Science.gov

Sample records for early maize recombinant

  1. The transcriptome landscape of early maize meiosis

    USDA-ARS?s Scientific Manuscript database

    Meiosis, particularly meiotic recombination, is a major factor affecting yield and breeding of plants. To gain insight into the transcriptome landscape during early initiation steps of meiotic recombination, we profiled early prophase I meiocytes from maize using RNA-seq. Our analyses of genes prefe...

  2. Evolution of meiotic recombination genes in maize and teosinte.

    PubMed

    Sidhu, Gaganpreet K; Warzecha, Tomasz; Pawlowski, Wojciech P

    2017-01-25

    Meiotic recombination is a major source of genetic variation in eukaryotes. The role of recombination in evolution is recognized but little is known about how evolutionary forces affect the recombination pathway itself. Although the recombination pathway is fundamentally conserved across different species, genetic variation in recombination components and outcomes has been observed. Theoretical predictions and empirical studies suggest that changes in the recombination pathway are likely to provide adaptive abilities to populations experiencing directional or strong selection pressures, such as those occurring during species domestication. We hypothesized that adaptive changes in recombination may be associated with adaptive evolution patterns of genes involved in meiotic recombination. To examine how maize evolution and domestication affected meiotic recombination genes, we studied patterns of sequence polymorphism and divergence in eleven genes controlling key steps in the meiotic recombination pathway in a diverse set of maize inbred lines and several accessions of teosinte, the wild ancestor of maize. We discovered that, even though the recombination genes generally exhibited high sequence conservation expected in a pathway controlling a key cellular process, they showed substantial levels and diverse patterns of sequence polymorphism. Among others, we found differences in sequence polymorphism patterns between tropical and temperate maize germplasms. Several recombination genes displayed patterns of polymorphism indicative of adaptive evolution. Despite their ancient origin and overall sequence conservation, meiotic recombination genes can exhibit extensive and complex patterns of molecular evolution. Changes in these genes could affect the functioning of the recombination pathway, and may have contributed to the successful domestication of maize and its expansion to new cultivation areas.

  3. Complexity of genetic mechanisms conferring nonuniformity of recombination in maize.

    PubMed

    Pan, Qingchun; Deng, Min; Yan, Jianbing; Li, Lin

    2017-04-26

    Recombinations occur nonuniformly across the maize genome. To dissect the genetic mechanisms underlying the nonuniformity of recombination, we performed quantitative trait locus (QTL) mapping using recombinant inbred line populations. Genome-wide QTL scan identified hundreds of QTLs with both cis-prone and trans- effects for recombination number variation. To provide detailed insights into cis- factors associated with recombination variation, we examined the genomic features around recombination hot regions, including density of genes, DNA transposons, retrotransposons, and some specific motifs. Compared to recombination variation in whole genome, more QTLs were mapped for variations in recombination hot regions. The majority QTLs for recombination hot regions are trans-QTLs and co-localized with genes from the recombination pathway. We also found that recombination variation was positively associated with the presence of genes and DNA transposons, but negatively related to the presence of long terminal repeat retrotransposons. Additionally, 41 recombination hot regions were fine-mapped. The high-resolution genotyping of five randomly selected regions in two F 2 populations verified that they indeed have ultra-high recombination frequency, which is even higher than that of the well-known recombination hot regions sh1-bz and a1-sh2. Taken together, our results further our understanding of recombination variation in plants.

  4. Genome-wide recombination dynamics are associated with phenotypic variation in maize.

    PubMed

    Pan, Qingchun; Li, Lin; Yang, Xiaohong; Tong, Hao; Xu, Shutu; Li, Zhigang; Li, Weiya; Muehlbauer, Gary J; Li, Jiansheng; Yan, Jianbing

    2016-05-01

    Meiotic recombination is a major driver of genetic diversity, species evolution, and agricultural improvement. Thus, an understanding of the genetic recombination landscape across the maize (Zea mays) genome will provide insight and tools for further study of maize evolution and improvement. Here, we used c. 50 000 single nucleotide polymorphisms to precisely map recombination events in 12 artificial maize segregating populations. We observed substantial variation in the recombination frequency and distribution along the ten maize chromosomes among the 12 populations and identified 143 recombination hot regions. Recombination breakpoints were partitioned into intragenic and intergenic events. Interestingly, an increase in the number of genes containing recombination events was accompanied by a decrease in the number of recombination events per gene. This kept the overall number of intragenic recombination events nearly invariable in a given population, suggesting that the recombination variation observed among populations was largely attributed to intergenic recombination. However, significant associations between intragenic recombination events and variation in gene expression and agronomic traits were observed, suggesting potential roles for intragenic recombination in plant phenotypic diversity. Our results provide a comprehensive view of the maize recombination landscape, and show an association between recombination, gene expression and phenotypic variation, which may enhance crop genetic improvement. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  5. A multiplex PCR method of detecting recombinant DNAs from five lines of genetically modified maize.

    PubMed

    Matsuoka, T; Kuribara, H; Akiyama, H; Miura, H; Goda, Y; Kusakabe, Y; Isshiki, K; Toyoda, M; Hino, A

    2001-02-01

    Seven lines of genetically modified (GM) maize have been authorized in Japan as foods and feeds imported from the USA. We improved a multiplex PCR method described in the previous report in order to distinguish the five lines of GM maize. Genomic DNA was extracted from GM maize with a silica spin column kit, which could reduce experimental time and improve safety in the laboratory and potentially in the environment. We sequenced recombinant DNA (r-DNA) introduced into GM maize, and re-designed new primer pairs to increase the specificity of PCR to distinguish five lines of GM maize by multiplex PCR. A primer pair for the maize intrinsic zein gene (Ze1) was also designed to confirm the presence of amplifiable maize DNA. The lengths of PCR products using these six primer pairs were different. The Ze1 and the r-DNAs from the five lines of GM maize were qualitatively detected in one tube. The specific PCR bands were distinguishable from each other on the basis of the expected length. The r-DNA could be detected from maize samples containing 0.5% of each of the five lines of GM maize. The sensitivity would be acceptable to secure the verification of non-GMO materials and to monitor the reliability of the labeling system.

  6. Maize chromosomal knobs are located in gene-dense areas and suppress local recombination

    USDA-ARS?s Scientific Manuscript database

    Knobs are conspicuous heterochromatic regions found on the chromosomes of maize and its relatives. The number, locations, and sizes vary dramatically, with most lines containing between four and eight knobs in mid-arm positions. Prior data suggest that some knobs may reduce recombination, but prev...

  7. Recombination in diverse maize is stable, predictable, and associated with genetic load.

    PubMed

    Rodgers-Melnick, Eli; Bradbury, Peter J; Elshire, Robert J; Glaubitz, Jeffrey C; Acharya, Charlotte B; Mitchell, Sharon E; Li, Chunhui; Li, Yongxiang; Buckler, Edward S

    2015-03-24

    Among the fundamental evolutionary forces, recombination arguably has the largest impact on the practical work of plant breeders. Varying over 1,000-fold across the maize genome, the local meiotic recombination rate limits the resolving power of quantitative trait mapping and the precision of favorable allele introgression. The consequences of low recombination also theoretically extend to the species-wide scale by decreasing the power of selection relative to genetic drift, and thereby hindering the purging of deleterious mutations. In this study, we used genotyping-by-sequencing (GBS) to identify 136,000 recombination breakpoints at high resolution within US and Chinese maize nested association mapping populations. We find that the pattern of cross-overs is highly predictable on the broad scale, following the distribution of gene density and CpG methylation. Several large inversions also suppress recombination in distinct regions of several families. We also identify recombination hotspots ranging in size from 1 kb to 30 kb. We find these hotspots to be historically stable and, compared with similar regions with low recombination, to have strongly differentiated patterns of DNA methylation and GC content. We also provide evidence for the historical action of GC-biased gene conversion in recombination hotspots. Finally, using genomic evolutionary rate profiling (GERP) to identify putative deleterious polymorphisms, we find evidence for reduced genetic load in hotspot regions, a phenomenon that may have considerable practical importance for breeding programs worldwide.

  8. Improved recovery of active recombinant laccase from maize seed.

    PubMed

    Bailey, M R; Woodard, S L; Callaway, E; Beifuss, K; Magallanes-Lundback, M; Lane, J R; Horn, M E; Mallubhotla, H; Delaney, D D; Ward, M; Van Gastel, F; Howard, J A; Hood, E E

    2004-01-01

    Lignolytic enzymes such as laccase have been difficult to over-express in an active form. This paper describes the expression, characterization, and application of a fungal laccase in maize seed. The transgenic seed contains immobilized and extractable laccase. Fifty ppm dry weight of aqueously extractable laccase was obtained, and the remaining solids contained a significant amount of immobilized laccase that was active. Although a portion of the extractable laccase was produced as inactive apoenzyme, laccase activity was recovered by treatment with copper and chloride. In addition to allowing the apoenzyme to regain activity, treatment with copper also provided a partial purification step by precipitating other endogenous corn proteins while leaving >90% of the laccase in solution. The data also demonstrate the application of maize-produced laccase as a polymerization agent. The apparent concentration of laccase in ground, defatted corn germ is approximately 0.20% of dry weight.

  9. Recombination in maize is stable, predictable, and associated with genetic load: a joint study of the US and Chinese maize NAM populations

    USDA-ARS?s Scientific Manuscript database

    Among the fundamental evolutionary forces, recombination arguably has the largest impact on the practical work of plant breeders. Varying over 1,000-fold across the maize genome, the local meiotic recombination rate limits the resolving power of quantitative trait mapping and the precision of favora...

  10. Early allelic selection in maize as revealed by ancient DNA.

    PubMed

    Jaenicke-Després, Viviane; Buckler, Ed S; Smith, Bruce D; Gilbert, M Thomas P; Cooper, Alan; Doebley, John; Pääbo, Svante

    2003-11-14

    Maize was domesticated from teosinte, a wild grass, by approximately 6300 years ago in Mexico. After initial domestication, early farmers continued to select for advantageous morphological and biochemical traits in this important crop. However, the timing and sequence of character selection are, thus far, known only for morphological features discernible in corn cobs. We have analyzed three genes involved in the control of plant architecture, storage protein synthesis, and starch production from archaeological maize samples from Mexico and the southwestern United States. The results reveal that the alleles typical of contemporary maize were present in Mexican maize by 4400 years ago. However, as recently as 2000 years ago, allelic selection at one of the genes may not yet have been complete.

  11. Patterns of diversity and recombination along chromosome 1 of maize (Zea mays ssp. mays L.).

    PubMed Central

    Tenaillon, Maud I; Sawkins, Mark C; Anderson, Lorinda K; Stack, Stephen M; Doebley, John; Gaut, Brandon S

    2002-01-01

    We investigate the interplay between genetic diversity and recombination in maize (Zea mays ssp. mays). Genetic diversity was measured in three types of markers: single-nucleotide polymorphisms, indels, and microsatellites. All three were examined in a sample of previously published DNA sequences from 21 loci on maize chromosome 1. Small indels (1-5 bp) were numerous and far more common than large indels. Furthermore, large indels (>100 bp) were infrequent in the population sample, suggesting they are slightly deleterious. The 21 loci also contained 47 microsatellites, of which 33 were polymorphic. Diversity in SNPs, indels, and microsatellites was compared to two measures of recombination: C (=4Nc) estimated from DNA sequence data and R based on a quantitative recombination nodule map of maize synaptonemal complex 1. SNP diversity was correlated with C (r = 0.65; P = 0.007) but not with R (r = -0.10; P = 0.69). Given the lack of correlation between R and SNP diversity, the correlation between SNP diversity and C may be driven by demography. In contrast to SNP diversity, microsatellite diversity was correlated with R (r = 0.45; P = 0.004) but not C (r = -0.025; P = 0.55). The correlation could arise if recombination is mutagenic for microsatellites, or it may be consistent with background selection that is apparent only in this class of rapidly evolving markers. PMID:12454083

  12. Recombination and genetic variance among maize doubled haploids induced from F1 and F2 plants.

    PubMed

    Sleper, Joshua A; Bernardo, Rex

    2016-12-01

    Inducing maize doubled haploids from F 2 plants (DHF2) instead of F 1 plants (DHF1) led to more recombination events. However, the best DHF2 lines did not outperform the best DHF1 lines. Maize (Zea mays L.) breeders rely on doubled haploid (DH) technology for fast and efficient production of inbreds. Breeders can induce DH lines most quickly from F 1 plants (DHF1), or induce DH lines from F 2 plants (DHF2) to allow selection prior to DH induction and have more recombinations. Our objective was to determine if the additional recombinations in maize DHF2 lines lead to a larger genetic variance and a superior mean of the best lines. A total of 311 DHF1 and 241 DHF2 lines, derived from the same biparental cross, were crossed to two testers and evaluated in multilocation trials in Europe and the US. The mean number of recombinations per genome was 14.48 among the DHF1 lines and 21.38 among the DHF1 lines. The means of the DHF1 and DHF2 lines did not differ for yield, moisture, and plant height. The genetic variance was higher among DHF2 lines than among DHF1 lines for moisture, but not for yield and plant height. The ratio of repulsion to coupling linkages, which was estimated from genomewide marker effects, was higher among DHF1 lines than among DHF2 lines for moisture, but not for yield and plant height. The higher genetic variance for moisture among DHF2 lines did not lead to lower moisture of the best 10 % of the lines. Our results indicated that the decision of inducing DH lines from F 1 or F 2 plants needs to be made from considerations other than the performance of the resulting DHF1 or DHF2 lines.

  13. Descriptive statistics and correlation analysis of agronomic traits in a maize recombinant inbred line population.

    PubMed

    Zhang, H M; Hui, G Q; Luo, Q; Sun, Y; Liu, X H

    2014-01-21

    Maize (Zea mays L.) is one of the most important crops in the world. In this study, 13 agronomic traits of a recombinant inbred line population that was derived from the cross between Mo17 and Huangzao4 were investigated in maize: ear diameter, ear length, ear axis diameter, ear weight, plant height, ear height, days to pollen shed (DPS), days to silking (DS), the interval between DPS and DS, 100-kernel weight, kernel test weight, ear kernel weight, and kernel rate. Furthermore, the descriptive statistics and correlation analysis of the 13 traits were performed using the SPSS 11.5 software. The results providing the phenotypic data here are needed for the quantitative trait locus mapping of these agronomic traits.

  14. The Genetic Basis of Plant Architecture in 10 Maize Recombinant Inbred Line Populations1[OPEN

    PubMed Central

    Pan, Qingchun; Xu, Yuancheng; Peng, Yong; Zhan, Wei; Li, Wenqiang; Li, Lin

    2017-01-01

    Plant architecture is a key factor affecting planting density and grain yield in maize (Zea mays). However, the genetic mechanisms underlying plant architecture in diverse genetic backgrounds have not been fully addressed. Here, we performed a large-scale phenotyping of 10 plant architecture-related traits and dissected the genetic loci controlling these traits in 10 recombinant inbred line populations derived from 14 diverse genetic backgrounds. Nearly 800 quantitative trait loci (QTLs) with major and minor effects were identified as contributing to the phenotypic variation of plant architecture-related traits. Ninety-two percent of these QTLs were detected in only one population, confirming the diverse genetic backgrounds of the mapping populations and the prevalence of rare alleles in maize. The numbers and effects of QTLs are positively associated with the phenotypic variation in the population, which, in turn, correlates positively with parental phenotypic and genetic variations. A large proportion (38.5%) of QTLs was associated with at least two traits, suggestive of the frequent occurrence of pleiotropic loci or closely linked loci. Key developmental genes, which previously were shown to affect plant architecture in mutant studies, were found to colocalize with many QTLs. Five QTLs were further validated using the segregating populations developed from residual heterozygous lines present in the recombinant inbred line populations. Additionally, one new plant height QTL, qPH3, has been fine-mapped to a 600-kb genomic region where three candidate genes are located. These results provide insights into the genetic mechanisms controlling plant architecture and will benefit the selection of ideal plant architecture in maize breeding. PMID:28838954

  15. The Genetic Basis of Plant Architecture in 10 Maize Recombinant Inbred Line Populations.

    PubMed

    Pan, Qingchun; Xu, Yuancheng; Li, Kun; Peng, Yong; Zhan, Wei; Li, Wenqiang; Li, Lin; Yan, Jianbing

    2017-10-01

    Plant architecture is a key factor affecting planting density and grain yield in maize ( Zea mays ). However, the genetic mechanisms underlying plant architecture in diverse genetic backgrounds have not been fully addressed. Here, we performed a large-scale phenotyping of 10 plant architecture-related traits and dissected the genetic loci controlling these traits in 10 recombinant inbred line populations derived from 14 diverse genetic backgrounds. Nearly 800 quantitative trait loci (QTLs) with major and minor effects were identified as contributing to the phenotypic variation of plant architecture-related traits. Ninety-two percent of these QTLs were detected in only one population, confirming the diverse genetic backgrounds of the mapping populations and the prevalence of rare alleles in maize. The numbers and effects of QTLs are positively associated with the phenotypic variation in the population, which, in turn, correlates positively with parental phenotypic and genetic variations. A large proportion (38.5%) of QTLs was associated with at least two traits, suggestive of the frequent occurrence of pleiotropic loci or closely linked loci. Key developmental genes, which previously were shown to affect plant architecture in mutant studies, were found to colocalize with many QTLs. Five QTLs were further validated using the segregating populations developed from residual heterozygous lines present in the recombinant inbred line populations. Additionally, one new plant height QTL, qPH3 , has been fine-mapped to a 600-kb genomic region where three candidate genes are located. These results provide insights into the genetic mechanisms controlling plant architecture and will benefit the selection of ideal plant architecture in maize breeding. © 2017 American Society of Plant Biologists. All Rights Reserved.

  16. CERES–Maize Model for Determining the Optimum Planting Dates of Early Maturing Maize Varieties in Northern Nigeria

    PubMed Central

    Adnan, Adnan A.; Jibrin, Jibrin M.; Kamara, Alpha Y.; Abdulrahman, Bassam L.; Shaibu, Abdulwahab S.; Garba, Ismail I.

    2017-01-01

    Field trials were carried out in the Sudan Savannah of Nigeria to assess the usefulness of CERES–maize crop model as a decision support tool for optimizing maize production through manipulation of plant dates. The calibration experiments comprised of 20 maize varieties planted during the dry and rainy seasons of 2014 and 2015 at Bayero University Kano and Audu Bako College of Agriculture Dambatta. The trials for model evaluation were conducted in 16 different farmer fields across the Sudan (Bunkure and Garun—Mallam) and Northern Guinea (Tudun-Wada and Lere) Savannas using two of the calibrated varieties under four different sowing dates. The model accurately predicted grain yield, harvest index, and biomass of both varieties with low RMSE-values (below 5% of mean), high d-index (above 0.8), and high r-square (above 0.9) for the calibration trials. The time series data (tops weight, stem and leaf dry weights) were also predicted with high accuracy (% RMSEn above 70%, d-index above 0.88). Similar results were also observed for the evaluation trials, where all variables were simulated with high accuracies. Estimation efficiencies (EF)-values above 0.8 were observed for all the evaluation parameters. Seasonal and sensitivity analyses on Typic Plinthiustalfs and Plinthic Kanhaplustults in the Sudan and Northern Guinea Savannas were conducted. Results showed that planting extra early maize varieties in late July and early maize in mid-June leads to production of highest grain yields in the Sudan Savanna. In the Northern Guinea Savanna planting extra-early maize in mid-July and early maize in late July produced the highest grain yields. Delaying planting in both Agro-ecologies until mid-August leads to lower yields. Delaying planting to mid-August led to grain yield reduction of 39.2% for extra early maize and 74.4% for early maize in the Sudan Savanna. In the Northern Guinea Savanna however, delaying planting to mid-August resulted in yield reduction of 66.9 and 94

  17. Agrobacterium-mediated transformation of maize (Zea mays) with Cre-lox site specific recombination cassettes in BIBAC vectors.

    PubMed

    Vega, Juan M; Yu, Weichang; Han, Fangpu; Kato, Akio; Peters, Eric M; Zhang, Zhanyuan J; Birchler, James A

    2008-04-01

    The Cre/loxP site-specific recombination system has been applied in various plant species including maize (Zea mays) for marker gene removal, gene targeting, and functional genomics. A BIBAC vector system was adapted for maize transformation with a large fragment of genetic material including a herbicide resistance marker gene, a 30 kb yeast genomic fragment as a marker for fluorescence in situ hybridization (FISH), and a 35S-lox-cre recombination cassette. Seventy-five transgenic lines were generated from Agrobacterium-mediated transformation of a maize Hi II line with multiple B chromosomes. Eighty-four inserts have been localized among all 10 A chromosome pairs by FISH using the yeast DNA probe together with a karyotyping cocktail. No inserts were found on the B chromosomes; thus a bias against the B chromosomes by the Agrobacterium-mediated transformation was revealed. The expression of a cre gene was confirmed in 68 of the 75 transgenic lines by a reporter construct for cre/lox mediated recombination. The placement of the cre/lox site-specific recombination system in many locations in the maize genome will be valuable materials for gene targeting and chromosome engineering.

  18. Wet-milling transgenic maize seed for fraction enrichment of recombinant subunit vaccine.

    PubMed

    Moeller, Lorena; Taylor-Vokes, Raye; Fox, Steve; Gan, Qinglei; Johnson, Lawrence; Wang, Kan

    2010-01-01

    The production of recombinant proteins in plants continues to be of great interest for prospective large-scale manufacturing of industrial enzymes, nutrition products, and vaccines. This work describes fractionation by wet-milling of transgenic maize expressing the B subunit of the heat-labile enterotoxin of Escherichia coli (LT-B), a potent immunogen and candidate for oral vaccine and vaccine components. The LT-B gene was directed to express in seed by an endosperm specific promoter. Two steeping treatments, traditional steeping (TS, 0.2% SO(2) + 0.5% lactic acid) and water steeping (WS, water only), were evaluated to determine effects on recovery of functional LT-B in wet-milled fractions. The overall recovery of the LT-B protein from WS treatment was 1.5-fold greater than that from TS treatment. In both steeping types, LT-B was distributed similarly among the fractions, resulting in enrichment of functional LT-B in fine fiber, coarse fiber and pericarp fractions by concentration factors of 1.5 to 8 relative to the whole kernels on a per-mass basis. Combined with endosperm-specific expression and secretory pathway targeting, wet-milling enables enrichment of high-value recombinant proteins in low-value fractions, such as the fine fiber, and co-utilization of remaining fractions in alternative industrial applications.

  19. Early carbon mobilization and radicle protrusion in maize germination.

    PubMed

    Sánchez-Linares, Luis; Gavilanes-Ruíz, Marina; Díaz-Pontones, David; Guzmán-Chávez, Fernando; Calzada-Alejo, Viridiana; Zurita-Villegas, Viridiana; Luna-Loaiza, Viridiana; Moreno-Sánchez, Rafael; Bernal-Lugo, Irma; Sánchez-Nieto, Sobeida

    2012-07-01

    Considerable amounts of information is available on the complex carbohydrates that are mobilized and utilized by the seed to support early seedling development. These events occur after radicle has protruded from the seed. However, scarce information is available on the role of the endogenous soluble carbohydrates from the embryo in the first hours of germination. The present work analysed how the soluble carbohydrate reserves in isolated maize embryos are mobilized during 6-24 h of water imbibition, an interval that exclusively embraces the first two phases of the germination process. It was found that sucrose constitutes a very significant reserve in the scutellum and that it is efficiently consumed during the time in which the adjacent embryo axis is engaged in an active metabolism. Sucrose transporter was immunolocalized in the scutellum and in vascular elements. In parallel, a cell-wall invertase activity, which hydrolyses sucrose, developed in the embryo axis, which favoured higher glucose uptake. Sucrose and hexose transporters were active in the embryo tissues, together with the plasma membrane H(+)-ATPase, which was localized in all embryo regions involved in both nutrient transport and active cell elongation to support radicle extension. It is proposed that, during the initial maize germination phases, a net flow of sucrose takes place from the scutellum towards the embryo axis and regions that undergo elongation. During radicle extension, sucrose and hexose transporters, as well as H(+)-ATPase, become the fundamental proteins that orchestrate the transport of nutrients required for successful germination.

  20. QTL mapping of stalk bending strength in a recombinant inbred line maize population.

    PubMed

    Hu, Haixiao; Liu, Wenxin; Fu, Zhiyi; Homann, Linda; Technow, Frank; Wang, Hongwu; Song, Chengliang; Li, Shitu; Melchinger, Albrecht E; Chen, Shaojiang

    2013-09-01

    Stalk bending strength (SBS) is a reliable indicator for evaluating stalk lodging resistance of maize plants. Based on biomechanical considerations, the maximum load exerted to breaking (F max), the breaking moment (M max) and critical stress (σ max) are three important parameters to characterize SBS. We investigated the genetic architecture of SBS by phenotyping F max, M max and σ max of the fourth internode of maize plants in a population of 216 recombinant inbred lines derived from the cross B73 × Ce03005 evaluated in four environments. Heritability of F max, M max and σ max was 0.81, 0.79 and 0.75, respectively. F max and σ max were positively correlated with several other stalk characters. By using a linkage map with 129 SSR markers, we detected two, three and two quantitative trait loci (QTL) explaining 22.4, 26.1 and 17.2 % of the genotypic variance for F max, M max and σ max, respectively. The QTL for F max, M max and σ max located in adjacent bins 5.02 and 5.03 as well as in bin 10.04 for F max were detected with high frequencies in cross-validation. As our QTL mapping results suggested a complex polygenic inheritance for SBS-related traits, we also evaluated the prediction accuracy of two genomic prediction methods (GBLUP and BayesB). In general, we found that both explained considerably higher proportions of the genetic variance than the values obtained in QTL mapping with cross-validation. Nevertheless, the identified QTL regions could be used as a starting point for fine mapping and gene cloning.

  1. High Quality Maize Centromere 10 Sequence Reveals Evidence of Frequent Recombination Events

    PubMed Central

    Wolfgruber, Thomas K.; Nakashima, Megan M.; Schneider, Kevin L.; Sharma, Anupma; Xie, Zidian; Albert, Patrice S.; Xu, Ronghui; Bilinski, Paul; Dawe, R. Kelly; Ross-Ibarra, Jeffrey; Birchler, James A.; Presting, Gernot G.

    2016-01-01

    The ancestral centromeres of maize contain long stretches of the tandemly arranged CentC repeat. The abundance of tandem DNA repeats and centromeric retrotransposons (CR) has presented a significant challenge to completely assembling centromeres using traditional sequencing methods. Here, we report a nearly complete assembly of the 1.85 Mb maize centromere 10 from inbred B73 using PacBio technology and BACs from the reference genome project. The error rates estimated from overlapping BAC sequences are 7 × 10−6 and 5 × 10−5 for mismatches and indels, respectively. The number of gaps in the region covered by the reassembly was reduced from 140 in the reference genome to three. Three expressed genes are located between 92 and 477 kb from the inferred ancestral CentC cluster, which lies within the region of highest centromeric repeat density. The improved assembly increased the count of full-length CR from 5 to 55 and revealed a 22.7 kb segmental duplication that occurred approximately 121,000 years ago. Our analysis provides evidence of frequent recombination events in the form of partial retrotransposons, deletions within retrotransposons, chimeric retrotransposons, segmental duplications including higher order CentC repeats, a deleted CentC monomer, centromere-proximal inversions, and insertion of mitochondrial sequences. Double-strand DNA break (DSB) repair is the most plausible mechanism for these events and may be the major driver of centromere repeat evolution and diversity. In many cases examined here, DSB repair appears to be mediated by microhomology, suggesting that tandem repeats may have evolved to efficiently repair frequent DSBs in centromeres. PMID:27047500

  2. Maize Domestication and Anti-Herbivore Defences: Leaf-Specific Dynamics during Early Ontogeny of Maize and Its Wild Ancestors

    PubMed Central

    Maag, Daniel; Erb, Matthias; Bernal, Julio S.; Wolfender, Jean-Luc; Turlings, Ted C. J.; Glauser, Gaétan

    2015-01-01

    As a consequence of artificial selection for specific traits, crop plants underwent considerable genotypic and phenotypic changes during the process of domestication. These changes may have led to reduced resistance in the cultivated plant due to shifts in resource allocation from defensive traits to increased growth rates and yield. Modern maize (Zea mays ssp. mays) was domesticated from its ancestor Balsas teosinte (Z. mays ssp. parviglumis) approximately 9000 years ago. Although maize displays a high genetic overlap with its direct ancestor and other annual teosintes, several studies show that maize and its ancestors differ in their resistance phenotypes with teosintes being less susceptible to herbivore damage. However, the underlying mechanisms are poorly understood. Here we addressed the question to what extent maize domestication has affected two crucial chemical and one physical defence traits and whether differences in their expression may explain the differences in herbivore resistance levels. The ontogenetic trajectories of 1,4-benzoxazin-3-ones, maysin and leaf toughness were monitored for different leaf types across several maize cultivars and teosinte accessions during early vegetative growth stages. We found significant quantitative and qualitative differences in 1,4-benzoxazin-3-one accumulation in an initial pairwise comparison, but we did not find consistent differences between wild and cultivated genotypes during a more thorough examination employing several cultivars/accessions. Yet, 1,4-benzoxazin-3-one levels tended to decline more rapidly with plant age in the modern maize cultivars. Foliar maysin levels and leaf toughness increased with plant age in a leaf-specific manner, but were also unaffected by domestication. Based on our findings we suggest that defence traits other than the ones that were investigated are responsible for the observed differences in herbivore resistance between teosinte and maize. Furthermore, our results indicate

  3. Early competition shapes maize whole-plant development in mixed stands

    PubMed Central

    Evers, Jochem B.

    2014-01-01

    Mixed cropping is practised widely in developing countries and is gaining increasing interest for sustainable agriculture in developed countries. Plants in intercrops grow differently from plants in single crops, due to interspecific plant interactions, but adaptive plant morphological responses to competition in mixed stands have not been studied in detail. Here the maize (Zea mays) response to mixed cultivation with wheat (Triticum aestivum) is described. Evidence is provided that early responses of maize to the modified light environment in mixed stands propagate throughout maize development, resulting in different phenotypes compared with pure stands. Photosynthetically active radiation (PAR), red:far-red ratio (R:FR), leaf development, and final organ sizes of maize grown in three cultivation systems were compared: pure maize, an intercrop with a small distance (25cm) between maize and wheat plants, and an intercop with a large distance (44cm) between the maize and the wheat. Compared with maize in pure stands, maize in the mixed stands had lower leaf and collar appearance rates, increased blade and sheath lengths at low ranks and smaller sizes at high ranks, increased blade elongation duration, and decreased R:FR and PAR at the plant base during early development. Effects were strongest in the treatment with a short distance between wheat and maize strips. The data suggest a feedback between leaf initiation and leaf emergence at the plant level and coordination between blade and sheath growth at the phytomer level. A conceptual model, based on coordination rules, is proposed to explain the development of the maize plant in pure and mixed stands. PMID:24307719

  4. Enrichment of maize and triticale bran with recombinant Aspergillus tubingensis ferulic acid esterase.

    PubMed

    Zwane, Eunice N; van Zyl, Petrus J; Duodu, Kwaku G; Rose, Shaunita H; Rumbold, Karl; van Zyl, Willem H; Viljoen-Bloom, Marinda

    2017-03-01

    Ferulic acid is a natural antioxidant found in various plants and serves as a precursor for various fine chemicals, including the flavouring agent vanillin. However, expensive extraction methods have limited the commercial application of ferulic acid, in particular for the enrichment of food substrates. A recombinant Aspergillus tubingensis ferulic acid esterase Type A (FAEA) was expressed in Aspergillus niger D15#26 and purified with anion-exchange chromatography (3487 U/mg, K m  = 0.43 mM, K cat  = 0.48/min on methyl ferulate). The 36-kDa At FAEA protein showed maximum ferulic acid esterase activity at 50 °C and pH 6, suggesting potential application in industrial processes. A crude At FAEA preparation extracted 26.56 and 8.86 mg/g ferulic acid from maize bran and triticale bran, respectively, and also significantly increased the levels of p -coumaric and caffeic acid from triticale bran. The cost-effective production of At FAEA could therefore allow for the enrichment of brans generally used as food and fodder, or for the production of fine chemicals (such as ferulic and p -coumaric acid) from plant substrates. The potential for larger-scale production of At FAEA was demonstrated with the A. niger D15[ AtfaeA ] strain yielding a higher enzyme activity (185.14 vs. 83.48 U/ml) and volumetric productivity (3.86 vs. 1.74 U/ml/h) in fed-batch than batch fermentation.

  5. Directly dated starch residues document early formative maize (Zea mays L.) in tropical Ecuador

    PubMed Central

    Zarrillo, Sonia; Pearsall, Deborah M.; Raymond, J. Scott; Tisdale, Mary Ann; Quon, Dugane J.

    2008-01-01

    The study of maize (Zea mays L.) domestication has advanced from questions of its origins to the study—and debate—of its dietary role and the timing of its dispersal from Mexico. Because the investigation of maize's spread is hampered by poor preservation of macrobotanical remains in the Neotropics, research has focused on microbotanical remains whose contexts are often dated by association, leading some to question the dates assigned. Furthermore, some scholars have argued that maize was not introduced to southwestern Ecuador until ≈4150–3850 calendar years before the present (cal B.P.), that it was used first and foremost as a fermented beverage in ceremonial contexts, and that it was not important in everyday subsistence, challenging previous studies based on maize starch and phytoliths. To further investigate these questions, we analyzed every-day cooking vessels, food-processing implements, and sediments for starch and phytoliths from an archaeological site in southwestern Ecuador constituting a small Early Formative village. Employing a new technique to recover starch granules from charred cooking-pot residues we show that maize was present, cultivated, and consumed here in domestic contexts by at least 5300–4950 cal B.P. Directly dating the residues by accelerator mass spectrometry (AMS) radiocarbon measurement, our results represent the earliest direct dates for maize in Early Formative Ecuadorian sites and provide further support that, once domesticated ≈9000 calendar years ago, maize spread rapidly from southwestern Mexico to northwestern South America. PMID:18362336

  6. Early maize agriculture and interzonal interaction in southern Peru.

    PubMed

    Perry, Linda; Sandweiss, Daniel H; Piperno, Dolores R; Rademaker, Kurt; Malpass, Michael A; Umire, Adán; de la Vera, Pablo

    2006-03-02

    Over the past decade, increasing attention to the recovery and identification of plant microfossil remains from archaeological sites located in lowland South America has significantly increased knowledge of pre-Columbian plant domestication and crop plant dispersals in tropical forests and other regions. Along the Andean mountain chain, however, the chronology and trajectory of plant domestication are still poorly understood for both important indigenous staple crops such as the potato (Solanum sp.) and others exogenous to the region, for example, maize (Zea mays). Here we report the analyses of plant microremains from a late preceramic house (3,431 +/- 45 to 3,745 +/- 65 14C bp or approximately 3,600 to 4,000 calibrated years bp) in the highland southern Peruvian site of Waynuna. Our results extend the record of maize by at least a millennium in the southern Andes, show on-site processing of maize into flour, provide direct evidence for the deliberate movement of plant foods by humans from the tropical forest to the highlands, and confirm the potential of plant microfossil analysis in understanding ancient plant use and migration in this region.

  7. Modification of recombinant maize ChitA chitinase by fungal chitinase-modifying proteins

    USDA-ARS?s Scientific Manuscript database

    In commercial maize, there are at least two different alleles of the chiA gene that encode alloforms of ChitA chitinase, a protein that is abundant in developing seed. Both known alloforms are modified by Bz-cmp, a protein secreted by the fungal pathogen Bipolaris zeicola. One alloform (ChitA-B73) i...

  8. QTL Mapping of Agronomic Waterlogging Tolerance Using Recombinant Inbred Lines Derived from Tropical Maize (Zea mays L) Germplasm

    PubMed Central

    Zaidi, Pervez Haider; Rashid, Zerka; Vinayan, Madhumal Thayil; Almeida, Gustavo Dias; Phagna, Ramesh Kumar; Babu, Raman

    2015-01-01

    Waterlogging is an important abiotic stress constraint that causes significant yield losses in maize grown throughout south and south-east Asia due to erratic rainfall patterns. The most economic option to offset the damage caused by waterlogging is to genetically incorporate tolerance in cultivars that are grown widely in the target agro-ecologies. We assessed the genetic variation in a population of recombinant inbred lines (RILs) derived from crossing a waterlogging tolerant line (CAWL-46-3-1) to an elite but sensitive line (CML311-2-1-3) and observed significant range of variation for grain yield (GY) under waterlogging stress along with a number of other secondary traits such as brace roots (BR), chlorophyll content (SPAD), % stem and root lodging (S&RL) among the RILs. Significant positive correlation of GY with BR and SPAD and negative correlation with S&RL indicated the potential use of these secondary traits in selection indices under waterlogged conditions. RILs were genotyped with 331 polymorphic single nucleotide polymorphism (SNP) markers using KASP (Kompetitive Allele Specific PCR) Platform. QTL mapping revealed five QTL on chromosomes 1, 3, 5, 7 and 10, which together explained approximately 30% of phenotypic variance for GY based on evaluation of RIL families under waterlogged conditions, with effects ranging from 520 to 640 kg/ha for individual genomic regions. 13 QTL were identified for various secondary traits associated with waterlogging tolerance, each individually explaining from 3 to 14% of phenotypic variance. Of the 22 candidate genes with known functional domains identified within the physical intervals delimited by the flanking markers of the QTL influencing GY and other secondary traits, six have previously been demonstrated to be associated with anaerobic responses in either maize or other model species. A pair of flanking SNP markers has been identified for each of the QTL and high throughput marker assays were developed to facilitate

  9. QTL mapping of agronomic waterlogging tolerance using recombinant inbred lines derived from tropical maize (Zea mays L) germplasm.

    PubMed

    Zaidi, Pervez Haider; Rashid, Zerka; Vinayan, Madhumal Thayil; Almeida, Gustavo Dias; Phagna, Ramesh Kumar; Babu, Raman

    2015-01-01

    Waterlogging is an important abiotic stress constraint that causes significant yield losses in maize grown throughout south and south-east Asia due to erratic rainfall patterns. The most economic option to offset the damage caused by waterlogging is to genetically incorporate tolerance in cultivars that are grown widely in the target agro-ecologies. We assessed the genetic variation in a population of recombinant inbred lines (RILs) derived from crossing a waterlogging tolerant line (CAWL-46-3-1) to an elite but sensitive line (CML311-2-1-3) and observed significant range of variation for grain yield (GY) under waterlogging stress along with a number of other secondary traits such as brace roots (BR), chlorophyll content (SPAD), % stem and root lodging (S&RL) among the RILs. Significant positive correlation of GY with BR and SPAD and negative correlation with S&RL indicated the potential use of these secondary traits in selection indices under waterlogged conditions. RILs were genotyped with 331 polymorphic single nucleotide polymorphism (SNP) markers using KASP (Kompetitive Allele Specific PCR) Platform. QTL mapping revealed five QTL on chromosomes 1, 3, 5, 7 and 10, which together explained approximately 30% of phenotypic variance for GY based on evaluation of RIL families under waterlogged conditions, with effects ranging from 520 to 640 kg/ha for individual genomic regions. 13 QTL were identified for various secondary traits associated with waterlogging tolerance, each individually explaining from 3 to 14% of phenotypic variance. Of the 22 candidate genes with known functional domains identified within the physical intervals delimited by the flanking markers of the QTL influencing GY and other secondary traits, six have previously been demonstrated to be associated with anaerobic responses in either maize or other model species. A pair of flanking SNP markers has been identified for each of the QTL and high throughput marker assays were developed to facilitate

  10. Analysis of recombination QTLs, segregation distortion, and epistasis for fitness in maize multiple populations using ultra-high-density markers

    USDA-ARS?s Scientific Manuscript database

    Understanding the maize genomic features would be useful for the study of genetic diversity and evolution and for maize breeding. Here, we used two maize nested association mapping (NAM) populations separately derived in China (CN-NAM) and the US (US-NAM) to explore the maize genomic features. The t...

  11. Maize early endosperm growth and development: from fertilization through cell type differentiation.

    PubMed

    Leroux, Brian M; Goodyke, Austin J; Schumacher, Katelyn I; Abbott, Chelsi P; Clore, Amy M; Yadegari, Ramin; Larkins, Brian A; Dannenhoffer, Joanne M

    2014-08-01

    • Given the worldwide economic importance of maize endosperm, it is surprising that its development is not the most comprehensively studied of the cereals. We present detailed morphometric and cytological descriptions of endosperm development in the maize inbred line B73, for which the genome has been sequenced, and compare its growth with four diverse Nested Association Mapping (NAM) founder lines.• The first 12 d of B73 endosperm development were described using semithin sections of plastic-embedded kernels and confocal microscopy. Longitudinal sections were used to compare endosperm length, thickness, and area.• Morphometric comparison between Arizona- and Michigan-grown B73 showed a common pattern. Early endosperm development was divided into four stages: coenocytic, cellularization through alveolation, cellularization through partitioning, and differentiation. We observed tightly synchronous nuclear divisions in the coenocyte, elucidated that the onset of cellularization was coincident with endosperm size, and identified a previously undefined cell type (basal intermediate zone, BIZ). NAM founders with small mature kernels had larger endosperms (0-6 d after pollination) than lines with large mature kernels.• Our B73-specific model of early endosperm growth links developmental events to relative endosperm size, while accounting for diverse growing conditions. Maize endosperm cellularizes through alveolation, then random partitioning of the central vacuole. This unique cellularization feature of maize contrasts with the smaller endosperms of Arabidopsis, barley, and rice that strictly cellularize through repeated alveolation. NAM analysis revealed differences in endosperm size during early development, which potentially relates to differences in timing of cellularization across diverse lines of maize. © 2014 Botanical Society of America, Inc.

  12. Endosperm-specific co-expression of recombinant soybean ferritin and Aspergillus phytase in maize results in significant increases in the levels of bioavailable iron.

    PubMed

    Drakakaki, Georgia; Marcel, Sylvain; Glahn, Raymond P; Lund, Elizabeth K; Pariagh, Sandra; Fischer, Rainer; Christou, Paul; Stoger, Eva

    2005-12-01

    We have generated transgenic maize plants expressing Aspergillus phytase either alone or in combination with the iron-binding protein ferritin. Our aim was to produce grains with increased amounts of bioavailable iron in the endosperm. Maize seeds expressing recombinant phytase showed enzymatic activities of up to 3 IU per gram of seed. In flour paste prepared from these seeds, up to 95% of the endogenous phytic acid was degraded, with a concomitant increase in the amount of available phosphate. In seeds expressing ferritin in addition to phytase, the total iron content was significantly increased. To evaluate the impact of the recombinant proteins on iron absorption in the human gut, we used an in vitro digestion/Caco-2 cell model. We found that phytase in the maize seeds was associated with increased cellular iron uptake, and that the rate of iron uptake correlated with the level of phytase expression regardless of the total iron content of the seeds. We also investigated iron bioavailability under more complex meal conditions by adding ascorbic acid, which promotes iron uptake, to all samples. This resulted in a further increase in iron absorption, but the effects of phytase and ascorbic acid were not additive. We conclude that the expression of recombinant ferritin and phytase could help to increase iron availability and enhance the absorption of iron, particularly in cereal-based diets that lack other nutritional components.

  13. Transcriptome Sequencing Identified Genes and Gene Ontologies Associated with Early Freezing Tolerance in Maize

    PubMed Central

    Li, Zhao; Hu, Guanghui; Liu, Xiangfeng; Zhou, Yao; Li, Yu; Zhang, Xu; Yuan, Xiaohui; Zhang, Qian; Yang, Deguang; Wang, Tianyu; Zhang, Zhiwu

    2016-01-01

    Originating in a tropical climate, maize has faced great challenges as cultivation has expanded to the majority of the world's temperate zones. In these zones, frost and cold temperatures are major factors that prevent maize from reaching its full yield potential. Among 30 elite maize inbred lines adapted to northern China, we identified two lines of extreme, but opposite, freezing tolerance levels—highly tolerant and highly sensitive. During the seedling stage of these two lines, we used RNA-seq to measure changes in maize whole genome transcriptome before and after freezing treatment. In total, 19,794 genes were expressed, of which 4550 exhibited differential expression due to either treatment (before or after freezing) or line type (tolerant or sensitive). Of the 4550 differently expressed genes, 948 exhibited differential expression due to treatment within line or lines under freezing condition. Analysis of gene ontology found that these 948 genes were significantly enriched for binding functions (DNA binding, ATP binding, and metal ion binding), protein kinase activity, and peptidase activity. Based on their enrichment, literature support, and significant levels of differential expression, 30 of these 948 genes were selected for quantitative real-time PCR (qRT-PCR) validation. The validation confirmed our RNA-Seq-based findings, with squared correlation coefficients of 80% and 50% in the tolerance and sensitive lines, respectively. This study provided valuable resources for further studies to enhance understanding of the molecular mechanisms underlying maize early freezing response and enable targeted breeding strategies for developing varieties with superior frost resistance to achieve yield potential. PMID:27774095

  14. Identification of minor effect QTLs for plant architecture related traits using super high density genotyping and large recombinant inbred population in maize (Zea mays).

    PubMed

    Wang, Baobao; Liu, Han; Liu, Zhipeng; Dong, Xiaomei; Guo, Jinjie; Li, Wei; Chen, Jing; Gao, Chi; Zhu, Yanbin; Zheng, Xinmei; Chen, Zongliang; Chen, Jian; Song, Weibin; Hauck, Andrew; Lai, Jinsheng

    2018-01-18

    Plant Architecture Related Traits (PATs) are of great importance for maize breeding, and mainly controlled by minor effect quantitative trait loci (QTLs). However, cloning or even fine-mapping of minor effect QTLs is very difficult in maize. Theoretically, large population and high density genetic map can be helpful for increasing QTL mapping resolution and accuracy, but such a possibility have not been actually tested. Here, we employed a genotyping-by-sequencing (GBS) strategy to construct a linkage map with 16,769 marker bins for 1021 recombinant inbred lines (RILs). Accurately mapping of well studied genes P1, pl1 and r1 underlying silk color demonstrated the map quality. After QTL analysis, a total of 51 loci were mapped for six PATs. Although all of them belong to minor effect alleles, the lengths of the QTL intervals, with a minimum and median of 1.03 and 3.40 Mb respectively, were remarkably reduced as compared with previous reports using smaller size of population or small number of markers. Several genes with known function in maize were shown to be overlapping with or close neighboring to these QTL peaks, including na1, td1, d3 for plant height, ra1 for tassel branch number, and zfl2 for tassel length. To further confirm our mapping results, a plant height QTL, qPH1a, was verified by an introgression lines (ILs). We demonstrated a method for high resolution mapping of minor effect QTLs in maize, and the resulted comprehensive QTLs for PATs are valuable for maize molecular breeding in the future.

  15. Starch grain and phytolith evidence for early ninth millennium B.P. maize from the Central Balsas River Valley, Mexico

    PubMed Central

    Piperno, Dolores R.; Ranere, Anthony J.; Holst, Irene; Iriarte, Jose; Dickau, Ruth

    2009-01-01

    Questions that still surround the origin and early dispersals of maize (Zea mays L.) result in large part from the absence of information on its early history from the Balsas River Valley of tropical southwestern Mexico, where its wild ancestor is native. We report starch grain and phytolith data from the Xihuatoxtla shelter, located in the Central Balsas Valley, that indicate that maize was present by 8,700 calendrical years ago (cal. B.P.). Phytolith data also indicate an early preceramic presence of a domesticated species of squash, possibly Cucurbita argyrosperma. The starch and phytolith data also allow an evaluation of current hypotheses about how early maize was used, and provide evidence as to the tempo and timing of human selection pressure on 2 major domestication genes in Zea and Cucurbita. Our data confirm an early Holocene chronology for maize domestication that has been previously indicated by archaeological and paleoecological phytolith, starch grain, and pollen data from south of Mexico, and reshift the focus back to an origin in the seasonal tropical forest rather than in the semiarid highlands. PMID:19307570

  16. NO homeostasis is a key regulator of early nitrate perception and root elongation in maize.

    PubMed

    Manoli, Alessandro; Begheldo, Maura; Genre, Andrea; Lanfranco, Luisa; Trevisan, Sara; Quaggiotti, Silvia

    2014-01-01

    Crop plant development is strongly dependent on nitrogen availability in the soil and on the efficiency of its recruitment by roots. For this reason, the understanding of the molecular events underlying root adaptation to nitrogen fluctuations is a primary goal to develop biotechnological tools for sustainable agriculture. However, knowledge about molecular responses to nitrogen availability is derived mainly from the study of model species. Nitric oxide (NO) has been recently proposed to be implicated in plant responses to environmental stresses, but its exact role in the response of plants to nutritional stress is still under evaluation. In this work, the role of NO production by maize roots after nitrate perception was investigated by focusing on the regulation of transcription of genes involved in NO homeostasis and by measuring NO production in roots. Moreover, its involvement in the root growth response to nitrate was also investigated. The results provide evidence that NO is produced by nitrate reductase as an early response to nitrate supply and that the coordinated induction of non-symbiotic haemoglobins (nsHbs) could finely regulate the NO steady state. This mechanism seems to be implicated on the modulation of the root elongation in response to nitrate perception. Moreover, an improved agar-plate system for growing maize seedlings was developed. This system, which allows localized treatments to be performed on specific root portions, gave the opportunity to discern between localized and systemic effects of nitrate supply to roots.

  17. NO homeostasis is a key regulator of early nitrate perception and root elongation in maize*

    PubMed Central

    Quaggiotti, Silvia

    2014-01-01

    Crop plant development is strongly dependent on nitrogen availability in the soil and on the efficiency of its recruitment by roots. For this reason, the understanding of the molecular events underlying root adaptation to nitrogen fluctuations is a primary goal to develop biotechnological tools for sustainable agriculture. However, knowledge about molecular responses to nitrogen availability is derived mainly from the study of model species. Nitric oxide (NO) has been recently proposed to be implicated in plant responses to environmental stresses, but its exact role in the response of plants to nutritional stress is still under evaluation. In this work, the role of NO production by maize roots after nitrate perception was investigated by focusing on the regulation of transcription of genes involved in NO homeostasis and by measuring NO production in roots. Moreover, its involvement in the root growth response to nitrate was also investigated. The results provide evidence that NO is produced by nitrate reductase as an early response to nitrate supply and that the coordinated induction of non-symbiotic haemoglobins (nsHbs) could finely regulate the NO steady state. This mechanism seems to be implicated on the modulation of the root elongation in response to nitrate perception. Moreover, an improved agar-plate system for growing maize seedlings was developed. This system, which allows localized treatments to be performed on specific root portions, gave the opportunity to discern between localized and systemic effects of nitrate supply to roots. PMID:24220653

  18. Exogenous γ-aminobutyric Acid (GABA) Application Improved Early Growth, Net Photosynthesis, and Associated Physio-Biochemical Events in Maize.

    PubMed

    Li, Wu; Liu, Jianhua; Ashraf, Umair; Li, Gaoke; Li, Yuliang; Lu, Wenjia; Gao, Lei; Han, Fuguang; Hu, Jianguang

    2016-01-01

    γ-aminobutyric acid (GABA) is an endogenous signaling molecule and involved in growth regulations and plant development, however, a little information is available on the consequences of exogenous GABA application on growth, development, and associated physio-biochemical processes in maize. The present study examined the GABA-induced regulations in early growth, net photosynthetic rate, gas exchange, osmoregulation, and enzymatic activities in three maize cultivars, i.e., Yuecainuo 6, Zhengtian 68, and Yuecainuo 2. Two levels of GABA, i.e., 0 mg L(-1) and 50 mg L(-1), in solution form, with total application volume of 100 ml per pot containing 15 maize seedlings were exogenously applied. Results revealed that exogenous GABA application improved seedling growth in terms of seedling length and biomass accumulation in all maize cultivars at both 3 and 7 days after treatment (DAT). It also promoted net photosynthesis and variably affected gas exchange attributes, i.e., stomatal conductance (Gs), intercellular CO2 concentration (Ci), and transpiration rate (Tr), as well as leaves SPAD value. Furthermore, lipid peroxidation [in terms of malondialdehyde (MDA)] under GABA treated maize seedlings were also remained variable; however, osmolyte accumulation (protein and proline) and activities of anti-oxidants enzymes, i.e., super-oxide dismutase and peroxidase were also affected differently at both 3 and 7 DAT in all maize cultivars. Furthermore, enzymes involved in nitrogen metabolism, e.g., nitrate reductase and glutamine synthetase were improved. These results suggest the involvement of GABA in various physio-metablical mechanisms which might lead to improvement in morphological growth of maize. In future, research is still needed at molecular and genetic levels to unravel the involvement of GABA-mediated regulations in growth and its associated physio-biochemical mechanisms.

  19. Early dispersals of maize and other food plants into the Southern Caribbean and Northeastern South America

    NASA Astrophysics Data System (ADS)

    Pagán-Jiménez, Jaime R.; Rodríguez-Ramos, Reniel; Reid, Basil A.; van den Bel, Martijn; Hofman, Corinne L.

    2015-09-01

    Grindstones from Eva 2 and St. John, two of the earliest sites in northeastern South America and the southern Caribbean respectively, were subjected to starch grain analysis. Results of this study revealed that these stone artifacts were utilized to process a variety of cultivars such as maize (Zea mays), sweet potato (Ipomoea batatas), chili pepper (Capsicum spp.), achira (Canna spp.), legumes (Fabaceae), and yams (Dioscoreaceae), coupled with wild resources, most notably marunguey (Zamia spp.). Radiocarbon dates indicate that the use of plants identified at these two sites were much older than previously considered, going back to at least 7790 cal. BP at St. John and 5990 cal. BP at Eva 2. This new evidence showcases the importance of the Caribbean basin as an arena for early phytocultural dispersals. It also focuses attention on the role of navigation as a mechanism for crop diffusion in the Neotropics.

  20. Genomic Prediction of Single Crosses in the Early Stages of a Maize Hybrid Breeding Pipeline.

    PubMed

    Kadam, Dnyaneshwar C; Potts, Sarah M; Bohn, Martin O; Lipka, Alexander E; Lorenz, Aaron J

    2016-09-19

    Prediction of single-cross performance has been a major goal of plant breeders since the beginning of hybrid breeding. Recently, genomic prediction has shown to be a promising approach, but only limited studies have examined the accuracy of predicting single-cross performance. Moreover, no studies have examined the potential of predicting single crosses among random inbreds derived from a series of biparental families, which resembles the structure of germplasm comprising the initial stages of a hybrid maize breeding pipeline. The main objectives of this study were to evaluate the potential of genomic prediction for identifying superior single crosses early in the hybrid breeding pipeline and optimize its application. To accomplish these objectives, we designed and analyzed a novel population of single crosses representing the Iowa Stiff Stalk Synthetic/Non-Stiff Stalk heterotic pattern commonly used in the development of North American commercial maize hybrids. The performance of single crosses was predicted using parental combining ability and covariance among single crosses. Prediction accuracies were estimated using cross-validation and ranged from 0.28 to 0.77 for grain yield, 0.53 to 0.91 for plant height, and 0.49 to 0.94 for staygreen, depending on the number of tested parents of the single cross and genomic prediction method used. The genomic estimated general and specific combining abilities showed an advantage over genomic covariances among single crosses when one or both parents of the single cross were untested. Overall, our results suggest that genomic prediction of single crosses in the early stages of a hybrid breeding pipeline holds great potential to re-design hybrid breeding and increase its efficiency. Copyright © 2016 Author et al.

  1. Genetic Determinants for Enzymatic Digestion of Lignocellulosic Biomass Are Independent of Those for Lignin Abundance in a Maize Recombinant Inbred Population1[W][OPEN

    PubMed Central

    Penning, Bryan W.; Sykes, Robert W.; Babcock, Nicholas C.; Dugard, Christopher K.; Held, Michael A.; Klimek, John F.; Shreve, Jacob T.; Fowler, Matthew; Ziebell, Angela; Davis, Mark F.; Decker, Stephen R.; Turner, Geoffrey B.; Mosier, Nathan S.; Springer, Nathan M.; Thimmapuram, Jyothi; Weil, Clifford F.; McCann, Maureen C.; Carpita, Nicholas C.

    2014-01-01

    Biotechnological approaches to reduce or modify lignin in biomass crops are predicated on the assumption that it is the principal determinant of the recalcitrance of biomass to enzymatic digestion for biofuels production. We defined quantitative trait loci (QTL) in the Intermated B73 × Mo17 recombinant inbred maize (Zea mays) population using pyrolysis molecular-beam mass spectrometry to establish stem lignin content and an enzymatic hydrolysis assay to measure glucose and xylose yield. Among five multiyear QTL for lignin abundance, two for 4-vinylphenol abundance, and four for glucose and/or xylose yield, not a single QTL for aromatic abundance and sugar yield was shared. A genome-wide association study for lignin abundance and sugar yield of the 282-member maize association panel provided candidate genes in the 11 QTL of the B73 and Mo17 parents but showed that many other alleles impacting these traits exist among this broader pool of maize genetic diversity. B73 and Mo17 genotypes exhibited large differences in gene expression in developing stem tissues independent of allelic variation. Combining these complementary genetic approaches provides a narrowed list of candidate genes. A cluster of SCARECROW-LIKE9 and SCARECROW-LIKE14 transcription factor genes provides exceptionally strong candidate genes emerging from the genome-wide association study. In addition to these and genes associated with cell wall metabolism, candidates include several other transcription factors associated with vascularization and fiber formation and components of cellular signaling pathways. These results provide new insights and strategies beyond the modification of lignin to enhance yields of biofuels from genetically modified biomass. PMID:24972714

  2. Comparative quantitative trait locus mapping of maize flowering-related traits in an F2:3 and recombinant inbred line population.

    PubMed

    Liu, Y H; Yi, Q; Hou, X B; Zhang, X G; Zhang, J J; Liu, H M; Hu, Y F; Huang, Y B

    2016-06-30

    Flowering-related traits in maize are affected by complex factors and are important for the improvement of cropping systems in the maize zone. Quantitative trait loci (QTLs) detected using different materials and methods usually vary. In the present study, 266 maize (Zea mays) F2:3 families and 301 recombinant inbred lines (RIL) derived from a cross between 08-641 (founding parent from southeast China) and Ye478 (founding parent from China) were evaluated for four flowering-related traits, including days to tasseling (DTT), days to pollen shedding (DPS), days to silking (DTS), and anthesis-silking interval. Sixty-six QTLs controlling the target traits were detected in the F2:3 and RIL populations via single environment analysis and joint analysis across all environments (JAAE). The QTLs explained 0.8-13.47% of the phenotypic variation, with 12 QTLs explaining more than 10%. The results of meta-QTL (MQTL) analysis indicated that 41 QTLs could be integrated into 14 MQTLs. One MQTL included 2.9 QTLs, ranging from two to ten QTLs for one to three traits. QTLs, including MQTL1-1 and MQTL9-1, were detected across the F2:3 and RIL populations via SAE and JAAE. Among the MQTLs, nine QTLs were integrated into MQTL9-1 and affected DTT, DPS, and DTS, with the favored allele being derived from 08-641. MQTL3-2 showed high phenotypic variation and was suitable for fine mapping to determine the genetic mechanisms of flowering. MQTL3-2 could be applied to improve inbred lines using marker-assisted selection.

  3. Genetic Determinants for Enzymatic Digestion of Lignocellulosic Biomass Are Independent of Those for Lignin Abundance in a Maize Recombinant Inbred Population

    DOE PAGES

    Penning, Bryan W.; Sykes, Robert W.; Babcock, Nicholas C.; ...

    2014-06-27

    Biotechnological approaches to reduce or modify lignin in biomass crops are predicated on the assumption that it is the principal determinant of the recalcitrance of biomass to enzymatic digestion for biofuels production. We defined quantitative trait loci (QTL) in the Intermated B73 x 3 Mo17 recombinant inbred maize (Zea mays) population using pyrolysis molecular-beam mass spectrometry to establish stem lignin content and an enzymatic hydrolysis assay to measure glucose and xylose yield. Among five multiyear QTL for lignin abundance, two for 4-vinylphenol abundance, and four for glucose and/or xylose yield, not a single QTL for aromatic abundance and sugar yieldmore » was shared. A genome-wide association study for lignin abundance and sugar yield of the 282- member maize association panel provided candidate genes in the 11 QTL of the B73 and Mo17 parents but showed that many other alleles impacting these traits exist among this broader pool of maize genetic diversity. B73 and Mo17 genotypes exhibited large differences in gene expression in developing stem tissues independent of allelic variation. Combining these complementary genetic approaches provides a narrowed list of candidate genes. A cluster of SCARECROW-LIKE9 and SCARECROW-LIKE14 transcription factor genes provides exceptionally strong candidate genes emerging from the genome-wide association study. In addition to these and genes associated with cell wall metabolism, candidates include several other transcription factors associated with vascularization and fiber formation and components of cellular signaling pathways. Finally, these results provide new insights and strategies beyond the modification of lignin to enhance yields of biofuels from genetically modified biomass.« less

  4. Genetic Determinants for Enzymatic Digestion of Lignocellulosic Biomass Are Independent of Those for Lignin Abundance in a Maize Recombinant Inbred Population.

    PubMed

    Penning, Bryan W; Sykes, Robert W; Babcock, Nicholas C; Dugard, Christopher K; Held, Michael A; Klimek, John F; Shreve, Jacob T; Fowler, Matthew; Ziebell, Angela; Davis, Mark F; Decker, Stephen R; Turner, Geoffrey B; Mosier, Nathan S; Springer, Nathan M; Thimmapuram, Jyothi; Weil, Clifford F; McCann, Maureen C; Carpita, Nicholas C

    2014-08-01

    Biotechnological approaches to reduce or modify lignin in biomass crops are predicated on the assumption that it is the principal determinant of the recalcitrance of biomass to enzymatic digestion for biofuels production. We defined quantitative trait loci (QTL) in the Intermated B73 × Mo17 recombinant inbred maize (Zea mays) population using pyrolysis molecular-beam mass spectrometry to establish stem lignin content and an enzymatic hydrolysis assay to measure glucose and xylose yield. Among five multiyear QTL for lignin abundance, two for 4-vinylphenol abundance, and four for glucose and/or xylose yield, not a single QTL for aromatic abundance and sugar yield was shared. A genome-wide association study for lignin abundance and sugar yield of the 282-member maize association panel provided candidate genes in the 11 QTL of the B73 and Mo17 parents but showed that many other alleles impacting these traits exist among this broader pool of maize genetic diversity. B73 and Mo17 genotypes exhibited large differences in gene expression in developing stem tissues independent of allelic variation. Combining these complementary genetic approaches provides a narrowed list of candidate genes. A cluster of SCARECROW-LIKE9 and SCARECROW-LIKE14 transcription factor genes provides exceptionally strong candidate genes emerging from the genome-wide association study. In addition to these and genes associated with cell wall metabolism, candidates include several other transcription factors associated with vascularization and fiber formation and components of cellular signaling pathways. These results provide new insights and strategies beyond the modification of lignin to enhance yields of biofuels from genetically modified biomass. © 2014 American Society of Plant Biologists. All Rights Reserved.

  5. Maize 27 kDa gamma-zein is a potential allergen for early weaned pigs.

    PubMed

    Krishnan, Hari B; Kerley, Monty S; Allee, Gary L; Jang, Sungchan; Kim, Won-Seok; Fu, Chunjiang J

    2010-06-23

    Soybean and maize are extensively used in animal feed, primarily in poultry, swine, and cattle diets. Soybean meal can affect pig performance in the first few weeks following weaning and elicit specific antibodies in weaned piglets. Though maize is a major component of pig feed, it is not known if any of the maize proteins can elicit immunological response in young pigs. In this study, we have identified a prominent 27 kDa protein from maize as an immunodominant protein in young pigs. This protein, like some known allergens, exhibited resistance to pepsin digestion in vitro. Several lines of evidence identify the immunodominant 27 kDa protein as a gamma-zein, a maize seed storage protein. First, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of different solubility classes of maize seed proteins revealed the presence of an abundant 27 kDa protein in the prolamin (zein) fraction. Antibodies raised against the purified maize 27 kDa gamma-zein also reacted against the same protein recognized by the young pig serum. Additionally, matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis of the peptides generated by trypsin digestion of the immunodominant 27 kDa protein showed significant homology to the maize 27 kDa gamma-zein. Since eliminating the allergenic protein will have a great impact on the nutritive value of the maize meal and expand its use in the livestock industry, it will be highly desirable to develop maize cultivars completely lacking the 27 kDa allergenic protein.

  6. The cultural and chronological context of early Holocene maize and squash domestication in the Central Balsas River Valley, Mexico

    PubMed Central

    Ranere, Anthony J.; Piperno, Dolores R.; Holst, Irene; Dickau, Ruth; Iriarte, José

    2009-01-01

    Molecular evidence indicates that the wild ancestor of maize is presently native to the seasonally dry tropical forest of the Central Balsas watershed in southwestern Mexico. We report here on archaeological investigations in a region of the Central Balsas located near the Iguala Valley in Guerrero state that show for the first time a long sequence of human occupation and plant exploitation reaching back to the early Holocene. One of the sites excavated, the Xihuatoxtla Shelter, contains well-stratified deposits and a stone tool assemblage of bifacially flaked points, simple flake tools, and numerous handstones and milling stone bases radiocarbon dated to at least 8700 calendrical years B.P. As reported in a companion paper (Piperno DR, et al., in this issue of PNAS), starch grain and phytolith residues from the ground and chipped stone tools, plus phytoliths from directly associated sediments, provide evidence for maize (Zea mays L.) and domesticated squash (Cucurbita spp.) in contexts contemporaneous with and stratigraphically below the 8700 calendrical years B.P. date. The radiocarbon determinations, stratigraphic integrity of Xihuatoxtla's deposits, and characteristics of the stone tool assemblages associated with the maize and squash remains all indicate that these plants were early Holocene domesticates. Early agriculture in this region of Mexico appears to have involved small groups of cultivators who were shifting their settlements seasonally and engaging in a variety of subsistence pursuits. PMID:19307573

  7. Environment effects for earliness and grain yield traits in F1 diallel populations of maize (Zea mays L.).

    PubMed

    Ali, Sardar; Khan, Naqib Ullah; Khalil, Iftikhar Hussain; Iqbal, Muhammad; Gul, Samrin; Ahmed, Sheraz; Ali, Naushad; Sajjad, Mohammad; Afridi, Khilwat; Ali, Imtiaz; Khan, Shah Masaud

    2017-10-01

    Five maize inbred lines, 20 F 1 diallel hybrids and two check genotypes were evaluated through genotype × environment interaction (GEI) and GGE biplot for earliness and yield traits at four locations. Genotype, environment and GEI showed highly significant differences for all the traits. In total sum of squares, environment and genotype played a primary role, followed by GEI. Larger effects of environment and genotype to total variation influence the earliness and yield traits. However, according to the GGE biplot, the first two principal components (PC1 and PC2) explained 95% of the variation caused by GEI. GGE biplot confirmed the differential response of genotypes across environments. F 1 hybrid SWAJK-1 × FRHW-3 had better stability, with a good yield, and was considered an ideal genotype. F 1 hybrid FRHW-2 × FRHW-1 showed more earliness at CCRI and Haripur, followed by PSEV3 × FRHW-2 and its reciprocal at Swat and Mansehra, respectively. F 1 hybrids FRHW-1 × SWAJK-1, PSEV3 × SWAJK-1 and SWAJK-1 × FRHW-3 at Mansehra and Swat produced maximum grain yield, followed by SWAJK-1 × FRHW-1 and PSEV3 × FRHW-1 at Haripur and CCRI, respectively. Overall, maize genotypes showed early maturity in plain areas (CCRI and Haripur) but higher yield in hilly areas (Mansehra and Swat). © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. Identification of quantitative trait Loci for resistance to southern leaf blight and days to anthesis in a maize recombinant inbred line population.

    PubMed

    Balint-Kurti, P J; Krakowsky, M D; Jines, M P; Robertson, L A; Molnár, T L; Goodman, M M; Holl, J B

    2006-10-01

    ABSTRACT A recombinant inbred line population derived from a cross between the maize lines NC300 (resistant) and B104 (susceptible) was evaluated for resistance to southern leaf blight (SLB) disease caused by Cochliobolus heterostrophus race O and for days to anthesis in four environments (Clayton, NC, and Tifton, GA, in both 2004 and 2005). Entry mean and average genetic correlations between disease ratings in different environments were high (0.78 to 0.89 and 0.9, respectively) and the overall entry mean heritability for SLB resistance was 0.89. When weighted mean disease ratings were fitted to a model using multiple interval mapping, seven potential quantitative trait loci (QTL) were identified, the two strongest being on chromosomes 3 (bin 3.04) and 9 (bin 9.03-9.04). These QTL explained a combined 80% of the phenotypic variation for SLB resistance. Some time-point-specific SLB resistance QTL were also identified. There was no significant correlation between disease resistance and days to anthesis. Six putative QTL for time to anthesis were identified, none of which coincided with any SLB resistance QTL.

  9. Early detection of toxigenic fungi on maize by hyperspectral imaging analysis.

    PubMed

    Del Fiore, A; Reverberi, M; Ricelli, A; Pinzari, F; Serranti, S; Fabbri, A A; Bonifazi, G; Fanelli, C

    2010-11-15

    Fungi can grow on many food commodities. Some fungal species, such as Aspergillus flavus, Aspergillus parasiticus, Aspergillus niger and Fusarium spp., can produce, under suitable conditions, mycotoxins, secondary metabolites which are toxic for humans and animals. Toxigenic fungi are a real issue, especially for the cereal industry. The aim of this work is to carry out a non destructive, hyperspectral imaging-based method to detect toxigenic fungi on maize kernels, and to discriminate between healthy and diseased kernels. A desktop spectral scanner equipped with an imaging based spectrometer ImSpector- Specim V10, working in the visible-near infrared spectral range (400-1000 nm) was used. The results show that the hyperspectral imaging is able to rapidly discriminate commercial maize kernels infected with toxigenic fungi from uninfected controls when traditional methods are not yet effective: i.e. from 48 h after inoculation with A. niger or A. flavus. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Water-Soluble Lignins from Different Bioenergy Crops Stimulate the Early Development of Maize (Zea mays, L.).

    PubMed

    Savy, Davide; Cozzolino, Vincenza; Vinci, Giovanni; Nebbioso, Antonio; Piccolo, Alessandro

    2015-11-05

    The molecular composition of water-soluble lignins isolated from four non-food bioenergy crops (cardoon CAR, eucalyptus EUC, and two black poplars RIP and LIM) was characterized in detail, and their potential bioactivity towards maize germination and early growth evaluated. Lignins were found to not affect seed germination rates, but stimulated the maize seedling development, though to a different extent. RIP promoted root elongation, while CAR only stimulated the length of lateral seminal roots and coleoptile, and LIM improved only the coleoptile development. The most significant bioactivity of CAR was related to its large content of aliphatic OH groups, C-O carbons and lowest hydrophobicity, as assessed by (31)P-NMR and (13)C-CPMAS-NMR spectroscopies. Less bioactive RIP and LIM lignins were similar in composition, but their stimulation of maize seedling was different. This was accounted to their diverse content of aliphatic OH groups and S- and G-type molecules. The poorest bioactivity of the EUC lignin was attributed to its smallest content of aliphatic OH groups and largest hydrophobicity. Both these features may be conducive of a EUC conformational structure tight enough to prevent its alteration by organic acids exuded from vegetal tissues. Conversely the more labile conformational arrangements of the other more hydrophilic lignin extracts promoted their bioactivity by releasing biologically active molecules upon the action of exuded organic acids. Our findings indicate that water-soluble lignins from non-food crops may be effectively used as plant biostimulants, thus contributing to increase the economic and ecological liability of bio-based industries.

  11. The distribution of early recombination nodules on zygotene bivalents from plants.

    PubMed Central

    Anderson, L K; Hooker, K D; Stack, S M

    2001-01-01

    Early recombination nodules (ENs) are protein complexes approximately 100 nm in diameter that are associated with forming synaptonemal complexes (SCs) during leptotene and zygotene of meiosis. Although their functions are not yet clear, ENs may have roles in synapsis and recombination. Here we report on the frequency and distribution of ENs in zygotene SC spreads from six plant species that include one lower vascular plant, two dicots, and three monocots. For each species, the number of ENs per unit length is higher for SC segments than for (asynapsed) axial elements (AEs). In addition, EN number is strongly correlated with SC segment length. There are statistically significant differences in EN frequencies on SCs between species, but these differences are not related to genome size, number of chromosomes, or phylogenetic class. There is no difference in the frequency of ENs per unit length of SC from early to late zygotene. The distribution of distances between adjacent ENs on SC segments is random for all six species, but ENs are found at synaptic forks more often than expected for a random distribution of ENs on SCs. From these observations, we conclude that in plants: (1) some ENs bind to AEs prior to synapsis, (2) most ENs bind to forming SCs at synaptic forks, and (3) ENs do not bind to already formed SCs. PMID:11729167

  12. Genomic features shaping the landscape of meiotic double-strand-break hotspots in maize.

    PubMed

    He, Yan; Wang, Minghui; Dukowic-Schulze, Stefanie; Zhou, Adele; Tiang, Choon-Lin; Shilo, Shay; Sidhu, Gaganpreet K; Eichten, Steven; Bradbury, Peter; Springer, Nathan M; Buckler, Edward S; Levy, Avraham A; Sun, Qi; Pillardy, Jaroslaw; Kianian, Penny M A; Kianian, Shahryar F; Chen, Changbin; Pawlowski, Wojciech P

    2017-11-14

    Meiotic recombination is the most important source of genetic variation in higher eukaryotes. It is initiated by formation of double-strand breaks (DSBs) in chromosomal DNA in early meiotic prophase. The DSBs are subsequently repaired, resulting in crossovers (COs) and noncrossovers (NCOs). Recombination events are not distributed evenly along chromosomes but cluster at recombination hotspots. How specific sites become hotspots is poorly understood. Studies in yeast and mammals linked initiation of meiotic recombination to active chromatin features present upstream from genes, such as absence of nucleosomes and presence of trimethylation of lysine 4 in histone H3 (H3K4me3). Core recombination components are conserved among eukaryotes, but it is unclear whether this conservation results in universal characteristics of recombination landscapes shared by a wide range of species. To address this question, we mapped meiotic DSBs in maize, a higher eukaryote with a large genome that is rich in repetitive DNA. We found DSBs in maize to be frequent in all chromosome regions, including sites lacking COs, such as centromeres and pericentromeric regions. Furthermore, most DSBs are formed in repetitive DNA, predominantly Gypsy retrotransposons, and only one-quarter of DSB hotspots are near genes. Genic and nongenic hotspots differ in several characteristics, and only genic DSBs contribute to crossover formation. Maize hotspots overlap regions of low nucleosome occupancy but show only limited association with H3K4me3 sites. Overall, maize DSB hotspots exhibit distribution patterns and characteristics not reported previously in other species. Understanding recombination patterns in maize will shed light on mechanisms affecting dynamics of the plant genome.

  13. Recombinant Protein Production from TPO Gen Cloning and Expression for Early Detection of Autoimmune Thyroid Diseases

    NASA Astrophysics Data System (ADS)

    Aulanni'am, Aulanni'am; Kinasih Wuragil, Dyah; Wahono Soeatmadji, Djoko; Zulkarnain; Marhendra, Agung Pramana W.

    2018-01-01

    Autoimmune Thyroid Disease (AITD) is an autoimmune disease that has many clinical symptoms but is difficult to detect at the onset of disease progression. Most thyroid autoimmune disease patients are positive with high titre of thyroid autoantibodies, especially thyroid peroxidase (TPO). The detection AITD are still needed because these tests are extremely high cost and have not regularly been performed in most of clinical laboratories. In the past, we have explored the autoimmune disease marker and it has been developed as source of polyclonal antibodies from patient origin. In the current study, we develop recombinant protein which resulted from cloning and expression of TPO gene from normal person and AITD patients. This work flows involves: DNA isolation and PCR to obtain TPO gene from human blood, insertion of TPO gene to plasmid and transformation to E. coli BL21, Bacterial culture to obtain protein product, protein purification and product analysis. This products can use for application to immunochromatography based test. This work could achieved with the goal of producing autoimmune markers with a guaranteed quality, sensitive, specific and economically. So with the collaboration with industries these devices could be used for early detection. Keywords: recombinant protein, TPO gene, Autoimmune thyroid diseases (AITD)ction of the diseases in the community.

  14. Meiotic recombination protein Rec12: functional conservation, crossover homeostasis and early crossover/non-crossover decision

    PubMed Central

    Kan, Fengling; Davidson, Mari K.; Wahls, Wayne P.

    2011-01-01

    In fission yeast and other eukaryotes, Rec12 (Spo11) is thought to catalyze the formation of dsDNA breaks (DSBs) that initiate homologous recombination in meiosis. Rec12 is orthologous to the catalytic subunit of topoisomerase VI (Top6A). Guided by the crystal structure of Top6A, we engineered the rec12 locus to encode Rec12 proteins each with a single amino acid substitution in a conserved residue. Of 21 substitutions, 10 significantly reduced or abolished meiotic DSBs, gene conversion, crossover recombination and the faithful segregation of chromosomes. Critical residues map within the metal ion-binding pocket toprim (E179A, D229A, D231A), catalytic region 5Y-CAP (R94A, D95A, Y98F) and the DNA-binding interface (K201A, G202E, R209A, K242A). A subset of substitutions reduced DSBs but maintained crossovers, demonstrating crossover homeostasis. Furthermore, a strong separation of function mutation (R304A) suggests that the crossover/non-crossover decision is established early by a protein–protein interaction surface of Rec12. Fission yeast has multiple crossovers per bivalent, and chromosome segregation was robust above a threshold of about one crossover per bivalent, below which non-disjunction occurred. These results support structural and functional conservation among Rec12/Spo11/Top6A family members for the catalysis of DSBs, and they reveal how Rec12 regulates other features of meiotic chromosome dynamics. PMID:21030440

  15. Early recombinant factor VIIa therapy in acute intracerebral hemorrhage: promising approach.

    PubMed

    Kumar, Sudhir; Badrinath, H R

    2006-03-01

    Intracerebral hemorrhage (ICH) is the most devastating form of stroke with a high morbidity and mortality. ICH constitutes about 20-30% of all strokes, with the prevalence being higher in Asian population. Treatment of ICH is predominantly conservative, which includes control of blood pressure, use of anti-cerebral edema measures such as mannitol and mechanical ventilation. The benefit of early surgery in ICH is debatable. Initial hematoma volume and subsequent growth in its size are important predictors of a poor outcome in ICH. This means that therapies aimed at preventing hematoma enlargement in the earliest possible window period could lead to a better outcome in ICH. Recombinant factor VIIa (rFVIIa) is one such agent, which has been shown to prevent hematoma expansion and improve outcome in acute ICH. The purpose of the current review is to focus on the evidence regarding the usefulness of rFVIIa in acute ICH.

  16. Thrombolysis with intravenous recombinant tissue plasminogen activator during early postpartum period: a review of the literature.

    PubMed

    Akazawa, Munetoshi; Nishida, Makoto

    2017-05-01

    Thromboembolic events are one of the leading causes of maternal death during the postpartum period. Postpartum thrombolytic therapy with recombinant tissue plasminogen activator (rt-PA) is controversial because the treatment may lead to massive bleeding. Data centralization may be beneficial for analyzing the safety and effectiveness of systemic thrombolysis during the early postpartum period. We performed a computerized MEDLINE and EMBASE search. We collected data for 13 cases of systemic thrombolytic therapy during the early postpartum period, when limiting the early postpartum period to 48 hours after delivery. Blood transfusion was necessary in all cases except for one (12/13; 92%). In seven cases (7/13; 54%), a large amount of blood was required for transfusion. Subsequent laparotomy to control bleeding was required in five cases (5/13; 38%), including three cases of hysterectomy and two cases of hematoma removal, all of which involved cesarean delivery. In cases of transvaginal delivery, there was no report of laparotomy. The occurrence of severe bleeding was high in relation to cesarean section, compared with vaginal deliveries. Using rt-PA in relation to cesarean section might be worth avoiding. However, the paucity of data in the literature makes it difficult to assess the ultimate outcomes and safety of this treatment. © 2017 Nordic Federation of Societies of Obstetrics and Gynecology.

  17. Maize aflatoxin accumulation segregates with early maturing selections from an S2 breeding cross population.

    PubMed

    Henry, W Brien

    2013-01-15

    Maize breeders continue to seek new sources of aflatoxin resistance, but most lines identified as resistance sources are late maturing. The vast difference in flowering time makes it hard to cross these lines with proprietary commercial lines that mature much earlier and often subjects the reproductive phase of these resistant lines to the hottest and driest portion of the summer, making silking, pollination and grain fill challenging. Two hundred crosses from the GEM Project were screened for aflatoxin accumulation at Mississippi State in 2008, and a subset of these lines were screened again in 2009. The breeding cross UR13085:S99g99u was identified as a potential source of aflatoxin resistance, and maturity-based selections were made from an S2 breeding population from this same germplasm source: UR13085:S99g99u-B-B. The earliest maturing selections performed poorly for aflatoxin accumulation, but later maturing selections were identified with favorable levels of aflatoxin accumulation. These selections, while designated as "late" within this study, matured earlier than most aflatoxin resistant lines presently available to breeders. Two selections from this study, designated S5_L7 and S5_L8, are potential sources of aflatoxin resistance and will be advanced for line development and additional aflatoxin screening over more site years and environments.

  18. Maize databases

    USDA-ARS?s Scientific Manuscript database

    This chapter is a succinct overview of maize data held in the species-specific database MaizeGDB (the Maize Genomics and Genetics Database), and selected multi-species data repositories, such as Gramene/Ensembl Plants, Phytozome, UniProt and the National Center for Biotechnology Information (NCBI), ...

  19. High-Throughput Phenotyping and QTL Mapping Reveals the Genetic Architecture of Maize Plant Growth1[OPEN

    PubMed Central

    Huang, Chenglong; Wu, Di; Qiao, Feng; Li, Wenqiang; Duan, Lingfeng; Wang, Ke; Xiao, Yingjie; Chen, Guoxing; Liu, Qian; Yang, Wanneng

    2017-01-01

    With increasing demand for novel traits in crop breeding, the plant research community faces the challenge of quantitatively analyzing the structure and function of large numbers of plants. A clear goal of high-throughput phenotyping is to bridge the gap between genomics and phenomics. In this study, we quantified 106 traits from a maize (Zea mays) recombinant inbred line population (n = 167) across 16 developmental stages using the automatic phenotyping platform. Quantitative trait locus (QTL) mapping with a high-density genetic linkage map, including 2,496 recombinant bins, was used to uncover the genetic basis of these complex agronomic traits, and 988 QTLs have been identified for all investigated traits, including three QTL hotspots. Biomass accumulation and final yield were predicted using a combination of dissected traits in the early growth stage. These results reveal the dynamic genetic architecture of maize plant growth and enhance ideotype-based maize breeding and prediction. PMID:28153923

  20. Weed Mapping in Early-Season Maize Fields Using Object-Based Analysis of Unmanned Aerial Vehicle (UAV) Images

    PubMed Central

    Peña, José Manuel; Torres-Sánchez, Jorge; de Castro, Ana Isabel; Kelly, Maggi; López-Granados, Francisca

    2013-01-01

    The use of remote imagery captured by unmanned aerial vehicles (UAV) has tremendous potential for designing detailed site-specific weed control treatments in early post-emergence, which have not possible previously with conventional airborne or satellite images. A robust and entirely automatic object-based image analysis (OBIA) procedure was developed on a series of UAV images using a six-band multispectral camera (visible and near-infrared range) with the ultimate objective of generating a weed map in an experimental maize field in Spain. The OBIA procedure combines several contextual, hierarchical and object-based features and consists of three consecutive phases: 1) classification of crop rows by application of a dynamic and auto-adaptive classification approach, 2) discrimination of crops and weeds on the basis of their relative positions with reference to the crop rows, and 3) generation of a weed infestation map in a grid structure. The estimation of weed coverage from the image analysis yielded satisfactory results. The relationship of estimated versus observed weed densities had a coefficient of determination of r2=0.89 and a root mean square error of 0.02. A map of three categories of weed coverage was produced with 86% of overall accuracy. In the experimental field, the area free of weeds was 23%, and the area with low weed coverage (<5% weeds) was 47%, which indicated a high potential for reducing herbicide application or other weed operations. The OBIA procedure computes multiple data and statistics derived from the classification outputs, which permits calculation of herbicide requirements and estimation of the overall cost of weed management operations in advance. PMID:24146963

  1. Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images.

    PubMed

    Peña, José Manuel; Torres-Sánchez, Jorge; de Castro, Ana Isabel; Kelly, Maggi; López-Granados, Francisca

    2013-01-01

    The use of remote imagery captured by unmanned aerial vehicles (UAV) has tremendous potential for designing detailed site-specific weed control treatments in early post-emergence, which have not possible previously with conventional airborne or satellite images. A robust and entirely automatic object-based image analysis (OBIA) procedure was developed on a series of UAV images using a six-band multispectral camera (visible and near-infrared range) with the ultimate objective of generating a weed map in an experimental maize field in Spain. The OBIA procedure combines several contextual, hierarchical and object-based features and consists of three consecutive phases: 1) classification of crop rows by application of a dynamic and auto-adaptive classification approach, 2) discrimination of crops and weeds on the basis of their relative positions with reference to the crop rows, and 3) generation of a weed infestation map in a grid structure. The estimation of weed coverage from the image analysis yielded satisfactory results. The relationship of estimated versus observed weed densities had a coefficient of determination of r(2)=0.89 and a root mean square error of 0.02. A map of three categories of weed coverage was produced with 86% of overall accuracy. In the experimental field, the area free of weeds was 23%, and the area with low weed coverage (<5% weeds) was 47%, which indicated a high potential for reducing herbicide application or other weed operations. The OBIA procedure computes multiple data and statistics derived from the classification outputs, which permits calculation of herbicide requirements and estimation of the overall cost of weed management operations in advance.

  2. Maize embryogenesis.

    PubMed

    Fontanet, Pilar; Vicient, Carlos M

    2008-01-01

    Plant embryo development is a complex process that includes several coordinated events. Maize mature embryos consist of a well-differentiated embryonic axis surrounded by a single massive cotyledon called scutellum. Mature embryo axis also includes lateral roots and several developed leaves. In contrast to Arabidopsis, in which the orientation of cell divisions are perfectly established, only the first planes of cell division are predictable in maize embryos. These distinctive characteristics joined to the availability of a large collection of embryo mutants, well-developed molecular biology and tissue culture tools, an established genetics and its economical importance make maize a good model plant for grass embryogenesis. Here, we describe basic concepts and techniques necessary for studying maize embryo development: how to grow maize in greenhouses and basic techniques for in vitro embryo culture, somatic embryogenesis and in situ hybridization.

  3. Interchromosomal recombination in Zea mays.

    PubMed Central

    Hu, W; Timmermans, M C; Messing, J

    1998-01-01

    A new allele of the 27-kD zein locus in maize has been generated by interchromosomal recombination between chromosomes of two different inbred lines. A continuous patch of at least 11,817 bp of inbred W64A, containing the previously characterized Ra allele of the 27-kD zein gene, has been inserted into the genome of A188 by a single crossover. While both junction sequences are conserved, sequences of the two homologs between these junctions differ considerably. W64A contains the 7313-bp-long retrotransposon, Zeon-1. A188 contains a second copy of the 27-kD zein gene and a 2-kb repetitive element. Therefore, recombination results in a 7.3-kb insertion and a 14-kb deletion compared to the original S+A188 allele. If nonpairing sequences are looped out, 206 single base changes, frequently clustered, are present. The structure of this allele may explain how a recently discovered example of somatic recombination occurred in an A188/W64A hybrid. This would indicate that despite these sequence differences, pairing between these alleles could occur early during plant development. Therefore, such a somatically derived chimeric chromosome can also be heritable and give rise to new alleles. PMID:9799274

  4. Centromere Pairing in Early Meiotic Prophase Requires Active Centromeres and Precedes Installation of the Synaptonemal Complex in Maize[W

    PubMed Central

    Zhang, Jing; Pawlowski, Wojciech P.; Han, Fangpu

    2013-01-01

    Pairing of homologous chromosomes in meiosis is critical for their segregation to daughter cells. In most eukaryotes, clustering of telomeres precedes and facilitates chromosome pairing. In several species, centromeres also form pairwise associations, known as coupling, before the onset of pairing. We found that, in maize (Zea mays), centromere association begins at the leptotene stage and occurs earlier than the formation of the telomere bouquet. We established that centromere pairing requires centromere activity and the sole presence of centromeric repeats is not sufficient for pairing. In several species, homologs of the ZIP1 protein, which forms the central element of the synaptonemal complex in budding yeast (Saccharomyces cerevisiae), play essential roles in centromere coupling. However, we found that the maize ZIP1 homolog ZYP1 installs in the centromeric regions of chromosomes after centromeres form associations. Instead, we found that maize STRUCTURAL MAINTENANCE OF CHROMOSOMES6 homolog forms a central element of the synaptonemal complex, which is required for centromere associations. These data shed light on the poorly understood mechanism of centromere interactions and suggest that this mechanism may vary somewhat in different species. PMID:24143803

  5. Centromere pairing in early meiotic prophase requires active centromeres and precedes installation of the synaptonemal complex in maize.

    PubMed

    Zhang, Jing; Pawlowski, Wojciech P; Han, Fangpu

    2013-10-01

    Pairing of homologous chromosomes in meiosis is critical for their segregation to daughter cells. In most eukaryotes, clustering of telomeres precedes and facilitates chromosome pairing. In several species, centromeres also form pairwise associations, known as coupling, before the onset of pairing. We found that, in maize (Zea mays), centromere association begins at the leptotene stage and occurs earlier than the formation of the telomere bouquet. We established that centromere pairing requires centromere activity and the sole presence of centromeric repeats is not sufficient for pairing. In several species, homologs of the ZIP1 protein, which forms the central element of the synaptonemal complex in budding yeast (Saccharomyces cerevisiae), play essential roles in centromere coupling. However, we found that the maize ZIP1 homolog ZYP1 installs in the centromeric regions of chromosomes after centromeres form associations. Instead, we found that maize structural maintenance of chromosomes6 homolog forms a central element of the synaptonemal complex, which is required for centromere associations. These data shed light on the poorly understood mechanism of centromere interactions and suggest that this mechanism may vary somewhat in different species.

  6. Recombinant luteinizing hormone priming in early follicular phase for women undergoing in vitro fertilization: systematic review and meta-analysis.

    PubMed

    Hu, Linli; Bu, Zhiqin; Wang, Keyan; Sun, Yingpu

    2014-04-01

    To investigate the effect of recombinant human luteinizing hormone supplementation (rLH priming) during the early follicular phase on in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) outcomes. In order to evaluate available evidence regarding the efficacy of rLH priming in IVF/ICSI procedures, a systematic review and meta-analysis was preformed. Searches were conducted on MEDLINE®, EMBASE and the Cochrane Database of Clinical Trials without language limitation, but were restricted to randomized controlled trials (RCTs). Three RCTs including 346 patients were included in this meta-analysis, which demonstrated that rLH priming did not increase ongoing pregnancy rate. Although less recombinant follicle-stimulating hormone (rFSH) was required and the oestradiol level was higher on the day of human chorionic gonadotropin administration in the rLH priming group, the numbers of oocytes retrieved and embryos produced were comparable between patients treated with rLH priming and those treated with rFSH alone. This systematic review and meta-analysis has demonstrated that at present there is insufficient evidence that patients undergoing IVF/ICSI may benefit from rLH priming during the early follicular phase.

  7. Rapid cycling genomic selection in a multiparental tropical maize population

    USDA-ARS?s Scientific Manuscript database

    Genomic selection (GS) increases genetic gain by reducing the length of the selection cycle, as has been exemplified in maize using rapid cycling recombination of biparental populations. However, no results of GS applied to maize multi-parental populations have been reported so far. This study is th...

  8. Inbreeding drives maize centromere evolution

    PubMed Central

    Schneider, Kevin L.; Xie, Zidian; Wolfgruber, Thomas K.; Presting, Gernot G.

    2016-01-01

    Functional centromeres, the chromosomal sites of spindle attachment during cell division, are marked epigenetically by the centromere-specific histone H3 variant cenH3 and typically contain long stretches of centromere-specific tandem DNA repeats (∼1.8 Mb in maize). In 23 inbreds of domesticated maize chosen to represent the genetic diversity of maize germplasm, partial or nearly complete loss of the tandem DNA repeat CentC precedes 57 independent cenH3 relocation events that result in neocentromere formation. Chromosomal regions with newly acquired cenH3 are colonized by the centromere-specific retrotransposon CR2 at a rate that would result in centromere-sized CR2 clusters in 20,000–95,000 y. Three lines of evidence indicate that CentC loss is linked to inbreeding, including (i) CEN10 of temperate lineages, presumed to have experienced a genetic bottleneck, contain less CentC than their tropical relatives; (ii) strong selection for centromere-linked genes in domesticated maize reduced diversity at seven of the ten maize centromeres to only one or two postdomestication haplotypes; and (iii) the centromere with the largest number of haplotypes in domesticated maize (CEN7) has the highest CentC levels in nearly all domesticated lines. Rare recombinations introduced one (CEN2) or more (CEN5) alternate CEN haplotypes while retaining a single haplotype at domestication loci linked to these centromeres. Taken together, this evidence strongly suggests that inbreeding, favored by postdomestication selection for centromere-linked genes affecting key domestication or agricultural traits, drives replacement of the tandem centromere repeats in maize and other crop plants. Similar forces may act during speciation in natural systems. PMID:26858403

  9. Inbreeding drives maize centromere evolution.

    PubMed

    Schneider, Kevin L; Xie, Zidian; Wolfgruber, Thomas K; Presting, Gernot G

    2016-02-23

    Functional centromeres, the chromosomal sites of spindle attachment during cell division, are marked epigenetically by the centromere-specific histone H3 variant cenH3 and typically contain long stretches of centromere-specific tandem DNA repeats (∼1.8 Mb in maize). In 23 inbreds of domesticated maize chosen to represent the genetic diversity of maize germplasm, partial or nearly complete loss of the tandem DNA repeat CentC precedes 57 independent cenH3 relocation events that result in neocentromere formation. Chromosomal regions with newly acquired cenH3 are colonized by the centromere-specific retrotransposon CR2 at a rate that would result in centromere-sized CR2 clusters in 20,000-95,000 y. Three lines of evidence indicate that CentC loss is linked to inbreeding, including (i) CEN10 of temperate lineages, presumed to have experienced a genetic bottleneck, contain less CentC than their tropical relatives; (ii) strong selection for centromere-linked genes in domesticated maize reduced diversity at seven of the ten maize centromeres to only one or two postdomestication haplotypes; and (iii) the centromere with the largest number of haplotypes in domesticated maize (CEN7) has the highest CentC levels in nearly all domesticated lines. Rare recombinations introduced one (CEN2) or more (CEN5) alternate CEN haplotypes while retaining a single haplotype at domestication loci linked to these centromeres. Taken together, this evidence strongly suggests that inbreeding, favored by postdomestication selection for centromere-linked genes affecting key domestication or agricultural traits, drives replacement of the tandem centromere repeats in maize and other crop plants. Similar forces may act during speciation in natural systems.

  10. Properties of a herpes simplex virus multiple immediate-early gene-deleted recombinant as a vaccine vector

    SciTech Connect

    Watanabe, Daisuke; Brockman, Mark A.; Ndung'u, Thumbi

    2007-01-20

    Herpes simplex virus (HSV) recombinants induce durable immune responses in rhesus macaques and mice and have induced partial protection in rhesus macaques against mucosal challenge with virulent simian immunodeficiency virus (SIV). In this study, we evaluated the properties of a new generation HSV vaccine vector, an HSV-1 multiple immediate-early (IE) gene deletion mutant virus, d106, which contains deletions in the ICP4, ICP27, ICP22, and ICP47 genes. Because several of the HSV IE genes have been implicated in immune evasion, inactivation of the genes encoding these proteins was expected to result in enhanced immunogenicity. The d106 virus expresses few HSV genemore » products and shows minimal cytopathic effect in cultured cells. When d106 was inoculated into mice, viral DNA accumulated at high levels in draining lymph nodes, consistent with an ability to transduce dendritic cells and activate their maturation and movement to lymph nodes. A d106 recombinant expressing Escherichia coli {beta}-galactosidase induced durable {beta}-gal-specific IgG and CD8{sup +} T cell responses in naive and HSV-immune mice. Finally, d106-based recombinants have been constructed that express simian immunodeficiency virus (SIV) gag, env, or a rev-tat-nef fusion protein for several days in cultured cells. Thus, d106 shows many of the properties desirable in a vaccine vector: limited expression of HSV gene products and cytopathogenicity, high level expression of transgenes, ability to induce durable immune responses, and an ability to transduce dendritic cells and induce their maturation and migration to lymph nodes.« less

  11. Evaluation of Mycobacterium tuberculosis Early Secreted Antigenic Target 6 Recombinant Protein as a Diagnostic Marker in Skin Test.

    PubMed

    Moradi, Jale; Mosavari, Nader; Ebrahimi, Mahmoud; Arefpajohi, Reza; Tebianian, Majid

    2015-02-01

    Tuberculosis (TB) is the leading infectious disease in the developing world. Delayed-type hypersensitivity skin test diagnoses TB using tuberculin purified protein derivative (PPD), but this test is incapable of distinguishing Mycobacterium tuberculosis (MTB) infection from bacillus Calmette-Guérin (BCG) vaccination or an infection caused by nontuberculous mycobacteria (NTM). This study was performed to evaluate the use of recombinant early secretory antigenic target 6 (rESAT-6), a secretory protein found only in MTB, Mycobacterium bovis, and few other mycobacterial species, as a skin marker for MTB in guinea pigs. We prepared recombinant MTB ESAT-6 and evaluated its use as a specific antigen for MTB in guinea pigs. Our results show that the purified MTB rESAT-6 antigen is capable of inducing a positive reaction only in guinea pigs sensitized to MTB. No such reaction was observed in the animals sensitized to M. bovis, BCG vaccination, or NTM (Mycobacterium avium). Our study results confirm that the ESAT-6 antigen is more specific to MTB infection than PPD and could be used in more specific skin tests for detection of MTB in large animals and in humans.

  12. Reinventing MaizeGDB

    USDA-ARS?s Scientific Manuscript database

    The Maize Database (MaizeDB) to the Maize Genetics and Genomics Database (MaizeGDB) turns 20 this year, and such a significant milestone must be celebrated! With the release of the B73 reference sequence and more sequenced genomes on the way, the maize community needs to address various opportunitie...

  13. Comparative Performance of Ground vs. Aerially Assessed RGB and Multispectral Indices for Early-Growth Evaluation of Maize Performance under Phosphorus Fertilization

    PubMed Central

    Gracia-Romero, Adrian; Kefauver, Shawn C.; Vergara-Díaz, Omar; Zaman-Allah, Mainassara A.; Prasanna, Boddupalli M.; Cairns, Jill E.; Araus, José L.

    2017-01-01

    Low soil fertility is one of the factors most limiting agricultural production, with phosphorus deficiency being among the main factors, particularly in developing countries. To deal with such environmental constraints, remote sensing measurements can be used to rapidly assess crop performance and to phenotype a large number of plots in a rapid and cost-effective way. We evaluated the performance of a set of remote sensing indices derived from Red-Green-Blue (RGB) images and multispectral (visible and infrared) data as phenotypic traits and crop monitoring tools for early assessment of maize performance under phosphorus fertilization. Thus, a set of 26 maize hybrids grown under field conditions in Zimbabwe was assayed under contrasting phosphorus fertilization conditions. Remote sensing measurements were conducted in seedlings at two different levels: at the ground and from an aerial platform. Within a particular phosphorus level, some of the RGB indices strongly correlated with grain yield. In general, RGB indices assessed at both ground and aerial levels correlated in a comparable way with grain yield except for indices a* and u*, which correlated better when assessed at the aerial level than at ground level and Greener Area (GGA) which had the opposite correlation. The Normalized Difference Vegetation Index (NDVI) evaluated at ground level with an active sensor also correlated better with grain yield than the NDVI derived from the multispectral camera mounted in the aerial platform. Other multispectral indices like the Soil Adjusted Vegetation Index (SAVI) performed very similarly to NDVI assessed at the aerial level but overall, they correlated in a weaker manner with grain yield than the best RGB indices. This study clearly illustrates the advantage of RGB-derived indices over the more costly and time-consuming multispectral indices. Moreover, the indices best correlated with GY were in general those best correlated with leaf phosphorous content. However

  14. Regulation of maize kernel weight and carbohydrate metabolism by abscisic acid applied at the early and middle post-pollination stages in vitro.

    PubMed

    Zhang, Li; Li, Xu-Hui; Gao, Zhen; Shen, Si; Liang, Xiao-Gui; Zhao, Xue; Lin, Shan; Zhou, Shun-Li

    2017-09-01

    Abscisic acid (ABA) accumulates in plants under drought stress, but views on the role of ABA in kernel formation and abortion are not unified. The response of the developing maize kernel to exogenous ABA was investigated by excising kernels from cob sections at four days after pollination and culturing in vitro with different concentrations of ABA (0, 5, 10, 100μM). When ABA was applied at the early post-pollination stage (EPPS), significant weight loss was observed at high ABA concentration (100μM), which could be attributed to jointly affected sink capacity and activity. Endosperm cells and starch granules were decreased significantly with high concentration, and ABA inhibited the activities of soluble acid invertase and acid cell wall invertase, together with earlier attainment of peak values. When ABA was applied at the middle post-pollination stage (MPPS), kernel weight was observably reduced with high concentration and mildly increased with low concentration, which was regulated due to sink activity. The inhibitory effect of high concentration and the mild stimulatory effect of low concentration on sucrose synthase and starch synthase activities were noted, but a peak level of ADP-glucose pyrophosphorylase (AGPase) was stimulated in all ABA treatments. Interestingly, AGPase peak values were advanced by low concentration and postponed by high concentration. In addition, compared with the control, the weight of low ABA concentration treatments were not statistically significant at the two stages, whereas weight loss from high concentration applied at EPPS was considerably obvious compared with that of the MPPS, but neither led to kernel abortion. The temporal- and dose-dependent impacts of ABA reveal a complex process of maize kernel growth and development. Copyright © 2017 Elsevier GmbH. All rights reserved.

  15. Early experience with activated recombinant factor VII for intractable hemorrhage after cardiovascular surgery.

    PubMed

    Halkos, Michael E; Levy, Jerrold H; Chen, Edward; Reddy, V Seenu; Lattouf, Omar M; Guyton, Robert A; Song, Howard K

    2005-04-01

    Intractable hemorrhage after complex cardiovascular operations is a serious and potentially lethal complication. We report our experience with the use of activated recombinant factor VIIa (rFVIIa) as rescue therapy for patients with refractory postoperative hemorrhage. From April 2002 through December 2003, 9 patients received rFVIIa for intractable hemorrhage after cardiovascular surgery. Patients underwent aortic surgery (2), coronary artery bypass graft surgery (4), double valve operations (2), and mitral valve replacement (1). Four of these procedures were reoperations. Intraoperative aprotinin was used in all patients. All patients underwent standard heparinization (300 IU/kg) before cardiopulmonary bypass and reversal with protamine. Five patients underwent reexploration for mediastinal hemorrhage before treatment; 2 were reexplored twice. The average transfusion requirement before rFVIIa administration was 9 U of blood, 7 U of plasma, 22 U of platelets, and 19 U of cryoprecipitate. rFVIIa was administered as an intravenous bolus at 68 to 120 mug/kg. Mean time of administration from the first operation was 10.9 +/- 7.2 hours. At the time of activated rFVIIa administration, chest tube drainage averaged 640 mL/h. In all patients, chest tube drainage was dramatically reduced to less than 100 mL/h within 5 hours after drug delivery. None of the patients required reexploration after treatment. There were no postoperative neurologic or cardiovascular complications. When used as rescue therapy for intractable hemorrhage after cardiovascular surgery, rFVIIa may be effective in promoting hemostasis, preventing reexploration, and reducing transfusion requirements.

  16. Effects of edaravone on early outcomes in acute ischemic stroke patients treated with recombinant tissue plasminogen activator.

    PubMed

    Wada, Tomoki; Yasunaga, Hideo; Inokuchi, Ryota; Horiguchi, Hiromasa; Fushimi, Kiyohide; Matsubara, Takehiro; Nakajima, Susumu; Yahagi, Naoki

    2014-10-15

    We investigated whether edaravone could improve early outcomes in acute ischemic stroke patients treated with recombinant tissue plasminogen activator (rtPA). We conducted a retrospective cohort study using the Japanese Diagnosis Procedure Combination database. We identified patients admitted with a primary diagnosis of ischemic stroke from 1 July 2010 to 31 March 2012 and treated with rtPA on the same day of stroke onset or the following day. Thereafter, we selected those who received edaravone on the same day of rtPA administration (edaravone group), and those who received rtPA without edaravone (control group). The primary outcomes were modified Rankin Scale (mRS) scores at discharge. One-to-one propensity-score matching was performed between the edaravone and control groups. An ordinal logistic regression analysis for mRS scores at discharge was performed with adjustment for possible variables as well as clustering of patients within hospitals using a generalized estimating equation. We identified 6336 eligible patients for inclusion in the edaravone group (n=5979; 94%) and the control group (n=357; 6%) as the total population. In 356 pairs of the propensity-matched population, the ordinal logistic regression analysis showed that edaravone was significantly associated with lower mRS scores of patients at discharge (adjusted odds ratio: 0.74; 95% confidence interval: 0.57-0.96). Edaravone may improve early outcomes in acute ischemic stroke patients treated with rtPA. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. New trait data at MaizeGDB

    USDA-ARS?s Scientific Manuscript database

    MaizeGDB has several ways to archive trait data used for QTL and GWAS analyses. The simplest is simple posting of files provided by researchers along with links to the publication. More recently we have begun to integrate these data for diversity recombinant germplasm, and association panels. The go...

  18. High-Throughput Phenotyping and QTL Mapping Reveals the Genetic Architecture of Maize Plant Growth.

    PubMed

    Zhang, Xuehai; Huang, Chenglong; Wu, Di; Qiao, Feng; Li, Wenqiang; Duan, Lingfeng; Wang, Ke; Xiao, Yingjie; Chen, Guoxing; Liu, Qian; Xiong, Lizhong; Yang, Wanneng; Yan, Jianbing

    2017-03-01

    With increasing demand for novel traits in crop breeding, the plant research community faces the challenge of quantitatively analyzing the structure and function of large numbers of plants. A clear goal of high-throughput phenotyping is to bridge the gap between genomics and phenomics. In this study, we quantified 106 traits from a maize ( Zea mays ) recombinant inbred line population ( n = 167) across 16 developmental stages using the automatic phenotyping platform. Quantitative trait locus (QTL) mapping with a high-density genetic linkage map, including 2,496 recombinant bins, was used to uncover the genetic basis of these complex agronomic traits, and 988 QTLs have been identified for all investigated traits, including three QTL hotspots. Biomass accumulation and final yield were predicted using a combination of dissected traits in the early growth stage. These results reveal the dynamic genetic architecture of maize plant growth and enhance ideotype-based maize breeding and prediction. © 2017 American Society of Plant Biologists. All Rights Reserved.

  19. Recombinant porcine epidermal growth factor-secreting Lactococcus lactis promotes the growth performance of early-weaned piglets

    PubMed Central

    2014-01-01

    Background Epidermal growth factor (EGF) is an important growth factor in regulation of cell proliferation, differentiation, survival and apoptosis. Studies showed that food-grade Lactococcus lactis (L. lactis) and NICE expression system have superior performance in exogenous protein expression. This study aimed to construct and express porcine EGF (pEGF), and use L. lactis as vehicle for producing and delivering pEGF. Furthermore, investigating biological activity of pEGF and exploring applications feasibility of combination effects of L. lactis and pEGF on early weaned piglets’ production. Results A recombinant Lactococcus lactis which produced and secreted pEGF at 1000 ng/ml in culture supernatant was generated. Secreted pEGF was a fully biologically active protein, as demonstrated by its capacity to stimulate L929 mouse fibroblast cell line proliferation in vitro. For in vivo study, forty piglets were randomly allocated to control, antibiotic control, empty vector-expressing L. lactis (LL-EV) and pEGF-secreting L. lactis (LL-pEGF). After 14 d of rearing, final body weight and average daily gain in LL-pEGF were greater (P < 0.05, 8.95 vs. 8.37 kg, 206.1 vs. 157.7 g/day, respectively) than those in control, but no significant differences between LL-pEGF, LL-EV and antibiotic control. Overall period average daily feed intake was higher in LL-pEGF, LL-EV and antibiotic control than in control (P < 0.05, 252.9, 255.6, 250.0, 207.3 g/day, respectively). No significant difference was observed on ADFI/ADG. LL-pEGF increased villous height in the duodenum, jejunum and ileum than in control and LL-EV (P < 0.05). Sucrase in the 3 intestinal segments, aminopeptidase A in the duodenum and Jejunum, aminopeptidase N and dipeptidase IV in the duodenum in LL-pEGF were higher than those in control (P < 0.05). Furthermore, Escherichia coli and Enterococcus counts decreased in the ileum and Lactobacillus increased in the ileum and cecum digesta in LL-pEGF compare with the

  20. Factors Controlling Pre-Columbian and Early Historic Maize Productivity in the American Southwest, Part 1: The Southern Colorado Plateau and Rio Grande Regions

    USGS Publications Warehouse

    Benson, L.V.

    2011-01-01

    Maize is the New World's preeminent grain crop and it provided the economic basis for human culture in many regions within the Americas. To flourish, maize needs water, sunlight (heat), and nutrients (e. g., nitrogen). In this paper, climate and soil chemistry data are used to evaluate the potential for dryland (rainon-field) agriculture in the semiarid southeastern Colorado Plateau and Rio Grande regions. Processes that impact maize agriculture such as nitrogen mineralization, infiltration of precipitation, bare soil evaporation, and transpiration are discussed and evaluated. Most of the study area, excepting high-elevation regions, receives sufficient solar radiation to grow maize. The salinities of subsurface soils in the central San Juan Basin are very high and their nitrogen concentrations are very low. In addition, soils of the central San Juan Basin are characterized by pH values that exceed 8.0, which limit the availability of both nitrogen and phosphorous. In general, the San Juan Basin, including Chaco Canyon, is the least promising part of the study area in terms of dryland farming. Calculations of field life, using values of organic nitrogen for the upper 50 cm of soil in the study area, indicate that most of the study area could not support a 10-bushel/acre crop of maize. The concepts, methods, and calculations used to quantify maize productivity in this study are applicable to maize cultivation in other environmental settings across the Americas. ?? 2010 US Government.

  1. The Physiology and Proteomics of Drought Tolerance in Maize: Early Stomatal Closure as a Cause of Lower Tolerance to Short-Term Dehydration?

    PubMed Central

    Benešová, Monika; Holá, Dana; Fischer, Lukáš; Jedelský, Petr L.; Hnilička, František; Wilhelmová, Naďa; Rothová, Olga; Kočová, Marie; Procházková, Dagmar; Honnerová, Jana; Fridrichová, Lenka; Hniličková, Helena

    2012-01-01

    Understanding the response of a crop to drought is the first step in the breeding of tolerant genotypes. In our study, two maize (Zea mays L.) genotypes with contrasting sensitivity to dehydration were subjected to moderate drought conditions. The subsequent analysis of their physiological parameters revealed a decreased stomatal conductance accompanied by a slighter decrease in the relative water content in the sensitive genotype. In contrast, the tolerant genotype maintained open stomata and active photosynthesis, even under dehydration conditions. Drought-induced changes in the leaf proteome were analyzed by two independent approaches, 2D gel electrophoresis and iTRAQ analysis, which provided compatible but only partially overlapping results. Drought caused the up-regulation of protective and stress-related proteins (mainly chaperones and dehydrins) in both genotypes. The differences in the levels of various detoxification proteins corresponded well with the observed changes in the activities of antioxidant enzymes. The number and levels of up-regulated protective proteins were generally lower in the sensitive genotype, implying a reduced level of proteosynthesis, which was also indicated by specific changes in the components of the translation machinery. Based on these results, we propose that the hypersensitive early stomatal closure in the sensitive genotype leads to the inhibition of photosynthesis and, subsequently, to a less efficient synthesis of the protective/detoxification proteins that are associated with drought tolerance. PMID:22719860

  2. The physiology and proteomics of drought tolerance in maize: early stomatal closure as a cause of lower tolerance to short-term dehydration?

    PubMed

    Benešová, Monika; Holá, Dana; Fischer, Lukáš; Jedelský, Petr L; Hnilička, František; Wilhelmová, Naďa; Rothová, Olga; Kočová, Marie; Procházková, Dagmar; Honnerová, Jana; Fridrichová, Lenka; Hniličková, Helena

    2012-01-01

    Understanding the response of a crop to drought is the first step in the breeding of tolerant genotypes. In our study, two maize (Zea mays L.) genotypes with contrasting sensitivity to dehydration were subjected to moderate drought conditions. The subsequent analysis of their physiological parameters revealed a decreased stomatal conductance accompanied by a slighter decrease in the relative water content in the sensitive genotype. In contrast, the tolerant genotype maintained open stomata and active photosynthesis, even under dehydration conditions. Drought-induced changes in the leaf proteome were analyzed by two independent approaches, 2D gel electrophoresis and iTRAQ analysis, which provided compatible but only partially overlapping results. Drought caused the up-regulation of protective and stress-related proteins (mainly chaperones and dehydrins) in both genotypes. The differences in the levels of various detoxification proteins corresponded well with the observed changes in the activities of antioxidant enzymes. The number and levels of up-regulated protective proteins were generally lower in the sensitive genotype, implying a reduced level of proteosynthesis, which was also indicated by specific changes in the components of the translation machinery. Based on these results, we propose that the hypersensitive early stomatal closure in the sensitive genotype leads to the inhibition of photosynthesis and, subsequently, to a less efficient synthesis of the protective/detoxification proteins that are associated with drought tolerance.

  3. Delayed administration of recombinant human parathyroid hormone improves early biomechanical strength in a rat rotator cuff repair model.

    PubMed

    Duchman, Kyle R; Goetz, Jessica E; Uribe, Bastian U; Amendola, Andrew M; Barber, Joshua A; Malandra, Allison E; Fredericks, Douglas C; Hettrich, Carolyn M

    2016-08-01

    Despite advances in intraoperative techniques, rotator cuff repairs frequently do not heal. Recombinant human parathyroid hormone (rhPTH) has been shown to improve healing at the tendon-to-bone interface in an established acute rat rotator cuff repair model. We hypothesized that administration of rhPTH beginning on postoperative day 7 would result in improved early load to failure after acute rotator cuff repair in an established rat model. Acute rotator cuff repairs were performed in 108 male Sprague-Dawley rats. Fifty-four rats received daily injections of rhPTH beginning on postoperative day 7 until euthanasia or a maximum of 12 weeks postoperatively. The remaining 54 rats received no injections and served as the control group. Animals were euthanized at 2 and 16 weeks postoperatively and evaluated by gross inspection, biomechanical testing, and histologic analysis. At 2 weeks postoperatively, rats treated with rhPTH demonstrated significantly higher load to failure than controls (10.9 vs. 5.2 N; P = .003). No difference in load to failure was found between the 2 groups at 16 weeks postoperatively, although control repairs more frequently failed at the tendon-to-bone interface (45.5% vs. 22.7%; P = .111). Blood vessel density appeared equivalent between the 2 groups at both time points, but increased intracellular and extracellular vascular endothelial growth factor expression was noted in the rhPTH-treated group at 2 weeks. Delayed daily administration of rhPTH resulted in increased early load to failure and equivalent blood vessel density in an acute rotator cuff repair model. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  4. Correlation Between Expression of Recombinant Proteins and Abundance of H3K4Me3 on the Enhancer of Human Cytomegalovirus Major Immediate-Early Promoter.

    PubMed

    Soo, Benjamin P C; Tay, Julian; Ng, Shirelle; Ho, Steven C L; Yang, Yuansheng; Chao, Sheng-Hao

    2017-08-01

    Role of epigenetic regulation in the control of gene expression is well established. The impact of several epigenetic mechanisms, such as DNA methylation and histone acetylation, on recombinant protein production in mammalian cells has been investigated recently. Here we investigate the correlation between the selected epigenetic markers and five trastuzumab biosimilar-producing Chinese hamster ovary (CHO) cell lines in which the expression of trastuzumab is driven by human cytomegalovirus (HCMV) major immediate-early (MIE) promoter. We chose the producing clones in which transcription was the determinative step for the production of recombinant trastuzumab. We found that the abundance of trimethylation of histone 3 at lysine 4 (H3K4Me3) on the enhancer of HCMV MIE promoter correlated well with the relative titers of recombinant trastuzumab among the clones. Such close correlation was not observed between the recombinant protein and other epigenetic markers examined in our study. Our results demonstrate that the HCMV MIE enhancer-bound H3K4Me3 epigenetic marker may be used as the epigenetic indicator to predict the relative production of recombinant proteins between the producing CHO cell lines.

  5. Natural variation in maize aphid resistance is associated with 2,4-Dihydroxy-7-Methoxy-1,4-Benzoxazin-3-One Glucoside Methyltransferase activity

    USDA-ARS?s Scientific Manuscript database

    Plants differ greatly in their susceptibility to insect herbivory, suggesting both local adaptation and resistance tradeoffs. We used maize (Zea mays) recombinant inbred lines to map a quantitative trait locus (QTL) for the maize leaf aphid (Rhopalosiphum maidis) susceptibility to maize Chromosome 1...

  6. Identification of QTL for Early Vigor and Stay-Green Conferring Tolerance to Drought in Two Connected Advanced Backcross Populations in Tropical Maize (Zea mays L.)

    PubMed Central

    Trachsel, Samuel; Sun, Dapeng; SanVicente, Felix M.; Zheng, Hongjian; Atlin, Gary N.; Suarez, Edgar Antonio; Babu, Raman; Zhang, Xuecai

    2016-01-01

    We aimed to identify quantitative trait loci (QTL) for secondary traits related to grain yield (GY) in two BC1F2:3 backcross populations (LPSpop and DTPpop) under well-watered (4 environments; WW) and drought stressed (6; DS) conditions to facilitate breeding efforts towards drought tolerant maize. GY reached 5.6 and 5.8 t/ha under WW in the LPSpop and the DTPpop, respectively. Under DS, grain yield was reduced by 65% (LPSpop) to 59% (DTPpop) relative to WW. GY was strongly associated with the normalized vegetative index (NDVI; r ranging from 0.61 to 0.96) across environmental conditions and with an early flowering under drought stressed conditions (r ranging from -0.18 to -0.25) indicative of the importance of early vigor and drought escape for GY. Out of the 105 detected QTL, 53 were overdominant indicative of strong heterosis. For 14 out of 18 detected vigor QTL, as well as for eight flowering time QTL the trait increasing allele was derived from CML491. Collocations of early vigor QTL with QTL for stay green (bin 2.02, WW, LPSpop; 2.07, DS, DTPpop), the number of ears per plant (bins 2.02, 2.05, WW, LPSpop; 5.02, DS, LPSpop) and GY (bin 2.07, WW, DTPpop; 5.04, WW, LPSpop), reinforce the importance of the observed correlations. LOD scores for early vigor QTL in these bins ranged from 2.2 to 11.25 explaining 4.6 (additivity: +0.28) to 19.9% (additivity: +0.49) of the observed phenotypic variance. A strong flowering QTL was detected in bin 2.06 across populations and environmental conditions explaining 26–31.3% of the observed phenotypic variation (LOD: 13–17; additivity: 0.1–0.6d). Improving drought tolerance while at the same time maintaining yield potential could be achieved by combining alleles conferring early vigor from the recurrent parent with alleles advancing flowering from the donor. Additionally bin 8.06 (DTPpop) harbored a QTL for GY under WW (additivity: 0.27 t/ha) and DS (additivity: 0.58 t/ha). R2 ranged from 0 (DTPpop, WW) to 26.54% (LPSpop

  7. Early inhibitory effects of zoledronic acid in tooth extraction sockets in dogs are negated by recombinant human bone morphogenetic protein.

    PubMed

    Gerard, David A; Carlson, Eric R; Gotcher, Jack E; Pickett, David O

    2014-01-01

    This study was conducted with 2 purposes. The first was to determine the effect of a single dose of zoledronic acid (ZA) on the healing of a tooth extraction socket in dogs. The second was to determine if placement of recombinant human bone morphogenetic protein-2 (rhBMP-2)/absorbable collagen sponge (ACS) - INFUSE, (Medtronic, Memphis, TN) into these extraction sockets would inhibit the inhibition on bone healing and remodeling by ZA. Nine adult female beagle dogs (2 to 3 yr old) were placed into 3 groups of 3 dogs each. Group I received 15 mL of sterile saline intravenously; group II received 2.5 mg of ZA intravenously; and group III received 5 mg of ZA intravenously. Forty-five days after treatment, all dogs underwent extraction of noncontiguous right and left mandibular first molars and second premolars. In group I, the right mandibular extraction sockets had nothing placed in them, whereas the left mandibular sockets had only ACS placed in them. In groups II and III, the right mandibular sockets had rhBMP-2/ACS placed in them, whereas the left mandibular sockets had only ACS placed. All extraction sockets were surgically closed. Tetracycline was given intravenously 5 and 12 days later, and all animals were euthanized 15 days after tooth extraction. The extraction sockets and rib and femur samples were harvested immediately after euthanasia, processed, and studied microscopically. A single dose of ZA significantly inhibited healing and bone remodeling in the area of the tooth extractions. The combination of rhBMP-2/ACS appeared to over-ride some of the bone remodeling inhibition of the ZA and increased bone fill in the extraction sites, and remodeling activity in the area was noted. The effects of rhBMP-2/ACS were confined to the area of the extraction sockets because bone activity at distant sites was not influenced. A single dose of ZA administered intravenously inhibits early healing of tooth extraction sockets and bone remodeling in this animal model. The

  8. Trivalent pneumococcal protein recombinant vaccine protects against lethal Streptococcus pneumoniae pneumonia and correlates with phagocytosis by neutrophils during early pathogenesis.

    PubMed

    Xu, Qingfu; Surendran, Naveen; Verhoeven, David; Klapa, Jessica; Ochs, Martina; Pichichero, Michael E

    2015-02-18

    Due to the fact that current polysaccharide-based pneumococcal vaccines have limited serotype coverage, protein-based vaccine candidates have been sought for over a decade to replace or complement current vaccines. We previously reported that a trivalent Pneumococcal Protein recombinant Vaccine (PPrV), showed protection against pneumonia and sepsis in an infant murine model. Here we investigated immunological correlates of protection of PPrV in the same model. C57BL/6J infant mice were intramuscularly vaccinated at age 1-3 weeks with 3 doses of PPrV, containing pneumococcal histidine triad protein D (PhtD), pneumococcal choline binding protein A (PcpA), and detoxified pneumolysin mutant PlyD1. 3-4 weeks after last vaccination, serum and lung antibody levels to PPrV components were measured, and mice were intranasally challenged with a lethal dose of Streptococcus pneumoniae (Spn) serotype 6A. Lung Spn bacterial burden, number of neutrophils and alveolar macrophages, phagocytosed Spn by granulocytes, and levels of cytokines and chemokines were determined at 6, 12, 24, and 48h after challenge. PPrV vaccination conferred 83% protection against Spn challenge. Vaccinated mice had significantly elevated serum and lung antibody levels to three PPrV components. In the first stage of pathogenesis of Spn induced pneumonia (6-24h after challenge), vaccinated mice had lower Spn bacterial lung burdens and more phagocytosed Spn in the granulocytes. PPrV vaccination led to lower levels of pro-inflammatory cytokines IL-6, IL-1β, and TFN-α, and other cytokines and chemokines (IL-12, IL-17, IFN-γ, MIP-1b, MIP-2 and KC, and G-CSF), presumably due to a lower lung bacterial burden. Trivalent PPrV vaccination results in increased serum and lung antibody levels to the vaccine components, a reduction in Spn induced lethality, enhanced early clearance of Spn in lungs due to more rapid and thorough phagocytosis of Spn by neutrophils, and correspondingly a reduction in lung inflammation

  9. Harnessing maize biodiversity

    USDA-ARS?s Scientific Manuscript database

    Maize is a remarkably diverse species, adapted to a wide range of climatic conditions and farming practices. The latitudinal range of maize is immense, ranging from 54°N in Alberta, Canada, to 45°S in the province of Chubut, Argentina. In terms of altitude, maize is cultivated from sea level to 4000...

  10. MaizeCyc: Metabolic networks in maize

    USDA-ARS?s Scientific Manuscript database

    MaizeCyc is a catalog of known and predicted metabolic and transport pathways that enables plant researchers to graphically represent the metabolome of maize (Zea mays), thereby supporting integrated systems-biology analysis. Supported analyses include molecular and genetic/phenotypic profiling (e.g...

  11. Contributions of Zea mays subspecies mexicana haplotypes to modern maize.

    PubMed

    Yang, Ning; Xu, Xi-Wen; Wang, Rui-Ru; Peng, Wen-Lei; Cai, Lichun; Song, Jia-Ming; Li, Wenqiang; Luo, Xin; Niu, Luyao; Wang, Yuebin; Jin, Min; Chen, Lu; Luo, Jingyun; Deng, Min; Wang, Long; Pan, Qingchun; Liu, Feng; Jackson, David; Yang, Xiaohong; Chen, Ling-Ling; Yan, Jianbing

    2017-11-30

    Maize was domesticated from lowland teosinte (Zea mays ssp. parviglumis), but the contribution of highland teosinte (Zea mays ssp. mexicana, hereafter mexicana) to modern maize is not clear. Here, two genomes for Mo17 (a modern maize inbred) and mexicana are assembled using a meta-assembly strategy after sequencing of 10 lines derived from a maize-teosinte cross. Comparative analyses reveal a high level of diversity between Mo17, B73, and mexicana, including three Mb-size structural rearrangements. The maize spontaneous mutation rate is estimated to be 2.17 × 10 -8 ~3.87 × 10 -8 per site per generation with a nonrandom distribution across the genome. A higher deleterious mutation rate is observed in the pericentromeric regions, and might be caused by differences in recombination frequency. Over 10% of the maize genome shows evidence of introgression from the mexicana genome, suggesting that mexicana contributed to maize adaptation and improvement. Our data offer a rich resource for constructing the pan-genome of Zea mays and genetic improvement of modern maize varieties.

  12. Ontogeny of the Maize Shoot Apical Meristem[W][OA

    PubMed Central

    Takacs, Elizabeth M.; Li, Jie; Du, Chuanlong; Ponnala, Lalit; Janick-Buckner, Diane; Yu, Jianming; Muehlbauer, Gary J.; Schnable, Patrick S.; Timmermans, Marja C.P.; Sun, Qi; Nettleton, Dan; Scanlon, Michael J.

    2012-01-01

    The maize (Zea mays) shoot apical meristem (SAM) arises early in embryogenesis and functions during stem cell maintenance and organogenesis to generate all the aboveground organs of the plant. Despite its integral role in maize shoot development, little is known about the molecular mechanisms of SAM initiation. Laser microdissection of apical domains from developing maize embryos and seedlings was combined with RNA sequencing for transcriptomic analyses of SAM ontogeny. Molecular markers of key events during maize embryogenesis are described, and comprehensive transcriptional data from six stages in maize shoot development are generated. Transcriptomic profiling before and after SAM initiation indicates that organogenesis precedes stem cell maintenance in maize; analyses of the first three lateral organs elaborated from maize embryos provides insight into their homology and to the identity of the single maize cotyledon. Compared with the newly initiated SAM, the mature SAM is enriched for transcripts that function in transcriptional regulation, hormonal signaling, and transport. Comparisons of shoot meristems initiating juvenile leaves, adult leaves, and husk leaves illustrate differences in phase-specific (juvenile versus adult) and meristem-specific (SAM versus lateral meristem) transcript accumulation during maize shoot development. This study provides insight into the molecular genetics of SAM initiation and function in maize. PMID:22911570

  13. Maize Brittle stalk2 encodes a COBRA-like protein expressed in early organ development but required for tissue flexibility at maturity.

    PubMed

    Sindhu, Anoop; Langewisch, Tiffany; Olek, Anna; Multani, Dilbag S; McCann, Maureen C; Vermerris, Wilfred; Carpita, Nicholas C; Johal, Gurmukh

    2007-12-01

    The maize (Zea mays) brittle stalk2 (bk2) is a recessive mutant, the aerial parts of which are easily broken. The bk2 phenotype is developmentally regulated and appears 4 weeks after planting, at about the fifth-leaf stage. Before this time, mutants are indistinguishable from wild-type siblings. Afterward, all organs of the bk2 mutants turn brittle, even the preexisting ones, and they remain brittle throughout the life of the plant. Leaf tension assays and bend tests of the internodes show that the brittle phenotype does not result from loss of tensile strength but from loss in flexibility that causes the tissues to snap instead of bend. The Bk2 gene was cloned by a combination of transposon tagging and a candidate gene approach and found to encode a COBRA-like protein similar to rice (Oryza sativa) BC1 and Arabidopsis (Arabidopsis thaliana) COBRA-LIKE4. The outer periphery of the stalk has fewer vascular bundles, and the sclerids underlying the epidermis possess thinner secondary walls. Relative cellulose content is not strictly correlated with the brittle phenotype. Cellulose content in mature zones of bk2 mature stems is lowered by 40% but is about the same as wild type in developing stems. Although relative cellulose content is lowered in leaves after the onset of the brittle phenotype, total wall mass as a proportion of dry mass is either unchanged or slightly increased, indicating a compensatory increase in noncellulosic carbohydrate mass. Fourier transform infrared spectra indicated an increase in phenolic ester content in the walls of bk2 leaves and stems. Total content of lignin is unaffected in bk2 juvenile leaves before or after appearance of the brittle phenotype, but bk2 mature and developing stems are markedly enriched in lignin compared to wild-type stems. Despite increased lignin in bk2 stems, loss of staining with phloroglucinol and ultraviolet autofluorescence is observed in vascular bundles and sclerid layers. Consistent with the infrared

  14. Maize Brittle stalk2 Encodes a COBRA-Like Protein Expressed in Early Organ Development But Required for Tissue Flexibility at Maturity1[C][OA

    PubMed Central

    Sindhu, Anoop; Langewisch, Tiffany; Olek, Anna; Multani, Dilbag S.; McCann, Maureen C.; Vermerris, Wilfred; Carpita, Nicholas C.; Johal, Gurmukh

    2007-01-01

    The maize (Zea mays) brittle stalk2 (bk2) is a recessive mutant, the aerial parts of which are easily broken. The bk2 phenotype is developmentally regulated and appears 4 weeks after planting, at about the fifth-leaf stage. Before this time, mutants are indistinguishable from wild-type siblings. Afterward, all organs of the bk2 mutants turn brittle, even the preexisting ones, and they remain brittle throughout the life of the plant. Leaf tension assays and bend tests of the internodes show that the brittle phenotype does not result from loss of tensile strength but from loss in flexibility that causes the tissues to snap instead of bend. The Bk2 gene was cloned by a combination of transposon tagging and a candidate gene approach and found to encode a COBRA-like protein similar to rice (Oryza sativa) BC1 and Arabidopsis (Arabidopsis thaliana) COBRA-LIKE4. The outer periphery of the stalk has fewer vascular bundles, and the sclerids underlying the epidermis possess thinner secondary walls. Relative cellulose content is not strictly correlated with the brittle phenotype. Cellulose content in mature zones of bk2 mature stems is lowered by 40% but is about the same as wild type in developing stems. Although relative cellulose content is lowered in leaves after the onset of the brittle phenotype, total wall mass as a proportion of dry mass is either unchanged or slightly increased, indicating a compensatory increase in noncellulosic carbohydrate mass. Fourier transform infrared spectra indicated an increase in phenolic ester content in the walls of bk2 leaves and stems. Total content of lignin is unaffected in bk2 juvenile leaves before or after appearance of the brittle phenotype, but bk2 mature and developing stems are markedly enriched in lignin compared to wild-type stems. Despite increased lignin in bk2 stems, loss of staining with phloroglucinol and ultraviolet autofluorescence is observed in vascular bundles and sclerid layers. Consistent with the infrared

  15. Comparison of early and late treatment with a recombinant endotoxin neutralizing protein in a rat model of Escherichia coli sepsis.

    PubMed

    Weiner, D L; Kuppermann, N; Saladino, R A; Thompson, C M; Novitsky, T J; Siber, G R; Fleisher, G R

    1996-09-01

    To test the efficacy of a recombinant endotoxin neutralizing protein as compared with saline in rats with Escherichia coli sepsis. Prospective, controlled animal trial. Hospital animal research laboratory. Male Wistar rats challenged with intraperitoneal E. coli, O18ac K1, and treated 1 hr later with ceftriaxone and gentamicin. Recombinant endotoxin neutralizing protein, 50 mg/kg, was administered to rats 1, 2, or 3 hrs after E. coli challenge; saline was administered to control animals. Quantitative bacteremia, 1 hr after challenge and before antibiotic administration, was not significantly different between treatment groups (range geometric mean 451 to 621 colony-forming units [cfu]/mL). The endotoxin concentration, measured immediately before recombinant endotoxin neutralizing protein administration, was significantly higher in animals sampled and treated at 2 hrs (geometric mean 260 EU/mL; 95% confidence interval 140 to 480 EU/mL), or 3 hrs (geometric mean 697 EU/mL; 95% confidence interval 307 to 1585 EU/mL) after E. coli challenge, compared with animals sampled and treated at 1 hr (geometric mean 17 EU/mL; 95% confidence interval 7 to 69 EU/ mL). Survival rate was significantly greater in rats treated with recombinant endotoxin neutralizing protein at 1 hr (23/27; p < .001) or 2 hrs (8/30; p < .01) after E. coli challenge than in controls (1/32). Administration of recombinant endotoxin neutralizing protein delayed up to 2 hrs after challenge with E. coli improves survival in antibiotic-treated rats with Gram-negative sepsis.

  16. Large scale field inoculation and scoring of maize southern leaf blight and other maize foliar fungal diseases

    USDA-ARS?s Scientific Manuscript database

    Field-grown maize is inoculated with Cochliobolus heterostrophus, causal agent of Southern Leaf Blight disease, by dropping sorghum grains infested with the fungus into the whorl of each maize plant at an early stage of growth. The initial lesions produce secondary inoculum that is dispersed by wind...

  17. Seed treatments enhance photosynthesis in maize seedlings by reducing infection with Fusarium spp. and consequent disease development in maize

    USDA-ARS?s Scientific Manuscript database

    The effects of a seed treatment on early season growth, seedling disease development, incidence Fusarium spp. infection, and photosynthetic performance of maize were evaluated at two locations in Iowa in 2007. Maize seed was either treated with Cruiser 2Extreme 250 ® (fludioxonil + azoxystrobin + me...

  18. A New theraphosid Spider Toxin Causes Early Insect Cell Death by Necrosis When Expressed In Vitro during Recombinant Baculovirus Infection

    PubMed Central

    Ardisson-Araújo, Daniel Mendes Pereira; Morgado, Fabrício Da Silva; Schwartz, Elisabeth Ferroni; Corzo, Gerardo; Ribeiro, Bergmann Morais

    2013-01-01

    Baculoviruses are the most studied insect viruses in the world and are used for biological control of agricultural and forest insect pests. They are also used as versatile vectors for expression of heterologous proteins. One of the major problems of their use as biopesticides is their slow speed to kill insects. Thus, to address this shortcoming, insect-specific neurotoxins from arachnids have been introduced into the baculovirus genome solely aiming to improve its virulence. In this work, an insecticide-like toxin gene was obtained from a cDNA derived from the venom glands of the theraphosid spider Brachypelma albiceps. The mature form of the peptide toxin (called Ba3) has a high content of basic amino acid residues, potential for three possible disulfide bonds, and a predicted three-stranded β-sheetDifferent constructions of the gene were engineered for recombinant baculovirus Autographa californica multiple nuclepolyhedrovirus (AcMNPV) expression. Five different forms of Ba3 were assessed; (1) the full-length sequence, (2) the pro-peptide and mature region, (3) only the mature region, and the mature region fused to an (4) insect or a (5) virus-derived signal peptide were inserted separately into the genome of the baculovirus. All the recombinant viruses induced cell death by necrosis earlier in infection relative to a control virus lacking the toxin gene. However, the recombinant virus containing the mature portion of the toxin gene induced a faster cell death than the other recombinants. We found that the toxin construct with the signal peptide and/or pro-peptide regions delayed the necrosis phenotype. When infected cells were subjected to ultrastructural analysis, the cells showed loss of plasma membrane integrity and structural changes in mitochondria before death. Our results suggest this use of baculovirus is a potential tool to help understand or to identify the effect of insect-specific toxic peptides when produced during infection of insect cells. PMID

  19. Sequence, assembly and annotation of the maize W22 genome

    USDA-ARS?s Scientific Manuscript database

    Since its adoption by Brink and colleagues in the 1950s and 60s, the maize W22 inbred has been utilized extensively to understand fundamental genetic and epigenetic processes such recombination, transposition and paramutation. To maximize the utility of W22 in gene discovery, we have Illumina sequen...

  20. Population parameters for resistance to Fusarium graminearum and Fusarium verticillioides ear rot among large sets of early, mid-late and late maturing European maize (Zea mays L.) inbred lines.

    PubMed

    Löffler, Martin; Kessel, Bettina; Ouzunova, Milena; Miedaner, Thomas

    2010-03-01

    Infection of maize ears with Fusarium graminearum (FG) and Fusarium verticillioides (FV) reduces yield and quality by mycotoxin contamination. Breeding and growing varieties resistant to both Fusarium spp. is the best alternative to minimize problems. The objectives of our study were to draw conclusions on breeding for ear rot resistance by estimating variance components, heritabilities and correlations between resistances to FV and FG severity and to investigate different inoculation methods. In 2007 and 2008, three maturity groups (early, mid-late, late) each comprising about 150 inbred lines were tested in Germany, France, Italy, and Hungary according to their maturity group. They were silk channel inoculated by FG (early) and FV (all groups). In the late maturity group, additionally kernel inoculation was applied in a separate trial. The percentage of mycelium coverage on the ear was rated at harvest (0-100%). Significant (P < 0.01) genotypic variances of ear rot severity were found in all groups. Inoculation was superior to natural infection because of higher disease severities and heritabilities. In early maturing flints and dents, FG caused significantly (P < 0.01) higher ear rot severity than FV (61.7 and 55.1% FG vs. 18.2 and 11.1% FV ear rot severity, respectively). FV inoculation in Southern Europe (mid-late, late) resulted in similar means between 10.3 and 14.0%. Selection is complicated by significant (P < 0.01) genotype x environment interactions. Correlation between FG and FV severity was moderate in flints and dents (r = 0.59 and 0.49, respectively) but lines resistant to both fungi exist. We conclude that chances for selecting improved European elite maize material within the existing germplasms is promising by multi-environmental inoculation trials.

  1. MaizeGDB, the maize model organism database

    USDA-ARS?s Scientific Manuscript database

    MaizeGDB is the maize research community's database for maize genetic and genomic information. In this seminar I will outline our current endeavors including a full website redesign, the status of maize genome assembly and annotation projects, and work toward genome functional annotation. Mechanis...

  2. Sporophytic control of pollen tube growth and guidance in maize.

    PubMed

    Lausser, Andreas; Kliwer, Irina; Srilunchang, Kanok-orn; Dresselhaus, Thomas

    2010-03-01

    Pollen tube germination, growth, and guidance (progamic phase) culminating in sperm discharge is a multi-stage process including complex interactions between the male gametophyte as well as sporophytic tissues and the female gametophyte (embryo sac), respectively. Inter- and intra-specific crossing barriers in maize and Tripsacum have been studied and a precise description of progamic pollen tube development in maize is reported here. It was found that pollen germination and initial tube growth are rather unspecific, but an early, first crossing barrier was detected before arrival at the transmitting tract. Pollination of maize silks with Tripsacum pollen and incompatible pollination of Ga1s/Ga1s-maize silks with ga1-maize pollen revealed another two incompatibility barriers, namely transmitting tract mistargeting and insufficient growth support. Attraction and growth support by the transmitting tract seem to play key roles for progamic pollen tube growth. After leaving transmitting tracts, pollen tubes have to navigate across the ovule in the ovular cavity. Pollination of an embryo sac-less maize RNAi-line allowed the role of the female gametophyte for pollen tube guidance to be determined in maize. It was found that female gametophyte controlled guidance is restricted to a small region around the micropyle, approximately 50-100 microm in diameter. This area is comparable to the area of influence of previously described ZmEA1-based short-range female gametophyte signalling. In conclusion, the progamic phase is almost completely under sporophytic control in maize.

  3. Sporophytic control of pollen tube growth and guidance in maize

    PubMed Central

    Lausser, Andreas; Kliwer, Irina; Srilunchang, Kanok-orn; Dresselhaus, Thomas

    2010-01-01

    Pollen tube germination, growth, and guidance (progamic phase) culminating in sperm discharge is a multi-stage process including complex interactions between the male gametophyte as well as sporophytic tissues and the female gametophyte (embryo sac), respectively. Inter- and intra-specific crossing barriers in maize and Tripsacum have been studied and a precise description of progamic pollen tube development in maize is reported here. It was found that pollen germination and initial tube growth are rather unspecific, but an early, first crossing barrier was detected before arrival at the transmitting tract. Pollination of maize silks with Tripsacum pollen and incompatible pollination of Ga1s/Ga1s-maize silks with ga1-maize pollen revealed another two incompatibility barriers, namely transmitting tract mistargeting and insufficient growth support. Attraction and growth support by the transmitting tract seem to play key roles for progamic pollen tube growth. After leaving transmitting tracts, pollen tubes have to navigate across the ovule in the ovular cavity. Pollination of an embryo sac-less maize RNAi-line allowed the role of the female gametophyte for pollen tube guidance to be determined in maize. It was found that female gametophyte controlled guidance is restricted to a small region around the micropyle, approximately 50–100 μm in diameter. This area is comparable to the area of influence of previously described ZmEA1-based short-range female gametophyte signalling. In conclusion, the progamic phase is almost completely under sporophytic control in maize. PMID:19926683

  4. Genetic Recombination

    ERIC Educational Resources Information Center

    Whitehouse, H. L. K.

    1973-01-01

    Discusses the mechanisms of genetic recombination with particular emphasis on the study of the fungus Sordaria brevicollis. The study of recombination is facilitated by the use of mutants of this fungus in which the color of the ascospores is affected. (JR)

  5. Early adoption of cyclosporine and recombinant human erythropoietin: clinical, economic, and policy issues with emergence of high-cost drugs.

    PubMed

    Powe, N R; Eggers, P W; Johnson, C B

    1994-07-01

    The discovery of new drugs and their introduction into US markets will become an intense area of focus should health care reform result in Medicare insurance coverage for prescription drugs. Particular attention will be focused on high-cost drugs. Two high-cost drugs, cyclosporine and recombinant human erythropoietin (rHuEPO), introduced into the clinical management of patients with kidney disease during the past decade, provide some experience concerning the forces affecting the use of expensive drugs in a cost-conscious health care system. The decision to prescribe a drug will depend on provider's judgements of the drug's clinical benefits and costs compared with those of other possible therapies. It may also depend on payment policy. Both cyclosporine and rHuEPO were adopted rapidly and extensively by providers of end-stage renal disease care following US Food and Drug Administration approval, despite their high costs. Both drugs were remarkably effective, relatively safe, and able to be administered without great difficulty compared with the therapies they have replaced. There was no additional payment to hospitals for the initial use of cyclosporine, which was introduced in 1983 at the time when Medicare's prospective payment was established, since choice of immunosuppressive agent did not affect the fixed, per-admission payment determined by the diagnosis-related group for kidney transplantation. Medicare coverage for continuing outpatient use of cyclosporine was not initially provided, in contrast to rHuEPO, which was introduced in 1989 with Medicare outpatient coverage and payment of 80% of the allowed charge. Despite their high costs and different methods of insurance payment both drugs achieved a rather quick and high penetration rate into their respective populations.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Novel camelid antibody fragments targeting recombinant nucleoprotein of Araucaria hantavirus: a prototype for an early diagnosis of Hantavirus Pulmonary Syndrome.

    PubMed

    Pereira, Soraya S; Moreira-Dill, Leandro S; Morais, Michelle S S; Prado, Nidiane D R; Barros, Marcos L; Koishi, Andrea C; Mazarrotto, Giovanny A C A; Gonçalves, Giselle M; Zuliani, Juliana P; Calderon, Leonardo A; Soares, Andreimar M; Pereira da Silva, Luiz H; Duarte dos Santos, Claudia N; Fernandes, Carla F C; Stabeli, Rodrigo G

    2014-01-01

    In addition to conventional antibodies, camelids produce immunoglobulins G composed exclusively of heavy chains in which the antigen binding site is formed only by single domains called VHH. Their particular characteristics make VHHs interesting tools for drug-delivery, passive immunotherapy and high-throughput diagnosis. Hantaviruses are rodent-borne viruses of the Bunyaviridae family. Two clinical forms of the infection are known. Hemorrhagic Fever with Renal Syndrome (HFRS) is present in the Old World, while Hantavirus Pulmonary Syndrome (HPS) is found on the American continent. There is no specific treatment for HPS and its diagnosis is carried out by molecular or serological techniques, using mainly monoclonal antibodies or hantavirus nucleoprotein (N) to detect IgM and IgG in patient serum. This study proposes the use of camelid VHHs to develop alternative methods for diagnosing and confirming HPS. Phage display technology was employed to obtain VHHs. After immunizing one Lama glama against the recombinant N protein (prNΔ₈₅) of a Brazilian hantavirus strain, VHH regions were isolated to construct an immune library. VHHs were displayed fused to the M13KO7 phage coat protein III and the selection steps were performed on immobilized prNΔ₈₅. After selection, eighty clones recognized specifically the N protein. These were sequenced, grouped based mainly on the CDRs, and five clones were analyzed by western blot (WB), surface plasmon resonance (SPR) device, and ELISA. Besides the ability to recognize prNΔ85 by WB, all selected clones showed affinity constants in the nanomolar range. Additionaly, the clone KC329705 is able to detect prNΔ₈₅ in solution, as well as the native viral antigen. Findings support the hypothesis that selected VHHs could be a powerful tool in the development of rapid and accurate HPS diagnostic assays, which are essential to provide supportive care to patients and reduce the high mortality rate associated with hantavirus

  7. Novel Camelid Antibody Fragments Targeting Recombinant Nucleoprotein of Araucaria hantavirus: A Prototype for an Early Diagnosis of Hantavirus Pulmonary Syndrome

    PubMed Central

    Pereira, Soraya S.; Moreira-Dill, Leandro S.; Morais, Michelle S. S.; Prado, Nidiane D. R.; Barros, Marcos L.; Koishi, Andrea C.; Mazarrotto, Giovanny A. C. A.; Gonçalves, Giselle M.; Zuliani, Juliana P.; Calderon, Leonardo A.; Soares, Andreimar M.; Pereira da Silva, Luiz H.; Duarte dos Santos, Claudia N.; Fernandes, Carla F. C.; Stabeli, Rodrigo G.

    2014-01-01

    In addition to conventional antibodies, camelids produce immunoglobulins G composed exclusively of heavy chains in which the antigen binding site is formed only by single domains called VHH. Their particular characteristics make VHHs interesting tools for drug-delivery, passive immunotherapy and high-throughput diagnosis. Hantaviruses are rodent-borne viruses of the Bunyaviridae family. Two clinical forms of the infection are known. Hemorrhagic Fever with Renal Syndrome (HFRS) is present in the Old World, while Hantavirus Pulmonary Syndrome (HPS) is found on the American continent. There is no specific treatment for HPS and its diagnosis is carried out by molecular or serological techniques, using mainly monoclonal antibodies or hantavirus nucleoprotein (N) to detect IgM and IgG in patient serum. This study proposes the use of camelid VHHs to develop alternative methods for diagnosing and confirming HPS. Phage display technology was employed to obtain VHHs. After immunizing one Lama glama against the recombinant N protein (prNΔ85) of a Brazilian hantavirus strain, VHH regions were isolated to construct an immune library. VHHs were displayed fused to the M13KO7 phage coat protein III and the selection steps were performed on immobilized prNΔ85. After selection, eighty clones recognized specifically the N protein. These were sequenced, grouped based mainly on the CDRs, and five clones were analyzed by western blot (WB), surface plasmon resonance (SPR) device, and ELISA. Besides the ability to recognize prNΔ85 by WB, all selected clones showed affinity constants in the nanomolar range. Additionaly, the clone KC329705 is able to detect prNΔ85 in solution, as well as the native viral antigen. Findings support the hypothesis that selected VHHs could be a powerful tool in the development of rapid and accurate HPS diagnostic assays, which are essential to provide supportive care to patients and reduce the high mortality rate associated with hantavirus infections. PMID

  8. Maize (Zea mays L.).

    PubMed

    Frame, Bronwyn; Warnberg, Katey; Main, Marcy; Wang, Kan

    2015-01-01

    Agrobacterium tumefaciens-mediated transformation is an effective method for introducing genes into maize. In this chapter, we describe a detailed protocol for genetic transformation of the maize genotype Hi II. Our starting plant material is immature embryos cocultivated with an Agrobacterium strain carrying a standard binary vector. In addition to step-by-step laboratory transformation procedures, we include extensive details in growing donor plants and caring for transgenic plants in the greenhouse.

  9. A Comprehensive Analysis of Alternative Splicing in Paleopolyploid Maize.

    PubMed

    Mei, Wenbin; Liu, Sanzhen; Schnable, James C; Yeh, Cheng-Ting; Springer, Nathan M; Schnable, Patrick S; Barbazuk, William B

    2017-01-01

    Identifying and characterizing alternative splicing (AS) enables our understanding of the biological role of transcript isoform diversity. This study describes the use of publicly available RNA-Seq data to identify and characterize the global diversity of AS isoforms in maize using the inbred lines B73 and Mo17, and a related species, sorghum. Identification and characterization of AS within maize tissues revealed that genes expressed in seed exhibit the largest differential AS relative to other tissues examined. Additionally, differences in AS between the two genotypes B73 and Mo17 are greatest within genes expressed in seed. We demonstrate that changes in the level of alternatively spliced transcripts (intron retention and exon skipping) do not solely reflect differences in total transcript abundance, and we present evidence that intron retention may act to fine-tune gene expression across seed development stages. Furthermore, we have identified temperature sensitive AS in maize and demonstrate that drought-induced changes in AS involve distinct sets of genes in reproductive and vegetative tissues. Examining our identified AS isoforms within B73 × Mo17 recombinant inbred lines (RILs) identified splicing QTL (sQTL). The 43.3% of cis- sQTL regulated junctions are actually identified as alternatively spliced junctions in our analysis, while 10 Mb windows on each side of 48.2% of trans -sQTLs overlap with splicing related genes. Using sorghum as an out-group enabled direct examination of loss or conservation of AS between homeologous genes representing the two subgenomes of maize. We identify several instances where AS isoforms that are conserved between one maize homeolog and its sorghum ortholog are absent from the second maize homeolog, suggesting that these AS isoforms may have been lost after the maize whole genome duplication event. This comprehensive analysis provides new insights into the complexity of AS in maize.

  10. Genomic-based-breeding tools for tropical maize improvement.

    PubMed

    Chakradhar, Thammineni; Hindu, Vemuri; Reddy, Palakolanu Sudhakar

    2017-12-01

    Maize has traditionally been the main staple diet in the Southern Asia and Sub-Saharan Africa and widely grown by millions of resource poor small scale farmers. Approximately, 35.4 million hectares are sown to tropical maize, constituting around 59% of the developing worlds. Tropical maize encounters tremendous challenges besides poor agro-climatic situations with average yields recorded <3 tones/hectare that is far less than the average of developed countries. On the contrary to poor yields, the demand for maize as food, feed, and fuel is continuously increasing in these regions. Heterosis breeding introduced in early 90 s improved maize yields significantly, but genetic gains is still a mirage, particularly for crop growing under marginal environments. Application of molecular markers has accelerated the pace of maize breeding to some extent. The availability of array of sequencing and genotyping technologies offers unrivalled service to improve precision in maize-breeding programs through modern approaches such as genomic selection, genome-wide association studies, bulk segregant analysis-based sequencing approaches, etc. Superior alleles underlying complex traits can easily be identified and introgressed efficiently using these sequence-based approaches. Integration of genomic tools and techniques with advanced genetic resources such as nested association mapping and backcross nested association mapping could certainly address the genetic issues in maize improvement programs in developing countries. Huge diversity in tropical maize and its inherent capacity for doubled haploid technology offers advantage to apply the next generation genomic tools for accelerating production in marginal environments of tropical and subtropical world. Precision in phenotyping is the key for success of any molecular-breeding approach. This article reviews genomic technologies and their application to improve agronomic traits in tropical maize breeding has been reviewed in

  11. Post-recombination early Universe cooling by translation-internal inter-conversion: The role of minor constituents.

    PubMed

    McCaffery, Anthony J

    2015-09-14

    Little is known of the mechanism by which H and H2, the principal constituents of the post-re-combination early Universe, cooled sufficiently to permit cluster formation, nucleosynthesis, and, eventually, the formation of structured objects. Radiative decay primarily cools the internal modes of H2, as Δj = - 2 jumps accompany quadrupolar emission. This, however, would be a self-limiting mechanism. In this work, a translational energy cooling mechanism based on collision-induced, translation-to-internal mode conversion, is extended, following an earlier study [A. J. McCaffery and R. J. Marsh, J. Chem. Phys. 139, 234310 (2013)] of ensembles comprising H2 in a H atom bath gas. Here, the possible influence of minor species, such as HD, on this cooling mechanism is investigated. Results suggest that the influence of HD is small but not insignificant. Conversion is very rapid and an overall translation-to-internal energy conversion efficiency of some 5% could be expected. This finding may be of use in the further development of models of this complex phase of early Universe evolution. An unexpected finding in this study was that H2 + HD ensembles are capable of very rapid translation-to-internal conversion with efficiencies of >40% and relaxation rates that appear to be relatively slow. This may have potential as an energy storage mechanism.

  12. Post-recombination early Universe cooling by translation–internal inter-conversion: The role of minor constituents

    SciTech Connect

    McCaffery, Anthony J., E-mail: A.J.McCaffery@sussex.ac.uk

    Little is known of the mechanism by which H and H{sub 2}, the principal constituents of the post-re-combination early Universe, cooled sufficiently to permit cluster formation, nucleosynthesis, and, eventually, the formation of structured objects. Radiative decay primarily cools the internal modes of H{sub 2}, as Δj = − 2 jumps accompany quadrupolar emission. This, however, would be a self-limiting mechanism. In this work, a translational energy cooling mechanism based on collision-induced, translation-to-internal mode conversion, is extended, following an earlier study [A. J. McCaffery and R. J. Marsh, J. Chem. Phys. 139, 234310 (2013)] of ensembles comprising H{sub 2} in amore » H atom bath gas. Here, the possible influence of minor species, such as HD, on this cooling mechanism is investigated. Results suggest that the influence of HD is small but not insignificant. Conversion is very rapid and an overall translation-to-internal energy conversion efficiency of some 5% could be expected. This finding may be of use in the further development of models of this complex phase of early Universe evolution. An unexpected finding in this study was that H{sub 2} + HD ensembles are capable of very rapid translation-to-internal conversion with efficiencies of >40% and relaxation rates that appear to be relatively slow. This may have potential as an energy storage mechanism.« less

  13. Impact of recombinant globular adiponectin on early warm ischemia-reperfusion injury in rat bile duct after liver transplantation.

    PubMed

    Xia, Yang; Gong, Jian-Ping

    2014-09-19

    Adiponectin (APN) is an adipocyte protein with anti-diabetic properties, which has been recently revealed to have anti-inflammatory activity in organ ischemia- reperfusion injury (IRI). However, little is known about its function in bile duct IRI after liver transplantation. Therefore, we investigated whether APN affects early warm IRI in rat bile duct using a liver autologous transplantation model. In our study, rats were randomly divided into three experimental groups: a sham group, a IRI group, and a APN group. The serum enzyme levels and BDISS scores of bile duct histology associated with bile duct injury, decreased after administration of APN. Subsequently, the expression of proinflammatory cytokines, such as tumor necrosis factor(TNF-α),.interleukin-6(IL-6) and myeloperoxidase (MPO) decreased. Furthermore, pretreatment with APN suppressed the activation of nuclear factor-kappa B (NF-κB) (p65), a transcription factor involved in inflammatory reactions, compared to other two groups. Administration of APN also downregulated the expression of Fas protein and attenuated caspase-3 activity to decrease bile duct apoptosis. Our results illustrate that APN protects the rat bile duct against early warm IRI by suppressing the inflammatory response and hepatocyte apoptosis, and NF-κB (p65) plays an important role in this process.

  14. The role of Tre6P and SnRK1 in maize early kernel development and events leading to stress-induced kernel abortion.

    PubMed

    Bledsoe, Samuel W; Henry, Clémence; Griffiths, Cara A; Paul, Matthew J; Feil, Regina; Lunn, John E; Stitt, Mark; Lagrimini, L Mark

    2017-04-12

    Drought stress during flowering is a major contributor to yield loss in maize. Genetic and biotechnological improvement in yield sustainability requires an understanding of the mechanisms underpinning yield loss. Sucrose starvation has been proposed as the cause for kernel abortion; however, potential targets for genetic improvement have not been identified. Field and greenhouse drought studies with maize are expensive and it can be difficult to reproduce results; therefore, an in vitro kernel culture method is presented as a proxy for drought stress occurring at the time of flowering in maize (3 days after pollination). This method is used to focus on the effects of drought on kernel metabolism, and the role of trehalose 6-phosphate (Tre6P) and the sucrose non-fermenting-1-related kinase (SnRK1) as potential regulators of this response. A precipitous drop in Tre6P is observed during the first two hours after removing the kernels from the plant, and the resulting changes in transcript abundance are indicative of an activation of SnRK1, and an immediate shift from anabolism to catabolism. Once Tre6P levels are depleted to below 1 nmol∙g -1 FW in the kernel, SnRK1 remained active throughout the 96 h experiment, regardless of the presence or absence of sucrose in the medium. Recovery on sucrose enriched medium results in the restoration of sucrose synthesis and glycolysis. Biosynthetic processes including the citric acid cycle and protein and starch synthesis are inhibited by excision, and do not recover even after the re-addition of sucrose. It is also observed that excision induces the transcription of the sugar transporters SUT1 and SWEET1, the sucrose hydrolyzing enzymes CELL WALL INVERTASE 2 (INCW2) and SUCROSE SYNTHASE 1 (SUSY1), the class II TREHALOSE PHOSPHATE SYNTHASES (TPS), TREHALASE (TRE), and TREHALOSE PHOSPHATE PHOSPHATASE (ZmTPPA.3), previously shown to enhance drought tolerance (Nuccio et al., Nat Biotechnol (October 2014):1-13, 2015). The impact

  15. Recombination monitor

    SciTech Connect

    Zhang, S. Y.; Blaskiewicz, M.

    This is a brief report on LEReC recombination monitor design considerations. The recombination produced Au 78+ ion rate is reviewed. Based on this two designs are discussed. One is to use the large dispersion lattice. It is shown that even with the large separation of the Au 78+ beam from the Au 79+ beam, the continued monitoring of the recombination is not possible. Accumulation of Au 78+ ions is needed, plus collimation of the Au79+ beam. In another design, it is shown that the recombination monitor can be built based on the proposed scheme with the nominal lattice. From machinemore » operation point of view, this design is preferable. Finally, possible studies and the alternative strategies with the basic goal of the monitor are discussed.« less

  16. QTL Mapping of Low-Temperature Germination Ability in the Maize IBM Syn4 RIL Population

    PubMed Central

    Hu, Shuaidong; Lübberstedt, Thomas; Zhao, Guangwu; Lee, Michael

    2016-01-01

    Low temperature is the primary factor to affect maize sowing in early spring. It is, therefore, vital for maize breeding programs to improve tolerance to low temperatures at seed germination stage. However, little is known about maize QTL involved in low-temperature germination ability. 243 lines of the intermated B73×Mo17 (IBM) Syn4 recombinant inbred line (RIL) population was used for QTL analysis of low-temperature germination ability. There were significant differences in germination-related traits under both conditions of low temperature (12°C/16h, 18°C/8h) and optimum temperature (28°C/24h) between the parental lines. Only three QTL were identified for controlling optimum-temperature germination rate. Six QTL controlling low-temperature germination rate were detected on chromosome 4, 5, 6, 7 and 9, and contribution rate of single QTL explained between 3.39%~11.29%. In addition, six QTL controlling low-temperature primary root length were detected in chromosome 4, 5, 6, and 9, and the contribution rate of single QTL explained between 3.96%~8.41%. Four pairs of QTL were located at the same chromosome position and together controlled germination rate and primary root length under low temperature condition. The nearest markers apart from the corresponding QTL (only 0.01 cM) were umc1303 (265.1 cM) on chromosome 4, umc1 (246.4 cM) on chromosome 5, umc62 (459.1 cM) on chromosome 6, bnl14.28a (477.4 cM) on chromosome 9, respectively. A total of 3155 candidate genes were extracted from nine separate intervals based on the Maize Genetics and Genomics Database (http://www.maizegdb.org). Five candidate genes were selected for analysis as candidates putatively affecting seed germination and seedling growth at low temperature. The results provided a basis for further fine mapping, molecular marker assisted breeding and functional study of cold-tolerance at the stage of seed germination in maize. PMID:27031623

  17. Effects of temperature changes on maize production in Mozambique

    USGS Publications Warehouse

    Harrison, L.; Michaelsen, J.; Funk, Chris; Husak, G.

    2011-01-01

    We examined intraseasonal changes in maize phenology and heat stress exposure over the 1979-2008 period, using Mozambique meteorological station data and maize growth requirements in a growing degree-day model. Identifying historical effects of warming on maize growth is particularly important in Mozambique because national food security is highly dependent on domestic food production, most of which is grown in already warm to hot environments. Warming temperatures speed plant development, shortening the length of growth periods necessary for optimum plant and grain size. This faster phenological development also alters the timing of maximum plant water demand. In hot growing environments, temperature increases during maize pollination threaten to make midseason crop failure the norm. In addition to creating a harsher thermal environment, we find that early season temperature increases have caused the maize reproductive period to start earlier, increasing the risk of heat and water stress. Declines in time to maize maturation suggest that, independent of effects to water availability, yield potential is becoming increasingly limited by warming itself. Regional variations in effects are a function of the timing and magnitude of temperature increases and growing season characteristics. Continuation of current climatic trends could induce substantial yield losses in some locations. Farmers could avoid some losses through simple changes to planting dates and maize varietal types.

  18. Standardization, evaluation and early-phase method validation of an analytical scheme for batch-consistency N-glycosylation analysis of recombinant produced glycoproteins.

    PubMed

    Zietze, Stefan; Müller, Rainer H; Brecht, René

    2008-03-01

    In order to set up a batch-to-batch-consistency analytical scheme for N-glycosylation analysis, several sample preparation steps including enzyme digestions and fluorophore labelling and two HPLC-methods were established. The whole method scheme was standardized, evaluated and validated according to the requirements on analytical testing in early clinical drug development by usage of a recombinant produced reference glycoprotein (RGP). The standardization of the methods was performed by clearly defined standard operation procedures. During evaluation of the methods, the major interest was in the loss determination of oligosaccharides within the analytical scheme. Validation of the methods was performed with respect to specificity, linearity, repeatability, LOD and LOQ. Due to the fact that reference N-glycan standards were not available, a statistical approach was chosen to derive accuracy from the linearity data. After finishing the validation procedure, defined limits for method variability could be calculated and differences observed in consistency analysis could be separated into significant and incidental ones.

  19. Predicting Chromosomal Locations of Genetically Mapped Loci in Maize Using the Morgan2McClintock Translator

    PubMed Central

    Lawrence, Carolyn J.; Seigfried, Trent E.; Bass, Hank W.; Anderson, Lorinda K.

    2006-01-01

    The Morgan2McClintock Translator permits prediction of meiotic pachytene chromosome map positions from recombination-based linkage data using recombination nodule frequency distributions. Its outputs permit estimation of DNA content between mapped loci and help to create an integrated overview of the maize nuclear genome structure. PMID:16387866

  20. Predicting chromosomal locations of genetically mapped loci in maize using the Morgan2McClintock Translator.

    PubMed

    Lawrence, Carolyn J; Seigfried, Trent E; Bass, Hank W; Anderson, Lorinda K

    2006-03-01

    The Morgan2McClintock Translator permits prediction of meiotic pachytene chromosome map positions from recombination-based linkage data using recombination nodule frequency distributions. Its outputs permit estimation of DNA content between mapped loci and help to create an integrated overview of the maize nuclear genome structure.

  1. Preceramic maize from Paredones and Huaca Prieta, Peru

    PubMed Central

    Grobman, Alexander; Bonavia, Duccio; Dillehay, Tom D.; Piperno, Dolores R.; Iriarte, José; Holst, Irene

    2012-01-01

    Maize (Zea mays ssp. mays) is among the world's most important and ancient domesticated crops. Although the chronology of its domestication and initial dispersals out of Mexico into Central and South America has become more clear due to molecular and multiproxy archaeobotanical research, important problems remain. Among them is the paucity of information on maize's early morphological evolution and racial diversification brought about in part by the poor preservation of macrofossils dating to the pre-5000 calibrated years before the present period from obligate dispersal routes located in the tropical forest. We report newly discovered macrobotanical and microbotanical remains of maize that shed significant light on the chronology, land race evolution, and cultural contexts associated with the crop's early movements into South America and adaptation to new environments. The evidence comes from the coastal Peruvian sites of Paredones and Huaca Prieta, Peru; dates from the middle and late preceramic and early ceramic periods (between ca. 6700 and 3000 calibrated years before the present); and constitutes some of the earliest known cobs, husks, stalks, and tassels. The macrobotanical record indicates that a diversity of racial complexes characteristic of the Andean region emerged during the preceramic era. In addition, accelerator mass spectrometry radiocarbon determinations carried out directly on different structures of preserved maize plants strongly suggest that assays on burned cobs are more reliable than those on unburned cobs. Our findings contribute to knowledge of the early diffusion of maize and agriculture and have broader implications for understanding the development of early preindustrial human societies. PMID:22307642

  2. Preceramic maize from Paredones and Huaca Prieta, Peru.

    PubMed

    Grobman, Alexander; Bonavia, Duccio; Dillehay, Tom D; Piperno, Dolores R; Iriarte, José; Holst, Irene

    2012-01-31

    Maize (Zea mays ssp. mays) is among the world's most important and ancient domesticated crops. Although the chronology of its domestication and initial dispersals out of Mexico into Central and South America has become more clear due to molecular and multiproxy archaeobotanical research, important problems remain. Among them is the paucity of information on maize's early morphological evolution and racial diversification brought about in part by the poor preservation of macrofossils dating to the pre-5000 calibrated years before the present period from obligate dispersal routes located in the tropical forest. We report newly discovered macrobotanical and microbotanical remains of maize that shed significant light on the chronology, land race evolution, and cultural contexts associated with the crop's early movements into South America and adaptation to new environments. The evidence comes from the coastal Peruvian sites of Paredones and Huaca Prieta, Peru; dates from the middle and late preceramic and early ceramic periods (between ca. 6700 and 3000 calibrated years before the present); and constitutes some of the earliest known cobs, husks, stalks, and tassels. The macrobotanical record indicates that a diversity of racial complexes characteristic of the Andean region emerged during the preceramic era. In addition, accelerator mass spectrometry radiocarbon determinations carried out directly on different structures of preserved maize plants strongly suggest that assays on burned cobs are more reliable than those on unburned cobs. Our findings contribute to knowledge of the early diffusion of maize and agriculture and have broader implications for understanding the development of early preindustrial human societies.

  3. Gene evolutionary trajectories and GC patterns driven by recombination in Zea mays

    USDA-ARS?s Scientific Manuscript database

    Recombination occurring during meiosis is critical for creating genetic variation and plays an essential role in plant evolution. In addition to creating novel gene combinations, recombination can affect genome structure through altering GC patterns. In maize (Zea mays) and other grasses, another in...

  4. Recombinant allergens

    PubMed Central

    Jutel, Marek; Solarewicz-Madejek, Katarzyna; Smolinska, Sylwia

    2012-01-01

    Allergen specific immunotherapy (SIT) is the only known causative treatment of allergic diseases. Recombinant allergen-based vaccination strategies arose from a strong need to both to improve safety and enhance efficacy of SIT. In addition, new vaccines can be effective in allergies including food allergy or atopic dermatitis, which poorly respond to the current treatment with allergen extracts. A number of successful clinical studies with both wild-type and hypoallergenic derivatives of recombinant allergens vaccines have been reported for the last decade. They showed high efficacy and safety profile as well as very strong modulation of T and B cell responses to specific allergens. PMID:23095874

  5. Genomic estimation of complex traits reveals ancient maize adaptation to temperate North America

    USDA-ARS?s Scientific Manuscript database

    By 4000 years ago, people had introduced maize to the southwestern United States; full agriculture was established quickly in the lowland deserts but delayed in the temperate highlands for 2000 years. We test if the earliest upland maize was adapted for early flowering, a characteristic of modern te...

  6. Genomic, transcriptomic and phenomic variation reveals the complex adaptation to stress response of modern maize breeding

    USDA-ARS?s Scientific Manuscript database

    Early maize adaptation to different agricultural environments was an important process associated with the creation of a stable food supply that allowed the evolution of human civilization in the Americas. To explore the mechanisms of maize adaptation, genomic, transcriptomic and phenomic data were ...

  7. Spectrum Recombination.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1984-01-01

    Describes several methods of executing lecture demonstrations involving the recombination of the spectrum. Groups the techniques into two general classes: bringing selected portions of the spectrum together using lenses or mirrors and blurring the colors by rapid movement or foreshortening. (JM)

  8. MaizeGDB - Past, present, and future

    USDA-ARS?s Scientific Manuscript database

    The Maize Genetics and Genomics Database (MaizeGDB) turns 20 this year. This editorial outlines MaizeGDB's history and connection to the Maize Genetics Cooperation, describes key components of how the MaizeGDB interface will be completely redesigned over the course of the next two years to meet cur...

  9. Betaine deficiency in maize

    SciTech Connect

    Lerma, C.; Rich, P.J.; Ju, G.C.

    1991-04-01

    Maize (Zea mays L.) is a betaine-accumulating species, but certain maize genotypes lack betaine almost completely; a single recessive gene has been implicated as the cause of this deficiency. This study was undertaken to determine whether betaine deficiency in diverse maize germplasm is conditioned by the same genetic locus, and to define the biochemical lesion(s) involved. Complementation tests indicated that all 13 deficient genotypes tested shared a common locus. One maize population (P77) was found to be segregating for betaine deficiency, and true breeding individuals were used to produce related lines with and without betaine. Leaf tissue of both betaine-positivemore » and betaine-deficient lines readily converted supplied betaine aldehyde to betaine, but only the betaine-containing line was able to oxidize supplied choline to betaine. This locates the lesion in betaine-deficient plants at the choline {r arrow} betaine aldehyde step of betaine synthesis. Consistent with this location, betaine-deficient plants were shown to have no detectable endogenous pool of betaine aldehyde.« less

  10. Effects of edaravone, the free radical scavenger, on outcomes in acute cerebral infarction patients treated with ultra-early thrombolysis of recombinant tissue plasminogen activator.

    PubMed

    Lee, Xian-Ru; Xiang, Gui-Ling

    2018-04-01

    Edaravone, a free radical scavenger, alleviates blood-brain barrier disruption in conjunction with suppression of the inflammatory reaction in acute cerebral infarction. Thrombolysis with recombinant tissue plasminogen activator (rtPA) is an established therapy for acute cerebral infarction patients. The purpose of this study was to assess the effects of edaravone on outcomes in acute cerebral infarction patients treated with ultra-early thrombolysis of iv-rt-PA. We conducted a retrospective cohort study using the database of Ningbo First Hospital. We identified patients who were admitted with a primary diagnosis of acute cerebral infarction and treated with intravenous rtPA(iv-rtPA) within 3 h of symptom onset from March 1st in 2014 to October 31st in 2016.Thenceforth,the patients were divided into 2 groups by treatment with(edaravone group) or without edaravone(non-edaravone group). Glasgow Coma Scale (GCS) scores and mRS score at admission were used. Clinical background, risk factors for acute cerebral infarction hemorrhagic transformation, 7-day mortality, recanalization rate, bleeding complications and blood rheology indexes were collected. We also collected the following factors: National Institutes of Health Stroke Scale scores, barthel index. 136 patients treated without edaravone during hospitalization were selected in non-edaravone group while edaravone group included 132 patients treated with edaravone during hospitalization. The patient baseline distributions were well balanced between non-edaravone group and edaravone group. The rate of hemorrhagic transformation in non-edaravone group was higher than that in edaravone group (P < 0.05). The NIHSS scores 7 days and 14 days after symptom onset were higher in non-edaravone group than in edaravone group (both P < 0.05). Edaravone group showed a higher recanalization rate and a lower bleeding complications rate at discharge than the non-edaravone group (both P < 0.05). The differences of

  11. Weed presence altered biotic stress and light signaling in maize even when weeds were removed early in the critical weed-free period

    USDA-ARS?s Scientific Manuscript database

    Weeds reduce crop yield even when there is no competition for resources. A phenomena known as the critical weed-free period (CWFP), which occurs early in the crop’s life cycle, is the essential interval when weed presence can reduce crop growth and yield. Even when weeds are removed after the CWFP, ...

  12. Accumulation and phytotoxicity of technical hexabromocyclododecane in maize.

    PubMed

    Wu, Tong; Huang, Honglin; Zhang, Shuzhen

    2016-04-01

    To investigate the accumulation and phytotoxicity of technical hexabromocyclododecane (HBCD) in maize, young seedlings were exposed to solutions of technical HBCD at different concentrations. The uptake kinetics showed that the HBCD concentration reached an apparent equilibrium within 96hr, and the accumulation was much higher in roots than in shoots. HBCD accumulation in maize had a positive linear correlation with the exposure concentration. The accumulation of different diastereoisomers followed the order γ-HBCD>β-HBCD>α-HBCD. Compared with their proportions in the technical HBCD exposure solution, the diastereoisomer contribution increased for β-HBCD and decreased for γ-HBCD in both maize roots and shoots with exposure time, whereas the contribution of α-HBCD increased in roots and decreased in shoots throughout the experimental period. These results suggest the diastereomer-specific accumulation and translocation of HBCD in maize. Inhibitory effects of HBCD on the early development of maize followed the order of germination rate>root biomass≥root elongation>shoot biomass≥shoot elongation. Hydroxyl radical (OH) and histone H2AX phosphorylation (γ-H2AX) were induced in maize by HBCD exposure, indicative of the generation of oxidative stress and DNA double-strand breaks in maize. An OH scavenger inhibited the expression of γ-H2AX foci in both maize roots and shoots, which suggests the involvement of OH generation in the HBCD-induced DNA damage. The results of this study will offer useful information for a more comprehensive assessment of the environmental behavior and toxicity of technical HBCD. Copyright © 2015. Published by Elsevier B.V.

  13. Glycoprotein from street rabies virus BD06 induces early and robust immune responses when expressed from a non-replicative adenovirus recombinant.

    PubMed

    Wang, Shuchao; Sun, Chenglong; Zhang, Shoufeng; Zhang, Xiaozhuo; Liu, Ye; Wang, Ying; Zhang, Fei; Wu, Xianfu; Hu, Rongliang

    2015-09-01

    The rabies virus (RABV) glycoprotein (G) is responsible for inducing neutralizing antibodies against rabies virus. Development of recombinant vaccines using the G genes from attenuated strains rather than street viruses is a regular practice. In contrast to this scenario, we generated three human adenovirus type 5 recombinants using the G genes from the vaccine strains SRV9 and Flury-LEP, and the street RABV strain BD06 (nrAd5-SRV9-G, nrAd5-Flury-LEP-G, and nrAd5-BD06-G). These recombinants were non-replicative, but could grow up to ~10(8) TCID50/ml in helper HEK293AD cells. Expression of the G protein was verified by immunostaining, quantitative PCR and cytometry. Animal experiments revealed that immunization with nrAd5-BD06-G can induce a higher seroconversion rate, a higher neutralizing antibody level, and a longer survival time after rabies virus challenge in mice when compared with the other two recombinants. Moreover, the expression of granulocyte-macrophage colony-stimulating factor (GM-CSF) was significantly higher in mice immunized with nrAd5-BD06-G, which might also contribute to the increased protection. These results show that the use of street RABV G for non-replicative systems may be an alternative for developing effective recombinant rabies vaccines.

  14. Early Diagnosis of Scrub Typhus with a Rapid Flow Assay Using Recombinant Major Outer Membrane Protein Antigen (r56) of Orientia tsutsugamushi

    PubMed Central

    Ching, W.-M.; Rowland, D.; Zhang, Z.; Bourgeois, A. L.; Kelly, D.; Dasch, G. A.; Devine, P. L.

    2001-01-01

    The variable 56-kDa major outer membrane protein of Orientia tsutsugamushi is the immunodominant antigen in human scrub typhus infections. We developed a rapid immunochromatographic flow assay (RFA) for the detection of immunoglobulin M (IgM) and IgG antibodies to O. tsutsugamushi. The RFA employs a truncated recombinant 56-kDa protein from the Karp strain as the antigen. The performance of the RFA was evaluated with a panel of 321 sera (serial bleedings of 85 individuals suspected of scrub typhus) which were collected in the Pescadore Islands, Taiwan, from 1976 to 1977. Among these 85 individuals, IgM tests were negative for 7 cases by both RFA and indirect fluorescence assay (IFA) using Karp whole-cell antigen. In 29 cases specific responses were detected by the RFA earlier than by IFA, 44 cases had the same detection time, and 5 cases were detected earlier by IFA than by RFA. For IgG responses, 4 individuals were negative with both methods, 37 cases exhibited earlier detection by RFA than IFA, 42 cases were detected at the same time, and 2 cases were detected earlier by IFA than by RFA. The sensitivities of RFA detection of antibody in sera from confirmed cases were 74 and 86% for IgM and IgG, respectively. When IgM and IgG results were combined, the sensitivity was 89%. A panel of 78 individual sera collected from patients with no evidence of scrub typhus was used to evaluate the specificity of the RFA. The specificities of the RFA were 99% for IgM and 97% for IgG. The sensitivities of IFA were 53 and 73% for IgM and IgG, respectively, and were 78% when the results of IgM and IgG were combined. The RFA test was significantly better than the IFA test for the early detection of antibody to scrub typhus in primary infections, while both tests were equally sensitive with reinfected individuals. PMID:11238230

  15. Diagnostic Accuracy of Recombinant Immunoglobulin-like Protein A-Based IgM ELISA for the Early Diagnosis of Leptospirosis in the Philippines.

    PubMed

    Kitashoji, Emi; Koizumi, Nobuo; Lacuesta, Talitha Lea V; Usuda, Daisuke; Ribo, Maricel R; Tria, Edith S; Go, Winston S; Kojiro, Maiko; Parry, Christopher M; Dimaano, Efren M; Villarama, Jose B; Ohnishi, Makoto; Suzuki, Motoi; Ariyoshi, Koya

    2015-01-01

    Leptospirosis is an important but largely under-recognized public health problem in the tropics. Establishment of highly sensitive and specific laboratory diagnosis is essential to reveal the magnitude of problem and to improve treatment. This study aimed to evaluate the diagnostic accuracy of a recombinant LigA protein based IgM ELISA during outbreaks in the clinical-setting of a highly endemic country. A prospective study was conducted from October 2011 to September 2013 at a national referral hospital for infectious diseases in Manila, Philippines. Patients who were hospitalized with clinically suspected leptospirosis were enrolled. Plasma and urine were collected on admission and/or at discharge and tested using the LigA-IgM ELISA and a whole cell-based IgM ELISA. Sensitivity and specificity of these tests were evaluated with cases diagnosed by microscopic agglutination test (MAT), culture and LAMP as the composite reference standard and blood bank donors as healthy controls: the mean+3 standard deviation optical density value of healthy controls was used as the cut-off limit (0.062 for the LigA-IgM ELISA and 0.691 for the whole cell-based IgM ELISA). Of 304 patients enrolled in the study, 270 (89.1%) were male and the median age was 30.5 years; 167 (54.9%) were laboratory confirmed. The sensitivity and ROC curve AUC for the LigA-IgM ELISA was significantly greater than the whole cell-based IgM ELISA (69.5% vs. 54.3%, p<0.01; 0.90 vs. 0.82, p<0.01) on admission, but not at discharge. The specificity of LigA-IgM ELISA and whole cell-based IgM ELISA were not significantly different (98% vs. 97%). Among 158 MAT negative patients, 53 and 28 were positive by LigA- and whole cell-based IgM ELISA, respectively; if the laboratory confirmation was re-defined by LigA-IgM ELISA and LAMP, the clinical findings were more characteristic of leptospirosis than the diagnosis based on MAT/culture/LAMP. The newly developed LigA-IgM ELISA is more sensitive than the whole cell

  16. Diagnostic Accuracy of Recombinant Immunoglobulin-like Protein A-Based IgM ELISA for the Early Diagnosis of Leptospirosis in the Philippines

    PubMed Central

    Kitashoji, Emi; Koizumi, Nobuo; Lacuesta, Talitha Lea V.; Usuda, Daisuke; Ribo, Maricel R.; Tria, Edith S.; Go, Winston S.; Kojiro, Maiko; Parry, Christopher M.; Dimaano, Efren M.; Villarama, Jose B.; Ohnishi, Makoto; Suzuki, Motoi; Ariyoshi, Koya

    2015-01-01

    Background Leptospirosis is an important but largely under-recognized public health problem in the tropics. Establishment of highly sensitive and specific laboratory diagnosis is essential to reveal the magnitude of problem and to improve treatment. This study aimed to evaluate the diagnostic accuracy of a recombinant LigA protein based IgM ELISA during outbreaks in the clinical-setting of a highly endemic country. Methodology/Principal Findings A prospective study was conducted from October 2011 to September 2013 at a national referral hospital for infectious diseases in Manila, Philippines. Patients who were hospitalized with clinically suspected leptospirosis were enrolled. Plasma and urine were collected on admission and/or at discharge and tested using the LigA-IgM ELISA and a whole cell-based IgM ELISA. Sensitivity and specificity of these tests were evaluated with cases diagnosed by microscopic agglutination test (MAT), culture and LAMP as the composite reference standard and blood bank donors as healthy controls: the mean+3 standard deviation optical density value of healthy controls was used as the cut-off limit (0.062 for the LigA-IgM ELISA and 0.691 for the whole cell-based IgM ELISA). Of 304 patients enrolled in the study, 270 (89.1%) were male and the median age was 30.5 years; 167 (54.9%) were laboratory confirmed. The sensitivity and ROC curve AUC for the LigA-IgM ELISA was significantly greater than the whole cell-based IgM ELISA (69.5% vs. 54.3%, p<0.01; 0.90 vs. 0.82, p<0.01) on admission, but not at discharge. The specificity of LigA-IgM ELISA and whole cell-based IgM ELISA were not significantly different (98% vs. 97%). Among 158 MAT negative patients, 53 and 28 were positive by LigA- and whole cell-based IgM ELISA, respectively; if the laboratory confirmation was re-defined by LigA-IgM ELISA and LAMP, the clinical findings were more characteristic of leptospirosis than the diagnosis based on MAT/culture/LAMP. Conclusions/Significance The newly

  17. A Maize Cystatin Suppresses Host Immunity by Inhibiting Apoplastic Cysteine Proteases[C][W

    PubMed Central

    van der Linde, Karina; Hemetsberger, Christoph; Kastner, Christine; Kaschani, Farnusch; van der Hoorn, Renier A.L.; Kumlehn, Jochen; Doehlemann, Gunther

    2012-01-01

    Ustilago maydis is a biotrophic pathogen causing maize (Zea mays) smut disease. Transcriptome profiling of infected maize plants indicated that a gene encoding a putative cystatin (CC9) is induced upon penetration by U. maydis wild type. By contrast, cc9 is not induced after infection with the U. maydis effector mutant Δpep1, which elicits massive plant defenses. Silencing of cc9 resulted in a strongly induced maize defense gene expression and a hypersensitive response to U. maydis wild-type infection. Consequently, fungal colonization was strongly reduced in cc9-silenced plants, while recombinant CC9 prevented salicylic acid (SA)–induced defenses. Protease activity profiling revealed a strong induction of maize Cys proteases in SA-treated leaves, which could be inhibited by addition of CC9. Transgenic maize plants overexpressing cc9-mCherry showed an apoplastic localization of CC9. The transgenic plants showed a block in Cys protease activity and SA-dependent gene expression. Moreover, activated apoplastic Cys proteases induced SA-associated defense gene expression in naïve plants, which could be suppressed by CC9. We show that apoplastic Cys proteases play a pivotal role in maize defense signaling. Moreover, we identified cystatin CC9 as a novel compatibility factor that suppresses Cys protease activity to allow biotrophic interaction of maize with the fungal pathogen U. maydis. PMID:22454455

  18. Fast-Flowering Mini-Maize: Seed to Seed in 60 Days

    PubMed Central

    McCaw, Morgan E.; Wallace, Jason G.; Albert, Patrice S.; Buckler, Edward S.; Birchler, James A.

    2016-01-01

    Two lines of Zea mays were developed as a short-generation model for maize. The Fast-Flowering Mini-Maize (FFMM) lines A and B are robust inbred lines with a significantly shorter generation time, much smaller stature, and better greenhouse adaptation than traditional maize varieties. Five generations a year are typical. FFMM is the result of a modified double-cross hybrid between four fast-flowering lines: Neuffer’s Early ACR (full color), Alexander’s Early Early Synthetic, Tom Thumb Popcorn, and Gaspe Flint, followed by selection for early flowering and desirable morphology throughout an 11-generation selfing regime. Lines A and B were derived from different progeny of the initial hybrid, and crosses between Mini-Maize A and B exhibit heterosis. The ancestry of each genomic region of Mini-Maize A and B was inferred from the four founder populations using genotyping by sequencing. Other genetic and genomic tools for these lines include karyotypes for both lines A and B, kernel genetic markers y1 (white endosperm) and R1-scm2 (purple endosperm and embryo) introgressed into Mini-Maize A, and ∼24× whole-genome resequencing data for Mini-Maize A. PMID:27440866

  19. Ribulose-1,5-bis-phosphate carboxylase/oxygenase accumulation factor1 is required for holoenzyme assembly in maize.

    PubMed

    Feiz, Leila; Williams-Carrier, Rosalind; Wostrikoff, Katia; Belcher, Susan; Barkan, Alice; Stern, David B

    2012-08-01

    Most life is ultimately sustained by photosynthesis and its rate-limiting carbon fixing enzyme, ribulose-1,5-bis-phosphate carboxylase/oxygenase (Rubisco). Although the structurally comparable cyanobacterial Rubisco is amenable to in vitro assembly, the higher plant enzyme has been refractory to such manipulation due to poor understanding of its assembly pathway. Here, we report the identification of a chloroplast protein required for Rubisco accumulation in maize (Zea mays), RUBISCO ACCUMULATION FACTOR1 (RAF1), which lacks any characterized functional domains. Maize lines lacking RAF1 due to Mutator transposon insertions are Rubisco deficient and seedling lethal. Analysis of transcripts and proteins showed that Rubisco large subunit synthesis in raf1 plants is not compromised; however, newly synthesized Rubisco large subunit appears in a high molecular weight form whose accumulation requires a specific chaperonin 60 isoform. Gel filtration analysis and blue native gels showed that endogenous and recombinant RAF1 are trimeric; however, following in vivo cross-linking, RAF1 copurifies with Rubisco large subunit, suggesting that they interact weakly or transiently. RAF1 is predominantly expressed in bundle sheath chloroplasts, consistent with a Rubisco accumulation function. Our results support the hypothesis that RAF1 acts during Rubisco assembly by releasing and/or sequestering the large subunit from chaperonins early in the assembly process.

  20. Genetic mechanisms of Maize dwarf mosaic virus resistance in maize

    USDA-ARS?s Scientific Manuscript database

    Maize resistance to viruses has been well-characterized at the genetic level, and loci responsible for resistance to potyviruses including Maize dwarf mosaic virus (MDMV), Sugarcane mosaic virus (SCMV), Sorghum mosaic virus (SrMV), and Johnsongrass mosaic virus (JGMV), have been mapped in several ge...

  1. Maize kernel evolution:From teosinte to maize

    USDA-ARS?s Scientific Manuscript database

    Maize is the most productive and highest value commodity in the US and around the world: over 1 billion tons were produced each year in 2013 and 2014. Together, maize, rice and wheat comprise over 60% of the world’s caloric intake, with wide regional variability in the importance of each crop. The i...

  2. MaizeGDB: The Maize Genetics and Genomics Database.

    USDA-ARS?s Scientific Manuscript database

    MaizeGDB is the community database for biological information about the crop plant Zea mays. Genomic, genetic, sequence, gene product, functional characterization, literature reference, and person/organization contact information are among the datatypes stored at MaizeGDB. At the project’s website...

  3. Transcriptome Dynamics during Maize Endosperm Development

    PubMed Central

    Feng, Jiaojiao; Xu, Shutu; Wang, Lei; Li, Feifei; Li, Yibo; Zhang, Renhe; Zhang, Xinghua; Xue, Jiquan; Guo, Dongwei

    2016-01-01

    The endosperm is a major organ of the seed that plays vital roles in determining seed weight and quality. However, genome-wide transcriptome patterns throughout maize endosperm development have not been comprehensively investigated to date. Accordingly, we performed a high-throughput RNA sequencing (RNA-seq) analysis of the maize endosperm transcriptome at 5, 10, 15 and 20 days after pollination (DAP). We found that more than 11,000 protein-coding genes underwent alternative splicing (AS) events during the four developmental stages studied. These genes were mainly involved in intracellular protein transport, signal transmission, cellular carbohydrate metabolism, cellular lipid metabolism, lipid biosynthesis, protein modification, histone modification, cellular amino acid metabolism, and DNA repair. Additionally, 7,633 genes, including 473 transcription factors (TFs), were differentially expressed among the four developmental stages. The differentially expressed TFs were from 50 families, including the bZIP, WRKY, GeBP and ARF families. Further analysis of the stage-specific TFs showed that binding, nucleus and ligand-dependent nuclear receptor activities might be important at 5 DAP, that immune responses, signalling, binding and lumen development are involved at 10 DAP, that protein metabolic processes and the cytoplasm might be important at 15 DAP, and that the responses to various stimuli are different at 20 DAP compared with the other developmental stages. This RNA-seq analysis provides novel, comprehensive insights into the transcriptome dynamics during early endosperm development in maize. PMID:27695101

  4. Distribution of expansins in graviresponding maize roots

    NASA Technical Reports Server (NTRS)

    Zhang, N.; Hasenstein, K. H.

    2000-01-01

    To test if expansins, wall loosening proteins that disrupt binding between microfibrils and cell wall matrix, participate in the differential elongation of graviresponding roots, Zea mays L. cv. Merit roots were gravistimulated and used for immunolocalization with anti-expansin. Western blots showed cross-reaction with two proteins of maize, one of the same mass as cucumber expansin (29 kDa), the second slightly larger (32 kDa). Maize roots contained mainly the larger protein, but both were found in coleoptiles. The expansin distribution in cucumber roots and hypocotyls was similar to the distribution in maize. Roots showed stronger expansin signals on the expanding convex side than the concave flank as early as 30 min after gravistimulation. Treatment with brefeldin A, a vesicle transport inhibitor, or the auxin transport inhibitor, naphthylphthalamic acid, showed delayed graviresponse and the appearance of differential staining. Our results indicate that expansins may be transported and secreted to cell walls via vesicles and function in wall expansion.

  5. Nutritive value of maize silage in relation to dairy cow performance and milk quality.

    PubMed

    Khan, Nazir A; Yu, Peiqiang; Ali, Mubarak; Cone, John W; Hendriks, Wouter H

    2015-01-01

    Maize silage has become the major forage component in the ration of dairy cows over the last few decades. This review provides information on the mean content and variability in chemical composition, fatty acid (FA) profile and ensiling quality of maize silages, and discusses the major factors which cause these variations. In addition, the effect of the broad range in chemical composition of maize silages on the total tract digestibility of dietary nutrients, milk production and milk composition of dairy cows is quantified and discussed. Finally, the optimum inclusion level of maize silage in the ration of dairy cows for milk production and composition is reviewed. The data showed that the nutritive value of maize silages is highly variable and that most of this variation is caused by large differences in maturity at harvest. Maize silages ensiled at a very early stage (dry matter (DM) < 250 g kg(-1)) were particularly low in starch content and starch/neutral detergent fibre (NDF) ratio, and resulted in a lower DM intake (DMI), milk yield and milk protein content. The DMI, milk yield and milk protein content increased with advancing maturity, reaching an optimum level for maize silages ensiled at DM contents of 300-350 g kg(-1), and then declined slightly at further maturity beyond 350 g kg(-1). The increases in milk (R(2) = 0.599) and protein (R(2) = 0.605) yields with maturity of maize silages were positively related to the increase in starch/NDF ratio of the maize silages. On average, the inclusion of maize silage in grass silage-based diets improved the forage DMI by 2 kg d(-1), milk yield by 1.9 kg d(-1) and milk protein content by 1.2 g kg(-1). Further comparisons showed that, in terms of milk and milk constituent yields, the optimum grass/maize silage ratio depends on the quality of both the grass and maize silages. Replacement of grass silage with maize silage in the ration, as well as an increasing maturity of the maize silages, altered the milk FA profile

  6. Maize rhabdovirus-vector transmission

    USDA-ARS?s Scientific Manuscript database

    oth of the plant-infecting rhabdovirus genera, Nucleorhabdovirus and Cytorhabdovirus, contain viruses that infect maize (Zea mays L.). The maize infecting rhabdoviruses are transmitted by hemipteran insects in the families Cicadellidae and Delphacidae in a persistent propagative manner. This chapt...

  7. Maize variety and method of production

    DOEpatents

    Pauly, Markus; Hake, Sarah; Kraemer, Florian J

    2014-05-27

    The disclosure relates to a maize plant, seed, variety, and hybrid. More specifically, the disclosure relates to a maize plant containing a Cal-1 allele, whose expression results in increased cell wall-derived glucan content in the maize plant. The disclosure also relates to crossing inbreds, varieties, and hybrids containing the Cal-1 allele to produce novel types and varieties of maize plants.

  8. Metabolic pathway resources at MaizeGDB

    USDA-ARS?s Scientific Manuscript database

    Two maize metabolic networks are available at MaizeGDB: MaizeCyc (http://maizecyc.maizegdb.org, also at Gramene) and CornCyc (http://corncyc.maizegdb.org, also at the Plant Metabolic Network). MaizeCyc was developed by Gramene, and CornCyc by the Plant Metabolic Network, both in collaboration with M...

  9. Genomic estimation of complex traits reveals ancient maize adaptation to temperate North America.

    PubMed

    Swarts, Kelly; Gutaker, Rafal M; Benz, Bruce; Blake, Michael; Bukowski, Robert; Holland, James; Kruse-Peeples, Melissa; Lepak, Nicholas; Prim, Lynda; Romay, M Cinta; Ross-Ibarra, Jeffrey; Sanchez-Gonzalez, Jose de Jesus; Schmidt, Chris; Schuenemann, Verena J; Krause, Johannes; Matson, R G; Weigel, Detlef; Buckler, Edward S; Burbano, Hernán A

    2017-08-04

    By 4000 years ago, people had introduced maize to the southwestern United States; full agriculture was established quickly in the lowland deserts but delayed in the temperate highlands for 2000 years. We test if the earliest upland maize was adapted for early flowering, a characteristic of modern temperate maize. We sequenced fifteen 1900-year-old maize cobs from Turkey Pen Shelter in the temperate Southwest. Indirectly validated genomic models predicted that Turkey Pen maize was marginally adapted with respect to flowering, as well as short, tillering, and segregating for yellow kernel color. Temperate adaptation drove modern population differentiation and was selected in situ from ancient standing variation. Validated prediction of polygenic traits improves our understanding of ancient phenotypes and the dynamics of environmental adaptation. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  10. A Mitochondrial Mutator System in Maize1[w

    PubMed Central

    Kuzmin, Evgeny V.; Duvick, Donald N.; Newton, Kathleen J.

    2005-01-01

    The P2 line of maize (Zea mays) is characterized by mitochondrial genome destabilization, initiated by recessive nuclear mutations. These alleles alter copy number control of mitochondrial subgenomes and disrupt normal transfer of mitochondrial genomic components to progeny, resulting in differences in mitochondrial DNA profiles among sibling plants and between parents and progeny. The mitochondrial DNA changes are often associated with variably defective phenotypes, reflecting depletion of essential mitochondrial genes. The P2 nuclear genotype can be considered a natural mutagenesis system for maize mitochondria. It dramatically accelerates mitochondrial genomic divergence by increasing low copy-number subgenomes, by rapidly amplifying aberrant recombination products, and by causing the random loss of normal components of the mitochondrial genomes. PMID:15681663

  11. The B73 maize genome: complexity, diversity, and dynamics.

    PubMed

    Schnable, Patrick S; Ware, Doreen; Fulton, Robert S; Stein, Joshua C; Wei, Fusheng; Pasternak, Shiran; Liang, Chengzhi; Zhang, Jianwei; Fulton, Lucinda; Graves, Tina A; Minx, Patrick; Reily, Amy Denise; Courtney, Laura; Kruchowski, Scott S; Tomlinson, Chad; Strong, Cindy; Delehaunty, Kim; Fronick, Catrina; Courtney, Bill; Rock, Susan M; Belter, Eddie; Du, Feiyu; Kim, Kyung; Abbott, Rachel M; Cotton, Marc; Levy, Andy; Marchetto, Pamela; Ochoa, Kerri; Jackson, Stephanie M; Gillam, Barbara; Chen, Weizu; Yan, Le; Higginbotham, Jamey; Cardenas, Marco; Waligorski, Jason; Applebaum, Elizabeth; Phelps, Lindsey; Falcone, Jason; Kanchi, Krishna; Thane, Thynn; Scimone, Adam; Thane, Nay; Henke, Jessica; Wang, Tom; Ruppert, Jessica; Shah, Neha; Rotter, Kelsi; Hodges, Jennifer; Ingenthron, Elizabeth; Cordes, Matt; Kohlberg, Sara; Sgro, Jennifer; Delgado, Brandon; Mead, Kelly; Chinwalla, Asif; Leonard, Shawn; Crouse, Kevin; Collura, Kristi; Kudrna, Dave; Currie, Jennifer; He, Ruifeng; Angelova, Angelina; Rajasekar, Shanmugam; Mueller, Teri; Lomeli, Rene; Scara, Gabriel; Ko, Ara; Delaney, Krista; Wissotski, Marina; Lopez, Georgina; Campos, David; Braidotti, Michele; Ashley, Elizabeth; Golser, Wolfgang; Kim, HyeRan; Lee, Seunghee; Lin, Jinke; Dujmic, Zeljko; Kim, Woojin; Talag, Jayson; Zuccolo, Andrea; Fan, Chuanzhu; Sebastian, Aswathy; Kramer, Melissa; Spiegel, Lori; Nascimento, Lidia; Zutavern, Theresa; Miller, Beth; Ambroise, Claude; Muller, Stephanie; Spooner, Will; Narechania, Apurva; Ren, Liya; Wei, Sharon; Kumari, Sunita; Faga, Ben; Levy, Michael J; McMahan, Linda; Van Buren, Peter; Vaughn, Matthew W; Ying, Kai; Yeh, Cheng-Ting; Emrich, Scott J; Jia, Yi; Kalyanaraman, Ananth; Hsia, An-Ping; Barbazuk, W Brad; Baucom, Regina S; Brutnell, Thomas P; Carpita, Nicholas C; Chaparro, Cristian; Chia, Jer-Ming; Deragon, Jean-Marc; Estill, James C; Fu, Yan; Jeddeloh, Jeffrey A; Han, Yujun; Lee, Hyeran; Li, Pinghua; Lisch, Damon R; Liu, Sanzhen; Liu, Zhijie; Nagel, Dawn Holligan; McCann, Maureen C; SanMiguel, Phillip; Myers, Alan M; Nettleton, Dan; Nguyen, John; Penning, Bryan W; Ponnala, Lalit; Schneider, Kevin L; Schwartz, David C; Sharma, Anupma; Soderlund, Carol; Springer, Nathan M; Sun, Qi; Wang, Hao; Waterman, Michael; Westerman, Richard; Wolfgruber, Thomas K; Yang, Lixing; Yu, Yeisoo; Zhang, Lifang; Zhou, Shiguo; Zhu, Qihui; Bennetzen, Jeffrey L; Dawe, R Kelly; Jiang, Jiming; Jiang, Ning; Presting, Gernot G; Wessler, Susan R; Aluru, Srinivas; Martienssen, Robert A; Clifton, Sandra W; McCombie, W Richard; Wing, Rod A; Wilson, Richard K

    2009-11-20

    We report an improved draft nucleotide sequence of the 2.3-gigabase genome of maize, an important crop plant and model for biological research. Over 32,000 genes were predicted, of which 99.8% were placed on reference chromosomes. Nearly 85% of the genome is composed of hundreds of families of transposable elements, dispersed nonuniformly across the genome. These were responsible for the capture and amplification of numerous gene fragments and affect the composition, sizes, and positions of centromeres. We also report on the correlation of methylation-poor regions with Mu transposon insertions and recombination, and copy number variants with insertions and/or deletions, as well as how uneven gene losses between duplicated regions were involved in returning an ancient allotetraploid to a genetically diploid state. These analyses inform and set the stage for further investigations to improve our understanding of the domestication and agricultural improvements of maize.

  12. Advances in Maize Transformation Technologies and Development of Transgenic Maize

    PubMed Central

    Yadava, Pranjal; Abhishek, Alok; Singh, Reeva; Singh, Ishwar; Kaul, Tanushri; Pattanayak, Arunava; Agrawal, Pawan K.

    2017-01-01

    Maize is the principal grain crop of the world. It is also the crop where genetic engineering has been employed to a great extent to improve its various traits. The ability to transform maize is a crucial step for application of gene technology in maize improvement. There have been constant improvements in the maize transformation technologies over past several years. The choice of genotype and the explant material to initiate transformation and the different types of media to be used in various stages of tissue culture can have significant impact on the outcomes of the transformation efforts. Various methods of gene transfer, like the particle bombardment, protoplast transformation, Agrobacterium-mediated, in planta transformation, etc., have been tried and improved over years. Similarly, various selection systems for retrieval of the transformants have been attempted. The commercial success of maize transformation and transgenic development is unmatched by any other crop so far. Maize transformation with newer gene editing technologies is opening up a fresh dimension in transformation protocols and work-flows. This review captures the various past and recent facets in improvement in maize transformation technologies and attempts to present a comprehensive updated picture of the current state of the art in this area. PMID:28111576

  13. Advances in Maize Transformation Technologies and Development of Transgenic Maize.

    PubMed

    Yadava, Pranjal; Abhishek, Alok; Singh, Reeva; Singh, Ishwar; Kaul, Tanushri; Pattanayak, Arunava; Agrawal, Pawan K

    2016-01-01

    Maize is the principal grain crop of the world. It is also the crop where genetic engineering has been employed to a great extent to improve its various traits. The ability to transform maize is a crucial step for application of gene technology in maize improvement. There have been constant improvements in the maize transformation technologies over past several years. The choice of genotype and the explant material to initiate transformation and the different types of media to be used in various stages of tissue culture can have significant impact on the outcomes of the transformation efforts. Various methods of gene transfer, like the particle bombardment, protoplast transformation, Agrobacterium -mediated, in planta transformation, etc., have been tried and improved over years. Similarly, various selection systems for retrieval of the transformants have been attempted. The commercial success of maize transformation and transgenic development is unmatched by any other crop so far. Maize transformation with newer gene editing technologies is opening up a fresh dimension in transformation protocols and work-flows. This review captures the various past and recent facets in improvement in maize transformation technologies and attempts to present a comprehensive updated picture of the current state of the art in this area.

  14. The potential role of genetic assimilation during maize domestication

    PubMed Central

    Pedersen, Sarah; Holst, Irene; Hufford, Matthew B.; Winter, Klaus; Piperno, Dolores; Ross-Ibarra, Jeffrey

    2017-01-01

    Domestication research has largely focused on identification of morphological and genetic differences between extant populations of crops and their wild relatives. Little attention has been paid to the potential effects of environment despite substantial known changes in climate from the time of domestication to modern day. In recent research, the exposure of teosinte (i.e., wild maize) to environments similar to the time of domestication, resulted in a plastic induction of domesticated phenotypes in teosinte. These results suggest that early agriculturalists may have selected for genetic mechanisms that cemented domestication phenotypes initially induced by a plastic response of teosinte to environment, a process known as genetic assimilation. To better understand this phenomenon and the potential role of environment in maize domestication, we examined differential gene expression in maize (Zea mays ssp. mays) and teosinte (Zea mays ssp. parviglumis) between past and present conditions. We identified a gene set of over 2000 loci showing a change in expression across environmental conditions in teosinte and invariance in maize. In fact, overall we observed both greater plasticity in gene expression and more substantial changes in co-expressionnal networks in teosinte across environments when compared to maize. While these results suggest genetic assimilation played at least some role in domestication, genes showing expression patterns consistent with assimilation are not significantly enriched for previously identified domestication candidates, indicating assimilation did not have a genome-wide effect. PMID:28886108

  15. MaizeGDB: The Maize Genetics and Genomics Database.

    PubMed

    Harper, Lisa; Gardiner, Jack; Andorf, Carson; Lawrence, Carolyn J

    2016-01-01

    MaizeGDB is the community database for biological information about the crop plant Zea mays. Genomic, genetic, sequence, gene product, functional characterization, literature reference, and person/organization contact information are among the datatypes stored at MaizeGDB. At the project's website ( http://www.maizegdb.org ) are custom interfaces enabling researchers to browse data and to seek out specific information matching explicit search criteria. In addition, pre-compiled reports are made available for particular types of data and bulletin boards are provided to facilitate communication and coordination among members of the community of maize geneticists.

  16. Managing fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), with Bt maize and insecticides in southern Brazil.

    PubMed

    Burtet, Leonardo M; Bernardi, Oderlei; Melo, Adriano A; Pes, Maiquel P; Strahl, Thiago T; Guedes, Jerson Vc

    2017-12-01

    Maize plants expressing insecticidal proteins of Bacillus thuringiensis are valuable options for managing fall armyworm (FAW), Spodoptera frugiperda, in Brazil. However, control failures were reported, and therefore insecticides have been used to control this species. Based on these, we evaluated the use of Bt maize and its integration with insecticides against FAW in southern Brazil. Early-planted Agrisure TL, Herculex, Optimum Intrasect and non-Bt maize plants were severely damaged by FAW and required up to three insecticidal sprays. In contrast, YieldGard VT Pro, YieldGard VT Pro 3, PowerCore, Agrisure Viptera and Agrisure Viptera 3 showed little damage and did not require insecticides. Late-planted Bt maize plants showed significant damage by FAW and required up to four sprays, with the exceptions of Agrisure Viptera and Agrisure Viptera 3. Exalt (first and second sprays); Lannate + Premio (first spray) and Avatar (second spray); and Karate + Match (first spray) and Ampligo (second spray) were the most effective insecticides against FAW larvae in Bt and non-Bt maize. Maize plants expressing Cry proteins exhibited FAW control failures in southern Brazil, necessitating insecticidal sprays. In contrast, Bt maize containing the Vip3Aa20 protein remained effective against FAW. However, regardless of the insecticide used against FAW surviving on Bt maize, grain yields were similar. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  17. Aluminum tolerance in maize is associated with higher MATE1 gene copy number

    PubMed Central

    Maron, Lyza G.; Guimarães, Claudia T.; Kirst, Matias; Albert, Patrice S.; Birchler, James A.; Bradbury, Peter J.; Buckler, Edward S.; Coluccio, Alison E.; Danilova, Tatiana V.; Kudrna, David; Magalhaes, Jurandir V.; Piñeros, Miguel A.; Schatz, Michael C.; Wing, Rod A.; Kochian, Leon V.

    2013-01-01

    Genome structure variation, including copy number variation and presence/absence variation, comprises a large extent of maize genetic diversity; however, its effect on phenotypes remains largely unexplored. Here, we describe how copy number variation underlies a rare allele that contributes to maize aluminum (Al) tolerance. Al toxicity is the primary limitation for crop production on acid soils, which make up 50% of the world’s potentially arable lands. In a recombinant inbred line mapping population, copy number variation of the Al tolerance gene multidrug and toxic compound extrusion 1 (MATE1) is the basis for the quantitative trait locus of largest effect on phenotypic variation. This expansion in MATE1 copy number is associated with higher MATE1 expression, which in turn results in superior Al tolerance. The three MATE1 copies are identical and are part of a tandem triplication. Only three maize inbred lines carrying the three-copy allele were identified from maize and teosinte diversity panels, indicating that copy number variation for MATE1 is a rare, and quite likely recent, event. These maize lines with higher MATE1 copy number are also Al-tolerant, have high MATE1 expression, and originate from regions of highly acidic soils. Our findings show a role for copy number variation in the adaptation of maize to acidic soils in the tropics and suggest that genome structural changes may be a rapid evolutionary response to new environments. PMID:23479633

  18. Preparation of acetylated waxy, normal, and high-amylose maize starches with intermediate degrees of substitution in aqueous solution and their properties.

    PubMed

    Luo, Zhi-Gang; Shi, Yong-Cheng

    2012-09-19

    Acetylated waxy, normal, and high-amylose maize starches with intermediate degrees of substitution (DS) were prepared in aqueous solution with 20% (w/w) sodium hydroxide as a catalyst. The level of DS was in the order high-amylose maize starch > waxy maize starch > normal maize starch. Settling volume indicated that during the early reaction, normal maize starch swelled to a lesser extent compared with waxy and high-amylose maize starches. The settling volume of all three starches increased initially but decreased after long reaction time. Aggregation of granules was observed as DS increased. The A-type X-ray diffraction pattern of acetylated normal and waxy maize starches weakened as DS increased, whereas the diffraction peaks disappeared in acetylated high-amylose starch when DS was 0.95. Low DS promoted the swelling of the starches in water, but at high DS, the starches became more hydrophobic and the peak viscosity of acetylated starches decreased.

  19. Root inoculation with Pseudomonas putida KT2440 induces transcriptional and metabolic changes and systemic resistance in maize plants.

    PubMed

    Planchamp, Chantal; Glauser, Gaetan; Mauch-Mani, Brigitte

    2014-01-01

    Pseudomonas putida KT2440 (KT2440) rhizobacteria colonize a wide range of plants. They have been extensively studied for their capacity to adhere to maize seeds, to tolerate toxic secondary metabolites produced by maize roots and to be attracted by maize roots. However, the response of maize plants to KT2440 colonization has not been investigated yet. Maize roots were inoculated with KT2440 and the local (roots) and systemic (leaves) early plant responses were investigated. The colonization behavior of KT2440 following application to maize seedlings was investigated and transcriptional analysis of stress- and defense-related genes as well as metabolite profiling of local and systemic maize tissues of KT2440-inoculated were performed. The local and systemic responses differed and more pronounced changes were observed in roots compared to leaves. Early in the interaction roots responded via jasmonic acid- and abscisic acid-dependent signaling. Interestingly, during later steps, the salicylic acid pathway was suppressed. Metabolite profiling revealed the importance of plant phospholipids in KT2440-maize interactions. An additional important maize secondary metabolite, a form of benzoxazinone, was also found to be differently abundant in roots 3 days after KT2440 inoculation. However, the transcriptional and metabolic changes observed in bacterized plants early during the interaction were minor and became even less pronounced with time, indicating an accommodation state of the plant to the presence of KT2440. Since the maize plants reacted to the presence of KT2440 in the rhizosphere, we also investigated the ability of these bacteria to trigger induced systemic resistance (ISR) against the maize anthracnose fungus Colletotrichum graminicola. The observed resistance was expressed as strongly reduced leaf necrosis and fungal growth in infected bacterized plants compared to non-bacterized controls, showing the potential of KT2440 to act as resistance inducers.

  20. Root inoculation with Pseudomonas putida KT2440 induces transcriptional and metabolic changes and systemic resistance in maize plants

    PubMed Central

    Planchamp, Chantal; Glauser, Gaetan; Mauch-Mani, Brigitte

    2014-01-01

    Pseudomonas putida KT2440 (KT2440) rhizobacteria colonize a wide range of plants. They have been extensively studied for their capacity to adhere to maize seeds, to tolerate toxic secondary metabolites produced by maize roots and to be attracted by maize roots. However, the response of maize plants to KT2440 colonization has not been investigated yet. Maize roots were inoculated with KT2440 and the local (roots) and systemic (leaves) early plant responses were investigated. The colonization behavior of KT2440 following application to maize seedlings was investigated and transcriptional analysis of stress- and defense-related genes as well as metabolite profiling of local and systemic maize tissues of KT2440-inoculated were performed. The local and systemic responses differed and more pronounced changes were observed in roots compared to leaves. Early in the interaction roots responded via jasmonic acid- and abscisic acid-dependent signaling. Interestingly, during later steps, the salicylic acid pathway was suppressed. Metabolite profiling revealed the importance of plant phospholipids in KT2440-maize interactions. An additional important maize secondary metabolite, a form of benzoxazinone, was also found to be differently abundant in roots 3 days after KT2440 inoculation. However, the transcriptional and metabolic changes observed in bacterized plants early during the interaction were minor and became even less pronounced with time, indicating an accommodation state of the plant to the presence of KT2440. Since the maize plants reacted to the presence of KT2440 in the rhizosphere, we also investigated the ability of these bacteria to trigger induced systemic resistance (ISR) against the maize anthracnose fungus Colletotrichum graminicola. The observed resistance was expressed as strongly reduced leaf necrosis and fungal growth in infected bacterized plants compared to non-bacterized controls, showing the potential of KT2440 to act as resistance inducers. PMID

  1. Weed Dynamics during Transition to Conservation Agriculture in Western Kenya Maize Production.

    PubMed

    Odhiambo, Judith A; Norton, Urszula; Ashilenje, Dennis; Omondi, Emmanuel C; Norton, Jay B

    2015-01-01

    Weed competition is a significant problem in maize (Zea mays, L.) production in Sub-Saharan Africa. Better understanding of weed management and costs in maize intercropped with beans (Phaseolus vulgaris, L.) during transition to conservation agricultural systems is needed. Changes in weed population and maize growth were assessed for a period of three years at Bungoma where crops are grown twice per year and at Trans-Nzoia where crops are grown once per year. Treatments included three tillage practices: minimum (MT), no-till (NT) and conventional (CT) applied to three cropping systems: continuous maize/bean intercropping (TYPICAL), maize/bean intercropping with relayed mucuna after bean harvest (RELAY) and maize, bean and mucuna planted in a strip intercropping arrangement (STRIP). Herbicides were used in NT, shallow hand hoeing and herbicides were used in MT and deep hoeing with no herbicides were used in CT. Weed and maize performance in the maize phase of each cropping system were assessed at both locations and costs of weed control were estimated at Manor House only. Weed density of grass and forb species declined significantly under MT and NT at Manor House and of grass species only at Mabanga. The greatest declines of more than 50% were observed as early as within one year of the transition to MT and NT in STRIP and TYPICAL cropping systems at Manor House. Transitioning to conservation based systems resulted in a decline of four out of five most dominant weed species. At the same time, no negative impact of MT or NT on maize growth was observed. Corresponding costs of weed management were reduced by $148.40 ha(-1) in MT and $149.60 ha(-1) in NT compared with CT. In conclusion, farmers can benefit from effective and less expensive weed management alternatives early in the process of transitioning to reduced tillage operations.

  2. Weed Dynamics during Transition to Conservation Agriculture in Western Kenya Maize Production

    PubMed Central

    Odhiambo, Judith A.; Norton, Urszula; Ashilenje, Dennis; Omondi, Emmanuel C.; Norton, Jay B.

    2015-01-01

    Weed competition is a significant problem in maize (Zea mays, L.) production in Sub-Saharan Africa. Better understanding of weed management and costs in maize intercropped with beans (Phaseolus vulgaris, L.) during transition to conservation agricultural systems is needed. Changes in weed population and maize growth were assessed for a period of three years at Bungoma where crops are grown twice per year and at Trans-Nzoia where crops are grown once per year. Treatments included three tillage practices: minimum (MT), no-till (NT) and conventional (CT) applied to three cropping systems: continuous maize/bean intercropping (TYPICAL), maize/bean intercropping with relayed mucuna after bean harvest (RELAY) and maize, bean and mucuna planted in a strip intercropping arrangement (STRIP). Herbicides were used in NT, shallow hand hoeing and herbicides were used in MT and deep hoeing with no herbicides were used in CT. Weed and maize performance in the maize phase of each cropping system were assessed at both locations and costs of weed control were estimated at Manor House only. Weed density of grass and forb species declined significantly under MT and NT at Manor House and of grass species only at Mabanga. The greatest declines of more than 50% were observed as early as within one year of the transition to MT and NT in STRIP and TYPICAL cropping systems at Manor House. Transitioning to conservation based systems resulted in a decline of four out of five most dominant weed species. At the same time, no negative impact of MT or NT on maize growth was observed. Corresponding costs of weed management were reduced by $148.40 ha-1 in MT and $149.60 ha-1 in NT compared with CT. In conclusion, farmers can benefit from effective and less expensive weed management alternatives early in the process of transitioning to reduced tillage operations. PMID:26237404

  3. How are arbuscular mycorrhizal associations related to maize growth performance during short-term cover crop rotation?

    PubMed

    Higo, Masao; Takahashi, Yuichi; Gunji, Kento; Isobe, Katsunori

    2018-03-01

    Better cover crop management options aiming to maximize the benefits of arbuscular mycorrhizal fungi (AMF) to subsequent crops are largely unknown. We investigated the impact of cover crop management methods on maize growth performance and assemblages of AMF colonizing maize roots in a field trial. The cover crop treatments comprised Italian ryegrass, wheat, brown mustard and fallow in rotation with maize. The diversity of AMF communities among cover crops used for maize management was significantly influenced by the cover crop and time course. Cover crops did not affect grain yield and aboveground biomass of subsequent maize but affected early growth. A structural equation model indicated that the root colonization, AMF diversity and maize phosphorus uptake had direct strong positive effects on yield performance. AMF variables and maize performance were related directly or indirectly to maize grain yield, whereas root colonization had a positive effect on maize performance. AMF may be an essential factor that determines the success of cover crop rotational systems. Encouraging AMF associations can potentially benefit cover cropping systems. Therefore, it is imperative to consider AMF associations and crop phenology when making management decisions. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. Genetic analysis of arsenic accumulation in maize using QTL mapping.

    PubMed

    Fu, Zhongjun; Li, Weihua; Xing, Xiaolong; Xu, Mengmeng; Liu, Xiaoyang; Li, Haochuan; Xue, Yadong; Liu, Zonghua; Tang, Jihua

    2016-02-16

    Arsenic (As) is a toxic heavy metal that can accumulate in crops and poses a threat to human health. The genetic mechanism of As accumulation is unclear. Herein, we used quantitative trait locus (QTL) mapping to unravel the genetic basis of As accumulation in a maize recombinant inbred line population derived from the Chinese crossbred variety Yuyu22. The kernels had the lowest As content among the different maize tissues, followed by the axes, stems, bracts and leaves. Fourteen QTLs were identified at each location. Some of these QTLs were identified in different environments and were also detected by joint analysis. Compared with the B73 RefGen v2 reference genome, the distributions and effects of some QTLs were closely linked to those of QTLs detected in a previous study; the QTLs were likely in strong linkage disequilibrium. Our findings could be used to help maintain maize production to satisfy the demand for edible corn and to decrease the As content in As-contaminated soil through the selection and breeding of As pollution-safe cultivars.

  5. Genetic dissection of the maize (Zea mays L.) MAMP response.

    PubMed

    Zhang, Xinye; Valdés-López, Oswaldo; Arellano, Consuelo; Stacey, Gary; Balint-Kurti, Peter

    2017-06-01

    Loci associated with variation in maize responses to two microbe-associated molecular patterns (MAMPs) were identified. MAMP responses were correlated. No relationship between MAMP responses and quantitative disease resistance was identified. Microbe-associated molecular patterns (MAMPs) are highly conserved molecules commonly found in microbes which can be recognized by plant pattern recognition receptors. Recognition triggers a suite of responses including production of reactive oxygen species (ROS) and nitric oxide (NO) and expression changes of defense-related genes. In this study, we used two well-studied MAMPs (flg22 and chitooctaose) to challenge different maize lines to determine whether there was variation in the level of responses to these MAMPs, to dissect the genetic basis underlying that variation and to understand the relationship between MAMP response and quantitative disease resistance (QDR). Naturally occurring quantitative variation in ROS, NO production, and defense genes expression levels triggered by MAMPs was observed. A major quantitative traits locus (QTL) associated with variation in the ROS production response to both flg22 and chitooctaose was identified on chromosome 2 in a recombinant inbred line (RIL) population derived from the maize inbred lines B73 and CML228. Minor QTL associated with variation in the flg22 ROS response was identified on chromosomes 1 and 4. Comparison of these results with data previously obtained for variation in QDR and the defense response in the same RIL population did not provide any evidence for a common genetic basis controlling variation in these traits.

  6. Genetic analysis of arsenic accumulation in maize using QTL mapping

    NASA Astrophysics Data System (ADS)

    Fu, Zhongjun; Li, Weihua; Xing, Xiaolong; Xu, Mengmeng; Liu, Xiaoyang; Li, Haochuan; Xue, Yadong; Liu, Zonghua; Tang, Jihua

    2016-02-01

    Arsenic (As) is a toxic heavy metal that can accumulate in crops and poses a threat to human health. The genetic mechanism of As accumulation is unclear. Herein, we used quantitative trait locus (QTL) mapping to unravel the genetic basis of As accumulation in a maize recombinant inbred line population derived from the Chinese crossbred variety Yuyu22. The kernels had the lowest As content among the different maize tissues, followed by the axes, stems, bracts and leaves. Fourteen QTLs were identified at each location. Some of these QTLs were identified in different environments and were also detected by joint analysis. Compared with the B73 RefGen v2 reference genome, the distributions and effects of some QTLs were closely linked to those of QTLs detected in a previous study; the QTLs were likely in strong linkage disequilibrium. Our findings could be used to help maintain maize production to satisfy the demand for edible corn and to decrease the As content in As-contaminated soil through the selection and breeding of As pollution-safe cultivars.

  7. Map-Based Cloning of Genes Important for Maize Anther Development

    NASA Astrophysics Data System (ADS)

    Anaya, Y.; Walbot, V.; Nan, G.

    2012-12-01

    Map-Based cloning for maize mutant MS13 . Scientists still do not understand what decides the fate of a cell in plants. Many maize genes are important for anther development and when they are disrupted, the anthers do not shed pollen, i.e. male sterile. Since the maize genome has been fully sequenced, we conduct map-based cloning using a bulk segregant analysis strategy. Using PCR (polymerase chain reaction), we look for biomarkers that are linked to our gene of interest, Male Sterile 13 (MS13). Recombinations occur more often if the biomarkers are further away from the gene, therefore we can estimate where the gene is and design more PCR primers to get closer to our gene. Genetic and molecular analysis will help distinguish the role of key genes in setting cell fates before meiosis and for being in charge of the switch from mitosis to meiosis.

  8. Rapid Cycling Genomic Selection in a Multiparental Tropical Maize Population

    PubMed Central

    Zhang, Xuecai; Pérez-Rodríguez, Paulino; Burgueño, Juan; Olsen, Michael; Buckler, Edward; Atlin, Gary; Prasanna, Boddupalli M.; Vargas, Mateo; San Vicente, Félix; Crossa, José

    2017-01-01

    Genomic selection (GS) increases genetic gain by reducing the length of the selection cycle, as has been exemplified in maize using rapid cycling recombination of biparental populations. However, no results of GS applied to maize multi-parental populations have been reported so far. This study is the first to show realized genetic gains of rapid cycling genomic selection (RCGS) for four recombination cycles in a multi-parental tropical maize population. Eighteen elite tropical maize lines were intercrossed twice, and self-pollinated once, to form the cycle 0 (C0) training population. A total of 1000 ear-to-row C0 families was genotyped with 955,690 genotyping-by-sequencing SNP markers; their testcrosses were phenotyped at four optimal locations in Mexico to form the training population. Individuals from families with the best plant types, maturity, and grain yield were selected and intermated to form RCGS cycle 1 (C1). Predictions of the genotyped individuals forming cycle C1 were made, and the best predicted grain yielders were selected as parents of C2; this was repeated for more cycles (C2, C3, and C4), thereby achieving two cycles per year. Multi-environment trials of individuals from populations C0, C1, C2, C3, and C4, together with four benchmark checks were evaluated at two locations in Mexico. Results indicated that realized grain yield from C1 to C4 reached 0.225 ton ha−1 per cycle, which is equivalent to 0.100 ton ha−1 yr−1 over a 4.5-yr breeding period from the initial cross to the last cycle. Compared with the original 18 parents used to form cycle 0 (C0), genetic diversity narrowed only slightly during the last GS cycles (C3 and C4). Results indicate that, in tropical maize multi-parental breeding populations, RCGS can be an effective breeding strategy for simultaneously conserving genetic diversity and achieving high genetic gains in a short period of time. PMID:28533335

  9. Ribulose-1,5-Bis-Phosphate Carboxylase/Oxygenase Accumulation Factor1 Is Required for Holoenzyme Assembly in Maize[C][W

    PubMed Central

    Feiz, Leila; Williams-Carrier, Rosalind; Wostrikoff, Katia; Belcher, Susan; Barkan, Alice; Stern, David B.

    2012-01-01

    Most life is ultimately sustained by photosynthesis and its rate-limiting carbon fixing enzyme, ribulose-1,5-bis-phosphate carboxylase/oxygenase (Rubisco). Although the structurally comparable cyanobacterial Rubisco is amenable to in vitro assembly, the higher plant enzyme has been refractory to such manipulation due to poor understanding of its assembly pathway. Here, we report the identification of a chloroplast protein required for Rubisco accumulation in maize (Zea mays), RUBISCO ACCUMULATION FACTOR1 (RAF1), which lacks any characterized functional domains. Maize lines lacking RAF1 due to Mutator transposon insertions are Rubisco deficient and seedling lethal. Analysis of transcripts and proteins showed that Rubisco large subunit synthesis in raf1 plants is not compromised; however, newly synthesized Rubisco large subunit appears in a high molecular weight form whose accumulation requires a specific chaperonin 60 isoform. Gel filtration analysis and blue native gels showed that endogenous and recombinant RAF1 are trimeric; however, following in vivo cross-linking, RAF1 copurifies with Rubisco large subunit, suggesting that they interact weakly or transiently. RAF1 is predominantly expressed in bundle sheath chloroplasts, consistent with a Rubisco accumulation function. Our results support the hypothesis that RAF1 acts during Rubisco assembly by releasing and/or sequestering the large subunit from chaperonins early in the assembly process. PMID:22942379

  10. Recombinant modified vaccinia virus Ankara generating excess early double-stranded RNA transiently activates protein kinase R and triggers enhanced innate immune responses.

    PubMed

    Wolferstätter, Michael; Schweneker, Marc; Späth, Michaela; Lukassen, Susanne; Klingenberg, Marieken; Brinkmann, Kay; Wielert, Ursula; Lauterbach, Henning; Hochrein, Hubertus; Chaplin, Paul; Suter, Mark; Hausmann, Jürgen

    2014-12-01

    Double-stranded RNA (dsRNA) is an important molecular pattern associated with viral infection and is detected by various extra- and intracellular recognition molecules. Poxviruses have evolved to avoid producing dsRNA early in infection but generate significant amounts of dsRNA late in infection due to convergent transcription of late genes. Protein kinase R (PKR) is activated by dsRNA and triggers major cellular defenses against viral infection, including protein synthesis shutdown, apoptosis, and type I interferon (IFN-I) production. The poxviral E3 protein binds and sequesters viral dsRNA and is a major antagonist of the PKR pathway. We found that the highly replication-restricted modified vaccinia virus Ankara (MVA) engineered to produce excess amounts of dsRNA early in infection showed enhanced induction of IFN-β in murine and human cells in the presence of an intact E3L gene. IFN-β induction required a minimum overlap length of 300 bp between early complementary transcripts and was strongly PKR dependent. Excess early dsRNA produced by MVA activated PKR early but transiently in murine cells and induced enhanced systemic levels of IFN-α, IFN-γ, and other cytokines and chemokines in mice in a largely PKR-dependent manner. Replication-competent chorioallantois vaccinia virus Ankara (CVA) generating excess early dsRNA also enhanced IFN-I production and was apathogenic in mice even at very high doses but showed no in vitro host range defect. Thus, genetically adjuvanting MVA and CVA to generate excess early dsRNA is an effective method to enhance innate immune stimulation by orthopoxvirus vectors and to attenuate replicating vaccinia virus in vivo. Efficient cellular sensing of pathogen-specific components, including double-stranded RNA (dsRNA), is an important prerequisite of an effective antiviral immune response. The prototype poxvirus vaccinia virus (VACV) and its derivative modified vaccinia virus Ankara (MVA) produce dsRNA as a by-product of viral

  11. MaizeGDB: New tools and resource

    USDA-ARS?s Scientific Manuscript database

    MaizeGDB, the USDA-ARS genetics and genomics database, is a highly curated, community-oriented informatics service to researchers focused on the crop plant and model organism Zea mays. MaizeGDB facilitates maize research by curating, integrating, and maintaining a database that serves as the central...

  12. Maize, tropical (Zea mays L.).

    PubMed

    Assem, Shireen K

    2015-01-01

    Maize (Zea mays L.) is the third most important food crop globally after wheat and rice. In sub-Saharan Africa, tropical maize has traditionally been the main staple of the diet; 95 % of the maize grown is consumed directly as human food and as an important source of income for the resource-poor rural population. The biotechnological approach to engineer biotic and abiotic traits implies the availability of an efficient plant transformation method. The production of genetically transformed plants depends both on the ability to integrate foreign genes into target cells and the efficiency with which plants are regenerated. Maize transformation and regeneration through immature embryo culture is the most efficient system to regenerate normal transgenic plants. However, this system is highly genotype dependent. Genotypes adapted to tropic areas are difficult to regenerate. Therefore, transformation methods used with model genotypes adapted to temperate areas are not necessarily efficient with tropical lines. Agrobacterium-mediated transformation is the method of choice since it has been first achieved in 1996. In this report, we describe a transformation method used successfully with several tropical maize lines. All the steps of transformation and regeneration are described in details. This protocol can be used with a wide variety of tropical lines. However, some modifications may be needed with recalcitrant lines.

  13. Translocation of the neonicotinoid seed treatment clothianidin in maize

    PubMed Central

    Krupke, Christian H.

    2017-01-01

    Neonicotinoid seed treatments, typically clothianidin or thiamethoxam, are routinely applied to >80% of maize (corn) seed grown in North America where they are marketed as a targeted pesticide delivery system. Despite this widespread use, the amount of compound translocated into plant tissue from the initial seed treatment to provide protection has not been reported. Our two year field study compared concentrations of clothianidin seed treatments in maize to that of maize without neonicotinoid seed treatments and found neonicotinoids present in root tissues up to 34 days post planting. Plant-bound clothianidin concentrations followed an exponential decay pattern with initially high values followed by a rapid decrease within the first ~20 days post planting. A maximum of 1.34% of the initial seed treatment was successfully recovered from plant tissues in both study years and a maximum of 0.26% was recovered from root tissue. Our findings show neonicotinoid seed treatments may provide protection from some early season secondary maize pests. However, the proportion of the neonicotinoid seed treatment clothianidin translocated into plant tissues throughout the growing season is low overall and this observation may provide a mechanism to explain reports of inconsistent efficacy of this pest management approach and increasing detections of environmental neonicotinoids. PMID:28282441

  14. Functional characterization of the recombinant antimicrobial peptide Trx-Ace-AMP1 and its application on the control of tomato early blight disease.

    PubMed

    Wu, Yin; He, Yue; Ge, Xiaochun

    2011-05-01

    Ace-AMP1 is a potent antifungal peptide found in onion (Allium cepa) seeds with sequence similarity to plant lipid transfer proteins. Transgenic plants over-expressing Ace-AMP1 gene have enhanced disease resistance to some fungal pathogens. However, mass production in heterologous systems and in vitro application of this peptide have not been reported. In this study, Ace-AMP1 was highly expressed in a prokaryotic Escherichia coli system as a fusion protein. The purified protein inhibited the growth of many plant fungal pathogens, especially Alternaria solani, Fusarium oxysporum f. sp. vasinfectum, and Verticillium dahliae. The inhibitory effect was accompanied by hyphal hyperbranching for V. dahliae but not for F. oxysporum f. sp. vasinfectum and A. solani, suggesting that the mode of action of Ace-AMP1 on different fungi might be different. Application of Ace-AMP1 on tomato leaves showed that the recombinant protein conferred strong resistance to the tomato pathogen A. solani and could be used as an effective fungicide.

  15. Population structure of the African Clawed Frog (Xenopus laevis) in maize-growing areas with atrazine application versus non-maize-growing areas in South Africa

    USGS Publications Warehouse

    Du Preez, L.H.; Solomon, K.R.; Carr, J.A.; Giesy, J.P.; Gross, T.S.; Kendall, R.J.; Smith, E.E.; Van Der Kraak, G. L.; Weldon, C.

    2005-01-01

    The herbicide atrazine has been suggested to cause gonadal deformities in frogs and could possibly impact on reproduction. Since the early 1960s, atrazine has been used in large amounts in maize production areas of South Africa. These areas overlap with populations of the African Clawed Frog (Xenopus laevis) that has a wide distribution in southern Africa and is found in most water-bodies including those where atrazine residues are detected. The aim of this study was to compare various attributes of individual- and population-level responses of X. laevis from maize-growing and non-maize-growing areas. Xenopus laevis were studied in three reference and five maize-growing sites. Sex ratio, snout-vent length, body-mass and age profiles were found to be similar for populations in maize-growing and non-maize-growing areas. Our mark-recapture data indicated that all sites had robust populations. There were no significant relationships between exposure to atrazine and any of the parameters investigated in populations of X. laevis.

  16. Relative contribution of maize and external manure amendment to soil carbon sequestration in a long-term intensive maize cropping system

    PubMed Central

    Zhang, Wenju; Liu, Kailou; Wang, Jinzhou; Shao, Xingfang; Xu, Minggang; Li, Jianwei; Wang, Xiujun; Murphy, Daniel V.

    2015-01-01

    We aimed to quantify the relative contributions of plant residue and organic manure to soil carbon sequestration. Using a 27-year-long inorganic fertilizer and manure amendment experiment in a maize (Zea mays L.) double-cropping system, we quantified changes in harvestable maize biomass and soil organic carbon stocks (0–20 cm depth) between 1986-2012. By employing natural 13C tracing techniques, we derived the proportional contributions of below-ground crop biomass return (maize-derived carbon) and external manure amendment (manure-derived carbon) to the total soil organic carbon stock. The average retention of maize-derived carbon plus manure-derived carbon during the early period of the trial (up to 11 years) was relatively high (10%) compared to the later period (22 to 27 years, 5.1–6.3%). About 11% of maize-derived carbon was converted to soil organic carbon, which was double the retention of manure-derived carbon (4.4–5.1%). This result emphasized that organic amendments were necessary to a win-win strategy for both SOC sequestration and maize production. PMID:26039186

  17. Effect of Stacked Insecticidal Cry Proteins from Maize Pollen on Nurse Bees (Apis mellifera carnica) and Their Gut Bacteria

    PubMed Central

    Härtel, Stephan; Näther, Astrid; Dohrmann, Anja B.; Steffan-Dewenter, Ingolf; Tebbe, Christoph C.

    2013-01-01

    Honey bee pollination is a key ecosystem service to nature and agriculture. However, biosafety research on genetically modified crops rarely considers effects on nurse bees from intact colonies, even though they receive and primarily process the largest amount of pollen. The objective of this study was to analyze the response of nurse bees and their gut bacteria to pollen from Bt maize expressing three different insecticidal Cry proteins (Cry1A.105, Cry2Ab2, and Cry3Bb1). Naturally Cry proteins are produced by bacteria (Bacillus thuringiensis). Colonies of Apis mellifera carnica were kept during anthesis in flight cages on field plots with the Bt maize, two different conventionally bred maize varieties, and without cages, 1-km outside of the experimental maize field to allow ad libitum foraging to mixed pollen sources. During their 10-days life span, the consumption of Bt maize pollen had no effect on their survival rate, body weight and rates of pollen digestion compared to the conventional maize varieties. As indicated by ELISA-quantification of Cry1A.105 and Cry3Bb1, more than 98% of the recombinant proteins were degraded. Bacterial population sizes in the gut were not affected by the genetic modification. Bt-maize, conventional varieties and mixed pollen sources selected for significantly different bacterial communities which were, however, composed of the same dominant members, including Proteobacteria in the midgut and Lactobacillus sp. and Bifidobacterium sp. in the hindgut. Surprisingly, Cry proteins from natural sources, most likely B. thuringiensis, were detected in bees with no exposure to Bt maize. The natural occurrence of Cry proteins and the lack of detectable effects on nurse bees and their gut bacteria give no indication for harmful effects of this Bt maize on nurse honey bees. PMID:23533634

  18. Effect of stacked insecticidal Cry proteins from maize pollen on nurse bees (Apis mellifera carnica) and their gut bacteria.

    PubMed

    Hendriksma, Harmen P; Küting, Meike; Härtel, Stephan; Näther, Astrid; Dohrmann, Anja B; Steffan-Dewenter, Ingolf; Tebbe, Christoph C

    2013-01-01

    Honey bee pollination is a key ecosystem service to nature and agriculture. However, biosafety research on genetically modified crops rarely considers effects on nurse bees from intact colonies, even though they receive and primarily process the largest amount of pollen. The objective of this study was to analyze the response of nurse bees and their gut bacteria to pollen from Bt maize expressing three different insecticidal Cry proteins (Cry1A.105, Cry2Ab2, and Cry3Bb1). Naturally Cry proteins are produced by bacteria (Bacillus thuringiensis). Colonies of Apis mellifera carnica were kept during anthesis in flight cages on field plots with the Bt maize, two different conventionally bred maize varieties, and without cages, 1-km outside of the experimental maize field to allow ad libitum foraging to mixed pollen sources. During their 10-days life span, the consumption of Bt maize pollen had no effect on their survival rate, body weight and rates of pollen digestion compared to the conventional maize varieties. As indicated by ELISA-quantification of Cry1A.105 and Cry3Bb1, more than 98% of the recombinant proteins were degraded. Bacterial population sizes in the gut were not affected by the genetic modification. Bt-maize, conventional varieties and mixed pollen sources selected for significantly different bacterial communities which were, however, composed of the same dominant members, including Proteobacteria in the midgut and Lactobacillus sp. and Bifidobacterium sp. in the hindgut. Surprisingly, Cry proteins from natural sources, most likely B. thuringiensis, were detected in bees with no exposure to Bt maize. The natural occurrence of Cry proteins and the lack of detectable effects on nurse bees and their gut bacteria give no indication for harmful effects of this Bt maize on nurse honey bees.

  19. Maize Bioactive Peptides against Cancer

    NASA Astrophysics Data System (ADS)

    Díaz-Gómez, Jorge L.; Castorena-Torres, Fabiola; Preciado-Ortiz, Ricardo E.; García-Lara, Silverio

    2017-06-01

    Cancer is one of the main chronic degenerative diseases worldwide. In recent years, consumption of whole-grain cereals and their derived food products has been associated with reduction risks of various types of cancer. Cereals main biomolecules includes proteins, peptides, and amino acids present in different quantities within the grain. The nutraceutical properties associated with peptides exerts biological functions that promote health and prevent this disease. In this review, we report the current status and advances on maize peptides regarding bioactive properties that have been reported such as antioxidant, antihypertensive, hepatoprotective, and anti-tumour activities. We also highlighted its biological potential through which maize bioactive peptides exert anti-cancer activity. Finally, we analyse and emphasize the possible areas of application for maize peptides.

  20. Therapeutic Recombinant Monoclonal Antibodies

    ERIC Educational Resources Information Center

    Bakhtiar, Ray

    2012-01-01

    During the last two decades, the rapid growth of biotechnology-derived techniques has led to a myriad of therapeutic recombinant monoclonal antibodies with significant clinical benefits. Recombinant monoclonal antibodies can be obtained from a number of natural sources such as animal cell cultures using recombinant DNA engineering. In contrast to…

  1. Effect of recombinant-LH and hCG in the absence of FSH on in vitro maturation (IVM) fertilization and early embryonic development of mouse germinal vesicle (GV)-stage oocytes.

    PubMed

    Dinopoulou, Vasiliki; Drakakis, Peter; Kefala, Stella; Kiapekou, Erasmia; Bletsa, Ritsa; Anagnostou, Elli; Kallianidis, Konstantinos; Loutradis, Dimitrios

    2016-06-01

    During in vitro maturation (IVM), intrinsic and extrinsic factors must co-operate properly in order to ensure cytoplasmic and nuclear maturation. We examined the possible effect of LH/hCG in the process of oocyte maturation in mice with the addition of recombinant LH (r-LH) and hCG in our IVM cultures of mouse germinal vesicle (GV)-stage oocytes. Moreover, the effects of these hormones on fertilization, early embryonic development and the expression of LH/hCG receptor were examined. Nuclear maturation of GV-stage oocytes was evaluated after culture in the presence of r-LH or hCG. Fertilization rates and embryonic development were assessed after 24h. Total RNA was isolated from oocytes of different stages of maturation and from zygotes and embryos of different stages of development in order to examine the expression of LH/hCG receptor, using RT-PCR. The in vitro nuclear maturation rate of GV-stage oocytes that received hCG was significantly higher compared to the control group. Early embryonic development was increased in the hCG and LH cultures of GV oocytes when LH was further added. The LH/hCG receptor was expressed in all stages of in vitro matured mouse oocytes and in every stage of early embryonic development. Addition of hCG in IVM cultures of mouse GV oocytes increased maturation rates significantly. LH, however, was more beneficial to early embryonic development than hCG. This suggests a promising new technique in basic science research or in clinical reproductive medicine. Copyright © 2016 Society for Biology of Reproduction & the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  2. Factors Controlling Pre-Columbian and Early Historic Maize Productivity in the American Southwest, Part 2: The Chaco Halo, Mesa Verde, Pajarito Plateau/Bandelier, and Zuni Archaeological Regions

    USGS Publications Warehouse

    Benson, L.V.

    2011-01-01

    Chemical and nutrient analyses of 471 soil samples from 161 sites within four archaeological regions (Pajarito Plateau/Bandelier, Zuni, Mesa Verde, and the Chaco Halo) were combined with historical climate data in order to evaluate the agricultural productivity of each region. In addition, maize productivity and field-life calculations were performed using organic-nitrogen (N) values from the upper 50 cm of soil in each region and a range (1-3%/year) of N-mineralization rates. The endmember values of this range were assumed representative of dry and wet climate states. With respect to precipitation and heat, the Pajarito Plateau area has excellent agricultural potential; the agricultural potentials of the Zuni and Mesa Verde regions are good; and the agricultural potential of the Chaco Halo is poor. Calculations of N mineralization and field life indicate that Morfield Valley in Mesa Verde should be able to provide 10 bu/ac of maize for decades (without the addition of N) when organic N-mineralization rates exceed 2%. Productivity and field-life potential decrease in the following order: Zuni, Mesa Verde, Bandelier, Chaco Halo. The Chaco Halo is very unproductive; e. g., 10 bushels per acre can be achieved within the Halo only from soils having the highest organic N concentration (third quartile) and which undergo the highest rate (3%) of N mineralization. ?? 2010 US Government.

  3. Global maize production, utilization, and consumption.

    PubMed

    Ranum, Peter; Peña-Rosas, Juan Pablo; Garcia-Casal, Maria Nieves

    2014-04-01

    Maize (Zea mays), also called corn, is believed to have originated in central Mexico 7000 years ago from a wild grass, and Native Americans transformed maize into a better source of food. Maize contains approximately 72% starch, 10% protein, and 4% fat, supplying an energy density of 365 Kcal/100 g and is grown throughout the world, with the United States, China, and Brazil being the top three maize-producing countries in the world, producing approximately 563 of the 717 million metric tons/year. Maize can be processed into a variety of food and industrial products, including starch, sweeteners, oil, beverages, glue, industrial alcohol, and fuel ethanol. In the last 10 years, the use of maize for fuel production significantly increased, accounting for approximately 40% of the maize production in the United States. As the ethanol industry absorbs a larger share of the maize crop, higher prices for maize will intensify demand competition and could affect maize prices for animal and human consumption. Low production costs, along with the high consumption of maize flour and cornmeal, especially where micronutrient deficiencies are common public health problems, make this food staple an ideal food vehicle for fortification. © 2014 New York Academy of Sciences. The World Health Organization retains copyright and all other rights in the manuscript of this article as submitted for publication.

  4. Uneven distribution of expressed sequence tag loci on maize pachytene chromosomes

    PubMed Central

    Anderson, Lorinda K.; Lai, Ann; Stack, Stephen M.; Rizzon, Carene; Gaut, Brandon S.

    2006-01-01

    Examining the relationships among DNA sequence, meiotic recombination, and chromosome structure at a genome-wide scale has been difficult because only a few markers connect genetic linkage maps with physical maps. Here, we have positioned 1195 genetically mapped expressed sequence tag (EST) markers onto the 10 pachytene chromosomes of maize by using a newly developed resource, the RN-cM map. The RN-cM map charts the distribution of crossing over in the form of recombination nodules (RNs) along synaptonemal complexes (SCs, pachytene chromosomes) and allows genetic cM distances to be converted into physical micrometer distances on chromosomes. When this conversion is made, most of the EST markers used in the study are located distally on the chromosomes in euchromatin. ESTs are significantly clustered on chromosomes, even when only euchromatic chromosomal segments are considered. Gene density and recombination rate (as measured by EST and RN frequencies, respectively) are strongly correlated. However, crossover frequencies for telomeric intervals are much higher than was expected from their EST frequencies. For pachytene chromosomes, EST density is about fourfold higher in euchromatin compared with heterochromatin, while DNA density is 1.4 times higher in heterochromatin than in euchromatin. Based on DNA density values and the fraction of pachytene chromosome length that is euchromatic, we estimate that ∼1500 Mbp of the maize genome is in euchromatin. This overview of the organization of the maize genome will be useful in examining genome and chromosome evolution in plants. PMID:16339046

  5. Ethylene Contributes to maize insect resistance1-Mediated Maize Defense against the Phloem Sap-Sucking Corn Leaf Aphid1[OPEN

    PubMed Central

    Louis, Joe; Basu, Saumik; Varsani, Suresh; Castano-Duque, Lina; Jiang, Victoria; Williams, W. Paul; Felton, Gary W.; Luthe, Dawn S.

    2015-01-01

    Signaling networks among multiple phytohormones fine-tune plant defense responses to insect herbivore attack. Previously, it was reported that the synergistic combination of ethylene (ET) and jasmonic acid (JA) was required for accumulation of the maize insect resistance1 (mir1) gene product, a cysteine (Cys) proteinase that is a key defensive protein against chewing insect pests in maize (Zea mays). However, this study suggests that mir1-mediated resistance to corn leaf aphid (CLA; Rhopalosiphum maidis), a phloem sap-sucking insect pest, is independent of JA but regulated by the ET-signaling pathway. Feeding by CLA triggers the rapid accumulation of mir1 transcripts in the resistant maize genotype, Mp708. Furthermore, Mp708 provided elevated levels of antibiosis (limits aphid population)- and antixenosis (deters aphid settling)-mediated resistance to CLA compared with B73 and Tx601 maize susceptible inbred lines. Synthetic diet aphid feeding trial bioassays with recombinant Mir1-Cys Protease demonstrates that Mir1-Cys Protease provides direct toxicity to CLA. Furthermore, foliar feeding by CLA rapidly sends defensive signal(s) to the roots that trigger belowground accumulation of the mir1, signifying a potential role of long-distance signaling in maize defense against the phloem-feeding insects. Collectively, our data indicate that ET-regulated mir1 transcript accumulation, uncoupled from JA, contributed to heightened resistance to CLA in maize. In addition, our results underscore the significance of ET acting as a central node in regulating mir1 expression to different feeding guilds of insect herbivores. PMID:26253737

  6. Early detection of a two-long-terminal-repeat junction molecule in the cytoplasm of recombinant murine leukemia virus-infected cells.

    PubMed

    Serhan, Fatima; Penaud, Magalie; Petit, Caroline; Leste-Lasserre, Thierry; Trajcevski, Stéphane; Klatzmann, David; Duisit, Ghislaine; Sonigo, Pierre; Moullier, Philippe

    2004-06-01

    We showed that a U5-U3 junction was reproducibly detected by a PCR assay as early as 1 to 2 h postinfection with a DNase-treated murine leukemia virus (MLV)-containing supernatant in aphidicolin-arrested NIH 3T3 cells, as well as in nonarrested cells. Such detection is azidothymidine sensitive and corresponded to neosynthesized products of the reverse transcriptase. This observation was confirmed in two additional human cell lines, TE671 and ARPE-19. Using cell fractionation combined with careful controls, we found that a two-long-terminal-repeat (two-LTR) junction molecule was detectable in the cytoplasm as early as 2 h post virus entry. Altogether, our data indicated that the neosynthesized retroviral DNA led to the early formation of structures including true two-LTR junctions in the cytoplasm of MLV-infected cells. Thus, the classical assumption that two-LTR circles are a mitosis-dependent dead-end product accumulating in the nucleus must be reconsidered. MLV-derived products containing a two-LTR junction can no longer be used as an exclusive surrogate for the preintegration complex nuclear translocation event.

  7. Dynamic epigenetic states of maize centromeres

    PubMed Central

    Liu, Yalin; Su, Handong; Zhang, Jing; Liu, Yang; Han, Fangpu; Birchler, James A.

    2015-01-01

    The centromere is a specialized chromosomal region identified as the major constriction, upon which the kinetochore complex is formed, ensuring accurate chromosome orientation and segregation during cell division. The rapid evolution of centromere DNA sequence and the conserved centromere function are two contradictory aspects of centromere biology. Indeed, the sole presence of genetic sequence is not sufficient for centromere formation. Various dicentric chromosomes with one inactive centromere have been recognized. It has also been found that de novo centromere formation is common on fragments in which centromeric DNA sequences are lost. Epigenetic factors play important roles in centromeric chromatin assembly and maintenance. Non-disjunction of the supernumerary B chromosome centromere is independent of centromere function, but centromere pairing during early prophase of meiosis I requires an active centromere. This review discusses recent studies in maize about genetic and epigenetic elements regulating formation and maintenance of centromere chromatin, as well as centromere behavior in meiosis. PMID:26579154

  8. Dynamic epigenetic states of maize centromeres.

    PubMed

    Liu, Yalin; Su, Handong; Zhang, Jing; Liu, Yang; Han, Fangpu; Birchler, James A

    2015-01-01

    The centromere is a specialized chromosomal region identified as the major constriction, upon which the kinetochore complex is formed, ensuring accurate chromosome orientation and segregation during cell division. The rapid evolution of centromere DNA sequence and the conserved centromere function are two contradictory aspects of centromere biology. Indeed, the sole presence of genetic sequence is not sufficient for centromere formation. Various dicentric chromosomes with one inactive centromere have been recognized. It has also been found that de novo centromere formation is common on fragments in which centromeric DNA sequences are lost. Epigenetic factors play important roles in centromeric chromatin assembly and maintenance. Non-disjunction of the supernumerary B chromosome centromere is independent of centromere function, but centromere pairing during early prophase of meiosis I requires an active centromere. This review discusses recent studies in maize about genetic and epigenetic elements regulating formation and maintenance of centromere chromatin, as well as centromere behavior in meiosis.

  9. The earliest maize from San Marcos Tehuacán is a partial domesticate with genomic evidence of inbreeding

    PubMed Central

    Vallebueno-Estrada, Miguel; Rodríguez-Arévalo, Isaac; Rougon-Cardoso, Alejandra; Martínez González, Javier; García Cook, Angel; Vielle-Calzada, Jean-Philippe

    2016-01-01

    Pioneering archaeological expeditions lead by Richard MacNeish in the 1960s identified the valley of Tehuacán as an important center of early Mesoamerican agriculture, providing by far the widest collection of ancient crop remains, including maize. In 2012, a new exploration of San Marcos cave (Tehuacán, Mexico) yielded nonmanipulated maize specimens dating at a similar age of 5,300–4,970 calibrated y B.P. On the basis of shotgun sequencing and genomic comparisons to Balsas teosinte and modern maize, we show herein that the earliest maize from San Marcos cave was a partial domesticate diverging from the landraces and containing ancestral allelic variants that are absent from extant maize populations. Whereas some domestication loci, such as teosinte branched1 (tb1) and brittle endosperm2 (bt2), had already lost most of the nucleotide variability present in Balsas teosinte, others, such as teosinte glume architecture1 (tga1) and sugary1 (su1), conserved partial levels of nucleotide variability that are absent from extant maize. Genetic comparisons among three temporally convergent samples revealed that they were homozygous and identical by descent across their genome. Our results indicate that the earliest maize from San Marcos was already inbred, opening the possibility for Tehuacán maize cultivation evolving from reduced founder populations of isolated and perhaps self-pollinated individuals. PMID:27872313

  10. The earliest maize from San Marcos Tehuacán is a partial domesticate with genomic evidence of inbreeding.

    PubMed

    Vallebueno-Estrada, Miguel; Rodríguez-Arévalo, Isaac; Rougon-Cardoso, Alejandra; Martínez González, Javier; García Cook, Angel; Montiel, Rafael; Vielle-Calzada, Jean-Philippe

    2016-12-06

    Pioneering archaeological expeditions lead by Richard MacNeish in the 1960s identified the valley of Tehuacán as an important center of early Mesoamerican agriculture, providing by far the widest collection of ancient crop remains, including maize. In 2012, a new exploration of San Marcos cave (Tehuacán, Mexico) yielded nonmanipulated maize specimens dating at a similar age of 5,300-4,970 calibrated y B.P. On the basis of shotgun sequencing and genomic comparisons to Balsas teosinte and modern maize, we show herein that the earliest maize from San Marcos cave was a partial domesticate diverging from the landraces and containing ancestral allelic variants that are absent from extant maize populations. Whereas some domestication loci, such as teosinte branched1 (tb1) and brittle endosperm2 (bt2), had already lost most of the nucleotide variability present in Balsas teosinte, others, such as teosinte glume architecture1 (tga1) and sugary1 (su1), conserved partial levels of nucleotide variability that are absent from extant maize. Genetic comparisons among three temporally convergent samples revealed that they were homozygous and identical by descent across their genome. Our results indicate that the earliest maize from San Marcos was already inbred, opening the possibility for Tehuacán maize cultivation evolving from reduced founder populations of isolated and perhaps self-pollinated individuals.

  11. Photoionization and Recombination

    NASA Technical Reports Server (NTRS)

    Nahar, Sultana N.

    2000-01-01

    Theoretically self-consistent calculations for photoionization and (e + ion) recombination are described. The same eigenfunction expansion for the ion is employed in coupled channel calculations for both processes, thus ensuring consistency between cross sections and rates. The theoretical treatment of (e + ion) recombination subsumes both the non-resonant recombination ("radiative recombination"), and the resonant recombination ("di-electronic recombination") processes in a unified scheme. In addition to the total, unified recombination rates, level-specific recombination rates and photoionization cross sections are obtained for a large number of atomic levels. Both relativistic Breit-Pauli, and non-relativistic LS coupling, calculations are carried out in the close coupling approximation using the R-matrix method. Although the calculations are computationally intensive, they yield nearly all photoionization and recombination parameters needed for astrophysical photoionization models with higher precision than hitherto possible, estimated at about 10-20% from comparison with experimentally available data (including experimentally derived DR rates). Results are electronically available for over 40 atoms and ions. Photoionization and recombination of He-, and Li-like C and Fe are described for X-ray modeling. The unified method yields total and complete (e+ion) recombination rate coefficients, that can not otherwise be obtained theoretically or experimentally.

  12. Recombinant P-selectin glycoprotein-ligand-1 delays thrombin-induced platelet aggregation: a new role for P-selectin in early aggregation

    PubMed Central

    Théorêt, Jean-François; Chahrour, Wissam; Yacoub, Daniel; Merhi, Yahye

    2006-01-01

    P-selectin is involved, with P-selectin glycoprotein (GP)-ligand-1 (PSGL-1), in platelet/leukocyte interactions during thrombo-inflammatory reactions; it also stabilizes platelet aggregates. Its antagonism accelerates thrombolysis and enhances the anti-aggregatory effects of GPIIb–IIIa inhibitors. This study was designed to investigate the mechanisms of P-selectin-mediated platelet aggregation. In freshly isolated human platelets, P-selectin translocation after thrombin stimulation increased rapidly to 48, 72, and 86% positive platelets after 60, 120, and 300 s, respectively. Platelet aggregation at 60 s post-stimulation averaged 46.7±1.9% and its extent followed closely the kinetics of P-selectin translocation. Pre-treatment of platelets with P-selectin antagonists, a recombinant PSGL-1 (rPSGL-Ig) or a blocking monoclonal antibody, significantly delayed platelet aggregation in a dose-dependent manner. At 100 μg ml−1 of rPSGL-Ig, platelet aggregation was completely inhibited up to 60 s post-stimulation and increased thereafter to reach maximal aggregation at 5 min. The second phase of platelet aggregation, in the presence of rPSGL-Ig, was completely prevented by the addition of a GPIIb–IIIa antagonist (Reopro) at 60 s, whereas its addition in the absence of rPSGL-Ig was without any significant effect. Combination of rPSGL-Ig with Reopro or with an inhibitor of Pi3K (LY294002), which reduces GPIIb–IIIa activation, showed to be more effective in inhibiting platelet aggregation, in comparison to the effects observed individually. rPSGL-Ig blocks P-selectin, whereas Reopro and LY294002 block GPIIb–IIIa and its activation, respectively, without a major effect on the percentage of platelets expressing P-selectin. In summary, platelet P-selectin participates with GPIIb–IIIa in the initiation of platelet aggregation. Its inhibition, with rPSGL-Ig, delays the aggregation process and increases the anti-aggregatory potency of Reopro. Thus

  13. Recombinant P-selectin glycoprotein-ligand-1 delays thrombin-induced platelet aggregation: a new role for P-selectin in early aggregation.

    PubMed

    Théorêt, Jean-François; Chahrour, Wissam; Yacoub, Daniel; Merhi, Yahye

    2006-06-01

    1. P-selectin is involved, with P-selectin glycoprotein (GP)-ligand-1 (PSGL-1), in platelet/leukocyte interactions during thrombo-inflammatory reactions; it also stabilizes platelet aggregates. Its antagonism accelerates thrombolysis and enhances the anti-aggregatory effects of GPIIb-IIIa inhibitors. This study was designed to investigate the mechanisms of P-selectin-mediated platelet aggregation. 2. In freshly isolated human platelets, P-selectin translocation after thrombin stimulation increased rapidly to 48, 72, and 86% positive platelets after 60, 120, and 300 s, respectively. Platelet aggregation at 60 s post-stimulation averaged 46.7 +/- 1.9% and its extent followed closely the kinetics of P-selectin translocation. 3. Pre-treatment of platelets with P-selectin antagonists, a recombinant PSGL-1 (rPSGL-Ig) or a blocking monoclonal antibody, significantly delayed platelet aggregation in a dose-dependent manner. At 100 microg ml(-1) of rPSGL-Ig, platelet aggregation was completely inhibited up to 60 s post-stimulation and increased thereafter to reach maximal aggregation at 5 min. The second phase of platelet aggregation, in the presence of rPSGL-Ig, was completely prevented by the addition of a GPIIb-IIIa antagonist (Reopro) at 60 s, whereas its addition in the absence of rPSGL-Ig was without any significant effect. 4. Combination of rPSGL-Ig with Reopro or with an inhibitor of Pi3K (LY294002), which reduces GPIIb-IIIa activation, showed to be more effective in inhibiting platelet aggregation, in comparison to the effects observed individually. 5. rPSGL-Ig blocks P-selectin, whereas Reopro and LY294002 block GPIIb-IIIa and its activation, respectively, without a major effect on the percentage of platelets expressing P-selectin. 6. In summary, platelet P-selectin participates with GPIIb-IIIa in the initiation of platelet aggregation. Its inhibition, with rPSGL-Ig, delays the aggregation process and increases the anti-aggregatory potency of Reopro. Thus

  14. Estrogenic effects of nonylphenol and octylphenol isomers in vitro by recombinant yeast assay (RYA) and in vivo with early life stages of zebrafish.

    PubMed

    Puy-Azurmendi, E; Olivares, A; Vallejo, A; Ortiz-Zarragoitia, M; Piña, B; Zuloaga, O; Cajaraville, M P

    2014-01-01

    Commercial OP and NP are complex isomer mixtures that can be individually present in the environment, showing different estrogenic potencies. The aims of this study were to establish the estrogenic potency of some AP isomers in comparison to the commercial NP (cNP) mixture in vitro and to investigate in vivo their possible effects during the embryo and larval development of zebrafish. An in vitro estrogen receptor-based recombinant yeast assay was used to test the estrogenicity of specific AP isomers (22-OP, 33-OP, 22-NP, 33-NP and 363-NP) and cNP. The EC₅₀ was in the range of 0.6-7.7 mg/L. Both OP isomers and 363-NP exhibited higher estrogenic activity than cNP. For in vivo experiments, one-day postfertilisation (dpf) embryos were exposed to cNP (50, 250 and 500 μg/L), 363-NP and 33-OP (50 μg/L), 17β-estradiol (100 ng/L) and DMSO (0.01% v/v) for 4weeks. After exposure fish were maintained for 2 weeks in clean water in order to evaluate a possible recovery. Fish of groups exposed to cNP and 363-NP were the last to hatch. Histological alterations were not observed after 7, 28 or 42 dpf. Exposure to 33-OP increased transcriptional levels of erα, vtg and cyp19a1b genes. However, transcriptional response in E2 exposure was observed at later stages and with higher fold induction levels. Exposure to cNP decreased levels of erα whereas increased levels of rxrγ and cyp19a1b. Exposure to 363-NP did not cause changes in transcriptional levels of studied genes. The differences in response of the OP isomer compared to the NP isomer in zebrafish could be related to the rapid decay in concentration of the latter. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Betaine Deficiency in Maize 1

    PubMed Central

    Lerma, Claudia; Rich, Patrick J.; Ju, Grace C.; Yang, Wen-Ju; Hanson, Andrew D.; Rhodes, David

    1991-01-01

    Maize (Zea mays L.) is a betaine-accumulating species, but certain maize genotypes lack betaine almost completely; a single recessive gene has been implicated as the cause of this deficiency (D Rhodes, PJ Rich [1988] Plant Physiol 88: 102-108). This study was undertaken to determine whether betaine deficiency in diverse maize germplasm is conditioned by the same genetic locus, and to define the biochemical lesion(s) involved. Complementation tests indicated that all 13 deficient genotypes tested shared a common locus. One maize population (P77) was found to be segregating for betaine deficiency, and true breeding individuals were used to produce related lines with and without betaine. Leaf tissue of both betaine-positive and betaine-deficient lines readily converted supplied betaine aldehyde to betaine, but only the betaine-containing line was able to oxidize supplied choline to betaine. This locates the lesion in betaine-deficient plants at the choline → betaine aldehyde step of betaine synthesis. Consistent with this location, betaine-deficient plants were shown to have no detectable endogenous pool of betaine aldehyde. PMID:16668098

  16. Three-dimensional microscopy of the Rad51 recombination protein during meiotic prophase.

    PubMed Central

    Franklin, A E; McElver, J; Sunjevaric, I; Rothstein, R; Bowen, B; Cande, W Z

    1999-01-01

    An open question in meiosis is whether the Rad51 recombination protein functions solely in meiotic recombination or whether it is also involved in the chromosome homology search. To address this question, we have performed three-dimensional high-resolution immunofluorescence microscopy to visualize native Rad51 structures in maize male meiocytes. Maize has two closely related RAD51 genes that are expressed at low levels in differentiated tissues and at higher levels in mitotic and meiotic tissues. Cells and nuclei were specially fixed and embedded in polyacrylamide to maintain both native chromosome structure and the three dimensionality of the specimens. Analysis of Rad51 in maize meiocytes revealed that when chromosomes condense during leptotene, Rad51 is diffuse within the nucleus. Rad51 foci form on the chromosomes at the beginning of zygotene and rise to approximately 500 per nucleus by mid-zygotene when chromosomes are pairing and synapsing. During chromosome pairing, we consistently found two contiguous Rad51 foci on paired chromosomes. These paired foci may identify the sites where DNA sequence homology is being compared. During pachytene, the number of Rad51 foci drops to seven to 22 per nucleus. This higher number corresponds approximately to the number of chiasmata in maize meiosis. These observations are consistent with a role for Rad51 in the homology search phase of chromosome pairing in addition to its known role in meiotic recombination. PMID:10330467

  17. Using CERES-Maize and ENSO as Decision Support Tools to Evaluate Climate-Sensitive Farm Management Practices for Maize Production in the Northern Regions of Ghana

    PubMed Central

    MacCarthy, Dilys S.; Adiku, Samuel G. K.; Freduah, Bright S.; Gbefo, Francis; Kamara, Alpha Y.

    2017-01-01

    Maize (Zea mays) has traditionally been a major cereal staple in southern Ghana. Through breeding and other crop improvement efforts, the zone of cultivation of maize has now extended to the northern regions of Ghana which, hitherto, were the home to sorghum and millet as the major cereals. Maize yield in the northern Ghana is hampered by three major biophysical constraints, namely, poor soil fertility, low soil water storage capacity and climate variability. In this study we used the DSSAT crop model to assess integrated water and soil management strategies that combined the pre-season El-Niño-Southern Oscillation (ENSO)-based weather forecasting in selecting optimal planting time, at four locations in the northern regions of Ghana. It could be shown that the optimum planting date for a given year was predictable based on February-to-April (FMA) Sea Surface Temperature (SST) anomaly for the locations with R2 ranging from 0.52 to 0.71. For three out of four locations, the ENSO-predicted optimum planting dates resulted in significantly higher maize yields than the conventional farmer selected planting dates. In Wa for instance, early optimum planting dates were associated with La Nina and El Niño (Julian Days 130-150; early May to late May) whereas late planting (mid June to early July) was associated with the Neutral ENSO phase. It was also observed that the addition of manure and fertilizer improved soil water and nitrogen use efficiency, respectively, and minimized yield variability, especially when combined with weather forecast. The use of ENSO-based targeted planting date choice together with modest fertilizer and manure application has the potential to improve maize yields and also ensure sustainable maize production in parts of northern Ghana. PMID:28184227

  18. Applicability of the quantification of genetically modified organisms to foods processed from maize and soy.

    PubMed

    Yoshimura, Tomoaki; Kuribara, Hideo; Matsuoka, Takeshi; Kodama, Takashi; Iida, Mayu; Watanabe, Takahiro; Akiyama, Hiroshi; Maitani, Tamio; Furui, Satoshi; Hino, Akihiro

    2005-03-23

    The applicability of quantifying genetically modified (GM) maize and soy to processed foods was investigated using heat treatment processing models. The detection methods were based on real-time quantitative polymerase chain reaction (PCR) analysis. Ground seeds of insect resistant GM maize (MON810) and glyphosate tolerant Roundup Ready (RR) soy were dissolved in water and were heat treated by autoclaving for various time intervals. The calculated copy numbers of the recombinant and taxon specific deoxyribonucleic acid (DNA) sequences in the extracted DNA solution were found to decrease with time. This decrease was influenced by the PCR-amplified size. The conversion factor (Cf), which is the ratio of the recombinant DNA sequence to the taxon specific DNA sequence and is used as a constant number for calculating GM% at each event, tended to be stable when the sizes of PCR products of two DNA sequences were nearly equal. The results suggested that the size of the PCR product plays a key role in the quantification of GM organisms in processed foods. It is believed that the Cf of the endosperm (3n) is influenced by whether the GM originated from a paternal or maternal source. The embryos and endosperms were separated from the F1 generation seeds of five GM maize events, and their Cf values were measured. Both paternal and maternal GM events were identified. In these, the endosperm Cf was lower than that of the embryo, and the embryo Cf was lower than that of the endosperm. These results demonstrate the difficulties encountered in the determination of GM% in maize grains (F2 generation) and in processed foods from maize and soy.

  19. Gene coexpression network alignment and conservation of gene modules between two grass species: maize and rice.

    PubMed

    Ficklin, Stephen P; Feltus, F Alex

    2011-07-01

    One major objective for plant biology is the discovery of molecular subsystems underlying complex traits. The use of genetic and genomic resources combined in a systems genetics approach offers a means for approaching this goal. This study describes a maize (Zea mays) gene coexpression network built from publicly available expression arrays. The maize network consisted of 2,071 loci that were divided into 34 distinct modules that contained 1,928 enriched functional annotation terms and 35 cofunctional gene clusters. Of note, 391 maize genes of unknown function were found to be coexpressed within modules along with genes of known function. A global network alignment was made between this maize network and a previously described rice (Oryza sativa) coexpression network. The IsoRankN tool was used, which incorporates both gene homology and network topology for the alignment. A total of 1,173 aligned loci were detected between the two grass networks, which condensed into 154 conserved subgraphs that preserved 4,758 coexpression edges in rice and 6,105 coexpression edges in maize. This study provides an early view into maize coexpression space and provides an initial network-based framework for the translation of functional genomic and genetic information between these two vital agricultural species.

  20. Maize streak virus: an old and complex 'emerging' pathogen.

    PubMed

    Shepherd, Dionne N; Martin, Darren P; Van Der Walt, Eric; Dent, Kyle; Varsani, Arvind; Rybicki, Edward P

    2010-01-01

    composed of a single 32-kDa capsid protein. Particles are generally stable in buffers of pH 4-8. In infected maize plants, streak disease initially manifests as minute, pale, circular spots on the lowest exposed portion of the youngest leaves. The only leaves that develop symptoms are those formed after infection, with older leaves remaining healthy. As the disease progresses, newer leaves emerge containing streaks up to several millimetres in length along the leaf veins, with primary veins being less affected than secondary or tertiary veins. The streaks are often fused laterally, appearing as narrow, broken, chlorotic stripes, which may extend over the entire length of severely affected leaves. Lesion colour generally varies from white to yellow, with some virus strains causing red pigmentation on maize leaves and abnormal shoot and flower bunching in grasses. Reduced photosynthesis and increased respiration usually lead to a reduction in leaf length and plant height; thus, maize plants infected at an early stage become severely stunted, producing undersized, misshapen cobs or giving no yield at all. Yield loss in susceptible maize is directly related to the time of infection: infected seedlings produce no yield or are killed, whereas plants infected at later times are proportionately less affected. Disease avoidance can be practised by only planting maize during the early season when viral inoculum loads are lowest. Leafhopper vectors can also be controlled with insecticides such as carbofuran. However, the development and use of streak-resistant cultivars is probably the most effective and economically viable means of preventing streak epidemics. Naturally occurring tolerance to MSV (meaning that, although plants become systemically infected, they do not suffer serious yield losses) has been found, which has primarily been attributed to a single gene, msv-1. However, other MSV resistance genes also exist and improved resistance has been achieved by concentrating these

  1. Recombination of cluster ions

    NASA Technical Reports Server (NTRS)

    Johnsen, Rainer

    1993-01-01

    Some of our recent work on molecular band emissions from recombination of molecular dimer ions (N4(+) and CO(+) CO) is discussed. Much of the experimental work was done by Y. S. Cao; the results on N4(+) recombination have been published. A brief progress report is given on our ongoing measurements of neutral products of recombination using the flowing-afterglow Langmuir-probe technique in conjunction with laser-induced fluorescence.

  2. Kernel Composition, Starch Structure, and Enzyme Digestibility of Opaque-2 Maize and Quality Protein Maize

    USDA-ARS?s Scientific Manuscript database

    Objectives of this study were to understand how opaque-2 (o2) mutation and quality protein maize (QPM) affect maize kernel composition and starch structure, property, and enzyme digestibility. Kernels of o2 maize contained less protein (9.6−12.5%) than those of the wild-type (WT) counterparts (12...

  3. MaizeGDB: Global support for maize research through open access information [abstract

    USDA-ARS?s Scientific Manuscript database

    MaizeGDB is the open-access global repository for maize genetic and genomic information – from single genes that determine nutritional quality to whole genome-scale data for complex traits including yield and drought tolerance. The data and tools at MaizeGDB enable researchers from Ethiopia to Ghan...

  4. Maize GO annotation—methods, evaluation, and review (maize-GAMER)

    USDA-ARS?s Scientific Manuscript database

    We created a new high-coverage, robust, and reproducible functional annotation of maize protein-coding genes based on Gene Ontology (GO) term assignments. Whereas the existing Phytozome and Gramene maize GO annotation sets only cover 41% and 56% of maize protein-coding genes, respectively, this stu...

  5. [AVIAN RECOMBINANT VIRUS H5N1 INFLUENZA (A/VIETNAM/1203/04) AND ITS ESCAPE-MUTANT m13(13) INDUCE EARLY SIGNALING REACTIONS OF THE IMMUNITY IN HUMAN LYMPHOCYTES].

    PubMed

    Sokolova, T M; Poloskov, V V; Shuvalov, A N; Rudneva, I A; Ershov, F I

    2016-01-01

    The innate immune receptors TLR4, TLR7, TLR8, and RIG1 recognized the structures of the influenza viruses in human lymphocytes and were activated by the recombinant avian influenza virus A/Vietnam/1203/04 and its escape-mutant m13(13) during early period of interaction. The stimulated levels are not connected with viral reproduction. Donor cells with the low constitutive immune receptors gene expression levels showed higher stimulation. Inflammation virus effects resulted in. increasing production of TNF-alpha and IFN-gamma by lymphocytes. Signaling gene reactions of the parent and mutant viruses endosomal as well as cytoplasmic receptors are very similar. The mutant virus A/Vietnam/1203/04 (HA S145F), stimulated an increase in the transcription level of the membrane receptor gene TLR4 and a decrease in the level of activation of TNF-alpha gene. Further studies of natural influenza virus isolates are necessary to estimate the role of HA antigenic changes on immune reactions in humans.

  6. Maize homologs of HCT, a key enzyme in lignin biosynthesis, bind the NLR Rp1 proteins to modulate the defense response

    USDA-ARS?s Scientific Manuscript database

    In plants, most disease resistance (R) genes encode nucleotide binding leucine-rich-repeat 42 (NLR) proteins that trigger a rapid localized cell death called a hypersensitive response (HR) 43 upon pathogen recognition. The maize NLR protein Rp1-D21 derives from an intragenic 44 recombination between...

  7. Strategies for the Production of Maize-derived Pharmaceuticals using Cytoplasmic Male Sterile Lines: in vitro Tissue Culture/Transformation and Field Breeding Approaches

    USDA-ARS?s Scientific Manuscript database

    Plant-made pharmaceuticals (PMPs) offer great promise as efficient and cost-effective products for the treatment of human and animal diseases. Maize seed is known for its large storage capacity and stability of proteins and starches; hence, it is considered an ideal organ for manufacturing recombin...

  8. Development of pachytene FISH maps for six maize chromosomes and their integration with other maize maps for insights into genome structure variation.

    PubMed

    Figueroa, Debbie M; Bass, Hank W

    2012-05-01

    Integrated cytogenetic pachytene fluorescence in situ hybridization (FISH) maps were developed for chromosomes 1, 3, 4, 5, 6, and 8 of maize using restriction fragment length polymorphism marker-selected Sorghum propinquum bacterial artificial chromosomes (BACs) for 19 core bin markers and 4 additional genetic framework loci. Using transgenomic BAC FISH mapping on maize chromosome addition lines of oats, we found that the relative locus position along the pachytene chromosome did not change as a function of total arm length, indicative of uniform axial contraction along the fibers during mid-prophase for tested loci on chromosomes 4 and 5. Additionally, we cytogenetically FISH mapped six loci from chromosome 9 onto their duplicated syntenic regions on chromosomes 1 and 6, which have varying amounts of sequence divergence, using sorghum BACs homologous to the chromosome 9 loci. We found that successful FISH mapping was possible even when the chromosome 9 selective marker had no counterpart in the syntenic block. In total, these 29 FISH-mapped loci were used to create the most extensive pachytene FISH maps to date for these six maize chromosomes. The FISH-mapped loci were then merged into one composite karyotype for direct comparative analysis with the recombination nodule-predicted cytogenetic, genetic linkage, and genomic physical maps using the relative marker positions of the loci on all the maps. Marker colinearity was observed between all pair-wise map comparisons, although marker distribution patterns varied widely in some cases. As expected, we found that the recombination nodule-based predictions most closely resembled the cytogenetic map positions overall. Cytogenetic and linkage map comparisons agreed with previous studies showing a decrease in marker spacing in the peri-centromeric heterochromatin region on the genetic linkage maps. In fact, there was a general trend with most loci mapping closer towards the telomere on the linkage maps than on the

  9. Diffusion controlled initial recombination

    NASA Astrophysics Data System (ADS)

    Christen, T.; Büttiker, M.

    1998-08-01

    This work addresses nucleation rates in systems with strong initial recombination. Initial (or ``geminate'') recombination is a process where a dissociated structure (anion, vortex, kink, etc.) recombines with its twin brother (cation, antivortex, antikink) generated in the same nucleation event. Initial recombination is important if there is an asymptotically vanishing interaction force instead of a generic saddle-type activation barrier. At low temperatures, initial recombination strongly dominates homogeneous recombination. In a first part, we discuss the effect in one-, two-, and three-dimensional diffusion controlled systems with spherical symmetry. Since there is no well-defined saddle, we introduce a threshold which is to some extent arbitrary but which is restricted by physically reasonable conditions. We show that the dependence of the nucleation rate on the specific choice of this threshold is strongest for one-dimensional systems and decreases in higher dimensions. We also discuss the influence of a weak driving force, and show that the transport current is directly determined by the imbalance of the activation rate in the direction of the field and the rate against this direction. In a second part, we apply the results to the overdamped sine-Gordon system at equilibrium. It turns out that diffusive initial recombination is the essential mechanism which governs the equilibrium kink nucleation rate. We emphasize analogies between the single particle problem with initial recombination and the multidimensional kink-antikink nucleation problem.

  10. A gene regulatory network model for floral transition of the shoot apex in maize and its dynamic modeling.

    PubMed

    Dong, Zhanshan; Danilevskaya, Olga; Abadie, Tabare; Messina, Carlos; Coles, Nathan; Cooper, Mark

    2012-01-01

    The transition from the vegetative to reproductive development is a critical event in the plant life cycle. The accurate prediction of flowering time in elite germplasm is important for decisions in maize breeding programs and best agronomic practices. The understanding of the genetic control of flowering time in maize has significantly advanced in the past decade. Through comparative genomics, mutant analysis, genetic analysis and QTL cloning, and transgenic approaches, more than 30 flowering time candidate genes in maize have been revealed and the relationships among these genes have been partially uncovered. Based on the knowledge of the flowering time candidate genes, a conceptual gene regulatory network model for the genetic control of flowering time in maize is proposed. To demonstrate the potential of the proposed gene regulatory network model, a first attempt was made to develop a dynamic gene network model to predict flowering time of maize genotypes varying for specific genes. The dynamic gene network model is composed of four genes and was built on the basis of gene expression dynamics of the two late flowering id1 and dlf1 mutants, the early flowering landrace Gaspe Flint and the temperate inbred B73. The model was evaluated against the phenotypic data of the id1 dlf1 double mutant and the ZMM4 overexpressed transgenic lines. The model provides a working example that leverages knowledge from model organisms for the utilization of maize genomic information to predict a whole plant trait phenotype, flowering time, of maize genotypes.

  11. Genetic Diversity and Molecular Evolution of a Violaxanthin De-epoxidase Gene in Maize.

    PubMed

    Xu, Jing; Li, Zhigang; Yang, Haorui; Yang, Xiaohong; Chen, Cuixia; Li, Hui

    2016-01-01

    Violaxanthin de-epoxidase (VDE) has a critical role in the carotenoid biosynthesis pathway, which is involved in protecting the photosynthesis apparatus from damage caused by excessive light. Here, a VDE gene in maize, ZmVDE1, was cloned and shown to have functional domains in common with the gramineous VDE protein. Candidate gene association analysis indicated that no polymorphic sites in ZmVDE1 were significant association with any of the examined carotenoid-related traits at P = 0.05 in an association panel containing 155 maize inbred lines. Nucleotide diversity analysis of VDE1 in maize and teosinte indicated that its exon had less genetic variation, consistent with the conserved function of VDE1 in plants. In addition, dramatically reduced nucleotide diversity, fewer haplotypes and a significantly negative parameter deviation for Tajima's D test of ZmVDE1 in maize and teosinte suggested that a potential selective force had acted across the ZmVDE1 locus. We further identified a 4.2 Mb selective sweep with low recombination surrounding the ZmVDE1 locus that resulted in severely reduced nucleotide diversity on chromosome 2. Collectively, natural selection and the conserved domains of ZmVDE1 might show an important role in the xanthophyll cycle of the carotenoid biosynthesis pathway.

  12. Genetic Diversity and Molecular Evolution of a Violaxanthin De-epoxidase Gene in Maize

    PubMed Central

    Xu, Jing; Li, Zhigang; Yang, Haorui; Yang, Xiaohong; Chen, Cuixia; Li, Hui

    2016-01-01

    Violaxanthin de-epoxidase (VDE) has a critical role in the carotenoid biosynthesis pathway, which is involved in protecting the photosynthesis apparatus from damage caused by excessive light. Here, a VDE gene in maize, ZmVDE1, was cloned and shown to have functional domains in common with the gramineous VDE protein. Candidate gene association analysis indicated that no polymorphic sites in ZmVDE1 were significant association with any of the examined carotenoid-related traits at P = 0.05 in an association panel containing 155 maize inbred lines. Nucleotide diversity analysis of VDE1 in maize and teosinte indicated that its exon had less genetic variation, consistent with the conserved function of VDE1 in plants. In addition, dramatically reduced nucleotide diversity, fewer haplotypes and a significantly negative parameter deviation for Tajima’s D test of ZmVDE1 in maize and teosinte suggested that a potential selective force had acted across the ZmVDE1 locus. We further identified a 4.2 Mb selective sweep with low recombination surrounding the ZmVDE1 locus that resulted in severely reduced nucleotide diversity on chromosome 2. Collectively, natural selection and the conserved domains of ZmVDE1 might show an important role in the xanthophyll cycle of the carotenoid biosynthesis pathway. PMID:27507987

  13. Maize YABBY Genes drooping leaf1 and drooping leaf2 Regulate Plant Architecture[OPEN

    PubMed Central

    Briggs, Sarah; Bradbury, Peter J.

    2017-01-01

    Leaf architecture directly influences canopy structure, consequentially affecting yield. We discovered a maize (Zea mays) mutant with aberrant leaf architecture, which we named drooping leaf1 (drl1). Pleiotropic mutations in drl1 affect leaf length and width, leaf angle, and internode length and diameter. These phenotypes are enhanced by natural variation at the drl2 enhancer locus, including reduced expression of the drl2-Mo17 allele in the Mo17 inbred. A second drl2 allele, produced by transposon mutagenesis, interacted synergistically with drl1 mutants and reduced drl2 transcript levels. The drl genes are required for proper leaf patterning, development and cell proliferation of leaf support tissues, and for restricting auricle expansion at the midrib. The paralogous loci encode maize CRABS CLAW co-orthologs in the YABBY family of transcriptional regulators. The drl genes are coexpressed in incipient and emergent leaf primordia at the shoot apex, but not in the vegetative meristem or stem. Genome-wide association studies using maize NAM-RIL (nested association mapping-recombinant inbred line) populations indicated that the drl loci reside within quantitative trait locus regions for leaf angle, leaf width, and internode length and identified rare single nucleotide polymorphisms with large phenotypic effects for the latter two traits. This study demonstrates that drl genes control the development of key agronomic traits in maize. PMID:28698237

  14. Quantitative Trait Loci for Mercury Accumulation in Maize (Zea mays L.) Identified Using a RIL Population

    PubMed Central

    Zhang, Qinbin; Wang, Long; Zhang, Xiaoxiang; Song, Guiliang; Fu, Zhiyuan; Ding, Dong; Liu, Zonghua; Tang, Jihua

    2014-01-01

    To investigate the genetic mechanism of mercury accumulation in maize (Zea mays L.), a population of 194 recombinant inbred lines derived from an elite hybrid Yuyu 22, was used to identify quantitative trait loci (QTLs) for mercury accumulation at two locations. The results showed that the average Hg concentration in the different tissues of maize followed the order: leaves > bracts > stems > axis > kernels. Twenty-three QTLs for mercury accumulation in five tissues were detected on chromosomes 1, 4, 7, 8, 9 and 10, which explained 6.44% to 26.60% of the phenotype variance. The QTLs included five QTLs for Hg concentration in kernels, three QTLs for Hg concentration in the axis, six QTLs for Hg concentration in stems, four QTLs for Hg concentration in bracts and five QTLs for Hg concentration in leaves. Interestingly, three QTLs, qKHC9a, qKHC9b, and qBHC9 were in linkage with two QTLs for drought tolerance. In addition, qLHC1 was in linkage with two QTLs for arsenic accumulation. The study demonstrated the concentration of Hg in Hg-contaminated paddy soil could be reduced, and maize production maintained simultaneously by selecting and breeding maize Hg pollution-safe cultivars (PSCs). PMID:25210737

  15. Mortality Dynamics of Spodoptera frugiperda (Lepidoptera: Noctuidae) Immatures in Maize.

    PubMed

    Varella, Andrea Corrêa; Menezes-Netto, Alexandre Carlos; Alonso, Juliana Duarte de Souza; Caixeta, Daniel Ferreira; Peterson, Robert K D; Fernandes, Odair Aparecido

    2015-01-01

    We characterized the dynamics of mortality factors affecting immature developmental stages of the fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Multiple decrement life tables for egg and early larval stages of S. frugiperda in maize (Zea mays L.) fields were developed with and without augmentative releases of Telenomus remus Nixon (Hymenoptera: Platygastridae) from 2009 to 2011. Total egg mortality ranged from 73 to 81% and the greatest egg mortality was due to inviability, dislodgement, and predation. Parasitoids did not cause significant mortality in egg or early larval stages and the releases of T. remus did not increase egg mortality. Greater than 95% of early larvae died from predation, drowning, and dislodgment by rainfall. Total mortality due to these factors was largely irreplaceable. Results indicate that a greater effect in reducing generational survival may be achieved by adding mortality to the early larval stage of S. frugiperda.

  16. Mortality Dynamics of Spodoptera frugiperda (Lepidoptera: Noctuidae) Immatures in Maize

    PubMed Central

    Varella, Andrea Corrêa; Menezes-Netto, Alexandre Carlos; Alonso, Juliana Duarte de Souza; Caixeta, Daniel Ferreira; Peterson, Robert K. D.; Fernandes, Odair Aparecido

    2015-01-01

    We characterized the dynamics of mortality factors affecting immature developmental stages of the fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Multiple decrement life tables for egg and early larval stages of S. frugiperda in maize (Zea mays L.) fields were developed with and without augmentative releases of Telenomus remus Nixon (Hymenoptera: Platygastridae) from 2009 to 2011. Total egg mortality ranged from 73 to 81% and the greatest egg mortality was due to inviability, dislodgement, and predation. Parasitoids did not cause significant mortality in egg or early larval stages and the releases of T. remus did not increase egg mortality. Greater than 95% of early larvae died from predation, drowning, and dislodgment by rainfall. Total mortality due to these factors was largely irreplaceable. Results indicate that a greater effect in reducing generational survival may be achieved by adding mortality to the early larval stage of S. frugiperda. PMID:26098422

  17. Mitigating Mitochondrial Genome Erosion Without Recombination.

    PubMed

    Radzvilavicius, Arunas L; Kokko, Hanna; Christie, Joshua R

    2017-11-01

    Mitochondria are ATP-producing organelles of bacterial ancestry that played a key role in the origin and early evolution of complex eukaryotic cells. Most modern eukaryotes transmit mitochondrial genes uniparentally, often without recombination among genetically divergent organelles. While this asymmetric inheritance maintains the efficacy of purifying selection at the level of the cell, the absence of recombination could also make the genome susceptible to Muller's ratchet. How mitochondria escape this irreversible defect accumulation is a fundamental unsolved question. Occasional paternal leakage could in principle promote recombination, but it would also compromise the purifying selection benefits of uniparental inheritance. We assess this tradeoff using a stochastic population-genetic model. In the absence of recombination, uniparental inheritance of freely-segregating genomes mitigates mutational erosion, while paternal leakage exacerbates the ratchet effect. Mitochondrial fusion-fission cycles ensure independent genome segregation, improving purifying selection. Paternal leakage provides opportunity for recombination to slow down the mutation accumulation, but always at a cost of increased steady-state mutation load. Our findings indicate that random segregation of mitochondrial genomes under uniparental inheritance can effectively combat the mutational meltdown, and that homologous recombination under paternal leakage might not be needed. Copyright © 2017 by the Genetics Society of America.

  18. Use of tropical maize for bioethanol production

    USDA-ARS?s Scientific Manuscript database

    Tropical maize is an alternative energy crop being considered as a feedstock for bioethanol production in the North Central and Midwest United States. Tropical maize is advantageous because it produces large amounts of soluble sugars in its stalks, creates a large amount of biomass, and requires lo...

  19. A meteorologically driven maize stress indicator model

    NASA Technical Reports Server (NTRS)

    Taylor, T. W.; Ravet, F. W. (Principal Investigator)

    1981-01-01

    A maize soil moisture and temperature stress model is described which was developed to serve as a meteorological data filter to alert commodity analysts to potential stress conditions in the major maize-producing areas of the world. The model also identifies optimum climatic conditions and planting/harvest problems associated with poor tractability.

  20. Consumer preferences for maize products in urban Kenya.

    PubMed

    De Groote, Hugo; Kimenju, Simon Chege

    2012-06-01

    New maize varieties have been biofortified with provitamin A, mainly a-carotene, which renders the grain yellow or orange. Unfortunately, many African consumers prefer white maize. The maize consumption patterns in Africa are, however, not known. To determine which maize products African consumers prefer to purchase and which maize preparations they prefer to eat. A survey of 600 consumers was conducted in Nairobi, Kenya, at three types of maize outlets: posho mills (small hammer mills), kiosks, and supermarkets. Clients of posho mills had lower incomes and less education than those of kiosks and supermarkets. The preferred maize product of the posho-mill clients was artisanal maize meal; the preferred product of the others was industrial maize meal. Maize is the preferred staple for lunch and dinner, eaten as a stiff porridge (ugali), followed by boiled maize and beans (githeri), regardless of socioeconomic background. For breakfast, only half the consumers prefer maize, mostly as a soft porridge (uji). This proportion is higher in low-income groups. Consumers show a strong preference for white maize over yellow, mostly for its organoleptic characteristics, and show less interest in biofortified maize. Maize is the major food staple in Nairobi, mostly eaten in a few distinct preparations. For biofortified yellow maize to be accepted, a strong public awareness campaign to inform consumers is needed, based on a sensory evaluation and the mass media, in particular on radio in the local language.

  1. Viruses in maize and Johnsongrass in southern Ohio

    USDA-ARS?s Scientific Manuscript database

    Two major maize viruses in the United States, Maize dwarf mosaic virus and Maize chlorotic dwarf virus, were first described in Southern Ohio and surrounding regions in the 1960s when they were major problems in maize (Zea mays L.) production. Planting resistant varieties and changing cultural prac...

  2. Dissociative recombination in aeronomy

    NASA Technical Reports Server (NTRS)

    Fox, J. L.

    1989-01-01

    The importance of dissociative recombination in planetary aeronomy is summarized, and two examples are discussed. The first is the role of dissociative recombination of N2(+) in the escape of nitrogen from Mars. A previous model is updated to reflect new experimental data on the electronic states of N produced in this process. Second, the intensity of the atomic oxygen green line on the nightside of Venus is modeled. Use is made of theoretical rate coefficients for production of O (1S) in dissociative recombination from different vibrational levels of O2(+).

  3. Molecular and Biochemical Characterization of a Cytokinin Oxidase from Maize1

    PubMed Central

    Bilyeu, Kristin D.; Cole, Jean L.; Laskey, James G.; Riekhof, Wayne R.; Esparza, Thomas J.; Kramer, Michelle D.; Morris, Roy O.

    2001-01-01

    It is generally accepted that cytokinin oxidases, which oxidatively remove cytokinin side chains to produce adenine and the corresponding isopentenyl aldehyde, play a major role in regulating cytokinin levels in planta. Partially purified fractions of cytokinin oxidase from various species have been studied for many years, but have yet to clearly reveal the properties of the enzyme or to define its biological significance. Details of the genomic organization of the recently isolated maize (Zea mays) cytokinin oxidase gene (ckx1) and some of its Arabidopsis homologs are now presented. Expression of an intronless ckx1 in Pichia pastoris allowed production of large amounts of recombinant cytokinin oxidase and facilitated detailed kinetic and cofactor analysis and comparison with the native enzyme. The enzyme is a flavoprotein containing covalently bound flavin adenine dinucleotide, but no detectable heavy metals. Expression of the oxidase in maize tissues is described. PMID:11154345

  4. Co-infection and disease severity of Ohio Maize dwarf mosaic virus and Maize chlorotic dwarf virus strains

    USDA-ARS?s Scientific Manuscript database

    Two major maize viruses have been reported in the United States: Maize dwarf mosaic virus (MDMV) and Maize chlorotic dwarf virus (MCDV). These viruses co-occur in regions where maize is grown such that co-infections are likely. Co-infection of different strains of MCDV is also observed frequently...

  5. Evidence of reduced recombination rate in human regulatory domains.

    PubMed

    Liu, Yaping; Sarkar, Abhishek; Kheradpour, Pouya; Ernst, Jason; Kellis, Manolis

    2017-10-20

    Recombination rate is non-uniformly distributed across the human genome. The variation of recombination rate at both fine and large scales cannot be fully explained by DNA sequences alone. Epigenetic factors, particularly DNA methylation, have recently been proposed to influence the variation in recombination rate. We study the relationship between recombination rate and gene regulatory domains, defined by a gene and its linked control elements. We define these links using expression quantitative trait loci (eQTLs), methylation quantitative trait loci (meQTLs), chromatin conformation from publicly available datasets (Hi-C and ChIA-PET), and correlated activity links that we infer across cell types. Each link type shows a "recombination rate valley" of significantly reduced recombination rate compared to matched control regions. This recombination rate valley is most pronounced for gene regulatory domains of early embryonic development genes, housekeeping genes, and constitutive regulatory elements, which are known to show increased evolutionary constraint across species. Recombination rate valleys show increased DNA methylation, reduced doublestranded break initiation, and increased repair efficiency, specifically in the lineage leading to the germ line. Moreover, by using only the overlap of functional links and DNA methylation in germ cells, we are able to predict the recombination rate with high accuracy. Our results suggest the existence of a recombination rate valley at regulatory domains and provide a potential molecular mechanism to interpret the interplay between genetic and epigenetic variations.

  6. INTEGRATED WEED CONTROL IN MAIZE.

    PubMed

    Latré, J; Dewitte, K; Derycke, V; De Roo, B; Haesaert, G

    2015-01-01

    Integrated pest management has been implemented as a general practice by EU legislation. As weed control actually is the most important crop protection measure in maize for Western Europe, the new legislation will have its impact. The question is of course which systems can be successfully implemented in practice with respect to labour efficiency and economical parameters. During 3 successive growing seasons (2007, 2008, 2009) weed control in maize was evaluated, the main focus was put on different techniques of integrated weed control and was compared with chemical weed control. Additionally, during 4 successive growing seasons (2011, 2012, 2013 and 2014) two objects based on integrated weed control and two objects based on mechanical weed control were compared to about twenty different objects of conventional chemical weed control. One of the objects based on mechanical weed control consisted of treatment with the flex-tine harrow before and after emergence in combination with chemical weed control at a reduced rate in 3-4 leave stage. The second one consisted of broadcast mechanical treatments before and after emergence followed by a final in-row application of herbicides and an inter-row cultivation at 6-7(8) leave stage. All trials were conducted on the Experimental farm of Bottelare HoGent-UGent on a sandy loam soil. Maize was growing in 1/3 crop rotation. The effect on weed growth as well as the economic impact of the different applications was evaluated. Combining chemical and mechanical weed control is a possible option in conventional farming but the disadvantages must be taken into account. A better planned weed control based on the real present weed-population in combination with a carefully thought-out choice of herbicides should also be considered as an IPM--approach.

  7. Activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, Carl W.; Mangel, Walter F.

    1999-08-10

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying said peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described.

  8. Activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, C.W.; Mangel, W.F.

    1999-08-10

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described. 29 figs.

  9. Genetic diversity and population structure of native maize populations in Latin America and the Caribbean.

    PubMed

    Bedoya, Claudia A; Dreisigacker, Susanne; Hearne, Sarah; Franco, Jorge; Mir, Celine; Prasanna, Boddupalli M; Taba, Suketoshi; Charcosset, Alain; Warburton, Marilyn L

    2017-01-01

    This study describes the genetic diversity and population structure of 194 native maize populations from 23 countries of Latin America and the Caribbean. The germplasm, representing 131 distinct landraces, was genetically characterized as population bulks using 28 SSR markers. Three main groups of maize germplasm were identified. The first, the Mexico and Southern Andes group, highlights the Pre-Columbian and modern exchange of germplasm between North and South America. The second group, Mesoamerica lowland, supports the hypothesis that two separate human migration events could have contributed to Caribbean maize germplasm. The third, the Andean group, displayed early introduction of maize into the Andes, with little mixing since then, other than a regional interchange zone active in the past. Events and activities in the pre- and post-Columbian Americas including the development and expansion of pre-Columbian cultures and the arrival of Europeans to the Americas are discussed in relation to the history of maize migration from its point of domestication in Mesoamerica to South America and the Caribbean through sea and land routes.

  10. Influence of Kernel Age on Fumonisin B1 Production in Maize by Fusarium moniliforme

    PubMed Central

    Warfield, Colleen Y.; Gilchrist, David G.

    1999-01-01

    Production of fumonisins by Fusarium moniliforme on naturally infected maize ears is an important food safety concern due to the toxic nature of this class of mycotoxins. Assessing the potential risk of fumonisin production in developing maize ears prior to harvest requires an understanding of the regulation of toxin biosynthesis during kernel maturation. We investigated the developmental-stage-dependent relationship between maize kernels and fumonisin B1 production by using kernels collected at the blister (R2), milk (R3), dough (R4), and dent (R5) stages following inoculation in culture at their respective field moisture contents with F. moniliforme. Highly significant differences (P ≤ 0.001) in fumonisin B1 production were found among kernels at the different developmental stages. The highest levels of fumonisin B1 were produced on the dent stage kernels, and the lowest levels were produced on the blister stage kernels. The differences in fumonisin B1 production among kernels at the different developmental stages remained significant (P ≤ 0.001) when the moisture contents of the kernels were adjusted to the same level prior to inoculation. We concluded that toxin production is affected by substrate composition as well as by moisture content. Our study also demonstrated that fumonisin B1 biosynthesis on maize kernels is influenced by factors which vary with the developmental age of the tissue. The risk of fumonisin contamination may begin early in maize ear development and increases as the kernels reach physiological maturity. PMID:10388675

  11. Genetic diversity and population structure of native maize populations in Latin America and the Caribbean

    PubMed Central

    Bedoya, Claudia A.; Dreisigacker, Susanne; Hearne, Sarah; Franco, Jorge; Mir, Celine; Prasanna, Boddupalli M.; Taba, Suketoshi; Charcosset, Alain; Warburton, Marilyn L.

    2017-01-01

    This study describes the genetic diversity and population structure of 194 native maize populations from 23 countries of Latin America and the Caribbean. The germplasm, representing 131 distinct landraces, was genetically characterized as population bulks using 28 SSR markers. Three main groups of maize germplasm were identified. The first, the Mexico and Southern Andes group, highlights the Pre-Columbian and modern exchange of germplasm between North and South America. The second group, Mesoamerica lowland, supports the hypothesis that two separate human migration events could have contributed to Caribbean maize germplasm. The third, the Andean group, displayed early introduction of maize into the Andes, with little mixing since then, other than a regional interchange zone active in the past. Events and activities in the pre- and post-Columbian Americas including the development and expansion of pre-Columbian cultures and the arrival of Europeans to the Americas are discussed in relation to the history of maize migration from its point of domestication in Mesoamerica to South America and the Caribbean through sea and land routes. PMID:28403177

  12. The Conserved and Unique Genetic Architecture of Kernel Size and Weight in Maize and Rice.

    PubMed

    Liu, Jie; Huang, Juan; Guo, Huan; Lan, Liu; Wang, Hongze; Xu, Yuancheng; Yang, Xiaohong; Li, Wenqiang; Tong, Hao; Xiao, Yingjie; Pan, Qingchun; Qiao, Feng; Raihan, Mohammad Sharif; Liu, Haijun; Zhang, Xuehai; Yang, Ning; Wang, Xiaqing; Deng, Min; Jin, Minliang; Zhao, Lijun; Luo, Xin; Zhou, Yang; Li, Xiang; Zhan, Wei; Liu, Nannan; Wang, Hong; Chen, Gengshen; Li, Qing; Yan, Jianbing

    2017-10-01

    Maize ( Zea mays ) is a major staple crop. Maize kernel size and weight are important contributors to its yield. Here, we measured kernel length, kernel width, kernel thickness, hundred kernel weight, and kernel test weight in 10 recombinant inbred line populations and dissected their genetic architecture using three statistical models. In total, 729 quantitative trait loci (QTLs) were identified, many of which were identified in all three models, including 22 major QTLs that each can explain more than 10% of phenotypic variation. To provide candidate genes for these QTLs, we identified 30 maize genes that are orthologs of 18 rice ( Oryza sativa ) genes reported to affect rice seed size or weight. Interestingly, 24 of these 30 genes are located in the identified QTLs or within 1 Mb of the significant single-nucleotide polymorphisms. We further confirmed the effects of five genes on maize kernel size/weight in an independent association mapping panel with 540 lines by candidate gene association analysis. Lastly, the function of ZmINCW1 , a homolog of rice GRAIN INCOMPLETE FILLING1 that affects seed size and weight, was characterized in detail. ZmINCW1 is close to QTL peaks for kernel size/weight (less than 1 Mb) and contains significant single-nucleotide polymorphisms affecting kernel size/weight in the association panel. Overexpression of this gene can rescue the reduced weight of the Arabidopsis ( Arabidopsis thaliana ) homozygous mutant line in the AtcwINV2 gene (Arabidopsis ortholog of ZmINCW1 ). These results indicate that the molecular mechanisms affecting seed development are conserved in maize, rice, and possibly Arabidopsis. © 2017 American Society of Plant Biologists. All Rights Reserved.

  13. Dispersal of Transgenes through Maize Seed Systems in Mexico

    PubMed Central

    Dyer, George A.; Serratos-Hernández, J. Antonio; Perales, Hugo R.; Gepts, Paul; Piñeyro-Nelson, Alma; Chávez, Angeles; Salinas-Arreortua, Noé; Yúnez-Naude, Antonio; Taylor, J. Edward; Alvarez-Buylla, Elena R.

    2009-01-01

    Objectives Current models of transgene dispersal focus on gene flow via pollen while neglecting seed, a vital vehicle for gene flow in centers of crop origin and diversity. We analyze the dispersal of maize transgenes via seeds in Mexico, the crop's cradle. Methods We use immunoassays (ELISA) to screen for the activity of recombinant proteins in a nationwide sample of farmer seed stocks. We estimate critical parameters of seed population dynamics using household survey data and combine these estimates with analytical results to examine presumed sources and mechanisms of dispersal. Results Recombinant proteins Cry1Ab/Ac and CP4/EPSPS were found in 3.1% and 1.8% of samples, respectively. They are most abundant in southeast Mexico but also present in the west-central region. Diffusion of seed and grain imported from the United States might explain the frequency and distribution of transgenes in west-central Mexico but not in the southeast. Conclusions Understanding the potential for transgene survival and dispersal should help design methods to regulate the diffusion of germplasm into local seed stocks. Further research is needed on the interactions between formal and informal seed systems and grain markets in centers of crop origin and diversification. PMID:19503610

  14. Assessing spatiotemporal variation of drought and its impact on maize yield in Northeast China

    NASA Astrophysics Data System (ADS)

    Guo, Enliang; Liu, Xingpeng; Zhang, Jiquan; Wang, Yongfang; Wang, Cailin; Wang, Rui; Li, Danjun

    2017-10-01

    Heilongjiang Province under the RCP4.5 scenario. These results can be used as a tool for early warning of drought risk to maize, and will accelerate the progress of drought disaster risk management.

  15. Regulation of Meiotic Recombination

    SciTech Connect

    Gregory p. Copenhaver

    Meiotic recombination results in the heritable rearrangement of DNA, primarily through reciprocal exchange between homologous chromosome or gene conversion. In plants these events are critical for ensuring proper chromosome segregation, facilitating DNA repair and providing a basis for genetic diversity. Understanding this fundamental biological mechanism will directly facilitate trait mapping, conventional plant breeding, and development of genetic engineering techniques that will help support the responsible production and conversion of renewable resources for fuels, chemicals, and the conservation of energy (1-3). Substantial progress has been made in understanding the basal recombination machinery, much of which is conserved in organisms as diversemore » as yeast, plants and mammals (4, 5). Significantly less is known about the factors that regulate how often and where that basal machinery acts on higher eukaryotic chromosomes. One important mechanism for regulating the frequency and distribution of meiotic recombination is crossover interference - or the ability of one recombination event to influence nearby events. The MUS81 gene is thought to play an important role in regulating the influence of interference on crossing over. The immediate goals of this project are to use reverse genetics to identify mutants in two putative MUS81 homologs in the model plant Arabidopsis thaliana, characterize those mutants and initiate a novel forward genetic screen for additional regulators of meiotic recombination. The long-term goal of the project is to understand how meiotic recombination is regulated in higher eukaryotes with an emphasis on the molecular basis of crossover interference. The ability to monitor recombination in all four meiotic products (tetrad analysis) has been a powerful tool in the arsenal of yeast geneticists. Previously, the qrt mutant of Arabidopsis, which causes the four pollen products of male meiosis to remain attached, was developed as a

  16. Recombinant Rp1 genes confer necrotic or nonspecific resistance phenotypes.

    PubMed

    Smith, Shavannor M; Steinau, Martin; Trick, Harold N; Hulbert, Scot H

    2010-06-01

    Genes at the Rp1 rust resistance locus of maize confer race-specific resistance to the common rust fungus Puccinia sorghi. Three variant genes with nonspecific effects (HRp1 -Kr1N, -D*21 and -MD*19) were found to be generated by intragenic crossing over within the LRR region. The LRR region of most NBS-LRR encoding genes is quite variable and codes for one of the regions in resistance gene proteins that controls specificity. Sequence comparisons demonstrated that the Rp1-Kr1N recombinant gene was identical to the N-terminus of the rp1-kp2 gene and C-terminus of another gene from its HRp1-K grandparent. The Rp1-D*21 recombinant gene consists of the N-terminus of the rp1-dp2 gene and C-terminus of the Rp1-D gene from the parental haplotype. Similarly, a recombinant gene from the Rp1-MD*19 haplotype has the N-terminus of an rp1 gene from the HRp1-M parent and C-terminus of the rp1-D19 gene from the HRp1-D parent. The recombinant Rp1 -Kr1N, -D*21 and -MD*19 genes activated defense responses in the absence of their AVR proteins triggering HR (hypersensitive response) in the absence of the pathogen. The results indicate that the frequent intragenic recombination events that occur in the Rp1 gene cluster not only recombine the genes into novel haplotypes, but also create genes with nonspecific effects. Some of these may contribute to nonspecific quantitative resistance but others have severe consequences for the fitness of the plant.

  17. Gene Coexpression Network Alignment and Conservation of Gene Modules between Two Grass Species: Maize and Rice[C][W][OA

    PubMed Central

    Ficklin, Stephen P.; Feltus, F. Alex

    2011-01-01

    One major objective for plant biology is the discovery of molecular subsystems underlying complex traits. The use of genetic and genomic resources combined in a systems genetics approach offers a means for approaching this goal. This study describes a maize (Zea mays) gene coexpression network built from publicly available expression arrays. The maize network consisted of 2,071 loci that were divided into 34 distinct modules that contained 1,928 enriched functional annotation terms and 35 cofunctional gene clusters. Of note, 391 maize genes of unknown function were found to be coexpressed within modules along with genes of known function. A global network alignment was made between this maize network and a previously described rice (Oryza sativa) coexpression network. The IsoRankN tool was used, which incorporates both gene homology and network topology for the alignment. A total of 1,173 aligned loci were detected between the two grass networks, which condensed into 154 conserved subgraphs that preserved 4,758 coexpression edges in rice and 6,105 coexpression edges in maize. This study provides an early view into maize coexpression space and provides an initial network-based framework for the translation of functional genomic and genetic information between these two vital agricultural species. PMID:21606319

  18. [Effects of nitrogen management on maize nitrogen utilization and residual nitrate nitrogen in soil under maize/soybean and maize/sweet potato relay strip intercropping systems].

    PubMed

    Wang, Xiao-Chun; Yang, Wen-Yu; Deng, Xiao-Yan; Zhang, Qun; Yong, Tai-Wen; Liu, Wei-Guo; Yang, Feng; Mao, Shu-Ming

    2014-10-01

    A large amount of nitrogen (N) fertilizers poured into the fields severely pollute the environment. Reasonable application of N fertilizer has always been the research hotpot. The effects of N management on maize N utilization and residual nitrate N in soil under maize/soybean and maize/ sweet potato relay strip intercropping systems were reported in a field experiment in southwest China. It was found that maize N accumulation, N harvest index, N absorption efficiency, N contribution proportion after the anthesis stage in maize/soybean relay strip intercropping were increased by 6.1%, 5.4%, 4.3%, and 15.1% than under maize/sweet potato with an increase of 22.6% for maize yield after sustainable growing of maize/soybean intercropping system. Nitrate N accumulation in the 0-60 cm soil layer was 12.9% higher under maize/soybean intercropping than under maize/sweet potato intercropping. However, nitrate N concentration in the 60-120 cm soil layer when intercropped with soybean decreased by 10.3% than when intercropped with sweet potato, indicating a decrease of N leaching loss. Increasing of N application rate enhanced N accumulation of maize and decreased N use efficiency and significantly increased nitrate concentration in the soil profile except in the 60-100 cm soil layer, where no significant difference was observed with nitrogen application rate at 0 to 270 kg · hm(-2). Further application of N fertilizer significantly enhanced nitrate leaching loss. Postponing N application increased nitrate accumulation in the 60-100 cm soil layer. The results suggested that N application rates and ratio of base to top dressing had different influences on maize N concentration and nitrate N between maize/soybean and maize/sweet potato intercropping. Maize N concentration in the late growing stage, N harvest index and N use efficiency under maize/soybean intercropping increased (with N application rate at 180-270 kg · hm(-2) and ratio of base to top dressing = 3:2:5) and

  19. Maize and Arabidopsis ARGOS Proteins Interact with Ethylene Receptor Signaling Complex, Supporting a Regulatory Role for ARGOS in Ethylene Signal Transduction[OPEN

    PubMed Central

    Shi, Jinrui; Wang, Hongyu; Habben, Jeffrey E.

    2016-01-01

    The phytohormone ethylene regulates plant growth and development as well as plant response to environmental cues. ARGOS genes reduce plant sensitivity to ethylene when overexpressed in transgenic Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). A previous genetic study suggested that the endoplasmic reticulum and Golgi-localized maize ARGOS1 targets the ethylene signal transduction components at or upstream of CONSTITUTIVE TRIPLE RESPONSE1, but the mechanism of ARGOS modulating ethylene signaling is unknown. Here, we demonstrate in Arabidopsis that ZmARGOS1, as well as the Arabidopsis ARGOS homolog ORGAN SIZE RELATED1, physically interacts with Arabidopsis REVERSION-TO-ETHYLENE SENSITIVITY1 (RTE1), an ethylene receptor interacting protein that regulates the activity of ETHYLENE RESPONSE1. The protein-protein interaction was also detected with the yeast split-ubiquitin two-hybrid system. Using the same yeast assay, we found that maize RTE1 homolog REVERSION-TO-ETHYLENE SENSITIVITY1 LIKE4 (ZmRTL4) and ZmRTL2 also interact with maize and Arabidopsis ARGOS proteins. Like AtRTE1 in Arabidopsis, ZmRTL4 and ZmRTL2 reduce ethylene responses when overexpressed in maize, indicating a similar mechanism for ARGOS regulating ethylene signaling in maize. A polypeptide fragment derived from ZmARGOS8, consisting of a Pro-rich motif flanked by two transmembrane helices that are conserved among members of the ARGOS family, can interact with AtRTE1 and maize RTL proteins in Arabidopsis. The conserved domain is necessary and sufficient to reduce ethylene sensitivity in Arabidopsis and maize. Overall, these results suggest a physical association between ARGOS and the ethylene receptor signaling complex via AtRTE1 and maize RTL proteins, supporting a role for ARGOS in regulating ethylene perception and the early steps of signal transduction in Arabidopsis and maize. PMID:27268962

  20. Maize and Arabidopsis ARGOS Proteins Interact with Ethylene Receptor Signaling Complex, Supporting a Regulatory Role for ARGOS in Ethylene Signal Transduction.

    PubMed

    Shi, Jinrui; Drummond, Bruce J; Wang, Hongyu; Archibald, Rayeann L; Habben, Jeffrey E

    2016-08-01

    The phytohormone ethylene regulates plant growth and development as well as plant response to environmental cues. ARGOS genes reduce plant sensitivity to ethylene when overexpressed in transgenic Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). A previous genetic study suggested that the endoplasmic reticulum and Golgi-localized maize ARGOS1 targets the ethylene signal transduction components at or upstream of CONSTITUTIVE TRIPLE RESPONSE1, but the mechanism of ARGOS modulating ethylene signaling is unknown. Here, we demonstrate in Arabidopsis that ZmARGOS1, as well as the Arabidopsis ARGOS homolog ORGAN SIZE RELATED1, physically interacts with Arabidopsis REVERSION-TO-ETHYLENE SENSITIVITY1 (RTE1), an ethylene receptor interacting protein that regulates the activity of ETHYLENE RESPONSE1. The protein-protein interaction was also detected with the yeast split-ubiquitin two-hybrid system. Using the same yeast assay, we found that maize RTE1 homolog REVERSION-TO-ETHYLENE SENSITIVITY1 LIKE4 (ZmRTL4) and ZmRTL2 also interact with maize and Arabidopsis ARGOS proteins. Like AtRTE1 in Arabidopsis, ZmRTL4 and ZmRTL2 reduce ethylene responses when overexpressed in maize, indicating a similar mechanism for ARGOS regulating ethylene signaling in maize. A polypeptide fragment derived from ZmARGOS8, consisting of a Pro-rich motif flanked by two transmembrane helices that are conserved among members of the ARGOS family, can interact with AtRTE1 and maize RTL proteins in Arabidopsis. The conserved domain is necessary and sufficient to reduce ethylene sensitivity in Arabidopsis and maize. Overall, these results suggest a physical association between ARGOS and the ethylene receptor signaling complex via AtRTE1 and maize RTL proteins, supporting a role for ARGOS in regulating ethylene perception and the early steps of signal transduction in Arabidopsis and maize. © 2016 American Society of Plant Biologists. All Rights Reserved.

  1. Maize centromeres: structure, function, epigenetics.

    PubMed

    Birchler, James A; Han, Fangpu

    2009-01-01

    The ability of centromeres to organize the kinetochore has an epigenetic component in that DNA sequence alone does not necessarily serve as the determinant of activity. The centromeres of maize have been well characterized with regard to the sequence repeats present at all primary constrictions. The supernumerary B chromosome centromere contains an additional specific repeat that is represented in the active core and that allows it to be studied against the background of the other centromeres. The foundational proteins of the kinetochore have been characterized, and an RNA component has been defined. Numerous examples of inactive centromeres have been characterized for both A and B chromosomal centromeres indicating the ease with which plant centromeres become inactive. Under some circumstances, inactive centromeres can exhibit reactivation at their formerly inactive sites. This observation suggests that a DNA-based topological component also operates for centromere identity.

  2. Climate change and maize yield in Iowa

    SciTech Connect

    Xu, Hong; Twine, Tracy E.; Girvetz, Evan

    Climate is changing across the world, including the major maize-growing state of Iowa in the USA. To maintain crop yields, farmers will need a suite of adaptation strategies, and choice of strategy will depend on how the local to regional climate is expected to change. Here we predict how maize yield might change through the 21 st century as compared with late 20 th century yields across Iowa, USA, a region representing ideal climate and soils for maize production that contributes substantially to the global maize economy. To account for climate model uncertainty, we drive a dynamic ecosystem model withmore » output from six climate models and two future climate forcing scenarios. Despite a wide range in the predicted amount of warming and change to summer precipitation, all simulations predict a decrease in maize yields from late 20 th century to middle and late 21 st century ranging from 15% to 50%. Linear regression of all models predicts a 6% state-averaged yield decrease for every 1°C increase in warm season average air temperature. When the influence of moisture stress on crop growth is removed from the model, yield decreases either remain the same or are reduced, depending on predicted changes in warm season precipitation. Lastly, our results suggest that even if maize were to receive all the water it needed, under the strongest climate forcing scenario yields will decline by 10-20% by the end of the 21 st century.« less

  3. Climate change and maize yield in Iowa

    DOE PAGES

    Xu, Hong; Twine, Tracy E.; Girvetz, Evan

    2016-05-24

    Climate is changing across the world, including the major maize-growing state of Iowa in the USA. To maintain crop yields, farmers will need a suite of adaptation strategies, and choice of strategy will depend on how the local to regional climate is expected to change. Here we predict how maize yield might change through the 21 st century as compared with late 20 th century yields across Iowa, USA, a region representing ideal climate and soils for maize production that contributes substantially to the global maize economy. To account for climate model uncertainty, we drive a dynamic ecosystem model withmore » output from six climate models and two future climate forcing scenarios. Despite a wide range in the predicted amount of warming and change to summer precipitation, all simulations predict a decrease in maize yields from late 20 th century to middle and late 21 st century ranging from 15% to 50%. Linear regression of all models predicts a 6% state-averaged yield decrease for every 1°C increase in warm season average air temperature. When the influence of moisture stress on crop growth is removed from the model, yield decreases either remain the same or are reduced, depending on predicted changes in warm season precipitation. Lastly, our results suggest that even if maize were to receive all the water it needed, under the strongest climate forcing scenario yields will decline by 10-20% by the end of the 21 st century.« less

  4. Effect of variety and harvest date on nutritive value and ruminal degradability of ensiled maize ears.

    PubMed

    Terler, Georg; Gruber, Leonhard; Knaus, Wilhelm Friedrich

    2017-10-01

    The nutritive value of whole crop forage maize is influenced by the proportion of ears and stover in the whole crop and by the nutrient composition and digestibility characteristics of the plant parts. An experiment investigating the impact of variety, harvest date and year on the nutritive value of ensiled maize ears was carried out in three consecutive years (2007, 2008 and 2010). Nine different maize varieties were harvested at three different maturity stages (50, 55 and 60% dry matter (DM) content in the ears). After harvest, ears and stover were ensiled separately and afterwards nutrient composition and ruminal nutrient degradability (organic matter (OM), crude protein (CP) and non-fibre carbohydrates (NFC)) were analysed. Variety had a significant influence on content of CP and effective ruminal degradability (ED) of OM at low passage rates, whereas ED of CP and NFC was not affected by variety. In contrast, harvest date and year significantly influenced nutrient composition and ruminal degradability of ensiled maize ears. The content of NFC increased and the content of fibre components as well as ED of OM, CP and NFC declined with processing maturity of the maize plants. At a passage rate of 5% h -1 , ED of OM declined from 75.9% to 68.4%, ED of CP from 82.5% to 73.8% and ED of NFC from 88.0% to 82.3% between the early and late harvest date. The results of this study indicate that the nutrient composition and ruminal degradability of ensiled maize ears are affected mainly by maturity stage at harvest and by year, whereas variety has only little influence.

  5. Expanding maize genetic resources with predomestication alleles: maize-teosinte introgression populations

    USDA-ARS?s Scientific Manuscript database

    Teosinte (Zea mays ssp. parviglumis) has greater genetic diversity than maize inbreds and landraces (Z. mays ssp. mays). There are, however, limited genetic resources to efficiently evaluate and tap this diversity. To broaden resources for genetic diversity studies in maize, we developed and evaluat...

  6. Comparison of Gene Expressions of Maize Kernel Pathogenesis-Related Proteins in Different Maize Genotypes

    USDA-ARS?s Scientific Manuscript database

    Aflatoxins are carcinogenic mycotoxins produced by the fungus Aspergillus flavus during infection of various grain crops including maize (Zea mays). Contamination of maize with aflatoxins has been shown to be exasperated by late season drought stress. Previous studies have identified numerous resist...

  7. MaizeGDB update: New tools, data, and interface for the maize model organism database

    USDA-ARS?s Scientific Manuscript database

    MaizeGDB is a highly curated, community-oriented database and informatics service to researchers focused on the crop plant and model organism Zea mays ssp. mays. Although some form of the maize community database has existed over the last 25 years, there have only been two major releases. In 1991, ...

  8. Identification of resistance to Maize rayado fino virus in maize inbred lines

    USDA-ARS?s Scientific Manuscript database

    Maize rayado fino virus (MRFV) is one of the most important virus diseases of maize in America. Severe yield losses, ranging from 10 to 50% in landraces to nearly 100% in contemporary cultivars, have been reported. Resistance has been reported in populations, but few inbred lines have been identifie...

  9. Recombination, Pairing, and Synapsis of Homologs during Meiosis

    PubMed Central

    Zickler, Denise; Kleckner, Nancy

    2015-01-01

    Recombination is a prominent feature of meiosis in which it plays an important role in increasing genetic diversity during inheritance. Additionally, in most organisms, recombination also plays mechanical roles in chromosomal processes, most notably to mediate pairing of homologous chromosomes during prophase and, ultimately, to ensure regular segregation of homologous chromosomes when they separate at the first meiotic division. Recombinational interactions are also subject to important spatial patterning at both early and late stages. Recombination-mediated processes occur in physical and functional linkage with meiotic axial chromosome structure, with interplay in both directions, before, during, and after formation and dissolution of the synaptonemal complex (SC), a highly conserved meiosis-specific structure that links homolog axes along their lengths. These diverse processes also are integrated with recombination-independent interactions between homologous chromosomes, nonhomology-based chromosome couplings/clusterings, and diverse types of chromosome movement. This review provides an overview of these diverse processes and their interrelationships. PMID:25986558

  10. Recombineering Pseudomonas syringae

    USDA-ARS?s Scientific Manuscript database

    Here we report the identification of functions that promote genomic recombination of linear DNA introduced into Pseudomonas cells by electroporation. The genes encoding these functions were identified in Pseudomonas syringae pv. syringae B728a based on similarity to the lambda Red Exo/Beta and RecE...

  11. Introduction to dissociative recombination

    NASA Technical Reports Server (NTRS)

    Guberman, Steven L.; Mitchell, J. Brian A.

    1989-01-01

    Dissociative recombination (DR) of molecular ions with electrons has important consequences in many areas of physical science. Ab-initio calculations coupled with resonant scattering theory and multichannel quantum defect studies have produced detailed results illuminating the role of ion vibrational excitation, the quantum yields of the DR products, and the role of Rydberg states. The theoretical and experimental results are discussed.

  12. Recombinant DNA for Teachers.

    ERIC Educational Resources Information Center

    Duvall, James G., III

    1992-01-01

    A science teacher describes his experience at a workshop to learn to teach the Cold Spring Harbor DNA Science Laboratory Protocols. These protocols lead students through processes for taking E. coli cells and transforming them into a new antibiotic resistant strain. The workshop featured discussions of the role of DNA recombinant technology in…

  13. Oral Administration of Recombinant Lactococcus lactis Expressing the Cellulase Gene Increases Digestibility of Fiber in Geese.

    PubMed

    Zhou, Haizhu; Gao, Yunhang; Gao, Guang; Lou, Yujie

    2015-12-01

    Enhancing cellulose digestibility in animals is important for improving the utilization of forage, which can decrease the amount of food used in animal production. The aim of the present study was to achieve recombinant expression of the cellulase gene in Lactococcus lactis and evaluate the effects of oral administration of the recombinant L. lactis on fiber digestibility in geese. Cellulase (Cell) and green fluorescent protein (GFP) genes were cloned into a L. lactis expression vector (pNZ8149) to construct the recombinant expression plasmid (pNZ8149-GFP-Cell). Then, the recombinant expression plasmid was transformed into L. lactis (NZ3900) competent cells by electroporation to obtain recombinant L. lactis (pNZ8149-GFP-Cell/NZ3900) in which protein expression was induced by Nisin. Expression of GFP and Cell by the recombinant L. lactis was confirmed using SDS-PAGE, fluorescence detection, and Congo red assays. A feeding experiment showed that oral administration of pNZ8149-GFP-Cell/NZ3900 significantly increased the digestibility of dietary fiber in geese fed either a maize stalk diet or a rice chaff diet. Therefore, oral administration of recombinant L. lactis cells expressing the cellulase gene increases fiber digestibility in geese, offering a way to increase the utilization of dietary fiber in geese.

  14. Analysis of Dibenzothiophene Desulfurization in a Recombinant Pseudomonas putida Strain▿

    PubMed Central

    Calzada, Javier; Zamarro, María T.; Alcón, Almudena; Santos, Victoria E.; Díaz, Eduardo; García, José L.; Garcia-Ochoa, Felix

    2009-01-01

    Biodesulfurization was monitored in a recombinant Pseudomonas putida CECT5279 strain. DszB desulfinase activity reached a sharp maximum at the early exponential phase, but it rapidly decreased at later growth phases. A model two-step resting-cell process combining sequentially P. putida cells from the late and early exponential growth phases was designed to significantly increase biodesulfurization. PMID:19047400

  15. Generation of Tandem Direct Duplications by Reversed-Ends Transposition of Maize Ac Elements

    PubMed Central

    Peterson, Thomas

    2013-01-01

    Tandem direct duplications are a common feature of the genomes of eukaryotes ranging from yeast to human, where they comprise a significant fraction of copy number variations. The prevailing model for the formation of tandem direct duplications is non-allelic homologous recombination (NAHR). Here we report the isolation of a series of duplications and reciprocal deletions isolated de novo from a maize allele containing two Class II Ac/Ds transposons. The duplication/deletion structures suggest that they were generated by alternative transposition reactions involving the termini of two nearby transposable elements. The deletion/duplication breakpoint junctions contain 8 bp target site duplications characteristic of Ac/Ds transposition events, confirming their formation directly by an alternative transposition mechanism. Tandem direct duplications and reciprocal deletions were generated at a relatively high frequency (∼0.5 to 1%) in the materials examined here in which transposons are positioned nearby each other in appropriate orientation; frequencies would likely be much lower in other genotypes. To test whether this mechanism may have contributed to maize genome evolution, we analyzed sequences flanking Ac/Ds and other hAT family transposons and identified three small tandem direct duplications with the structural features predicted by the alternative transposition mechanism. Together these results show that some class II transposons are capable of directly inducing tandem sequence duplications, and that this activity has contributed to the evolution of the maize genome. PMID:23966872

  16. Detection of Genetically Modified Maize in Processed Foods Sold Commercially in Iran by Qualitative PCR

    PubMed Central

    Rabiei, Maryam; Mehdizadeh, Mehrangiz; Rastegar, Hossein; Vahidi, Hossein; Alebouyeh, Mahmoud

    2013-01-01

    Detection of genetically modified organisms (GMOs) in food is an important issue for all the subjects involved in food control and customer’s right. Due to the increasing number of GMOs imported to Iran during the past few years, it has become necessary to screen the products in order to determine the identity of the consumed daily foodstuffs. In this study, following the extraction of genomic DNA from processed foods sold commercially in Iran, qualitative PCR was performed to detect genetically modified maize. The recombinant DNA target sequences were detected with primers highly specific for each investigated transgene such as CaMV35s gene, Bt-11, MON810 and Bt-176 separately. Based on the gel electrophoresis results, Bt- 11 and MON810 events were detected in some maize samples, while, in none of them Bt- 176 modified gene was detected. For the first time, the results demonstrate the presence of genetically modified maize in Iranian food products, reinforcing the need for the development of labeling system and valid quantitative methods in routine analyses. PMID:24250568

  17. Detection of genetically modified maize in processed foods sold commercially in iran by qualitative PCR.

    PubMed

    Rabiei, Maryam; Mehdizadeh, Mehrangiz; Rastegar, Hossein; Vahidi, Hossein; Alebouyeh, Mahmoud

    2013-01-01

    Detection of genetically modified organisms (GMOs) in food is an important issue for all the subjects involved in food control and customer's right. Due to the increasing number of GMOs imported to Iran during the past few years, it has become necessary to screen the products in order to determine the identity of the consumed daily foodstuffs. In this study, following the extraction of genomic DNA from processed foods sold commercially in Iran, qualitative PCR was performed to detect genetically modified maize. The recombinant DNA target sequences were detected with primers highly specific for each investigated transgene such as CaMV35s gene, Bt-11, MON810 and Bt-176 separately. Based on the gel electrophoresis results, Bt- 11 and MON810 events were detected in some maize samples, while, in none of them Bt- 176 modified gene was detected. For the first time, the results demonstrate the presence of genetically modified maize in Iranian food products, reinforcing the need for the development of labeling system and valid quantitative methods in routine analyses.

  18. Reduced Lateral Root Branching Density Improves Drought Tolerance in Maize1[OPEN

    PubMed Central

    Zhan, Ai; Schneider, Hannah

    2015-01-01

    An emerging paradigm is that root traits that reduce the metabolic costs of soil exploration improve the acquisition of limiting soil resources. Here, we test the hypothesis that reduced lateral root branching density will improve drought tolerance in maize (Zea mays) by reducing the metabolic costs of soil exploration, permitting greater axial root elongation, greater rooting depth, and thereby greater water acquisition from drying soil. Maize recombinant inbred lines with contrasting lateral root number and length (few but long [FL] and many but short [MS]) were grown under water stress in greenhouse mesocosms, in field rainout shelters, and in a second field environment with natural drought. Under water stress in mesocosms, lines with the FL phenotype had substantially less lateral root respiration per unit of axial root length, deeper rooting, greater leaf relative water content, greater stomatal conductance, and 50% greater shoot biomass than lines with the MS phenotype. Under water stress in the two field sites, lines with the FL phenotype had deeper rooting, much lighter stem water isotopic signature, signifying deeper water capture, 51% to 67% greater shoot biomass at flowering, and 144% greater yield than lines with the MS phenotype. These results entirely support the hypothesis that reduced lateral root branching density improves drought tolerance. The FL lateral root phenotype merits consideration as a selection target to improve the drought tolerance of maize and possibly other cereal crops. PMID:26077764

  19. Exploring karyotype diversity of Argentinian Guaraní maize landraces: Relationship among South American maize

    PubMed Central

    Poggio, Lidia

    2018-01-01

    In Argentina there are two different centers of maize diversity, the Northeastern (NEA) and the Northwestern (NWA) regions of the country. In NEA, morphological studies identified 15 landraces cultivated by the Guaraní communities in Misiones Province. In the present study we analyzed the karyotype diversity of 20 populations of Guaraní maize landraces through classical and molecular cytogenetic analyses. Our results demonstrate significant intra and inter-populational variation in the percentage, number, size, chromosome position and frequencies of the heterochromatic blocks, which are called knobs. Knob sequence analysis (180-bp and TR-1) did not show significant differences among Guaraní populations. B chromosomes were not detected, and abnormal 10 (AB10) chromosomes were found with low frequency (0.1≥f ≤0.40) in six populations. Our results allowed karyotypic characterization of each analyzed population, defining for the first time the chromosomal constitution of maize germplasm from NEA. The multivariate analysis (PCoA and UPGMA) of karyotype parameters allowed the distinction between two populations groups: the Popcorn and the Floury maize populations. These results are in agreement with previously published microsatellite and morphological/phenological studies. Finally, we compared our karyotype results with those previously reported for NWA and Central Region of South America maize. Our data suggest that there are important differences between maize from NEA and NWA at the karyotype level, supporting the hypothesis that there are two pathways of input of South America maize. Our results also confirm the existence of two centers of diversification of Argentinian native maize, NWA and NEA. This work contributes new knowledge about maize diversity, which is relevant for future plans to improve commercial maize, and for conservation of agrobiodiversity. PMID:29879173

  20. Exploring karyotype diversity of Argentinian Guaraní maize landraces: Relationship among South American maize.

    PubMed

    Realini, María Florencia; Poggio, Lidia; Cámara Hernández, Julián; González, Graciela Esther

    2018-01-01

    In Argentina there are two different centers of maize diversity, the Northeastern (NEA) and the Northwestern (NWA) regions of the country. In NEA, morphological studies identified 15 landraces cultivated by the Guaraní communities in Misiones Province. In the present study we analyzed the karyotype diversity of 20 populations of Guaraní maize landraces through classical and molecular cytogenetic analyses. Our results demonstrate significant intra and inter-populational variation in the percentage, number, size, chromosome position and frequencies of the heterochromatic blocks, which are called knobs. Knob sequence analysis (180-bp and TR-1) did not show significant differences among Guaraní populations. B chromosomes were not detected, and abnormal 10 (AB10) chromosomes were found with low frequency (0.1≥f ≤0.40) in six populations. Our results allowed karyotypic characterization of each analyzed population, defining for the first time the chromosomal constitution of maize germplasm from NEA. The multivariate analysis (PCoA and UPGMA) of karyotype parameters allowed the distinction between two populations groups: the Popcorn and the Floury maize populations. These results are in agreement with previously published microsatellite and morphological/phenological studies. Finally, we compared our karyotype results with those previously reported for NWA and Central Region of South America maize. Our data suggest that there are important differences between maize from NEA and NWA at the karyotype level, supporting the hypothesis that there are two pathways of input of South America maize. Our results also confirm the existence of two centers of diversification of Argentinian native maize, NWA and NEA. This work contributes new knowledge about maize diversity, which is relevant for future plans to improve commercial maize, and for conservation of agrobiodiversity.

  1. Genetic architecture of domestication-related traits in maize

    USDA-ARS?s Scientific Manuscript database

    Strong directional selection occurred during the domestication of maize from its wild ancestor teosinte, reducing its genetic diversity, particularly at genes controlling domestication-related traits. Nevertheless, variability for some domestication-related traits is maintained in maize. The genet...

  2. Leaf transpiration efficiency of some drought-resistant maize lines

    USDA-ARS?s Scientific Manuscript database

    Field measurements of leaf gas exchange in maize often indicate stomatal conductances higher than required to provide substomatal carbon dioxide concentrations saturating to photosynthesis. Thus maize leaves often operate at lower transpiration efficiency (TE) than potentially achievable for specie...

  3. The genetic architecture of maize height.

    PubMed

    Peiffer, Jason A; Romay, Maria C; Gore, Michael A; Flint-Garcia, Sherry A; Zhang, Zhiwu; Millard, Mark J; Gardner, Candice A C; McMullen, Michael D; Holland, James B; Bradbury, Peter J; Buckler, Edward S

    2014-04-01

    Height is one of the most heritable and easily measured traits in maize (Zea mays L.). Given a pedigree or estimates of the genomic identity-by-state among related plants, height is also accurately predictable. But, mapping alleles explaining natural variation in maize height remains a formidable challenge. To address this challenge, we measured the plant height, ear height, flowering time, and node counts of plants grown in >64,500 plots across 13 environments. These plots contained >7300 inbreds representing most publically available maize inbreds in the United States and families of the maize Nested Association Mapping (NAM) panel. Joint-linkage mapping of quantitative trait loci (QTL), fine mapping in near isogenic lines (NILs), genome-wide association studies (GWAS), and genomic best linear unbiased prediction (GBLUP) were performed. The heritability of maize height was estimated to be >90%. Mapping NAM family-nested QTL revealed the largest explained 2.1 ± 0.9% of height variation. The effects of two tropical alleles at this QTL were independently validated by fine mapping in NIL families. Several significant associations found by GWAS colocalized with established height loci, including brassinosteroid-deficient dwarf1, dwarf plant1, and semi-dwarf2. GBLUP explained >80% of height variation in the panels and outperformed bootstrap aggregation of family-nested QTL models in evaluations of prediction accuracy. These results revealed maize height was under strong genetic control and had a highly polygenic genetic architecture. They also showed that multiple models of genetic architecture differing in polygenicity and effect sizes can plausibly explain a population's variation in maize height, but they may vary in predictive efficacy.

  4. Study Progress on Tissue Culture of Maize Mature Embryo

    NASA Astrophysics Data System (ADS)

    Wang, Hongzhen; Cheng, Jun; Cheng, Yanping; Zhou, Xioafu

    It has been paid more and more attention on maize tissue culture as it is a basic work in maize genetic transformation, especially huge breakthrough has been made in maize tissue culture utilizing mature embryos as explants in the recent years. This paper reviewed the study progress on maize tissue culture and plant regeneration utilizing mature embryos as explants from callus induction, subculture, plant regeneration and browning reduction and so on.

  5. Real-time quantitative polymerase chain reaction methods for four genetically modified maize varieties and maize DNA content in food.

    PubMed

    Brodmann, Peter D; Ilg, Evelyn C; Berthoud, Hélène; Herrmann, Andre

    2002-01-01

    Quantitative detection methods are needed for enforcement of the recently introduced labeling threshold for genetically modified organisms (GMOs) in food ingredients. This labeling threshold, which is set to 1% in the European Union and Switzerland, must be applied to all approved GMOs. Four different varieties of maize are approved in the European Union: the insect-resistant Bt176 maize (Maximizer), Btl 1 maize, Mon810 (YieldGard) maize, and the herbicide-tolerant T25 (Liberty Link) maize. Because the labeling must be considered individually for each ingredient, a quantitation system for the endogenous maize content is needed in addition to the GMO-specific detection systems. Quantitative real-time polymerase chain reaction detection methods were developed for the 4 approved genetically modified maize varieties and for an endogenous maize (invertase) gene system.

  6. Quantitative disease resistance: dissection and adoption in maize

    USDA-ARS?s Scientific Manuscript database

    Maize is the world’s most widely cultivated crop, providing food, feed, and biofuel. Maize production is constantly threatened by the presence of devastating pathogens worldwide. Characterization of the genetic components underlying disease resistance is a major research area in maize which is highl...

  7. Resistance of Tripsacorn-introgressed maize lines to Sitophilus zeamais

    USDA-ARS?s Scientific Manuscript database

    The maize weevil, Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae), is one of the major pests of maize worldwide. We tested one Tripsacorn-introgressed inbred maize line and 42 hybrid combinations between eleven public inbred lines and 16 different Tripsacorn-introgressed inbreds for resis...

  8. MaizeGDB: everything old is new again! [abstract

    USDA-ARS?s Scientific Manuscript database

    The focus of genetic, genomic, and breeding research evolves over time, making it necessary to continually redefine the paradigm for data access and data analysis tools. Here we report the reinvention of MaizeGDB, the maize genetics and genomics database, to meet maize researchers’ ever changing nee...

  9. The end of a myth – Bt(Cry1Ab) maize does not harm green lacewings

    USDA-ARS?s Scientific Manuscript database

    A concern with Bt-transgenic insect-resistant plants is their potential to harm non-target organisms. Early studies reported that Cry1Ab-producing Bt maize and purified Cry1Ab harmed larvae of the green lacewing, Chrysoperla carnea. Although these effects could not be confirmed in subsequent studies...

  10. Site directed recombination

    DOEpatents

    Jurka, Jerzy W.

    1997-01-01

    Enhanced homologous recombination is obtained by employing a consensus sequence which has been found to be associated with integration of repeat sequences, such as Alu and ID. The consensus sequence or sequence having a single transition mutation determines one site of a double break which allows for high efficiency of integration at the site. By introducing single or double stranded DNA having the consensus sequence flanking region joined to a sequence of interest, one can reproducibly direct integration of the sequence of interest at one or a limited number of sites. In this way, specific sites can be identified and homologous recombination achieved at the site by employing a second flanking sequence associated with a sequence proximal to the 3'-nick.

  11. High-resolution crossover maps for each bivalent of Zea mays using recombination nodules.

    PubMed Central

    Anderson, Lorinda K; Doyle, Gregory G; Brigham, Brian; Carter, Jenna; Hooker, Kristina D; Lai, Ann; Rice, Mindy; Stack, Stephen M

    2003-01-01

    Recombination nodules (RNs) are closely correlated with crossing over, and, because they are observed by electron microscopy of synaptonemal complexes (SCs) in extended pachytene chromosomes, RNs provide the highest-resolution cytological marker currently available for defining the frequency and distribution of crossovers along the length of chromosomes. Using the maize inbred line KYS, we prepared an SC karyotype in which each SC was identified by relative length and arm ratio and related to the proper linkage group using inversion heterozygotes. We mapped 4267 RNs on 2080 identified SCs to produce high-resolution maps of RN frequency and distribution on each bivalent. RN frequencies are closely correlated with both chiasma frequencies and SC length. The total length of the RN recombination map is about twofold shorter than that of most maize linkage maps, but there is good correspondence between the relative lengths of the different maps when individual bivalents are considered. Each bivalent has a unique distribution of crossing over, but all bivalents share a high frequency of distal RNs and a severe reduction of RNs at and near kinetochores. The frequency of RNs at knobs is either similar to or higher than the average frequency of RNs along the SCs. These RN maps represent an independent measure of crossing over along maize bivalents. PMID:14573493

  12. Relationship of source and sink in determining kernel composition of maize

    PubMed Central

    Seebauer, Juliann R.; Singletary, George W.; Krumpelman, Paulette M.; Ruffo, Matías L.; Below, Frederick E.

    2010-01-01

    The relative role of the maternal source and the filial sink in controlling the composition of maize (Zea mays L.) kernels is unclear and may be influenced by the genotype and the N supply. The objective of this study was to determine the influence of assimilate supply from the vegetative source and utilization of assimilates by the grain sink on the final composition of maize kernels. Intermated B73×Mo17 recombinant inbred lines (IBM RILs) which displayed contrasting concentrations of endosperm starch were grown in the field with deficient or sufficient N, and the source supply altered by ear truncation (45% reduction) at 15 d after pollination (DAP). The assimilate supply into the kernels was determined at 19 DAP using the agar trap technique, and the final kernel composition was measured. The influence of N supply and kernel ear position on final kernel composition was also determined for a commercial hybrid. Concentrations of kernel protein and starch could be altered by genotype or the N supply, but remained fairly constant along the length of the ear. Ear truncation also produced a range of variation in endosperm starch and protein concentrations. The C/N ratio of the assimilate supply at 19 DAP was directly related to the final kernel composition, with an inverse relationship between the concentrations of starch and protein in the mature endosperm. The accumulation of kernel starch and protein in maize is uniform along the ear, yet adaptable within genotypic limits, suggesting that kernel composition is source limited in maize. PMID:19917600

  13. Diverse chromosomal locations of quantitative trait loci for tolerance to maize chlorotic mottle in five maize populations

    USDA-ARS?s Scientific Manuscript database

    The recent rapid emergence of maize lethal necrosis (MLN), caused by coinfection of maize with maize chlorotic mottle virus (MCMV) and a second virus usually from the family Potyviridae, is causing extensive losses for farmers in East Africa, Southeast Asia and South America. Although the genetic ba...

  14. Maize lethal necrosis (MLN), an emerging threat to maize-based food security in sub-Saharan Africa

    USDA-ARS?s Scientific Manuscript database

    In sub-Saharan Africa, maize is a staple food and key determinant of food security for smallholder farming communities. Pest and disease outbreaks are key constraints to maize productivity. In September 2011, a serious disease outbreak, later diagnosed as maize lethal necrosis (MLN), was reported on...

  15. Nitrogen transporter and assimilation genes exhibit developmental stage-selective expression in maize (Zea mays L.) associated with distinct cis-acting promoter motifs.

    PubMed

    Liseron-Monfils, Christophe; Bi, Yong-Mei; Downs, Gregory S; Wu, Wenqing; Signorelli, Tara; Lu, Guangwen; Chen, Xi; Bondo, Eddie; Zhu, Tong; Lukens, Lewis N; Colasanti, Joseph; Rothstein, Steven J; Raizada, Manish N

    2013-10-01

    Nitrogen is considered the most limiting nutrient for maize (Zea mays L.), but there is limited understanding of the regulation of nitrogen-related genes during maize development. An Affymetrix 82K maize array was used to analyze the expression of ≤ 46 unique nitrogen uptake and assimilation probes in 50 maize tissues from seedling emergence to 31 d after pollination. Four nitrogen-related expression clusters were identified in roots and shoots corresponding to, or overlapping, juvenile, adult, and reproductive phases of development. Quantitative real time PCR data was consistent with the existence of these distinct expression clusters. Promoters corresponding to each cluster were screened for over-represented cis-acting elements. The 8-bp distal motif of the Arabidopsis 43-bp nitrogen response element (NRE) was over-represented in nitrogen-related maize gene promoters. This conserved motif, referred to here as NRE43-d8, was previously shown to be critical for nitrate-activated transcription of nitrate reductase (NIA1) and nitrite reductase (NIR1) by the NIN-LIKE PROTEIN 6 (NLP6) in Arabidopsis. Here, NRE43-d8 was over-represented in the promoters of maize nitrate and ammonium transporter genes, specifically those that showed peak expression during early-stage vegetative development. This result predicts an expansion of the NRE-NLP6 regulon and suggests that it may have a developmental component in maize. We also report leaf expression of putative orthologs of nitrite transporters (NiTR1), a transporter not previously reported in maize. We conclude by discussing how each of the four transcriptional modules may be responsible for the different nitrogen uptake and assimilation requirements of leaves and roots at different stages of maize development.

  16. Time of planting and choice of maize hybrids in controlling WCR (Diabrotica virgifera virgifera Le Conte) in Serbia and Montenegro.

    PubMed

    Baca, F; Videnovic, Z; Erski, P; Stankovic, R; Dobrikovic, Danica

    2003-01-01

    Effects of the length of growing season of maize hybrids (FAO maturity groups 400, 500, 600 and 700) and planting dates on the maize crop, as an attractive supplemental feeding for western corn rootworm (WCR) beetles and larval survival, were observed in two locations of South Banat, during a three-year (1997-1999) and a two-year period (2001 and 2002). The feeding attraction of the maize crop for WCR beetles and survival of larvae were evaluated in dependency of the variable "plant lodging". The following results were obtained: First location: A. Plant lodging over time of planting and applied insecticides. 1. Early planting: 44.2%, 77.6%, and 76.7% for FAO 400, 500 and 600, respectively. 2. Late planting: 4.7%, 14.9%, and 7.9% for FAO 400, 500 and 600, respectively. B. Plant lodging over time of planting and cropping practices: 1. Early planting without insecticide application 72.2%, and with insecticide application 7.3%. The efficacy of application of insecticide carbofurane (Furadan 350 FS, dosage 4.0 liter/ha) in larval control was 89.9%. 2. Late planting without insecticide application, plant lodging was 47.7%, and with insecticide application 8.1%. The efficacy of application of insecticide carbofurane (Furadan 350 FS, dosage 4.0 l/ha-1) in larval control was 83.0%. Early planting resulted in greater survival of larvae; hence plant lodging was 10 times greater in early than in late planting. The percentage of lodged plants indicates that the maize crop in late planting was more attractive to imagoes. Therefore, more lodged plants were observed in the treatment where late planting preceded. Second location: Plant lodging as dependent on "treatments" 1. Regular plantings: 90.7% in untreated control and 76.2% in insecticide treated variant. The efficacy of insecticide application in control of high larval population was 16.0%. 2. Replanting date: 12.2% in untreated and 4.4% in treated variant. The efficacy of insecticide in control of low larval population

  17. Genetic and Quantitative Trait Locus Analysis for Bio-Oil Compounds after Fast Pyrolysis in Maize Cobs.

    PubMed

    Jeffrey, Brandon; Kuzhiyil, Najeeb; de Leon, Natalia; Lübberstedt, Thomas

    2016-01-01

    Fast pyrolysis has been identified as one of the biorenewable conversion platforms that could be a part of an alternative energy future, but it has not yet received the same attention as cellulosic ethanol in the analysis of genetic inheritance within potential feedstocks such as maize. Ten bio-oil compounds were measured via pyrolysis/gas chromatography-mass spectrometry (Py/GC-MS) in maize cobs. 184 recombinant inbred lines (RILs) of the intermated B73 x Mo17 (IBM) Syn4 population were analyzed in two environments, using 1339 markers, for quantitative trait locus (QTL) mapping. QTL mapping was performed using composite interval mapping with significance thresholds established by 1000 permutations at α = 0.05. 50 QTL were found in total across those ten traits with R2 values ranging from 1.7 to 5.8%, indicating a complex quantitative inheritance of these traits.

  18. In vivo modification of a maize engineered minichromosome.

    PubMed

    Gaeta, Robert T; Masonbrink, Rick E; Zhao, Changzeng; Sanyal, Abhijit; Krishnaswamy, Lakshminarasimhan; Birchler, James A

    2013-06-01

    Engineered minichromosomes provide efficient platforms for stacking transgenes in crop plants. Methods for modifying these chromosomes in vivo are essential for the development of customizable systems for the removal of selection genes or other sequences and for the addition of new genes. Previous studies have demonstrated that Cre, a site-specific recombinase, could be used to modify lox sites on transgenes on maize minichromosomes; however, these studies demonstrated somatic recombination only, and modified minichromosomes could not be recovered. We describe the recovery of an engineered chromosome composed of little more than a centromere plus transgene that was derived by telomere-mediated truncation. We used the fiber fluorescence in situ hybridization technique and detected a transgene on the minichromosome inserted among stretches of CentC centromere repeats, and this insertion was large enough to suggest a tandem insertion. By crossing the minichromosome to a plant expressing Cre-recombinase, the Bar selection gene was removed, leaving behind a single loxP site. This study demonstrates that engineered chromosomes can be modified in vivo using site-specific recombinases, a demonstration essential to the development of amendable chromosome platforms in plants.

  19. Recombinant plant gamma carbonic anhydrase homotrimers bind inorganic carbon.

    PubMed

    Martin, Victoria; Villarreal, Fernando; Miras, Isabelle; Navaza, Alda; Haouz, Ahmed; González-Lebrero, Rodolfo M; Kaufman, Sergio B; Zabaleta, Eduardo

    2009-11-03

    Gamma carbonic anhydrases (gammaCA) are widespread in Prokaryotes. In Eukaryotes, homologous genes were found only in plant genomes. In Arabidopsis and maize, the corresponding gene products are subunits of mitochondrial Complex I. At present, only gammaCA homotrimers of Methanosarcina thermophila (CAM) show reversible carbon dioxide (CO(2)) hydration activity. In the present work, it is shown that recombinant plant gammaCA2 could form homotrimers and bind H(14)CO(3)(-). However, they are unable to catalyse the reversible hydration of CO(2). These results suggest that plant gammaCAs do not act as carbonic anhydrases but with a related activity possibly contributing to recycle CO(2) in the context of photorespiration.

  20. Sequencing, assembly, and annotation of Maize B104 : A maize transformation resource

    USDA-ARS?s Scientific Manuscript database

    Maize transformation is complicated. Most lines are not readily cultured and transformed, making the germplasm available for genome engineering extremely limited. Developing a better understanding of the genomic regions responsible for differences in culturability and transformability would be a goo...

  1. Impact of warming climate and cultivar change on maize phenology in the last three decades in North China Plain

    NASA Astrophysics Data System (ADS)

    Xiao, Dengpan; Qi, Yongqing; Shen, Yanjun; Tao, Fulu; Moiwo, Juana P.; Liu, Jianfeng; Wang, Rede; Zhang, He; Liu, Fengshan

    2016-05-01

    As climate change could significantly influence crop phenology and subsequent crop yield, adaptation is a critical mitigation process of the vulnerability of crop growth and production to climate change. Thus, to ensure crop production and food security, there is the need for research on the natural (shifts in crop growth periods) and artificial (shifts in crop cultivars) modes of crop adaptation to climate change. In this study, field observations in 18 stations in North China Plain (NCP) are used in combination with Agricultural Production Systems Simulator (APSIM)-Maize model to analyze the trends in summer maize phenology in relation to climate change and cultivar shift in 1981-2008. Apparent warming in most of the investigated stations causes early flowering and maturity and consequently shortens reproductive growth stage. However, APSIM-Maize model run for four representative stations suggests that cultivar shift delays maturity and thereby prolongs reproductive growth (flowering to maturity) stage by 2.4-3.7 day per decade (d 10a-1). The study suggests a gradual adaptation of maize production process to ongoing climate change in NCP via shifts in high thermal cultivars and phenological processes. It is concluded that cultivation of maize cultivars with longer growth periods and higher thermal requirements could mitigate the negative effects of warming climate on crop production and food security in the NCP study area and beyond.

  2. Kernel Abortion in Maize 1

    PubMed Central

    Hanft, Jonathan M.; Jones, Robert J.

    1986-01-01

    This study was designed to compare the uptake and distribution of 14C among fructose, glucose, sucrose, and starch in the cob, pedicel, and endosperm tissues of maize (Zea mays L.) kernels induced to abort by high temperature with those that develop normally. Kernels cultured in vitro at 30 and 35°C were transferred to [14C]sucrose media 10 days after pollination. Kernels cultured at 35°C aborted prior to the onset of linear dry matter accumulation. Significant uptake into the cob, pedicel, and endosperm of radioactivity associated with the soluble and starch fractions of the tissues was detected after 24 hours in culture on labeled media. After 8 days in culture on [14C]sucrose media, 48 and 40% of the radioactivity associated with the cob carbohydrates was found in the reducing sugars at 30 and 35°C, respectively. This indicates that some of the sucrose taken up by the cob tissue was cleaved to fructose and glucose in the cob. Of the total carbohydrates, a higher percentage of label was associated with sucrose and a lower percentage with fructose and glucose in pedicel tissue of kernels cultured at 35°C compared to kernels cultured at 30°C. These results indicate that sucrose was not cleaved to fructose and glucose as rapidly during the unloading process in the pedicel of kernels induced to abort by high temperature. Kernels cultured at 35°C had a much lower proportion of label associated with endosperm starch (29%) than did kernels cultured at 30°C (89%). Kernels cultured at 35°C had a correspondingly higher proportion of 14C in endosperm fructose, glucose, and sucrose. These results indicate that starch synthesis in the endosperm is strongly inhibited in kernels induced to abort by high temperature even though there is an adequate supply of sugar. PMID:16664847

  3. Overexpression of maize anthocyanin regulatory gene Lc affects rice fertility.

    PubMed

    Li, Yuan; Zhang, Tao; Shen, Zhong-Wei; Xu, Yu; Li, Jian-Yue

    2013-01-01

    Seventeen independent transgenic rice plants with the maize anthocyanin regulatory gene Lc under control of the CaMV 35S promoter were obtained and verified by molecular identification. Ten plants showed red spikelets during early development of florets, and the degenerate florets were still red after heading. Additionally, these plants exhibited intense pigmentation on the surface of the anther and the bottom of the ovary. They were unable to properly bloom and were completely sterile. Following pollination with normal pollen, these plants yielded red caryopses but did not mature normally. QRT-PCR analysis indicated that mRNA accumulation of the CHS-like gene encoding a chalcone synthase-related protein was increased significantly in the sterile plant. This is the first report to suggest that upregulation of the CHS gene expression may result in rice sterility and affect the normal development of rice seeds.

  4. Recombinant Collagenlike Proteins

    NASA Technical Reports Server (NTRS)

    Fertala, Andzej

    2007-01-01

    A group of collagenlike recombinant proteins containing high densities of biologically active sites has been invented. The method used to express these proteins is similar to a method of expressing recombinant procollagens and collagens described in U. S. Patent 5,593,859, "Synthesis of human procollagens and collagens in recombinant DNA systems." Customized collagenous proteins are needed for biomedical applications. In particular, fibrillar collagens are attractive for production of matrices needed for tissue engineering and drug delivery. Prior to this invention, there was no way of producing customized collagenous proteins for these and other applications. Heretofore, collagenous proteins have been produced by use of such biological systems as yeasts, bacteria, and transgenic animals and plants. These products are normal collagens that can also be extracted from such sources as tendons, bones, and hides. These products cannot be made to consist only of biologically active, specific amino acid sequences that may be needed for specific applications. Prior to this invention, it had been established that fibrillar collagens consist of domains that are responsible for such processes as interaction with cells, binding of growth factors, and interaction with a number of structural proteins present in the extracellular matrix. A normal collagen consists of a sequence of domains that can be represented by a corresponding sequence of labels, e.g., D1D2D3D4. A collagenlike protein of the present invention contains regions of collagen II that contain multiples of a single domain (e.g., D1D1D1D1 or D4D4D4D4) chosen for its specific biological activity. By virtue of the multiplicity of the chosen domain, the density of sites having that specific biological activity is greater than it is in a normal collagen. A collagenlike protein according to this invention can thus be made to have properties that are necessary for tissue engineering.

  5. Molecular cloning, characterization and differential expression of novel phytocystatin gene during tropospheric ozone stress in maize (Zea mays) leaves.

    PubMed

    Ahmad, Rafiq; Zuily-Fodil, Yasmine; Passaquet, Chantal; Ali Khan, Sabaz; Repellin, Anne

    2015-03-01

    In this study, a full-length cDNA encoding a novel phytocystatin gene, designated CC14, was identified in maize leaves. The CC14 gene sequence reported in this study has been deposited in the GenBank database (accession number JF290478). The CC14 gene was cloned into an expression vector pET30 EK/LIC and was then transformed into Escherichia coli strain BL21 (DE3) pLysS to produce a recombinant CC14 protein. The recombinant protein was purified by nickel nitrilotriacetic acid affinity chromatography after induction with 1 mM IPTG. The purified CC14 protein was electrophoresed on SDS-PAGE and a protein 25 kDa in size was observed. Antiprotease activities of the purified recombinant CC14 protein against cysteine proteases and commercially available papain were tested. The results showed that CC14 purified protein suppressed 100% activity of papain and 57-86% plant cysteine protease activity. Moreover, an upregulation of CC14 gene expression was observed after 20 days of ozone stress in maize leaves. Together, these observations concurred to conclude that CC14 gene could potentially be used as a basis for the development of transgenic crops and natural pesticides that resist biotic and abiotic stresses. Copyright © 2014 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  6. Recombinant BCG vaccine candidates.

    PubMed

    Hernàndez-Pando, Rogelio; Castañòn, Mauricio; Espitia, Clara; Lopez-Vidal, Yolanda

    2007-06-01

    Given the variable protective efficacy provided by Mycobacterium bovis BCG (Bacillus Calmette-Guérin), there is a concerted effort worldwide to develop better vaccines that could be used to reduce the burden of tuberculosis. Recombinant BCG (rBCG) are vaccine candidates that offer some potential in this area. In this paper, we will discuss the molecular methods used to generate rBCG, and the results obtained with some of these new vaccines as compared with the conventional BCG vaccine in diverse animal models. Tuberculosis vaccine candidates based on rBCG are promising candidates, and some of them are now being tested in clinical trials.

  7. Individual detection of genetically modified maize varieties in non-identity-preserved maize samples.

    PubMed

    Akiyama, Hiroshi; Sakata, Kozue; Kondo, Kazunari; Tanaka, Asako; Liu, Ming S; Oguchi, Taichi; Furui, Satoshi; Kitta, Kazumi; Hino, Akihiro; Teshima, Reiko

    2008-03-26

    In many countries, the labeling of grains and feed- and foodstuffs is mandatory if the genetically modified organism (GMO) content exceeds a certain level of approved GM varieties. The GMO content in a maize sample containing the combined-trait (stacked) GM maize as determined by the currently available methodology is likely to be overestimated. However, there has been little information in the literature on the mixing level and varieties of stacked GM maize in real sample grains. For the first time, the GMO content of non-identity-preserved (non-IP) maize samples imported from the United States has been successfully determined by using a previously developed individual kernel detection system coupled to a multiplex qualitative PCR method followed by multichannel capillary gel electrophoresis system analysis. To clarify the GMO content in the maize samples imported from the United States, determine how many stacked GM traits are contained therein, and which GM trait varieties frequently appeared in 2005, the GMO content (percent) on a kernel basis and the varieties of the GM kernels in the non-IP maize samples imported from the United States were investigated using the individual kernel analysis system. The average (+/-standard deviation) of the GMO contents on a kernel basis in five non-IP sample lots was determined to be 51.0+/-21.6%, the percentage of a single GM trait grains was 39%, and the percentage of the stacked GM trait grains was 12%. The MON810 grains and NK603 grains were the most frequent varieties in the single GM traits. The most frequent stacked GM traits were the MON810xNK603 grains. In addition, the present study would provide the answer and impact for the quantification of GM maize content in the GM maize kernels on labeling regulation.

  8. Predicting stem borer density in maize using RapidEye data and generalized linear models

    NASA Astrophysics Data System (ADS)

    Abdel-Rahman, Elfatih M.; Landmann, Tobias; Kyalo, Richard; Ong'amo, George; Mwalusepo, Sizah; Sulieman, Saad; Ru, Bruno Le

    2017-05-01

    Average maize yield in eastern Africa is 2.03 t ha-1 as compared to global average of 6.06 t ha-1 due to biotic and abiotic constraints. Amongst the biotic production constraints in Africa, stem borers are the most injurious. In eastern Africa, maize yield losses due to stem borers are currently estimated between 12% and 21% of the total production. The objective of the present study was to explore the possibility of RapidEye spectral data to assess stem borer larva densities in maize fields in two study sites in Kenya. RapidEye images were acquired for the Bomet (western Kenya) test site on the 9th of December 2014 and on 27th of January 2015, and for Machakos (eastern Kenya) a RapidEye image was acquired on the 3rd of January 2015. Five RapidEye spectral bands as well as 30 spectral vegetation indices (SVIs) were utilized to predict per field maize stem borer larva densities using generalized linear models (GLMs), assuming Poisson ('Po') and negative binomial ('NB') distributions. Root mean square error (RMSE) and ratio prediction to deviation (RPD) statistics were used to assess the models performance using a leave-one-out cross-validation approach. The Zero-inflated NB ('ZINB') models outperformed the 'NB' models and stem borer larva densities could only be predicted during the mid growing season in December and early January in both study sites, respectively (RMSE = 0.69-1.06 and RPD = 8.25-19.57). Overall, all models performed similar when all the 30 SVIs (non-nested) and only the significant (nested) SVIs were used. The models developed could improve decision making regarding controlling maize stem borers within integrated pest management (IPM) interventions.

  9. Maize centromere structure and evolution: sequence analysis of centromeres 2 and 5 reveals dynamic Loci shaped primarily by retrotransposons.

    PubMed

    Wolfgruber, Thomas K; Sharma, Anupma; Schneider, Kevin L; Albert, Patrice S; Koo, Dal-Hoe; Shi, Jinghua; Gao, Zhi; Han, Fangpu; Lee, Hyeran; Xu, Ronghui; Allison, Jamie; Birchler, James A; Jiang, Jiming; Dawe, R Kelly; Presting, Gernot G

    2009-11-01

    We describe a comprehensive and general approach for mapping centromeres and present a detailed characterization of two maize centromeres. Centromeres are difficult to map and analyze because they consist primarily of repetitive DNA sequences, which in maize are the tandem satellite repeat CentC and interspersed centromeric retrotransposons of maize (CRM). Centromeres are defined epigenetically by the centromeric histone H3 variant, CENH3. Using novel markers derived from centromere repeats, we have mapped all ten centromeres onto the physical and genetic maps of maize. We were able to completely traverse centromeres 2 and 5, confirm physical maps by fluorescence in situ hybridization (FISH), and delineate their functional regions by chromatin immunoprecipitation (ChIP) with anti-CENH3 antibody followed by pyrosequencing. These two centromeres differ substantially in size, apparent CENH3 density, and arrangement of centromeric repeats; and they are larger than the rice centromeres characterized to date. Furthermore, centromere 5 consists of two distinct CENH3 domains that are separated by several megabases. Succession of centromere repeat classes is evidenced by the fact that elements belonging to the recently active recombinant subgroups of CRM1 colonize the present day centromeres, while elements of the ancestral subgroups are also found in the flanking regions. Using abundant CRM and non-CRM retrotransposons that inserted in and near these two centromeres to create a historical record of centromere location, we show that maize centromeres are fluid genomic regions whose borders are heavily influenced by the interplay of retrotransposons and epigenetic marks. Furthermore, we propose that CRMs may be involved in removal of centromeric DNA (specifically CentC), invasion of centromeres by non-CRM retrotransposons, and local repositioning of the CENH3.

  10. The Conserved and Unique Genetic Architecture of Kernel Size and Weight in Maize and Rice1[OPEN

    PubMed Central

    Lan, Liu; Wang, Hongze; Xu, Yuancheng; Yang, Xiaohong; Li, Wenqiang; Tong, Hao; Xiao, Yingjie; Pan, Qingchun; Qiao, Feng; Raihan, Mohammad Sharif; Liu, Haijun; Yang, Ning; Wang, Xiaqing; Deng, Min; Jin, Minliang; Zhao, Lijun; Luo, Xin; Zhan, Wei; Liu, Nannan; Wang, Hong; Chen, Gengshen

    2017-01-01

    Maize (Zea mays) is a major staple crop. Maize kernel size and weight are important contributors to its yield. Here, we measured kernel length, kernel width, kernel thickness, hundred kernel weight, and kernel test weight in 10 recombinant inbred line populations and dissected their genetic architecture using three statistical models. In total, 729 quantitative trait loci (QTLs) were identified, many of which were identified in all three models, including 22 major QTLs that each can explain more than 10% of phenotypic variation. To provide candidate genes for these QTLs, we identified 30 maize genes that are orthologs of 18 rice (Oryza sativa) genes reported to affect rice seed size or weight. Interestingly, 24 of these 30 genes are located in the identified QTLs or within 1 Mb of the significant single-nucleotide polymorphisms. We further confirmed the effects of five genes on maize kernel size/weight in an independent association mapping panel with 540 lines by candidate gene association analysis. Lastly, the function of ZmINCW1, a homolog of rice GRAIN INCOMPLETE FILLING1 that affects seed size and weight, was characterized in detail. ZmINCW1 is close to QTL peaks for kernel size/weight (less than 1 Mb) and contains significant single-nucleotide polymorphisms affecting kernel size/weight in the association panel. Overexpression of this gene can rescue the reduced weight of the Arabidopsis (Arabidopsis thaliana) homozygous mutant line in the AtcwINV2 gene (Arabidopsis ortholog of ZmINCW1). These results indicate that the molecular mechanisms affecting seed development are conserved in maize, rice, and possibly Arabidopsis. PMID:28811335

  11. Maize Centromere Structure and Evolution: Sequence Analysis of Centromeres 2 and 5 Reveals Dynamic Loci Shaped Primarily by Retrotransposons

    PubMed Central

    Albert, Patrice S.; Koo, Dal-Hoe; Shi, Jinghua; Gao, Zhi; Han, Fangpu; Lee, Hyeran; Xu, Ronghui; Allison, Jamie; Birchler, James A.; Jiang, Jiming; Dawe, R. Kelly; Presting, Gernot G.

    2009-01-01

    We describe a comprehensive and general approach for mapping centromeres and present a detailed characterization of two maize centromeres. Centromeres are difficult to map and analyze because they consist primarily of repetitive DNA sequences, which in maize are the tandem satellite repeat CentC and interspersed centromeric retrotransposons of maize (CRM). Centromeres are defined epigenetically by the centromeric histone H3 variant, CENH3. Using novel markers derived from centromere repeats, we have mapped all ten centromeres onto the physical and genetic maps of maize. We were able to completely traverse centromeres 2 and 5, confirm physical maps by fluorescence in situ hybridization (FISH), and delineate their functional regions by chromatin immunoprecipitation (ChIP) with anti-CENH3 antibody followed by pyrosequencing. These two centromeres differ substantially in size, apparent CENH3 density, and arrangement of centromeric repeats; and they are larger than the rice centromeres characterized to date. Furthermore, centromere 5 consists of two distinct CENH3 domains that are separated by several megabases. Succession of centromere repeat classes is evidenced by the fact that elements belonging to the recently active recombinant subgroups of CRM1 colonize the present day centromeres, while elements of the ancestral subgroups are also found in the flanking regions. Using abundant CRM and non-CRM retrotransposons that inserted in and near these two centromeres to create a historical record of centromere location, we show that maize centromeres are fluid genomic regions whose borders are heavily influenced by the interplay of retrotransposons and epigenetic marks. Furthermore, we propose that CRMs may be involved in removal of centromeric DNA (specifically CentC), invasion of centromeres by non-CRM retrotransposons, and local repositioning of the CENH3. PMID:19956743

  12. An ultra-high density bin-map for rapid QTL mapping for tassel and ear architecture in a large F₂ maize population.

    PubMed

    Chen, Zongliang; Wang, Baobao; Dong, Xiaomei; Liu, Han; Ren, Longhui; Chen, Jian; Hauck, Andrew; Song, Weibin; Lai, Jinsheng

    2014-06-04

    Understanding genetic control of tassel and ear architecture in maize (Zea mays L. ssp. mays) is important due to their relationship with grain yield. High resolution QTL mapping is critical for understanding the underlying molecular basis of phenotypic variation. Advanced populations, such as recombinant inbred lines, have been broadly adopted for QTL mapping; however, construction of large advanced generation crop populations is time-consuming and costly. The rapidly declining cost of genotyping due to recent advances in next-generation sequencing technologies has generated new possibilities for QTL mapping using large early generation populations. A set of 708 F2 progeny derived from inbreds Chang7-2 and 787 were generated and genotyped by whole genome low-coverage genotyping-by-sequencing method (average 0.04×). A genetic map containing 6,533 bin-markers was constructed based on the parental SNPs and a sliding-window method, spanning a total genetic distance of 1,396 cM. The high quality and accuracy of this map was validated by the identification of two well-studied genes, r1, a qualitative trait locus for color of silk (chromosome 10) and ba1 for tassel branch number (chromosome 3). Three traits of tassel and ear architecture were evaluated in this population, a total of 10 QTL were detected using a permutation-based-significance threshold, seven of which overlapped with reported QTL. Three genes (GRMZM2G316366, GRMZM2G492156 and GRMZM5G805008) encoding MADS-box domain proteins and a BTB/POZ domain protein were located in the small intervals of qTBN5 and qTBN7 (~800 Kb and 1.6 Mb in length, respectively) and may be involved in patterning of tassel architecture. The small physical intervals of most QTL indicate high-resolution mapping is obtainable with this method. We constructed an ultra-high-dentisy linkage map for the large early generation population in maize. Our study provides an efficient approach for fast detection of quantitative loci responsible

  13. [Alleviation of salt stress during maize seed germination by presoaking with exogenous sugar].

    PubMed

    Zhao, Ying; Yang, Ke-jun; Li, Zuo-tong; Zhao, Chang-jiang; Xu, Jing-yu; Hu, Xue- wei; Shi, Xin-xin; Ma, Li-feng

    2015-09-01

    The maize variety Kenyu 6 was used to study the effects of exogenous glucose (Glc) and sucrose (Suc) on salt tolerance of maize seeds at germination stage under 150 mmol · L(-1) NaCl treatment. Results showed that under salt stress condition, 0.5 mmol · L(-1) exogenous Glc and Suc presoaking could promote seed germination and early seedling growth. Compared with the salt treatment, Glc presoaking increased the shoot length, radicle length and corresponding dry mass up to 1.5, 1.3, 2.1 and 1.8 times, and those of the Suc presoaking treatment increased up to 1.7, 1.3. 2.7 and 1.9 times, respectively. Exogenous Glc and Suc presoaking resulted in decreased levels of thiobarbituric acid reactive substances (TBARS) and hydrogen peroxide (H2O2) content of maize shoot under salt stress, which were lowered by 24.9% and 20.6% respectively. Exogenous Glc and Suc presoaking could increase the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione peroxidase (GPX), glutathione reductase (GR) and induce glucose-6-phosphate dehydrogenase (G6PDH) activity of maize shoot under salt stress. Compared with the salt treatment. Glc presoaking increased the activity of SOD, APX, GPX, GR and G6PDH by 66.2%, 62.9%, 32.0%, 38.5% and 50.5%, and those of the Suc presoaking increased by 67.5%, 59.8%, 30.0%, 38.5% and 50.4%, respectively. Glc and Suc presoaking also significantly increased the contents of ascorbic acid (ASA) and glutathione (GSH), ASA/DHA and GSH/GSSG. The G6PDH activity was found closely related with the strong antioxidation capacity induced by exogenous sugars. In addition, Glc and Suc presoaking enhanced K+/Na+ in maize shoot by 1.3 and 1.4 times of water soaking salt treatment, respectively. These results indicated that exogenous Glc and Suc presoaking could improve antioxidation capacity of maize seeds and maintain the in vivo K+/Na+ ion balance to alleviate the inhibitory effect of salt stress on maize seed germination.

  14. Monitoring growth condition of spring maize in Northeast China using a process-based model

    NASA Astrophysics Data System (ADS)

    Wang, Peijuan; Zhou, Yuyu; Huo, Zhiguo; Han, Lijuan; Qiu, Jianxiu; Tan, Yanjng; Liu, Dan

    2018-04-01

    Early and accurate assessment of the growth condition of spring maize, a major crop in China, is important for the national food security. This study used a process-based Remote-Sensing-Photosynthesis-Yield Estimation for Crops (RS-P-YEC) model, driven by satellite-derived leaf area index and ground-based meteorological observations, to simulate net primary productivity (NPP) of spring maize in Northeast China from the first ten-day (FTD) of May to the second ten-day (STD) of August during 2001-2014. The growth condition of spring maize in 2014 in Northeast China was monitored and evaluated spatially and temporally by comparison with 5- and 13-year averages, as well as 2009 and 2013. Results showed that NPP simulated by the RS-P-YEC model, with consideration of multi-scattered radiation inside the crop canopy, could reveal the growth condition of spring maize more reasonably than the Boreal Ecosystem Productivity Simulator. Moreover, NPP outperformed other commonly used vegetation indices (e.g., Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI)) for monitoring and evaluating the growth condition of spring maize. Compared with the 5- and 13-year averages, the growth condition of spring maize in 2014 was worse before the STD of June and after the FTD of August, and it was better from the third ten-day (TTD) of June to the TTD of July across Northeast China. Spatially, regions with slightly worse and worse growth conditions in the STD of August 2014 were concentrated mainly in central Northeast China, and they accounted for about half of the production area of spring maize in Northeast China. This study confirms that NPP is a good indicator for monitoring and evaluating growth condition because of its capacity to reflect the physiological characteristics of crops. Meanwhile, the RS-P-YEC model, driven by remote sensing and ground-based meteorological data, is effective for monitoring crop growth condition over large areas in a near real

  15. Dissociative recombination of HCl.

    PubMed

    Larson, Åsa; Fonseca Dos Santos, Samantha; E Orel, Ann

    2017-08-28

    The dissociative recombination of HCl + , including both the direct and indirect mechanisms, is studied. For the direct process, the relevant electronic states are calculated ab initio by combining electron scattering calculations to obtain resonance positions and autoionization widths with multi-reference configuration interaction calculations of the ion and Rydberg states. The cross section for the direct dissociation along electronic resonant states is computed by solution of the time-dependent Schrödinger equation. For the indirect process, an upper bound value for the cross section is obtained using a vibrational frame transformation of the elements of the scattering matrix at energies just above the ionization threshold. Vibrational excitations of the ionic core from the ground vibrational state, v = 0, to the first three excited vibrational states, v = 1, v = 2, and  v = 3, are considered. Autoionization is neglected and the effect of the spin-orbit splitting of the ionic potential energy upon the indirect dissociative recombination cross section is considered. The calculated cross sections are compared to measurements.

  16. Dissociative recombination of HCl+

    NASA Astrophysics Data System (ADS)

    Larson, Åsa; Fonseca dos Santos, Samantha; E. Orel, Ann

    2017-08-01

    The dissociative recombination of HCl+, including both the direct and indirect mechanisms, is studied. For the direct process, the relevant electronic states are calculated ab initio by combining electron scattering calculations to obtain resonance positions and autoionization widths with multi-reference configuration interaction calculations of the ion and Rydberg states. The cross section for the direct dissociation along electronic resonant states is computed by solution of the time-dependent Schrödinger equation. For the indirect process, an upper bound value for the cross section is obtained using a vibrational frame transformation of the elements of the scattering matrix at energies just above the ionization threshold. Vibrational excitations of the ionic core from the ground vibrational state, v = 0 , to the first three excited vibrational states, v = 1 , v = 2 , and v = 3 , are considered. Autoionization is neglected and the effect of the spin-orbit splitting of the ionic potential energy upon the indirect dissociative recombination cross section is considered. The calculated cross sections are compared to measurements.

  17. Expression of Recombinant Antibodies

    PubMed Central

    Frenzel, André; Hust, Michael; Schirrmann, Thomas

    2013-01-01

    Recombinant antibodies are highly specific detection probes in research, diagnostics, and have emerged over the last two decades as the fastest growing class of therapeutic proteins. Antibody generation has been dramatically accelerated by in vitro selection systems, particularly phage display. An increasing variety of recombinant production systems have been developed, ranging from Gram-negative and positive bacteria, yeasts and filamentous fungi, insect cell lines, mammalian cells to transgenic plants and animals. Currently, almost all therapeutic antibodies are still produced in mammalian cell lines in order to reduce the risk of immunogenicity due to altered, non-human glycosylation patterns. However, recent developments of glycosylation-engineered yeast, insect cell lines, and transgenic plants are promising to obtain antibodies with “human-like” post-translational modifications. Furthermore, smaller antibody fragments including bispecific antibodies without any glycosylation are successfully produced in bacteria and have advanced to clinical testing. The first therapeutic antibody products from a non-mammalian source can be expected in coming next years. In this review, we focus on current antibody production systems including their usability for different applications. PMID:23908655

  18. Maize and tripsacum: experiments in intergeneric hybridization

    USDA-ARS?s Scientific Manuscript database

    Research in maize-Tripsacum hybridization is extensive and encompasses a period of more than 60 years of collective research. The publication “The origin of Indian corn and its relatives” describes some of the initial research in this area (Mangelsdorf and Reeves, 1939) and is recommended reading f...

  19. Use and impact of Bt maize

    USDA-ARS?s Scientific Manuscript database

    This is an invited article for a free science library and personal training tool sponsored by Nature Publishing Group, which will be included under the topics Agriculture and Biotechnology (http://www.nature.com/scitable). The focus of this article is on Bacillus thuringiensis (Bt) maize. Growers of...

  20. Regulatory modules controlling maize inflorescence architecture

    USDA-ARS?s Scientific Manuscript database

    Genetic control of branching is a primary determinant of yield, regulating seed number and harvesting ability, yet little is known about the molecular networks that shape grain-bearing inflorescences of cereal crops. Here, we used the maize (Zea mays) inflorescence to investigate gene networks that...

  1. Registration of maize inbred line GT603

    USDA-ARS?s Scientific Manuscript database

    GT603 (Reg. No. xxxx, PI xxxxxx) is a yellow dent maize (Zea mays L.) inbred line developed and released by the USDA-ARS Crop Protection and Management Research Unit in cooperation with the University of Georgia Coastal Plain Experiment Station in 2010. GT603 was developed through seven generations ...

  2. Genetic resources for maize cell wall biology.

    PubMed

    Penning, Bryan W; Hunter, Charles T; Tayengwa, Reuben; Eveland, Andrea L; Dugard, Christopher K; Olek, Anna T; Vermerris, Wilfred; Koch, Karen E; McCarty, Donald R; Davis, Mark F; Thomas, Steven R; McCann, Maureen C; Carpita, Nicholas C

    2009-12-01

    Grass species represent a major source of food, feed, and fiber crops and potential feedstocks for biofuel production. Most of the biomass is contributed by cell walls that are distinct in composition from all other flowering plants. Identifying cell wall-related genes and their functions underpins a fundamental understanding of growth and development in these species. Toward this goal, we are building a knowledge base of the maize (Zea mays) genes involved in cell wall biology, their expression profiles, and the phenotypic consequences of mutation. Over 750 maize genes were annotated and assembled into gene families predicted to function in cell wall biogenesis. Comparative genomics of maize, rice (Oryza sativa), and Arabidopsis (Arabidopsis thaliana) sequences reveal differences in gene family structure between grass species and a reference eudicot species. Analysis of transcript profile data for cell wall genes in developing maize ovaries revealed that expression within families differed by up to 100-fold. When transcriptional analyses of developing ovaries before pollination from Arabidopsis, rice, and maize were contrasted, distinct sets of cell wall genes were expressed in grasses. These differences in gene family structure and expression between Arabidopsis and the grasses underscore the requirement for a grass-specific genetic model for functional analyses. A UniformMu population proved to be an important resource in both forward- and reverse-genetics approaches to identify hundreds of mutants in cell wall genes. A forward screen of field-grown lines by near-infrared spectroscopic screen of mature leaves yielded several dozen lines with heritable spectroscopic phenotypes. Pyrolysis-molecular beam mass spectrometry confirmed that several nir mutants had altered carbohydrate-lignin compositions.

  3. The 50th Annual Maize Genetics Conference

    SciTech Connect

    Cone, Karen

    The 50th Annual Maize Genetics Conference was held February 27 - March 2, 2008 at the Marriott Wardman Park Hotel in Washington, D.C. As the golden anniversary of the Conference and coinciding with the release of a draft of the maize genome sequence, this was a special meeting. To publicize this unique occasion, meeting organizers hosted a press conference, which was attended by members of the press representing science and non-science publications, and an evening reception at the Smithsonian National Museum of Natural History, where the draft sequence was announced and awards were presented to Dr. Mary Clutter and Senatormore » Kit Bond to thank them for their outstanding contributions to maize genetics and genomics research. As usual, the Conference provided an invigorating forum for exchange of recent research results in many areas of maize genetics, e.g., cytogenetics, development, molecular genetics, transposable element biology, biochemical genetics, and genomics. Results were shared via both oral and poster presentations. Invited talks were given by four distinguished geneticists: Vicki Chandler, University of Arizona; John Doebley, University of Wisconsin; Susan Wessler, University of Georgia; and Richard Wilson, Washington University. There were 46 short talks and 241 poster presentations. The Conference was attended by over 500 participants. This included a large number of first-time participants in the meeting and an increasingly visible presence by individuals from underrepresented groups. Although we do not have concrete counts, there seem to be more African American, African and Hispanic/Latino attendees coming to the meeting than in years past. In addition, this meeting attracted many participants from outside the U.S. Student participation continues to be hallmark of the spirit of free exchange and cooperation characteristic of the maize genetics community. With the generous support provided by DOE, USDA NSF, and corporate/private donors

  4. Genetic Diversity and Molecular Evolution of Chinese Waxy Maize Germplasm

    PubMed Central

    Zheng, Hongjian; Wang, Hui; Yang, Hua; Wu, Jinhong; Shi, Biao; Cai, Run; Xu, Yunbi; Wu, Aizhong; Luo, Lijun

    2013-01-01

    Waxy maize (Zea mays L. var. certaina Kulesh), with many excellent characters in terms of starch composition and economic value, has grown in China for a long history and its production has increased dramatically in recent decades. However, the evolution and origin of waxy maize still remains unclear. We studied the genetic diversity of Chinese waxy maize including typical landraces and inbred lines by SSR analysis and the results showed a wide genetic diversity in the Chinese waxy maize germplasm. We analyzed the origin and evolution of waxy maize by sequencing 108 samples, and downloading 52 sequences from GenBank for the waxy locus in a number of accessions from genus Zea. A sharp reduction of nucleotide diversity and significant neutrality tests (Tajima’s D and Fu and Li’s F*) were observed at the waxy locus in Chinese waxy maize but not in nonglutinous maize. Phylogenetic analysis indicated that Chinese waxy maize originated from the cultivated flint maize and most of the modern waxy maize inbred lines showed a distinct independent origin and evolution process compared with the germplasm from Southwest China. The results indicated that an agronomic trait can be quickly improved to meet production demand by selection. PMID:23818949

  5. Recombineering: A Homologous Recombination-Based Method of Genetic Engineering

    PubMed Central

    Sharan, Shyam K.; Thomason, Lynn C.; Kuznetsov, Sergey G.; Court, Donald L.

    2009-01-01

    Recombineering is an efficient method of in vivo genetic engineering applicable to chromosomal as well as episomal replicons in E. coli. This method circumvents the need for most standard in vitro cloning techniques. Recombineering allows construction of DNA molecules with precise junctions without constraints being imposed by restriction enzyme site location. Bacteriophage homologous recombination proteins catalyze these recombineering reactions using double- and single-strand linear DNA substrates, so-called targeting constructs, introduced by electroporation. Gene knockouts, deletions and point mutations are readily made, gene tags can be inserted, and regions of bacterial artificial chromosomes (BACs) or the E. coli genome can be subcloned by gene retrieval using recombineering. Most of these constructs can be made within about a week's time. PMID:19180090

  6. Recombinant glucose uptake system

    DOEpatents

    Ingrahm, Lonnie O.; Snoep, Jacob L.; Arfman, Nico

    1997-01-01

    Recombinant organisms are disclosed that contain a pathway for glucose uptake other than the pathway normally utilized by the host cell. In particular, the host cell is one in which glucose transport into the cell normally is coupled to PEP production. This host cell is transformed so that it uses an alternative pathway for glucose transport that is not coupled to PEP production. In a preferred embodiment, the host cell is a bacterium other than Z. mobilis that has been transformed to contain the glf and glk genes of Z. mobilis. By uncoupling glucose transport into the cell from PEP utilization, more PEP is produced for synthesis of products of commercial importance from a given quantity of biomass supplied to the host cells.

  7. Genetic Analysis of Recombinant Inbred Lines For Sorghum Bicolor x Perennial S. Propinquum.

    USDA-ARS?s Scientific Manuscript database

    From an annual S. bicolor x perennial S. propinquum F2 population used in early-generation genetic analysis, we have produced and describe here a recombinant inbred line (RIL) population of 161 F5 genotypes that segregates for rhizomatousness and many other traits. The genetic map of the recombinant...

  8. Genome-Wide Association Study Identifies Candidate Genes That Affect Plant Height in Chinese Elite Maize (Zea mays L.) Inbred Lines

    PubMed Central

    Wang, Jianjun; Liu, Changlin; Li, Mingshun; Zhang, Degui; Bai, Li; Zhang, Shihuang; Li, Xinhai

    2011-01-01

    Background The harvest index for many crops can be improved through introduction of dwarf stature to increase lodging resistance, combined with early maturity. The inbred line Shen5003 has been widely used in maize breeding in China as a key donor line for the dwarf trait. Also, one major quantitative trait locus (QTL) controlling plant height has been identified in bin 5.05–5.06, across several maize bi-parental populations. With the progress of publicly available maize genome sequence, the objective of this work was to identify the candidate genes that affect plant height among Chinese maize inbred lines with genome wide association studies (GWAS). Methods and Findings A total of 284 maize inbred lines were genotyped using over 55,000 evenly spaced SNPs, from which a set of 41,101 SNPs were filtered with stringent quality control for further data analysis. With the population structure controlled in a mixed linear model (MLM) implemented with the software TASSEL, we carried out a genome-wide association study (GWAS) for plant height. A total of 204 SNPs (P≤0.0001) and 105 genomic loci harboring coding regions were identified. Four loci containing genes associated with gibberellin (GA), auxin, and epigenetic pathways may be involved in natural variation that led to a dwarf phenotype in elite maize inbred lines. Among them, a favorable allele for dwarfing on chromosome 5 (SNP PZE-105115518) was also identified in six Shen5003 derivatives. Conclusions The fact that a large number of previously identified dwarf genes are missing from our study highlights the discovery of the consistently significant association of the gene harboring the SNP PZE-105115518 with plant height (P = 8.91e-10) and its confirmation in the Shen5003 introgression lines. Results from this study suggest that, in the maize breeding schema in China, specific alleles were selected, that have played important roles in maize production. PMID:22216221

  9. Undetected Infection by Maize Bushy Stunt Phytoplasma Enhances Host-Plant Preference to Dalbulus maidis (Hemiptera: Cicadellidae).

    PubMed

    García Gonzalez, Javier; Giraldo Jaramillo, Marisol; Roberto Spotti Lopes, João

    2018-04-05

    Vector-borne plant pathogenic bacteria can induce changes in infected plants favoring the insect vector behavior and biology. The study aimed to determine the effect of maize bushy stunt phytoplasma (MBSP) postinoculation period on the host plant preference and transmission efficiency by the corn leafhopper, Dalbulus maidis DeLong & Wolcott, 1923 (Hemiptera: Cicadellidae). In a series of choice tests, D. maidis preference was measured as settling and oviposition on healthy maize plants versus infected maize plants showing early disease symptoms, advanced symptoms, or no symptoms. Finally, transmission efficiency of D. maidis was measured when the vector previously acquired the phytoplasma from asymptomatic source plants at different postinoculation periods. D. maidis adults preferred to settle and to oviposit on healthy than on symptomatic infected plants with advanced disease symptoms, and preferred asymptomatic plants over symptomatic ones. MBSP transmission by D. maidis was positively correlated with the postinoculation period of the source plant. Results suggest an MBSP modulation for D. maidis preference on asymptomatic infected maize plants in the early stages of the crop, allowing the pathogen an undetected transmission.

  10. Auger recombination in sodium iodide

    NASA Astrophysics Data System (ADS)

    McAllister, Andrew; Kioupakis, Emmanouil; Åberg, Daniel; Schleife, André

    2014-03-01

    Scintillators are an important tool used to detect high energy radiation - both in the interest of national security and in medicine. However, scintillator detectors currently suffer from lower energy resolutions than expected from basic counting statistics. This has been attributed to non-proportional light yield compared to incoming radiation, but the specific mechanism for this non-proportionality has not been identified. Auger recombination is a non-radiative process that could be contributing to the non-proportionality of scintillating materials. Auger recombination comes in two types - direct and phonon-assisted. We have used first-principles calculations to study Auger recombination in sodium iodide, a well characterized scintillating material. Our findings indicate that phonon-assisted Auger recombination is stronger in sodium iodide than direct Auger recombination. Computational resources provided by LLNL and NERSC. Funding provided by NA-22.

  11. Processing maize flour and corn meal food products

    PubMed Central

    Gwirtz, Jeffrey A; Garcia-Casal, Maria Nieves

    2014-01-01

    Corn is the cereal with the highest production worldwide and is used for human consumption, livestock feed, and fuel. Various food technologies are currently used for processing industrially produced maize flours and corn meals in different parts of the world to obtain precooked refined maize flour, dehydrated nixtamalized flour, fermented maize flours, and other maize products. These products have different intrinsic vitamin and mineral contents, and their processing follows different pathways from raw grain to the consumer final product, which entail changes in nutrient composition. Dry maize mechanical processing creates whole or fractionated products, separated by anatomical features such as bran, germ, and endosperm. Wet maize processing separates by chemical compound classification such as starch and protein. Various industrial processes, including whole grain, dry milling fractionation, and nixtamalization, are described. Vitamin and mineral losses during processing are identified and the nutritional impacts outlined. Also discussed are the vitamin and mineral contents of corn. PMID:24329576

  12. Identification of early fumonisin biosynthetic intermediates by inactivation of the FUM6 gene in Fusarium verticillioides

    USDA-ARS?s Scientific Manuscript database

    Fumonisins are polyketide mycotoxins produced by the maize pathogen Fusarium verticillioides and are associated with multiple human and animal diseases. A fumonisin biosynthetic pathway has been proposed, but structures of early pathway intermediates have not been demonstrated. The F. verticillioide...

  13. Gibberellins and Gravitropism in Maize Shoots 1

    PubMed Central

    Rood, Stewart B.; Kaufman, Peter B.; Abe, Hiroshi; Pharis, Richard P.

    1987-01-01

    [3H]Gibberellin A20 (GA20) of high specific radioactivity (49.9 gigabecquerel per millimole) was applied equilaterally in a ring of microdrops to the internodal pulvinus of shoots of 3-week-old gravistimulated and vertical normal maize (Zea mays L.), and to a pleiogravitropic (prostrate) maize mutant, lazy (la). All plants converted the [3H]GA20 to [3H]GA1− and [3H]GA29-like metabolites as well as to several metabolites with the partitioning and chromatographic behavior of glucosyl conjugates of [3H]GA1, [3H]GA29, and [3H]GA8. The tentative identification of these putative [3H]GA glucosyl conjugates was further supported by the release of the free [3H]GA moiety after cleavage with cellulase. Within 12 hours of the [3H]GA20 feed, there was a significantly higher proportion of total radioactivity in lower than in upper halves of internode and leaf sheath pulvini in gravistimulated normal maize. Further, there was a significantly higher proportion of putative free GA metabolites of [3H]GA20, especially [3H]GA1, in the lower halves of normal maize relative to upper halves. The differential localization of the metabolites between upper and lower halves was not apparent in the pleiogravitropic mutant, la. Endogenous GA-like substances were also examined in gravistimulated maize shoots. Forty-eight hours after gravistimulation of 3-week-old maize seedlings, endogenous free GA-like substances in upper and lower leaf sheath and internode pulvini halves were extracted, chromatographed, and bioassayed using the `Tanginbozu' dwarf rice microdrop assay. Lower halves contained consistently higher total levels of GA-like activity. The qualitative elution profile of GA-like substances differed consistently, upper halves containing principally a GA20-like substance and lower halves containing mainly GA1-like and GA19-like substances. Gibberellins A1 (10 nanograms per gram) and A20 (5 nanograms per gram) were identified from these lower leaf sheath pulvini by capillary gas

  14. Epstein-Barr virus recombinants from overlapping cosmid fragments.

    PubMed

    Tomkinson, B; Robertson, E; Yalamanchili, R; Longnecker, R; Kieff, E

    1993-12-01

    Five overlapping type 1 Epstein-Barr virus (EBV) DNA fragments constituting a complete replication- and transformation-competent genome were cloned into cosmids and transfected together into P3HR-1 cells, along with a plasmid encoding the Z immediate-early activator of EBV replication. P3HR-1 cells harbor a type 2 EBV which is unable to transform primary B lymphocytes because of a deletion of DNA encoding EBNA LP and EBNA 2, but the P3HR-1 EBV can provide replication functions in trans and can recombine with the transfected cosmids. EBV recombinants which have the type 1 EBNA LP and 2 genes from the transfected EcoRI-A cosmid DNA were selectively and clonally recovered by exploiting the unique ability of the recombinants to transform primary B lymphocytes into lymphoblastoid cell lines. PCR and immunoblot analyses for seven distinguishing markers of the type 1 transfected DNAs identified cell lines infected with EBV recombinants which had incorporated EBV DNA fragments beyond the transformation marker-rescuing EcoRI-A fragment. Approximately 10% of the transforming virus recombinants had markers mapping at 7, 46 to 52, 93 to 100, 108 to 110, 122, and 152 kbp from the 172-kbp transfected genome. These recombinants probably result from recombination among the transfected cosmid-cloned EBV DNA fragments. The one recombinant virus examined in detail by Southern blot analysis has all the polymorphisms characteristic of the transfected type 1 cosmid DNA and none characteristic of the type 2 P3HR-1 EBV DNA. This recombinant was wild type in primary B-lymphocyte infection, growth transformation, and lytic replication. Overall, the type 1 EBNA 3A gene was incorporated into 26% of the transformation marker-rescued recombinants, a frequency which was considerably higher than that observed in previous experiments with two-cosmid EBV DNA cotransfections into P3HR-1 cells (B. Tomkinson and E. Kieff, J. Virol. 66:780-789, 1992). Of the recombinants which had incorporated the

  15. Metabolic profiling of two maize (Zea mays L.) inbred lines inoculated with the nitrogen fixing plant-interacting bacteria Herbaspirillum seropedicae and Azospirillum brasilense

    PubMed Central

    Brusamarello-Santos, Liziane Cristina; Gilard, Françoise; Brulé, Lenaïg; Quilleré, Isabelle; Gourion, Benjamin; Ratet, Pascal; Maltempi de Souza, Emanuel; Lea, Peter J.; Hirel, Bertrand

    2017-01-01

    Maize roots can be colonized by free-living atmospheric nitrogen (N2)-fixing bacteria (diazotrophs). However, the agronomic potential of non-symbiotic N2-fixation in such an economically important species as maize, has still not been fully exploited. A preliminary approach to improve our understanding of the mechanisms controlling the establishment of such N2-fixing associations has been developed, using two maize inbred lines exhibiting different physiological characteristics. The bacterial-plant interaction has been characterized by means of a metabolomic approach. Two established model strains of Nif+ diazotrophic bacteria, Herbaspirillum seropedicae and Azospirillum brasilense and their Nif- couterparts defficient in nitrogenase activity, were used to evaluate the impact of the bacterial inoculation and of N2 fixation on the root and leaf metabolic profiles. The two N2-fixing bacteria have been used to inoculate two genetically distant maize lines (FV252 and FV2), already characterized for their contrasting physiological properties. Using a well-controlled gnotobiotic experimental system that allows inoculation of maize plants with the two diazotrophs in a N-free medium, we demonstrated that both maize lines were efficiently colonized by the two bacterial species. We also showed that in the early stages of plant development, both bacterial strains were able to reduce acetylene, suggesting that they contain functional nitrogenase activity and are able to efficiently fix atmospheric N2 (Fix+). The metabolomic approach allowed the identification of metabolites in the two maize lines that were representative of the N2 fixing plant-bacterial interaction, these included mannitol and to a lesser extend trehalose and isocitrate. Whilst other metabolites such as asparagine, although only exhibiting a small increase in maize roots following bacterial infection, were specific for the two Fix+ bacterial strains, in comparison to their Fix- counterparts. Moreover, a number

  16. Metabolic profiling of two maize (Zea mays L.) inbred lines inoculated with the nitrogen fixing plant-interacting bacteria Herbaspirillum seropedicae and Azospirillum brasilense.

    PubMed

    Brusamarello-Santos, Liziane Cristina; Gilard, Françoise; Brulé, Lenaïg; Quilleré, Isabelle; Gourion, Benjamin; Ratet, Pascal; Maltempi de Souza, Emanuel; Lea, Peter J; Hirel, Bertrand

    2017-01-01

    Maize roots can be colonized by free-living atmospheric nitrogen (N2)-fixing bacteria (diazotrophs). However, the agronomic potential of non-symbiotic N2-fixation in such an economically important species as maize, has still not been fully exploited. A preliminary approach to improve our understanding of the mechanisms controlling the establishment of such N2-fixing associations has been developed, using two maize inbred lines exhibiting different physiological characteristics. The bacterial-plant interaction has been characterized by means of a metabolomic approach. Two established model strains of Nif+ diazotrophic bacteria, Herbaspirillum seropedicae and Azospirillum brasilense and their Nif- couterparts defficient in nitrogenase activity, were used to evaluate the impact of the bacterial inoculation and of N2 fixation on the root and leaf metabolic profiles. The two N2-fixing bacteria have been used to inoculate two genetically distant maize lines (FV252 and FV2), already characterized for their contrasting physiological properties. Using a well-controlled gnotobiotic experimental system that allows inoculation of maize plants with the two diazotrophs in a N-free medium, we demonstrated that both maize lines were efficiently colonized by the two bacterial species. We also showed that in the early stages of plant development, both bacterial strains were able to reduce acetylene, suggesting that they contain functional nitrogenase activity and are able to efficiently fix atmospheric N2 (Fix+). The metabolomic approach allowed the identification of metabolites in the two maize lines that were representative of the N2 fixing plant-bacterial interaction, these included mannitol and to a lesser extend trehalose and isocitrate. Whilst other metabolites such as asparagine, although only exhibiting a small increase in maize roots following bacterial infection, were specific for the two Fix+ bacterial strains, in comparison to their Fix- counterparts. Moreover, a number

  17. Mixing of maize and wheat genomic DNA by somatic hybridization in regenerated sterile maize plants.

    PubMed

    Szarka, B.; Göntér, I.; Molnár-Láng, M.; Mórocz, S.; Dudits, D.

    2002-07-01

    Intergeneric somatic hybridization was performed between albino maize ( Zea mays L.) protoplasts and mesophyll protoplasts of wheat ( Triticum aestivum L.) by polyethylene glycol (PEG) treatments. None of the parental protoplasts were able to produce green plants without fusion. The maize cells regenerated only rudimentary albino plantlets of limited viability, and the wheat mesophyll protoplasts were unable to divide. PEG-mediated fusion treatments resulted in hybrid cells with mixed cytoplasm. Six months after fusion green embryogenic calli were selected as putative hybrids. The first-regenerates were discovered as aborted embryos. Regeneration of intact, green, maize-like plants needed 6 months of further subcultures on hormone-free medium. These plants were sterile, although had both male and female flowers. The cytological analysis of cells from callus tissues and root tips revealed 56 chromosomes, but intact wheat chromosomes were not observed. Using total DNA from hybrid plants, three RAPD primer combinations produced bands resembling the wheat profile. Genomic in situ hybridization (GISH) using total wheat DNA as a probe revealed the presence of wheat DNA islands in the maize chromosomal background. The increased viability and the restored green color were the most-significant new traits as compared to the original maize parent. Other intermediate morphological traits of plants with hybrid origin were not found.

  18. Constitutive expression of fluorescent protein by Aspergillus var. niger and Aspergillus carbonarius to monitor fungal colonization in maize plants.

    PubMed

    Palencia, Edwin Rene; Glenn, Anthony Elbie; Hinton, Dorothy Mae; Bacon, Charles Wilson

    2013-09-01

    Aspergillus niger and Aspergillus carbonarius are two species in the Aspergillus section Nigri (black-spored aspergilli) frequently associated with peanut (Arachis hypogea), maize (Zea mays), and other plants as pathogens. These infections are symptomless and as such are major concerns since some black aspergilli produce important mycotoxins, ochratoxins A, and the fumonisins. To facilitate the study of the black aspergilli-maize interactions with maize during the early stages of infections, we developed a method that used the enhanced yellow fluorescent protein (eYFP) and the monomeric red fluorescent protein (mRFP1) to transform A. niger and A. carbonarius, respectively. The results were constitutive expressions of the fluorescent genes that were stable in the cytoplasms of hyphae and conidia under natural environmental conditions. The hyphal in planta distribution in 21-day-old seedlings of maize were similar wild type and transformants of A. niger and A. carbonarius. The in planta studies indicated that both wild type and transformants internally colonized leaf, stem and root tissues of maize seedlings, without any visible disease symptoms. Yellow and red fluorescent strains were capable of invading epidermal cells of maize roots intercellularly within the first 3 days after inoculation, but intracellular hyphal growth was more evident after 7 days of inoculation. We also tested the capacity of fluorescent transformants to produce ochratoxin A and the results with A. carbonarius showed that this transgenic strain produced similar concentrations of this secondary metabolite. This is the first report on the in planta expression of fluorescent proteins that should be useful to study the internal plant colonization patterns of two ochratoxigenic species in the Aspergillus section Nigri. © 2013.

  19. Mitochondrial Recombination and Introgression during Speciation by Hybridization.

    PubMed

    Leducq, Jean-Baptiste; Henault, Mathieu; Charron, Guillaume; Nielly-Thibault, Lou; Terrat, Yves; Fiumera, Heather L; Shapiro, B Jesse; Landry, Christian R

    2017-08-01

    Genome recombination is a major source of genotypic diversity and contributes to adaptation and speciation following interspecies hybridization. The contribution of recombination in these processes has been thought to be largely limited to the nuclear genome because organelles are mostly uniparentally inherited in animals and plants, which prevents recombination. Unicellular eukaryotes such as budding yeasts do, however, transmit mitochondria biparentally, suggesting that during hybridization, both parents could provide alleles that contribute to mitochondrial functions such as respiration and metabolism in hybrid populations or hybrid species. We examined the dynamics of mitochondrial genome transmission and evolution during speciation by hybridization in the natural budding yeast Saccharomyces paradoxus. Using population-scale mitochondrial genome sequencing in two endemic North American incipient species SpB and SpC and their hybrid species SpC*, we found that both parental species contributed to the hybrid mitochondrial genome through recombination. We support our findings by showing that mitochondrial recombination between parental types is frequent in experimental crosses that recreate the early step of this speciation event. In these artificial hybrids, we observed that mitochondrial genome recombination enhances phenotypic variation among diploid hybrids, suggesting that it could play a role in the phenotypic differentiation of hybrid species. Like the nuclear genome, the mitochondrial genome can, therefore, also play a role in hybrid speciation. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Thermotropism by primary roots of maize

    SciTech Connect

    Fortin, M.-C.; Poff, K.L.

    1990-05-01

    Sensing in the roots of higher plants has long been recognized to be restricted mainly to gravitropism and thigmotropism. However, root responses to temperature gradients have not been extensively studied. We have designed experiments under controlled conditions to test if and how root direction of maize can be altered by thermal gradients perpendicular to the gravity vector. Primary roots of maize grown on agar plates exhibit positive thermotropism (curvature toward the warmer temperature) when exposed to gradients of 0.5 to 4.2{degree}C cm{sup {minus}1}. The extent of thermotropism depends on the temperature gradient and the temperature at which the root ismore » placed within the gradient. The curvature cannot be accounted for by differential growth as a direct effect of temperature on each side of the root.« less

  1. Maize arabinoxylan gels as protein delivery matrices.

    PubMed

    Berlanga-Reyes, Claudia M; Carvajal-Millán, Elizabeth; Lizardi-Mendoza, Jaime; Rascón-Chu, Agustin; Marquez-Escalante, Jorge A; Martínez-López, Ana Luisa

    2009-04-08

    The laccase induced gelation of maize bran arabinoxylans at 2.5% (w/v) in the presence of insulin or beta-lactoglobulin at 0.1% (w/v) was investigated. Insulin and beta-lacto-globulin did not modify either the gel elasticity (9 Pa) or the cross-links content (0.03 and 0.015 microg di- and triferulic acids/mg arabinoxylan, respectively). The protein release capability of the gel was also investigated. The rate of protein release from gels was dependent on the protein molecular weight. The apparent diffusion coefficient was 0.99 x 10(-7) and 0.79 x 10(-7) cm(2)/s for insulin (5 kDa) and beta-lactoglobulin (18 kDa), respectively. The results suggest that maize bran arabinoxylan gels can be potential candidates for the controlled release of proteins.

  2. Root gravitropism in maize and Arabidopsis

    NASA Technical Reports Server (NTRS)

    Evans, Michael L.

    1993-01-01

    Research during the period 1 March 1992 to 30 November 1993 focused on improvements in a video digitizer system designed to automate the recording of surface extension in plants responding to gravistimulation. The improvements included modification of software to allow detailed analysis of localized extension patterns in roots of Arabidopsis. We used the system to analyze the role of the postmitotic isodiametric growth zone (a region between the meristem and the elongation zone) in the response of maize roots to auxin, calcium, touch and gravity. We also used the system to analyze short-term auxin and gravitropic responses in mutants of Arabidopsis with reduced auxin sensitivity. In a related project, we studied the relationship between growth rate and surface electrical currents in roots by examining the effects of gravity and thigmostimulation on surface potentials in maize roots.

  3. Comparative diversity of arthropods on Bt maize and non-Bt maize in two different cropping systems in South Africa.

    PubMed

    Truter, J; Van Hamburg, H; Van Den Berg, J

    2014-02-01

    The biodiversity of an agroecosystem is not only important for its intrinsic value but also because it influences ecological functions that are vital for crop production in sustainable agricultural systems and the surrounding environment. A concern about genetically modified (GM) crops is the potential negative impact that such crops could have on diversity and abundance of nontarget organisms, and subsequently on ecosystem functions. Therefore, it is essential to assess the potential environmental risk of the release of a GM crop and to study its effect on species assemblages within that ecosystem. Assessment of the impact of Bt maize on the environment is hampered by the lack of basic checklists of species present in maize agroecosystems. The aims of the study were to compile a checklist of arthropods that occur on maize in South Africa and to compare the diversity and abundance of arthropods and functional groups on Bt maize and non-Bt maize. Collections of arthropods were carried out during two growing seasons on Bt maize and non-Bt maize plants at two localities. Three maize fields were sampled per locality during each season. Twenty plants, each of Bt maize and non-Bt maize, were randomly selected from the fields at each site. The arthropods collected during this study were classified to morphospecies level and grouped into the following functional groups: detritivores, herbivores, predators, and parasitoids. Based on feeding strategy, herbivores and predators were further divided into sucking herbivores or predators (piercing-sucking mouthparts) and chewing herbivores or predators (chewing mouthparts). A total of 8,771 arthropod individuals, comprising 288 morphospecies and presenting 20 orders, were collected. Results from this short-term study indicated that abundance and diversity of arthropods in maize and the different functional guilds were not significantly affected by Bt maize, either in terms of diversity or abundance.

  4. The Genetics of Leaf Flecking in Maize and Its Relationship to Plant Defense and Disease Resistance1[OPEN

    PubMed Central

    Bian, Yang; De Vries, Brian; Tracy, William F.

    2016-01-01

    Physiological leaf spotting, or flecking, is a mild-lesion phenotype observed on the leaves of several commonly used maize (Zea mays) inbred lines and has been anecdotally linked to enhanced broad-spectrum disease resistance. Flecking was assessed in the maize nested association mapping (NAM) population, comprising 4,998 recombinant inbred lines from 25 biparental families, and in an association population, comprising 279 diverse maize inbreds. Joint family linkage analysis was conducted with 7,386 markers in the NAM population. Genome-wide association tests were performed with 26.5 million single-nucleotide polymorphisms (SNPs) in the NAM population and with 246,497 SNPs in the association population, resulting in the identification of 18 and three loci associated with variation in flecking, respectively. Many of the candidate genes colocalizing with associated SNPs are similar to genes that function in plant defense response via cell wall modification, salicylic acid- and jasmonic acid-dependent pathways, redox homeostasis, stress response, and vesicle trafficking/remodeling. Significant positive correlations were found between increased flecking, stronger defense response, increased disease resistance, and increased pest resistance. A nonlinear relationship with total kernel weight also was observed whereby lines with relatively high levels of flecking had, on average, lower total kernel weight. We present evidence suggesting that mild flecking could be used as a selection criterion for breeding programs trying to incorporate broad-spectrum disease resistance. PMID:27670817

  5. SUPPRESSOR OF APICAL DOMINANCE1 of Sporisorium reilianum Modulates Inflorescence Branching Architecture in Maize and Arabidopsis1[OPEN

    PubMed Central

    Ghareeb, Hassan; Löfke, Christian; Teichmann, Thomas; Schirawski, Jan

    2015-01-01

    The biotrophic fungus Sporisorium reilianum causes head smut of maize (Zea mays) after systemic plant colonization. Symptoms include the formation of multiple female inflorescences at subapical nodes of the stalk because of loss of apical dominance. By deletion analysis of cluster 19-1, the largest genomic divergence cluster in S. reilianum, we identified a secreted fungal effector responsible for S. reilianum-induced loss of apical dominance, which we named SUPPRESSOR OF APICAL DOMINANCE1 (SAD1). SAD1 transcript levels were highly up-regulated during biotrophic fungal growth in all infected plant tissues. SAD1-green fluorescent protein fusion proteins expressed by recombinant S. reilianum localized to the extracellular hyphal space. Transgenic Arabidopsis (Arabidopsis thaliana)-expressing green fluorescent protein-SAD1 displayed an increased number of secondary rosette-leaf branches. This suggests that SAD1 manipulates inflorescence branching architecture in maize and Arabidopsis through a conserved pathway. Using a yeast (Saccharomyces cerevisiae) two-hybrid library of S. reilianum-infected maize tissues, we identified potential plant interaction partners that had a predicted function in ubiquitination, signaling, and nuclear processes. Presence of SAD1 led to an increase of the transcript levels of the auxin transporter PIN-FORMED1 in the root and a reduction of the branching regulator TEOSINTE BRANCHED1 in the stalk. This indicates a role of SAD1 in regulation of apical dominance by modulation of branching through increasing transcript levels of the auxin transporter PIN1 and derepression of bud outgrowth. PMID:26511912

  6. Genetic erosion in maize's center of origin.

    PubMed

    Dyer, George A; López-Feldman, Alejandro; Yúnez-Naude, Antonio; Taylor, J Edward

    2014-09-30

    Crop genetic diversity is an indispensable resource for farmers and professional breeders responding to changing climate, pests, and diseases. Anecdotal appraisals in centers of crop origin have suggested serious threats to this diversity for over half a century. However, a nationwide inventory recently found all maize races previously described for Mexico, including some formerly considered nearly extinct. A flurry of social studies seems to confirm that farmers maintain considerable diversity. Here, we compare estimates of maize diversity from case studies over the past 15 y with nationally and regionally representative matched longitudinal data from farmers across rural Mexico. Our findings reveal an increasing bias in inferences based on case study results and widespread loss of diversity. Cross-sectional, case study data suggest that farm-level richness has increased by 0.04 y(-1) nationwide; however, direct estimates using matched longitudinal data reveal that richness dropped -0.04 y(-1) between 2002 and 2007, from 1.43 to 1.22 varieties per farm. Varietal losses occurred across regions and altitudinal zones, and regardless of farm turnover within the sector. Extinction of local maize populations may not have resulted in an immediate loss of alleles, but low varietal richness and changes in maize's metapopulation dynamics may prevent farmers from accessing germplasm suitable to a rapidly changing climate. Declining yields could then lead farmers to leave the sector and result in a further loss of diversity. Similarities in research approaches across crops suggest that methodological biases could conceal a loss of diversity at other centers of crop origin.

  7. Intraguild Competition of Three Noctuid Maize Pests.

    PubMed

    Bentivenha, J P F; Baldin, E L L; Hunt, T E; Paula-Moraes, S V; Blankenship, E E

    2016-08-01

    The western bean cutworm Striacosta albicosta (Smith), the fall armyworm Spodoptera frugiperda (J. E. Smith), and the corn earworm Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) are among the major lepidopteran pests of maize in the United States, belonging to the same guild and injuring the reproductive tissues of this crop. Here, intraguild competition of these lepidopterans on non-Bt maize was evaluated through survival analysis of each species under laboratory and field conditions. Competition scenarios were carried out in arenas containing maize silk or ear tissue, using larvae on different stadium of development. Fitness cost competition studies were conducted to examine the influence of intraguild competition and cannibalism and predation rates on larval development. The survival of S. albicosta competing with the other species was significantly lower than in intraspecific competition, even when the larvae were more developed than the competitor. For S. frugiperda, survival remained high in the different competition scenarios, except when competing in a smaller stadium with H. zea Larvae of H. zea had a high rate of cannibalism, higher survival when competing against S. albicosta than S. frugiperda, and reduced survival when the H. zea larvae were at the same development stadium or smaller than the competitors. Based on fitness cost results, the absence of a competitor for the feeding source may confer an advantage to the larval development of S. frugiperda and H. zea Our data suggest that S. frugiperda has a competitive advantage against the other species, while S. albicosta has the disadvantage in the intraguild competition on non-Bt maize. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Temperature sensing by primary roots of maize

    NASA Technical Reports Server (NTRS)

    Poff, K. L.

    1990-01-01

    Zea mays L. seedlings, grown on agar plates at 26 degrees C, reoriented the original vertical direction of their primary root when exposed to a thermal gradient applied perpendicular to the gravity vector. The magnitude and direction of curvature can not be explained simply by either a temperature or a humidity effect on root elongation. It is concluded that primary roots of maize sense temperature gradients in addition to sensing the gravitational force.

  9. Phenotyping maize for adaptation to drought

    PubMed Central

    Araus, Jose L.; Serret, María D.; Edmeades, Gregory O.

    2012-01-01

    The need of a better adaptation of crops to drought is an issue of increasing urgency. However, enhancing the tolerance of maize has, therefore, proved to be somewhat elusive in terms of plant breeding. In that context, proper phenotyping remains as one of the main factors limiting breeding advance. Topics covered by this review include the conceptual framework for identifying secondary traits associated with yield response to drought and how to measure these secondary traits in practice. PMID:22934056

  10. Specific starch digestion of maize alpha-limit dextrins by recombinant mucosal glucosidase enzymes

    USDA-ARS?s Scientific Manuscript database

    Starch digestion requires two luminal enzymes, salivary and pancreatic alpha-amylase (AMY), and four small intestinal mucosal enzyme activities from the N- and C-terminals of maltase-glucoamylase (MGAM) and sucrose-isomaltase (SI) complexes. AMY is not a requirement for starch digestion to glucose b...

  11. Validation of a recombinant human bactericidal/permeability-increasing protein (hBPI) expression vector using murine mammary gland tumor cells and the early development of hBPI transgenic goat embryos.

    PubMed

    Gui, Tao; Liu, Xing; Tao, Jia; Chen, Jianwen; Li, Yunsheng; Zhang, Meiling; Wu, Ronghua; Zhang, Yuanliang; Peng, Kaisong; Liu, Ya; Zhang, Xiaorong; Zhang, Yunhai

    2013-12-01

    Human bactericidal/permeability-increasing protein (hBPI) is the only antibacterial peptide which acts against both gram-negative bacteria and neutralizes endotoxins in human polymorphonuclear neutrophils; therefore, hBPI is of great value in clinical applications. In the study, we constructed a hBPI expression vector (pBC1-Loxp-Neo-Loxp-hBPI) containing the full-length hBPI coding sequence which could be specifically expressed in the mammary gland. To validate the function of the vector, in vitro cultured C127 (mouse mammary Carcinoma Cells) were transfected with the vector, and the transgenic cell clones were selected to express hBPI by hormone induction. The mRNA and protein expression of hBPI showed that the constructed vector was effective and suitable for future application in producing mammary gland bioreactor. Then, female and male goat fibroblasts were transfected with the vector, and two male and two female transgenic clonal cell lines were obtained. Using the transgenic cell lines as nuclear donors for somatic cell nuclear transfer, the reconstructed goat embryos produced from all four clones could develop to blastocysts in vitro. In conclusion, we constructed and validated an efficient mammary gland-specific hBPI expression vector, pBC1-Loxp-Neo-Loxp-hBPI, and transgenic hBPI goat embryos were successfully produced, laying foundations for future production of recombinant hBPI in goat mammary gland. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Brassinosteroid control of sex determination in maize.

    PubMed

    Hartwig, Thomas; Chuck, George S; Fujioka, Shozo; Klempien, Antje; Weizbauer, Renate; Potluri, Devi Prasad V; Choe, Sunghwa; Johal, Gurmukh S; Schulz, Burkhard

    2011-12-06

    Brassinosteroids (BRs) are plant hormones that regulate growth and development. They share structural similarities with animal steroids, which are decisive factors of sex determination. BRs are known to regulate morphogenesis and environmental stress responses, but their involvement in sex determination in plants has been only speculative. We show that BRs control sex determination in maize revealed through characterization of the classical dwarf mutant nana plant1 (na1), which also feminizes male flowers. na1 plants carry a loss-of-function mutation in a DET2 homolog--a gene in the BR biosynthetic pathway. The mutant accumulates the DET2-specific substrate (24R)-24-methylcholest-4-en-3-one with a concomitant decrease of downstream BR metabolites. Treatment of wild-type maize plants with BR biosynthesis inhibitors completely mimicked both dwarf and tasselseed phenotypes of na1 mutants. Tissue-specific na1 expression in anthers throughout their development supports the hypothesis that BRs promote masculinity of the male inflorescence. These findings suggest that, in the monoecious plant maize, BRs have been coopted to perform a sex determination function not found in plants with bisexual flowers.

  13. Aflatoxin Control in Maize by Trametes versicolor

    PubMed Central

    Scarpari, Marzia; Bello, Cristiano; Pietricola, Chiara; Zaccaria, Marco; Bertocchi, Luigi; Angelucci, Alessandra; Ricciardi, Maria Rosaria; Scala, Valeria; Parroni, Alessia; Fabbri, Anna A.; Reverberi, Massimo; Zjalic, Slaven; Fanelli, Corrado

    2014-01-01

    Aspergillus flavus is a well-known ubiquitous fungus able to contaminate both in pre- and postharvest period different feed and food commodities. During their growth, these fungi can synthesise aflatoxins, secondary metabolites highly hazardous for animal and human health. The requirement of products with low impact on the environment and on human health, able to control aflatoxin production, has increased. In this work the effect of the basidiomycete Trametes versicolor on the aflatoxin production by A. flavus both in vitro and in maize, was investigated. The goal was to propose an environmental loyal tool for a significant control of aflatoxin production, in order to obtain feedstuffs and feed with a high standard of quality and safety to enhance the wellbeing of dairy cows. The presence of T. versicolor, grown on sugar beet pulp, inhibited the production of aflatoxin B1 in maize by A. flavus. Furthermore, treatment of contaminated maize with culture filtrates of T. versicolor containing ligninolytic enzymes, showed a significant reduction of the content of aflatoxin B1. PMID:25525683

  14. Aflatoxin control in maize by Trametes versicolor.

    PubMed

    Scarpari, Marzia; Bello, Cristiano; Pietricola, Chiara; Zaccaria, Marco; Bertocchi, Luigi; Angelucci, Alessandra; Ricciardi, Maria Rosaria; Scala, Valeria; Parroni, Alessia; Fabbri, Anna A; Reverberi, Massimo; Zjalic, Slaven; Fanelli, Corrado

    2014-12-17

    Aspergillus flavus is a well-known ubiquitous fungus able to contaminate both in pre- and postharvest period different feed and food commodities. During their growth, these fungi can synthesise aflatoxins, secondary metabolites highly hazardous for animal and human health. The requirement of products with low impact on the environment and on human health, able to control aflatoxin production, has increased. In this work the effect of the basidiomycete Trametes versicolor on the aflatoxin production by A. flavus both in vitro and in maize, was investigated. The goal was to propose an environmental loyal tool for a significant control of aflatoxin production, in order to obtain feedstuffs and feed with a high standard of quality and safety to enhance the wellbeing of dairy cows. The presence of T. versicolor, grown on sugar beet pulp, inhibited the production of aflatoxin B1 in maize by A. flavus. Furthermore, treatment of contaminated maize with culture filtrates of T. versicolor containing ligninolytic enzymes, showed a significant reduction of the content of aflatoxin B1.

  15. Tracing transgenic maize as affected by breadmaking process and raw material for the production of a traditional maize bread, broa.

    PubMed

    Fernandes, Telmo J R; Oliveira, M Beatriz P P; Mafra, Isabel

    2013-05-01

    Broa is a maize bread highly consumed and appreciated, especially in the north and central zones of Portugal. In the manufacturing of broa, maize flour and maize semolina might be used, besides other cereals such as wheat and rye. Considering the needs for genetically modified organism (GMO) traceability in highly processed foods, the aim of this work was to assess DNA degradation, DNA amplification and GMO quantification along breadmaking process of broa. DNA degradation was noticed by its decrease of integrity after dough baking and in all parts of bread sampling. The PCR amplification results of extracted DNA from the three distinct maize breads (broa 1, 2 and 3) showed that sequences for maize invertase gene and for events MON810 and TC1507 were easily detected with strong products. Real-time PCR revealed that quantification of GMO was feasible in the three different breads and that sampling location of baked bread might have a limited influence since the average quantitative results of both events after baking were very close to the actual values in the case of broa 1 (prepared with maize semolina). In the other two maize breads subjected to the same baking treatment, the contents of MON810 maize were considerably underestimated, leading to the conclusion that heat-processing was not the responsible parameter for that distortion, but the size of particle and mechanical processing of raw maize play also a major role in GMO quantification. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Independent genetic control of maize (Zea mays L.) kernel weight determination and its phenotypic plasticity.

    PubMed

    Alvarez Prado, Santiago; Sadras, Víctor O; Borrás, Lucas

    2014-08-01

    Maize kernel weight (KW) is associated with the duration of the grain-filling period (GFD) and the rate of kernel biomass accumulation (KGR). It is also related to the dynamics of water and hence is physiologically linked to the maximum kernel water content (MWC), kernel desiccation rate (KDR), and moisture concentration at physiological maturity (MCPM). This work proposed that principles of phenotypic plasticity can help to consolidated the understanding of the environmental modulation and genetic control of these traits. For that purpose, a maize population of 245 recombinant inbred lines (RILs) was grown under different environmental conditions. Trait plasticity was calculated as the ratio of the variance of each RIL to the overall phenotypic variance of the population of RILs. This work found a hierarchy of plasticities: KDR ≈ GFD > MCPM > KGR > KW > MWC. There was no phenotypic and genetic correlation between traits per se and trait plasticities. MWC, the trait with the lowest plasticity, was the exception because common quantitative trait loci were found for the trait and its plasticity. Independent genetic control of a trait per se and genetic control of its plasticity is a condition for the independent evolution of traits and their plasticities. This allows breeders potentially to select for high or low plasticity in combination with high or low values of economically relevant traits. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. A new QTL for resistance to Fusarium ear rot in maize.

    PubMed

    Li, Zhi-Min; Ding, Jun-Qiang; Wang, Rui-Xia; Chen, Jia-Fa; Sun, Xiao-Dong; Chen, Wei; Song, Wei-Bin; Dong, Hua-Fang; Dai, Xiao-Dong; Xia, Zong-Liang; Wu, Jian-Yu

    2011-11-01

    Understanding the inheritance of resistance to Fusarium ear rot is a basic prerequisite for an efficient resistance breeding in maize. In this study, 250 recombinant inbred lines (RILs) along with their resistant (BT-1) and susceptible (N6) parents were planted in Zhengzhou with three replications in 2007 and 2008. Each line was artificially inoculated using the nail-punch method. Significant genotypic variation in response to Fusarium ear rot was detected in both years. Based on a genetic map containing 207 polymorphic simple sequence repeat (SSR) markers with average genetic distances of 8.83 cM, the ear rot resistance quantitative trait loci (QTL) were analyzed by composite interval mapping with a mixed model (MCIM) across the environments. In total, four QTL were detected on chromosomes 3, 4, 5, and 6. The resistance allele at each of these four QTL was contributed by resistant parent BT-1, and accounted for 2.5-10.2% of the phenotypic variation. However, no significant epistasis interaction effect was detected after a two-dimensional genome scan. Among the four QTL, one QTL with the largest effect on chromosome 4 (bin 4.06) can be suggested to be a new locus for resistance to Fusarium ear rot, which broadens the genetic base for resistance to the disease and can be used for further genetic improvement in maize-breeding programs.

  18. Distinct Genetic Architectures for Male and Female Inflorescence Traits of Maize

    PubMed Central

    Brown, Patrick J.; Upadyayula, Narasimham; Mahone, Gregory S.; Tian, Feng; Bradbury, Peter J.; Myles, Sean; Holland, James B.; Flint-Garcia, Sherry; McMullen, Michael D.; Buckler, Edward S.; Rocheford, Torbert R.

    2011-01-01

    We compared the genetic architecture of thirteen maize morphological traits in a large population of recombinant inbred lines. Four traits from the male inflorescence (tassel) and three traits from the female inflorescence (ear) were measured and studied using linkage and genome-wide association analyses and compared to three flowering and three leaf traits previously studied in the same population. Inflorescence loci have larger effects than flowering and leaf loci, and ear effects are larger than tassel effects. Ear trait models also have lower predictive ability than tassel, flowering, or leaf trait models. Pleiotropic loci were identified that control elongation of ear and tassel, consistent with their common developmental origin. For these pleiotropic loci, the ear effects are larger than tassel effects even though the same causal polymorphisms are likely involved. This implies that the observed differences in genetic architecture are not due to distinct features of the underlying polymorphisms. Our results support the hypothesis that genetic architecture is a function of trait stability over evolutionary time, since the traits that changed most during the relatively recent domestication of maize have the largest effects. PMID:22125498

  19. Aflatoxin Regulations in a Network of Global Maize Trade

    PubMed Central

    Wu, Felicia; Guclu, Hasan

    2012-01-01

    Worldwide, food supplies often contain unavoidable contaminants, many of which adversely affect health and hence are subject to regulations of maximum tolerable levels in food. These regulations differ from nation to nation, and may affect patterns of food trade. We soughtto determine whether there is an association between nations' food safety regulations and global food trade patterns, with implications for public health and policymaking. We developed a network model of maize trade around the world. From maize import/export data for 217 nations from 2000–2009, we calculated basic statistics on volumes of trade; then examined how regulations of aflatoxin, a common contaminant of maize, are similar or different between pairs of nations engaging in significant amounts of maize trade. Globally, market segregation appears to occur among clusters of nations. The United States is at the center of one cluster; European countries make up another cluster with hardly any maize trade with the US; and Argentina, Brazil, and China export maize all over the world. Pairs of nations trading large amounts of maize have very similar aflatoxin regulations: nations with strict standards tend to trade maize with each other, while nations with more relaxed standards tend to trade maize with each other. Rarely among the top pairs of maize-trading nations do total aflatoxin standards (standards based on the sum of the levels of aflatoxins B1, B2, G1, and G2) differ by more than 5 µg/kg. These results suggest that, globally, separate maize trading communities emerge; and nations tend to trade with other nations that have very similar food safety standards. PMID:23049773

  20. Genetic Analysis of Kernel Traits in Maize-Teosinte Introgression Populations.

    PubMed

    Liu, Zhengbin; Garcia, Arturo; McMullen, Michael D; Flint-Garcia, Sherry A

    2016-08-09

    Seed traits have been targeted by human selection during the domestication of crop species as a way to increase the caloric and nutritional content of food during the transition from hunter-gather to early farming societies. The primary seed trait under selection was likely seed size/weight as it is most directly related to overall grain yield. Additional seed traits involved in seed shape may have also contributed to larger grain. Maize (Zea mays ssp. mays) kernel weight has increased more than 10-fold in the 9000 years since domestication from its wild ancestor, teosinte (Z. mays ssp. parviglumis). In order to study how size and shape affect kernel weight, we analyzed kernel morphometric traits in a set of 10 maize-teosinte introgression populations using digital imaging software. We identified quantitative trait loci (QTL) for kernel area and length with moderate allelic effects that colocalize with kernel weight QTL. Several genomic regions with strong effects during maize domestication were detected, and a genetic framework for kernel traits was characterized by complex pleiotropic interactions. Our results both confirm prior reports of kernel domestication loci and identify previously uncharacterized QTL with a range of allelic effects, enabling future research into the genetic basis of these traits. Copyright © 2016 Liu et al.

  1. Genetic Analysis of Kernel Traits in Maize-Teosinte Introgression Populations

    PubMed Central

    Liu, Zhengbin; Garcia, Arturo; McMullen, Michael D.; Flint-Garcia, Sherry A.

    2016-01-01

    Seed traits have been targeted by human selection during the domestication of crop species as a way to increase the caloric and nutritional content of food during the transition from hunter-gather to early farming societies. The primary seed trait under selection was likely seed size/weight as it is most directly related to overall grain yield. Additional seed traits involved in seed shape may have also contributed to larger grain. Maize (Zea mays ssp. mays) kernel weight has increased more than 10-fold in the 9000 years since domestication from its wild ancestor, teosinte (Z. mays ssp. parviglumis). In order to study how size and shape affect kernel weight, we analyzed kernel morphometric traits in a set of 10 maize-teosinte introgression populations using digital imaging software. We identified quantitative trait loci (QTL) for kernel area and length with moderate allelic effects that colocalize with kernel weight QTL. Several genomic regions with strong effects during maize domestication were detected, and a genetic framework for kernel traits was characterized by complex pleiotropic interactions. Our results both confirm prior reports of kernel domestication loci and identify previously uncharacterized QTL with a range of allelic effects, enabling future research into the genetic basis of these traits. PMID:27317774

  2. Development of flange and reticulate wall ingrowths in maize (Zea mays L.) endosperm transfer cells.

    PubMed

    Monjardino, Paulo; Rocha, Sara; Tavares, Ana C; Fernandes, Rui; Sampaio, Paula; Salema, Roberto; da Câmara Machado, Artur

    2013-04-01

    Maize (Zea mays L.) endosperm transfer cells are essential for kernel growth and development so they have a significant impact on grain yield. Although structural and ultrastructural studies have been published, little is known about the development of these cells, and prior to this study, there was a general consensus that they contain only flange ingrowths. We characterized the development of maize endosperm transfer cells by bright field microscopy, transmission electron microscopy, and confocal laser scanning microscopy. The most basal endosperm transfer cells (MBETC) have flange and reticulate ingrowths, whereas inner transfer cells only have flange ingrowths. Reticulate and flange ingrowths are mostly formed in different locations of the MBETC as early as 5 days after pollination, and they are distinguishable from each other at all stages of development. Ingrowth structure and ultrastructure and cellulose microfibril compaction and orientation patterns are discussed during transfer cell development. This study provides important insights into how both types of ingrowths are formed in maize endosperm transfer cells.

  3. Recombination device for storage batteries

    DOEpatents

    Kraft, H.; Ledjeff, K.

    1984-01-01

    A recombination device including a gas-tight enclosure connected to receive the discharge gases from a rechargeable storage battery. Catalytic material for the recombination of hydrogen and oxygen to form water is supported within the enclosure. The enclosure is sealed from the atmosphere by a liquid seal including two vertical chambers interconnected with an inverted U-shaped overflow tube. The first chamber is connected at its upper portion to the enclosure and the second chamber communicates at its upper portion with the atmosphere. If the pressure within the enclosure differs as overpressure or vacuum by more than the liquid level, the liquid is forced into one of the two chambers and the overpressure is vented or the vacuum is relieved. The recombination device also includes means for returning recombined liquid to the battery and for absorbing metal hydrides.

  4. Controlled Release from Recombinant Polymers

    PubMed Central

    Price, Robert; Poursaid, Azadeh; Ghandehari, Hamidreza

    2014-01-01

    Recombinant polymers provide a high degree of molecular definition for correlating structure with function in controlled release. The wide array of amino acids available as building blocks for these materials lend many advantages including biorecognition, biodegradability, potential biocompatibility, and control over mechanical properties among other attributes. Genetic engineering and DNA manipulation techniques enable the optimization of structure for precise control over spatial and temporal release. Unlike the majority of chemical synthetic strategies used, recombinant DNA technology has allowed for the production of monodisperse polymers with specifically defined sequences. Several classes of recombinant polymers have been used for controlled drug delivery. These include, but are not limited to, elastin-like, silk-like, and silk-elastinlike proteins, as well as emerging cationic polymers for gene delivery. In this article, progress and prospects of recombinant polymers used in controlled release will be reviewed. PMID:24956486

  5. Recombination device for storage batteries

    DOEpatents

    Kraft, Helmut; Ledjeff, Konstantin

    1985-01-01

    A recombination device including a gas-tight enclosure connected to receive he discharge gases from a rechargeable storage battery. Catalytic material for the recombination of hydrogen and oxygen to form water is supported within the enclosure. The enclosure is sealed from the atmosphere by a liquid seal including two vertical chambers interconnected with an inverted U-shaped overflow tube. The first chamber is connected at its upper portion to the enclosure and the second chamber communicates at its upper portion with the atmosphere. If the pressure within the enclosure differs as overpressure or vacuum by more than the liquid level, the liquid is forced into one of the two chambers and the overpressure is vented or the vacuum is relieved. The recombination device also includes means for returning recombined liquid to the battery and for absorbing metal hydrides.

  6. Three Decades of Recombinant DNA.

    ERIC Educational Resources Information Center

    Palmer, Jackie

    1985-01-01

    Discusses highlights in the development of genetic engineering, examining techniques with recombinant DNA, legal and ethical issues, GenBank (a national database of nucleic acid sequences), and other topics. (JN)

  7. [Vaccine application of recombinant herpesviruses].

    PubMed

    Yokoyama, N; Xuan, X; Mikami, T

    2000-04-01

    Recently, genetic engineering using recombinant DNA techniques has been applied to design new viral vaccines in order to reduce some problems which the present viral vaccines have. Up to now, many viruses have been investigated for development of recombinant attenuated vaccines or live viral vectors for delivery of foreign genes coding immunogenic antigens. In this article, we introduced the new vaccine strategy using genetically engineered herpesviruses.

  8. Targeting vector construction through recombineering.

    PubMed

    Malureanu, Liviu A

    2011-01-01

    Gene targeting in mouse embryonic stem cells is an essential, yet still very expensive and highly time-consuming, tool and method to study gene function at the organismal level or to create mouse models of human diseases. Conventional cloning-based methods have been largely used for generating targeting vectors, but are hampered by a number of limiting factors, including the variety and location of restriction enzymes in the gene locus of interest, the specific PCR amplification of repetitive DNA sequences, and cloning of large DNA fragments. Recombineering is a technique that exploits the highly efficient homologous recombination function encoded by λ phage in Escherichia coli. Bacteriophage-based recombination can recombine homologous sequences as short as 30-50 bases, allowing manipulations such as insertion, deletion, or mutation of virtually any genomic region. The large availability of mouse genomic bacterial artificial chromosome (BAC) libraries covering most of the genome facilitates the retrieval of genomic DNA sequences from the bacterial chromosomes through recombineering. This chapter describes a successfully applied protocol and aims to be a detailed guide through the steps of generation of targeting vectors through recombineering.

  9. Ethanol production by recombinant hosts

    DOEpatents

    Fowler, David E.; Horton, Philip G.; Ben-Bassat, Arie

    1996-01-01

    Novel plasmids comprising genes which code for the alcohol dehydrogenase and pyruvate decarboxylase are described. Also described are recombinant hosts which have been transformed with genes coding for alcohol dehydrogenase and pyruvate. By virtue of their transformation with these genes, the recombinant hosts are capable of producing significant amounts of ethanol as a fermentation product. Also disclosed are methods for increasing the growth of recombinant hosts and methods for reducing the accumulation of undesirable metabolic products in the growth medium of these hosts. Also disclosed are recombinant host capable of producing significant amounts of ethanol as a fermentation product of oligosaccharides and plasmids comprising genes encoding polysaccharases, in addition to the genes described above which code for the alcohol dehydrogenase and pyruvate decarboxylase. Further, methods are described for producing ethanol from oligomeric feedstock using the recombinant hosts described above. Also provided is a method for enhancing the production of functional proteins in a recombinant host comprising overexpressing an adhB gene in the host. Further provided are process designs for fermenting oligosaccharide-containing biomass to ethanol.

  10. Ethanol production by recombinant hosts

    DOEpatents

    Ingram, Lonnie O.; Beall, David S.; Burchhardt, Gerhard F. H.; Guimaraes, Walter V.; Ohta, Kazuyoshi; Wood, Brent E.; Shanmugam, Keelnatham T.

    1995-01-01

    Novel plasmids comprising genes which code for the alcohol dehydrogenase and pyruvate decarboxylase are described. Also described are recombinant hosts which have been transformed with genes coding for alcohol dehydrogenase and pyruvate. By virtue of their transformation with these genes, the recombinant hosts are capable of producing significant amounts of ethanol as a fermentation product. Also disclosed are methods for increasing the growth of recombinant hosts and methods for reducing the accumulation of undesirable metabolic products in the growth medium of these hosts. Also disclosed are recombinant host capable of producing significant amounts of ethanol as a fermentation product of oligosaccharides and plasmids comprising genes encoding polysaccharases, in addition to the genes described above which code for the alcohol dehydrogenase and pyruvate decarboxylase. Further, methods are described for producing ethanol from oligomeric feedstock using the recombinant hosts described above. Also provided is a method for enhancing the production of functional proteins in a recombinant host comprising overexpressing an adhB gene in the host. Further provided are process designs for fermenting oligosaccharide-containing biomass to ethanol.

  11. Defining multiple, distinct, and shared spatiotemporal patterns of DNA replication and endoreduplication from 3D image analysis of developing maize (Zea mays L.) root tip nuclei.

    PubMed

    Bass, Hank W; Hoffman, Gregg G; Lee, Tae-Jin; Wear, Emily E; Joseph, Stacey R; Allen, George C; Hanley-Bowdoin, Linda; Thompson, William F

    2015-11-01

    Spatiotemporal patterns of DNA replication have been described for yeast and many types of cultured animal cells, frequently after cell cycle arrest to aid in synchronization. However, patterns of DNA replication in nuclei from plants or naturally developing organs remain largely uncharacterized. Here we report findings from 3D quantitative analysis of DNA replication and endoreduplication in nuclei from pulse-labeled developing maize root tips. In both early and middle S phase nuclei, flow-sorted on the basis of DNA content, replicative labeling was widely distributed across euchromatic regions of the nucleoplasm. We did not observe the perinuclear or perinucleolar replicative labeling patterns characteristic of middle S phase in mammals. Instead, the early versus middle S phase patterns in maize could be distinguished cytologically by correlating two quantitative, continuous variables, replicative labeling and DAPI staining. Early S nuclei exhibited widely distributed euchromatic labeling preferentially localized to regions with weak DAPI signals. Middle S nuclei also exhibited widely distributed euchromatic labeling, but the label was preferentially localized to regions with strong DAPI signals. Highly condensed heterochromatin, including knobs, replicated during late S phase as previously reported. Similar spatiotemporal replication patterns were observed for both mitotic and endocycling maize nuclei. These results revealed that maize euchromatin exists as an intermingled mixture of two components distinguished by their condensation state and replication timing. These different patterns might reflect a previously described genome organization pattern, with "gene islands" mostly replicating during early S phase followed by most of the intergenic repetitive regions replicating during middle S phase.

  12. Auxins differentially regulate root system architecture and cell cycle protein levels in maize seedlings.

    PubMed

    Martínez-de la Cruz, Enrique; García-Ramírez, Elpidio; Vázquez-Ramos, Jorge M; Reyes de la Cruz, Homero; López-Bucio, José

    2015-03-15

    Maize (Zea mays) root system architecture has a complex organization, with adventitious and lateral roots determining its overall absorptive capacity. To generate basic information about the earlier stages of root development, we compared the post-embryonic growth of maize seedlings germinated in water-embedded cotton beds with that of plants obtained from embryonic axes cultivated in liquid medium. In addition, the effect of four different auxins, namely indole-3-acetic acid (IAA), 1-naphthaleneacetic acid (NAA), indole-3-butyric acid (IBA) and 2,4-dichlorophenoxyacetic acid (2,4-D) on root architecture and levels of the heat shock protein HSP101 and the cell cycle proteins CKS1, CYCA1 and CDKA1 were analyzed. Our data show that during the first days after germination, maize seedlings develop several root types with a simultaneous and/or continuous growth. The post-embryonic root development started with the formation of the primary root (PR) and seminal scutellar roots (SSR) and then continued with the formation of adventitious crown roots (CR), brace roots (BR) and lateral roots (LR). Auxins affected root architecture in a dose-response fashion; whereas NAA and IBA mostly stimulated crown root formation, 2,4-D showed a strong repressing effect on growth. The levels of HSP101, CKS1, CYCA1 and CDKA in root and leaf tissues were differentially affected by auxins and interestingly, HSP101 registered an auxin-inducible and root specific expression pattern. Taken together, our results show the timing of early branching patterns of maize and indicate that auxins regulate root development likely through modulation of the HSP101 and cell cycle proteins. Copyright © 2014 Elsevier GmbH. All rights reserved.

  13. Investigation of the bottleneck leading to the domestication of maize

    PubMed Central

    Eyre-Walker, Adam; Gaut, Rebecca L.; Hilton, Holly; Feldman, Dawn L.; Gaut, Brandon S.

    1998-01-01

    Maize (Zea mays ssp. mays) is genetically diverse, yet it is also morphologically distinct from its wild relatives. These two observations are somewhat contradictory: the first observation is consistent with a large historical population size for maize, but the latter observation is consistent with strong, diversity-limiting selection during maize domestication. In this study, we sampled sequence diversity, coupled with simulations of the coalescent process, to study the dynamics of a population bottleneck during the domestication of maize. To do this, we determined the DNA sequence of a 1,400-bp region of the Adh1 locus from 19 individuals representing maize, its presumed progenitor (Z. mays ssp. parviglumis), and a more distant relative (Zea luxurians). The sequence data were used to guide coalescent simulations of population bottlenecks associated with domestication. Our study confirms high genetic diversity in maize—maize contains 75% of the variation found in its progenitor and is more diverse than its wild relative, Z. luxurians—but it also suggests that sequence diversity in maize can be explained by a bottleneck of short duration and very small size. For example, the breadth of genetic diversity in maize is consistent with a founding population of only 20 individuals when the domestication event is 10 generations in length. PMID:9539756

  14. Maize flour fortification in Africa: markets, feasibility, coverage, and costs.

    PubMed

    Fiedler, John L; Afidra, Ronald; Mugambi, Gladys; Tehinse, John; Kabaghe, Gladys; Zulu, Rodah; Lividini, Keith; Smitz, Marc-Francois; Jallier, Vincent; Guyondet, Christophe; Bermudez, Odilia

    2014-04-01

    The economic feasibility of maize flour and maize meal fortification in Kenya, Uganda, and Zambia is assessed using information about the maize milling industry, households' purchases and consumption levels of maize flour, and the incremental cost and estimated price impacts of fortification. Premix costs comprise the overwhelming share of incremental fortification costs and vary by 50% in Kenya and by more than 100% across the three countries. The estimated incremental cost of maize flour fortification per metric ton varies from $3.19 in Zambia to $4.41 in Uganda. Assuming all incremental costs are passed onto the consumer, fortification in Zambia would result in at most a 0.9% increase in the price of maize flour, and would increase annual outlays of the average maize flour-consuming household by 0.2%. The increases for Kenyans and Ugandans would be even less. Although the coverage of maize flour fortification is not likely to be as high as some advocates have predicted, fortification is economically feasible, and would reduce deficiencies of multiple micronutrients, which are significant public health problems in each of these countries. © 2013 New York Academy of Sciences.

  15. Comparative population genomics of maize domestication and improvement

    USDA-ARS?s Scientific Manuscript database

    Domestication and modern breeding represent exemplary case studies of evolution in action. Maize is an outcrossing species with a complex genome, and an understanding of maize evolution is thus relevant for both plant and animal systems. This study is the largest plant resequencing effort to date, ...

  16. Mutant maize variety containing the glt1-1 allele

    DOEpatents

    Nelson, O.E.; Pan, D.

    1994-07-19

    A maize plant has in its genome a non-mutable form of a mutant allele designated vitX-8132. The allele is located at a locus designated as glt which conditions kernels having an altered starch characteristic. Maize plants including such a mutant allele produce a starch that does not increase in viscosity on cooling, after heating. 2 figs.

  17. Genotype by environment interaction for plant density response in maize

    USDA-ARS?s Scientific Manuscript database

    Increased adaptation to high plant density has been an important factor in improvements in grain yield in maize. Despite extensive public literature on variation in plant density response among maize varieties, almost no public information is available on environmental effects on plant density respo...

  18. Fumonisin biomarkers in maize eaters and implications for human disease

    USDA-ARS?s Scientific Manuscript database

    Maize is the predominant food source contaminated by fumonisins and this has particular health risks for communities consuming maize as a staple diet. The main biochemical effect of fumonisins is the inhibition of ceramide biosynthesis causing an increase in sphingoid bases and sphingoid base 1-pho...

  19. Genetic, evoluntionary and plant breedinginsights from the domestication of maize

    USDA-ARS?s Scientific Manuscript database

    The natural history of maize began nine thousand years ago when Mexican farmers started to collect the seeds of the wild grass, teosinte. Invaluable as a food source, maize permeated Mexican culture and religion. Its domestication eventually led to its adoption as a model organism, aided in large pa...

  20. Entering the second century of maize quantitative genetics

    USDA-ARS?s Scientific Manuscript database

    Maize is the most widely grown cereal in the world. In addition to its role in global agriculture, it has also long served as a model organism for genetic research. Maize stands at a genetic crossroads, as it has access to all the tools available for plant genetics but exhibits a genetic architectur...

  1. Intraplant communication in maize contributes to defense against insects

    USDA-ARS?s Scientific Manuscript database

    The vasculature of plants act as a channel for transport of signal(s) that facilitate long-distance intraplant communication. In maize, Maize insect resistance1-Cysteine Protease (Mir1-CP), which has homology to papain-like proteases, provides defense to different feeding guilds of insect pests. Fur...

  2. Susceptibility to aflatoxin contamination among maize landraces from Mexico

    USDA-ARS?s Scientific Manuscript database

    Maize, the critical staple food for billions of people, was domesticated in Mexico about 9,000 YBP. Today, a great array of maize land races (MLRs) across rural Mexico is harbored in a living library that has been passed among generations since before establishment of the modern state. MLRs have bee...

  3. The art and design of genetic screens: maize

    USDA-ARS?s Scientific Manuscript database

    Maize (Zea mays) is an excellent model for basic research. Genetic screens have informed our understanding of developmental processes, meiosis, epigenetics and biochemical pathways--not only in maize but also in other cereal crops. We discuss the forward and reverse genetic screens that are possible...

  4. Mutant maize variety containing the glt1-1 allele

    DOEpatents

    Nelson, Oliver E.; Pan, David

    1994-01-01

    A maize plant has in its genome a non-mutable form of a mutant allele designated vitX-8132. The allele is located at a locus designated as glt which conditions kernels having an altered starch characteristic. Maize plants including such a mutant allele produce a starch that does not increase in viscosity on cooling, after heating.

  5. Maize diversity and ethnolinguistic diversity in Chiapas, Mexico

    PubMed Central

    Perales, Hugo R.; Benz, Bruce F.; Brush, Stephen B.

    2005-01-01

    The objective of this study is to investigate whether ethnolinguistic diversity influences crop diversity. Factors suggest a correlation between biological diversity of crops and cultural diversity. Although this correlation has been noted, little systematic research has focused on the role of culture in shaping crop diversity. This paper reports on research in the Maya highlands (altitude > 1,800 m) of central Chiapas in southern Mexico that examined the distribution of maize (Zea mays) types among communities of two groups, the Tzeltal and Tzotzil. The findings suggest that maize populations are distinct according to ethnolinguistic group. However, a study of isozymes indicates no clear separation of the region's maize into two distinct populations based on ethnolin-guistic origin. A reciprocal garden experiment shows that there is adaptation of maize to its environment but that Tzeltal maize sometimes out-yields Tzotzil maize in Tzotzil environments. Because of the proximity of the two groups and selection for yield, we would expect that the superior maize would dominate both groups' maize populations, but we find that such domination is not the case. The role of ethnolinguistic identity in shaping social networks and information exchange is discussed in relation to landrace differentiation. PMID:15640353

  6. Maize diversity and ethnolinguistic diversity in Chiapas, Mexico.

    PubMed

    Perales, Hugo R; Benz, Bruce F; Brush, Stephen B

    2005-01-18

    The objective of this study is to investigate whether ethnolinguistic diversity influences crop diversity. Factors suggest a correlation between biological diversity of crops and cultural diversity. Although this correlation has been noted, little systematic research has focused on the role of culture in shaping crop diversity. This paper reports on research in the Maya highlands (altitude >1,800 m) of central Chiapas in southern Mexico that examined the distribution of maize (Zea mays) types among communities of two groups, the Tzeltal and Tzotzil. The findings suggest that maize populations are distinct according to ethnolinguistic group. However, a study of isozymes indicates no clear separation of the region's maize into two distinct populations based on ethnolinguistic origin. A reciprocal garden experiment shows that there is adaptation of maize to its environment but that Tzeltal maize sometimes out-yields Tzotzil maize in Tzotzil environments. Because of the proximity of the two groups and selection for yield, we would expect that the superior maize would dominate both groups' maize populations, but we find that such domination is not the case. The role of ethnolinguistic identity in shaping social networks and information exchange is discussed in relation to landrace differentiation.

  7. Maize development: Cell wall changes in leaves and sheaths

    USDA-ARS?s Scientific Manuscript database

    Developmental changes occur in maize (Zea mays L.) as it transitions from juvenile stages to the mature plant. Changes also occur as newly formed cells mature into adult cells. Maize leaf blades, including the midribs and sheaths, undergo cell wall changes as cells transition to fully mature cell ty...

  8. Interaction of F. verticillioides and Talaromyces sp. in maize seeds

    USDA-ARS?s Scientific Manuscript database

    We conducted studies in maize fields (Illinois, USA, 2013) to observe the interactions of Talaromyces species with fumonisin producing Fusarium verticillioides in corn seeds. Maize ears were inoculated during the milk phase using sterile wooden toothpicks dipped in conidium suspensions, or sterile d...

  9. Stewardship of the Maize B73 feference genome assembly

    USDA-ARS?s Scientific Manuscript database

    The release of version 4 of the B73 reference genome assembly is imminent. However, continued improvement of the assembly is likely to fall to the maize research community. Toward this end, and recognizing the importance of an accurate and well-curated reference genome, MaizeGDB, Gramene, and the Ge...

  10. Starch grain evidence for the preceramic dispersals of maize and root crops into tropical dry and humid forests of Panama.

    PubMed

    Dickau, Ruth; Ranere, Anthony J; Cooke, Richard G

    2007-02-27

    The Central American isthmus was a major dispersal route for plant taxa originally brought under cultivation in the domestication centers of southern Mexico and northern South America. Recently developed methodologies in the archaeological and biological sciences are providing increasing amounts of data regarding the timing and nature of these dispersals and the associated transition to food production in various regions. One of these methodologies, starch grain analysis, recovers identifiable microfossils of economic plants directly off the stone tools used to process them. We report on new starch grain evidence from Panama demonstrating the early spread of three important New World cultigens: maize (Zea mays), manioc (Manihot esculenta), and arrowroot (Maranta arundinacea). Maize starch recovered from stone tools at a site located in the Pacific lowlands of central Panama confirms previous archaeobotanical evidence for the use of maize there by 7800-7000 cal BP. Starch evidence from preceramic sites in the less seasonal, humid premontane forests of Chiriquí province, western Panama, shows that maize and root crops were present by 7400-5600 cal BP, several millennia earlier than previously documented. Several local starchy resources, including Zamia and Dioscorea spp., were also used. The data from both regions suggest that crop dispersals took place via diffusion or exchange of plant germplasm rather than movement of human populations practicing agriculture.

  11. Potassium Management for Improving Growth and Grain Yield of Maize (Zea mays L.) under Moisture Stress Condition

    PubMed Central

    Amanullah; Iqbal, Asif; Irfanullah; Hidayat, Zeeshan

    2016-01-01

    Potassium (K) fertilizer management is beneficial for improving growth, yield and yield components of field crops under moisture stress condition in semiarid climates. Field experiments were conducted to study the response of maize (Zea mays L., cv. Azam) to foliar and soil applied K during summer 2013 and 2014. The experiments were carried out at the Agronomy Research Farm of The University of Agriculture Peshawar, Northwest Pakistan under limited irrigation (moisture stress) condition. It was concluded from the results that application of foliar K at the rate of 1–3% and foliar Zn at the rate of 0.1–0.2% was more beneficial in terms of better growth, higher yield and yield components of maize under moisture stress condition. Early spray (vegetative stage) resulted in better growth and higher yield than late spray (reproductive stage). Soil K treated plots (rest) plots performed better than control (K not applied) in terms of improved growth, higher yield and yield components of maize crop. The results further demonstrated that increasing the rate of soil applied K up to 90 kg P ha−1 in two equal splits (50% each at sowing and knee height) improve growth and maize productivity under semiarid climates. PMID:27694964

  12. Potassium Management for Improving Growth and Grain Yield of Maize (Zea mays L.) under Moisture Stress Condition.

    PubMed

    Amanullah; Iqbal, Asif; Irfanullah; Hidayat, Zeeshan

    2016-10-03

    Potassium (K) fertilizer management is beneficial for improving growth, yield and yield components of field crops under moisture stress condition in semiarid climates. Field experiments were conducted to study the response of maize (Zea mays L., cv. Azam) to foliar and soil applied K during summer 2013 and 2014. The experiments were carried out at the Agronomy Research Farm of The University of Agriculture Peshawar, Northwest Pakistan under limited irrigation (moisture stress) condition. It was concluded from the results that application of foliar K at the rate of 1-3% and foliar Zn at the rate of 0.1-0.2% was more beneficial in terms of better growth, higher yield and yield components of maize under moisture stress condition. Early spray (vegetative stage) resulted in better growth and higher yield than late spray (reproductive stage). Soil K treated plots (rest) plots performed better than control (K not applied) in terms of improved growth, higher yield and yield components of maize crop. The results further demonstrated that increasing the rate of soil applied K up to 90 kg P ha -1 in two equal splits (50% each at sowing and knee height) improve growth and maize productivity under semiarid climates.

  13. Starch grain evidence for the preceramic dispersals of maize and root crops into tropical dry and humid forests of Panama

    PubMed Central

    Dickau, Ruth; Ranere, Anthony J.; Cooke, Richard G.

    2007-01-01

    The Central American isthmus was a major dispersal route for plant taxa originally brought under cultivation in the domestication centers of southern Mexico and northern South America. Recently developed methodologies in the archaeological and biological sciences are providing increasing amounts of data regarding the timing and nature of these dispersals and the associated transition to food production in various regions. One of these methodologies, starch grain analysis, recovers identifiable microfossils of economic plants directly off the stone tools used to process them. We report on new starch grain evidence from Panama demonstrating the early spread of three important New World cultigens: maize (Zea mays), manioc (Manihot esculenta), and arrowroot (Maranta arundinacea). Maize starch recovered from stone tools at a site located in the Pacific lowlands of central Panama confirms previous archaeobotanical evidence for the use of maize there by 7800–7000 cal BP. Starch evidence from preceramic sites in the less seasonal, humid premontane forests of Chiriquí province, western Panama, shows that maize and root crops were present by 7400–5600 cal BP, several millennia earlier than previously documented. Several local starchy resources, including Zamia and Dioscorea spp., were also used. The data from both regions suggest that crop dispersals took place via diffusion or exchange of plant germplasm rather than movement of human populations practicing agriculture. PMID:17360697

  14. Overexpression of ARGOS Genes Modifies Plant Sensitivity to Ethylene, Leading to Improved Drought Tolerance in Both Arabidopsis and Maize.

    PubMed

    Shi, Jinrui; Habben, Jeffrey E; Archibald, Rayeann L; Drummond, Bruce J; Chamberlin, Mark A; Williams, Robert W; Lafitte, H Renee; Weers, Ben P

    2015-09-01

    Lack of sufficient water is a major limiting factor to crop production worldwide, and the development of drought-tolerant germplasm is needed to improve crop productivity. The phytohormone ethylene modulates plant growth and development as well as plant response to abiotic stress. Recent research has shown that modifying ethylene biosynthesis and signaling can enhance plant drought tolerance. Here, we report novel negative regulators of ethylene signal transduction in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). These regulators are encoded by the ARGOS gene family. In Arabidopsis, overexpression of maize ARGOS1 (ZmARGOS1), ZmARGOS8, Arabidopsis ARGOS homolog ORGAN SIZE RELATED1 (AtOSR1), and AtOSR2 reduced plant sensitivity to ethylene, leading to enhanced drought tolerance. RNA profiling and genetic analysis suggested that the ZmARGOS1 transgene acts between an ethylene receptor and CONSTITUTIVE TRIPLE RESPONSE1 in the ethylene signaling pathway, affecting ethylene perception or the early stages of ethylene signaling. Overexpressed ZmARGOS1 is localized to the endoplasmic reticulum and Golgi membrane, where the ethylene receptors and the ethylene signaling protein ETHYLENE-INSENSITIVE2 and REVERSION-TO-ETHYLENE SENSITIVITY1 reside. In transgenic maize plants, overexpression of ARGOS genes also reduces ethylene sensitivity. Moreover, field testing showed that UBIQUITIN1:ZmARGOS8 maize events had a greater grain yield than nontransgenic controls under both drought stress and well-watered conditions. © 2015 American Society of Plant Biologists. All Rights Reserved.

  15. Effects of variety and storage duration on the nutrient digestibility and the digestible and metabolisable energy content of maize fed to growing pigs.

    PubMed

    Zhang, Lei; Liu, Ling; Li, Defa; Li, Quanfeng; Piao, Xiangshu; Thacker, Philip A; Brown, Michael A; Lai, Changhua

    2017-02-01

    The objective of this research was to determine the effects of variety and storage duration on the nutrient digestibility and the digestible (DE) and metabolisable (ME) energy content in maize when fed to growing pigs. Four maize varieties (LS1, LS2, LS3 and LS4) were hand-harvested from the same growing area in China in early October of 2012. The samples were sun dried to about 14% moisture content and then stored in the warehouse of the Fengning Pig Experiment Base at China Agricultural University for 0, 3 or 10 months. Twenty-four barrows of about 33 kg body weight were used and allotted to a completely randomised block design with four diets and six replicate pigs per diet. Pigs were individually housed in metabolic crates. The four experimental diets were formulated by mixing 96.8% of each variety of maize with 3.2% vitamins and minerals. A 5-day collection period followed a 7-day diet acclimation period. The results indicated that the DE and ME contents of maize and the apparent total tract digestibility (ATTD) of organic matter (OM), dry matter, gross energy (GE), neutral detergent fibre, acid detergent fibre (ADF), crude protein (CP) and ether extract (EE) were significantly (p < 0.05) influenced by maize variety and storage duration. With an extension of storage duration from 0 to 10 months, the DE and ME of maize and the ATTD of OM, GE, ADF, CP and EE changed in a quadratic manner (p < 0.05), and 3 months of storage exceeded 0 months of storage by 1.84%, 1.43%, 0.31%, 0.32%, 15.37%, 2.11% and 5.02%, respectively. The DE, ME of maize and the ATTD of OM, GE, ADF, CP and EE decreased by 3.67%, 6.00%, 0.97%, 1.40%, 30.54%, 3.92% and 20.93%, respectively, at 10 months of storage compared to 3 months of storage. No interaction was observed between maize variety and storage duration in DE and ME contents in maize. In conclusion, under the conditions of this study, most of the nutrient digestibility and the DE and ME contents of maize increased from 0

  16. Ancient maize from Chacoan great houses: Where was it grown?

    PubMed Central

    Benson, Larry; Cordell, Linda; Vincent, Kirk; Taylor, Howard; Stein, John; Farmer, G. Lang; Futa, Kiyoto

    2003-01-01

    In this article, we compare chemical (87Sr/86Sr and elemental) analyses of archaeological maize from dated contexts within Pueblo Bonito, Chaco Canyon, New Mexico, to potential agricultural sites on the periphery of the San Juan Basin. The oldest maize analyzed from Pueblo Bonito probably was grown in an area located 80 km to the west at the base of the Chuska Mountains. The youngest maize came from the San Juan or Animas river floodplains 90 km to the north. This article demonstrates that maize, a dietary staple of southwestern Native Americans, was transported over considerable distances in pre-Columbian times, a finding fundamental to understanding the organization of pre-Columbian southwestern societies. In addition, this article provides support for the hypothesis that major construction events in Chaco Canyon were made possible because maize was brought in to support extra-local labor forces. PMID:14563925

  17. Ancient maize from Chacoan great houses: Where was it grown?

    USGS Publications Warehouse

    Benson, L.; Cordell, L.; Vincent, K.; Taylor, Howard E.; Stein, J.; Farmer, G.L.; Futa, K.

    2003-01-01

    In this article, we compare chemical (87Sr/86Sr and elemental) analyses of archaeological maize from dated contexts within Pueblo Bonito, Chaco Canyon, New Mexico, to potential agricultural sites on the periphery of the San Juan Basin. The oldest maize analyzed from Pueblo Bonito probably was grown in an area located 80 km to the west at the base of the Chuska Mountains. The youngest maize came from the San Juan or Animas river floodplains 90 km to the north. This article demonstrates that maize, a dietary staple of southwestern Native Americans, was transported over considerable distances in pre-Columbian times, a finding fundamental to understanding the organization of pre-Columbian southwestern societies. In addition, this article provides support for the hypothesis that major construction events in Chaco Canyon were made possible because maize was brought in to support extra-local labor forces.

  18. Estimating plant distance in maize using Unmanned Aerial Vehicle (UAV).

    PubMed

    Zhang, Jinshui; Basso, Bruno; Price, Richard F; Putman, Gregory; Shuai, Guanyuan

    2018-01-01

    Distance between rows and plants are essential parameters that affect the final grain yield in row crops. This paper presents the results of research intended to develop a novel method to quantify the distance between maize plants at field scale using an Unmanned Aerial Vehicle (UAV). Using this method, we can recognize maize plants as objects and calculate the distance between plants. We initially developed our method by training an algorithm in an indoor facility with plastic corn plants. Then, the method was scaled up and tested in a farmer's field with maize plant spacing that exhibited natural variation. The results of this study demonstrate that it is possible to precisely quantify the distance between maize plants. We found that accuracy of the measurement of the distance between maize plants depended on the height above ground level at which UAV imagery was taken. This study provides an innovative approach to quantify plant-to-plant variability and, thereby final crop yield estimates.

  19. First report of Maize chlorotic mottle virus and maize (corn) lethal necrosis in Kenya

    USDA-ARS?s Scientific Manuscript database

    In September 2011, high incidence of a new maize (Zea mays L.) disease was reported at lower elevations (1900 masl) in the Longisa division of Bomet County, Southern Rift Valley of Kenya. Later the disease was noted in Bomet Central division, spreading into the neighboring Chepalungu and Narok South...

  20. Maize Haploid Induction and Doubling II – Experience with Exotic and Elite Maize Populations

    USDA-ARS?s Scientific Manuscript database

    As a follow-up to our previous study, second year information will be presented addressing questions on haploid induction and doubling, utilizing exotic and elite maize. These projects result from collaborations between Iowa State Doubled Haploid Facility (http://www.plantbreeding.iastate.edu/DHF/D...

  1. Maize Haploid Induction and Doubling – Recent Experience with Exotic and Elite Maize Populations

    USDA-ARS?s Scientific Manuscript database

    Experience from three maize research projects utilizing the haploid inducer RWS x RWK-76 from the University of Hohenheim will be summarized. These projects result from collaborations between Iowa State Doubled Haploid Facility (http://www.plantbreeding.iastate.edu/DHF/DHF.htm) researchers and USDA...

  2. MaizeGDB: Curation and outreach go hand-in-hand

    USDA-ARS?s Scientific Manuscript database

    This is a brief synopsis of the formal and informal interactions among MaizeGDB (www.maizegdb.org) and maize researchers; and among MaizeGDB and other stakeholders, especially the MaizeGDB Working Group and farmers growing this important crop. Particular note is made of the efficacy in distribution ...

  3. 19 CFR 10.57 - Certified seed potatoes, and seed corn or maize.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Certified seed potatoes, and seed corn or maize... Provisions Potatoes, Corn, Or Maize § 10.57 Certified seed potatoes, and seed corn or maize. Claim for classification as seed potatoes under subheading 0701.10.00, as seed corn (maize) under subheading 1005.10...

  4. Sequence Resources at MaizeGDB with Emphasis on POPcorn: A Project Portal for Corn

    USDA-ARS?s Scientific Manuscript database

    MaizeGDB is the maize research community’s centralized, long-term repository for genetic and genomic information about the crop plant and model organism Zea mays ssp. mays. The MaizeGDB team endeavors to meet the needs of the maize research community based on feedback and guidance. Recent work has f...

  5. Mining natural variation for maize improvement: Selection on phenotypes and genes

    USDA-ARS?s Scientific Manuscript database

    Maize is highly genetically and phenotypically diverse. Tropical maize and teosinte are important genetic resources that harbor unique alleles not found in temperate maize hybrids. To access these resources, breeders must be able to extract favorable unique alleles from tropical maize and teosinte f...

  6. MaizeGDB: enabling access to basic, translational, and applied research information

    USDA-ARS?s Scientific Manuscript database

    MaizeGDB is the Maize Genetics and Genomics Database (available online at http://www.maizegdb.org). The MaizeGDB project is not simply an online database and website but rather an information service to maize researchers that supports customized data access and analysis needs to individual research...

  7. Breeder survey, tools, and resources to visualize diversity and pedigree relationships at MaizeGDB

    USDA-ARS?s Scientific Manuscript database

    In collaboration with maize researchers, the MaizeGDB Team prepared a survey to identify breeder needs for visualizing pedigrees, diversity data, and haplotypes, and distributed it to the maize community on behalf of the Maize Genetics Executive Committee (Summer 2015). We received 48 responses from...

  8. 19 CFR 10.57 - Certified seed potatoes, and seed corn or maize.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Certified seed potatoes, and seed corn or maize... Provisions Potatoes, Corn, Or Maize § 10.57 Certified seed potatoes, and seed corn or maize. Claim for classification as seed potatoes under subheading 0701.10.00, as seed corn (maize) under subheading 1005.10...

  9. 19 CFR 10.57 - Certified seed potatoes, and seed corn or maize.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Certified seed potatoes, and seed corn or maize... Provisions Potatoes, Corn, Or Maize § 10.57 Certified seed potatoes, and seed corn or maize. Claim for classification as seed potatoes under subheading 0701.10.00, as seed corn (maize) under subheading 1005.10...

  10. 19 CFR 10.57 - Certified seed potatoes, and seed corn or maize.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Certified seed potatoes, and seed corn or maize... Provisions Potatoes, Corn, Or Maize § 10.57 Certified seed potatoes, and seed corn or maize. Claim for classification as seed potatoes under subheading 0701.10.00, as seed corn (maize) under subheading 1005.10...

  11. 19 CFR 10.57 - Certified seed potatoes, and seed corn or maize.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Certified seed potatoes, and seed corn or maize... Provisions Potatoes, Corn, Or Maize § 10.57 Certified seed potatoes, and seed corn or maize. Claim for classification as seed potatoes under subheading 0701.10.00, as seed corn (maize) under subheading 1005.10...

  12. Prdm9 controls activation of mammalian recombination hotspots.

    PubMed

    Parvanov, Emil D; Petkov, Petko M; Paigen, Kenneth

    2010-02-12

    Mammalian meiotic recombination, which preferentially occurs at specialized sites called hotspots, ensures the orderly segregation of meiotic chromosomes and creates genetic variation among offspring. A locus on mouse chromosome 17, which controls activation of recombination at multiple distant hotspots, has been mapped within a 181-kilobase interval, three of whose genes can be eliminated as candidates. The remaining gene, Prdm9, codes for a zinc finger containing histone H3K4 trimethylase that is expressed in early meiosis and whose deficiency results in sterility in both sexes. Mus musculus exhibits five alleles of Prdm9; human populations exhibit two predominant alleles and multiple minor alleles. The identification of Prdm9 as a protein regulating mammalian recombination hotspots initiates molecular studies of this important biological control system.

  13. Analysis of HIV Type 1 BF Recombinant Sequences from South America Dates the Origin of CRF12_BF to a Recombination Event in the 1970s

    PubMed Central

    Dilernia, Dario A.; Jones, Leandro R.; Pando, Maria A.; Rabinovich, Roberto D.; Damilano, Gabriel D.; Turk, Gabriela; Rubio, Andrea E.; Pampuro, Sandra; Gomez-Carrillo, Manuel

    2011-01-01

    Abstract HIV-1 epidemics in South America are believed to have originated in part from the subtype B epidemic initiated in the Caribbean/North America region. However, circulation of BF recombinants in similar proportions was extensively reported. Information currently shows that many BF recombinants share a recombination structure similar to that found in the CRF12_BF. In the present study, analyzing a set of 405 HIV sequences, we identified the most likely origin of the BF epidemic in an early event of recombination. We found that the subtype B epidemics in South America analyzed in the present study were initiated by a founder event that occurred in the early 1970s, a few years after the introduction of these strains in the Americas. Regarding the F/BF recombinant epidemics, by analyzing a subtype F genomic segment within the viral gene gag present in the majority of the BF recombinants, we found evidence of a geographic divergence very soon after the introduction of subtype F strains in South America. Moreover, through analysis of a subtype B segment present in all the CRF12_BF-like recombination structure, we estimated the circulation of the subtype B strain that gave rise to that recombinant structure around the same time period estimated for the introduction of subtype F strains. The HIV epidemics in South America were initiated in part through a founder event driven by subtype B strains coming from the previously established epidemic in the north of the continent. A second introduction driven by subtype F strains is likely to have encountered the incipient subtype B epidemic that soon after their arrival recombined with them, originating the BF epidemic in the region. These results may explain why in South America the majority of F sequences are found as BF recombinants. PMID:20919926

  14. Genomic Analysis of the DNA Replication Timing Program during Mitotic S Phase in Maize (Zea mays) Root Tips[OPEN

    PubMed Central

    LeBlanc, Chantal; Lee, Tae-Jin; Mulvaney, Patrick; Allen, George C.; Martienssen, Robert A.; Thompson, William F.

    2017-01-01

    All plants and animals must replicate their DNA, using a regulated process to ensure that their genomes are completely and accurately replicated. DNA replication timing programs have been extensively studied in yeast and animal systems, but much less is known about the replication programs of plants. We report a novel adaptation of the “Repli-seq” assay for use in intact root tips of maize (Zea mays) that includes several different cell lineages and present whole-genome replication timing profiles from cells in early, mid, and late S phase of the mitotic cell cycle. Maize root tips have a complex replication timing program, including regions of distinct early, mid, and late S replication that each constitute between 20 and 24% of the genome, as well as other loci corresponding to ∼32% of the genome that exhibit replication activity in two different time windows. Analyses of genomic, transcriptional, and chromatin features of the euchromatic portion of the maize genome provide evidence for a gradient of early replicating, open chromatin that transitions gradually to less open and less transcriptionally active chromatin replicating in mid S phase. Our genomic level analysis also demonstrated that the centromere core replicates in mid S, before heavily compacted classical heterochromatin, including pericentromeres and knobs, which replicate during late S phase. PMID:28842533

  15. A few sequence polymorphisms among isolates of Maize bushy stunt phytoplasma associate with organ proliferation symptoms of infected maize plants

    PubMed Central

    Orlovskis, Zigmunds; Canale, Maria Cristina; Haryono, Mindia; Lopes, João Roberto Spotti

    2017-01-01

    Background and Aims Maize bushy stunt phytoplasma (MBSP) is a bacterial pathogen of maize (Zea mays L.) across Latin America. MBSP belongs to the 16SrI-B sub-group within the genus ‘Candidatus Phytoplasma’. MBSP and its insect vector Dalbulus maidis (Hemiptera: Cicadellidae) are restricted to maize; both are thought to have coevolved with maize during its domestication from a teosinte-like ancestor. MBSP-infected maize plants show a diversity of symptoms. and it is likely that MBSP is under strong selection for increased virulence and insect transmission on maize hybrids that are widely grown in Brazil. In this study it was investigated whether the differences in genome sequences of MBSP isolates from two maize-growing regions in South-east Brazil explain variations in symptom severity of the MBSP isolates on various maize genotypes. Methods MBSP isolates were collected from maize production fields in Guaíra and Piracicaba in South-east Brazil for infection assays. One representative isolate was chosen for de novo whole-genome assembly and for the alignment of sequence reads from the genomes of other phytoplasma isolates to detect polymorphisms. Statistical methods were applied to investigate the correlation between variations in disease symptoms of infected maize plants and MBSP sequence polymorphisms. Key Results MBSP isolates contributed consistently to organ proliferation symptoms and maize genotype to leaf necrosis, reddening and yellowing of infected maize plants. The symptom differences are associated with polymorphisms in a phase-variable lipoprotein, which is a candidate effector, and an ATP-dependent lipoprotein ABC export protein, whereas no polymorphisms were observed in other candidate effector genes. Lipoproteins and ABC export proteins activate host defence responses, regulate pathogen attachment to host cells and activate effector secretion systems in other pathogens. Conclusions Polymorphisms in two putative virulence genes among MBSP isolates

  16. Genetic Factors Involved in Fumonisin Accumulation in Maize Kernels and Their Implications in Maize Agronomic Management and Breeding

    PubMed Central

    Santiago, Rogelio; Cao, Ana; Butrón, Ana

    2015-01-01

    Contamination of maize with fumonisins depends on the environmental conditions; the maize resistance to contamination and the interaction between both factors. Although the effect of environmental factors is a determinant for establishing the risk of kernel contamination in a region, there is sufficient genetic variability among maize to develop resistance to fumonisin contamination and to breed varieties with contamination at safe levels. In addition, ascertaining which environmental factors are the most important in a region will allow the implementation of risk monitoring programs and suitable cultural practices to reduce the impact of such environmental variables. The current paper reviews all works done to address the influence of environmental variables on fumonisin accumulation, the genetics of maize resistance to fumonisin accumulation, and the search for the biochemical and/or structural mechanisms of the maize plant that could be involved in resistance to fumonisin contamination. We also explore the outcomes of breeding programs and risk monitoring of undertaken projects. PMID:26308050

  17. Genetic Factors Involved in Fumonisin Accumulation in Maize Kernels and Their Implications in Maize Agronomic Management and Breeding.

    PubMed

    Santiago, Rogelio; Cao, Ana; Butrón, Ana

    2015-08-20

    Contamination of maize with fumonisins depends on the environmental conditions; the maize resistance to contamination and the interaction between both factors. Although the effect of environmental factors is a determinant for establishing the risk of kernel contamination in a region, there is sufficient genetic variability among maize to develop resistance to fumonisin contamination and to breed varieties with contamination at safe levels. In addition, ascertaining which environmental factors are the most important in a region will allow the implementation of risk monitoring programs and suitable cultural practices to reduce the impact of such environmental variables. The current paper reviews all works done to address the influence of environmental variables on fumonisin accumulation, the genetics of maize resistance to fumonisin accumulation, and the search for the biochemical and/or structural mechanisms of the maize plant that could be involved in resistance to fumonisin contamination. We also explore the outcomes of breeding programs and risk monitoring of undertaken projects.

  18. Viral vectors for production of recombinant proteins in plants.

    PubMed

    Lico, Chiara; Chen, Qiang; Santi, Luca

    2008-08-01

    Global demand for recombinant proteins has steadily accelerated for the last 20 years. These recombinant proteins have a wide range of important applications, including vaccines and therapeutics for human and animal health, industrial enzymes, new materials and components of novel nano-particles for various applications. The majority of recombinant proteins are produced by traditional biological "factories," that is, predominantly mammalian and microbial cell cultures along with yeast and insect cells. However, these traditional technologies cannot satisfy the increasing market demand due to prohibitive capital investment requirements. During the last two decades, plants have been under intensive investigation to provide an alternative system for cost-effective, highly scalable, and safe production of recombinant proteins. Although the genetic engineering of plant viral vectors for heterologous gene expression can be dated back to the early 1980s, recent understanding of plant virology and technical progress in molecular biology have allowed for significant improvements and fine tuning of these vectors. These breakthroughs enable the flourishing of a variety of new viral-based expression systems and their wide application by academic and industry groups. In this review, we describe the principal plant viral-based production strategies and the latest plant viral expression systems, with a particular focus on the variety of proteins produced and their applications. We will summarize the recent progress in the downstream processing of plant materials for efficient extraction and purification of recombinant proteins. (c) 2008 Wiley-Liss, Inc.

  19. Swelling Kinetics of Waxy Maize Starch

    NASA Astrophysics Data System (ADS)

    Desam, Gnana Prasuna Reddy

    Starch pasting behavior greatly influences the texture of a variety of food products such as canned soup, sauces, baby foods, batter mixes etc. The annual consumption of starch in the U.S. is 3 million metric tons. It is important to characterize the relationship between the structure, composition and architecture of the starch granules with its pasting behavior in order to arrive at a rational methodology to design modified starch of desirable digestion rate and texture. In this research, polymer solution theory was applied to predict the evolution of average granule size of starch at different heating temperatures in terms of its molecular weight, second virial coefficient and extent of cross-link. Evolution of granule size distribution of waxy native maize starch when subjected to heating at constant temperatures of 65, 70, 75, 80, 85 and 90 C was characterized using static laser light scattering. As expected, granule swelling was more pronounced at higher temperatures and resulted in a shift of granule size distribution to larger sizes with a corresponding increase in the average size by 100 to 120% from 13 mum to 25-28 mum. Most of the swelling occurred within the first 10 min of heating. Pasting behavior of waxy maize at different temperatures was also characterized from the measurements of G' and G" for different heating times. G' was found to increase with temperature at holding time of 2 min followed by its decrease at larger holding times. This behavior is believed to be due to the predominant effect of swelling at small times. However, G" was insensitive to temperature and holding times. The structure of waxy maize starch was characterized by cryoscanning electron microscopy. Experimental data of average granule size vs time at different temperatures were compared with model predictions. Also the Experimental data of particle size distribution vs particle size at different times and temperatures were compared with model predictions.

  20. Breeding maize for resistance to ear rot caused by Fusarium moniliforme.

    PubMed

    Hefny, M; Attaa, S; Bayoumi, T; Ammar, S; El-Bramawy, M

    2012-01-15

    Maize ear rots are among the most important impediments to increased maize production in Egypt. The present research was conducted to estimate combining abilities, heterosis and correlation coefficients for resistance to ear rot disease in seven corn inbred lines and their 21 crosses under field conditions. Results demonstrated that both additive and non-additive gene actions were responsible for the genetic expression of all characters with the preponderance of non-additive actions for days to 50% silking. The parental line L51 was the best combiner for earliness, low infection severity %, high phenols content, short plants and reasonable grain yield, while L101 was good combiner for low ear rot infection only. The cross: L122 x L84, L122 x L101, L51 x L101, L76 x L36, L76 x L84, L36 x L84, L36 x L81 and L36 x L101 which involved one or both parents with good General Combining Ability (GCA) effects expressed useful significant heterosis and Specific Combining Ability (SCA) effects for low infection severity %, high phenol contents, early silking, tall plants and high grain yield. Phenotypic and genotypic correlation coefficients suggest that selection for resistance to ear rot should identify lines with high yielding ability, early silking, tall plants, high phenols content and chitinase activity.

  1. Electron-Beam Recombination Lasers

    NASA Astrophysics Data System (ADS)

    Rhoades, Robert Lewis

    1992-01-01

    The first known instance of electron-beam pumping of the 546.1 nm mercury laser is reported. This has been achieved using high-energy electrons to create intense ionization in a coaxial diode chamber containing a mixture of noble gases with a small amount of mercury vapor. Also reported are the results of a study of the 585.3 nm neon laser in He:Ne:Ar mixtures under similar experimental conditions. Both of these lasers are believed to be predominantly pumped by recombination. For the mercury laser, kinetic processes in the partially ionized plasma following the excitation pulse of high-energy electrons should favor the production of atomic mercury ions and molecular ions containing mercury. Subsequent recombination with electrons heavily favors the production of the 7^3S and 6^3 D states of Hg, of which 7^3S is the upper level of the reported laser. For the neon laser, the dominant recombining ion has been previously shown to be Ne_2^{+}. One of the dominant roles of helium in recombination lasers is inferred from the data for the neon laser at low helium concentrations. Helium appears to be necessary for the rapid relaxation of the electron energy which then increases the reaction rates for all known recombination processes thus increasing the pump rate into the upper state.

  2. Kernel Abortion in Maize 1

    PubMed Central

    Hanft, Jonathan M.; Jones, Robert J.

    1986-01-01

    Kernels cultured in vitro were induced to abort by high temperature (35°C) and by culturing six kernels/cob piece. Aborting kernels failed to enter a linear phase of dry mass accumulation and had a final mass that was less than 6% of nonaborting field-grown kernels. Kernels induced to abort by high temperature failed to synthesize starch in the endosperm and had elevated sucrose concentrations and low fructose and glucose concentrations in the pedicel during early growth compared to nonaborting kernels. Kernels induced to abort by high temperature also had much lower pedicel soluble acid invertase activities than did nonaborting kernels. These results suggest that high temperature during the lag phase of kernel growth may impair the process of sucrose unloading in the pedicel by indirectly inhibiting soluble acid invertase activity and prevent starch synthesis in the endosperm. Kernels induced to abort by culturing six kernels/cob piece had reduced pedicel fructose, glucose, and sucrose concentrations compared to kernels from field-grown ears. These aborting kernels also had a lower pedicel soluble acid invertase activity compared to nonaborting kernels from the same cob piece and from field-grown ears. The low invertase activity in pedicel tissue of the aborting kernels was probably caused by a lack of substrate (sucrose) for the invertase to cleave due to the intense competition for available assimilates. In contrast to kernels cultured at 35°C, aborting kernels from cob pieces containing all six kernels accumulated starch in a linear fashion. These results indicate that kernels cultured six/cob piece abort because of an inadequate supply of sugar and are similar to apical kernels from field-grown ears that often abort prior to the onset of linear growth. PMID:16664846

  3. The Dissociative Recombination of OH(+)

    NASA Technical Reports Server (NTRS)

    Guberman, Steven L.

    1995-01-01

    Theoretical quantum chemical calculations of the cross sections and rates for the dissociative recombination of the upsilon = 0 level of the ground state of OH(+) show that recombination occurs primarily along the 2 (2)Pi diabatic route. The products are 0((1)D) and a hot H atom with 6.1 eV kinetic energy. The coupling to the resonances is very small and the indirect recombination mechanism plays only a minor role. The recommended value for the rate coefficient is (6.3 +/- 0.7) x 10(exp -9)x (T(e)/1300)(exp -0.48) cu.cm/s for 10 less than T(e) less than 1000 K.

  4. Theoretical studies of dissociative recombination

    NASA Technical Reports Server (NTRS)

    Guberman, S. L.

    1985-01-01

    The calculation of dissociative recombination rates and cross sections over a wide temperature range by theoretical quantum chemical techniques is described. Model calculations on electron capture by diatomic ions are reported which illustrate the dependence of the rates and cross sections on electron energy, electron temperature, and vibrational temperature for three model crossings of neutral and ionic potential curves. It is shown that cross sections for recombination to the lowest vibrational level of the ion can vary by several orders of magnitude depending upon the position of the neutral and ionic potential curve crossing within the turning points of the v = 1 vibrational level. A new approach for calculating electron capture widths is reported. Ab initio calculations are described for recombination of O2(+) leading to excited O atoms.

  5. Iron and manganese oxides modified maize straw to remove tylosin from aqueous solutions.

    PubMed

    Yin, Yongyuan; Guo, Xuetao; Peng, Dan

    2018-08-01

    Maize straw modified by iron and manganese oxides was synthesized via a simple and environmentally friendly method. Three maize straw materials, the original maize straw, maize straw modified by manganese oxides and maize straw modified by iron and manganese oxides, were detected by SEM, BET, XPS, XRD and FTIR. The results showed that maize straw was successfully modified and maize straw modified by iron and manganese oxides has a larger surface area than MS. According to the experimental data, the sorption trend could conform to the pseudo-second-order kinetic model well, and the sorption ability of tylosin on sorbents followed the order of original maize straw < maize straw modified by manganese oxides < maize straw modified by iron and manganese oxides. The study indicated that manganese oxides and iron-manganese oxides could significantly enhance the sorption capacity of original maize straw. The sorption isotherm data of tylosin on original maize straw fit a linear model well, while Freundlich models were more suitable for maize straw modified by manganese oxides and maize straw modified by iron and manganese oxides. The pH, ionic strength and temperature can affect the sorption process. The sorption mechanisms of tylosin on iron and manganese oxides modified maize straw were attribute to the surface complexes, electrostatic interactions, H bonding and hydrophobic interactions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Growth and Cadmium Phytoextraction by Swiss Chard, Maize, Rice, Noccaea caerulescens, and Alyssum murale in Ph Adjusted Biosolids Amended Soils.

    PubMed

    Broadhurst, C Leigh; Chaney, Rufus L; Davis, Allen P; Cox, Albert; Kumar, Kuldip; Reeves, Roger D; Green, Carrie E

    2015-01-01

    Past applications of biosolids to soils at some locations added higher Cd levels than presently permitted. Cadmium phytoextraction would alleviate current land use constraints. Unamended farm soil, and biosolids amended farm and mine soils were obtained from a Fulton Co., IL biosolids management facility. Soils contained 0.16, 22.8, 45.3 mg Cd kg(-1) and 43.1, 482, 812 mg Zn kg(-1) respectively with initial pH 6.0, 6.1, 6.4. In greenhouse studies, Swiss chard (Beta vulgaris var. cicla), a Cd-accumulator maize (inbred B37 Zea mays) and a southern France Cd-hyperaccumulator genotype of Noccaea caerulescens were tested for Cd accumulation and phytoextraction. Soil pH was adjusted from ∼5.5-7.0. Additionally 100 rice (Oryza sativa) genotypes and the Ni-hyperaccumulator Alyssum murale were screened for potential phytoextraction use. Chard suffered phytotoxicity at low pH and accumulated up to 90 mg Cd kg(-1) on the biosolids amended mine soil. The maize inbred accumulated up to 45 mg Cd kg(-1) with only mild phytotoxicity symptoms during early growth at pH>6.0. N. caerulescens did not exhibit phytotoxicity symptoms at any pH, and accumulated up to 235 mg Cd kg(-1) in 3 months. Reharvested N. caerulescens accumulated up to 900 mg Cd kg(-1) after 10 months. Neither Alyssum nor 90% of rice genotypes survived acceptably. Both N. caerulescens and B37 maize show promise for Cd phytoextraction in IL and require field evaluation; both plants could be utilized for nearly continuous Cd removal. Other maize inbreds may offer higher Cd phytoextraction at lower pH, and mono-cross hybrids higher shoot biomass yields. Further, maize grown only for biomass Cd maximum removal could be double-cropped.

  7. Crop water use efficiency following biochar application on maize cropping systems on sandy soils of tropical semiarid eastern Indonesia

    NASA Astrophysics Data System (ADS)

    Sukartono, S.; Utomo, W.

    2012-04-01

    A field study was conducted to evaluate the effect of biochar on crop water use efficiency under three consecutive maize cropping system on sandy loam of Lombok, eastern Indonesia from December 2010 to October 2011.The treatments tested were: coconut shell- biochar (CSB), cattle dung-biochar (CDB), cattle manure applied at only early first crop (CM1) and cattle manure applied at every planting time (CM2) and no organic amendment as the control. Evaluation after the end of third maize, the application of organic amendments (biochar and cattle manure) slightly altered the pore size distribution resulting changes in water retention and the available water capacity. The available water capacity was relatively comparable between biochar treated soils (0.206 cm3 cm-3) and soil treated with cattle manure applied at every planting time (0.220 cm3 cm-3). Water use efficiency (WUE) of maize under biochars were 9.44 kg/mm (CSB) and 9.24 kg/mm (CDB) while WUE for CM1 and CM2 were 8.54 and 9.97 kg/mm respectively, and control was 8.08 kg/mm. Thus, biochars as well as cattle manure applied at every planting time improved water use efficiency by 16.83% and 23.39 respectively compared to control. Overall, this study confirms that biochar and cattle manure are both valuable amendments for improving water use efficiency and to sustain maize production in the sandy loam soils of semiarid North Lombok, eastern Indonesia. However, unlike bicohar, in order to maintain its posivtive effect, cattle manure should be applied at every planting time, and this make cattle manure application is more costly. Keywords: Biochar, organic management, catle manure, water retention, maize yield

  8. Proteomic analysis of maize grain development using iTRAQ reveals temporal programs of diverse metabolic processes.

    PubMed

    Yu, Tao; Li, Geng; Dong, Shuting; Liu, Peng; Zhang, Jiwang; Zhao, Bin

    2016-11-04

    Grain development in maize is an essential process in the plant's life cycle and is vital for use of the plant as a crop for animals and humans. However, little is known regarding the protein regulatory networks that control grain development. Here, isobaric tag for relative and absolute quantification (iTRAQ) technology was used to analyze temporal changes in protein expression during maize grain development. Maize grain proteins and changes in protein expression at eight developmental stages from 3 to 50 d after pollination (DAP) were performed using iTRAQ-based proteomics. Overall, 4751 proteins were identified; 2639 of these were quantified and 1235 showed at least 1.5-fold changes in expression levels at different developmental stages and were identified as differentially expressed proteins (DEPs). The DEPs were involved in different cellular and metabolic processes with a preferential distribution to protein synthesis/destination and metabolism categories. A K-means clustering analysis revealed coordinated protein expression associated with different functional categories/subcategories at different development stages. Our results revealed developing maize grain display different proteomic characteristics at distinct stages, such as numerous DEPs for cell growth/division were highly expressed during early stages, whereas those for starch biosynthesis and defense/stress accumulated in middle and late stages, respectively. We also observed coordinated expression of multiple proteins of the antioxidant system, which are essential for the maintenance of reactive oxygen species (ROS) homeostasis during grain development. Particularly, some DEPs, such as zinc metallothionein class II, pyruvate orthophosphate dikinase (PPDK) and 14-3-3 proteins, undergo major changes in expression at specific developmental stages, suggesting their roles in maize grain development. These results provide a valuable resource for analyzing protein function on a global scale and also

  9. Growing sensitivity of maize to water scarcity under climate change.

    PubMed

    Meng, Qingfeng; Chen, Xinping; Lobell, David B; Cui, Zhenling; Zhang, Yi; Yang, Haishun; Zhang, Fusuo

    2016-01-25

    Climate change can reduce crop yields and thereby threaten food security. The current measures used to adapt to climate change involve avoiding crops yield decrease, however, the limitations of such measures due to water and other resources scarcity have not been well understood. Here, we quantify how the sensitivity of maize to water availability has increased because of the shift toward longer-maturing varieties during last three decades in the Chinese Maize Belt (CMB). We report that modern, longer-maturing varieties have extended the growing period by an average of 8 days and have significantly offset the negative impacts of climate change on yield. However, the sensitivity of maize production to water has increased: maize yield across the CMB was 5% lower with rainfed than with irrigated maize in the 1980s and was 10% lower (and even >20% lower in some areas) in the 2000s because of both warming and the increased requirement for water by the longer-maturing varieties. Of the maize area in China, 40% now fails to receive the precipitation required to attain the full yield potential. Opportunities for water saving in maize systems exist, but water scarcity in China remains a serious problem.

  10. Unconventional P-35S sequence identified in genetically modified maize

    PubMed Central

    Al-Hmoud, Nisreen; Al-Husseini, Nawar; Ibrahim-Alobaide, Mohammed A; Kübler, Eric; Farfoura, Mahmoud; Alobydi, Hytham; Al-Rousan, Hiyam

    2014-01-01

    The Cauliflower Mosaic Virus 35S promoter sequence, CaMV P-35S, is one of several commonly used genetic targets to detect genetically modified maize and is found in most GMOs. In this research we report the finding of an alternative P-35S sequence and its incidence in GM maize marketed in Jordan. The primer pair normally used to amplify a 123 bp DNA fragment of the CaMV P-35S promoter in GMOs also amplified a previously undetected alternative sequence of CaMV P-35S in GM maize samples which we term V3. The amplified V3 sequence comprises 386 base pairs and was not found in the standard wild-type maize, MON810 and MON 863 GM maize. The identified GM maize samples carrying the V3 sequence were found free of CaMV when compared with CaMV infected brown mustard sample. The data of sequence alignment analysis of the V3 genetic element showed 90% similarity with the matching P-35S sequence of the cauliflower mosaic virus isolate CabbB-JI and 99% similarity with matching P-35S sequences found in several binary plant vectors, of which the binary vector locus JQ693018 is one example. The current study showed an increase of 44% in the incidence of the identified 386 bp sequence in GM maize sold in Jordan’s markets during the period 2009 and 2012. PMID:24495911

  11. Within-Host Dynamics of the Emergence of Tomato Yellow Leaf Curl Virus Recombinants

    PubMed Central

    Urbino, Cica; Gutiérrez, Serafin; Antolik, Anna; Bouazza, Nabila; Doumayrou, Juliette; Granier, Martine; Martin, Darren P.; Peterschmitt, Michel

    2013-01-01

    Tomato yellow leaf curl virus (TYLCV) is a highly damaging begomovirus native to the Middle East. TYLCV has recently spread worldwide, recombining with other begomoviruses. Recent analysis of mixed infections between TYLCV and Tomato leaf curl Comoros begomovirus (ToLCKMV) has shown that, although natural selection preserves certain co-evolved intra-genomic interactions, numerous and diverse recombinants are produced at 120 days post-inoculation (dpi), and recombinant populations from different tomato plants are very divergent. Here, we investigate the population dynamics that lead to such patterns in tomato plants co-infected with TYLCV and ToLCKMV either by agro-inoculation or using the natural whitefly vector Bemisia tabaci. We monitored the frequency of parental and recombinant genotypes independently in 35 plants between 18 and 330 dpi and identified 177 recombinants isolated at different times. Recombinants were detected from 18 dpi and their frequency increased over time to reach about 50% at 150 dpi regardless of the inoculation method. The distribution of breakpoints detected on 96 fully sequenced recombinants was consistent with a continuous generation of new recombinants as well as random and deterministic effects in their maintenance. A severe population bottleneck of around 10 genomes was estimated during early systemic infection–a phenomenon that could account partially for the heterogeneity in recombinant patterns observed among plants. The detection of the same recombinant genome in six of the thirteen plants analysed beyond 30 dpi supported the influence of selection on observed recombination patterns. Moreover, a highly virulent recombinant genotype dominating virus populations within one plant has, apparently, the potential to be maintained in the natural population according to its infectivity, within-host accumulation, and transmission efficiency - all of which were similar or intermediate to those of the parent genotypes. Our results

  12. [Therapy with recombinant growth hormone].

    PubMed

    Wabitsch, Martin

    2007-06-07

    Therapy with recombinant growth hormone is currently approved for the indications growth hormone deficiency,Turner syndrome, chronic renal failure, small for gestational age (SGA) and Prader-Willi syndrome. Positive experience from on-going clinical studies (e.g. on obesity, type 2 diabetes, Crohn's disease) support an extended range of applications for recombinant growth hormone. However, growth hormone therapy is very expensive. On the other hand, biosimilars are already available that are significantly lower in price. During the coming years, research must show whether the efficacy and safety of biosimilars (including possible new indications) are equal to that of the established preparations.

  13. Bt maize and integrated pest management--a European perspective.

    PubMed

    Meissle, Michael; Romeis, Jörg; Bigler, Franz

    2011-09-01

    The European corn borer (Ostrinia nubilalis), the Mediterranean corn borer (Sesamia nonagrioides) and the western corn rootworm (Diabrotica virgifera virgifera) are the main arthropod pests in European maize production. Practised pest control includes chemical control, biological control and cultural control such as ploughing and crop rotation. A pest control option that is available since 1996 is maize varieties that are genetically engineered (GE) to produce insecticidal compounds. GE maize varieties available today express one or several genes from Bacillus thuringiensis (Bt) that target corn borers or corn rootworms. Incentives to growing Bt maize are simplified farm operations, high pest control efficiency, improved grain quality and ecological benefits. Limitations include the risk of resistance evolution in target pest populations, risk of secondary pest outbreaks and increased administration to comply with licence agreements. Growers willing to plant Bt maize in the European Union (EU) often face the problem that authorisation is denied. Only one Bt maize transformation event (MON810) is currently authorised for commercial cultivation, and some national authorities have banned cultivation. Spain is the only EU member state where Bt maize adoption levels are currently delivering farm income gains near full potential levels. In an integrated pest management (IPM) context, Bt maize can be regarded as a preventive (host plant resistance) or a responsive pest control measure. In any case, Bt maize is a highly specific tool that efficiently controls the main pests and allows combination with other preventive or responsive measures to solve other agricultural problems including those with secondary pests. Copyright © 2011 Society of Chemical Industry.

  14. A Single Molecule Scaffold for the Maize Genome

    PubMed Central

    Zhou, Shiguo; Wei, Fusheng; Nguyen, John; Bechner, Mike; Potamousis, Konstantinos; Goldstein, Steve; Pape, Louise; Mehan, Michael R.; Churas, Chris; Pasternak, Shiran; Forrest, Dan K.; Wise, Roger; Ware, Doreen; Wing, Rod A.; Waterman, Michael S.; Livny, Miron; Schwartz, David C.

    2009-01-01

    About 85% of the maize genome consists of highly repetitive sequences that are interspersed by low-copy, gene-coding sequences. The maize community has dealt with this genomic complexity by the construction of an integrated genetic and physical map (iMap), but this resource alone was not sufficient for ensuring the quality of the current sequence build. For this purpose, we constructed a genome-wide, high-resolution optical map of the maize inbred line B73 genome containing >91,000 restriction sites (averaging 1 site/∼23 kb) accrued from mapping genomic DNA molecules. Our optical map comprises 66 contigs, averaging 31.88 Mb in size and spanning 91.5% (2,103.93 Mb/∼2,300 Mb) of the maize genome. A new algorithm was created that considered both optical map and unfinished BAC sequence data for placing 60/66 (2,032.42 Mb) optical map contigs onto the maize iMap. The alignment of optical maps against numerous data sources yielded comprehensive results that proved revealing and productive. For example, gaps were uncovered and characterized within the iMap, the FPC (fingerprinted contigs) map, and the chromosome-wide pseudomolecules. Such alignments also suggested amended placements of FPC contigs on the maize genetic map and proactively guided the assembly of chromosome-wide pseudomolecules, especially within complex genomic regions. Lastly, we think that the full integration of B73 optical maps with the maize iMap would greatly facilitate maize sequence finishing efforts that would make it a valuable reference for comparative studies among cereals, or other maize inbred lines and cultivars. PMID:19936062

  15. Definition and feasibility of isolation distances for transgenic maize cultivation.

    PubMed

    Sanvido, Olivier; Widmer, Franco; Winzeler, Michael; Streit, Bernhard; Szerencsits, Erich; Bigler, Franz

    2008-06-01

    A major concern related to the adoption of genetically modified (GM) crops in agricultural systems is the possibility of unwanted GM inputs into non-GM crop production systems. Given the increasing commercial cultivation of GM crops in the European Union (EU), there is an urgent need to define measures to prevent mixing of GM with non-GM products during crop production. Cross-fertilization is one of the various mechanisms that could lead to GM-inputs into non-GM crop systems. Isolation distances between GM and non-GM fields are widely accepted to be an effective measure to reduce these inputs. However, the question of adequate isolation distances between GM and non-GM maize is still subject of controversy both amongst scientists and regulators. As several European countries have proposed largely differing isolation distances for maize ranging from 25 to 800 m, there is a need for scientific criteria when using cross-fertilization data of maize to define isolation distances between GM and non-GM maize. We have reviewed existing cross-fertilization studies in maize, established relevant criteria for the evaluation of these studies and applied these criteria to define science-based isolation distances. To keep GM-inputs in the final product well below the 0.9% threshold defined by the EU, isolation distances of 20 m for silage and 50 m for grain maize, respectively, are proposed. An evaluation using statistical data on maize acreage and an aerial photographs assessment of a typical agricultural landscape by means of Geographic Information Systems (GIS) showed that spatial resources would allow applying the defined isolation distances for the cultivation of GM maize in the majority of the cases under actual Swiss agricultural conditions. The here developed approach, using defined criteria to consider the agricultural context of maize cultivation, may be of assistance for the analysis of cross-fertilization data in other countries.

  16. Multicollinearity in canonical correlation analysis in maize.

    PubMed

    Alves, B M; Cargnelutti Filho, A; Burin, C

    2017-03-30

    The objective of this study was to evaluate the effects of multicollinearity under two methods of canonical correlation analysis (with and without elimination of variables) in maize (Zea mays L.) crop. Seventy-six maize genotypes were evaluated in three experiments, conducted in a randomized block design with three replications, during the 2009/2010 crop season. Eleven agronomic variables (number of days from sowing until female flowering, number of days from sowing until male flowering, plant height, ear insertion height, ear placement, number of plants, number of ears, ear index, ear weight, grain yield, and one thousand grain weight), 12 protein-nutritional variables (crude protein, lysine, methionine, cysteine, threonine, tryptophan, valine, isoleucine, leucine, phenylalanine, histidine, and arginine), and 6 energetic-nutritional variables (apparent metabolizable energy, apparent metabolizable energy corrected for nitrogen, ether extract, crude fiber, starch, and amylose) were measured. A phenotypic correlation matrix was first generated among the 29 variables for each of the experiments. A multicollinearity diagnosis was later performed within each group of variables using methodologies such as variance inflation factor and condition number. Canonical correlation analysis was then performed, with and without the elimination of variables, among groups of agronomic and protein-nutritional, and agronomic and energetic-nutritional variables. The canonical correlation analysis in the presence of multicollinearity (without elimination of variables) overestimates the variability of canonical coefficients. The elimination of variables is an efficient method to circumvent multicollinearity in canonical correlation analysis.

  17. Effect of volunteers on maize gene flow.

    PubMed

    Palaudelmàs, Montserrat; Peñas, Gisela; Melé, Enric; Serra, Joan; Salvia, Jordi; Pla, Maria; Nadal, Anna; Messeguer, Joaquima

    2009-08-01

    Regulatory approvals for deliberate release of GM maize events into the environment have lead to real situations of coexistence between GM and non-GM, with some fields being cultivated with GM and conventional varieties in successive seasons. Given the common presence of volunteer plants in maize fields in temperate areas, we investigated the real impact of GM volunteers on the yield of 12 non-GM agricultural fields. Volunteer density varied from residual to around 10% of plants in the field and was largely reduced using certain cultural practices. Plant vigour was low, they rarely had cobs and produced pollen that cross-fertilized neighbour plants only at low--but variable--levels. In the worst-case scenario, the estimated content of GMO was 0.16%. The influence of GM volunteers was not enough to reach the 0.9% adventitious GM threshold but it could potentially contribute to adventitious GM levels, especially at high initial densities (i.e. above 1,000 volunteers/ha).

  18. Chlordecone Transfer and Distribution in Maize Shoots.

    PubMed

    Pascal-Lorber, Sophie; Létondor, Clarisse; Liber, Yohan; Jamin, Emilien L; Laurent, François

    2016-01-20

    Chlordecone (CLD) is a persistent organic pollutant (POP) that was mainly used as an insecticide against banana weevils in the French West Indies (1972-1993). Transfer of CLD via the food chain is now the major mechanism for exposure of the population to CLD. The uptake and the transfer of CLD were investigated in shoots of maize, a C4 model plant growing under tropical climates, to estimate the exposure of livestock via feed. Maize plants were grown on soils contaminated with [(14)C]CLD under controlled conditions. The greatest part of the radioactivity was associated with roots, nearly 95%, but CLD was detected in whole shoots, concentrations in old leaves being higher than those in young ones. CLD was thus transferred from the base toward the plant top, forming an acropetal gradient of contaminant. In contrast, results evidenced the existence of a basipetal gradient of CLD concentration within leaves whose extremities accumulated larger amounts of CLD because of evapotranspiration localization. Extractable residues accounted for two-thirds of total residues both in roots and in shoots. This study highlighted the fact that the distribution of CLD contamination within grasses resulted from a conjunction between the age and evapotranspiration rate of tissues. CLD accumulation in fodder may be the main route of exposure for livestock.

  19. Cytoplasmic pH dynamics in maize pulvinal cells induced by gravity vector changes

    NASA Technical Reports Server (NTRS)

    Johannes, E.; Collings, D. A.; Rink, J. C.; Allen, N. S.; Brown, C. S. (Principal Investigator)

    2001-01-01

    In maize (Zea mays) and other grasses, changes in orientation of stems are perceived by pulvinal tissue, which responds to the stimulus by differential growth resulting in upward bending of the stem. The amyloplast-containing bundle sheath cells are the sites of gravity perception, although the initial steps of gravity perception and transmission remain unclear. In columella cells of Arabidopsis roots, we previously found that cytoplasmic pH (pH(c)) is a mediator in early gravitropic signaling (A.C. Scott, N.S. Allen [1999] Plant Physiol 121: 1291-1298). The question arises whether pH(c) has a more general role in signaling gravity vector changes. Using confocal ratiometric imaging and the fluorescent pH indicator carboxy seminaphtorhodafluor acetoxymethyl ester acetate, we measured pH(c) in the cells composing the maize pulvinus. When stem slices were gravistimulated and imaged on a horizontally mounted confocal microscope, pH(c) changes were only apparent within the bundle sheath cells, and not in the parenchyma cells. After turning, cytoplasmic acidification was observed at the sides of the cells, whereas the cytoplasm at the base of the cells where plastids slowly accumulated became more basic. These changes were most apparent in cells exhibiting net amyloplast sedimentation. Parenchyma cells and isolated bundle sheath cells did not show any gravity-induced pH(c) changes although all cell types responded to external stimuli in the predicted way: Propionic acid and auxin treatments induced acidification, whereas raising the external pH caused alkalinization. The results suggest that pH(c) has an important role in the early signaling pathways of maize stem gravitropism.

  20. Maize Lethal Necrosis (MLN), an Emerging Threat to Maize-Based Food Security in Sub-Saharan Africa.

    PubMed

    Mahuku, George; Lockhart, Benham E; Wanjala, Bramwel; Jones, Mark W; Kimunye, Janet Njeri; Stewart, Lucy R; Cassone, Bryan J; Sevgan, Subramanian; Nyasani, Johnson O; Kusia, Elizabeth; Kumar, P Lava; Niblett, C L; Kiggundu, Andrew; Asea, Godfrey; Pappu, Hanu R; Wangai, Anne; Prasanna, Boddupalli M; Redinbaugh, Margaret G

    2015-07-01

    In sub-Saharan Africa, maize is a staple food and key determinant of food security for smallholder farming communities. Pest and disease outbreaks are key constraints to maize productivity. In September 2011, a serious disease outbreak, later diagnosed as maize lethal necrosis (MLN), was reported on maize in Kenya. The disease has since been confirmed in Rwanda and the Democratic Republic of Congo, and similar symptoms have been reported in Tanzania, Uganda, South Sudan, and Ethiopia. In 2012, yield losses of up to 90% resulted in an estimated grain loss of 126,000 metric tons valued at $52 million in Kenya alone. In eastern Africa, MLN was found to result from coinfection of maize with Maize chlorotic mottle virus (MCMV) and Sugarcane mosaic virus (SCMV), although MCMV alone appears to cause significant crop losses. We summarize here the results of collaborative research undertaken to understand the biology and epidemiology of MLN in East Africa and to develop disease management strategies, including identification of MLN-tolerant maize germplasm. We discuss recent progress, identify major issues requiring further research, and discuss the possible next steps for effective management of MLN.

  1. Emergence of recombinant forms in geographic regions with co-circulating HIV subtypes in the dynamic HIV-1 epidemic

    SciTech Connect

    Zhang, Ming; Letiner, Thomas K; Korber, Bette T

    2009-01-01

    We have reexamined the subtype designations of {approx}10,000 subtype A, B, C, G, and AG, BC, BF recombinant sequences, and compared the results of the new analysis with their published designations. Intersubtype recombinants dominate HIV epidemics in three different geographical regions. The circulating recombinant from (CRF) CRF02-AG, common in West Central Africa, appears to result from a recombination event that occurred early in the divergence between subtypes A and G, although additional more recent recombination events may have contributed to the breakpoint pattern in this recombinant lineage as well. The Chinese recombinant epidemic strains CRF07 and CRF08, in contrast, resultmore » from recent recombinations between more contemporary strains. Nevertheless, CRF07 and CRF08 contributed to many subsequent recombination events. The BF recombinant epidemics in two HIV-1 epicenters in South America are not independent and BF epidemics in South America have an unusually high fraction of unique recombinant forms (URFs) that have each been found only once and carry distinctive breakpoints. Taken together, these analyses reveal a complex and dynamic picture of the current HIV-1 epidemic, and suggest a means of grouping and tracking relationships between viruses through preservation of shared breakpints.« less

  2. Identification of specific antigenic epitope at N-terminal segment of enterovirus 71 (EV-71) VP1 protein and characterization of its use in recombinant form for early diagnosis of EV-71 infection.

    PubMed

    Zhang, Jianhua; Jiang, Bingfu; Xu, Mingjie; Dai, Xing; Purdy, Michael A; Meng, Jihong

    2014-08-30

    Human enterovirus 71 (EV-71) is the main etiologic agent of hand, foot and mouth disease (HFMD). We sought to identify EV-71 specific antigens and develop serologic assays for acute-phase EV-71 infection. A series of truncated proteins within the N-terminal 100 amino acids (aa) of EV-71 VP1 was expressed in Escherichia coli. Western blot (WB) analysis showed that positions around 11-21 aa contain EV-71-specific antigenic sites, whereas positions 1-5 and 51-100 contain epitopes shared with human coxsackievirus A16 (CV-A16) and human echovirus 6 (E-6). The N-terminal truncated protein of VP1, VP₁₆₋₄₃, exhibited good stability and was recognized by anti-EV-71 specific rabbit sera. Alignment analysis showed that VP₁₆₋₄₃ is highly conserved among EV-71 strains from different genotypes but was heterologous among other enteroviruses. When the GST-VP₁₆₋₄₃ fusion protein was incorporated as antibody-capture agent in a WB assay and an ELISA for detecting anti-EV-71 IgM in human sera, sensitivities of 91.7% and 77.8% were achieved, respectively, with 100% specificity for both. The characterized EV-71 VP1 protein truncated to positions 6-43 aa has potential as an antigen for detection of anti-EV-71 IgM for early diagnosis of EV-71 infection in a WB format. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Identification of genes specifically or preferentially expressed in maize silk reveals similarity and diversity in transcript abundance of different dry stigmas.

    PubMed

    Xu, Xiao Hui; Chen, Hao; Sang, Ya Lin; Wang, Fang; Ma, Jun Ping; Gao, Xin-Qi; Zhang, Xian Sheng

    2012-07-02

    in stigma-mediated reproductive processes, including genes encoding amino acid transporters, peptide and oligopeptide transporters, and cysteine-rich receptor-like kinases. The data also suggest that dry stigmas share similar mechanisms at early stages of pollen-stigma interaction. Compared with Arabidopsis, maize and rice appear to have more conserved functional mechanisms. Genes involved in amino acid and lipid transport may be responsible for mechanisms in the reproductive process that are unique to maize silk.

  4. Resistance evolution to the first generation of genetically modified Diabrotica-active Bt-maize events by western corn rootworm: management and monitoring considerations.

    PubMed

    Devos, Yann; Meihls, Lisa N; Kiss, József; Hibbard, Bruce E

    2013-04-01

    suggest that a 20 % refuge of non-Diabrotica-active Bt-maize can delay resistance evolution in WCR under certain conditions. This publication concludes that further research is needed to resolve the remaining scientific uncertainty related to the appropriateness of the HDR in delaying resistance evolution in WCR, resistance monitoring is essential to detect early warning signs indicating resistance evolution in the field, and that integrated pest management reliant on multiple tactics should be deployed to ensure effective long-term corn rootworm management and sustainable use of Bt-maize.

  5. Identification of genes specifically or preferentially expressed in maize silk reveals similarity and diversity in transcript abundance of different dry stigmas

    PubMed Central

    2012-01-01

    study are potentially involved in stigma-mediated reproductive processes, including genes encoding amino acid transporters, peptide and oligopeptide transporters, and cysteine-rich receptor-like kinases. The data also suggest that dry stigmas share similar mechanisms at early stages of pollen-stigma interaction. Compared with Arabidopsis, maize and rice appear to have more conserved functional mechanisms. Genes involved in amino acid and lipid transport may be responsible for mechanisms in the reproductive process that are unique to maize silk. PMID:22748054

  6. Improving recombinant protein purification yield

    USDA-ARS?s Scientific Manuscript database

    Production of adequate amounts of recombinant proteins is essential for antibody production, biochemical activity study, and structural determination during the post-genomic era. It’s technologically challenging and a limiting factor for tung oil research because analytical reagents such as high qua...

  7. Molecular adaptations of Herbaspirillum seropedicae during colonization of the maize rhizosphere.

    PubMed

    Balsanelli, Eduardo; Tadra-Sfeir, Michelle Z; Faoro, Helisson; Pankievicz, Vânia Cs; de Baura, Valter A; Pedrosa, Fábio O; de Souza, Emanuel M; Dixon, Ray; Monteiro, Rose A

    2016-09-01

    Molecular mechanisms of plant recognition and colonization by diazotrophic bacteria are barely understood. Herbaspirillum seropedicae is a Betaproteobacterium capable of colonizing epiphytically and endophytically commercial grasses, to promote plant growth. In this study, we utilized RNA-seq to compare the transcriptional profiles of planktonic and maize root-attached H. seropedicae SmR1 recovered 1 and 3 days after inoculation. The results indicated that nitrogen metabolism was strongly activated in the rhizosphere and polyhydroxybutyrate storage was mobilized in order to assist the survival of H. seropedicae during the early stages of colonization. Epiphytic cells showed altered transcription levels of several genes associated with polysaccharide biosynthesis, peptidoglycan turnover and outer membrane protein biosynthesis, suggesting reorganization of cell wall envelope components. Specific methyl-accepting chemotaxis proteins and two-component systems were differentially expressed between populations over time, suggesting deployment of an extensive bacterial sensory system for adaptation to the plant environment. An insertion mutation inactivating a methyl-accepting chemosensor induced in planktonic bacteria, decreased chemotaxis towards the plant and attachment to roots. In summary, analysis of mutant strains combined with transcript profiling revealed several molecular adaptations that enable H. seropedicae to sense the plant environment, attach to the root surface and survive during the early stages of maize colonization. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  8. [Recombinant OspC identification and antigenicity detection from Borrelia burgdorferi PD91 in China].

    PubMed

    Chen, Jian; Wan, Kang-Lin

    2003-10-01

    To recombine OspC gene from Borrelia burgdorferi PD91 of China and expressed it in E. coli for early diagnosis of Lyme disease. The OspC gene was amplified from the genome of Borrelia burgdorferi PD91 strain by polymerase chain reaction and recombined with plasmid PET-11D. The recombinant plasmid PET-11D-OspC was identified with PCR, restriction endonuclease analysis and sequencing. The antigenicity was verified with Western Blot. OspC gene was cloned correctly into vector PET-11D. The resultant sequence was definitely different from the published sequence. The recombinant OspC seemed to have had strong antigenicity. The findings laid basis for the studies on early diagnosis of Lyme disease.

  9. Deriving Temporal Height Information for Maize Breeding

    NASA Astrophysics Data System (ADS)

    Malambo, L.; Popescu, S. C.; Murray, S.; Sheridan, R.; Richardson, G.; Putman, E.

    2016-12-01

    Phenotypic data such as height provide useful information to crop breeders to better understand their field experiments and associated field variability. However, the measurement of crop height in many breeding programs is done manually which demands significant effort and time and does not scale well when large field experiments are involved. Through structure from motion (SfM) techniques, small unmanned aerial vehicles (sUAV) or drones offer tremendous potential for generating crop height data and other morphological data such as canopy area and biomass in cost-effective and efficient way. We present results of an on-going UAV application project aimed at generating temporal height metrics for maize breeding at the Texas A&M AgriLife Research farm in Burleson County, Texas. We outline the activities involved from the drone aerial surveys, image processing and generation of crop height metrics. The experimental period ran from April (planting) through August (harvest) 2016 and involved 36 maize hybrids replicated over 288 plots ( 1.7 Ha). During the time, crop heights were manually measured per plot at weekly intervals. Corresponding aerial flights were carried out using a DJI Phantom 3 Professional UAV at each interval and images captured processed into point clouds and image mosaics using Pix4D (Pix4D SA; Lausanne, Switzerland) software. LiDAR data was also captured at two intervals (05/06 and 07/29) to provide another source of height information. To obtain height data per plot from SfM point clouds and LiDAR data, percentile height metrics were then generated using FUSION software. Results of the comparison between SfM and field measurement height show high correlation (R2 > 0.7), showing that use of sUAV can replace laborious manual height measurement and enhance plant breeding programs. Similar results were also obtained from the comparison of SfM and LiDAR heights. Outputs of this project are helping plant breeders at Texas A&M automate routine height

  10. Is there a strategy I iron uptake mechanism in maize?

    PubMed

    Li, Suzhen; Zhou, Xiaojin; Chen, Jingtang; Chen, Rumei

    2018-04-03

    Iron is a metal micronutrient that is essential for plant growth and development. Graminaceous and nongraminaceous plants have evolved different mechanisms to mediate Fe uptake. Generally, strategy I is used by nongraminaceous plants like Arabidopsis, while graminaceous plants, such as rice, barley, and maize, are considered to use strategy II Fe uptake. Upon the functional characterization of OsIRT1 and OsIRT2 in rice, it was suggested that rice, as an exceptional graminaceous plant, utilizes both strategy I and strategy II Fe uptake systems. Similarly, ZmIRT1 and ZmZIP3 were identified as functional zinc and iron transporters in the maize genome, along with the determination of several genes encoding Zn and Fe transporters, raising the possibility that strategy I Fe uptake also occurs in maize. This mini-review integrates previous reports and recent evidence to obtain a better understanding of the mechanisms of Fe uptake in maize.

  11. Positional cloning in maize (Zea mays subsp. mays, Poaceae)1

    PubMed Central

    Gallavotti, Andrea; Whipple, Clinton J.

    2015-01-01

    • Premise of the study: Positional (or map-based) cloning is a common approach to identify the molecular lesions causing mutant phenotypes. Despite its large and complex genome, positional cloning has been recently shown to be feasible in maize, opening up a diverse collection of mutants to molecular characterization. • Methods and Results: Here we outline a general protocol for positional cloning in maize. While the general strategy is similar to that used in other plant species, we focus on the unique resources and approaches that should be considered when applied to maize mutants. • Conclusions: Positional cloning approaches are appropriate for maize mutants and quantitative traits, opening up to molecular characterization the large array of genetic diversity in this agronomically important species. The cloning approach described should be broadly applicable to other species as more plant genomes become available. PMID:25606355

  12. Tackling maize fusariosis: in search of Fusarium graminearum biosuppressors.

    PubMed

    Adeniji, Adetomiwa Ayodele; Babalola, Olubukola Oluranti

    2018-06-22

    This review presents biocontrol agents employed to alleviate the deleterious effect of the pathogen Fusarium graminearum on maize. The control of this mycotoxigenic phytopathogen remains elusive despite the elaborate research conducted on its detection, identification, and molecular fingerprinting. This could be attributed to the fact that in vitro and greenhouse biocontrol studies on F. graminearum have exceeded the number of field studies done. Furthermore, along with the variances seen among these F. graminearum suppressing biocontrol strains, it is also clear that the majority of research done to tackle F. graminearum outbreaks was on wheat and barley cultivars. Most fusariosis management related to maize targeted other members of Fusarium such as Fusarium verticillioides, with biocontrol strains from the genera Bacillus and Pseudomonas being used frequently in the experiments. We highlight relevant current techniques needed to identify an effective biofungicide for maize fusariosis and recommend alternative approaches to reduce the scarcity of data for indigenous maize field trials.

  13. Determining density of maize canopy. 1: Digitized photography

    NASA Technical Reports Server (NTRS)

    Stoner, E. R.; Baumgardner, M. F.; Swain, P. H.

    1972-01-01

    The relationship between different densities of maize (Zea mays L.) canopies and the energy reflected by these canopies was studied. Field plots were laid out, representing four growth stages of maize, on a dark soil and on a very light colored surface soil. Spectral and spatial data were obtained from color and color infrared photography taken from a vertical distance of 10 m above the maize canopies. Estimates of ground cover were related to field measurements of leaf area index. Ground cover was predicted from leaf area index measurements by a second order equation. Color infrared photography proved helpful in determining the density of maize canopy on dark soils. Color photography was useful for determining canopy density on light colored soils. The near infrared dye layer is the most valuable in canopy density determinations.

  14. Impact of selection on maize root traits and rhizosphere interactions

    NASA Astrophysics Data System (ADS)

    Schmidt, J. E.; Gaudin, A. C. M.

    2017-12-01

    Effects of domestication and breeding on maize have been well-characterized aboveground, but impacts on root traits and rhizosphere processes remain unclear. Breeding in high-inorganic-input environments may have negatively affected the ability of modern maize to acquire nutrients through foraging and microbial interactions in marginal and/or organically managed soils. Twelve maize genotypes representing a selection gradient (teosintes, landraces, open-pollinated parents of modern elite germplasm, and modern hybrids released 1934-2015) were grown in three soils varying in intensity of long-term management (unfertilized, organic, conventional) in the greenhouse. Recruitment of rhizosphere microbial communities, nutrient acquisition, and plant productivity were affected by genotype-by-soil interactions. Maize genotypes exhibit significant variation in their ability to obtain nutrients from soils of different management history, indicating the potential for re-integration of beneficial root and rhizosphere traits to increase adaptation to low-input agroecosystems.

  15. Modelling of maize production in Croatia: present and future climate

    PubMed Central

    VUČETIĆ, V.

    2011-01-01

    SUMMARY Maize is one of the most important agricultural crops in Croatia, and was selected for research of the effect of climate warming on yields. The Decision Support System for the Agrotechnology Transfer model (DSSAT) is one of the most utilized crop–weather models in the world, and was used in this paper for the investigation of maize growth and production in the present and future climate. The impact of present climate on maize yield was studied using DSSAT 4.0 with meteorological data from the Zagreb–Maksimir station covering the period 1949–2004. Pedological, physiological and genetic data from a 1999 field maize experiment at the same location were added. The location is representative of the continental climate in central Croatia. The linear trends of model outputs and the non-parametric Mann–Kendall test indicate that the beginning of silking has advanced significantly by 1·4 days/decade since the mid-1990s, and maturity by 4·5 days/decade. It also shows a decrease in biomass by 122 kg/ha and in maize yield by 216 kg/ha in 10 years. Estimates of the sensitivity of maize growth and yield in future climates were made by changing the initial weather and CO2 conditions of the DSSAT 4.0 model according to the different climatic scenarios for Croatia at the end of the 21st century. Changed climate suggests increases in global solar radiation, minimal temperature and maximal temperature (×1·07, 2 and 4°C, respectively), but a decrease in the amount of precipitation (×0·92), compared with weather data from the period 1949–2004. The reduction of maize yield was caused by the increase in minimal and maximal temperature and the decrease in precipitation amount, related to the present climate, is 6, 12 and 3%, respectively. A doubling of CO2 concentration stimulates leaf assimilation, but maize yield is only 1% higher, while global solar radiation growth by 7% increases evapotranspiration by 3%. Simultaneous application of all these climate changes

  16. Global transcriptome analysis of the maize (Zea mays L.) inbred line 08LF during leaf senescence initiated by pollination-prevention

    PubMed Central

    Wang, Shunxi; Wu, Liuji; Ku, Lixia; Zhang, Jun; Song, Xiaoheng; Liu, Haiping

    2017-01-01

    In maize (Zea mays), leaf senescence acts as a nutrient recycling process involved in proteins, lipids, and nucleic acids degradation and transport to the developing sink. However, the molecular mechanisms of pre-maturation associated with pollination-prevention remain unclear in maize. To explore global gene expression changes during the onset and progression of senescence in maize, the inbred line 08LF, with severe early senescence caused by pollination prevention, was selected. Phenotypic observation showed that the onset of leaf senescence of 08LF plants occurred approximately 14 days after silking (DAS) by pollination prevention. Transcriptional profiling analysis of the leaf at six developmental stages during induced senescence revealed that a total of 5,432 differentially expressed genes (DEGs) were identified, including 2314 up-regulated genes and 1925 down-regulated genes. Functional annotation showed that the up-regulated genes were mainly enriched in multi-organism process and nitrogen compound transport, whereas down-regulated genes were involved in photosynthesis. Expression patterns and pathway enrichment analyses of early-senescence related genes indicated that these DEGs are involved in complex regulatory networks, especially in the jasmonic acid pathway. In addition, transcription factors from several families were detected, particularly the CO-like, NAC, ERF, GRAS, WRKY and ZF-HD families, suggesting that these transcription factors might play important roles in driving leaf senescence in maize as a result of pollination-prevention. PMID:28973044

  17. Global transcriptome analysis of the maize (Zea mays L.) inbred line 08LF during leaf senescence initiated by pollination-prevention.

    PubMed

    Wu, Liancheng; Li, Mingna; Tian, Lei; Wang, Shunxi; Wu, Liuji; Ku, Lixia; Zhang, Jun; Song, Xiaoheng; Liu, Haiping; Chen, Yanhui

    2017-01-01

    In maize (Zea mays), leaf senescence acts as a nutrient recycling process involved in proteins, lipids, and nucleic acids degradation and transport to the developing sink. However, the molecular mechanisms of pre-maturation associated with pollination-prevention remain unclear in maize. To explore global gene expression changes during the onset and progression of senescence in maize, the inbred line 08LF, with severe early senescence caused by pollination prevention, was selected. Phenotypic observation showed that the onset of leaf senescence of 08LF plants occurred approximately 14 days after silking (DAS) by pollination prevention. Transcriptional profiling analysis of the leaf at six developmental stages during induced senescence revealed that a total of 5,432 differentially expressed genes (DEGs) were identified, including 2314 up-regulated genes and 1925 down-regulated genes. Functional annotation showed that the up-regulated genes were mainly enriched in multi-organism process and nitrogen compound transport, whereas down-regulated genes were involved in photosynthesis. Expression patterns and pathway enrichment analyses of early-senescence related genes indicated that these DEGs are involved in complex regulatory networks, especially in the jasmonic acid pathway. In addition, transcription factors from several families were detected, particularly the CO-like, NAC, ERF, GRAS, WRKY and ZF-HD families, suggesting that these transcription factors might play important roles in driving leaf senescence in maize as a result of pollination-prevention.

  18. A trait stacking system via intra-genomic homologous recombination.

    PubMed

    Kumar, Sandeep; Worden, Andrew; Novak, Stephen; Lee, Ryan; Petolino, Joseph F

    2016-11-01

    A gene targeting method has been developed, which allows the conversion of 'breeding stacks', containing unlinked transgenes into a 'molecular stack' and thereby circumventing the breeding challenges associated with transgene segregation. A gene targeting method has been developed for converting two unlinked trait loci into a single locus transgene stack. The method utilizes intra-genomic homologous recombination (IGHR) between stably integrated target and donor loci which share sequence homology and nuclease cleavage sites whereby the donor contains a promoterless herbicide resistance transgene. Upon crossing with a zinc finger nuclease (ZFN)-expressing plant, double-strand breaks (DSB) are created in both the stably integrated target and donor loci. DSBs flanking the donor locus result in intra-genomic mobilization of a promoterless selectable marker-containing donor sequence, which can be utilized as a template for homology-directed repair of a concomitant DSB at the target locus resulting in a functional selectable marker via nuclease-mediated cassette exchange (NMCE). The method was successfully demonstrated in maize using a glyphosate tolerance gene as a donor whereby up to 3.3 % of the resulting progeny embryos cultured on selection medium regenerated plants with the donor sequence integrated into the target locus. The process could be extended to multiple cycles of trait stacking by virtue of a unique intron sequence homology for NMCE between the target and the donor loci. This is the first report that describes NMCE via IGHR, thereby enabling trait stacking using conventional crossing.

  19. Maize Endophytic Bacterial Diversity as Affected by Soil Cultivation History.

    PubMed

    Correa-Galeote, David; Bedmar, Eulogio J; Arone, Gregorio J

    2018-01-01

    The bacterial endophytic communities residing within roots of maize ( Zea mays L.) plants cultivated by a sustainable management in soils from the Quechua maize belt (Peruvian Andes) were examined using tags pyrosequencing spanning the V4 and V5 hypervariable regions of the 16S rRNA. Across four replicate libraries, two corresponding to sequences of endophytic bacteria from long time maize-cultivated soils and the other two obtained from fallow soils, 793 bacterial sequences were found that grouped into 188 bacterial operational taxonomic units (OTUs, 97% genetic similarity). The numbers of OTUs in the libraries from the maize-cultivated soils were significantly higher than those found in the libraries from fallow soils. A mean of 30 genera were found in the fallow soil libraries and 47 were in those from the maize-cultivated soils. Both alpha and beta diversity indexes showed clear differences between bacterial endophytic populations from plants with different soil cultivation history and that the soils cultivated for long time requires a higher diversity of endophytes. The number of sequences corresponding to main genera Sphingomonas, Herbaspirillum, Bradyrhizobium and Methylophilus in the maize-cultivated libraries were statistically more abundant than those from the fallow soils. Sequences of genera Dyella and Sreptococcus were significantly more abundant in the libraries from the fallow soils. Relative abundance of genera Burkholderia, candidatus Glomeribacter, Staphylococcus, Variovorax, Bacillus and Chitinophaga were similar among libraries. A canonical correspondence analysis of the relative abundance of the main genera showed that the four libraries distributed in two clearly separated groups. Our results suggest that cultivation history is an important driver of endophytic colonization of maize and that after a long time of cultivation of the soil the maize plants need to increase the richness of the bacterial endophytes communities.

  20. Maize Endophytic Bacterial Diversity as Affected by Soil Cultivation History

    PubMed Central

    Correa-Galeote, David; Bedmar, Eulogio J.; Arone, Gregorio J.

    2018-01-01

    The bacterial endophytic communities residing within roots of maize (Zea mays L.) plants cultivated by a sustainable management in soils from the Quechua maize belt (Peruvian Andes) were examined using tags pyrosequencing spanning the V4 and V5 hypervariable regions of the 16S rRNA. Across four replicate libraries, two corresponding to sequences of endophytic bacteria from long time maize-cultivated soils and the other two obtained from fallow soils, 793 bacterial sequences were found that grouped into 188 bacterial operational taxonomic units (OTUs, 97% genetic similarity). The numbers of OTUs in the libraries from the maize-cultivated soils were significantly higher than those found in the libraries from fallow soils. A mean of 30 genera were found in the fallow soil libraries and 47 were in those from the maize-cultivated soils. Both alpha and beta diversity indexes showed clear differences between bacterial endophytic populations from plants with different soil cultivation history and that the soils cultivated for long time requires a higher diversity of endophytes. The number of sequences corresponding to main genera Sphingomonas, Herbaspirillum, Bradyrhizobium and Methylophilus in the maize-cultivated libraries were statistically more abundant than those from the fallow soils. Sequences of genera Dyella and Sreptococcus were significantly more abundant in the libraries from the fallow soils. Relative abundance of genera Burkholderia, candidatus Glomeribacter, Staphylococcus, Variovorax, Bacillus and Chitinophaga were similar among libraries. A canonical correspondence analysis of the relative abundance of the main genera showed that the four libraries distributed in two clearly separated groups. Our results suggest that cultivation history is an important driver of endophytic colonization of maize and that after a long time of cultivation of the soil the maize plants need to increase the richness of the bacterial endophytes communities. PMID:29662471

  1. Assessment of Climate Suitability of Maize in South Korea

    NASA Astrophysics Data System (ADS)

    Hyun, S.; Choi, D.; Seo, B.

    2017-12-01

    Assessing suitable areas for crops would be useful to design alternate cropping systems as an adaptation option to climate change adaptation. Although suitable areas could be identified by using a crop growth model, it would require a number of input parameters including cultivar and soil. Instead, a simple climate suitability model, e.g., EcoCrop model, could be used for an assessment of climate suitability for a major grain crop. The objective of this study was to assess of climate suitability for maize using the EcoCrop model under climate change conditions in Korea. A long term climate data from 2000 - 2100 were compiled from weather data source. The EcoCrop model implemented in R was used to determine climate suitability index at each grid cell. Overall, the EcoCrop model tended to identify suitable areas for maize production near the coastal areas whereas the actual major production areas located in inland areas. It is likely that the discrepancy between assessed and actual crop production areas would result from the socioeconomic aspects of maize production. Because the price of maize is considerably low, maize has been grown in an area where moisture and temperature conditions would be less than optimum. In part, a simple algorithm to predict climate suitability for maize would caused a relatively large error in climate suitability assessment under the present climate conditions. In 2050s, the climate suitability for maize increased in a large areas in southern and western part of Korea. In particular, the plain areas near the coastal region had considerably greater suitability index in the future compared with mountainous areas. The expansion of suitable areas for maize would help crop production policy making such as the allocation of rice production area for other crops due to considerably less demand for the rice in Korea.

  2. Temporal Shift of Circadian-Mediated Gene Expression and Carbon Fixation Contributes to Biomass Heterosis in Maize Hybrids.

    PubMed

    Ko, Dae Kwan; Rohozinski, Dominica; Song, Qingxin; Taylor, Samuel H; Juenger, Thomas E; Harmon, Frank G; Chen, Z Jeffrey

    2016-07-01

    Heterosis has been widely used in agriculture, but the molecular mechanism for this remains largely elusive. In Arabidopsis hybrids and allopolyploids, increased photosynthetic and metabolic activities are linked to altered expression of circadian clock regulators, including CIRCADIAN CLOCK ASSOCIATED1 (CCA1). It is unknown whether a similar mechanism mediates heterosis in maize hybrids. Here we report that higher levels of carbon fixation and starch accumulation in the maize hybrids are associated with altered temporal gene expression. Two maize CCA1 homologs, ZmCCA1a and ZmCCA1b, are diurnally up-regulated in the hybrids. Expressing ZmCCA1 complements the cca1 mutant phenotype in Arabidopsis, and overexpressing ZmCCA1b disrupts circadian rhythms and biomass heterosis. Furthermore, overexpressing ZmCCA1b in maize reduced chlorophyll content and plant height. Reduced height stems from reduced node elongation but not total node number in both greenhouse and field conditions. Phenotypes are less severe in the field than in the greenhouse, suggesting that enhanced light and/or metabolic activities in the field can compensate for altered circadian regulation in growth vigor. Chromatin immunoprecipitation-sequencing (ChIP-seq) analysis reveals a temporal shift of ZmCCA1-binding targets to the early morning in the hybrids, suggesting that activation of morning-phased genes in the hybrids promotes photosynthesis and growth vigor. This temporal shift of ZmCCA1-binding targets correlated with nonadditive and additive gene expression in early and late stages of seedling development. These results could guide breeding better hybrid crops to meet the growing demand in food and bioenergy.

  3. Gene Expression and Chromatin Modifications Associated with Maize Centromeres.

    PubMed

    Zhao, Hainan; Zhu, Xiaobiao; Wang, Kai; Gent, Jonathan I; Zhang, Wenli; Dawe, R Kelly; Jiang, Jiming

    2015-11-12

    Centromeres are defined by the presence of CENH3, a variant of histone H3. Centromeres in most plant species contain exclusively highly repetitive DNA sequences, which has hindered research on structure and function of centromeric chromatin. Several maize centromeres have been nearly completely sequenced, providing a sequence-based platform for genomic and epigenomic research of plant centromeres. Here we report a high resolution map of CENH3 nucleosomes in the maize genome. Although CENH3 nucleosomes are spaced ∼190 bp on average, CENH3 nucleosomes that occupied CentC, a 156-bp centromeric satellite repeat, showed clear positioning aligning with CentC monomers. Maize centromeres contain alternating CENH3-enriched and CENH3-depleted subdomains, which account for 87% and 13% of the centromeres, respectively. A number of annotated genes were identified in the centromeres, including 11 active genes that were located exclusively in CENH3-depleted subdomains. The euchromatic histone modification marks, including H3K4me3, H3K36me3 and H3K9ac, detected in maize centromeres were associated mainly with the active genes. Interestingly, maize centromeres also have lower levels of the heterochromatin histone modification mark H3K27me2 relative to pericentromeric regions. We conclude that neither H3K27me2 nor the three euchromatic histone modifications are likely to serve as functionally important epigenetic marks of centromere identity in maize. Copyright © 2016 Zhao et al.

  4. Gene Expression and Chromatin Modifications Associated with Maize Centromeres

    PubMed Central

    Zhao, Hainan; Zhu, Xiaobiao; Wang, Kai; Gent, Jonathan I.; Zhang, Wenli; Dawe, R. Kelly; Jiang, Jiming

    2015-01-01

    Centromeres are defined by the presence of CENH3, a variant of histone H3. Centromeres in most plant species contain exclusively highly repetitive DNA sequences, which has hindered research on structure and function of centromeric chromatin. Several maize centromeres have been nearly completely sequenced, providing a sequence-based platform for genomic and epigenomic research of plant centromeres. Here we report a high resolution map of CENH3 nucleosomes in the maize genome. Although CENH3 nucleosomes are spaced ∼190 bp on average, CENH3 nucleosomes that occupied CentC, a 156-bp centromeric satellite repeat, showed clear positioning aligning with CentC monomers. Maize centromeres contain alternating CENH3-enriched and CENH3-depleted subdomains, which account for 87% and 13% of the centromeres, respectively. A number of annotated genes were identified in the centromeres, including 11 active genes that were located exclusively in CENH3-depleted subdomains. The euchromatic histone modification marks, including H3K4me3, H3K36me3 and H3K9ac, detected in maize centromeres were associated mainly with the active genes. Interestingly, maize centromeres also have lower levels of the heterochromatin histone modification mark H3K27me2 relative to pericentromeric regions. We conclude that neither H3K27me2 nor the three euchromatic histone modifications are likely to serve as functionally important epigenetic marks of centromere identity in maize. PMID:26564952

  5. Genomic variation in recently collected maize landraces from Mexico

    PubMed Central

    Arteaga, María Clara; Moreno-Letelier, Alejandra; Mastretta-Yanes, Alicia; Vázquez-Lobo, Alejandra; Breña-Ochoa, Alejandra; Moreno-Estrada, Andrés; Eguiarte, Luis E.; Piñero, Daniel

    2015-01-01

    The present dataset comprises 36,931 SNPs genotyped in 46 maize landraces native to Mexico as well as the teosinte subspecies Zea maiz ssp. parviglumis and ssp. mexicana. These landraces were collected directly from farmers mostly between 2006 and 2010. We accompany these data with a short description of the variation within each landrace, as well as maps, principal component analyses and neighbor joining trees showing the distribution of the genetic diversity relative to landrace, geographical features and maize biogeography. High levels of genetic variation were detected for the maize landraces (HE = 0.234 to 0.318 (mean 0.311), while slightly lower levels were detected in Zea m. mexicana and Zea m. parviglumis (HE = 0.262 and 0.234, respectively). The distribution of genetic variation was better explained by environmental variables given by the interaction of altitude and latitude than by landrace identity. This dataset is a follow up product of the Global Native Maize Project, an initiative to update the data on Mexican maize landraces and their wild relatives, and to generate information that is necessary for implementing the Mexican Biosafety Law. PMID:26981357

  6. Post-Domestication Selection in the Maize Starch Pathway

    PubMed Central

    Fan, Longjiang; Bao, Jiandong; Wang, Yu; Yao, Jianqiang; Gui, Yijie; Hu, Weiming; Zhu, Jinqing; Zeng, Mengqian; Li, Yu; Xu, Yunbi

    2009-01-01

    Modern crops have usually experienced domestication selection and subsequent genetic improvement (post-domestication selection). Chinese waxy maize, which originated from non-glutinous domesticated maize (Zea mays ssp. mays), provides a unique model for investigating the post-domestication selection of maize. In this study, the genetic diversity of six key genes in the starch pathway was investigated in a glutinous population that included 55 Chinese waxy accessions, and a selective bottleneck that resulted in apparent reductions in diversity in Chinese waxy maize was observed. Significant positive selection in waxy (wx) but not amylose extender1 (ae1) was detected in the glutinous population, in complete contrast to the findings in non-glutinous maize, which indicated a shift in the selection target from ae1 to wx during the improvement of Chinese waxy maize. Our results suggest that an agronomic trait can be quickly improved into a target trait with changes in the selection target among genes in a crop pathway. PMID:19859548

  7. Multiple Pesticides Detoxification Function of Maize (Zea mays) GST34.

    PubMed

    Li, Dongzhi; Xu, Li; Pang, Sen; Liu, Zhiqian; Zhao, Weisong; Wang, Chengju

    2017-03-08

    ZmGST34 is a maize Tau class GST gene and was found to be differently expressed between two maize cultivars differing in tolerance to herbicide metolachlor. To explore the possible role of ZmGST34 in maize development, the expression pattern and substrate specificity of ZmGST34 were characterized by quantitative RT-PCR and heterologous expression system, respectively. The results indicated that the expression level of ZmGST34 was increased ∼2-5-fold per day during the second-leaf stage of maize seedling. Chloroacetanilide herbicides or phytohormone treatments had no influence on the expression level of ZmGST34, suggesting that ZmGST34 is a constitutively expressed gene in maize seedling. Heterologous expression in Escherichia coli and in Arabidopsis thaliana proved that ZmGST34 can metabolize most chloroacetanilide herbicides and increase tolerance to these herbicides in transgenic Arabidopsis thaliana. The constitutive expression pattern and broad substrate activity of ZmGST34 suggested that this gene may play an important role in maize development in addition to the detoxification of pesticides.

  8. Infrared monitoring of dinitrotoluenes in sunflower and maize roots.

    PubMed

    Dokken, K M; Davis, L C

    2011-01-01

    Infrared microspectroscopy (IMS) is emerging as an important analytical tool for the structural analysis of biological tissue. This report describes the use of IMS coupled to a synchrotron source combined with principal components analysis (PCA) to monitor the fate and effect of dinitrotoluenes in the roots of maize and sunflower plants. Infrared imaging revealed that maize roots metabolized 2,4-dinitrotoluene (DNT) and 2,6-DNT. The DNTs and their derivative aromatic amines were predominantly associated with epidermis and xylem. Both isomers of DNT altered the structure and production of pectin and pectic polysaccharides in maize and sunflower plant roots. Infrared peaks diagnostic for aromatic amines were seen at the 5 mg L concentrations for both DNTs in maize and sunflower treated tissue. However, only infrared peaks for nitro groups, not aromatic amines, were present in the maize treated at 10 mg L For sunflower, the 10 mg L level was toxic and also produced very dark root systems making spectra difficult to obtain. Maize and sunflower seem unable to metabolize effectively at concentrations higher than about 5 mg L DNT in hydroponic solution. Based on the results of this study, IMS combined with PCA can be an effective means of determining the fate and metabolism of organic contaminants in plant tissue when isotopically labeled compounds are not available. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

  9. Genomic variation in recently collected maize landraces from Mexico.

    PubMed

    Arteaga, María Clara; Moreno-Letelier, Alejandra; Mastretta-Yanes, Alicia; Vázquez-Lobo, Alejandra; Breña-Ochoa, Alejandra; Moreno-Estrada, Andrés; Eguiarte, Luis E; Piñero, Daniel

    2016-03-01

    The present dataset comprises 36,931 SNPs genotyped in 46 maize landraces native to Mexico as well as the teosinte subspecies Zea maiz ssp. parviglumis and ssp. mexicana. These landraces were collected directly from farmers mostly between 2006 and 2010. We accompany these data with a short description of the variation within each landrace, as well as maps, principal component analyses and neighbor joining trees showing the distribution of the genetic diversity relative to landrace, geographical features and maize biogeography. High levels of genetic variation were detected for the maize landraces (H E = 0.234 to 0.318 (mean 0.311), while slightly lower levels were detected in Zea m. mexicana and Zea m. parviglumis (H E = 0.262 and 0.234, respectively). The distribution of genetic variation was better explained by environmental variables given by the interaction of altitude and latitude than by landrace identity. This dataset is a follow up product of the Global Native Maize Project, an initiative to update the data on Mexican maize landraces and their wild relatives, and to generate information that is necessary for implementing the Mexican Biosafety Law.

  10. Zealactones. Novel natural strigolactones from maize.

    PubMed

    Charnikhova, Tatsiana V; Gaus, Katharina; Lumbroso, Alexandre; Sanders, Mark; Vincken, Jean-Paul; De Mesmaeker, Alain; Ruyter-Spira, Carolien P; Screpanti, Claudio; Bouwmeester, Harro J

    2017-05-01

    In the root exudate and root extracts of maize hybrid cv NK Falkone seven putative strigolactones were detected using UPLC-TQ-MS-MS. All seven compounds displayed MS-MS-fragmentation common for strigolactones and particularly the presence of a fragment of m/z 97 Da, which may indicate the presence of the so-called D-ring, suggests they are strigolactones. The levels of all these putative strigolactones increased upon phosphate starvation and decreased upon fluridone (carotenoid biosynthesis inhibitor) treatment, both of which are a common response for strigolactones. All seven compounds were subsequently isolated with prep-HPLC-MS. They all exhibited Striga hermonthica seed germination inducing activity just as the synthetic strigolactone analog GR24. The structure of two of the seven compounds was elucidated by NMR spectroscopy as: methyl (2E,3E)-4-(3,3-dimethyl-5-oxo-2-(prop-1-en-2-yl)tetrahydrofuran-2-yl)-2-(((4-methyl-5-oxo-2,5-dihydrofuran-2-yl)oxy)methylene)but-3-enoate (two diastereomers 1a and 1b). Strigolactones (1a/b) are closely related to the methyl ester of carlactonoic acid (MeCLA) and heliolactone. However, they contain a unique 4,4-dimethyltetrahydrofuran-2-one motif as the "A-ring" instead of the classical (di)methylcyclohexene. Because these compounds were isolated from maize (Zea mays) we called them "zealactone 1a and 1b". The implications of this discovery for our view on strigolactones and their biosynthesis are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A comparison of the toxicity of landfill leachate exposure at the seed soaking and germination stages on Zea mays L. (maize).

    PubMed

    Li, Guangke; Chen, Junyan; Yan, Wei; Sang, Nan

    2017-05-01

    To compare the toxicity of landfill leachate exposure at the early stages of seed soaking and germination on maize, a field experiment was conducted to evaluate the physiological aspects of growth, yield and potential clastogenicity of root-tip cells. The maizes were treated with leachate at levels of 2%, 10%, 20%, 30% or 50% (V/V). First, the change of physiological indexes, including chlorophyll (Chl), Malondialdehyde (MDA) and Reactive oxygen species (ROS) levels, combined with yield all showed that soaking with leachate, but not germination, generated a greater ecological risk on maize. After a soaking treatment of maize with 50% leachate, the Chl, MDA and ROS levels during a vigorous growth period were 47.3%, 149.8% and 309.7%, respectively, of the control, whereas the yield decreased to 68.6% of the control. In addition, our results demonstrated that the leachate at lower levels could promote growth. This is mainly embodied in that the yield of maize treated with 10% leachate at the soaking stage increased to 116.0% of the control. Moreover, the cytological analysis experiment also demonstrated that the ecological risk of leachate still exists in both cases. Furthermore, the gray relational analysis showed that the ear row number and tassel branch number were the major factors affecting the yield of maize treated with 50% leachate at the stages of soaking and germination, respectively. In general, these results are helpful in understanding the phytotoxicity of leachate, which provides additional reference data for risk assessment and management of leachate. Copyright © 2016. Published by Elsevier B.V.

  12. Viral metagenomics of aphids present in bean and maize plots on mixed-use farms in Kenya reveals the presence of three dicistroviruses including a novel Big Sioux River virus-like dicistrovirus.

    PubMed

    Wamonje, Francis O; Michuki, George N; Braidwood, Luke A; Njuguna, Joyce N; Musembi Mutuku, J; Djikeng, Appolinaire; Harvey, Jagger J W; Carr, John P

    2017-10-02

    Aphids are major vectors of plant viruses. Common bean (Phaseolus vulgaris L.) and maize (Zea mays L.) are important crops that are vulnerable to aphid herbivory and aphid-transmitted viruses. In East and Central Africa, common bean is frequently intercropped by smallholder farmers to provide fixed nitrogen for cultivation of starch crops such as maize. We used a PCR-based technique to identify aphids prevalent in smallholder bean farms and next generation sequencing shotgun metagenomics to examine the diversity of viruses present in aphids and in maize leaf samples. Samples were collected from farms in Kenya in a range of agro-ecological zones. Cytochrome oxidase 1 (CO1) gene sequencing showed that Aphis fabae was the sole aphid species present in bean plots in the farms visited. Sequencing of total RNA from aphids using the Illumina platform detected three dicistroviruses. Maize leaf RNA was also analysed. Identification of Aphid lethal paralysis virus (ALPV), Rhopalosiphum padi virus (RhPV), and a novel Big Sioux River virus (BSRV)-like dicistrovirus in aphid and maize samples was confirmed using reverse transcription-polymerase chain reactions and sequencing of amplified DNA products. Phylogenetic, nucleotide and protein sequence analyses of eight ALPV genomes revealed evidence of intra-species recombination, with the data suggesting there may be two ALPV lineages. Analysis of BSRV-like virus genomic RNA sequences revealed features that are consistent with other dicistroviruses and that it is phylogenetically closely related to dicistroviruses of the genus Cripavirus. The discovery of ALPV and RhPV in aphids and maize further demonstrates the broad occurrence of these dicistroviruses. Dicistroviruses are remarkable in that they use plants as reservoirs that facilitate infection of their insect replicative hosts, such as aphids. This is the first report of these viruses being isolated from either organism. The BSRV-like sequences represent a potentially novel

  13. Identification of QTLs conferring resistance to downy mildews of maize in Asia.

    PubMed

    George, M L C; Prasanna, B M; Rathore, R S; Setty, T A S; Kasim, F; Azrai, M; Vasal, S; Balla, O; Hautea, D; Canama, A; Regalado, E; Vargas, M; Khairallah, M; Jeffers, D; Hoisington, D

    2003-08-01

    Downy mildew is one of the most destructive diseases of maize in subtropical and tropical regions in Asia. As a prerequisite for improving downy mildew resistance in maize, we analyzed quantitative trait loci (QTLs) involved in resistance to the important downy mildew pathogens--Peronosclerospora sorghi (sorghum downy mildew) and P. heteropogoni (Rajasthan downy mildew) in India, P. maydis (Java downy mildew) in Indonesia, P. zeae in Thailand and P. philippinensis in the Philippines--using a recombinant inbred line population derived from a cross between Ki3 (downy mildew resistant) and CML139 (susceptible). Resistance was evaluated as percentage disease incidence in replicated field trials at five downy mildew 'hotspots' in the four countries. Heritability estimates of individual environments ranged from 0.58 to 0.75 with an across environment heritability of 0.50. Composite interval mapping was applied for QTL detection using a previously constructed restriction fragment length polymorphism linkage map. The investigation resulted in the identification of six genomic regions on chromosomes 1, 2, 6, 7 and 10 involved in the resistance to the downy mildews under study, explaining, in total, 26-57% of the phenotypic variance for disease response. Most QTL alleles conferring resistance to the downy mildews were from Ki3. All QTLs showed significant QTL x environment interactions, suggesting that the expression of the QTL may be environment-dependent. A strong QTL on chromosome 6 was stable across environments, significantly affecting disease resistance at the five locations in four Asian countries. Simple-sequence repeat markers tightly linked to this QTL were identified for potential use in marker-assisted selection.

  14. [Genetic improvement of breeding materials in tropical and sub- tropical maize].

    PubMed

    Sansern, Jampatong; Chaba, Jampatong

    2011-12-01

    In the present study, 122 maize local cultivars and adapted exotic germplasm from Thailand were used to develop open pollinate varieties (OPVs) using modified ear-to-row scheme, top-cross or test-cross programmes. Ten new maize OPVs with distinct characters were created based on the precise breeding objectives and directional design. The selection of breeding materials was based upon three factors: elite performance, broad adaptability, and genetic diversity. The synthesizing system provided four features: genetic mixing and recombination, equal comparable genetic contribution, mild selection pressure, and maximum intermating for genetic equilibrium (i.e., the female traits were close for the genetic com-positions). Subsequently, Suwan 1 composite and its deritives (Suwan 2, Suwan 3 composite, Suwan 5 and KS24 synthetics), KS6 and KS28 synthetics with the dent type of different origins, and Caripeno DMR composite, KS23, and KS27 synthetics with the dent type of Non-Suwan 1 origin were developed. These OPVs had been improved for 2~13 cycles using S1 recurrent selection method. About 50 inbred lines were developed from these OPVs, and 16 elite single (three-way) crosses were combined and released from these inbred lines. At present, at least one parental inbred line of all the tropical hybrids was derived from Suwan (KS) germplasm in Thailand. Based on the theory of the synthesizing OPVs and developing inbred lines, this paper discussed the genetic moderate diversity, relationship, heterotic group, and patterns for synthesizing OPVs, and inspiration for composed OPVs to heterosis breeding.

  15. Natural antisense transcripts are significantly involved in regulation of drought stress in maize.

    PubMed

    Xu, Jie; Wang, Qi; Freeling, Micheal; Zhang, Xuecai; Xu, Yunbi; Mao, Yan; Tang, Xin; Wu, Fengkai; Lan, Hai; Cao, Moju; Rong, Tingzhao; Lisch, Damon; Lu, Yanli

    2017-05-19

    Natural antisense transcripts (NATs) are a prominent and complex class of regulatory RNAs. Using strand-specific RNA sequencing, we identified 1769 sense and antisense transcript pairs (NAT pairs) in two maize inbreds with different sensitivity to drought, as well as in two derivative recombination inbred lines (RILs). A significantly higher proportion of NATs relative to non-NATs are specifically expressed under water stress (WS). Surprisingly, expression of sense and antisense transcripts produced by NAT pairs is significantly correlated, particularly under WS. We found an unexpected large proportion of NATs with protein coding potential, as estimated by ribosome release scores. Small RNAs significantly accumulate within NAT pairs, with 21 nt smRNA particularly enriched in overlapping regions of these pairs of genes. The abundance of these smRNAs is significantly altered in the leafbladeless1 mutant, suggesting that these genes may be regulated by the tasiRNA pathway. Further, NATs are significantly hypomethylated and include fewer transposable element sequences relative to non-NAT genes. NAT gene regions also exhibit higher levels of H3K36me3, H3K9ac, and H3K4me3, but lower levels of H3K27me3, indicating that NAT gene pairs generally exhibit an open chromatin configuration. Finally, NAT pairs in 368 diverse maize inbreds and 19 segregating populations were specifically enriched for polymorphisms associated with drought tolerance. Taken together, the data highlight the potential impact of that small RNAs and histone modifications have in regulation of NAT expression, and the significance of NATs in response to WS. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Recombination Catalysts for Hypersonic Fuels

    NASA Technical Reports Server (NTRS)

    Chinitz, W.

    1998-01-01

    The goal of commercially-viable access to space will require technologies that reduce propulsion system weight and complexity, while extracting maximum energy from the products of combustion. This work is directed toward developing effective nozzle recombination catalysts for the supersonic and hypersonic aeropropulsion engines used to provide such access to space. Effective nozzle recombination will significantly reduce rk=le length (hence, propulsion system weight) and reduce fuel requirements, further decreasing the vehicle's gross lift-off weight. Two such catalysts have been identified in this work, barium and antimony compounds, by developing chemical kinetic reaction mechanisms for these materials and determining the engine performance enhancement for a typical flight trajectory. Significant performance improvements are indicated, using only 2% (mole or mass) of these compounds in the combustor product gas.

  17. Protein body-inducing fusions for high-level production and purification of recombinant proteins in plants.

    PubMed

    Conley, Andrew J; Joensuu, Jussi J; Richman, Alex; Menassa, Rima

    2011-05-01

    For the past two decades, therapeutic and industrially important proteins have been expressed in plants with varying levels of success. The two major challenges hindering the economical production of plant-made recombinant proteins include inadequate accumulation levels and the lack of efficient purification methods. To address these limitations, several fusion protein strategies have been recently developed to significantly enhance the production yield of plant-made recombinant proteins, while simultaneously assisting in their subsequent purification. Elastin-like polypeptides are thermally responsive biopolymers composed of a repeating pentapeptide 'VPGXG' sequence that are valuable for the purification of recombinant proteins. Hydrophobins are small fungal proteins capable of altering the hydrophobicity of their respective fusion partner, thus enabling efficient purification by surfactant-based aqueous two-phase systems. Zera, a domain of the maize seed storage protein γ-zein, can induce the formation of protein storage bodies, thus facilitating the recovery of fused proteins using density-based separation methods. These three novel protein fusion systems have also been shown to enhance the accumulation of a range of different recombinant proteins, while concurrently inducing the formation of protein bodies. The packing of these fusion proteins into protein bodies may exclude the recombinant protein from normal physiological turnover. Furthermore, these systems allow for quick, simple and inexpensive nonchromatographic purification of the recombinant protein, which can be scaled up to industrial levels of protein production. This review will focus on the similarities and differences of these artificial storage organelles, their biogenesis and their implication for the production of recombinant proteins in plants and their subsequent purification. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied

  18. Adaptation options to future climate of maize crop in Southern Italy examined using thermal sums

    NASA Astrophysics Data System (ADS)

    Di Tommasi, P.; Alfieri, S. M.; Bonfante, A.; Basile, A.; De Lorenzi, F.; Menenti, M.

    2012-04-01

    Future climate scenarios predict substantial changes in air temperature within a few decades and agriculture needs to increase the capacity of adaptation both by changing spatial distribution of crops and shifting timing of management. In this context the prediction of future behaviour of crops with respect to present climate could be useful for farm and landscape management. In this work, thermal sums were used to simulate a maize crop in a future scenario, in terms of length of the growing season and of intervals between the main phenological stages. The area under study is the Sele plain (Campania Region), a pedo-climatic homogeneous area, one of the most agriculturally advanced and relevant flatland in Southern Italy. Maize was selected for the present study since it is extensively grown in the Sele Plain for water buffalofeeding,. Daily time-series of climatic data of the area under study were generated within the Italian project AGROSCENARI, and include maximum and minimum temperature and precipitation. The 1961-1990 and the 1998-2008 periods were compared to a future climate scenario (2021-2050). Future time series were generated using a statistical downscaling technique (Tomozeiu et al., 2007) from general circulation models (AOGCM). Differences in crop development length were calculated for different maize varieties under 3 management options for sowing time: custom date (typical for the area), before and after custom date. The interactions between future thermal regime and the length of growing season under the different management options were analyzed. Moreover, frequency of spells of high temperatures during the anthesis was examined. The feasibility of the early sowing option was discussed in relation with field trafficability at the beginning of the crop cycle. The work was carried out within the Italian national project AGROSCENARI funded by the Ministry for Agricultural, Food and Forest Policies (MIPAAF, D.M. 8608/7303/2008)

  19. Herbivore-induced maize leaf volatiles affect attraction and feeding behavior of Spodoptera littoralis caterpillars

    PubMed Central

    von Mérey, Georg E.; Veyrat, Nathalie; D'Alessandro, Marco; Turlings, Ted C. J.

    2013-01-01

    Plants under herbivore attack emit volatile organic compounds (VOCs) that can serve as foraging cues for natural enemies. Adult females of Lepidoptera, when foraging for host plants to deposit eggs, are commonly repelled by herbivore-induced VOCs, probably to avoid competition and natural enemies. Their larval stages, on the other hand, have been shown to be attracted to inducible VOCs. We speculate that this contradicting behavior of lepidopteran larvae is due to a need to quickly find a new suitable host plant if they have fallen to the ground. However, once they are on a plant they might avoid the sites with fresh damage to limit competition and risk of cannibalism by conspecifics, as well as exposure to natural enemies. To test this we studied the effect of herbivore-induced VOCs on the attraction of larvae of the moth Spodoptera littoralis and on their feeding behavior. The experiments further considered the importance of previous feeding experience on the responses of the larvae. It was confirmed that herbivore-induced VOCs emitted by maize plants are attractive to the larvae, but exposure to the volatiles decreased the growth rate of caterpillars at early developmental stages. Larvae that had fed on maize previously were more attracted by VOCs of induced maize than larvae that had fed on artificial diet. At relatively high concentrations synthetic green leaf volatiles, indicative of fresh damage, also negatively affected the growth rate of caterpillars, but not at low concentrations. In all cases, feeding by the later stages of the larvae was not affected by the VOCs. The results are discussed in the context of larval foraging behavior under natural conditions, where there may be a trade-off between using available host plant signals and avoiding competitors and natural enemies. PMID:23825475

  20. LTR Retrotransposons Show Low Levels of Unequal Recombination and High Rates of Intraelement Gene Conversion in Large Plant Genomes

    PubMed Central

    Cossu, Rosa Maria; Casola, Claudio; Giacomello, Stefania; Vidalis, Amaryllis

    2017-01-01

    Abstract The accumulation and removal of transposable elements (TEs) is a major driver of genome size evolution in eukaryotes. In plants, long terminal repeat (LTR) retrotransposons (LTR-RTs) represent the majority of TEs and form most of the nuclear DNA in large genomes. Unequal recombination (UR) between LTRs leads to removal of intervening sequence and formation of solo-LTRs. UR is a major mechanism of LTR-RT removal in many angiosperms, but our understanding of LTR-RT-associated recombination within the large, LTR-RT-rich genomes of conifers is quite limited. We employ a novel read-based methodology to estimate the relative rates of LTR-RT-associated UR within the genomes of four conifer and seven angiosperm species. We found the lowest rates of UR in the largest genomes studied, conifers and the angiosperm maize. Recombination may also resolve as gene conversion, which does not remove sequence, so we analyzed LTR-RT-associated gene conversion events (GCEs) in Norway spruce and six angiosperms. Opposite the trend for UR, we found the highest rates of GCEs in Norway spruce and maize. Unlike previous work in angiosperms, we found no evidence that rates of UR correlate with retroelement structural features in the conifers, suggesting that another process is suppressing UR in these species. Recent results from diverse eukaryotes indicate that heterochromatin affects the resolution of recombination, by favoring gene conversion over crossing-over, similar to our observation of opposed rates of UR and GCEs. Control of LTR-RT proliferation via formation of heterochromatin would be a likely step toward large genomes in eukaryotes carrying high LTR-RT content. PMID:29228262

  1. A genetic relationship between nitrogen use efficiency and seedling root traits in maize as revealed by QTL analysis.

    PubMed

    Li, Pengcheng; Chen, Fanjun; Cai, Hongguang; Liu, Jianchao; Pan, Qingchun; Liu, Zhigang; Gu, Riliang; Mi, Guohua; Zhang, Fusuo; Yuan, Lixing

    2015-06-01

    That root system architecture (RSA) has an essential role in nitrogen acquisition is expected in maize, but the genetic relationship between RSA and nitrogen use efficiency (NUE) traits remains to be elucidated. Here, the genetic basis of RSA and NUE traits was investigated in maize using a recombination inbred line population that was derived from two lines contrasted for both traits. Under high-nitrogen and low-nitrogen conditions, 10 NUE- and 9 RSA-related traits were evaluated in four field environments and three hydroponic experiments, respectively. In contrast to nitrogen utilization efficiency (NutE), nitrogen uptake efficiency (NupE) had significant phenotypic correlations with RSA, particularly the traits of seminal roots (r = 0.15-0.31) and crown roots (r = 0.15-0.18). A total of 331 quantitative trait loci (QTLs) were detected, including 184 and 147 QTLs for NUE- and RSA-related traits, respectively. These QTLs were assigned into 64 distinct QTL clusters, and ~70% of QTLs for nitrogen-efficiency (NUE, NupE, and NutE) coincided in clusters with those for RSA. Five important QTLs clusters at the chromosomal regions bin1.04, 2.04, 3.04, 3.05/3.06, and 6.07/6.08 were found in which QTLs for both traits had favourable effects from alleles coming from the large-rooted and high-NupE parent. Introgression of these QTL clusters in the advanced backcross-derived lines conferred mean increases in grain yield of ~14.8% for the line per se and ~15.9% in the testcross. These results reveal a significant genetic relationship between RSA and NUE traits, and uncover the most promising genomic regions for marker-assisted selection of RSA to improve NUE in maize. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  2. Characterization and fine mapping of qkc7.03: a major locus for kernel cracking in maize.

    PubMed

    Yang, Mingtao; Chen, Lin; Wu, Xun; Gao, Xing; Li, Chunhui; Song, Yanchun; Zhang, Dengfeng; Shi, Yunsu; Li, Yu; Li, Yong-Xiang; Wang, Tianyu

    2018-02-01

    A major locus conferring kernel cracking in maize was characterized and fine mapped to an interval of 416.27 kb. Meanwhile, combining the results of transcriptomic analysis, the candidate gene was inferred. Seed development requires a proper structural and physiological balance between the maternal tissues and the internal structures of the seeds. In maize, kernel cracking is a disorder in this balance that seriously limits quality and yield and is characterized by a cracked pericarp at the kernel top and endosperm everting. This study elucidated the genetic basis and characterization of kernel cracking. Primarily, a near isogenic line (NIL) with a B73 background exhibited steady kernel cracking across environments. Therefore, deprived mapping populations were developed from this NIL and its recurrent parent B73. A major locus on chromosome 7, qkc7.03, was identified to be associated with the cracking performance. According to a progeny test of recombination events, qkc7.03 was fine mapped to a physical interval of 416.27 kb. In addition, obvious differences were observed in embryo development and starch granule arrangement within the endosperm between the NIL and its recurrent parent upon the occurrence of kernel cracking. Moreover, compared to its recurrent parent, the transcriptome of the NIL showed a significantly down-regulated expression of genes related to zeins, carbohydrate synthesis and MADS-domain transcription factors. The transcriptomic analysis revealed ten annotated genes within the target region of qkc7.03, and only GRMZM5G899476 was differently expressed between the NIL and its recurrent parent, indicating that this gene might be a candidate gene for kernel cracking. The results of this study facilitate the understanding of the potential mechanism underlying kernel cracking in maize.

  3. Quantitative trait locus analysis of heterosis for plant height and ear height in an elite maize hybrid zhengdan 958 by design III.

    PubMed

    Li, Hongjian; Yang, Qingsong; Fan, Nannan; Zhang, Ming; Zhai, Huijie; Ni, Zhongfu; Zhang, Yirong

    2017-04-17

    Plant height (PH) and ear height (EH) are two important agronomic traits in maize selection breeding. F 1 hybrid exhibit significant heterosis for PH and EH as compared to their parental inbred lines. To understand the genetic basis of heterosis controlling PH and EH, we conducted quantitative trait locus (QTL) analysis using a recombinant inbreed line (RIL) based design III population derived from the elite maize hybrid Zhengdan 958 in five environments. A total of 14 environmentally stable QTLs were identified, and the number of QTLs for Z 1 and Z 2 populations was six and eight, respectively. Notably, all the eight environmentally stable QTLs for Z 2 were characterized by overdominance effect (OD), suggesting that overdominant QTLs were the most important contributors to heterosis for PH and EH. Furthermore, 14 environmentally stable QTLs were anchored on six genomic regions, among which four are trait-specific QTLs, suggesting that the genetic basis for PH and EH is partially different. Additionally, qPH.A-1.3, modifying about 10 centimeters of PH, was further validated in backcross populations. The genetic basis for PH and EH is partially different, and overdominant QTLs are important factors for heterosis of PH and EH. A major QTL qPH.A-1.3 may be a desired target for genetic improvement of maize plant height.

  4. Additive effects of two quantitative trait loci that confer Rhopalosiphum maidis (corn leaf aphid) resistance in maize inbred line Mo17

    PubMed Central

    Betsiashvili, Mariam; Ahern, Kevin R.; Jander, Georg

    2015-01-01

    Plants show considerable within-species variation in their resistance to insect herbivores. In the case of Zea mays (cultivated maize), Rhopalosiphum maidis (corn leaf aphids) produce approximately twenty times more progeny on inbred line B73 than on inbred line Mo17. Genetic mapping of this difference in maize aphid resistance identified quantitative trait loci (QTL) on chromosomes 4 and 6, with the Mo17 allele reducing aphid reproduction in each case. The chromosome 4 QTL mapping interval includes several genes involved in the biosynthesis of DIMBOA (2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one), a maize defensive metabolite that also is required for callose accumulation in response to aphid feeding. Consistent with the known association of callose with plant defence against aphids, R. maidis reproduction on B73×Mo17 recombinant inbred lines was negatively correlated with both DIMBOA content and callose formation. Further genetic mapping, as well as experiments with near-isogenic lines, confirmed that the Mo17 allele causes increased DIMBOA accumulation relative to the B73 allele. The chromosome 6 aphid resistance QTL functions independently of DIMBOA accumulation and has an effect that is additive to that of the chromosome 4 QTL. Thus, at least two separate defence mechanisms account for the higher level of R. maidis resistance in Mo17 compared with B73. PMID:25249072

  5. Maize Homologs of Hydroxycinnamoyltransferase, a Key Enzyme in Lignin Biosynthesis, Bind the Nucleotide Binding Leucine-Rich Repeat Rp1 Proteins to Modulate the Defense Response.

    PubMed

    Wang, Guan-Feng; He, Yijian; Strauch, Renee; Olukolu, Bode A; Nielsen, Dahlia; Li, Xu; Balint-Kurti, Peter J

    2015-11-01

    In plants, most disease resistance genes encode nucleotide binding Leu-rich repeat (NLR) proteins that trigger a rapid localized cell death called a hypersensitive response (HR) upon pathogen recognition. The maize (Zea mays) NLR protein Rp1-D21 derives from an intragenic recombination between two NLRs, Rp1-D and Rp1-dp2, and confers an autoactive HR in the absence of pathogen infection. From a previous quantitative trait loci and genome-wide association study, we identified a single-nucleotide polymorphism locus highly associated with variation in the severity of Rp1-D21-induced HR. Two maize genes encoding hydroxycinnamoyltransferase (HCT; a key enzyme involved in lignin biosynthesis) homologs, termed HCT1806 and HCT4918, were adjacent to this single-nucleotide polymorphism. Here, we show that both HCT1806 and HCT4918 physically interact with and suppress the HR conferred by Rp1-D21 but not other autoactive NLRs when transiently coexpressed in Nicotiana benthamiana. Other maize HCT homologs are unable to confer the same level of suppression on Rp1-D21-induced HR. The metabolic activity of HCT1806 and HCT4918 is unlikely to be necessary for their role in suppressing HR. We show that the lignin pathway is activated by Rp1-D21 at both the transcriptional and metabolic levels. We derive a model to explain the roles of HCT1806 and HCT4918 in Rp1-mediated disease resistance. © 2015 American Society of Plant Biologists. All Rights Reserved.

  6. Maize Homologs of Hydroxycinnamoyltransferase, a Key Enzyme in Lignin Biosynthesis, Bind the Nucleotide Binding Leucine-Rich Repeat Rp1 Proteins to Modulate the Defense Response1

    PubMed Central

    Wang, Guan-Feng; He, Yijian; Strauch, Renee; Olukolu, Bode A.; Nielsen, Dahlia; Li, Xu; Balint-Kurti, Peter J.

    2015-01-01

    In plants, most disease resistance genes encode nucleotide binding Leu-rich repeat (NLR) proteins that trigger a rapid localized cell death called a hypersensitive response (HR) upon pathogen recognition. The maize (Zea mays) NLR protein Rp1-D21 derives from an intragenic recombination between two NLRs, Rp1-D and Rp1-dp2, and confers an autoactive HR in the absence of pathogen infection. From a previous quantitative trait loci and genome-wide association study, we identified a single-nucleotide polymorphism locus highly associated with variation in the severity of Rp1-D21-induced HR. Two maize genes encoding hydroxycinnamoyltransferase (HCT; a key enzyme involved in lignin biosynthesis) homologs, termed HCT1806 and HCT4918, were adjacent to this single-nucleotide polymorphism. Here, we show that both HCT1806 and HCT4918 physically interact with and suppress the HR conferred by Rp1-D21 but not other autoactive NLRs when transiently coexpressed in Nicotiana benthamiana. Other maize HCT homologs are unable to confer the same level of suppression on Rp1-D21-induced HR. The metabolic activity of HCT1806 and HCT4918 is unlikely to be necessary for their role in suppressing HR. We show that the lignin pathway is activated by Rp1-D21 at both the transcriptional and metabolic levels. We derive a model to explain the roles of HCT1806 and HCT4918 in Rp1-mediated disease resistance. PMID:26373661

  7. Reconstructing the History of Maize Streak Virus Strain A Dispersal To Reveal Diversification Hot Spots and Its Origin in Southern Africa ▿ †

    PubMed Central

    Monjane, Adérito L.; Harkins, Gordon W.; Martin, Darren P.; Lemey, Philippe; Lefeuvre, Pierre; Shepherd, Dionne N.; Oluwafemi, Sunday; Simuyandi, Michelo; Zinga, Innocent; Komba, Ephrem K.; Lakoutene, Didier P.; Mandakombo, Noella; Mboukoulida, Joseph; Semballa, Silla; Tagne, Appolinaire; Tiendrébéogo, Fidèle; Erdmann, Julia B.; van Antwerpen, Tania; Owor, Betty E.; Flett, Bradley; Ramusi, Moses; Windram, Oliver P.; Syed, Rizwan; Lett, Jean-Michel; Briddon, Rob W.; Markham, Peter G.; Rybicki, Edward P.; Varsani, Arvind

    2011-01-01

    Maize streak virus strain A (MSV-A), the causal agent of maize streak disease, is today one of the most serious biotic threats to African food security. Determining where MSV-A originated and how it spread transcontinentally could yield valuable insights into its historical emergence as a crop pathogen. Similarly, determining where the major extant MSV-A lineages arose could identify geographical hot spots of MSV evolution. Here, we use model-based phylogeographic analyses of 353 fully sequenced MSV-A isolates to reconstruct a plausible history of MSV-A movements over the past 150 years. We show that since the probable emergence of MSV-A in southern Africa around 1863, the virus spread transcontinentally at an average rate of 32.5 km/year (95% highest probability density interval, 15.6 to 51.6 km/year). Using distinctive patterns of nucleotide variation caused by 20 unique intra-MSV-A recombination events, we tentatively classified the MSV-A isolates into 24 easily discernible lineages. Despite many of these lineages displaying distinct geographical distributions, it is apparent that almost all have emerged within the past 4 decades from either southern or east-central Africa. Collectively, our results suggest that regular analysis of MSV-A genomes within these diversification hot spots could be used to monitor the emergence of future MSV-A lineages that could affect maize cultivation in Africa. PMID:21715477

  8. Dissection of the genetic architecture underlying the plant density response by mapping plant height-related traits in maize (Zea mays L.).

    PubMed

    Ku, Lixia; Zhang, Liangkun; Tian, Zhiqiang; Guo, Shulei; Su, Huihui; Ren, Zhenzhen; Wang, Zhiyong; Li, Guohui; Wang, Xiaobo; Zhu, Yuguang; Zhou, Jinlong; Chen, Yanhui

    2015-08-01

    Plant height is one of the most heritable traits in maize (Zea mays L.). Understanding the genetic control of plant height is important for elucidating the molecular mechanisms that regulate maize development. To investigate the genetic basis of the plant height response to density in maize, we evaluated the effects of two different plant densities (60,000 and 120,000 plant/hm(2)) on three plant height-related traits (plant height, ear height, and ear height-to-plant height ratio) using four sets of recombinant inbred line populations. The phenotypes observed under the two-plant density treatments indicated that high plant density increased the phenotypic performance values of the three measured traits. Twenty-three quantitative trait loci (QTLs) were detected under the two-plant density treatments, and five QTL clusters were located. Nine QTLs were detected under the low plant density treatment, and seven QTLs were detected under the high plant density treatment. Our results suggested that plant height may be controlled mainly by a common set of genes that could be influenced by additional genetic mechanisms when the plants were grown under high plant density. Fine mapping for genetic regions of the stable QTLs across different plant density environments may provide additional information about their different responses to density. The results presented here provide useful information for further research and will help to reveal the molecular mechanisms related to plant height in response to density.

  9. Fine-Scale Recombination Maps of Fungal Plant Pathogens Reveal Dynamic Recombination Landscapes and Intragenic Hotspots

    PubMed Central

    Stukenbrock, Eva H.; Dutheil, Julien Y.

    2018-01-01

    Meiotic recombination is an important driver of evolution. Variability in the intensity of recombination across chromosomes can affect sequence composition, nucleotide variation, and rates of adaptation. In many organisms, recombination events are concentrated within short segments termed recombination hotspots. The variation in recombination rate and positions of recombination hotspot can be studied using population genomics data and statistical methods. In this study, we conducted population genomics analyses to address the evolution of recombination in two closely related fungal plant pathogens: the prominent wheat pathogen Zymoseptoria tritici and a sister species infecting wild grasses Z. ardabiliae. We specifically addressed whether recombination landscapes, including hotspot positions, are conserved in the two recently diverged species and if recombination contributes to rapid evolution of pathogenicity traits. We conducted a detailed simulation analysis to assess the performance of methods of recombination rate estimation based on patterns of linkage disequilibrium, in particular in the context of high nucleotide diversity. Our analyses reveal overall high recombination rates, a lack of suppressed recombination in centromeres, and significantly lower recombination rates on chromosomes that are known to be accessory. The comparison of the recombination landscapes of the two species reveals a strong correlation of recombination rate at the megabase scale, but little correlation at smaller scales. The recombination landscapes in both pathogen species are dominated by frequent recombination hotspots across the genome including coding regions, suggesting a strong impact of recombination on gene evolution. A significant but small fraction of these hotspots colocalize between the two species, suggesting that hotspot dynamics contribute to the overall pattern of fast evolving recombination in these species. PMID:29263029

  10. Fine-Scale Recombination Maps of Fungal Plant Pathogens Reveal Dynamic Recombination Landscapes and Intragenic Hotspots.

    PubMed

    Stukenbrock, Eva H; Dutheil, Julien Y

    2018-03-01

    Meiotic recombination is an important driver of evolution. Variability in the intensity of recombination across chromosomes can affect sequence composition, nucleotide variation, and rates of adaptation. In many organisms, recombination events are concentrated within short segments termed recombination hotspots. The variation in recombination rate and positions of recombination hotspot can be studied using population genomics data and statistical methods. In this study, we conducted population genomics analyses to address the evolution of recombination in two closely related fungal plant pathogens: the prominent wheat pathogen Zymoseptoria tritici and a sister species infecting wild grasses Z. ardabiliae We specifically addressed whether recombination landscapes, including hotspot positions, are conserved in the two recently diverged species and if recombination contributes to rapid evolution of pathogenicity traits. We conducted a detailed simulation analysis to assess the performance of methods of recombination rate estimation based on patterns of linkage disequilibrium, in particular in the context of high nucleotide diversity. Our analyses reveal overall high recombination rates, a lack of suppressed recombination in centromeres, and significantly lower recombination rates on chromosomes that are known to be accessory. The comparison of the recombination landscapes of the two species reveals a strong correlation of recombination rate at the megabase scale, but little correlation at smaller scales. The recombination landscapes in both pathogen species are dominated by frequent recombination hotspots across the genome including coding regions, suggesting a strong impact of recombination on gene evolution. A significant but small fraction of these hotspots colocalize between the two species, suggesting that hotspot dynamics contribute to the overall pattern of fast evolving recombination in these species. Copyright © 2018 Stukenbrock and Dutheil.

  11. Comparative histological and transcriptional analysis of maize kernels infected with Aspergillus flavus and Fusarium verticillioides

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus and Fusarium verticillioides infect maize kernels and contaminate them with the mycotoxins aflatoxin and fumonisin, respectively. Combined histological examination of fungal colonization and transcriptional changes in maize kernels at 4, 12, 24, 48, and 72 hours post inoculation (...

  12. Evaluation of Atoxigenic Strains of Aspergillus flavus as Potential Biocontrol Agents for Aflatoxin in Maize

    USDA-ARS?s Scientific Manuscript database

    Aflatoxin contamination resulting from maize infection by Aspergillus flavus is both an economic concern and public health concern. Therefore, strategies for controlling maize contamination are being investigated. Abilities of 11 naturally occurring atoxigenic strains in Nigeria to reduce aflatox...

  13. Maize-Pathogen Interactions: An Ongoing Combat from a Proteomics Perspective.

    PubMed

    Pechanova, Olga; Pechan, Tibor

    2015-11-30

    Maize (Zea mays L.) is a host to numerous pathogenic species that impose serious diseases to its ear and foliage, negatively affecting the yield and the quality of the maize crop. A considerable amount of research has been carried out to elucidate mechanisms of maize-pathogen interactions with a major goal to identify defense-associated proteins. In this review, we summarize interactions of maize with its agriculturally important pathogens that were assessed at the proteome level. Employing differential analyses, such as the comparison of pathogen-resistant and susceptible maize varieties, as well as changes in maize proteomes after pathogen challenge, numerous proteins were identified as possible candidates in maize resistance. We describe findings of various research groups that used mainly mass spectrometry-based, high through-put proteomic tools to investigate maize interactions with fungal pathogens Aspergillus flavus, Fusarium spp., and Curvularia lunata, and viral agents Rice Black-streaked Dwarf Virus and Sugarcane Mosaic Virus.

  14. Maize-Pathogen Interactions: An Ongoing Combat from a Proteomics Perspective

    PubMed Central

    Pechanova, Olga; Pechan, Tibor

    2015-01-01

    Maize (Zea mays L.) is a host to numerous pathogenic species that impose serious diseases to its ear and foliage, negatively affecting the yield and the quality of the maize crop. A considerable amount of research has been carried out to elucidate mechanisms of maize-pathogen interactions with a major goal to identify defense-associated proteins. In this review, we summarize interactions of maize with its agriculturally important pathogens that were assessed at the proteome level. Employing differential analyses, such as the comparison of pathogen-resistant and susceptible maize varieties, as well as changes in maize proteomes after pathogen challenge, numerous proteins were identified as possible candidates in maize resistance. We describe findings of various research groups that used mainly mass spectrometry-based, high through-put proteomic tools to investigate maize interactions with fungal pathogens Aspergillus flavus, Fusarium spp., and Curvularia lunata, and viral agents Rice Black-streaked Dwarf Virus and Sugarcane Mosaic Virus. PMID:26633370

  15. The sh2-R allele of the maize shrunken-2 locus was caused by a complex chromosomal rearrangement.

    PubMed

    Kramer, Vance; Shaw, Janine R; Senior, M Lynn; Hannah, L Curtis

    2015-03-01

    The mutant that originally defined the shrunken - 2 locus of maize is shown here to be the product of a complex chromosomal rearrangement. The maize shrunken-2 gene (sh2) encodes the large subunit of the heterotetrameric enzyme, adenosine diphosphate glucose pyrophosphorylases and a rate-limiting enzyme in starch biosynthesis. The sh2 gene was defined approximately 72 years ago by the isolation of a loss-of-function allele conditioning a shrunken, but viable seed. In subsequent years, the realization that this allele, termed zsh2-R or sh2-Reference, causes an extremely high level of sucrose to accumulate in the developing seed led to a revolution in the sweet corn industry. Now, the vast majority of sweet corns grown throughout the world contain this mutant allele. Through initial Southern analysis followed by genomic sequencing, the work reported here shows that this allele arose through a complex set of events involving at least three breaks of chromosome 3 as well as an intra-chromosomal inversion. These findings provide an explanation for some previously reported, unexpected observations concerning rates of recombination within and between genes in this region.

  16. Root Cortical Aerenchyma Enhances Nitrogen Acquisition from Low-Nitrogen Soils in Maize1[W][OPEN

    PubMed Central

    Saengwilai, Patompong; Nord, Eric A.; Chimungu, Joseph G.; Brown, Kathleen M.; Lynch, Jonathan Paul

    2014-01-01

    Suboptimal nitrogen (N) availability is a primary constraint for crop production in developing nations, while in rich nations, intensive N fertilization carries substantial environmental and economic costs. Therefore, understanding root phenes that enhance N acquisition is of considerable importance. Structural-functional modeling predicts that root cortical aerenchyma (RCA) could improve N acquisition in maize (Zea mays). We evaluated the utility of RCA for N acquisition by physiological comparison of maize recombinant inbred lines contrasting in RCA grown under suboptimal and adequate N availability in greenhouse mesocosms and in the field in the United States and South Africa. N stress increased RCA formation by 200% in mesocosms and by 90% to 100% in the field. RCA formation substantially reduced root respiration and root N content. Under low-N conditions, RCA formation increased rooting depth by 15% to 31%, increased leaf N content by 28% to 81%, increased leaf chlorophyll content by 22%, increased leaf CO2 assimilation by 22%, increased vegetative biomass by 31% to 66%, and increased grain yield by 58%. Our results are consistent with the hypothesis that RCA improves plant growth under N-limiting conditions by decreasing root metabolic costs, thereby enhancing soil exploration and N acquisition in deep soil strata. Although potential fitness tradeoffs of RCA formation are poorly understood, increased RCA formation appears be a promising breeding target for enhancing crop N acquisition. PMID:24891611

  17. Identification of Multiple Phosphorylation Sites on Maize Endosperm Starch Branching Enzyme IIb, a Key Enzyme in Amylopectin Biosynthesis

    PubMed Central

    Makhmoudova, Amina; Williams, Declan; Brewer, Dyanne; Massey, Sarah; Patterson, Jenelle; Silva, Anjali; Vassall, Kenrick A.; Liu, Fushan; Subedi, Sanjeena; Harauz, George; Siu, K. W. Michael; Tetlow, Ian J.; Emes, Michael J.

    2014-01-01

    Starch branching enzyme IIb (SBEIIb) plays a crucial role in amylopectin biosynthesis in maize endosperm by defining the structural and functional properties of storage starch and is regulated by protein phosphorylation. Native and recombinant maize SBEIIb were used as substrates for amyloplast protein kinases to identify phosphorylation sites on the protein. A multidisciplinary approach involving bioinformatics, site-directed mutagenesis, and mass spectrometry identified three phosphorylation sites at Ser residues: Ser649, Ser286, and Ser297. Two Ca2+-dependent protein kinase activities were partially purified from amyloplasts, termed K1, responsible for Ser649 and Ser286 phosphorylation, and K2, responsible for Ser649 and Ser297 phosphorylation. The Ser286 and Ser297 phosphorylation sites are conserved in all plant branching enzymes and are located at opposite openings of the 8-stranded parallel β-barrel of the active site, which is involved with substrate binding and catalysis. Molecular dynamics simulation analysis indicates that phospho-Ser297 forms a stable salt bridge with Arg665, part of a conserved Cys-containing domain in plant branching enzymes. Ser649 conservation appears confined to the enzyme in cereals and is not universal, and is presumably associated with functions specific to seed storage. The implications of SBEIIb phosphorylation are considered in terms of the role of the enzyme and the importance of starch biosynthesis for yield and biotechnological application. PMID:24550386

  18. Quantitative trait loci mapping for Gibberella ear rot resistance and associated agronomic traits using genotyping-by-sequencing in maize.

    PubMed

    Kebede, Aida Z; Woldemariam, Tsegaye; Reid, Lana M; Harris, Linda J

    2016-01-01

    Unique and co-localized chromosomal regions affecting Gibberella ear rot disease resistance and correlated agronomic traits were identified in maize. Dissecting the mechanisms underlying resistance to Gibberella ear rot (GER) disease in maize provides insight towards more informed breeding. To this goal, we evaluated 410 recombinant inbred lines (RIL) for GER resistance over three testing years using silk channel and kernel inoculation techniques. RILs were also evaluated for agronomic traits like days to silking, husk cover, and kernel drydown rate. The RILs showed significant genotypic differences for all traits with above average to high heritability estimates. Significant (P < 0.01) but weak genotypic correlations were observed between disease severity and agronomic traits, indicating the involvement of agronomic traits in disease resistance. Common QTLs were detected for GER resistance and kernel drydown rate, suggesting the existence of pleiotropic genes that could be exploited to improve both traits at the same time. The QTLs identified for silk and kernel resistance shared some common regions on chromosomes 1, 2, and 8 and also had some regions specific to each tissue on chromosomes 9 and 10. Thus, effective GER resistance breeding could be achieved by considering screening methods that allow exploitation of tissue-specific disease resistance mechanisms and include kernel drydown rate either in an index or as indirect selection criterion.

  19. KRN4 Controls Quantitative Variation in Maize Kernel Row Number

    PubMed Central

    Liu, Lei; Du, Yanfang; Shen, Xiaomeng; Li, Manfei; Sun, Wei; Huang, Juan; Liu, Zhijie; Tao, Yongsheng; Zheng, Yonglian; Yan, Jianbing; Zhang, Zuxin

    2015-01-01

    Kernel row number (KRN) is an important component of yield during the domestication and improvement of maize and controlled by quantitative trait loci (QTL). Here, we fine-mapped a major KRN QTL, KRN4, which can enhance grain productivity by increasing KRN per ear. We found that a ~3-Kb intergenic region about 60 Kb downstream from the SBP-box gene Unbranched3 (UB3) was responsible for quantitative variation in KRN by regulating the level of UB3 expression. Within the 3-Kb region, the 1.2-Kb Presence-Absence variant was found to be strongly associated with quantitative variation in KRN in diverse maize inbred lines, and our results suggest that this 1.2-Kb transposon-containing insertion is likely responsible for increased KRN. A previously identified A/G SNP (S35, also known as Ser220Asn) in UB3 was also found to be significantly associated with KRN in our association-mapping panel. Although no visible genetic effect of S35 alone could be detected in our linkage mapping population, it was found to genetically interact with the 1.2-Kb PAV to modulate KRN. The KRN4 was under strong selection during maize domestication and the favorable allele for the 1.2-Kb PAV and S35 has been significantly enriched in modern maize improvement process. The favorable haplotype (Hap1) of 1.2-Kb-PAV-S35 was selected during temperate maize improvement, but is still rare in tropical and subtropical maize germplasm. The dissection of the KRN4 locus improves our understanding of the genetic basis of quantitative variation in complex traits in maize. PMID:26575831

  20. Differentiated transcriptional signatures in the maize landraces of Chiapas, Mexico.

    PubMed

    Kost, Matthew A; Perales, Hugo R; Wijeratne, Saranga; Wijeratne, Asela J; Stockinger, Eric; Mercer, Kristin L

    2017-09-08

    Landrace farmers are the keepers of crops locally adapted to the environments where they are cultivated. Patterns of diversity across the genome can provide signals of past evolution in the face of abiotic and biotic change. Understanding this rich genetic resource is imperative especially since diversity can provide agricultural security as climate continues to shift. Here we employ RNA sequencing (RNA-seq) to understand the role that conditions that vary across a landscape may have played in shaping genetic diversity in the maize landraces of Chiapas, Mexico. We collected landraces from three distinct elevational zones and planted them in a midland common garden. Early season leaf tissue was collected for RNA-seq and we performed weighted gene co-expression network analysis (WGCNA). We then used association analysis between landrace co-expression module expression values and environmental parameters of landrace origin to elucidate genes and gene networks potentially shaped by environmental factors along our study gradient. Elevation of landrace origin affected the transcriptome profiles. Two co-expression modules were highly correlated with temperature parameters of landrace origin and queries into their 'hub' genes suggested that temperature may have led to differentiation among landraces in hormone biosynthesis/signaling and abiotic and biotic stress responses. We identified several 'hub' transcription factors and kinases as candidates for the regulation of these responses. These findings indicate that natural selection may influence the transcriptomes of crop landraces along an elevational gradient in a major diversity center, and provide a foundation for exploring the genetic basis of local adaptation. While we cannot rule out the role of neutral evolutionary forces in the patterns we have identified, combining whole transcriptome sequencing technologies, established bioinformatics techniques, and common garden experimentation can powerfully elucidate

  1. Screening and Selection of Maize to Enhance Associative Bacterial Nitrogen Fixation 1

    PubMed Central

    Ela, Stephen W.; Anderson, Mary Ann; Brill, Winston J.

    1982-01-01

    The ability of maize (corn, Zea mays L.) to support bacterial nitrogen fixation in or on maize roots has been increased, through screening and selection. Isotopic N fixed from 15N2 was found on the roots. The nitrogen-fixing association was found in germplasm from tropical maize, but this activity can be transferred to maize currently used in midwestern United States agriculture. PMID:16662718

  2. Genetic variability of the phloem sap metabolite content of maize (Zea mays L.) during the kernel-filling period.

    PubMed

    Yesbergenova-Cuny, Zhazira; Dinant, Sylvie; Martin-Magniette, Marie-Laure; Quilleré, Isabelle; Armengaud, Patrick; Monfalet, Priscilla; Lea, Peter J; Hirel, Bertrand

    2016-11-01

    Using a metabolomic approach, we have quantified the metabolite composition of the phloem sap exudate of seventeen European and American lines of maize that had been previously classified into five main groups on the basis of molecular marker polymorphisms. In addition to sucrose, glutamate and aspartate, which are abundant in the phloem sap of many plant species, large quantities of aconitate and alanine were also found in the phloem sap exudates of maize. Genetic variability of the phloem sap composition was observed in the different maize lines, although there was no obvious relationship between the phloem sap composition and the five previously classified groups. However, following hierarchical clustering analysis there was a clear relationship between two of the subclusters of lines defined on the basis of the composition of the phloem sap exudate and the earliness of silking date. A comparison between the metabolite contents of the ear leaves and the phloem sap exudates of each genotype, revealed that the relative content of most of the carbon- and nitrogen-containing metabolites was similar. Correlation studies performed between the metabolite content of the phloem sap exudates and yield-related traits also revealed that for some carbohydrates such as arabitol and sucrose there was a negative or positive correlation with kernel yield and kernel weight respectively. A posititive correlation was also found between kernel number and soluble histidine. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. A Fungal Effector With Host Nuclear Localization and DNA-Binding Properties Is Required for Maize Anthracnose Development.

    PubMed

    Vargas, Walter A; Sanz-Martín, José M; Rech, Gabriel E; Armijos-Jaramillo, Vinicio D; Rivera, Lina P; Echeverria, María Mercedes; Díaz-Mínguez, José M; Thon, Michael R; Sukno, Serenella A

    2016-02-01

    Plant pathogens have the capacity to manipulate the host immune system through the secretion of effectors. We identified 27 putative effector proteins encoded in the genome of the maize anthracnose pathogen Colletotrichum graminicola that are likely to target the host's nucleus, as they simultaneously contain sequence signatures for secretion and nuclear localization. We functionally characterized one protein, identified as CgEP1. This protein is synthesized during the early stages of disease development and is necessary for anthracnose development in maize leaves, stems, and roots. Genetic, molecular, and biochemical studies confirmed that this effector targets the host's nucleus and defines a novel class of double-stranded DNA-binding protein. We show that CgEP1 arose from a gene duplication in an ancestor of a lineage of monocot-infecting Colletotrichum spp. and has undergone an intense evolution process, with evidence for episodes of positive selection. We detected CgEP1 homologs in several species of a grass-infecting lineage of Colletotrichum spp., suggesting that its function may be conserved across a large number of anthracnose pathogens. Our results demonstrate that effectors targeted to the host nucleus may be key elements for disease development and aid in the understanding of the genetic basis of anthracnose development in maize plants.

  4. Duplicate Maize Wrinkled1 Transcription Factors Activate Target Genes Involved in Seed Oil Biosynthesis1[C][W

    PubMed Central

    Pouvreau, Benjamin; Baud, Sébastien; Vernoud, Vanessa; Morin, Valérie; Py, Cyrille; Gendrot, Ghislaine; Pichon, Jean-Philippe; Rouster, Jacques; Paul, Wyatt; Rogowsky, Peter M.

    2011-01-01

    WRINKLED1 (WRI1), a key regulator of seed oil biosynthesis in Arabidopsis (Arabidopsis thaliana), was duplicated during the genome amplification of the cereal ancestor genome 90 million years ago. Both maize (Zea mays) coorthologs ZmWri1a and ZmWri1b show a strong transcriptional induction during the early filling stage of the embryo and complement the reduced fatty acid content of Arabidopsis wri1-4 seeds, suggesting conservation of molecular function. Overexpression of ZmWri1a not only increases the fatty acid content of the mature maize grain but also the content of certain amino acids, of several compounds involved in amino acid biosynthesis, and of two intermediates of the tricarboxylic acid cycle. Transcriptomic experiments identified 18 putative target genes of this transcription factor, 12 of which contain in their upstream regions an AW box, the cis-element bound by AtWRI1. In addition to functions related to late glycolysis and fatty acid biosynthesis in plastids, the target genes also have functions related to coenzyme A biosynthesis in mitochondria and the production of glycerol backbones for triacylglycerol biosynthesis in the cytoplasm. Interestingly, the higher seed oil content in ZmWri1a overexpression lines is not accompanied by a reduction in starch, thus opening possibilities for the use of the transgenic maize lines in breeding programs. PMID:21474435

  5. Seed priming with KNO3 mediates biochemical processes to in