, increased numbers of GnRH3 neurons in both terminal nerve and hypothalamus, increased expression of reproduction-related genes (kiss1, kiss1r, gnrh3, lhβ, fshβ, and erα), and a marker for synaptic transmission (sv2). Low levels of BPS exposure led to similar effects: increased numbers of hypothalamic GnRH3 neurons and increased expression of kiss1, gnrh3, and erα. Antagonists of ER, THRs, and AROM blocked many of the effects of BPA and BPS on reproduction-related gene expression, providing evidence that those three pathways mediate the actions of BPA and BPS on the reproductive neuroendocrine system. This study demonstrates that alternatives to BPA used in the manufacture of BPA-free products are not necessarily safer. Furthermore, this is the first study to describe the impact of low-level BPA and BPS exposure on the Kiss/Kiss receptor system during development. It is also the first report of multiple cellular pathways (ERα, THRs, and AROM) mediating the effects of BPA and BPS during embryonic development in any species.

  13. Seeing the whole picture: A comprehensive imaging approach to functional mapping of circuits in behaving zebrafish.

    PubMed

    Feierstein, C E; Portugues, R; Orger, M B

    2015-06-18

    In recent years, the zebrafish has emerged as an appealing model system to tackle questions relating to the neural circuit basis of behavior. This can be attributed not just to the growing use of genetically tractable model organisms, but also in large part to the rapid advances in optical techniques for neuroscience, which are ideally suited for application to the small, transparent brain of the larval fish. Many characteristic features of vertebrate brains, from gross anatomy down to particular circuit motifs and cell-types, as well as conserved behaviors, can be found in zebrafish even just a few days post fertilization, and, at this early stage, the physical size of the brain makes it possible to analyze neural activity in a comprehensive fashion. In a recent study, we used a systematic and unbiased imaging method to record the pattern of activity dynamics throughout the whole brain of larval zebrafish during a simple visual behavior, the optokinetic response (OKR). This approach revealed the broadly distributed network of neurons that were active during the behavior and provided insights into the fine-scale functional architecture in the brain, inter-individual variability, and the spatial distribution of behaviorally relevant signals. Combined with mapping anatomical and functional connectivity, targeted electrophysiological recordings, and genetic labeling of specific populations, this comprehensive approach in zebrafish provides an unparalleled opportunity to study complete circuits in a behaving vertebrate animal.

  14. Zebrafish foxc1a plays a crucial role in early somitogenesis by restricting the expression of aldh1a2 directly.

    PubMed

    Li, Jingyun; Yue, Yunyun; Dong, Xiaohua; Jia, Wenshuang; Li, Kui; Liang, Dong; Dong, Zhangji; Wang, Xiaoxiao; Nan, Xiaoxi; Zhang, Qinxin; Zhao, Qingshun

    2015-04-17

    Foxc1a is a member of the forkhead transcription factors. It plays an essential role in zebrafish somitogenesis. However, little is known about the molecular mechanisms underlying its controlling somitogenesis. To uncover how foxc1a regulates zebrafish somitogenesis, we generated foxc1a knock-out zebrafish using TALEN (transcription activator-like effector nuclease) technology. The foxc1a null embryos exhibited defective somites at early development. Analyses on the expressions of the key genes that control processes of somitogenesis revealed that foxc1a controlled early somitogenesis by regulating the expression of myod1. In the somites of foxc1a knock-out embryos, expressions of fgf8a and deltaC were abolished, whereas the expression of aldh1a2 (responsible for providing retinoic acid signaling) was significantly increased. Once the increased retinoic acid level in the foxc1a null embryos was reduced by knocking down aldh1a2, the reduced expression of myod1 was partially rescued by resuming expressions of fgf8a and deltaC in the somites of the mutant embryos. Moreover, a chromatin immunoprecipitation assay on zebrafish embryos revealed that Foxc1a bound aldh1a2 promoter directly. On the other hand, neither knocking down fgf8a nor inhibiting Notch signaling affected the expression of aldh1a2, although knocking down fgf8a reduced expression of deltaC in the somites of zebrafish embryos at early somitogenesis and vice versa. Taken together, our results demonstrate that foxc1a plays an essential role in early somitogenesis by controlling Fgf and Notch signaling through restricting the expression of aldh1a2 in paraxial mesoderm directly.

  15. Differences in heat shock protein 70 expression during larval and early spat development in the Eastern oyster, Crassostrea virginica (Gmelin, 1791).

    PubMed

    Ueda, Nobuo; Boettcher, Anne

    2009-07-01

    For a variety of species, changes in the expression of heat shock proteins (HSP) have been linked to key developmental changes, i.e., gametogenesis, embryogenesis, and metamorphosis. Many marine invertebrates are known to have a biphasic life cycle where pelagic larvae go through settlement and metamorphosis as they transition to the benthic life stage. A series of experiments were run to examine the expression of heat shock protein 70 (HSP 70) during larval and early spat (initial benthic phase) development in the Eastern oyster, Crassostrea virginica. In addition, the impact of thermal stress on HSP 70 expression during these early stages was studied. C. virginica larvae and spat expressed three HSP 70 isoforms, two constitutive, HSC 77 and HSC 72, and one inducible, HSP 69. We found differences in the expression of both the constitutive and inducible forms of HSP 70 among larval and early juvenile stages and in response to thermal stress. Low expression of HSP 69 during early larval and spat development may be associated with the susceptibility of these stages to environmental stress. Although developmental regulation of HSP 70 expression has been widely recognized, changes in its expression during settlement and metamorphosis of marine invertebrates are still unknown. The results of the current study demonstrated a reduction of HSP 70 expression during settlement and metamorphosis in the Eastern oyster, C. virginica.

  16. Early life-stage mortality in zebrafish (Danio rerio) following maternal exposure to polychlorinated biphenyls and estrogen

    SciTech Connect

    Westerlund, L.; Billsson, K.; Andersson, P.L.; Tysklind, M.; Olsson, P.E.

    2000-06-01

    In the present study, specific polychlorinated biphenyl (PCB) congeners were examined for embryo and early life stage mortality in zebrafish (Danio rerio). A set of eight PCBs and two hydroxylated PCBs and 17{beta}-estradiol were tested. Of the compounds tested, 4{prime}-OH-PCB30 (hydroxylated polychlorinated biphenyl) and PCB104 were found to be highly toxic to embryos following maternal exposure and transfer to the oocyte. It was also observed that 17{beta}-estradiol exposure resulted in a high incidence of embryo mortality. Analysis of estrogen receptor levels during embryonic development showed increased mRNA (ribonucleic acid) levels from the 1K stage to 50% epiboly. Following injection of the different compounds, the estrogen receptor mRNA levels were also analyzed in adult male fish to determine if there was a correlation between embryo mortality and estrogenicity of the studied PCBs. The two PCBs that were highly embryo toxic were observed to be estrogenic.

  17. The spawning, embryonic and early larval development of the green wrasse Labrus viridis (Linnaeus, 1758) (Labridae) in controlled conditions.

    PubMed

    Kožul, V; Glavić, N; Tutman, P; Bolotin, J; Onofri, V

    2011-05-01

    Green wrasse, Labrus viridis (Linnaeus, 1758), is an endangered species in the southern Adriatic Sea, but it is also of interest for potential rearing in polyculture with other commercial species for the repopulation of areas where it is endangered or as a new aquaculture species. A parental stock of the green wrasse was kept in aquaria for six years. The spawning, embryonic and early larval development maintained under controlled laboratory conditions are described and illustrated. The average diameter of newly spawned eggs was 1.01±0.03 mm. Mature and fertilized eggs were attached to the tank bottom by mucus. Hatching started after 127 h at a mean temperature of 14.4±0.8°C. The average total length of newly hatched larvae was 4.80±0.22 mm. Absorption of the yolk-sac was completed after the 5th day when larvae reached 5.87±0.28 mm. Larvae were fed with the rotifers Brachionus plicatilis. The pigmentation of L. viridis larvae is similar to that of Labrus merula and Labrus bergylta, but the main differences between these species are in the size of larvae and the development time of the melanophores on the anal fin-fold (five days later than with L. merula) and on top of the head (nine days earlier than with L. merula).

  18. Zebrafish as an emerging model for studying complex brain disorders

    PubMed Central

    Kalueff, Allan V.; Stewart, Adam Michael; Gerlai, Robert

    2014-01-01

    The zebrafish (Danio rerio) is rapidly becoming a popular model organism in pharmacogenetics and neuropharmacology. Both larval and adult zebrafish are currently used to increase our understanding of brain function, dysfunction, and their genetic and pharmacological modulation. Here we review the developing utility of zebrafish in the analysis of complex brain disorders (including, for example, depression, autism, psychoses, drug abuse and cognitive disorders), also covering zebrafish applications towards the goal of modeling major human neuropsychiatric and drug-induced syndromes. We argue that zebrafish models of complex brain disorders and drug-induced conditions have become a rapidly emerging critical field in translational neuropharmacology research. PMID:24412421

  19. A Force Balance Can Explain Local and Global Cell Movements during Early Zebrafish Development

    PubMed Central

    Chai, Jack; Hamilton, Andrea L.; Krieg, Michael; Buckley, Craig D.; Riedel-Kruse, Ingmar H.; Dunn, Alexander R.

    2015-01-01

    Embryonic morphogenesis takes place via a series of dramatic collective cell movements. The mechanisms that coordinate these intricate structural transformations across an entire organism are not well understood. In this study, we used gentle mechanical deformation of developing zebrafish embryos to probe the role of physical forces in generating long-range intercellular coordination during epiboly, the process in which the blastoderm spreads over the yolk cell. Geometric distortion of the embryo resulted in nonuniform blastoderm migration and realignment of the anterior-posterior (AP) axis, as defined by the locations at which the head and tail form, toward the new long axis of the embryo and away from the initial animal-vegetal axis defined by the starting location of the blastoderm. We found that local alterations in the rate of blastoderm migration correlated with the local geometry of the embryo. Chemical disruption of the contractile ring of actin and myosin immediately vegetal to the blastoderm margin via Ca2+ reduction or treatment with blebbistatin restored uniform migration and eliminated AP axis reorientation in mechanically deformed embryos; it also resulted in cellular disorganization at the blastoderm margin. Our results support a model in which tension generated by the contractile actomyosin ring coordinates epiboly on both the organismal and cellular scales. Our observations likewise suggest that the AP axis is distinct from the initial animal-vegetal axis in zebrafish. PMID:26200877

  20. Early-life stress changes expression of GnRH and kisspeptin genes and DNA methylation of GnRH3 promoter in the adult zebrafish brain.

    PubMed

    Khor, Yee Min; Soga, Tomoko; Parhar, Ishwar S

    2016-02-01

    Early-life stress can cause long-term effects in the adulthood such as alterations in behaviour, brain functions and reproduction. DNA methylation is a mechanism of epigenetic change caused by early-life stress. Dexamethasone (DEX) was administered to zebrafish larvae to study its effect on reproductive dysfunction. The level of GnRH2, GnRH3, Kiss1 and Kiss2 mRNAs were measured between different doses of DEX treatment groups in adult zebrafish. Kiss1 and GnRH2 expression were increased in the 200mg/L DEX treated while Kiss2 and GnRH3 mRNA levels were up-regulated in the 2mg/L DEX-treated zebrafish. The up-regulation may be related to programming effect of DEX in the zebrafish larvae, causing overcompensation mechanism to increase the mRNA levels. Furthermore, DEX treatment caused negative impact on the development and maturation of the testes, in particular spermatogenesis. Therefore, immature gonadal development may cause positive feedback by increasing GnRH and Kiss. This indicates that DEX can alter the regulation of GnRH2, GnRH3, Kiss1 and Kiss2 in adult zebrafish, which affects maturation of gonads. Computer analysis of 1.5 kb region upstream of the 5' UTR of Kiss1, Kiss2, GnRH2 and GnRH3 promoter showed that there are putative binding sites of glucocorticoid response element and transcription factors involved in stress response. GnRH3 promoter analysed from pre-optic area, ventral telencephalon and ventral olfactory bulb showed higher methylation at CpG residues located on -1410, -1377 and -1355 between control and 2mg/L DEX-treated groups. Hence, early-life DEX treatment can alter methylation of GnRH3 gene promoter, which subsequently affects gene regulation and reproductive functions. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Wnt/β-catenin signaling promotes regeneration after adult zebrafish spinal cord injury.

    PubMed

    Strand, Nicholas S; Hoi, Kimberly K; Phan, Tien M T; Ray, Catherine A; Berndt, Jason D; Moon, Randall T

    2016-09-02

    Unlike mammals, zebrafish can regenerate their injured spinal cord and regain control of caudal tissues. It was recently shown that Wnt/β-catenin signaling is necessary for spinal cord regeneration in the larval zebrafish. However, the molecular mechanisms of regeneration may or may not be conserved between larval and adult zebrafish. To test this, we assessed the role of Wnt/β-catenin signaling after spinal cord injury in the adult zebrafish. We show that Wnt/β-catenin signaling is increased after spinal cord injury in the adult zebrafish. Moreover, overexpression of Dkk1b inhibited Wnt/β-catenin signaling in the regenerating spinal cord of adult zebrafish. Dkk1b overexpression also inhibited locomotor recovery, axon regeneration, and glial bridge formation in the injured spinal cord. Thus, our data illustrate a conserved role for Wnt/β-catenin signaling in adult and larval zebrafish spinal cord regeneration.

  2. Behavioral screening for neuroactive drugs in zebrafish.

    PubMed

    Rihel, Jason; Schier, Alexander F

    2012-03-01

    The larval zebrafish has emerged asa vertebrate model system amenable to small molecule screens for probing diverse biological pathways. Two large-scale small molecule screens examined the effects of thousands of drugs on larval zebrafish sleep/wake and photomotor response behaviors. Both screens identified hundreds of molecules that altered zebrafish behavior in distinct ways. The behavioral profiles induced by these small molecules enabled the clustering of compounds according to shared phenotypes. This approach identified regulators of sleep/wake behavior and revealed the biological targets for poorly characterized compounds. Behavioral screening for neuroactive small molecules in zebrafish is an attractive complement to in vitro screening efforts, because the complex interactions in the vertebrate brain can only be revealed in vivo.

  3. Modular organization of axial microcircuits in zebrafish

    PubMed Central

    Bagnall, Martha W.; McLean, David L.

    2014-01-01

    Locomotion requires precise control of spinal networks. In tetrapods and bipeds, dynamic regulation of locomotion is simplified by the modular organization of spinal limb circuits, but it is not known whether their predecessors, fish axial circuits, are similarly organized. Here, we demonstrate that the larval zebrafish spinal cord contains distinct, parallel microcircuits for independent control of dorsal and ventral musculature on each side of the body. During normal swimming, dorsal and ventral microcircuits are equally active; but during postural correction, fish differentially engage these microcircuits to generate torque for self-righting. These findings reveal greater complexity in the axial spinal networks responsible for swimming than previously recognized and suggest an early template of modular organization for more complex locomotor circuits in later vertebrates. PMID:24408436

  4. Behavioral analysis of zebrafish larvae swimming in three dimensions

    NASA Astrophysics Data System (ADS)

    Feng, Ruopei; Girdhar, Kiran; Chemla, Yann; Gruebele, Martin

    2015-03-01

    Behavioral biologists have a strong interest in studying the behavior of larval zebrafish because the limited number of locomotor neurons in larval zebrafish couples with the rich repertoire of movements as a vertebrate animal. Current research uses a priori-selected parameters to describe their movements. Most research also only considers the 2D movements of zebrafish, leaving out the vertical component of their locomotion. Our lab has developed a method to reduce the dimensionality of the locomotion of zebrafish and determine the behavioral space of 2D swimming. We are extending this work to capture 3D locomotion of zebrafish larvae. Here we present our preliminary analysis of the 3D locomotion of zebrafish.

  5. BISPHENOL A EXPOSURE DURING EARLY DEVELOPMENT INDUCES SEX-SPECIFIC CHANGES IN ADULT ZEBRAFISH SOCIAL INTERACTIONS

    PubMed Central

    Weber, Daniel N.; Hoffmann, Raymond G.; Hoke, Elizabeth S.; Tanguay, Robert L.

    2014-01-01

    Developmental bisphenol A (BPA) exposure is associated with adverse behavioral effects, although underlying modes of action remain unclear. Because BPA is a suspected xenoestrogen, the objective was to identify sex-based changes in adult zebrafish social behavior developmentally exposed to BPA (0.0, 0.1 or 1 μM) or one of two control compounds (0.1μM 17β-estradiol [E2], and 0.1 μM GSK4716, a synthetic estrogen-related receptor γ ligand). A test chamber was divided lengthwise so each arena held one fish unable to detect the presence of the other fish. A mirror was inserted at one end of each arena; baseline activity levels were determined without mirror. Arenas were divided into 3, computer-generated zones to represent different distances from mirror image. Circadian rhythm patterns were evaluated at 1–3 (= AM) and 5–8 (= PM) hr postprandial. Adult zebrafish were placed into arenas and monitored by digital camera for 5 min. Total distance traveled, % time spent at mirror image, and number of attacks on mirror image were quantified. E2, GSK4716, and all BPA treatments dampened male activity and altered male circadian activity patterns; there was no marked effect on female activity. BPA induced non-monotonic effects (response curve changes direction within range of concentrations examined) on male % time at mirror only in AM. All treatments produced increased % time at the mirror during PM. Male attacks on the mirror were reduced by BPA exposure only during AM. There were sex-specific effects of developmental BPA on social interactions and time-of-day of observation affected results. PMID:25424546

  6. A digital framework to build, visualize and analyze a gene expression atlas with cellular resolution in zebrafish early embryogenesis.

    PubMed

    Castro-González, Carlos; Luengo-Oroz, Miguel A; Duloquin, Louise; Savy, Thierry; Rizzi, Barbara; Desnoulez, Sophie; Doursat, René; Kergosien, Yannick L; Ledesma-Carbayo, María J; Bourgine, Paul; Peyriéras, Nadine; Santos, Andrés

    2014-06-01

    A gene expression atlas is an essential resource to quantify and understand the multiscale processes of embryogenesis in time and space. The automated reconstruction of a prototypic 4D atlas for vertebrate early embryos, using multicolor fluorescence in situ hybridization with nuclear counterstain, requires dedicated computational strategies. To this goal, we designed an original methodological framework implemented in a software tool called Match-IT. With only minimal human supervision, our system is able to gather gene expression patterns observed in different analyzed embryos with phenotypic variability and map them onto a series of common 3D templates over time, creating a 4D atlas. This framework was used to construct an atlas composed of 6 gene expression templates from a cohort of zebrafish early embryos spanning 6 developmental stages from 4 to 6.3 hpf (hours post fertilization). They included 53 specimens, 181,415 detected cell nuclei and the segmentation of 98 gene expression patterns observed in 3D for 9 different genes. In addition, an interactive visualization software, Atlas-IT, was developed to inspect, supervise and analyze the atlas. Match-IT and Atlas-IT, including user manuals, representative datasets and video tutorials, are publicly and freely available online. We also propose computational methods and tools for the quantitative assessment of the gene expression templates at the cellular scale, with the identification, visualization and analysis of coexpression patterns, synexpression groups and their dynamics through developmental stages.

  7. A Digital Framework to Build, Visualize and Analyze a Gene Expression Atlas with Cellular Resolution in Zebrafish Early Embryogenesis

    PubMed Central

    Castro-González, Carlos; Luengo-Oroz, Miguel A.; Duloquin, Louise; Savy, Thierry; Rizzi, Barbara; Desnoulez, Sophie; Doursat, René; Kergosien, Yannick L.; Ledesma-Carbayo, María J.; Bourgine, Paul

    2014-01-01

    A gene expression atlas is an essential resource to quantify and understand the multiscale processes of embryogenesis in time and space. The automated reconstruction of a prototypic 4D atlas for vertebrate early embryos, using multicolor fluorescence in situ hybridization with nuclear counterstain, requires dedicated computational strategies. To this goal, we designed an original methodological framework implemented in a software tool called Match-IT. With only minimal human supervision, our system is able to gather gene expression patterns observed in different analyzed embryos with phenotypic variability and map them onto a series of common 3D templates over time, creating a 4D atlas. This framework was used to construct an atlas composed of 6 gene expression templates from a cohort of zebrafish early embryos spanning 6 developmental stages from 4 to 6.3 hpf (hours post fertilization). They included 53 specimens, 181,415 detected cell nuclei and the segmentation of 98 gene expression patterns observed in 3D for 9 different genes. In addition, an interactive visualization software, Atlas-IT, was developed to inspect, supervise and analyze the atlas. Match-IT and Atlas-IT, including user manuals, representative datasets and video tutorials, are publicly and freely available online. We also propose computational methods and tools for the quantitative assessment of the gene expression templates at the cellular scale, with the identification, visualization and analysis of coexpression patterns, synexpression groups and their dynamics through developmental stages. PMID:24945246

  8. Early development and organization of the retinopetal system in the larval sea lamprey, Petromyzon marinus L. An HRP study.

    PubMed

    Rodicio, M C; Pombal, M A; Anadón, R

    1995-12-01

    Development of the retinopetal system of the larval sea lamprey, Petromyzon marinus, was investigated following labelling of this system by injection of horseradish peroxidase into the orbit. This study extends our previous report on larval stages and provides a detailed description of the development of this system. We present quantitative and qualitative evidence suggesting that the retinopetal nuclei of Schober's M2-M5 nucleus, the mesencephalic reticular area and the tectum arise sequentially in that order, that the three retinopetal nuclei originate from a common anlage in the ventricular zone of the mesencephalic tegmentum and that the retinopetal cell population increases throughout the larval period. No neuronal death was observed. We also describe and discuss the significance of a transitory phase of retinopetal cell differentiation characterized by the presence of ventricular dendrites. Finally, we compare the development of retinopetal and retinofungal systems.

  9. A conserved bacterial protein induces pancreatic beta cell expansion during zebrafish development

    PubMed Central

    Hill, Jennifer Hampton; Franzosa, Eric A; Huttenhower, Curtis; Guillemin, Karen

    2016-01-01

    Resident microbes play important roles in the development of the gastrointestinal tract, but their influence on other digestive organs is less well explored. Using the gnotobiotic zebrafish, we discovered that the normal expansion of the pancreatic β cell population during early larval development requires the intestinal microbiota and that specific bacterial members can restore normal β cell numbers. These bacteria share a gene that encodes a previously undescribed protein, named herein BefA (β Cell Expansion Factor A), which is sufficient to induce β cell proliferation in developing zebrafish larvae. Homologs of BefA are present in several human-associated bacterial species, and we show that they have conserved capacity to stimulate β cell proliferation in larval zebrafish. Our findings highlight a role for the microbiota in early pancreatic β cell development and suggest a possible basis for the association between low diversity childhood fecal microbiota and increased diabetes risk. DOI: http://dx.doi.org/10.7554/eLife.20145.001 PMID:27960075

  10. Identification, Modeling and Ligand Affinity of Early Deuterostome CYP51s, and Functional Characterization of Recombinant Zebrafish Sterol 14α-Demethylase

    PubMed Central

    Morrison, Ann Michelle Stanley; Goldstone, Jared V.; Lamb, David C.; Kubota, Akira; Lemaire, Benjamin; Stegeman, John. J.

    2014-01-01

    Background Sterol 14α-demethylase (cytochrome P450 51, CYP51, P45014DM) is a microsomal enzyme that in eukaryotes catalyzes formation of sterols essential for cell membrane function and as precursors in biosynthesis of steroid hormones. Functional properties of CYP51s are unknown in non-mammalian deuterostomes. Methods PCR-cloning and sequencing and computational analyses (homology modeling and docking) addressed CYP51 in zebrafish Danio rerio, the reef fish sergeant major Abudefduf saxatilis, and the sea urchin Strongylocentrotus purpuratus. Following N-terminal amino acid modification, zebrafish CYP51 was expressed in Escherichia coli, and lanosterol 14α-demethylase activity and azole inhibition of CYP51 activity were characterized using GC/MS. Results Molecular phylogeny positioned S. purpuratus CYP51 at the base of the deuterostome clade. In zebrafish, CYP51 is expressed in all organs examined, most strongly in intestine. The recombinant protein bound lanosterol and catalyzed 14α-demethylase activity, at 3.2 nmol/min/nmol CYP51. The binding of azoles to zebrafish CYP51 gave KS (dissociation constant) values of 0.26 μM for ketoconazole and 0.64 μM for propiconazole. Displacement of carbon monoxide also indicated zebrafish CYP51 has greater affinity for ketoconazole. Docking to homology models showed that lanosterol docks in fish and sea urchin CYP51s with an orientation essentially the same as in mammalian CYP51. Docking of ketoconazole indicates it would inhibit fish and sea urchin CYP51s. Conclusions Biochemical and computational analyses are consistent with lanosterol being a substrate for early deuterostome CYP51s. General Significance The results expand the phylogenetic view of animal CYP51, with evolutionary, environmental and therapeutic implications. PMID:24361620

  11. Stress test of a biological early warning system with zebrafish (Danio rerio).

    PubMed

    Amorim, João; Fernandes, Miguel; Vasconcelos, Vitor; Oliva Teles, Luis

    2017-01-01

    The aim of this work was to develop a novel methodology to stress test the diagnostic capability of a video tracking system with zebrafish (Danio rerio), against two pre-established disturbances. Eight different treatments were tested varying the presence or absence of a toxicant (NaOCl) and two disturbances: the passing of a shadow (mimicking a predator) and entrapment of the fish. The concentration tested corresponded to a sublethal (1 % 24 h-LC50) and short term exposure (2 h). A total of 56 organisms were tested resulting in 112 diagnoses (before and after the contamination). A statistical model of diagnosis was developed using Self-organizing Map (SOM) and Correspondence Analysis (CA). Sensitivity, specificity, accuracy, false positive and false negative values were calculated to evaluate the diagnostic performance. The disturbances did not negatively affect the capability of the model. In the presence of at least one of these variables, the diagnostic performance was similar or even superior to the baseline results without disturbances. Furthermore, the system produced a large number of correct diagnoses, at an ecologically relevant concentration of exposure, in a non-invasive way.

  12. Zebrafish learn to forage in the dark.

    PubMed

    Carrillo, Andres; McHenry, Matthew J

    2016-02-01

    A large diversity of fishes struggle early in life to forage on zooplankton while under the threat of predation. Some species, such as zebrafish (Danio rerio), acquire an ability to forage in the dark during growth as larvae, but it is unclear how this is achieved. We investigated the functional basis of this foraging by video-recording larval and juvenile zebrafish as they preyed on zooplankton (Artemia sp.) under infrared illumination. We found that foraging improved with age, to the extent that 1-month-old juveniles exhibited a capture rate that was an order of magnitude greater than that of hatchlings. At all ages, the ability to forage in the dark was diminished when we used a chemical treatment to compromise the cranial superficial neuromasts, which facilitate flow sensing. However, a morphological analysis showed no developmental changes in these receptors that could enhance sensitivity. We tested whether the improvement in foraging with age could instead be a consequence of learning by raising fish that were naïve to the flow of prey. After 1 month of growth, both groups foraged with a capture rate that was significantly less than that of fish that had the opportunity to learn and indistinguishable from that of fish with no ability to sense flow. This suggests that larval fish learn to use water flow to forage in the dark. This ability could enhance resource acquisition under reduced competition and predation. Furthermore, our findings offer an example of learning in a model system that offers promise for understanding its neurophysiological basis.

  13. Tyrosine pathway regulation is host-mediated in the pea aphid symbiosis during late embryonic and early larval development

    PubMed Central

    2013-01-01

    Background Nutritional symbioses play a central role in insects’ adaptation to specialized diets and in their evolutionary success. The obligatory symbiosis between the pea aphid, Acyrthosiphon pisum, and the bacterium, Buchnera aphidicola, is no exception as it enables this important agricultural pest insect to develop on a diet exclusively based on plant phloem sap. The symbiotic bacteria provide the host with essential amino acids lacking in its diet but necessary for the rapid embryonic growth seen in the parthenogenetic viviparous reproduction of aphids. The aphid furnishes, in exchange, non-essential amino acids and other important metabolites. Understanding the regulations acting on this integrated metabolic system during the development of this insect is essential in elucidating aphid biology. Results We used a microarray-based approach to analyse gene expression in the late embryonic and the early larval stages of the pea aphid, characterizing, for the first time, the transcriptional profiles in these developmental phases. Our analyses allowed us to identify key genes in the phenylalanine, tyrosine and dopamine pathways and we identified ACYPI004243, one of the four genes encoding for the aspartate transaminase (E.C. 2.6.1.1), as specifically regulated during development. Indeed, the tyrosine biosynthetic pathway is crucial for the symbiotic metabolism as it is shared between the two partners, all the precursors being produced by B. aphidicola. Our microarray data are supported by HPLC amino acid analyses demonstrating an accumulation of tyrosine at the same developmental stages, with an up-regulation of the tyrosine biosynthetic genes. Tyrosine is also essential for the synthesis of cuticular proteins and it is an important precursor for cuticle maturation: together with the up-regulation of tyrosine biosynthesis, we observed an up-regulation of cuticular genes expression. We were also able to identify some amino acid transporter genes which are

  14. Preferred larval fish habitat in a frontal zone of the northern Gulf of California during the early cyclonic phase of the seasonal circulation (June 2008)

    NASA Astrophysics Data System (ADS)

    Sánchez-Velasco, L.; Lavín, M. F.; Jiménez-Rosenberg, S. P. A.; Godínez, V. M.

    2014-01-01

    We analyze the larval fish habitats in the northern Gulf of California during the early stages of the cyclonic phase of the seasonally-reversing circulation (June 2008). The geostrophic current was cyclonic (~ 5-9 cm/s), and the pycnocline was slightly convex, suggesting a cyclonic eddy. The fish larvae distribution gradients showed four contiguous larval fish habitats: (i) A habitat located in the vertically well-mixed and most saline area of the Upper Gulf, which was dominated by the costal demersal species Anchoa spp. and Gobulus crescentalis. (ii) A habitat situated in the tidal-mixing frontal area on the south rim of the Upper Gulf, where the highest species number (> 50% of the study) and the highest larval fish abundance were found. In addition to the dominant species in the former habitat, larvae of Opisthonema sp. 1, Anisotremus davidsoni and Eucinostomus dowii also dominated this habitat. Their distribution suggests retention associated with the front. (iii) A third habitat was defined in the deep area adjacent to the tidal mixing front, which was influenced by the incipient cyclonic eddy. Larvae of Opisthonema sp. 1 and Etropus crossotus were dominant, but with low abundance and frequency. (iv) A fourth habitat was observed in the southern, deeper portion of the northern Gulf, with the lowest fish larvae abundance, and characterized by the exclusive dominance of species like Shyraena sp. 1 and Benthosema panamense. These results suggest that the tidal-mixing frontal area is the preferred habitat for spawning and larval nursing of the fish species that inhabit the region. This contrasts with the unfavorable habitats in the deeper areas, which is an unexpected result in view of the presence of the cyclonic eddy, which potentially could be highly productive. This indicates that caution should be exercised in predicting an ecosystem organization of richness based on oceanographic mesoscale structures.

  15. Low doses of gamma-irradiation induce an early bystander effect in zebrafish cells which is sufficient to radioprotect cells.

    PubMed

    Pereira, Sandrine; Malard, Véronique; Ravanat, Jean-Luc; Davin, Anne-Hélène; Armengaud, Jean; Foray, Nicolas; Adam-Guillermin, Christelle

    2014-01-01

    The term "bystander effect" is used to describe an effect in which cells that have not been exposed to radiation are affected by irradiated cells though various intracellular signaling mechanisms. In this study we analyzed the kinetics and mechanisms of bystander effect and radioadaptation in embryonic zebrafish cells (ZF4) exposed to chronic low dose of gamma rays. ZF4 cells were irradiated for 4 hours with total doses of gamma irradiation ranging from 0.01-0.1 Gy. In two experimental conditions, the transfer of irradiated cells or culture medium from irradiated cells results in the occurrence of DNA double strand breaks in non-irradiated cells (assessed by the number of γ-H2AX foci) that are repaired at 24 hours post-irradiation whatever the dose. At low total irradiation doses the bystander effect observed does not affect DNA repair mechanisms in targeted and bystander cells. An increase in global methylation of ZF4 cells was observed in irradiated cells and bystander cells compared to control cells. We observed that pre-irradiated cells which are then irradiated for a second time with the same doses contained significantly less γ-H2AX foci than in 24 h gamma-irradiated control cells. We also showed that bystander cells that have been in contact with the pre-irradiated cells and then irradiated alone present less γ-H2AX foci compared to the control cells. This radioadaptation effect is significantly more pronounced at the highest doses. To determine the factors involved in the early events of the bystander effect, we performed an extensive comparative proteomic study of the ZF4 secretomes upon irradiation. In the experimental conditions assayed here, we showed that the early events of bystander effect are probably not due to the secretion of specific proteins neither the oxidation of these secreted proteins. These results suggest that early bystander effect may be due probably to a combination of multiple factors.

  16. Functional analysis of a tyrosinase gene involved in early larval shell biogenesis in Crassostrea angulata and its response to ocean acidification.

    PubMed

    Yang, Bingye; Pu, Fei; Li, Lingling; You, Weiwei; Ke, Caihuan; Feng, Danqing

    2017-04-01

    The formation of the primary shell is a vital process in marine bivalves. Ocean acidification largely influences shell formation. It has been reported that enzymes involved in phenol oxidation, such as tyrosinase and phenoloxidases, participate in the formation of the periostracum. In the present study, we cloned a tyrosinase gene from Crassostrea angulata named Ca-tyrA1, and its potential function in early larval shell biogenesis was investigated. The Ca-tyrA1 gene has a full-length cDNA of 2430bp in size, with an open reading frame of 1896bp in size, which encodes a 631-amino acid protein that includes a 24-amino acid putative signal peptide. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis revealed that Ca-tyrA1 transcription mainly occurs at the trochophore stage, and the Ca-tyrA1 mRNA levels in the 3000ppm treatment group were significantly upregulated in the early D-veliger larvae. WMISH and electron scanning microscopy analyses showed that the expression of Ca-tyrA1 occurs at the gastrula stage, thereby sustaining the early D-veliger larvae, and the shape of its signal is saddle-like, similar to that observed under an electron scanning microscope. Furthermore, the RNA interference has shown that the treatment group has a higher deformity rate than that of the control, thereby indicating that Ca-tyrA1 participates in the biogenesis of the primary shell. In conclusion, and our results indicate that Ca-tyrA1 plays a vital role in the formation of the larval shell and participates in the response to larval shell damages in Crassostrea angulata that were induced by ocean acidification.

  17. Dynamic expression pattern of corticotropin-releasing hormone, urotensin I and II genes under acute salinity and temperature challenge during early development of zebrafish.

    PubMed

    Luo, Lei; Chen, Aqin; Hu, Chongchong; Lu, Weiqun

    2014-12-01

    Corticotropin-releasing hormone (CRH), urotensin I (UI) and urotensin II (UII) are found throughout vertebrate species from fish to human. To further understand the role of crh, uI and uII in teleosts during development, we investigated the expression pattern of crh, uI, uIIα and uIIβ genes, and their response to acute salinity and temperature challenge during early development of zebrafish, Danio rerio. The results reveal that crh, uI, uIIα and uIIβ mRNA are detected from 0hpf, and the expression levels increase to a maximum at 6 days post fertilization (dpf), with the exception of uIIα that peak at 5dpf. Exposure of zebrafish embryos and larvae to acute osmotic (30ppt) stress for 15 min failed to modify expression levels of crh, uI, uIIα and uIIβ mRNA from levels in control fish except at 6dpf when uIIα and uIIβ were significantly (P < 0.05) modified. Exposure of embryos and larvae to a cold (18 °C) or hot stress (38 °C) generally down-regulated mRNA levels of crh, uI, uIIα and uIIβ apart from at 3dpf. The results indicate that the contribution of crh, uI, uIIα and uIIβ genes to the stress response in zebrafish may be stressor-specific during early development. Overall, the results from this study provide a basis for further research into the developmental and stressor-specific function of crh, uI, uIIα and uIIβ in zebrafish.

  18. FishNet: an online database of zebrafish anatomy.

    PubMed

    Bryson-Richardson, Robert J; Berger, Silke; Schilling, Thomas F; Hall, Thomas E; Cole, Nicholas J; Gibson, Abigail J; Sharpe, James; Currie, Peter D

    2007-08-17

    Over the last two decades, zebrafish have been established as a genetically versatile model system for investigating many different aspects of vertebrate developmental biology. With the credentials of zebrafish as a developmental model now well recognized, the emerging new opportunity is the wider application of zebrafish biology to aspects of human disease modelling. This rapidly increasing use of zebrafish as a model for human disease has necessarily generated interest in the anatomy of later developmental phases such as the larval, juvenile, and adult stages, during which many of the key aspects of organ morphogenesis and maturation take place. Anatomical resources and references that encompass these stages are non-existent in zebrafish and there is therefore an urgent need to understand how different organ systems and anatomical structures develop throughout the life of the fish. To overcome this deficit we have utilized the technique of optical projection tomography to produce three-dimensional (3D) models of larval fish. In order to view and display these models we have created FishNet http://www.fishnet.org.au, an interactive reference of zebrafish anatomy spanning the range of zebrafish development from 24 h until adulthood. FishNet contains more than 36,000 images of larval zebrafish, with more than 1,500 of these being annotated. The 3D models can be manipulated on screen or virtually sectioned. This resource represents the first complete embryo to adult atlas for any species in 3D.

  19. Influences of acute ethanol exposure on locomotor activities of zebrafish larvae under different illumination.

    PubMed

    Guo, Ning; Lin, Jia; Peng, Xiaolan; Chen, Haojun; Zhang, Yinglan; Liu, Xiuyun; Li, Qiang

    2015-11-01

    Larval zebrafish present unique opportunities to study the behavioral responses of a model organism to environmental challenges during early developmental stages. The purpose of the current study was to investigate the locomotor activities of AB strain zebrafish larvae at 5 and 7 days post-fertilization (dpf) in response to light changes under the influence of ethanol, and to explore potential neurological mechanisms that are involved in ethanol intoxication. AB strain zebrafish larvae at both 5 and 7 dpf were treated with ethanol at 0% (control), 0.1%, 0.25%, 0.5%, 1%, and 2% (v/v%). The locomotor activities of the larvae during alternating light-dark challenges, as well as the locomotor responses immediately following the light transitions, were investigated. The levels of various neurotransmitters were also measured in selected ethanol-treated groups. The larvae at 5 and 7 dpf demonstrated similar patterns of locomotor responses to ethanol treatment. Ethanol treatment at 1% increased the swimming distances of the zebrafish larvae in the dark periods, but had no effect on the swimming distances in the light periods. In contrast, ethanol treatment at 2% increased the swimming distances in the light periods, but did not potentiate the swimming activity in the dark periods, compared to controls. Differences in the levels of neurotransmitters that are involved in norepinephrine, dopamine, and serotonin pathways were also observed in groups with different ethanol treatments. These results indicated the behavioral studies concerning the ethanol effects on locomotor activities of zebrafish larvae could be carried out as early as 5 dpf. The 1% and 2% ethanol-treated zebrafish larvae modeled ethanol effects at different intoxication states, and the differences in neurotransmitter levels suggested the involvement of various neurotransmitter pathways in different ethanol intoxication states.

  20. In Vitro Biotransformation of Two Human CYP3A Probe Substrates and Their Inhibition during Early Zebrafish Development

    PubMed Central

    Verbueken, Evy; Alsop, Derek; Saad, Moayad A.; Pype, Casper; Van Peer, Els M.; Casteleyn, Christophe R.; Van Ginneken, Chris J.; Wilson, Joanna; Van Cruchten, Steven J.

    2017-01-01

    At present, the zebrafish embryo is increasingly used as an alternative animal model to screen for developmental toxicity after exposure to xenobiotics. Since zebrafish embryos depend on their own drug-metabolizing capacity, knowledge of their intrinsic biotransformation is pivotal in order to correctly interpret the outcome of teratogenicity assays. Therefore, the aim of this in vitro study was to assess the activity of cytochrome P450 (CYP)—a group of drug-metabolizing enzymes—in microsomes from whole zebrafish embryos (ZEM) of 5, 24, 48, 72, 96 and 120 h post-fertilization (hpf) by means of a mammalian CYP substrate, i.e., benzyloxy-methyl-resorufin (BOMR). The same CYP activity assays were performed in adult zebrafish liver microsomes (ZLM) to serve as a reference for the embryos. In addition, activity assays with the human CYP3A4-specific Luciferin isopropyl acetal (Luciferin-IPA) as well as inhibition studies with ketoconazole and CYP3cide were carried out to identify CYP activity in ZLM. In the present study, biotransformation of BOMR was detected at 72 and 96 hpf; however, metabolite formation was low compared with ZLM. Furthermore, Luciferin-IPA was not metabolized by the zebrafish. In conclusion, the capacity of intrinsic biotransformation in zebrafish embryos appears to be lacking during a major part of organogenesis. PMID:28117738

  1. Maternal Cortisol Mediates Hypothalamus-Pituitary-Interrenal Axis Development in Zebrafish

    PubMed Central

    Nesan, Dinushan; Vijayan, Mathilakath M.

    2016-01-01

    In zebrafish (Danio rerio), de novo synthesis of cortisol in response to stressor exposure commences only after hatch. Maternally deposited cortisol is present during embryogenesis, but a role for this steroid in early development is unclear. We tested the hypothesis that maternal cortisol is essential for the proper development of hypothalamus-pituitary-interrenal (HPI) axis activity and the onset of the stressor-induced cortisol response in larval zebrafish. In this study, zygotic cortisol content was manipulated by microinjecting antibody to sequester this steroid, thereby making it unavailable during embryogenesis. This was compared with embryos containing excess cortisol by microinjection of exogenous steroid. The resulting larval phenotypes revealed distinct treatment effects, including deformed mesoderm structures when maternal cortisol was unavailable and cardiac edema after excess cortisol. Maternal cortisol unavailability heightened the cortisol stress response in post-hatch larvae, whereas excess cortisol abolished the stressor-mediated cortisol elevation. This contrasting hormonal response corresponded with altered expression of key HPI axis genes, including crf, 11B hydroxylase, pomca, and star, which were upregulated in response to reduced cortisol availability and downregulated when embryos had excess cortisol. These findings for the first time underscore a critical role for maternally deposited cortisol in programming HPI axis development and function in zebrafish. PMID:26940285

  2. Constitutive and xenobiotics-induced expression of a novel CYP3A gene from zebrafish larva

    SciTech Connect

    Tseng, H.-P.; Hseu, Tzong-Hsiung; Buhler, Donald R.; Wang, W.-D.; Hu, C.-H. . E-mail: chhu@mail.ntou.edu.tw

    2005-06-15

    In mammals, CYP3A isozymes collectively comprise the largest portion of the liver and small intestinal CYP protein. They are involved in the metabolism of an extensive range of endogenous substrates and xenobiotics and make a significant contribution to the termination of the action of steroid hormones. A full-length cDNA of CYP3A gene, named CYP3A65, was cloned from zebrafish by RT-PCR. The CYP3A65 mRNA was initially transcribed only in the liver and intestine upon hatching of the zebrafish embryos. Like the human CYP3A genes, CYP3A65 transcription in the foregut region was enhanced by treatment of the zebrafish larvae with the steroid dexamethasone and the macrocyclic antibiotic rifampicin. Differing from mammalian CYP3A genes, CYP3A65 transcription was also elicited by 2,3,7,8-tetrachloro-dibenzo-p-dioxin (TCDD) during early larval stages. Repression of AHR2 translation by antisense morpholino oligonucleotides abrogated both of constitutive and TCDD-stimulated CYP3A65 transcription in larval intestine. These findings suggested that the AHR2 signaling pathway plays an essential role in CYP3A65 transcription.

  3. Excess dietary cholesterol may have an adverse effect on growth performance of early post-larval Litopenaeus vannamei.

    PubMed

    Niu, Jin; Chen, Peng-Fei; Tian, Li-Xia; Liu, Yong-Jian; Lin, Hei-Zhao; Yang, Hui-Jun; Liang, Gui-Ying

    2012-06-25

    One experiment was conducted to determine the nutritive value of cholesterol for post-larval shrimp, Litopenaeus vannamei. Four isoenergetic and isonitrogenous diets supplemented with four levels of cholesterol (D1, D2, D3 and D4 with 0, 0.5%, 1% and 2% cholesterol, respectively) were fed to triplicate groups of L. vannamei shrimp (mean initial wet weight 0.8 mg) for 27 days. After the trial, shrimp fed the D1 diet had the best growth performance (final body weights: FBW; weight gain: WG; specific growth rate: SGR), while there was no significant difference between diet treatments with respect to survival. The whole body crude protein level in the shrimp decreased with the increase in dietary cholesterol levels, while the whole body crude lipid level in shrimps in the D4 diet treatment was significantly higher (P < 0.05) than in other diet treatments. Dietary analysis indicated that the D1 diet contained 0.92% cholesterol prior to supplementation, which may have satisfied the dietary cholesterol requirement of post-larval L. vannamei; excess dietary cholesterol may thus lead to adverse effects on the growth performance of post-larval shrimp.

  4. The Role of Maternal Nutrition on Oocyte Size and Quality, with Respect to Early Larval Development in The Coral-Eating Starfish, Acanthaster planci

    PubMed Central

    Pratchett, Morgan S.; Kerr, Alexander M.; Rivera-Posada, Jairo A.

    2016-01-01

    Variation in local environmental conditions can have pronounced effects on the population structure and dynamics of marine organisms. Previous studies on crown-of-thorns starfish, Acanthaster planci, have primarily focused on effects of water quality and nutrient availability on larval growth and survival, while the role of maternal nutrition on reproduction and larval development has been overlooked. To examine the effects of maternal nutrition on oocyte size and early larval development in A. planci, we pre-conditioned females for 60 days on alternative diets of preferred coral prey (Acropora abrotanoides) versus non-preferred coral prey (Porites rus) and compared resulting gametes and progeny to those produced by females that were starved over the same period. Females fed ad libitum with Acropora increased in weight, produced heavier gonads and produced larger oocytes compared to Porites-fed and starved females. Fed starfish (regardless of whether it was Acropora or Porites) produced bigger larvae with larger stomachs and had a higher frequency of normal larvae that reached the late bipinnaria / early brachiolaria stage compared to starved starfish. Females on Acropora diet also produced a higher proportion of larvae that progressed to more advanced stages faster compared to Porites-fed starfish, which progressed faster than starved starfish. These results suggest that maternal provisioning can have important consequences for the quality and quantity of progeny. Because food quality (coral community structure) and quantity (coral abundance) varies widely among reef locations and habitats, local variation in maternal nutrition of A. planci is likely to moderate reproductive success and may explain temporal and spatial fluctuations in abundance of this species. PMID:27327627

  5. The Role of Maternal Nutrition on Oocyte Size and Quality, with Respect to Early Larval Development in The Coral-Eating Starfish, Acanthaster planci.

    PubMed

    Caballes, Ciemon Frank; Pratchett, Morgan S; Kerr, Alexander M; Rivera-Posada, Jairo A

    2016-01-01

    Variation in local environmental conditions can have pronounced effects on the population structure and dynamics of marine organisms. Previous studies on crown-of-thorns starfish, Acanthaster planci, have primarily focused on effects of water quality and nutrient availability on larval growth and survival, while the role of maternal nutrition on reproduction and larval development has been overlooked. To examine the effects of maternal nutrition on oocyte size and early larval development in A. planci, we pre-conditioned females for 60 days on alternative diets of preferred coral prey (Acropora abrotanoides) versus non-preferred coral prey (Porites rus) and compared resulting gametes and progeny to those produced by females that were starved over the same period. Females fed ad libitum with Acropora increased in weight, produced heavier gonads and produced larger oocytes compared to Porites-fed and starved females. Fed starfish (regardless of whether it was Acropora or Porites) produced bigger larvae with larger stomachs and had a higher frequency of normal larvae that reached the late bipinnaria / early brachiolaria stage compared to starved starfish. Females on Acropora diet also produced a higher proportion of larvae that progressed to more advanced stages faster compared to Porites-fed starfish, which progressed faster than starved starfish. These results suggest that maternal provisioning can have important consequences for the quality and quantity of progeny. Because food quality (coral community structure) and quantity (coral abundance) varies widely among reef locations and habitats, local variation in maternal nutrition of A. planci is likely to moderate reproductive success and may explain temporal and spatial fluctuations in abundance of this species.

  6. Estrogenic effects of nonylphenol and octylphenol isomers in vitro by recombinant yeast assay (RYA) and in vivo with early life stages of zebrafish.

    PubMed

    Puy-Azurmendi, E; Olivares, A; Vallejo, A; Ortiz-Zarragoitia, M; Piña, B; Zuloaga, O; Cajaraville, M P

    2014-01-01

    Commercial OP and NP are complex isomer mixtures that can be individually present in the environment, showing different estrogenic potencies. The aims of this study were to establish the estrogenic potency of some AP isomers in comparison to the commercial NP (cNP) mixture in vitro and to investigate in vivo their possible effects during the embryo and larval development of zebrafish. An in vitro estrogen receptor-based recombinant yeast assay was used to test the estrogenicity of specific AP isomers (22-OP, 33-OP, 22-NP, 33-NP and 363-NP) and cNP. The EC₅₀ was in the range of 0.6-7.7 mg/L. Both OP isomers and 363-NP exhibited higher estrogenic activity than cNP. For in vivo experiments, one-day postfertilisation (dpf) embryos were exposed to cNP (50, 250 and 500 μg/L), 363-NP and 33-OP (50 μg/L), 17β-estradiol (100 ng/L) and DMSO (0.01% v/v) for 4weeks. After exposure fish were maintained for 2 weeks in clean water in order to evaluate a possible recovery. Fish of groups exposed to cNP and 363-NP were the last to hatch. Histological alterations were not observed after 7, 28 or 42 dpf. Exposure to 33-OP increased transcriptional levels of erα, vtg and cyp19a1b genes. However, transcriptional response in E2 exposure was observed at later stages and with higher fold induction levels. Exposure to cNP decreased levels of erα whereas increased levels of rxrγ and cyp19a1b. Exposure to 363-NP did not cause changes in transcriptional levels of studied genes. The differences in response of the OP isomer compared to the NP isomer in zebrafish could be related to the rapid decay in concentration of the latter.

  7. Experimental selection for body size at age modifies early life-history traits and muscle gene expression in adult zebrafish.

    PubMed

    Amaral, Ian P G; Johnston, Ian A

    2012-11-15

    The short generation time of the zebrafish (Danio rerio) was exploited to investigate the effects of selection for body size at age on early life-history traits and on the transcriptional response to a growth stimulus in skeletal muscle of adult fish. Replicate populations were either unselected (U-lineage) or subjected to four generations of experimental selection for small (S-lineage) or large (L-lineage) body size at 90 days post-fertilization. Body mass was on average 16.3% and 41.0% higher in the L- than in the U- and S-lineages, respectively. Egg diameter was 6.4% lower with 13% less yolk in the S-lineage compared with the other lineages. Maternal transcripts for igf2r, bmpr1aa, igf1ar, igf2a, igfbp5a, ghra and igfbp3 in 2-4 cell stage embryos were higher in the L- than in the S-lineage. Larvae from the L-lineage were significantly larger, but survivorship at the end of the first month was similar between lineages. Gene expression was measured in the fast muscle of adult fish fasted for 7 days and then re-fed to satiation for 48 h. The expression of 11 insulin-like growth factor pathway genes and 12 other nutritionally responsive genes was similar for the S- and L-lineages as was gut fullness with feeding. Transcript abundance for four genes (igf1a, igf2r, igfbp1a and igfbp1b) showed either regulated or constitutive differences between the S- and L-lineages. For example, igf2 receptor transcript abundance was higher and igbp1a/b transcript abundance was lower in the L- than in the S-lineage, consistent with an effect of selection on insulin-like growth factor signalling.

  8. Effects of prolonged exposure to perchlorate on thyroid and reproductive function in zebrafish

    USGS Publications Warehouse

    Mukhi, S.; Patino, R.

    2007-01-01

    The objectives of this study were to determine the effects of prolonged exposure to perchlorate on (1) thyroid status and reproductive performance of adult zebrafish (Danio rerio) and (2) F1 embryo survival and early larval development. Using a static-renewal procedure, mixed sex populations of adult zebrafish were exposed to 0, 10, and 100 mg/l nominal concentrations of waterborne perchlorate for 10 weeks. Thyroid histology was qualitatively assessed, and females and males were separated and further exposed to their respective treatments for six additional weeks. Eight females in each tank replicate (n = 3) were paired weekly with four males from the same respective treatment, and packed-egg (spawn) volume (PEV) was measured each of the last five weeks. At least once during weeks 14-16 of exposure, other end points measured included fertilization rate, fertilized egg diameter, hatching rate, standard length, and craniofacial development of 4-day-postfertilization larvae and thyroid hormone content of 3.5-h embryos and of exposed mothers. At 10 weeks of exposure, perchlorate at both concentrations caused thyroidal hypertrophy and colloid depletion. A marked reduction in PEV was observed toward the end of the 6-week spawning period, but fertilization and embryo hatching rates were unaffected. Fertilized egg diameter and larval length were increased by parental exposure to perchlorate. Larval head depth was unaffected but the forward protrusion of the lower jaw-associated cartilage complexes, Meckel's and ceratohyal, was decreased. Exposure to both concentrations of perchlorate inhibited whole-body thyroxine content in mothers and embryos, but triiodothyronine content was unchanged. In conclusion, prolonged exposure of adult zebrafish to perchlorate not only disrupts their thyroid endocrine system but also impairs reproduction and influences early F1 development. ?? 2007 Oxford University Press.

  9. Tris(1,3-dichloro-2-propyl) phosphate disrupts axonal growth, cholinergic system and motor behavior in early life zebrafish.

    PubMed

    Cheng, Rui; Jia, Yali; Dai, Lili; Liu, Chunsheng; Wang, Jianghua; Li, Guangyu; Yu, Liqin

    2017-09-05

    Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) could have neurotoxic effects and alter motor behaviors in zebrafish (Danio rerio) larvae, however, the underlying mechanisms are still unknown. In this study, zebrafish embryos were subjected to waterborne exposure of TDCIPP at 100, 300, 600, 900μg/L from 2 to 120-h post-fertilization (hpf). Behavioral measurements indicate that TDCIPP exposure significantly elevated spontaneous movement, and altered swimming behavior response of larvae to both light and dark stimulation. Interestingly, in accordance with these motor effects, TDCIPP significantly decreased expression of the neuron-specific GFP in transgenic (HuC-GFP) zebrafish larvae as well as decreased expression of the neural marker genes elavl3 and ngn1, inhibited the axonal growth of the secondary motoneurons and altered the expressions of axon-related genes (α1-tubulin, shha and netrin2) in zebrafish larvae. Furthermore, TDCIPP exposure at 900μg/L significantly increased the activity of acetylcholinesterase (AChE) enzyme, and decreased the total acetylcholine (ACh) concentration. Our data indicate that the alteration in motor neuron and inhibition of cholinergic system could together lead to the TDCIPP induced motor behavior alterations in zebrafish larvae. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Low Doses of Gamma-Irradiation Induce an Early Bystander Effect in Zebrafish Cells Which Is Sufficient to Radioprotect Cells

    PubMed Central

    Pereira, Sandrine; Malard, Véronique; Ravanat, Jean-Luc; Davin, Anne-Hélène; Armengaud, Jean; Foray, Nicolas; Adam-Guillermin, Christelle

    2014-01-01

    The term “bystander effect” is used to describe an effect in which cells that have not been exposed to radiation are affected by irradiated cells though various intracellular signaling mechanisms. In this study we analyzed the kinetics and mechanisms of bystander effect and radioadaptation in embryonic zebrafish cells (ZF4) exposed to chronic low dose of gamma rays. ZF4 cells were irradiated for 4 hours with total doses of gamma irradiation ranging from 0.01–0.1 Gy. In two experimental conditions, the transfer of irradiated cells or culture medium from irradiated cells results in the occurrence of DNA double strand breaks in non-irradiated cells (assessed by the number of γ-H2AX foci) that are repaired at 24 hours post-irradiation whatever the dose. At low total irradiation doses the bystander effect observed does not affect DNA repair mechanisms in targeted and bystander cells. An increase in global methylation of ZF4 cells was observed in irradiated cells and bystander cells compared to control cells. We observed that pre-irradiated cells which are then irradiated for a second time with the same doses contained significantly less γ-H2AX foci than in 24 h gamma-irradiated control cells. We also showed that bystander cells that have been in contact with the pre-irradiated cells and then irradiated alone present less γ-H2AX foci compared to the control cells. This radioadaptation effect is significantly more pronounced at the highest doses. To determine the factors involved in the early events of the bystander effect, we performed an extensive comparative proteomic study of the ZF4 secretomes upon irradiation. In the experimental conditions assayed here, we showed that the early events of bystander effect are probably not due to the secretion of specific proteins neither the oxidation of these secreted proteins. These results suggest that early bystander effect may be due probably to a combination of multiple factors. PMID:24667817

  11. Patterns of growth and tract formation during the early development of secondary lineages in the Drosophila larval brain.

    PubMed

    Lovick, Jennifer K; Kong, Angel; Omoto, Jaison J; Ngo, Kathy T; Younossi-Hartenstein, Amelia; Hartenstein, Volker

    2016-04-01

    The Drosophila brain consists of a relatively small number of invariant, genetically determined lineages which provide a model to study the relationship between gene function and neuronal architecture. In following this long-term goal, we reconstruct the morphology (projection pattern and connectivity) and gene expression patterns of brain lineages throughout development. In this article, we focus on the secondary phase of lineage morphogenesis, from the reactivation of neuroblast proliferation in the first larval instar to the time when proliferation ends and secondary axon tracts have fully extended in the late third larval instar. We have reconstructed the location and projection of secondary lineages at close (4 h) intervals and produced a detailed map in the form of confocal z-projections and digital three-dimensional models of all lineages at successive larval stages. Based on these reconstructions, we could compare the spatio-temporal pattern of axon formation and morphogenetic movements of different lineages in normal brain development. In addition to wild type, we reconstructed lineage morphology in two mutant conditions. (1) Expressing the construct UAS-p35 which rescues programmed cell death we could systematically determine which lineages normally lose hemilineages to apoptosis. (2) so-Gal4-driven expression of dominant-negative EGFR ablated the optic lobe, which allowed us to conclude that the global centrifugal movement normally affecting the cell bodies of lateral lineages in the late larva is causally related to the expansion of the optic lobe, and that the central pattern of axonal projections of these lineages is independent of the presence or absence of the optic lobe. © 2015 Wiley Periodicals, Inc.

  12. Patterns of growth and tract formation during the early development of secondary lineages in the Drosophila larval brain

    PubMed Central

    Lovick, Jennifer K.; Kong, Angel; Omoto, Jaison J.; Ngo, Kathy T.; Younossi-Hartenstein, Amelia; Hartenstein, Volker

    2015-01-01

    The Drosophila brain consists of a relatively small number of invariant, genetically determined lineages which provide a model to study the relationship between gene function and neuronal architecture. In following this long-term goal we reconstruct the morphology (projection pattern and connectivity) and gene expression patterns of brain lineages throughout development. In the present paper, we focus on the secondary phase of lineage morphogenesis, from the reactivation of neuroblast proliferation in the first larval instar to the time when proliferation ends and secondary axon tracts have fully extended in the late third larval instar. We have reconstructed the location and projection of secondary lineages at close (4h) intervals and produced a detailed map in the form of confocal z-projections and digital 3D models of all lineages at successive larval stages. Based on these reconstructions we could compare the spatio-temporal pattern of axon formation and morphogenetic movements of different lineages in normal brain development. In addition to wild type, we reconstructed lineage morphology in two mutant conditions. (1) Expressing the construct UAS-p35 which rescues programmed cell death we could systematically determine which lineages normally lose hemilineages to apoptosis. (2) so-Gal4-driven expression of dominant-negative EGFR ablated the optic lobe, which allowed us to conclude that the global centrifugal movement normally affecting the cell bodies of lateral lineages in the late larva is causally related to the expansion of the optic lobe, and that the central pattern of axonal projections of these lineages is independent of the presence or absence of the optic lobe. PMID:26178322

  13. Growth and Development of Larval Bay Scallops (Argopecten irradians) in Response to Early Exposure to High CO2

    DTIC Science & Technology

    2013-02-01

    molluscs .    We   investigated  the  effects  of  high  CO2...bivalve   mollusc  species  that  produce  calcareous  skeletons  or  shells.    For   example,  mussel  and  oyster...Weiss,  I.  M.,  N.  Tuross,  L.  Addadi,  and  S.  Weiner.  2002.   Mollusc  larval  shell  formation:  

  14. Expression analysis of the insulin-like growth factors I and II during embryonic and early larval development of turbot ( Scophthalmus maximus)

    NASA Astrophysics Data System (ADS)

    Wen, Haishen; Qi, Qian; Hu, Jian; Si, Yufeng; He, Feng; Li, Jifang

    2015-04-01

    The insulin-like growth factors I and II (IGF-I and IGF-II) are important proteins involved in fish growth and development. Here, we report the isolation of IGF-II and expression analysis of IGFs in turbot Scophthalmus maximus, aiming to clarify their function in embryonic and larval development of fish. The deduced IGF-II gene is 808 bp in full length, which encodes a protein of 219 amino acids and is 93% similar with that of Paralichthys olicaceus in amino acid sequence. The tissue abundance and the expression pattern of IGFs in a turbot at early development stages were investigated via reverse transcription-polymer chain reaction. Result showed that the IGF-I and IGF-II genes were widely expressed in tissues of S. maximus. IGF-I was detected in all tissues except intestines with the highest level in liver, while IGF-II transcript presented in all tissues except muscle. At the stages of embryonic and larval development, the mRNA levels of IGFs sharply increased from the stage of unfertilized egg to post larva, followed by a decrease with larval development. However, there was an increase in IGF-I at the embryonic stage and IGF-II at the gastrula stage, respectively. These results suggested that IGFs play important roles in cell growth and division of the turbot. Our study provides reference data for further investigation of growth regulation in turbot, which can guarantee better understanding of the physiological role that IGFs play in fish.

  15. On the edge: pharmacological evidence for anxiety-related behavior in zebrafish larvae

    PubMed Central

    Richendrfer, H.; Pelkowski, S.D.; Colwill, R.M.; Creton, R.

    2011-01-01

    Zebrafish larvae are ideally suited for high-throughput analyses of vertebrate behavior. The larvae can be examined in multiwell plates and display a range of behaviors during early development. Previous studies have shown that zebrafish larvae display a preference for the edge of the well and several lines of evidence suggest this edge preference (thigmotaxis) may be a measure of anxiety. In the present study, we further examined the relation between edge preference and anxiety by imaging zebrafish larvae exposed to three psychoactive drugs diazepam (Valium), fluoxetine (Prozac), and caffeine. The edge preference was first examined in a five-fish assay, with and without visual stimuli. Diazepam, a benzodiazepine that binds to GABA receptors, reduced the larval edge preference, with or without visual stimuli. In contrast, fluoxetine, a selective serotonin reuptake inhibitor, did not affect the edge preference. Caffeine increased the preference for the edge in response to visual stimuli. Similar effects were observed in a two-fish assay; diazepam-exposed larvae showed a reduced edge preference and caffeine exposed larvae showed an increased edge preference. These results suggest that the edge preference in zebrafish larvae is a measure of anxiety and further illustrate that the pharmaceuticals used in the study have different mechanisms of action. Although there are substantial differences between zebrafish and human brains, our results indicate that the signals that regulate anxiety are similar on a molecular level. We propose that high-throughput assays in zebrafish may be used to uncover genetic or environmental factors that cause anxiety disorders and may contribute to the development of novel strategies to prevent or treat such disorders. PMID:22155488

  16. On the edge: pharmacological evidence for anxiety-related behavior in zebrafish larvae.

    PubMed

    Richendrfer, H; Pelkowski, S D; Colwill, R M; Creton, R

    2012-03-01

    Zebrafish larvae are ideally suited for high-throughput analyses of vertebrate behavior. The larvae can be examined in multiwell plates and display a range of behaviors during early development. Previous studies have shown that zebrafish larvae display a preference for the edge of the well and several lines of evidence suggest this edge preference (thigmotaxis) may be a measure of anxiety. In the present study, we further examined the relation between edge preference and anxiety by imaging zebrafish larvae exposed to three psychoactive drugs diazepam (Valium), fluoxetine (Prozac), and caffeine. The edge preference was first examined in a five-fish assay, with and without visual stimuli. Diazepam, a benzodiazepine that binds to GABA receptors, reduced the larval edge preference, with or without visual stimuli. In contrast, fluoxetine, a selective serotonin reuptake inhibitor, did not affect the edge preference. Caffeine increased the preference for the edge in response to visual stimuli. Similar effects were observed in a two-fish assay; diazepam-exposed larvae showed a reduced edge preference and caffeine exposed larvae showed an increased edge preference. These results suggest that the edge preference in zebrafish larvae is a measure of anxiety and further illustrate that the pharmaceuticals used in the study have different mechanisms of action. Although there are substantial differences between zebrafish and human brains, our results indicate that the signals that regulate anxiety are similar on a molecular level. We propose that high-throughput assays in zebrafish may be used to uncover genetic or environmental factors that cause anxiety disorders and may contribute to the development of novel strategies to prevent or treat such disorders. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Embryonic and larval development and early behavior in grass carp, Ctenopharyngodon idella: implications for recruitment in rivers

    USGS Publications Warehouse

    George, Amy E.; Chapman, Duane C.

    2015-01-01

    With recent findings of grass carp Ctenopharyngodon idella in tributaries of the Great Lakes, information on developmental rate and larval behavior is critical to efforts to assess the potential for establishment within the tributaries of that region. In laboratory experiments, grass carp were spawned and eggs and larvae reared at two temperature treatments, one "cold" and one "warm", and tracked for developmental rate, egg size, and behavior. Developmental rate was quantified using Yi's (1988) developmental stages and the cumulative thermal units method. Grass carp had a thermal minimum of 13.5°C for embryonic stages and 13.3°C for larval stages. Egg size was related to temperature and maternal size, with the largest eggs coming from the largest females, and eggs were generally larger in warmer treatments. Young grass carp larvae exhibited upward and downward swimming interspersed with long periods of lying on the bottom. Swimming capacity increased with ontogeny, and larvae were capable of horizontal swimming and position holding with gas bladder emergence. Developmental rates, behavior, and egg attributes can be used in combination with physical parameters of a river to assess the risk that grass carp are capable of reproduction and recruitment in rivers.

  18. Embryonic and Larval Development and Early Behavior in Grass Carp, Ctenopharyngodon idella: Implications for Recruitment in Rivers

    PubMed Central

    George, Amy E.; Chapman, Duane C.

    2015-01-01

    With recent findings of grass carp Ctenopharyngodon idella in tributaries of the Great Lakes, information on developmental rate and larval behavior is critical to efforts to assess the potential for establishment within the tributaries of that region. In laboratory experiments, grass carp were spawned and eggs and larvae reared at two temperature treatments, one “cold” and one “warm”, and tracked for developmental rate, egg size, and behavior. Developmental rate was quantified using Yi’s (1988) developmental stages and the cumulative thermal units method. Grass carp had a thermal minimum of 13.5°C for embryonic stages and 13.3°C for larval stages. Egg size was related to temperature and maternal size, with the largest eggs coming from the largest females, and eggs were generally larger in warmer treatments. Young grass carp larvae exhibited upward and downward swimming interspersed with long periods of lying on the bottom. Swimming capacity increased with ontogeny, and larvae were capable of horizontal swimming and position holding with gas bladder emergence. Developmental rates, behavior, and egg attributes can be used in combination with physical parameters of a river to assess the risk that grass carp are capable of reproduction and recruitment in rivers. PMID:25822837

  19. Abundant DNA 6mA methylation during early embryogenesis of zebrafish and pig

    PubMed Central

    Liu, Jianzhao; Zhu, Yuanxiang; Luo, Guan-Zheng; Wang, Xinxia; Yue, Yanan; Wang, Xiaona; Zong, Xin; Chen, Kai; Yin, Hang; Fu, Ye; Han, Dali; Wang, Yizhen; Chen, Dahua; He, Chuan

    2016-01-01

    DNA N6-methyldeoxyadenosine (6mA) is a well-known prokaryotic DNA modification that has been shown to exist and play epigenetic roles in eukaryotic DNA. Here we report that 6mA accumulates up to ∼0.1–0.2% of total deoxyadenosine during early embryogenesis of vertebrates, but diminishes to the background level with the progression of the embryo development. During this process a large fraction of 6mAs locate in repetitive regions of the genome. PMID:27713410

  20. Early exposure to caffeine affects gene expression of adenosine receptors, DARPP-32 and BDNF without affecting sensibility and morphology of developing zebrafish (Danio rerio).

    PubMed

    Capiotti, Katiucia Marques; Menezes, Fabiano Peres; Nazario, Luiza Reali; Pohlmann, Julhana Bianchini; de Oliveira, Giovanna M T; Fazenda, Lidiane; Bogo, Maurício Reis; Bonan, Carla Denise; Da Silva, Rosane Souza

    2011-01-01

    Adenosine receptors are the most important biochemical targets of caffeine, a common trimethylxanthine found in food and beverages. Adenosine plays modulatory action during the development through adenosine receptors and their intracellular pathways activation. In this study, we aimed to evaluate if caffeine gave to zebrafish in the very first steps of development is able to affect its direct targets, through the adenosine receptors mRNA expression evaluation, and latter indirect targets, through evaluation of the pattern of dopamine and cAMP-regulated phosphoprotein and brain-derived neurotrophic factor (BDNF) mRNA expression. Here, we demonstrate that zebrafish express adenosine receptor subtypes (A1, A2A1, A2A2 and A2B) since 24h post-fertilization (hpf) and that caffeine exposure is able to affect the expression of these receptors. Caffeine exposure from 1 hpf is able to increase A1 expression at 72-96 hpf and A2A1 expression at 72 hpf. No alterations occurred in A2A2 and A2B expression after caffeine treatment. DARPP-32, a phosphoprotein involved in adenosine intracellular pathway is also expressed since 24 hpf and early exposure to caffeine increased DARPP-32 expression at 168 hpf. We also evaluate the expression of BDNF as one of the targets of adenosine intracellular pathway activation. BDNF was also expressed since 24 hpf and caffeine treatment increased its expression at 48 and 72 hpf. No morphological alterations induced by caffeine treatment were registered by the check of general body features and total body length. Assessment of tactile sensibility also demonstrated no alterations by caffeine treatment. Altogether, these results suggest that caffeine is able to affect expression of its cellular targets since early phases of development in zebrafish without affect visible features. The up-regulation of direct and indirect targets of caffeine presents as a compensatory mechanism of maintenance of adenosinergic modulation during the developmental phase

  1. Radiation hazards of radio frequency waves on the early embryonic development of Zebrafish

    NASA Astrophysics Data System (ADS)

    Harkless, Ryan; Al-Quraishi, Muntather; Vagula, Mary C.

    2014-06-01

    With the growing use of wireless devices in almost all day-to-day activities, exposure to radio-frequency radiation has become an immediate health concern. It is imperative that the effects of such radiation not only on humans, but also on other organisms be well understood. In particular, it is critical to understand if RF radiation has any bearing on the gene expression during embryonic development, as this is a crucial and delicate phase for any organism. Owing to possible effects that RF radiation may have on gene expression, it is essential to explore the carcinogenic or teratogenic properties that it may show. This study observed the effects of RF radiation emitted from a cellular telephone on the embryonic development of zebra fish. The expression of the gene shha plays a key role in the early development of the fish. This gene has homologs in humans as well as in other model organisms. Additionally, several biomarkers indicative of cell stress were examined: including lactate dehydrogenase (LDH), superoxide dismutase (SOD), and lipid peroxidation (LPO). Results show a significant decrease in the expression of shha, a significant decrease in LDH activity. There was no significant increase in SOD and LPO activity. No morphological abnormalities were observed in the developing embryos. At present, these results indicate that exposure to cell phone radiation may have a suppressive effect on expression of shha in D. rerio, though such exposure does not appear to cause morphological detriments. More trials are underway to corroborate these results.

  2. Swim-training changes the spatio-temporal dynamics of skeletogenesis in zebrafish larvae (Danio rerio).

    PubMed

    Fiaz, Ansa W; Léon-Kloosterziel, Karen M; Gort, Gerrit; Schulte-Merker, Stefan; van Leeuwen, Johan L; Kranenbarg, Sander

    2012-01-01

    Fish larvae experience many environmental challenges during development such as variation in water velocity, food availability and predation. The rapid development of structures involved in feeding, respiration and swimming increases the chance of survival. It has been hypothesized that mechanical loading induced by muscle forces plays a role in prioritizing the development of these structures. Mechanical loading by muscle forces has been shown to affect larval and embryonic bone development in vertebrates, but these investigations were limited to the appendicular skeleton. To explore the role of mechanical load during chondrogenesis and osteogenesis of the cranial, axial and appendicular skeleton, we subjected zebrafish larvae to swim-training, which increases physical exercise levels and presumably also mechanical loads, from 5 until 14 days post fertilization. Here we show that an increased swimming activity accelerated growth, chondrogenesis and osteogenesis during larval development in zebrafish. Interestingly, swim-training accelerated both perichondral and intramembranous ossification. Furthermore, swim-training prioritized the formation of cartilage and bone structures in the head and tail region as well as the formation of elements in the anal and dorsal fins. This suggests that an increased swimming activity prioritized the development of structures which play an important role in swimming and thereby increasing the chance of survival in an environment where water velocity increases. Our study is the first to show that already during early zebrafish larval development, skeletal tissue in the cranial, axial and appendicular skeleton is competent to respond to swim-training due to increased water velocities. It demonstrates that changes in water flow conditions can result into significant spatio-temporal changes in skeletogenesis.

  3. Fadrozole and finasteride exposures modulate sex steroid- and thyroid hormone-related gene expression in Silurana (Xenopus) tropicalis early larval development.

    PubMed

    Langlois, Valérie S; Duarte-Guterman, Paula; Ing, Sally; Pauli, Bruce D; Cooke, Gerard M; Trudeau, Vance L

    2010-04-01

    Steroidogenic enzymes and their steroid products play critical roles during gonadal differentiation in amphibians; however their roles during embryogenesis remain unclear. The objective of this study was to investigate the expression and activity of aromatase (cyp19; estrogen synthase) and 5 beta-reductase (srd5 beta; 5 beta-dihydrotestosterone synthase) during amphibian embryogenesis. Expression and activity profiles of cyp19 and srd5 beta were first established during Silurana (Xenopus) tropicalis embryogenesis from Nieuwkoop-Faber (NF) stage 2 (2-cell stage; 1h post-fertilization) to NF stage 46 (beginning of feeding; 72 h post-fertilization). Exposures to fadrozole (an aromatase inhibitor; 0.5, 1.0 and 2.0 microM) and finasteride (a putative 5-reductase inhibitor; 25, 50 and 100 microM) were designed to assess the consequences of inhibiting these enzymes on gene expression in early amphibian larval development. Exposed embryos showed changes in both enzyme activities and sex steroid- and thyroid hormone-related gene expression. Fadrozole treatment inhibited cyp19 activity and increased androgen receptor and thyroid hormone receptor (alpha and beta) mRNAs. Finasteride treatment inhibited srd5 beta (activity and mRNA), decreased cyp19 mRNA and activity levels and increased estrogen receptor alpha mRNA. Both treatments altered the expression of deiodinases (thyroid hormone metabolizing enzymes). We conclude that cyp19 and srd5 beta are active in early embryogenesis and larval development in Silurana tropicalis and their inhibition affected transcription of genes associated with the thyroid and reproductive axes. (c) 2009 Elsevier Inc. All rights reserved.

  4. Spiel-ohne-grenzen/pou2 mediates regional competence to respond to Fgf8 during zebrafish early neural development.

    PubMed

    Reim, Gerlinde; Brand, Michael

    2002-02-01

    Neural patterning of the vertebrate brain starts within the ectoderm during gastrulation and requires the activity of organizer cell populations in the neurectoderm. One such organizer is located at the prospective midbrain-hindbrain boundary (MHB) and controls development of the midbrain and the anterior hindbrain via the secreted signaling molecule Fgf8. However, little is known about how the ability of neural precursors to respond to Fgf8 is regulated. We have studied the function of the zebrafish spiel-ohne-grenzen (spg) gene in early neural development. Genetic mapping and molecular characterization presented in the accompanying paper revealed that spg mutations disrupt the pou2 gene, which encodes a POU domain transcription factor that is specifically expressed in the MHB primordium, and is orthologous to mammalian Oct3/Oct4. We show that embryos homozygous for spg/pou2 have severe defects in development of the midbrain and hindbrain primordium. Key molecules that function in the formation of the MHB, such as pax2.1, spry4, wnt1, her5, eng2 and eng3, and in hindbrain development, such as krox20, gbx2, fkd3 and pou2, are all abnormal in spg mutant embryos. By contrast, regional definition of the future MHB in the neuroectoderm by complementary expression of otx2 and gbx1, before the establishment of the complex regulatory cascade at the MHB, is normal in spg embryos. Moreover, the Fgf8 and Wnt1 signaling pathways are activated normally at the MHB but become dependent on spg towards the end of gastrulation. Therefore, spg plays a crucial role both in establishing and in maintaining development of the MHB primordium. Transplantation chimeras show that normal spg function is required within the neuroectoderm but not the endomesoderm. Importantly, gain-of-function experiments by mRNA injection of fgf8 and pou2 or Fgf8 bead implantations, as well as analysis of spg-ace double mutants show that spg embryos are insensitive to Fgf8, although Fgf receptor expression

  5. Cloning, expression pattern and essentiality of the high-affinity copper transporter 1 (ctr1) gene in zebrafish.

    PubMed

    Mackenzie, Natalia C; Brito, Mónica; Reyes, Ariel E; Allende, Miguel L

    2004-03-17

    The high-affinity copper transporter 1 (Ctr1) is a highly conserved transmembrane protein that mediates the internalization of copper ions from the extracellular medium. In this study, we have isolated the zebrafish ctr1 gene. The zebrafish ctr1 cDNA encodes a protein with 69% identity to the human orthologue and shows conservation of specific amino acid residues involved in copper transport. We find only a single ctr1 gene in the zebrafish genome which maps to linkage group 5. The genomic structure of the zebrafish gene shows that it consists of five exons and that exon-intron boundaries are absolutely conserved with the mammalian ctr1 genes. Expression in embryos was analyzed by reverse transcription-polymerase chain reaction (RT-PCR) and by in situ hybridization. Zebrafish ctr1 is maternally loaded, and transcripts can be detected throughout development and in adult fish. Distribution of ctr1 message appears ubiquitous during early stages becoming restricted to the brain and ventral tissues by 24 h post fertilization (hpf). Beginning at 3 days post fertilization (dpf), expression is found mainly in the developing intestine. Specific knockdown of ctr1 by antisense morpholino oligonucleotides (MOs) causes early larval lethality. Defects include cell death in tissues where ctr1 is most heavily expressed, a finding similar to that described for a mouse knockout of mCtr1. Despite the existence of at least one other copper transport mechanism in the fish, our studies show that zebrafish ctr1 is an essential gene for development.

  6. High glucose‐induced changes in hyaloid‐retinal vessels during early ocular development of zebrafish: a short‐term animal model of diabetic retinopathy

    PubMed Central

    Jung, Seung‐Hyun; Kim, Young Sook; Lee, Yu‐Ri

    2015-01-01

    Background and Purpose Although a variety of animal models have been used to test drug candidates and examine the pathogenesis of diabetic retinopathy, time‐saving and inexpensive models are still needed to evaluate the increasing number of therapeutic approaches. Experimental Approach We developed a model for diabetic retinopathy using the early stage of transgenic zebrafish (flk:EGFP) by treating embryos with 130 mM glucose, from 3‐6 days post fertilisation (high‐glucose model). On day 6, lenses from zebrafish larvae were isolated and treated with 3% trypsin, and changes in hyaloid‐retinal vessels were analysed using fluorescent stereomicroscopy. In addition, expression of tight junction proteins (such as zonula occludens‐1), effects of hyperosmolar solutions and of hypoxia, and Vegf expression were assessed by RT –PCR. NO production was assessed with a fluorescent substrate. Effects of inhibitors of the VEGF receptor, NO synthesis and a VEGF antibody (ranibizumab) were also measured. Key Results In this high‐glucose model, dilation of hyaloid‐retinal vessels, on day 6, was accompanied by morphological lesions with disruption of tight junction proteins, overproduction of Vegf mRNA and increased NO production. Treatment of this high‐glucose model with an inhibitor of VEGF receptor tyrosine kinase or an inhibitor of NO synthase or ranibizumab decreased dilation of hyaloid‐retinal vessels. Conclusions and Implications These findings suggest that short‐term exposure of zebrafish larvae to high‐glucose conditions could be used for screening and drug discovery for diabetic retinopathy and particularly for disorders of retinal vessels related to disruption of tight junction proteins and excessive VEGF and NO production. PMID:26276677

  7. Zebrafish Behavior: Opportunities and Challenges.

    PubMed

    Orger, Michael B; de Polavieja, Gonzalo G

    2017-04-03

    A great challenge in neuroscience is understanding how activity in the brain gives rise to behavior. The zebrafish is an ideal vertebrate model to address this challenge, thanks to the capacity, at the larval stage, for precise behavioral measurements, genetic manipulations, and recording and manipulation of neural activity noninvasively and at single-neuron resolution throughout the whole brain. These techniques are being further developed for application in freely moving animals and juvenile stages to study more complex behaviors including learning, decision making, and social interactions. We review some of the approaches that have been used to study the behavior of zebrafish and point to opportunities and challenges that lie ahead. Expected final online publication date for the Annual Review of Neuroscience Volume 40 is July 8, 2017. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  8. Sensitivity to Dioxin Decreases as Zebrafish Mature

    PubMed Central

    Lanham, Kevin A.; Peterson, Richard E.; Heideman, Warren

    2012-01-01

    The embryos of teleost fish are exquisitely sensitive to the toxic effects of exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). However, several lines of evidence suggest that adults are less sensitive to TCDD. To better understand and characterize this difference between early life stage and adults, we exposed zebrafish (Danio rerio) to graded TCDD concentrations at different ages. The LD50 for embryos exposed at 1 day post-fertilization (dpf) was more than an order of magnitude lower than it was for juveniles exposed at 30 dpf. The latency between exposure and response also increased with age. Embryo toxicity was characterized by marked cardiovascular collapse and heart malformation, whereas juveniles exposed at 30 dpf had no detectable cardiovascular toxicity. In juveniles, the effects of TCDD exposure included stunted growth, altered pigmentation, and skeletal malformations. Furthermore, the transcriptional profile produced in hearts exposed to TCDD as embryos had very little overlap with the transcriptional changes induced by TCDD at 30 dpf. The early cardiotoxic response was associated with fish exposed prior to metamorphosis from the larval to the adult body plan at approximately 14 dpf. Our results show conclusively that the developmental stage at the time of exposure controls the toxic response to TCDD. PMID:22403156

  9. Diet affects spawning in zebrafish.

    PubMed

    Markovich, Michelle L; Rizzuto, Noel V; Brown, Paul B

    2007-01-01

    Seven-month-old zebrafish (Danio rerio) were fed four different diets to test the hypothesis that diet affects spawning success and resulting characteristics of eggs and offspring. The diets were: the recommended feeding regime for zebrafish (a mixture of Artemia, flake feed, and liver paste); Artemia; a flake feed; and a commercially available trout diet. The number of eggs laid and average egg diameter were significantly different as functions of male, female, and individual matings. Fish fed the flake diet produced significantly fewer eggs (mean, 116) than fish fed all other diets (means, 166-187). However, the percent hatch of eggs from fish fed the flake diet (62.5%) was significantly higher than from fish fed the trout diet (19.5%). The percentages of hatched eggs from fish fed the control diet (36.2%) or Artemia (35.6%) were not significantly different from each other or from fish fed the other two diets. Wet weight and diameter of eggs were not significantly affected by diet. Larval length was significantly higher from parents fed the flake diet (14.5 mm) compared to larvae from parents fed Artemia (13.7 mm). Length of larvae from fish fed the control or trout diets was intermediate and not significantly different from fish fed the flake diet or Artemia. Larval weight was not significantly affected by dietary treatment, but offspring from fish fed the flake diet were heavier than larvae from adults fed any of the other diets. Feeding adult zebrafish the flake diet alone resulted in more viable offspring and larger larvae and is a simpler feeding regime than the current recommendation. The authors recommend feeding adult zebrafish flake diets to satiation three times daily for maximum production of viable offspring.

  10. Phenylthiourea alters toxicity of mercury compounds in zebrafish larvae.

    PubMed

    MacDonald, Tracy C; Nehzati, Susan; Sylvain, Nicole J; James, Ashley K; Korbas, Malgorzata; Caine, Sally; Pickering, Ingrid J; George, Graham N; Krone, Patrick H

    2015-10-01

    In recent years larval stage zebrafish have been emerging as a standard vertebrate model in a number of fields, ranging from developmental biology to pharmacology and toxicology. The tyrosinase inhibitor 1-phenyl-2-thiourea (PTU) is used very widely with larval zebrafish to generate essentially transparent organisms through inhibition of melanogenesis, which has enabled many elegant studies in areas ranging from neurological development to cancer research. Here we show that PTU can have dramatic synergistic and antagonistic effects on the chemical toxicology of different mercury compounds. Our results indicate that extreme caution should be used when employing PTU in toxicological studies, particularly when studying toxic metal ions.

  11. The utility of zebrafish to study the mechanisms by which ethanol affects social behavior and anxiety during early brain development.

    PubMed

    Parker, Matthew O; Annan, Leonette V; Kanellopoulos, Alexandros H; Brock, Alistair J; Combe, Fraser J; Baiamonte, Matteo; Teh, Muy-Teck; Brennan, Caroline H

    2014-12-03

    Exposure to moderate levels of ethanol during brain development has a number of effects on social behavior but the molecular mechanisms that mediate this are not well understood. Gaining a better understanding of these factors may help to develop therapeutic interventions in the future. Zebrafish offer a potentially useful model in this regard. Here, we introduce a zebrafish model of moderate prenatal ethanol exposure. Embryos were exposed to 20mM ethanol for seven days (48hpf-9dpf) and tested as adults for individual social behavior and shoaling. We also tested their basal anxiety with the novel tank diving test. We found that the ethanol-exposed fish displayed reductions in social approach and shoaling, and an increase in anxiety in the novel tank test. These behavioral differences corresponded to differences in hrt1aa, slc6a4 and oxtr expression. Namely, acute ethanol caused a spike in oxtr and ht1aa mRNA expression, which was followed by down-regulation at 7dpf, and an up-regulation in slc6a4 at 72hpf. This study confirms the utility of zebrafish as a model system for studying the molecular basis of developmental ethanol exposure. Furthermore, it proposes a putative developmental mechanism characterized by ethanol-induced OT inhibition leading to suppression of 5-HT and up-regulation of 5-HT1A, which leads, in turn, to possible homeostatic up-regulation of 5-HTT at 72hpf and subsequent imbalance of the 5-HT system.

  12. Environmental forcing and the larval fish community associated to the Atlantic bluefin tuna spawning habitat of the Balearic region (Western Mediterranean), in early summer 2005

    NASA Astrophysics Data System (ADS)

    Rodriguez, J. M.; Alvarez, I.; Lopez-Jurado, J. L.; Garcia, A.; Balbin, R.; Alvarez-Berastegui, D.; Torres, A. P.; Alemany, F.

    2013-07-01

    The Balearic region is a highly dynamic area located in the Western Mediterranean, straddling the transition between the Algerian and Provencal basins and constitutes one of the main spawning grounds for the large, migratory Atlantic bluefin (Thunnus thynnus) and other medium and small tuna species (Thunnus alalunga, Auxis rochei, Euthynnus alleteratus and Katsuwonus pelamis). In summer, despite been considered an oligotrophic region as the whole Mediterranean Sea, it harbors a relatively abundant and diverse larval fish community (LFC). In this study, we analyze the composition, abundance and the influence of abiotic and biotic factors on the horizontal structure of the LFC in the Balearic region, in early summer 2005, during the spawning season of Atlantic bluefin tuna. Hydrographically, 2005 was an unusual year with a summer situation of relatively lack of mesoscale features, weak surface currents and a general situation of high stability. A total of 128 taxa of fish larvae, belonging to 52 families, were identified. The average abundance was 1770 larvae 1000 m-3. Multivariate statistical analysis revealed LFC to have a strong horizontal structure. Cluster analysis and non-metric multidimensional scaling ordination identified two larval fish assemblages. These assemblages were mainly delineated by depth and, therefore, by the spawning location of adult fish. Our results also suggest that anticyclonic eddy boundaries constitute favourable habitats for fish larvae. Also, the scenario of higher than unusual hydrographic stability found during the cruise would be responsible for the relatively lack of mesoscale features and, consequently, for the lack of influence of these features on the horizontal distribution of fish larvae and on the horizontal structure of the LFC.

  13. Time-dependent expression and activity of cytochrome P450 1s in early life-stages of the zebrafish (Danio rerio).

    PubMed

    Bräunig, Jennifer; Schiwy, Sabrina; Broedel, Oliver; Müller, Yvonne; Frohme, Marcus; Hollert, Henner; Keiter, Steffen H

    2015-11-01

    Zebrafish embryos are being increasingly used as model organisms for the assessment of single substances and complex environmental samples for regulatory purposes. Thus, it is essential to fully understand the xenobiotic metabolism during the different life-stages of early development. The aim of the present study was to determine arylhydrocarbon receptor (AhR)-mediated activity during selected times of early development using qPCR, enzymatic activity through measurement of 7-ethoxyresorufin-O-deethylase (EROD) activity, and protein expression analysis. In the present study, gene expression of cyp1a, cyp1b1, cyp1c1, cyp1c2, and ahr2 as well as EROD activity were investigated up to 120 h postfertilization (hpf) after exposure to either β-naphthoflavone (BNF) or a polycyclic aromatic hydrocarbons (PAH)-contaminated sediment extract from Vering Kanal in Hamburg (VK). Protein expression was measured at 72 hpf after exposure to 20 μg/L BNF. Altered proteins were identified by matrix assisted laser desorption ionization time-of-flight (MALDI-TOF) peptide mass fingerprinting. Distinct patterns of basal messenger RNA (mRNA) expression were found for each of the cyp1 genes, suggesting specific roles during embryonic development. All transcripts were induced by BNF and VK. ahr2 mRNA expression was significantly upregulated after exposure to VK. All cyp1 genes investigated showed a temporal decline in expression at 72 hpf. The significant decline of Hsp 90β protein at 72 hpf after exposure to BNF may suggest an explanation for the decline of cyp1 genes at this time point as Hsp 90β is of major importance for the functioning of the Ah-receptor. EROD activity measured in embryos was significantly induced after 96 hpf of exposure to BNF or VK. Together, these results demonstrate distinct temporal patterns of cyp1 genes and protein activities in zebrafish embryos as well as show a need to investigate further the xenobiotic biotransformation system during early development of

  14. Host-microbe interactions in the developing zebrafish

    PubMed Central

    Kanther, Michelle; Rawls, John F.

    2010-01-01

    Summary of recent advances The amenability of the zebrafish to in vivo imaging and genetic analysis has fueled expanded use of this vertebrate model to investigate the molecular and cellular foundations of host-microbe relationships. Study of microbial encounters in zebrafish hosts has concentrated on developing embryonic and larval stages, when the advantages of the zebrafish model are maximized. A comprehensive understanding of these host-microbe interactions requires appreciation of the developmental context into which a microbe is introduced, as well as the effects of that microbial challenge on host ontogeny. In this review, we discuss how in vivo imaging and genetic analysis in zebrafish has advanced our knowledge of host-microbe interactions in the context of a developing vertebrate host. We focus on recent insights into immune cell ontogeny and function, commensal microbial relationships in the intestine, and microbial pathogenesis in zebrafish hosts. PMID:20153622

  15. Genome-wide identification, characterization, and expression analysis of lineage-specific genes within zebrafish

    PubMed Central

    2013-01-01

    Background The genomic basis of teleost phenotypic complexity remains obscure, despite increasing availability of genome and transcriptome sequence data. Fish-specific genome duplication cannot provide sufficient explanation for the morphological complexity of teleosts, considering the relatively large number of extinct basal ray-finned fishes. Results In this study, we performed comparative genomic analysis to discover the Conserved Teleost-Specific Genes (CTSGs) and orphan genes within zebrafish and found that these two sets of lineage-specific genes may have played important roles during zebrafish embryogenesis. Lineage-specific genes within zebrafish share many of the characteristics of their counterparts in other species: shorter length, fewer exon numbers, higher GC content, and fewer of them have transcript support. Chromosomal location analysis indicated that neither the CTSGs nor the orphan genes were distributed evenly in the chromosomes of zebrafish. The significant enrichment of immunity proteins in CTSGs annotated by gene ontology (GO) or predicted ab initio may imply that defense against pathogens may be an important reason for the diversification of teleosts. The evolutionary origin of the lineage-specific genes was determined and a very high percentage of lineage-specific genes were generated via gene duplications. The temporal and spatial expression profile of lineage-specific genes obtained by expressed sequence tags (EST) and RNA-seq data revealed two novel properties: in addition to being highly tissue-preferred expression, lineage-specific genes are also highly temporally restricted, namely they are expressed in narrower time windows than evolutionarily conserved genes and are specifically enriched in later-stage embryos and early larval stages. Conclusions Our study provides the first systematic identification of two different sets of lineage-specific genes within zebrafish and provides valuable information leading towards a better

  16. The Zebrafish Ortholog of TRPV1 Is Required for Heat-Induced Locomotion

    PubMed Central

    Gau, Philia; Poon, Jason; Ufret-Vincenty, Carmen; Snelson, Corey D.; Gordon, Sharona E.; Raible, David W.

    2013-01-01

    The ability to detect hot temperatures is critical to maintaining body temperature and avoiding injury in diverse animals from insects to mammals. Zebrafish embryos, when given a choice, actively avoid hot temperatures and display an increase in locomotion similar to that seen when they are exposed to noxious compounds such as mustard oil. Phylogenetic analysis suggests that the single zebrafish ortholog of TRPV1/2 may have arisen from an evolutionary precursor of the mammalian TRPV1 and TRPV2. As opposed to TRPV2, mammalian TRPV1 is essential for environmentally relevant heat sensation. In the present study, we provide evidence that the zebrafish TRPV1 ion channel is also required for the sensation of heat. Contrary to development in mammals, zebrafish TRPV1+ neurons arise during the first wave of somatosensory neuron development, suggesting a vital importance of thermal sensation in early larval survival. In vitro analysis showed that zebrafish TRPV1 acts as a molecular sensor of environmental heat (≥25°C) that is distinctly lower than the sensitivity of the mammalian form (≥42°C) but consistent with thresholds measured in behavioral assays. Using in vivo calcium imaging with the genetically encoded calcium sensor GCaMP3, we show that TRPV1-expressing trigeminal neurons are activated by heat at behaviorally relevant temperatures. Using knock-down studies, we also show that TRPV1 is required for normal heat-induced locomotion. Our results demonstrate for the first time an ancient role for TRPV1 in the direct sensation of environmental heat and show that heat sensation is adapted to reflect species-dependent requirements in response to environmental stimuli. PMID:23516290

  17. Behavioural fever in zebrafish larvae.

    PubMed

    Rey, Sonia; Moiche, Visila; Boltaña, Sebastian; Teles, Mariana; MacKenzie, Simon

    2017-02-01

    Behavioural fever has been reported in different species of mobile ectotherms including the zebrafish, Danio rerio, in response to exogenous pyrogens. In this study we report, to our knowledge for the first time, upon the ontogenic onset of behavioural fever in zebrafish (Danio rerio) larvae. For this, zebrafish larvae (from first feeding to juveniles) were placed in a continuous thermal gradient providing the opportunity to select their preferred temperature. The novel thermal preference aquarium was based upon a continuous vertical column system and allows for non-invasive observation of larvae vertical distribution under isothermal (TR at 28 °C) and thermal gradient conditions (TCH: 28-32 °C). Larval thermal preference was assessed under both conditions with or without an immersion challenge, in order to detect the onset of the behavioural fever response. Our results defined the onset of the dsRNA induced behavioural fever at 18-20 days post fertilization (dpf). Significant differences were observed in dsRNA challenged larvae, which prefer higher temperatures (1-4 °C increase) throughout the experimental period as compared to non-challenged larvae. In parallel we measured the abundance of antiviral transcripts; viperin, gig2, irf7, trim25 and Mxb mRNAs in dsRNA challenged larvae under both thermal regimes: TR and TCh. Significant increases in the abundance of all measured transcripts were recorded under thermal choice conditions signifying that thermo-coupling and the resultant enhancement of the immune response to dsRNA challenge occurs from 18 dpf onwards in the zebrafish. The results are of importance as they identify a key developmental stage where the neuro-immune interface matures in the zebrafish likely providing increased resistance to viral infection.

  18. Expression of Arginine Vasotocin Receptors in the Developing Zebrafish CNS

    PubMed Central

    Iwasaki, Kenichi; Taguchi, Meari; Bonkowsky, Joshua L.; Kuwada, John Y.

    2013-01-01

    Vasotocin/vasopressin is a neuropeptide that regulates social and reproductive behaviors in a variety of animals including fish. Arginine vasotocin (AVT) is expressed by cells in the ventral hypothalamic and preoptic areas in the diencephalon during embryogenesis in zebrafish suggesting that vasotocin might mediate other functions within the CNS prior to the development of social and reproductive behaviors. In order to examine potential early roles for vasotocin we cloned two zebrafish vasotocin receptors homologous to AVPR1a. The receptors are expressed primarily in the CNS in similar but generally non-overlapping patterns. Both receptors are expressed in the forebrain, midbrain and hindbrain by larval stage. Of note, AVTR1a-expressing neurons in the hindbrain appear to be contacted by the axons of preoptic neurons in the forebrain that include avt+ neurons and from sensory axons in the lateral longitudinal fasciculus (LLF). Furthermore, AVTR1a-expressing hindbrain neurons extend axons into the medial longitudinal fasciculus (MLF) that contains axons of many neurons thought to be involved in locomotor responses to sensory stimulation. One hypothesis consistent with this anatomy is that AVT signaling mediates or gates sensory input to motor circuits in the hindbrain and spinal cord. PMID:23830982

  19. The utility of zebrafish to study the mechanisms by which ethanol affects social behavior and anxiety during early brain development

    PubMed Central

    Parker, Matthew O.; Annan, Leonette V.; Kanellopoulos, Alexandros H.; Brock, Alistair J.; Combe, Fraser J.; Baiamonte, Matteo; Teh, Muy-Teck; Brennan, Caroline H.

    2014-01-01

    Exposure to moderate levels of ethanol during brain development has a number of effects on social behavior but the molecular mechanisms that mediate this are not well understood. Gaining a better understanding of these factors may help to develop therapeutic interventions in the future. Zebrafish offer a potentially useful model in this regard. Here, we introduce a zebrafish model of moderate prenatal ethanol exposure. Embryos were exposed to 20 mM ethanol for seven days (48hpfs–9dpf) and tested as adults for individual social behavior and shoaling. We also tested their basal anxiety with the novel tank diving test. We found that the ethanol-exposed fish displayed reductions in social approach and shoaling, and an increase in anxiety in the novel tank test. These behavioral differences corresponded to differences in hrt1aa, slc6a4 and oxtr expression. Namely, acute ethanol caused a spike in oxtr and ht1aa mRNA expression, which was followed by down-regulation at 7dpf, and an up-regulation in slc6a4 at 72hpf. This study confirms the utility of zebrafish as a model system for studying the molecular basis of developmental ethanol exposure. Furthermore, it proposes a putative developmental mechanism characterized by ethanol-induced OT inhibition leading to suppression of 5-HT and up-regulation of 5-HT1A, which leads, in turn, to possible homeostatic up-regulation of 5-HTT at 72hpf and subsequent imbalance of the 5-HT system. PMID:24690524

  20. Effects of tris (2-butoxyethyl) phosphate (TBOEP) on endocrine axes during development of early life stages of zebrafish (Danio rerio).

    PubMed

    Ma, Zhiyuan; Tang, Song; Su, Guanyong; Miao, Yueqiu; Liu, Hongling; Xie, Yuwei; Giesy, John P; Saunders, David M V; Hecker, Markus; Yu, Hongxia

    2016-02-01

    Due to phasing out of additive flame retardants such as polybrominated diphenyl ethers (PBDEs), Tris (2-butoxyethyl) phosphate (TBOEP) is widely used as a substitute. TBOEP is ubiquitous in the environment and has been measured at concentrations of micrograms per liter (μg L(-1)) in surface waters and wastewater. Information on potential adverse effects on development of aquatic organisms caused by exposure to environmentally relevant concentrations of TBOEP is limited, especially for effects that may be caused through impairment of endocrine-modulated homeostasis. Therefore, this study was conducted to determine effects of TBOEP on ontogeny and transcription profiles of genes along the hypothalamus-pituitary-thyroidal (HPT), hypothalamus-pituitary-adrenal (HPA), and hypothalamus-pituitary-gonadal (HPG) axes in embryos/larvae of zebrafish (Danio rerio). Exposure to TBOEP (2-5,000 μg L(-1)) from 3 h post-fertilization (hpf) to 120 hpf induced developmental malformations in zebrafish with a LC50 of 288.54 μg L(-1) at both 96 hpf and 120 hpf. The predicted no observed effect concentration (PNOEC) was 2.40 μg L(-1). Exposure to 2, 20, or 200 μg TBOEP L(-1) altered expression of genes involved in three major molecular pathways in a concentration-dependent manner after 120 hpf. TBOEP caused lesser expression of some genes involved in synthesis of hormones, such as (pomc and fshβ) as well as upregulating expression of some genes coding for receptors (thr, tshr, gr, mr, er and ar) in zebrafish larvae. These changes at the molecular level could result in alterations of endocrine function, which could result in edema or deformity and ultimately death. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. MicroRNAs control neurobehavioral development and function in zebrafish

    PubMed Central

    Tal, Tamara L.; Franzosa, Jill A.; Tilton, Susan C.; Philbrick, Kenneth A.; Iwaniec, Urszula T.; Turner, Russell T.; Waters, Katrina M.; Tanguay, Robert L.

    2012-01-01

    microRNAs (miRNAs) have emerged as regulators of a broad spectrum of neurodevelopmental processes, including brain morphogenesis, neuronal differentiation, and survival. While the role of miRNAs in establishing and maintaining the developing nervous system is widely appreciated, the developmental neurobehavioral role of miRNAs has yet to be defined. Here we show that transient disruption of brain morphogenesis by ethanol exposure results in behavioral hyperactivity in larval zebrafish challenged with changes in lighting conditions. Aberrations in swimming activity persist in juveniles that were developmentally exposed to ethanol. During early neurogenesis, multiple gene expression profiling studies revealed widespread changes in mRNA and miRNA abundance in ethanol-exposed embryos. Consistent with a role for miRNAs in neurobehavioral development, target prediction analyses identified multiple miRNAs misexpressed in the ethanol-exposed cohorts that were also predicted to target inversely expressed transcripts known to influence brain morphogenesis. In vivo knockdown of miR-9/9* or miR-153c persistently phenocopied the effect of ethanol on larval and juvenile swimming behavior. Structural analyses performed on adults showed that repression of miR-153c during development impacts craniofacial skeletal development. Together, these data support an integral role for miRNAs in the establishment of vertebrate neurobehavioral and skeletal systems.—Tal, T. L., Franzosa, J. A., Tilton, S. C., Philbrick, K. A., Iwaniec, U. T., Turner, R. T., Waters, K. M., Tanguay, R. L. MicroRNAs control neurobehavioral development and function in zebrafish. PMID:22253472

  2. Developmental toxicity of the environmental pollutant 4-nonylphenol in zebrafish.

    PubMed

    Chandrasekar, Gayathri; Arner, Anders; Kitambi, Satish Srinivas; Dahlman-Wright, Karin; Lendahl, Monika Andersson

    2011-01-01

    4-Nonylphenol (4-NP), an estrogen mimicking compound is produced by biodegradation of alkylethoxylates. It is well established that 4-NP can affect the development of aquatic animals by disrupting the endocrine signals. Here we show for the first time in zebrafish that 4-NP does not only target the neuroendocrine system but also the notochord and the muscle. The notochord malformation was first evident as distortions at 24hourspostfertilization (hpf) which within 24h appeared as kinks and herniations. The notochord phenotype was accompanied by reduced motility and impaired swimming behavior. Whole-mount in situ hybridization using chordamesoderm markers and electron microscopic analysis showed failure in the notochord differentiation and disruption of the perinotochordal basement membrane. Late larval stages of 4-NP treated embryos displayed abnormal mineralization, vertebral curvature, fusion of vertebral bodies and abnormal extension of haemal arches. The muscle structure and the maximal active force in isolated muscle preparations were similar between 4-NP exposed and of control embryos, suggesting that 4-NP did not induce major changes in striated muscle function. However, repeated electrical stimulation (>40Hz) of the 4-NP exposed larvae revealed an impaired relaxation between stimuli, possibly reflecting an alteration in the relaxant mechanisms (e.g. in cellular Ca(2+) removal) which could explain the abnormal swimming pattern exhibited by 4-NP exposed larvae. Additionally, we demonstrate that the expression levels of the stress hormone, corticotropin releasing hormonewere elevated in the brain following 4-NP treatment. We also observed a significant decrease in the transcript levels of luteinizing hormone b at early larval stages. Collectively, our results show that 4-NP is able to disrupt the notochord morphogenesis, muscle function and the neuroendocrine system. These data suggest that 4-NP enduringly affects the embryonic development in zebrafish and that

  3. Spatiotemporal expression and transcriptional regulation of heme oxygenase and biliverdin reductase genes in zebrafish (Danio rerio) suggest novel roles during early developmental periods of heightened oxidative stress.

    PubMed

    Holowiecki, Andrew; O'Shields, Britton; Jenny, Matthew J

    2017-01-01

    Heme oxygenase 1 (HMOX1) degrades heme into biliverdin, which is subsequently converted to bilirubin by biliverdin reductase (BVRa or BVRb) in a manner analogous to the classic anti-oxidant glutathione-recycling pathway. To gain a better understanding of the potential antioxidant roles the BVR enzymes may play during development, the spatiotemporal expression and transcriptional regulation of zebrafish hmox1a, bvra and bvrb were characterized under basal conditions and in response to pro-oxidant exposure. All three genes displayed spatiotemporal expression patterns consistent with classic hematopoietic progenitors during development. Transient knockdown of Nrf2a did not attenuate the ability to detect bvra or bvrb by ISH, or alter spatial expression patterns in response to cadmium exposure. While hmox1a:mCherry fluorescence was documented within the intermediate cell mass, a transient location of primitive erythrocyte differentiation, expression was not fully attenuated in Nrf2a morphants, but real-time RT-PCR demonstrated a significant reduction in hmox1a expression. Furthermore, Gata-1 knockdown did not attenuate hmox1a:mCherry fluorescence. However, while there was a complete loss of detection of bvrb expression by ISH at 24hpf, bvra expression was greatly attenuated but still detectable in Gata-1 morphants. In contrast, 96 hpf Gata-1 morphants displayed increased bvra and bvrb expression within hematopoietic tissues. Finally, temporal expression patterns of enzymes involved in the generation and maintenance of NADPH were consistent with known changes in the cellular redox state during early zebrafish development. Together, these data suggest that Gata-1 and Nrf2a play differential roles in regulating the heme degradation enzymes during an early developmental period of heightened cellular stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Velocity storage mechanism in zebrafish larvae

    PubMed Central

    Chen, Chien-Cheng; Bockisch, Christopher J; Bertolini, Giovanni; Olasagasti, Itsaso; Neuhauss, Stephan C F; Weber, Konrad P; Straumann, Dominik; Ying-Yu Huang, Melody

    2014-01-01

    Abstract The optokinetic reflex (OKR) and the angular vestibulo-ocular reflex (aVOR) complement each other to stabilize images on the retina despite self- or world motion, a joint mechanism that is critical for effective vision. It is currently hypothesized that signals from both systems integrate, in a mathematical sense, in a network of neurons operating as a velocity storage mechanism (VSM). When exposed to a rotating visual surround, subjects display the OKR, slow following eye movements frequently interrupted by fast resetting eye movements. Subsequent to light-off during optokinetic stimulation, eye movements do not stop abruptly, but decay slowly, a phenomenon referred to as the optokinetic after-response (OKAR). The OKAR is most likely generated by the VSM. In this study, we observed the OKAR in developing larval zebrafish before the horizontal aVOR emerged. Our results suggest that the VSM develops prior to and without the need for a functional aVOR. It may be critical to ocular motor control in early development as it increases the efficiency of the OKR. PMID:24218543

  5. Electroretinogram Analysis of the Visual Response in Zebrafish Larvae

    PubMed Central

    Chrispell, Jared D.; Rebrik, Tatiana I.; Weiss, Ellen R.

    2015-01-01

    The electroretinogram (ERG) is a noninvasive electrophysiological method for determining retinal function. Through the placement of an electrode on the surface of the cornea, electrical activity generated in response to light can be measured and used to assess the activity of retinal cells in vivo. This manuscript describes the use of the ERG to measure visual function in zebrafish. Zebrafish have long been utilized as a model for vertebrate development due to the ease of gene suppression by morpholino oligonucleotides and pharmacological manipulation. At 5-10 dpf, only cones are functional in the larval retina. Therefore, the zebrafish, unlike other animals, is a powerful model system for the study of cone visual function in vivo. This protocol uses standard anesthesia, micromanipulation and stereomicroscopy protocols that are common in laboratories that perform zebrafish research. The outlined methods make use of standard electrophysiology equipment and a low light camera to guide the placement of the recording microelectrode onto the larval cornea. Finally, we demonstrate how a commercially available ERG stimulator/recorder originally designed for use with mice can easily be adapted for use with zebrafish. ERG of larval zebrafish provides an excellent method of assaying cone visual function in animals that have been modified by morpholino oligonucleotide injection as well as newer genome engineering techniques such as Zinc Finger Nucleases (ZFNs), Transcription Activator-Like Effector Nucleases (TALENs), and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9, all of which have greatly increased the efficiency and efficacy of gene targeting in zebrafish. In addition, we take advantage of the ability of pharmacological agents to penetrate zebrafish larvae to evaluate the molecular components that contribute to the photoresponse. This protocol outlines a setup that can be modified and used by researchers with various experimental goals. PMID

  6. Electroretinogram analysis of the visual response in zebrafish larvae.

    PubMed

    Chrispell, Jared D; Rebrik, Tatiana I; Weiss, Ellen R

    2015-03-16

    The electroretinogram (ERG) is a noninvasive electrophysiological method for determining retinal function. Through the placement of an electrode on the surface of the cornea, electrical activity generated in response to light can be measured and used to assess the activity of retinal cells in vivo. This manuscript describes the use of the ERG to measure visual function in zebrafish. Zebrafish have long been utilized as a model for vertebrate development due to the ease of gene suppression by morpholino oligonucleotides and pharmacological manipulation. At 5-10 dpf, only cones are functional in the larval retina. Therefore, the zebrafish, unlike other animals, is a powerful model system for the study of cone visual function in vivo. This protocol uses standard anesthesia, micromanipulation and stereomicroscopy protocols that are common in laboratories that perform zebrafish research. The outlined methods make use of standard electrophysiology equipment and a low light camera to guide the placement of the recording microelectrode onto the larval cornea. Finally, we demonstrate how a commercially available ERG stimulator/recorder originally designed for use with mice can easily be adapted for use with zebrafish. ERG of larval zebrafish provides an excellent method of assaying cone visual function in animals that have been modified by morpholino oligonucleotide injection as well as newer genome engineering techniques such as Zinc Finger Nucleases (ZFNs), Transcription Activator-Like Effector Nucleases (TALENs), and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9, all of which have greatly increased the efficiency and efficacy of gene targeting in zebrafish. In addition, we take advantage of the ability of pharmacological agents to penetrate zebrafish larvae to evaluate the molecular components that contribute to the photoresponse. This protocol outlines a setup that can be modified and used by researchers with various experimental goals.

  7. Transcriptional alterations induced by binary mixtures of ethinylestradiol and norgestrel during the early development of zebrafish (Danio rerio).

    PubMed

    Liang, Yan-Qiu; Huang, Guo-Yong; Zhao, Jian-Liang; Shi, Wen-Jun; Hu, Li-Xin; Tian, Fei; Liu, Shuang-Shuang; Jiang, Yu-Xia; Ying, Guang-Guo

    2017-05-01

    Synthetic estrogens and progestins are commonly used in human and veterinary medicine. After use, they reach aquatic environments via discharge of wastewaters from human and animals, thus posing potential risks to organisms. So far, very little is known about their combined effects in aquatic organisms. The aim of this study was to investigate the effects of binary mixtures of ethinylestradiol (EE2) and norgestrel (NGT) on embryonic zebrafish (Danio rerio) by measuring transcriptional alterations. Zebrafish embryos were exposed to EE2 and NGT alone or in combination at concentrations between 36 and 5513ngL(-1) for 96h post-fertilization (hpf). The results showed that most of gene transcriptions of hypothalamic-pituitary-gonadal axis (e.g., Pgr, Mprα, Esr1, Esr2a, Vtg1, Ar, Cyp11b, Star, Gnrh3 and Fshb) and circadian rhythm signaling (e.g., Cry1a, Cry2a, Cry2b, Per3, Arntl1b, Arntl2, Clock1a, Cry3 and Cry4) displayed most pronounced alterations in the mixtures as compared to single EE2 and NGT exposures. This finding suggests exposure to the binary mixtures of EE2 and NGT produced significantly enhanced effects in fish as compared to single chemical exposures, and their coexistence could have significant environmental implications.

  8. Ploidy manipulation and induction of alternate cleavage patterns through inhibition of centrosome duplication in the early zebrafish embryo.

    PubMed

    Heier, Jonathon; Takle, Kendra A; Hasley, Andrew O; Pelegri, Francisco

    2015-10-01

    Whole genome duplication is a useful genetic tool because it allows immediate and complete genetic homozygosity in gynogenetic offspring. A whole genome duplication method in zebrafish, Heat Shock, involves a heat pulse in the period 13-15 min postfertilization (mpf) to inhibit cytokinesis of the first mitotic cycle. However, Heat Shock produces a relatively low yield of gynogenotes. A heat pulse at a later time point during the first cell cycle (22 mpf, HS2) results in a high (>80%) frequency of embryos exhibiting a precise one-cell division stall during the second cell cycle, inducing whole genome duplication. Coupled with haploid production, HS2 generates viable gynogenetic diploids with yields up to 4 times higher than those achieved through standard Heat Shock. The cell cycle delay also causes blastomere cleavage pattern variations, supporting a role for cytokinesis in spindle orientation during the following cell cycle. Our studies provide a new tool for whole genome duplication, induced gynogenesis, and cleavage pattern alteration in zebrafish, based on a time period before the initiation of cell division that is sensitive to temperature-mediated interference with centrosome duplication. Targeting of this period may also facilitate genetic and developmental manipulations in other organisms. © 2015 Wiley Periodicals, Inc.

  9. Brief embryonic cadmium exposure induces a stress response and cell death in the developing olfactory system followed by long-term olfactory deficits in juvenile zebrafish

    SciTech Connect

    Blechinger, Scott R.; Kusch, Robin C.; Haugo, Kristine; Matz, Carlyn; Chivers, Douglas P.; Krone, Patrick H.

    2007-10-01

    The toxic effects of cadmium and other metals have been well established. A primary target of these metals is known to be the olfactory system, and fish exposed to a number of different waterborne metals display deficiencies in olfaction. Importantly, exposure over embryonic/larval development periods can cause deficits in chemosensory function in juvenile fish, but the specific cell types affected are unknown. We have previously characterized a transgenic zebrafish strain expressing the green fluorescent protein (eGFP) gene linked to the hsp70 gene promoter, and shown it to be a useful tool for examining cell-specific toxicity in living embryos and larvae. Here we show that the hsp70/eGFP transgene is strongly and specifically upregulated within the olfactory sensory neurons (OSNs) of transgenic zebrafish larvae following a brief 3-h exposure to water-borne cadmium. This molecular response was closely correlated to an endpoint for tissue damage within the olfactory placode, namely cell death. Furthermore, cadmium-induced olfactory cytotoxicity in zebrafish larvae gives rise to more permanent effects. Juvenile zebrafish briefly exposed to cadmium during early larval development display deficits in olfactory-dependent predator avoidance behaviors 4-6 weeks after a return to clean water. Lateral line neuromasts of exposed zebrafish larvae also activate both the endogenous hsp70 gene and the hsp70/eGFP transgene. The data reveal that even a very brief exposure period that gives rise to cell death within the developing olfactory placode results in long-term deficits in olfaction, and that hsp70/eGFP may serve as an effective indicator of sublethal cadmium exposure in sensory cells.

  10. MicroRNAs control neurobehavioral development and function in zebrafish.

    PubMed

    Tal, Tamara L; Franzosa, Jill A; Tilton, Susan C; Philbrick, Kenneth A; Iwaniec, Urszula T; Turner, Russell T; Waters, Katrina M; Tanguay, Robert L

    2012-04-01

    microRNAs (miRNAs) have emerged as regulators of a broad spectrum of neurodevelopmental processes, including brain morphogenesis, neuronal differentiation, and survival. While the role of miRNAs in establishing and maintaining the developing nervous system is widely appreciated, the developmental neurobehavioral role of miRNAs has yet to be defined. Here we show that transient disruption of brain morphogenesis by ethanol exposure results in behavioral hyperactivity in larval zebrafish challenged with changes in lighting conditions. Aberrations in swimming activity persist in juveniles that were developmentally exposed to ethanol. During early neurogenesis, multiple gene expression profiling studies revealed widespread changes in mRNA and miRNA abundance in ethanol-exposed embryos. Consistent with a role for miRNAs in neurobehavioral development, target prediction analyses identified multiple miRNAs misexpressed in the ethanol-exposed cohorts that were also predicted to target inversely expressed transcripts known to influence brain morphogenesis. In vivo knockdown of miR-9/9* or miR-153c persistently phenocopied the effect of ethanol on larval and juvenile swimming behavior. Structural analyses performed on adults showed that repression of miR-153c during development impacts craniofacial skeletal development. Together, these data support an integral role for miRNAs in the establishment of vertebrate neurobehavioral and skeletal systems.

  11. Differential requirement for irf8 in formation of embryonic and adult macrophages in zebrafish

    DOE PAGES

    Shiau, Celia E.; Kaufman, Zoe; Meireles, Ana M.; ...

    2015-01-23

    Interferon regulatory factor 8 (Irf8) is critical for mammalian macrophage development and innate immunity, but its role in teleost myelopoiesis remains incompletely understood. Specifically, genetic tools to analyze the role of irf8 in zebrafish macrophage development at larval and adult stages are lacking. In this study, we generated irf8 null mutants in zebrafish using TALEN-mediated targeting. Our analysis defines different requirements for irf8 at different stages. irf8 is required for formation of all macrophages during primitive and transient definitive hematopoiesis, but not during adult-phase definitive hematopoiesis starting at 5-6 days postfertilization. At early stages, irf8 mutants have excess neutrophils andmore » excess cell death in pu.1-expressing myeloid cells. Macrophage fates were recovered in irf8 mutants after wildtype irf8 expression in neutrophil and macrophage lineages, suggesting that irf8 regulates macrophage specification and survival. In juvenile irf8 mutant fish, mature macrophages are present, but at numbers significantly reduced compared to wildtype, indicating an ongoing requirement for irf8 after embryogenesis. As development progresses, tissue macrophages become apparent in zebrafish irf8 mutants, with the possible exception of microglia. Our study defines distinct requirement for irf8 in myelopoiesis before and after transition to the adult hematopoietic system.« less

  12. Differential Requirement for irf8 in Formation of Embryonic and Adult Macrophages in Zebrafish

    PubMed Central

    Shiau, Celia E.; Kaufman, Zoe; Meireles, Ana M.; Talbot, William S.

    2015-01-01

    Interferon regulatory factor 8 (Irf8) is critical for mammalian macrophage development and innate immunity, but its role in teleost myelopoiesis remains incompletely understood. In particular, genetic tools to analyze the role of Irf8 in zebrafish macrophage development at larval and adult stages are lacking. We generated irf8 null mutants in zebrafish using TALEN-mediated targeting. Our analysis defines different requirements for irf8 at different stages. irf8 is required for formation of all macrophages during primitive and transient definitive hematopoiesis, but not during adult-phase definitive hematopoiesis starting at 5-6 days postfertilization. At early stages, irf8 mutants have excess neutrophils and excess cell death in pu.1-expressing myeloid cells. Macrophage fates were recovered in irf8 mutants after wildtype irf8 expression in neutrophil and macrophage lineages, suggesting that irf8 regulates macrophage specification and survival. In juvenile irf8 mutant fish, mature macrophages are present, but at numbers significantly reduced compared to wildtype, indicating an ongoing requirement for irf8 after embryogenesis. As development progresses, tissue macrophages become apparent in zebrafish irf8 mutants, with the possible exception of microglia. Our study defines distinct requirement for irf8 in myelopoiesis before and after transition to the adult hematopoietic system. PMID:25615614

  13. Stressing Zebrafish for Behavioral Genetics

    PubMed Central

    Clark, Karl J.; Boczek, Nicole J.; Ekker, Stephen C.

    2012-01-01

    Synopsis The stress response is a normal reaction to a real or perceived threat. However, stress response systems that are overwhelmed or out of balance can increase both the incidence and severity of diseases including addiction and mood and anxiety disorders. Using an animal model with both genetic diversity and large family size can help discover the specific genetic and environmental contributions to these behavioral diseases. The stress response has been studied extensively in teleosts because of their importance in food production. The zebrafish (Danio rerio) is a major model organism with a strong record for use in developmental biology, genetic screening, and genomic studies. More recently, the stress response of larval and adult zebrafish has been documented. High-throughput automated tracking systems make possible behavioral readouts of the stress response in zebrafish. This non-invasive measure of the stress response can be combined with mutagenesis methods to dissect the genes involved in complex stress response behaviors in vertebrates. Understanding the genetic and epigenetic basis for the stress response in vertebrates will help to develop advanced screening and therapies for stress-aggravated diseases like addiction and mood and anxiety disorders. PMID:21615261

  14. Development of the zebrafish mesonephros

    PubMed Central

    Diep, Cuong Q.; Peng, Zhenzhen; Ukah, Tobechukwu K.; Kelly, Paul M.; Daigle, Renee V.; Davidson, Alan J.

    2015-01-01

    The vertebrate kidney plays an essential role in removing metabolic waste and balancing water and salt. This is carried out by nephrons, which comprise a blood filter attached to an epithelial tubule with proximal and distal segments. In zebrafish, two nephrons are first formed as part of the embryonic kidney (pronephros) and hundreds are formed later to make up the adult kidney (mesonephros). Previous studies have focused on the development of the pronephros while considerably less is known about how the mesonephros is formed. Here, we characterize mesonephros development in zebrafish and examine the nephrons that form during larval metamorphosis. These nephrons, arising from proliferating progenitor cells that express the renal transcription factor genes wt1b, pax2a, and lhx1a, form on top of the pronephric tubules and develop a segmentation pattern similar to pronephric nephrons. We find that the pronephros acts as a scaffold for the mesonephros, where new nephrons fuse with the distal segments of the pronephric tubules to form the final branching network that characterizes the adult zebrafish kidney. PMID:25677367

  15. Evaluation of spleen lymphocyte responsiveness to a T-cell mitogen during early infection with larval Taenia taeniaeformis.

    PubMed

    Letonja, T; Hammerberg, C; Schurig, G

    1987-01-01

    The effect of taeniid infection on the in vitro cellular response of the host was investigated. Infections of Taenia taeniaeformis decreased the ability of spleen cells from susceptible C3H/He mice to respond to the T-cell mitogen concanavalin A (Con A) as early as 2 days postinfection (pi) reaching a suppression peak at day 12 pi. Similar experiments performed with spleen cells from infected BALB/c mice, resistant to the infection, revealed little or no suppression of Con A stimulation. The results suggested that susceptibility to the parasite may be due to its ability to induce a partial suppression of the host's immune system. The role of adherent splenocytes from infected C3H/He mice in the production of a deficient response to Con A during early infection was studied by coculturing experiments. These experiments demonstrated that adherent populations from infected mice did not play a direct role in the Con A-suppressor mechanisms. Concomitant with the suppressor activity an increased background proliferation was observed with nonstimulated splenocytes from C3H/He mice infected with T. taeniaeformis. Plasma from infected mice was able to suppress the response of normal spleen cells to Con A and to stimulate a proliferative response in cultured splenocytes from noninfected animals. The results suggest the presence of factors in the plasma of infected mice which may be modulating the immune response to the parasite.

  16. Immunolocalization and expression of Na(+)/K(+) -ATPase in embryos, early larval stages and adults of the freshwater shrimp Palaemonetes argentinus (Decapoda, Caridea, Palaemonidae).

    PubMed

    Ituarte, Romina Belén; Lignot, Jehan-Hervé; Charmantier, Guy; Spivak, Eduardo; Lorin-Nebel, Catherine

    2016-06-01

    The euryhaline shrimp Palaemonetes argentinus exemplifies an evolutionary transition from brackish to freshwater habitats that requires adequate osmoregulatory capacities. Hyperosmoregulation is functional at hatching and it likely begins during the embryonic phase allowing this species to develop entirely in fresh water. Here, we investigated the Na(+)/K(+)-ATPase α-subunit gene (nka-α) expression using quantitative real-time PCR and localized Na(+)/K(+)-ATPase (NKA) in ion-transporting epithelia through immunofluorescence microscopy. We reared shrimps from spawning to juvenile stages at two salinities (1, 15 ‰) and maintained adults for 3 weeks at three salinity treatments (1, 15, 25 ‰). nka-α gene expression was measured in: (1) embryos at an early (SI), intermediate (SII) and late (SIII) stage of embryonic development; (2) newly hatched larvae (Zoea I, ZI); and (3) isolated gill tissue of adults. The nka-α expression was low in SI and SII embryos and reached maximum levels prior to hatching (SIII), which were similar to expression levels detected in the ZI. The nka-α expression in SIII and ZI was highest at 15 ‰, whereas salinity did not affect expression in earlier embryos. In SIII, in ZI and in a later zoeal stage ZIV, NKA was localized in epithelial cells of pleurae, in the inner-side epithelium of branchiostegite and in the antennal glands. Gills appeared in the ZIV but NKA immunolabeling of the cells of the gill shaft occurred in a subsequent developmental larval stage, the decapodid. Extrabranchial organs constitute the main site of osmoregulation in early ontogenetic stages of this freshwater shrimp.

  17. A Comparative Map of the Zebrafish Genome

    PubMed Central

    Woods, Ian G.; Kelly, Peter D.; Chu, Felicia; Ngo-Hazelett, Phuong; Yan, Yi-Lin; Huang, Hui; Postlethwait, John H.; Talbot, William S.

    2000-01-01

    Zebrafish mutations define the functions of hundreds of essential genes in the vertebrate genome. To accelerate the molecular analysis of zebrafish mutations and to facilitate comparisons among the genomes of zebrafish and other vertebrates, we used a homozygous diploid meiotic mapping panel to localize polymorphisms in 691 previously unmapped genes and expressed sequence tags (ESTs). Together with earlier efforts, this work raises the total number of markers scored in the mapping panel to 2119, including 1503 genes and ESTs and 616 previously characterized simple-sequence length polymorphisms. Sequence analysis of zebrafish genes mapped in this study and in prior work identified putative human orthologs for 804 zebrafish genes and ESTs. Map comparisons revealed 139 new conserved syntenies, in which two or more genes are on the same chromosome in zebrafish and human. Although some conserved syntenies are quite large, there were changes in gene order within conserved groups, apparently reflecting the relatively frequent occurrence of inversions and other intrachromosomal rearrangements since the divergence of teleost and tetrapod ancestors. Comparative mapping also shows that there is not a one-to-one correspondence between zebrafish and human chromosomes. Mapping of duplicate gene pairs identified segments of 20 linkage groups that may have arisen during a genome duplication that occurred early in the evolution of teleosts after the divergence of teleost and mammalian ancestors. This comparative map will accelerate the molecular analysis of zebrafish mutations and enhance the understanding of the evolution of the vertebrate genome. PMID:11116086

  18. Methods for generating and colonizing gnotobiotic zebrafish

    PubMed Central

    Pham, Linh N.; Kanther, Michelle; Semova, Ivana; Rawls, John F.

    2008-01-01

    Vertebrates are colonized at birth by complex and dynamic communities of microorganisms that can contribute significantly to host health and disease. The ability to raise animals in the absence of microorganisms has been a powerful tool for elucidating the relationships between animal hosts and their microbial residents. The optical transparency of the developing zebrafish and relative ease of generating germ-free zebrafish makes it an attractive model organism for gnotobiotic research. Here we provide a protocol for: generating zebrafish embryos; deriving and rearing germ-free zebrafish; and colonizing zebrafish with microorganisms. Using these methods, we typically obtain 80–90% sterility rates in our germ-free derivations with 90% survival in germ-free animals and 50–90% survival in colonized animals through larval stages. Obtaining embryos for derivation requires approximately 1–2 hours with a 3–8 hour incubation period prior to derivation. Derivation of germ-free animals takes 1–1.5 hours, and daily maintenance requires 1–2 hours. PMID:19008873

  19. The maternal-effect gene cellular island encodes aurora B kinase and is essential for furrow formation in the early zebrafish embryo.

    PubMed

    Yabe, Taijiro; Ge, Xiaoyan; Lindeman, Robin; Nair, Sreelaja; Runke, Greg; Mullins, Mary C; Pelegri, Francisco

    2009-06-01

    Females homozygous for a mutation in cellular island (cei) produce embryos with defects in cytokinesis during early development. Analysis of the cytoskeletal events associated with furrow formation reveal that these defects include a general delay in furrow initiation as well as a complete failure to form furrow-associated structures in distal regions of the blastodisc. A linkage mapping-based candidate gene approach, including transgenic rescue, shows that cei encodes the zebrafish Aurora B kinase homologue. Genetic complementation analysis between the cei mutation and aurB zygotic lethal mutations corroborate gene assignment and reveal a complex nature of the maternal-effect cei allele, which appears to preferentially affect a function important for cytokinesis in the early blastomeres. Surprisingly, in cei mutant embryos a short yet otherwise normal furrow forms in the center of the blastodisc. Furrow formation is absent throughout the width of the blastodisc in cei mutant embryos additionally mutant for futile cycle, which lack a spindle apparatus, showing that the residual furrow signal present in cei mutants is derived from the mitotic spindle. Our analysis suggests that partially redundant signals derived from the spindle and astral apparatus mediate furrow formation in medial and distal regions of the early embryonic blastomeres, respectively, possibly as a spatial specialization to achieve furrow formation in these large cells. In addition, our data also suggest a role for Cei/AurB function in the reorganization of the furrow-associated microtubules in both early cleavage- and somite-stage embryos. In accordance with the requirement for cei/aurB in furrow induction in the early cleavage embryo, germ plasm recruitment to the forming furrow is also affected in embryos lacking normal cei/aurB function.

  20. The Maternal-Effect Gene cellular island Encodes Aurora B Kinase and Is Essential for Furrow Formation in the Early Zebrafish Embryo

    PubMed Central

    Yabe, Taijiro; Nair, Sreelaja; Runke, Greg; Mullins, Mary C.; Pelegri, Francisco

    2009-01-01

    Females homozygous for a mutation in cellular island (cei) produce embryos with defects in cytokinesis during early development. Analysis of the cytoskeletal events associated with furrow formation reveal that these defects include a general delay in furrow initiation as well as a complete failure to form furrow-associated structures in distal regions of the blastodisc. A linkage mapping-based candidate gene approach, including transgenic rescue, shows that cei encodes the zebrafish Aurora B kinase homologue. Genetic complementation analysis between the cei mutation and aurB zygotic lethal mutations corroborate gene assignment and reveal a complex nature of the maternal-effect cei allele, which appears to preferentially affect a function important for cytokinesis in the early blastomeres. Surprisingly, in cei mutant embryos a short yet otherwise normal furrow forms in the center of the blastodisc. Furrow formation is absent throughout the width of the blastodisc in cei mutant embryos additionally mutant for futile cycle, which lack a spindle apparatus, showing that the residual furrow signal present in cei mutants is derived from the mitotic spindle. Our analysis suggests that partially redundant signals derived from the spindle and astral apparatus mediate furrow formation in medial and distal regions of the early embryonic blastomeres, respectively, possibly as a spatial specialization to achieve furrow formation in these large cells. In addition, our data also suggest a role for Cei/AurB function in the reorganization of the furrow-associated microtubules in both early cleavage- and somite-stage embryos. In accordance with the requirement for cei/aurB in furrow induction in the early cleavage embryo, germ plasm recruitment to the forming furrow is also affected in embryos lacking normal cei/aurB function. PMID:19543364

  1. Differential levels of Neurod establish zebrafish endocrine pancreas cell fates

    PubMed Central

    Dalgin, Gökhan; Prince, Victoria E.

    2015-01-01

    During development a network of transcription factors functions to differentiate foregut cells into pancreatic endocrine cells. Differentiation of appropriate numbers of each hormone-expressing endocrine cell type is essential for the normal development of the pancreas and ultimately for effective maintenance of blood glucose levels. A fuller understanding of the details of endocrine cell differentiation may contribute to development of cell replacement therapies to treat diabetes. In this study, by using morpholino and gRNA/Cas9 mediated knockdown we establish that differential levels of the basic-helix loop helix (bHLH) transcription factor Neurod are required for the differentiation of distinct endocrine cell types in developing zebrafish. While Neurod plays a role in the differentiation of all endocrine cells, we find that differentiation of glucagon-expressing alpha cells is disrupted by a minor reduction in Neurod levels, whereas differentiation of insulin-expressing beta cells is less sensitive to Neurod depletion. The endocrine cells that arise during embryonic stages to produce the primary islet, and those that arise subsequently during larval stages from the intra-pancreatic duct (IPD) to ultimately contribute to the secondary islets, show similar dependence on differential Neurod levels. Intriguingly, Neurod-deficiency triggers premature formation of endocrine precursors from the IPD during early larval stages. However, the Neurod-deficient endocrine precursors fail to differentiate appropriately, and the larvae are unable to maintain normal glucose levels. In summary, differential levels of Neurod are required to generate endocrine pancreas subtypes from precursors during both embryonic and larval stages, and Neurod function is in turn critical to endocrine function. PMID:25797153

  2. Daily temperature fluctuat