Developmental origin of limb size variation in lizards.
Andrews, Robin M; Skewes, Sable A
2017-05-01
In many respects, reptile hatchlings are fully functional, albeit miniature, adults. This means that the adult morphology must emerge during embryonic development. This insight emphasizes the connection between the mechanisms that generate phenotypic variation during embryonic development and the action of selection on post-hatching individuals. To determine when species-specific differences in limb and tail lengths emerge during embryonic development, we compared allometric patterns of early limb growth of four distantly related species of lizards. The major questions addressed were whether early embryonic limb and tail growth is characterized by the gradual (continuous allometry) or by the abrupt emergence (transpositional allometry) of size differences among species. Our observations supported transpositional allometry of both limbs and tails. Species-specific differences in limb and tail length were exhibited when limb and tail buds first protruded from the body wall. Genes known to be associated with early limb development of tetrapods are obvious targets for studies on the genetic mechanisms that determine interspecific differences in relative limb length. Broadly comparative studies of gene regulation would facilitate understanding of the mechanisms underlying adaptive variation in limb size, including limb reduction and loss, of squamate reptiles. © 2017 Wiley Periodicals, Inc.
Hockman, Dorit; Mason, Mandy K; Jacobs, David S; Illing, Nicola
2009-04-01
Comparative embryology expands our understanding of unique limb structures, such as that found in bats. Bat forelimb digits 2 to 5 are differentially elongated and joined by webbing, while the hindlimb digits are of similar length in many species. We compare limb development between the mouse and the Natal long-fingered bat, Miniopterus natalensis, to pinpoint the stage at which their limbs begin to differ. The bat forelimb differs from the mouse at Carollia stage (CS) 14 with the appearance of the wing membrane primordia. This difference is enhanced at CS 15 with the posterior expansion of the hand plate. The bat hindlimb begins to differ from the mouse between CS 15 and 16 when the foot plate undergoes a proximal expansion resulting in digit primordia of very similar length. Our findings support recent gene expression studies, which reveal a role for early patterning in the development of the bat limb. Copyright 2009 Wiley-Liss, Inc.
Ectodermal Wnt6 is an early negative regulator of limb chondrogenesis in the chicken embryo
2010-01-01
Background Pattern formation of the limb skeleton is regulated by a complex interplay of signaling centers located in the ectodermal sheath and mesenchymal core of the limb anlagen, which results, in the forelimb, in the coordinate array of humerus, radius, ulna, carpals, metacarpals and digits. Much less understood is why skeletal elements form only in the central mesenchyme of the limb, whereas muscle anlagen develop in the peripheral mesenchyme ensheathing the chondrogenic center. Classical studies have suggested a role of the limb ectoderm as a negative regulator of limb chondrogenesis. Results In this paper, we investigated the molecular nature of the inhibitory influence of the ectoderm on limb chondrogenesis in the avian embryo in vivo. We show that ectoderm ablation in the early limb bud leads to increased and ectopic expression of early chondrogenic marker genes like Sox9 and Collagen II, indicating that the limb ectoderm inhibits limb chondrogenesis at an early stage of the chondrogenic cascade. To investigate the molecular nature of the inhibitory influence of the ectoderm, we ectopically expressed Wnt6, which is presently the only known Wnt expressed throughout the avian limb ectoderm, and found that Wnt6 overexpression leads to reduced expression of the early chondrogenic marker genes Sox9 and Collagen II. Conclusion Our results suggest that the inhibitory influence of the ectoderm on limb chondrogenesis acts on an early stage of chondrogenesis upsteam of Sox9 and Collagen II. We identify Wnt6 as a candidate mediator of ectodermal chondrogenic inhibition in vivo. We propose a model of Wnt-mediated centripetal patterning of the limb by the surface ectoderm. PMID:20334703
Akiyama, Ryutaro; Kawakami, Hiroko; Wong, Julia; Oishi, Isao; Nishinakamura, Ryuichi; Kawakami, Yasuhiko
2015-04-21
Limb skeletal elements originate from the limb progenitor cells, which undergo expansion and patterning to develop each skeletal element. Posterior-distal skeletal elements, such as the ulna/fibula and posterior digits develop in a Sonic hedgehog (Shh)-dependent manner. However, it is poorly understood how anterior-proximal elements, such as the humerus/femur, the radius/tibia and the anterior digits, are developed. Here we show that the zinc finger factors Sall4 and Gli3 cooperate for proper development of the anterior-proximal skeletal elements and also function upstream of Shh-dependent posterior skeletal element development. Conditional inactivation of Sall4 in the mesoderm before limb outgrowth caused severe defects in the anterior-proximal skeletal elements in the hindlimb. We found that Gli3 expression is reduced in Sall4 mutant hindlimbs, but not in forelimbs. This reduction caused posteriorization of nascent hindlimb buds, which is correlated with a loss of anterior digits. In proximal development, Sall4 integrates Gli3 and the Plzf-Hox system, in addition to proliferative expansion of cells in the mesenchymal core of nascent hindlimb buds. Whereas forelimbs developed normally in Sall4 mutants, further genetic analysis identified that the Sall4-Gli3 system is a common regulator of the early limb progenitor cells in both forelimbs and hindlimbs. The Sall4-Gli3 system also functions upstream of the Shh-expressing ZPA and the Fgf8-expressing AER in fore- and hindlimbs. Therefore, our study identified a critical role of the Sall4-Gli3 system at the early steps of limb development for proper development of the appendicular skeletal elements.
Osterwalder, Marco; Speziale, Dario; Shoukry, Malak; ...
2014-11-10
The genetic networks that govern vertebrate development are well studied, but how the interactions of trans-acting factors with cis-regulatory modules (CRMs) are integrated into spatiotemporal regulation of gene expression is not clear. The transcriptional regulator HAND2 is required during limb, heart, and branchial arch development. Here, we identify the genomic regions enriched in HAND2 chromatin complexes from mouse embryos and limb buds. Then we analyze the HAND2 target CRMs in the genomic landscapes encoding transcriptional regulators required in early limb buds. HAND2 controls the expression of genes functioning in the proximal limb bud and orchestrates the establishment of anterior andmore » posterior polarity of the nascent limb bud mesenchyme by impacting Gli3 and Tbx3 expression. TBX3 is required downstream of HAND2 to refine the posterior Gli3 expression boundary. In conclusion, our analysis uncovers the transcriptional circuits that function in establishing distinct mesenchymal compartments downstream of HAND2 and upstream of SHH signaling.« less
Expression of Msx-2 during development, regeneration, and wound healing in axolotl limbs.
Carlson, M R; Bryant, S V; Gardiner, D M
1998-12-15
Msx genes are transcription factors that are expressed during embryogenesis of developing appendages in regions of epithelial-mesenchymal interactions. Various lines of evidence indicate that these genes function to maintain embryonic tissues in an undifferentiated, proliferative state. We have identified the axolotl homolog of Msx-2, and investigated its expression during limb development, limb regeneration, and wound healing. As in limb buds of higher vertebrates, axolotl Msx-2 is expressed in the apical epidermis and mesenchyme; however, its expression domain is more extensive, reflecting the broader region of the apical epidermal cap in amphibians. Msx-2 expression is downregulated at late stages of limb development, but is reexpressed within one hour after limb amputation. Msx-2 is also reexpressed during wound healing, and may be essential in the early stages of initiation of the limb regeneration cascade.
Stamataki, Evangelia; Harich, Benjamin; Guignard, Léo; Preibisch, Stephan; Shorte, Spencer; Keller, Philipp J
2018-01-01
During development, coordinated cell behaviors orchestrate tissue and organ morphogenesis. Detailed descriptions of cell lineages and behaviors provide a powerful framework to elucidate the mechanisms of morphogenesis. To study the cellular basis of limb development, we imaged transgenic fluorescently-labeled embryos from the crustacean Parhyale hawaiensis with multi-view light-sheet microscopy at high spatiotemporal resolution over several days of embryogenesis. The cell lineage of outgrowing thoracic limbs was reconstructed at single-cell resolution with new software called Massive Multi-view Tracker (MaMuT). In silico clonal analyses suggested that the early limb primordium becomes subdivided into anterior-posterior and dorsal-ventral compartments whose boundaries intersect at the distal tip of the growing limb. Limb-bud formation is associated with spatial modulation of cell proliferation, while limb elongation is also driven by preferential orientation of cell divisions along the proximal-distal growth axis. Cellular reconstructions were predictive of the expression patterns of limb development genes including the BMP morphogen Decapentaplegic. PMID:29595475
Infante, Carlos R; Mihala, Alexandra G; Park, Sungdae; Wang, Jialiang S; Johnson, Kenji K; Lauderdale, James D; Menke, Douglas B
2015-10-12
The amniote phallus and limbs differ dramatically in their morphologies but share patterns of signaling and gene expression in early development. Thus far, the extent to which genital and limb transcriptional networks also share cis-regulatory elements has remained unexplored. We show that many limb enhancers are retained in snake genomes, suggesting that these elements may function in non-limb tissues. Consistent with this, our analysis of cis-regulatory activity in mice and Anolis lizards reveals that patterns of enhancer activity in embryonic limbs and genitalia overlap heavily. In mice, deletion of HLEB, an enhancer of Tbx4, produces defects in hindlimbs and genitalia, establishing the importance of this limb-genital enhancer for development of these different appendages. Further analyses demonstrate that the HLEB of snakes has lost hindlimb enhancer function while retaining genital activity. Our findings identify roles for Tbx4 in genital development and highlight deep similarities in cis-regulatory activity between limbs and genitalia. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Montufar-Solis, D.; Oakley, C. R.; Jefferson, Y.; Duke, P. J.
2003-10-01
Mechanisms involved in development of the embryonic limb have remained the same throughout eons of genetic and environmental evolution under Earth gravity (lg). During the spaceflight era it has been of interest to explore the ancient theory that form of the skeleton develops in response to gravity, and that changes in gravitational forces can change the developmental pattern of the limb. This has been shown in vivo and in vitro, allowing the hypergravity of centrifugation and microgravity of space to be used as tools to increase our knowledge of limb development. In recapitulations of spaceflight experiments, premetatarsals were cultured in suspension in a bioreactor, and found to be shorter and less differentiated than those cultured in standard culture dishes. This study only measured length of the metatarsals, and did not account for possible changes due to the skeletal elements having a more in vivo 3D shape while in suspension vs. flattened tissues compressed by their own weight. A culture system with an outcome closer to in vivo and that supports growth of younger limb buds than traditional systems will allow studies of early Hox gene expression, and contribute to the understanding of very early stages of development. The purpose of the current experiment was to determine if entire limb buds could be cultured in the bioreactor, and to compare the growth and differentiation with that of culturing in a culture dish system. Fore and hind limbs from E11-E13 ICR mouse embryos were cultured for six days, either in the bioreactor or in center-well organ culture dishes, fixed, and embedded for histology. E13 specimens grown in culture dishes were flat, while bioreactor culture specimens had a more in vivo-like 3D limb shape. Sections showed excellent cartilage differentiation in both culture systems, with more cell maturation, and hypertrophy in the specimens cultured in the bioreactor. Younger limb buds fused together during culture, so an additional set of El 1.5 limb buds was cultured with and without encapsulation in alginate prior to culturing in the bioreactor. Encapsulated limbs grown in the bioreactor did not fuse together, but developed only the more proximal elements while limbs grown in culture dishes formed proximal and distal elements. Alginate encapsulation may have reduced oxygenation to the progress zone of the developing limb bud resulting in lack of development of the more distal elements. These results show that the bioreactor supports growth and differentiation of skeletal elements in entire E13 limb buds, and that a method to culture younger limb buds without fusing together needs to be developed if any morphometric analysis is to be performed.
A Computational Clonal Analysis of the Developing Mouse Limb Bud
Marcon, Luciano; Arqués, Carlos G.; Torres, Miguel S.; Sharpe, James
2011-01-01
A comprehensive spatio-temporal description of the tissue movements underlying organogenesis would be an extremely useful resource to developmental biology. Clonal analysis and fate mappings are popular experiments to study tissue movement during morphogenesis. Such experiments allow cell populations to be labeled at an early stage of development and to follow their spatial evolution over time. However, disentangling the cumulative effects of the multiple events responsible for the expansion of the labeled cell population is not always straightforward. To overcome this problem, we develop a novel computational method that combines accurate quantification of 2D limb bud morphologies and growth modeling to analyze mouse clonal data of early limb development. Firstly, we explore various tissue movements that match experimental limb bud shape changes. Secondly, by comparing computational clones with newly generated mouse clonal data we are able to choose and characterize the tissue movement map that better matches experimental data. Our computational analysis produces for the first time a two dimensional model of limb growth based on experimental data that can be used to better characterize limb tissue movement in space and time. The model shows that the distribution and shapes of clones can be described as a combination of anisotropic growth with isotropic cell mixing, without the need for lineage compartmentalization along the AP and PD axis. Lastly, we show that this comprehensive description can be used to reassess spatio-temporal gene regulations taking tissue movement into account and to investigate PD patterning hypothesis. PMID:21347315
Chicken homeobox gene Msx-1: structure, expression in limb buds and effect of retinoic acid.
Yokouchi, Y; Ohsugi, K; Sasaki, H; Kuroiwa, A
1991-10-01
A chicken gene carrying a homeobox highly homologous to the Drosophila muscle segment homeobox (msh) gene was isolated and designated as Msx-1. Conceptual translation from the longest ORF gave a protein of 259 amino acids lacking the conserved hexapeptide. Northern analysis detected a single 2.6 kb transcript. As early as day 2 of incubation, the transcript was detected but was not found in adult tissue. In situ hybridization analysis revealed that Msx-1 expression is closely related to a particular mesenchymal cell lineage during limb bud formation. In early stage embryos, Msx-1 was expressed in the somatopleure. When primordial mesenchyme cells for limb bud were generated from the Wolffian ridge of the somatopleure, Msx-1 expression began to diminish in the posterior half of the limb bud then in the presumptive cartilage-forming mesenchyme. In developing limb buds, remarkable expression was seen in the apical ectodermal ridge (AER), which is responsible for the sustained outgrowth and development of the limb. The Msx-1 transcripts were found in the limb mesenchymal cells in the region covering the necrotic zone and ectodermal cells overlying such mesenchymal cells. Both ectodermal and mesenchymal expression in limb bud were rapidly suppressed by local treatment of retinoic acid which can generate mirror-image duplication of digits. This indicates that retinoic acid alters the marginal presumptive non-cartilage forming mesenchyme cell lineage through suppression of Msx-1 expression.
Expression of Msx genes in regenerating and developing limbs of axolotl.
Koshiba, K; Kuroiwa, A; Yamamoto, H; Tamura, K; Ide, H
1998-12-15
Msx genes, homeobox-containing genes, have been isolated as homologues of the Drosophila msh gene and are thought to play important roles in the development of chick or mouse limb buds. We isolated two Msx genes, Msx1 and Msx2, from regenerating blastemas of axolotl limbs and examined their expression patterns using Northern blot and whole mount in situ hybridization during regeneration and development. Northern blot analysis revealed that the expression level of both Msx genes increased during limb regeneration. The Msx2 expression level increased in the blastema at the early bud stage, and Msx1 expression level increased at the late bud stage. Whole mount in situ hybridization revealed that Msx2 was expressed in the distal mesenchyme and Msx1 in the entire mesenchyme of the blastema at the late bud stage. In the developing limb bud, Msx1 was expressed in the entire mesenchyme, while Msx2 was expressed in the distal and peripheral mesenchyme. The expression patterns of Msx genes in the blastemas and limb buds of the axolotl were different from those reported for chick or mouse limb buds. These expression patterns of axolotl Msx genes are discussed in relation to the blastema or limb bud morphology and their possible roles in limb patterning.
Jones, Tamsin E M; Day, Robert C; Beck, Caroline W
2013-11-01
The vertebrate limb is one of the most intensively studied organs in the field of developmental biology. Limb development in tetrapod vertebrates is highly conserved and dependent on the interaction of several important molecular pathways. The bone morphogenetic protein (BMP) signaling cascade is one of these pathways and has been shown to be crucial for several aspects of limb development. Here, we have used a Xenopus laevis transgenic line, in which expression of the inhibitor Noggin is under the control of the heat-shock promoter hsp70 to examine the effects of attenuation of BMP signaling at different stages of limb development. Remarkably different phenotypes were produced at different stages, illustrating the varied roles of BMP in development of the limb. Very early limb buds appeared to be refractory to the effects of BMP attenuation, developing normally in most cases. Ectopic limbs were produced by overexpression of Noggin corresponding to a brief window of limb development at about stage 49/50, as recently described by Christen et al. (2012). Attenuation of BMP signaling in stage 51 or 52 tadpoles lead to a reduction in the number of digits formed, resulting in hypodactyly or ectrodactyly, as well as occasional defects in the more proximal tibia-fibula. Finally, inhibition at stage 54 (paddle stage) led to the formation of dramatically shortened digits resulting from loss of distal phalanges. Transcriptome analysis has revealed the possibility that more Noggin-sensitive members of the BMP family could be involved in limb development than previously suspected. Our analysis demonstrates the usefulness of heat-shock-driven gene expression as an effective method for inhibiting a developmental pathway at different times during limb development. © 2013 Anatomical Society.
Kuris, A M; Mager, M
1975-09-01
Size increase at molt is reduced following multiple limb regeneration in the shore crabs, Hemigrapsus oregonensis and Pachygrapsus crassipes. Limb loss per se does not influence postmolt size. Effect of increasing number of regenerating limbs is additive. Postmolt size is programmed early in the premolt period of the preceding instar and is probably not readily influenced by water uptake mechanics at ecdysis. A simple model for growth, molting, and regeneration in heavily calcified Crustacea is developed from the viewpoint of adaptive strategies and energetic considerations.
Satoh, Akira; makanae, Aki; Hirata, Ayako; Satou, Yutaka
2011-07-15
Urodele amphibians can regenerate amputated limbs. It has been considered that differentiated dermal tissues generate multipotent and undifferentiated cells called blastema cells during limb regeneration. In early phases of limb regeneration, blastema cells are induced by nerves and the apical epithelial cap (AEC). We had previously investigated the role of neurotrophic factors in blastema or blastema-like formation consisting of Prrx-1 positive cells. A new system suitable for investigating early phases of limb regeneration, called the accessory limb model (ALM), was recently developed. In this study, we performed a comparative transcriptome analysis between a blastema and wound using ALM. Matrix metalloproteinase (MMP) and fibroblast growth factor (FGF) signaling components were observed to be predominantly expressed in ALM blastema cells. Furthermore, we found that MMP activity induced a blastema marker gene, Prrx-1, in vitro, and FGF signaling pathways worked in coordination to maintain Prrx-1 expression and ALM blastema formation. Furthermore, we demonstrated that these two activities were sufficient to induce an ALM blastema in the absence of a nerve in vivo. Copyright © 2011 Elsevier Inc. All rights reserved.
Knapp, Dunja; Schulz, Herbert; Rascon, Cynthia Alexander; Volkmer, Michael; Scholz, Juliane; Nacu, Eugen; Le, Mu; Novozhilov, Sergey; Tazaki, Akira; Protze, Stephanie; Jacob, Tina; Hubner, Norbert; Habermann, Bianca; Tanaka, Elly M.
2013-01-01
Understanding how the limb blastema is established after the initial wound healing response is an important aspect of regeneration research. Here we performed parallel expression profile time courses of healing lateral wounds versus amputated limbs in axolotl. This comparison between wound healing and regeneration allowed us to identify amputation-specific genes. By clustering the expression profiles of these samples, we could detect three distinguishable phases of gene expression – early wound healing followed by a transition-phase leading to establishment of the limb development program, which correspond to the three phases of limb regeneration that had been defined by morphological criteria. By focusing on the transition-phase, we identified 93 strictly amputation-associated genes many of which are implicated in oxidative-stress response, chromatin modification, epithelial development or limb development. We further classified the genes based on whether they were or were not significantly expressed in the developing limb bud. The specific localization of 53 selected candidates within the blastema was investigated by in situ hybridization. In summary, we identified a set of genes that are expressed specifically during regeneration and are therefore, likely candidates for the regulation of blastema formation. PMID:23658691
Kawano, Sandy M; Blob, Richard W
2013-08-01
The invasion of land was a pivotal event in vertebrate evolution that was associated with major appendicular modifications. Although fossils indicate that the evolution of fundamentally limb-like appendages likely occurred in aquatic environments, the functional consequences of using early digited limbs, rather than fins, for terrestrial propulsion have had little empirical investigation. Paleontological and experimental analyses both have led to the proposal of an early origin of "hind limb-driven" locomotion among tetrapods or their ancestors. However, the retention of a pectoral appendage that had already developed terrestrial adaptations has been proposed for some taxa, and few data are available from extant functional models that can provide a foundation for evaluating the relative contributions of pectoral and pelvic appendages to terrestrial support among early stem tetrapods. To examine these aspects of vertebrate locomotor evolution during the invasion of land, we measured three-dimensional ground reaction forces (GRFs) produced by isolated pectoral fins of mudskipper fishes (Periophthalmus barbarus) during terrestrial crutching, and compared these to isolated walking footfalls by the forelimbs and hind limbs of tiger salamanders (Ambystoma tigrinum), a species with subequally-sized limbs that facilitate comparisons to early tetrapods. Pectoral appendages of salamanders and mudskippers exhibited numerous differences in GRFs. Compared with salamander forelimbs, isolated fins of mudskippers bear lower vertical magnitudes of GRFs (as a proportion of body weight), and had GRFs that were oriented more medially. Comparing the salamanders' forelimbs and hind limbs, although the peak net GRF occurs later in stance for the forelimb, both limbs experience nearly identical mediolateral and vertical components of GRF, suggesting comparable contributions to support. Thus, forelimbs could also have played a significant locomotor role among basal tetrapods that had limbs of sub-equal size. However, the salamander hind limb and mudskipper pectoral fin had a greater acceleratory role than did the salamander forelimb. Together, data from these extant taxa help to clarify how structural change may have influenced locomotor function through the evolutionary invasion of land by vertebrates.
Heterochrony in the regulation of the developing marsupial limb.
Chew, Keng Yih; Shaw, Geoffrey; Yu, Hongshi; Pask, Andrew J; Renfree, Marilyn B
2014-02-01
At birth, marsupial neonates have precociously developed forelimbs. The development of the tammar wallaby (Macropus eugenii) hindlimbs lags significantly behind that of the forelimbs. This differs from the grey short-tailed opossum, Monodelphis domestica, which has relatively similar fore- and hindlimbs at birth. This study examines the expression of the key patterning genes TBX4, TBX5, PITX1, FGF8, and SHH in developing limb buds in the tammar wallaby. All genes examined were highly conserved with orthologues from opossum and mouse. TBX4 expression appeared earlier in development than in the mouse, but later than in the opossum. SHH expression is restricted to the zone of polarising activity, while TBX5 (forelimb) and PITX1 (hindlimb) showed diffuse mRNA expression. FGF8 is specifically localised to the apical ectodermal ridge, which is more prominent than in the opossum. The most marked divergence in limb size in marsupials occurs in the kangaroos and wallabies. The faster development of the fore limb compared to that of the hind limb correlates with the early timing of the expression of the key patterning genes in these limbs. Copyright © 2013 Wiley Periodicals, Inc.
Using temporal mining to examine the development of lymphedema in breast cancer survivors.
Green, Jason M; Paladugu, Sowjanya; Shuyu, Xu; Stewart, Bob R; Shyu, Chi-Ren; Armer, Jane M
2013-01-01
Secondary lymphedema is a lifetime risk for breast cancer survivors and can severely affect quality of life. Early detection and treatment are crucial for successful lymphedema management. Limb volume measurements can be utilized not only to diagnose lymphedema but also to track progression of limb volume changes before lymphedema, which has the potential to provide insight into the development of this condition. This study aims to identify commonly occurring patterns in limb volume changes in breast cancer survivors before the development of lymphedema and to determine if there were differences in these patterns between certain patient subgroups. Furthermore, pattern differences were studied between patients who developed lymphedema quickly and those whose onset was delayed. A temporal data mining technique was used to identify and compare common patterns in limb volume measurements in patient subgroups of study participants (n = 232). Patterns were filtered initially by support and confidence values, and then t tests were used to determine statistical significance of the remaining patterns. Higher body mass index and the presence of postoperative swelling are supported as risk factors for lymphedema. In addition, a difference in trajectory to the lymphedema state was observed. The results have potential to guide clinical guidelines for assessment of latent and early-onset lymphedema.
Phantom Limbs, Neuroprosthetics, and the Developmental Origins of Embodiment.
Blumberg, Mark S; Dooley, James C
2017-10-01
Amputees who wish to rid themselves of a phantom limb must weaken the neural representation of the absent limb. Conversely, amputees who wish to replace a lost limb must assimilate a neuroprosthetic with the existing neural representation. Whether we wish to remove a phantom limb or assimilate a synthetic one, we will benefit from knowing more about the developmental process that enables embodiment. A potentially critical contributor to that process is the spontaneous activity - in the form of limb twitches - that occurs exclusively and abundantly during active (REM) sleep, a particularly prominent state in early development. The sensorimotor circuits activated by twitching limbs, and the developmental context in which activation occurs, could provide a roadmap for creating neuroprosthetics that feel as if they are part of the body. Copyright © 2017 Elsevier Ltd. All rights reserved.
Huei, T.J.; Mohd Yussof, S.J.; Lip, H.T.C.; Salina, I.
2017-01-01
Summary Electrical injuries make up a relatively small portion of burn injuries. Safety measures in place on domestic electricity supply have reduced the occurrence of high voltage electrical injuries. We present the case of a young man who sustained a high voltage electrical injury on all four limbs. Early fasciotomy was performed on both his hands and forearms. Despite early compartment release, the left upper limb deteriorated and required amputation. In this article we discuss the indications, outcomes and complications of early fasciotomy. PMID:29021730
McCusker, Catherine; Bryant, Susan V.
2015-01-01
Abstract The axolotl is one of the few tetrapods that are capable of regenerating complicated biological structures, such as complete limbs, throughout adulthood. Upon injury the axolotl generates a population of regeneration‐competent limb progenitor cells known as the blastema, which will grow, establish pattern, and differentiate into the missing limb structures. In this review we focus on the crucial early events that occur during wound healing, the neural−epithelial interactions that drive the formation of the early blastema, and how these mechanisms differ from those of other species that have restricted regenerative potential, such as humans. We also discuss how the presence of cells from the different axes of the limb is required for the continued growth and establishment of pattern in the blastema as described in the polar coordinate model, and how this positional information is reprogrammed in blastema cells during regeneration. Multiple cell types from the mature limb stump contribute to the blastema at different stages of regeneration, and we discuss the contribution of these types to the regenerate with reference to whether they are “pattern‐forming” or “pattern‐following” cells. Lastly, we explain how an engineering approach will help resolve unanswered questions in limb regeneration, with the goal of translating these concepts to developing better human regenerative therapies. PMID:27499868
Lymphoedema of the upper limb: a rare complication of thyroid surgery?
Stephen, Christopher; Munnoch, David Alexander
2016-01-01
A 40-year-old woman underwent an elective thyroidectomy for a non-toxic, multinodular goitre. In the early postoperative period, the patient developed a significant unilateral swelling of the right upper limb, which was subsequently confirmed to be lymphoedema. This was eventually treated successfully using liposuction and compression garment therapies. We report the case due to its rarity and present a possible explanation for such an unexpected complication based on known anatomical variations of lymphatic drainage of the upper limb. PMID:27090542
Friel, KM; Chakrabarty, S; H-C, Kuo; Martin, JH
2012-01-01
This study investigated requirements for restoring motor function after corticospinal (CS) system damage during early postnatal development. Activity-dependent competition between the CS tracts (CST) of the two hemispheres is imperative for normal development. Blocking primary motor cortex (M1) activity unilaterally during a critical period (postnatal weeks-PW-5–7) produces permanent contralateral motor skill impairments, loss of M1 motor map, aberrant CS terminations, and decreases in CST presynaptic sites and spinal cholinergic interneuron numbers. To repair these motor systems impairments and restore function, we manipulated motor experience in three groups of cats after this CST injury produced by inactivation. One group wore a jacket restraining the limb ipsilateral to inactivation, forcing use of the contralateral, impaired, limb, for the month following M1 inactivation (PW8–13; “Restraint Alone”). A second group wore the restraint during PW8–13, and was also trained for 1 h/day in a reaching task with the contralateral forelimb (“Early Training”). To test the efficacy of intervention during adolescence, a third group wore the restraint and received reach training during PW20–24 (“Delayed Training”). Early training restored CST connections and the M1 motor map; increased cholinergic spinal interneurons numbers on the contralateral, relative to ipsilateral, side; and abrogated limb control impairments. Delayed training restored CST connectivity and the M1 motor map, but not contralateral spinal cholinergic cell counts or motor performance. Restraint alone only restored CST connectivity. Our findings stress the need to reestablish the integrated functions of the CS system at multiple hierarchical levels in restoring skilled motor function after developmental injury. PMID:22764234
Königsmann, Tatiana; Turetzek, Natascha; Pechmann, Matthias; Prpic, Nikola-Michael
2017-11-01
Zinc finger transcription factors of the Sp6-9 group are evolutionarily conserved in all metazoans and have important functions in, e.g., limb formation and heart development. The function of Sp6-9-related genes has been studied in a number of vertebrates and invertebrates, but data from chelicerates (spiders and allies) was lacking so far. We have isolated the ortholog of Sp6-9 from the common house spider Parasteatoda tepidariorum and the cellar spider Pholcus phalangioides. We show that the Sp6-9 gene in these spider species is expressed in the developing appendages thus suggesting a conserved role in limb formation. Indeed, RNAi with Sp6-9 in P. tepidariorum leads not only to strong limb defects, but also to the loss of body segments and head defects in more strongly affected animals. Together with a new expression domain in the early embryo, these data suggest that Sp6-9 has a dual role P. tepidariorum. The early role in head and body segment formation is not known from other arthropods, but the role in limb formation is evolutionarily highly conserved.
Imparting regenerative capacity to limbs by progenitor cell transplantation
Lin, Gufa; Chen, Ying; Slack, Jonathan M.W.
2012-01-01
Summary The frog Xenopus can normally regenerate its limbs at early developmental stages but loses the ability during metamorphosis. This behavior provides a potential gain-of-function model for measures that can enhance limb regeneration. Here we show that frog limbs can be caused to form multidigit regenerates after receiving transplants of larval limb progenitor cells. It is necessary to activate Wnt/β -catenin signaling in the cells, and to add Sonic hedgehog, FGF10 and thymosin β4. These factors promote survival and growth of the grafted cells and also provide pattern information. The eventual regenerates are not composed solely of donor tissue; the host cells also make a substantial contribution despite their lack of regeneration-competence. Cells from adult frog legs or from regenerating tadpole tails do not promote limb regeneration, demonstrating the necessity for limb progenitor cells. These findings have obvious implications for the development of a technology to promote limb regeneration in mammals. PMID:23273877
Becic, Tina; Kero, Darko; Vukojevic, Katarina; Mardesic, Snjezana; Saraga-Babic, Mirna
2018-04-01
The expression pattern of fibroblast growth factors FGF8 and FGF2 and their receptor FGFR1, transcription factors MSX-1 and MSX-2, as well as cell proliferation (Ki-67) and cell death associated caspase-3, p19 and RIP5 factors were analyzed in histological sections of eight 4th-9th-weeks developing human limbs by immunohistochemistry and semi-thin sectioning. Increasing expression of all analyzed factors (except FGF8) characterized both the multilayered human apical ectodermal ridge (AER), sub-ridge mesenchyme (progress zone) and chondrocytes in developing human limbs. While cytoplasmic co-expression of MSX-1 and MSX-2 was observed in both limb epithelium and mesenchyme, p19 displayed strong cytoplasmic expression in non-proliferating cells. Nuclear expression of Ki-67 proliferating cells, and partly of MSX-1 and MSX-2 was detected in the whole limb primordium. Strong expression of factors p19 and RIP5, both in the AER and mesenchyme of human developing limbs indicates their possible involvement in control of cell senescence and cell death. In contrast to animal studies, expression of FGFR1 in the surface ectoderm and p19 in the whole limb primordium might reflect interspecies differences in limb morphology. Expression of FGF2 and downstream RIP5 gene, and transcription factors Msx-1 and MSX-2 did not show human-specific changes in expression pattern. Based on their spatio-temporal expression during human limb development, our study indicates role of FGFs and Msx genes in stimulation of cell proliferation, limb outgrowth, digit elongation and separation, and additionally MSX-2 in control of vasculogenesis. The cascade of orchestrated gene expressions, including the analyzed developmental factors, jointly contribute to the complex human limb development. Copyright © 2018 Elsevier GmbH. All rights reserved.
Echeverría, Alejandra Isabel; Becerra, Federico; Vassallo, Aldo Iván
2014-08-01
Burrow construction in the subterranean Ctenomys talarum (Rodentia: Ctenomyidae) primarily occurs by scratch-digging. In this study, we compared the limbs of an ontogenetic series of C. talarum to identify variation in bony elements related to fossorial habits using a morphometrical and biomechanical approach. Diameters and functional lengths of long bones were measured and 10 functional indices were constructed. We found that limb proportions of C. talarum undergo significant changes throughout postnatal ontogeny, and no significant differences between sexes were observed. Five of six forelimb indices and two of four hindlimb indices showed differences between ages. According to discriminant analysis, the indices that contributed most to discrimination among age groups were robustness of the humerus and ulna, relative epicondylar width, crural and brachial indices, and index of fossorial ability (IFA). Particularly, pups could be differentiated from juveniles and adults by more robust humeri and ulnae, wider epicondyles, longer middle limb elements, and a proportionally shorter olecranon. Greater robustness indicated a possible compensation for lower bone stiffness while wider epicondyles may be associated to improved effective forces in those muscles that originate onto them, compensating the lower muscular development. The gradual increase in the IFA suggested a gradual enhancement in the scratch-digging performance due to an improvement in the mechanical advantage of forearm extensors. Middle limb indices were higher in pups than in juveniles-adults, reflecting relatively more gracile limbs in their middle segments, which is in accordance with their incipient fossorial ability. In sum, our results show that in C. talarum some scratch-digging adaptations are already present during early postnatal ontogeny, which suggests that they are prenatally shaped, and other traits develop progressively. The role of early digging behavior as a factor influencing on morphology development is discussed. © 2014 Wiley Periodicals, Inc.
Distal limb cast sores in horses: risk factors and early detection using thermography.
Levet, T; Martens, A; Devisscher, L; Duchateau, L; Bogaert, L; Vlaminck, L
2009-01-01
There is a lack of evidence-based data on the prevalence, outcome and risk factors of distal limb cast sores, and no objective tool has been described for the early detection of cast sores. To investigate the prevalence, location, outcome and risk factors of cast sores after application of a distal limb cast and to determine whether static thermography of the cast is a valuable tool for the assessment of sores. A prospective study was conducted on horses treated with a distal limb cast. At each cast removal, cast sores were graded as superficial sores (SS), deep dermal sores (DS) or full thickness skin ulcerations (FS). In several cases, a thermographic evaluation of the cast was performed immediately prior to removal and differences in temperature (AT) between the coolest point of the cast and 2 cast regions predisposed for sore development (dorsoproximal mc/mtIII and palmar/plantar fetlock) were calculated. Mean +/- s.d. total casting time of 70 horses was 31 +/- 18 days. Overall, 57 legs (81%) developed at least SS. Twenty-four legs (34%) ultimately developed DS and one horse had an FS. Multivariable analysis showed that the severity of sores was positively associated with increasing age (OR: 1.111, P = 0.028), a normal (vs. swollen) limb (OR: 3387, P = 0.023) and an increase in total casting time (OR per week: 1.363, P = 0.002). The thermographic evaluation (35 casts) revealed that the severity of sores was positively associated with increasing deltaT (OR: 2.100, P = 0.0005). The optimal cut-off values for the presence of SS and DS were set at, respectively, deltaT = 23 and 43 degrees C. Distal limb cast is a safe coaptation technique with increasing risk of developing sores with time. Thermography is a valuable and rapid clinical tool to monitor the development of cast sores.
Pax-3 expression in segmental mesoderm marks early stages in myogenic cell specification.
Williams, B A; Ordahl, C P
1994-04-01
Specification of the myogenic lineage begins prior to gastrulation and culminates in the emergence of determined myogenic precursor cells from the somites. The myoD family (MDF) of transcriptional activators controls late step(s) in myogenic specification that are closely followed by terminal muscle differentiation. Genes expressed in myogenic specification at stages earlier than MDFs are unknown. The Pax-3 gene is expressed in all the cells of the caudal segmental plate, the early mesoderm compartment that contains the precursors of skeletal muscle. As somites form from the segmental plate and mature, Pax-3 expression is progressively modulated. Beginning at the time of segmentation, Pax-3 becomes repressed in the ventral half of the somite, leaving Pax-3 expression only in the dermomyotome. Subsequently, differential modulation of Pax-3 expression levels delineates the medial and lateral halves of the dermomyotome, which contain precursors of axial (back) muscle and limb muscle, respectively. Pax-3 expression is then repressed as dermomyotome-derived cells activate MDFs. Quail-chick chimera and ablation experiments confirmed that the migratory precursors of limb muscle continue to express Pax-3 during migration. Since limb muscle precursors do not activate MDFs until 2 days after they leave the somite, Pax-3 represents the first molecular marker for this migratory cell population. A null mutation of the mouse Pax-3 gene, Splotch, produces major disruptions in early limb muscle development (Franz, T., Kothary, R., Surani, M. A. H., Halata, Z. and Grim, M. (1993) Anat. Embryol. 187, 153-160; Goulding, M., Lumsden, A. and Paquette, A. (1994) Development 120, 957-971). We conclude, therefore, that Pax-3 gene expression in the paraxial mesoderm marks earlier stages in myogenic specification than MDFs and plays a crucial role in the specification and/or migration of limb myogenic precursors.
Ghosh, Sukla; Roy, Stéphane; Séguin, Carl; Bryant, Susan V; Gardiner, David M
2008-05-01
Urodele amphibians are unique adult vertebrates because they are able to regenerate body parts after amputation. Studies of urodele limb regeneration, the key model system for vertebrate regeneration, have led to an understanding of the origin of blastema cells and the importance of positional interactions between blastema cells in the control of growth and pattern formation. Progress is now being made in the identification of the signaling pathways that regulate dedifferentiation, blastema morphogenesis, growth and pattern formation. Members of the Wnt family of secreted proteins are expressed in developing and regenerating limbs, and have the potential to control growth, pattern formation and differentiation. We have studied the expression of two non-canonical Wnt genes, Wnt-5a and Wnt-5b. We report that they are expressed in equivalent patterns during limb development and limb regeneration in the axolotl (Ambystoma mexicanum), and during limb development in other tetrapods, implying conservation of function. Our analysis of the effects of ectopic Wnt-5a expression is consistent with the hypothesis that canonical Wnt signaling functions during the early stages of regeneration to control the dedifferentiation of stump cells giving rise to the regeneration-competent cells of the blastema.
Prenatal Development of Interlimb Motor Learning in the Rat Fetus
Robinson, Scott R.; Kleven, Gale A.; Brumley, Michele R.
2010-01-01
The role of sensory feedback in the early ontogeny of motor coordination remains a topic of speculation and debate. On E20 of gestation (the 20th day after conception, 2 days before birth), rat fetuses can alter interlimb coordination after a period of training with an interlimb yoke, which constrains limb movement and promotes synchronized, conjugate movement of the yoked limbs. The aim of this study was to determine how the ability to express this form of motor learning may change during prenatal development. Fetal rats were prepared for in vivo study at 4 ages (E18–21) and tested in a 65-min training-and-testing session examining hind limb motor learning. A significant increase in conjugate hind limb activity was expressed by E19, but not E18 fetuses, with further increases in conjugate hind limb activity on E20 and E21. These findings suggest substantial development of the ability of fetal rats to modify patterns of interlimb coordination in response to kinesthetic feedback during motor training before birth. PMID:20198121
Satoh, A; Graham, G M C; Bryant, S V; Gardiner, D M
2008-07-15
Adult urodeles (salamanders) are unique in their ability to regenerate complex organs perfectly. The recently developed Accessory Limb Model (ALM) in the axolotl provides an opportunity to identify and characterize the essential signaling events that control the early steps in limb regeneration. The ALM demonstrates that limb regeneration progresses in a stepwise fashion that is dependent on signals from the wound epidermis, nerves and dermal fibroblasts from opposite sides of the limb. When all the signals are present, a limb is formed de novo. The ALM thus provides an opportunity to identify and characterize the signaling pathways that control blastema morphogenesis and limb regeneration. In the present study, we have utilized the ALM to identity the buttonhead-like zinc-finger transcription factor, Sp9, as being involved in the formation of the regeneration epithelium. Sp9 expression is induced in basal keratinocytes of the apical blastema epithelium in a pattern that is comparable to its expression in developing limb buds, and it thus is an important marker for dedifferentiation of the epidermis. Induction of Sp9 expression is nerve-dependent, and we have identified KGF as an endogenous nerve factor that induces expression of Sp9 in the regeneration epithelium.
Gdf11 is a negative regulator of chondrogenesis and myogenesis in the developing chick limb.
Gamer, L W; Cox, K A; Small, C; Rosen, V
2001-01-15
GDF11, a new member of the TGF-beta gene superfamily, regulates anterior/posterior patterning in the axial skeleton during mouse embryogenesis. Gdf11 null mice display skeletal abnormalities that appear to represent anterior homeotic transformations of vertebrae consistent with high levels of Gdf11 expression in the primitive streak, presomitic mesoderm, and tail bud. However, despite strong Gdf11 expression in the limb throughout development, this structure does not appear to be affected in the knockout mice. In order to understand this dichotomy of Gdf11 expression versus Gdf11 function, we identified the chicken Gdf11 gene and studied its role during limb formation. In the early limb bud, Gdf11 transcripts are detected in the subectodermal mesoderm at the distal tip, in a region overlapping the progress zone. At these stages, Gdf11 is excluded from the central core mesenchyme where precartilaginous condensations will form. Later in development, Gdf11 continues to be expressed in the distal most mesenchyme and can also be detected more proximally, in between the forming skeletal elements. When beads incubated in GDF11 protein were implanted into the early wing bud, GDF11 caused severe truncations of the limb that affected both the cartilage elements and the muscle. Limb shortening appeared to be the result of an inhibition of chondrogenesis and myogenesis and using an in vitro micromass assay, we confirmed the negative effects of GDF11 on both myogenic and chondrogenic cell differentiation. Analysis of molecular markers of skeletal patterning revealed that GDF11 induced ectopic expression of Hoxd-11 and Hoxd-13, but not of Hoxa-11, Hoxa-13, or the Msx genes. These data suggest that GDF11 may be involved in controlling the late distal expression of the Hoxd genes during limb development and that misregulation of these Hox genes by excess GDF11 may cause some of the observed alterations in skeletal element shape. In addition, GDF11 induced the expression of its own antagonist follistatin, indicating that the activity of GFD11 may be limited by a negative feedback mechanism. The data from our studies in the chick suggest that Gdf11 plays a role in the formation and development of the avian limb skeleton.
Neufeld, Stanley; Rosin, Jessica M; Ambasta, Anshula; Hui, Kristen; Shaneman, Venessa; Crowder, Ray; Vickerman, Lori; Cobb, John
2012-10-01
R-spondins are secreted ligands that bind cell surface receptors and activate Wnt/β-catenin signaling. Human mutations and gene inactivation studies in mice have revealed a role for these four proteins (RSPO1-4) in diverse developmental processes ranging from sex determination to limb development. Among the genes coding for R-spondins, only inactivation of Rspo3 shows early embryonic lethality (E10.5 in mice). Therefore, a conditional allele of this gene is necessary to understand the function of R-spondins throughout murine development. To address this need, we have produced an allele in which loxP sites flank exons 2-4 of Rspo3, allowing tissue-specific deletion of these exons in the presence of Cre recombinase. We used these mice to investigate the role of Rspo3 during limb development and found that limbs ultimately developed normally in the absence of Rspo3 function. However, severe hindlimb truncations resulted when Rspo3 and Rspo2 mutations were combined, demonstrating redundant function of these genes. Copyright © 2012 Wiley Periodicals, Inc.
The accuracy and precision of radiostereometric analysis in upper limb arthroplasty.
Ten Brinke, Bart; Beumer, Annechien; Koenraadt, Koen L M; Eygendaal, Denise; Kraan, Gerald A; Mathijssen, Nina M C
2017-06-01
Background and purpose - Radiostereometric analysis (RSA) is an accurate method for measurement of early migration of implants. Since a relation has been shown between early migration and future loosening of total knee and hip prostheses, RSA plays an important role in the development and evaluation of prostheses. However, there have been few RSA studies of the upper limb, and the value of RSA of the upper limb is not yet clear. We therefore performed a systematic review to investigate the accuracy and precision of RSA of the upper limb. Patients and methods - PRISMA guidelines were followed and the protocol for this review was published online at PROSPERO under registration number CRD42016042014. A systematic search of the literature was performed in the databases Embase, Medline, Cochrane, Web of Science, Scopus, Cinahl, and Google Scholar on April 25, 2015 based on the keywords radiostereometric analysis, shoulder prosthesis, elbow prosthesis, wrist prosthesis, trapeziometacarpal joint prosthesis, humerus, ulna, radius, carpus. Articles concerning RSA for the analysis of early migration of prostheses of the upper limb were included. Quality assessment was performed using the MINORS score, Downs and Black checklist, and the ISO RSA Results - 23 studies were included. Precision values were in the 0.06-0.88 mm and 0.05-10.7° range for the shoulder, the 0.05-0.34 mm and 0.16-0.76° range for the elbow, and the 0.16-1.83 mm and 11-124° range for the TMC joint. Accuracy data from marker- and model-based RSA were not reported in the studies included. Interpretation - RSA is a highly precise method for measurement of early migration of orthopedic implants in the upper limb. However, the precision of rotation measurement is poor in some components. Challenges with RSA in the upper limb include the symmetrical shape of prostheses and the limited size of surrounding bone, leading to over-projection of the markers by the prosthesis. We recommend higher adherence to RSA guidelines and encourage investigators to publish long-term follow-up RSA studies.
Vincent, Christine; Bontoux, Martine; Le Douarin, Nicole M; Pieau, Claude; Monsoro-Burq, Anne-Hélène
2003-09-01
The turtle shell forms by extensive ossification of dermis ventrally and dorsally. The carapacial ridge (CR) controls early dorsal shell formation and is thought to play a similar role in shell growth as the apical ectodermal ridge during limb development. However, the molecular mechanisms underlying carapace development are still unknown. Msx genes are involved in the development of limb mesenchyme and of various skeletal structures. In particular, precocious Msx expression is recorded in skeletal precursors that develop close to the ectoderm, such as vertebral spinous processes or skull. Here, we have studied the embryonic expression of Msx genes in the European pond turtle, Emys orbicularis. The overall Msx expression in head, limb, and trunk is similar to what is observed in other vertebrates. We have focused on the CR area and pre-skeletal shell condensations. The CR expresses Msx genes transiently, in a pattern similar to that of fgf10. In the future carapace domain, the dermis located dorsal to the spinal cord expresses Msx genes, as in other vertebrates, but we did not see expansion of this expression in the dermis located more laterally, on top of the dermomyotomes. In the ventral plastron, although the dermal osseous condensations form in the embryonic Msx-positive somatopleura, we did not observe enhanced Msx expression around these elements. These observations may indicate that common mechanisms participate in limb bud and CR early development, but that pre-differentiation steps differ between shell and other skeletal structures and involve other gene activities than that of Msx genes.
Impairments in prehension produced by early postnatal sensory motor cortex activity blockade.
Martin, J H; Donarummo, L; Hacking, A
2000-02-01
This study examined the effects of blocking neural activity in sensory motor cortex during early postnatal development on prehension. We infused muscimol, either unilaterally or bilaterally, into the sensory motor cortex of cats to block activity continuously between postnatal weeks 3-7. After stopping infusion, we trained animals to reach and grasp a cube of meat and tested behavior thereafter. Animals that had not received muscimol infusion (unilateral saline infusion; age-matched) reached for the meat accurately with small end-point errors. They grasped the meat using coordinated digit flexion followed by forearm supination on 82.7% of trials. Performance using either limb did not differ significantly. In animals receiving unilateral muscimol infusion, reaching and grasping using the limb ipsilateral to the infusion were similar to controls. The limb contralateral to infusion showed significant increases in systematic and variable reaching end-point errors, often requiring subsequent corrective movements to contact the meat. Grasping occurred on only 14.8% of trials, replaced on most trials by raking without distal movements. Compensatory adjustments in reach length and angle, to maintain end-point accuracy as movements were started from a more lateral position, were less effective using the contralateral limb than ipsilateral limb. With bilateral inactivations, the form of reaching and grasping impairments was identical to that produced by unilateral inactivation, but the magnitude of the reaching impairments was less. We discuss these results in terms of the differential effects of unilateral and bilateral inactivation on corticospinal tract development. We also investigated the degree to which these prehension impairments after unilateral blockade reflect control by each hemisphere. In animals that had received unilateral blockade between postnatal weeks (PWs) 3 and 7, we silenced on-going activity (after PW 11) during task performance using continuous muscimol infusion. We inactivated the right (previously active) and then the left (previously silenced) sensory motor cortex. Inactivation of the ipsilateral (right) sensory motor cortex produced a further increase in systematic error and less frequent normal grasping. Reinactivation of the contralateral (left) cortex produced larger increases in reaching and grasping impairments than those produced by ipsilateral inactivation. This suggests that the impaired limb receives bilateral sensory motor cortex control but that control by the contralateral (initially silenced) cortex predominates. Our data are consistent with the hypothesis that the normal development of skilled motor behavior requires activity in sensory motor cortex during early postnatal life.
The GEOS Chemistry Climate Model: Comparisons to Satellite Data
NASA Technical Reports Server (NTRS)
Stolarski, Richard S.; Douglass, Anne R.
2008-01-01
The Goddard Earth Observing System Chemistry Climate Model (GEOS CCM) has been developed by combining the atmospheric chemistry and transport modules developed over the years at Goddard and the GEOS general circulation model, also developed at Goddard. We will compare model simulations of ozone, and the minor constituents that affect ozone, for the period around 1980 with newly released revised data from the Limb Infrared Monitor of the Stratosphere (LIMS) instrument on Nimbus 4. We will also compare model simulations for the period of the early 2000s with the data from the Microwave Limb Sounder (MLS) and the High Resolution Dynamic Limb Sounder (HRDLS) on the Aura satellite. We will use these comparisons to examine the performance of the model for the present atmosphere and for the change that has occurred during the last 2 decades of ozone loss due to chlorine and bromine compounds released from chlorofluorocarbons and halons.
Activation of germline-specific genes is required for limb regeneration in the Mexican axolotl
Zhu, Wei; Pao, Gerald M; Satoh, Akira; Cummings, Gillian; Monaghan, James R; Harkins, Timothy T; Bryant, Susan V; Voss, S Randal; Gardiner, David M; Hunter, Tony
2013-01-01
The capacity for tissue and organ regeneration in humans is dwarfed by comparison to that of salamanders. Emerging evidence suggests that mechanisms learned from the early phase of salamander limb regeneration – wound healing, cellular dedifferentiation and blastemal formation – will reveal therapeutic approaches for tissue regeneration in humans. Here we describe a unique transcriptional fingerprint of regenerating limb tissue in the Mexican axolotl (Ambystoma mexicanum) that is indicative of cellular reprogramming of differentiated cells to a germline-like state. Two genes that are required for self-renewal of germ cells in mice and flies, Piwi-like 1 (PL1) and Piwi-like 2 (PL2), are expressed in limb blastemal cells, the basal layer keratinocytes and the thickened apical epithelial cap in the wound epidermis in the regenerating limb. Depletion of PL1 and PL2 by morpholino oligonucleotides decreased cell proliferation and increased cell death in the blastema leading to a significant retardation of regeneration. Examination of key molecules that are known to be required for limb development or regeneration further revealed that FGF8 is transcriptionally downregulated in the presence of the morpholino oligos, indicating PL1 and PL2 might participate in FGF signaling during limb regeneration. Given the requirement for FGF signaling in limb development and regeneration, the results suggest that PL1 and PL2 function to establish a unique germline-like state that is associated with successful regeneration. PMID:22841627
Strickland, Louise H; Kelly, Laura; Hamilton, Thomas W; Murray, David W; Pandit, Hemant G; Jenkinson, Crispin
2017-09-27
To explore the patients' perspective of surgery and early recovery when undergoing lower limb (hip or knee) arthroplasty. Lower limb arthroplasty is a commonly performed procedure for symptomatic arthritis, which has not responded to conservative medical treatment. Each patient's perspective of the surgical process and early recovery period impacts on their quality of life. Open, semistructured qualitative interviews were used to allow for a deeper understanding of the patient perspective when undergoing a hip or knee arthroplasty. Following ethical approval, 30 patients were interviewed between August and November 2016 during the perioperative period while undergoing an elective hip or knee arthroplasty (n = 30). The interviews were performed between the day of surgery and a nine-week postoperative clinic appointment. Data were analysed using an in-depth narrative thematic analysis method. NVivo qualitative data analysis software was used. Seven main themes evolved from the interviews: "improving function and mobility", "pain", "experiences of health care", "support from others", "involvement and understanding of care decisions", "behaviour and coping" and "fatigue and sleeping". The early postoperative recovery period is of vital importance to all surgical patients. This is no different for the orthopaedic patient. However, identifying key self-reported areas of importance from patients can guide clinical focus for healthcare professionals. To have specific patient-reported information regarding key areas of importance during the perioperative phase is invaluable when caring for the orthopaedic surgical patient. It gives insight and understanding in to this increasing population group. This study has also served as a starting point in the development of a questionnaire which could be used to assess interventions in the lower limb arthroplasty population. These results will influence both items and content of the questionnaire. © 2017 John Wiley & Sons Ltd.
Pino, Paula A; Román, Javier A; Fernández, Felipe
2016-12-01
Background: Purpura fulminans is a condition characterized by rapidly evolving skin necrosis and disseminated intravascular coagulation. Early recognition and aggressive supportive management has led to a decrease in its mortality rate, but most of these patients must undergo extensive soft tissue debridement and partial or total limb amputation. There is controversial evidence about the timing of surgery, suggesting that some patients may benefit from delayed debridement with limb preservation. Methods: We present a case of an 86-year-old patient who developed skin necrosis of his four limbs after infectious purpura fulminans. He was treated in the ICU with supportive measures and antibiotic treatment. Surgical debridement was delayed for 4 weeks until necrosis delimitation. Results: Only upper extremity debridement was necessary. Four fingers, including one thumb, were salvaged and successfully treated with semi-occlusive dressing without complications. Conclusion: Early recognition of infectious PF and timely supportive management are important pillars of its treatment. Delayed surgical debridement allows for less aggressive resection and good functional outcome.
Distal Predominance of Electrodiagnostic Abnormalities in Early Stage Amyotrophic Lateral Sclerosis.
Shayya, Luay; Babu, Suma; Pioro, Erik P; Li, Jianbo; Li, Yuebing
2018-05-09
We compare the electrodiagnostic (EDX) yield of limb muscles in revealing lower motor neuron (LMN) dysfunction by electromyography (EMG) in early stage amyotrophic lateral sclerosis (ALS). Single-site retrospective review Results: This study includes 122 consecutive patients with possible ALS as defined by revised El Escorial Criteria. Distal limb muscles show more frequent EMG abnormalities than proximal muscles. EDX yield is higher in the limb where weakness begins and when clinical signs of LMN dysfunction are evident. Adoption of Awaji criteria increases the yield of EMG positive segments significantly in the cervical (p<0.0005) and lumbosacral regions (P<0.0001), and upgrades 19 patients into probable and 1 patient into definite categories. Electromyographic abnormalities are distal limb-predominant in early stage ALS. A redefinition of an EDX-positive cervical or lumbosacral segment, with an emphasis on distal limb muscles, may result in an earlier ALS diagnosis. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.
Loss and Re-emergence of Legs in Snakes by Modular Evolution of Sonic hedgehog and HOXD Enhancers.
Leal, Francisca; Cohn, Martin J
2016-11-07
Limb reduction and loss are hallmarks of snake evolution. Although advanced snakes are completely limbless, basal and intermediate snakes retain pelvic girdles and small rudiments of the femur. Moreover, legs may have re-emerged in extinct snake lineages [1-5], suggesting that the mechanisms of limb development were not completely lost in snakes. Here we report that hindlimb development arrests in python embryos as a result of mutations that abolish essential transcription factor binding sites in the limb-specific enhancer of Sonic hedgehog (SHH). Consequently, SHH transcription is weak and transient in python hindlimb buds, leading to early termination of a genetic circuit that drives limb outgrowth. Our results suggest that degenerate evolution of the SHH limb enhancer played a role in reduction of hindlimbs during snake evolution. By contrast, HOXD digit enhancers are conserved in pythons, and HOXD gene expression in the hindlimb buds progresses to the distal phase, forming an autopodial (digit) domain. Python hindlimb buds then develop transitory pre-chondrogenic condensations of the tibia, fibula, and footplate, raising the possibility that re-emergence of hindlimbs during snake evolution did not require de novo re-evolution of lost structures but instead could have resulted from persistence of embryonic legs. VIDEO ABSTRACT. Copyright © 2016 Elsevier Ltd. All rights reserved.
Were early pterosaurs inept terrestrial locomotors?
2015-01-01
Pterodactyloid pterosaurs are widely interpreted as terrestrially competent, erect-limbed quadrupeds, but the terrestrial capabilities of non-pterodactyloids are largely thought to have been poor. This is commonly justified by the absence of a non-pterodactyloid footprint record, suggestions that the expansive uropatagia common to early pterosaurs would restrict hindlimb motion in walking or running, and the presence of sprawling forelimbs in some species. Here, these arguments are re-visited and mostly found problematic. Restriction of limb mobility is not a problem faced by extant animals with extensive fight membranes, including species which routinely utilise terrestrial locomotion. The absence of non-pterodactyloid footprints is not necessarily tied to functional or biomechanical constraints. As with other fully terrestrial clades with poor ichnological records, biases in behaviour, preservation, sampling and interpretation likely contribute to the deficit of early pterosaur ichnites. Suggestions that non-pterodactyloids have slender, mechanically weak limbs are demonstrably countered by the proportionally long and robust limbs of many Triassic and Jurassic species. Novel assessments of pterosaur forelimb anatomies conflict with notions that all non-pterodactyloids were obligated to sprawling forelimb postures. Sprawling forelimbs seem appropriate for species with ventrally-restricted glenoid articulations (seemingly occurring in rhamphorhynchines and campylognathoidids). However, some early pterosaurs, such as Dimorphodon macronyx and wukongopterids, have glenoid arthrologies which are not ventrally restricted, and their distal humeri resemble those of pterodactyloids. It seems fully erect forelimb stances were possible in these pterosaurs, and may be probable given proposed correlation between pterodactyloid-like distal humeral morphology and forces incurred through erect forelimb postures. Further indications of terrestrial habits include antungual sesamoids, which occur in the manus and pes anatomy of many early pterosaur species, and only occur elsewhere in terrestrial reptiles, possibly developing through frequent interactions of large claws with firm substrates. It is argued that characteristics possibly associated with terrestriality are deeply nested within Pterosauria and not restricted to Pterodactyloidea as previously thought, and that pterodactyloid-like levels of terrestrial competency may have been possible in at least some early pterosaurs. PMID:26157605
Gandolfi, Marialuisa; Geroin, Christian; Tomelleri, Christopher; Maddalena, Isacco; Kirilova Dimitrova, Eleonora; Picelli, Alessandro; Smania, Nicola; Waldner, Andreas
2017-12-01
So far, the development of robotic devices for the early lower limb mobilization in the sub-acute phase after stroke has received limited attention. To explore the feasibility of a newly robotic-stationary gait training in sub-acute stroke patients. To report the training effects on lower limb function and muscle activation. A pilot study. Rehabilitation ward. Two sub-acute stroke inpatients and ten age-matched healthy controls were enrolled. Healthy controls served as normative data. Patients underwent 10 robot-assisted training sessions (20 minutes, 5 days/week) in alternating stepping movements (500 repetitions/session) on a hospital bed in addition to conventional rehabilitation. Feasibility outcome measures were compliance, physiotherapist time, and responses to self-report questionnaires. Efficacy outcomes were bilateral lower limb muscle activation pattern as measured by surface electromyography (sEMG), Motricity Index (MI), Medical Research Council (MRC) grade, and Ashworth Scale (AS) scores before and after training. No adverse events occurred. No significant differences in sEMG activity between patients and healthy controls were observed. Post-training improvement in MI and MRC scores, but no significant changes in AS scores, were recorded. Post-treatment sEMG analysis of muscle activation patterns showed a significant delay in rectus femoris offset (P=0.02) and prolonged duration of biceps femoris (P=0.04) compared to pretreatment. The robot-assisted training with our device was feasible and safe. It induced physiological muscle activations pattern in both stroke patients and healthy controls. Full-scale studies are needed to explore its potential role in post-stroke recovery. This robotic device may enrich early rehabilitation in subacute stroke patients by inducing physiological muscle activation patterns. Future studies are warranted to evaluate its effects on promoting restorative mechanisms involved in lower limb recovery after stroke.
Wang, G; Scott, S A
2000-07-15
During embryonic development motor axons in the chick hindlimb grow out slightly before sensory axons and wait in the plexus region at the base of the limb for approximately 24 hr before invading the limb itself (Tosney and Landmesser, 1985a). We have investigated the role of this waiting period by asking, Is the arrest of growth cones in the plexus region a general property of both sensory and motor axons? Why do axons wait? Does eliminating the waiting period affect the further development of motor and sensory neurons? Here we show that sensory axons, like motor axons, pause in the plexus region and that neither sensory nor motor axons require cues from the other population to wait in or exit from the plexus region. By transplanting older or younger donor limbs to host embryos, we show that host axons innervate donor limbs on a schedule consistent with the age of the grafted limbs. Thus, axons wait in the plexus region for maturational changes to occur in the limb rather than in the neurons themselves. Both sensory and motor axons innervate their appropriate peripheral targets when the waiting period is eliminated by grafting older donor limbs. Therefore, axons do not require a prolonged period in the plexus region to sort out and project appropriately. Eliminating the waiting period does, however, accelerate the onset of naturally occurring cell death, but it does not enhance the development of central projections or the biochemical maturation of sensory neurons.
Five early accounts of phantom limb in context: Paré, Descartes, Lemos, Bell, and Mitchell.
Finger, Stanley; Hustwit, Meredith P
2003-03-01
PHANTOM LIMB WAS described long before American physician and surgeon Silas Weir Mitchell coined the term and drew attention to the disorder in the 1860s. The early descriptions of Ambroise Paré, René Descartes, Aaron Lemos, Charles Bell, and then Mitchell of this strange consequence of amputation are presented in historical and cultural context. These five men described phantom limbs for various reasons. They also differed when it came to explaining and dealing with these illusory sensations. The rich history of phantom limbs can begin to be appreciated by viewing the contributions of these individuals in perspective and by realizing that their writings represent only a fraction of what was published about phantom limbs more than 130 years ago.
Roberts, James W; Lyons, James; Garcia, Daniel B L; Burgess, Raquel; Elliott, Digby
2017-07-01
The multiple process model contends that there are two forms of online control for manual aiming: impulse regulation and limb-target control. This study examined the impact of visual information processing for limb-target control. We amalgamated the Gunslinger protocol (i.e., faster movements following a reaction to an external trigger compared with the spontaneous initiation of movement) and Müller-Lyer target configurations into the same aiming protocol. The results showed the Gunslinger effect was isolated at the early portions of the movement (peak acceleration and peak velocity). Reacted aims reached a longer displacement at peak deceleration, but no differences for movement termination. The target configurations manifested terminal biases consistent with the illusion. We suggest the visual information processing demands imposed by reacted aims can be adapted by integrating early feedforward information for limb-target control.
South-verging early folds: An important element in the structure of the northern Green Mountains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, P.J.
1993-03-01
Reconnaissance mapping in the Camels Hump Group, Mt. Mansfield 7.5[prime] quadrangle, north-central Vermont, indicates more complex structures than those portrayed on previously published maps. Preliminary interpretation for the structure around Smugglers Notch, for example, is that an early recumbent syncline with Hazens Notch Formation in its center (including the Sterling Pond talc deposits), opens to the south. The early syncline is deformed by the north-northeast trending Green Mountain anticlinorium, which at Smugglers Notch plunges gently south. Thus the mass of Underhill Formation along the summit ridge of Mt. Mansfield is on the upper, overturned limb of the early fold, andmore » on the west limb of the open, upright anticlinorium. The lowest cliffs in Smugglers Notch are Underhill Formation on the upright limb of the early fold. Rocks of the intervening, intensely weathered and graphitic Hazens Notch Formation are especially prone to the rock slides for which Smugglers Notch is infamous. Early minor isoclinal folds and strongly developed quartz rods and lineations trend roughly east-west. Correlation of this fabric with east-west lineations and poorly preserved fold hinges in the Camels Hump area farther south will help correlate deformational sequences between the two areas. Early minor folds that are roughly coaxial with younger Green Mountain folds are much less common in the Mt. Mansfield area than to the south, and faulting seems to have been much less intense. Thus following marker horizons such as quartzite beds and greenstones around fold hinges may be more successful. Do south-directed structures indicate lateral movement of material toward the Vermont reentrant during the Taconian orogeny« less
Ruhdorfer, AS; Dannhauer, T; Wirth, W; Cotofana, S; Roemer, F; Nevitt, M; Eckstein, F
2014-01-01
Objective To compare cross-sectional and longitudinal side-differences in thigh muscle anatomical cross-sectional areas (ACSAs), muscle strength, and specific strength (strength/ACSA), between knees with early radiographic change vs. knees without radiographic knee osteoarthritis (RKOA), in the same person. Design 55 (of 4796) Osteoarthritis Initiative participants fulfilled the inclusion criteria of early RKOA in one limb (definite tibiofemoral osteophytes; no radiographic joint space narrowing [JSN]) vs. no RKOA (no osteophyte; no JSN) in the contralateral limb. ACSAs of the thigh muscles and quadriceps heads were determined using axial MRIs at 33%/30% femoral length (distal to proximal). Isometric extensor and flexor muscle strength were measured (Good Strength Chair). Baseline quadriceps ACSA and extensor (specific) strength represented the primary analytic focus, and two-year changes of quadriceps ACSAs the secondary focus. Results No statistically significant side-differences in quadriceps (or other thigh muscle) ACSAs, muscle strength, or specific strength were observed between early RKOA vs. contralateral limbs without RKOA (p≥0.44), neither in men nor in women. The two-year reduction in quadriceps ACSA in limbs with early RKOA was −0.9±6% (mean ± standard deviation) vs. −0.5±6% in limbs without RKOA (statistical difference p=0.85). Conclusion Our results do not provide evidence that early unilateral radiographic changes, i.e. presence of osteophytes, are associated with cross-sectional or longitudinal differences in quadriceps muscle status compared with contralateral knees without RKOA. At the stage of early unilateral RKOA there thus appears to be no clinical need for countervailing a potential dys-balance in quadriceps ACSAs and strength between both knees. PMID:25278072
Distal Limb Patterning Requires Modulation of cis-Regulatory Activities by HOX13
Sheth, Rushikesh; Barozzi, Iros; Langlais, David; ...
2016-12-13
The combinatorial expression of Hox genes along the body axes is a major determinant of cell fate and plays a pivotal role in generating the animal body plan. Loss of HOXA13 and HOXD13 transcription factors (HOX13) leads to digit agenesis in mice, but how HOX13 proteins regulate transcriptional outcomes and confer identity to the distal-most limb cells has remained elusive. Here, we report on the genome-wide profiling of HOXA13 and HOXD13 in vivo binding and changes of the transcriptome and chromatin state in the transition from the early to the late-distal limb developmental program, as well as in Hoxa13–/–; Hoxd13–/– limbs. Ourmore » results show that proper termination of the early limb transcriptional program and activation of the late-distal limb program are coordinated by the dual action of HOX13 on cis-regulatory modules.« less
Kane, Jacqueline R.; Ciucci, Michelle R.; Jacobs, Amber N.; Tews, Nathan; Russell, John A.; Ahrens, Allison M.; Ma, Sean T.; Britt, Joshua M.; Cormack, Lawrence K.; Schallert, Timothy
2012-01-01
Parkinson’s disease (PD) is a neurodegenerative disorder primarily characterized by sensorimotor dysfunction. The neuropathology of PD includes a loss of dopamine (DA) neurons of the nigrostriatal pathway. Classic signs of the disease include rigidity, bradykinesia, and postural instability. However, as many as 90% of patients also experience significant deficits in speech, swallowing (including mastication), and respiratory control. Oromotor deficits such as these are underappreciated, frequently emerging during the early, often hemi-Parkinson, stage of the disease. In this paper, we review tests commonly used in our labs to model early and hemi-Parkinson deficits in rodents. We have recently expanded our tests to include sensitive models of oromotor deficits. This paper discusses the most commonly used tests in our lab to model both limb and oromotor deficits, including tests of forelimb-use asymmetry, postural instability, vibrissae-evoked forelimb placing, single limb akinesia, dry pasta handling, sunflower seed shelling, and acoustic analyses of ultrasonic vocalizations and pasta biting strength. In particular, we lay new groundwork for developing methods for measuring abnormalities in the acoustic patterns during eating that indicate decreased biting strength and irregular intervals between bites in the hemi-Parkinson rat. Similar to limb motor deficits, oromotor deficits, at least to some degree, appear to be modulated by nigrostriatal DA. Finally, we briefly review the literature on targeted motor rehabilitation effects in PD models. Learning outcomes Readers will: (a) understand how a unilateral lesion to the nigrostriatal pathway affects limb use, (b) understand how a unilateral lesion to the nigrostriatal pathway affects oromotor function, and (c) gain an understanding of how limb motor deficits and oromotor deficits appear to involve dopamine and are modulated by training. PMID:21820129
Nipbl and mediator cooperatively regulate gene expression to control limb development.
Muto, Akihiko; Ikeda, Shingo; Lopez-Burks, Martha E; Kikuchi, Yutaka; Calof, Anne L; Lander, Arthur D; Schilling, Thomas F
2014-09-01
Haploinsufficiency for Nipbl, a cohesin loading protein, causes Cornelia de Lange Syndrome (CdLS), the most common "cohesinopathy". It has been proposed that the effects of Nipbl-haploinsufficiency result from disruption of long-range communication between DNA elements. Here we use zebrafish and mouse models of CdLS to examine how transcriptional changes caused by Nipbl deficiency give rise to limb defects, a common condition in individuals with CdLS. In the zebrafish pectoral fin (forelimb), knockdown of Nipbl expression led to size reductions and patterning defects that were preceded by dysregulated expression of key early limb development genes, including fgfs, shha, hand2 and multiple hox genes. In limb buds of Nipbl-haploinsufficient mice, transcriptome analysis revealed many similar gene expression changes, as well as altered expression of additional classes of genes that play roles in limb development. In both species, the pattern of dysregulation of hox-gene expression depended on genomic location within the Hox clusters. In view of studies suggesting that Nipbl colocalizes with the mediator complex, which facilitates enhancer-promoter communication, we also examined zebrafish deficient for the Med12 Mediator subunit, and found they resembled Nipbl-deficient fish in both morphology and gene expression. Moreover, combined partial reduction of both Nipbl and Med12 had a strongly synergistic effect, consistent with both molecules acting in a common pathway. In addition, three-dimensional fluorescent in situ hybridization revealed that Nipbl and Med12 are required to bring regions containing long-range enhancers into close proximity with the zebrafish hoxda cluster. These data demonstrate a crucial role for Nipbl in limb development, and support the view that its actions on multiple gene pathways result from its influence, together with Mediator, on regulation of long-range chromosomal interactions.
Geometry, kinematics and tectonic models of the Kazakhstan Orocline, Central Asian Orogenic Belt
NASA Astrophysics Data System (ADS)
Li, Pengfei; Sun, Min; Rosenbaum, Gideon; Yuan, Chao; Safonova, Inna; Cai, Keda; Jiang, Yingde; Zhang, Yunying
2018-03-01
The Central Asian Orogenic Belt (CAOB) is one of the largest accretionary orogens on Earth and is characterized by the occurrence of tight oroclines (Kazakhstan and Tuva-Mongolian oroclines). The origin of these large-scale orogenic curvatures is not quite understood, but is fundamentally important for understanding crustal growth and tectonic evolution of the CAOB. Here we provide an outline of available geological and paleomagnetic data around the Kazakhstan Orocline, with an aim of clarifying the geometry, kinematics and geodynamic origin of the orocline. The Kazakhstan Orocline is evident in a total magmatic image, and can be traced by the continuation of high magnetic anomalies associated with the Devonian Volcanic Belt and the Late Devonian to Carboniferous Balkhash-Yili arc. Paleomagnetic data show ∼112-126° clockwise rotation of the northern limb relative to the southern limb in the Late Devonian to Early Carboniferous, as well as ∼15-28° clockwise rotation of the northern limb and ∼39-40° anticlockwise rotation of the southern limb relative to the hinge of the orocline during the Late Carboniferous to Permian. We argue that the Kazakhstan Orocline experienced two-stage bending with the early stage of bending (Late Devonian to Early Carboniferous; ∼112-126°) driven by slab rollback, and the later stage (Late Carboniferous to Permian; 54-68°) possibly associated with the amalgamation of the Siberian, Tarim and Baltic cratons. This new tectonic model is compatible with the occurrence of rift basins, the spatial migration of magmatic arc, and the development of large-scale strike-slip fault systems during oroclinal bending.
Maltais, François; Decramer, Marc; Casaburi, Richard; Barreiro, Esther; Burelle, Yan; Debigaré, Richard; Dekhuijzen, P N Richard; Franssen, Frits; Gayan-Ramirez, Ghislaine; Gea, Joaquim; Gosker, Harry R; Gosselink, Rik; Hayot, Maurice; Hussain, Sabah N A; Janssens, Wim; Polkey, Micheal I; Roca, Josep; Saey, Didier; Schols, Annemie M W J; Spruit, Martijn A; Steiner, Michael; Taivassalo, Tanja; Troosters, Thierry; Vogiatzis, Ioannis; Wagner, Peter D
2014-05-01
Limb muscle dysfunction is prevalent in chronic obstructive pulmonary disease (COPD) and it has important clinical implications, such as reduced exercise tolerance, quality of life, and even survival. Since the previous American Thoracic Society/European Respiratory Society (ATS/ERS) statement on limb muscle dysfunction, important progress has been made on the characterization of this problem and on our understanding of its pathophysiology and clinical implications. The purpose of this document is to update the 1999 ATS/ERS statement on limb muscle dysfunction in COPD. An interdisciplinary committee of experts from the ATS and ERS Pulmonary Rehabilitation and Clinical Problems assemblies determined that the scope of this document should be limited to limb muscles. Committee members conducted focused reviews of the literature on several topics. A librarian also performed a literature search. An ATS methodologist provided advice to the committee, ensuring that the methodological approach was consistent with ATS standards. We identified important advances in our understanding of the extent and nature of the structural alterations in limb muscles in patients with COPD. Since the last update, landmark studies were published on the mechanisms of development of limb muscle dysfunction in COPD and on the treatment of this condition. We now have a better understanding of the clinical implications of limb muscle dysfunction. Although exercise training is the most potent intervention to address this condition, other therapies, such as neuromuscular electrical stimulation, are emerging. Assessment of limb muscle function can identify patients who are at increased risk of poor clinical outcomes, such as exercise intolerance and premature mortality. Limb muscle dysfunction is a key systemic consequence of COPD. However, there are still important gaps in our knowledge about the mechanisms of development of this problem. Strategies for early detection and specific treatments for this condition are also needed.
Maltais, François; Decramer, Marc; Casaburi, Richard; Barreiro, Esther; Burelle, Yan; Debigaré, Richard; Dekhuijzen, P. N. Richard; Franssen, Frits; Gayan-Ramirez, Ghislaine; Gea, Joaquim; Gosker, Harry R.; Gosselink, Rik; Hayot, Maurice; Hussain, Sabah N. A.; Janssens, Wim; Polkey, Micheal I.; Roca, Josep; Saey, Didier; Schols, Annemie M. W. J.; Spruit, Martijn A.; Steiner, Michael; Taivassalo, Tanja; Troosters, Thierry; Vogiatzis, Ioannis; Wagner, Peter D.
2014-01-01
Background: Limb muscle dysfunction is prevalent in chronic obstructive pulmonary disease (COPD) and it has important clinical implications, such as reduced exercise tolerance, quality of life, and even survival. Since the previous American Thoracic Society/European Respiratory Society (ATS/ERS) statement on limb muscle dysfunction, important progress has been made on the characterization of this problem and on our understanding of its pathophysiology and clinical implications. Purpose: The purpose of this document is to update the 1999 ATS/ERS statement on limb muscle dysfunction in COPD. Methods: An interdisciplinary committee of experts from the ATS and ERS Pulmonary Rehabilitation and Clinical Problems assemblies determined that the scope of this document should be limited to limb muscles. Committee members conducted focused reviews of the literature on several topics. A librarian also performed a literature search. An ATS methodologist provided advice to the committee, ensuring that the methodological approach was consistent with ATS standards. Results: We identified important advances in our understanding of the extent and nature of the structural alterations in limb muscles in patients with COPD. Since the last update, landmark studies were published on the mechanisms of development of limb muscle dysfunction in COPD and on the treatment of this condition. We now have a better understanding of the clinical implications of limb muscle dysfunction. Although exercise training is the most potent intervention to address this condition, other therapies, such as neuromuscular electrical stimulation, are emerging. Assessment of limb muscle function can identify patients who are at increased risk of poor clinical outcomes, such as exercise intolerance and premature mortality. Conclusions: Limb muscle dysfunction is a key systemic consequence of COPD. However, there are still important gaps in our knowledge about the mechanisms of development of this problem. Strategies for early detection and specific treatments for this condition are also needed. PMID:24787074
Boughner, Julia C; Buchtová, Marcela; Fu, Katherine; Diewert, Virginia; Hallgrímsson, Benedikt; Richman, Joy M
2007-01-01
This study explores the post-ovipositional craniofacial development of the African Rock Python (Python sebae). We first describe a staging system based on external characteristics and next use whole-mount skeletal staining supplemented with Computed tomography (CT) scanning to examine skeletal development. Our results show that python embryos are in early stages of organogenesis at the time of laying, with separate facial prominences and pharyngeal clefts still visible. Limb buds are also visible. By 11 days (stage 3), the chondrocranium is nearly fully formed; however, few intramembranous bones can be detected. One week later (stage 4), many of the intramembranous upper and lower jaw bones are visible but the calvaria are not present. Skeletal elements in the limbs also begin to form. Between stages 4 (day 18) and 7 (day 44), the complete set of intramembranous bones in the jaws and calvaria develops. Hindlimb development does not progress beyond stage 6 (33 days) and remains rudimentary throughout adult life. In contrast to other reptiles, there are two rows of teeth in the upper jaw. The outer tooth row is attached to the maxillary and premaxillary bones, whereas the inner row is attached to the pterygoid and palatine bones. Erupted teeth can be seen in whole-mount stage 10 specimens and are present in an unerupted, mineralized state at stage 7. Micro-CT analysis reveals that all the young membranous bones can be recognized even out of the context of the skull. These data demonstrate intrinsic patterning of the intramembranous bones, even though they form without a cartilaginous template. In addition, intramembranous bone morphology is established prior to muscle function, which can influence bone shape through differential force application. After careful staging, we conclude that python skeletal development occurs slowly enough to observe in good detail the early stages of craniofacial skeletogenesis. Thus, reptilian animal models will offer unique opportunities for understanding the early influences that contribute to perinatal bone shape.
Culvenor, Adam G; Patterson, Brooke E; Guermazi, Ali; Morris, Hayden G; Whitehead, Timothy S; Crossley, Kay M
2018-04-01
A timely return to competitive sport is a primary goal of anterior cruciate ligament reconstruction (ACLR). It is not known whether an accelerated return to sport increases the risk of early-onset knee osteoarthritis (KOA). To determine whether an accelerated return to sport post-ACLR (ie, <10 months) is associated with increased odds of early KOA features on magnetic resonance imaging (MRI) 1 year after surgery and to evaluate the relationship between an accelerated return to sport and early KOA features stratified by type of ACL injury (isolated or concurrent chondral/meniscal injury) and lower limb function (good or poor). Cross-sectional study. Private radiology clinic and university laboratory. A total of 111 participants (71 male; mean age 30 ± 8 years) 1-year post-ACLR. Participants completed a self-report questionnaire regarding postoperative return-to-sport data (specific sport, postoperative month first returned), and isotropic 3-T MRI scans were obtained. Early KOA features (bone marrow, cartilage and meniscal lesions, and osteophytes) assessed with the MRI OA Knee Score. Logistic regression analyses evaluated the odds of early KOA features with an accelerated return to sport (<10 months post-ACLR versus ≥10 months or no return to sport) in the total cohort and stratified by type of ACL injury and lower limb function. Forty-six (41%) participants returned to competitive sport <10 months post-ACLR. An early return to sport was associated with significantly increased odds of bone marrow lesions (odds ratio [OR] 2.7, 95% confidence interval [CI] 1.3-6.0) but not cartilage (OR 1.2, 95% CI 0.5-2.6) or meniscal lesions (OR 0.8, 95% CI 0.4-1.8) or osteophytes (OR 0.6, 95% CI 0.3-1.4). In those with poor lower limb function, early return to sport exacerbated the odds of bone marrow lesions (OR 4.6, 95% CI 1.6-13.5), whereas stratified analyses for type of ACL injury did not reach statistical significance. An accelerated return to sport, particularly in the presence of poor lower limb function, may be implicated in posttraumatic KOA development. IV. Copyright © 2018 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Kitoh, H; Mishima, K; Matsushita, M; Nishida, Y; Ishiguro, N
2014-09-01
Two types of fracture, early and late, have been reported following limb lengthening in patients with achondroplasia (ACH) and hypochondroplasia (HCH). We reviewed 25 patients with these conditions who underwent 72 segmental limb lengthening procedures involving the femur and/or tibia, between 2003 and 2011. Gender, age at surgery, lengthened segment, body mass index, the shape of the callus, the amount and percentage of lengthening and the healing index were evaluated to determine predictive factors for the occurrence of early (within three weeks after removal of the fixation pins) and late fracture (> three weeks after removal of the pins). The Mann‑Whitney U test and Pearson's chi-squared test for univariate analysis and stepwise regression model for multivariate analysis were used to identify the predictive factor for each fracture. Only one patient (two tibiae) was excluded from the analysis due to excessively slow formation of the regenerate, which required supplementary measures. A total of 24 patients with 70 limbs were included in the study. There were 11 early fractures in eight patients. The shape of the callus (lateral or central callus) was the only statistical variable related to the occurrence of early fracture in univariate and multivariate analyses. Late fracture was observed in six limbs and the mean time between removal of the fixation pins and fracture was 18.3 weeks (3.3 to 38.4). Lengthening of the tibia, larger healing index, and lateral or central callus were related to the occurrence of a late fracture in univariate analysis. A multivariate analysis demonstrated that the shape of the callus was the strongest predictor for late fracture (odds ratio: 19.3, 95% confidence interval: 2.91 to 128). Lateral or central callus had a significantly larger risk of fracture than fusiform, cylindrical, or concave callus. Radiological monitoring of the shape of the callus during distraction is important to prevent early and late fracture of lengthened limbs in patients with ACH or HCH. In patients with thin callus formation, some measures to stimulate bone formation should be considered as early as possible. ©2014 The British Editorial Society of Bone & Joint Surgery.
Wasiak, K; Paczkowski, P M; Garlicki, J M
2006-01-01
The authors present their experience in the treatment of chronic lower limb ischaemia resulting from atherosclerosis by below knee amputation according to Ghormley's technique, with the immediate application of a semi-rigid plaster cast and early rehabilitation. From a group of 664 patients requiring major amputations, 61 patients (52 men) aged 64 +/- 11 fulfilled the criteria for unilateral below-knee amputation for critical limb ischaemia for atherosclerosis consequences. Peri-operative (30-days) mortality was of 3.28%. Stump healing was very good or good (no need for further surgery) in over 2/3 of patients, but in 20% the need for above-knee amputation developed. Postoperative knee contracture (defined as 15 degrees or more limitation to the movement range) was observed in 11.5% of patients.
Hamrick, M W
2001-01-01
Paleontological evidence indicates that the evolutionary diversification of mammals early in the Cenozoic era was characterized by an adaptive radiation of distal limb structures. Likewise, neontological data show that morphological variation in distal limb integumentary appendages (e.g., nails, hooves, and claws) can be observed not only among distantly related mammalian taxa but also among closely related species within the same clade. Comparative analysis of nail, claw, and hoof morphogenesis reveals relatively subtle differences in mesenchymal and epithelial patterning underlying these adult differences in distal limb appendage morphology. Furthermore, studies of regulatory gene expression during vertebrate claw development demonstrate that many of the signaling molecules involved in patterning ectodermal derivatives such as teeth, hair, and feathers are also involved in organizing mammalian distal limb appendages. For example, Bmp4 signaling plays an important role during the recruitment of mesenchymal cells into the condensations forming the terminal phalanges, whereas Msx2 affects the length of nails and claws by suppressing proliferation of germinal epidermal cells. Evolutionary changes in the form of distal integumentary appendages may therefore result from changes in gene expression during formation of mesenchymal condensations (Bmp4, posterior Hox genes), induction of the claw fold and germinal matrix (shh), and/or proliferation of epidermal cells in the claw matrix (Msx1, Msx2). The prevalence of convergences and parallelisms in nail and claw structure among mammals underscores the existence of multiple morphogenetic pathways for evolutionary change in distal limb appendages.
Volumetric Effects of Motor Cortex Injury on Recovery of Ipsilesional Dexterous Movements
Darling, Warren G.; Pizzimenti, Marc A.; Hynes, Stephanie M.; Rotella, Diane L.; Headley, Grant; Ge, Jizhi; Stilwell-Morecraft, Kimberly S.; McNeal, David W.; Solon-Cline, Kathryn M.; Morecraft, Robert J.
2011-01-01
Damage to the motor cortex of one hemisphere has classically been associated with contralateral upper limb paresis, but recent patient studies have identified deficits in both upper limbs. In non-human primates, we tested the hypothesis that the severity of ipsilesional upper limb motor impairment in the early post-injury phase depends on the volume of gray and white matter damage of the motor areas of the frontal lobe. We also postulated that substantial recovery would accompany minimal task practice and that ipsilesional limb recovery would be correlated with recovery of the contralesional limb. Gross (reaching) and fine hand motor functions were assessed for 3-12 months post-injury using two motor tests. Volumes of white and gray matter lesions were assessed using quantitative histology. Early changes in post-lesion motor performance were inversely correlated with white matter lesion volume indicating that larger lesions produced greater decreases in ipsilesional hand movement control. All monkeys showed improvements in ipsilesional hand motor skill during the post-lesion period, with reaching skill improvements being positively correlated with total lesion volume indicating larger lesions were associate with greater ipsilesional motor skill recovery. We suggest that reduced trans-callosal inhibition from the lesioned hemisphere may play a role in the observed skill improvements. Our findings show that significant ipsilesional hand motor recovery is likely to accompany injury limited to frontal motor areas. In humans, more pronounced ipsilesional motor deficits that invariably develop after stroke may, in part, be a consequence of more extensive subcortical white and gray matter damage. PMID:21703261
Ferrari, D; Lichtler, A C; Pan, Z Z; Dealy, C N; Upholt, W B; Kosher, R A
1998-05-01
During early stages of chick limb development, the homeobox-containing gene Msx-2 is expressed in the mesoderm at the anterior margin of the limb bud and in a discrete group of mesodermal cells at the midproximal posterior margin. These domains of Msx-2 expression roughly demarcate the anterior and posterior boundaries of the progress zone, the highly proliferating posterior mesodermal cells underneath the apical ectodermal ridge (AER) that give rise to the skeletal elements of the limb and associated structures. Later in development as the AER loses its activity, Msx-2 expression expands into the distal mesoderm and subsequently into the interdigital mesenchyme which demarcates the developing digits. The domains of Msx-2 expression exhibit considerably less proliferation than the cells of the progress zone and also encompass several regions of programmed cell death including the anterior and posterior necrotic zones and interdigital mesenchyme. We have thus suggested that Msx-2 may be in a regulatory network that delimits the progress zone by suppressing the morphogenesis of the regions of the limb mesoderm in which it is highly expressed. In the present study we show that ectopic expression of Msx-2 via a retroviral expression vector in the posterior mesoderm of the progress zone from the time of initial formation of the limb bud severely impairs limb morphogenesis. Msx-2-infected limbs are typically very narrow along the anteroposterior axis, are occasionally truncated, and exhibit alterations in the pattern of formation of skeletal elements, indicating that as a consequence of ectopic Msx-2 expression the morphogenesis of large portions of the posterior mesoderm has been suppressed. We further show that Msx-2 impairs limb morphogenesis by reducing cell proliferation and promoting apoptosis in the regions of the posterior mesoderm in which it is ectopically expressed. The domains of ectopic Msx-2 expression in the posterior mesoderm also exhibit ectopic expression of BMP-4, a secreted signaling molecule that is coexpressed with Msx-2 during normal limb development in the anterior limb mesoderm, the posterior necrotic zone, and interdigital mesenchyme. This indicates that Msx-2 regulates BMP-4 expression and that the suppressive effects of Msx-2 on limb morphogenesis might be mediated in part by BMP-4. These studies indicate that during normal limb development Msx-2 is a key component of a regulatory network that delimits the boundaries of the progress zone by suppressing the morphogenesis of the regions of the limb mesoderm in which it is highly expressed, thus restricting the outgrowth and formation of skeletal elements and associated structures to the progress zone. We also report that rather large numbers of apoptotic cells as well as proliferating cells are present throughout the AER during all stages of normal limb development we have examined, indicating that many of the cells of the AER are continuously undergoing programmed cell death at the same time that new AER cells are being generated by cell proliferation. Thus, a balance between cell proliferation and programmed cell death may play a very important role in maintaining the activity of the AER. Copyright 1998 Academic Press.
Limb deficiency and prosthetic management. 2. Aging with limb loss.
Flood, Katherine M; Huang, Mark E; Roberts, Toni L; Pasquina, Paul F; Nelson, Virginia S; Bryant, Phillip R
2006-03-01
This self-directed learning module highlights the issues faced by people aging with limb loss. It is part of the study guide on limb deficiency and vascular rehabilitation in the Self-Directed Physiatric Education Program for practitioners and trainees in physical medicine and rehabilitation. This article specifically focuses on the impact that limb loss has on health and physical function throughout the life span. Case examples are used to illustrate what effect limb loss in childhood or young adulthood has on the incidence and management of new impairments or disease processes commonly associated with aging. To discuss the impact of early-life limb loss on the incidence and management of physiologic and functional changes associated with aging.
Early manifestation of arm-leg coordination during stepping on a surface in human neonates.
La Scaleia, Valentina; Ivanenko, Y; Fabiano, A; Sylos-Labini, F; Cappellini, G; Picone, S; Paolillo, P; Di Paolo, A; Lacquaniti, F
2018-04-01
The accomplishment of mature locomotor movements relies upon the integrated coordination of the lower and upper limbs and the trunk. Human adults normally swing their arms and a quadrupedal limb coordination persists during bipedal walking despite a strong corticospinal control of the upper extremities that allows to uncouple this connection during voluntary activities. Here we investigated arm-leg coordination during stepping responses on a surface in human neonates. In eight neonates, we found the overt presence of alternating arm-leg oscillations, the arms moving up and down in alternation with ipsilateral lower limb movements. These neonates moved the diagonal limbs together, and the peak of the arm-to-trunk angle (i.e., maximum vertical excursion of the arm) occurred around the end of the ipsilateral stance phase, as it occurs during typical adult walking. Although episodes of arm-leg coordination were sporadic in our sample of neonates, their presence provides significant evidence for a neural coupling between the upper and lower limbs during early ontogenesis of locomotion in humans.
Nakayoshi, Takaharu; Sasaki, Ken-ichiro; Kajimoto, Hidemi; Koiwaya, Hiroshi; Ohtsuka, Masanori; Ueno, Takafumi; Chibana, Hidetoshi; Itaya, Naoki; Sasaki, Masahiro; Yokoyama, Shinji; Fukumoto, Yoshihiro; Imaizumi, Tsutomu
2014-01-01
The effects of therapeutic angiogenesis by intramuscular injection of early pro-angiogenic cells (EPCs) to ischemic limbs are unsatisfactory. Oxidative stress in the ischemic limbs may accelerate apoptosis of injected EPCs, leading to less neovascularization. Forkhead transcription factor 4 (FOXO4) was reported to play a pivotal role in apoptosis signaling of EPCs in response to oxidative stress. Accordingly, we assessed whether FOXO4-knockdown EPCs (FOXO4KD-EPCs) could suppress the oxidative stress-induced apoptosis and augment the neovascularization capacity in ischemic limbs. We transfected small interfering RNA targeted against FOXO4 of human EPCs to generate FOXO4KD-EPCs and confirmed a successful knockdown. FOXO4KD-EPCs gained resistance to apoptosis in response to hydrogen peroxide in vitro. Oxidative stress stained by dihydroethidium was stronger for the immunodeficient rat ischemic limb tissue than for the rat non-ischemic one. Although the number of apoptotic EPCs injected into the rat ischemic limb was greater than that of apoptotic EPCs injected into the rat non-ischemic limb, FOXO4KD-EPCs injected into the rat ischemic limb brought less apoptosis and more neovascularization than EPCs. Taken together, the use of FOXO4KD-EPCs with resistance to oxidative stress-induced apoptosis may be a new strategy to augment the effects of therapeutic angiogenesis by intramuscular injection of EPCs. PMID:24663349
Dynamical mechanisms for skeletal pattern formation in the vertebrate limb.
Hentschel, H. G. E.; Glimm, Tilmann; Glazier, James A.; Newman, Stuart A.
2004-01-01
We describe a 'reactor-diffusion' mechanism for precartilage condensation based on recent experiments on chondrogenesis in the early vertebrate limb and additional hypotheses. Cellular differentiation of mesenchymal cells into subtypes with different fibroblast growth factor (FGF) receptors occurs in the presence of spatio-temporal variations of FGFs and transforming growth factor-betas (TGF-betas). One class of differentiated cells produces elevated quantities of the extracellular matrix protein fibronectin, which initiates adhesion-mediated preskeletal mesenchymal condensation. The same class of cells also produces an FGF-dependent laterally acting inhibitor that keeps condensations from expanding beyond a critical size. We show that this 'reactor-diffusion' mechanism leads naturally to patterning consistent with skeletal form, and describe simulations of spatio-temporal distribution of these differentiated cell types and the TGF-beta and inhibitor concentrations in the developing limb bud. PMID:15306292
Canadian Thalidomide Experience
Webb, Jean F.
1963-01-01
Data are presented on 115 children, including three sets of twins, born in Canada in 1961 and 1962 with congenital malformations associated with the use of thalidomide by their mothers in early pregnancy. The epidemiological method is described. Of the 115 children, 74 were alive at the time of reporting, 41 of these being severely handicapped; 8 had been stillborn; 33 had died. Limb involvement was usually bilateral, affecting the upper limbs alone in 42 cases, and the upper and lower limbs in 41. Of 112 mothers, only 60 had had the drug prescribed by the physician providing maternity care; 87 were estimated to have first taken the drug before their last menstrual period or within 56 days thereafter. A plea is made for the development of better methods of collecting information on the occurrence of congenital malformations, with the aid of practising physicians. PMID:14076167
Olesen, Jørgen; Boesgaard, Tom; Iliffe, Thomas M.
2015-01-01
The Thermosbaenacea, a small taxon of crustaceans inhabiting subterranean waters, are unique among malacostracans as they brood their offspring dorsally under the carapace. This habit is of evolutionary interest but the last detailed report on thermosbaenacean development is more than 40 years old. Here we provide new observations on an ovigerous female of Tulumella unidens with advanced developmental stages in its brood chamber collected from an anchialine cave at the Yucatan Peninsula, which is only the third report on developmental stages of Thermosbaenacea and the first for the genus Tulumella. Significant in a wider crustacean context, we report and discuss hitherto unexplored lobate structures inside the brood chamber of the female originating at the first (maxilliped) and second thoracic segments, which are most likely modified epipods, perhaps serving as gills. At the posterior margin of carapace of the female are rows of large spines preventing the developing stages from falling out. The external morphology of the advanced developmental stages is described in much detail, providing information on e.g., carapace formation and early limb morphology. Among the hitherto unknown structures in the advanced developmental stages provided by this study are the presence of an embryonic dorsal organ and rudimentary ‘naupliar processes’ of the second antennae. Since most hypotheses on crustacean (and malacostracan and peracaridan) relationship rest on external limb morphology, we use early limb bud morphology of Tulumella to better establish thermosbaenacean limb homologies to those of other crustaceans, which is a necessary basis for future morphology based phylogenetic considerations. PMID:25901753
Olesen, Jørgen; Boesgaard, Tom; Iliffe, Thomas M
2015-01-01
The Thermosbaenacea, a small taxon of crustaceans inhabiting subterranean waters, are unique among malacostracans as they brood their offspring dorsally under the carapace. This habit is of evolutionary interest but the last detailed report on thermosbaenacean development is more than 40 years old. Here we provide new observations on an ovigerous female of Tulumella unidens with advanced developmental stages in its brood chamber collected from an anchialine cave at the Yucatan Peninsula, which is only the third report on developmental stages of Thermosbaenacea and the first for the genus Tulumella. Significant in a wider crustacean context, we report and discuss hitherto unexplored lobate structures inside the brood chamber of the female originating at the first (maxilliped) and second thoracic segments, which are most likely modified epipods, perhaps serving as gills. At the posterior margin of carapace of the female are rows of large spines preventing the developing stages from falling out. The external morphology of the advanced developmental stages is described in much detail, providing information on e.g., carapace formation and early limb morphology. Among the hitherto unknown structures in the advanced developmental stages provided by this study are the presence of an embryonic dorsal organ and rudimentary 'naupliar processes' of the second antennae. Since most hypotheses on crustacean (and malacostracan and peracaridan) relationship rest on external limb morphology, we use early limb bud morphology of Tulumella to better establish thermosbaenacean limb homologies to those of other crustaceans, which is a necessary basis for future morphology based phylogenetic considerations.
A Comparison of Four-Year Health Outcomes following Combat Amputation and Limb Salvage
Walker, Jay; Bhatnagar, Vibha; Richard, Erin; Sechriest, V. Franklin; Galarneau, Michael
2017-01-01
Little research has described the long-term health outcomes of patients who had combat-related amputations or leg-threatening injuries. We conducted retrospective analysis of Department of Defense and Department of Veterans Affairs health data for lower extremity combat-injured patients with (1) unilateral amputation within 90 days postinjury (early amputation, n = 440), (2) unilateral amputation more than 90 days postinjury (late amputation, n = 78), or (3) leg-threatening injuries without amputation (limb salvage, n = 107). Patient medical records were analyzed for four years postinjury. After adjusting for group differences, early amputation was generally associated with a lower or similar prevalence for adverse physical and psychological diagnoses (e.g., pain, osteoarthritis, posttraumatic stress disorder) versus late amputation and/or limb salvage. By contrast, early amputation was associated with an increased likelihood of osteoporosis during the first year postinjury. The prevalence of posttraumatic stress disorder increased for all patient groups over four years postinjury, particularly in the second year. The different clinical outcomes among combat extremity injured patients treated with early amputation, late amputation, or limb salvage highlight their different healthcare requirements. These findings can inform and optimize the specific treatment pathways that address the physical and psychological healthcare needs of such patients over time. PMID:28122002
EVOLUTION. A four-legged snake from the Early Cretaceous of Gondwana.
Martill, David M; Tischlinger, Helmut; Longrich, Nicholas R
2015-07-24
Snakes are a remarkably diverse and successful group today, but their evolutionary origins are obscure. The discovery of snakes with two legs has shed light on the transition from lizards to snakes, but no snake has been described with four limbs, and the ecology of early snakes is poorly known. We describe a four-limbed snake from the Early Cretaceous (Aptian) Crato Formation of Brazil. The snake has a serpentiform body plan with an elongate trunk, short tail, and large ventral scales suggesting characteristic serpentine locomotion, yet retains small prehensile limbs. Skull and body proportions as well as reduced neural spines indicate fossorial adaptation, suggesting that snakes evolved from burrowing rather than marine ancestors. Hooked teeth, an intramandibular joint, a flexible spine capable of constricting prey, and the presence of vertebrate remains in the guts indicate that this species preyed on vertebrates and that snakes made the transition to carnivory early in their history. The structure of the limbs suggests that they were adapted for grasping, either to seize prey or as claspers during mating. Together with a diverse fauna of basal snakes from the Cretaceous of South America, Africa, and India, this snake suggests that crown Serpentes originated in Gondwana. Copyright © 2015, American Association for the Advancement of Science.
A Reevaluation of X-Irradiation Induced Phocomelia and Proximodistal Limb Patterning
Galloway, Jenna L.; Delgado, Irene; Ros, Maria A.; Tabin, Clifford J.
2009-01-01
Phocomelia is a devastating, rare congenital limb malformation in which the long bones are shorter than normal, with the upper portion of the limb being most severely affected. In extreme cases, the hands or fingers are attached directly to the shoulder and the most proximal elements (those closest to the shoulder) are entirely missing. This disorder, previously known in both autosomal recessive and sporadic forms, showed a dramatic increase in incidence in the early 1960’s due to the tragic toxicological effects of the drug thalidomide, which had been prescribed as a mild sedative1, 2. This human birth defect is mimicked in developing chick limb buds exposed to X-irradiation3-5. Both X-irradiation5 and thalidomide-induced phocomelia5, 6 have been interpreted as patterning defects in the context of the Progress Zone Model, which states that a cell’s proximodistal (PD) identity is determined by the length of time spent in a distal limb region termed the “Progress Zone” 7. Indeed, studies of X-irradiation induced phocomelia have served as one of the two major experimental lines of evidence supporting the validity of the Progress Zone Model. Here, using a combination of molecular analysis and lineage tracing, we show that X-irradiation-induced phocomelia is fundamentally not a patterning defect, but rather results from a time-dependent loss of skeletal progenitors. As skeletal condensation proceeds from the shoulder to fingers (in a proximal to distal direction), the proximal elements are differentially affected in limb buds exposed to radiation at early stages. This conclusion changes the framework for considering the effect of thalidomide and other forms of phocomelia, suggesting the possibility that the etiology lies not in a defect in the patterning process, but rather in progenitor cell survival and differentiation. Moreover, molecular evidence that PD patterning is unaffected following X-irradiation does not support the predictions of the Progress Zone Model. PMID:19553938
A reevaluation of X-irradiation-induced phocomelia and proximodistal limb patterning.
Galloway, Jenna L; Delgado, Irene; Ros, Maria A; Tabin, Clifford J
2009-07-16
Phocomelia is a devastating, rare congenital limb malformation in which the long bones are shorter than normal, with the upper portion of the limb being most severely affected. In extreme cases, the hands or fingers are attached directly to the shoulder and the most proximal elements (those closest to the shoulder) are entirely missing. This disorder, previously known in both autosomal recessive and sporadic forms, showed a marked increase in incidence in the early 1960s due to the tragic toxicological effects of the drug thalidomide, which had been prescribed as a mild sedative. This human birth defect is mimicked in developing chick limb buds exposed to X-irradiation. Both X-irradiation and thalidomide-induced phocomelia have been interpreted as patterning defects in the context of the progress zone model, which states that a cell's proximodistal identity is determined by the length of time spent in a distal limb region termed the 'progress zone'. Indeed, studies of X-irradiation-induced phocomelia have served as one of the two major experimental lines of evidence supporting the validity of the progress zone model. Here, using a combination of molecular analysis and lineage tracing in chick, we show that X-irradiation-induced phocomelia is fundamentally not a patterning defect, but rather results from a time-dependent loss of skeletal progenitors. Because skeletal condensation proceeds from the shoulder to fingers (in a proximal to distal direction), the proximal elements are differentially affected in limb buds exposed to radiation at early stages. This conclusion changes the framework for considering the effect of thalidomide and other forms of phocomelia, suggesting the possibility that the aetiology lies not in a defect in the patterning process, but rather in progenitor cell survival and differentiation. Moreover, molecular evidence that proximodistal patterning is unaffected after X-irradiation does not support the predictions of the progress zone model.
Fabry disease in children: a federal screening programme in Russia.
Namazova-Baranova, Leyla Seymurovna; Baranov, Alexander Alexandrovich; Pushkov, Aleksander Alekseevich; Savostyanov, Kirill Victorovich
2017-10-01
Our objective was to examine the prevalence of Fabry disease in Russian children with chronic pain in the distal limbs. This non-interventional, multi-centre study included children 2-18 years of age with chronic recurrent unilateral or bilateral pain, burning, or acroparesthesia in the hands or feet. The presence of Fabry disease was defined by abnormal alpha-galactosidase A activity in males or alpha-galactosidase gene (GLA) mutation in females. Among 214 patients (110 males), 84.1% had bilateral limb pain and 31.8% had unilateral limb pain recorded at some time point; 61 (28.5%) patients had a positive family history possibly associated with Fabry disease. Alpha-galactosidase A activity was within the normal range in all 109 of the male patients tested. One female patient had a GLA mutation (C937G > T) and alpha-galactosidase A activity within the normal range. We did not find definitive evidence of Fabry disease in these children with a history of chronic recurrent unilateral or bilateral limb pain or acroparesthesia. The presence of chronic limb pain does not appear to be highly predictive of a diagnosis of Fabry disease in Russian children and adolescents, suggesting that key early signs and symptoms of Fabry disease are not specific to the disease. What is Known: • Signs and symptoms of Fabry disease are seen in children < 10 years of age; pain in the distal limbs is a common early symptom. What is New: • Fabry disease was not diagnosed in this population of Russian children with a history of chronic limb pain. • The presence of acroparesthesia or chronic limb pain does not appear to be highly predictive of a diagnosis of Fabry disease in Russian children and adolescents, suggesting that these early symptoms of Fabry disease are not specific to the disease.
Bénazet, Jean-Denis; Zeller, Rolf
2009-10-01
A wealth of classical embryological manipulation experiments taking mainly advantage of the chicken limb buds identified the apical ectodermal ridge (AER) and the zone of polarizing activity (ZPA) as the respective ectodermal and mesenchymal key signaling centers coordinating proximodistal (PD) and anteroposterior (AP) limb axis development. These experiments inspired Wolpert's French flag model, which is a classic among morphogen gradient models. Subsequent molecular and genetic analysis in the mouse identified retinoic acid as proximal signal, and fibroblast growth factors (FGFs) and sonic hedgehog (SHH) as the essential instructive signals produced by AER and ZPA, respectively. Recent studies provide good evidence that progenitors are specified early with respect to their PD and AP fates and that morpho-regulatory signaling is also required for subsequent proliferative expansion of the specified progenitor pools. The determination of particular fates seems to occur rather late and depends on additional signals such as bone morphogenetic proteins (BMPs), which indicates that cells integrate signaling inputs over time and space. The coordinate regulation of PD and AP axis patterning is controlled by an epithelial-mesenchymal feedback signaling system, in which transcriptional regulation of the BMP antagonist Gremlin1 integrates inputs from the BMP, SHH, and FGF pathways. Vertebrate limb-bud development is controlled by a 4-dimensional (4D) patterning system integrating positive and negative regulatory feedback loops, rather than thresholds set by morphogen gradients.
Hellingman, Catharine A; Koevoet, Wendy; Kops, Nicole; Farrell, Eric; Jahr, Holger; Liu, Wei; Baatenburg de Jong, Robert J; Frenz, Dorothy A; van Osch, Gerjo J V M
2010-02-01
Adult mesenchymal stem cells (MSCs) are considered promising candidate cells for therapeutic cartilage and bone regeneration. Because tissue regeneration and embryonic development may involve similar pathways, understanding common pathways may lead to advances in regenerative medicine. In embryonic limb development, fibroblast growth factor receptors (FGFRs) play a role in chondrogenic differentiation. The aim of this study was to investigate and compare FGFR expression in in vivo embryonic limb development and in vitro chondrogenesis of MSCs. Our study showed that in in vitro chondrogenesis of MSCs three sequential stages can be found, as in embryonic limb development. A mesenchymal condensation (indicated by N-cadherin) is followed by chondrogenic differentiation (indicated by collagen II), and hypertrophy (indicated by collagen X). FGFR1-3 are expressed in a stage-dependent pattern during in vitro differentiation and in vivo embryonic limb development. In both models FGFR2 is clearly expressed by cells in the condensation phase. No FGFR expression was observed in differentiating and mature hyaline chondrocytes, whereas hypertrophic chondrocytes stained strongly for all FGFRs. To evaluate whether stage-specific modulation of chondrogenic differentiation in MSCs is possible with different subtypes of FGF, FGF2 and FGF9 were added to the chondrogenic medium during different stages in the culture process (early or late). FGF2 and FGF9 differentially affected the amount of cartilage formed by MSCs depending on the stage in which they were added. These results will help us understand the role of FGF signaling in chondrogenesis and find new tools to monitor and control chondrogenic differentiation.
Lower-Limb Rehabilitation Robot Design
NASA Astrophysics Data System (ADS)
Bouhabba, E. M.; Shafie, A. A.; Khan, M. R.; Ariffin, K.
2013-12-01
It is a general assumption that robotics will play an important role in therapy activities within rehabilitation treatment. In the last decade, the interest in the field has grown exponentially mainly due to the initial success of the early systems and the growing demand caused by increasing numbers of stroke patients and their associate rehabilitation costs. As a result, robot therapy systems have been developed worldwide for training of both the upper and lower extremities. This paper investigates and proposes a lower-limb rehabilitation robot that is used to help patients with lower-limb paralysis to improve and resume physical functions. The proposed rehabilitation robot features three rotary joints forced by electric motors providing linear motions. The paper covers mechanism design and optimization, kinematics analysis, trajectory planning, wearable sensors, and the control system design. The design and control system demonstrate that the proposed rehabilitation robot is safe and reliable with the effective design and better kinematic performance.
MacLeod, Daniel T; Choi, Nancy M; Briney, Bryan; Garces, Fernando; Ver, Lorena S; Landais, Elise; Murrell, Ben; Wrin, Terri; Kilembe, William; Liang, Chi-Hui; Ramos, Alejandra; Bian, Chaoran B; Wickramasinghe, Lalinda; Kong, Leopold; Eren, Kemal; Wu, Chung-Yi; Wong, Chi-Huey; Kosakovsky Pond, Sergei L; Wilson, Ian A; Burton, Dennis R; Poignard, Pascal
2016-05-17
The high-mannose patch on HIV Env is a preferred target for broadly neutralizing antibodies (bnAbs), but to date, no vaccination regimen has elicited bnAbs against this region. Here, we present the development of a bnAb lineage targeting the high-mannose patch in an HIV-1 subtype-C-infected donor from sub-Saharan Africa. The Abs first acquired autologous neutralization, then gradually matured to achieve breadth. One Ab neutralized >47% of HIV-1 strains with only ∼11% somatic hypermutation and no insertions or deletions. By sequencing autologous env, we determined key residues that triggered the lineage and participated in Ab-Env coevolution. Next-generation sequencing of the Ab repertoire showed an early expansive diversification of the lineage followed by independent maturation of individual limbs, several of them developing notable breadth and potency. Overall, the findings are encouraging from a vaccine standpoint and suggest immunization strategies mimicking the evolution of the entire high-mannose patch and promoting maturation of multiple diverse Ab pathways. Copyright © 2016 Elsevier Inc. All rights reserved.
2012-01-01
Background Kangaroos and wallabies have specialised limbs that allow for their hopping mode of locomotion. The hindlimbs differentiate much later in development but become much larger than the forelimbs. The hindlimb autopod has only four digits, the fourth of which is greatly elongated, while digits two and three are syndactylous. We investigated the expression of two genes, HOXA13 and HOXD13, that are crucial for digit patterning in mice during formation of the limbs of the tammar wallaby. Results We describe the development of the tammar limbs at key stages before birth. There was marked heterochrony and the hindlimb developed more slowly than the forelimb. Both tammar HOXA13 and HOXD13 have two exons as in humans, mice and chickens. HOXA13 had an early and distal mRNA distribution in the tammar limb bud as in the mouse, but forelimb expression preceded that in the hindlimb. HOXD13 mRNA was expressed earlier in the forelimb than the hindlimb and was predominantly detected in the interdigital tissues of the forelimb. In contrast, the hindlimb had a more restricted expression pattern that appeared to be expressed at discrete points at both posterior and anterior margins of the limb bud, and was unlike expression seen in the mouse and the chicken. Conclusions This is the first examination of HOXA and HOXD gene expression in a marsupial. The gene structure and predicted proteins were highly conserved with their eutherian orthologues. Interestingly, despite the morphological differences in hindlimb patterning, there were no modifications to the polyalanine tract of either HOXA13 or HOXD13 when compared to those of the mouse and bat but there was a marked difference between the tammar and the other mammals in the region of the first polyserine tract of HOXD13. There were also altered expression domains for both genes in the developing tammar limbs compared to the chicken and mouse. Together these findings suggest that the timing of HOX gene expression may contribute to the heterochrony of the forelimb and hindlimb and that alteration to HOX domains may influence phenotypic differences that lead to the development of marsupial syndactylous digits. PMID:22235805
Defining anural malformations in the context of a developmental problem
Meteyer, C.U.; Cole, Rebecca A.; Converse, K.A.; Docherty, D.E.; Wolcott, M.; Helgen, J.C.; Levey, R.; Eaton-Poole, L.; Burkhart, J.G.
2000-01-01
This paper summarizes terminology and general concepts involved in animal development for the purpose of providing background for the study and understanding of frog malformations. The results of our radiographic investigation of rear limb malformations in Rana pipiens provide evidence that frog malformations are the product of early developmental errors. Although bacteria, parasites and viruses were identified in these metamorphosed frogs, the relevant window to look for the teratogenic effect of these agents is in the early tadpole stage during limb development. As a result, our microbiological findings must be regarded as inconclusive relative to determining their contribution to malformations because we conducted our examinations on metamorphosed frogs not tadpoles. Future studies need to look at teratogenic agents (chemical, microbial, physical or mechanical) that are present in the embryo, tadpole, and their environments at the stages of development that are relevant for the malformation type. The impact of these teratogenic agents then needs to be assessed in appropriate animal models using studies that are designed to mimic field conditions. The results of these laboratory tests should then be analyzed in such a way that will allow comparison with the findings in the wild-caught tadpoles and frogs.
Carlson, Hanqian L; Quinn, Jeffrey J; Yang, Yul W; Thornburg, Chelsea K; Chang, Howard Y; Stadler, H Scott
2015-12-01
Gene expression profiling in E 11 mouse embryos identified high expression of the long noncoding RNA (lncRNA), LNCRNA-HIT in the undifferentiated limb mesenchyme, gut, and developing genital tubercle. In the limb mesenchyme, LncRNA-HIT was found to be retained in the nucleus, forming a complex with p100 and CBP. Analysis of the genome-wide distribution of LncRNA-HIT-p100/CBP complexes by ChIRP-seq revealed LncRNA-HIT associated peaks at multiple loci in the murine genome. Ontological analysis of the genes contacted by LncRNA-HIT-p100/CBP complexes indicate a primary role for these loci in chondrogenic differentiation. Functional analysis using siRNA-mediated reductions in LncRNA-HIT or p100 transcripts revealed a significant decrease in expression of many of the LncRNA-HIT-associated loci. LncRNA-HIT siRNA treatments also impacted the ability of the limb mesenchyme to form cartilage, reducing mesenchymal cell condensation and the formation of cartilage nodules. Mechanistically the LncRNA-HIT siRNA treatments impacted pro-chondrogenic gene expression by reducing H3K27ac or p100 activity, confirming that LncRNA-HIT is essential for chondrogenic differentiation in the limb mesenchyme. Taken together, these findings reveal a fundamental epigenetic mechanism functioning during early limb development, using LncRNA-HIT and its associated proteins to promote the expression of multiple genes whose products are necessary for the formation of cartilage.
Carlson, Hanqian L.; Quinn, Jeffrey J.; Yang, Yul W.; Thornburg, Chelsea K.; Chang, Howard Y.; Stadler, H. Scott
2015-01-01
Gene expression profiling in E 11 mouse embryos identified high expression of the long noncoding RNA (lncRNA), LNCRNA-HIT in the undifferentiated limb mesenchyme, gut, and developing genital tubercle. In the limb mesenchyme, LncRNA-HIT was found to be retained in the nucleus, forming a complex with p100 and CBP. Analysis of the genome-wide distribution of LncRNA-HIT-p100/CBP complexes by ChIRP-seq revealed LncRNA-HIT associated peaks at multiple loci in the murine genome. Ontological analysis of the genes contacted by LncRNA-HIT-p100/CBP complexes indicate a primary role for these loci in chondrogenic differentiation. Functional analysis using siRNA-mediated reductions in LncRNA-HIT or p100 transcripts revealed a significant decrease in expression of many of the LncRNA-HIT-associated loci. LncRNA-HIT siRNA treatments also impacted the ability of the limb mesenchyme to form cartilage, reducing mesenchymal cell condensation and the formation of cartilage nodules. Mechanistically the LncRNA-HIT siRNA treatments impacted pro-chondrogenic gene expression by reducing H3K27ac or p100 activity, confirming that LncRNA-HIT is essential for chondrogenic differentiation in the limb mesenchyme. Taken together, these findings reveal a fundamental epigenetic mechanism functioning during early limb development, using LncRNA-HIT and its associated proteins to promote the expression of multiple genes whose products are necessary for the formation of cartilage. PMID:26633036
Limb regeneration is impaired in an adult zebrafish model of diabetes mellitus.
Olsen, Ansgar S; Sarras, Michael P; Intine, Robert V
2010-01-01
The zebrafish (Danio rerio) is an established model organism for the study of developmental processes, human disease, and tissue regeneration. We report that limb regeneration is severely impaired in our newly developed adult zebrafish model of type I diabetes mellitus. Intraperitoneal streptozocin injection of adult, wild-type zebrafish results in a sustained hyperglycemic state as determined by elevated fasting blood glucose values and increased glycation of serum protein. Serum insulin levels are also decreased and pancreas immunohistochemisty revealed a decreased amount of insulin signal in hyperglycemic fish. Additionally, the diabetic complications of retinal thinning and glomerular basement membrane thickening (early signs of retinopathy and nephropathy) resulting from the hyperglycemic state were evident in streptozocin-injected fish at 3 weeks. Most significantly, limb regeneration, following caudal fin amputation, is severely impaired in diabetic zebrafish and nonspecific toxic effects outside the pancreas were not found to contribute to impaired limb regeneration. This experimental system using adult zebrafish facilitates a broad spectrum of genetic and molecular approaches to study regeneration in the diabetic background. © 2010 by the Wound Healing Society.
Delayed-onset and recurrent limb weakness associated with West Nile virus infection.
Sejvar, James J; Davis, Larry E; Szabados, Erica; Jackson, Alan C
2010-02-01
Human neurologic illness following infection with West Nile virus (WNV) may include meningitis, encephalitis, and acute flaccid paralysis (AFP). Most WNV-associated AFP is due to involvement of the spinal motor neurons producing an anterior (polio)myelitis. WNV poliomyelitis is typically characterized by acute and rapidly progressing limb weakness occurring early in the course of illness, which is followed by death or clinical plateauing with subsequent improvement to varying degrees. We describe four cases of WNV poliomyelitis in which the limb weakness was characterized by an atypical temporal pattern, including one case with onset several weeks after illness onset, and three cases developing relapsing or recurrent limb weakness following a period of clinical plateauing or improvement. Delayed onset or recurrent features may be due to persistence of viral infection or delayed neuroinvasion with delayed injury by excitotoxic or other mechanisms, by immune-mediated mechanisms, or a combination thereof. Further clinical and pathogenesis studies are needed to better understand the mechanisms for these phenomena. Clinicians should be aware of these clinical patterns in patients with WNV poliomyelitis.
Miyaguchi, Kazuyoshi; Demura, Shinichi
2006-05-01
The purpose of this study was to examine the output properties of muscle power by the dominant upper limb using SSC, and the relationships between the power output by SSC and a one-repetition maximum bench press (1 RM BP) used as a strength indicator of the upper body. Sixteen male athletes (21.4+/-0.9 yr) participated in this study. They pulled a load of 40% of maximum voluntary contraction (MVC) at a stretch by elbow flexion of the dominant upper limb in the following three preliminary conditions: static relaxed muscle state (SR condition), isometric muscle contraction state (ISO condition), and using SSC (SSC condition). The velocity with a wire load via a pulley during elbow flexion was measured accurately using a power instrument with a rotary encoder, and the muscle power curve was drawn from the product of the velocity and load. Significant differences were found among all evaluation parameters of muscle power exerted from the above three conditions and the parameters regarding early power output during concentric contraction were larger in the SSC condition than the SR and ISO conditions. The parameters on initial muscle contraction velocity when only using SSC significantly correlated with 1 RM BP (r=0.60-0.62). The use of SSC before powerful elbow flexion may contribute largely to early explosive power output during concentric contraction. Bench press capacity relates to a development of the above early power output when using SSC.
Clemente, Cristina; Montalvo, María Gregoria; Seiki, Motoharu; Arroyo, Alicia G.
2017-01-01
Matrix metalloproteinases (MMPs) constitute a large group of endoproteases that play important functions during embryonic development, tumor metastasis and angiogenesis by degrading components of the extracellular matrix. Within this family, we focused our study on Mt4-mmp (also called Mmp17) that belongs to a distinct subset that is anchored to the cell surface via a glycosylphosphatidylinositol (GPI) moiety and with the catalytic site exposed to the extracellular space. Information about its function and substrates is very limited to date, and little has been reported on its role in the developing embryo. Here, we report a detailed expression analysis of Mt4-mmp during mouse embryonic development by using a LacZ reporter transgenic mouse line. We showed that Mt4-mmp is detected from early stages of development to postnatal stages following a dynamic and restricted pattern of expression. Mt4-mmp was first detected at E8.5 limited to the intersomitic vascularization, the endocardial endothelium and the dorsal aorta. Mt4-mmpLacZ/+ cells were also observed in the neural crest cells, somites, floor plate and notochord at early stages. From E10.5, expression localized in the limb buds and persists during limb development. A strong expression in the brain begins at E12.5 and continues to postnatal stages. Specifically, staining was observed in the olfactory bulb, cerebral cortex, hippocampus, striatum, septum, dorsal thalamus and the spinal cord. In addition, LacZ-positive cells were also detected during eye development, initially at the hyaloid artery and later on located in the lens and the neural retina. Mt4-mmp expression was confirmed by quantitative RT-PCR and western blot analysis in some embryonic tissues. Our data point to distinct functions for this metalloproteinase during embryonic development, particularly during brain formation, angiogenesis and limb development. PMID:28926609
Leung, H B; Wong, W C; Wu, F C J; Guerin, J S
2004-06-01
Major amputation of the lower limb is considered the last resort when limb salvage is impossible. The aim of this study is to determine the morbidity, mortality, and rehabilitation outcome of patients that underwent a lower-limb amputation. A retrospective cohort study was conducted among 100 elderly patients who underwent a total of 120 lower-limb amputations in a regional hospital in Hong Kong from 1996 to 2001. The mean age of the amputees was 77.9 years; 58 were female. 95% of the amputations were performed because of infection with or without vascular compromise; 55 transfemoral and 60 transtibial amputations contributed 96% of the case mix. Some 43% of patients experienced early complications and 12% required re-amputation. The early (30-day) mortality rate was 15%. Only 55% of the amputees survived after 4 years. A 44% return-home rate was achieved. However, only 11% of the amputees could walk without help from other people. Although prostheses were issued to 42% of the survivors, compliance was only 53%; 24% of the survivors lost their remaining leg within 2 years. The outcome of major lower-extremity amputation remains poor. Efforts should be made to retain these limbs. When it is proven impossible, one should strive to preserve the knee joint whenever feasible.
Santago, Anthony C; Vidt, Meghan E; Li, Xiaotong; Tuohy, Christopher J; Poehling, Gary G; Freehill, Michael T; Saul, Katherine R
2017-12-01
Understanding upper limb strength requirements for daily tasks is imperative for early detection of strength loss that may progress to disability due to age or rotator cuff tear. We quantified shoulder strength requirements for 5 upper limb tasks performed by 3 groups: uninjured young adults and older adults, and older adults with a degenerative supraspinatus tear prior to repair. Musculoskeletal models were developed for each group representing age, sex, and tear-related strength losses. Percentage of available strength used was quantified for the subset of tasks requiring the largest amount of shoulder strength. Significant differences in strength requirements existed across tasks: upward reach 105° required the largest average strength; axilla wash required the largest peak strength. However, there were limited differences across participant groups. Older adults with and without a tear used a larger percentage of their shoulder elevation (p < .001, p < .001) and external rotation (p < .001, p = .017) strength than the young adults, respectively. Presence of a tear significantly increased percentage of internal rotation strength compared to young (p < .001) and uninjured older adults (p = .008). Marked differences in strength demand across tasks indicate the need for evaluating a diversity of functional tasks to effectively detect early strength loss, which may lead to disability.
Restoring tactile and proprioceptive sensation through a brain interface
Tabot, Gregg A.; Kim, Sung Shin; Winberry, Jeremy E.; Bensmaia, Sliman J.
2014-01-01
Somatosensation plays a critical role in the dexterous manipulation of objects, in emotional communication, and in the embodiment of our limbs. For upper-limb neuroprostheses to be adopted by prospective users, prosthetic limbs will thus need to provide sensory information about the position of the limb in space and about objects grasped in the hand. One approach to restoring touch and proprioception consists of electrically stimulating neurons in somatosensory cortex in the hopes of eliciting meaningful sensations to support the dexterous use of the hands, promote their embodiment, and perhaps even restore the affective dimension of touch. In this review, we discuss the importance of touch and proprioception in everyday life, then describe approaches to providing artificial somatosensory feedback through intracortical microstimulation (ICMS). We explore the importance of biomimicry – the elicitation of naturalistic patterns of neuronal activation – and that of adaptation – the brain’s ability to adapt to novel sensory input, and argue that both biomimicry and adaptation will play a critical role in the artificial restoration of somatosensation. We also propose that the documented re-organization that occurs after injury does not pose a significant obstacle to brain interfaces. While still at an early stage of development, sensory restoration is a critical step in transitioning upper-limb neuroprostheses from the laboratory to the clinic. PMID:25201560
Restoring tactile and proprioceptive sensation through a brain interface.
Tabot, Gregg A; Kim, Sung Shin; Winberry, Jeremy E; Bensmaia, Sliman J
2015-11-01
Somatosensation plays a critical role in the dexterous manipulation of objects, in emotional communication, and in the embodiment of our limbs. For upper-limb neuroprostheses to be adopted by prospective users, prosthetic limbs will thus need to provide sensory information about the position of the limb in space and about objects grasped in the hand. One approach to restoring touch and proprioception consists of electrically stimulating neurons in somatosensory cortex in the hopes of eliciting meaningful sensations to support the dexterous use of the hands, promote their embodiment, and perhaps even restore the affective dimension of touch. In this review, we discuss the importance of touch and proprioception in everyday life, then describe approaches to providing artificial somatosensory feedback through intracortical microstimulation (ICMS). We explore the importance of biomimicry--the elicitation of naturalistic patterns of neuronal activation--and that of adaptation--the brain's ability to adapt to novel sensory input, and argue that both biomimicry and adaptation will play a critical role in the artificial restoration of somatosensation. We also propose that the documented re-organization that occurs after injury does not pose a significant obstacle to brain interfaces. While still at an early stage of development, sensory restoration is a critical step in transitioning upper-limb neuroprostheses from the laboratory to the clinic. Copyright © 2014 Elsevier Inc. All rights reserved.
Nenezić, Dragoslav; Pandaitan, Simon; Ilijevski, Nenad; Matić, Predrag; Gajin, Predag; Radak, Dorde
2005-01-01
Although the incidence of prosthetic infection is low (1%-6%), the consequences (limb loss or death) are dramatic for a patient, with high mortality rate (25%-75%) and limb loss in 40%-75% of cases. In case of Szilagyi's grade III infection, standard procedure consists of the excision of prosthesis and wound debridement. Alternative method is medical treatment. This is a case report of a patient with prosthetic infection of Silver-ring graft, used for femoropopliteal reconstruction, in whom an extreme skin necrosis developed in early postoperative period. This complication was successfully treated medically. After repeated debridement and wound-packing, the wound was covered using Thiersch skin graft.
Froehle, Andrew W; Nahhas, Ramzi W; Sherwood, Richard J; Duren, Dana L
2013-05-01
Walking gait is generally held to reach maturity, including walking at adult-like velocities, by 7-8 years of age. Lower limb length, however, is a major determinant of gait, and continues to increase until 13-15 years of age. This study used a sample from the Fels Longitudinal Study (ages 8-30 years) to test the hypothesis that walking with adult-like velocity on immature lower limbs results in the retention of immature gait characteristics during late childhood and early adolescence. There was no relationship between walking velocity and age in this sample, whereas the lower limb continued to grow, reaching maturity at 13.2 years in females and 15.6 years in males. Piecewise linear mixed models regression analysis revealed significant age-related trends in normalized cadence, initial double support time, single support time, base of support, and normalized step length in both sexes. Each trend reached its own, variable-specific age at maturity, after which the gait variables' relationships with age reached plateaus and did not differ significantly from zero. Offsets in ages at maturity occurred among the gait variables, and between the gait variables and lower limb length. The sexes also differed in their patterns of maturation. Generally, however, immature walkers of both sexes took more frequent and relatively longer steps than did mature walkers. These results support the hypothesis that maturational changes in gait accompany ongoing lower limb growth, with implications for diagnosing, preventing, and treating movement-related disorders and injuries during late childhood and early adolescence. Copyright © 2012 Elsevier B.V. All rights reserved.
Limb-kinetic apraxia affects activities of daily living in Parkinson’s disease: a multi-center study
Foki, T.; Vanbellingen, T.; Lungu, C.; Pirker, W.; Bohlhalter, S.; Nyffeler, T.; Kraemmer, J.; Haubenberger, D.; Fischmeister, F. Ph. S.; Auff, E.; Hallett, M.; Beisteiner, R.
2017-01-01
Background and purpose Impaired dexterity (fine hand movements) is often present in Parkinson’s disease (PD), even at early to moderate disease stages. It has a detrimental impact on activities of daily living (ADL) such as buttoning, contributing to reduced quality of life. Limb-kinetic apraxia, a loss of the ability to make precise, independent but coordinated finger and hand movements, may contribute to impaired dexterity even more than bradykinesia per se. However, the impact of limb-kinetic apraxia on ADL remains controversial. Our aim was to identify the strongest predictor of buttoning and unbuttoning in PD. It was hypothesized that coin rotation (a surrogate of limb-kinetic apraxia) represents the most important determinant. Methods Sixty-four right-handed, early to moderate PD patients were recruited from three movement disorder centers (Hoehn and Yahr stages 1–3). Buttoning, unbuttoning and coin rotation (right and left hand) represented the target tasks. Motor impairment was assessed according to the Unified Parkinson’s Disease Rating Scale. Results Multiple linear regression analysis showed that coin rotation with the right hand was the only significant predictor of buttoning (P < 0.001) and unbuttoning (P = 0.002). Notably, measures of bradykinesia or overall motor impairment did not represent significant predictors. Conclusions Constituting the novel key finding, limb-kinetic apraxia seems to be particularly relevant for ADL requiring dexterity skills in PD, even at early to moderate disease stages. Our results prompt research into the pathophysiological background and therapeutic options to treat limb-kinetic apraxia. The simple coin rotation test provides valuable information about ADL-related dexterity skills. PMID:27132653
Insulin-like growth factors in embryonic and fetal growth and skeletal development (Review).
Agrogiannis, Georgios D; Sifakis, Stavros; Patsouris, Efstratios S; Konstantinidou, Anastasia E
2014-08-01
The insulin-like growth factors (IGF)-I and -II have a predominant role in fetal growth and development. IGFs are involved in the proliferation, differentiation and apoptosis of fetal cells in vitro and the IGF serum concentration has been shown to be closely correlated with fetal growth and length. IGF transcripts and peptides have been detected in almost every fetal tissue from as early in development as pre‑implantation to the final maturation stage. Furthermore, IGFs have been demonstrated to be involved in limb morphogenesis. However, although ablation of Igf genes in mice resulted in growth retardation and delay in skeletal maturation, no impact on outgrowth and patterning of embryonic limbs was observed. Additionally, various molecular defects in the Igf1 and Igf1r genes in humans have been associated with severe intrauterine growth retardation and impaired skeletal maturation, but not with truncated limbs or severe skeletal dysplasia. The conflicting data between in vitro and in vivo observations with regard to bone morphogenesis suggests that IGFs may not be the sole trophic factors involved in fetal skeletal growth and that redundant mechanisms may exist in chondro- and osteogenesis. Further investigation is required in order to elucidate the functions of IGFs in skeletal development.
Williams, Preston T. J. A.; Kim, Sangsoo
2014-01-01
The red nucleus (RN) and rubrospinal tract (RST) are important for forelimb motor control. Although the RST is present postnatally in cats, nothing is known about when rubrospinal projections could support motor functions or the relation between the development of the motor functions of the rubrospinal system and the corticospinal system, the other major system for limb control. Our hypothesis is that the RN motor map is present earlier in development than the motor cortex (M1) map, to support early forelimb control. We investigated RN motor map maturation with microstimulation and RST cervical enlargement projections using anterograde tracers between postnatal week 3 (PW3) and PW16. Microstimulation and tracer injection sites were verified histologically to be located within the RN. Microstimulation at PW4 evoked contralateral wrist, elbow, and shoulder movements. The number of sites producing limb movement increased and response thresholds decreased progressively through PW16. From the outset, all forelimb joints were represented. At PW3, RST projections were present within the cervical intermediate zone, with a mature density of putative synapses. In contrast, beginning at PW5 there was delayed and age-dependent development of forelimb motor pool projections and putative rubromotoneuronal synapses. The RN has a more complete forelimb map early in development than previous studies showed for M1, supporting our hypothesis of preferential rubrospinal rather than corticospinal control for early movements. Remarkably, development of the motor pool, not intermediate zone, RST projections paralleled RN motor map development. The RST may be critical for establishing the rudiments of motor skills that subsequently become refined with further CST development. PMID:24647962
Limb Bone Structural Proportions and Locomotor Behavior in A.L. 288-1 ("Lucy").
Ruff, Christopher B; Burgess, M Loring; Ketcham, Richard A; Kappelman, John
2016-01-01
While there is broad agreement that early hominins practiced some form of terrestrial bipedality, there is also evidence that arboreal behavior remained a part of the locomotor repertoire in some taxa, and that bipedal locomotion may not have been identical to that of modern humans. It has been difficult to evaluate such evidence, however, because of the possibility that early hominins retained primitive traits (such as relatively long upper limbs) of little contemporaneous adaptive significance. Here we examine bone structural properties of the femur and humerus in the Australopithecus afarensis A.L. 288-1 ("Lucy", 3.2 Myr) that are known to be developmentally plastic, and compare them with other early hominins, modern humans, and modern chimpanzees. Cross-sectional images were obtained from micro-CT scans of the original specimens and used to derive section properties of the diaphyses, as well as superior and inferior cortical thicknesses of the femoral neck. A.L. 288-1 shows femoral/humeral diaphyseal strength proportions that are intermediate between those of modern humans and chimpanzees, indicating more mechanical loading of the forelimb than in modern humans, and by implication, a significant arboreal locomotor component. Several features of the proximal femur in A.L. 288-1 and other australopiths, including relative femoral head size, distribution of cortical bone in the femoral neck, and cross-sectional shape of the proximal shaft, support the inference of a bipedal gait pattern that differed slightly from that of modern humans, involving more lateral deviation of the body center of mass over the support limb, which would have entailed increased cost of terrestrial locomotion. There is also evidence consistent with increased muscular strength among australopiths in both the forelimb and hind limb, possibly reflecting metabolic trade-offs between muscle and brain development during hominin evolution. Together these findings imply significant differences in both locomotor behavior and ecology between australopiths and later Homo.
Limb Bone Structural Proportions and Locomotor Behavior in A.L. 288-1 ("Lucy")
Ruff, Christopher B.; Burgess, M. Loring; Ketcham, Richard A.; Kappelman, John
2016-01-01
While there is broad agreement that early hominins practiced some form of terrestrial bipedality, there is also evidence that arboreal behavior remained a part of the locomotor repertoire in some taxa, and that bipedal locomotion may not have been identical to that of modern humans. It has been difficult to evaluate such evidence, however, because of the possibility that early hominins retained primitive traits (such as relatively long upper limbs) of little contemporaneous adaptive significance. Here we examine bone structural properties of the femur and humerus in the Australopithecus afarensis A.L. 288–1 ("Lucy", 3.2 Myr) that are known to be developmentally plastic, and compare them with other early hominins, modern humans, and modern chimpanzees. Cross-sectional images were obtained from micro-CT scans of the original specimens and used to derive section properties of the diaphyses, as well as superior and inferior cortical thicknesses of the femoral neck. A.L. 288–1 shows femoral/humeral diaphyseal strength proportions that are intermediate between those of modern humans and chimpanzees, indicating more mechanical loading of the forelimb than in modern humans, and by implication, a significant arboreal locomotor component. Several features of the proximal femur in A.L. 288–1 and other australopiths, including relative femoral head size, distribution of cortical bone in the femoral neck, and cross-sectional shape of the proximal shaft, support the inference of a bipedal gait pattern that differed slightly from that of modern humans, involving more lateral deviation of the body center of mass over the support limb, which would have entailed increased cost of terrestrial locomotion. There is also evidence consistent with increased muscular strength among australopiths in both the forelimb and hind limb, possibly reflecting metabolic trade-offs between muscle and brain development during hominin evolution. Together these findings imply significant differences in both locomotor behavior and ecology between australopiths and later Homo. PMID:27902687
Paré and prosthetics: the early history of artificial limbs.
Thurston, Alan J
2007-12-01
There is evidence for the use of prostheses from the times of the ancient Egyptians. Prostheses were developed for function, cosmetic appearance and a psycho-spiritual sense of wholeness. Amputation was often feared more than death in some cultures. It was believed that it not only affected the amputee on earth, but also in the afterlife. The ablated limbs were buried and then disinterred and reburied at the time of the amputee's death so the amputee could be whole for eternal life. One of the earliest examples comes from the 18th dynasty of ancient Egypt in the reign of Amenhotep II in the fifteenth century bc. A mummy in the Cairo Museum has clearly had the great toe of the right foot amputated and replaced with a prosthesis manufactured from leather and wood. The first true rehabilitation aids that could be recognized as prostheses were made during the civilizations of Greece and Rome. During the Dark Ages prostheses for battle and hiding deformity were heavy, crude devices made of available materials - wood, metal and leather. Such were the materials available to Ambroise Paré who invented both upper-limb and lower-limb prostheses. His 'Le Petit Lorrain', a mechanical hand operated by catches and springs, was worn by a French Army captain in battle. Subsequent refinements in medicine, surgery and prosthetic science greatly improved amputation surgery and the function of prostheses. What began as a modified crutch with a wooden or leather cup and progressed through many metamorphoses has now developed into a highly sophisticated prosthetic limb made of space-age materials.
Gordon, Robert; Magee, Christopher; Frazer, Anna; Evans, Craig; McCosker, Kathryn
2010-06-01
This study compared the outcomes of an interim mechanical prosthesis program for lower limb amputees operated under a public and private model of service. Over a two-year period, 60 transtibial amputees were fitted with an interim prosthesis as part of their early amputee care. Thirty-four patients received early amputee care under a public model of service, whereby a prosthetist was employed to provide the interim mechanical prosthesis service. The remaining 26 patients received early amputee care under a private model of service, where an external company was contracted to provide the interim mechanical prosthesis service. The results suggested comparable clinical outcomes between the two patient groups. However, the public model appeared to be less expensive with the average labour cost per patient being 29.0% lower compared with the private model. The results suggest that a public model of service may provide a more comprehensive and less expensive interim prosthesis program for lower limb amputees.
Yang, Jie; Ortega-Hernández, Javier; Gerber, Sylvain; Butterfield, Nicholas J.; Hou, Jin-bo; Lan, Tian; Zhang, Xi-guang
2015-01-01
We describe Collinsium ciliosum from the early Cambrian Xiaoshiba Lagerstätte in South China, an armored lobopodian with a remarkable degree of limb differentiation including a pair of antenna-like appendages, six pairs of elongate setiferous limbs for suspension feeding, and nine pairs of clawed annulated legs with an anchoring function. Collinsium belongs to a highly derived clade of lobopodians within stem group Onychophora, distinguished by a substantial dorsal armature of supernumerary and biomineralized spines (Family Luolishaniidae). As demonstrated here, luolishaniids display the highest degree of limb specialization among Paleozoic lobopodians, constitute more than one-third of the overall morphological disparity of stem group Onychophora, and are substantially more disparate than crown group representatives. Despite having higher disparity and appendage complexity than other lobopodians and extant velvet worms, the specialized mode of life embodied by luolishaniids became extinct during the Early Paleozoic. Collinsium and other superarmored lobopodians exploited a unique paleoecological niche during the Cambrian explosion. PMID:26124122
Castori, Marco; Scarciolla, Oronzo; Morlino, Silvia; Manente, Liborio; Biscaglia, Assunta; Fragasso, Alberto; Grammatico, Paola
2012-02-01
The term "phacomatosis" refers to a growing number of sporadic genetic skin disorders characterized by the combination of two or more different nevi and possibly resulting from non-allelic twin spotting. While phacomatosis pigmentovascularis (PPV) and pigmentokeratotica represent the most common patterns, some patients do not fit with either condition and are temporarily classified as unique phenotypes. We report on an 8-year-old boy with striking right hemihypoplasia, resulting in limb asymmetry and fixed dislocation of right hip. Skin on the affected side showed three distinct nevi: (i) A whorled, hairless nevus of the scalp in close proximity with (ii) epidermal hyperpigmentation following lines of Blaschko on the neck and right upper limb, and (iii) multiple telangiectatic nevi of the right lower limb and hemiscrotum. Didymosis atricho-melanotica was proposed for the combination of adjacent patchy congenital alopecia and linear hyperpigmentation, while phacomatosis atricho-pigmento-vascularis appears to define the entire cutaneous phenotype, thus implying the involvement of three neighboring loci influencing the development of distinct constituents of the skin. Given the striking asymmetry of the observed phenotype, the effect of mosaicism (either genomic or functional) for a mutation in a single gene with pleiotropic action and influenced by the lateralization pattern of early development cannot be excluded. Copyright © 2012 Wiley Periodicals, Inc.
Non-terminal animal model of post-traumatic osteoarthritis induced by acute joint injury
Boyce, Mary K.; Trumble, Troy N.; Carlson, Cathy S.; Groschen, Donna M.; Merritt, Kelly A.; Brown, Murray P.
2013-01-01
Objective Develop a non-terminal animal model of acute joint injury that demonstrates clinical and morphological evidence of early post-traumatic osteoarthritis (PTOA). Methods An osteochondral (OC) fragment was created arthroscopically in one metacarpophalangeal (MCP) joint of 11 horses and the contralateral joint was sham operated. Eleven additional horses served as unoperated controls. Every 2 weeks, force plate analysis, flexion response, joint circumference, and synovial effusion scores were recorded. At weeks 0 and 16, radiographs (all horses) and arthroscopic videos (OC injured and sham joints) were graded. At week 16, synovium and cartilage biopsies were taken arthroscopically from OC injured and sham joints for histologic evaluation and the OC fragment was removed. Results Osteochondral fragments were successfully created and horses were free of clinical lameness after fragment removal. Forelimb gait asymmetry was observed at week 2 (P=0.0012), while joint circumference (P<0.0001) and effusion scores (P<0.0001) were increased in injured limbs compared to baseline from weeks 2 to 16. Positive flexion response of injured limbs was noted at multiple time points. Capsular enthesophytes were seen radiographically in injured limbs. Articular cartilage damage was demonstrated arthroscopically as mild wear-lines and histologically as superficial zone chondrocyte death accompanied by mild proliferation. Synovial hyperemia and fibrosis were present at the site of OC injury. Conclusion Acute OC injury to the MCP joint resulted in clinical, imaging, and histologic changes in cartilage and synovium characteristic of early PTOA. This model will be useful for defining biomarkers of early osteoarthritis and for monitoring response to therapy and surgery. PMID:23467035
Chorio-Allantoic Membrane Grafting of Chick Limb Buds as a Class Practical.
ERIC Educational Resources Information Center
McLachlan, John C.
1981-01-01
A new method of carrying out grafts of early embryonic chick limb buds to the chick chorio-allantoic membrane and a processing schedule which renders cartilage elements visible in whole mount are discussed, including implications for the procedures and their results. (Author/DC)
RESIDUAL LIMB VOLUME CHANGE: SYSTEMATIC REVIEW OF MEASUREMENT AND MANAGEMENT
Sanders, JE; Fatone, S
2014-01-01
Management of residual limb volume affects decisions regarding timing of fit of the first prosthesis, when a new prosthetic socket is needed, design of a prosthetic socket, and prescription of accommodation strategies for daily volume fluctuations. The purpose of this systematic review was to assess what is known about measurement and management of residual limb volume change in persons with lower-limb amputation. Publications that met inclusion criteria were grouped into three categories: (I) descriptions of residual limb volume measurement techniques; (II) studies on people with lower-limb amputation investigating the effect of residual limb volume change on clinical care; and (III) studies of residual limb volume management techniques or descriptions of techniques for accommodating or controlling residual limb volume. The review showed that many techniques for the measurement of residual limb volume have been described but clinical use is limited largely because current techniques lack adequate resolution and in-socket measurement capability. Overall, there is limited evidence regarding the management of residual limb volume, and the evidence available focuses primarily on adults with trans-tibial amputation in the early post-operative phase. While we can draw some insights from the available research about residual limb volume measurement and management, further research is required. PMID:22068373
Intrinsic properties of limb bud cells can be differentially reset.
Saiz-Lopez, Patricia; Chinnaiya, Kavitha; Towers, Matthew; Ros, Maria A
2017-02-01
An intrinsic timing mechanism specifies the positional values of the zeugopod (i.e. radius/ulna) and then autopod (i.e. wrist/digits) segments during limb development. Here, we have addressed whether this timing mechanism ensures that patterning events occur only once by grafting GFP-expressing autopod progenitor cells to the earlier host signalling environment of zeugopod progenitor cells. We show by detecting Hoxa13 expression that early and late autopod progenitors fated for the wrist and phalanges, respectively, both contribute to the entire host autopod, indicating that the autopod positional value is irreversibly determined. We provide evidence that Hoxa13 provides an autopod-specific positional value that correctly allocates cells into the autopod, most likely through the control of cell-surface properties as shown by cell-cell sorting analyses. However, we demonstrate that only the earlier autopod cells can adopt the host proliferation rate to permit normal morphogenesis. Therefore, our findings reveal that the ability of embryonic cells to differentially reset their intrinsic behaviours confers robustness to limb morphogenesis. We speculate that this plasticity could be maintained beyond embryogenesis in limbs with regenerative capacity. © 2017. Published by The Company of Biologists Ltd.
van Rij, André M; Hill, Gerry; Krysa, Jo; Dutton, Samantha; Dickson, Riordon; Christie, Ross; Smillie, Judi; Jiang, Ping; Solomon, Clive
2013-10-01
A proportion of patients with deep vein thrombosis (DVT) will develop postthrombotic syndrome (PTS). Currently, the only clearly identified risk factors for developing PTS are recurrent ipsilateral DVT and extensive proximal disease. The aim of the study was to assess the natural history of DVT and identify early predictors of poor clinical outcome at 5 years. Patients with suspected acute DVT in the lower limb were assessed prospectively. All patients with a confirmed DVT were asked to participate in this study. Within 7-10 days after diagnosis of DVT, patients underwent a further review, involving clinical, ultrasound, and air plethysmography assessment of both lower limbs. Patients were reassessed at regular intervals for 5 years. One hundred twenty-two limbs in 114 patients were included in this study. Thrombus regression occurred in two phases, with a rapid regression between 10 days and 3 months, and a more gradual regression thereafter. Reflux developed as thrombus regression occurred. Segmental reflux progressed to axial deep reflux and continued to deteriorate in a significant proportion of patients with iliofemoral-popliteal-calf DVT throughout the 5-year study period. Similarly, venous filling index became progressively more abnormal, in this group, over the course of the study. Four risk factors for PTS were identified as best predictors: extensive clot load on presentation; <50% clot regression at 6 months; venous filling index >2.5 mL/sec; and abnormal outflow rate (<0.6). Patients with three or more of these risk factors had a significant risk of developing PTS with sensitivity 100%, specificity 83%, and positive predictive value 67%. Patients scoring 2 or less did not have PTS at 5 years with a negative predictive value of 100%. This is the first study to show that venous assessment at 6 months post-DVT can predict PTS at 5 years. Those who will not develop PTS can be reassured of this at 6 months. Copyright © 2013 Elsevier Inc. All rights reserved.
Siebourg-Polster, Juliane; Wolf, Detlef; Czech, Christian; Bonati, Ulrike; Fischer, Dirk; Khwaja, Omar; Strahm, Martin
2017-01-01
Although functional rating scales are being used increasingly as primary outcome measures in spinal muscular atrophy (SMA), sensitive and objective assessment of early-stage disease progression and drug efficacy remains challenging. We have developed a game based on the Microsoft Kinect sensor, specifically designed to measure active upper limb movement. An explorative study was conducted to determine the feasibility of this new tool in 18 ambulant SMA type III patients and 19 age- and gender-matched healthy controls. Upper limb movement was analysed elaborately through derived features such as elbow flexion and extension angles, arm lifting angle, velocity and acceleration. No significant differences were found in the active range of motion between ambulant SMA type III patients and controls. Hand velocity was found to be different but further validation is necessary. This study presents an important step in the process of designing and handling digital biomarkers as complementary outcome measures for clinical trials. PMID:28122039
Curtis, Ben; Thompson, Steven
2014-01-01
Historians of orthopaedics, artificial limbs and disability have devoted a great deal of attention to children and soldiers but have neglected to give sufficient space in their studies to industrial workers, the other patient group that has been identified as crucial to the development of these areas. Furthermore, this attention has led to an imbalanced focus on charitable and philanthropic activities as the main means of assistance and the neglect of a significant part of the voluntary sphere, the labour movement. This article, focusing on industrial south Wales, examines the efforts of working-class organisations to provide artificial limbs and a range of other surgical appliances to workers and their family members in the late nineteenth and early twentieth centuries. It finds that a distinctive, labourist conception of disability existed which envisaged disabled workers as an important priority and one to which significant time, effort and resources were devoted. PMID:25352721
Curtis, Ben; Thompson, Steven
2014-11-01
Historians of orthopaedics, artificial limbs and disability have devoted a great deal of attention to children and soldiers but have neglected to give sufficient space in their studies to industrial workers, the other patient group that has been identified as crucial to the development of these areas. Furthermore, this attention has led to an imbalanced focus on charitable and philanthropic activities as the main means of assistance and the neglect of a significant part of the voluntary sphere, the labour movement. This article, focusing on industrial south Wales, examines the efforts of working-class organisations to provide artificial limbs and a range of other surgical appliances to workers and their family members in the late nineteenth and early twentieth centuries. It finds that a distinctive, labourist conception of disability existed which envisaged disabled workers as an important priority and one to which significant time, effort and resources were devoted.
Chen, Xing; Siebourg-Polster, Juliane; Wolf, Detlef; Czech, Christian; Bonati, Ulrike; Fischer, Dirk; Khwaja, Omar; Strahm, Martin
2017-01-01
Although functional rating scales are being used increasingly as primary outcome measures in spinal muscular atrophy (SMA), sensitive and objective assessment of early-stage disease progression and drug efficacy remains challenging. We have developed a game based on the Microsoft Kinect sensor, specifically designed to measure active upper limb movement. An explorative study was conducted to determine the feasibility of this new tool in 18 ambulant SMA type III patients and 19 age- and gender-matched healthy controls. Upper limb movement was analysed elaborately through derived features such as elbow flexion and extension angles, arm lifting angle, velocity and acceleration. No significant differences were found in the active range of motion between ambulant SMA type III patients and controls. Hand velocity was found to be different but further validation is necessary. This study presents an important step in the process of designing and handling digital biomarkers as complementary outcome measures for clinical trials.
Kadam, Dinesh
2013-05-01
The threat of lower limb loss is seen commonly in severe crush injury, cancer ablation, diabetes, peripheral vascular disease and neuropathy. The primary goal of limb salvage is to restore and maintain stability and ambulation. Reconstructive strategies differ in each condition such as: Meticulous debridement and early coverage in trauma, replacing lost functional units in cancer ablation, improving vascularity in ischaemic leg and providing stable walking surface for trophic ulcer. The decision to salvage the critically injured limb is multifactorial and should be individualised along with laid down definitive indications. Early cover remains the standard of care, delayed wound coverage not necessarily affect the final outcome. Limb salvage is more cost-effective than amputations in a long run. Limb salvage is the choice of procedure over amputation in 95% of limb sarcoma without affecting the survival. Compound flaps with different tissue components, skeletal reconstruction; tendon transfer/reconstruction helps to restore function. Adjuvant radiation alters tissue characters and calls for modification in reconstructive plan. Neuropathic ulcers are wide and deep often complicated by osteomyelitis. Free flap reconstruction aids in faster healing and provides superior surface for offloading. Diabetic wounds are primarily due to neuropathy and leads to six-fold increase in ulcerations. Control of infections, aggressive debridement and vascular cover are the mainstay of management. Endovascular procedures are gaining importance and have reduced extent of surgery and increased amputation free survival period. Though the standard approach remains utilising best option in the reconstruction ladder, the recent trend shows running down the ladder of reconstruction with newer reliable local flaps and negative wound pressure therapy.
Lymphoedema of the lower limbs: management problems in a developing country.
Adigun, A I; Ogundipe, O K
2008-01-01
Lymphoedema is a clinical condition involving the extremities that is characterized by accumulation of protein rich fluid within the intercellular space of the skin and the subcutaneous tissue. It most frequently occurs in the extremities. Developing countries are mostly faced with cases of secondary lymphoedema where patients present lately. In addition to swollen limbs, there are lot of skin changes on the affected limb, these create a lot of problems to the managing clinician. We hereby present five cases out of several patients managed to highlight the challenges. We review the case notes of three patients managed by our unit and present the summary of each patient. Majority of our patients present late to the hospital, mainly because of the socio-cultural and spiritual beliefs concerning the aetiology of the condition. Most of them have visited the spiritualist, herbalist and the clergymen for solution. Clinicians in the developing countries are seriously handicapped by lack of modern equipment for both diagnostic and therapeutic management of these clinical conditions. Chronic lymphoedema is a major cause of permanent disability. Excisional surgery such as Charles procedure even though old is still very much relevant in our environment. Patients need to be enlightened on the need for early presentation, adequate post-operative care and prolonged follow-up.
Diagnosis abnormalities of limb movement in disorders of the nervous system
NASA Astrophysics Data System (ADS)
Tymchik, Gregory S.; Skytsiouk, Volodymyr I.; Klotchko, Tatiana R.; Bezsmertna, Halyna; Wójcik, Waldemar; Luganskaya, Saule; Orazbekov, Zhassulan; Iskakova, Aigul
2017-08-01
The paper deals with important issues of diagnosis early signs of diseases of the nervous system, including Parkinson's disease and other specific diseases. Small quantities of violation trajectory of spatial movement of the extremities of human disease at the primary level as the most appropriate features are studied. In modern medical practice is very actual the control the emergence of diseases of the nervous system, including Parkinson's disease. In work a model limbs with six rotational kinematic pairs for diagnosis of early signs of diseases of the nervous system is considered. subject.
Crew-Aided Autonomous Navigation Project
NASA Technical Reports Server (NTRS)
Holt, Greg
2015-01-01
Manual capability to perform star/planet-limb sightings provides a cheap, simple, and robust backup navigation source for exploration missions independent from the ground. Sextant sightings from spacecraft were first exercised in Gemini and flew as the loss-of-communications backup for all Apollo missions. This study seeks to procure and characterize error sources of navigation-grade sextants for feasibility of taking star and planetary limb sightings from inside a spacecraft. A series of similar studies was performed in the early/mid-1960s in preparation for Apollo missions, and one goal of this study is to modernize and update those findings. This technique has the potential to deliver significant risk mitigation, validation, and backup to more complex low-TRL automated systems under development involving cameras.
Detecting the Intention to Move Upper Limbs from Electroencephalographic Brain Signals.
Gudiño-Mendoza, Berenice; Sanchez-Ante, Gildardo; Antelis, Javier M
2016-01-01
Early decoding of motor states directly from the brain activity is essential to develop brain-machine interfaces (BMI) for natural motor control of neuroprosthetic devices. Hence, this study aimed to investigate the detection of movement information before the actual movement occurs. This information piece could be useful to provide early control signals to drive BMI-based rehabilitation and motor assisted devices, thus providing a natural and active rehabilitation therapy. In this work, electroencephalographic (EEG) brain signals from six healthy right-handed participants were recorded during self-initiated reaching movements of the upper limbs. The analysis of these EEG traces showed that significant event-related desynchronization is present before and during the execution of the movements, predominantly in the motor-related α and β frequency bands and in electrodes placed above the motor cortex. This oscillatory brain activity was used to continuously detect the intention to move the limbs, that is, to identify the motor phase prior to the actual execution of the reaching movement. The results showed, first, significant classification between relax and movement intention and, second, significant detection of movement intention prior to the onset of the executed movement. On the basis of these results, detection of movement intention could be used in BMI settings to reduce the gap between mental motor processes and the actual movement performed by an assisted or rehabilitation robotic device.
Body size and lower limb posture during walking in humans.
Hora, Martin; Soumar, Libor; Pontzer, Herman; Sládek, Vladimír
2017-01-01
We test whether locomotor posture is associated with body mass and lower limb length in humans and explore how body size and posture affect net joint moments during walking. We acquired gait data for 24 females and 25 males using a three-dimensional motion capture system and pressure-measuring insoles. We employed the general linear model and commonality analysis to assess the independent effect of body mass and lower limb length on flexion angles at the hip, knee, and ankle while controlling for sex and velocity. In addition, we used inverse dynamics to model the effect of size and posture on net joint moments. At early stance, body mass has a negative effect on knee flexion (p < 0.01), whereas lower limb length has a negative effect on hip flexion (p < 0.05). Body mass uniquely explains 15.8% of the variance in knee flexion, whereas lower limb length uniquely explains 5.4% of the variance in hip flexion. Both of the detected relationships between body size and posture are consistent with the moment moderating postural adjustments predicted by our model. At late stance, no significant relationship between body size and posture was detected. Humans of greater body size reduce the flexion of the hip and knee at early stance, which results in the moderation of net moments at these joints.
2016-10-01
incidence is reported between 57-63% in patients that sustain a poly -trauma blast injury [1,2]. Complications related to HO in residual limbs...following blast amputation include pain , overlying skin and muscle breakdown, poor fitting and functioning of prosthetic limbs, reoperation for amputation
Masiero, Stefano; Armani, Mario; Rosati, Giulio
2011-01-01
The successful motor rehabilitation of stroke patients requires early intensive and task-specific therapy. A recent Cochrane Review, although based on a limited number of randomized controlled trials (RCTs), showed that early robotic training of the upper limb (i.e., during acute or subacute phase) can enhance motor learning and improve functional abilities more than chronic-phase training. In this article, a new subacute-phase RCT with the Neuro-Rehabilitation-roBot (NeReBot) is presented. While in our first study we used the NeReBot in addition to conventional therapy, in this new trial we used the same device in substitution of standard proximal upper-limb rehabilitation. With this protocol, robot patients achieved similar reductions in motor impairment and enhancements in paretic upper-limb function to those gained by patients in a control group. By analyzing these results and those of previous studies, we hypothesize a new robotic protocol for acute and subacute stroke patients based on both treatment modalities (in addition and in substitution).
Recent origin of low trabecular bone density in modern humans
Chirchir, Habiba; Kivell, Tracy L.; Ruff, Christopher B.; Hublin, Jean-Jacques; Carlson, Kristian J.; Zipfel, Bernhard; Richmond, Brian G.
2015-01-01
Humans are unique, compared with our closest living relatives (chimpanzees) and early fossil hominins, in having an enlarged body size and lower limb joint surfaces in combination with a relatively gracile skeleton (i.e., lower bone mass for our body size). Some analyses have observed that in at least a few anatomical regions modern humans today appear to have relatively low trabecular density, but little is known about how that density varies throughout the human skeleton and across species or how and when the present trabecular patterns emerged over the course of human evolution. Here, we test the hypotheses that (i) recent modern humans have low trabecular density throughout the upper and lower limbs compared with other primate taxa and (ii) the reduction in trabecular density first occurred in early Homo erectus, consistent with the shift toward a modern human locomotor anatomy, or more recently in concert with diaphyseal gracilization in Holocene humans. We used peripheral quantitative CT and microtomography to measure trabecular bone of limb epiphyses (long bone articular ends) in modern humans and chimpanzees and in fossil hominins attributed to Australopithecus africanus, Paranthropus robustus/early Homo from Swartkrans, Homo neanderthalensis, and early Homo sapiens. Results show that only recent modern humans have low trabecular density throughout the limb joints. Extinct hominins, including pre-Holocene Homo sapiens, retain the high levels seen in nonhuman primates. Thus, the low trabecular density of the recent modern human skeleton evolved late in our evolutionary history, potentially resulting from increased sedentism and reliance on technological and cultural innovations. PMID:25535354
Recent origin of low trabecular bone density in modern humans.
Chirchir, Habiba; Kivell, Tracy L; Ruff, Christopher B; Hublin, Jean-Jacques; Carlson, Kristian J; Zipfel, Bernhard; Richmond, Brian G
2015-01-13
Humans are unique, compared with our closest living relatives (chimpanzees) and early fossil hominins, in having an enlarged body size and lower limb joint surfaces in combination with a relatively gracile skeleton (i.e., lower bone mass for our body size). Some analyses have observed that in at least a few anatomical regions modern humans today appear to have relatively low trabecular density, but little is known about how that density varies throughout the human skeleton and across species or how and when the present trabecular patterns emerged over the course of human evolution. Here, we test the hypotheses that (i) recent modern humans have low trabecular density throughout the upper and lower limbs compared with other primate taxa and (ii) the reduction in trabecular density first occurred in early Homo erectus, consistent with the shift toward a modern human locomotor anatomy, or more recently in concert with diaphyseal gracilization in Holocene humans. We used peripheral quantitative CT and microtomography to measure trabecular bone of limb epiphyses (long bone articular ends) in modern humans and chimpanzees and in fossil hominins attributed to Australopithecus africanus, Paranthropus robustus/early Homo from Swartkrans, Homo neanderthalensis, and early Homo sapiens. Results show that only recent modern humans have low trabecular density throughout the limb joints. Extinct hominins, including pre-Holocene Homo sapiens, retain the high levels seen in nonhuman primates. Thus, the low trabecular density of the recent modern human skeleton evolved late in our evolutionary history, potentially resulting from increased sedentism and reliance on technological and cultural innovations.
Early effects of embryonic movement: ‘a shot out of the dark’
Pitsillides, Andrew A
2006-01-01
It has long been appreciated that studying the embryonic chick in ovo provides a variety of advantages, including the potential to control the embryo's environment and its movement independently of maternal influences. This allowed early workers to identify movement as a pivotal factor in the development of the locomotor apparatus. With an increasing focus on the earliest detectable movements, we have exploited this system by developing novel models and schemes to examine the influence of defined periods of movement during musculoskeletal development. Utilizing drugs with known neuromuscular actions to provoke hyperactivity (4-aminopyridine, AP) and either rigid (decamethonium bromide, DMB) or flaccid (pancuronium bromide, PB) paralysis, we have examined the role of movement in joint, osteochondral and muscle development. Our initial studies focusing on the joint showed that AP-induced hyperactivity had little, if any, effect on the timing or scope of joint cavity elaboration, suggesting that endogenous activity levels provide sufficient stimulus, and additional mobilization is without effect. By contrast, imposition of either rigid or flaccid paralysis prior to cavity formation completely blocked this process and, with time, produced fusion of cartilaginous elements and formation of continuous single cartilaginous rods across locations where joints would ordinarily form. The effect of these distinct forms of paralysis differed, however, when treatment was initiated after formation of an overt cavity; rigid, but not flaccid, paralysis partly conserved precavitated joints. This observation suggests that ‘static’ loading derived from ‘spastic’ rigidity can act to preserve joint cavities. Another facet of these studies was the observation that DMB-induced rigid paralysis produces a uniform and specific pattern of limb deformity whereas PB generated a diverse range of fixed positional deformities. Both also reduced limb growth, with different developmental periods preferentially modifying specific osteochondral components. Changes in cartilage and bone growth induced by 3-day periods of flaccid immobilization, imposed at distinct developmental phases, provides support for a diminution in cartilage elaboration at an early phase and for a relatively delayed influence of movement on osteogenesis, invoking critical periods during which the developing skeleton becomes receptive to the impact of movement. Immobilization also exerts differential impact along the proximo-distal axis of the limb. Finally, our preliminary results support the possibility that embryonic hyperactivity influences the potential for postnatal muscle growth. PMID:16637868
A review of supernumerary and absent limbs and digits of the upper limb.
Klaassen, Zachary; Choi, Monica; Musselman, Ruth; Eapen, Deborah; Tubbs, R Shane; Loukas, Marios
2012-03-01
For years people have been enamored by anomalies of the human limbs, particularly supernumerary and absent limbs and digits. Historically, there are a number of examples of such anomalies, including royal families of ancient Chaldea, tribes from Arabia, and examples from across nineteenth century Europe. The development of the upper limbs in a growing embryo is still being elucidated with the recent advent of homeobox genes, but researchers agree that upper limbs develop between stages 12-23 through a complex embryological process. Maternal thalidomide intake during limb development is known to cause limb reduction and subsequent amelia or phocomelia. Additionally, a number of clinical reports have illustrated different limb anomaly cases, with each situation unique in phenotype and developmental abnormality. Supernumerary and absent limbs and digits are not unique to humans, and a number of animal cases have also been reported. This review of the literature illustrates the historical, anatomical, and clinical aspects of supernumerary and absent limbs and digits for the upper limb.
Structural analysis of the Tabaco anticline, Cerrejón open-cast coal mine, Colombia, South America
NASA Astrophysics Data System (ADS)
Cardozo, Néstor; Montes, Camilo; Marín, Dora; Gutierrez, Iván; Palencia, Alejandro
2016-06-01
The Tabaco anticline is a 15 km long, south plunging, east-vergent anticline in northern Colombia, close to the transpressional collisional margin between the Caribbean and South American plates. In the Cerrejón open-cast coal mine, systematic mapping of coal seams in the middle to upper Paleocene Cerrejón Formation has yielded an exceptional dataset consisting of 10 horizontal slices (sea level to 90 m elevation, regularly spaced at 10 m intervals) through the anticline. Coal seams and fault traces in these slices are used to construct a 3D model of the anticline. This 3D model shows tighter folds within lower coal seams, NW-vergent thrusts and related folds on the gentler western limb, and strike-slip faults on the steeper eastern limb. Fault slip-tendency analysis is used to infer that these two faulting styles resulted from two different stress fields: an earlier one consistent with thrusting and uplift of the Perijá range, and a later one consistent with strike-slip faulting (Oca, Ranchería and Samán faults). Our preferred interpretation is that the anticline developed its eastern vergence during the early stages (late Paleocene-early Eocene) of tilting of the Santa Marta massif. Later NW-vergent thrusting on the western limb (early to middle Eocene) was related to western propagation of the Perijá thrust system. These results contribute to the understanding of the structural evolution of the area. They are also a good example of the complex interplay between detachment folding, thrusting, and strike-slip faulting during the growth of a km-size fold in a transpressive setting.
Non-terminal animal model of post-traumatic osteoarthritis induced by acute joint injury.
Boyce, M K; Trumble, T N; Carlson, C S; Groschen, D M; Merritt, K A; Brown, M P
2013-05-01
Develop a non-terminal animal model of acute joint injury that demonstrates clinical and morphological evidence of early post-traumatic osteoarthritis (PTOA). An osteochondral (OC) fragment was created arthroscopically in one metacarpophalangeal (MCP) joint of 11 horses and the contralateral joint was sham operated. Eleven additional horses served as unoperated controls. Every 2 weeks, force plate analysis, flexion response, joint circumference, and synovial effusion scores were recorded. At weeks 0 and 16, radiographs (all horses) and arthroscopic videos (OC injured and sham joints) were graded. At week 16, synovium and cartilage biopsies were taken arthroscopically from OC injured and sham joints for histologic evaluation and the OC fragment was removed. OC fragments were successfully created and horses were free of clinical lameness after fragment removal. Forelimb gait asymmetry was observed at week 2 (P = 0.0012), while joint circumference (P < 0.0001) and effusion scores (P < 0.0001) were increased in injured limbs compared to baseline from weeks 2 to 16. Positive flexion response of injured limbs was noted at multiple time points. Capsular enthesophytes were seen radiographically in injured limbs. Articular cartilage damage was demonstrated arthroscopically as mild wear-lines and histologically as superficial zone chondrocyte death accompanied by mild proliferation. Synovial hyperemia and fibrosis were present at the site of OC injury. Acute OC injury to the MCP joint resulted in clinical, imaging, and histologic changes in cartilage and synovium characteristic of early PTOA. This model will be useful for defining biomarkers of early osteoarthritis and for monitoring response to therapy and surgery. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Wade, Nicholas J; Finger, Stanley
2003-05-01
EARLY REPORTS OF phantom limbs by Ambroise Paré and René Descartes were based on second- or third-hand descriptions provided by amputees. William Porterfield (ca. 1696-1771) was a prominent Scottish physician and was possibly the first man of medicine to write about his experiences after having a leg amputated. Porterfield was an authority on vision; he devised the first optometer and examined accommodation after cataract operations. Rather than using the phenomenon of a phantom limb to question the veracity of the senses (as Descartes had done), Porterfield integrated his phantom limb experiences into his general account of sensory function.
Johansen, Heidi; Østlie, Kristin; Andersen, Liv Øinæs; Rand-Hendriksen, Svend
2015-01-01
To describe an adult population with congenital limb deficiency (CLD) recruited through the National Resource Centre for Rare Disorders (TRS) in Norway: (1) demographic factors, (2) clinical features, (3) pain and (4) use of health care and welfare services. Cross-sectional study. In 2012, a postal questionnaire was sent to 186 eligible persons with CLD, age 20 years and older. Ninety-seven respondents, median-age 39 years (range: 20-82); 71% were women. The population was divided into two subgroups: (1) unilateral upper-limb deficiency (UULD) n = 77, (2) multiple and/or lower-limb deficiency (MLD/LLD). About 40% worked full-time, 18% received disability pensions and 64% reported chronic pain, mostly bilateral pain. Grip-improving devices were used more often than prostheses; 23% were previous prosthesis users. Use of health care and welfare services are described. No significant differences were found between the subgroups regarding pain or employment status. Persons with CLD reported increased prevalence of chronic pain, mostly bilateral, and increased prevalence of early retirement. A greater focus on the benefits of the use of assistive devices, the consequences of overuse and vocational guidance may moderate pain and prevent early retirement. Further studies of more representative samples should be conducted to confirm our findings. Most adults with congenital limb deficiency (CLD) live ordinary lives and experience normal life events. However, several report chronic pain and retire before normal retirement age. In spite of free and accessible prosthetic services, a large fraction chooses not to use prosthesis, more use grip-improving devices for specific activities. These preferences should be acknowledged by rehabilitation specialists. Focus on individually adapted environments, more information about the consequences of overuse, and vocational guidance may moderate pain and prevent early retirement.
Zhou, Long-Jiang; Wang, Wei; Zhao, Yi; Liu, Chun-Feng; Zhang, Xin-Jiang; Liu, Zhen-Sheng; Li, Hua-Dong
2017-11-01
This study aimed to investigate the correlation between the functional magnetic resonance imaging (fMRI) pattern and the motor function recovery of an affected limb during the passive movement of the affected limb at an early stage of the striatocapsular infarction (SCI). A total of 17 patients with an acute stage of SCI and 3 healthy volunteers as controls were included in this study. fMRI scans of passive movement were performed on the affected limbs of stroke patients within 1 week of onset. Follow-ups were carried out for the motor functions of the affected limbs (before fMRI scan, 1 month, and 3 months after the scan). The control group showed that the activation was mainly located in the contralateral sensorimotor cortex (SMC) and the bilateral supplementary motor area (SMA). The fMRI scan region of interest for stroke patients can be divided into 3 types: type I includes mainly the affected side, bilateral SMC, and SMA with activation; type II includes SMC on the affected side and SMA with activation; type III includes only SMC on the affected side or M1 with activation. The recovery of type I patients was better and faster, while the recovery of type II patients was better but slower, but recovery of type III patients was poorer and slower. Multiple cortical activation patterns were noted during the passive movement of the affected limbs at an early stage of SCI, and a correlation was found between the different activation patterns and the clinical prognosis of patients. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Xiao, Jian; Mao, Zhao-Guang; Zhu, Hui-Hua; Guo, Liang
2017-03-25
To discuss the curative effect of the early application of the antibiotic-laden bone cement (ALBC) combined with the external fixation support in treating the open fractures of lower limbs complicated with bone defect. From December 2013 to January 2015, 36 cases of lower limb open comminuted fractures complicated with bone defects were treated by the vancomycin ALBC combined with the external fixation support, including 26 males and 10 females with an average age of 38.0 years old ranging from 19 to 65 years old. The included cases were all open fractures of lower limbs complicated with bone defects with different degree of soft tissue injuries. Among them, 25 cases were tibial fractures, 11 cases were femoral fractures. The radiographs indicated a presence of bone defects, which ranged from 3.0 to 6.1 cm with an average of 4.0 cm. The Gustilo classification of open fractures:24 cases were type IIIA, 12 cases were typr IIIB. The percentage of wound infection, bone grafting time, fracture healing time and postoperative joint function of lower limb were observed. The function of injured limbs was evaluated at 1 month after the clinical healing of fracture based on Paley evaluation criterion. All cases were followed up for 3 to 24 months with an average of (6.0±3.0) months. The wound surface was healed well, neither bone infections nor unhealed bone defects were presented. The reoperation of bone grafting was done at 6 weeks after the patients received an early treatment with ALBC, some of them were postponed to 8 weeks till the approximate healing of fractures, the treatment course lasted for 4 to 8 months with an average of(5.5±1.5) months. According to Paley and other grading evaluations of bone and function, there were 27 cases as excellent, 5 cases as good, 3 cases as ordinary. The ALBC combined with external fixation support was an effective method for early treatment to treat the traumatic lower limb open fractures complicated with bone defects. This method was typified with the advantages such as easy operation, short operation time, overwhelming superiority in controlling infection and provision of good bone grafting bed, a good bone healing can be realized by the use of membrane induction technology for bone grafting.
Naidoo, P; Liu, V J; Bergin, S
2015-01-01
Diabetic complications in the lower extremity are associated with significant morbidity and mortality, and impact heavily upon the public health system. Early and accurate recognition of these abnormalities is crucial, enabling the early initiation of treatments and thus avoiding or minimizing deformity, dysfunction and amputation. Following careful clinical assessment, radiological imaging is central to the diagnostic and follow-up process. We aim to provide a comprehensive review of diabetic lower limb complications designed to assist radiologists and to contribute to better outcomes for these patients. PMID:26111070
Ultrasonic diagnosis of thanatophoric dwarfism in utero.
Cremin, B J; Shaff, M I
1977-08-01
There are several types of short-limbed neonatal dwarfism. Before the delineation of thanatophoric dwarfism many dwarfs who died early in infancy were labeled "achondroplastic." Intrauterine radiological diagnosis is possible and the clinician may be alerted to the possibility of the condition by noting short squat limbs with a relatively large head on ultrasound examination, especially in cases of hydramnios.
Kulkarni, Ruta; Singh, Nishant; Kulkarni, Govind S; Kulkarni, Milind; Kulkarni, Sunil; Kulkarni, Vidisha
2012-01-01
Background: The limb lengthening over plate eliminates the associated risk of infection with limb lengthening over intramedullary nail. We present our experience of limb lengthening in 15 patients with a plate fixed on the proximal segment, followed by corticotomy and application of external fixator. Materials and Methods: 15 patients (7 females, 8 males) were included in this consecutive series. The average age was 18.1 years (range 8–35 years). Fifteen tibiae and one femur were lengthened in 15 patients. Lengthening was achieved at 1 mm/day followed by distal segment fixation with three or four screws on reaching the target length. Results: The preoperative target length was successfully achieved in all patients at a mean of 4.1 cm (range 1.8–6.5 cm). The mean duration of external fixation was 75.3 days (range 33–116 days) with the mean external fixation index at 19.2 days/cm (range 10.0–38.3 days/cm). One patient suffered deep infection up to the plate, three patients had mild procurvatum deformities, and one patient developed mild tendo achilles contracture. Conclusion: Lengthening over a plate allows early removal of external fixator and eliminates the risk of creating deep intramedullary infection as with lengthening over nail. Lengthening over plate is also applicable to children with open physis. PMID:22719123
Kawahira, Hiroshi; Kodera, Yasuhiro; Hiki, Naoki; Takahashi, Masazumi; Itoh, Seiji; Mitsumori, Norio; Kawashima, Yoshiyuki; Namikawa, Tsutomu; Inada, Takao; Nakada, Koji
2015-10-01
The optimal surgical procedure for distal gastrectomy with Roux-en-Y reconstruction (DGRY) remains to be determined. Recently, a self-report assessment instrument, the Postgastrectomy Syndrome Assessment Scale-45 (PGSAS-45), was compiled to evaluate symptoms, the living status and the quality of life of patients who have undergone gastrectomy. We used this scale to evaluate procedures used for DGRY. The subjects included 475 patients who underwent DGRY for stage IA/IB gastric cancer. We evaluated whether the size of the remnant stomach, length of the Roux limb, reconstruction route and anastomotic procedure affected the patients' symptoms, living status and quality of life assessed using the PGSAS-45. Patients with a residual stomach of more than half had significantly worse esophageal reflux scores than the patients with a smaller residual stomach (P = 0.0462); a residual stomach of one-third or one-fourth was favorable. A shorter length of the Roux limb was shown to be preferable to a longer Roux limb based on the results of the PGSAS-45. In addition, antecolic reconstruction and the anastomotic procedure using a linear stapler were found to be more favorable. The size of the remnant stomach and the length and route of the Roux limb significantly influence the patient-reported DGRY outcomes.
Rodríguez-Carballo, Eddie; Lopez-Delisle, Lucille; Zhan, Ye; Fabre, Pierre J.; Beccari, Leonardo; El-Idrissi, Imane; Huynh, Thi Hanh Nguyen; Ozadam, Hakan; Dekker, Job; Duboule, Denis
2017-01-01
The mammalian HoxD cluster lies between two topologically associating domains (TADs) matching distinct enhancer-rich regulatory landscapes. During limb development, the telomeric TAD controls the early transcription of Hoxd genes in forearm cells, whereas the centromeric TAD subsequently regulates more posterior Hoxd genes in digit cells. Therefore, the TAD boundary prevents the terminal Hoxd13 gene from responding to forearm enhancers, thereby allowing proper limb patterning. To assess the nature and function of this CTCF-rich DNA region in embryos, we compared chromatin interaction profiles between proximal and distal limb bud cells isolated from mutant stocks where various parts of this boundary region were removed. The resulting progressive release in boundary effect triggered inter-TAD contacts, favored by the activity of the newly accessed enhancers. However, the boundary was highly resilient, and only a 400-kb deletion, including the whole-gene cluster, was eventually able to merge the neighboring TADs into a single structure. In this unified TAD, both proximal and distal limb enhancers nevertheless continued to work independently over a targeted transgenic reporter construct. We propose that the whole HoxD cluster is a dynamic TAD border and that the exact boundary position varies depending on both the transcriptional status and the developmental context. PMID:29273679
Movement patterns of limb coordination in infant rolling.
Kobayashi, Yoshio; Watanabe, Hama; Taga, Gentaro
2016-12-01
Infants must perform dynamic whole-body movements to initiate rolling, a key motor skill. However, little is known regarding limb coordination and postural control in infant rolling. To address this lack of knowledge, we examined movement patterns and limb coordination during rolling in younger infants (aged 5-7 months) that had just begun to roll and in older infants (aged 8-10 months) with greater rolling experience. Due to anticipated difficulty in obtaining measurements over the second half of the rolling sequence, we limited our analysis to the first half. Ipsilateral and contralateral limbs were identified on the basis of rolling direction and were classified as either a stationary limb used for postural stability or a moving limb used for controlled movement. We classified the observed movement patterns by identifying the number of stationary limbs and the serial order of combinational limb movement patterns. Notably, older infants performed more movement patterns that involved a lower number of stationary limbs than younger infants. Despite the wide range of possible movement patterns, a small group of basic patterns dominated in both age groups. Our results suggest that the fundamental structure of limb coordination during rolling in the early acquisition stages remains unchanged until at least 8-10 months of age. However, compared to younger infants, older infants exhibited a greater ability to select an effective rotational movement by positioning themselves with fewer stationary limbs and performing faster limb movements.
Hesse, E; Brand, J; Bastian, L; Krettek, C; Meller, R
2008-07-01
Melorheostosis is a rare, benign, and sporadically occurring osteosclerosis of unknown cause. The onset of the disease is usually in early adulthood. Melorheostosis affects both genders, develops progressively, and is usually limited to one side of the human body. The sclerosis originates predominantly from the cortices of the long bones of the lower limbs and rarely the upper limbs. Frequently, the sclerosis involves the soft tissue surrounding the affected bones which may cause limitations in the range of motion, contractures, deformities, and pain. Melorheostosis is usually diagnosed by radiograms. Pain relief and restoration of the full range of motion are the primary goals of the therapeutic approach. A good outcome cannot always be achieved and a recurrence of the disease happens very often.
Precocity in a tiny titanosaur from the Cretaceous of Madagascar.
Curry Rogers, Kristina; Whitney, Megan; D'Emic, Michael; Bagley, Brian
2016-04-22
Sauropod dinosaurs exhibit the largest ontogenetic size range among terrestrial vertebrates, but a dearth of very young individuals has hindered understanding of the beginning of their growth trajectory. A new specimen of Rapetosaurus krausei sheds light on early life in the smallest stage of one of the largest dinosaurs. Bones record rapid growth rates and hatching lines, indicating that this individual weighed ~3.4 kilograms at hatching. Just several weeks later, when it likely succumbed to starvation in a drought-stressed ecosystem, it had reached a mass of ~40 kilograms and was ~35 centimeters tall at the hip. Unexpectedly, Rapetosaurus limb bones grew isometrically throughout their development. Cortical remodeling, limb isometry, and thin calcified hypertrophic metaphyseal cartilages indicate an active, precocial growth strategy. Copyright © 2016, American Association for the Advancement of Science.
Ribeiro-Parenti, Lara; Arapis, Konstantinos; Chosidow, Denis; Marmuse, Jean-Pierre
2015-02-01
Marginal ulcer can be a serious complication after laparoscopic gastric bypass surgery. The aim of this study was to compare the rates of marginal ulcer between the antecolic and the retrocolic technique, in a large cohort of patients. Over a near 10-year period, 1,142 patients underwent laparoscopic gastric bypass surgery. The antecolic and the retrocolic technique were used in respectively 572 and 570 consecutive patients. All procedures were performed using a circular stapled gastrojejunostomy. Patients were followed for 18 to 99 months (mean 48.8 months). During follow-up, 46 patients developed a marginal ulcer (4 %), 32 in the antecolic group (5.6 %) and 14 in the retrocolic group (2.5 %). Nineteen patients (3.3 %) in the antecolic group and eight patients in the retrocolic group (1.4 %) developed early marginal ulcer (i.e., within 3 months after surgery). The mean time to onset of anastomotic ulcer symptoms after surgery was 11 months (range 0.25-72). Forty-four patients were submitted to medical treatment, and 35 patients (79.5 %) had complete resolution of their symptoms. Patients with an antecolic Roux limb develop significantly more marginal ulcers (p = 0.007) and early marginal ulcer (p = 0.033) than the patients with a retrocolic Roux limb. The antecolic technique seems to be a risk factor for appearance of marginal ulcer.
The 6 minute walk test and performance of upper limb in ambulant duchenne muscular dystrophy boys.
Pane, Marika; Mazzone, Elena Stacy; Sivo, Serena; Fanelli, Lavinia; De Sanctis, Roberto; D'Amico, Adele; Messina, Sonia; Battini, Roberta; Bianco, Flaviana; Scutifero, Marianna; Petillo, Roberta; Frosini, Silvia; Scalise, Roberta; Vita, Gian Luca; Bruno, Claudio; Pedemonte, Marina; Mongini, Tiziana; Pegoraro, Elena; Brustia, Francesca; Gardani, Alice; Berardinelli, Angela; Lanzillotta, Valentina; Viggiano, Emanuela; Cavallaro, Filippo; Sframeli, Maria; Bello, Luca; Barp, Andrea; Busato, Fabio; Bonfiglio, Serena; Rolle, Enrica; Colia, Giulia; Bonetti, Annamaria; Palermo, Concetta; Graziano, Alessandra; D'Angelo, Grazia; Pini, Antonella; Corlatti, Alice; Gorni, Ksenija; Baranello, Giovanni; Antonaci, Laura; Bertini, Enrico; Politano, Luisa; Mercuri, Eugenio
2014-10-07
The Performance of Upper Limb (PUL) test was specifically developed for the assessment of upper limbs in Duchenne muscular dystrophy (DMD). The first published data have shown that early signs of involvement can also be found in ambulant DMD boys. The aim of this longitudinal Italian multicentric study was to evaluate the correlation between the 6 Minute Walk Test (6MWT) and the PUL in ambulant DMD boys. Both 6MWT and PUL were administered to 164 ambulant DMD boys of age between 5.0 and 16.17 years (mean 8.82). The 6 minute walk distance (6MWD) ranged between 118 and 557 (mean: 376.38, SD: 90.59). The PUL total scores ranged between 52 and 74 (mean: 70.74, SD: 4.66). The correlation between the two measures was 0.499. The scores on the PUL largely reflect the overall impairment observed on the 6MWT but the correlation was not linear. The use of the PUL appeared to be less relevant in the very strong patients with 6MWD above 400 meters, who, with few exceptions had near full scores. In patients with lower 6MWD the severity of upper limb involvement was more variable and could not always be predicted by the 6MWD value or by the use of steroids. Our results confirm that upper limb involvement can already be found in DMD boys even in the ambulant phase.
Bonenkamp, J J; Thompson, J F; de Wilt, J H; Doubrovsky, A; de Faria Lima, R; Kam, P C A
2004-12-01
Isolated limb infusion (ILI) is a simple yet effective alternative to conventional isolated limb perfusion for the treatment of advanced melanoma of the extremities. The study group comprised 13 patients with very advanced limb disease who had failed to achieve a satisfactory response to one or more ILIs with melphalan, and in whom amputation was the only other realistic treatment option. The aim of this study was to evaluate the efficacy and toxicity of ILI with fotemustine after systemic chemosensitisation with dacarbazine (DTIC). Complete remission was achieved in four patients and partial remission in eight patients, with a median response duration of 3 months. Limb salvage was achieved in five of 12 assessable patients (42%). Limb toxicity peaked 9 days after ILI; two patients experienced Wieberdink grade IV (severe) toxicity and four patients had grade V toxicity (requiring early amputation). ILI with fotemustine after DTIC chemosensitisation can be successful when gross limb disease has not been controlled by one or more ILIs with melphalan. However, it cannot be recommended as a routine method of treatment for advanced melanoma of the extremities because of the high incidence of severe limb toxicity.
Body size and lower limb posture during walking in humans
Hora, Martin; Soumar, Libor; Pontzer, Herman; Sládek, Vladimír
2017-01-01
We test whether locomotor posture is associated with body mass and lower limb length in humans and explore how body size and posture affect net joint moments during walking. We acquired gait data for 24 females and 25 males using a three-dimensional motion capture system and pressure-measuring insoles. We employed the general linear model and commonality analysis to assess the independent effect of body mass and lower limb length on flexion angles at the hip, knee, and ankle while controlling for sex and velocity. In addition, we used inverse dynamics to model the effect of size and posture on net joint moments. At early stance, body mass has a negative effect on knee flexion (p < 0.01), whereas lower limb length has a negative effect on hip flexion (p < 0.05). Body mass uniquely explains 15.8% of the variance in knee flexion, whereas lower limb length uniquely explains 5.4% of the variance in hip flexion. Both of the detected relationships between body size and posture are consistent with the moment moderating postural adjustments predicted by our model. At late stance, no significant relationship between body size and posture was detected. Humans of greater body size reduce the flexion of the hip and knee at early stance, which results in the moderation of net moments at these joints. PMID:28192522
Zhu, Wei; Kuo, Dwight; Nathanson, Jason; Satoh, Akira; Pao, Gerald M.; Yeo, Gene W.; Bryant, Susan V.; Voss, S. Randal; Gardiner, David M.; Hunter, Tony
2012-01-01
Salamanders possess an extraordinary capacity for tissue and organ regeneration when compared to mammals. In our effort to characterize the unique transcriptional fingerprint emerging during the early phase of salamander limb regeneration, we identified transcriptional activation of some germline-specific genes within the Mexican axolotl (Ambystoma mexicanum) that is indicative of cellular reprogramming of differentiated cells into a germline-like state. In this work, we focus on one of these genes, the long interspersed nucleotide element-1 (LINE-1) retrotransposon, which is usually active in germ cells and silent in most of the somatic tissues in other organisms. LINE-1 was found to be dramatically upregulated during regeneration. In addition, higher genomic LINE-1 content was also detected in the limb regenerate when compared to that before amputation indicating that LINE-1 retrotransposition is indeed active during regeneration. Active LINE-1 retrotransposition has been suggested to have a potentially deleterious impact on genomic integrity. Silencing of activated LINE-1 by small RNAs has been reported to be part of the machinery aiming to maintain genomic integrity. Indeed, we were able to identify putative LINE-1-related piRNAs in the limb blastema. Transposable element-related piRNAs have been identified frequently in the germline in other organisms. Thus, we present here a scenario in which a unique germline-like state is established during axolotl limb regeneration, and the re-activation of LINE-1 may serve as a marker for cellular dedifferentiation in the early-stage of limb regeneration. PMID:22913491
Transcriptomic insights into the genetic basis of mammalian limb diversity.
Maier, Jennifer A; Rivas-Astroza, Marcelo; Deng, Jenny; Dowling, Anna; Oboikovitz, Paige; Cao, Xiaoyi; Behringer, Richard R; Cretekos, Chris J; Rasweiler, John J; Zhong, Sheng; Sears, Karen E
2017-03-23
From bat wings to whale flippers, limb diversification has been crucial to the evolutionary success of mammals. We performed the first transcriptome-wide study of limb development in multiple species to explore the hypothesis that mammalian limb diversification has proceeded through the differential expression of conserved shared genes, rather than by major changes to limb patterning. Specifically, we investigated the manner in which the expression of shared genes has evolved within and among mammalian species. We assembled and compared transcriptomes of bat, mouse, opossum, and pig fore- and hind limbs at the ridge, bud, and paddle stages of development. Results suggest that gene expression patterns exhibit larger variation among species during later than earlier stages of limb development, while within species results are more mixed. Consistent with the former, results also suggest that genes expressed at later developmental stages tend to have a younger evolutionary age than genes expressed at earlier stages. A suite of key limb-patterning genes was identified as being differentially expressed among the homologous limbs of all species. However, only a small subset of shared genes is differentially expressed in the fore- and hind limbs of all examined species. Similarly, a small subset of shared genes is differentially expressed within the fore- and hind limb of a single species and among the forelimbs of different species. Taken together, results of this study do not support the existence of a phylotypic period of limb development ending at chondrogenesis, but do support the hypothesis that the hierarchical nature of development translates into increasing variation among species as development progresses.
Deep-time evolution of regeneration and preaxial polarity in tetrapod limb development.
Fröbisch, Nadia B; Bickelmann, Constanze; Olori, Jennifer C; Witzmann, Florian
2015-11-12
Among extant tetrapods, salamanders are unique in showing a reversed preaxial polarity in patterning of the skeletal elements of the limbs, and in displaying the highest capacity for regeneration, including full limb and tail regeneration. These features are particularly striking as tetrapod limb development has otherwise been shown to be a highly conserved process. It remains elusive whether the capacity to regenerate limbs in salamanders is mechanistically and evolutionarily linked to the aberrant pattern of limb development; both are features classically regarded as unique to urodeles. New molecular data suggest that salamander-specific orphan genes play a central role in limb regeneration and may also be involved in the preaxial patterning during limb development. Here we show that preaxial polarity in limb development was present in various groups of temnospondyl amphibians of the Carboniferous and Permian periods, including the dissorophoids Apateon and Micromelerpeton, as well as the stereospondylomorph Sclerocephalus. Limb regeneration has also been reported in Micromelerpeton, demonstrating that both features were already present together in antecedents of modern salamanders 290 million years ago. Furthermore, data from lepospondyl 'microsaurs' on the amniote stem indicate that these taxa may have shown some capacity for limb regeneration and were capable of tail regeneration, including re-patterning of the caudal vertebral column that is otherwise only seen in salamander tail regeneration. The data from fossils suggest that salamander-like regeneration is an ancient feature of tetrapods that was subsequently lost at least once in the lineage leading to amniotes. Salamanders are the only modern tetrapods that retained regenerative capacities as well as preaxial polarity in limb development.
Ferris, Donald R; Satoh, Akira; Mandefro, Berhan; Cummings, Gillian M; Gardiner, David M; Rugg, Elizabeth L
2010-10-01
Urodele amphibians (salamanders) are unique among adult vertebrates in their ability to regenerate structurally complete and fully functional limbs. Regeneration is a stepwise process that requires interactions between keratinocytes, nerves and fibroblasts. The formation of a wound epithelium covering the amputation site is an early and necessary event in the process but the molecular mechanisms that underlie the role of the wound epithelium in regeneration remain unclear. We have developed an ex vivo model that recapitulates many features of in vivo wound healing. The model comprises a circular explant of axolotl (Ambystoma mexicanum) limb skin with a central circular, full thickness wound. Re-epithelialization of the wound area is rapid (typically <11 h) and is dependent on metalloproteinase activity. The ex vivo wound epithelium is viable, responds to neuronal signals and is able to participate in ectopic blastema formation and limb regeneration. This ex vivo model provides a reproducible and tractable system in which to study the cellular and molecular events that underlie wound healing and regeneration. © 2010 The Authors. Journal compilation © 2010 Japanese Society of Developmental Biologists.
Zielinski, Ingar Marie; Steenbergen, Bert; Baas, C Marjolein; Aarts, Pauline; Jongsma, Marijtje L A
2016-01-11
Unilateral Cerebral Palsy (CP) is a neurodevelopmental disorder that is a very common cause of disability in childhood. It is characterized by unilateral motor impairments that are frequently dominated in the upper limb. In addition to a reduced movement capacity of the affected upper limb, several children with unilateral CP show a reduced awareness of the remaining movement capacity of that limb. This phenomenon of disregarding the preserved capacity of the affected upper limb is regularly referred to as Developmental Disregard (DD). Different theories have been postulated to explain DD, each suggesting slightly different guidelines for therapy. Still, cognitive processes that might additionally contribute to DD in children with unilateral CP have never been directly studied. The current protocol was developed to study cognitive aspects involved in upper limb control in children with unilateral CP with and without DD. This was done by recording event-related potentials (ERPs) extracted from the ongoing EEG during target-response tasks asking for a hand-movement response. ERPs consist of several components, each of them associated with a well-defined cognitive process (e.g., the N1 with early attention processes, the N2 with cognitive control and the P3 with cognitive load and mental effort). Due to its excellent temporal resolution, the ERP technique enables to study several covert cognitive processes preceding overt motor responses and thus allows insight into the cognitive processes that might contribute to the phenomenon of DD. Using this protocol adds a new level of explanation to existing behavioral studies and opens new avenues to the broader implementation of research on cognitive aspects of developmental movement restrictions in children.
Ruff, Christopher B; Burgess, M Loring; Bromage, Timothy G; Mudakikwa, Antoine; McFarlin, Shannon C
2013-12-01
Behavioral studies indicate that adult mountain gorillas (Gorilla beringei) are the most terrestrial of all nonhuman hominoids, but that infant mountain gorillas are much more arboreal. Here we examine ontogenetic changes in diaphyseal strength and length of the femur, tibia, humerus, radius, and ulna in 30 Virunga mountain gorillas, including 18 immature specimens and 12 adults. Comparisons are also made with 14 adult western lowland gorillas (Gorilla gorilla gorilla), which are known to be more arboreal than adult mountain gorillas. Infant mountain gorillas have significantly stronger forelimbs relative to hind limbs than older juveniles and adults, but are nonsignificantly different from western lowland gorilla adults. The change in inter-limb strength proportions is abrupt at about two years of age, corresponding to the documented transition to committed terrestrial quadrupedalism in mountain gorillas. The one exception is the ulna, which shows a gradual increase in strength relative to the radius and other long bones during development, possibly corresponding to the gradual adoption of stereotypical fully pronated knuckle-walking in older juvenile gorillas. Inter-limb bone length proportions show a contrasting developmental pattern, with hind limb/forelimb length declining rapidly from birth to five months of age, and then showing no consistent change through adulthood. The very early change in length proportions, prior to significant independent locomotion, may be related to the need for relatively long forelimbs for climbing in a large-bodied hominoid. Virunga mountain gorilla older juveniles and adults have equal or longer forelimb relative to hind limb bones than western lowland adults. These findings indicate that both ontogenetically and among closely related species of Gorilla, long bone strength proportions better reflect actual locomotor behavior than bone length proportions. Copyright © 2013 Elsevier Ltd. All rights reserved.
The flipflop orphan genes are required for limb bud eversion in the Tribolium embryo.
Thümecke, Susanne; Beermann, Anke; Klingler, Martin; Schröder, Reinhard
2017-01-01
Unlike Drosophila but similar to other arthropod and vertebrate embryos, the flour beetle Tribolium castaneum develops everted limb buds during embryogenesis. However, the molecular processes directing the evagination of epithelia are only poorly understood. Here we show that the newly discovered genes Tc-flipflop1 and Tc-flipflop2 are involved in regulating the directional budding of appendages. RNAi-knockdown of Tc-flipflop results in a variety of phenotypic traits. Most prominently, embryonic limb buds frequently grow inwards rather than out, leading to the development of inverted appendages inside the larval body. Moreover, affected embryos display dorsal closure defects. The Tc-flipflop genes are evolutionarily non-conserved, and their molecular function is not evident. We further found that Tc-RhoGEF2 , a highly-conserved gene known to be involved in actomyosin-dependent cell movement and cell shape changes, shows a Tc-flipflop -like RNAi-phenotype. The similarity of the inverted appendage phenotype in both the flipflop - and the RhoGEF2 RNAi gene knockdown led us to conclude that the Tc-flipflop orphan genes act in a Rho-dependent pathway that is essential for the early morphogenesis of polarised epithelial movements. Our work describes one of the few examples of an orphan gene playing a crucial role in an important developmental process.
EOS Microwave Limb Sounder Observations of the Antarctic Polar Vortex Breakup in 2004
NASA Technical Reports Server (NTRS)
Manney, G. L.; Santee, M. L.; Livesey, N. J.; Froidevaux, L.; Read, W. G.; Pumphrey, H. C.; Waters, J. W.; Pawson, S.
2005-01-01
Observations from the Microwave Limb Sounder (MLS) on NASA's new Aura satellite give an unprecedentedly detailed picture of the spring Antarctic polar vortex breakup throughout the stratosphere. HCl is a particularly valuable tracer in the lower stratosphere after chlorine deactivation. MLS HCl, N2O, H2O broke up in the upper stratosphere by early October, in the midstratosphere by early November, and in the lower stratosphere by late December. The subvortex broke up just a few days later than the lower stratospheric vortex. Vortex remnants persisted in the midstratosphere through December, but only through early January 2005 in the lower stratosphere. MLS N2O observations show diabatic descent continuing throughout November, with evidence of weak ascent after late October in the lower stratospheric vortex core.
Suomi NPP OMPS limb profiler initial sensor performance assessment
NASA Astrophysics Data System (ADS)
Jaross, Glen; Chen, Grace; Kowitt, Mark; Warner, Jeremy; Xu, Philippe; Kelly, Thomas; Linda, Michael; Flittner, David
2012-11-01
Following the successful launch of the Ozone Mapping and Profiler Suite (OMPS) aboard the Suomi National Polar-orbiting Partnership (NPP) spacecraft, the NASA OMPS Limb team began an evaluation of sensor and data product performance in relation to the original goals for this instrument. Does the sensor design work as well as expected, and can limb scatter measurements by NPP OMPS and successor instruments form the basis for accurate long-term monitoring of ozone vertical profiles? While this paper does not address the latter question, the answer to the former is a qualified Yes given this early stage of the mission.
Limb salvage after gas gangrene: a case report and review of the literature.
Aggelidakis, John; Lasithiotakis, Konstantinos; Topalidou, Anastasia; Koutroumpas, John; Kouvidis, Georgios; Katonis, Paulos
2011-08-17
Gas gangrene is a necrotic infection of soft tissue associated with high mortality, often necessitating amputation in order to control the infection. Herein we present a case of gas gangrene of the arm in an intravenous drug user with a history of intramuscular injections with normal saline in the shoulder used to provoke pain for recovery after drug induced coma. The patient was early treated with surgery and antibiotics rendering possible the preservation of the limb and some of its function. Additionally, a review of the literature regarding case reports of limb salvage after gas gangrene is presented.
Noehren, Brian; Andersen, Anders; Hardy, Peter; Johnson, Darren L; Ireland, Mary Lloyd; Thompson, Katherine L; Damon, Bruce
2016-09-21
Individuals who have had an anterior cruciate ligament (ACL) tear and reconstruction continue to experience substantial knee extensor strength loss despite months of physical therapy. Identification of the alterations in muscle morphology and cellular composition are needed to understand potential mechanisms of muscle strength loss, initially as the result of the injury and subsequently from surgery and rehabilitation. We performed diffusion tensor imaging-magnetic resonance imaging and analyzed muscle biopsies from the vastus lateralis of both the affected and unaffected limbs before surgery and again from the reconstructed limb following the completion of rehabilitation. Immunohistochemistry was done to determine fiber type and size, Pax-7-positive (satellite) cells, and extracellular matrix (via wheat germ agglutinin straining). Using the diffusion tensor imaging data, the fiber tract length, pennation angle, and muscle volume were determined, yielding the physiological cross-sectional area (PCSA). Paired t tests were used to compare the effects of the injury between injured and uninjured limbs and the effects of surgery and rehabilitation within the injured limb. We found significant reductions before surgery in type-IIA muscle cross-sectional area (CSA; p = 0.03), extracellular matrix (p < 0.01), satellite cells per fiber (p < 0.01), pennation angle (p = 0.03), muscle volume (p = 0.02), and PCSA (p = 0.03) in the injured limb compared with the uninjured limb. Following surgery, these alterations in the injured limb persisted and the frequency of the IIA fiber type decreased significantly (p < 0.01) and that of the IIA/X hybrid fiber type increased significantly (p < 0.01). Significant and prolonged differences in muscle quality and morphology occurred after ACL injury and persisted despite reconstruction and extensive physical therapy. These results suggest the need to develop more effective early interventions following an ACL tear to prevent deleterious alterations within the quadriceps. Copyright © 2016 by The Journal of Bone and Joint Surgery, Incorporated.
Baker, Paul; Coole, Carol; Drummond, Avril; McDaid, Catriona; Khan, Sayeed; Thomson, Louise; Hewitt, Catherine; McNamara, Iain; McDonald, David; Fitch, Judith; Rangan, Amar
2018-06-28
There are an increasing number of patients of working age undergoing hip and knee replacements. Currently there is variation in the advice and support given about sickness absence, recovery to usual activities and return to work after these procedures. Earlier, sustainable, return to work improves the health of patients and benefits their employers and society. An intervention that encourages and supports early recovery to usual activities, including work, has the potential to reduce the health and socioeconomic burden of hip and knee replacements. A two-phase research programme delivered over 27 months will be used to develop and subsequently test the feasibility of an occupational advice intervention to facilitate return to work and usual activities in patients undergoing lower limb arthroplasty. The 2 phases will incorporate a six-stage intervention mapping process: Phase 1: Intervention mapping stages 1-3: 1 Needs assessment (including rapid evidence synthesis, prospective cohort analysis and structured stakeholder interviews) 2 Identification of intended outcomes and performance objectives 3 Selection of theory-based methods and practical strategies Phase 2: Intervention mapping stages 4-6: 4 Development of components and materials for the occupational advice intervention using a modified Delphi process 5 Adoption and implementation of the intervention 6 Evaluation and feasibility testing The study will be undertaken in four National Health Service (NHS) hospitals in the United Kingdom and two Higher Education Institutions. OPAL (Occupational advice for Patients undergoing Arthroplasty of the Lower limb) aims to develop an occupational advice intervention to support early recovery to usual activities including work, which is tailored to the requirements of patients undergoing hip and knee replacements. The developed intervention will then be assessed with a specific focus on evaluating its feasibility as a potential trial intervention to improve speed of recovery to usual activities including work. The study was registered retrospectively with the International Standard Randomised Controlled Trials Number (ISRCTN): 27426982 (Date 20/12/2016) and the International prospective register of systematic reviews (PROSPERO): CRD42016045235 (Date 04/08/2016).
Suppression of morphogenesis in embryonic mouse limbs exposed in vitro to excess gravity
NASA Technical Reports Server (NTRS)
Duke, Jackie C.
1983-01-01
The effect of excess gravity on in vitro mammalian limb chondrogenesis is studied. Limb buds from mice of various gestational stages were exposed to excess gravity (2.6G) using a culture centrifuge. Both forelimbs and hind limbs were cultured, and the development of various limb elements was scored after four to six days. The 2.6G force significantly depressed the development of limb elements when applied during the teratogen-sensitive period of chondrogenesis.
Mendez-Gallardo, Valerie; Roberto, Megan E.; Kauer, Sierra D.; Brumley, Michele R.
2015-01-01
The development of postural control is considered an important factor for the expression of coordinated behavior such as locomotion. In the natural setting of the nest, newborn rat pups adapt their posture to perform behaviors of ecological relevance such as those related to suckling. The current study explores the role of posture in the expression of three behaviors in the newborn rat: spontaneous limb activity, locomotor-like stepping behavior, and the leg extension response (LER). One-day-old rat pups were tested in one of two postures – prone or supine – on each of these behavioral measures. Results showed that pups expressed more spontaneous activity while supine, more stepping while prone, and no differences in LER expression between the two postures. Together these findings show that posture affects the expression of newborn behavior patterns in different ways, and suggest that posture may act as a facilitator or a limiting factor in the expression of different behaviors during early development. PMID:26655784
Expression of Wise in chick embryos.
Shigetani, Y; Itasaki, N
2007-08-01
We have performed in situ hybridization to study the expression of Wise in early chick embryos. Wise expression is first detectable in the ectoderm at posterior levels of late neurula. As development proceeds, Wise expression is seen in specific patterns in the ectoderm of the trunk region, pharyngeal arches, limb buds, and feather buds. In addition to these areas, particular cartilages such as the ones in the maxillary process and limbs start to express Wise at the late pharyngula stage, and the expression in these cartilages becomes stronger than that in epidermal components at later stages. Importantly, Wise is expressed in regions where other signaling molecules such as Wnt, Bmp, and Shh are known to function in morphogenesis and differentiation. Direct comparisons of the expression of Wise and these genes are also demonstrated. (c) 2007 Wiley-Liss, Inc.
Bang, Dae-Hyouk; Shin, Won-Seob; Choi, Ho-Suk
2018-01-01
Reducing compensatory strategies during repetitive upper-limb training may be helpful in relearning motor skills. To explore the effects of modified constraint-induced movement therapy (mCIMT), additionally modified by adding trunk restraint (TR), on upper-limb function and activities of daily living (ADLs) in early post-stroke patients. Twenty-four participants with early stroke were randomly assigned to mCIMT combined with TR (mCIMT + TR) or mCIMT alone. Each group underwent twenty sessions (1 h/d, 5 d/wk for 4 weeks). Patients were assessed with the action research arm test (ARAT), the Fugl-Meyer Assessment-Upper extremity (FMA-UE), the Modified Barthel index (MBI), the Maximal elbow extension angle during reaching (MEEAR), and Motor Activity Logs (MAL-AOU and MAL-QOM). The mCIMT + TR group exhibited greater improvement in the ARAT, FMA-UE, MBI, MEEAR, and MAL-AOU, and MAL-QOM than the mCIMT group. Statistical analyses showed significant differences in ARAT (P = 0.003), FMA-UE (P = 0.042), MBI (P = 0.001), MEEAR (P = 0.002), and MAL-AOU (P = 0.005) between the groups. Modified CIMT combined with TR may be more effective than mCIMT alone in improving upper-limb function and ADLs in patients with early stroke.
Major lower extremity lawn mower injuries in children.
Dormans, J P; Azzoni, M; Davidson, R S; Drummond, D S
1995-01-01
Between 1983 and 1993, 16 children with 18 lower extremity power lawn mower-related injuries were treated at Children's Hospital of Philadelphia. Eleven of 16 patients (69%) were bystanders or nonoperators. The average age at injury was 4 years 9 months. Length of follow-up averaged 3 years 10 months. There was an average of 4.9 procedures per patient. Fourteen of the 18 limbs injured required eventual amputation (78%). We propose a new classification of lawn mower injuries in children. The most common injury (16 of 18 limbs) was a shredding type injury and was either intercalary or distal. The second was a paucilaceration type (two of 18 limbs). Of the four salvaged limbs, there were two shredding type injuries, and on most recent follow-up are considered to have poor results. The two patients with the paucilaceration type injuries and limb salvage are considered to have excellent results. All patients with a shredding type injury ultimately required amputation or had poor results with the salvaged limb. Limb salvage surgery was associated with prolonged hospitalizations, a higher incidence of surgical problems, a longer treatment course, and more complications than early ablative procedures.
Virtual reality imaging techniques in the study of embryonic and early placental health.
Rousian, Melek; Koster, Maria P H; Mulders, Annemarie G M G J; Koning, Anton H J; Steegers-Theunissen, Régine P M; Steegers, Eric A P
2018-04-01
Embryonic and placental growth and development in the first trimester of pregnancy have impact on the health of the fetus, newborn, child and even the adult. This emphasizes the importance of this often neglected period in life. The development of three-dimensional transvaginal ultrasonography in combination with virtual reality (VR) opens the possibility of accurate and reliable visualization of embryonic and placental structures with real depth perception. These techniques enable new biometry and volumetry measurements that contribute to the knowledge of the (patho)physiology of embryonic and early placental health. Examples of such measurements are the length of complex structures like the umbilical cord, vitelline duct, limbs and cerebellum or the volume of the whole embryo and brain cavities. Moreover, for the first time, embryos can now be staged in vivo (Carnegie stages) and vasculature volumes of both the embryo and the early placenta can be measured when VR is combined with power Doppler signals. These innovative developments have already been used to study associations between periconceptional maternal factors, such as age, smoking, alcohol use, diet and vitamin status, and embryonic and early placental growth and development. Future studies will also focus on the identification of abnormal embryonic and early placental development already in the earliest weeks of pregnancy, which provides opportunities for early prevention of pregnancy complications. Copyright © 2018 IFPA, Elsevier Ltd. Published by Elsevier Ltd.. All rights reserved.
Comparison of transtibial amputee and non-amputee biomechanics during a common turning task.
Segal, Ava D; Orendurff, Michael S; Czerniecki, Joseph M; Schoen, Jason; Klute, Glenn K
2011-01-01
The biomechanics of amputee turning gait has been minimally studied, in spite of its integral relationship with the more complex gait required for household or community ambulation. This study compares the biomechanics of unilateral transtibial amputees and non-amputees completing a common turning task. Full body gait analysis was completed for subjects walking at comparable self-selected speeds around a 1m radius circular path. Peak internal and external rotation moments of the hip, knee and ankle, mediolateral ground reaction impulse (ML GRI), peak effective limb length, and stride length were compared across conditions (non-amputee, amputee prosthetic limb, amputee sound limb). Amputees showed decreased internal rotation moments at the prosthetic limb hip and knee compared to non-amputees, perhaps as a protective mechanism to minimize stress on the residual limb. There was also an increase in amputee sound limb hip external rotation moment in early stance compared to non-amputees, which may be a compensation for the decrease in prosthetic limb internal rotation moment during late stance of the prior step. ML GRI was decreased for the amputee inside limb compared to non-amputee, possibly to minimize the body's acceleration in the direction of the turn. Amputees also exhibited a shorter inside limb stride length compared to non-amputees. Both decreased ML GRI and stride length indicate a COM that is more centered over the base of support, which may minimize the risk of falling. Finally, a longer effective limb length was found for the amputee inside limb turning, possibly due to excessive trunk shift. Published by Elsevier B.V.
Detection of genes regulated by Lmx1b during limb dorsalization.
Feenstra, Jennifer M; Kanaya, Kohei; Pira, Charmaine U; Hoffman, Sarah E; Eppey, Richard J; Oberg, Kerby C
2012-05-01
Lmx1b is a homeodomain transcription factor that regulates dorsal identity during limb development. Lmx1b knockout (KO) mice develop distal ventral-ventral limbs. Although induction of Lmx1b is linked to Wnt7a expression in the dorsal limb ectoderm, the downstream targets of Lmx1b that accomplish limb dorsalization are unknown. To identify genes targeted by Lmx1b, we compared gene arrays from Lmx1b KO and wild type mouse limbs during limb dorsalization, i.e., 11.5, 12.5, and 13.5 days post coitum. We identified 54 target genes that were differentially expressed in all three stages. Several skeletal targets, including Emx2, Matrilin1 and Matrilin4, demonstrated a loss of scapular expression in the Lmx1b KO mice, supporting a role for Lmx1b in scapula development. Furthermore, the relative abundance of extracellular matrix-related soft tissue targets regulated by Lmx1b, such as collagens and proteoglycans, suggests a mechanism that includes changes in the extracellular matrix composition to accomplish limb dorsalization. Our study provides the most comprehensive characterization of genes regulated by Lmx1b during limb development to-date and provides targets for further investigation. © 2012 The Authors. Development, Growth & Differentiation © 2012 Japanese Society of Developmental Biologists.
Birth month associations with height, head circumference, and limb lengths among Peruvian children.
Pomeroy, Emma; Wells, Jonathan C K; Stanojevic, Sanja; Miranda, J Jaime; Cole, Tim J; Stock, Jay T
2014-05-01
Associations between season of birth and body size, morbidity, and mortality have been widely documented, but it is unclear whether different parts of the body are differentially sensitive, and if such effects persist through childhood. This may be relevant to understanding the relationship between early life environment and body size and proportions. We investigated associations between birth month and anthropometry among rural highland (n = 162) and urban lowland (n = 184) Peruvian children aged 6 months to 8 years. Stature; head-trunk height; total limb, ulna, tibia, hand, and foot lengths; head circumference; and limb measurements relative to head-trunk height were converted to internal age-sex-specific z scores. Lowland and highland datasets were then analyzed separately for birth month trends using cosinor analysis, as urban conditions likely provide a more consistent environment compared with anticipated seasonal variation in the rural highlands. Among highland children birth month associations were significant most strongly for tibia length, followed by total lower limb length and stature, with a peak among November births. Results were not significant for other measurements or among lowland children. The results suggest a prenatal or early postnatal environmental effect on growth that is more marked in limb lengths than trunk length or head size, and persists across the age range studied. We suggest that the results may reflect seasonal variation in maternal nutrition in the rural highlands, but other hypotheses such as variation in maternal vitamin D levels cannot be excluded. Copyright © 2014 Wiley Periodicals, Inc.
Fossil evidence for the origin of aquatic locomotion in archaeocete whales.
Thewissen, J G; Hussain, S T; Arif, M
1994-01-14
Recent members of the order Cetacea (whales, dolphins, and porpoises) move in the water by vertical tail beats and cannot locomote on land. Their hindlimbs are not visible externally and the bones are reduced to one or a few splints that commonly lack joints. However, cetaceans originated from four-legged land mammals that used their limbs for locomotion and were probably apt runners. Because there are no relatively complete limbs for archaic archaeocete cetaceans, it is not known how the transition in locomotory organs from land to water occurred. Recovery of a skeleton of an early fossil cetacean from the Kuldana Formation, Pakistan, documents transitional modes of locomotion, and allows hypotheses concerning swimming in early cetaceans to be tested. The fossil indicates that archaic whales swam by undulating their vertebral column, thus forcing their feet up and down in a way similar to modern otters. Their movements on land probably resembled those of sea lions to some degree, and involved protraction and retraction of the abducted limbs.
Pal, A; Rhoads, D B; Tavakkoli, A
2018-02-01
Although Roux-en-Y Gastric Bypass (RYGB) remains the most effective treatment for obesity and type 2 diabetes (T2D), many patients fail to achieve remission, or relapse. Increasing intestinal limb lengths of RYGB may improve outcomes, but the mechanistic basis for this remains unclear. We hypothesize biliopancreatic (BP) limb length modulates the antidiabetic effect of RYGB. Rats underwent RYGB with a 20-cm (RYGB-20cm) or 40-cm (RYGB-40cm) BP limb and were compared with control animals. After 2 and 4 wk, portal and systemic blood was sampled during intestinal glucose infusion. Portosystemic gradient was used to calculate intestinal glucose utilization (G util ), absorption (G absorp ), and hormone secretion. Intestinal morphology and gene expression were assessed. At 2 wk, G absorp progressively decreased with increasing BP limb length; this pattern persisted at 4 wk. G util increased ≈70% in both RYGB-20cm and -40cm groups at 2 wk. At 4 wk, G util progressively increased with limb length. Furthermore, Roux limb weight, and expression of hexokinase and preproglucagon, exhibited a similar progressive increase. At 4 wk, glucagon-like peptide-1 and -2 levels were higher after RYGB-40cm, with associated increased secretion. We conclude that BP limb length modulates multiple antidiabetic mechanisms, analogous to the dose-response relationship of a drug. Early postoperatively, a longer BP limb reduces G absorp . Later, G util , Roux limb hypertrophy, hormone secretion, and hormone levels are increased with longer BP limb. Sustained high incretin levels may prevent weight regain and T2D relapse. These data provide the basis for customizing BP limb length according to patient characteristics and desired metabolic effect. NEW & NOTEWORTHY Biliopancreatic limb length in gastric bypass modulates multiple antidiabetic mechanisms, analogous to the dose-response relationship of a drug. With a longer biliopancreatic limb, Roux limb hypertrophy, increased glucose utilization, reduced glucose absorption, and sustained high incretin levels may prevent weight regain and diabetes relapse.
Impact of revascularization and factors associated with limb salvage in patients with diabetic foot.
Hinojosa, Carlos A; Boyer-Duck, Estefanía; Anaya-Ayala, Javier E; Núñez-Salgado, Ana E; Laparra-Escareno, Hugo; Lizola, René
2018-01-01
Diabetic foot is a common cause of hospitalization. To examine the impact of revascularization on lower limb salvage. Retrospective study of diabetic patients with foot ulcers. The extent of tissue loss was assessed according to the PEDIS and Wagner classifications, and revascularization indications and techniques were evaluated. Factors involved with major amputation and limb salvage were assessed with Fisher's and chi-square tests. A total of 307 patients with a mean age of 61 years were included in the study; 198 (64%) were males; 53 (17%) underwent limb revascularization, 26 (8%) with endovascular techniques and 27 (9%) with open surgery; 27 belonged to PEDIS grade 3 (51%) and 21 (41%) to Wagner's classification grade 4; 52% of revascularized patients required major amputation versus 25% of those without revascularization. Comorbidities, demographic variables, complications and mortality showed no differences when patients who required major amputation were compared with those who didn't. Despite revascularization, the limb was preserved in less than 50% of patients. Early referral to vascular surgery and appropriate patient-selection criteria might increase limb salvage. Copyright: © 2018 SecretarÍa de Salud.
Abuqarn, Mehtap; Allmeling, Christina; Amshoff, Inga; Menger, Bjoern; Nasser, Inas; Vogt, Peter M; Reimers, Kerstin
2011-07-01
Urodele amphibians are exceptional in their ability to regenerate complex body structures such as limbs. Limb regeneration depends on a process called dedifferentiation. Under an inductive wound epidermis terminally differentiated cells transform to pluripotent progenitor cells that coordinately proliferate and eventually redifferentiate to form the new appendage. Recent studies have developed molecular models integrating a set of genes that might have important functions in the control of regenerative cellular plasticity. Among them is Msx1, which induced dedifferentiation in mammalian myotubes in vitro. Herein, we screened for interaction partners of axolotl Msx1 using a yeast two hybrid system. A two hybrid cDNA library of 5-day-old wound epidermis and underlying tissue containing more than 2×10⁶ cDNAs was constructed and used in the screen. 34 resulting cDNA clones were isolated and sequenced. We then compared sequences of the isolated clones to annotated EST contigs of the Salamander EST database (BLASTn) to identify presumptive orthologs. We subsequently searched all no-hit clone sequences against non redundant NCBI sequence databases using BLASTx. It is the first time, that the yeast two hybrid system was adapted to the axolotl animal model and successfully used in a screen for proteins interacting with Msx1 in the context of amphibian limb regeneration. 2011 Elsevier B.V. All rights reserved.
Rodríguez-Carballo, Eddie; Lopez-Delisle, Lucille; Zhan, Ye; Fabre, Pierre J; Beccari, Leonardo; El-Idrissi, Imane; Huynh, Thi Hanh Nguyen; Ozadam, Hakan; Dekker, Job; Duboule, Denis
2017-11-15
The mammalian HoxD cluster lies between two topologically associating domains (TADs) matching distinct enhancer-rich regulatory landscapes. During limb development, the telomeric TAD controls the early transcription of Hoxd genes in forearm cells, whereas the centromeric TAD subsequently regulates more posterior Hoxd genes in digit cells. Therefore, the TAD boundary prevents the terminal Hoxd13 gene from responding to forearm enhancers, thereby allowing proper limb patterning. To assess the nature and function of this CTCF-rich DNA region in embryos , we compared chromatin interaction profiles between proximal and distal limb bud cells isolated from mutant stocks where various parts of this boundary region were removed. The resulting progressive release in boundary effect triggered inter-TAD contacts, favored by the activity of the newly accessed enhancers. However, the boundary was highly resilient, and only a 400-kb deletion, including the whole-gene cluster, was eventually able to merge the neighboring TADs into a single structure. In this unified TAD, both proximal and distal limb enhancers nevertheless continued to work independently over a targeted transgenic reporter construct. We propose that the whole HoxD cluster is a dynamic TAD border and that the exact boundary position varies depending on both the transcriptional status and the developmental context. © 2017 Rodríguez-Carballo et al.; Published by Cold Spring Harbor Laboratory Press.
Lumsangkul, Chompunut; Fan, Yang-Kwang; Chang, Shen-Chang; Ju, Jyh-Cherng
2018-01-01
Avian embryos are among the most convenient and the primary representatives for the study of classical embryology. It is well-known that the hatching time of duck embryos is approximately one week longer than that of chicken embryos. However, the key features associated with the slower embryonic development in ducks have not been adequately described. This study aimed to characterize the pattern and the speed of early embryogenesis in Brown Tsaiya Ducks (BTD) compared with those in Taiwan Country Chicken (TCC) by using growth parameters including embryonic crown-tail length (ECTL), primitive streak formation, somitogenesis, and other development-related parameters, during the first 72 h of incubation. Three hundred and sixty eggs from BTD and TCC, respectively, were incubated at 37.2°C, and were then dissected hourly to evaluate their developmental stages. We found that morphological changes of TCC embryos shared a major similarity with that of the Hamburger and Hamilton staging system during early chick embryogenesis. The initial primitive streak in TCC emerged between 6 and 7 h post-incubation, but its emergence was delayed until 10 to 13 h post-incubation in BTD. Similarly, the limb primordia (wing and limb buds) were observed at 51 h post-incubation in TCC embryos compared to 64 h post-incubation in BTD embryos. The allantois first appeared around 65 to 68 h in TCC embryos, but it was not observed in BTD embryos. At the 72 h post-incubation, 40 somites were clearly formed in TCC embryos while only 32 somites in BTD embryos. Overall, the BTD embryos developed approximately 16 h slower than the chicken embryo during the first 72 h of development. To our best knowledge, this is the first study to describe two distinct developmental time courses between TCC and BTD, which would facilitate future embryogenesis-related studies of the two important avian species in Taiwan. PMID:29742160
Detection of Genes Regulated by Lmx1b During Limb Dorsalization
Feenstra, Jennifer M.; Kanaya, Kohei; Pira, Charmaine U; Hoffman, Sarah E.; Eppey, Richard J.; Oberg, Kerby C.
2012-01-01
Lmx1b is a homeodomain transcription factor that regulates dorsal identity during limb development. Lmx1b knockout (KO) mice develop distal ventral-ventral limbs. Although induction of Lmx1b is linked to Wnt7a expression in the dorsal limb ectoderm, the downstream targets of Lmx1b that accomplish limb dorsalization are unknown. To identify genes targeted by Lmx1b, we compared gene arrays from Lmx1b KO and wildtype mouse limbs during limb dorsalization, i.e., 11.5, 12.5, and 13.5 days post coitum. We identified 54 target genes differentially expressed in all three stages. Several skeletal targets, including Emx2, Matrilin1 and Matrilin4, demonstrated a loss of scapular expression in the Lmx1b KO mice, supporting a role for Lmx1b in scapula development. Furthermore, the relative abundance of extracellular matrix-related soft tissue targets regulated by Lmx1b, such as collagens and proteoglycans, suggests a mechanism which includes changes in the extracellular matrix composition to accomplish limb dorsalization. Our study provides the most comprehensive characterization of genes regulated by Lmx1b during limb development to-date and provides targets for further investigation. PMID:22417325
Kesavan, Kalpashri; Frank, Paul; Cordero, Daniella M.; Benharash, Peyman; Harper, Ronald M.
2016-01-01
Background Apnea of Prematurity (AOP) is common, affecting the majority of infants born at <34 weeks gestational age. Apnea and periodic breathing are accompanied by intermittent hypoxia (IH). Animal and human studies demonstrate that IH exposure contributes to multiple pathologies, including retinopathy of prematurity (ROP), injury to sympathetic ganglia regulating cardiovascular action, impaired pancreatic islet cell and bone development, cerebellar injury, and neurodevelopmental disabilities. Current standard of care for AOP/IH includes prone positioning, positive pressure ventilation, and methylxanthine therapy; these interventions are inadequate, and not optimal for early development. Objective The objective is to support breathing in premature infants by using a simple, non-invasive vibratory device placed over limb proprioceptor fibers, an intervention using the principle that limb movements trigger reflexive facilitation of breathing. Methods Premature infants (23–34 wks gestational age), with clinical evidence of AOP/IH episodes were enrolled 1 week after birth. Caffeine treatment was not a reason for exclusion. Small vibration devices were placed on one hand and one foot and activated in 6 hour ON/OFF sequences for a total of 24 hours. Heart rate, respiratory rate, oxygen saturation (SpO2), and breathing pauses were continuously collected. Results Fewer respiratory pauses occurred during vibration periods, relative to baseline (p<0.005). Significantly fewer SpO2 declines occurred with vibration (p<0.05), relative to control periods. Significantly fewer bradycardic events occurred during vibration periods, relative to no vibration periods (p<0.05). Conclusions In premature neonates, limb proprioceptive stimulation, simulating limb movement, reduces breathing pauses and IH episodes, and lowers the number of bradycardic events that accompany aberrant breathing episodes. This low-cost neuromodulatory procedure has the potential to provide a non-invasive intervention to reduce apnea, bradycardia and intermittent hypoxia in premature neonates. Trial Registration ClinicalTrials.gov NCT02641249 PMID:27304988
Deniz Can, Dilara; Richards, Todd; Kuhl, Patricia K
2013-01-01
Magnetic resonance imaging (MRI) brain scans were obtained from 19 infants at 7 months. Expressive and receptive language performance was assessed at 12 months. Voxel-based morphometry (VBM) identified brain regions where gray-matter and white-matter concentrations at 7 months correlated significantly with children's language scores at 12 months. Early gray-matter concentration in the right cerebellum, early white-matter concentration in the right cerebellum, and early white-matter concentration in the left posterior limb of the internal capsule (PLIC)/cerebral peduncle were positively and strongly associated with infants' receptive language ability at 12 months. Early gray-matter concentration in the right hippocampus was positively and strongly correlated with infants' expressive language ability at 12 months. Our results suggest that the cerebellum, PLIC/cerebral peduncle, and the hippocampus may be associated with early language development. Potential links between these structural predictors and infants' linguistic functions are discussed. Copyright © 2012 Elsevier Inc. All rights reserved.
The differential diagnosis of the short-limbed dwarfs presenting at birth.
Mukherji, R N; Moss, P D
1977-04-01
Attention is drawn to the fact that in a number of types of short-limbed dwarfism a precise diagnosis can be made in the neonatal period. Examples are given and the prognostic and genetic implications are discussed. It is important to be able to advise parents of the likely outlook for the infant and of the genetic implication. Early diagnosis is therefore not merely an academic exercise.
Limb salvage after gas gangrene: a case report and review of the literature
2011-01-01
Gas gangrene is a necrotic infection of soft tissue associated with high mortality, often necessitating amputation in order to control the infection. Herein we present a case of gas gangrene of the arm in an intravenous drug user with a history of intramuscular injections with normal saline in the shoulder used to provoke pain for recovery after drug induced coma. The patient was early treated with surgery and antibiotics rendering possible the preservation of the limb and some of its function. Additionally, a review of the literature regarding case reports of limb salvage after gas gangrene is presented. PMID:21846405
Philpot, J; Muntoni, F; Skellett, S; Dubowitz, V
1995-01-01
We report a 14-month-old girl with a symmetrical paralysis from birth, limited to the upper limbs and resembling a severe, complete bilateral brachial plexus palsy. The presence of dimples over the wrists, shoulders and scapulae and abnormal palmar dermatoglyphics suggested an early prenatal onset. Previous reports and the course of the disease in our case suggest this sporadic condition is not progressive. Although no definitive causative factor has been identified in previously reported cases, the affection in our case is possibly related to Debendox (Bendectin) and nitrofurantoin taken in early pregnancy for nausea and renal tract infection, respectively.
[Early diagnosis and treatment of compartment syndrome caused by landslides:a report of 20 cases].
Xie, Hong-Bo; Peng, Zi-Lai; Liu, Xu-Bang; Chen, Lian
2012-01-01
To summarize early diagnosis and treatment methods of 20 patients with compartment syndrome caused by landslides during coal mine accidents in order to improve the level of diagnosis and treatment of compartment syndrome and reduce disability. From September 2006 to April 2010,20 patients with compartment syndrome were treated with the methods of early decompression, systemic support. All the patients were male with an average age of 42 years (ranged, 23 to 54). All the patients with high tension limb swelling, pain, referred pain passive positive; 5 extremities feeling diminish or disappear and the distal blood vessel beat were normal or weakened or disappeared; myoglobinuria, hyperkalemia, serum urea nitrogen and creatinine increased in 5 cases and oliguria in occurred 1 case. The function of affected limbs was observed according to disability ratings. Three cases complicated with infection of affected limb and 6 cases occurred with renal function insufficiency. Total recovery was in 16 cases, basically recovery in 3, amputation in 1 case. All patients were followed up for 6-15 months with an average of 12 months. The ability to work according to national standard identification--Employee work-related injuries and occupational disability rating classification (GB/T16180-2006) to assess, grade 5 was in 1 case, grade 8 in 2 cases, grade 10 in 1 case, no grade in 16 cases. Arteriopalmus of dorsalis pedis weaken and vanished can not be regard as an evidence in early diagnosis of compartment syndrome. Early diagnosis and decompression, systemic support and treatment is the key in reducing disability.
Loeffler, I K; Stocum, D L; Fallon, J F; Meteyer, C U
2001-10-15
Recent progress in the investigation of limb malformations in free-living frogs has underlined the wide range in the types of limb malformations and the apparent spatiotemporal clustering of their occurrence. Here, we review the current understanding of normal and abnormal vertebrate limb development and regeneration and discuss some of the molecular events that may bring about limb malformation. Consideration of the differences between limb development and regeneration in amphibians has led us to the hypothesis that some of the observed limb malformations come about through misdirected regeneration. We report the results of a pilot study that supports this hypothesis. In this study, the distal aspect of the right hindlimb buds of X. laevis tadpoles was amputated at the pre-foot paddle stage. The tadpoles were raised in water from a pond in Minnesota at which 7% of surveyed newly metamorphosed feral frogs had malformations. Six percent (6 of 100) of the right limbs of the tadpoles raised in pond water developed abnormally. One truncated right limb was the only malformation in the control group, which was raised in dechlorinated municipal water. All unamputated limbs developed normally in both groups. Three major factors under consideration for effecting the limb malformations are discussed. These factors include environmental chemicals (primarily agrichemicals), encysted larvae (metacercariae) of trematode parasites, and increased levels of ultraviolet light. Emphasis is placed on the necessary intersection of environmental stressors and developmental events to bring about the specific malformations that are observed in free-living frog populations.
Loeffler, I.K.; Stocum, D.L.; Fallon, J.F.; Meteyer, C.U.
2001-01-01
Recent progress in the investigation of limb malformations in free-living frogs has underlined the wide range in the types of limb malformations and the apparent spatiotemporal clustering of their occurrence. Here, we review the current understanding of normal and abnormal vertebrate limb development and regeneration and discuss some of the molecular events that may bring about limb malformation. Consideration of the differences between limb development and regeneration in amphibians has led us to the hypothesis that some of the observed limb malformations come about through misdirected regeneration. We report the results of a pilot study that supports this hypothesis. In this study, the distal aspect of the right hindlimb buds of X. laevis tadpoles was amputated at the pre-foot paddle stage. The tadpoles were raised in water from a pond in Minnesota at which 7% of surveyed newly metamorphosed feral frogs had malformations. Six percent (6 of 100) of the right limbs of the tadpoles raised in pond water developed abnormally. One truncated right limb was the only malformation in the control group, which was raised in dechlorinated municipal water. All unamputated limbs developed normally in both groups. Three major factors under consideration for effecting the limb malformations are discussed. These factors include environmental chemicals (primarily agrichemicals), encysted larvae (metacercariae) of trematode parasites, and increased levels of ultraviolet light. Emphasis is placed on the necessary intersection of environmental stressors and developmental events to bring about the specific malformations that are observed in free-living frog populations.
Hall, Judith G; Flora, Christina; Scott, Charles I; Pauli, Richard M; Tanaka, Kimi I
2004-09-15
A description of the clinical features of Majewski osteodysplastic primordial dwarfism type II (MOPD II) is presented based on 58 affected individuals (27 from the literature and 31 previously unreported cases). The remarkable features of MOPD II are: severe intrauterine growth retardation (IUGR), severe postnatal growth retardation; relatively proportionate head size at birth which progresses to true and disproportionate microcephaly; progressive disproportion of the short stature secondary to shortening of the distal and middle segments of the limbs; a progressive bony dysplasia with metaphyseal changes in the limbs; epiphyseal delay; progressive loose-jointedness with occasional dislocation or subluxation of the knees, radial heads, and hips; unusual facial features including a prominent nose, eyes which appear prominent in infancy and early childhood, ears which are proportionate, mildly dysplastic and usually missing the lobule; a high squeaky voice; abnormally, small, and often dysplastic or missing dentition; a pleasant, outgoing, sociable personality; and autosomal recessive inheritance. Far-sightedness, scoliosis, unusual pigmentation, and truncal obesity often develop with time. Some individuals seem to have increased susceptibility to infections. A number of affected individuals have developed dilation of the CNS arteries variously described as aneurysms and Moya Moya disease. These vascular changes can be life threatening, even in early years because of rupture, CNS hemorrhage, and strokes. There is variability between affected individuals even within the same family. Copyright 2004 Wiley-Liss, Inc.
Two human homeobox genes, c1 and c8: structure analysis and expression in embryonic development.
Simeone, A; Mavilio, F; Acampora, D; Giampaolo, A; Faiella, A; Zappavigna, V; D'Esposito, M; Pannese, M; Russo, G; Boncinelli, E
1987-07-01
Two human cDNA clones (HHO.c1.95 and HHO.c8.5111) containing a homeobox region have been characterized, and the respective genomic regions have been partially analyzed. Expression of the corresponding genes, termed c1 and c8, was evaluated in different organs and body parts during human embryonic/fetal development. HHO.c1.95 apparently encodes a 217-amino acid protein containing a class I homeodomain that shares 60 out of 61 amino acid residues with the Antennapedia homeodomain of Drosophila melanogaster. HHO.c8.5111 encodes a 153-amino acid protein containing a homeodomain identical to that of the frog AC1 gene. Clones HHO.c1 and HHO.c8 detect by blot-hydridization one and two specific polyadenylylated transcripts, respectively. These are differentially expressed in spinal cord, backbone rudiments, limb buds (or limbs), heart, and skin of human embryos and early fetuses in the 5- to 9-week postfertilization period, thus suggesting that the c1 and c8 genes play a key role in a variety of developmental processes. Together, the results of the embryonic/fetal expression of c1 and c8 and those of two previously analyzed genes (c10 and c13) indicate a coherent pattern of expression of these genes in early human ontogeny.
Mechanisms of urodele limb regeneration
2017-01-01
Abstract This review explores the historical and current state of our knowledge about urodele limb regeneration. Topics discussed are (1) blastema formation by the proteolytic histolysis of limb tissues to release resident stem cells and mononucleate cells that undergo dedifferentiation, cell cycle entry and accumulation under the apical epidermal cap. (2) The origin, phenotypic memory, and positional memory of blastema cells. (3) The role played by macrophages in the early events of regeneration. (4) The role of neural and AEC factors and interaction between blastema cells in mitosis and distalization. (5) Models of pattern formation based on the results of axial reversal experiments, experiments on the regeneration of half and double half limbs, and experiments using retinoic acid to alter positional identity of blastema cells. (6) Possible mechanisms of distalization during normal and intercalary regeneration. (7) Is pattern formation is a self‐organizing property of the blastema or dictated by chemical signals from adjacent tissues? (8) What is the future for regenerating a human limb? PMID:29299322
In situ saphenous vein bypass for limb salvage.
Sarcina, A; Carlesi, R; Bellosta, R; Agrifoglio, G
1993-02-01
A total of 130 infrapopliteal in situ saphenous vein bypasses were performed in 128 patients between January 1980 and June 1991. The indication for surgery was critical ischaemia with impending limb loss in 121 patients; seven suffered from severe claudication. The distal anastomosis was to the popliteal artery below the knee in 60 cases (46.2%) and in 70 (53.8%) to the tibioperoneal arteries. The results, in terms of secondary patency and limb salvage rates, of the first 68 procedures (1980-1985) and subsequent 62 (1986-June 1991) were compared. In the first period, a secondary patency rate of 42.6% and a limb salvage rate of 67.0% were obtained, compared with 71.3 and 80.8% respectively in the second. These differences are significant for patency (P < 0.005) and limb salvage (P < 0.01). These results show that the in situ technique can give acceptable results but a learning period with a high percentage of early failures is to be expected.
Wells, Kirsty L.; Gaete, Marcia; Matalova, Eva; Deutsch, Danny; Rice, David; Tucker, Abigail S.
2013-01-01
Summary Salivary glands provide an excellent model for the study of epithelial–mesenchymal interactions. We have looked at the interactions involved in the early initiation and development of murine salivary glands using classic recombination experiments and knockout mice. We show that salivary gland epithelium, at thickening and initial bud stages, is able to direct salivary gland development in non-gland pharyngeal arch mesenchyme at early stages. The early salivary gland epithelium is therefore able to induce gland development in non-gland tissue. This ability later shifts to the mesenchyme, with non-gland epithelium, such as from the limb bud, able to form a branching gland when combined with pseudoglandular stage gland mesenchyme. This shift appears to involve Fgf signalling, with signals from the epithelium inducing Fgf10 in the mesenchyme. Fgf10 then signals back to the epithelium to direct gland down-growth and bud development. These experiments highlight the importance of epithelial–mesenchymal signalling in gland initiation, controlling where, when and how many salivary glands form. PMID:24167707
Cohen, Stephen M.; Jürgens, Gerd
1989-01-01
Limb development in the Drosophila embryo requires a pattern-forming system to organize positional information along the proximal–distal axis of the limb. This system must function in the context of the well characterized anterior–posterior and dorsal–ventral pattern-forming systems that are required to organize the body plan of the embryo. By genetic criteria the Distal-less gene appears to play a central role in limb development. Lack-of-function Distal-less mutations cause the deletion of a specific subset of embryonic peripheral sense organs that represent the evolutionary remnants of larval limbs. Distal-less activity is also required in the imaginal discs for the development of adult limbs. This requirement is cell autonomous and region specific within the developing limb primordium. Production of genetically mosaic imaginal discs, in which clones of cells lack Distal-less activity, indicates the existence of an organized proximal–distal positional information in very young imaginal disc primordia. We suggest that this graded positional information may depend on the activity of the Distal-less gene. Images PMID:16453891
A New Animal Model for Developing a Somatosensory Neural Interface for Prosthetic Limbs
2008-02-12
interface for neuroprosthetic limbs . PI: Douglas J. Weber, Ph.D. University of Pittsburgh 1 10/15/2007 Scientific progress and accomplishments. We...information to the brain. A new animal model for developing a somatosensory neural interface for neuroprosthetic limbs . PI: Douglas J. Weber, Ph.D...A new animal model for developing a somatosensory neural interface for neuroprosthetic limbs . PI: Douglas J. Weber, Ph.D. University of Pittsburgh
Neufeld, Stanley J.; Wang, Fan; Cobb, John
2014-01-01
The growth and development of the vertebrate limb relies on homeobox genes of the Hox and Shox families, with their independent mutation often giving dose-dependent effects. Here we investigate whether Shox2 and Hox genes function together during mouse limb development by modulating their relative dosage and examining the limb for nonadditive effects on growth. Using double mRNA fluorescence in situ hybridization (FISH) in single embryos, we first show that Shox2 and Hox genes have associated spatial expression dynamics, with Shox2 expression restricted to the proximal limb along with Hoxd9 and Hoxa11 expression, juxtaposing the distal expression of Hoxa13 and Hoxd13. By generating mice with all possible dosage combinations of mutant Shox2 alleles and HoxA/D cluster deletions, we then show that their coordinated proximal limb expression is critical to generate normally proportioned limb segments. These epistatic interactions tune limb length, where Shox2 underexpression enhances, and Shox2 overexpression suppresses, Hox-mutant phenotypes. Disruption of either Shox2 or Hox genes leads to a similar reduction in Runx2 expression in the developing humerus, suggesting their concerted action drives cartilage maturation during normal development. While we furthermore provide evidence that Hox gene function influences Shox2 expression, this regulation is limited in extent and is unlikely on its own to be a major explanation for their genetic interaction. Given the similar effect of human SHOX mutations on regional limb growth, Shox and Hox genes may generally function as genetic interaction partners during the growth and development of the proximal vertebrate limb. PMID:25217052
Neufeld, Stanley J; Wang, Fan; Cobb, John
2014-11-01
The growth and development of the vertebrate limb relies on homeobox genes of the Hox and Shox families, with their independent mutation often giving dose-dependent effects. Here we investigate whether Shox2 and Hox genes function together during mouse limb development by modulating their relative dosage and examining the limb for nonadditive effects on growth. Using double mRNA fluorescence in situ hybridization (FISH) in single embryos, we first show that Shox2 and Hox genes have associated spatial expression dynamics, with Shox2 expression restricted to the proximal limb along with Hoxd9 and Hoxa11 expression, juxtaposing the distal expression of Hoxa13 and Hoxd13. By generating mice with all possible dosage combinations of mutant Shox2 alleles and HoxA/D cluster deletions, we then show that their coordinated proximal limb expression is critical to generate normally proportioned limb segments. These epistatic interactions tune limb length, where Shox2 underexpression enhances, and Shox2 overexpression suppresses, Hox-mutant phenotypes. Disruption of either Shox2 or Hox genes leads to a similar reduction in Runx2 expression in the developing humerus, suggesting their concerted action drives cartilage maturation during normal development. While we furthermore provide evidence that Hox gene function influences Shox2 expression, this regulation is limited in extent and is unlikely on its own to be a major explanation for their genetic interaction. Given the similar effect of human SHOX mutations on regional limb growth, Shox and Hox genes may generally function as genetic interaction partners during the growth and development of the proximal vertebrate limb. Copyright © 2014 by the Genetics Society of America.
Abbasi, Amir A; Minhas, Rashid; Schmidt, Ansgar; Koch, Sabine; Grzeschik, Karl-Heinz
2013-10-01
The zinc finger transcription factor Gli3 is an important mediator of Sonic hedgehog (Shh) signaling. During early embryonic development Gli3 participates in patterning and growth of the central nervous system, face, skeleton, limb, tooth and gut. Precise regulation of the temporal and spatial expression of Gli3 is crucial for the proper specification of these structures in mammals and other vertebrates. Previously we reported a set of human intronic cis-regulators controlling almost the entire known repertoire of endogenous Gli3 expression in mouse neural tube and limbs. However, the genetic underpinning of GLI3 expression in other embryonic domains such as craniofacial structures and internal organs remain elusive. Here we demonstrate in a transgenic mice assay the potential of a subset of human/fish conserved non-coding sequences (CNEs) residing within GLI3 intronic intervals to induce reporter gene expression at known regions of endogenous Gli3 transcription in embryonic domains other than central nervous system (CNS) and limbs. Highly specific reporter expression was observed in craniofacial structures, eye, gut, and genitourinary system. Moreover, the comparison of expression patterns directed by these intronic cis-acting regulatory elements in mouse and zebrafish embryos suggests that in accordance with sequence conservation, the target site specificity of a subset of these elements remains preserved among these two lineages. Taken together with our recent investigations, it is proposed here that during vertebrate evolution the Gli3 expression control acquired multiple, independently acting, intronic enhancers for spatiotemporal patterning of CNS, limbs, craniofacial structures and internal organs. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.
Initial subjective load carriage injury data collected with interviews and questionnaires.
Birrell, Stewart A; Hooper, Robin H
2007-03-01
This study aimed to identify the types, incidence, and causes of any potential load carriage injuries or discomfort as a result of a 2-hour, forced-speed, treadmill march carrying 20 kg. Subjective load carriage data were collected, through both interviews and questionnaires, from relatively inexperienced soldiers after a period of load carriage. Results from the study showed that the upper limb is very susceptible to short-term discomfort, whereas the lower limb is not. The shoulders were rated significantly more uncomfortable then any other region, and blisters were experienced by approximately 60% of participants. Shoulder discomfort commences almost as soon as the load is added and increases steadily with time; however, foot discomfort increases more rapidly once the discomfort materializes. In conclusion, early development of shoulder pain or blisters may be a risk factor for severe pain or noncompletion of a period of prolonged load carriage.
Melorheostosis of Leri: report of a case in a young African.
Adeyomoye, A A O; Awosanya, G O G; Arogundade, R A
2004-09-01
Melorheostosis of Leri is a non-familial condition of hyperostosis of the cortical bone that usually presents unilaterally in long bones of the upper and lower limbs, but may also present in vertebra, ribs, skull and jaw. The incidence of this disease is quite rare, only about 300 cases have been reported worldwide. We present a case, which may be the first documented case in sub-Saharan Africa. S.K. is a 14 year old male student who presented to the hospital with an 18 month history of persistent pain in the joints of the right upper limb and a limb length discrepancy since birth which has worsened with growth. Examination revealed generalised hypoplasia of the right upper limb with shortening of the limb and atrophy of the muscles, also hypoplasia and contracture of the thumb was observed. The radiographs of the limb showed multiple areas of dense hyperostosis and scleroderma, which showed a linear distribution along the radial half of the bones. In children presentation of melorheostosis, is more likely be as limb length discrepancy, deformity or joint contractures which may be seen before radiographic evidence of any bony changes. Improvement in imaging techniques will therefore result in early diagnosis and greater success with conservative management. Also the increased frequency of tumours necessitates long-term follow up. melorheostosis, scleroderma.
Brazilian Spotted Fever: the importance of dermatological signs for early diagnosis*
Couto, Daíne Vargas; Medeiros, Marcelo Zanolli; Hans, Gunter; de Lima, Alexandre Moretti; Barbosa, Aline Blanco; Vicari, Carolina Faria Santos
2015-01-01
Brazilian spotted fever is an acute febrile infectious disease caused by Rickettsia rickettsii, transmitted by tick bite. As this disease is rare and has high mortality rates in Brazil, the clinical aspects and epidemiological data may help the diagnosis. We report a case of Brazilian spotted fever in a 19-year-old patient who presented maculopapular exanthema in the palmar region and upper limbs, lymphadenopathy, fever, chills, headache, conjunctival hyperemia, nausea, vomiting, dyspnea, myalgia, developing neurological signs and abdominal pain. He was treated with doxycycline with clinical improvement. We emphasize the importance of the recognition of this disease by dermatologists as cutaneous manifestations are the key findings to establish early diagnosis and prevent complications. PMID:25830998
Ahmed, Altayeb Abdalla
2016-09-01
Identification of a deceased individual is an essential component of medicolegal practice. However, personal identification based on commingled limbs or parts of limbs, necessary in investigations of mass disasters or some crimes, is a difficult task. Limb measurements have been utilized in the development of biological parameters for personal identification, but the possibility to estimate the dimensions of parts of limbs other than hands and feet has not been assessed. The present study proposes an approach to estimate the dimensions of various parts of limbs based on other limb measurements. The study included 320 Sudanese adults, with equal representation of men and women. Nine limb dimensions were measured (five based on the upper limb, four based on the lower limb), and extensive statistical analysis of the distribution of values was performed. The results showed that all of the measured dimensions were sexually dimorphic and that there was a significant positive correlation between the dimensions of various parts of limbs. Regression models (direct and stepwise) were developed to estimate the dimensions of parts of limbs based on measurements pertaining to one or more other parts of limbs. The study revealed that the dimensions of parts of the upper and lower limb can be estimated from one another. These findings can be used in medicolegal practice and extended to constructive surgery, orthopedics, and prosthesis design for lost limbs.
NASA Technical Reports Server (NTRS)
1992-01-01
This sunrise scene (5.5S, 29.5E) was taken early in the morning, when the sun was still below the horizon and not yet illuminating the dark band of low level clouds on the Earth limb. Ranging from 13 to 18 km. above these low level clouds is a brown layer at the tropopause, an atmospheric temperature inversion which isolates the troposphere from the stratosphere and effectively concentrates particulates from both above and below this level.
2017-01-01
Background Phantom limb pain is a frequent and persistent problem following amputation. Achieving sustainable favorable effects on phantom limb pain requires therapeutic interventions such as mirror therapy that target maladaptive neuroplastic changes in the central nervous system. Unfortunately, patients’ adherence to unsupervised exercises is generally poor and there is a need for effective strategies such as telerehabilitation to support long-term self-management of patients with phantom limb pain. Objective The main aim of this study was to describe the user-centered approach that guided the design and development of a telerehabilitation platform for patients with phantom limb pain. We addressed 3 research questions: (1) Which requirements are defined by patients and therapists for the content and functions of a telerehabilitation platform and how can these requirements be prioritized to develop a first prototype of the platform? (2) How can the user interface of the telerehabilitation platform be designed so as to match the predefined critical user requirements and how can this interface be translated into a medium-fidelity prototype of the platform? (3) How do patients with phantom limb pain and their treating therapists judge the usability of the medium-fidelity prototype of the telerehabilitation platform in routine care and how can the platform be redesigned based on their feedback to achieve a high-fidelity prototype? Methods The telerehabilitation platform was developed using an iterative user-centered design process. In the first phase, a questionnaire followed by a semistructured interview was used to identify the user requirements of both the patients and their physical and occupational therapists, which were then prioritized using a decision matrix. The second phase involved designing the interface of the telerehabilitation platform using design sketches, wireframes, and interface mock-ups to develop a low-fidelity prototype. Heuristic evaluation resulted in a medium-fidelity prototype whose usability was tested in routine care in the final phase, leading to the development of a high-fidelity prototype. Results A total of 7 categories of patient requirements were identified: monitoring, exercise programs, communication, settings, background information, log-in, and general requirements. One additional category emerged for therapists: patient management. Based on these requirements, patient and therapist interfaces for the telerehabilitation platform were developed and redesigned by the software development team in an iterative process, addressing the usability problems that were reported by the users during 4 weeks of field testing in routine care. Conclusions Our findings underline the importance of involving the users and other stakeholders early and continuously in an iterative design process, as well as the need for clear criteria to identify critical user requirements. A decision matrix is presented that incorporates the views of various stakeholders in systematically rating and prioritizing user requirements. The findings and lessons learned might help health care providers, researchers, software designers, and other stakeholders in designing and evaluating new teletreatments, and hopefully increase the likelihood of user acceptance. PMID:28582249
Rink, Cameron L; Wernke, Matthew M; Powell, Heather M; Tornero, Mark; Gnyawali, Surya C; Schroeder, Ryan M; Kim, Jayne Y; Denune, Jeffrey A; Albury, Alexander W; Gordillo, Gayle M; Colvin, James M; Sen, Chandan K
2017-07-01
Objective: (1) Develop a standardized approach to quantitatively measure residual limb skin health. (2) Report reference residual limb skin health values in people with transtibial and transfemoral amputation. Approach: Residual limb health outcomes in individuals with transtibial ( n = 5) and transfemoral ( n = 5) amputation were compared to able-limb controls ( n = 4) using noninvasive imaging (hyperspectral imaging and laser speckle flowmetry) and probe-based approaches (laser doppler flowmetry, transcutaneous oxygen, transepidermal water loss, surface electrical capacitance). Results: A standardized methodology that employs noninvasive imaging and probe-based approaches to measure residual limb skin health are described. Compared to able-limb controls, individuals with transtibial and transfemoral amputation have significantly lower transcutaneous oxygen tension, higher transepidermal water loss, and higher surface electrical capacitance in the residual limb. Innovation: Residual limb health as a critical component of prosthesis rehabilitation for individuals with lower limb amputation is understudied in part due to a lack of clinical measures. Here, we present a standardized approach to measure residual limb health in people with transtibial and transfemoral amputation. Conclusion: Technology advances in noninvasive imaging and probe-based measures are leveraged to develop a standardized approach to quantitatively measure residual limb health in individuals with lower limb loss. Compared to able-limb controls, resting residual limb physiology in people that have had transfemoral or transtibial amputation is characterized by lower transcutaneous oxygen tension and poorer skin barrier function.
Relating ranging ecology, limb length, and locomotor economy in terrestrial animals.
Pontzer, Herman
2012-03-07
Ecomorphological analyses have identified a number of important evolutionary trends in vertebrate limb design, but the relationships between daily travel distance, locomotor ecology, and limb length in terrestrial animals remain poorly understood. In this paper I model the net rate of energy intake as a function of foraging efficiency, and thus of locomotor economy; improved economy leads to greater net energy intake. However, the relationship between locomotor economy and net intake is highly dependent on foraging efficiency; only species with low foraging efficiencies experience strong selection pressure for improved locomotor economy and increased limb length. Examining 237 terrestrial species, I find that nearly all taxa obtain sufficiently high foraging efficiencies that selection for further increases in economy is weak. Thus selection pressures for increased economy and limb length among living terrestrial animals may be relatively weak and similar in magnitude across ecologically diverse species. The Economy Selection Pressure model for locomotor economy may be useful in investigating the evolution of limb design in early terrestrial taxa and the coevolution of foraging ecology and locomotor anatomy in lineages with low foraging efficiencies. Copyright © 2011 Elsevier Ltd. All rights reserved.
Effects of Robot-Assisted Therapy for the Upper Limb After Stroke.
Veerbeek, Janne M; Langbroek-Amersfoort, Anneli C; van Wegen, Erwin E H; Meskers, Carel G M; Kwakkel, Gert
2017-02-01
Robot technology for poststroke rehabilitation is developing rapidly. A number of new randomized controlled trials (RCTs) have investigated the effects of robot-assisted therapy for the paretic upper limb (RT-UL). To systematically review the effects of poststroke RT-UL on measures of motor control of the paretic arm, muscle strength and tone, upper limb capacity, and basic activities of daily living (ADL) in comparison with nonrobotic treatment. Relevant RCTs were identified in electronic searches. Meta-analyses were performed for measures of motor control (eg, Fugl-Meyer Assessment of the arm; FMA arm), muscle strength and tone, upper limb capacity, and basic ADL. Subgroup analyses were applied for the number of joints involved, robot type, timing poststroke, and treatment contrast. Forty-four RCTs (N = 1362) were included. No serious adverse events were reported. Meta-analyses of 38 trials (N = 1206) showed significant but small improvements in motor control (~2 points FMA arm) and muscle strength of the paretic arm and a negative effect on muscle tone. No effects were found for upper limb capacity and basic ADL. Shoulder/elbow robotics showed small but significant effects on motor control and muscle strength, while elbow/wrist robotics had small but significant effects on motor control. RT-UL allows patients to increase the number of repetitions and hence intensity of practice poststroke, and appears to be a safe therapy. Effects on motor control are small and specific to the joints targeted by RT-UL, whereas no generalization is found to improvements in upper limb capacity. The impact of RT-UL started in the first weeks poststroke remains unclear. These limited findings could mainly be related to poor understanding of robot-induced motor learning as well as inadequate designing of RT-UL trials, by not applying an appropriate selection of stroke patients with a potential to recovery at baseline as well as the lack of fixed timing of baseline assessments and using an insufficient treatment contrast early poststroke.
Freedman, Benjamin R; Gordon, Joshua A; Bhatt, Pankti R; Pardes, Adam M; Thomas, Stephen J; Sarver, Joseph J; Riggin, Corinne N; Tucker, Jennica J; Williams, Alexis W; Zanes, Robert C; Hast, Michael W; Farber, Daniel C; Silbernagel, Karin G; Soslowsky, Louis J
2016-12-01
Achilles tendon ruptures are common and devastating injuries; however, an optimized treatment and rehabilitation protocol has yet to be defined. Therefore, the objective of this study was to investigate the effects of surgical repair and return to activity on joint function and Achilles tendon properties after 3 weeks of healing. Sprague-Dawley rats (N = 100) received unilateral blunt transection of their Achilles tendon. Animals were then randomized into repaired or non-repaired treatments, and further randomized into groups that returned to activity after 1 week (RTA1) or after 3 weeks (RTA3) of limb casting in plantarflexion. Limb function, passive joint mechanics, and tendon properties (mechanical, organizational using high frequency ultrasound, histological, and compositional) were evaluated. Results showed that both treatment and return to activity collectively affected limb function, passive joint mechanics, and tendon properties. Functionally, RTA1 animals had increased dorsiflexion ROM and weight bearing of the injured limb compared to RTA3 animals 3-weeks post-injury. Such functional improvements in RTA1 tendons were evidenced in their mechanical fatigue properties and increased cross sectional area compared to RTA3 tendons. When RTA1 was coupled with nonsurgical treatment, superior fatigue properties were achieved compared to repaired tendons. No differences in cell shape, cellularity, GAG, collagen type I, or TGF-β staining were identified between groups, but collagen type III was elevated in RTA3 repaired tendons. The larger tissue area and increased fatigue resistance created in RTA1 tendons may prove critical for optimized outcomes in early Achilles tendon healing following complete rupture. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:2172-2180, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Freedman, BR; Gordon, JA; Bhatt, PB; Pardes, AM; Thomas, SJ; Sarver, JJ; Riggin, CN; Tucker, JJ; Williams, AW; Zanes, RC; Hast, MW; Farber, DC; Silbernagel, KG; Soslowsky, LJ
2016-01-01
Achilles tendon ruptures are common and devastating injuries; however, an optimized treatment and rehabilitation protocol has yet to be defined. Therefore, the objective of this study was to investigate the effects of surgical repair and return to activity on joint function and Achilles tendon properties after 3-weeks of healing. Sprague Dawley rats (N=100) received unilateral blunt transection of their Achilles tendon. Animals were then randomized into repaired or non-repaired treatments, and further randomized into groups that returned to activity after 1-week (RTA1) or after 3-weeks (RTA3) of limb casting in plantarflexion. Limb function, passive joint mechanics, and tendon properties (mechanical, organizational using high frequency ultrasound, histological, and compositional) were evaluated. Results showed that both treatment and return to activity collectively affected limb function, passive joint mechanics, and tendon properties. Functionally, RTA1 animals had increased dorsiflexion ROM and weight bearing of the injured limb compared to RTA3 animals 3-weeks post injury. Such functional improvements in RTA1 tendons were evidenced in their mechanical fatigue properties and increased cross sectional area compared to RTA3 tendons. When RTA1 was coupled with nonsurgical treatment, superior fatigue properties were achieved compared to repaired tendons. No differences in cell shape, cellularity, GAG, collagen type I, or TGF-β staining were identified between groups, but collagen type III was elevated in RTA3 repaired tendons. The larger tissue area and increased fatigue resistance created in RTA1 tendons may prove critical for optimized outcomes in early Achilles tendon healing following complete rupture. PMID:27038306
Systematic review: Early versus late dangling after free flap reconstruction of the lower limb.
McGhee, J T; Cooper, L; Orkar, K; Harry, L; Cubison, T
2017-08-01
Dangling regimes after free flap surgery to the lower limb vary between centres and clinicians. There is currently no accepted gold standard. This review examines the evidence for early versus late post-operative dangling after free flap reconstruction of the lower limb. The secondary aim is to evaluate the regimes used. Medline, Embase and the Cochrane library were searched for all studies on dangling or rehabilitation after free flap reconstruction in the lower limb (December 2015). All studies outlining a clear dangling regime were included. Data were extracted by two authors independently and analysed using the software package Review Manager (RevMan 5). All authors were contacted for further information. 197 patients were included from 8 studies: 1 randomized, 6 cohort and 1 case-series. Although some studies did not state the aetiology, of those that did; 42% were trauma, 31% oncology, 20% complex wounds and 7% infection. The majority of flaps were latissimus dorsi, 18% parascapular, 15% anterolateral thigh and the remainder was mixed. Forty-eight percent of patients dangled on post-operative day (POD) 7, 29% on day 6, 4% on day 5 and 18% on day 3, with varying regimes. A meta-analysis of comparable studies showed circulatory benefit after 4 days of dangling using tissue oxygen saturation as a measure. Four flap failures (2.0%) were reported. There is physiological benefit in post-operative dangling. A 3-day flap training regime is sufficient for physiological training. However, the optimal flap training regime remains unclear. It may be appropriate to start dangling as early as POD 3. More research is needed to determine the optimal time to start dangling and the regime. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Yu; Melzer, Roland R.; Haug, Joachim T.; Haug, Carolin; Briggs, Derek E. G.; Hörnig, Marie K.; He, Yu-yang; Hou, Xian-guang
2016-05-01
A three-dimensionally preserved 2-mm-long larva of the arthropod Leanchoilia illecebrosa from the 520-million-year-old early Cambrian Chengjiang biota of China represents the first evidence, to our knowledge, of such an early developmental stage in a short-great-appendage (SGA) arthropod. The larva possesses a pair of three-fingered great appendages, a hypostome, and four pairs of well-developed biramous appendages. More posteriorly, a series of rudimentary limb Anlagen revealed by X-ray microcomputed tomography shows a gradient of decreasing differentiation toward the rear. This, and postembryonic segment addition at the putative growth zone, are features of late-stage metanauplii of eucrustaceans. L. illecebrosa and other SGA arthropods, however, are considered representative of early chelicerates or part of the stem lineage of all euarthropods. The larva of an early Cambrian SGA arthropod with a small number of anterior segments and their respective appendages suggests that posthatching segment addition occurred in the ancestor of Euarthropoda.
Stewart, S; Yi, S; Kassabian, G; Mayo, M; Sank, A; Shuler, C
2000-06-01
Syndactyly, a failure of the digits to separate into individual units, affects about 8 to 9 per 1000 newborns and results from an aberration of the normal development of the interdigital tissues. Limb digit separation is the result of programmed cell death (apoptosis). Lysosomes play a role in the process of cell self-destruction. Our experiment was designed to test the hypothesis that the intensity of interdigital lysosomes increases during the separation of digits in vivo and in vitro. The primary mouse monoclonal antibody, 1D4B, detects the presence of lysosomes by identifying the LAMP-1 glycoprotein on the lysosome cell membrane. In our experiment this antibody immunodetected interdigital lysosome proteins in serial sections of limbs from Swiss-Webster mouse embryos, gestational ages E12.5 through E15, key developmental stages for digit separation. Digit separation was associated with an increase in intensity of lysosomal protein staining. In E12.5 limbs, the presence of lysosomes was enriched in the distal aspect of the interdigital tissue. However, the number of lysosomes markedly increased in the E13 and E14 limbs, including the entire length and width of the interdigital tissue in the E14 limbs. This lysosomal protein presence in E14 limbs was significant compared to E12.5, E13, and E15 limbs. By day 12.5, the mouse embryo limb is committed to digit separation. Addition of retinoic acid to the culture medium of limbs earlier in development, such as E12, results in induction of the process of digit separation. Cultured E12 limbs that did not receive an addition of retinoic acid, did not show digit separation. We conclude that in the limb development process, the enrichment in interdigit LAMP-1 proteins, may indicate a relationship between lysosomes, apoptosis, and digit separation. We also conclude that retinoic acid has an important role in digit separation in vivo, as shown in limb development, and demonstrated through the addition of retinoic acid to media of cultured tissues.
Ankley, Gerald T; Diamond, Stephen A; Tietge, Joseph E; Holcombe, Gary W; Jensen, Kathleen M; Defoe, David L; Peterson, Ryan
2002-07-01
A number of environmental stressors have been hypothesized as responsible for recent increases in limb malformations in several species of North American amphibians. The purpose of this study was to generate dose-response data suitable for assessing the potential role of solar ultraviolet (UV) radiation in causing limb malformations in a species in which this phenomenon seemingly is particularly prevalent, the northern leopard frog (Rana pipiens). Frogs were exposed from early embryonic stages through complete metamorphosis to varying natural sunlight regimes, including unaltered (100%) sunlight, sunlight subjected to neutral density filtration to achieve relative intensities of 85%, 75%, 65%, 50%, and 25% of unaltered sunlight, and sunlight filtered with glass or acrylamide to attenuate, respectively, the UVB (290-320 nm) and UVB plus UVA (290-380 nm) portions of the spectrum. The experiments were conducted in a controlled setting, with continual monitoring of UVB, UVA, and visible light to support a robust exposure assessment. Full sunlight caused approximately 50% mortality of the frogs during early larval development; no significant treatment-related mortality occurred under any of the other exposure regimes, including 100% sunlight with glass or acrylamide filtration. There was a dose-dependent (p < 0.0001) induction of hindlimb malformations in the frogs, with the percentage of affected animals ranging from about 97% under unaltered sunlight to 0% in the 25% neutral density treatment. Malformations were comprised mostly of missing or truncated digits, and generally were bilateral as well as symmetrical. Filtration of sunlight with either glass or acrylamide both significantly reduced the incidence of malformed limbs. The estimated sunlight dose resulting in a 50% limb malformation rate (ED50) was 63.5%. The limb ED50 values based on measured sunlight intensities corresponded to average daily doses of 4.5 and 100 Wh x m(-2) for UVB and UVA, respectively. Exposure to sunlight also resulted in increased eye malformations in R. pipiens, however, the dose-response relationship for this endpoint was not monotonic. The results of this study, in conjunction with measured or predicted exposure data from natural settings, provide a basis for quantitative prediction of the risk of solar UV radiation to amphibians.
Harb, Z; Harb, A; Kammoona, Ishan; Huber, C
2011-04-01
In lower extremity trauma, it is routine to check the neurovascular status of the affected limb. Failure to recognise a vascular injury can have catastrophic consequences for the patient. The frequent observation of the distal pulses at regular intervals after a traumatic knee dislocation is absolutely mandatory for the early recognition and management of popliteal artery thrombosis. A limb-threatening complication of popliteal artery thrombosis occurring in association with a palpable dorsalis pedis pulse after a trampoline-related knee dislocation is reported here to emphasise some important teaching points. These lessons are a learning tool to help in the early recognition of the potential complications associated with such injuries and thus minimise their occurrence.
Armer, Jane M; Henggeler, Mary H; Brooks, Constance W; Zagar, Eris A; Homan, Sherri; Stewart, Bob R
2008-01-01
Breast cancer is the leading cancer among women world-wide, affecting 1 of 8 women during their lifetimes. In the US alone, some 2 million breast cancer survivors comprise 20% of all cancer survivors. Conservatively, it is estimated that some 20-40% of all breast cancer survivors will develop the health deviation of lymphedema or treatment-related limb swelling over their lifetimes. This chronic accumulation of protein-rich fluid predisposes to infection, leads to difficulties in fitting clothing and carrying out activities of daily living, and impacts self-esteem, self-concept, and quality of life. Lymphedema is associated with self-care deficits (SCD) and negatively impacts self-care agency (SCA) and physiological and psychosocial well-being. Objectives of this report are two-fold: (1) to explore four approaches of assessing and diagnosing breast cancer lymphedema, including self-report of symptoms and the impact of health deviations on SCA; and (2) to propose the development of a clinical research program for lymphedema based on the concepts of Self-Care Deficit Nursing Theory (SCDNT). Anthropometric and symptom data from a National-Institutes-of-Health-funded prospective longitudinal study were examined using survival analysis to compare four definitions of lymphedema over 24 months post-breast cancer surgery among 140 of 300 participants (all who had passed the 24-month measurement). The four definitions included differences of 200 ml, 10% volume, and 2 cm circumference between pre-op baseline and/or contralateral limbs, and symptom self-report of limb heaviness and swelling. Symptoms, SCA, and SCD were assessed by interviews using a validated tool. Estimates of lymphedema occurrence varied by definition and time since surgery. The 2 cm girth change provided the highest estimation of lymphedema (82% at 24 months), followed by 200 ml volume change (57% at 24 months). The 10% limb volume change converged with symptom report of heaviness and swelling at 24 months (38-39% lymphedema occurrence), with symptom report being the earliest predictor of lymphedema occurrence than any other measurement. Findings verify the importance of subjective assessment by symptom report of limb changes and SCD following breast cancer treatment as an essential tool in early detection and treatment of lymphedema. Findings also support the importance of pre-operative baseline measurements, symptom history, and SCA for later post-op comparisons. These preliminary findings underscore the importance of strengthening SCA by educating breast cancer survivors. Self assessment, early detection, and early treatment hold the best promise for optimal management of this chronic condition, limiting detrimental effects on SCA, and improving quality of life and physiological and psychosocial well-being. These findings lay the foundation for a clinical research program in breast cancer lymphedema based on SCDNT in which education in and awareness for self-report of lymphedema-associated symptoms is a first step in screening. Increasing patient knowledge through education will increase SCA by identifying ane providing information to meet self-care requisites (SCR) related to the health deviation of lymphedema. The nurse has the opportunity to assist patients in developing self-care actions as needed to meet universal and health deviation therapeutic requisites to address self-care demands following breast cancer treatment.
Impact of early applied upper limb stimulation: the EXPLICIT-stroke programme design.
Kwakkel, Gert; Meskers, Carel G M; van Wegen, Erwin E; Lankhorst, Guus J; Geurts, Alexander C H; van Kuijk, Annet A; Lindeman, Eline; Visser-Meily, Anne; de Vlugt, Erwin; Arendzen, J Hans
2008-12-17
Main claims of the literature are that functional recovery of the paretic upper limb is mainly defined within the first month post stroke and that rehabilitation services should preferably be applied intensively and in a task-oriented way within this particular time window. EXplaining PLastICITy after stroke (acronym EXPLICIT-stroke) aims to explore the underlying mechanisms of post stroke upper limb recovery. Two randomized single blinded trials form the core of the programme, investigating the effects of early modified Constraint-Induced Movement Therapy (modified CIMT) and EMG-triggered Neuro-Muscular Stimulation (EMG-NMS) in patients with respectively a favourable or poor probability for recovery of dexterity. 180 participants suffering from an acute, first-ever ischemic stroke will be recruited. Functional prognosis at the end of the first week post stroke is used to stratify patient into a poor prognosis group for upper limb recovery (N = 120, A2 project) and a group with a favourable prognosis (N = 60, A1 project). Both groups will be randomized to an experimental arm receiving respectively modified CIMT (favourable prognosis) or EMG-NMS (poor prognosis) for 3 weeks or to a control arm receiving usual care. Primary outcome variable will be the Action Research Arm Test (ARAT), assessed at 1,2,3,4,5, 8, 12 and 26 weeks post stroke. To study the impact of modified CIMT or EMG-NMS on stroke recovery mechanisms i.e. neuroplasticity, compensatory movements and upper limb neuromechanics, 60 patients randomly selected from projects A1 and A2 will undergo TMS, kinematical and haptic robotic measurements within a repeated measurement design. Additionally, 30 patients from the A1 project will undergo fMRI at baseline, 5 and 26 weeks post stroke. EXPLICIT stroke is a 5 year translational research programme which main aim is to investigate the effects of early applied intensive intervention for regaining dexterity and to explore the underlying mechanisms that are involved in regaining upper limb function after stroke. EXPLICIT-stroke will provide an answer to the key question whether therapy induced improvements are due to either a reduction of basic motor impairment by neural repair i.e. restitution of function and/or the use of behavioural compensation strategies i.e. substitution of function.
Variations of Solar Radius Observed with RHESSI
NASA Astrophysics Data System (ADS)
Fivian, M. D.; Hudson, H. S.; Lin, R. P.
2003-12-01
The Solar Aspect System (SAS) of the rotating (at 15 rpm) RHESSI spacecraft has three subsystems. Each of these measures the position of the limb by sampling the full solar chord profile with a linear CCD using a narrow bandwidth filter at 670 nm. With a resolution of each CCD of 1.7 arcsec/pixel, the accuracy of each of the 6 limb positions is theoretically better than 50 mas using 4 pixels at each limb. Since the launch of RHESSI early 2002, solar limbs are sampled with at least 100 Hz. That provides a database of currently 4 x 109 single radius measurements. The main function of SAS is to determine the RHESSI pointing relative to Sun center. The observed precision of this determination has a typical instantaneous (16 Hz) value of about 200 mas (rms). We show and discuss first results of variations of solar radius observed with RHESSI.
Tbx5 Buffers Inherent Left/Right Asymmetry Ensuring Symmetric Forelimb Formation
Nishimoto, Satoko; Kucharska, Anna; Newbury-Ecob, Ruth; Logan, Malcolm P. O.
2016-01-01
The forelimbs and hindlimbs of vertebrates are bilaterally symmetric. The mechanisms that ensure symmetric limb formation are unknown but they can be disrupted in disease. In Holt-Oram Syndrome (HOS), caused by mutations in TBX5, affected individuals have left-biased upper/forelimb defects. We demonstrate a role for the transcription factor Tbx5 in ensuring the symmetric formation of the left and right forelimb. In our mouse model, bilateral hypomorphic levels of Tbx5 produces asymmetric forelimb defects that are consistently more severe in the left limb than the right, phenocopying the left-biased limb defects seen in HOS patients. In Tbx hypomorphic mutants maintained on an INV mutant background, with situs inversus, the laterality of defects is reversed. Our data demonstrate an early, inherent asymmetry in the left and right limb-forming regions and that threshold levels of Tbx5 are required to overcome this asymmetry to ensure symmetric forelimb formation. PMID:27992425
Suppression of morphogenesis in embryonic mouse limbs exposed in vitro to excess gravity.
Duke, J C
1983-06-01
This paper is a report of the first investigation of the effect of excess gravity on in vitro mammalian limb chondrogenesis. Limb buds from mice of various gestational stages were exposed to excess gravity (2.6G) using a culture centrifuge. Both forelimbs and hind limbs were cultured and the development of various limb elements was scored after four to six days. The 2.6G force significantly depressed the development of limb elements when applied during the teratogen-sensitive period of chondrogenesis. There was a proximodistal gradient of sensitivity to excess gravity in the limb with proximal structures being less susceptible than distal ones. In some cases, proximal limb elements present prior to explantation disappeared upon exposure to excess gravity. Hypergravity's teratogenic effect is assumed to operate via changes in tension and/or pressure on the cells, accompanied by alterations in cell morphometry and membrane properties.
Thompson, Sierra; Muzinic, Laura; Muzinic, Christopher; Niemiller, Matthew L; Voss, S Randal
2014-06-01
Multiple factors are thought to cause limb abnormalities in amphibian populations by altering processes of limb development and regeneration. We examined adult and juvenile axolotls ( Ambystoma mexicanum ) in the Ambystoma Genetic Stock Center (AGSC) for limb and digit abnormalities to investigate the probability of normal regeneration after bite injury. We observed that 80% of larval salamanders show evidence of bite injury at the time of transition from group housing to solitary housing. Among 717 adult axolotls that were surveyed, which included solitary-housed males and group-housed females, approximately half presented abnormalities, including examples of extra or missing digits and limbs, fused digits, and digits growing from atypical anatomical positions. Bite injury likely explains these limb defects, and not abnormal development, because limbs with normal anatomy regenerated after performing rostral amputations. We infer that only 43% of AGSC larvae will present four anatomically normal looking adult limbs after incurring a bite injury. Our results show regeneration of normal limb anatomy to be less than perfect after bite injury.
Investigation of In Vivo skin stiffness anisotropy in breast cancer related lymphoedema.
Coutts, L V; Miller, N R; Mortimer, P S; Bamber, J C
2016-01-04
There is a limited range of suitable measurement techniques for detecting and assessing breast cancer related lymphoedema (BCRL). This study investigated the suitability of using skin stiffness measurements, with a particular focus on the variation in stiffness with measurement direction (known as anisotropy). In addition to comparing affected tissue with the unaffected tissue on the corresponding site on the opposite limb, volunteers without BCRL were tested to establish the normal variability in stiffness anisotropy between these two corresponding regions of skin on each opposite limb. Multi-directional stiffness was measured with an Extensometer, within the higher stiffness region that skin typically displays at high applied strains, using a previously established protocol developed by the authors. Healthy volunteers showed no significant difference in anisotropy between regions of skin on opposite limbs (mean decrease of 4.7 +/-2.5% between non-dominant and dominant arms), whereas BCRL sufferers showed a significant difference between limbs (mean decrease of 51.0+/-16.3% between unaffected and affected arms). A large difference in anisotropy was apparent even for those with recent onset of the condition, indicating that the technique may have potential to be useful for early detection. This difference also appeared to increase with duration since onset. Therefore, measurement of stiffness anisotropy has potential value for the clinical assessment and diagnosis of skin conditions such as BCRL. The promising results justify a larger study with a larger number of participants. Copyright © 2015 Elsevier Ltd. All rights reserved.
Quadriceps Function and Knee Joint Ultrasonography after ACL Reconstruction.
Pamukoff, Derek N; Montgomery, Melissa M; Moffit, Tyler J; Vakula, Michael N
2018-02-01
Individuals with anterior cruciate ligament reconstruction (ACLR) are at greater risk for knee osteoarthritis, partially because of chronic quadriceps dysfunction. Articular cartilage is commonly assessed using magnetic resonance imaging and radiography, but these methods are expensive and lack portability. Ultrasound imaging may provide a cost-effective and portable alternative for imaging the femoral cartilage. The purpose of this study was to compare ultrasonography of the femoral cartilage between the injured and uninjured limbs of individuals with unilateral ACLR, and to examine the association between quadriceps function and ultrasonographic measures of femoral cartilage. Bilateral femoral cartilage thickness and quadriceps function were assessed in 44 individuals with unilateral ACLR. Quadriceps function was assessed using peak isometric strength, and early (RTD100) and late (RTD200) rate of torque development. Cartilage thickness at the medial femoral condyle (P < 0.001) and femoral cartilage cross-sectional area (P = 0.007) were smaller in the injured compared with the uninjured limb. After accounting for time since ACLR, quadriceps peak isometric strength was associated with cartilage thickness at the medial femoral condyle (r = 0.35, P = 0.02) and femoral cartilage cross-sectional area (r = 0.28, P = 0.04). RTD100 and RTD200 were not associated with femoral cartilage thickness or cross-sectional area. Individuals with ACLR have thinner cartilage in their injured limb compared with uninjured limb, and cartilage thickness is associated with quadriceps function. These results indicate that ultrasonography may be useful for monitoring cartilage health and osteoarthritis progression after ACLR.
Yang, Si-Dong; Ning, Sheng-Hua; Zhang, Li-Hong; Zhang, Ying-Ze; Ding, Wen-Yuan; Yang, Da-Long
2016-01-01
Abstract The purpose of this study was to explore the effect of lower limb rehabilitation gymnastics on postoperative rehabilitation in elderly patients with femoral shaft fracture after undergoing intramedullary nail fixation surgery. We collected medical records of elderly patients aged ≥ 60 years with femoral shaft fracture between 03/2010 and 03/2015 in Longyao County Hospital. Totally, 160 patients were identified and divided into the intervention group (n = 80) and the control group (n = 80). During the postoperative period, the intervention group received lower limb rehabilitation gymnastics treatment for 3 months, but the control group did not. All patients were routinely asked to return hospital for a check in the 1st postoperative week, as well as the 2nd week, the 1st month, and the 3rd month, after surgery. The clinical rehabilitation effect was evaluated by checking lower limb action ability, detecting the lower limb deep venous thrombosis (DVT), scoring muscle strength of quadriceps and visual analog scale (VAS) score, and performing satisfaction survey. At the 1st week and 2nd week after surgery, the clinical rehabilitation effect in the intervention group was better regarding lower limb action ability, lower limb DVT, muscle strength of quadriceps, VAS score, and patient satisfaction, as compared with the control group. However, there was no significant difference at the 1st month and the 3rd month after surgery when comparing the intervention group to the control group. In the early postoperative stage, lower limb rehabilitation gymnastics can effectively improve the recovery of lower limb function, beneficial to reducing postoperative complications such as lower limb DVT and muscle atrophy, and increasing patient satisfaction rate. PMID:27537579
Yang, Si-Dong; Ning, Sheng-Hua; Zhang, Li-Hong; Zhang, Ying-Ze; Ding, Wen-Yuan; Yang, Da-Long
2016-08-01
The purpose of this study was to explore the effect of lower limb rehabilitation gymnastics on postoperative rehabilitation in elderly patients with femoral shaft fracture after undergoing intramedullary nail fixation surgery.We collected medical records of elderly patients aged ≥ 60 years with femoral shaft fracture between 03/2010 and 03/2015 in Longyao County Hospital. Totally, 160 patients were identified and divided into the intervention group (n = 80) and the control group (n = 80). During the postoperative period, the intervention group received lower limb rehabilitation gymnastics treatment for 3 months, but the control group did not. All patients were routinely asked to return hospital for a check in the 1st postoperative week, as well as the 2nd week, the 1st month, and the 3rd month, after surgery. The clinical rehabilitation effect was evaluated by checking lower limb action ability, detecting the lower limb deep venous thrombosis (DVT), scoring muscle strength of quadriceps and visual analog scale (VAS) score, and performing satisfaction survey.At the 1st week and 2nd week after surgery, the clinical rehabilitation effect in the intervention group was better regarding lower limb action ability, lower limb DVT, muscle strength of quadriceps, VAS score, and patient satisfaction, as compared with the control group. However, there was no significant difference at the 1st month and the 3rd month after surgery when comparing the intervention group to the control group.In the early postoperative stage, lower limb rehabilitation gymnastics can effectively improve the recovery of lower limb function, beneficial to reducing postoperative complications such as lower limb DVT and muscle atrophy, and increasing patient satisfaction rate.
Niitsu, Masaya; Ichinose, Daisuke; Hirooka, Taku; Mitsutomi, Kazuhiko; Morimoto, Yoshitaka; Sarukawa, Junichiro; Nishikino, Shoichi; Yamauchi, Katsuya; Yamazaki, Kaoru
2016-08-01
Elderly patients can be at risk of protein catabolism and malnutrition in the early postoperative period. Whey protein includes most essential amino acids and stimulates the synthesis of muscle protein. The purpose of this study was to investigate the effect of resistance training in combination with whey protein intake in the early postoperative period. We randomized patients to a whey protein group or a control group. The former group received 32.2 g of whey protein pre- and post-rehabilitation in the early postoperative period for two weeks. Outcomes were knee extension strength on either side by Biodex 4.0, and the ability of transfer, walking, toilet use and stair use by the Barthel Index (BI). We performed initial and final assessments in the second and tenth rehabilitation sessions. A total of 38 patients were recruited: 20 in the whey protein group and 18 in the control group. Participants in the whey protein group showed significantly greater improvement in knee extension strength in the operated limb compared with the control group (F = 6.11, P = 0.02). The non-operated limb also showed a similar tendency (F = 3.51, P = 0.07). The abilities of transfer, walking and toilet use showed greater improvements in the whey protein group than in the control group by BI (P < 0.05). The combination of whey protein intake and rehabilitation for two weeks in the early postoperative period has a beneficial effect on knee extension strength in both lower limbs and BI (transfer, walking and toilet use) scores in patients with hip fracture. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Msx genes are important apoptosis effectors downstream of the Shh/Gli3 pathway in the limb.
Lallemand, Yvan; Bensoussan, Vardina; Cloment, Cécile Saint; Robert, Benoît
2009-07-15
In tetrapods, the anteroposterior (AP) patterning of the limb is under the control of the antagonistic activities of the secreted factor Sonic hedgehog (Shh) and Gli3R, the truncated repressor form of the transcription factor Gli3. In this report, we show that Msx1 and Msx2 are targets and downstream effectors of Gli3R. Consequently, in Shh null mutants, Msx genes are overexpressed and, furthermore, partially responsible for the limb phenotype. This is exemplified by the fact that reducing Msx activity in Shh mutants partially restores a normal limb development. Finally, we show that the main action of the Msx genes, in both normal and Shh(-/-) limb development, is to control cell death in the mesenchyme. We propose that, in the limb, Msx genes act downstream of the Shh/Gli3 pathway by transducing BMP signaling and that, in the absence of Shh signaling, their deregulation contributes to the extensive apoptosis that impairs limb development.
2001-10-25
form: (1) A is a scaling factor, t is time and r a coordinate vector describing the limb configuration. We...combination of limb state and EMG. In our early examination of EMG we detected underlying groups of muscles and phases of activity by inspection and...representations of EEG or other biological signals has been thoroughly explored. Such components might be used as a basis for neuroprosthetic control
Human Gait and Postural Control after Unilateral Total Knee Arthroplasty
STAN, Gabriel; ORBAN, Horia
2014-01-01
Introduction: This study assesses the changes in human gait in the early postoperative phase of unilateral TKA, by evaluating the variability of free moment. Materials and method: The study group consisted of 10 patients from the Orthopedic Department of the 'Elias' University Hospital in Bucharest who undergone unilateral knee arthroplasty with the same type of posterior cruciate ligament substituting prosthesis. For the evaluation of free moment an AMTI AccuGait force platform was used. Results: Regarding the free moment peaks, for the operated and non-operated limb, increased significantly (p <0.05) in the postoperative period. The stance time was higher post-surgery for both limbs. Discussion: In the early postoperative phase of unilateral TKA, free moment is higher on both the operated and the non-operated limbs, which means that the knees are subjected to higher torques. Shortly after TKA, patients tend to walk with lower speed, with small steps and reduced cadence. Stance time differences between the operated and the non-operated limbs can lead to overuse of the latter, worsening its condition. Conclusions: It is highly important to adopt a well-managed rehabilitation program in order to increase walking stability. The cost effectiveness of this procedure could be highly dependent on the rehab program. The parameters studied in this article are useful in assessing the rehabilitation protocol. PMID:25705305
Development of a 3-D Rehabilitation System for Upper Limbs Using ER Actuators in a Nedo Project
NASA Astrophysics Data System (ADS)
Furusho, Junji; Koyanagi, Ken'ichi; Nakanishi, Kazuhiko; Ryu, Ushio; Takenaka, Shigekazu; Inoue, Akio; Domen, Kazuhisa; Miyakoshi, Koichi
New training methods and exercises for upper limbs rehabilitation are made possible by application of robotics and virtual reality technology. The technologies can also make quantitative evaluations and enhance the qualitative effect of training. We have joined a project managed by NEDO (New Energy and Industrial Technology Development Organization as a semi-governmental organization under the Ministry of Economy, Trade and Industry of Japan) 5-year Project, "Rehabilitation System for the Upper Limbs and Lower Limbs", and developed a 3-DOF exercise machine for upper limbs (EMUL) using ER actuators. In this paper, we also present the development of software for motion exercise trainings and some results of clinical evaluation. Moreover, it is discussed how ER actuators ensure the mechanical safety.
Hesse, S
2004-01-01
The gait-lab at Klinik Berlin developed and evaluated novel physical and pharmacological strategies promoting the repetitive practise of hemiparetic gait in line with the slogan: who wants to relearn walking, has to walk. Areas of research are treadmill training with partial body weight support, enabling wheelchair-bound subjects to repetitively practice gait, the electromechanical gait trainer GT I reducing the effort on the therapists as compared to the manually assisted locomotor therapy, and the future HapticWalker which will allow the additional practise of stair climbing up and down and of perturbations. Further means to promote gait practice after stroke was the application of botulinum toxin A for the treatment of lower limb spasticity and the early use of walking aids. New areas of research are also the study of D-Amphetamine, which failed to promote motor recovery in acute stroke patients as compared to placebo, and the development of a computerized arm trainer, Bi-Manu-T rack, for the bilateral treatment of patients with a severe upper limb paresis.
Melville, Jane; Hunjan, Sumitha; McLean, Felicity; Mantziou, Georgia; Boysen, Katja; Parry, Laura J
2016-10-01
With over 9000 species, squamates, which include lizards and snakes, are the largest group of reptiles and second-largest order of vertebrates, spanning a vast array of appendicular skeletal morphology. As such, they provide a promising system for examining developmental and molecular processes underlying limb morphology. Using the central bearded dragon (Pogona vitticeps) as the primary study model, we examined limb morphometry throughout embryonic development and characterized the expression of three known developmental genes (GHR, Pitx1 and Shh) from early embryonic stage through to hatchling stage via reverse transcription quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry (IHC). In this study, all genes were found to be transcribed in both the forelimbs and hindlimbs of P. vitticeps. While the highest level of GHR expression occurred at the hatchling stage, Pitx1 and Shh expression was greatest earlier during embryogenesis, which coincides with the onset of the differentiation between forelimb and hindlimb length. We compared our finding of Pitx1 expression-a hindlimb-determining gene-in the forelimbs of P. vitticeps to that in a closely related Australian agamid lizard, Ctenophorus pictus, where we found Pitx1 expression to be more highly expressed in the hindlimb compared with the forelimb during early and late morphogenesis-a result consistent with that found across other tetrapods. Expression of Pitx1 in forelimbs has only rarely been documented, including via in situ hybridization in a chicken and a frog. Our findings from both RT-qPCR and IHC indicate that further research across a wider range of tetrapods is needed to more fully understand evolutionary variation in molecular processes underlying limb morphology. © 2016 The Authors.
Martínez-Abadías, Neus; Mateu, Roger; Niksic, Martina; Russo, Lucia; Sharpe, James
2016-01-01
How the genotype translates into the phenotype through development is critical to fully understand the evolution of phenotypes. We propose a novel approach to directly assess how changes in gene expression patterns are associated with changes in morphology using the limb as a case example. Our method combines molecular biology techniques, such as whole-mount in situ hybridization, with image and shape analysis, extending the use of Geometric Morphometrics to the analysis of nonanatomical shapes, such as gene expression domains. Elliptical Fourier and Procrustes-based semilandmark analyses were used to analyze the variation and covariation patterns of the limb bud shape with the expression patterns of two relevant genes for limb morphogenesis, Hoxa11 and Hoxa13. We devised a multiple thresholding method to semiautomatically segment gene domains at several expression levels in large samples of limb buds from C57Bl6 mouse embryos between 10 and 12 postfertilization days. Besides providing an accurate phenotyping tool to quantify the spatiotemporal dynamics of gene expression patterns within developing structures, our morphometric analyses revealed high, non-random, and gene-specific variation undergoing canalization during limb development. Our results demonstrate that Hoxa11 and Hoxa13, despite being paralogs with analogous functions in limb patterning, show clearly distinct dynamic patterns, both in shape and size, and are associated differently with the limb bud shape. The correspondence between our results and already well-established molecular processes underlying limb development confirms that this morphometric approach is a powerful tool to extract features of development regulating morphogenesis. Such multilevel analyses are promising in systems where not so much molecular information is available and will advance our understanding of the genotype–phenotype map. In systematics, this knowledge will increase our ability to infer how evolution modified a common developmental pattern to generate a wide diversity of morphologies, as in the vertebrate limb. PMID:26377442
Andrade Ortega, Juan Alfonso; Millán Gómez, Ana Pilar; Ribeiro González, Marisa; Martínez Piró, Pilar; Jiménez Anula, Juan; Sánchez Andújar, María Belén
2017-06-21
The early detection of upper limb complications is important in women operated on for breast cancer. The "FACT-B+4-UL" questionnaire, a specific variant of the Functional Assessment of Cancer Therapy-Breast (FACT-B) is available among others to measure the upper limb function. The Spanish version of the upper limb subscale of the FACT-B+4 was validated in a prospective cohort of 201 women operated on for breast cancer (factor analysis, internal consistency, test-retest reliability, construct validity and sensitivity to change were determined). Its predictive capacity of subsequent lymphoedema and other complications in the upper limb was explored using logistic regression. This subscale is unifactorial and has a great internal consistency (Cronbach's alpha: 0.87), its test-retest reliability and construct validity are strong (intraclass correlation coefficient: 0.986; Pearson's R with "Quick DASH": 0.81) as is its sensitivity to change. It didn't predict the onset of lymphedema. Its predictive capacity for other upper limb complications is low. FACT-B+4-UL is useful in measuring upper limb disability in women surgically treated for breast cancer; but it does not predict the onset of lymphoedema and its predictive capacity for others complications in the upper limb is low. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.
Fukushima, Yoshimitsu; Kumita, Shinichiro; Ogawa, Rei; Hyakusoku, Hiko
2015-01-01
Background: Diagnostic and therapeutic strategies for lower-limb lymphedema have not yet been established. The purpose of this study was to estimate the lymphodynamic condition and therapeutic efficacy of lymphovenous anastomosis (LVA) in lower-limb lymphedema patients using 2-phase 99mTc-phytate lymphoscintigraphy with single-photon emission computed tomography-computed tomography (SPECT-CT). Methods: In this study, consecutive patients with lower-limb lymphedema who underwent 2-phase lymphoscintigraphy using 99mTc-phytate were enrolled between June 2013 and June 2014. SPECT-CT was also performed to clarify the relationships between functional and morphological information. In both the early and delayed images, inguinal lymph node accumulation, dermal backflow, and their sequential alternations were evaluated, and liver-to-blood ratio and inguinal lymph node-to-blood ratio were calculated. All participants were classified into 6 types of lymphodynamic conditions based on the image findings. Patients with both dermal backflow and associated normal lymphatic vessel accumulation proceeded to LVA and underwent a second lymphoscintigraphy after the operation. Results: Of all 30 participants, the largest population was categorized as type 4, which had consistent inguinal lymph node accumulation defect with dermal backflow. In 12 operated cases, dermal backflow was degraded in 10 cases by LVA. Liver-to-blood ratio in both early and delayed images and inguinal lymph node-to-blood ratio in delayed image significantly increased after LVA. Conclusions: Lymphoscintigraphy with SPECT-CT can provide both functional and morphological information simultaneously in patients with lower-limb lymphedema. Using these procedures, a type categorization for the patients was devised, which reflects their lymphodynamic conditions. The therapeutic efficacy of LVA could also be estimated quantitatively by the derived findings. PMID:26090294
Routine upper gastrointestinal Gastrografin swallow after laparoscopic Roux-en-Y gastric bypass.
Sims, Thomas L; Mullican, Mary A; Hamilton, Elizabeth C; Provost, David A; Jones, Daniel B
2003-02-01
Upper gastrointestinal (UGI) swallow radiographs following laparoscopic Roux-en-Y gastric bypass (LRYGBP) may detect an obstruction or an anastomotic leak. The aim of our study was to determine the efficacy of routine imaging following LRYGBP. Radiograph reports were reviewed for 201 consecutive LRYGBP operations between April 1999 and June 2001. UGI swallow used Gastrografin, static films, fluoroscopic video, and a delayed image at 10 minutes. Mean values with one standard deviation were tested for significance (P < 0.05) using the Mann-Whitney U test statistic. Of 198 available reports, UGI detected jejunal efferent (Roux) limb narrowing (n = 17), partial obstruction (n = 12), anastomotic leak (n = 3), complete bowel obstruction (n = 3), diverticulum (n = 1), hiatal hernia (n = 1), and proximal Roux limb narrowing (n = 1). A normal study was reported in 160 cases (81%). Partial obstruction resolved without intervention. Complete obstruction required re-operation. Compared to 6 patients who developed delayed leaks, early identification of a leak by routine UGI swallow resulted in a shorter hospital stay (mean 7.7 +/- 1.5 days vs 40.2 +/- 12.3 days, P < 0.03). Early intervention after UGI swallow may lessen morbidity. Routine UGI swallow following LRYGBP does not obviate the importance of close clinical follow-up.
Low, Fan-Zhe; Lim, Jeong Hoon; Yeow, Chen-Hua
2018-01-01
Motor impairment is one of the common neurological conditions suffered by stroke patients, where this chronic immobility together with the absence of early limb mobilisation can lead to conditions such as joint contracture with spastic limbs. In this study, a soft robotic sock device was developed, which can provide compliant actuation to the ankle joint in the early stage of stroke recovery. The device is fitted with soft extension actuators and when the actuators are inflated, they extend and guide the foot into plantarflexion; upon deflation, the actuators will resume their initial conformations. Each actuator is linked to a pneumatic pump-valve control system that injects pressurised air into or release air from the system. In this study, the design and characterisation of the soft actuators will be presented, where the theoretical and experimental forces generated by the actuators were compared. The performance of the device was also evaluated on healthy subjects and the results had shown that the device was able to move the subjects' ankles into cycles of dorsiflexion-plantarflexion, in the absence of voluntary muscle effort. The findings suggested that the soft wearable robotic device was capable of assisting the subjects in performing repeated cycles of ankle flexion.
Thompson, Sierra; Muzinic, Laura; Muzinic, Christopher; Niemiller, Matthew L.
2014-01-01
Abstract Multiple factors are thought to cause limb abnormalities in amphibian populations by altering processes of limb development and regeneration. We examined adult and juvenile axolotls (Ambystoma mexicanum) in the Ambystoma Genetic Stock Center (AGSC) for limb and digit abnormalities to investigate the probability of normal regeneration after bite injury. We observed that 80% of larval salamanders show evidence of bite injury at the time of transition from group housing to solitary housing. Among 717 adult axolotls that were surveyed, which included solitary‐housed males and group‐housed females, approximately half presented abnormalities, including examples of extra or missing digits and limbs, fused digits, and digits growing from atypical anatomical positions. Bite injury probably explains these limb defects, and not abnormal development, because limbs with normal anatomy regenerated after performing rostral amputations. We infer that only 43% of AGSC larvae will present four anatomically normal looking adult limbs after incurring a bite injury. Our results show regeneration of normal limb anatomy to be less than perfect after bite injury. PMID:25745564
STS-32 view of the moon setting over the Earth's limb
1990-01-20
STS-32 crew took this view of the moon setting over the Earth's limb. Near the center is a semi-vortex in the clouds - a storm system in the early stages of formation. The moon's image is distorted due to refraction through the Earth's atmosphere. The near side of the moon is visible showing the vast area of the moon's western seas (Mare Occidental), Apollo landing sites: Apollo 14 at Fra Mauro and Apollo 16 at Central Highlands near Descartes.
STS-32 view of the moon setting over the Earth's limb
NASA Technical Reports Server (NTRS)
1990-01-01
STS-32 crew took this view of the moon setting over the Earth's limb. Near the center is a semi-vortex in the clouds - a storm system in the early stages of formation. The moon's image is distorted due to refraction through the Earth's atmosphere. The near side of the moon is visible showing the vast area of the moon's western seas (Mare Occidental), Apollo landing sites: Apollo 14 at Fra Mauro and Apollo 16 at Central Highlands near Descartes.
2011-11-01
stimulation to HR fluctuations that were experi- mentally determined by Berger et al. (8) in dogs with typical ILV3HR and ABP3HR impulse responses that were...pure vagal and sympathetic stimulation to HR fluctuations that were experimentally determined in dogs (middle; reproduced from Ref. 8) with typical...repre- sents an extrapolation of the efferent autonomic nervous limbs in dogs to the afferent, central, and efferent autonomic nervous limbs in humans
Growth of Fault-Cored Anticlines by Flexural Slip Folding: Analysis by Boundary Element Modeling
NASA Astrophysics Data System (ADS)
Johnson, Kaj M.
2018-03-01
Fault-related folds develop due to a combination of slip on the associated fault and distributed deformation off the fault. Under conditions that are sufficient for sedimentary layering to act as a stack of mechanical layers with contact slip, buckling can dramatically amplify the folding process. We develop boundary element models of fault-related folding of viscoelastic layers embedded with a reverse fault to examine the influence of such layering on fold growth. The strength of bedding contacts, the thickness and stiffness of layering, and fault geometry all contribute significantly to the resulting fold form. Frictional contact strength between layers controls the degree of localization of slip within fold limbs; high contact friction in relatively thin bedding tends to localize bedding slip within narrow kink bands on fold limbs, and low contact friction tends to produce widespread bedding slip and concentric fold form. Straight ramp faults tend to produce symmetric folds, whereas listric faults tend to produce asymmetric folds with short forelimbs and longer backlimbs. Fault-related buckle folds grow exponentially with time under steady loading rates. At early stages of folding, fold growth is largely attributed to slip on the fault, but as the fold increases amplitude, a larger portion of the fold growth is attributed to distributed slip across bedding contacts on the limbs of the fold. An important implication for geologic and earthquake studies is that not all surface deformation associated with blind reverse faults may be attributed to slip on the fault during earthquakes.
Molecular anatomy of the developing limb in the coquí frog, Eleutherodactylus coqui.
Gross, Joshua B; Kerney, Ryan; Hanken, James; Tabin, Clifford J
2011-01-01
The vertebrate limb demonstrates remarkable similarity in basic organization across phylogenetically disparate groups. To gain further insight into how this morphological similarity is maintained in different developmental contexts, we explored the molecular anatomy of size-reduced embryos of the Puerto Rican coquí frog, Eleutherodactylus coqui. This animal demonstrates direct development, a life-history strategy marked by rapid progression from egg to adult and absence of a free-living, aquatic larva. Nonetheless, coquí exhibits a basal anuran limb structure, with four toes on the forelimb and five toes on the hind limb. We investigated the extent to which coquí limb bud development conforms to the model of limb development derived from amniote studies. Toward this end, we characterized dynamic patterns of expression for 13 critical patterning genes across three principle stages of limb development. As expected, most genes demonstrate expression patterns that are essentially unchanged compared to amniote species. For example, we identified an EcFgf8-expression domain within the apical ectodermal ridge (AER). This expression pattern defines a putatively functional AER signaling domain, despite the absence of a morphological ridge in coquí embryos. However, two genes, EcMeis2 and EcAlx4, demonstrate altered domains of expression, which imply a potential shift in gene function between coquí frogs and amniote model systems. Unexpectedly, several genes thought to be critical for limb patterning in other systems, including EcFgf4, EcWnt3a, EcWnt7a, and EcGremlin, demonstrated no evident expression pattern in the limb at the three stages we analyzed. The absence of EcFgf4 and EcWnt3a expression during limb patterning is perhaps not surprising, given that neither gene is critical for proper limb development in the mouse, based on knockout and expression analyses. In contrast, absence of EcWnt7a and EcGremlin is surprising, given that expression of these molecules appears to be absolutely essential in all other model systems so far examined. Although this analysis substantiates the existence of a core set of ancient limb-patterning molecules, which likely mediate identical functions across highly diverse vertebrate forms, it also reveals remarkable evolutionary flexibility in the genetic control of a conserved morphological pattern across evolutionary time. © 2011 Wiley Periodicals, Inc.
Giant elephantiasis neuromatosa in the setting of neurofibromatosis type 1: A case report
PONTI, GIOVANNI; PELLACANI, GIOVANNI; MARTORANA, DAVIDE; MANDEL, VICTOR DESMOND; LOSCHI, PIETRO; POLLIO, ANNAMARIA; PECCHI, ANNARITA; DEALIS, CRISTINA; SEIDENARI, STEFANIA; TOMASI, ALDO
2016-01-01
Elephantiasis neuromatosa (EN) can arise from a plexiform neurofibroma of the superficial and deep nerves developing from a hyperproliferation of the perineural connective tissue infiltrating adjacent fat and muscles. To date, the clinical association between EN and neurofibromatosis type 1 (NF1) has been poorly defined, particularly with regard to the role of lymphatic alterations and the consequent lymphedema. The present study reports the clinical and biomolecular features of EN in a NF1 patient with the clear clinical diagnostic criteria of multiple cafè-au-lait macules, neurofibromas, EN, a positive family history and a novel NF1 germline c.1541_1542del mutation. Lymphoscintigraphy (LS) highlighted marked dermal backflow in the affected limb, hypertrophy of the ipsilateral inguinal and external iliac lymph nodes, and a bilateral lower limb lymph flow delay. These data support the hypothesis that an extensive hyperproliferative process involving perineural connective, limb soft tissues, bones and the lymphatic system can be responsible for EN in NF1 patients, on the basis of adipocyte metaplasia triggered by lymphostasis and lymphedema, and bone overgrowth and gigantism caused by chronic hyperemia. LS and magnetic resonance imaging can be efficacious tools in the diagnosis and clinical characterization of the early onset of the disease. PMID:27284375
Wakiya, T; Sanada, Y; Mizuta, K; Umehara, M; Urahashi, T; Egami, S; Hishikawa, S; Nakata, M; Hakamada, K; Yasuda, Y; Kawarasaki, H
2012-05-01
When re-anastomosis and re-transplantation becomes necessary after LDLT, arterial reconstruction can be extremely difficult because of severe inflammation and lack of an adequate artery for reconstruction. Frequently, the recipient's HA is not in good condition, necessitating an alternative to the HA. In such cases, the recipient's splenic artery, right gastroepiploic artery or another vessel can be safely used for arterial reconstruction. There have, however, been few reports on using the jejunal artery. Herein, we report our experience with arterial reconstruction using the jejunal artery of the Roux-en-Y limb as an alternative to the HA. A three-yr-old girl who had developed graft failure due to early HA thrombosis after LDLT required re-transplantation. At re-transplantation, an adequate artery for reconstruction was lacking. We reconstructed the artery by using the jejunal artery of the Roux-en-Y limb, as we judged it to be the most appropriate alternative. After surgery, stent was deployed because hepatic blood flow had reduced due to kinking of the anastomosed site, and a favorable outcome was obtained. In conclusion, when an alternative to the HA is required, using the jejunal artery is a feasible alternative. © 2010 John Wiley & Sons A/S.
Rothgangel, Andreas; Braun, Susy; Smeets, Rob; Beurskens, Anna
2017-02-15
Phantom limb pain is a frequent and persistent problem following amputation. Achieving sustainable favorable effects on phantom limb pain requires therapeutic interventions such as mirror therapy that target maladaptive neuroplastic changes in the central nervous system. Unfortunately, patients' adherence to unsupervised exercises is generally poor and there is a need for effective strategies such as telerehabilitation to support long-term self-management of patients with phantom limb pain. The main aim of this study was to describe the user-centered approach that guided the design and development of a telerehabilitation platform for patients with phantom limb pain. We addressed 3 research questions: (1) Which requirements are defined by patients and therapists for the content and functions of a telerehabilitation platform and how can these requirements be prioritized to develop a first prototype of the platform? (2) How can the user interface of the telerehabilitation platform be designed so as to match the predefined critical user requirements and how can this interface be translated into a medium-fidelity prototype of the platform? (3) How do patients with phantom limb pain and their treating therapists judge the usability of the medium-fidelity prototype of the telerehabilitation platform in routine care and how can the platform be redesigned based on their feedback to achieve a high-fidelity prototype? The telerehabilitation platform was developed using an iterative user-centered design process. In the first phase, a questionnaire followed by a semistructured interview was used to identify the user requirements of both the patients and their physical and occupational therapists, which were then prioritized using a decision matrix. The second phase involved designing the interface of the telerehabilitation platform using design sketches, wireframes, and interface mock-ups to develop a low-fidelity prototype. Heuristic evaluation resulted in a medium-fidelity prototype whose usability was tested in routine care in the final phase, leading to the development of a high-fidelity prototype. A total of 7 categories of patient requirements were identified: monitoring, exercise programs, communication, settings, background information, log-in, and general requirements. One additional category emerged for therapists: patient management. Based on these requirements, patient and therapist interfaces for the telerehabilitation platform were developed and redesigned by the software development team in an iterative process, addressing the usability problems that were reported by the users during 4 weeks of field testing in routine care. Our findings underline the importance of involving the users and other stakeholders early and continuously in an iterative design process, as well as the need for clear criteria to identify critical user requirements. A decision matrix is presented that incorporates the views of various stakeholders in systematically rating and prioritizing user requirements. The findings and lessons learned might help health care providers, researchers, software designers, and other stakeholders in designing and evaluating new teletreatments, and hopefully increase the likelihood of user acceptance. ©Andreas Rothgangel, Susy Braun, Rob Smeets, Anna Beurskens. Originally published in JMIR Rehabilitation and Assistive Technology (http://rehab.jmir.org), 15.02.2017.
Lee, John J; Al-Jubouri, Mustafa; Acino, Robin; Comerota, Anthony J; Lurie, Fedor
2015-10-01
It has been reported that early clot removal benefits patients with iliofemoral deep venous thrombosis (DVT) by removing obstruction and preserving valve function. However, a substantial number of patients who had successful clot removal develop post-thrombotic syndrome (PTS). Residual thrombus and rethrombosis play a part in this phenomenon, but the role of coexisting primary chronic venous disease (PCVD) in these patients has not been studied. All patients who underwent catheter-based techniques of thrombus removal for symptomatic acute iliofemoral DVT during a 5-year period compose the study group. These patients were assessed for PTS by the Villalta scale, the Venous Clinical Severity Score (VCSS), and the Venous Insufficiency Epidemiological and Economic Study on Quality of Life (VEINES-QOL) questionnaire. The presence of coexisting PCVD was determined by clinical and duplex ultrasound findings in the contralateral leg at the time of the initial DVT diagnosis. Patients who had coexisting PCVD were compared with those without PCVD. Forty patients (40 limbs) were included in the study group. At initial diagnosis, 15 patients (38%) had coexisting symptomatic primary valve reflux in the unaffected limb. After thrombolysis, 9 of 40 limbs (22%) had complete lysis, 29 (73%) had ≥ 50% to 99% lysis, and 2 (5%) had <50% lysis. The mean percentage of lysis in patients with or without PCVD was similar (78% vs 86%; P = .13). Patients without coexisting PCVD had significantly better Villalta score and VCSS compared with those with coexisting PCVD (Villalta score, 2.52 vs 3.27, P = .014; VCSS, 2.96 vs 3.29, P = .005). Forty-five percent of patients (18 of 40) developed PTS. Patients who developed PTS had less clot lysis than those without PTS. This was true for patients with coexisting PCVD (60% vs 85%; P = .025) and in patients without PCVD (75% vs 89%; P = .013). There was no significant difference in the VEINES-QOL score between those with or without PCVD (79.5 vs 80.5; P = .9). Patients who had reflux in the treated limb after lysis had a five times greater chance for development of PTS compared with those who retained normal valve function during follow-up (odds ratio, 5.3; 95% confidence interval, 1.6-17.045). However, in patients with normal veins in the contralateral leg, the chance of development of PTS was 1.5 times higher if reflux was present in the treated limb (odds ratio, 1.49; 95% confidence interval, 0.043-10.253). Coexisting PCVD is a contributing factor to development of PTS after treatment of iliofemoral DVT with thrombus removal techniques. Copyright © 2015 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
Fox, Charles J; Perkins, Jeremy G; Kragh, John F; Singh, Niten N; Patel, Bhavin; Ficke, James R
2010-07-01
Popliteal artery war wounds can bleed severely and historically have high rates of amputation associated with ligation (72%) and repair (32%). More than before, casualties are now surviving the initial medical evacuation and presenting with severely injured limbs that prompt immediate limb salvage decisions in the midst of life-saving maneuvers. A modern analysis of current results may show important changes because previous limb salvage strategies were limited by the resuscitation and surgical techniques of their eras. Because exact comparisons between wars are difficult, the objective of this study was to calculate a worst-case (a pulseless, fractured limb with massive hemorrhage from popliteal artery injury) amputation-free survival rate for the most severely wounded soldiers undergoing immediate reconstruction to save both life and limb. We performed a retrospective study of trauma casualties admitted to the combat support hospital at Ibn Sina Hospital in Baghdad, Iraq, between 2003 and 2007. US military casualties requiring a massive transfusion (> or = 10 blood units transfused within 24 hours of injury) were identified. We extracted data on the subset of casualties with a penetrating supra or infrageniculate popliteal arterial vascular injury. Demographics, injury mechanism, Injury Severity Score, tourniquet use, physiologic parameters, damage control adjuncts, surgical repair techniques, operative time, and outcomes (all-cause 30-day mortality, amputation rates, limb salvage failure, and graft patency) were investigated. Forty-six massively transfused male casualties, median age 24 years (range, 19-54 years; mean Injury Severity Score, 19 +/- 8.0), underwent immediate orthopedic stabilization and vascular reconstruction. There was one early death. The median operative time for the vascular repairs was 217 minutes (range, 94-630 minutes) and included all damage control procedures. Combined arterial and venous injuries occurred in 17 (37%). Ligation was performed for no arterial and 9 venous injuries. Amputations (transtibial or transfemoral) were considered limb salvage failures (14 of 48, 29.2%) and were grouped as immediate (< or = 48 hours, 5), early (>48 hours and < or = 30 days, 6), or late (>30 days, 3). Limb losses were from graft thrombosis, infection, or chronic pain. Combined arterial and venous injuries occurred in 17 (37%). Ligation was performed for no arterial and nine venous injuries. For a median follow-up (excluding death) of 48 months (range, 23-75 months), the amputation-free survival rate was 67%. This study, a worst-case study, showed comparable results to historical controls regarding limb salvage rates (71% for Iraq vs. 56-69% for the Vietnam War). Thirty-day survival (98%), 4-year amputation-free survival (67%), and complication-free rates (35%) fill knowledge gaps. Guidelines for managing popliteal artery injuries show promising results because current resuscitation practices and surgical care yielded similar amputation rates to prior conflicts despite more severe injuries. Significant transfusion requirements and injury severity may not indicate a life-over-limb strategy for popliteal arterial repairs. Future studies of limb salvage failures may help improve casualty care by reducing the complications that directly impact amputation-free survival.
Association of postural balance and isometric muscle strength in early- and middle-school-age boys.
Ibrahim, Alaa I; Muaidi, Qassim I; Abdelsalam, Mohammed S; Hawamdeh, Ziad M; Alhusaini, Adel A
2013-01-01
The purpose of this study was to evaluate the isometric muscle strength (IMS) and dynamic balance in early- and middle-school-age boys and to assess the strength of association between the dynamic balance scores and 6 different IMS indexes. This is a cross-sectional study of a convenience sample of 94 boys who were 6 to 10 years of age and classified into an early school age (6-8 years) group (n = 50) and a middle school age (8-10 years) group (n = 44). Balance was tested using a Biodex Balance System. Anteroposterior Stability Index, Mediolateral Stability Index, and Overall Stability Index were recorded. IMS of 11 muscle groups was measured with a handheld dynamometer and categorized into 6 different muscle strength indices. The mean (SD) values of anteroposterior, mediolateral, and overall stability indexes observed for all study boys were 1.9 ± 1.0, 1.2 ± 0.7, and 2.5 ± 1.2 respectively. In the middle school age group, strong positive relationships were detected between the overall stability index and trunk, lower limb, anti-gravity, pro-gravity, and total strength indexes (r = -0.86/P < .001, r = -0.91/P < .001, r = -0.88/P < .001, r = -0.83/P < .001, and r = -0.84/P < .001 respectively), while no significant relationship was detected with the upper limb strength index (r = 0.159/P = .303). In the early school age group, moderate positive relationships were detected between the overall stability index and anti-gravity, lower limb, and total strength indexes (r = -0.404/P = .004, r = -0.356/P = .011, and r = -0.350/P = .013 respectively). Dynamic balance did not appear to be mature by the age of 10 years. Better balance skills were recorded in the mediolateral direction than in the anteroposterior direction. In the middle school age group, the overall stability index had positive relationships with almost all examined muscle strength indexes excepting the upper limb strength index. © 2013. Published by National University of Health Sciences All rights reserved.
Comprehensive treatment for gas gangrene of the limbs in earthquakes.
Wang, Yue; Lu, Bo; Hao, Peng; Yan, Meng-ning; Dai, Ke-rong
2013-10-01
Mortality rates for patients with gas gangrene from trauma or surgery are as high as 25%, but they increase to 50%-80% for patients injured in natural hazards. Early diagnosis and treatment are essential for these patients. We retrospectively analyzed the clinical characteristics and therapeutic results of 19 patients with gas gangrene of the limbs, who were injured in the May 2008 earthquake in the Wenchuan district of China's Sichuan province and treated in our hospital, to seek how to best diagnose and treat earthquake-induced gas gangrene. Of 226 patients with limbs open injuries sustained during the earthquake, 53 patients underwent smear analysis of wound exudates and gas gangrene was diagnosed in 19 patients. The average elapsed time from injury to arrival at the hospital was 72 hours, from injury to definitive diagnosis was 4.3 days, and from diagnosis to conversion of negative findings on wound smear analysis to positive findings was 12.7 days. Anaerobic cultures were also obtained before wound closure. The average elapsed time from completion of surgery to recovery of normal vital signs was 6.3 days. Of the 19 patients, 16 were treated with open amputation, two with closed amputation, and 1 with successful limb salvage; 18 patients were successfully treated and one died. In earthquakes, rapid, accurate screening and isolation are essential to successful treatment of gas gangrene and helpful in preventing nosocomial diffusion. Early and thorough debridement, open amputation, and active supportive treatment can produce satisfactory therapeutic results.
Al-Hilli, Ali Bakir; Salih, Dheyaa Saeed
2010-01-01
Compound limb fractures due to high-velocity missiles are complex and usually associated with multiple other injuries. These can occur in both military and civilian settings. High-velocity missiles are presently used by terrorists worldwide. Early surgical debridement and skeletal fixation are the gold standards in managing these injuries, but data supporting these recommendations are lacking. Our aim was to determine the relationship between time (the time of injury to the time of surgical treatment) and the rate of deep infection in patients treated in Medical City, Baghdad, Iraq due to terrorist activity from 2004-2008. This is a retrospective review of a series of open limb fractures. A total of 102 civilian patients with 114 limb fractures due to high-velocity missile injuries were selected for this study from Medical City records. Patients were followed in the outpatient department in Medical City Teaching Complex both clinically and radiologically. Surgical treatment was accomplished in less than six hours from time of injury in group A (55 fractures, 48.4%) and more than six hours in group B (59 fractures, 51.7%). The infection rate for group A was 30.9% and group B was 23.7%. A very high infection rate was noted for these injuries, and there was no increase in the rate of deep infection in patients treated more than six hours after the injury.
Molineaux, Anna C; Maier, Jennifer A; Schecker, Teresa; Sears, Karen E
2015-03-01
Retinoic acid (RA) is a vitamin A derivative. Exposure to exogenous RA generates congenital limb malformations (CLMs) in species from frogs to humans. These CLMs include but are not limited to oligodactyly and long-bone hypoplasia. The processes by which exogenous RA induces CLMs in mammals have been best studied in mouse, but as of yet remain unresolved. We investigated the impact of exogenous RA on the cellular and molecular development of the limbs of a nonrodent model mammal, the opossum Monodelphis domestica. Opossums exposed to exogenous retinoic acid display CLMs including oligodactly, and results are consistent with opossum development being more susceptible to RA-induced disruptions than mouse development. Exposure of developing opossums to exogenous RA leads to an increase in cell death in the limb mesenchyme that is most pronounced in the zone of polarizing activity, and a reduction in cell proliferation throughout the limb mesenchyme. Exogenous RA also disrupts the expression of Shh in the zone of polarizing activity, and Fgf8 in the apical ectodermal ridge, and other genes with roles in the regulation of limb development and cell death. Results are consistent with RA inducing CLMs in opossum limbs by disrupting the functions of the apical ectodermal ridge and zone of polarizing activity, and driving an increase in cell death and reduction of cell proliferation in the mesenchyme of the developing limb. © 2015 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Shih, Ching-Hsiang; Chang, Man-Ling; Shih, Ching-Tien
2010-01-01
This study assessed whether two persons with multiple disabilities would be able to control environmental stimulation using limb action with a Nintendo Wii Remote Controller and a newly developed limb action detection program (LADP, i.e., a new software program that turns a Wii Remote Controller into a precise limb action detector). This study was…
ERIC Educational Resources Information Center
Shih, Ching-Hsiang; Chang, Man-Ling; Shih, Ching-Tien
2010-01-01
This study assessed whether two persons with multiple disabilities would be able to control environmental stimulation using limb swing with a gyration air mouse and a newly developed limb movement detection program (LMDP, i.e., a new software program that turns a gyration air mouse into a precise limb movement detector). The study was performed…
NASA Astrophysics Data System (ADS)
Iijima, Masaya; Kubo, Tai; Kobayashi, Yoshitsugu
2018-03-01
Although two major clades of crocodylians (Alligatoroidea and Crocodyloidea) were split during the Cretaceous period, relatively few morphological and functional differences between them have been known. In addition, interaction of multiple morphofunctional systems that differentiated their ecology has barely been assessed. In this study, we examined the limb proportions of crocodylians to infer the differences of locomotor functions between alligatoroids and crocodyloids, and tested the correlation of locomotor and feeding morphofunctions. Our analyses revealed crocodyloids including Gavialis have longer stylopodia (humerus and femur) than alligatoroids, indicating that two groups may differ in locomotor functions. Fossil evidence suggested that alligatoroids have retained short stylopodia since the early stage of their evolution. Furthermore, rostral shape, an indicator of trophic function, is correlated with limb proportions, where slender-snouted piscivorous taxa have relatively long stylopodia and short overall limbs. In combination, trophic and locomotor functions might differently delimit the ecological opportunity of alligatoroids and crocodyloids in the evolution of crocodylians.
Borochowitz, Z; Langer, L O; Gruber, H E; Lachman, R; Katznelson, M B; Rimoin, D L
1993-02-01
We report on a "new" severe short-limb bone dysplasia which can be labeled descriptively a spondylo-meta-epiphyseal dysplasia. The 3 patients were born to 2 unrelated Sepharadic Jewish families and a Puerto Rican family. Clinical abnormalities include small stature with short limbs including short hands, a short nose with wide nasal bridge and wide nostrils, a long philtrum, ocular hypertelorism, retro/micrognathia, and a narrow chest. Radiological abnormalities include platyspondyly, short tubular bones with very abnormal metaphyses and epiphyses beyond early infancy, short ribs, and a typical evolution of bony changes over time. Chondroosseous morphology and ultrastructure document sparse matrix and degenerating chondrocytes surrounded by dense amorphous material in the 1 patient studied. Consanguinity is present in 1 family. In addition to the described patient, 2 other short-limb sibs, who did not survive infancy, were born into this family. Even in the absence of any photographic or radiologic documentation of these other 2 infants, autosomal recessive mode of inheritance seems probable.
Different regulation of limb development by p63 transcript variants.
Kawata, Manabu; Taniguchi, Yuki; Mori, Daisuke; Yano, Fumiko; Ohba, Shinsuke; Chung, Ung-Il; Shimogori, Tomomi; Mills, Alea A; Tanaka, Sakae; Saito, Taku
2017-01-01
The apical ectodermal ridge (AER), located at the distal end of each limb bud, is a key signaling center which controls outgrowth and patterning of the proximal-distal axis of the limb through secretion of various molecules. Fibroblast growth factors (FGFs), particularly Fgf8 and Fgf4, are representative molecules produced by AER cells, and essential to maintain the AER and cell proliferation in the underlying mesenchyme, meanwhile Jag2-Notch pathway negatively regulates the AER and limb development. p63, a transcription factor of the p53 family, is expressed in the AER and indispensable for limb formation. However, the underlying mechanisms and specific roles of p63 variants are unknown. Here, we quantified the expression of p63 variants in mouse limbs from embryonic day (E) 10.5 to E12.5, and found that ΔNp63γ was strongly expressed in limbs at all stages, while TAp63γ expression was rapidly increased in the later stages. Fluorescence-activated cell sorting analysis of limb bud cells from reporter mouse embryos at E11.5 revealed that all variants were abundantly expressed in AER cells, and their expression was very low in mesenchymal cells. We then generated AER-specific p63 knockout mice by mating mice with a null and a flox allele of p63, and Msx2-Cre mice (Msx2-Cre;p63Δ/fl). Msx2-Cre;p63Δ/fl neonates showed limb malformation that was more obvious in distal elements. Expression of various AER-related genes was decreased in Msx2-Cre;p63Δ/fl limb buds and embryoid bodies formed by p63-knockdown induced pluripotent stem cells. Promoter analyses and chromatin immunoprecipitation assays demonstrated Fgf8 and Fgf4 as transcriptional targets of ΔNp63γ, and Jag2 as that of TAp63γ. Furthermore, TAp63γ overexpression exacerbated the phenotype of Msx2-Cre;p63Δ/fl mice. These data indicate that ΔNp63 and TAp63 control limb development through transcriptional regulation of different target molecules with different roles in the AER. Our findings contribute to further understanding of the molecular network of limb development.
Schotthoefer, Anna M.; Koehler, Anson V.; Meteyer, Carol U.; Cole, Rebecca A.
2003-01-01
Recent evidence suggests that infection by larvae of the trematode Ribeiroia ondatrae accounts for a significant proportion of limb malformations currently observed in amphibian populations of North America. However, the effects of R. ondatrae infection on northern leopard frogs (Rana pipiens), one of the species most frequently reported with malformations, have not been adequately explored. Moreover, the risk factors associated with R. ondatrae-induced malformations have not been clearly identified. We examined the effects of timing of infection on tadpole survival and limb development. Rana pipiens tadpoles were individually exposed to R. ondatrae cercariae at the pre-limb-bud (Gosner stages 24 and 25), limb-bud (Gosner stages 27 and 28), or paddle (Gosner stages 3133) stages of development and monitored through metamorphosis. The effects of infection were stage-specific. Infections acquired at the pre-limb-bud stage resulted in a high mortality rate (47.597.5%), whereas tadpoles infected at the limb-bud stage displayed a high malformation rate (16% overall), and the magnitude of effects increased with the level of exposure to cercariae. In contrast, infections acquired at the paddle stage had no effect on limb development or tadpole survival, which suggests that the timing of R. ondatrae infection in relation to the stage structure of tadpole populations in the wild is an important determinant of the degree to which populations are affected by R. ondatrae.
The earliest sense of self and others: Merleau-Ponty and recent developmental studies
Gallagher, Shaun; Meltzoff, Andrew N.
2013-01-01
Recent studies in developmental psychology have found evidence to suggest that there exists an innate system that accounts for the possibilities of early infant imitation and the existence of phantom limbs in cases of congenital absence of limbs. These results challenge traditional assumptions about the status and development of the body schema and body image, and about the nature of the translation process between perceptual experience and motor ability. Merleau-Ponty, who was greatly influenced by his study of developmental psychology, and whose phenomenology of perception was closely tied to the concept of the body schema, accepted these traditional assumptions. They also informed his philosophical conclusions concerning the experience of self and others. We re-examine issues involved in understanding self and others in light of the more recent research in developmental psychology. More specifically our re-examination challenges a number of Merleau-Ponty’s conclusions and suggests, in contrast, that the newborn infant is capable of a rudimentary differentiation between self and non-self. PMID:24307757
In vivo longitudinal micro-CT study of bent long limb bones in rat offspring.
De Schaepdrijver, Luc; Delille, Peter; Geys, Helena; Boehringer-Shahidi, Christian; Vanhove, Christian
2014-07-01
Micro-computed X-ray tomography (micro-CT) has been reported as a reliable method to assess ex vivo rat and rabbit fetal skeletons in embryo-fetal developmental toxicity studies. Since micro-CT is a non-invasive imaging modality it has the potential for longitudinal, in vivo investigation of postnatal skeletal development. This is the first paper using micro-CT to assess the reversibility of drug-induced bent long bones in a longitudinal study from birth to early adulthood in rat offspring. Analysis of the scans obtained on postnatal Day 0, 7, 21 and 80 showed complete recovery or repair of the bent long limb bones (including the scapula) within the first 3 weeks. When assessing risk the ability to demonstrate recovery is highly advantageous when interpreting such transient skeletal change. In summary, in vivo micro-CT of small laboratory animals can aid in non-clinical safety assessment, particularly for specific mechanistic purposes or to address a particular concern in developmental biology. Copyright © 2014 Elsevier Inc. All rights reserved.
Al Kaissi, Ali; Klaushofer, Klaus; Grill, Franz
2008-08-19
Contracture is a condition of abnormal shortening or shrinkage of a muscle, and or a tendon often with persistent flexion or distortion at a joint. Careful documentation of the kind of contractures encountered in different paediatric disorders is important in distinguishing a specific subtype. Achondroplasia has been considered as the most common short-limbed dwarfism syndrome, but there are a variety of other syndromes within this category, and other types of limb shortening. We report on a 5-year-old boy of Austrian origin who manifests progressive joint limitations in connection with a dysplastic form of short-limbed dwarfism namely chondrodysplasia punctata-tibial-metacarpal-type. Progressive joint limitations of maximal intensity over the hip, and the ankle joints were the main presenting features. Osteochondrodysplasias involve abnormal bone or cartilage growth leading to skeletal maldevelopment, often short-limbed dwarfism. Diagnosis is by physical examination, radiographic documentation, and, in some cases, genetic testing. In patients with chondrodysplasia punctata, early life radiographic examination is fundamental, since resolution of the punctate calcifications leaving abnormal epiphyses and flared and irregular metaphyses after age one to three years seems to be characteristic.
Al Kaissi, Ali; Klaushofer, Klaus; Grill, Franz
2008-01-01
Introduction Contracture is a condition of abnormal shortening or shrinkage of a muscle, and or a tendon often with persistent flexion or distortion at a joint. Careful documentation of the kind of contractures encountered in different paediatric disorders is important in distinguishing a specific subtype. Achondroplasia has been considered as the most common short-limbed dwarfism syndrome, but there are a variety of other syndromes within this category, and other types of limb shortening. Case presentation We report on a 5-year-old boy of Austrian origin who manifests progressive joint limitations in connection with a dysplastic form of short-limbed dwarfism namely chondrodysplasia punctata-tibial-metacarpal-type. Progressive joint limitations of maximal intensity over the hip, and the ankle joints were the main presenting features. Conclusion Osteochondrodysplasias involve abnormal bone or cartilage growth leading to skeletal maldevelopment, often short-limbed dwarfism. Diagnosis is by physical examination, radiographic documentation, and, in some cases, genetic testing. In patients with chondrodysplasia punctata, early life radiographic examination is fundamental, since resolution of the punctate calcifications leaving abnormal epiphyses and flared and irregular metaphyses after age one to three years seems to be characteristic. PMID:18713450
Attenuated sensing of SHH by Ptch1 underlies evolution of bovine limbs.
Lopez-Rios, Javier; Duchesne, Amandine; Speziale, Dario; Andrey, Guillaume; Peterson, Kevin A; Germann, Philipp; Unal, Erkan; Liu, Jing; Floriot, Sandrine; Barbey, Sarah; Gallard, Yves; Müller-Gerbl, Magdalena; Courtney, Andrew D; Klopp, Christophe; Rodriguez, Sabrina; Ivanek, Robert; Beisel, Christian; Wicking, Carol; Iber, Dagmar; Robert, Benoit; McMahon, Andrew P; Duboule, Denis; Zeller, Rolf
2014-07-03
The large spectrum of limb morphologies reflects the wide evolutionary diversification of the basic pentadactyl pattern in tetrapods. In even-toed ungulates (artiodactyls, including cattle), limbs are adapted for running as a consequence of progressive reduction of their distal skeleton to symmetrical and elongated middle digits with hoofed phalanges. Here we analyse bovine embryos to establish that polarized gene expression is progressively lost during limb development in comparison to the mouse. Notably, the transcriptional upregulation of the Ptch1 gene, which encodes a Sonic hedgehog (SHH) receptor, is disrupted specifically in the bovine limb bud mesenchyme. This is due to evolutionary alteration of a Ptch1 cis-regulatory module, which no longer responds to graded SHH signalling during bovine handplate development. Our study provides a molecular explanation for the loss of digit asymmetry in bovine limb buds and suggests that modifications affecting the Ptch1 cis-regulatory landscape have contributed to evolutionary diversification of artiodactyl limbs.
Cheng, Sulin; Xu, Leiting; Nicholson, Patrick H F; Tylavsky, Frances; Lyytikäinen, Arja; Wang, Qingju; Suominen, Harri; Kujala, Urho M; Kröger, Heikki; Alen, Markku
2009-09-01
The aetiology of increased incidence of fracture during puberty is unclear. This study aimed to determine whether low volumetric bone mineral density (vBMD) in the distal radius is associated with upper-limb fractures in growing girls, and whether any such vBMD deficit persists into adulthood. Fracture history from birth to 20 years was obtained and verified by medical records in 1034 Finnish girls aged 10-13 years. Bone density and geometry at distal radius, biomarkers and lifestyle/behavioural factors were assessed in a subset of 396 girls with a 7.5-year follow-up. We found that fracture incidence peaked during puberty (relative risk 3.1 at age of 8-14 years compared to outside this age window), and 38% of fractures were in the upper-limb. Compared to the non-fracture cohort, girls who sustained upper-limb fracture at ages 8-14 years had lower distal radial vBMD at baseline (258.9+/-37.5 vs. 287.5+/-34.1 mg/cm(3), p=0.001), 1-year (252.0+/-29.3 vs. 282.6+/-33.5 mg/cm(3), p=0.001), 2-year (258.9+/-32.2 vs. 289.9+/-40.1 mg/cm(3), p=0.003), and 7-year follow-ups (early adulthood, 307.6+/-35.9 vs. 343.6+/-40.9 mg/cm(3), p=0.002). There was a consistent trend towards larger bone cross-sectional area in the fracture cohort compared to non-fracture. In a logistic regression model, lower vBMD (p=0.001) was the only significant predictor of upper-limb fracture during the period of 8-14 years. Our results indicate that low BMD is an important factor underlying elevated upper-limb fracture risk during puberty, and that low BMD in pubertal girls with fracture persists into adulthood. Hence low vBMD during childhood is not a transient deficit. Methods to monitor vBMD and to maximise bone mineral accrual and reduce risks of falling in childhood should be developed.
The differential diagnosis of the short-limbed dwarfs presenting at birth.
Mukherji, R. N.; Moss, P. D.
1977-01-01
Attention is drawn to the fact that in a number of types of short-limbed dwarfism a precise diagnosis can be made in the neonatal period. Examples are given and the prognostic and genetic implications are discussed. It is important to be able to advise parents of the likely outlook for the infant and of the genetic implication. Early diagnosis is therefore not merely an academic exercise. Images Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 10 Fig. 11 PMID:859790
Wang, Bin; Yang, Ruixiang; Ju, Qing; Liu, Shaofeng; Zhang, Yongchun; Ma, Yong
2016-11-01
The aim of the present study was to examine the clinical merits of joint application of β-sodium aescinate and mannitol for the treatment of early swelling of upper limb trauma after surgery. We verified whether the expression of serum aquaporin 1 (AQP-1) was involved in swelling mechanism. A total of 102 patients with swelling after upper limb trauma surgery were enrolled into the study and divided randomly into 3 groups (n=34 cases per group). Group A was treated with β-sodium aescinate; group B was treated with with mannitol and group C was treated with both β-sodium aescinate and mannitol. The expression level of AQP-1, and clinical effects and complications before and after treatment were compared§. The time of swelling subsidence in group C was significantly shorter than that of the other two groups and differences were statistically significant (P<0.05). The recovery ratio and total efficiency in group C were significantly higher than those in other two groups and differences were statistically significant (P<0.05). Three and seven days after treatment, the AQP-1 levels in group A and group C were decreased and AQP-1 level decreased further with time. Differences of comparison within groups were statistically significant (P<0.05), although the differences of comparison between the groups showed no statistical significance (P>0.05). We also compared the AQP-1 level in group B before and after treatment, and the differences were not statistically significant (P>0.05). When the complication incidence in the 3 groups was compared, no statistical significance was detected (P>0.05). We concluded that the joint use of β-sodium aescinate and mannitol in treating early swelling after upper limb trauma surgery produced satisfactory outcomes. This might be related to reduction of the AQP-1 level.
Lmx1b-targeted cis-regulatory modules involved in limb dorsalization.
Haro, Endika; Watson, Billy A; Feenstra, Jennifer M; Tegeler, Luke; Pira, Charmaine U; Mohan, Subburaman; Oberg, Kerby C
2017-06-01
Lmx1b is a homeodomain transcription factor responsible for limb dorsalization. Despite striking double-ventral (loss-of-function) and double-dorsal (gain-of-function) limb phenotypes, no direct gene targets in the limb have been confirmed. To determine direct targets, we performed a chromatin immunoprecipitation against Lmx1b in mouse limbs at embryonic day 12.5 followed by next-generation sequencing (ChIP-seq). Nearly 84% ( n =617) of the Lmx1b-bound genomic intervals (LBIs) identified overlap with chromatin regulatory marks indicative of potential cis -regulatory modules (PCRMs). In addition, 73 LBIs mapped to CRMs that are known to be active during limb development. We compared Lmx1b-bound PCRMs with genes regulated by Lmx1b and found 292 PCRMs within 1 Mb of 254 Lmx1b-regulated genes. Gene ontological analysis suggests that Lmx1b targets extracellular matrix production, bone/joint formation, axonal guidance, vascular development, cell proliferation and cell movement. We validated the functional activity of a PCRM associated with joint-related Gdf5 that provides a mechanism for Lmx1b-mediated joint modification and a PCRM associated with Lmx1b that suggests a role in autoregulation. This is the first report to describe genome-wide Lmx1b binding during limb development, directly linking Lmx1b to targets that accomplish limb dorsalization. © 2017. Published by The Company of Biologists Ltd.
[Reha-Stepper locomotion therapy in early rehabilitation of paraplegic patients].
Rupp, R; Eberhard, S; Schreier, R; Colombo, G
2002-01-01
Treadmill training with partial body weight support was shown to significantly improve the constitution and gait capacity of incomplete spinal cord injured (SCI) persons. The main requirement for application of this therapy is a sufficient capacity of the cardiovascular system. Most of the SCI patients do not comply with this requirement in the first few weeks after spinal cord injury, where spinal reflexes are frequently missing (spinal shock). To offer SCI patients a locomotion therapy at this early stage of rehabilitation we developed a novel, active tilt-table, the Reha-Stepper, that moves the lower limbs in an almost physiological manner in terms of kinematic and kinetic parameters. The tilt of the device can be continuously increased from horizontal to almost upright position adapted to the status of the patient.
Satoh, Akira; Hirata, Ayako; Makanae, Aki
2012-03-01
Amphibians can regenerate missing body parts, including limbs. The regulation of collagen has been considered to be important in limb regeneration. Collagen deposition is suppressed during limb regeneration, so we investigated collagen deposition and apical epithelial cap (AEC) formation during axolotl limb regeneration. The accessory limb model (ALM) has been developed as an alternative model for studying limb regeneration. Using this model, we investigated the relationship between nerves, epidermis, and collagen deposition. We found that Sp-9, an AEC marker gene, was upregulated by direct interaction between nerves and epidermis. However, collagen deposition hindered this interaction, and resulted in the failure of limb regeneration. During wound healing, an increase in deposition of collagen caused a decrease in the blastema induction rate in ALM. Wound healing and limb regeneration are alternate processes.
Woods, C G; Stricker, S; Seemann, P; Stern, R; Cox, J; Sherridan, E; Roberts, E; Springell, K; Scott, S; Karbani, G; Sharif, S M; Toomes, C; Bond, J; Kumar, D; Al-Gazali, L; Mundlos, S
2006-08-01
Fuhrmann syndrome and the Al-Awadi/Raas-Rothschild/Schinzel phocomelia syndrome are considered to be distinct limb-malformation disorders characterized by various degrees of limb aplasia/hypoplasia and joint dysplasia in humans. In families with these syndromes, we found homozygous missense mutations in the dorsoventral-patterning gene WNT7A and confirmed their functional significance in retroviral-mediated transfection of chicken mesenchyme cell cultures and developing limbs. The results suggest that a partial loss of WNT7A function causes Fuhrmann syndrome (and a phenotype similar to mouse Wnt7a knockout), whereas the more-severe limb truncation phenotypes observed in Al-Awadi/Raas-Rothschild/Schinzel phocomelia syndrome result from null mutations (and cause a phenotype similar to mouse Shh knockout). These findings illustrate the specific and conserved importance of WNT7A in multiple aspects of vertebrate limb development.
Woods, C. G.; Stricker, S.; Seemann, P.; Stern, R.; Cox, J.; Sherridan, E.; Roberts, E.; Springell, K.; Scott, S.; Karbani, G.; Sharif, S. M.; Toomes, C.; Bond, J.; Kumar, D.; Al-Gazali, L.; Mundlos, S.
2006-01-01
Fuhrmann syndrome and the Al-Awadi/Raas-Rothschild/Schinzel phocomelia syndrome are considered to be distinct limb-malformation disorders characterized by various degrees of limb aplasia/hypoplasia and joint dysplasia in humans. In families with these syndromes, we found homozygous missense mutations in the dorsoventral-patterning gene WNT7A and confirmed their functional significance in retroviral-mediated transfection of chicken mesenchyme cell cultures and developing limbs. The results suggest that a partial loss of WNT7A function causes Fuhrmann syndrome (and a phenotype similar to mouse Wnt7a knockout), whereas the more-severe limb truncation phenotypes observed in Al-Awadi/Raas-Rothschild/Schinzel phocomelia syndrome result from null mutations (and cause a phenotype similar to mouse Shh knockout). These findings illustrate the specific and conserved importance of WNT7A in multiple aspects of vertebrate limb development. PMID:16826533
Caspase inhibition supports proper gene expression in ex vivo mouse limb cultures.
De Valck, D; Luyten, F P
2001-10-01
We standardized conditions for ex vivo mouse limb culture to study cartilage maturation and joint formation. We compared 12.5 d.p.c. mouse forelimbs that were cultured either mounted or freely rotating for up to 72 h. Limb outgrowth progressed ex vivo at a variable rate as compared to its development in vivo, spanning approximately 48 h. Although cartilage maturation and joint formation developed grossly normal, aberrant expression of skeletal marker genes was seen. Interestingly, no regression of the interdigital webs took place in mounted cultures, in contrast to limited webbing under freely rotating conditions. Caspase inhibition, by addition of zVAD-fmk to the culture medium of freely rotating limbs, supported proper gene expression associated with skeletal development, and prevented interdigital web regression. Taken together, a freely rotating ex vivo culture for mouse limb outgrowth that is combined with caspase inhibition provides a good model to study cartilage maturation and joint formation.
Analysis of the intermediate size proteoglycans from the developing chick limb buds.
Vasan, N
1982-08-01
Limb-bud proteoglycans are heterogeneous molecules which vary in their chemical and physical properties with development. This report describes proteoglycan intermediates (PG-I) that predominate in stage-34 limbs, and compares them with proteoglycan aggregates (PG-A) in stage-38 limbs. We analysed proteoglycans and their components extracted with guanidinium chloride by subjecting them to density gradient centrifugation, molecular sieve chromatography, electrophoretic separation, and selective enzymatic degradation. PG-I and PG-A have similar chondroitin sulphate composition, amino sugars, chondroitin sulphate side-chain length, glycoprotein link factors, and hyaluronic acid binding capacity, and both cross react with antisera prepared against cartilage-specific chick sternal proteoglycans. However, PG-I has lower molecular weight, lower buoyant density, and fewer chondroitin sulphate side chains on the protein core. The PG-I in the developing limb can be considered a mixture of smaller aggregates and cartilage-specific large monomers in which the former predominate.
Prenatal development of the foot and ankle.
Bareither, D
1995-12-01
The general development of the lower limb and the specific development of the foot and ankle are discussed for each horizon in the embryonic and fetal periods of development. Lower limb general development is discussed only to the extent necessary for the understanding of foot and ankle development.
2014-01-01
Background The homology of the digits in the bird wing is a high-profile controversy in developmental and evolutionary biology. The embryonic position of the digits cartilages with respect to the primary axis (ulnare and ulna) corresponds to 2, 3, 4, but comparative-evolutionary morphology supports 1, 2, 3. A homeotic frameshift of digit identity in evolution could explain how cells in embryonic positions 2, 3, 4 began developing morphologies 1, 2, 3. Another alternative is that no re-patterning of cell fates occurred, and the primary axis shifted its position by some other mechanism. In the wing, only the anterior digit lacks expression of HoxD10 and HoxD12, resembling digit 1 of other limbs, as predicted by 1, 2, 3. However, upon loss of digit 1 in evolution, the most anterior digit 2 could have lost their expression, deceitfully resembling a digit 1. To test this notion, we observed HoxD10 and HoxD12 in a limb where digit 2 is the most anterior digit: The rabbit foot. We also explored whether early inhibition of Shh signalling in the embryonic wing bud induces an experimental homeotic frameshift, or an experimental axis shift. We tested these hypotheses using DiI injections to study the fate of cells in these experimental wings. Results We found strong transcription of HoxD10 and HoxD12 was present in the most anterior digit 2 of the rabbit foot. Thus, we found no evidence to question the use of HoxD expression as support for 1, 2, 3. When Shh signalling in early wing buds is inhibited, our fate maps demonstrate that an experimental homeotic frameshift is induced. Conclusion Along with comparative morphology, HoxD expression provides strong support for 1, 2, 3 identity of wing digits. As an explanation for the offset 2, 3, 4 embryological position, the homeotic frameshift hypothesis is consistent with known mechanisms of limb development, and further proven to be experimentally possible. In contrast, the underlying mechanisms and experimental plausibility of an axis shift remain unclear. PMID:24725625
Salinas-Saavedra, Miguel; Gonzalez-Cabrera, Cristian; Ossa-Fuentes, Luis; Botelho, Joao F; Ruiz-Flores, Macarena; Vargas, Alexander O
2014-04-12
The homology of the digits in the bird wing is a high-profile controversy in developmental and evolutionary biology. The embryonic position of the digits cartilages with respect to the primary axis (ulnare and ulna) corresponds to 2, 3, 4, but comparative-evolutionary morphology supports 1, 2, 3. A homeotic frameshift of digit identity in evolution could explain how cells in embryonic positions 2, 3, 4 began developing morphologies 1, 2, 3. Another alternative is that no re-patterning of cell fates occurred, and the primary axis shifted its position by some other mechanism. In the wing, only the anterior digit lacks expression of HoxD10 and HoxD12, resembling digit 1 of other limbs, as predicted by 1, 2, 3. However, upon loss of digit 1 in evolution, the most anterior digit 2 could have lost their expression, deceitfully resembling a digit 1. To test this notion, we observed HoxD10 and HoxD12 in a limb where digit 2 is the most anterior digit: The rabbit foot. We also explored whether early inhibition of Shh signalling in the embryonic wing bud induces an experimental homeotic frameshift, or an experimental axis shift. We tested these hypotheses using DiI injections to study the fate of cells in these experimental wings. We found strong transcription of HoxD10 and HoxD12 was present in the most anterior digit 2 of the rabbit foot. Thus, we found no evidence to question the use of HoxD expression as support for 1, 2, 3. When Shh signalling in early wing buds is inhibited, our fate maps demonstrate that an experimental homeotic frameshift is induced. Along with comparative morphology, HoxD expression provides strong support for 1, 2, 3 identity of wing digits. As an explanation for the offset 2, 3, 4 embryological position, the homeotic frameshift hypothesis is consistent with known mechanisms of limb development, and further proven to be experimentally possible. In contrast, the underlying mechanisms and experimental plausibility of an axis shift remain unclear.
MacDermot, K D; Winter, R M; Wigglesworth, J S; Strobel, S
1991-01-01
We report two patients with severe combined immunodeficiency and short stature/short limb skeletal dysplasia. Case 1 presented at birth with rhizomelic shortening of the extremities and bowing of the femora. She developed clinical signs of severe combined immunodeficiency at 13 months and died at 21 months. Case 2 had severe prenatal shortening and bowing of the extremities and a small, malformed chest. Symptoms of severe combined immunodeficiency and severe failure to thrive developed soon after birth and she died at 5 months. The diagnosis of severe combined immunodeficiency in our patients was based on their clinical course and necropsy findings, supported in case 1 by the results of immune function tests. The results of investigation of immune function (immunoglobulins, lymphocyte subpopulations, lymphocyte function) are very variable in this syndrome as in other variants of severe combined immunodeficiency. Bone histopathology in both patients showed grossly irregular costochondral junctions, but normal transition of proliferating to hypertrophic chondrocytes. These cases belong to early lethal type 1 short limb skeletal dysplasia with severe combined immunodeficiency. Review of previously published cases with severe combined immunodeficiency and well documented skeletal findings show eight patients with prenatal onset of bowing and shortening of the extremities and metaphyseal abnormalities. These include two sib pairs concordant for the skeletal changes. In these cases, adenosine deaminase levels were not reported. An additional four published cases with associated adenosine deaminase deficiency had only mild metaphyseal abnormalities, but subsequently showed no linear growth.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:1999827
Yuan, Yin; Xu, Xiu-yue; Lao, Jie; Zhao, Xin
2018-01-01
Nerve transfer is the most common treatment for total brachial plexus avulsion injury. After nerve transfer, the movement of the injured limb may be activated by certain movements of the healthy limb at the early stage of recovery, i.e., trans-hemispheric reorganization. Previous studies have focused on functional magnetic resonance imaging and changes in brain-derived neurotrophic factor and growth associated protein 43, but there have been no proteomics studies. In this study, we designed a rat model of total brachial plexus avulsion injury involving contralateral C7 nerve transfer. Isobaric tags for relative and absolute quantitation and western blot assay were then used to screen differentially expressed proteins in bilateral motor cortices. We found that most differentially expressed proteins in both cortices of upper limb were associated with nervous system development and function (including neuron differentiation and development, axonogenesis, and guidance), microtubule and cytoskeleton organization, synapse plasticity, and transmission of nerve impulses. Two key differentially expressed proteins, neurofilament light (NFL) and Thy-1, were identified. In contralateral cortex, the NFL level was upregulated 2 weeks after transfer and downregulated at 1 and 5 months. The Thy-1 level was upregulated from 1 to 5 months. In the affected cortex, the NFL level increased gradually from 1 to 5 months. Western blot results of key differentially expressed proteins were consistent with the proteomic findings. These results indicate that NFL and Thy-1 play an important role in trans-hemispheric organization following total brachial plexus root avulsion and contralateral C7 nerve transfer. PMID:29557385
Development of upper limb prostheses: current progress and areas for growth.
González-Fernández, Marlís
2014-06-01
Upper extremity prosthetic technology has significantly changed in recent years. The devices available and those under development are more and more able to approximate the function of the lost limb; however, other challenges remain. This article provides a brief perspective on the most advanced upper limb prostheses available and the challenges present for continued development of the technology. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Clinical practice guidelines for the management of acute limb compartment syndrome following trauma.
Wall, Christopher J; Lynch, Joan; Harris, Ian A; Richardson, Martin D; Brand, Caroline; Lowe, Adrian J; Sugrue, Michael
2010-03-01
Acute compartment syndrome is a serious and not uncommon complication of limb trauma. The condition is a surgical emergency, and is associated with significant morbidity if not managed appropriately. There is variation in management of acute limb compartment syndrome in Australia. Clinical practice guidelines for the management of acute limb compartment syndrome following trauma were developed in accordance with Australian National Health and Medical Research Council recommendations. The guidelines were based on critically appraised literature evidence and the consensus opinion of a multidisciplinary team involved in trauma management who met in a nominal panel process. Recommendations were developed for key decision nodes in the patient care pathway, including methods of diagnosis in alert and unconscious patients, appropriate assessment of compartment pressure, timing and technique of fasciotomy, fasciotomy wound management, and prevention of compartment syndrome in patients with limb injuries. The recommendations were largely consensus based in the absence of well-designed clinical trial evidence. Clinical practice guidelines for the management of acute limb compartment syndrome following trauma have been developed that will support consistency in management and optimize patient health outcomes.
Matsumoto, Kazu; Li, Yingcui; Jakuba, Caroline; Sugiyama, Yoshinori; Sayo, Tetsuya; Okuno, Misako; Dealy, Caroline N; Toole, Bryan P; Takeda, Junji; Yamaguchi, Yu; Kosher, Robert A
2009-08-01
The glycosaminoglycan hyaluronan (HA) is a structural component of extracellular matrices and also interacts with cell surface receptors to directly influence cell behavior. To explore functions of HA in limb skeletal development, we conditionally inactivated the gene for HA synthase 2, Has2, in limb bud mesoderm using mice that harbor a floxed allele of Has2 and mice carrying a limb mesoderm-specific Prx1-Cre transgene. The skeletal elements of Has2-deficient limbs are severely shortened, indicating that HA is essential for normal longitudinal growth of all limb skeletal elements. Proximal phalanges are duplicated in Has2 mutant limbs indicating an involvement of HA in patterning specific portions of the digits. The growth plates of Has2-deficient skeletal elements are severely abnormal and disorganized, with a decrease in the deposition of aggrecan in the matrix and a disruption in normal columnar cellular relationships. Furthermore, there is a striking reduction in the number of hypertrophic chondrocytes and in the expression domains of markers of hypertrophic differentiation in the mutant growth plates, indicating that HA is necessary for the normal progression of chondrocyte maturation. In addition, secondary ossification centers do not form in the central regions of Has2 mutant growth plates owing to a failure of hypertrophic differentiation. In addition to skeletal defects, the formation of synovial joint cavities is defective in Has2-deficient limbs. Taken together, our results demonstrate that HA has a crucial role in skeletal growth, patterning, chondrocyte maturation and synovial joint formation in the developing limb.
Smania, N; Gambarin, M; Paolucci, S; Girardi, P; Bortolami, M; Fiaschi, A; Santilli, V; Picelli, A
2011-09-01
Lower limb paresis is one of the main determinants of postural transferring, standing and walking disability in patients with stroke. Early prognosis of recovery of lower limb function and of related functional disability is an important issue in neurorehabilitation clinical practice. Aim of this study was to assess the relationship between active ankle dorsiflexion and the Mingazzini manoeuvre with the prognosis of lower limb function and of postural transferring, standing and walking ability in patients with stroke. This was a longitudinal study with prospectively collected data. University hospital. The study included 53 patients with first unilateral brain ischemic stroke. Patients were evaluated initially (mean 4.02 days) and approximately at six months (mean 178.6 days) after stroke. Initial assessment included active ankle dorsiflexion and the Mingazzini manoeuvre. The assessment after six months included three outcome measures evaluating the rate of improvement of lower limb function and of postural transferring, standing and walking ability (Postural Assessment Scale for Stroke patients, Functional Ambulation Category, Motricity Index leg subtest). The active ankle dorsiflexion showed to be related with the prognosis of lower limb function and of walking ability, while the Mingazzini manoeuvre was related with the improvement of postural transferring and standing ability. Active ankle dorsiflexion and the Mingazzini manoeuvre are related with the prognosis of lower limb function and of postural transferring, standing and walking ability in patients with stroke. These simple bedside tests give a picture of improvement potential of motor activities connected to lower limb function in patients with acute stroke.
Stabilization of cat paw trajectory during locomotion
Klishko, Alexander N.; Farrell, Bradley J.; Beloozerova, Irina N.; Latash, Mark L.
2014-01-01
We investigated which of cat limb kinematic variables during swing of regular walking and accurate stepping along a horizontal ladder are stabilized by coordinated changes of limb segment angles. Three hypotheses were tested: 1) animals stabilize the entire swing trajectory of specific kinematic variables (performance variables); and 2) the level of trajectory stabilization is similar between regular and ladder walking and 3) is higher for forelimbs compared with hindlimbs. We used the framework of the uncontrolled manifold (UCM) hypothesis to quantify the structure of variance of limb kinematics in the limb segment orientation space across steps. Two components of variance were quantified for each potential performance variable, one of which affected it (“bad variance,” variance orthogonal to the UCM, VORT) while the other one did not (“good variance,” variance within the UCM, VUCM). The analysis of five candidate performance variables revealed that cats during both locomotor behaviors stabilize 1) paw vertical position during the entire swing (VUCM > VORT, except in mid-hindpaw swing of ladder walking) and 2) horizontal paw position in initial and terminal swing (except for the entire forepaw swing of regular walking). We also found that the limb length was typically stabilized in midswing, whereas limb orientation was not (VUCM ≤ VORT) for both limbs and behaviors during entire swing. We conclude that stabilization of paw position in early and terminal swing enables accurate and stable locomotion, while stabilization of vertical paw position in midswing helps paw clearance. This study is the first to demonstrate the applicability of the UCM-based analysis to nonhuman movement. PMID:24899676
Al-Hilli, Ali Bakir; Salih, Dheyaa Saeed
2010-01-01
Background Compound limb fractures due to high-velocity missiles are complex and usually associated with multiple other injuries. These can occur in both military and civilian settings. Highvelocity missiles are presently used by terrorists worldwide. Early surgical debridement and skeletal fixation are the gold standards in managing these injuries, but data supporting these recommendations are lacking. Aim of the study Our aim was to determine the relationship between time (the time of injury to the time of surgical treatment) and the rate of deep infection in patients treated in Medical City, Baghdad, Iraq due to terrorist activity from 2004-2008. Design This is a retrospective review of a series of open limb fractures. Patients and method A total of 102 civilian patients with 114 limb fractures due to high-velocity missile injuries were selected for this study from Medical City records. Patients were followed in the outpatient department in Medical City Teaching Complex both clinically and radiologically. Results Surgical treatment was accomplished in less than six hours from time of injury in group A (55 fractures, 48.4%) and more than six hours in group B (59 fractures, 51.7%). The infection rate for group A was 30.9% and group B was 23.7%. Conclusion A very high infection rate was noted for these injuries, and there was no increase in the rate of deep infection in patients treated more than six hours after the injury. PMID:21045979
Custom rotating hinge total knee arthroplasty in patients with poliomyelitis affected limbs.
Rahman, Jeeshan; Hanna, Sammy A; Kayani, Babar; Miles, Jonathan; Pollock, Robin C; Skinner, John A; Briggs, Timothy W; Carrington, Richard W
2015-05-01
Total knee arthroplasty (TKA) in limbs affected by poliomyelitis is a technically challenging procedure. These patients often demonstrate acquired articular and metaphyseal angular deformities, bone loss, narrowness of the intramedullary canals, impaired quadriceps strength, flexion contractures and ligamentous laxity producing painful hyperextension. Thus, using condylar knee designs in these patients will likely result in early failure because of instability and abnormal load distribution. The aim of this study was to assess the outcomes associated with use of the customised (SMILES) rotating-hinge knee system at our institution for TKA in poliomyelitis-affected limbs. We retrospectively reviewed the outcome of 14 TKAs using the (SMILES) prosthesis in 13 patients with limbs affected by poliomyelitis. All patients had painful unstable knees with hyperextension. There were ten females and three males with a mean age of 66 years (range 51-84) at time of surgery. Patients were followed up clinically, radiologically and functionally with the Oxford knee score (OKS). Mean follow-up was 72 months (16-156). There were no immediate or early complications. One patient fell and sustained a peri-prosthetic fracture at seven months requiring revision to a longer stem. Radiological evaluation showed satisfactory alignment with no signs of loosening in all cases. Mean OKS improved from 11.6 (4-18) to 31.5 (18-40) postoperatively (p < 0.001). The rotating hinge (SMILES) prosthesis is effective at relieving pain and improving function in patients with poliomyelitis. The device compensates well for ligamentous insufficiency as well as for any associated bony deformity.
Yoshida, Yuri; Mizner, Ryan L.; Snyder-Mackler, Lynn
2013-01-01
INTRODUCTION Quadriceps weakness is one of the primary post-operative impairments that persist long term for patients after total knee arthroplasty (TKA). We hypothesized that early gait muscle recruitment patterns of the quadriceps and hamstrings with diminished knee performance at 3 months after surgery would be related to long-term quadriceps strength at one year after TKA. METHODS Twenty-one subjects who underwent primary unilateral TKA and 14 age-matched healthy controls were analyzed. At three months after TKA, the maximum voluntary isometric contraction of quadriceps and a comprehensive gait analysis were performed. Quadriceps strength was assessed again at one year after surgery. RESULTS Quadriceps muscle recruitment of the operated limb was greater than the non-operated limb during the loading response of gait (p=0.03), but there were no significant differences in hamstring recruitment or co-contraction between limbs (p>0.05). There were significant differences in quadriceps muscle recruitment during gait between the non-operated limb of TKA group and healthy control group (p<0.05). The TKA group showed a significant inverse relationship between one year quadriceps strength and co-contraction (r = −0.543) and hamstring muscle recruitment (r = −0.480) during loading response at 3 months after TKA. CONCLUSIONS The results revealed a reverse relationship where stronger patients tended to demonstrate lower quadriceps recruitment at 3 months post-surgery that was not observed in the healthy peer group. The altered neuromuscular patterns of quadriceps and hamstrings during gait may influence chronic quadriceps strength in individuals after TKA. PMID:23352711
The Quest toward limb regeneration: a regenerative engineering approach
Laurencin, Cato T.; Nair, Lakshmi S.
2016-01-01
The Holy Grail to address the clinical grand challenge of human limb loss is to develop innovative strategies to regrow the amputated limb. The remarkable advances in the scientific understanding of regeneration, stem cell science, material science and engineering, physics and novel surgical approaches in the past few decades have provided a regenerative tool box to face this grand challenge and address the limitations of human wound healing. Here we discuss the convergence approach put forward by the field of Regenerative Engineering to use the regenerative tool box to design and develop novel translational strategies to limb regeneration. PMID:27047679
Network based transcription factor analysis of regenerating axolotl limbs
2011-01-01
Background Studies on amphibian limb regeneration began in the early 1700's but we still do not completely understand the cellular and molecular events of this unique process. Understanding a complex biological process such as limb regeneration is more complicated than the knowledge of the individual genes or proteins involved. Here we followed a systems biology approach in an effort to construct the networks and pathways of protein interactions involved in formation of the accumulation blastema in regenerating axolotl limbs. Results We used the human orthologs of proteins previously identified by our research team as bait to identify the transcription factor (TF) pathways and networks that regulate blastema formation in amputated axolotl limbs. The five most connected factors, c-Myc, SP1, HNF4A, ESR1 and p53 regulate ~50% of the proteins in our data. Among these, c-Myc and SP1 regulate 36.2% of the proteins. c-Myc was the most highly connected TF (71 targets). Network analysis showed that TGF-β1 and fibronectin (FN) lead to the activation of these TFs. We found that other TFs known to be involved in epigenetic reprogramming, such as Klf4, Oct4, and Lin28 are also connected to c-Myc and SP1. Conclusions Our study provides a systems biology approach to how different molecular entities inter-connect with each other during the formation of an accumulation blastema in regenerating axolotl limbs. This approach provides an in silico methodology to identify proteins that are not detected by experimental methods such as proteomics but are potentially important to blastema formation. We found that the TFs, c-Myc and SP1 and their target genes could potentially play a central role in limb regeneration. Systems biology has the potential to map out numerous other pathways that are crucial to blastema formation in regeneration-competent limbs, to compare these to the pathways that characterize regeneration-deficient limbs and finally, to identify stem cell markers in regeneration. PMID:21418574
Meyns, Pieter; Molenaers, Guy; Duysens, Jacques; Jonkers, Ilse
2017-01-01
Background: We aimed to study the contribution of upper limb movements to propulsion during walking in typically developing (TD) children ( n = 5) and children with hemiplegic and diplegic cerebral palsy (CP; n = 5 and n = 4, respectively). Methods: Using integrated three-dimensional motion capture data and a scaled generic musculoskeletal model that included upper limbs, we generated torque driven simulations of gait in OpenSim. Induced acceleration analyses were then used to determine the contributions of the individual actuators located at the relevant degrees of freedoms of the upper and lower limb joints to the forward acceleration of the COM at each time point of the gait simulation. The mean values of the contribution of the actuators of upper limbs, lower limbs, and gravity in different phases of the gait cycle were compared between the three groups. Findings: The results indicated a limited contribution of the upper limb actuators to COM forward acceleration compared to the contribution of lower limbs and gravity, in the three groups. In diplegic CP, the contribution of the upper limbs seemed larger compared to TD during the preswing and swing phases of gait. In hemiplegic CP, the unaffected arm seemed to contribute more to COM deceleration during (pre)swing, while the affected side contributed to COM acceleration. Interpretation: These findings suggest that in the presence of lower limb dysfunction, the contribution of the upper limbs to forward propulsion is altered, although they remain negligible compared to the lower limbs and gravity.
Kozlov, V K; Akhmedov, B G; Chililov, A M
To increase an efficiency of complex treatment of patients with diaphyseal gunshot fractures of long bones by introduction of modern minimally invasive surgical techniques of internal osteosynthesis into clinical practice of civil health care and to improve the outcomes in victims. Prospective comparative clinical trial included 104 victims from the Republic of Yemen with gunshot wounds of limbs of various severity for the period 2009-2011. There were diaphyseal fractures of long bones of limbs associated with soft tissue injuries. Men were predominant (80.7%). Age ranged from 15 to 80 years (mean 38,5 ± 5,7 years). Various surgical techniques of simultaneous and staged treatment were used for gunshot fractures of long bones of limbs. Additional immune therapy was prescribed to prevent infectious complications in the most severe cases. Victims were comprehensively treated according to different staged treatment: conventional surgical treatment with external fixation devices or early primary minimally invasive functionally stable osteosynthesis with LCP/BIOS plates were applied for low-energy fractures; in case of high-energy fractures the first stage included external fixation devices deployment followed by their subsequent replacement during delayed minimally invasive osteosynthesis. The essence of improvement is pursuit to simultaneous minimally invasive surgery by using of current plates for osteosynthesis and preventive immunotherapy of immune dysfunction to eliminate infectious complications. As a result, we obtained 2-fold decrease of surgical invasiveness (r≤0,01) and hospital-stay (r≤0,01). Repeated osteosynthesis was not made. Also 4-fold and 40-fold reduction of infectious and noninfectious complications was observed. This management was accompanied by reduced rehabilitation tine and significantly improved quality of life. Improved technique and algorithm of complex treatment of diaphyseal gunshot fractures of long bones of limbs were described. Early minimally invasive functionally stable osteosynthesis with modern implants and non-specific immune prevention of infectious complications are more effective and economically justified compared with conventional treatment including external fixation devices without immunoactive therapy.
Sudden death in spondylo-meta-epiphyseal dysplasia, short limb-abnormal calcification type.
Dias, Cristina; Cairns, Robyn; Patel, Millan S
2009-01-01
The spondylo-meta-epiphyseal dysplasias are an expanding group of skeletal dysplasias with specific features differentiating each subtype. We review the precocious carpal mineralization, unique metacarpal shape, triangular distal phalanges and mushroom cloud-shaped proximal phalanges present at an early age in spondylo-meta-epiphyseal dysplasia, short limb-abnormal calcification type (SMED SL-AC) and report two patients with clinical and radiographic features consistent with SMED SL-AC, who died suddenly because of spinal cord compression. The patients presented are female siblings, providing further evidence for autosomal recessive inheritance. Cervical cord compression is found in half of reported patients and is the major cause of mortality. SMED SL-AC should be added to the list of genetic causes of sudden death. Radiological features in the hand may be used in the first few years of life to support an early diagnosis and thus allow for prevention of premature demise.
Druzhinin, V N; Shardakova, É F; Cherniĭ, A N
2014-01-01
The studies using multiple X-ray methods covered influence of complex containing working process and occupational environment factors on locomotory apparatus of upper limbs and cervical spine in female seamers engaged into various productions. Comparative analysis involved results of regular (standard X-ray) and special X-ray methods (stereoroentgenography, high definition roentgenography, roentgen densitometry, roentgenogrammetry) in 370 examinees with early and moderate clinical symptoms of occupationally mediated diseases of the stated areas. X-ray studies of locomotory apparatus of upper limbs and cervical spine in clothing manufacture workers, with special diagnostic methods, enabled to determine incidence and severity of functional and structural changes more reliably than via standard examination. The changes revealed were assigned mostly in "early" and "moderate" categories and matched with occupational peculiarities of the workers examined.
Phantom penis: historical dimensions.
Wade, Nicholas J; Finger, Stanley
2010-10-01
Interest in sensations from removed body parts other than limbs has increased with modern surgical techniques. This applies particularly to operations (e.g., gender-changing surgeries) that have resulted in phantom genitalia. The impression given in modern accounts, especially those dealing with phantoms associated with penis amputation, is that this is a recently discovered phenomenon. Yet the historical record reveals several cases of phantom penises dating from the late-eighteenth century and the early-nineteenth century. These cases, recorded by some of the leading medical and surgical figures of the era, are of considerable historical and theoretical significance. This is partly because these phantoms were associated with pleasurable sensations, in contrast to the loss of a limb, which for centuries had been associated with painful phantoms. We here present several early reports on phantom penile sensations, with the intent of showing what had been described and why more than 200 years ago.
Biji, K. P.; Sunil, M.; Ramadas, K. T.
2017-01-01
Background: Hypobaric spinal anesthesia is advantageous for unilateral lower extremity fractures as it obviates pain of lying on fractured limb for performing subarachnoid block. Aims: This study compares block characteristics and complications of three different baricities of constant dose intrathecal hypobaric levobupivacaine to determine an optimum baricity. Settings and Design: One-twenty American Society of Anesthesiologists Physical Status 1 and 2 patients aged 18–65 years undergoing unilateral lower limb surgeries were divided into three equal groups for this prospective cohort study. Materials and Methods: To 2 mL intrathecal 0.5% isobaric levobupivacaine (10 mg), 0.4 mL, 0.6 mL, and 0.8 mL of distilled water were added in Groups A, B, and C, respectively. Baricities of Groups A, B, and C are 0.999294, 0.998945, and 0.998806, respectively. Development of sensory and motor block was assessed by the pinprick method and Bromage scale, respectively. The total duration of analgesia and complications were noted. Statistical Analysis Used: Mean, standard error, one-way ANOVA, and Bonferroni were used to analyze quantitative variables; proportions and Chi-square tests for qualitative variables. Results: Demographic parameters, motor block of operated limb, and complications were comparable. Group C had the fastest onset of sensory block (10.10 min) and maximum duration of analgesia (478.97 min; P < 0.001); but high sensory levels in 48.7%. Group B had T10 sensory level in 92.5%; onset comparable to Group C (P = 0.248), and reasonable duration of analgesia (332.50 min). Group A had inadequate sensory levels, slow onset, and early regression. Conclusions: Group B (baricity - 0.998945) has better block characteristics among three groups compared. PMID:28928563
Biji, K P; Sunil, M; Ramadas, K T
2017-01-01
Hypobaric spinal anesthesia is advantageous for unilateral lower extremity fractures as it obviates pain of lying on fractured limb for performing subarachnoid block. This study compares block characteristics and complications of three different baricities of constant dose intrathecal hypobaric levobupivacaine to determine an optimum baricity. One-twenty American Society of Anesthesiologists Physical Status 1 and 2 patients aged 18-65 years undergoing unilateral lower limb surgeries were divided into three equal groups for this prospective cohort study. To 2 mL intrathecal 0.5% isobaric levobupivacaine (10 mg), 0.4 mL, 0.6 mL, and 0.8 mL of distilled water were added in Groups A, B, and C, respectively. Baricities of Groups A, B, and C are 0.999294, 0.998945, and 0.998806, respectively. Development of sensory and motor block was assessed by the pinprick method and Bromage scale, respectively. The total duration of analgesia and complications were noted. Mean, standard error, one-way ANOVA, and Bonferroni were used to analyze quantitative variables; proportions and Chi-square tests for qualitative variables. Demographic parameters, motor block of operated limb, and complications were comparable. Group C had the fastest onset of sensory block (10.10 min) and maximum duration of analgesia (478.97 min; P < 0.001); but high sensory levels in 48.7%. Group B had T 10 sensory level in 92.5%; onset comparable to Group C ( P = 0.248), and reasonable duration of analgesia (332.50 min). Group A had inadequate sensory levels, slow onset, and early regression. Group B (baricity - 0.998945) has better block characteristics among three groups compared.
Constitutive stimulatory G protein activity in limb mesenchyme impairs bone growth.
Karaca, Anara; Malladi, Vijayram Reddy; Zhu, Yan; Tafaj, Olta; Paltrinieri, Elena; Wu, Joy Y; He, Qing; Bastepe, Murat
2018-05-01
GNAS mutations leading to constitutively active stimulatory G protein alpha-subunit (Gsα) cause different tumors, fibrous dysplasia of bone, and McCune-Albright syndrome, which are typically not associated with short stature. Enhanced signaling of the parathyroid hormone/parathyroid hormone-related peptide receptor, which couples to multiple G proteins including Gsα, leads to short bones with delayed endochondral ossification. It has remained unknown whether constitutive Gsα activity also impairs bone growth. Here we generated mice expressing a constitutively active Gsα mutant (Gsα-R201H) conditionally upon Cre recombinase (cGsα R201H mice). Gsα-R201H was expressed in cultured bone marrow stromal cells from cGsα R201H mice upon adenoviral-Cre transduction. When crossed with mice in which Cre is expressed in a tamoxifen-regulatable fashion (CAGGCre-ER™), tamoxifen injection resulted in mosaic expression of the transgene in double mutant offspring. We then crossed the cGsα R201H mice with Prx1-Cre mice, in which Cre is expressed in early limb-bud mesenchyme. The double mutant offspring displayed short limbs at birth, with narrow hypertrophic chondrocyte zones in growth plates and delayed formation of secondary ossification center. Consistent with enhanced Gsα signaling, bone marrow stromal cells from these mice demonstrated increased levels of c-fos mRNA. Our findings indicate that constitutive Gsα activity during limb development disrupts endochondral ossification and bone growth. Given that Gsα haploinsufficiency also leads to short bones, as in patients with Albright's hereditary osteodystrophy, these results suggest that a tight control of Gsα activity is essential for normal growth plate physiology. Copyright © 2018 Elsevier Inc. All rights reserved.
Highsmith, M Jason; Kahle, Jason T; Klenow, Tyler D; Andrews, Casey R; Lewis, Katherine L; Bradley, Rachel C; Ward, Jessica M; Orriola, John J; Highsmith, James T
2016-09-01
Patients with lower extremity amputation (LEA) experience 65% more dermatologic issues than non-amputees, and skin problems are experienced by ≈75% of LEA patients who use prostheses. Continuously referring LEA patients to a dermatologist for every stump related skin condition may be impractical. Thus, physical rehabilitation professionals should be prepared to recognize and manage common non-emergent skin conditions in this population. The purpose of this study was to determine the quantity, quality, and strength of available evidence supporting treatment methods for prosthesis-related residual limb (RL) ulcers. Systematic literature review with evidence grading and synthesis of empirical evidence statements (EES) was employed. Three EESs were formulated describing ulcer etiology, conditions in which prosthetic continuance is practical, circumstances likely requiring prosthetic discontinuance, and the consideration of additional medical or surgical interventions. Continued prosthetic use is a viable option to manage minor or early-stage ulcerated residual limbs in compliant patients lacking multiple comorbidities. Prosthetic discontinuance is also a viable method of residual limb ulcer healing and may be favored in the presence of severe acute ulcerations, chronic heavy smoking, intractable pain, rapid volume and weight change, history of chronic ulceration, systemic infections, or advanced dysvascular etiology. Surgery or other interventions may also be necessary in such cases to achieve restored prosthetic ambulation. A short bout of prosthetic discontinuance with a staged re-introduction plan is another viable option that may be warranted in patients with ulceration due to poor RL volume management. High-quality prospective research with larger samples is needed to determine the most appropriate course of treatment when a person with LEA develops an RL ulcer that is associated with prosthetic use.
Weight-bearing asymmetries during Sit-To-Stand in patients with mild-to-moderate hip osteoarthritis.
Eitzen, Ingrid; Fernandes, Linda; Nordsletten, Lars; Snyder-Mackler, Lynn; Risberg, May Arna
2014-02-01
The Sit-To-Stand (STS) transition is a mechanically demanding task that may pose particular challenges for individuals with lower limb osteoarthritis (OA). Biomechanical features of STS have been investigated in patients with OA, but not in patients with early stage hip OA. The purpose of this study was to explore inter-limb weight-bearing asymmetries (WBA) and selected kinematic and kinetic variables during STS in patients with mild-to-moderate hip OA compared with healthy controls. Twenty-one hip OA patients and 23 controls were included in the study. Sagittal and frontal plane kinematic and kinetic data were collected using an eight-camera motion analysis system synchronized with two force plates embedded in the floor. There were no distinctive biomechanical alterations in sagittal or frontal plane kinematics or kinetics, movement time, or time to reach peak ground reaction force (GRF) in hip OA patients compared with controls. However, the hip OA patients revealed a distinct pattern of WBA compared with the controls, in unloading their involved limb by 18.4% at peak GRF. These findings indicate that patients with early stage hip OA are not yet forced into a stereotypical movement strategy for STS; however, the observed pattern of WBA requires clinical attention. Copyright © 2013 Elsevier B.V. All rights reserved.
Asymmetric bone adaptations to soleus mechanical loading after spinal cord injury
Dudley-Javoroski, S.; Shields, R.K.
2009-01-01
The purpose of this report is to examine longitudinal bone mineral density (BMD) changes in individuals with spinal cord injury (SCI) who began unilateral soleus electrical stimulation early after injury. Twelve men with SCI and seven without SCI underwent peripheral quantitative computed tomography assessment of distal tibia BMD. After 4.5 to 6 years of training, average trained limb BMD was 27.5% higher than untrained limb BMD. The training effect was more pronounced in the central core of the tibia cross-section (40.5% between-limb difference). No between-limb difference emerged in the anterior half of the tibia (19.2 mg/cm3 difference, p>0.05). A robust between-limb difference emerged in the posterior half of the tibia (76.1 mg/cm3 difference, p=0.0439). The posterior tibia BMD of one subject remained within the range of non-SCI values for 3.8 years post-SCI. The results support that the constrained orientation of soleus mechanical loads, administered over several years, elicited bone-sparing effects in the posterior tibia. This study provides a demonstration of the bone-protective potential of a carefully controlled dose of mechanical load. The specific orientation of applied mechanical loads may strongly influence the manifestation of BMD adaptations in humans with SCI. PMID:18799855
EFFECTS OF RETINOIC ACID AND ULTRAVIOLET RADIATION ON LIMB DEVELOPMENT IN ANURANS
Several recent studies suggest that the prevalence of limb abnormalities in North American anurans is elevated compared to historical records. These obsrvations have caused concern that environmental conditions are responsible for the increase through perturbation of normal limb ...
Venous compressions of the nerves in the lower limbs.
Artico, M; Stevanato, G; Ionta, B; Cesaroni, A; Bianchi, E; Morselli, C; Grippaudo, F R
2012-06-01
The lower limbs are frequently involved in neurovascular compression syndromes, owing to their anatomical, vascular and muscular characteristics and to the orthostatic position. These syndromes were identified by exclusion, using neuroimaging techniques and treated by microsurgical techniques. Eight patients with a neurovascular compression syndrome due to venous vascular lesions in the lower limbs (popliteal fossa, proximal and medial third of the inferior limb, tarsal tunnel) were selected. The symptomatology was characterized by pain, Tinel's sign, hyperalgesia, allodynia, numbness along the nerve course and foot weakness: all were exacerbated by the standing position, thus suggesting a neurovascular compression syndrome. Diagnostic tools comprised Doppler ultrasonography, Electromyography, CT 3D and MRI. Treatment consisted of microsurgery with neurovascular dissection. Following surgical treatment, rapid pain relief and a partial recovery of neurological deficits (including the ability to walk) was observed within 8-10 months. An early diagnosis of NCS using various neuroimaging techniques and prompt treatment may improve the response to surgical therapy. The aim of the case studies described is to improve understanding of these pathologies thus enabling correct clinical decisions.
Cranage, Simone; Banwell, Helen; Williams, Cylie M
2016-01-01
Paediatric gait and lower limb assessments are frequently undertaken in podiatry and physiotherapy clinical practice and this is a growing area of expertise within Australia. No concise paediatric standardised recording proforma exists to assist clinicians in clinical practice. The aim of this study was to develop a gait and lower limb standardised recording proforma guided by the literature and consensus, for assessment of the paediatric foot and lower limb in children aged 0-18 years. Expert Australian podiatrists and physiotherapists were invited to participate in a three round Delphi survey panel using the online Qualtrics(©) survey platform. The first round of the survey consisted of open-ended questions on paediatric gait and lower limb assessment developed from existing templates and a literature search of standardised lower limb assessment methods. Rounds two and three consisted of statements developed from the first round responses. Questions and statements were included in the final proforma if 70 % or more of the participants indicated consensus or agreement with the assessment method and if there was support within the literature for paediatric age-specific normative data with acceptable reliability of outcome measures. There were 17 of the 21 (81 %) participants who completed three rounds of the survey. Consensus was achieved for 41 statements in Round one, 54 statements achieved agreement in two subsequent rounds. Participants agreed on 95 statements relating to birth history, developmental history, hip measurement, rotation of the lower limb, ankle range of motion, foot posture, balance and gait. Assessments with acceptable validity and reliability were included within the final Gait and Lower Limb Observation of Paediatrics (GALLOP) proforma. The GALLOP proforma is a consensus based, systematic and standardised way to collect information and outcome measures in paediatric lower limb assessment. This standardised recording proforma will assist professions to collect information in a standardised format based on best evidence assessment methods whilst aiding consistency in communication between health professionals.
Matsumoto, Kazu; Li, Yingcui; Jakuba, Caroline; Sugiyama, Yoshinori; Sayo, Tetsuya; Okuno, Misako; Dealy, Caroline N.; Toole, Bryan P.; Takeda, Junji; Yamaguchi, Yu; Kosher, Robert A.
2009-01-01
Summary The glycosaminoglycan hyaluronan (HA) is a structural component of extracellular matrices and also interacts with cell surface receptors to directly influence cell behavior. To explore functions of HA in limb skeletal development, we conditionally inactivated the gene for HA synthase 2, Has2, in limb bud mesoderm using mice that harbor a floxed allele of Has2 and mice carrying a limb mesoderm-specific Prx1-Cre transgene. The skeletal elements of Has2-deficient limbs are severely shortened, indicating that HA is essential for normal longitudinal growth of all limb skeletal elements. Proximal phalanges are duplicated in Has2 mutant limbs indicating an involvement of HA in patterning specific portions of the digits. The growth plates of Has2-deficient skeletal elements are severely abnormal and disorganized, with a decrease in the deposition of aggrecan in the matrix and a disruption in normal columnar cellular relationships. Furthermore, there is a striking reduction in the number of hypertrophic chondrocytes and in the expression domains of markers of hypertrophic differentiation in the mutant growth plates, indicating that HA is necessary for the normal progression of chondrocyte maturation. In addition, secondary ossification centers do not form in the central regions of Has2 mutant growth plates owing to a failure of hypertrophic differentiation. In addition to skeletal defects, the formation of synovial joint cavities is defective in Has2-deficient limbs. Taken together, our results demonstrate that HA has a crucial role in skeletal growth, patterning, chondrocyte maturation and synovial joint formation in the developing limb. PMID:19633173
Ratnayake, Amila; Samarasinghe, Bandula; Bala, Miklosh
2014-05-01
Traumatic injury to the popliteal vascular zone remains a challenging problem on the modern battlefield and is frequently associated with more complications than other vascular injuries. Limb salvage and morbidity (graft infection, thrombosis and delayed haemorrhage) were studied. All popliteal vascular injuries over an 8 month period admitted to the Military Base Hospital were analyzed. Local limb evaluation included confirmation of the presence of ischaemia, extent of soft tissue damage, muscle viability after calf fasciotomy, and neurological injury. Ischaemic time was recorded from the time of injury to definitive revascularization. If there was a prior attempt at reconstruction, the amputation was considered delayed. For a series of 44 patients with popliteal vascular injury average time to presentation was 390min, 46% were completely ischaemic. Of those 39 (89%) had popliteal artery injuries. There were 24 (62%) complete popliteal artery transections and associated venous (69%) and osseous (46%) injuries. The preferred technique of repair was inter-position venous graft (IPVG) (54%). Eleven immediate amputations were performed (28%). There were 13 wound infections (33%), 5 early graft thromboses (5 of 21 IPVG, 238%), 2 anastomotic disruptions (2 of 21 IPVG, 9%), which resulted in 4 delayed amputations. Mortality was 5% (2 patients). In this case series of popliteal artery injury early identification of limbs at risk, early four compartment fasciotomy, temporary intra-luminal shunting, definitive repair of concomitant venous injuries and aggressive treatment of haemodynamic instability were shown to be beneficial in achieving reasonable outcome in an austere environment with limited recourses. Copyright © 2014 Elsevier Ltd. All rights reserved.
Liaw, Sok Ying; Wong, Lai Fun; Ang, Sophia Bee Leng; Ho, Jasmine Tze Yin; Siau, Chiang; Ang, Emily Neo Kim
2016-06-01
The timely recognition and response to patients with clinical deteriorations constitute the afferent limb failure of a rapid response system (RRS). This area is a persistent problem in acute healthcare settings worldwide. In this study, we evaluated the effect of an educational programme on improving the nurses' knowledge and performances in recognising and responding to clinical deterioration. The interactive web-based programme addressed three areas: (1) early detection of changes in vital signs; (2) performance of nursing assessment and interventions using airway, breathing, circulation, disability and expose/examine and (3) reporting clinical deterioration using identity, situation, background, assessment and recommendation. Sixty-seven registered nurses participated in the randomised control study. The experimental group underwent a 3 h programme while the control group received no intervention. Pretests and post-tests, a mannequin-based assessment and a multiple-choice knowledge questionnaire were conducted. We evaluated the participants' performances in assessing, managing and reporting the deterioration of a patient using a validated performance tool. A significantly higher number of nurses from the experimental group than the control group monitored respiratory rates (48.2% vs 25%, p<0.05) and pulse rates (74.3% vs 37.5%, p<0.01) in the simulated environment, after the intervention. The post-test mean scores of the experimental group was significantly higher than the control group for knowledge (21.29 vs 18.28, p<0.001), performance in assessing and managing clinical deterioration (25.83 vs 19.50, p<0.001) and reporting clinical deterioration (12.83 vs 10.97, p<0.001). A web-based educational programme developed for hospital nurses to strengthen the afferent limb of the RRS significantly increased their knowledge and performances in assessing, managing and reporting clinical deterioration. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
NASA Technical Reports Server (NTRS)
Gille, J. C.; Lyjak, L. V.
1984-01-01
Gradient winds, Eliassen-Palm (EP) fluxes and flux divergences, and the squared refractive index for planetary waves have been calculated from mapped data from the Limb Infrared Monitor of the Stratosphere (LIMS) experiment on Nimbus 7. The changes in the zonal mean atmospheric state, from early winter through 3 disturbances, is described. Convergence or divergence of the EP fluxes clearly produces changes in the zonal mean wind. The steering of the waves by the refractive index structure is not as clear on a daily basis.
Diagnosis and surgical approach of popliteal artery entrapment syndrome: a retrospective study.
Gourgiotis, Stavros; Aggelakas, John; Salemis, Nikolaos; Elias, Charalabos; Georgiou, Charalabos
2008-01-01
Popliteal artery entrapment syndrome (PAES) is a rare but potentially limb threatening peripheral vascular disease occurring predominantly in young adults. This study is a retrospective review of 49 limbs in 38 patients with PAES treated surgically over an 8-year period. From 1995 to 2002, 38 patients with a mean age of 21 years (range, 18-29 years) underwent surgery for PAES at a single institution. The patients' demographic data and clinical features are recorded. The preoperative diagnosis of PAES was made based on various combinations of investigations including positional stress test, duplex ultrasonography, computed tomography, computed tomographic angiography, and angiography. Nine, 33, and 7 patients had Delaney's type I, II, and III PAES respectively. The surgical procedures consisted of simple release of the popliteal artery in 33 limbs (67.3%), autogenous saphenous vein (ASV) patch angioplasty with or without thromboendarterectomy (TEA) in 5 limbs (10.2%) and ASV graft interposition or bypass in 11 limbs (22.5%). At a median follow up of 34 months (range, 8-42 months), there were no postoperative complications and all the patients were cured of their symptoms. PAES is an unusual but important cause of peripheral vascular insufficiency especially in young patients. Early diagnosis through a combined approach is necessary for exact diagnosis. Popliteal artery release alone or with vein bypass is the treatment of choice when intervention is indicated for good operative outcome and to prevent limb loss.
Krupenevich, Rebecca L.; Pruziner, Alison L.; Wolf, Erik J.; Schnall, Barri L.
2017-01-01
Background Individuals with unilateral lower limb amputation have a high risk of developing knee osteoarthritis (OA) in their intact limb as they age. This risk may be related to joint loading experienced earlier in life. We hypothesized that loading during walking would be greater in the intact limb of young US military service members with limb loss than in controls with no limb loss. Methods Cross-sectional instrumented gait analysis at self-selected walking speeds with a limb loss group (N = 10, age 27 ± 5 years, 170 ± 36 days since last surgery) including five service members with transtibial limb loss and five with transfemoral limb loss, all walking independently with their first prosthesis for approximately two months. Controls (N = 10, age 30 ± 4 years) were service members with no overt demographical risk factors for knee OA. 3D inverse dynamics modeling was performed to calculate joint moments and medial knee joint contact forces (JCF) were calculated using a reduction-based musculoskeletal modeling method and expressed relative to body weight (BW). Results Peak JCF and maximum JCF loading rate were significantly greater in limb loss (184% BW, 2,469% BW/s) vs. controls (157% BW, 1,985% BW/s), with large effect sizes. Results were robust to probabilistic perturbations to the knee model parameters. Discussion Assuming these data are reflective of joint loading experienced in daily life, they support a “mechanical overloading” hypothesis for the risk of developing knee OA in the intact limb of limb loss subjects. Examination of the evolution of gait mechanics, joint loading, and joint health over time, as well as interventions to reduce load or strengthen the ability of the joint to withstand loads, is warranted. PMID:28168120
2011-01-01
Introduction Tumor necrosis factor-α (TNFα) has received significant attention as a mediator of lumbar radiculopathy, with interest in TNF antagonism to treat radiculopathy. Prior studies have demonstrated that TNF antagonists can attenuate heightened nociception resulting from lumbar radiculopathy in the preclinical model. Less is known about the potential impact of TNF antagonism on gait compensations, despite being of clinical relevance. In this study, we expand on previous descriptions of gait compensations resulting from lumbar radiculopathy in the rat and describe the ability of local TNF antagonism to prevent the development of gait compensations, altered weight bearing, and heightened nociception. Methods Eighteen male Sprague-Dawley rats were investigated for mechanical sensitivity, weight-bearing, and gait pre- and post-operatively. For surgery, tail nucleus pulposus (NP) tissue was collected and the right L5 dorsal root ganglion (DRG) was exposed (Day 0). In sham animals, NP tissue was discarded (n = 6); for experimental animals, autologous NP was placed on the DRG with or without 20 μg of soluble TNF receptor type II (sTNFRII, n = 6 per group). Spatiotemporal gait characteristics (open arena) and mechanical sensitivity (von Frey filaments) were assessed on post-operative Day 5; gait dynamics (force plate arena) and weight-bearing (incapacitance meter) were assessed on post-operative Day 6. Results High-speed gait characterization revealed animals with NP alone had a 5% decrease in stance time on their affected limbs on Day 5 (P ≤0.032). Ground reaction force analysis on Day 6 aligned with temporal changes observed on Day 5, with vertical impulse reduced in the affected limb of animals with NP alone (area under the vertical force-time curve, P <0.02). Concordant with gait, animals with NP alone also had some evidence of affected limb mechanical allodynia on Day 5 (P = 0.08) and reduced weight-bearing on the affected limb on Day 6 (P <0.05). Delivery of sTNFRII at the time of NP placement ameliorated signs of mechanical hypersensitivity, imbalanced weight distribution, and gait compensations (P <0.1). Conclusions Our data indicate gait characterization has value for describing early limb dysfunctions in pre-clinical models of lumbar radiculopathy. Furthermore, TNF antagonism prevented the development of gait compensations subsequent to lumbar radiculopathy in our model. PMID:21871102
Suda, Natsuno; Itoh, Takehiko; Nakato, Ryuichiro; Shirakawa, Daisuke; Bando, Masashige; Katou, Yuki; Kataoka, Kohsuke; Shirahige, Katsuhiko; Tickle, Cheryll; Tanaka, Mikiko
2014-07-01
Apoptosis is an important mechanism for sculpting morphology. However, the molecular cascades that control apoptosis in developing limb buds remain largely unclear. Here, we show that MafB was specifically expressed in apoptotic regions of chick limb buds, and MafB/cFos heterodimers repressed apoptosis, whereas MafB/cJun heterodimers promoted apoptosis for sculpting the shape of the limbs. Chromatin immunoprecipitation sequencing in chick limb buds identified potential target genes and regulatory elements controlled by Maf and Jun. Functional analyses revealed that expression of p63 and p73, key components known to arrest the cell cycle, was directly activated by MafB and cJun. Our data suggest that dimeric combinations of MafB, cFos and cJun in developing chick limb buds control the number of apoptotic cells, and that MafB/cJun heterodimers lead to apoptosis via activation of p63 and p73. © 2014. Published by The Company of Biologists Ltd.
Revised upper limb module for spinal muscular atrophy: Development of a new module.
Mazzone, Elena S; Mayhew, Anna; Montes, Jacqueline; Ramsey, Danielle; Fanelli, Lavinia; Young, Sally Dunaway; Salazar, Rachel; De Sanctis, Roberto; Pasternak, Amy; Glanzman, Allan; Coratti, Giorgia; Civitello, Matthew; Forcina, Nicola; Gee, Richard; Duong, Tina; Pane, Marika; Scoto, Mariacristina; Pera, Maria Carmela; Messina, Sonia; Tennekoon, Gihan; Day, John W; Darras, Basil T; De Vivo, Darryl C; Finkel, Richard; Muntoni, Francesco; Mercuri, Eugenio
2017-06-01
There is a growing need for a robust clinical measure to assess upper limb motor function in spinal muscular atrophy (SMA), as the available scales lack sensitivity at the extremes of the clinical spectrum. We report the development of the Revised Upper Limb Module (RULM), an assessment specifically designed for upper limb function in SMA patients. An international panel with specific neuromuscular expertise performed a thorough review of scales currently available to assess upper limb function in SMA. This review facilitated a revision of the existing upper limb function scales to make a more robust clinical scale. Multiple revisions of the scale included statistical analysis and captured clinically relevant changes to fulfill requirements by regulators and advocacy groups. The resulting RULM scale shows good reliability and validity, making it a suitable tool to assess upper extremity function in the SMA population for multi-center clinical research. Muscle Nerve 55: 869-874, 2017. © 2016 Wiley Periodicals, Inc.
Human performance measuring device
NASA Technical Reports Server (NTRS)
Michael, J.; Scow, J.
1970-01-01
Complex coordinator, consisting of operator control console, recorder, subject display panel, and limb controls, measures human performance by testing perceptual and motor skills. Device measures psychophysiological functions in drug and environmental studies, and is applicable to early detection of psychophysiological body changes.
The Prx1 limb enhancers: targeted gene expression in developing zebrafish pectoral fins.
Hernández-Vega, Amayra; Minguillón, Carolina
2011-08-01
Limbs represent an excellent model to study the induction, growth, and patterning of several organs. A breakthrough to study gene function in various tissues has been the characterization of regulatory elements that allow tissue-specific interference of gene function. The mouse Prx1 promoter has been used to generate limb-specific mutants and overexpress genes in tetrapod limbs. Although zebrafish possess advantages that favor their use to study limb morphogenesis, there is no driver described suitable for specifically interfering with gene function in developing fins. We report the generation of zebrafish lines that express enhanced green fluorescent protein (EGFP) driven by the mouse Prx1 enhancer in developing pectoral fins. We also describe the expression pattern of the zebrafish prrx1 genes and identify three conserved non-coding elements (CNEs) that we use to generate fin-specific EGFP reporter lines. Finally, we show that the mouse and zebrafish regulatory elements may be used to modify gene function in pectoral fins. Copyright © 2011 Wiley-Liss, Inc.
Conserved regulation of mesenchymal gene expression by Fgf-8 in face and limb development.
Tucker, A S; Al Khamis, A; Ferguson, C A; Bach, I; Rosenfeld, M G; Sharpe, P T
1999-01-01
Clim-2 (NLI, Lbd1) is one of two related mouse proteins that interact with Lim-domain homeoproteins. In the mouse, embryonic expression of Clim-2 is particularly pronounced in facial ectomesenchyme and limb bud mesenchyme in association with Lim genes, Lhx-6 and Lmx-1 respectively. We show that in common with both these Lim genes, Clim-2 expression is regulated by signals from overlying epithelium. In both the developing face and the limb buds we identify Fgf-8 as the likely candidate signalling molecule that regulates Clim-2 expression. We show that in the mandibular arch, as in the limb, Fgf-8 functions in combination with CD44, a cell surface binding protein, and that blocking CD44 binding results in inhibition of Fgf8-induced expression of Clim-2 and Lhx-6. Regulation of gene expression by Fgf8 in association with CD44 is thus conserved between limb and mandibular arch development.
Wali, Ahmad; Kanwar, Dureshahwar; Khan, Safoora A; Khan, Sara
2017-12-01
Acute inflammatory demyelinating polyradiculoneuropathy (AIDP) and acute motor axonal neuropathy are the most common variants of Guillian-Barre syndrome documented in the Asian population. However, the variability of early neurophysiologic findings in the Asian population compared to western data has not been documented. Eighty-seven cases of AIDP were retrospectively reviewed for their demographic, clinical, electrophysiological, and laboratory data. Mean age of subjects was 31 ± 8 years with males more commonly affected. Motor symptoms (97%) at presentation predominated. Common early nerve conduction findings included low motor amplitudes (85%), recordable sural sensory responses (85%), and absent H-reflex responses (65%). Prolonged F-latencies were found most commonly in posterior tibial nerves (23%) in the lower limbs and median and ulnar nerves (18%) in the upper limbs. Blink reflex (BR) studies were performed in 57 patients and were abnormal in 80% of those with clinical facial weakness and in 17 of 52 patients (33%) with no clinical cranial nerve signs, suggesting subclinical cranial nerve involvement. Abnormal motor and sensory amplitudes are seen early. Prolonged distal latencies, temporal dispersion/conduction blocks and sural sparing pattern are other common early nerve conduction study findings of AIDP seen in the Pakistani population. There are no significant differences in abnormalities of conduction velocities and delayed reflex responses compared to published data. The BR can help in the early diagnosis of AIDP. © 2017 Peripheral Nerve Society.
Satoh, Akira; Mitogawa, Kazumasa; Saito, Nanami; Suzuki, Miyuki; Suzuki, Ken-Ichi T; Ochi, Haruki; Makanae, Aki
2017-12-15
Limb regeneration is considered a form of limb redevelopment because of the molecular and morphological similarities. Forming a regeneration blastema is, in essence, creating a developing limb bud in an adult body. This reactivation of a developmental process in a mature body is worth studying. Xenopus laevis has a biphasic life cycle that involves distinct larval and adult stages. These distinct developmental stages are useful for investigating the reactivation of developmental processes in post-metamorphic frogs (froglets). In this study, we focused on the re-expression of a larval gene (krt62.L) during Xenopus froglet limb regeneration. Recently renamed krt62.L, this gene was known as the larval keratin (xlk) gene, which is specific to larval-tadpole stages. During limb regeneration in a froglet, krt62.L was re-expressed in a basal layer of blastema epithelium, where adult-specific keratin (Krt12.6.S) expression was also observable. Nerves produce important regulatory factors for amphibian limb regeneration, and also play a role in blastema formation and maintenance. The effect of nerve function on krt62.L expression could be seen in the maintenance of krt62.L expression, but not in its induction. When an epidermis-stripped limb bud was grafted in a froglet blastema, the grafted limb bud could reach the digit-forming stage. This suggests that krt62.L-positive froglet blastema epithelium is able to support the limb development process. These findings imply that the developmental process is locally reactivated in an postmetamorphic body during limb regeneration. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Pomeroy, Valerie M; Ward, Nick S; Johansen-Berg, Heidi; van Vliet, Paulette; Burridge, Jane; Hunter, Susan M; Lemon, Roger N; Rothwell, John; Weir, Christopher J; Wing, Alan; Walker, Andrew A; Kennedy, Niamh; Barton, Garry; Greenwood, Richard J; McConnachie, Alex
2014-02-01
Functional strength training in addition to conventional physical therapy could enhance upper limb recovery early after stroke more than movement performance therapy plus conventional physical therapy. To determine (a) the relative clinical efficacy of conventional physical therapy combined with functional strength training and conventional physical therapy combined with movement performance therapy for upper limb recovery; (b) the neural correlates of response to conventional physical therapy combined with functional strength training and conventional physical therapy combined with movement performance therapy; (c) whether any one or combination of baseline measures predict motor improvement in response to conventional physical therapy combined with functional strength training or conventional physical therapy combined with movement performance therapy. Randomized, controlled, observer-blind trial. The sample will consist of 288 participants with upper limb paresis resulting from a stroke that occurred within the previous 60 days. All will be allocated to conventional physical therapy combined with functional strength training or conventional physical therapy combined with movement performance therapy. Functional strength training and movement performance therapy will be undertaken for up to 1·5 h/day, five-days/week for six-weeks. Measurements will be undertaken before randomization, six-weeks thereafter, and six-months after stroke. Primary efficacy outcome will be the Action Research Arm Test. Explanatory measurements will include voxel-wise estimates of brain activity during hand movement, brain white matter integrity (fractional anisotropy), and brain-muscle connectivity (e.g. latency of motor evoked potentials). The primary clinical efficacy analysis will compare treatment groups using a multilevel normal linear model adjusting for stratification variables and for which therapist administered the treatment. Effect of conventional physical therapy combined with functional strength training versus conventional physical therapy combined with movement performance therapy will be summarized using the adjusted mean difference and 95% confidence interval. To identify the neural correlates of improvement in both groups, we will investigate associations between change from baseline in clinical outcomes and each explanatory measure. To identify baseline measurements that independently predict motor improvement, we will develop a multiple regression model. © 2013 The Authors. International Journal of Stroke published by John Wiley & Sons Ltd on behalf of World Stroke Organization.
Vieux-Rochas, Maxence; Bouhali, Kamal; Mantero, Stefano; Garaffo, Giulia; Provero, Paolo; Astigiano, Simonetta; Barbieri, Ottavia; Caratozzolo, Mariano F.; Tullo, Apollonia; Guerrini, Luisa; Lallemand, Yvan; Robert, Benoît
2013-01-01
The Dlx and Msx homeodomain transcription factors play important roles in the control of limb development. The combined disruption of Msx1 and Msx2, as well as that of Dlx5 and Dlx6, lead to limb patterning defects with anomalies in digit number and shape. Msx1;Msx2 double mutants are characterized by the loss of derivatives of the anterior limb mesoderm which is not observed in either of the simple mutants. Dlx5;Dlx6 double mutants exhibit hindlimb ectrodactyly. While the morphogenetic action of Msx genes seems to involve the BMP molecules, the mode of action of Dlx genes still remains elusive. Here, examining the limb phenotypes of combined Dlx and Msx mutants we reveal a new Dlx-Msx regulatory loop directly involving BMPs. In Msx1;Dlx5;Dlx6 triple mutant mice (TKO), beside the expected ectrodactyly, we also observe the hallmark morphological anomalies of Msx1;Msx2 double mutants suggesting an epistatic role of Dlx5 and Dlx6 over Msx2. In Msx2;Dlx5;Dlx6 TKO mice we only observe an aggravation of the ectrodactyly defect without changes in the number of the individual components of the limb. Using a combination of qPCR, ChIP and bioinformatic analyses, we identify two Dlx/Msx regulatory pathways: 1) in the anterior limb mesoderm a non-cell autonomous Msx-Dlx regulatory loop involves BMP molecules through the AER and 2) in AER cells and, at later stages, in the limb mesoderm the regulation of Msx2 by Dlx5 and Dlx6 occurs also cell autonomously. These data bring new elements to decipher the complex AER-mesoderm dialogue that takes place during limb development and provide clues to understanding the etiology of congenital limb malformations. PMID:23382810
Vieux-Rochas, Maxence; Bouhali, Kamal; Mantero, Stefano; Garaffo, Giulia; Provero, Paolo; Astigiano, Simonetta; Barbieri, Ottavia; Caratozzolo, Mariano F; Tullo, Apollonia; Guerrini, Luisa; Lallemand, Yvan; Robert, Benoît; Levi, Giovanni; Merlo, Giorgio R
2013-01-01
The Dlx and Msx homeodomain transcription factors play important roles in the control of limb development. The combined disruption of Msx1 and Msx2, as well as that of Dlx5 and Dlx6, lead to limb patterning defects with anomalies in digit number and shape. Msx1;Msx2 double mutants are characterized by the loss of derivatives of the anterior limb mesoderm which is not observed in either of the simple mutants. Dlx5;Dlx6 double mutants exhibit hindlimb ectrodactyly. While the morphogenetic action of Msx genes seems to involve the BMP molecules, the mode of action of Dlx genes still remains elusive. Here, examining the limb phenotypes of combined Dlx and Msx mutants we reveal a new Dlx-Msx regulatory loop directly involving BMPs. In Msx1;Dlx5;Dlx6 triple mutant mice (TKO), beside the expected ectrodactyly, we also observe the hallmark morphological anomalies of Msx1;Msx2 double mutants suggesting an epistatic role of Dlx5 and Dlx6 over Msx2. In Msx2;Dlx5;Dlx6 TKO mice we only observe an aggravation of the ectrodactyly defect without changes in the number of the individual components of the limb. Using a combination of qPCR, ChIP and bioinformatic analyses, we identify two Dlx/Msx regulatory pathways: 1) in the anterior limb mesoderm a non-cell autonomous Msx-Dlx regulatory loop involves BMP molecules through the AER and 2) in AER cells and, at later stages, in the limb mesoderm the regulation of Msx2 by Dlx5 and Dlx6 occurs also cell autonomously. These data bring new elements to decipher the complex AER-mesoderm dialogue that takes place during limb development and provide clues to understanding the etiology of congenital limb malformations.
Bonnevialle, P
2017-02-01
Early infection after open reduction and internal fixation (ORIF) of a limb bone is defined as bacteriologically documented, deep and/or superficial surgical-site infection (SSI) diagnosed within 6months after the surgical procedure. This interval is arbitrarily considered sufficient to obtain fracture healing. The treatment of early infection after ORIF should be decided by a multidisciplinary team. The principles are the same as for revision arthroplasty. Superficial SSIs should be differentiated from deep SSIs, based on the results of bacteriological specimens collected using flawless technique. A turning point in the local microbial ecology occurs around the third or fourth week, when a biofilm develops around metallic implants. This biofilm protects the bacteria. The treatment relies on both non-operative and operative measures, which are selected based on the time to occurrence of the infection, condition of the soft tissues, and stage of bone healing. Both the surgical strategy and the antibiotic regimen should be determined during a multidisciplinary discussion. When treating superficial SSIs after ORIF, soft-tissue management is the main challenge. The treatment differs according to whether the hardware is covered or exposed. Defects in the skin and/or fascia can be managed using reliable reconstructive surgery techniques, either immediately or after a brief period of vacuum-assisted closure. In deep SSIs, deciding whether to leave or to remove the hardware is difficult. If the hardware is removed, the fracture site can be stabilised provisionally using either external fixation or a cement rod. Once infection control is achieved, several measures can be taken to stimulate bone healing before the end of the classical 6-month interval. If the hardware was removed, then internal fixation must be performed once the infection is eradicated. Copyright © 2016. Published by Elsevier Masson SAS.
Pax-3, a novel murine DNA binding protein expressed during early neurogenesis.
Goulding, M D; Chalepakis, G; Deutsch, U; Erselius, J R; Gruss, P
1991-01-01
We describe the isolation and characterization of Pax-3, a novel murine paired box gene expressed exclusively during embryogenesis. Pax-3 encodes a 479 amino acid protein with an Mr of 56 kd containing both a paired domain and a paired-type homeodomain. The Pax-3 protein is a DNA binding protein that specifically recognizes the e5 sequence present upstream of the Drosophila even-skipped gene. Pax-3 transcripts are first detected in 8.5 day mouse embryos where they are restricted to the dorsal part of the neuroepithelium and to the adjacent segmented dermomyotome. During early neurogenesis, Pax-3 expression is limited to mitotic cells in the ventricular zone of the developing spinal cord and to distinct regions in the hindbrain, midbrain and diencephalon. In 10-12 day embryos, expression of Pax-3 is also seen in neural crest cells of the developing spinal ganglia, the craniofacial mesectoderm and in limb mesenchyme of 10 and 11 day embryos. Images PMID:2022185
Risk factors of the upper limb disorders among cashiers in grocery retail industries: A review
NASA Astrophysics Data System (ADS)
Zuhaidi, Muhammad Fareez Ahmad; Nasrull Abdol Rahman, Mohd
2017-08-01
Cashiers have been appointed as one of top ten occupations in developing musculoskeletal disorders (MSDs) particularly on the upper limb. Many of the workers are still in high risk injury due to incorrect workstations and lack of employee education in basic biomechanical principles. Normally, cashiers are exposed in several risk factors such as awkward and static postures, repetition motion and forceful exertions. Thus, cashiers in supermarket are considered at risk from developing upper limb disorders (ULDs). This review evaluates selected papers that have studied risk factors of the upper limb disorders among cashiers in grocery retail industries. In addition, other studies from related industry were reviewed as applicable. In order to understand risk factors of the upper limb disorders among cashiers, it is recommended that future studies are needed in evaluating these risk factors among cashiers.
Todd, Kevin E; Ahanchi, Sadaf S; Maurer, Christian A; Kim, Jung H; Chipman, Candice R; Panneton, Jean M
2013-10-01
Endovascular adjuncts, like atherectomy, were developed to improve outcomes of endovascular arterial interventions. The true impact of atherectomy on endovascular outcomes remains to be determined, and little data exist on the influence of atherectomy on tibial interventions. Our study compares early and late outcomes of tibial intervention with angioplasty vs atherectomy-assisted interventions. We completed a retrospective review of all tibial interventions between 2008 and 2010. Outcomes were analyzed using single and multivariate analysis, Cox regression, and Kaplan-Meier curves. Primary outcomes were primary, primary assisted, and secondary patency rates, as well as limb salvage and survival rates. Over a 2-year period, 480 tibial interventions were completed for 421 patients. Eighty-seven percent (n = 418) of interventions were performed for critical limb ischemia (CLI) and 13% (n = 62) for claudication. The CLI cohort of 418 interventions was analyzed. These patients had a mean age of 71 years with a mean follow-up time of 16 ± 15 months (range, 0-59 months). Of the 418 interventions, 339 underwent percutaneous transluminal angioplasty (PTA): 333 PTA alone, six PTA + stent. The remaining 79 interventions received atherectomy: 33 laser, 13 directional, and 33 orbital either alone or in conjunction with PTA (11 atherectomy only, 68 atherectomy + PTA). The groups did not differ significantly in terms of demographics, risk factors, or technical success. The atherectomy group had more TASC B lesions (54% vs 38%; P = .013), while the PTA-alone group had more TASC D lesions (25% vs 13%; P = .004). TASC A and C lesions did not differ significantly between the groups. No significant differences existed with respect to the early (30-day) outcomes of loss of patency (11% vs 13%; P = .699), complications (8% vs 13%; P = .292), or major amputation (17% vs 13%; P = .344) in the PTA-alone group vs the atherectomy-assisted group. Kaplan-Meier analysis revealed no difference for all primary outcomes of PTA alone vs the atherectomy-assisted group at 12 and 36 months: primary patency (69%, 55% vs 61%, 46%; P = .158), primary assisted patency (83%, 71% vs 85%, 67%; P = .801), secondary patency (94%, 89% vs 95%, 89%; P = .892), limb salvage (79%, 70% vs 81%, 77%; P = .485), or survival (77%, 56% vs 80%, 50%; P = .944). The adjunctive use of atherectomy offered no improvement in primary outcomes over PTA alone in either early or late outcomes in CLI patients who underwent endovascular tibial interventions. Considering the additional cost and increased procedural time, these findings put into question the routine use of adjunctive atherectomy. Copyright © 2013 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.
EFFECTS OF ETHANOL AND HYDROGEN PEROXIDE ON MOUSE LIMB BUD MESENCHYME DIFFERENTIATION AND CELL DEATH
Many of the morphological defects associated with embryonic alcohol exposure are a result of cell death. During limb development, ethanol administration produces cell death in the limb and digital defects, including postaxial ectrodactyly. Because an accumulation of reactive oxyg...
Ectopic Fgf signaling induces the intercalary response in developing chicken limb buds.
Makanae, Aki; Satoh, Akira
2018-01-01
Intercalary pattern formation is an important regulatory step in amphibian limb regeneration. Amphibian limb regeneration is composed of multiple steps, including wounding, blastema formation, and intercalary pattern formation. Attempts have been made to transfer insights from regeneration-competent animals to regeneration-incompetent animalsat each step in the regeneration process. In the present study, we focused on the intercalary mechanism in chick limb buds. In amphibian limb regeneration, a proximodistal axis is organized as soon as a regenerating blastema is induced. Intermediate structures are subsequently induced (intercalated) between the established proximal and distal identities. Intercalary tissues are derived from proximal tissues. Fgf signaling mediates the intercalary response in amphibian limb regeneration. We attempted to transfer insights into intercalary regeneration from amphibian models to the chick limb bud. The zeugopodial part was dissected out, and the distal and proximal parts were conjunct at st. 24. Delivering ectopic Fgf2 + Fgf8 between the distal and proximal parts resulted in induction of zeugopodial elements. Examination of HoxA11 expression, apoptosis, and cell proliferation provides insights to compare with those in the intercalary mechanism of amphibian limb regeneration. Furthermore, the cellular contribution was investigated in both the chicken intercalary response and that of axolotl limb regeneration. We developed new insights into cellular contribution in amphibian intercalary regeneration, and found consistency between axolotl and chicken intercalary responses. Our findings demonstrate that the same principal of limb regeneration functions between regeneration-competent and -incompetent animals. In this context, we propose the feasibility of the induction of the regeneration response in amniotes.
Pulse oximetry in the evaluation of peripheral vascular disease.
Jawahar, D; Rachamalla, H R; Rafalowski, A; Ilkhani, R; Bharathan, T; Anandarao, N
1997-08-01
The role of pulse oximetry in the evaluation of peripheral vascular disease (PVD) was investigated. In addition, the value of elevating the limb to improve the sensitivity of detection of PVD by the pulse oximeter was also determined. Pulse oximetry reading in the toes were obtained in 40 young, healthy volunteers and in 40 randomly selected patients referred to the vascular investigation laboratory over a period of two months. All 40 healthy volunteers had normal pulse oximetry readings. Normal pulse oximetry reading in the toes was defined as > 95% O2 Sat and +/-2 of finger pulse oximetry reading. In all 40 patients, pulse oximetry readings were either normal or not detected at all. Since there was no gradation in decrease in the pulse oximetry reading with severity of disease or with elevation of the patient's lower extremity, an absent or no reading was considered as an abnormal result from the test. The frequency of abnormal pulse oximetry readings increased significantly in groups with abnormal ankle-brachial pressure index (ABPI) and also varied significantly with elevation of the patients' lower limbs. In patients with no PVD detected by Doppler (ABPI > 0.9), pulse oximetry readings were normal in all. However, in patients with moderate PVD (ABPI, 0.5-0.9), 84% of the patients' lower limbs had normal pulse oximetry readings and 16% had an abnormal reading at baseline level (flat). An additional 12% of the lower limbs in this group had an abnormal reading on elevation of the limb to 12 inches. In patients with severe PVD (ABPI < 0.5), 54% of the patients' lower limbs had an abnormal reading at baseline and an additional 23% had an abnormal reading at elevation of the limb to 12 inches. In conclusion, pulse oximetry was not a sensitive test for detecting early PVD.
Production and recycling of oceanic crust in the early Earth
NASA Astrophysics Data System (ADS)
van Thienen, P.; van den Berg, A. P.; Vlaar, N. J.
2004-08-01
Because of the strongly different conditions in the mantle of the early Earth regarding temperature and viscosity, present-day geodynamics cannot simply be extrapolated back to the early history of the Earth. We use numerical thermochemical convection models including partial melting and a simple mechanism for melt segregation and oceanic crust production to investigate an alternative suite of dynamics which may have been in operation in the early Earth. Our modelling results show three processes that may have played an important role in the production and recycling of oceanic crust: (1) Small-scale ( x×100 km) convection involving the lower crust and shallow upper mantle. Partial melting and thus crustal production takes place in the upwelling limb and delamination of the eclogitic lower crust in the downwelling limb. (2) Large-scale resurfacing events in which (nearly) the complete crust sinks into the (eventually lower) mantle, thereby forming a stable reservoir enriched in incompatible elements in the deep mantle. New crust is simultaneously formed at the surface from segregating melt. (3) Intrusion of lower mantle diapirs with a high excess temperature (about 250 K) into the upper mantle, causing massive melting and crustal growth. This allows for plumes in the Archean upper mantle with a much higher excess temperature than previously expected from theoretical considerations.
Lineage tracing of genome-edited alleles reveals high fidelity axolotl limb regeneration.
Flowers, Grant Parker; Sanor, Lucas D; Crews, Craig M
2017-09-16
Salamanders are unparalleled among tetrapods in their ability to regenerate many structures, including entire limbs, and the study of this ability may provide insights into human regenerative therapies. The complex structure of the limb poses challenges to the investigation of the cellular and molecular basis of its regeneration. Using CRISPR/Cas, we genetically labelled unique cell lineages within the developing axolotl embryo and tracked the frequency of each lineage within amputated and fully regenerated limbs. This allowed us, for the first time, to assess the contributions of multiple low frequency cell lineages to the regenerating limb at once. Our comparisons reveal that regenerated limbs are high fidelity replicas of the originals even after repeated amputations.
Robotics in Lower-Limb Rehabilitation after Stroke
2017-01-01
With the increase in the elderly, stroke has become a common disease, often leading to motor dysfunction and even permanent disability. Lower-limb rehabilitation robots can help patients to carry out reasonable and effective training to improve the motor function of paralyzed extremity. In this paper, the developments of lower-limb rehabilitation robots in the past decades are reviewed. Specifically, we provide a classification, a comparison, and a design overview of the driving modes, training paradigm, and control strategy of the lower-limb rehabilitation robots in the reviewed literature. A brief review on the gait detection technology of lower-limb rehabilitation robots is also presented. Finally, we discuss the future directions of the lower-limb rehabilitation robots. PMID:28659660
Robotics in Lower-Limb Rehabilitation after Stroke.
Zhang, Xue; Yue, Zan; Wang, Jing
2017-01-01
With the increase in the elderly, stroke has become a common disease, often leading to motor dysfunction and even permanent disability. Lower-limb rehabilitation robots can help patients to carry out reasonable and effective training to improve the motor function of paralyzed extremity. In this paper, the developments of lower-limb rehabilitation robots in the past decades are reviewed. Specifically, we provide a classification, a comparison, and a design overview of the driving modes, training paradigm, and control strategy of the lower-limb rehabilitation robots in the reviewed literature. A brief review on the gait detection technology of lower-limb rehabilitation robots is also presented. Finally, we discuss the future directions of the lower-limb rehabilitation robots.
McCusker, Catherine D; Gardiner, David M
2013-01-01
The regenerating region of an amputated salamander limb, known as the blastema, has the amazing capacity to replace exactly the missing structures. By grafting cells from different stages and regions of blastemas induced to form on donor animals expressing Green Fluorescent Protein (GFP), to non-GFP host animals, we have determined that the cells from early stage blastemas, as well as cells at the tip of late stage blastemas are developmentally labile such that their positional identity is reprogrammed by interactions with more proximal cells with stable positional information. In contrast, cells from the adjacent, more proximal stump tissues as well as the basal region of late bud blastemas are positionally stable, and thus form ectopic limb structures when grafted. Finally, we have found that a nerve is required to maintain the blastema cells in a positionally labile state, thus indicating a role for reprogramming cues in the blastema microenvironment.
NASA Astrophysics Data System (ADS)
de Oliveira, M. Elias; Menegaldo, L. L.; Lucarelli, P.; Andrade, B. L. B.; Büchler, P.
2011-11-01
Parkinson’s disease (PD) is a chronic neurodegenerative disorder characterized by a selective loss of dopaminergic neurons in the substantia nigra, decreased striatal dopamine levels, and consequent extrapyramidal motor dysfunctions. Several potential early diagnostic markers of PD have been proposed. Since they have not been validated in presymptomatic PD, the diagnosis and monitoring of the disease is based on subjective clinical assessment of cognitive and motor symptoms. In this study, we investigated interjoint coordination synergies in the upper limb of healthy and parkinsonian subjects during the performance of unconstrained linear-periodic movements in a horizontal plane using the mutual information (MI). We found that the MI is a sensitive metric in detecting upper limb motor dysfunction, thus suggesting that this method might be applicable to quantitatively evaluating the effects of the antiparkinsonian medication and to monitor the disease progression.
Diagnosis and treatment of limb fractures associated with acute peripheral ischemia.
Popescu, G I; Lupescu, O; Nagea, M; Patru, C
2013-01-01
Acute Peripheral Ischemia (API) is the most severe acute complication after both open and closed fractures, as ischemia compromises not only the vitality of the affected limb, but also the patient's life, because metabolic anaerobic changes following ischemia have serious local and general consequences. These explain why early diagnosis of API is very important for the prognosis of the traumatized limb.The authors analyse cases when API was not diagnosed immediately after trauma, but some time after the first examination, due to either low systolic BP or to late onset of API. The patients were analysed concerning the type of the fracture, the reason for delayed diagnosis of API, the moment of API diagnosis and the arterial injury. In all those cases, surgery was performed immediately after API diagnosis, in order to identify and treat the complex injuries(bone and vascular). Celsius.
Tabatabai, Reza; Baptista, Sheryl; Tiozzo, Caterina; Carraro, Gianni; Wheeler, Matthew; Barreto, Guillermo; Braun, Thomas; Li, Xiaokun; Hajihosseini, Mohammad K.; Bellusci, Saverio
2013-01-01
The vertebrate limbs develop through coordinated series of inductive, growth and patterning events. Fibroblast Growth Factor receptor 2b (FGFR2b) signaling controls the induction of the Apical Ectodermal Ridge (AER) but its putative roles in limb outgrowth and patterning, as well as in AER morphology and cell behavior have remained unclear. We have investigated these roles through graded and reversible expression of soluble dominant-negative FGFR2b molecules at various times during mouse limb development, using a doxycycline/transactivator/tet(O)-responsive system. Transient attenuation (≤24 hours) of FGFR2b-ligands signaling at E8.5, prior to limb bud induction, leads mostly to the loss or truncation of proximal skeletal elements with less severe impact on distal elements. Attenuation from E9.5 onwards, however, has an irreversible effect on the stability of the AER, resulting in a progressive loss of distal limb skeletal elements. The primary consequences of FGFR2b-ligands attenuation is a transient loss of cell adhesion and down-regulation of P63, β1-integrin and E-cadherin, and a permanent loss of cellular β-catenin organization and WNT signaling within the AER. Combined, these effects lead to the progressive transformation of the AER cells from pluristratified to squamous epithelial-like cells within 24 hours of doxycycline administration. These findings show that FGFR2b-ligands signaling has critical stage-specific roles in maintaining the AER during limb development. PMID:24167544
Motor control and learning with lower-limb myoelectric control in amputees.
Alcaide-Aguirre, Ramses E; Morgenroth, David C; Ferris, Daniel P
2013-01-01
Advances in robotic technology have recently enabled the development of powered lower-limb prosthetic limbs. A major hurdle in developing commercially successful powered prostheses is the control interface. Myoelectric signals are one way for prosthetic users to provide feedforward volitional control of prosthesis mechanics. The goal of this study was to assess motor learning in people with lower-limb amputation using proportional myoelectric control from residual-limb muscles. We examined individuals with transtibial amputation and nondisabled controls performing tracking tasks of a virtual object. We assessed how quickly the individuals with amputation improved their performance and whether years since amputation correlated with performance. At the beginning of training, subjects with amputation performed much worse than control subjects. By the end of a short training period, tracking error did not significantly differ between subjects with amputation and nondisabled subjects. Initial but not final performance correlated significantly with time since amputation. This study demonstrates that although subjects with amputation may initially have poor volitional control of their residual lower-limb muscles, training can substantially improve their volitional control. These findings are encouraging for the future use of proportional myoelectric control of powered lower-limb prostheses.
Dynamic gene expression of Lin-28 during embryonic development in mouse and chicken.
Yokoyama, Shigetoshi; Hashimoto, Megumi; Shimizu, Hirohito; Ueno-Kudoh, Hiroe; Uchibe, Kenta; Kimura, Ichiro; Asahara, Hiroshi
2008-02-01
The Caenorhabditis elegans heterochronic gene lin-28 regulates developmental timing in the nematode trunk. We report the dynamic expression patterns of Lin-28 homologues in mouse and chick embryos. Whole mount in situ hybridization revealed specific and intriguing expression patterns of Lin-28 in the developing mouse and chick limb bud. Mouse Lin-28 expression was detected in both the forelimb and hindlimb at E9.5, but disappeared from the forelimb at E10.5, and finally from the forelimb and hindlimb at E11.5. Chicken Lin-28, which was first detected in the limb primordium at stage 15/16, was also downregulated as the stage proceeded. The amino acid sequences of mouse and chicken Lin-28 genes are highly conserved and the similar expression patterns of Lin-28 during limb development in mouse and chicken suggest that this heterochronic gene is also conserved during vertebrate limb development.
[Tendency to edema as the initial symptom of hyperthyroidism].
Toft, J C; Larsen, S
1992-01-06
Peripheral oedema which is not of cardiac origin may be an early clinical sign of hyperthyroidism. Measurement of the thyroid parameters is recommended in patients with sudden onset of oedema of the lower limbs and tachycardia without any immediate cause.
Dynamics of BMP signaling in limb bud mesenchyme and polydactyly.
Norrie, Jacqueline L; Lewandowski, Jordan P; Bouldin, Cortney M; Amarnath, Smita; Li, Qiang; Vokes, Martha S; Ehrlich, Lauren I R; Harfe, Brian D; Vokes, Steven A
2014-09-15
Mutations in the Bone Morphogenetic Protein (BMP) pathway are associated with a range of defects in skeletal formation. Genetic analysis of BMP signaling requirements is complicated by the presence of three partially redundant BMPs that are required for multiple stages of limb development. We generated an inducible allele of a BMP inhibitor, Gremlin, which reduces BMP signaling. We show that BMPs act in a dose and time dependent manner in which early reduction of BMPs result in digit loss, while inhibiting overall BMP signaling between E10.5 and E11.5 allows polydactylous digit formation. During this period, inhibiting BMPs extends the duration of FGF signaling. Sox9 is initially expressed in normal digit ray domains but at reduced levels that correlate with the reduction in BMP signaling. The persistence of elevated FGF signaling likely promotes cell proliferation and survival, inhibiting the activation of Sox9 and secondarily, inhibiting the differentiation of Sox9-expressing chondrocytes. Our results provide new insights into the timing and clarify the mechanisms underlying BMP signaling during digit morphogenesis. Copyright © 2014 Elsevier Inc. All rights reserved.
Learning about Vertebrate Limb Development
ERIC Educational Resources Information Center
Liang, Jennifer O.; Noll, Matthew; Olsen, Shayna
2014-01-01
We have developed an upper-level undergraduate laboratory exercise that enables students to replicate a key experiment in developmental biology. In this exercise, students have the opportunity to observe live chick embryos and stain the apical ectodermal ridge, a key tissue required for development of the vertebrate limb. Impressively, every…
A Novel Intergenic ETnII-β Insertion Mutation Causes Multiple Malformations in Polypodia Mice
Lehoczky, Jessica A.; Thomas, Peedikayil E.; Patrie, Kevin M.; Owens, Kailey M.; Villarreal, Lisa M.; Galbraith, Kenneth; Washburn, Joe; Johnson, Craig N.; Gavino, Bryant; Borowsky, Alexander D.; Millen, Kathleen J.; Wakenight, Paul; Law, William; Van Keuren, Margaret L.; Gavrilina, Galina; Hughes, Elizabeth D.; Saunders, Thomas L.; Brihn, Lesil; Nadeau, Joseph H.; Innis, Jeffrey W.
2013-01-01
Mouse early transposon insertions are responsible for ∼10% of spontaneous mutant phenotypes. We previously reported the phenotypes and genetic mapping of Polypodia, (Ppd), a spontaneous, X-linked dominant mutation with profound effects on body plan morphogenesis. Our new data shows that mutant mice are not born in expected Mendelian ratios secondary to loss after E9.5. In addition, we refined the Ppd genetic interval and discovered a novel ETnII-β early transposon insertion between the genes for Dusp9 and Pnck. The ETn inserted 1.6 kb downstream and antisense to Dusp9 and does not disrupt polyadenylation or splicing of either gene. Knock-in mice engineered to carry the ETn display Ppd characteristic ectopic caudal limb phenotypes, showing that the ETn insertion is the Ppd molecular lesion. Early transposons are actively expressed in the early blastocyst. To explore the consequences of the ETn on the genomic landscape at an early stage of development, we compared interval gene expression between wild-type and mutant ES cells. Mutant ES cell expression analysis revealed marked upregulation of Dusp9 mRNA and protein expression. Evaluation of the 5′ LTR CpG methylation state in adult mice revealed no correlation with the occurrence or severity of Ppd phenotypes at birth. Thus, the broad range of phenotypes observed in this mutant is secondary to a novel intergenic ETn insertion whose effects include dysregulation of nearby interval gene expression at early stages of development. PMID:24339789
Macintosh, Alison A; Pinhasi, Ron; Stock, Jay T
2014-01-01
Humeral morphology has been shown to reflect, in part, habitual manipulative behaviors in humans. Among Central European agricultural populations, long-term social change, increasing task specialization, and technological innovation all had the potential to impact patterns of habitual activity and upper limb asymmetry. However, systematic temporal change in the skeletal morphology of agricultural populations in this region has not been well-characterized. This study investigates diachronic patterns in humeral biomechanical properties and lengths among 174 adult Central European agriculturalists through the first ∼ 5400 years of farming in the region. Greater asymmetry in biomechanical properties was expected to accompany the introduction of metallurgy, particularly in males, while upper limb loading patterns were expected to be more similar between the Bronze and Iron Ages. Results revealed a divergence in the lateralization of upper limb biomechanical properties by sex between the Early/Middle Neolithic and Early/Middle Bronze Age. Neolithic females had significantly more variable properties than males in both humeri, while Bronze Age female properties became homogeneous and very symmetrical relative to the right-biased lateralization of contemporaneous males. The Bronze Age to Iron Age transition was associated with morphological change among females, with a significant increase in right-biased asymmetry and a concomitant reduction in sexual dimorphism. Relative to biomechanical properties, humeral length variation and asymmetry were low though some significant sexual dimorphism and temporal change was found. It was among females that the lateralization of humeral biomechanical properties, and variation within them, changed most profoundly through time. This suggests that the introduction of the ard and plow, metallurgical innovation, task specialization, and socioeconomic change through ∼ 5400 years of agriculture impacted upper limb loading in Central European women to a greater extent than men.
A horse’s locomotor signature: COP path determined by the individual limb
Hobbs, Sarah Jane; Back, Willem
2017-01-01
Introduction Ground reaction forces in sound horses with asymmetric hooves show systematic differences in the horizontal braking force and relative timing of break-over. The Center Of Pressure (COP) path quantifies the dynamic load distribution under the hoof in a moving horse. The objective was to test whether anatomical asymmetry, quantified by the difference in dorsal wall angle between the left and right forelimbs, correlates with asymmetry in the COP path between these limbs. In addition, repeatability of the COP path was investigated. Methods A larger group (n = 31) visually sound horses with various degree of dorsal hoof wall asymmetry trotted three times over a pressure mat. COP path was determined in a hoof-bound coordinate system. A relationship between correlations between left and right COP paths and degree of asymmetry was investigated. Results Using a hoof-bound coordinate system made the COP path highly repeatable and unique for each limb. The craniocaudal patterns are usually highly correlated between left and right, but the mediolateral patterns are not. Some patterns were found between COP path and dorsal wall angle but asymmetry in dorsal wall angle did not necessarily result in asymmetry in COP path and the same could be stated for symmetry. Conclusion This method is a highly sensitive method to quantify the net result of the interaction between all of the forces and torques that occur in the limb and its inertial properties. We argue that changes in motor control, muscle force, inertial properties, kinematics and kinetics can potentially be picked up at an early stage using this method and could therefore be used as an early detection method for changes in the musculoskeletal apparatus. PMID:28196073
Fine-tuning the onset of myogenesis by homeobox proteins that interact with the Myf5 limb enhancer
Daubas, Philippe; Duval, Nathalie; Bajard, Lola; Langa Vives, Francina; Robert, Benoît; Mankoo, Baljinder S.; Buckingham, Margaret
2015-01-01
ABSTRACT Skeletal myogenesis in vertebrates is initiated at different sites of skeletal muscle formation during development, by activation of specific control elements of the myogenic regulatory genes. In the mouse embryo, Myf5 is the first myogenic determination gene to be expressed and its spatiotemporal regulation requires multiple enhancer sequences, extending over 120 kb upstream of the Mrf4-Myf5 locus. An enhancer, located at −57/−58 kb from Myf5, is responsible for its activation in myogenic cells derived from the hypaxial domain of the somite, that will form limb muscles. Pax3 and Six1/4 transcription factors are essential activators of this enhancer, acting on a 145-bp core element. Myogenic progenitor cells that will form the future muscle masses of the limbs express the factors necessary for Myf5 activation when they delaminate from the hypaxial dermomyotome and migrate into the forelimb bud, however they do not activate Myf5 and the myogenic programme until they have populated the prospective muscle masses. We show that Msx1 and Meox2 homeodomain-containing transcription factors bind in vitro and in vivo to specific sites in the 145-bp element, and are implicated in fine-tuning activation of Myf5 in the forelimb. Msx1, when bound between Pax and Six sites, prevents the binding of these key activators, thus inhibiting transcription of Myf5 and consequent premature myogenic differentiation. Meox2 is required for Myf5 activation at the onset of myogenesis via direct binding to other homeodomain sites in this sequence. Thus, these homeodomain factors, acting in addition to Pax3 and Six1/4, fine-tune the entry of progenitor cells into myogenesis at early stages of forelimb development. PMID:26538636
A Surgical Model of Posttraumatic Osteoarthritis With Histological and Gait Validation.
Zahoor, Talal; Mitchell, Reed; Bhasin, Priya; Schon, Lew; Zhang, Zijun
2016-07-01
Posttraumatic osteoarthritis (PTOA) is secondary to an array of joint injuries. Animal models are useful tools for addressing the uniqueness of PTOA progression in each type of joint injury and developing strategies for PTOA prevention and treatment. Intra-articular fracture induces PTOA pathology. Descriptive laboratory study. Through a parapatellar incision, the medial tibial plateau was exposed in the left knees of 8 Sprague-Dawley rats. Osteotomy at the midpoint between the tibial crest and the outermost portion of the medial tibial plateau, including the covering articular cartilage, was performed using a surgical blade. The fractured medial tibial plateau was fixed with 2 needles transversely. The fractured knees were not immobilized. Before and after surgery, rat gait was recorded. Rats were sacrificed at week 8, and their knees were harvested for histology. After intra-articular fracture, the affected limbs altered gait from baseline (week 0). In the first 2 weeks, the gait of the operated limbs featured a reduced paw print intensity and stride length but increased maximal contact and stance time. Reduction of maximal and mean print area and duty cycle (the percentage of stance phase in a step) was present from week 1 to week 5. Only print length was reduced in weeks 7 and 8. At week 8, histology of the operated knees demonstrated osteoarthritic pathology. The severity of the PTOA pathology did not correlate with the changes of print length at week 8. Intra-articular fracture of the medial tibial plateau effectively induced PTOA in rat knees. During PTOA development, the injured limbs demonstrated characteristic gait. Intra-articular fracture represents severe joint injury and associates with a high rate of PTOA. This animal model, with histologic and gait validations, can be useful for future studies of PTOA prevention and early diagnosis.
Carvalhais, Virginia; Ruivães, Ema; Pina-Cabral, Luis Bernardo; Mesquita, Bárbara; Oliveira, Flávio; Monteiro, Maria Céu; Criado, Maria Begoña
2016-12-01
Endothelial and platelet dysfunction increase the atherothrombotic risk in diabetes mellitus patients. Therefore, arterial ischaemia of lower limbs is an important complication in diabetes mellitus. In the present work, type 2 diabetic patients were classified by a podiatrist into presence or absence of arterial ischaemia of lower limbs. Several polymorphisms in platelet glycoproteins and eNOS genes were evaluated. Our results suggest that the -5CC genotype in Kozak sequence of GPIbα may be associated with a higher risk of developing arterial ischaemia of lower limbs in type 2 diabetes mellitus patients. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nayak, Chitresh; Singh, Amit; Chaudhary, Himanshu; Unune, Deepak Rajendra
2017-10-23
Technological advances in prosthetics have attracted the curiosity of researchers in monitoring design and developments of the sockets to sustain maximum pressure without any soft tissue damage, skin breakdown, and painful sores. Numerous studies have been reported in the area of pressure measurement at the limb/socket interface, though, the relation between amputee's physiological parameters and the pressure developed at the limb/socket interface is still not studied. Therefore, the purpose of this work is to investigate the effects of patient-specific physiological parameters viz. height, weight, and stump length on the pressure development at the transtibial prosthetic limb/socket interface. Initially, the pressure values at the limb/socket interface were clinically measured during stance and walking conditions for different patients using strain gauges placed at critical locations of the stump. The measured maximum pressure data related to patient's physiological parameters was used to develop an artificial neural network (ANN) model. The effects of physiological parameters on the pressure development at the limb/socket interface were examined using the ANN model. The analyzed results indicated that the weight and stump length significantly affects the maximum pressure values. The outcomes of this work could be an important platform for the design and development of patient-specific prosthetic socket which can endure the maximum pressure conditions at stance and ambulation conditions.
Development of esMOCA Biomechanic, Motion Capture Instrumentation for Biomechanics Analysis
NASA Astrophysics Data System (ADS)
Arendra, A.; Akhmad, S.
2018-01-01
This study aims to build motion capture instruments using inertial measurement unit sensors to assist in the analysis of biomechanics. Sensors used are accelerometer and gyroscope. Estimation of orientation sensors is done by digital motion processing in each sensor nodes. There are nine sensor nodes attached to the upper limbs. This sensor is connected to the pc via a wireless sensor network. The development of kinematics and inverse dynamamic models of the upper limb is done in simulink simmechanic. The kinematic model receives streaming data of sensor nodes mounted on the limbs. The output of the kinematic model is the pose of each limbs and visualized on display. The dynamic inverse model outputs the reaction force and reaction moment of each joint based on the limb motion input. Model validation in simulink with mathematical model of mechanical analysis showed results that did not differ significantly
Rojas-Vargas, Marena; Muñoz-Gomariz, Elisa; Escudero, Alejandro; Font, Pilar; Zarco, Pedro; Almodovar, Raquel; Gratacós, Jordi; Mulero, Juan; Juanola, Xavier; Montilla, Carlos; Moreno, Estefanía
2009-01-01
Objective. To determine the first signs and symptoms, and the clinical, biological and radiological characteristics of patients with early SpA. Methods. A total of 150 SpA patients were selected from 2367 listed in REGISPONSER (Registro Español de Espondiloartritis de la Sociedad Española de Reumatología). The inclusion criterion was a disease course of ⩽2 yrs from the onset of symptoms or the appearance of the first sign of disease. Results. Forty-six patients had AS, 51 psoriatic SpA (Ps-SpA), 43 uSpA, 5 ReA, 4 IBD arthropathy and 1 JCA. The mean age at onset of symptoms and at diagnosis was higher in Ps-SpA group (48.1 ± 13.6 and 48.5 ± 13.6 yrs) than in AS group (38.1 ± 12.8 and 38.9 ± 12.7 yrs) and uSpA group (36.3 ± 11.5 and 36.9 ± 11.4 yrs). The most frequent signs or symptoms were back pain: 72% AS group and 56% uSpA group. Lower limb arthritis was the first symptom in 57% Ps-SpA patients, 35% uSpA patients and 20% AS patients; upper limb arthritis was the first symptom in 53% Ps-SpA group and <16% of the remainder. Compared with longer duration disease, at onset, AS patients report upper limb arthritis more frequently and uSpA patients report more of enthesitis. Early radiological sacroiliitis was observed in all AS patients, of whom 54% had Grade II, 39% had Grade III and 7% had Grade IV. Conclusions. In our population, the first manifestations of SpA were low back pain and SI syndrome in AS and uSpA patients and peripheral arthritis in the Ps-SpA group. We can find early SI joint affectation in AS patients. PMID:19208685
Snyder-Mackler, Lynn
2010-01-01
Background Total knee arthroplasty (TKA) has been shown to be an effective surgical intervention for people with end-stage knee osteoarthritis. However, recovery of function is variable, and not all people have successful outcomes. Objective The aim of this study was to discern which early postoperative functional measures could predict functional ability at 1 year and 2 years after surgery. Design and Methods One hundred fifty-five people who underwent unilateral TKA participated in the prospective longitudinal study. Functional evaluations were performed at the initial outpatient physical therapy appointment and at 1 and 2 years after surgery. Evaluations consisted of measurements of height, weight, quadriceps muscle strength (force-generating capacity), and knee range of motion; the Timed “Up & Go” Test (TUG); the stair-climbing task (SCT); and the Knee Outcome Survey (KOS) questionnaire. The ability to predict 1- and 2-year outcomes on the basis of early postoperative measures was analyzed with a hierarchical regression. Differences in functional scores were evaluated with a repeated-measures analysis of variance. Results The TUG, SCT, and KOS scores at 1 and 2 years showed significant improvements over the scores at the initial evaluation (P<.001). A weaker quadriceps muscle in the limb that did not undergo surgery (“nonoperated limb”) was related to poorer 1- and 2-year outcomes even after the influence of the other early postoperative measures was accounted for in the regression. Older participants with higher body masses also had poorer outcomes at 1 and 2 years. Postoperative measures were better predictors of TUG and SCT times than of KOS scores. Conclusions Rehabilitation regimens after TKA should include exercises to improve the strength of the nonoperated limb as well as to treat the deficits imposed by the surgery. Emphasis on treating age-related impairments and reducing body mass also might improve long-term outcomes. PMID:19959653
Wijdenes, Paula; Brouwers, Michael; van der Sluis, Corry K
2018-02-01
In order to create more uniformity in the prescription of upper limb prostheses by Dutch rehabilitation teams, the development and implementation of a Prosthesis Prescription Protocol of the upper limb (PPP-Arm) was initiated. The aim was to create a national digital protocol to structure, underpin, and evaluate the prescription of upper limb prostheses for clients with acquired or congenital arm defects. Prosthesis Prescription Protocol of the Arm (PPP-Arm) was developed on the basis of the International Classification of Functioning and consisted of several layers. All stakeholders (rehabilitation teams, orthopedic workshops, patients, and insurance companies) were involved in development and implementation. A national project coordinator and knowledge brokers in each team were essential for the project. PPP-Arm was successfully developed and implemented in nine Dutch rehabilitation teams. The protocol improved team collaboration, structure, and completeness of prosthesis prescriptions and treatment uniformity and might be interesting for other countries as well. Clinical relevance A national protocol to prescribe upper limb prostheses can be helpful to create uniformity in treatment of patients with upper limb defects. Such a protocol improves quality of care for all patients in the country.
Design and Development of a Novel Upper-Limb Cycling Prosthesis
Soni-Sadar, Shivam; Rowbottom, Jack; Patel, Shilen; Mathewson, Edward; Pearson, Samuel; Hutchins, David; Head, John; Hutchins, Stephen
2017-01-01
The rise in popularity of the Paralympics in recent years has created a need for effective, low-cost sports-prosthetic devices for upper-limb amputees. There are various opportunities for lower-limb amputees to participate in cycling; however, there are only few options for those with upper-limb amputations. If the individual previously participated in cycling, a cycling-specific prosthesis could allow these activities to be integrated into rehabilitation methods. This article describes the processes involved with designing, developing and manufacturing such a prosthesis. The fundamental needs of people with upper-limb amputation were assessed and realised in the prototype of a transradial terminal device with two release mechanisms, including a sliding mechanism (for falls and minor collisions) and clamping mechanism (for head-on collisions). The sliding mechanism requires the rider to exert approximately 200 N, while the clamping mechanism requires about 700 N. The force ranges can be customised to match rider requirements. Experiments were conducted in a controlled environment to demonstrate stability of the device during normal cycling. Moreover, a volunteer test-rider was able to successfully activate the release mechanism during a simulated emergency scenario. The development of this prosthesis has the potential to enable traumatic upper-limb amputees to participate in cycling for rehabilitation or recreation. PMID:29144392
Design and Development of a Novel Upper-Limb Cycling Prosthesis.
Tiele, Akira; Soni-Sadar, Shivam; Rowbottom, Jack; Patel, Shilen; Mathewson, Edward; Pearson, Samuel; Hutchins, David; Head, John; Hutchins, Stephen
2017-11-16
The rise in popularity of the Paralympics in recent years has created a need for effective, low-cost sports-prosthetic devices for upper-limb amputees. There are various opportunities for lower-limb amputees to participate in cycling; however, there are only few options for those with upper-limb amputations. If the individual previously participated in cycling, a cycling-specific prosthesis could allow these activities to be integrated into rehabilitation methods. This article describes the processes involved with designing, developing and manufacturing such a prosthesis. The fundamental needs of people with upper-limb amputation were assessed and realised in the prototype of a transradial terminal device with two release mechanisms, including a sliding mechanism (for falls and minor collisions) and clamping mechanism (for head-on collisions). The sliding mechanism requires the rider to exert approximately 200 N, while the clamping mechanism requires about 700 N. The force ranges can be customised to match rider requirements. Experiments were conducted in a controlled environment to demonstrate stability of the device during normal cycling. Moreover, a volunteer test-rider was able to successfully activate the release mechanism during a simulated emergency scenario. The development of this prosthesis has the potential to enable traumatic upper-limb amputees to participate in cycling for rehabilitation or recreation.
ten Berge, Derk; Brugmann, Samantha A; Helms, Jill A; Nusse, Roel
2008-10-01
A fundamental question in developmental biology is how does an undifferentiated field of cells acquire spatial pattern and undergo coordinated differentiation? The development of the vertebrate limb is an important paradigm for understanding these processes. The skeletal and connective tissues of the developing limb all derive from a population of multipotent progenitor cells located in its distal tip. During limb outgrowth, these progenitors segregate into a chondrogenic lineage, located in the center of the limb bud, and soft connective tissue lineages located in its periphery. We report that the interplay of two families of signaling proteins, fibroblast growth factors (FGFs) and Wnts, coordinate the growth of the multipotent progenitor cells with their simultaneous segregation into these lineages. FGF and Wnt signals act together to synergistically promote proliferation while maintaining the cells in an undifferentiated, multipotent state, but act separately to determine cell lineage specification. Withdrawal of both signals results in cell cycle withdrawal and chondrogenic differentiation. Continued exposure to Wnt, however, maintains proliferation and re-specifies the cells towards the soft connective tissue lineages. We have identified target genes that are synergistically regulated by Wnts and FGFs, and show how these factors actively suppress differentiation and promote growth. Finally, we show how the spatial restriction of Wnt and FGF signals to the limb ectoderm, and to a specialized region of it, the apical ectodermal ridge, controls the distribution of cell behaviors within the growing limb, and guides the proper spatial organization of the differentiating tissues.
Eitzen, Ingrid; Moksnes, Håvard; Snyder-Mackler, Lynn; Risberg, May Arna
2010-11-01
Prospective cohort study without a control group. Firstly, to present our 5-week progressive exercise therapy program in the early stage after anterior cruciate ligament (ACL) injury. Secondly, to evaluate changes in knee function after completion of the program for patients with ACL injury in general and also when classified as potential copers or noncopers, and, finally, to examine potential adverse events. Few studies concerning early-stage ACL rehabilitation protocols exist. Consequently, little is known about the tolerance for, and outcomes from, short-term exercise therapy programs in the early stage after injury. One-hundred patients were included in a 5-week progressive exercise therapy program, within 3 months after injury. Knee function before and after completion of the program was evaluated from isokinetic quadriceps and hamstrings muscle strength tests, 4 single-leg hop tests, 2 different self-assessment questionnaires, and a global rating of knee function. A 2-way mixed-model analysis of variance was conducted to evaluate changes from pretest to posttest for the limb symmetry index for muscle strength and single-leg hop tests, and the change in scores for the patient-reported questionnaires. In addition, absolute values and the standardized response mean for muscle strength and single-leg hop tests were calculated at pretest and posttest for the injured and uninjured limb. Adverse events during the 5-week period were recorded. The progressive 5-week exercise therapy program led to significant improvements (P<.05) in knee function from pretest to posttest both for patients classified as potential copers and noncopers. Standardized response mean values for changes in muscle strength and single-leg hop performance from pretest to posttest for the injured limb were moderate to strong (0.49-0.84), indicating the observed improvements to be clinically relevant. Adverse events occurred in 3.9% of the patients. Short-term progressive exercise therapy programs are well tolerated and should be incorporated in early-stage ACL rehabilitation, either to improve knee function before ACL reconstruction or as a first step in further nonoperative management. Therapy, level 2b.
Effects of varying inter-limb spacing to limb length ratio in metachronal swimming
NASA Astrophysics Data System (ADS)
Lai, Hong Kuan; Merkel, Rachael; Santhanakrishnan, Arvind
2016-11-01
Crustaceans such as shrimp, krill and crayfish swim by rhythmic paddling of four to five pairs of closely spaced limbs. Each pair is phase-shifted in time relative to the neighboring pair, resulting in a metachronal wave that travels in the direction of animal motion. The broad goal of this study is to investigate how the mechanical design of the swimming limbs affect scalability of metachronal swimming in terms of limb-based Reynolds number (Re). A scaled robotic model of metachronal paddling was developed, consisting of four pairs of hinged acrylic plates actuated using stepper motors that were immersed in a rectangular tank containing water-glycerin fluid medium. 2D PIV measurements show that the propulsive jets transition from being primarily horizontal (thrust-producing direction) at Re of order 10 to angled vertically at Re of order 100. The ratio of inter-limb spacing to limb length among metachronal swimming organisms ranges between 0.2 to 0.65. 2D PIV will be used to examine the jets generated between adjacent limbs for varying inter-limb spacing to limb length ratios. The effect of increasing this ratio to beyond the biologically observed range will be discussed.
NASA Astrophysics Data System (ADS)
Poole, Kristin M.; Patil, Chetan A.; Nelson, Christopher E.; McCormack, Devin R.; Madonna, Megan C.; Duvall, Craig L.; Skala, Melissa C.
2014-03-01
Peripheral arterial disease (PAD) is an atherosclerotic disease of the extremities that leads to high rates of myocardial infarction and stroke, increased mortality, and reduced quality of life. PAD is especially prevalent in diabetic patients, and is commonly modeled by hind limb ischemia in mice to study collateral vessel development and test novel therapies. Current techniques used to assess recovery cannot obtain quantitative, physiological data non-invasively. Here, we have applied hyperspectral imaging and swept source optical coherence tomography (OCT) to study longitudinal changes in blood oxygenation and vascular morphology, respectively, intravitally in the diabetic mouse hind limb ischemia model. Additionally, recommended ranges for controlling physiological variability in blood oxygenation with respect to respiration rate and body core temperature were determined from a control animal experiment. In the longitudinal study with diabetic mice, hyperspectral imaging data revealed the dynamics of blood oxygenation recovery distally in the ischemic footpad. In diabetic mice, there is an early increase in oxygenation that is not sustained in the long term. Quantitative analysis of vascular morphology obtained from Hessian-filtered speckle variance OCT volumes revealed temporal dynamics in vascular density, total vessel length, and vessel diameter distribution in the adductor muscle of the ischemic limb. The combination of hyperspectral imaging and speckle variance OCT enabled acquisition of novel functional and morphological endpoints from individual animals, and provides a more robust platform for future preclinical evaluations of novel therapies for PAD.
Shields, Richard K.; Dudley-Javoroski, Shauna; Littmann, Andrew E.
2012-01-01
Understanding the torque output behavior of paralyzed muscle has important implications for the use of functional neuromuscular electrical stimulation systems. Postfatigue potentiation is an augmentation of peak muscle torque during repetitive activation after a fatigue protocol. The purposes of this study were 1) to quantify postfatigue potentiation in the acutely and chronically paralyzed soleus and 2) to determine the effect of long-term soleus electrical stimulation training on the potentiation characteristics of recently paralyzed soleus muscle. Five subjects with chronic paralysis (>2 yr) demonstrated significant postfatigue potentiation during a repetitive soleus activation protocol that induced low-frequency fatigue. Ten subjects with acute paralysis (<6 mo) demonstrated no torque potentiation in response to repetitive stimulation. Seven of these acute subjects completed 2 yr of home-based isometric soleus electrical stimulation training of one limb (compliance = 83%; 8,300 contractions/wk). With the early implementation of electrically stimulated training, potentiation characteristics of trained soleus muscles were preserved as in the acute postinjury state. In contrast, untrained limbs showed marked postfatigue potentiation at 2 yr after spinal cord injury (SCI). A single acute SCI subject who was followed longitudinally developed potentiation characteristics very similar to the untrained limbs of the training subjects. The results of the present investigation support that postfatigue potentiation is a characteristic of fast-fatigable muscle and can be prevented by timely neuromuscular electrical stimulation training. Potentiation is an important consideration in the design of functional electrical stimulation control systems for people with SCI. PMID:16575026
Shields, Richard K; Dudley-Javoroski, Shauna; Littmann, Andrew E
2006-08-01
Understanding the torque output behavior of paralyzed muscle has important implications for the use of functional neuromuscular electrical stimulation systems. Postfatigue potentiation is an augmentation of peak muscle torque during repetitive activation after a fatigue protocol. The purposes of this study were 1) to quantify postfatigue potentiation in the acutely and chronically paralyzed soleus and 2) to determine the effect of long-term soleus electrical stimulation training on the potentiation characteristics of recently paralyzed soleus muscle. Five subjects with chronic paralysis (>2 yr) demonstrated significant postfatigue potentiation during a repetitive soleus activation protocol that induced low-frequency fatigue. Ten subjects with acute paralysis (<6 mo) demonstrated no torque potentiation in response to repetitive stimulation. Seven of these acute subjects completed 2 yr of home-based isometric soleus electrical stimulation training of one limb (compliance = 83%; 8,300 contractions/wk). With the early implementation of electrically stimulated training, potentiation characteristics of trained soleus muscles were preserved as in the acute postinjury state. In contrast, untrained limbs showed marked postfatigue potentiation at 2 yr after spinal cord injury (SCI). A single acute SCI subject who was followed longitudinally developed potentiation characteristics very similar to the untrained limbs of the training subjects. The results of the present investigation support that postfatigue potentiation is a characteristic of fast-fatigable muscle and can be prevented by timely neuromuscular electrical stimulation training. Potentiation is an important consideration in the design of functional electrical stimulation control systems for people with SCI.
Catenin-dependent cadherin function drives divisional segregation of spinal motor neurons.
Bello, Sanusi M; Millo, Hadas; Rajebhosale, Manisha; Price, Stephen R
2012-01-11
Motor neurons that control limb movements are organized as a neuronal nucleus in the developing ventral horn of the spinal cord called the lateral motor column. Neuronal migration segregates motor neurons into distinct lateral and medial divisions within the lateral motor column that project axons to dorsal or ventral limb targets, respectively. This migratory phase is followed by an aggregation phase whereby motor neurons within a division that project to the same muscle cluster together. These later phases of motor neuron organization depend on limb-regulated differential cadherin expression within motor neurons. Initially, all motor neurons display the same cadherin expression profile, which coincides with the migratory phase of motor neuron segregation. Here, we show that this early, pan-motor neuron cadherin function drives the divisional segregation of spinal motor neurons in the chicken embryo by controlling motor neuron migration. We manipulated pan-motor neuron cadherin function through dissociation of cadherin binding to their intracellular partners. We found that of the major intracellular transducers of cadherin signaling, γ-catenin and α-catenin predominate in the lateral motor column. In vivo manipulations that uncouple cadherin-catenin binding disrupt divisional segregation via deficits in motor neuron migration. Additionally, reduction of the expression of cadherin-7, a cadherin predominantly expressed in motor neurons only during their migration, also perturbs divisional segregation. Our results show that γ-catenin-dependent cadherin function is required for spinal motor neuron migration and divisional segregation and suggest a prolonged role for cadherin expression in all phases of motor neuron organization.
Hingorani, Anil P; Ascher, Enrico; Marks, Natalie; Shiferson, Alexander; Patel, Nirav; Gopal, Kapil; Jacob, Theresa
2009-09-01
Early limb occlusions following endovascular treatment of aorto-iliac aneurysmal disease is not uncommon (4%-13%). To assess whether the femoral artery entry site could potentially cause this complication, we prospectively evaluated the ipsilateral common femoral artery (CFA) and distal external iliac artery (EIA) with intraoperative duplex scans (IDS). There were 134 patients with infrarenal nonruptured abdominal aorto-iliac aneurysms treated with endografts since 2002 at our institution. Age ranged from 65 to 89 years (mean: 77 +/- 7 years). Aneuryx (n = 41), Zenith (n = 50), and Excluder (n = 43) endografts were used for repair. All procedures were performed via open exposure of the CFA. Introducer diameter varied from 12 mm to 22 mm. All patients underwent IDS of the CFA and distal EIA after repair of the arteriotomies. In 34 patients (25%), we documented intimal dissections causing severe (>70%) stenoses. Of the 271 arteries that were examined, 38 (14%) had abnormal findings that demanded intervention. These were repaired with flap excision, tacking sutures revision, or patch angioplasty (n = 36). Repeat IDS confirmed the adequacy of the repair. No statistical difference was noted if the site of larger introducer sheath and the incidence of flap formation. In addition, 10 small flaps or plaques were visualized but did not create significant stenosis. No differences were noted in the incidence of positive duplex exams between each type graft (P = .4). No early or late iliac limb occlusions were noted. Follow-up of 94% was obtained. Completion arterial duplex scans are helpful in detecting a substantial number of clinically unsuspected technical defects caused by introducer sheaths. Timely diagnosis and repair of these defects may decrease the incidence of early limb occlusion following endograft placement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kramer, P.L.; Heiman, G.A.; Leon, D. de
1994-09-01
Idiopathic torsion dystonia (ITD) is characterized by involuntary twisting movements and postures. A gene for this disorder, DYT1, was mapped to chromosome 9q34 in 12 Ashkenazi Jewish (AJ) families and one large non-Jewish kindred. In the AJ population, strong linkage disequilibrium exists between DYT1 and adjacent markers within a 2-cM region. The associated haplotype occurs in >90% of early limb-onset AJ cases. The authors examined seven non-Jewish ITD families of northern European and French Canadian descent to determine the extent to which early-onset ITD in non-Jews maps to DYT1. Results are consistent with linkage to the DYT1 region. Affected individualsmore » in these families are clinically similar to the AJ cases, i.e., the site of onset is predominantly in the limbs and at least one individual in each pedigree had onset before age 12 years. None carries the AJ haplotype; therefore, they probably represent different mutations in the DYT1 gene. The two French Canadian families, however, display the same haplotype. Estimates of penetrance in non-Jewish families range from .40 to .75. They identified disease gene carriers and, with adjustments for age at onset, obtained a direct estimate of penetrance of .46. This is consistent with estimates of 30%-40% in the AJ population. Two other non-Jewish families with atypical ITD (later onset and/or cranial or cervical involvement) are not linked to DYT1, which indicates involvement of other genes in dystonia. 26 refs., 1 fig., 3 tabs.« less
Hou, Xianguang; Williams, Mark; Siveter, David J.; Siveter, Derek J.; Aldridge, Richard J.; Sansom, Robert S.
2010-01-01
Bradoriids are small bivalved marine arthropods that are widespread in rocks of Cambrian to Early Ordovician age. They comprise seven families and about 70 genera based on shield (‘carapace’) morphology. New bradoriid specimens with preserved soft-part anatomy of Kunmingella douvillei (Kunmingellidae) are reported from the Early Cambrian Chengjiang Lagerstätte of China together with, for the first time to our knowledge, a second bradoriid species with preserved soft parts, Kunyangella cheni (Comptalutidae). Kunmingella douvillei has a 10-segmented limb-bearing body with uniramous ninth and tenth appendages and a series of homogeneous, apparently (proximal parts not preserved) unspecialized post-antennal biramous limbs with setose leaf-shaped exopods. Each endopod consists of five podomeres. A presumed penultimate instar of Ky. cheni preserves remnants of three head and two trunk appendages, and the adult is reconstructed as having four head appendages. This material allows testing of the affinity of the Bradoriida. Kunmingella is identified as a stem crustacean in character-based analyses, through both morphological comparisons and cladistic reconstructions. Global parsimony analysis recovers a monophyletic Bradoriida as the sister group to crown crustaceans. PMID:20181565
Elephantiasis nostras verrucosa: a rare complication of lower limb lymphoedema.
Kar Keong, Neoh; Siing Ngi, Angelina Tang; Muniandy, Pubalan; Voon Fei, Wong
2017-08-28
We reported a case of a 49-year-old man who had chronic lymphoedema of bilateral lower limbs for 30 years, but he did not seek treatment. His disease was complicated with irreversible changes of elephantiasis nostras verrucosa and had recurrent admissions due to infection. He was not keen for surgical intervention. This case report illustrated a rare and non-reversible complication of a common skin disease, lymphoedema and also the importance of identifying and treating it early. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D’Oria, Mario, E-mail: mario.doria88@outlook.com; Sgorlon, Giada; Calvagna, Cristiano
We report our experience with the urgent treatment of two high-risk patients with infected femoral artery pseudoaneurysms (IFAPs) with the placement of a self-expandable covered stent (SECS). In both cases, there was no perioperative mortality and the aneurysm exclusion was successful without early or late stent thrombosis/stent fracture nor acute or chronic limb ischemia or limb loss. There was no recurrence of local or systemic infection during the follow-up period. Endovascular therapy represents a feasible treatment option for IFAPs in those patients for whom the risk of open surgical repair would be prohibitive, especially under urgent circumstances.
ATHLETE: Lunar Cargo Unloading from a High Deck
NASA Technical Reports Server (NTRS)
Wilcox, Brian H.
2010-01-01
As part of the NASA Exploration Technology Development Program, the Jet Propulsion Laboratory is developing a vehicle called ATHLETE: the All-Terrain Hex-Limbed Extra-Terrestrial Explorer. Each vehicle is based on six wheels at the ends of six multi-degree-of freedom limbs. Because each limb has enough degrees of freedom for use as a general-purpose leg, the wheels can be locked and used as feet to walk out of excessively soft or other extreme terrain. Since the vehicle has this alternative mode of traversing through or at least out of extreme terrain, the wheels and wheel actuators can be sized for nominal terrain. There are substantial mass savings in the wheel and wheel actuators associated with designing for nominal instead of extreme terrain. These mass savings are at least comparable-to or larger-than the extra mass associated with the articulated limbs. As a result, the entire mobility system, including wheels and limbs, can be lighter than a conventional all-terrain mobility chassis. A side benefit of this approach is that each limb has sufficient degrees-of freedom to be used as a general-purpose manipulator (hence the name "limb" instead of "leg"). Our prototype ATHLETE vehicles have quick-disconnect tool adapters on the limbs that allow tools to be drawn out of a "tool belt" and maneuvered by the limb. A power-take-off from the wheel actuates the tools, so that they can take advantage of the 1+ horsepower motor in each wheel to enable drilling, gripping or other power-tool functions.
ATHLETE: a Cargo and Habitat Transporter for the Moon
NASA Technical Reports Server (NTRS)
Wilcox, Brian H.
2009-01-01
As part of the NASA Exploration Technology Development Program, the Jet Propulsion Laboratory is developing a vehicle called ATHLETE: the All-Terrain Hex-Limbed Extra-Terrestrial Explorer. The vehicle concept is based on six wheels at the ends of six multi-degree-of-freedom limbs. Because each limb has enough degrees of freedom for use as a general-purpose leg, the wheels can be locked and used as feet to walk out of excessively soft or other extreme terrain. Since the vehicle has this alternative mode of traversing through (or at least out of) extreme terrain, the wheels and wheel actuators can be sized only for nominal terrain. There are substantial mass savings in the wheels and wheel actuators associated with designing for nominal instead of extreme terrain. These mass savings are comparable-to or larger-than the extra mass associated with the articulated limbs. As a result, the entire mobility system, including wheels and limbs, can be about 25 percent lighter than a conventional mobility chassis for planetary exploration. A side benefit of this approach is that each limb has sufficient degrees-of-freedom for use as a general-purpose manipulator (hence the name "limb" instead of "leg"). Our prototype ATHLETE vehicles have quick-disconnect tool adapters on the limbs that allow tools to be drawn out of a "tool belt" and maneuvered by the limb. A rotating power-take-off from the wheel actuates the tools, so that they can take advantage of the 1-plus-horsepower motor in each wheel to enable drilling, gripping or other power-tool functions.
Exploring the fine structure at the limb in coronal holes
NASA Technical Reports Server (NTRS)
Karovska, Magarita; Blundell, Solon F.; Habbal, Shadia Rifai
1994-01-01
The fine structure of the solar limb in coronal holes is explored at temperatures ranging from 10(exp 4) to 10(exp 6) K. An image enhancement algorithm orignally developed for solar eclipse observations is applied to a number of simultaneous multiwavelength observations made with the Harvard Extreme Ultraviolet Spectrometer experiment on Skylab. The enhanced images reveal the presence of filamentary structures above the limb with a characteristic separation of approximately 10 to 15 sec . Some of the structures extend from the solar limb into the corona to at least 4 min above the solar limb. The brightness of these structures changes as a function of height above the limb. The brightest emission is associated with spiculelike structures in the proximity of the limb. The emission characteristic of high-temperature plasma is not cospatial with the emission at lower temperatures, indicating the presence of different temperature plasmas in the field of view.
Analysis of Msx1; Msx2 double mutants reveals multiple roles for Msx genes in limb development.
Lallemand, Yvan; Nicola, Marie-Anne; Ramos, Casto; Bach, Antoine; Cloment, Cécile Saint; Robert, Benoît
2005-07-01
The homeobox-containing genes Msx1 and Msx2 are highly expressed in the limb field from the earliest stages of limb formation and, subsequently, in both the apical ectodermal ridge and underlying mesenchyme. However, mice homozygous for a null mutation in either Msx1 or Msx2 do not display abnormalities in limb development. By contrast, Msx1; Msx2 double mutants exhibit a severe limb phenotype. Our analysis indicates that these genes play a role in crucial processes during limb morphogenesis along all three axes. Double mutant limbs are shorter and lack anterior skeletal elements (radius/tibia, thumb/hallux). Gene expression analysis confirms that there is no formation of regions with anterior identity. This correlates with the absence of dorsoventral boundary specification in the anterior ectoderm, which precludes apical ectodermal ridge formation anteriorly. As a result, anterior mesenchyme is not maintained, leading to oligodactyly. Paradoxically, polydactyly is also frequent and appears to be associated with extended Fgf activity in the apical ectodermal ridge, which is maintained up to 14.5 dpc. This results in a major outgrowth of the mesenchyme anteriorly, which nevertheless maintains a posterior identity, and leads to formation of extra digits. These defects are interpreted in the context of an impairment of Bmp signalling.
Chen, Yasheng; Zhu, Hongtu; An, Hongyu; Armao, Diane; Shen, Dinggang; Gilmore, John H.; Lin, Weili
2013-01-01
The aim of this study was to characterize the maturational changes of the three eigenvalues (λ1 ≥ λ2 ≥ λ3) of diffusion tensor imaging (DTI) during early postnatal life for more insights into early brain development. In order to overcome the limitations of using presumed growth trajectories for regression analysis, we employed Multivariate Adaptive Regression Splines (MARS) to derive data-driven growth trajectories for the three eigenvalues. We further employed Generalized Estimating Equations (GEE) to carry out statistical inferences on the growth trajectories obtained with MARS. With a total of 71 longitudinal datasets acquired from 29 healthy, full-term pediatric subjects, we found that the growth velocities of the three eigenvalues were highly correlated, but significantly different from each other. This paradox suggested the existence of mechanisms coordinating the maturations of the three eigenvalues even though different physiological origins may be responsible for their temporal evolutions. Furthermore, our results revealed the limitations of using the average of λ2 and λ3 as the radial diffusivity in interpreting DTI findings during early brain development because these two eigenvalues had significantly different growth velocities even in central white matter. In addition, based upon the three eigenvalues, we have documented the growth trajectory differences between central and peripheral white matter, between anterior and posterior limbs of internal capsule, and between inferior and superior longitudinal fasciculus. Taken together, we have demonstrated that more insights into early brain maturation can be gained through analyzing eigen-structural elements of DTI. PMID:23455648
Cranial Neuropathies and Neuromuscular Weakness: A Case of Mistaken Identity
Adams, Daniel Z.; King, Andrew; Kaide, Colin
2017-01-01
We describe a case of wound botulism initially thought to represent Miller-Fisher variant Guillain-Barré syndrome (MFS). Botulism classically presents with the so-called “four D’s” (diplopia, dysarthria, dysphagia, dry mouth) with symmetric, descending weakness. MFS presents with a triad of limb-ataxia, areflexia, and ophthalmoplegia, with variable cranial nerve and extremity involvement. The distinction can be difficult but is important as early initiation of botulinum antitoxin is associated with improved patient outcomes in cases of botulism. Furthermore, it is important to recognize intravenous drug use as a risk factor in the development of botulism, especially given an increase in injection drug use. PMID:29849352
Cranial Neuropathies and Neuromuscular Weakness: A Case of Mistaken Identity.
Adams, Daniel Z; King, Andrew; Kaide, Colin
2017-08-01
We describe a case of wound botulism initially thought to represent Miller-Fisher variant Guillain-Barré syndrome (MFS). Botulism classically presents with the so-called "four D's" (diplopia, dysarthria, dysphagia, dry mouth) with symmetric, descending weakness. MFS presents with a triad of limb-ataxia, areflexia, and ophthalmoplegia, with variable cranial nerve and extremity involvement. The distinction can be difficult but is important as early initiation of botulinum antitoxin is associated with improved patient outcomes in cases of botulism. Furthermore, it is important to recognize intravenous drug use as a risk factor in the development of botulism, especially given an increase in injection drug use.
Seven Capital Devices for the Future of Stroke Rehabilitation
Iosa, M.; Morone, G.; Fusco, A.; Bragoni, M.; Coiro, P.; Multari, M.; Venturiero, V.; De Angelis, D.; Pratesi, L.; Paolucci, S.
2012-01-01
Stroke is the leading cause of long-term disability for adults in industrialized societies. Rehabilitation's efforts are tended to avoid long-term impairments, but, actually, the rehabilitative outcomes are still poor. Novel tools based on new technologies have been developed to improve the motor recovery. In this paper, we have taken into account seven promising technologies that can improve rehabilitation of patients with stroke in the early future: (1) robotic devices for lower and upper limb recovery, (2) brain computer interfaces, (3) noninvasive brain stimulators, (4) neuroprostheses, (5) wearable devices for quantitative human movement analysis, (6) virtual reality, and (7) tablet-pc used for neurorehabilitation. PMID:23304640
Sauer, Roland; Gölitz, Philipp; Jacobi, Johannes; Schwab, Stefan; Linker, Ralf A; Lee, De-Hyung
2017-04-15
Progressive multifocal leukoencephalopathy (PML) is a rare, opportunistic and often fatal disease of the CNS which may occur under immunosuppression in transplant patients. Brain stem PML is associated with a particularly bad prognosis. Here, we present a case of a renal transplant patient treated with mycophenolate mofetil (MMF) and tacrolimus who developed brain stem PML with limb ataxia, dysarthria and dysphagia. Diagnosis was established by typical MRI features and detection of JCV-DNA in the CSF. Immune reconstitution after stopping MMF and tacrolimus led to a complete and sustained remission of symptoms with improvement of the brain stem lesion over a follow-up over 20months. In summary, early detection of PML and consequent treatment may improve neurological outcomes even in brain stem disease with a notorious bad prognosis. Copyright © 2017 Elsevier B.V. All rights reserved.
Shih, Ching-Hsiang; Chang, Man-Ling; Shih, Ching-Tien
2010-01-01
This study assessed whether two persons with multiple disabilities would be able to control environmental stimulation using limb action with a Nintendo Wii Remote Controller and a newly developed limb action detection program (LADP, i.e., a new software program that turns a Wii Remote Controller into a precise limb action detector). This study was carried out according to an ABAB sequence in which A represented baseline and B represented intervention phases. Data showed that both participants significantly increased their target response, thus increasing the level of environmental stimulation by activating the control system through limb action, during the intervention phases. Practical and developmental implications of the findings are discussed. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Update on embryology of the upper limb.
Al-Qattan, Mohammad M; Kozin, Scott H
2013-09-01
Current concepts in the steps of upper limb development and the way the limb is patterned along its 3 spatial axes are reviewed. Finally, the embryogenesis of various congenital hand anomalies is delineated with an emphasis on the pathogenetic basis for each anomaly. Copyright © 2013 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Ranganathan, Kavitha; Hong, Xiaowei; Cholok, David; Habbouche, Joe; Priest, Caitlin; Breuler, Christopher; Chung, Michael; Li, John; Kaura, Arminder; Hsieh, Hsiao Hsin Sung; Butts, Jonathan; Ucer, Serra; Schwartz, Ean; Buchman, Steven R; Stegemann, Jan P; Deng, Cheri X; Levi, Benjamin
2018-04-01
Early treatment of heterotopic ossification (HO) is currently limited by delayed diagnosis due to limited visualization at early time points. In this study, we validate the use of spectral ultrasound imaging (SUSI) in an animal model to detect HO as early as one week after burn tenotomy. Concurrent SUSI, micro CT, and histology at 1, 2, 4, and 9weeks post-injury were used to follow the progression of HO after an Achilles tenotomy and 30% total body surface area burn (n=3-5 limbs per time point). To compare the use of SUSI in different types of injury models, mice (n=5 per group) underwent either burn/tenotomy or skin incision injury and were imaged using a 55MHz probe on VisualSonics VEVO 770 system at one week post injury to evaluate the ability of SUSI to distinguish between edema and HO. Average acoustic concentration (AAC) and average scatterer diameter (ASD) were calculated for each ultrasound image frame. Micro CT was used to calculate the total volume of HO. Histology was used to confirm bone formation. Using SUSI, HO was visualized as early as 1week after injury. HO was visualized earliest by 4weeks after injury by micro CT. The average acoustic concentration of HO was 33% more than that of the control limb (n=5). Spectroscopic foci of HO present at 1week that persisted throughout all time points correlated with the HO present at 9weeks on micro CT imaging. SUSI visualizes HO as early as one week after injury in an animal model. SUSI represents a new imaging modality with promise for early diagnosis of HO. Copyright © 2018 Elsevier Inc. All rights reserved.
Mason, Mandy K; Hockman, Dorit; Curry, Lyle; Cunningham, Thomas J; Duester, Gregg; Logan, Malcolm; Jacobs, David S; Illing, Nicola
2015-01-01
The bat has strikingly divergent forelimbs (long digits supporting wing membranes) and hindlimbs (short, typically free digits) due to the distinct requirements of both aerial and terrestrial locomotion. During embryonic development, the morphology of the bat forelimb deviates dramatically from the mouse and chick, offering an alternative paradigm for identifying genes that play an important role in limb patterning. Using transcriptome analysis of developing Natal long-fingered bat (Miniopterus natalensis) fore- and hindlimbs, we demonstrate that the transcription factor Meis2 has a significantly higher expression in bat forelimb autopods compared to hindlimbs. Validation by reverse transcriptase and quantitative polymerase chain reaction (RT-qPCR) and whole mount in situ hybridisation shows that Meis2, conventionally known as a marker of the early proximal limb bud, is upregulated in the bat forelimb autopod from CS16. Meis2 expression is localised to the expanding interdigital webbing and the membranes linking the wing to the hindlimb and tail. In mice, Meis2 is also expressed in the interdigital region prior to tissue regression. This interdigital Meis2 expression is not activated by retinoic acid (RA) signalling as it is present in the retained interdigital tissue of Rdh10 (trex/trex) mice, which lack RA. Additionally, genes encoding RA-synthesising enzymes, Rdh10 and Aldh1a2, and the RA nuclear receptor Rarβ are robustly expressed in bat fore- and hindlimb interdigital tissues indicating that the mechanism that retains interdigital tissue in bats also occurs independently of RA signalling. Mammalian interdigital Meis2 expression, and upregulation in the interdigital webbing of bat wings, suggests an important role for Meis2 in autopod development. Interdigital Meis2 expression is RA-independent, and retention of interdigital webbing in bat wings is not due to the suppression of RA-induced cell death. Rather, RA signalling may play a role in the thinning (rather than complete loss) of the interdigital tissue in the bat forelimb, while Meis2 may interact with other factors during both bat and mouse autopod development to maintain a pool of interdigital cells that contribute to digit patterning and growth.
ATHLETE: A Limbed Vehicle for Solar System Exploration
NASA Technical Reports Server (NTRS)
Wilcox, Brian H.
2012-01-01
As part of the Human-Robot Systems project funded by NASA, the Jet Propulsion Laboratory has developed a vehicle called ATHLETE: the All-Terrain Hex-Limbed Extra-Terrestrial Explorer. Each vehicle is based on six wheels at the ends of six multi-degree-of-freedom limbs. Because each limb has enough degrees of freedom for use as a general-purpose leg, the wheels can be locked and used as feet to walk out of excessively soft or other extreme terrain. Since the vehicle has this alternative mode of traversing through or at least out of extreme terrain, the wheels and wheel actuators can be sized for nominal terrain. There are substantial mass savings in the wheel and wheel actuators associated with designing for nominal instead of extreme terrain. These mass savings are comparable-to or larger-than the extra mass associated with the articulated limbs. As a result, the entire mobility system, including wheels and limbs, can be about 25% lighter than a conventional mobility chassis. A side benefit of this approach is that each limb has sufficient degrees-of-freedom to use as a general-purpose manipulator (hence the name "limb" instead of "leg"). Our prototype ATHLETE vehicles have quick-disconnect tool adapters on the limbs that allow tools to be drawn out of a "tool belt" and maneuvered by the limb.
Development of an EMG-ACC-Based Upper Limb Rehabilitation Training System.
Ling Liu; Xiang Chen; Zhiyuan Lu; Shuai Cao; De Wu; Xu Zhang
2017-03-01
This paper focuses on the development of an upper limb rehabilitation training system designed for use by children with cerebral palsy (CP). It attempts to meet the requirements of in-home training by taking advantage of the combination of portable accelerometers (ACC) and surface electromyography (SEMG) sensors worn on the upper limb to capture functional movements. In the proposed system, the EMG-ACC acquisition device works essentially as wireless game controller, and three rehabilitation games were designed for improving upper limb motor function under a clinician's guidance. The games were developed on the Android platform based on a physical engine called Box2D. The results of a system performance test demonstrated that the developed games can respond to the upper limb actions within 210 ms. Positive questionnaire feedbacks from twenty CP subjects who participated in the game test verified both the feasibility and usability of the system. Results of a long-term game training conducted with three CP subjects demonstrated that CP patients could improve in their game performance through repetitive training, and persistent training was needed to improve and enhance the rehabilitation effect. According to our experimental results, the novel multi-feedback SEMG-ACC-based user interface improved the users' initiative and performance in rehabilitation training.
Limb Correction of Polar-Orbiting Imagery for the Improved Interpretation of RGB Composites
NASA Technical Reports Server (NTRS)
Jedlovec, Gary J.; Elmer, Nicholas
2016-01-01
Red-Green-Blue (RGB) composite imagery combines information from several spectral channels into one image to aid in the operational analysis of atmospheric processes. However, infrared channels are adversely affected by the limb effect, the result of an increase in optical path length of the absorbing atmosphere between the satellite and the earth as viewing zenith angle increases. This paper reviews a newly developed technique to quickly correct for limb effects in both clear and cloudy regions using latitudinally and seasonally varying limb correction coefficients for real-time applications. These limb correction coefficients account for the increase in optical path length in order to produce limb-corrected RGB composites. The improved utility of a limb-corrected Air Mass RGB composite from the application of this approach is demonstrated using Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) imagery. However, the limb correction can be applied to any polar-orbiting sensor infrared channels, provided the proper limb correction coefficients are calculated. Corrected RGB composites provide multiple advantages over uncorrected RGB composites, including increased confidence in the interpretation of RGB features, improved situational awareness for operational forecasters, and the ability to use RGB composites from multiple sensors jointly to increase the temporal frequency of observations.
Wischin, Sabina; Castañeda-Patlán, Cristina; Robles-Flores, Martha; Chimal-Monroy, Jesús
2017-04-01
Limb regeneration involves several interrelated physiological processes in which a particular signalling pathway may play a variety of functions. Blocking the function of Wnt/β-catenin signalling during limb regeneration inhibits regeneration in axolotls (Ambystoma mexicanum). Limb development shares many features with limb regeneration, and Wnt/β-catenin activation has different effects depending on the developmental stage. The aim of this study was to evaluate whether Wnt/β-catenin signalling activation during axolotl limb regeneration has different effects when activated at different stages of regeneration. To evaluate this hypothesis, we treated amputated axolotls with a Wnt agonist chemical at different stages of limb regeneration. The results showed that limb regeneration was inhibited when the treatment began before blastema formation. Under these conditions, blastema formation was hindered, possibly due to the lack of innervation. On the other hand, when axolotls were treated after blastema formation and immediately before the onset of morphogenesis, we observed structural disorganization in skeletal formation. In conclusion, we found that limb regeneration was differentially affected depending on the stage at which the Wnt signalling pathway was activated. Copyright © 2017 Elsevier B.V. All rights reserved.
Neural mechanisms of limb position estimation in the primate brain.
Shi, Ying; Buneo, Christopher A
2011-01-01
Understanding the neural mechanisms of limb position estimation is important both for comprehending the neural control of goal directed arm movements and for developing neuroprosthetic systems designed to replace lost limb function. Here we examined the role of area 5 of the posterior parietal cortex in estimating limb position based on visual and somatic (proprioceptive, efference copy) signals. Single unit recordings were obtained as monkeys reached to visual targets presented in a semi-immersive virtual reality environment. On half of the trials animals were required to maintain their limb position at these targets while receiving both visual and non-visual feedback of their arm position, while on the other trials visual feedback was withheld. When examined individually, many area 5 neurons were tuned to the position of the limb in the workspace but very few neurons modulated their firing rates based on the presence/absence of visual feedback. At the population level however decoding of limb position was somewhat more accurate when visual feedback was provided. These findings support a role for area 5 in limb position estimation but also suggest that visual signals regarding limb position are only weakly represented in this area, and only at the population level.
Saad, Kawakeb; Theis, Susanne; Otto, Anthony; Luke, Graham; Patel, Ketan
2017-04-30
The development of vertebrate appendages, especially the limb and feather buds are orchestrated by numerous secreted signalling molecules including Sonic Hedgehog, Bone Morphogenetic Proteins, Fibroblast Growth Factors and Wnts. These proteins coordinate the growth and patterning of ectodermal and mesenchymal cells. The influence of signalling molecules is affected over large distances by their concentration (morphogen activity) but also at local levels by the presence of proteins that either attenuate or promote their activity. Glypicans are cell surface molecules that regulate the activity of the major secreted signalling molecules expressed in the limb and feather bud. Here we investigated the expression of all Glypicans during chick limb and feather development. In addition we profiled the expression of Notum, an enzyme that regulates Glypican activity. We show that five of the six Glypicans and Notum are expressed in a dynamic manner during the development of limbs and feathers. We also investigated the expression of key Glypicans and show that they are controlled by signalling molecules highlighting the presence of feedback loops. Lastly we show that Glypicans and Notum are expressed in a tissue specific manner in adult chicken tissues. Our results strongly suggest that the Glypicans and Notum have many as yet undiscovered roles to play during the development of vertebrate appendages. Copyright © 2017 Elsevier B.V. All rights reserved.
The evolutionary history of the development of the pelvic fin/hindlimb
Don, Emily K; Currie, Peter D; Cole, Nicholas J
2013-01-01
The arms and legs of man are evolutionarily derived from the paired fins of primitive jawed fish. Few evolutionary changes have attracted as much attention as the origin of tetrapod limbs from the paired fins of ancestral fish. The hindlimbs of tetrapods are derived from the pelvic fins of ancestral fish. These evolutionary origins can be seen in the examination of shared gene and protein expression patterns during the development of pelvic fins and tetrapod hindlimbs. The pelvic fins of fish express key limb positioning, limb bud induction and limb outgrowth genes in a similar manner to that seen in hindlimb development of higher vertebrates. We are now at a point where many of the key players in the development of pelvic fins and vertebrate hindlimbs have been identified and we can now readily examine and compare mechanisms between species. This is yielding fascinating insights into how the developmental programme has altered during evolution and how that relates to anatomical change. The role of pelvic fins has also drastically changed over evolutionary history, from playing a minor role during swimming to developing into robust weight-bearing limbs. In addition, the pelvic fins/hindlimbs have been lost repeatedly in diverse species over evolutionary time. Here we review the evolution of pelvic fins and hindlimbs within the context of the changes in anatomical structure and the molecular mechanisms involved. PMID:22913749
Working conditions at hospital food service and the development of venous disease of lower limbs.
da Luz, Clarissa Medeiros; da Costa Proença, Rossana Pacheco; de Salazar, Begoña Rodriguez Ortiz; do Nascimento Galego, Gilberto
2013-12-01
The present study assesses some factors that may influence the development of lower limb venous disease in workers of a hospital food service unit. An Ergonomic analysis of work was carried out at a hospital located in the south of Brazil. As for data collection, the following were used: interviews and body mass index assessment; specific clinical examination to diagnose venous disease, water displacement volumetry of the lower limbs. The activities performed at the workplace were followed by direct observation with image registration, use of pedometers, stopwatches, decibel meter, and digital thermo-hygrometer. It was observed different degrees of venous disease in 78% of the cases investigated. The volumetric variation of the lower limbs was 5.13%, showing the presence of edema. Working in hospital food service is associated with circulatory disorders of lower limbs, such as edema and venous disease. The following risk factors were identified: standing activities at work during a long period of time, high temperature, and humidity and carrying heavy weights.
Golf and upper limb injuries: a summary and review of the literature
McHardy, Andrew J; Pollard, Henry P
2005-01-01
Background Golf is a popular past time that provides exercise with social interaction. However, as with all sports and activities, injury may occur. Many golf-related injuries occur in the upper limb, yet little research on the potential mechanisms of these injuries has been conducted. Objective To review the current literature on golf-related upper limb injuries and report on potential causes of injury as it relates to the golf swing. Discussion An overview of the golf swing is described in terms of its potential to cause the frequently noted injuries. Most injuries occur at impact when the golf club hits the ball. This paper concludes that more research into golf-related upper limb injuries is required to develop a thorough understanding of how injuries occur. Types of research include epidemiology studies, kinematic swing analysis and electromyographic studies of the upper limb during golf. By conducting such research, preventative measures maybe developed to reduce golf related injury. PMID:15967021
Assessing upper limb function in nonambulant SMA patients: development of a new module.
Mazzone, Elena; Bianco, Flaviana; Martinelli, Diego; Glanzman, Allan M; Messina, Sonia; De Sanctis, Roberto; Main, Marion; Eagle, Michelle; Florence, Julaine; Krosschell, Kristin; Vasco, Gessica; Pelliccioni, Marco; Lombardo, Marilena; Pane, Marika; Finkel, Richard; Muntoni, Francesco; Bertini, Enrico; Mercuri, Eugenio
2011-06-01
We report the development of a module specifically designed for assessing upper limb function in nonambulant SMA patients, including young children and those with severe contractures. The application of the module to a preschool cohort of 40 children (age 30-48 months) showed that all the items could be completed by 30 months. The module was also used in 45 nonambulant SMA patients (age 30 months to 27 years). Their scores were more variable than in the preschool cohort, ranging from 0 to 18. The magnitude of scores was not related to age (r=-0.19). The upper limb scores had a good correlation with the Hammersmith Functional Motor Scale, r=0.75, but the upper limb function did not always strictly follow the overall gross motor function. These findings suggest that even some of the very weak nonambulant children possess upper limb skills that can be measured. Copyright © 2011 Elsevier B.V. All rights reserved.
Regeneration of limb joints in the axolotl (Ambystoma mexicanum).
Lee, Jangwoo; Gardiner, David M
2012-01-01
In spite of numerous investigations of regenerating salamander limbs, little attention has been paid to the details of how joints are reformed. An understanding of the process and mechanisms of joint regeneration in this model system for tetrapod limb regeneration would provide insights into developing novel therapies for inducing joint regeneration in humans. To this end, we have used the axolotl (Mexican Salamander) model of limb regeneration to describe the morphology and the expression patterns of marker genes during joint regeneration in response to limb amputation. These data are consistent with the hypothesis that the mechanisms of joint formation whether it be development or regeneration are conserved. We also have determined that defects in the epiphyseal region of both forelimbs and hind limbs in the axolotl are regenerated only when the defect is small. As is the case with defects in the diaphysis, there is a critical size above which the endogenous regenerative response is not sufficient to regenerate the joint. This non-regenerative response in an animal that has the ability to regenerate perfectly provides the opportunity to screen for the signaling pathways to induce regeneration of articular cartilage and joints.
Regeneration of Limb Joints in the Axolotl (Ambystoma mexicanum)
Lee, Jangwoo; Gardiner, David M.
2012-01-01
In spite of numerous investigations of regenerating salamander limbs, little attention has been paid to the details of how joints are reformed. An understanding of the process and mechanisms of joint regeneration in this model system for tetrapod limb regeneration would provide insights into developing novel therapies for inducing joint regeneration in humans. To this end, we have used the axolotl (Mexican Salamander) model of limb regeneration to describe the morphology and the expression patterns of marker genes during joint regeneration in response to limb amputation. These data are consistent with the hypothesis that the mechanisms of joint formation whether it be development or regeneration are conserved. We also have determined that defects in the epiphyseal region of both forelimbs and hind limbs in the axolotl are regenerated only when the defect is small. As is the case with defects in the diaphysis, there is a critical size above which the endogenous regenerative response is not sufficient to regenerate the joint. This non-regenerative response in an animal that has the ability to regenerate perfectly provides the opportunity to screen for the signaling pathways to induce regeneration of articular cartilage and joints. PMID:23185640
Waśko, Marcin K; Langner, Maciej; Pomianowski, Stanisław
2016-11-30
Mechanical injury to soft tissues and bones of the lower limbs may be complicated by thrombosis and oedema. Treatment of posttraumatic oedema in the lower limbs can be difficult and protracted and rarely leads to complete recovery. The pathogenesis of posttraumatic oedema has not been fully elucidated. This paper presents the aetiopathogenesis of posttraumatic oedema in the lower limbs and a review of relevant literature in English and Polish of the last 5 years, describing therapy outcomes and potential perspectives for develop ment.
NASA Astrophysics Data System (ADS)
McInroe, Benjamin; Astley, Henry; Kawano, Sandy; Blob, Richard; Goldman, Daniel I.
2015-03-01
In the evolutionary transition from an aquatic to a terrestrial environment, early walkers adapted to the challenges of locomotion on complex, flowable substrates (e.g. sand and mud). Our previous biological and robotic studies have demonstrated that locomotion on such substrates is sensitive to both limb morphology and kinematics. Although reconstructions of early vertebrate skeletal morphologies exist, the kinematic strategies required for successful locomotion by these organisms have not yet been explored. To gain insight into how early walkers contended with complex substrates, we developed a robotic model with appendage morphology inspired by a model analog organism, the mudskipper. We tested mudskippers and the robot on different substrates, including rigid ground and dry granular media, varying incline angle. The mudskippers moved effectively on all level substrates using a fin-driven gait. But as incline angle increased, the animals used their tails in concert with their fins to generate propulsion. Adding an actuated tail to the robot improved robustness, making possible locomotion on otherwise inaccessible inclines. With these discoveries, we are elucidating a minimal template that may have allowed the early walkers to adapt to locomotion on land. This work was supported by NSF PoLS.
Functional analysis of limb enhancers in the developing fin
Booker, Betty M.; Murphy, Karl K.
2013-01-01
Despite diverging ~365 million years ago, tetrapod limbs and pectoral fins express similar genes that could be regulated by shared regulatory elements. In this study, we set out to analyze the ability of enhancers to maintain tissue specificity in these two divergent structures. We tested 22 human sequences that were previously reported as mouse limb enhancers for their enhancer activity in zebrafish (Danio rerio). Using a zebrafish enhancer assay, we found that 10/22 (45 %) were positive for pectoral fin activity. Analysis of the various criteria that correlated with positive fin activity found that both spatial limb activity and evolutionary conservation are not good predictors of fin enhancer activity. These results suggest that zebrafish enhancer assays may be limited in detecting human limb enhancers, and this limitation does not improve by the use of limb spatial expression or evolutionary conservation. PMID:24068387
Slow Movements of Bio-Inspired Limbs
NASA Astrophysics Data System (ADS)
Babikian, Sarine; Valero-Cuevas, Francisco J.; Kanso, Eva
2016-10-01
Slow and accurate finger and limb movements are essential to daily activities, but the underlying mechanics is relatively unexplored. Here, we develop a mathematical framework to examine slow movements of tendon-driven limbs that are produced by modulating the tendons' stiffness parameters. Slow limb movements are driftless in the sense that movement stops when actuations stop. We demonstrate, in the context of a planar tendon-driven system representing a finger, that the control of stiffness suffices to produce stable and accurate limb postures and quasi-static (slow) transitions among them. We prove, however, that stable postures are achievable only when tendons are pretensioned, i.e., they cannot become slack. Our results further indicate that a non-smoothness in slow movements arises because the precision with which individual stiffnesses need to be altered changes substantially throughout the limb's motion.
NASA Technical Reports Server (NTRS)
Duke, J.; Janer, L.; Moore, J.
1985-01-01
Decreased cartilage areas in embryonic limbs developing under excess g in vitro, is reported, as well as delayed skeletal development in embryos and fetuses exposed to excess g in utero. 12.5-day mouse limb buds were cultured at 2.6 g, and fixed at two days and six days of culture. In vivo experiments used alizarin-stained 18-day fetuses exposed to 2.3 g. In all studies, cartilage areas were determined using a digitized tablet. Form factor analysis determined that the main effect of in vitro centrifugation was a reduction in length of the limb elements, probably due to the precocious chondrogenesis seen in the upper regions of centrifuged limbs. Similar reductions in length of ossified areas was seen in the in utero studies.
Olori, Jennifer C.
2015-01-01
The ontogeny of extant amphibians often is used as a model for that of extinct early tetrapods, despite evidence for a spectrum of developmental modes in temnospondyls and a paucity of ontogenetic data for lepospondyls. I describe the skeletal morphogenesis of the extinct lepospondyls Microbrachis pelikani and Hyloplesion longicostatum using the largest samples examined for either taxon. Nearly all known specimens were re-examined, allowing for substantial anatomical revisions that affect the scoring of characters commonly used in phylogenetic analyses of early tetrapods. The palate of H. longicostatum is re-interpreted and suggested to be more similar to that of M. pelikani, especially in the nature of the contact between the pterygoids. Both taxa possess lateral lines, and M. pelikani additionally exhibits branchial plates. However, early and rapid ossification of the postcranial skeleton, including a well-developed pubis and ossified epipodials, suggests that neither taxon metamorphosed nor were they neotenic in the sense of branchiosaurids and salamanders. Morphogenetic patterns in the foot suggest that digit 5 was developmentally delayed and the final digit to ossify in M. pelikani and H. longicostatum. Overall patterns of postcranial ossification may indicate postaxial dominance in limb and digit formation, but also more developmental variation in early tetrapods than has been appreciated. The phylogenetic position and developmental patterns of M. pelikani and H. longicostatum are congruent with the hypothesis that early tetrapods lacked metamorphosis ancestrally and that stem-amniotes exhibited derived features of development, such as rapid and complete ossification of the skeleton, potentially prior to the evolution of the amniotic egg. PMID:26083733
Comparative genomic analysis of the false killer whale (Pseudorca crassidens) LMBR1 locus.
Kim, Dae-Won; Choi, Sang-Haeng; Kim, Ryong Nam; Kim, Sun-Hong; Paik, Sang-Gi; Nam, Seong-Hyeuk; Kim, Dong-Wook; Kim, Aeri; Kang, Aram; Park, Hong-Seog
2010-09-01
The sequencing and comparative genomic analysis of LMBR1 loci in mammals or other species, including human, would be very important in understanding evolutionary genetic changes underlying the evolution of limb development. In this regard, comparative genomic annotation of the false killer whale LMBR1 locus could shed new light on the evolution of limb development. We sequenced two false killer whale BAC clones, corresponding to 156 kb and 144 kb, respectively, harboring the tightly linked RNF32, LMBR1, and NOM1 genes. Our annotation of the false killer whale LMBR1 gene showed that it consists of 17 exons (1473 bp), in contrast to 18 exons (1596 bp) in human, and it displays 93.1% and 95.6% nucleotide and amino acid sequence similarity, respectively, compared with the human gene. In particular, we discovered that exon 10, deleted in the false killer whale LMBR1 gene, is present only in primates, and this fact strongly implies that exon 10 might be crucial in determining primate-specific limb development. ZRS and TFBS sequences have been well conserved across 11 species, suggesting that these regions could be involved in an important function of limb development and limb patterning. The neighboring gene RNF32 showed several lineage-conserved exons, such as exons 2 through 9 conserved in eutherian mammals, exons 3 through 9 conserved in mammals, and exons 5 through 9 conserved in vertebrates. The other neighboring gene, NOM1, had undergone a substitution (ATG→GTA) at the start codon, giving rise to a 36 bp shorter N-terminal sequence compared with the human sequence. Our comparative analysis of the false killer whale LMBR1 genomic locus provides important clues regarding the genetic regions that may play crucial roles in limb development and patterning.
Phosphorylation of Lbx1 controls lateral myoblast migration into the limb.
Masselink, Wouter; Masaki, Megumi; Sieiro, Daniel; Marcelle, Christophe; Currie, Peter D
2017-10-15
The migration of limb myogenic precursors from limb level somites to their ultimate site of differentiation in the limb is a paradigmatic example of a set of dynamic and orchestrated migratory cell behaviours. The homeobox containing transcription factor ladybird homeobox 1 (Lbx1) is a central regulator of limb myoblast migration, null mutations of Lbx1 result in severe disruptions to limb muscle formation, particularly in the distal region of the limb in mice (Gross et al., 2000). As such Lbx1 has been hypothesized to control lateral migration of myoblasts into the distal limb anlage. It acts as a core regulator of the limb myoblast migration machinery, controlled by Pax3. A secondary role for Lbx1 in the differentiation and commitment of limb musculature has also been proposed (Brohmann et al., 2000; Uchiyama et al., 2000). Here we show that lateral migration, but not differentiation or commitment of limb myoblasts, is controlled by the phosphorylation of three adjacent serine residues of LBX1. Electroporation of limb level somites in the chick embryo with a dephosphomimetic form of Lbx1 results in a specific defect in the lateral migration of limb myoblasts. Although the initial delamination and migration of myoblasts is unaffected, migration into the distal limb bud is severely disrupted. Interestingly, myoblasts undergo normal differentiation independent of their migratory status, suggesting that the differentiation potential of hypaxial muscle is not regulated by the phosphorylation state of LBX1. Furthermore, we show that FGF8 and ERK mediated signal transduction, both critical regulators of the developing limb bud, have the capacity to induce the phosphorylation of LBX1 at these residues. Overall, this suggests a mechanism whereby the phosphorylation of LBX1, potentially through FGF8 and ERK signalling, controls the lateral migration of myoblasts into the distal limb bud. Copyright © 2017. Published by Elsevier Inc.
[Study on the center-driven multiple degrees of freedom upper limb rehabilitation training robot].
Huang, Xiaohai; Yu, Hongliu; Wang, Jinchao; Dong, Qi; Zhang, Linling; Meng, Qiaoling; Li, Sujiao; Wang, Duojin
2018-03-01
With the aging of the society, the number of stroke patients has been increasing year by year. Compared with the traditional rehabilitation therapy, the application of upper limb rehabilitation robot has higher efficiency and better rehabilitation effect, and has become an important development direction in the field of rehabilitation. In view of the current development status and the deficiency of upper limb rehabilitation robot system, combined with the development trend of all kinds of products of the upper limb rehabilitation robot, this paper designed a center-driven upper limb rehabilitation training robot for cable transmission which can help the patients complete 6 degrees of freedom (3 are driven, 3 are underactuated) training. Combined the structure of robot with more joints rehabilitation training, the paper choosed a cubic polynomial trajectory planning method in the joint space planning to design two trajectories of eating and lifting arm. According to the trajectory equation, the movement trajectory of each joint of the robot was drawn in MATLAB. It laid a foundation for scientific and effective rehabilitation training. Finally, the experimental prototype is built, and the mechanical structure and design trajectories are verified.
Recently, high frequencies of malformations have been reported in amphibians across the United States. It has been suggested that the malformations may be the result of xenobiotic disruption of retinoid signaling pathways during embryogenesis and tadpole development. Therefore, a...
Shark attack: review of 86 consecutive cases.
Woolgar, J D; Cliff, G; Nair, R; Hafez, H; Robbs, J V
2001-05-01
On average there are approximately 50 confirmed shark attacks worldwide annually. Despite their rarity, such incidents often generate much public and media attention. The injuries of 86 consecutive victims of shark attack were reviewed from 1980 to 1999. Clinical data retrieved from the South African Shark Attack Files, maintained by the Natal Sharks Board, were retrospectively analyzed to determine the nature, treatment, and outcome of injuries. The majority of victims (n = 68 [81%]) had relatively minor injuries that required simple primary suture. Those patients (n = 16 [19%]) with more extensive limb lacerations longer than 20 cm or with soft-tissue loss of more than one myofascial compartment were associated with higher morbidity and limb loss. In 8 of the 10 fatalities, death occurred as a result of exsanguinating hemorrhage from a limb vascular injury. Victims of shark attack usually sustain only minor injuries. In more serious cases, particularly if associated with a major vascular injury, hemorrhage control and early resuscitation are of utmost importance during the initial management if these patients are to survive.
Simon, H G; Nelson, C; Goff, D; Laufer, E; Morgan, B A; Tabin, C
1995-01-01
An amputated limb of an adult urodele amphibian is capable of undergoing regeneration. The new structures form from an undifferentiated mass of cells called the regenerative blastema. The cells of the blastema are believed to derive from differentiated tissues of the adult limb. However, the exact source of these cells and the process by which they undergo dedifferentiation are poorly understood. In order to elucidate the molecular and cellular basis for dedifferentiation we isolated a number of genes which are potential regulators of the process. These include Msx-1, which is believed to support the undifferentiated and proliferative state of cells in the embryonic limb bud; and two members of the myogenic regulatory gene family, MRF-4 and Myf-5, which are expressed in differentiated muscle and regulate muscle-specific gene activity. As anticipated, we find that Msx-1 is strongly up-regulated during the initiation of regeneration. It remains expressed throughout regeneration but is not found in the fully regenerated limb. The myogenic gene MRF-4 has the reverse expression pattern. It is expressed in adult limb muscle, is rapidly shut off in early regenerative blastemas, and is only reexpressed at the completion of regeneration. These kinetics are paralleled by those of a muscle-specific Myosin gene. In contrast Myf-5, a second member of the myogenic gene family, continues to be expressed throughout the regenerative process. Thus, MRF-4 and Myf-5 are likely to play distinct roles during regeneration. MRF-4 may directly regulate muscle phenotype and as such its repression may be a key event in dedifferentiation.(ABSTRACT TRUNCATED AT 250 WORDS)
Chang, Min Cheol; Kim, Dae Yul; Park, Dae Hwan
2015-01-01
Motor dysfunction in the lower limbs is a common sequela in stroke patients. We used transcranial magnetic stimulation (TMS) to determine if applying transcranial direct current stimulation (tDCS) to the primary motor cortex helps enhance cortical excitability. Furthermore, we evaluate if combination anodal tDCS and conventional physical therapy improves motor function in the lower limbs. Twenty-four patients with early-stage stroke were randomly assigned to 2 groups: 1) the tDCS group, in which patients received 10 sessions of anodal tDCS and conventional physical therapy; and 2) the sham group, in which patients received 10 sessions of sham stimulation and conventional physical therapy. One day before and after intervention, the motor-evoked potential (MEP) of the affected tibialis anterior muscle was evaluated and motor function was assessed using the lower limb subscale of the Fugl-Meyer Assessment (FMA-LE), lower limb Motricity Index (MI-LE), Functional Ambulatory Category (FAC), Berg Balance Scale (BBS), and gait analysis. The MEPs in the tDCS group became shorter in latency and higher in amplitude after intervention in comparison with the sham group. Improvements in FMA-LE and MI-LE were greater in the tDCS group, but no significant differences in FAC or BBS scores were found. Also, the changes observed on the gait analyses did not significantly differ between the tDCS and sham groups. Combination anodal tDCS and conservative physical therapy appears to be a beneficial therapeutic modality for improving motor function in the lower limbs in patients with subacute stroke. Copyright © 2015 Elsevier Inc. All rights reserved.
Major lower limb congenital shortening: a mini review.
Fixsen, John A
2003-01-01
Major congenital limb deficiencies are rare and the experience of most orthopaedic surgeons of their management will be small. The suggestion of the establishment of special limb deficiency clinics seems a sensible way of collecting the necessary expertise together in one place in order to advise patient and parents on the long-term management, throughout life, of their problems. Advances in imaging have led to prenatal diagnosis, which produces very significant problems in counselling parents before their child is born. More sophisticated methods of imaging after birth such as magnetic resonance imaging allow more accurate assessment of the deficiency. Early classifications based on plain radiology in the first year of life are being superseded by classifications relevant to the modern methods of reconstruction particularly the circular (Ilizarov) fixator. Similarly the remarkable advances in molecular biology are increasing our understanding of the fundamental causes of these deficiencies and the ultimate aim of their prevention. The rapid advances in reconstruction particularly using circular fixators has made reconstruction rather than amputation and a prosthesis possible, particularly in the milder forms of deficiency. However, the surgeon must remember that these conditions represent a field defect so that reconstruction cannot produce a normal limb. One of the hardest things to explain to patients and parents is that however well reconstruction is performed the result is not a normal limb. In the more severe forms of deficiency frequently the best advice is still amputation and a modern prosthesis. For some patients and parents this is very difficult if not impossible to accept. However, life with a good amputation and modern prosthesis may be better than attempting a long and arduous reconstruction, which still results in an abnormal and imperfect limb.
Street, Brian D; Gage, William
2013-04-01
The external knee adduction moment is an accurate estimation of the load distribution of the knee and is a valid predictor for the presence, severity and progression rate of medial compartment knee osteoarthritis. Gait modification strategies have been shown to be an effective means of reducing the external adduction moment. The purpose of this study was to test narrow gait as a mechanism to reduce the external adduction moment and investigate if limb dominance affects this pattern. Fifteen healthy male participants (mean age: 23.8 (SD=3.1) years, mean height: 1.8 (SD=0.1) m, and mean body mass: 82.9 (SD=16.1 kg) took part in this study. Five walking trials were performed for each of the three different gait conditions: normal gait, toe-out gait, and narrow gait. Adoption of the narrow gait strategy significantly reduced the early stance phase external knee adduction moment compared to normal and toe-out gait (p<.002). However, it was observed that this reduction only occurred in the non-dominant limb. Gait modification can reduce the external knee adduction moment. However, asymmetrical patterns between the dominant and non-dominant limbs, specifically during gait modification, may attenuate the effectiveness of this intervention. The mechanism of limb dominance and the specific roles of each limb during gait may account for an asymmetrical pattern in the moment arm and center of mass displacement during stance. This new insight into how limb-dominance effects gait modification strategies will be useful in the clinical setting when identifying appropriate patients, when indicating a gait modification strategy and in future research methodology. Copyright © 2013 Elsevier B.V. All rights reserved.
Limb-Enhancer Genie: An accessible resource of accurate enhancer predictions in the developing limb
Monti, Remo; Barozzi, Iros; Osterwalder, Marco; ...
2017-08-21
Epigenomic mapping of enhancer-associated chromatin modifications facilitates the genome-wide discovery of tissue-specific enhancers in vivo. However, reliance on single chromatin marks leads to high rates of false-positive predictions. More sophisticated, integrative methods have been described, but commonly suffer from limited accessibility to the resulting predictions and reduced biological interpretability. Here we present the Limb-Enhancer Genie (LEG), a collection of highly accurate, genome-wide predictions of enhancers in the developing limb, available through a user-friendly online interface. We predict limb enhancers using a combination of > 50 published limb-specific datasets and clusters of evolutionarily conserved transcription factor binding sites, taking advantage ofmore » the patterns observed at previously in vivo validated elements. By combining different statistical models, our approach outperforms current state-of-the-art methods and provides interpretable measures of feature importance. Our results indicate that including a previously unappreciated score that quantifies tissue-specific nuclease accessibility significantly improves prediction performance. We demonstrate the utility of our approach through in vivo validation of newly predicted elements. Moreover, we describe general features that can guide the type of datasets to include when predicting tissue-specific enhancers genome-wide, while providing an accessible resource to the general biological community and facilitating the functional interpretation of genetic studies of limb malformations.« less
Development of five digits is controlled by a bipartite long-range cis-regulator.
Lettice, Laura A; Williamson, Iain; Devenney, Paul S; Kilanowski, Fiona; Dorin, Julia; Hill, Robert E
2014-04-01
Conservation within intergenic DNA often highlights regulatory elements that control gene expression from a long range. How conservation within a single element relates to regulatory information and how internal composition relates to function is unknown. Here, we examine the structural features of the highly conserved ZRS (also called MFCS1) cis-regulator responsible for the spatiotemporal control of Shh in the limb bud. By systematically dissecting the ZRS, both in transgenic assays and within in the endogenous locus, we show that the ZRS is, in effect, composed of two distinct domains of activity: one domain directs spatiotemporal activity but functions predominantly from a short range, whereas a second domain is required to promote long-range activity. We show further that these two domains encode activities that are highly integrated and that the second domain is crucial in promoting the chromosomal conformational changes correlated with gene activity. During limb bud development, these activities encoded by the ZRS are interpreted differently by the fore limbs and the hind limbs; in the absence of the second domain there is no Shh activity in the fore limb, and in the hind limb low levels of Shh lead to a variant digit pattern ranging from two to four digits. Hence, in the embryo, the second domain stabilises the developmental programme providing a buffer for SHH morphogen activity and this ensures that five digits form in both sets of limbs.
Behdad, Saba; Rafiei, Mohammad Hadi; Taheri, Hadi; Behdad, Samin; Mohammadzadeh, Mahdi; Kiani, Gelare; Hosseinpour, Mehrdad
2012-12-01
Management of the severely injured lower limb in children remains a challenge despite advances in surgical techniques. Models that predict the risk of lower limb trauma patients are designed to provide an estimation of the probability of limb salvage. In this study, we validate Mangled Extremity Syndrome Index (Mangled Extremity Severity Score [MESS]) by measurement of its discrimination in children. From September 2009 to 2010, we collected the hospital records of all children who presented with lower extremity long bone open fractures. The inclusion criteria were I grade, II B, III C open fractures, severe injury to three of four organ systems, and severe injury to two of four organ systems with minor injury to two of four systems that require surgical interventions. Severity of limb injury was measured using MESS. Patients were followed up for 1 year. The discrimination of MESS model in differentiating of outcome in patients was assessed by calculating the area under the receiver operator characteristic plot. We evaluated 200 children referred consecutively to our center. The mean MESS in the amputation group was 7.5 ± 1.59 versus 6.4 ± 2.02 in the limb salvage group (p = 0.04). Amputation rate was 7.5% (n = 15). Percentages of skeletal/soft-tissue injury was different between groups (p = 0.0001). Children in the amputation group showed more tissue injury compared with limb salvage group. The best clinical discriminator power was calculated as MESS ≥ 6.5 (sensitivity = 73%, specificity = 54%). We assumed that patients with a high risk of amputation can be identified early, and specific measures can be implemented immediately by using MESS with threshold of 6.5. Georg Thieme Verlag KG Stuttgart · New York.
Shimizu, Manabu; Matsumoto, Taro; Kikuta, Shinsuke; Ohtaki, Munenori; Kano, Koichiro; Taniguchi, Hiroaki; Saito, Shu; Nagaoka, Masahiro; Tokuhashi, Yasuaki
2018-03-20
Mature adipocyte-derived dedifferentiated fat (DFAT) cells possesses the ability to proliferate effectively and the potential to differentiate into multiple linages of mesenchymal tissue; similar to adipose-derived stem cells (ASCs). The purpose of this study is to examine the effects of DFAT cell transplantation on cartilage repair in a rat model of osteochondral defects. Full-thickness osteochondral defects were created in the knees of Sprague-Dawley rats bilaterally. Cartilage-like micromass pellets were prepared from green fluorescent protein (GFP)-labeled rat DFAT cells and subsequently transplanted into the affected right knee of these rats. Defects in the left knee were used as a control. Macroscopic and microscopic changes of treated and control defects were evaluated up to 12 weeks post-treatment with DFAT cells. To observe the transplanted cells, sectioned femurs were immunostained for GFP and type II collagen. DFAT cells formed micromass pellets expressing characteristics of immature cartilage in vitro. In the DFAT cell-transplanted limbs, the defects were completely filled with white micromass pellets as early as 2 weeks post-treatment. These limbs became smooth at 4 weeks. Conversely, the defects in the control limbs were still not repaired by 4 weeks. Macroscopic ICRS scores at 2 and 4 weeks were significantly higher in the DFAT cells-transplanted limbs compared to those of the control limbs. The modified O'Driscol histological scores for the DFAT cell-transplanted limbs were significantly higher than those of the control limbs at corresponding time points. GFP-positive DAFT cells were detected in the transplanted area at 2 weeks but hardly visible at 12 weeks post-operation. Transplantation of DFAT cell-derived micromass pellets contribute to cartilage repair in a rat osteochondral defect model. DFAT cell transplantation may be a viable therapeutic strategy for the repair of osteochondral injuries. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Upper limb load as a function of repetitive task parameters: part 1--a model of upper limb load.
Roman-Liu, Danuta
2005-01-01
The aim of the study was to develop a theoretical indicator of upper limb musculoskeletal load based on repetitive task parameters. As such the dimensionless parameter, Integrated Cycle Load (ICL) was accepted. It expresses upper limb load which occurs during 1 cycle. The indicator is based on a model of a repetitive task, which consists of a model of the upper limb, a model of basic types of upper limb forces and a model of parameters of a repetitive task such as length of the cycle, length of periods of the cycle and external force exerted during each of the periods of the cycle. Calculations of the ICL parameter were performed for 12 different variants of external load characterised by different values of repetitive task parameters. A comparison of ICL, which expresses external load with a physiological indicator of upper limb load, is presented in Part 2 of the paper.
Coordinated Body Bending Improves Performance of a Salamander-like Robot
NASA Astrophysics Data System (ADS)
Ozkan Aydin, Yasemin; Chong, Baxi; Gong, Chaohui; Rieser, Jennifer M.; Choset, Howie; Goldman, Daniel I.
Analyzing body morphology and limb-body coordination in animals that can both swim and walk is important to understand the evolutionary transition from an aquatic to a terrestrial environment. Based on previous salamander experiments (a modern analog to early tetrapods and performed by Hutchinson's group at RVC in the UK) we built a robophysical model of a salamander and tested its performance on yielding granular media (GM) of poppy seeds. Our servo-driven robot (405 g, 38 cm long) has four limbs, a flexible body, and an active tail. Each limb has two servo motors to control up/down and fore/aft positions of limb. A joint in the middle of the body controls horizontal bending. We assessed performance of the robot by changing the body bending limit from 0°to 90°and measured body displacement and power consumption over a few limb cycles at 0°and 10°sandy slope. We fixed the angle of the legs according to body to test the effect of body bending directly. On GM, step length increased from 0 to 9.5 cm at 0° and 0 to 7 cm at 10°slope while the average power consumption increased 50 % . A geometric mechanics model revealed that on level GM body bending was most beneficial when phase offset 180°from leg movements; increasing the maximum body angular bend from 45°to 90° led to step length increases of up to 90 % .
Lower limb fractures associated with multiligament knee injury
Stagnaro, Joaquin; Yacuzzi, Carlos; Barla, Jorge; Zicaro, Juan Pablo; Costa-Paz, Matias
2017-01-01
Objectives: Knee ligament injuries related to lower limb fractures are common and frequently unnoticed. Management of acute polytrauma is usually focused in the bone lesion and a complete physical examination might be really difficult. The purpose of this study was to analyze a series of patients who suffered multiligament knee injuries associated to a lower limb fracture. Hypothesis: The use of magnetic resonance imaging (MRI) during the initial management can lead to an early diagnosis of ligament injuries. Methods: A retrospective search was conducted from our hospital´s electronic database. We evaluated the initial diagnosis and acute surgical treatment, and management and functional outcomes after the ligament lesion was diagnosed. Results: Seven patients who presented a knee multiligament injury associated with a lower limb fracture were evaluated. The average age was 29 years. Primary diagnoses were: four tibial plateau fractures; one open fracture-dislocation of the knee; one open leg fracture and ipsilateral hip dislocation; and one bifocal femur fracture. Only three patients had an MRI during the initial management of trauma. Six out of seven patients had to be operated on for the multiligament knee injury. The period between the resolution of the fracture and the ligamentous repair was from 3 to 24 months. Conclusion: Poor functional outcomes are reported in patients with multiligament knee injuries associated with high-energy lower limb fractures. We consider an MRI during the initial management can lead to better outcomes. A trauma surgeon working alongside an arthroscopic surgeon might optimize the results for these lesions.
Zhao, Feng; Bosserhoff, Anja-Katrin; Buettner, Reinhard; Moser, Markus
2011-01-01
Background Patent ductus arteriosus (PDA) is one of the most common forms of congenital heart disease. Mutations in transcription factor TFAP2B cause Char syndrome, a human disorder characterized by PDA, facial dysmorphysm and hand anomalies. Animal research data are needed to understand the mechanisms. The aim of our study was to elucidate the pathogenesis of Char syndrome at the molecular level. Methodology/Principal Findings Gene expression of Tfap2b during mouse development was studied, and newborns of Tfap2b-deficient mice were examined to identify phenotypes. Gel shift assays had been carried out to search for Tfap2 downstream genes. Promoters of candidate genes were cloned into a reporter construct and used to demonstrate their regulation by Tfap2b in cell transfection. In situ hybridizations showed that the murine transcription factor Tfap2b was expressed during the entire development of mouse ductus arteriosus. Histological examination of ductus arteriosus from Tfap2b knockout mice 6 hours after birth revealed that they were not closed. Consequently, the lungs of Tfap2b −/− mice demonstrated progressive congestion of the pulmonary capillaries, which was postulated to result secondarily from PDA. In addition, Tfap2b was expressed in the limb buds, particularly in the posterior limb field during development. Lack of Tfap2b resulted in bilateral postaxial accessory digits. Further study indicated that expressions of bone morphogenetic protein (Bmp) genes, which are reported to be involved in the limb patterning and ductal development, were altered in limb buds of Tfap2b-deficient embryos, due to direct control of Bmp2 and Bmp4 promoter activity by Tfap2b. Conclusions/Significance Tfap2b plays important roles in the development of mouse ductus arteriosus and limb patterning. Loss of Tfap2b results in altered Bmp expression that may cause the heart-limb defects observed in Tfap2b mouse mutants and Char syndrome patients. The Tfap2b knockout mouse may add to the very limited available animal models of PDA. PMID:21829553
Current concepts in repair of extremity venous injury.
Williams, Timothy K; Clouse, W Darrin
2016-04-01
Extremity venous injury management remains controversial. The purpose of this communication is to offer perspective as well as experiential and technical insight into extremity venous injury repair. Available literature is reviewed and discussed. Historical context is provided. Indication, the decision process for repair, including technical conduct, is delineated. In particular, the authors' experiences in both civilian and wartime injury are used for perspective. Extremity venous injury repair was championed within data from the Vietnam Vascular Registry. However, patterns of extremity venous injury differ between combat and civilian settings. Since Vietnam, civilian descriptive series opine the benefits and potential complications associated with both venous injury repair and ligation. These surround extremity edema, chronic venous insufficiency, thromboembolism, and limb loss. Whereas no clear superiority in either approach has been identified to date, there appears to be no increased risk of pulmonary embolism or chronic venous changes with repair. Newer data from the wars in Iraq and Afghanistan and meta-analysis have reinforced this and also have suggested limb salvage benefit for extremity venous repair in combined arterial and venous injuries in modern settings. The patient's physiologic state and associated injury drive five triage categories suggesting vein injury management. Vein repair thrombosis occurs in a significant proportion, yet many recanalize and possibly have a positive impact on limb venous return. Further, early decompression favors reduced blood loss, acute edema, and inflammation, supporting collateral development. Large soft tissue injury minimizing collateral capacity increases the importance of repair. Constructs of repair are varied with modest differences in patency. Venous shunting is feasible, but specific roles remain nebulous. An aggressive posture toward extremity venous injury repair seems justified today because of the likely role in reducing venous hypertensive sequelae as well as a potential role in limb salvage. Appropriate triage selection for extremity vein repair is essential. Copyright © 2016 Society for Vascular Surgery. All rights reserved.
Alibardi, Lorenzo
2017-12-01
The present review focuses on the role of hyaluronate (hyaluronic acid; HA) during limb and tail regeneration in amphibians and lizards mainly in relation to cells of the immune system. This non-sulfated glycosaminoglycan (GAG) increases in early stages of wound healing and blastema formation, like during limb or tail embryogenesis, when the immune system is still immature. The formation of a regenerating blastema occurs by the accumulation of mesenchymal cells displaying embryonic-like antigens and HA. This GAG adsorbs large amount of water and generates a soft tissue over 80% hydrated where mesenchymal and epithelial cells can move and interact, an obligatory passage for organ regeneration. GAGs and HA in particular rise to a high amount and coat plasma membranes of blastema cells forming a shield that likely impedes to the circulating immune cells to elicit an immune reaction against the embryonic-like antigens present on blastema cells. The evolution of limb-tail regeneration in amphibians dates back to the Devonian-Carboniferous, while tail regeneration in lizards is a more recent evolution process, possibly occurred since the Jurassic, which is unique among amniotes. Both processes are associated with the reactivation of proliferating embryonic programs that involve the upregulation of genes for Wnt, non-coding RNAs, and HA synthesis in an immune-suppress organ, the regenerative blastema. Failure of maintaining a lasting HA synthesis for the formation of a highly hydrated blastema leads to scarring, the common healing process of amniotes equipped with an efficient immune system. The study of amphibian and lizard regeneration indicates that attempts to stimulate organ regeneration in other vertebrates require the induction of a highly hydrated and immune-depressed, HA-rich environment, similar to the extracellular environment present during development. © 2017 Wiley Periodicals, Inc.
Conte, Daniele; Garaffo, Giulia; Lo Iacono, Nadia; Mantero, Stefano; Piccolo, Stefano; Cordenonsi, Michelangelo; Perez-Morga, David; Orecchia, Valeria; Poli, Valeria; Merlo, Giorgio R.
2016-01-01
The congenital malformation split hand/foot (SHFM) is characterized by missing central fingers and dysmorphology or fusion of the remaining ones. Type-1 SHFM is linked to deletions/rearrangements of the DLX5–DLX6 locus and point mutations in the DLX5 gene. The ectrodactyly phenotype is reproduced in mice by the double knockout (DKO) of Dlx5 and Dlx6. During limb development, the apical ectodermal ridge (AER) is a key-signaling center responsible for early proximal–distal growth and patterning. In Dlx5;6 DKO hindlimbs, the central wedge of the AER loses multilayered organization and shows down-regulation of FGF8 and Dlx2. In search for the mechanism, we examined the non-canonical Wnt signaling, considering that Dwnt-5 is a target of distalless in Drosophila and the knockout of Wnt5, Ryk, Ror2 and Vangl2 in the mouse causes severe limb malformations. We found that in Dlx5;6 DKO limbs, the AER expresses lower levels of Wnt5a, shows scattered β-catenin responsive cells and altered basolateral and planar cell polarity (PCP). The addition of Wnt5a to cultured embryonic limbs restored the expression of AER markers and its stratification. Conversely, the inhibition of the PCP molecule c-jun N-terminal kinase caused a loss of AER marker expression. In vitro, the addition of Wnt5a on mixed primary cultures of embryonic ectoderm and mesenchyme was able to confer re-polarization. We conclude that the Dlx-related ectrodactyly defect is associated with the loss of basoapical and PCP, due to reduced Wnt5a expression and that the restoration of the Wnt5a level is sufficient to partially reverts AER misorganization and dysmorphology. PMID:26685160
Which limb is it? Responses to vibrotactile stimulation in early infancy.
Somogyi, Eszter; Jacquey, Lisa; Heed, Tobias; Hoffmann, Matej; Lockman, Jeffrey J; Granjon, Lionel; Fagard, Jacqueline; O'Regan, J Kevin
2017-12-11
This study focuses on how the body schema develops during the first months of life, by investigating infants' motor responses to localized vibrotactile stimulation on their limbs. Vibrotactile stimulation was provided by small buzzers that were attached to the infants' four limbs one at a time. Four age groups were compared cross-sectionally (3-, 4-, 5-, and 6-month-olds). We show that before they actually reach for the buzzer, which, according to previous studies, occurs around 7-8 months of age, infants demonstrate emerging knowledge about their body's configuration by producing specific movement patterns associated with the stimulated body area. At 3 months, infants responded with an increase in general activity when the buzzer was placed on the body, independently of the vibrator's location. Differentiated topographical awareness of the body seemed to appear around 5 months, with specific responses resulting from stimulation of the hands emerging first, followed by the differentiation of movement patterns associated with the stimulation of the feet. Qualitative analyses revealed specific movement types reliably associated with each stimulated location by 6 months of age, possibly preparing infants' ability to actually reach for the vibrating target. We discuss this result in relation to newborns' ability to learn specific movement patterns through intersensory contingency. Statement of contribution what is already known on infants' sensorimotor knowledge about their own bodies 3-month-olds readily learn to produce specific limb movements to obtain a desired effect (movement of a mobile). infants detect temporal and spatial correspondences between events involving their own body and visual events. what the present study adds until 4-5 months of age, infants mostly produce general motor responses to localized touch. this is because in the present study, infants could not rely on immediate contingent feedback. we propose a cephalocaudal developmental trend of topographic differentiation of body areas. © 2017 The Authors British Journal of Developmental Psychology published by John Wiley & Sons Ltd on behalf of British Psychological Society.
PARTICIPATORY DESIGN OF PEDIATRIC UPPER LIMB PROSTHESES: QUALITATIVE METHODS AND PROTOTYPING.
Sims, Tara; Cranny, Andy; Metcalf, Cheryl; Chappell, Paul; Donovan-Hall, Maggie
2017-01-01
The study aims to develop an understanding of the views of children and adolescents, parents, and professionals on upper limb prosthetic devices to develop and improve device design. Previous research has found that children are dissatisfied with prostheses but has relied heavily on parent proxy reports and quantitative measures (such as questionnaires) to explore their views. Thirty-four participants (eight children aged 8-15 years with upper limb difference, nine parents, eight prosthetists, and nine occupational therapists) contributed to the development of new devices through the BRIDGE methodology of participatory design, using focus groups and interviews. The study identified areas for improving prostheses from the perspective of children and adolescents, developed prototypes based on these and gained feedback on the prototypes from the children and other stakeholders (parents and professionals) of paediatric upper limb prostheses. Future device development needs to focus on ease of use, versatility, appearance, and safety. This study has demonstrated that children and adolescents can and should be involved as equal partners in the development of daily living equipment and that rapid prototyping (three-dimensional printing or additive manufacturing), used within a participatory design framework, can be a useful tool for facilitating this.
Developmental evolution: this side of paradise.
Graham, A; McGonnell, I
1999-09-09
It has long been appreciated that the evolution of snakes involved the loss of limbs and axis elongation, but their developmental basis has been obscure. It has now been shown that alterations in the deployment of Hox genes and an early block in the formation of hindlimb primordia underpin these modifications.
A totally diverting loop colostomy.
Merrett, N. D.; Gartell, P. C.
1993-01-01
A technique is described where the distal limb of a loop colostomy is tied with nylon or polydioxanone. This ensures total faecal diversion and dispenses with the supporting rod, enabling early application of stoma appliances. The technique does not interfere with the traditional transverse closure of a loop colostomy. PMID:8379632
NASA Astrophysics Data System (ADS)
Morita, Yoshifumi; Hirose, Akinori; Uno, Takashi; Uchid, Masaki; Ukai, Hiroyuki; Matsui, Nobuyuki
2007-12-01
In this paper we propose a new rehabilitation training support system for upper limbs. The proposed system enables therapists to quantitatively evaluate the therapeutic effect of upper limb motor function during training, to easily change the load of resistance of training and to easily develop a new training program suitable for the subjects. For this purpose we develop control algorithms of training programs in the 3D force display robot. The 3D force display robot has parallel link mechanism with three motors. The control algorithm simulating sanding training is developed for the 3D force display robot. Moreover the teaching/training function algorithm is developed. It enables the therapists to easily make training trajectory suitable for subject's condition. The effectiveness of the developed control algorithms is verified by experiments.
Alreni, Ahmad Salah Eldin; Harrop, Deborah; Gumber, Anil; McLean, Sionnadh
2015-04-07
Upper limb disability is a common musculoskeletal condition frequently associated with neck pain. Recent literature has reported the need to utilise validated upper limb outcome measures in the assessment and management of patients with neck pain. However, there is a lack of clear guidance about the suitability of available measures, which may impede utilisation. This review will identify all available measures of upper limb function developed for use in neck pain patients and evaluate their measurement and practical properties in order to identify those measures that are most appropriate for use in clinical practice and research. This review will be performed in two phases. Phase one will identify all measures used to assess upper limb function for patients with neck pain. Phase two will identify all available studies of the measurement and practical properties of identified instrument. The COnsensus-based Standards for selection of health Measurement INstrument (COSMIN) will be used to evaluate the methodological quality of the included studies. To ensure methodological rigour, the findings of this review will be reported in accordance with the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guideline. Optimal management of patients with neck pain should incorporate upper limb rehabilitation. The findings of this study will assist clinicians who seek to utilise suitable and accurate measures to assess upper limb function for a patient with neck pain. In addition, the findings of this study may suggest new research directions to support the development of upper limb outcome measures for patients with neck pain. PROSPERO CRD42015016624.
Activity Dependent Signal Transduction in Skeletal Muscle
NASA Technical Reports Server (NTRS)
Hamilton, Susan L.
1999-01-01
The overall goals of this project are: 1) to define the initial signal transduction events whereby the removal of gravitational load from antigravity muscles, such as the soleus, triggers muscle atrophy, and 2) to develop countermeasures to prevent this from happening. Our rationale for this approach is that, if countermeasures can be developed to regulate these early events, we could avoid having to deal with the multiple cascades of events that occur downstream from the initial event. One of our major findings is that hind limb suspension causes an early and sustained increase in intracellular Ca(2+) concentration ([Ca (2+)](sub i)). In most cells the consequences of changes in ([Ca (2+)](sub i))depend on the amplitude, frequency and duration of the Ca(2+) signal and on other factors in the intracellular environment. We propose that muscle remodeling in microgravity represents a change in the balance among several CA(2+) regulated signal transduction pathways, in particular those involving the transcription factors NFAT and NFkB and the pro-apoptotic protein BAD. Other Ca(2+) sensitive pathways involving PKC, ras, rac, and CaM kinase II may also contribute to muscle remodeling.
Meteyer, C.U.; Loeffler, I.K.; Fallon, J.F.; Converse, K.A.; Green, E.; Helgen, J.C.; Kersten, S.; Levey, R.; Eaton-Poole, L.; Burkhart, J.G.
2000-01-01
Background Reports of malformed frogs have increased throughout the North American continent in recent years. Most of the observed malformations have involved the hind limbs. The goal of this study was to accurately characterize the hind limb malformations in wild frogs as an important step toward understanding the possible etiologies. Methods During 1997 and 1998, 182 recently metamorphosed northern leopard frogs (Rana pipiens) were collected from Minnesota, Vermont, and Maine. Malformed hind limbs were present in 157 (86%) of these frogs, which underwent necropsy and radiographic evaluation at the National Wildlife Health Center. These malformations are described in detail and classified into four major categories: (1) no limb (amelia); (2) multiple limbs or limb elements (polymelia, polydactyly, polyphalangy); (3) reduced limb segments or elements (phocomelia, ectromelia, ectrodactyly, and brachydactyly; and (4) distally complete but malformed limb (bone rotations, bridging, skin webbing, and micromelia). Results Amelia and reduced segments and/or elements were the most common finding. Frogs with bilateral hind limb malformations were not common, and in only eight of these 22 frogs were the malformations symmetrical. Malformations of a given type tended to occur in frogs collected from the same site, but the types of malformations varied widely among all three states, and between study sites within Minnesota. Conclusions Clustering of malformation type suggests that developmental events may produce a variety of phenotypes depending on the timing, sequence, and severity of the environmental insult. Hind limb malformations in free-living frogs transcend current mechanistic explanations of tetrapod limb development.
Rest tremor in Parkinson's disease: Body distribution and time of appearance.
Gigante, Angelo Fabio; Pellicciari, Roberta; Iliceto, Giovanni; Liuzzi, Daniele; Mancino, Paola Vincenza; Custodero, Giacomo Emanuele; Guido, Marco; Livrea, Paolo; Defazio, Giovanni
2017-04-15
To assess body distribution and timing of appearance of rest tremor in Parkinson's disease. Information was obtained by a computerized database containing historical information collected at the first visit and data collected during the subsequent follow-up visits. Information on rest tremor developed during the follow-up could be therefore obtained by our own observation in a proportion of patients. Among 289 patients, rest tremor was reported at disease onset in 65.4% of cases and detected at last follow-up examination in 74.4% of patients. Analysis of patients who did not report rest tremor at disease onset indicated that 26% of such patients (9% in the overall population) manifested rest tremor over the disease course. Rest tremor spread to new sites in 39% of patients who manifested rest tremor at disease onset. Regardless of tremor presentation at disease onset or during the follow-up, upper limb was the most frequent tremor localization. Over the follow-up, rest tremor developed faster in the upper limb than in other body sites. The risk of developing rest tremor during the follow-up was not affected by sex, side of motor symptom onset and site of tremor presentation. However, age of disease onset >63years was associated with an increased risk of rest tremor spread. This study provides new information about body distribution and timing of rest tremor appearance during the course of early stages of Parkinson's disease that may help clinicians in patients' counselling. Copyright © 2017 Elsevier B.V. All rights reserved.
Necrotizing fasciitis – a diagnostic dilemma: two case reports
2014-01-01
Introduction Necrotizing soft tissue infections can affect various tissue planes. Although predisposing etiologies are many, they mostly center on impaired immunity occurring directly or indirectly and loss of integrity of protective barriers which predispose to infection. The nonspecific presentation may delay diagnosis and favor high mortality. Case presentation Two case vignettes are presented. The first patient, a 44-year-old healthy South Asian man with a history of repeated minor traumatic injury presented to a primary health care center with a swollen left lower limb. He was treated with antibiotics with an initial diagnosis of cellulitis. Because he deteriorated rapidly and additionally developed intestinal obstruction, he was transferred to our hospital which is a tertiary health care center for further evaluation and management. Prompt clinical diagnosis of necrotizing soft tissue infection was made and confirmed on magnetic resonance imaging as necrotizing fasciitis. Urgent debridement was done, but the already spread infection resulted in rapid clinical deterioration with resultant mortality. The second patient was a 35-year-old South Asian woman with systemic lupus erythematous receiving immunosuppressive therapy who developed left lower limb pain and fever. Medical attention was sought late as she came to the hospital after 4 days. Her condition deteriorated rapidly as she developed septic shock and died within 2 days. Conclusions Necrotizing fasciitis can be fatal when not recognized and without early intervention. Clinicians and surgeons alike should have a greater level of suspicion and appreciation for this uncommon yet lethal infection. PMID:24965382
[A Case of Middle Cerebral Artery Stenosis Presented with Limb-Shaking TIA].
Uno, Junji; Mineta, Haruyuki; Ren, Nice; Takagishi, Sou; Nagaoka, Shintarou; Kameda, Katsuharu; Maeda, Kazushi; Ikai, Yoshiaki; Gi, Hidefuku
2016-07-01
Involuntary movement is a rare clinical manifestation of transient ischemic attack (TIA). However, limb-shaking TIA is well described presentation of carotid occlusive disease. We present the case of a patient who developed limb-shaking TIA associated with high-grade stenosis of middle cerebral artery (M1), which was treated with percutaneous transluminal angioplasty (PTA). The procedure was performed successfully without complication and the symptom disappeared immediately after the procedure. The patient remained free of symptoms at the 38-month follow-up. There was no tendency of restenosis of M1. In this case, PTA was technically feasible and beneficial for limb-shaking TIA with M1 stenosis. Limb-shaking TIA can be a symptom of high-grade stenosis of M1.
Hang Them High: A Hands-Free Technique for Upper Extremity Limb Holding During Surgical Preparation.
Aneja, Arun; Leung, Patrick; Marquez-Lara, Alejandro
Lifting and holding upper and lower limbs during the "prep and drape" portion of certain orthopaedic procedures exert strong forces on the holder and may lead to musculoskeletal disorders. To address these challenges during upper extremity procedures, this article describes a hand-free elevation and traction technique of the upper limbs during preoperative skin preparation with the use of items readily available within the operating room (OR). This technique is particularly useful for heavy or fractured limbs that may impose a physical challenge to lift and maintain in a stable position. Implementation of this technique reduces the risk to nurses, OR personnel, and caregivers of developing work-related musculoskeletal injuries while lifting and holding limbs in the orthopaedic OR.
Brauer, Sandra G; Hayward, Kathryn S; Carson, Richard G; Cresswell, Andrew G; Barker, Ruth N
2013-07-02
Recovery of upper limb function after stroke is poor. The acute to subacute phase after stroke is the optimal time window to promote the recovery of upper limb function. The dose and content of training provided conventionally during this phase is however, unlikely to be adequate to drive functional recovery, especially in the presence of severe motor disability. The current study concerns an approach to address this shortcoming, through evaluation of the SMART Arm, a non-robotic device that enables intensive and repetitive practice of reaching by stroke survivors with severe upper limb disability, with the aim of improving upper limb function. The outcomes of SMART Arm training with or without outcome-triggered electrical stimulation (OT-stim) to augment movement and usual therapy will be compared to usual therapy alone. A prospective, assessor-blinded parallel, three-group randomised controlled trial is being conducted. Seventy-five participants with a first-ever unilateral stroke less than 4 months previously, who present with severe arm disability (three or fewer out of a possible six points on the Motor Assessment Scale [MAS] Item 6), will be recruited from inpatient rehabilitation facilities. Participants will be randomly allocated to one of three dose-matched groups: SMART Arm training with OT-stim and usual therapy; SMART Arm training without OT-stim and usual therapy; or usual therapy alone. All participants will receive 20 hours of upper limb training over four weeks. Blinded assessors will conduct four assessments: pre intervention (0-weeks), post intervention (4-weeks), 26 weeks and 52 weeks follow-up. The primary outcome measure is MAS item 6. All analyses will be based on an intention-to-treat principle. By enabling intensive and repetitive practice of a functional upper limb task during inpatient rehabilitation, SMART Arm training with or without OT-stim in combination with usual therapy, has the potential to improve recovery of upper limb function in those with severe motor disability. The immediate and long-term effects of SMART Arm training on upper limb impairment, activity and participation will be explored, in addition to the benefit of training with or without OT-stim to augment movement when compared to usual therapy alone. ACTRN12608000457347.
How the embryo makes a limb: determination, polarity and identity
Tickle, Cheryll
2015-01-01
The vertebrate limb with its complex anatomy develops from a small bud of undifferentiated mesoderm cells encased in ectoderm. The bud has its own intrinsic polarity and can develop autonomously into a limb without reference to the rest of the embryo. In this review, recent advances are integrated with classical embryology, carried out mainly in chick embryos, to present an overview of how the embryo makes a limb bud. We will focus on how mesoderm cells in precise locations in the embryo become determined to form a limb and express the key transcription factors Tbx4 (leg/hindlimb) or Tbx5 (wing/forelimb). These Tbx transcription factors have equivalent functions in the control of bud formation by initiating a signalling cascade involving Wnts and fibroblast growth factors (FGFs) and by regulating recruitment of mesenchymal cells from the coelomic epithelium into the bud. The mesoderm that will form limb buds and the polarity of the buds is determined with respect to both antero-posterior and dorso-ventral axes of the body. The position in which a bud develops along the antero-posterior axis of the body will also determine its identity – wing/forelimb or leg/hindlimb. Hox gene activity, under the influence of retinoic acid signalling, is directly linked with the initiation of Tbx5 gene expression in the region along the antero-posterior axis of the body that will form wings/forelimbs and determines antero-posterior polarity of the buds. In contrast, Tbx4 expression in the regions that will form legs/hindlimbs is regulated by the homeoprotein Pitx1 and there is no evidence that Hox genes determine antero-posterior polarity of the buds. Bone morphogenetic protein (BMP) signalling determines the region along the dorso-ventral axis of the body in which both wings/forelimbs and legs/hindlimbs develop and dorso-ventral polarity of the buds. The polarity of the buds leads to the establishment of signalling regions – the dorsal and ventral ectoderm, producing Wnts and BMPs, respectively, the apical ectodermal ridge producing fibroblast growth factors and the polarizing region, Sonic hedgehog (Shh). These signals are the same in both wings/forelimbs and legs/hindlimbs and control growth and pattern formation by providing the mesoderm cells of the limb bud as it develops with positional information. The precise anatomy of the limb depends on the mesoderm cells in the developing bud interpreting positional information according to their identity – determined by Pitx1 in hindlimbs – and genotype. The competence to form a limb extends along the entire antero-posterior axis of the trunk – with Hox gene activity inhibiting the formation of forelimbs in the interlimb region – and also along the dorso-ventral axis. PMID:26249743
How the embryo makes a limb: determination, polarity and identity.
Tickle, Cheryll
2015-10-01
The vertebrate limb with its complex anatomy develops from a small bud of undifferentiated mesoderm cells encased in ectoderm. The bud has its own intrinsic polarity and can develop autonomously into a limb without reference to the rest of the embryo. In this review, recent advances are integrated with classical embryology, carried out mainly in chick embryos, to present an overview of how the embryo makes a limb bud. We will focus on how mesoderm cells in precise locations in the embryo become determined to form a limb and express the key transcription factors Tbx4 (leg/hindlimb) or Tbx5 (wing/forelimb). These Tbx transcription factors have equivalent functions in the control of bud formation by initiating a signalling cascade involving Wnts and fibroblast growth factors (FGFs) and by regulating recruitment of mesenchymal cells from the coelomic epithelium into the bud. The mesoderm that will form limb buds and the polarity of the buds is determined with respect to both antero-posterior and dorso-ventral axes of the body. The position in which a bud develops along the antero-posterior axis of the body will also determine its identity - wing/forelimb or leg/hindlimb. Hox gene activity, under the influence of retinoic acid signalling, is directly linked with the initiation of Tbx5 gene expression in the region along the antero-posterior axis of the body that will form wings/forelimbs and determines antero-posterior polarity of the buds. In contrast, Tbx4 expression in the regions that will form legs/hindlimbs is regulated by the homeoprotein Pitx1 and there is no evidence that Hox genes determine antero-posterior polarity of the buds. Bone morphogenetic protein (BMP) signalling determines the region along the dorso-ventral axis of the body in which both wings/forelimbs and legs/hindlimbs develop and dorso-ventral polarity of the buds. The polarity of the buds leads to the establishment of signalling regions - the dorsal and ventral ectoderm, producing Wnts and BMPs, respectively, the apical ectodermal ridge producing fibroblast growth factors and the polarizing region, Sonic hedgehog (Shh). These signals are the same in both wings/forelimbs and legs/hindlimbs and control growth and pattern formation by providing the mesoderm cells of the limb bud as it develops with positional information. The precise anatomy of the limb depends on the mesoderm cells in the developing bud interpreting positional information according to their identity - determined by Pitx1 in hindlimbs - and genotype. The competence to form a limb extends along the entire antero-posterior axis of the trunk - with Hox gene activity inhibiting the formation of forelimbs in the interlimb region - and also along the dorso-ventral axis. © 2015 Anatomical Society.
ERIC Educational Resources Information Center
Jaspers, Ellen; Desloovere, Kaat; Bruyninckx, Herman; Klingels, Katrijn; Molenaers, Guy; Aertbelien, Erwin; Van Gestel, Leen; Feys, Hilde
2011-01-01
The aim of this study was to measure which three-dimensional spatiotemporal and kinematic parameters differentiate upper limb movement characteristics in children with hemiplegic cerebral palsy (HCP) from those in typically developing children (TDC), during various clinically relevant tasks. We used a standardized protocol containing three reach…
2015-02-04
In this image, Mercury's horizon cuts a striking edge against the stark blackness of space. On the right, sunlight harshly brings the landscape into relief while on the left, the surface is shrouded in the darkness of night. This image was acquired as part of MDIS's limb imaging campaign. Once per week, MDIS captures images of Mercury's limb, with an emphasis on imaging the southern hemisphere limb. These limb images provide information about Mercury's shape and complement measurements of topography made by the Mercury Laser Altimeter (MLA) of Mercury's northern hemisphere. The MESSENGER spacecraft is the first ever to orbit the planet Mercury, and the spacecraft's seven scientific instruments and radio science investigation are unraveling the history and evolution of the Solar System's innermost planet. In the mission's more than three years of orbital operations, MESSENGER has acquired over 250,000 images and extensive other data sets. MESSENGER is capable of continuing orbital operations until early 2015. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Hsu, Li-Yueh; Wragg, Andrew; Anderson, Stasia A; Balaban, Robert S; Boehm, Manfred; Arai, Andrew E
2008-02-01
This study presents computerized automatic image analysis for quantitatively evaluating dynamic contrast-enhanced MRI in an ischemic rat hindlimb model. MRI at 7 T was performed on animals in a blinded placebo-controlled experiment comparing multipotent adult progenitor cell-derived progenitor cell (MDPC)-treated, phosphate buffered saline (PBS)-injected, and sham-operated rats. Ischemic and non-ischemic limb regions of interest were automatically segmented from time-series images for detecting changes in perfusion and late enhancement. In correlation analysis of the time-signal intensity histograms, the MDPC-treated limbs correlated well with their corresponding non-ischemic limbs. However, the correlation coefficient of the PBS control group was significantly lower than that of the MDPC-treated and sham-operated groups. In semi-quantitative parametric maps of contrast enhancement, there was no significant difference in hypo-enhanced area between the MDPC and PBS groups at early perfusion-dependent time frames. However, the late-enhancement area was significantly larger in the PBS than the MDPC group. The results of this exploratory study show that MDPC-treated rats could be objectively distinguished from PBS controls. The differences were primarily determined by late contrast enhancement of PBS-treated limbs. These computerized methods appear promising for assessing perfusion and late enhancement in dynamic contrast-enhanced MRI.
Childers, W Lee; Takahashi, Kota Z
2018-03-29
Prosthetic feet are designed to store energy during early stance and then release a portion of that energy during late stance. The usefulness of providing more energy return depends on whether or not that energy transfers up the lower limb to aid in whole body propulsion. This research examined how increasing prosthetic foot energy return affected walking mechanics across various slopes. Five people with a uni-lateral transtibial amputation walked on an instrumented treadmill at 1.1 m/s for three conditions (level ground, +7.5°, -7.5°) while wearing a prosthetic foot with a novel linkage system and a traditional energy storage and return foot. The novel foot demonstrated greater range of motion (p = 0.0012), and returned more energy (p = 0.023) compared to the traditional foot. The increased energy correlated with an increase in center of mass (CoM) energy change during propulsion from the prosthetic limb (p = 0.012), and the increased prosthetic limb propulsion correlated to a decrease in CoM energy change (i.e., collision) on the sound limb (p < 0.001). These data indicate that this novel foot was able to return more energy than a traditional prosthetic foot and that this additional energy was used to increase whole body propulsion.
The OMPS Limb Profiler instrument
NASA Astrophysics Data System (ADS)
Rault, D. F.; Xu, P.
2011-12-01
The Ozone Mapping and Profiler Suite (OMPS) will continue the monitoring of the global distribution of the Earth's middle atmosphere ozone and aerosol. OMPS is composed of three instruments, namely the Total Column Mapper (heritage: TOMS, OMI), the Nadir Profiler (heritage: SBUV) and the Limb Profiler (heritage: SOLSE/LORE, OSIRIS, SCIAMACHY, SAGE III). The ultimate goal of the mission is to better understand and quantify the rate of stratospheric ozone recovery. OMPS is scheduled to be launched on the NPOESS Preparatory Project (NPP) platform in October 2011. The focus of the paper will be on the Limb Profiler (LP) instrument. The LP instrument will measure the Earth's limb radiance, from which ozone profile will be retrieved from the upper tropopause uo to 60km. End-to-end studies of the sensor and retrieval algorithm indicate the following expected performance for ozone: accuracy of 5% or better from the tropopause up to 50 km, precision of about 3-5% from 18 to 50 km, and vertical resolution of 1.5-2 km with vertical sampling of 1 km and along-track horizontal sampling of 1 deg latitude. The paper will describe the mission, discuss the retrieval algorithm, and summarize the expected performance. If available, the paper will also present early on-orbit data.
Ashwell, Ken W S
2012-01-01
The modern monotremes (platypus and echidnas) are characterized by development of their young in a leathery egg that is laid into a nest or abdominal pouch. At hatching, the young are externally immature, with forelimbs capable of digitopalmar prehension, but hindlimbs little advanced beyond limb buds. The embryological collections at the Museum für Naturkunde in Berlin were used to examine the development of the spinal cord and early peripheral nervous system in developing monotremes and to correlate this with known behavioural development. Ventral root outgrowth to the bases of both the fore- and hindlimbs occurs at 6.0 mm crown-rump length (CRL), but invasion of both limbs does not happen until about 8.0-8.5 mm CRL. Differentiation of the ventral horn precedes the dorsal horn during incubation and separate medial and lateral motor columns can be distinguished before hatching. Rexed's laminae begin to appear in the dorsal horn in the first week after hatching, and gracile and cuneate fasciculi emerge during the first two post-hatching months. Qualitative and quantitative comparisons of the structure of the cervicothoracic junction spinal cord in the two monotremes with that in a diprotodont marsupial (the brush-tailed possum, Trichosurus vulpecula) of similar size at birth, did not reveal any significant structural differences between the monotremes and the marsupial. The precocious development of motor systems in the monotreme spinal cord is consistent with the behavioural requirements of the peri-hatching period, that is, rupture of embryonic membranes and egg, and digitopalmar prehension to grasp maternal hair or nest material.
A finite element model to assess transtibial prosthetic sockets with elastomeric liners.
Cagle, John C; Reinhall, Per G; Allyn, Kate J; McLean, Jake; Hinrichs, Paul; Hafner, Brian J; Sanders, Joan E
2017-12-13
People with transtibial amputation often experience skin breakdown due to the pressures and shear stresses that occur at the limb-socket interface. The purpose of this research was to create a transtibial finite element model (FEM) of a contemporary prosthesis that included complete socket geometry, two frictional interactions (limb-liner and liner-socket), and an elastomeric liner. Magnetic resonance imaging scans from three people with characteristic transtibial limb shapes (i.e., short-conical, long-conical, and cylindrical) were acquired and used to develop the models. Each model was evaluated with two loading profiles to identify locations of focused stresses during stance phase. The models identified five locations on the participants' residual limbs where peak stresses matched locations of mechanically induced skin issues they experienced in the 9 months prior to being scanned. The peak contact pressure across all simulations was 98 kPa and the maximum resultant shear stress was 50 kPa, showing reasonable agreement with interface stress measurements reported in the literature. Future research could take advantage of the developed FEM to assess the influence of changes in limb volume or liner material properties on interface stress distributions. Graphical abstract Residual limb finite element model. Left: model components. Right: interface pressures during stance phase.
The ADAMTS5 Metzincin Regulates Zebrafish Somite Differentiation
Dancevic, Carolyn M.; Gibert, Yann; Smith, Adam D.; Ward, Alister C.; McCulloch, Daniel R.
2018-01-01
The ADAMTS5 metzincin, a secreted zinc-dependent metalloproteinase, modulates the extracellular matrix (ECM) during limb morphogenesis and other developmental processes. Here, the role of ADAMTS5 was investigated by knockdown of zebrafish adamts5 during embryogenesis. This revealed impaired Sonic Hedgehog (Shh) signaling during somite patterning and early myogenesis. Notably, synergistic regulation of myod expression by ADAMTS5 and Shh during somite differentiation was observed. These roles were not dependent upon the catalytic activity of ADAMTS5. These data identify a non-enzymatic function for ADAMTS5 in regulating an important cell signaling pathway that impacts on muscle development, with implications for musculoskeletal diseases in which ADAMTS5 and Shh have been associated. PMID:29518972
Bilateral persistent sciatic arteries complicated with chronic lower limb ischemia
Wang, Bin; Liu, Zhenjie; Shen, Laigen
2011-01-01
INTRODUCTION Persistent sciatic artery (PSA) is a rare vascular anomaly associated with a higher rate of aneurysm formation or thromboembolic complications causing lower extremity ischemia. PRESENTATION Of Case A 15-year-old female patient with bilateral PSA presented with lower extremity ischemia. Considering the age and symptoms of the patient, we did not perform any intervention, but continued surveillance with duplex ultrasonography in case of the high incidence of aneurysmal formation or thromboembolic event. DISCUSSION Epidemiology, development, anatomical structure, diagnosis and treatments of PSAs are discussed. CONCLUSION PSAs, are prone to early atheromatous degeneration and aneurysm formation. Treatment of a PSA mainly dependent on the symptoms is either by surgical procedures or by endovascular interventions. PMID:22096762
Pathogenesis, diagnosis and treatment of cerebral fat embolism.
Zhou, Yihua; Yuan, Ying; Huang, Chahua; Hu, Lihua; Cheng, Xiaoshu
2015-01-01
In this study, we analyzed two cases of pure cerebral fat embolism and reviewed related literatures to explore the pathogenesis, clinical manifestations, diagnosis and treatment of cerebral fat embolism, improve the treatment efficiency and reduce the misdiagnosis rate. In our cases, patients fully returned to consciousness at the different times with good prognosis, normal vital signs and without obvious sequelae. For patients with the limb fractures, who developed coma without chest distress, dyspnea or other pulmonary symptoms 12 or 24 h post injury, cerebral fat embolism should be highly suspected, except for those with intracranial lesions, such as delayed traumatic intracerebral hemorrhage, etc. The early diagnosis and comprehensive treatment can improve prognosis.
Pereira, Elisangela Samartin Pegas; Moraes, Elisa Trino de; Siqueira, Daniela Melo; Santos, Marcel Alex Soares dos
2015-01-01
Stewart-Treves Syndrome is characterized by the presence of lymphangiosarcoma on limb extremities. Rare, it occurs in 0.5% of patients who have undergone radical mastectomy with axillary node dissection. The main cause is chronic lymphedema with endothelial and lymphatic differentiation, with no direct relationship to breast cancer. Seven years after a radical right-side mastectomy with lymph node dissection and adjuvant therapy, the patient developed a lesion on her right arm. The dermatological examination revealed an erythematous nodule with bleeding surface on chronic right forearm lymphedema. After the biopsy, a lymphangiosarcoma on chronic lymphedema was diagnosed. Infrequent, this syndrome is relevant because of its associated mortality. Early diagnosis is important to improve survival and reduce complications.
Rehabilitation exoskeletal robotics. The promise of an emerging field.
Pons, José L
2010-01-01
Exoskeletons are wearable robots exhibiting a close cognitive and physical interaction with the human user. These are rigid robotic exoskeletal structures that typically operate alongside human limbs. Scientific and technological work on exoskeletons began in the early 1960s but have only recently been applied to rehabilitation and functional substitution in patients suffering from motor disorders. Key topics for further development of exoskeletons in rehabilitation scenarios include the need for robust human-robot multimodal cognitive interaction, safe and dependable physical interaction, true wearability and portability, and user aspects such as acceptance and usability. This discussion provides an overview of these aspects and draws conclusions regarding potential future research directions in robotic exoskeletons.
Jackowski, S A; Baxter-Jones, A D G; Gruodyte-Raciene, R; Kontulainen, S A; Erlandson, M C
2015-06-01
This study investigated the long-term relationship between the exposure to childhood recreational gymnastics and bone measures and bone strength parameters at the radius and tibia. It was observed that individuals exposed to recreational gymnastics had significantly greater total bone content and area at the distal radius. No differences were observed at the tibia. This study investigated the relationship between exposure to early childhood recreational gymnastics with bone measures and bone strength development at the radius and tibia. One hundred twenty seven children (59 male, 68 female) involved in either recreational gymnastics (gymnasts) or other recreational sports (non-gymnasts) between 4 and 6 years of age were recruited. Peripheral quantitative computed tomography (pQCT) scans of their distal and shaft sites of the forearm and leg were obtained over 3 years, covering the ages of 4-12 years at study completion. Multilevel random effects models were constructed to assess differences in the development of bone measures and bone strength measures between those exposed and not exposed to gymnastics while controlling for age, limb length, weight, physical activity, muscle area, sex, and hours of training. Once age, limb length, weight, muscle area, physical activity, sex, and hours of training effects were controlled, it was observed that individuals exposed to recreational gymnastics had significantly greater total bone area (18.0 ± 7.5 mm(2)) and total bone content (6.0 ± 3.0 mg/mm) at the distal radius (p < 0.05). This represents an 8-21 % benefit in ToA and 8-15 % benefit to ToC from 4 to 12 years of age. Exposure to recreational gymnastics had no significant effect on bone measures at the radius shaft or at the tibia (p > 0.05). Exposure to early life recreational gymnastics provides skeletal benefits to distal radius bone content and area. Thus, childhood recreational gymnastics exposure may be advantageous to bone development at the wrist.
Males that drop a sexually selected weapon grow larger testes.
Joseph, Paul N; Emberts, Zachary; Sasson, Daniel A; Miller, Christine W
2018-01-01
Costly sexually selected weapons are predicted to trade off with postcopulatory traits, such as testes. Although weapons can be important for achieving access to females, individuals of some species can permanently drop (i.e. autotomize) their weapons, without regeneration, to escape danger. We capitalized on this natural behavior to experimentally address whether the loss of a sexually selected weapon leads to increased testes investment in the leaf-footed cactus bug, Narnia femorata Stål (Hemiptera: Coreidae). In a second experiment, we measured offspring production for males that lost a weapon during development. As predicted, males that dropped a hind limb during development grew significantly larger testes than the control treatments. Hind-limb autotomy did not result in the enlargement of other nearby traits. Our results are the first to experimentally demonstrate that males compensate for natural weapon loss by investing more in testes. In a second experiment we found that females paired with males that lost a hind limb had 40% lower egg hatching success than females paired with intact males, perhaps because of lower mating receptivity to males with a lost limb. Importantly, in those cases where viable offspring were produced, males missing a hind limb produced 42% more offspring than males with intact limbs. These results suggest that the loss of a hind-limb weapon can, in some cases, lead to greater fertilization success. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Development of five digits is controlled by a bipartite long-range cis-regulator
Lettice, Laura A.; Williamson, Iain; Devenney, Paul S.; Kilanowski, Fiona; Dorin, Julia; Hill, Robert E.
2014-01-01
Conservation within intergenic DNA often highlights regulatory elements that control gene expression from a long range. How conservation within a single element relates to regulatory information and how internal composition relates to function is unknown. Here, we examine the structural features of the highly conserved ZRS (also called MFCS1) cis-regulator responsible for the spatiotemporal control of Shh in the limb bud. By systematically dissecting the ZRS, both in transgenic assays and within in the endogenous locus, we show that the ZRS is, in effect, composed of two distinct domains of activity: one domain directs spatiotemporal activity but functions predominantly from a short range, whereas a second domain is required to promote long-range activity. We show further that these two domains encode activities that are highly integrated and that the second domain is crucial in promoting the chromosomal conformational changes correlated with gene activity. During limb bud development, these activities encoded by the ZRS are interpreted differently by the fore limbs and the hind limbs; in the absence of the second domain there is no Shh activity in the fore limb, and in the hind limb low levels of Shh lead to a variant digit pattern ranging from two to four digits. Hence, in the embryo, the second domain stabilises the developmental programme providing a buffer for SHH morphogen activity and this ensures that five digits form in both sets of limbs. PMID:24715461
A short overview of upper limb rehabilitation devices
NASA Astrophysics Data System (ADS)
Macovei, S.; Doroftei, I.
2016-08-01
As some studies show, the number of people over 65 years old increases constantly, leading to the need of solution to provide services regarding patient mobility. Diseases, accidents and neurologic problems affect hundreds of people every day, causing pain and lost of motor functions. The ability of using the upper limb is indispensable for a human being in everyday activities, making easy tasks like drinking a glass of water a real challenge. We can agree that physiotherapy promotes recovery, but not at an optimal level, due to limited financial and human resources. Hence, the need of robot-assisted rehabilitation emerges. A robot for upper-limb exercises should have a design that can accurately control interaction forces and progressively adapt assistance to the patients’ abilities and also to record the patient's motion and evolution. In this paper a short overview of upper limb rehabilitation devices is presented. Our goal is to find the shortcomings of the current developed devices in terms of utility, ease of use and costs, for future development of a mechatronic system for upper limb rehabilitation.
FGFR3 is a target of the homeobox transcription factor SHOX in limb development.
Decker, Eva; Durand, Claudia; Bender, Sebastian; Rödelsperger, Christian; Glaser, Anne; Hecht, Jochen; Schneider, Katja U; Rappold, Gudrun
2011-04-15
The short stature homeobox gene SHOX encodes a transcription factor which is important for normal limb development. In humans, SHOX deficiency has been associated with various short stature syndromes including Leri-Weill dyschondrosteosis (LWD), Langer mesomelic dysplasia and Turner syndrome as well as non-syndromic idiopathic short stature. A common feature of these syndromes is disproportionate short stature with a particular shortening of the forearms and lower legs. In our studies employing microarray analyses and cell culture experiments, we revealed a strong positive effect of SHOX on the expression of the fibroblast growth factor receptor gene FGFR3, another well-known factor for limb development. Luciferase reporter gene assays show that SHOX activates the extended FGFR3 promoter, and results from chromatin immunoprecipitation (ChIP)-sequencing, ChIP and electrophoretic mobility shift assay experiments suggest a direct binding of SHOX to multiple upstream sequences of FGFR3. To further investigate these regulations in a cellular system for limb development, the effect of viral overexpression of Shox in limb bud derived chicken micromass cultures was tested. We found that Fgfr3 was negatively regulated by Shox, as demonstrated by quantitative real-time polymerase chain reaction and in situ hybridization. This repressive effect might explain the almost mutually exclusive expression patterns of Fgfr3 and Shox in embryonic chicken limbs. A negative regulation that occurs mainly in the mesomelic segments, a region where SHOX is known to be strongly expressed, offers a possible explanation for the phenotypes seen in patients with FGFR3 (e.g. achondroplasia) and SHOX defects (e.g. LWD). In summary, these data present a link between two frequent short stature phenotypes.
van der Laan, Tallie M J; Postema, Sietke G; Reneman, Michiel F; Bongers, Raoul M; van der Sluis, Corry K
2018-02-10
Reliability study. Quantifying compensatory movements during work-related tasks may help to prevent musculoskeletal complaints in individuals with upper limb absence. (1) To develop a qualitative scoring system for rating compensatory shoulder and trunk movements in upper limb prosthesis wearers during the performance of functional capacity evaluation tests adjusted for use by 1-handed individuals (functional capacity evaluation-one handed [FCE-OH]); (2) to examine the interrater and intrarater reliability of the scoring system; and (3) to assess its feasibility. Movement patterns of 12 videotaped upper limb prosthesis wearers and 20 controls were analyzed. Compensatory movements were defined for each FCE-OH test, and a scoring system was developed, pilot tested, and adjusted. During reliability testing, 18 raters (12 FCE experts and 6 physiotherapists/gait analysts) scored videotapes of upper limb prosthesis wearers performing 4 FCE-OH tests 2 times (2 weeks apart). Agreement was expressed in % and kappa value. Feasibility (focus area's "acceptability", "demand," and "implementation") was determined by using a questionnaire. After 2 rounds of pilot testing and adjusting, reliability of a third version was tested. The interrater reliability for the first and second rating sessions were к = 0.54 (confidence interval [CI]: 0.52-0.57) and к = 0.64 (CI: 0.61-0.66), respectively. The intrarater reliability was к = 0.77 (CI: 0.72-0.82). The feasibility was good but could be improved by a training program. It seems possible to identify compensatory movements in upper limb prosthesis wearers during the performance of FCE-OH tests reliably by observation using the developed observational scoring system. Interrater reliability was satisfactory in most instances; intrarater reliability was good. Feasibility was established. Copyright © 2018 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.
The aetiology of rickets-like lower limb deformities in Malawian children.
Braithwaite, V S; Freeman, R; Greenwood, C L; Summers, D M; Nigdikar, S; Lavy, C B D; Offiah, A C; Bishop, N J; Cashman, J; Prentice, A
2016-07-01
Debilitating rickets-like lower limb deformities are common in children throughout the world, particularly in Malawi, Africa where the causes are unknown. We have identified that Blount disease and calcium deficiency rickets are the likely causes of these deformities and propose calcium supplementation as a potential treatment of Malawian rickets. Surgical correction of rickets-like lower limb deformities is the most common paediatric operation performed at Beit Cure Orthopaedic Hospital, Malawi. The aim of this study was to investigate the aetiology of these deformities. Children with a tibio-femoral angle of deformity >20° were enrolled (n = 42, 3.0-15.0 years). Anthropometric and early life and well-being data were collected. Early morning serum and urine samples were collected on the morning of the operation for markers of calcium and phosphate homeostasis. Knee radiographs were obtained, and the children were diagnosed with either Blount (BD, n = 22) or evidence of rickets disease (RD, n = 20). As BD is a mechanical rather than metabolic disease, BD were assumed to be biochemically representative of the local population and thus used as a local reference for RD. There were no differences in anthropometry or early life experiences between BD and RD. Parathyroid hormone (PTH), 1,25-dihydroxyvitamin D, total alkaline phosphatase and urinary phosphate were significantly higher and serum phosphate, 25-hydroxyvitamin D (25OHD) and tubular maximal reabsorption of phosphate significantly lower in RD than BD. There was no difference in serum calcium, fibroblast growth factor 23 or markers of iron status between groups. All children had 25OHD > 25 nmol/L. Vitamin D deficiency is not implicated in the aetiology of RD or BD in Malawian children. The cause of RD in Malawi is likely to be dietary calcium deficiency leading to elevated PTH resulting in increased losses of phosphate from the bone and glomerular filtrate. The causes of BD remain unclear; there was no evidence in support of previously suggested risk factors such as being overweight or starting to walk early. Prior to surgical intervention, supplementation with calcium should be considered for children with RD.
Langenskiöld, M; Smidfelt, K; Karlsson, A; Bohm, C; Herlitz, J; Nordanstig, J
2017-08-01
Acute lower limb ischaemia (ALLI) is a potentially fatal, limb threatening medical emergency. Early treatment is essential for a good outcome. The aim was to describe the early chain of care in ALLI focusing on lead times and emergency management in order to identify weak links for improvement. This was a retrospective, descriptive case study. This study analysed the medical records of all patients with a main discharge diagnosis of ALLI between January 2009 and December 2014. Predetermined emergency care data on lead times, diagnosis recognition, presenting symptoms, emergency care treatment and outcome were collected for patients who were transported by the Emergency Medical Service (EMS) and those who were not. In total, 552 medical records were audited of which 195 patients fulfilled the inclusion criteria and were analysed. Among them were 117 (60%) transported by the EMS. The median time from symptom onset to revascularisation was 23 (interquartile range [IQR] 10-55; EMS transported) and 93 (IQR 42-152, not EMS transported) hours (p < .01). The time from symptom onset to arrival in hospital was 5 (IQR 2-26; EMS transported) and 48 (IQR 6-108; not EMS transported) hours. After arrival in hospital, the median time to first doctor evaluation was 51 (IQR 28-90; EMS transported) and 80 (IQR 44-169; not EMS transported) minutes, p = .01. Low molecular weight heparin (LMWH) was given to 72% of patients in the emergency department (ED) and a multivariate analysis showed that the use of LMWH was associated with a more favourable outcome. Both the time spent in the ED and the time from the onset of symptoms to revascularisation were considerably longer than optimal. Time delays in the early treatment chain can mainly be attributed to "patient delay" and a considerable time spent in hospital before revascularisation. The use of LMWH as an integral part of ED management was associated with a better outcome. Copyright © 2017 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.
Arctic Ozone Depletion Observed by UARS MLS During the 1994-95 Winter
NASA Technical Reports Server (NTRS)
Manney, G. L.; Froidevaux, L.; Waters, J. W.; Santee, M. L.; Read, W. G.; Flower, D. A.; Jarnot, R. F.; Zurek, R. W.
1996-01-01
During the unusually cold 1994-95 Arctic winter, the Microwave Limb Sounder observed enhanced chlorine monoxide (ClO) in late Dec and throughout Feb and early Mar. Late Dec ClO was higher than during any of the previous 3 years, consistent with the colder early winter. Between late Dec 1994 and early Feb 1995, 465 K (about 50 hPa) vortex-averaged ozone (03) decreased by about 15%, with local decreases of about 30%; additional local decreases of about 5% were seen between early Feb and early Mar. Transport calculations indicate that vortex-averaged chemical loss between late Dec and early Feb was about 20% at 465 K, with about 1/4 of that masked by downward transport of O3. This Arctic chemical O3 loss is not readily detectable in MLS column O3 data.
Requirement for ErbB2/ErbB signaling in developing cartilage and bone.
Fisher, Melanie C; Clinton, Gail M; Maihle, Nita J; Dealy, Caroline N
2007-08-01
During endochondral ossification, the skeletal elements of vertebrate limbs form and elongate via coordinated control of chondrocyte and osteoblast differentiation and proliferation. The role of signaling by the ErbB family of receptor tyrosine kinases, which consists of ErbB1 (epidermal growth factor receptor or EGFR), ErbB2, ErbB3 and ErbB4, has been little studied during cartilage and bone development. Signaling by the ErbB network generates a diverse array of cellular responses via formation of ErbB dimers activated by distinct ligands that produce distinct signal outputs. Herstatin is a soluble ErbB2 receptor that acts in a dominant negative fashion to inhibit ErbB signaling by binding to endogenous ErbB receptors, preventing functional dimer formation. Here, we examine the effects of Herstatin on limb skeletal element development in transgenic mice, achieved via Prx1 promoter-driven expression in limb cartilage and bone. The limb skeletal elements of Prx1-Herstatin embryos are shortened, and chondrocyte maturation and osteoblast differentiation are delayed. In addition, proliferation by chondrocytes and periosteal cells of Prx1-Herstatin limb skeletal elements is markedly reduced. Our study identifies requirements for ErbB signaling in the maintenance of chondrocyte and osteoblast proliferation involved in the timely progression of chondrocyte maturation and periosteal osteoblast differentiation.
Morgenroth, David C.; Segal, Ava D.; Zelik, Karl E.; Czerniecki, Joseph M.; Klute, Glenn K.; Adamczyk, Peter G.; Orendurff, Michael S.; Hahn, Michael E.; Collins, Steven H.; Kuo, Art D.
2011-01-01
Lower extremity amputation not only limits mobility, but also increases the risk of knee osteoarthritis of the intact limb. Dynamic walking models of non-amputees suggest that pushing-off from the trailing limb can reduce collision forces on the leading limb. These collision forces may determine the peak knee external adduction moment (EAM), which has been linked to the development of knee OA in the general population. We therefore hypothesized that greater prosthetic push-off would lead to reduced loading and knee EAM of the intact limb in unilateral transtibial amputees. Seven unilateral transtibial amputees were studied during gait under three prosthetic foot conditions that were intended to vary push-off. Prosthetic foot-ankle push-off work, intact limb knee EAM and ground reaction impulses for both limbs during step-to-step transition were measured. Overall, trailing limb prosthetic push-off work was negatively correlated with leading intact limb 1st peak knee EAM (slope = −0.72 +/− 0.22; p=0.011). Prosthetic push-off work and 1st peak intact knee EAM varied significantly with foot type. The prosthetic foot condition with the least push-off demonstrated the largest knee EAM, which was reduced by 26% with the prosthetic foot producing the most push-off. Trailing prosthetic limb push-off impulse was negatively correlated with leading intact limb loading impulse (slope = −0.34 +/− 0.14; p=.001), which may help explain how prosthetic limb push-off can affect intact limb loading. Prosthetic feet that perform more prosthetic push-off appear to be associated with a reduction in 1st peak intact knee EAM, and their use could potentially reduce the risk and burden of knee osteoarthritis in this population. PMID:21803584
Morgenroth, David C; Segal, Ava D; Zelik, Karl E; Czerniecki, Joseph M; Klute, Glenn K; Adamczyk, Peter G; Orendurff, Michael S; Hahn, Michael E; Collins, Steven H; Kuo, Art D
2011-10-01
Lower extremity amputation not only limits mobility, but also increases the risk of knee osteoarthritis of the intact limb. Dynamic walking models of non-amputees suggest that pushing-off from the trailing limb can reduce collision forces on the leading limb. These collision forces may determine the peak knee external adduction moment (EAM), which has been linked to the development of knee OA in the general population. We therefore hypothesized that greater prosthetic push-off would lead to reduced loading and knee EAM of the intact limb in unilateral transtibial amputees. Seven unilateral transtibial amputees were studied during gait under three prosthetic foot conditions that were intended to vary push-off. Prosthetic foot-ankle push-off work, intact limb knee EAM and ground reaction impulses for both limbs during step-to-step transition were measured. Overall, trailing limb prosthetic push-off work was negatively correlated with leading intact limb 1st peak knee EAM (slope=-.72±.22; p=.011). Prosthetic push-off work and 1st peak intact knee EAM varied significantly with foot type. The prosthetic foot condition with the least push-off demonstrated the largest knee EAM, which was reduced by 26% with the prosthetic foot producing the most push-off. Trailing prosthetic limb push-off impulse was negatively correlated with leading intact limb loading impulse (slope=-.34±.14; p=.001), which may help explain how prosthetic limb push-off can affect intact limb loading. Prosthetic feet that perform more prosthetic push-off appear to be associated with a reduction in 1st peak intact knee EAM, and their use could potentially reduce the risk and burden of knee osteoarthritis in this population. Published by Elsevier B.V.
Seguchi, Noriko; Quintyn, Conrad B; Yonemoto, Shiori; Takamuku, Hirofumi
2017-09-10
We explore variations in body and limb proportions of the Jomon hunter-gatherers (14,000-2500 BP), the Yayoi agriculturalists (2500-1700 BP) of Japan, and the Kumejima Islanders of the Ryukyus (1600-1800 AD) with 11 geographically diverse skeletal postcranial samples from Africa, Europe, Asia, Australia, and North America using brachial-crural indices, femur head-breadth-to-femur length ratio, femur head-breadth-to-lower-limb-length ratio, and body mass as indicators of phenotypic climatic adaptation. Specifically, we test the hypothesis that variation in limb proportions seen in Jomon, Yayoi, and Kumejima is a complex interaction of genetic adaptation; development and allometric constraints; selection, gene flow and genetic drift with changing cultural factors (i.e., nutrition) and climate. The skeletal data (1127 individuals) were subjected to principle components analysis, Manly's permutation multiple regression tests, and Relethford-Blangero analysis. The results of Manly's tests indicate that body proportions and body mass are significantly correlated with latitude, and minimum and maximum temperatures while limb proportions were not significantly correlated with these climatic variables. Principal components plots separated "climatic zones:" tropical, temperate, and arctic populations. The indigenous Jomon showed cold-adapted body proportions and warm-adapted limb proportions. Kumejima showed cold-adapted body proportions and limbs. The Yayoi adhered to the Allen-Bergmann expectation of cold-adapted body and limb proportions. Relethford-Blangero analysis showed that Kumejima experienced gene flow indicated by high observed variances while Jomon experienced genetic drift indicated by low observed variances. The complex interaction of evolutionary forces and development/nutritional constraints are implicated in the mismatch of limb and body proportions. © 2017 Wiley Periodicals, Inc.
Dayan, Caroline; Hales, Barbara F
2014-01-01
Exposure to ethylene glycol monomethyl ether (EGME), a glycol ether compound found in numerous industrial products, or to its active metabolite, 2-methoxyacetic acid (2-MAA), increases the incidence of developmental defects. Using an in vitro limb bud culture system, we tested the hypothesis that the effects of EGME on limb development are mediated by 2-MAA-induced alterations in acetylation programming. Murine gestation day 12 embryonic forelimbs were exposed to 3, 10, or 30 mM EGME or 2-MAA in culture for 6 days to examine effects on limb morphology; limbs were cultured for 1 to 24 hr to monitor effects on the acetylation of histones (H3K9 and H4K12), a nonhistone protein, p53 (p53K379), and markers for cell cycle arrest (p21) and apoptosis (cleaved caspase-3). EGME had little effect on limb morphology and no significant effects on the acetylation of histones or p53 or on biomarkers for cell cycle arrest or apoptosis. In contrast, 2-MAA exposure resulted in a significant concentration-dependent increase in limb abnormalities. 2-MAA induced the hyperacetylation of histones H3K9Ac and H4K12Ac at all concentrations tested (3, 10, and 30 mM). Exposure to 10 or 30 mM 2-MAA significantly increased acetylation of p53 at K379, p21 expression, and caspase-3 cleavage. Thus, 2-MAA, the proximate metabolite of EGME, disrupts limb development in vitro, modifies acetylation programming, and induces biomarkers of cell cycle arrest and apoptosis PMID:24798094
Advances in treating exposed fractures.
Nogueira Giglio, Pedro; Fogaça Cristante, Alexandre; Ricardo Pécora, José; Partezani Helito, Camilo; Lei Munhoz Lima, Ana Lucia; Dos Santos Silva, Jorge
2015-01-01
The management of exposed fractures has been discussed since ancient times and remains of great interest to present-day orthopedics and traumatology. These injuries are still a challenge. Infection and nonunion are feared complications. Aspects of the diagnosis, classification and initial management are discussed here. Early administration of antibiotics, surgical cleaning and meticulous debridement are essential. The systemic conditions of patients with multiple trauma and the local conditions of the limb affected need to be taken into consideration. Early skeletal stabilization is necessary. Definitive fixation should be considered when possible and provisional fixation methods should be used when necessary. Early closure should be the aim, and flaps can be used for this purpose.
Miller, C B; Wilson, D A; Keegan, K G; Kreeger, J M; Adelstein, E H; Ganjam, V K
2000-01-01
To determine if there is a difference in in vitro growth of fibroblasts isolated from the trunk and distal aspect of the limb of horses and ponies. To determine the effects of a corticosteroid and monokine on in vitro growth of fibroblasts isolated from the trunk and distal aspect of the limb of horses and ponies. Growth of fibroblasts from tissues harvested from the trunk and limb were compared from horse and pony samples grown in control media and control media with triamcinolone or monokine added. Dermal and subcutaneous tissue from 22 horses and 17 ponies of various ages and breeds. Fibroblast growth was assessed by tritiated thymidine uptake using standard cell culture techniques. The effect of a monokine or triamcinolone plus control media were compared with control media for fibroblast growth. Fibroblast growth from tissues isolated from the horse limb was significantly less than growth from the horse trunk and the limb and trunk of ponies. Monokine was more effective than triamcinolone in suppressing fibroblast growth from tissues isolated from the trunk and limb in both horses and ponies. There are growth differences in fibroblasts isolated from the limb of horses compared with those isolated from the trunk and from the limb and trunk of ponies. The difference in fibroblast growth from tissues isolated from the trunk and limb of horses and ponies may provide evidence for the difference reported in the healing characteristics of limb wounds in horses and ponies. Influencing fibroblast growth may provide a key to controlling the development of exuberant granulation tissue in horses and ponies.
Shih, Ching-Hsiang
2011-01-01
The latest researches have adopted software technology turning the gyration air mouse into a high performance limb movement detector, and have assessed whether two persons with multiple disabilities would be able to control an environmental stimulation using limb movement. This study extends gyration air mouse functionality by actively reducing limb hyperactive behavior to assess whether two persons with attention deficit hyperactivity disorder (ADHD) would be able to actively reduce their limb hyperactive behavior by controlling their favorite stimulation on/off using a gyration air mouse with a newly developed actively limb hyperactive behavior reducing program (ALHBRP). The study was performed according to an ABAB design, in which A represented the baseline and B represented intervention phases. Data showed that both participants significantly increased their time duration of maintaining a static limb posture (TDMSLP) to activate the control system in order to produce environmental stimulation during the intervention phases. Practical and developmental implications of the findings are discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.
Development of limb volume measuring system
NASA Technical Reports Server (NTRS)
Bhagat, P. K.; Kadaba, P. K.
1983-01-01
The mechanisms underlying the reductions in orthostatic tolerance associated with weightlessness are not well established. Contradictory results from measurements of leg volume changes suggest that altered venomotor tone and reduced blood flow may not be the only contributors to orthostatic intolerance. It is felt that a more accurate limb volume system which is insensitive to environmental factors will aid in better quantification of the hemodynamics of the leg. Of the varous limb volume techniques presently available, the ultrasonic limb volume system has proven to be the best choice. The system as described herein is free from environmental effects, safe, simple to operate and causes negligible radio frequency interference problems. The segmental ultrasonic ultrasonic plethysmograph is expected to provide a better measurement of limb volume change since it is based on cross-sectional area measurements.
2015-10-01
extremity war-time wounds; specifically, its incidence is reported as high as 57% in patients that sustain a poly -trauma blast injury [1]. Complications...related to HO in residual limbs following blast amputation include pain , overlying skin and muscle breakdown, poor fitting and functioning of prosthetic
[A new model of varicose vein stripper (author's transl)].
Pelissier, E; Meyer, J M; Arbez, C
1982-05-22
A new varicose vein stripper is described. It is rigid, of small caliber and can be used in both upper and lower limbs. These features make it easy to handle, particularly in young subjects undergoing early stripping. The instrument is less costly than other disposable instruments as it is metallic and can be sterilized.
Early Results from the RAIDS Experiment on the ISS
NASA Astrophysics Data System (ADS)
Budzien, S. A.; Bishop, R. L.; Stephan, A. W.; Christensen, A. B.; Hecht, J. H.; Straus, P. R.
2009-12-01
The Remote Atmospheric and Ionospheric Detection System (RAIDS) is a suite of three photometers, three spectrometers, and two spectrographs which span the wavelength range 55-874 nm and remotely sense the thermosphere and ionosphere by scanning and imaging the limb. RAIDS was scheduled to fly to the Japanese Experiment Module—Exposed Facility (JEM-EF) aboard the International Space Station (ISS) in September 2009. RAIDS along with a companion hyperspectral imaging experiment will serve as the first US payload on the JEM-EF. The scientific objectives of the new RAIDS experiment are to study the temperature of the lower thermosphere (100-200 km), to measure composition and chemistry of the lower thermosphere and ionosphere, and to measure the initial source of OII 83.4 nm emission. RAIDS will provide valuable data useful for exploring tidal effects in the thermosphere and ionosphere system, validating dayside ionospheric remote sensing methods, and studying local time variations in important chemical and thermal processes. Early observational results from the RAIDS experiment will be presented. The RAIDS sensor suite performs multispectral limb scanning from the open end of the HICO-RAIDS Experiment Payload aboard the ISS.
Low Median Nerve Palsy as Initial Manifestation of Churg-Strauss Syndrome.
Roh, Young Hak; Koh, Young Do; Noh, Jung Ho; Gong, Hyun Sik; Baek, Goo Hyun
2017-06-01
Anterior interosseous nerve (AIN) syndrome is typically characterized by forearm pain and partial or complete dysfunction of the AIN-innervated muscles. Although the exact etiology and pathophysiology of the disorder remain unclear, AIN syndrome is increasingly thought to be an inflammatory condition of the nerve rather than a compressive neuropathy because the symptoms often resolve spontaneously following prolonged observation. However, peripheral neuropathy can be 1 of the first symptoms of systemic vasculitis that needs early systemic immunotherapy to prevent extensive nerve damage. Churg-Strauss syndrome (CSS; eosinophilic granulomatosis with polyangiitis) is 1 type of primary systemic vasculitis that frequently damages the peripheral nervous system. CSS-associated neuropathy usually involves nerves of the lower limb, and few studies have reported on the involvement of the upper limb alone. We report on a rare case of low median nerve palsy as the initial manifestation of CSS. The patient recovered well with early steroid treatment for primary systemic vasculitis. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Delayed amputation following trauma increases residual lower limb infection.
Jain, Abhilash; Glass, Graeme E; Ahmadi, Hootan; Mackey, Simon; Simmons, Jon; Hettiaratchy, Shehan; Pearse, Michael; Nanchahal, Jagdeep
2013-04-01
Residual limb infection following amputation is a devastating complication, resulting in delayed rehabilitation, repeat surgery, prolonged hospitalisation and poor functional outcome. The aim of this study was to identify variables predicting residual limb infection following non-salvageable lower limb trauma. All cases of non-salvageable lower limb trauma presenting to a specialist centre over 5 years were evaluated from a prospective database and clinical and management variables correlated with the development of deep infection. Forty patients requiring 42 amputations were identified with a mean age of 49 years (±19.9, 1SD). Amputations were performed for 21 Gustilo IIIB injuries, 12 multi-planar degloving injuries, seven IIIC injuries and one open Schatzker 6 fracture. One limb was traumatically amputated at the scene and surgically revised. Amputation level was transtibial in 32, through-knee in one and transfemoral in nine. Median time from injury to amputation was 4 days (range 0-30 days). Amputation following only one debridement and within 5 days resulted in significantly fewer stump infections (p = 0.026 and p = 0.03, respectively, Fisher's exact test). The cumulative probability of infection-free residual limb closure declined steadily from day 5. Multivariate analyses revealed that neither the nature of the injury nor pre-injury patient morbidity independently influenced residual limb infection. Avoiding residual limb infection is critically dependent on prompt amputation of non-salvageable limbs. Copyright © 2012 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Budgett's frog (Lepidobatrachus laevis): A new amphibian embryo for developmental biology.
Amin, Nirav M; Womble, Mandy; Ledon-Rettig, Cristina; Hull, Margaret; Dickinson, Amanda; Nascone-Yoder, Nanette
2015-09-15
The large size and rapid development of amphibian embryos has facilitated ground-breaking discoveries in developmental biology. Here, we describe the embryogenesis of the Budgett's frog (Lepidobatrachus laevis), an unusual species with eggs that are over twice the diameter of laboratory Xenopus, and embryos that can tolerate higher temperatures to develop into a tadpole four times more rapidly. In addition to detailing their early development, we demonstrate that, like Xenopus, these embryos are amenable to explant culture assays and can express exogenous transcripts in a tissue-specific manner. Moreover, the steep developmental trajectory and large scale of Lepidobatrachus make it exceptionally well-suited for morphogenesis research. For example, the developing organs of the Budgett's frog are massive compared to those of most model species, and are composed of larger individual cells, thereby affording increased subcellular resolution of early vertebrate organogenesis. Furthermore, we found that complete limb regeneration, which typically requires months to achieve in most vertebrate models, occurs in a matter of days in the Budgett's tadpole, which substantially accelerates the pace of experimentation. Thus, the unusual combination of the greater size and speed of the Budgett's frog model provides inimitable advantages for developmental studies-and a novel inroad to address the mechanisms of spatiotemporal scaling during evolution. Copyright © 2015 Elsevier Inc. All rights reserved.
Budgett’s frog (Lepidobatrachus laevis): a new amphibian embryo for developmental biology
Amin, Nirav M.; Womble, Mandy; Ledon-Rettig, Cris; Hull, Margaret; Dickinson, Amanda; Nascone-Yoder, Nanette
2015-01-01
The large size and rapid development of amphibian embryos has facilitated ground-breaking discoveries in developmental biology. Here, we describe the embryogenesis of the Budgett’s frog (Lepidobatrachus laevis), an unusual species with eggs that are over twice the diameter of laboratory Xenopus, and embryos that can tolerate higher temperatures to develop into a tadpole four times more rapidly. In addition to detailing their early development, we demonstrate that, like Xenopus, these embryos are amenable to explant culture assays and can express exogenous transcripts in a tissue-specific manner. Moreover, the steep developmental trajectory and large scale of Lepidobatrachus make it exceptionally well-suited for morphogenesis research. For example, the developing organs of the Budgett’s frog are massive compared to those of most model species, and are composed of larger individual cells, thereby affording increased subcellular resolution of early vertebrate organogenesis. Furthermore, we found that complete limb regeneration, which typically requires months to achieve in most vertebrate models, occurs in a matter of days in the Budgett’s tadpole, which substantially accelerates the pace of experimentation. Thus, the unusual combination of the greater size and speed of the Budgett’s frog model provides inimitable advantages for developmental studies—and a novel inroad to address the mechanisms of spatiotemporal scaling during evolution. PMID:26169245
Limb Amputations in Fixed Dystonia: A Form of Body Integrity Identity Disorder?
Edwards, Mark J; Alonso-Canovas, Araceli; Schrag, Arnette; Bloem, Bastiaan R; Thompson, Philip D; Bhatia, Kailash
2011-01-01
Fixed dystonia is a disabling disorder mainly affecting young women who develop fixed abnormal limb postures and pain after apparently minor peripheral injury. There is continued debate regarding its pathophysiology and management. We report 5 cases of fixed dystonia in patients who sought amputation of the affected limb. We place these cases in the context of previous reports of patients with healthy limbs and patients with chronic regional pain syndrome who have sought amputation. Our cases, combined with recent data regarding disorders of mental rotation in patients with fixed dystonia, as well as previous data regarding body integrity identity disorder and amputations sought by patients with chronic regional pain syndrome, raise the possibility that patients with fixed dystonia might have a deficit in body schema that predisposes them to developing fixed dystonia and drives some to seek amputation. The outcome of amputation in fixed dystonia is invariably unfavorable. © 2011 Movement Disorder Society PMID:21484872
Limb amputations in fixed dystonia: a form of body integrity identity disorder?
Edwards, Mark J; Alonso-Canovas, Araceli; Schrag, Arnette; Bloem, Bastiaan R; Thompson, Philip D; Bhatia, Kailash
2011-07-01
Fixed dystonia is a disabling disorder mainly affecting young women who develop fixed abnormal limb postures and pain after apparently minor peripheral injury. There is continued debate regarding its pathophysiology and management. We report 5 cases of fixed dystonia in patients who sought amputation of the affected limb. We place these cases in the context of previous reports of patients with healthy limbs and patients with chronic regional pain syndrome who have sought amputation. Our cases, combined with recent data regarding disorders of mental rotation in patients with fixed dystonia, as well as previous data regarding body integrity identity disorder and amputations sought by patients with chronic regional pain syndrome, raise the possibility that patients with fixed dystonia might have a deficit in body schema that predisposes them to developing fixed dystonia and drives some to seek amputation. The outcome of amputation in fixed dystonia is invariably unfavorable. Copyright © 2011 Movement Disorder Society.
Measurement of Forces and Moments Transmitted to the Residual Limb
2008-08-01
leg and residual limb, the condition of your residual limb including touch and pressure sensation, and the type of components used in your prosthesis ...measured by a tri-axial transducer mounted on the pylon of a transtibial prosthesis distal to the socket can be used to estimate the intra-socket...alignment has been developed, and IRB approval has been obtained. 15. SUBJECT TERMS Amputees, prosthesis alignment, socket pressure, gait, force and moment
Upper limb function in persons with long term paraplegia and implications for independence: Part II.
Pentland, W E; Twomey, L T
1994-04-01
Research has shown that wheelchair use in long term paraplegia is associated with upper limb pain and degeneration that interferes with the independent performance of activities of daily living. This paper proposes a model to explain the development of upper limb problems in persons with long term paraplegia, and one that will guide in the prevention and management of this type of long term complication.
NASA Astrophysics Data System (ADS)
Hayashi, Ryota; Ishimine, Tomoyasu; Kawahira, Kazumi; Yu, Yong; Tsujio, Showzow
In this research, we focus on the method of rehabilitation with stretch reflexes for the hemiplegic upper limb in stroke patients. We propose a new device which utilizes electromagnetic force to evoke stretch reflexes. The device can exert an assisting force safely, because the electromagnetic force is non contact force. In this paper, we develop a support system applying the proposed device for the functional recovery training of the hemiplegic upper limb. The results obtained from several clinical tests with and without our support system are compared. Then we discuss the validity of our support system.
Bowersock, Collin D; Willy, Richard W; DeVita, Paul; Willson, John D
2017-03-01
Anterior cruciate ligament reconstruction is associated with early onset knee osteoarthritis. Running is a typical activity following this surgery, but elevated knee joint contact forces are thought to contribute to osteoarthritis degenerative processes. It is therefore clinically relevant to identify interventions to reduce contact forces during running among individuals after anterior cruciate ligament reconstruction. The primary purpose of this study was to evaluate the effect of reducing step length during running on patellofemoral and tibiofemoral joint contact forces among people with a history of anterior cruciate ligament reconstruction. Inter limb knee joint contact force differences during running were also examined. 18 individuals at an average of 54.8months after unilateral anterior cruciate ligament reconstruction ran in 3 step length conditions (preferred, -5%, -10%). Bilateral patellofemoral, tibiofemoral, and medial tibiofemoral compartment peak force, loading rate, impulse, and impulse per kilometer were evaluated between step length conditions and limbs using separate 2 factor analyses of variance. Reducing step length 5% decreased patellofemoral, tibiofemoral, and medial tibiofemoral compartment peak force, impulse, and impulse per kilometer bilaterally. A 10% step length reduction further decreased peak forces and force impulses, but did not further reduce force impulses per kilometer. Tibiofemoral joint impulse, impulse per kilometer, and patellofemoral joint loading rate were lower in the previously injured limb compared to the contralateral limb. Running with a shorter step length is a feasible clinical intervention to reduce knee joint contact forces during running among people with a history of anterior cruciate ligament reconstruction. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hsu, Wei-Chun; Liu, Ming-Wei; Lu, Tung-Wu
2016-03-01
People with type II diabetes mellitus (DM) are at a high risk of falling especially during more challenging locomotor tasks such as obstacle-crossing. The current study aimed to identify the risk factors for tripping in these patients during trailing-limb obstacle-crossing. Fourteen patients with type II DM with or without mild peripheral neuropathy (PN) and 14 healthy controls walked and crossed obstacles of three different heights while their motion data were measured using a motion capture system and two forceplates. The DM group was found to cross obstacles with significantly reduced trailing toe clearance (p<0.05), increasing the probability of the foot hitting the obstacle, and thus the risk of tripping. This altered end-point control was associated with significantly reduced knee flexion and hip adduction of the trailing swing limb (p<0.05), as well as significantly increased ankle plantarflexor moments in the leading stance limb (p<0.05). Therefore, reduced knee flexion and hip adduction of the swing limb are identified as risk factors for tripping during obstacle-crossing. Increased mechanical demands on the ankle plantarflexors suggest that weakness of these muscles may further reduce the already compromised performance of obstacle-crossing in these patients. The current results showed that obstacle-crossing can be used to detect gait deviations and to identify the associated risk of tripping in patients with type II DM without or at an early stage of PN. Copyright © 2016 Elsevier B.V. All rights reserved.
Demers, Marika; Chan Chun Kong, Daniel; Levin, Mindy F
2018-03-11
To determine user satisfaction and safety of incorporating a low-cost virtual rehabilitation intervention as an adjunctive therapeutic option for cognitive-motor upper limb rehabilitation in individuals with sub-acute stroke. A low-cost upper limb virtual rehabilitation application incorporating realistic functionally-relevant unimanual and bimanual tasks, specifically designed for cognitive-motor rehabilitation was developed for patients with sub-acute stroke. Clinicians and individuals with stroke interacted with the intervention for 15-20 or 20-45 minutes, respectively. The study had a mixed-methods convergent parallel design that included a focus group interview with clinicians working in a stroke program and semi-structured interviews and standardized assessments (Borg Perceived Exertion Scale, Short Feedback Questionnaire) for participants with sub-acute stroke undergoing rehabilitation. The occurrence of adverse events was also noted. Three main themes emerged from the clinician focus group and patient interviews: Perceived usefulness in rehabilitation, satisfaction with the virtual reality intervention and aspects to improve. All clinicians and the majority of participants with stroke were highly satisfied with the intervention and perceived its usefulness to decrease arm motor impairment during functional tasks. No participants experienced major adverse events. Incorporation of this type of functional activity game-based virtual reality intervention in the sub-acute phase of rehabilitation represents a way to transfer skills learned early in the clinical setting to real world situations. This type of intervention may lead to better integration of the upper limb into everyday activities. Implications for Rehabilitation • Use of a cognitive-motor low-cost virtual reality intervention designed to remediate arm motor impairments in sub-acute stroke is feasible, safe and perceived as useful by therapists and patients for stroke rehabilitation. • Input from end-users (therapists and individuals with stroke) is critical for the development and implementation of a virtual reality intervention.
Kimmel, Lara A; Holland, Anne E; Simpson, Pam M; Edwards, Elton R; Gabbe, Belinda J
2014-07-01
Early, accurate prediction of discharge destination from the acute hospital assists individual patients and the wider hospital system. The Trauma Rehabilitation and Prediction Tool (TRaPT), developed using registry data, determines probability of inpatient rehabilitation discharge for patients with isolated lower limb fractures. The aims of this study were: (1) to prospectively validatate the TRaPT, (2) to assess whether its performance could be improved by adding additional demographic data, and (3) to simplify it for use as a bedside tool. This was a cohort, measurement-focused study. Patients with isolated lower limb fractures (N=114) who were admitted to a major trauma center in Melbourne, Australia, were included. The participants' TRaPT scores were calculated from admission data. Performance of the TRaPT score alone, and in combination with frailty, weight-bearing status, and home supports, was assessed using measures of discrimination and calibration. A simplified TRaPT was developed by rounding the coefficients of variables in the original model and grouping age into 8 categories. Simplified TRaPT performance measures, including specificity, sensitivity, and positive and negative predictive values, were evaluated. Prospective validation of the TRaPT showed excellent discrimination (C-statistic=0.90 [95% confidence interval=0.82, 0.97]), a sensitivity of 80%, and specificity of 94%. All participants able to weight bear were discharged directly home. Simplified TRaPT scores had a sensitivity of 80% and a specificity of 88%. Generalizability may be limited given the compensation system that exists in Australia, but the methods used will assist in designing a similar tool in any population. The TRaPT accurately predicted discharge destination for 80% of patients and may form a useful aid for discharge decision making, with the simplified version facilitating its use as a bedside tool. © 2014 American Physical Therapy Association.
Acute lower motor neuron tetraparesis.
Añor, Sònia
2014-11-01
Flaccid nonambulatory tetraparesis or tetraplegia is an infrequent neurologic presentation; it is characteristic of neuromuscular disease (lower motor neuron [LMN] disease) rather than spinal cord disease. Paresis beginning in the pelvic limbs and progressing to the thoracic limbs resulting in flaccid tetraparesis or tetraplegia within 24 to 72 hours is a common presentation of peripheral nerve or neuromuscular junction disease. Complete body flaccidity develops with severe decrease or complete loss of spinal reflexes in pelvic and thoracic limbs. Animals with acute generalized LMN tetraparesis commonly show severe motor dysfunction in all limbs and severe generalized weakness in all muscles. Copyright © 2014 Elsevier Inc. All rights reserved.
Wang, Hongwei; Liu, Huan; Zhang, Song; Li, Changqing; Zhou, Yue; Liu, Jun; Ou, Lan; Xiang, Liangbi
2018-05-01
To investigate the incidence and pattern of child and adolescent (≤18 years old) traumatic fractures (TFs) as a result of collisions.We retrospectively reviewed 270 child and adolescent patients (228 males and 42 females aged 12.8 ± 5.1 years old) with TFs as a result of collisions admitted to our university-affiliated hospitals from 2001 to 2010. The incidence and patterns were summarized with respect to different age groups, sex, etiology, and whether the patient presented with nerve injury.The most common etiologies were struck by object (105, 38.9%) and wounded by person (74, 27.4%). The most common fracture sites were upper limb fractures (126, 46.7%) and craniofacial fractures (82, 30.4%). A total of 65 (24.1%) patients suffered a nerve injury. The frequency of early and late complications/associated injuries was 35.6% (n = 96) and 8.5% (n = 23), respectively. The mean age (P = .001) and frequency of wounded by person (P = .038) was significantly larger in male than in female patients. The frequency of earthquake injury (P < .001) and lower limb fractures (P = .002) was significantly larger in females than in male patients. The frequency of upper limb fracture was significantly higher in the wounded by machine group (83.3%) than in the other groups (all P < .05). The frequency of lower limb fractures was significantly higher in the earthquake injury group (64.7%) than in the other groups (all P < .05). The frequency of craniofacial fracture was significantly higher in the wounded by person group (54.1%) than in the other groups (all P < .05). The emergency admission rate (P = .047), frequency of wounded by person (P < .001), craniofacial fracture (P < .001), and early complications/associated injuries (P < .001) were significantly larger in patients with nerve injury than in other patients.Struck by object and upper limb fractures were the most common etiology and site, respectively. Wounded by person and craniofacial fractures were risk factors for nerve injury. Therefore, we should pay more attention to patients wounded by person, presenting with craniofacial fracture, to find whether there is nerve injury.
Germanotta, Marco; Vasco, Gessica; Petrarca, Maurizio; Rossi, Stefano; Carniel, Sacha; Bertini, Enrico; Cappa, Paolo; Castelli, Enrico
2015-04-23
Friedreich's ataxia (FRDA) is the most common hereditary autosomal recessive form of ataxia. In this disease there is early manifestation of gait ataxia, and dysmetria of the arms and legs which causes impairment in daily activities that require fine manual dexterity. To date there is no cure for this disease. Some novel therapeutic approaches are ongoing in different steps of clinical trial. Development of sensitive outcome measures is crucial to prove therapeutic effectiveness. The aim of the study was to assess the reliability and sensitivity of quantitative and objective assessment of upper limb performance computed by means of the robotic device and to evaluate the correlation with clinical and functional markers of the disease severity. Here we assess upper limb performances by means of the InMotion Arm Robot, a robot designed for clinical neurological applications, in a cohort of 14 children and young adults affected by FRDA, matched for age and gender with 18 healthy subjects. We focused on the analysis of kinematics, accuracy, smoothness, and submovements of the upper limb while reaching movements were performed. The robotic evaluation of upper limb performance consisted of planar reaching movements performed with the robotic system. The motors of the robot were turned off, so that the device worked as a measurement tool. The status of the disease was scored using the Scale for the Assessment and Rating of Ataxia (SARA). Relationships between robotic indices and a range of clinical and disease characteristics were examined. All our robotic indices were significantly different between the two cohorts except for two, and were highly and reliably discriminative between healthy and subjects with FRDA. In particular, subjects with FRDA exhibited slower movements as well as loss of accuracy and smoothness, which are typical of the disease. Duration of Movement, Normalized Jerk, and Number of Submovements were the best discriminative indices, as they were directly and easily measurable and correlated with the status of the disease, as measured by SARA. Our results suggest that outcome measures obtained by means of robotic devices can improve the sensitivity of clinical evaluations of patients' dexterity and can accurately and efficiently quantify changes over time in clinical trials, particularly when functional scales appear to be no longer sensitive.
Osumi, M; Ichinose, A; Sumitani, M; Wake, N; Sano, Y; Yozu, A; Kumagaya, S; Kuniyoshi, Y; Morioka, S
2017-01-01
We developed a quantitative method to measure movement representations of a phantom upper limb using a bimanual circle-line coordination task (BCT). We investigated whether short-term neurorehabilitation with a virtual reality (VR) system would restore voluntary movement representations and alleviate phantom limb pain (PLP). Eight PLP patients were enrolled. In the BCT, they repeatedly drew vertical lines using the intact hand and intended to draw circles using the phantom limb. Drawing circles mentally using the phantom limb led to the emergence of an oval transfiguration of the vertical lines ('bimanual-coupling' effect). We quantitatively measured the degree of this bimanual-coupling effect as movement representations of the phantom limb before and immediately after short-term VR neurorehabilitation. This was achieved using an 11-point numerical rating scale (NRS) for PLP intensity and the Short-Form McGill Pain Questionnaire (SF-MPQ). During VR neurorehabilitation, patients wore a head-mounted display that showed a mirror-reversed computer graphic image of an intact arm (the virtual phantom limb). By intending to move both limbs simultaneously and similarly, the patients perceived voluntary execution of movement in their phantom limb. Short-term VR neurorehabilitation promptly restored voluntary movement representations in the BCT and alleviated PLP (NRS: p = 0.015; 39.1 ± 28.4% relief, SF-MPQ: p = 0.015; 61.5 ± 48.5% relief). Restoration of phantom limb movement representations and reduced PLP intensity were linearly correlated (p < 0.05). VR rehabilitation may encourage patient's motivation and multimodal sensorimotor re-integration of a phantom limb and subsequently have a potent analgesic effect. There was no objective evidence that restoring movement representation by neurorehabilitation with virtual reality alleviated phantom limb pain. This study revealed quantitatively that restoring movement representation with virtual reality rehabilitation using a bimanual coordination task correlated with alleviation of phantom limb pain. © 2016 European Pain Federation - EFIC®.
Morishita, Yoshihiro; Kuroiwa, Atsushi; Suzuki, Takayuki
2015-05-01
Tissue-level characterization of deformation dynamics is crucial for understanding organ morphogenetic mechanisms, especially the interhierarchical links among molecular activities, cellular behaviors and tissue/organ morphogenetic processes. Limb development is a well-studied topic in vertebrate organogenesis. Nevertheless, there is still little understanding of tissue-level deformation relative to molecular and cellular dynamics. This is mainly because live recording of detailed cell behaviors in whole tissues is technically difficult. To overcome this limitation, by applying a recently developed Bayesian approach, we here constructed tissue deformation maps for chick limb development with high precision, based on snapshot lineage tracing using dye injection. The precision of the constructed maps was validated with a clear statistical criterion. From the geometrical analysis of the map, we identified three characteristic tissue growth modes in the limb and showed that they are consistent with local growth factor activity and cell cycle length. In particular, we report that SHH signaling activity changes dynamically with developmental stage and strongly correlates with the dynamic shift in the tissue growth mode. We also found anisotropic tissue deformation along the proximal-distal axis. Morphogenetic simulation and experimental studies suggested that this directional tissue elongation, and not local growth, has the greatest impact on limb shaping. This result was supported by the novel finding that anisotropic tissue elongation along the proximal-distal axis occurs independently of cell proliferation. Our study marks a pivotal point for multi-scale system understanding in vertebrate development. © 2015. Published by The Company of Biologists Ltd.
A cortical-spinal prosthesis for targeted limb movement in paralyzed primate avatars
Shanechi, Maryam M.; Hu, Rollin C.; Williams, Ziv M.
2014-01-01
Motor paralysis is among the most disabling aspects of injury to the central nervous system. Here we develop and test a target-based cortical-spinal neural prosthesis that employs neural activity recorded from pre-motor neurons to control limb movements in functionally paralyzed primate avatars. Given the complexity by which muscle contractions are naturally controlled, we approach the problem of eliciting goal-directed limb movement in paralyzed animals by focusing on the intended targets of movement rather than their intermediate trajectories. We then match this information in real-time with spinal cord and muscle stimulation parameters that produce free planar limb movements to those intended target locations. We demonstrate that both the decoded activities of pre-motor populations and their adaptive responses can be used, after brief training, to effectively direct an avatar’s limb to distinct targets variably displayed on a screen. These findings advance the future possibility of reconstituting targeted limb movement in paralyzed subjects. PMID:24549394
Movement analysis of upper limb during resistance training using general purpose robot arm "PA10"
NASA Astrophysics Data System (ADS)
Morita, Yoshifumi; Yamamoto, Takashi; Suzuki, Takahiro; Hirose, Akinori; Ukai, Hiroyuki; Matsui, Nobuyuki
2005-12-01
In this paper we perform movement analysis of an upper limb during resistance training. We selected sanding training, which is one type of resistance training for upper limbs widely performed in occupational therapy. Our final aims in the future are to quantitatively evaluate the therapeutic effect of upper limb motor function during training and to develop a new rehabilitation training support system. For these purposes, first of all we perform movement analysis using a conventional training tool. By measuring upper limb motion during the sanding training we perform feature abstraction. Next we perform movement analysis using the simulated sanding training system. This system is constructed using the general purpose robot arm "PA10". This system enables us to measure the force/torque exerted by subjects and to easily change the load of resistance. The control algorithm is based on impedance control. We found these features of the upper limb motion during the sanding training.
Kito, Yumiko; Kazui, Hiroaki; Yoshida, Tetsuhiko; Kubo, Yoshihiko; Takaya, Masahiko; Tokunaga, Hiromasa; Takeda, Masatoshi
2010-06-01
We report the rare case of a 59-year-old man with motor neuron disease and semantic dementia (SD-MND); SD-MND was in a very early stage, and its clinical progression, especially with regard to language impairment, and abnormalities on neuroimages were evaluated for 3 years. The patient complained only of difficulties in recalling names of acquaintances and in writing kanji characters. After 1 year, he experienced difficulty in describing common objects. He developed two-way anomia only in some words, which varied from day to day. His anomia was not category-specific and was noted even with respect to words that describe color. In addition to experiencing difficulty in writing kanji characters, he experienced difficulty in writing kana characters. Muscle atrophy was observed, and he experienced weakness in his limbs, especially in the right upper limb; however, bulbar symptoms were not observed. At this point, he fulfilled the diagnostic criteria for MND. In the next year, semantic memory impairment became apparent, and he was subsequently diagnosed with SD. Deterioration in his ability to name objects in all categories, except body parts, was noted. Further, the ability of writing both kana and kanji characters was increasingly impaired. He developed bulbar symptoms and experienced increased muscle weakness. The characteristics of this patient differed from those of SD patients without MND with regard to the difficulty in writing kana characters and naming colors even though the SD-MND was in the early stage. Further, the pattern of brain hypoperfusion was different from that observed for SD patients without MND. In the case of this patient, brain hypoperfusion was found not only in the left anterior temporal lobe but also in the frontal lobe. The characteristics of his language symptoms might be related to the specific pattern of brain hypoperfusion, which might be commonly observed in patients with dementia and MND.
Performance Factors Related to the Different Tennis Backhand Groundstrokes: A Review
Genevois, Cyril; Reid, Machar; Rogowski, Isabelle; Crespo, Miguel
2015-01-01
The backhand is one of the two basic groundstrokes in tennis and can be played both with one or two hands, with topspin or backspin. Despite its variety of derivatives, the scientific literature describing the backhand groundstroke production has not been reviewed as extensively as with the serve and the forehand. The purpose of this article is to review the research describing the mechanics of one and two-handed backhands, with a critical focus on its application to clinicians and coaches. One hundred and thirty four articles satisfied a key word search (tennis, backhand) in relevant databases and manual search, with only 61 of those articles considered directly relevant to our review. The consensus of this research supports major differences between both the one- and two-handed strokes, chiefly about their respective contributions of trunk rotation and the role of the non-dominant upper extremity. Two-handed backhand strokes rely more on trunk rotation for the generation of racquet velocity, while the one-handed backhands utilize segmental rotations of the upper limb to develop comparable racquet speeds. There remains considerable scope for future research to examine expertise, age and/or gender-related kinematic differences to strengthen the practitioner’s understanding of the key mechanical considerations that may shape the development of proficient backhand strokes. Key points One-and two-handed backhands require different motor coordination Two-handed backhand strokes rely more on trunk rotation for racquet velocity generation, whereas one-handed backhand strokes rely more on segmental rotations of the upper limb Players using a two-handed backhand should learn early a slice one-handed backhand because of the different co-ordination pattern involved Equipment scaling is a great tool for coaches to learn early proper one-handed backhand strokes Future research related to the interaction between backhand technique, gender and skill level is needed PMID:25729308
Studies of limb-dislodging forces acting on an ejection seat occupant.
Schneck, D J
1980-03-01
A mathematical theory is being developed in order to calculate the aerodynamic loading to which a pilot is exposed during high-speed ejections. Neglecting the initial effects of flow separation, results thus far indicate that a pilot's musculoskeletal system is not likely to withstand the tendency for limb-flailing if he is ejecting at Mach numbers in excess of about 0.7. This tendency depends very strongly upon the angle at which the pilot's limbs intercept a high-speed flow; the forces that cause limb dislodgement increase dramatically with speed of ejection. Examining the time-course of limb-dislodging forces after the initial onset of windblast, the theory further predicts the generation of a double vortex street pattern on the downstream side of the limbs of an ejection seat occupant. This results in the corresponding appearance of oscillating forces tending to cause lateral motion (vibration) of the limbs. The amplitude and frequency of these oscillating forces are also very dependent on the Mach number of ejection and the angle at which the pilot's limbs intercept the flow. However, even at moderate Mach numbers, the frequency can be as high as 100 cycles per second, and the amplitude rapidly exceeds a pilot's musculo-skeletal resistive powers for Mach numbers above 0.7.
Tafti, Nahid; Karimlou, Masoud; Mardani, Mohammad Ali; Jafarpisheh, Amir Salar; Aminian, Gholam Reza; Safari, Reza
2018-04-20
The objectives of current study were to a) assess similarities and relationships between anatomical landmark-based angles and distances of lower limbs in unilateral transtibial amputees and b) develop and evaluate a new anatomically based static prosthetic alignment method. First sub-study assessed the anthropometrical differences and relationships between the lower limbs in the photographs taken from amputees. Data were analysed via paired t-test and regression analysis. Results show no significant differences in frontal and transverse planes. In the sagittal plane, the anthropometric parameters of the amputated limb were significantly correlated to the corresponding variables of the sound limb. The results served as bases for the development of a new prosthetic alignment method. The method was evaluated on a single subject study. Prosthetic alignment carried out by an experienced prosthetist was compared with such alignment adjusted by an inexperienced prosthetist but with the use of the developed method. In sagittal and frontal planes, the socket angle was tuned with respect to the shin angle, and the position of the prosthetic foot was tuned in relation to the pelvic landmarks. Further study is needed to assess the proposed method on a larger sample of amputees and prosthetists.
Enhancer elements upstream of the SHOX gene are active in the developing limb.
Durand, Claudia; Bangs, Fiona; Signolet, Jason; Decker, Eva; Tickle, Cheryll; Rappold, Gudrun
2010-05-01
Léri-Weill Dyschondrosteosis (LWD) is a dominant skeletal disorder characterized by short stature and distinct bone anomalies. SHOX gene mutations and deletions of regulatory elements downstream of SHOX resulting in haploinsufficiency have been found in patients with LWD. SHOX encodes a homeodomain transcription factor and is known to be expressed in the developing limb. We have now analyzed the regulatory significance of the region upstream of the SHOX gene. By comparative genomic analyses, we identified several conserved non-coding elements, which subsequently were tested in an in ovo enhancer assay in both chicken limb bud and cornea, where SHOX is also expressed. In this assay, we found three enhancers to be active in the developing chicken limb, but none were functional in the developing cornea. A screening of 60 LWD patients with an intact SHOX coding and downstream region did not yield any deletion of the upstream enhancer region. Thus, we speculate that SHOX upstream deletions occur at a lower frequency because of the structural organization of this genomic region and/or that SHOX upstream deletions may cause a phenotype that differs from the one observed in LWD.
Enhancer elements upstream of the SHOX gene are active in the developing limb
Durand, Claudia; Bangs, Fiona; Signolet, Jason; Decker, Eva; Tickle, Cheryll; Rappold, Gudrun
2010-01-01
Léri-Weill Dyschondrosteosis (LWD) is a dominant skeletal disorder characterized by short stature and distinct bone anomalies. SHOX gene mutations and deletions of regulatory elements downstream of SHOX resulting in haploinsufficiency have been found in patients with LWD. SHOX encodes a homeodomain transcription factor and is known to be expressed in the developing limb. We have now analyzed the regulatory significance of the region upstream of the SHOX gene. By comparative genomic analyses, we identified several conserved non-coding elements, which subsequently were tested in an in ovo enhancer assay in both chicken limb bud and cornea, where SHOX is also expressed. In this assay, we found three enhancers to be active in the developing chicken limb, but none were functional in the developing cornea. A screening of 60 LWD patients with an intact SHOX coding and downstream region did not yield any deletion of the upstream enhancer region. Thus, we speculate that SHOX upstream deletions occur at a lower frequency because of the structural organization of this genomic region and/or that SHOX upstream deletions may cause a phenotype that differs from the one observed in LWD. PMID:19997128
Structure design of lower limb exoskeletons for gait training
NASA Astrophysics Data System (ADS)
Li, Jianfeng; Zhang, Ziqiang; Tao, Chunjing; Ji, Run
2015-09-01
Due to the close physical interaction between human and machine in process of gait training, lower limb exoskeletons should be safe, comfortable and able to smoothly transfer desired driving force/moments to the patients. Correlatively, in kinematics the exoskeletons are required to be compatible with human lower limbs and thereby to avoid the uncontrollable interactional loads at the human-machine interfaces. Such requirement makes the structure design of exoskeletons very difficult because the human-machine closed chains are complicated. In addition, both the axis misalignments and the kinematic character difference between the exoskeleton and human joints should be taken into account. By analyzing the DOF(degree of freedom) of the whole human-machine closed chain, the human-machine kinematic incompatibility of lower limb exoskeletons is studied. An effective method for the structure design of lower limb exoskeletons, which are kinematically compatible with human lower limb, is proposed. Applying this method, the structure synthesis of the lower limb exoskeletons containing only one-DOF revolute and prismatic joints is investigated; the feasible basic structures of exoskeletons are developed and classified into three different categories. With the consideration of quasi-anthropopathic feature, structural simplicity and wearable comfort of lower limb exoskeletons, a joint replacement and structure comparison based approach to select the ideal structures of lower limb exoskeletons is proposed, by which three optimal exoskeleton structures are obtained. This paper indicates that the human-machine closed chain formed by the exoskeleton and human lower limb should be an even-constrained kinematic system in order to avoid the uncontrollable human-machine interactional loads. The presented method for the structure design of lower limb exoskeletons is universal and simple, and hence can be applied to other kinds of wearable exoskeletons.
Sonic Hedgehog Signaling in Limb Development
Tickle, Cheryll; Towers, Matthew
2017-01-01
The gene encoding the secreted protein Sonic hedgehog (Shh) is expressed in the polarizing region (or zone of polarizing activity), a small group of mesenchyme cells at the posterior margin of the vertebrate limb bud. Detailed analyses have revealed that Shh has the properties of the long sought after polarizing region morphogen that specifies positional values across the antero-posterior axis (e.g., thumb to little finger axis) of the limb. Shh has also been shown to control the width of the limb bud by stimulating mesenchyme cell proliferation and by regulating the antero-posterior length of the apical ectodermal ridge, the signaling region required for limb bud outgrowth and the laying down of structures along the proximo-distal axis (e.g., shoulder to digits axis) of the limb. It has been shown that Shh signaling can specify antero-posterior positional values in limb buds in both a concentration- (paracrine) and time-dependent (autocrine) fashion. Currently there are several models for how Shh specifies positional values over time in the limb buds of chick and mouse embryos and how this is integrated with growth. Extensive work has elucidated downstream transcriptional targets of Shh signaling. Nevertheless, it remains unclear how antero-posterior positional values are encoded and then interpreted to give the particular structure appropriate to that position, for example, the type of digit. A distant cis-regulatory enhancer controls limb-bud-specific expression of Shh and the discovery of increasing numbers of interacting transcription factors indicate complex spatiotemporal regulation. Altered Shh signaling is implicated in clinical conditions with congenital limb defects and in the evolution of the morphological diversity of vertebrate limbs. PMID:28293554
Kashiwagi, Maki; Chaoui, Rabih; Stallmach, Thomas; Hürlimann, Sandra; Lauper, Urs; Hebisch, Gundula
2003-11-01
Maternal cocaine abuse in pregnancy is associated with complications such as intrauterine growth retardation, abruptio placentae, and preterm delivery. We report what is, to our knowledge, the first published observation of fetal bilateral renal agenesis associated with a vascular disruption syndrome comprising upper limb reduction defect and a single umbilical artery following maternal cocaine abuse in early pregnancy. This constellation in a fetus aborted at 18 weeks extends the spectrum of complications possibly associated with cocaine abuse in pregnancy. Copyright 2003 Wiley-Liss, Inc.
Contribution of the AN/TPS-3 Radar Antenna to Australian radio astronomy
NASA Astrophysics Data System (ADS)
Wendt, Harry; Orchiston, Wayne
2018-04-01
The CSIRO Division of Radiophysics used the WWII surplus AN/TPS-3 radar dishes for their early solar radio astronomy research and eclipse observations. These aerials were also used in a spaced (Michelson) interferometer configuration in the late 1940s to investigate solar limb brightening at 600 MHz. This work paralleled early solar observations at Cambridge. None of the Australian research results using the spaced interferometry technique appeared in publications, and the invention of the solar grating array in 1950 made further use of the method redundant.
Hall, John E.
1963-01-01
The deformities commonly seen in “thalidomide babies” are described. These vary from relatively uncomplicated radial-ray defects to complete phocomelia of all four extremities. It is suggested that the care of these children is best carried out in a clinic accustomed to dealing with juvenile amputee problems. A plea is made for very early fitting of upper-extremity prostheses (at approximately three months of age) in cases of unilateral upper-limb deficiencies. A “bucket” for sitting should be supplied for children with quadrilateral phocomelia to sit in when they reach seven or eight months of age. Children with severe upper-limb malformations will be candidates for some form of externally powered prostheses. ImagesFig. 1a and 1bFig. 2a and 2bFig. 3a and 3bFig. 4a and 4bFig. 5a, b and cFig. 6a and 6bFig. 7Fig. 8Fig. 9a and 9bFig. 10a,bFig. 10c and d PMID:13952105
Keraunoparalysis: What a neurosurgeon should know about it?
Kumar, Ashish; Srinivas, Vinjamuri; Sahu, Barada P.
2012-01-01
Keraunoparalysis or transient weakness in limbs following a lightning strike has been well described in literature. Many times, neurosurgeons encounter patients with paraparesis secondary to trauma in the setting of a lightning strike. In these cases, it becomes imperative to find out the true cause behind such weakness in lower limbs because the prognosis differs significantly depending on the etiology. We report a case of keraunoparalysis affecting both lower limbs in a 50-year-old male, where he recovered within 48 hours of the impact. As far as our knowledge is concerned, this is the first case of keraunoparalysis reported from India. We also review the available literature and discuss the physics of lightning, its mechanism, other clinical presentations, and management strategy in the light of our case. These patients must be investigated for other possible causes of paraparesis secondary to trauma and keraunoparalysis should rather be a diagnosis of exclusion, only to be confirmed on imageology. Awareness regarding similar cases will make neurosurgeons notice this entity early, avoiding unnecessary investigation, and hence they will be able to prognosticate in the most efficient manner. PMID:23741121
Papa, Riccardo; Consolaro, Alessandro; Minoia, Francesca; Caorsi, Roberta; Magnano, Gianmichele; Gattorno, Marco; Ravelli, Angelo; Picco, Paolo
2017-01-01
In 1966, Goldbloom et al. described two children who developed a peculiar clinical picture characterized by intermittent daily bone pain in the lower limbs, fever spikes, increased acute phase reactants and dysproteinaemia. The syndrome occurred two weeks after a group A β-haemolytic streptococcus infection. So far, only a few cases have been reported in the medical literature in English. We report two further cases of Goldbloom's syndrome with a review of the literature in English. Our two patients lived in the same Italian region and presented their syndrome onset a week apart. Early use of STIR MRI revealed an atypical metaphyseal hyperintensity in the femurs and tibias. X-ray showed periosteal hyperostosis. A short cycle of corticosteroids led to rapid recovery of symptoms and disappearance of bone changes. The reported cases highlight a likely under-recognised post-streptococcal inflammatory periosteal reaction and emphasise the diagnostic utility of the newer imaging modalities.
2013-01-01
Levin GT, Ben Abdelkrim N, Laurencelle L, Castagna C. Lower limb maxi- mal dynamic strength and agility determinants in elite basket - ball players . J...IRB = Institutional Review Board, LLL = lower-limb loss, MBP = Medicine Ball Put, MDC = minimal detectable change, NMCSD = Naval Medical Center...consid- ered for the CHAMP. Coordination, power, speed, and agility are important physical components necessary for successful perfor- mance in sports
A novel upper limb rehabilitation system with self-driven virtual arm illusion.
Aung, Yee Mon; Al-Jumaily, Adel; Anam, Khairul
2014-01-01
This paper proposes a novel upper extremity rehabilitation system with virtual arm illusion. It aims for fast recovery from lost functions of the upper limb as a result of stroke to provide a novel rehabilitation system for paralyzed patients. The system is integrated with a number of technologies that include Augmented Reality (AR) technology to develop game like exercise, computer vision technology to create the illusion scene, 3D modeling and model simulation, and signal processing to detect user intention via EMG signal. The effectiveness of the developed system has evaluated via usability study and questionnaires which is represented by graphical and analytical methods. The evaluation provides with positive results and this indicates the developed system has potential as an effective rehabilitation system for upper limb impairment.
NASA Technical Reports Server (NTRS)
Liu, Shih-Ching
1994-01-01
The goal of this research was to determine kinematic parameters of the lower limbs of a subject pedaling a bicycle. An existing measurement system was used as the basis to develop the model to determine position and acceleration of the limbs. The system consists of an ergometer instrumented to provide position of the pedal (foot), accelerometers to be attached to the lower limbs to measure accelerations, a recorder used for filtering, and a computer instrumented with an A/D board and a decoder board. The system is designed to read and record data from accelerometers and encoders. Software has been developed for data collection, analysis and presentation. Based on the measurement system, a two dimensional analytical model has been developed to determine configuration (position, orientation) and kinematics (velocities, accelerations). The model has been implemented in software and verified by simulation. An error analysis to determine the system's accuracy shows that the expected error is well within the specifications of practical applications. When the physical hardware is completed, NASA researchers hope to use the system developed to determine forces exerted by muscles and forces at articulations. This data will be useful in the development of countermeasures to minimize bone loss experienced by astronauts in microgravity conditions.
Characterization of interfacial socket pressure in transhumeral prostheses: A case series.
Schofield, Jonathon S; Schoepp, Katherine R; Williams, Heather E; Carey, Jason P; Marasco, Paul D; Hebert, Jacqueline S
2017-01-01
One of the most important factors in successful upper limb prostheses is the socket design. Sockets must be individually fabricated to arrive at a geometry that suits the user's morphology and appropriately distributes the pressures associated with prosthetic use across the residual limb. In higher levels of amputation, such as transhumeral, this challenge is amplified as prosthetic weight and the physical demands placed on the residual limb are heightened. Yet, in the upper limb, socket fabrication is largely driven by heuristic practices. An analytical understanding of the interactions between the socket and residual limb is absent in literature. This work describes techniques, adapted from lower limb prosthetic research, to empirically characterize the pressure distribution occurring between the residual limb and well-fit transhumeral prosthetic sockets. A case series analyzing the result of four participants with transhumeral amputation is presented. A Tekscan VersaTek pressure measurement system and FaroArm Edge coordinate measurement machine were employed to capture socket-residual limb interface pressures and geometrically register these values to the anatomy of participants. Participants performed two static poses with their prosthesis under two separate loading conditions. Surface pressure maps were constructed from the data, highlighting pressure distribution patterns, anatomical locations bearing maximum pressure, and the relative pressure magnitudes. Pressure distribution patterns demonstrated unique characteristics across the four participants that could be traced to individual socket design considerations. This work presents a technique that implements commercially available tools to quantitatively characterize upper limb socket-residual limb interactions. This is a fundamental first step toward improved socket designs developed through informed, analytically-based design tools.
Characterization of interfacial socket pressure in transhumeral prostheses: A case series
Schoepp, Katherine R.; Williams, Heather E.; Carey, Jason P.; Marasco, Paul D.
2017-01-01
One of the most important factors in successful upper limb prostheses is the socket design. Sockets must be individually fabricated to arrive at a geometry that suits the user’s morphology and appropriately distributes the pressures associated with prosthetic use across the residual limb. In higher levels of amputation, such as transhumeral, this challenge is amplified as prosthetic weight and the physical demands placed on the residual limb are heightened. Yet, in the upper limb, socket fabrication is largely driven by heuristic practices. An analytical understanding of the interactions between the socket and residual limb is absent in literature. This work describes techniques, adapted from lower limb prosthetic research, to empirically characterize the pressure distribution occurring between the residual limb and well-fit transhumeral prosthetic sockets. A case series analyzing the result of four participants with transhumeral amputation is presented. A Tekscan VersaTek pressure measurement system and FaroArm Edge coordinate measurement machine were employed to capture socket-residual limb interface pressures and geometrically register these values to the anatomy of participants. Participants performed two static poses with their prosthesis under two separate loading conditions. Surface pressure maps were constructed from the data, highlighting pressure distribution patterns, anatomical locations bearing maximum pressure, and the relative pressure magnitudes. Pressure distribution patterns demonstrated unique characteristics across the four participants that could be traced to individual socket design considerations. This work presents a technique that implements commercially available tools to quantitatively characterize upper limb socket-residual limb interactions. This is a fundamental first step toward improved socket designs developed through informed, analytically-based design tools. PMID:28575012
Kawashima, Tomokazu; Sasaki, Hiroshi
2010-11-01
The main aim of this review is (1) to introduce the two previous studies we published human lower limb anatomy based on the conventional macroscopic anatomical [corrected] criteria with hazardous recognition of this description, (2) to activate the discussion whether the limb homology exists, and (3) to contribute to future study filling the gap between the gross anatomy and embryology. One of the topics we discussed was the human persistent sciatic artery. To date, numerous human cases of persistent sciatic artery have been reported in which the anomalous artery was present in the posterior compartment of the thigh alongside the sciatic nerve. As one of the important criteria for assessing the human primitive sciatic artery, its ventral arterial position with respect to the sciatic nerve is reasonable based on the initial positional relationship between ventral arterial and dorsal nervous systems and comparative anatomical findings. We also discuss ways of considering the topography of muscles of the lower limb and their innervations compared to those of the upper limb. We propose a schema of the complex anatomical characteristics of the lower limb based on the vertebrate body plan. According to this reasonable schema, the twisted anatomy of the lower limb can be understood more easily. These two main ideas discussed in this paper will be useful for further understanding of the anatomy of the lower limb and as a first step for future. We hope that the future study in lower limb will be further developed by both viewpoints of the classical gross anatomy and recent embryology.
Use of prostheses in lower limb amputee patients due to peripheral arterial disease
Chamlian, Therezinha Rosane
2014-01-01
Objective To evaluate the indication of prosthesis during rehabilitation and the maintenance of their use or abandonment rate after discharge, as well as mortality of lower limb amputees due to peripheral arterial disease. Methods A retrospective and cross-sectional study carried out with lower limb amputee patients, at transfemoral and transtibial levels, due to vascular conditions. The sample was composed of 310 patients (205 men, 105 women, mean age 61.8 years), transfemoral (142) and transtibial (150) levels, unilateral or bilateral (18). A total of 217 were fitted with prosthesis and 93 did not. Nonparametric statistical tests with equality of two proportions, 95% confidence interval and p value <0,05 were used. Results Out of 195 patients we contacted, 151 were fitted with prosthesis and 44 not. Of those that were fitted with prosthesis, 54 still use it, 80 abandoned and 17 died. In the group without prosthesis, 27 were on wheelchair and 17 died. Mortality is statistically higher among patients who were not fitted with prosthesis and 34 death occur, on average, 3.91 years after amputation. Survival time of patients who were not fitted with prosthesis was smaller than those were fitted. Conclusion The use of prosthesis in lower limb amputees, due to vascular conditions, during rehabilitation is high. However, maintenance of prosthesis is not frequent after discharge. Early and high mortality is observed mainly among diabetic patients. PMID:25628194
Yardımcı, Cenk; Önyay, Taylan; İnal, Kamil S; Özbakır, Deniz B; Özak, Ahmet
2018-06-16
This article presents a novel surgical technique in the management of open complete talocrural luxations and evaluates the results, and clinical benefits with its routine clinical utilization. Retrospective study. Seventeen medium- or large-breed client-owned dogs of different breed, age and sex with complete talocrural luxations and radiographic follow-up of at least 24 weeks duration. Selective talocrural arthrodesis was performed by using a hybrid transarticular external skeletal fixator frame. Clinical and radiographical evaluation was performed regarding the lesion, concomitant injury, duration of the surgery, time to first use of the limb, fixator removal time, complications and clinical outcomes. Dogs started to use the injured limb between postoperative days 1 to 11. Pin or wire tract related complications were observed in all dogs. Time to fixator removal ranged from 57 to 90 days with a median of 73 days. All of the operated joints with an exception of one dog resulted in talocrural fusion. Mid-term clinical outcomes score was regarded as excellent in 13/17 dogs, good in 3/17 dogs and poor in 1/17 dogs subject to authors' evaluation. A transarticular hybrid external fixator may allow early use of postoperative limb with an excellent patient compliance and is well tolerated as well. The technique showed a promising opportunity of providing favourable limb use. Schattauer GmbH Stuttgart.
[LIMB LENGH SHORTENING AFTER ARTERIAL CANNULATION IN INFANCY].
Díaz-Ben, B; Balvís-Balvís, P; Lozano-Balseiro, M; González-Herranz, P
2016-01-01
The aim of this study was to assess the relationship between arterial cannulations and the development of limb length discrepancies in childhood or impaired growth of the proximal femur. A retrospective study was conducted on 300 children who required arterial cannulation and/or cardiac catheterisation during childhood in relation to congenital heart diseases. Seven of these patients were referred from the Paediatric Cardiology clinic due to a limb length discrepancy and/or proximal femoral deformities. Seven children, with a mean age of 10 years, were referred to our clinic. The mean length discrepancy was 2.7cm, and was more frequent on the right side. Three of the patients presented with proximal femoral deformities: two cases of caput valgum and one of bilateral physeal arrest of the greater trochanter. All children were initially treated with a shoe lift in the shortest limb. One of them required a tibial lengthening and two others are awaiting a similar procedure. We recommend clinical and radiological follow-up of patients who have undergone catheterisation during their infancy due to the relationship between these techniques and the risk of developing a limb length discrepancy. Copyright © 2015 SECOT. Published by Elsevier Espana. All rights reserved.
NASA Astrophysics Data System (ADS)
Oikarinen, L.
Solar UV and visible radiation scattered at the limb of the Earth's atmosphere is used for measuring density profiles of atmosperic trace gases. For example, the OSIRIS instrument on Odin and SCIAMACHY on Envisat use this technique. A limb-viewing instrument does not see Earth's surface or tropospheric clouds directly. However, in- direct light reflected from the surface or low altitude clouds can make up tens of per cents of the signal. Furthermore, the surface area that contributes to limb intensity ex- tends over 1000 km along the instrument line-of-sight and 200 km across it. Over this area surface reflectivity can vary from almost 0% to 100%. Inaccurate modelling of reflected intensity is a potential source of error in the trace gas retrieval. Generally, radiative transfer models used for analysing limb measure- ments have to assume that the surface has a constant albedo. We have used a three- dimensional Monte Carlo radiative transfer model to study the effects of surface vari- ation to limb radiance. Based on the simulations, we have developed an approximate method for averaging surface albedo for limb scattering measurements with the help of a simple single scattering radiative transfer model.
Upper limb motor function in young adults with spina bifida and hydrocephalus
Salman, M. S.; Jewell, D.; Hetherington, R.; Spiegler, B. J.; MacGregor, D. L.; Drake, J. M.; Humphreys, R. P.; Gentili, F.
2011-01-01
Objective The objective of the study was to measure upper limb motor function in young adults with spina bifida meningomyelocele (SBM) and typically developing age peers. Method Participants were 26 young adults with SBM, with a Verbal or Performance IQ score of at least 70 on the Wechsler scales, and 27 age- and gender-matched controls. Four upper limb motor function tasks were performed under four different visual and cognitive challenge conditions. Motor independence was assessed by questionnaire. Results Fewer SBM than control participants obtained perfect posture and rebound scores. The SBM group performed less accurately and was more disrupted by cognitive challenge than controls on limb dysmetria tasks. The SBM group was slower than controls on the diadochokinesis task. Adaptive motor independence was related to one upper limb motor task, arm posture, and upper rather than lower spinal lesions were associated with less motor independence. Conclusions Young adults with SBM have significant limitations in upper limb function and are more disrupted by some challenges while performing upper limb motor tasks. Within the group of young adults with SBM, upper spinal lesions compromise motor independence more than lower spinal lesions. PMID:19672605
HST,survey views of Hubble after berthing in payload bay on Flight Day 3
1997-02-13
S82-E-5140 (13 Feb. 1997) --- A back-lighted full view of the Hubble Space Telescope (HST) in the grasp of the Remote Manipulation System (RMS) following capture early today. The limb of Earth forms part of the background. This view was taken with an Electronic Still Camera (ESC).
Bishop, Chris; Read, Paul; McCubbine, Jermaine; Turner, Anthony
2018-02-27
Inter-limb asymmetries have been shown to be greater during vertical jumping compared to horizontal jumping. Notable inter-limb differences have also been established at an early age in male youth soccer players. Furthermore, given the multi-planar nature of soccer, establishing between-limb differences from multiple jump tests is warranted. At present, a paucity of data exists regarding asymmetries in youth female soccer players and their effects on physical performance. The aims of this study were to quantify inter-limb asymmetries from unilateral jump tests and examine their effects on speed and jump performance. Nineteen elite youth female soccer players performed a single leg countermovement jump (SLCMJ), single, triple, and crossover hops for distance and a 20 m sprint test. Test reliability was good to excellent (ICC = 0.81-0.99) and variability acceptable (CV = 1.74-5.42%). A one-way ANOVA highlighted larger asymmetries from the SLCMJ compared to all other jump tests (p < 0.05). Pearson's correlations portrayed significant relationships between vertical asymmetries from the SLCMJ and slower sprint times (r = 0.49-0.59). Significant negative relationships were also found between horizontal asymmetries during the triple hop test and horizontal jump performance (r = -0.47 to -0.58) and vertical asymmetries during the SLCMJ and vertical jump performance (r = -0.47 to -0.53). The results from this study highlight that the SLCMJ appears to be the most appropriate jump test for identifying between-limb differences with values ∼12% showing negative associations with sprint times. Furthermore, larger asymmetries are associated with reduced jump performance and would appear to be direction-specific. Practitioners can use this information as normative data to be mindful of when quantifying inter-limb asymmetries and assessing their potential impact on physical performance in youth female soccer players.
Cull, David L; Manos, Ginger; Hartley, Michael C; Taylor, Spence M; Langan, Eugene M; Eidt, John F; Johnson, Brent L
2014-12-01
The Society for Vascular Surgery (SVS) recently established the Lower Extremity Threatened Limb Classification System, a staging system using Wound characteristic, Ischemia, and foot Infection (WIfI) to stratify the risk for limb amputation at 1 year. Although intuitive in nature, this new system has not been validated. The purpose of the following study was to determine whether the WIfI system is predictive of limb amputation and wound healing. Between 2007 and 2010, we prospectively obtained data related to wound characteristics, extent of infection, and degree of postrevascularization ischemia in 139 patients with foot wounds who presented for lower extremity revascularization (158 revascularization procedures). After adapting those data to the WIfI classifications, we analyzed the influence of wound characteristics, extent of infection, and degree of ischemia on time to wound healing; empirical Kaplan-Meier survival curves were compared with theoretical outcomes predicted by WIfI expert consensus opinion. Of the 158 foot wounds, 125 (79%) healed. The median time to wound healing was 2.7 months (range, 1-18 months). Factors associated with wound healing included presence of diabetes mellitus (P = .013), wound location (P = .049), wound size (P = .007), wound depth (P = .004), and degree of ischemia (P < .001). The WIfI clinical stage was predictive of 1-year limb amputation (stage 1, 3%; stage 2, 10%; stage 3, 23%; stage 4, 40%) and wound nonhealing (stage 1, 8%; stage 2, 10%; stage 3, 23%; stage 4, 40%) and correlated with the theoretical outcome estimated by the SVS expert panel. The theoretical framework for risk stratification among patients with critical limb ischemia provided by the SVS expert panel appears valid. Further validation of the WIfI classification system with multicenter data is justified. Copyright © 2014 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
Design of a 6-DOF upper limb rehabilitation exoskeleton with parallel actuated joints.
Chen, Yanyan; Li, Ge; Zhu, Yanhe; Zhao, Jie; Cai, Hegao
2014-01-01
In this paper, a 6-DOF wearable upper limb exoskeleton with parallel actuated joints which perfectly mimics human motions is proposed. The upper limb exoskeleton assists the movement of physically weak people. Compared with the existing upper limb exoskeletons which are mostly designed using a serial structure with large movement space but small stiffness and poor wearable ability, a prototype for motion assistance based on human anatomy structure has been developed in our design. Moreover, the design adopts balls instead of bearings to save space, which simplifies the structure and reduces the cost of the mechanism. The proposed design also employs deceleration processes to ensure that the transmission ratio of each joint is coincident.