Sample records for early mesozoic continental

  1. Melting of subducted continental crust: Geochemical evidence from Mesozoic granitoids in the Dabie-Sulu orogenic belt, east-central China

    NASA Astrophysics Data System (ADS)

    Zhao, Zi-Fu; Liu, Zhi-Bin; Chen, Qi

    2017-09-01

    Syn-collisional and postcollisional granitoids are common in collisional orogens, and they were primarily produced by partial melting of subducted continental crust. This is exemplified by Mesozoic granitoids from the Dabie-Sulu orogenic belt in east-central China. These granitoids were emplaced in small volumes in the Late Triassic (200-206 Ma) and the Late Jurassic (146-167 Ma) but massively in the Early Cretaceous (111-143 Ma). Nevertheless, all of them exhibit arc-like trace element distribution patterns and are enriched in Sr-Nd-Hf isotope compositions, indicating their origination from the ancient continental crust. They commonly contain relict zircons with Neoproterozoic and Triassic U-Pb ages, respectively, consistent with the protolith and metamorphic ages for ultrahigh-pressure (UHP) metaigneous rocks in the Dabie-Sulu orogenic belt. Some granitoids show low zircon δ18O values, and SIMS in-situ O isotope analysis reveals that the relict zircons with Neoproterozoic and Triassic U-Pb ages also commonly exhibit low δ18O values. Neoproterozoic U-Pb ages and low δ18O values are the two diagnostic features that distinguish the subducted South China Block from the obducted North China Block. Thus, the magma source of these Mesozoic granitoids has a genetic link to the subducted continental crust of the South China Block. On the other hand, these granitoids contain relict zircons with Paleoproterozoic and Archean U-Pb ages, which are present in both the South and North China Blocks. Taken together, the Mesozoic granitoids in the Dabie-Sulu orogenic belt and its hanging wall have their magma sources that are predominated by the continental crust of the South China Block with minor contributions from the continental crust of the North China Block. The Triassic continental collision between the South and North China Blocks brought the continental crust into the thickened orogen, where they underwent the three episodes of partial melting in the Late Triassic, Late

  2. Buried Mesozoic rift basins of Moroccan Atlantic continental margin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamed, N.; Jabour, H.; El Mostaine, M.

    1995-08-01

    The Atlantic continental margin is the largest frontier area for oil and gas exploration in Morocco. Most of the activity has been concentrated where Upper Jurassic carbonate rocks have been the drilling objectives, with only one significant but non commercial oil discovery. Recent exploration activities have focused on early Mesozoic Rift basins buried beneath the post-rift sediments of the Middle Atlantic coastal plain. Many of these basins are of interest because they contain fine-grained lacustrine rocks that have sufficient organic richness to be classified as efficient oil prone source rock. Location of inferred rift basins beneath the Atlantic coastal plainmore » were determined by analysis of drilled-hole data in combination with gravity anomaly and aeromagnetic maps. These rift basins are characterized by several half graben filled by synrift sediments of Triassic age probably deposited in lacustrine environment. Coeval rift basins are known to be present in the U.S. Atlantic continental margin. Basin modeling suggested that many of the less deeply bored rift basins beneath the coastal plain are still within the oil window and present the most attractive exploration targets in the area.« less

  3. Corrected Paleolatitudes for Pangea in the Early Mesozoic

    NASA Astrophysics Data System (ADS)

    Kent, D.; Tauxe, L.

    2004-12-01

    A series of continental basins that developed during rifting of the Pangea supercontinent in the early Mesozoic are now distributed along the margins of the North Atlantic and their preserved contents (mainly redbeds and CAMP basalts) have often been targets of paleomagnetic studies. A continuous record of paleolatitudinal drift and a geomagnetic polarity time scale for ~35 Myr of the Late Triassic and earliest Jurassic have been derived from several of the basins in eastern North America and provide a precise spatio-temporal framework for detailed paleogeographic analysis. However, reported paleomagnetic directions from Jameson Land in East Greenland are anomalously shallow with respect to coeval sections in North America, a discrepancy that is too large to be explained by uncertainties in the reconstruction of Greenland to North America. Therefore, either the magnetizations of the Jameson Land (and perhaps other early Mesozoic rift basin) sediments are biased by inclination error or the Late Triassic time-averaged field included significant nondipole (axial octupole) contributions. According to a new statistical geomagnetic field model (Tauxe and Kent, 2004) constrained by paleomagnetic data from young lava flows, these two phenomena result in very different distributions of paleomagnetic directions, providing a basis to diagnose and correct for inclination error in sufficiently large paleomagnetic datasets. The resulting congruence of independent data from sedimentary and igneous rocks ranging over thousands of kilometers and 10s of millions of years can be taken as strong support that a geocentric axial dipole field similar to the last 5 Myr was operative more than 200 Myr ago. The corrected paleolatitudes indicate a faster rate of poleward motion of this sector of Pangea and broader continental climate belts in the Late Triassic and earliest Jurassic.

  4. Accretion of a Small Continental Fragment to a Larger Continental Plate: Mesozoic Ecuador as a Case-Study Area

    NASA Astrophysics Data System (ADS)

    Massonne, H.

    2013-05-01

    Only a few regions on Earth are appropriate to study processes that have happened in deeper crustal levels during the accretion of a microplate to a larger continental plate. Ecuador is one of these regions where in middle Mesozoic times a small continental fragment collided with the South-American plate. Along the suture between both plates, which occurs close to the present volcanic belt of Ecuador, high-pressure (HP) metamorphic rocks developed. These rocks, which are metapelites, metabasites, and metagranitoids, record processes during the microcontinent-continent collision (Massonne and Toulkeridis, 2012, Int. Geol. Rev. 54). The pressures, determined for the HP rocks, were as high as 14 kbar at temperatures somewhat above 500°C. The HP stage was followed by slight heating at the early exhumation. Peak temperatures up to 560°C were reached at pressures ≥10 kbar. This HP metamorphism was caused by the collision of the microplate with the South-American plate resulting in crustal thickening. The ascent of the HP rocks occurred in an exhumation channel. Before the collision, an oceanic basin existed between these plates. Probably, it was narrow as eclogite bodies are lacking in the N-S trending HP belt of Ecuador. Such bodies, especially if the eclogites had experienced pressures in excess of 20 kbar, are markers of a collision of major continental plates in Phanerozoic times with originally extended oceanic basins between these plates. In a more global context, the narrow ocean between the microplate and the South American continent is assumed to have been the westernmost portion of the Neo-Tethys which had extended to completely separate the two major fragments of former Pangaea before the opening of the southern Atlantic Ocean. This opening caused the closure of the narrow Neo-Tethys segment between the colliding microplate and the South American plate. This segment was bordered by E-W trending transform faults. A fault system (La Palma - El Guayabo fault

  5. Early Mesozoic history and petroleum potential of formations in Wyoming and northern Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Picard, M.D.

    1993-08-01

    During the Triassic and Jurassic, over what is now Wyoming and northern Utah, roughly equal amounts of sediment were being deposited in continental settings-lake, stream, and eolian-and in shallow-marine or deltaic-plain settings-delta, beach, marsh, tidal flat, and shallow shelf. Clastic rocks dominate. In order of decreasing abundance, the rocks are fine-grained clastics (siltstone, claystone, mudstone), sandstone, carbonates, evaporites, and claystone- and carbonate-pebble conglomerate. Approximately four-fifths of the succession contains red beds or variegated layers-purple, maroon, lavender, olive, green. Unconformities bound Jurassic formations in Wyoming-Nugget, Gypsum Spring, Sundance, and Morrison. Unconformities also bound the continental Upper Triassic section-unnamed red bed unit,more » Jelm, Popo Agie-separating it from the underlying shallow-marine formations-Dinwoody, Red Peak, Alcova, Crow Mountain. Within the marine sequence, an unconformity occurs at the top of the Alcova and, quite likely, shorter periods of erosion took place at the top and below the base of the sandy faces that underlies the Alcova. The postulate duration of the principal unconformities totals about 18 m.y., at least one-sixth of early Mesozoic time. The bulk of the remaining 80-100 m.y. may be represented by a large number of smaller unconformities. For the lower Mesozoic, as for most stratigraphic intervals, a few beds contain the story of what has taken place during the abyss of geologic time. Like other places in the world where evaporites occur in the Triassic, the Wyoming section produces little crude oil. No significant sequence in the early Mesozoic shows source-bed characteristics. The Crow Mountain Sandstone contains the best reservoirs. The Lower( ) Jurassic Nugget Sandstone produces the most oil and gas in the thrust belt of southwestern Wyoming and northern Utah. Cretaceous claystones below the thrusts contain the source beds.« less

  6. Early Mesozoic cooling from low temperature thermochronology in N Spain and N Africa

    NASA Astrophysics Data System (ADS)

    Grobe, R.; Alvarez-Marrón, J.; Glasmacher, U. A.; Menéndez-Duarte, R.

    2009-04-01

    In the western prolongation of the Pyrenees, the substratum of the Cantabrian Mountains consists of an E-W crustal section of the Gondwana continental margin involved in the Variscan collision. In Mesozoic times, the region was modified by rifting and the opening of the Atlantic and the Bay of Biscay, while in Paleogene-Neogene times it was affected by the convergence of the Iberian Plate with the Eurasian Plate resulting in the present mountains. Our thermochronological data and modelled time-temperature histories suggest an earlier, relative fast cooling period during Early Triassic to Early Jurassic. This cooling event coincides temporally with the process of rifting that caused Pangaea continental break-up and the opening of the North Atlantic. Other authors report similar cooling histories from Early Triassic to Middle Jurassic from other parts of the Iberian Peninsula (Juez-Larré, 2003; Barbero et al., 2005) as well as from the Moroccan Meseta, in N Africa (Ghorbal et al., 2008). Furthermore, the time span of this cooling event includes the period of main activity of the Central Atlantic Magmatic Province (CAMP) magmatism at around 200 Ma (Marzoli et al., 1999). Wilson (1997) postulates a relationship between this magmatic activity and upwelling of a large-scale mantle plume (super-plume) beneath the West African craton. Correlatives of this province have been identified as far as the southern Iberian Peninsula, Newfoundland, and possibly in Brittany, among other European areas (Pe-Piper et al., 1992; Jourdan et al., 2003). The current presentation aims to discuss possible African far-field effects on thermochronological data in the Cantabrian Mountains of NW Spain. References: Barbero, L.; Glasmacher, U. A.; Villaseca, C.; López García, J. A.; Martín-Romera, C. (2005). Long-term thermo-tectonic evolution of the Montes de Toledo area (Central Hercynian Belt, Spain): constraints from apatite fission-track analysis. International Journal of Earth Sciences

  7. Early Mesozoic Coexistence of Amniotes and Hepadnaviridae

    PubMed Central

    Suh, Alexander; Weber, Claudia C.; Kehlmaier, Christian; Braun, Edward L.; Green, Richard E.; Fritz, Uwe; Ray, David A.; Ellegren, Hans

    2014-01-01

    Hepadnaviridae are double-stranded DNA viruses that infect some species of birds and mammals. This includes humans, where hepatitis B viruses (HBVs) are prevalent pathogens in considerable parts of the global population. Recently, endogenized sequences of HBVs (eHBVs) have been discovered in bird genomes where they constitute direct evidence for the coexistence of these viruses and their hosts from the late Mesozoic until present. Nevertheless, virtually nothing is known about the ancient host range of this virus family in other animals. Here we report the first eHBVs from crocodilian, snake, and turtle genomes, including a turtle eHBV that endogenized >207 million years ago. This genomic “fossil” is >125 million years older than the oldest avian eHBV and provides the first direct evidence that Hepadnaviridae already existed during the Early Mesozoic. This implies that the Mesozoic fossil record of HBV infection spans three of the five major groups of land vertebrates, namely birds, crocodilians, and turtles. We show that the deep phylogenetic relationships of HBVs are largely congruent with the deep phylogeny of their amniote hosts, which suggests an ancient amniote–HBV coexistence and codivergence, at least since the Early Mesozoic. Notably, the organization of overlapping genes as well as the structure of elements involved in viral replication has remained highly conserved among HBVs along that time span, except for the presence of the X gene. We provide multiple lines of evidence that the tumor-promoting X protein of mammalian HBVs lacks a homolog in all other hepadnaviruses and propose a novel scenario for the emergence of X via segmental duplication and overprinting of pre-existing reading frames in the ancestor of mammalian HBVs. Our study reveals an unforeseen host range of prehistoric HBVs and provides novel insights into the genome evolution of hepadnaviruses throughout their long-lasting association with amniote hosts. PMID:25501991

  8. Evolution of Northeastern Mexico during the early Mesozoic: potential areas for research and exploration José Rafael Barboza-Gudiño

    NASA Astrophysics Data System (ADS)

    Barboza-Gudiño, R.

    2013-05-01

    The lower Mesozoic succession of central and northeastern Mexico was deposited in a late Paleozoic-early Mesozoic remnant basin, formed at the westernmost culmination of the Ouachita-Marathon geosuture, after closure of the Rheic Ocean. Triassic fluvial deposits of El Alamar Formation (El Alamar River) are distributed in Tamaulipas and Nuevo Leon as remnants of a continental succession deposited close to the western margin of equatorial Pangea, such fluvial systems flowed to the ocean, located to the west and contributed to construction of the so-called Potosí submarine fan (Zacatecas Formation). Petrographic, geochemical, and detrital zircon geochronology studies indicate that both, marine and continental Triassic successions, come from a continental block and partially from a recycled orogen, showing grenvillian (900-1300 Ma) and Pan-African (500-700 Ma) zircon age populations, typical for peri-gondwanan blocks, in addition to zircons from the Permo-Triassic East Mexico arc (240-280 Ma). The absence of detrital zircons from the southwestern North American craton, represent a strong argument against left lateral displacement of Mexico to the southwest during the Jurassic up to their actual position, as proposed by the Mojave-Sonora megashear hypothesis. Towards the end of the Triassic or in earliest Jurassic time, began the subduction along the western margin of Pangea, which causes deformation of the Late Triassic Zacatecas Formation and subsequent magmatism in the continental Jurassic arc known as "Nazas Arc ", whose remnants are now exposed in central- to northeastern Mexico. Wide distributed in northern Mexico occurred also deposition of a red bed succession, overlying or partially interstratified with the Early to Middle Jurassic volcanic rocks of the Nazas Formation. To the west and southwest, such redbeds change transitionally to marine and marginal sedimentary facies which record sedimentation at the ancient paleo-pacific margin of Mexico (La Boca and

  9. Atlantic continental margin of the United States

    USGS Publications Warehouse

    Grow, John A.; Sheridan, Robert E.; Palmer, A.R.

    1982-01-01

    The objective of this Decade of North American Geology (D-NAG) volume will be to focus on the Mesozoic and Cenozoic evolution of the U.S. Atlantic continental margin, including the onshore coastal plain, related onshore Triassic-Jurassic rift grabens, and the offshore basins and platforms. Following multiple compressional tectonic episodes between Africa and North America during the Paleozoic Era that formed the Appalachian Mountains, the Mesozoic and Cenozoic Eras were dominated by tensional tectonic processes that separated Africa and North America. Extensional rifting during Triassic and Early Jurassic times resulted in numerous tensional grabens both onshore and offshore, which filled with nonmarine continental red beds, lacustrine deposits, and volcanic flows and debris. The final stage of this breakup between Africa and North America occurred beneath the present outer continental shelf and continental slope during Early or Middle Jurassic time when sea-floor spreading began to form new oceanic crust and lithosophere between the two continents as they drifted apart. Postrift subsidence of the marginal basins continued in response to cooling of the lithosphere and sedimentary loading.Geophysical surveys and oil-exploration drilling along the U.S. Atlantic continental margin during the past 5 years are beginning to answer many questions concerning its deep structure and stratigraphy and how it evolved during the rifting and early sea-floor-spreading stages of the separation of this region from Africa. Earlier geophysical studies of the U.S. continental margin used marine refraction and submarine gravity measurements. Single-channel seismic-reflection, marine magnetic, aeromagnetic, and continuous gravity measurements became available during the 1960s.

  10. Reconstruction of an early Paleozoic continental margin based on the nature of protoliths in the Nome Complex, Seward Peninsula, Alaska

    USGS Publications Warehouse

    Till, Alison B.; Dumoulin, Julie A.; Ayuso, Robert A.; Aleinikoff, John N.; Amato, Jeffrey M.; Slack, John F.; Shanks, W.C. Pat

    2014-01-01

    The Nome Complex is a large metamorphic unit that sits along the southern boundary of the Arctic Alaska–Chukotka terrane, the largest of several micro continental fragments of uncertain origin located between the Siberian and Laurentian cratons. The Arctic Alaska–Chukotka terrane moved into its present position during the Mesozoic; its Mesozoic and older movements are central to reconstruction of Arctic tectonic history. Accurate representation of the Arctic Alaska–Chukotka terrane in reconstructions of Late Proterozoic and early Paleozoic paleogeography is hampered by the paucity of information available. Most of the Late Proterozoic to Paleozoic rocks in the Alaska–Chukotka terrane were penetratively deformed and recrystallized during the Mesozoic deformational events; primary features and relationships have been obliterated, and age control is sparse. We use a variety of geochemical, geochronologic, paleontologic, and geologic tools to read through penetrative deformation and reconstruct the protolith sequence of part of the Arctic Alaska–Chukotka terrane, the Nome Complex. We confirm that the protoliths of the Nome Complex were part of the same Late Proterozoic to Devonian continental margin as weakly deformed rocks in the southern and central part of the terrane, the Brooks Range. We show that the protoliths of the Nome Complex represent a carbonate platform (and related rocks) that underwent incipient rifting, probably during the Ordovician, and that the carbonate platform was overrun by an influx of siliciclastic detritus during the Devonian. During early phases of the transition to siliciclastic deposition, restricted basins formed that were the site of sedimentary exhalative base-metal sulfide deposition. Finally, we propose that most of the basement on which the largely Paleozoic sedimentary protolith was deposited was subducted during the Mesozoic.

  11. Petroleum geology of the mid-Atlantic continental margin, offshore Virginia

    USGS Publications Warehouse

    Bayer, K.C.; Milici, R.C.

    1989-01-01

    The Baltimore Canyon Trough, a major sedimentary basin on the Atlantic continental shelf, contains up to 18 km of Mesozoic and Cenozoic strata. The basin has been studied extensively by multichannel common depth point (CDP) seismic reflection profiles and has been tested by drilling for hydrocarbon resources in several places. The Mesozoic and Cenozoic strata contained in the basin were deposited in littoral to bathyal depositional settings and contain immature to marginally mature oil-prone and gas-prone kerogen. The more deeply buried strata of Early Mesozoic age are more likely to be thermally mature than are the younger strata with respect to hydrocarbon generation, but contain terrestrially derived coaly organic matter that would be prone to yield gas, rather than oil. An analysis of available CDP seismic reflection data has indicated that there are several potential hydrocarbon plays in the area offshore of Virginia. These include: (1) Lower Mesozoic synrift basins that appear similar to those exposed in the Appalachian Piedmont, (2) a stratigraphic updip pinchout of strata of Early Mesozoic age in the offshore region near the coast, (3) a deeply buried paleoshelf edge, where seismic reflectors dip sharply seaward; and (4) a Cretaceous/Jurassic shelf edge beneath the present continental rise. Of these, the synrift basins and Cretaceous/Jurassic shelf edge are considered to be the best targets for exploration. ?? 1989.

  12. The fragmentation of Pangaea and Mesozoic terrestrial vertebrate biodiversity

    PubMed Central

    2016-01-01

    During the Mesozoic (242–66 million years ago), terrestrial regions underwent a massive shift in their size, position and connectivity. At the beginning of the era, the land masses were joined into a single supercontinent called Pangaea. However, by the end of the Mesozoic, terrestrial regions had become highly fragmented, both owing to the drifting apart of the continental plates and the extremely high sea levels that flooded and divided many regions. How terrestrial biodiversity was affected by this fragmentation and large-scale flooding of the Earth's landmasses is uncertain. Based on a model using the species–area relationship (SAR), terrestrial vertebrate biodiversity would be expected to nearly double through the Mesozoic owing to continental fragmentation, despite a decrease of 24% in total terrestrial area. Previous studies of Mesozoic vertebrates have generally found increases in terrestrial diversity towards the end of the era, although these increases are often attributed to intrinsic or climatic factors. Instead, continental fragmentation over this time may largely explain any observed increase in terrestrial biodiversity. This study demonstrates the importance that non-intrinsic effects can have on the taxonomic success of a group, and the importance of geography to understanding past biodiversity. PMID:27651536

  13. Paleozoic and mesozoic evolution of East-Central California

    USGS Publications Warehouse

    Stevens, C.H.; Stone, P.; Dunne, G.C.; Greene, D.C.; Walker, J.D.; Swanson, B.J.

    1997-01-01

    East-central California, which encompasses an area located on the westernmost part of sialic North America, contains a well-preserved record of Paleozoic and Mesozoic tectonic events that reflect the evolving nature of the Cordilleran plate margin to the west. After the plate margin was formed by continental rifting in the Neoproterozoic, sediments comprising the Cordilleran miogeocline began to accumulate on the subsiding passive margin. In east-central California, sedimentation did not keep pace with subsidence, resulting in backstepping of a series of successive carbonate platforms throughout the early and middle Paleozoic. This phase of miogeoclinal development was brought to a close by the Late Devonian-Early Mississippian Antler orogeny, during the final phase of which oceanic rocks were emplaced onto the continental margin. Subsequent Late Mississippian-Pennsylvanian faulting and apparent reorientation of the carbonate platform margin are interpreted to have been associated with truncation of the continental plate on a sinistral transform fault zone. In the Early Permian, contractional deformation in east-central California led to the development of a narrow, uplifted thrust belt flanked by marine basins in which thick sequences of deep-water strata accumulated. A second episode of contractional deformation in late Early Permian to earliest Triassic time widened and further uplifted the thrust belt and produced the recently identified Inyo Crest thrust, which here is correlated with the regionally significant Last Chance thrust. In the Late Permian, about the time of the second contractional episode, extensional faulting created shallow sedimentary basins in the southern Inyo Mountains. In the El Paso Mountains to the south, deformation and plutonism record the onset of subduction and arc magmatism in late Early Permian to earliest Triassic time along this part of the margin. Tectonism had ceased in most of east-central California by middle to late Early

  14. High-pressure amphibolite facies dynamic metamorphism and the Mesozoic tectonic evolution of an ancient continental margin, east- central Alaska

    USGS Publications Warehouse

    Dusel-Bacon, C.; Hansen, V.L.; Scala, J.A.

    1995-01-01

    Ductilely deformed amphibolite facies tectonites comprise two adjacent terranes in east-central Alaska: the northern, structurally higher Taylor Mountain terrane and the southern, structurally lower Lake George subterrane of the Yukon-Tanana terrane. The pressure, temperature, kinematic and age data are interpreted to indicate that the metamorphism of the Taylor Mountain terrane and Lake George subterrane took place during different phases of a latest Palaeozoic through early Mesozoic shortening episode resulting from closure of an ocean basin now represented by klippen of the Seventymile-Slide Mountain terrane. High- to intermediate-pressure metamorphism of the Taylor Mountain terrane took place within a SW-dipping (present-day coordinates) subduction system. High- to intermediate-pressure metamorphism of the Lake George subterrane and the structural contact zone occurred during NW-directed overthrusting of the Taylor Mountain, Seventymile-Slide Mountain and Nisutlin terranes, and imbrication of the continental margin in Jurassic time. -from Authors

  15. The fragmentation of Pangaea and Mesozoic terrestrial vertebrate biodiversity.

    PubMed

    Vavrek, Matthew J

    2016-09-01

    During the Mesozoic (242-66 million years ago), terrestrial regions underwent a massive shift in their size, position and connectivity. At the beginning of the era, the land masses were joined into a single supercontinent called Pangaea. However, by the end of the Mesozoic, terrestrial regions had become highly fragmented, both owing to the drifting apart of the continental plates and the extremely high sea levels that flooded and divided many regions. How terrestrial biodiversity was affected by this fragmentation and large-scale flooding of the Earth's landmasses is uncertain. Based on a model using the species-area relationship (SAR), terrestrial vertebrate biodiversity would be expected to nearly double through the Mesozoic owing to continental fragmentation, despite a decrease of 24% in total terrestrial area. Previous studies of Mesozoic vertebrates have generally found increases in terrestrial diversity towards the end of the era, although these increases are often attributed to intrinsic or climatic factors. Instead, continental fragmentation over this time may largely explain any observed increase in terrestrial biodiversity. This study demonstrates the importance that non-intrinsic effects can have on the taxonomic success of a group, and the importance of geography to understanding past biodiversity. © 2016 The Author(s).

  16. Moroccan crustal response to continental drift.

    PubMed

    Kanes, W H; Saadi, M; Ehrlich, E; Alem, A

    1973-06-01

    The formation and development of a zone of spreading beneath the continental crust resulted in the breakup of Pangea and formation of the Atlantic Ocean. The crust of Morocco bears an extremely complete record of the crustal response to this episode of mantle dynamics. Structural and related depositional patterns indicate that the African margin had stabilized by the Middle Jurassic as a marine carbonate environment; that it was dominated by tensile stresses in the early Mesozoic, resulting in two fault systems paralleling the Atlantic and Mediterranean margins and a basin and range structural-depositional style; and that it was affected by late Paleozoic metamorphism and intrusion. Mesozoic events record the latter portion of African involvement in the spreading episode; late Paleozoic thermal orogenesis might reflect the earlier events in the initiation of the spreading center and its development beneath significant continental crust. In that case, more than 100 million years were required for mantle dynamics to break up Pangea.

  17. Hotspots, polar wander, Mesozoic convection and the geoid

    NASA Astrophysics Data System (ADS)

    Anderson, D. L.

    1981-11-01

    The geoid bears little relation to present tectonic features of the earth other than trenches. The Mesozoic supercontinent of Pangea, however, apparently occupied a central position in the Atlantic-African geoid high. This and the equatorial Pacific geoid high contain most of the world's hotspots. The plateaus and rises in the western Pacific formed in the Pacific geoid high and this may have been the early Mesozoic position of Pacifica, the fragments of which are now the Pacific rim portions of the continents. Geoid highs which are unrelated to present subduction zones may be the former sites of continental aggregations and mantle insulation and, therefore, hotter than normal mantle. The pent-up heat causes rifts and hotspots and results in extensive uplift, magmatism, fragmentation and dispersal of the continents and the subsequent formation of plateaus, aseismic ridges and seamount chains. Convection in the uppermantle would then be due to lateral temperature gradients as well as heating from below and would be intrinsically episodic.

  18. Hotspots, polar wander, Mesozoic convection and the geoid

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.

    1981-01-01

    The geoid bears little relation to present tectonic features of the earth other than trenches. The Mesozoic supercontinent of Pangea, however, apparently occupied a central position in the Atlantic-African geoid high. This and the equatorial Pacific geoid high contain most of the world's hotspots. The plateaus and rises in the western Pacific formed in the Pacific geoid high and this may have been the early Mesozoic position of Pacifica, the fragments of which are now the Pacific rim portions of the continents. Geoid highs which are unrelated to present subduction zones may be the former sites of continental aggregations and mantle insulation and, therefore, hotter than normal mantle. The pent-up heat causes rifts and hotspots and results in extensive uplift, magmatism, fragmentation and dispersal of the continents and the subsequent formation of plateaus, aseismic ridges and seamount chains. Convection in the uppermantle would then be due to lateral temperature gradients as well as heating from below and would be intrinsically episodic.

  19. Pelvis morphology suggests that early Mesozoic birds were too heavy to contact incubate their eggs.

    PubMed

    Charles Deeming, D; Mayr, Gerald

    2018-05-01

    Numerous new fossils have driven an interest in reproduction of early birds, but direct evidence remains elusive. No Mesozoic avian eggs can be unambiguously assigned to a species, which hampers our understanding of the evolution of contact incubation, which is a defining feature of extant birds. Compared to living species, eggs of Mesozoic birds are relatively small, but whether the eggs of Mesozoic birds could actually have borne the weight of a breeding adult has not yet been investigated. We estimated maximal egg breadth for a range of Mesozoic avian taxa from the width of the pelvic canal defined by the pubic symphysis. Known elongation ratios of Mesozoic bird eggs allowed us to predict egg mass and hence the load mass an egg could endure before cracking. These values were compared to the predicted body masses of the adult birds based on skeletal remains. Based on 21 fossil species, we show that for nonornithothoracine birds body mass was 187% of the load mass of the eggs. For Enantiornithes, body mass was 127% greater than the egg load mass, but some early Cretaceous ornithuromorphs were 179% heavier than their eggs could support. Our indirect approach provides the best evidence yet that early birds could not have sat on their eggs without running the risk of causing damage. We suggest that contact incubation evolved comparatively late in birds. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  20. Ophiolites of Iran: Keys to understanding the tectonic evolution of SW Asia: (II) Mesozoic ophiolites

    NASA Astrophysics Data System (ADS)

    Moghadam, Hadi Shafaii; Stern, Robert J.

    2015-03-01

    Iran is a mosaic of continental terranes of Cadomian (520-600 Ma) age, stitched together along sutures decorated by Paleozoic and Mesozoic ophiolites. Here we present the current understanding of the Mesozoic (and rare Cenozoic) ophiolites of Iran for the international geoscientific audience. We summarize field, chemical and geochronological data from the literature and our own unpublished data. Mesozoic ophiolites of Iran are mostly Cretaceous in age and are related to the Neotethys and associated backarc basins on the S flank of Eurasia. These ophiolites can be subdivided into five belts: 1. Late Cretaceous Zagros outer belt ophiolites (ZOB) along the Main Zagros Thrust including Late Cretaceous-Early Paleocene Maku-Khoy-Salmas ophiolites in NW Iran as well as Kermanshah-Kurdistan, Neyriz and Esfandagheh (Haji Abad) ophiolites, also Late Cretaceous-Eocene ophiolites along the Iraq-Iran border; 2. Late Cretaceous Zagros inner belt ophiolites (ZIB) including Nain, Dehshir, Shahr-e-Babak and Balvard-Baft ophiolites along the southern periphery of the Central Iranian block and bending north into it; 3. Late Cretaceous-Early Paleocene Sabzevar-Torbat-e-Heydarieh ophiolites of NE Iran; 4. Early to Late Cretaceous Birjand-Nehbandan-Tchehel-Kureh ophiolites in eastern Iran between the Lut and Afghan blocks; and 5. Late Jurassic-Cretaceous Makran ophiolites of SE Iran including Kahnuj ophiolites. Most Mesozoic ophiolites of Iran show supra-subduction zone (SSZ) geochemical signatures, indicating that SW Asia was a site of plate convergence during Late Mesozoic time, but also include a significant proportion showing ocean-island basalt affinities, perhaps indicating the involvement of subcontinental lithospheric mantle.

  1. A Mesozoic orogenic cycle from post-collision to subduction in the southwestern Korean Peninsula: New structural, geochemical, and chronological evidence

    NASA Astrophysics Data System (ADS)

    Park, Seung-Ik; Kwon, Sanghoon; Kim, Sung Won; Hong, Paul S.; Santosh, M.

    2018-05-01

    The Early to Middle Mesozoic basins, distributed sporadically over the Korean Peninsula, preserve important records of the tectonic history of some of the major orogenic belts in East Asia. Here we present a comprehensive study of the structural, geochemical, geochronological, and paleontological features of a volcano-sedimentary package, belonging to the Oseosan Volcanic Complex of the Early to Middle Mesozoic Chungnam Basin, within the Mesozoic subduction-collision orogen in the southwestern Korean Peninsula. The zircon U-Pb data from rhyolitic volcanic rocks of the complex suggest Early to Middle Jurassic emplacement age of ca. 178-172 Ma, harmonious with plant fossil taxa found from the overlying tuffaceous sedimentary rock. The geochemical data for the rhyolitic volcanic rocks are indicative of volcanic arc setting, implying that the Chungnam Basin has experienced an intra-arc subsidence during the basin-expanding stage by subduction of the Paleo-Pacific (Izanagi) Plate. The Jurassic arc-related Oseosan Volcanic Complex was structurally stacked by the older Late Triassic to Early Jurassic post-collisional basin-fill of the Nampo Group by the Jangsan fault during basin inversion. The Late Jurassic to Early Cretaceous K-feldspar and illite K-Ar ages marked the timing of inversion tectonics, contemporaneous with the magmatic quiescence in the southern Korean Peninsula, likely due to flat-lying or low-angle subduction. The basin evolution history preserved in the Mesozoic Chungnam Basin reflects a Mesozoic orogenic cycle from post-collision to subduction in the southwestern Korean Peninsula. This, in turn, provides a better understanding of the spatial and temporal changes in Mesozoic tectonic environments along the East Asian continental margin.

  2. Riftogenic magmatism of western part of the Early Mesozoic Mongolian-Transbaikalian igneous province: Results of geochronological studies

    NASA Astrophysics Data System (ADS)

    Yarmolyuk, V. V.; Kozlovsky, A. M.; Salnikova, E. B.; Travin, A. V.; Kudryashova, E. A.

    2017-08-01

    Geochronological studies of rocks from a bimodal high-alkali volcanic-plutonic complex collected in the area of Kharkhorin zone of the Early Mesozoic Mongolian-Transbaikalian igneous province (MTIP) are made. The age of alkali granites from Olziit sum is 211 ± 1 Ma (U-Pb ID-TIMS on zircon) to 209 ± 2 and 217 ± 4 Ma (40Ar/39Ar on alkali amphibole); the age of alkali granite-porphyries from the area of Sant sum is 206 ± 1 Ma (U-Pb ID-TIMS on zircon). These rock series formed syncronously to the analogous magmatism episode in the Northern Gobi and Western Transbaikalian rift zones of the MTIP. The similarity of the age and composition of igneous associations of the MTIP suggests a common mechanism of its formation related to the effect of a mantle plume on the continental lithosphere at the base of the entire igneous zone having a zonal structure.

  3. Terrestrial origin of viviparity in mesozoic marine reptiles indicated by early triassic embryonic fossils.

    PubMed

    Motani, Ryosuke; Jiang, Da-yong; Tintori, Andrea; Rieppel, Olivier; Chen, Guan-bao

    2014-01-01

    Viviparity in Mesozoic marine reptiles has traditionally been considered an aquatic adaptation. We report a new fossil specimen that strongly contradicts this traditional interpretation. The new specimen contains the oldest fossil embryos of Mesozoic marine reptile that are about 10 million years older than previous such records. The fossil belongs to Chaohusaurus (Reptilia, Ichthyopterygia), which is the oldest of Mesozoic marine reptiles (ca. 248 million years ago, Early Triassic). This exceptional specimen captures an articulated embryo in birth position, with its skull just emerged from the maternal pelvis. Its headfirst birth posture, which is unlikely to be a breech condition, strongly indicates a terrestrial origin of viviparity, in contrast to the traditional view. The tail-first birth posture in derived ichthyopterygians, convergent with the conditions in whales and sea cows, therefore is a secondary feature. The unequivocally marine origin of viviparity is so far not known among amniotes, a subset of vertebrate animals comprising mammals and reptiles, including birds. Therefore, obligate marine amniotes appear to have evolved almost exclusively from viviparous land ancestors. Viviparous land reptiles most likely appeared much earlier than currently thought, at least as early as the recovery phase from the end-Permian mass extinction.

  4. The Completeness of the Fossil Record of Mesozoic Birds: Implications for Early Avian Evolution

    PubMed Central

    Brocklehurst, Neil; Upchurch, Paul; Mannion, Philip D.; O'Connor, Jingmai

    2012-01-01

    Many palaeobiological analyses have concluded that modern birds (Neornithes) radiated no earlier than the Maastrichtian, whereas molecular clock studies have argued for a much earlier origination. Here, we assess the quality of the fossil record of Mesozoic avian species, using a recently proposed character completeness metric which calculates the percentage of phylogenetic characters that can be scored for each taxon. Estimates of fossil record quality are plotted against geological time and compared to estimates of species level diversity, sea level, and depositional environment. Geographical controls on the avian fossil record are investigated by comparing the completeness scores of species in different continental regions and latitudinal bins. Avian fossil record quality varies greatly with peaks during the Tithonian-early Berriasian, Aptian, and Coniacian–Santonian, and troughs during the Albian-Turonian and the Maastrichtian. The completeness metric correlates more strongly with a ‘sampling corrected’ residual diversity curve of avian species than with the raw taxic diversity curve, suggesting that the abundance and diversity of birds might influence the probability of high quality specimens being preserved. There is no correlation between avian completeness and sea level, the number of fluviolacustrine localities or a recently constructed character completeness metric of sauropodomorph dinosaurs. Comparisons between the completeness of Mesozoic birds and sauropodomorphs suggest that small delicate vertebrate skeletons are more easily destroyed by taphonomic processes, but more easily preserved whole. Lagerstätten deposits might therefore have a stronger impact on reconstructions of diversity of smaller organisms relative to more robust forms. The relatively poor quality of the avian fossil record in the Late Cretaceous combined with very patchy regional sampling means that it is possible neornithine lineages were present throughout this interval but

  5. Extreme Mesozoic crustal thinning in the Eastern Iberia margin: The example of the Columbrets Basin (Valencia Trough)

    NASA Astrophysics Data System (ADS)

    Mohn, G.; Etheve, N.; Frizon de Lamotte, D.; Roca, E.; Tugend, J.; Gómez-Romeu, J.

    2017-12-01

    Eastern Iberia preserves a complex succession of Mesozoic rifts partly or completely inverted during the Late Cretaceous and Cenozoic in relation with Africa-Eurasia convergence. Notably, the Valencia Trough, classically viewed as part of the Cenozoic West Mediterranean basins, preserves in its southwestern part a thick Mesozoic succession (locally »10km thick) over a highly thinned continental basement (locally only »3,5km thick). This sub-basin referred to as the Columbrets Basin, represents a Late Jurassic-Early Cretaceous hyper-extended rift basin weakly overprinted by subsequent events. Its initial configuration is well preserved allowing us to unravel its 3D architecture and tectono-stratigraphic evolution in the frame of the Mesozoic evolution of eastern Iberia. The Columbrets Basin benefits from an extensive dataset combining high resolution reflection seismic profiles, drill holes, refraction seismic data and Expanding Spread Profiles. Its Mesozoic architecture is controlled by interactions between extensional deformation and halokinesis involving the Upper Triassic salt. The thick uppermost Triassic to Cretaceous succession describes a general synclinal shape, progressively stretched and dismembered towards the basin borders. The SE-border of the basin is characterized by a large extensional detachment fault acting at crustal scale and interacting locally with the Upper Triassic décollement. This extensional structure accommodates the exhumation of the continental basement and part of the crustal thinning. Eventually our results highlight the complex interaction between extreme crustal thinning and occurrence of a pre-rift salt level for the deformation style and tectono-stratigraphic evolution of hyper-extended rift basins.

  6. Terrestrial Origin of Viviparity in Mesozoic Marine Reptiles Indicated by Early Triassic Embryonic Fossils

    PubMed Central

    Motani, Ryosuke; Jiang, Da-yong; Tintori, Andrea; Rieppel, Olivier; Chen, Guan-bao

    2014-01-01

    Viviparity in Mesozoic marine reptiles has traditionally been considered an aquatic adaptation. We report a new fossil specimen that strongly contradicts this traditional interpretation. The new specimen contains the oldest fossil embryos of Mesozoic marine reptile that are about 10 million years older than previous such records. The fossil belongs to Chaohusaurus (Reptilia, Ichthyopterygia), which is the oldest of Mesozoic marine reptiles (ca. 248 million years ago, Early Triassic). This exceptional specimen captures an articulated embryo in birth position, with its skull just emerged from the maternal pelvis. Its headfirst birth posture, which is unlikely to be a breech condition, strongly indicates a terrestrial origin of viviparity, in contrast to the traditional view. The tail-first birth posture in derived ichthyopterygians, convergent with the conditions in whales and sea cows, therefore is a secondary feature. The unequivocally marine origin of viviparity is so far not known among amniotes, a subset of vertebrate animals comprising mammals and reptiles, including birds. Therefore, obligate marine amniotes appear to have evolved almost exclusively from viviparous land ancestors. Viviparous land reptiles most likely appeared much earlier than currently thought, at least as early as the recovery phase from the end-Permian mass extinction. PMID:24533127

  7. Late Jurassic-Early Cretaceous continental convergence and intracontinental orogenesis in East Asia: A synthesis of the Yanshan Revolution

    NASA Astrophysics Data System (ADS)

    Dong, Shuwen; Zhang, Yueqiao; Zhang, Fuqin; Cui, Jianjun; Chen, Xuanhua; Zhang, Shuanhong; Miao, Laicheng; Li, Jianhua; Shi, Wei; Li, Zhenhong; Huang, Shiqi; Li, Hailong

    2015-12-01

    The basic tectonic framework of continental East Asia was produced by a series of nearly contemporaneous orogenic events in the late Middle Jurassic to Early Cretaceous. Commonly, the Late Mesozoic orogenic processes were characterized by continent-continent collision, large-scale thrusting, strike-slip faulting and intense crustal shortening, crustal thickening, regional anatexis and metamorphism, followed by large-scale lithospheric extension, rifting and magmatism. To better understand the geological processes, this paper reviews and synthesizes existing multi-disciplinary geologic data related to sedimentation, tectonics, magmatism, metamorphism and geochemistry, and proposes a two-stage tectono-thermal evolutionary history of East Asia during the late Middle Jurassic to Early Cretaceous (ca. 170-120 Ma). In the first stage, three orogenic belts along the continental margins were formed coevally at ca. 170-135 Ma, i.e., the north Mongol-Okhotsk orogen, the east paleo-Pacific coastal orogen, and the west Bangong-Nujiang orogen. Tectonism related to the coastal orogen caused extensive intracontinental folding and thrusting that resulted in a depositional hiatus in the Late Jurassic, as well as crustal anatexis that generated syn-kinematic granites, adakites and migmatites. The lithosphere of the East Asian continent was thickened, reaching a maximum during the latest Jurassic or the earliest Cretaceous. In the second stage (ca. 135-120 Ma), delamination of the thickened lithosphere resulted in a remarkable (>120 km) lithospheric thinning and the development of mantle-derived magmatism, mineralization, metamorphic core complexes and rift basins. The Middle Jurassic-Early Cretaceous subduction of oceanic plates (paleo-Pacific, meso-Tethys, and Mongol-Okhotsk) and continent-continent collision (e.g. Lhasa and Qiangtang) along the East Asian continental margins produced broad coastal and intracontinental orogens. These significant tectonic activities, marked by

  8. Geological constraints on continental arc activity since 720 Ma: implications for the link between long-term climate variability and episodicity of continental arcs

    NASA Astrophysics Data System (ADS)

    Cao, W.; Lee, C. T.

    2016-12-01

    Continental arc volcanoes have been suggested to release more CO2 than island arc volcanoes due to decarbonation of wallrock carbonates in the continental upper plate through which the magmas traverse (Lee et al., 2013). Continental arcs may thus play an important role in long-term climate. To test this hypothesis, we compiled geological maps to reconstruct the surface distribution of granitoid plutons and the lengths of ancient continental arcs. These results were then compiled into a GIS framework and incorporated into GPlates plate reconstructions. Our results show an episodic nature of global continental arc activity since 720 Ma. The lengths of continental arcs were at minimums during most of the Cryogenian ( 720-670 Ma), the middle Paleozoic ( 460-300 Ma) and the Cenozoic ( 50-0 Ma). Arc lengths were highest during the Ediacaran ( 640-570 Ma), the early Paleozoic ( 550-430 Ma) and the entire Mesozoic with peaks in the Early Triassic ( 250-240 Ma), Late Jurassic-Early Cretaceous ( 160-130 Ma), and Late Cretaceous ( 90-65 Ma). The extensive continental arcs in the Ediacaran and early Paleozoic reflect the Pan-African events and circum-Gondwana subduction during the assembly of the Gondwana supercontinent. The Early Triassic peak is coincident with the final closure of the paleo-Asian oceans and the onset of circum-Pacific subduction associated with the assembly of the Pangea supercontinent. The Jurassic-Cretaceous peaks reflect the extensive continental arcs established in the western Pacific, North and South American Cordillera, coincident with the initial dispersal of the Pangea. Continental arcs are favored during the final assembly and the early-stage dispersal of a supercontinent. Our compilation shows a temporal match between continental arc activity and long-term climate at least since 720 Ma. For example, continental arc activity was reduced during the Cryogenian icehouse event, and enhanced during the Early Paleozoic and Jurassic-Cretaceous greenhouse

  9. Mesozoic dinosaurs from Brazil and their biogeographic implications.

    PubMed

    Bittencourt, Jonathas S; Langer, Max C

    2011-03-01

    The record of dinosaur body-fossils in the Brazilian Mesozoic is restricted to the Triassic of Rio Grande do Sul and Cretaceous of various parts of the country. This includes 21 named species, two of which were regarded as nomina dubia, and 19 consensually assigned to Dinosauria. Additional eight supraspecific taxa have been identified based on fragmentary specimens and numerous dinosaur footprints known in Brazil. In fact, most Brazilian specimens related to dinosaurs are composed of isolated teeth and vertebrae. Despite the increase of fieldwork during the last decade, there are still no dinosaur body-fossils of Jurassic age and the evidence of ornithischians in Brazil is very limited. Dinosaur faunas from this country are generally correlated with those from other parts of Gondwana throughout the Mesozoic. During the Late Triassic, there is a close correspondence to Argentina and other south-Pangaea areas. Mid-Cretaceous faunas of northeastern Brazil resemble those of coeval deposits of North Africa and Argentina. Southern hemisphere spinosaurids are restricted to Africa and Brazil, whereas abelisaurids are still unknown in the Early Cretaceous of the latter. Late Cretaceous dinosaur assemblages of south-central Brazil are endemic only to genus or, more conspicuously, to species level, sharing closely related taxa with Argentina, Madagascar, Indo-Pakistan and, to a lesser degree, continental Africa.

  10. An integrated geophysical study on the Mesozoic strata distribution and hydrocarbon potential in the South China Sea

    NASA Astrophysics Data System (ADS)

    Hu, Weijian; Hao, Tianyao; Jiang, Weiwei; Xu, Ya; Zhao, Baimin; Jiang, Didi

    2015-11-01

    A series of drilling, dredge, and seismic investigations indicate that Mesozoic sediments exist in the South China Sea (SCS) which shows a bright prospect for oil and gas exploration. In order to study the distribution of Mesozoic strata and their residual thicknesses in the SCS, we carried out an integrated geophysical study based mainly on gravity data, gravity basement depth and distribution of residual Mesozoic thickness in the SCS were obtained using gravity inversion constrained with high-precision drilling and seismic data. In addition, the fine deep crustal structures and distribution characteristics of Mesozoic thicknesses of three typical profiles were obtained by gravity fitting inversion. Mesozoic strata in the SCS are mainly distributed in the south and north continental margins, and have been reformed by the later tectonic activities. They extend in NE-trending stripes are macro-controlled by the deep and large NE-trending faults, and cut by the NW-trending faults which were active in later times. The offset in NW direction of Mesozoic strata in Nansha area of the southern margin are more obvious as compared to the north margin. In the Pearl River Mouth Basin and Southwest Taiwan Basin of the north continental margin the Mesozoic sediments are continuously distributed with a relatively large thickness. In the Nansha area of the south margin the Mesozoic strata are discontinuous and their thicknesses vary considerably. According to the characteristics of Mesozoic thickness distribution and hydrocarbon potential analyses from drilling and other data, Dongsha Uplift-Chaoshan Depression, Southwest Taiwan Basin-Peikang Uplift and Liyue Bank have large thickness of the Mesozoic residual strata, have good hydrocarbon genesis capability and complete source-reservoir-cap combinations, show a bright prospect of Mesozoic oil/gas resources.

  11. Evidence for rapid climate change in the Mesozoic-Palaeogene greenhouse world.

    PubMed

    Jenkyns, Hugh C

    2003-09-15

    The best-documented example of rapid climate change that characterized the so-called 'greenhouse world' took place at the time of the Palaeocene-Eocene boundary: introduction of isotopically light carbon into the ocean-atmosphere system, accompanied by global warming of 5-8 degrees C across a range of latitudes, took place over a few thousand years. Dissociation, release and oxidation of gas hydrates from continental-margin sites and the consequent rapid global warming from the input of greenhouses gases are generally credited with causing the abrupt negative excursions in carbon- and oxygen-isotope ratios. The isotopic anomalies, as recorded in foraminifera, propagated downwards from the shallowest levels of the ocean, implying that considerable quantities of methane survived upward transit through the water column to oxidize in the atmosphere. In the Mesozoic Era, a number of similar events have been recognized, of which those at the Triassic-Jurassic boundary, in the early Toarcian (Jurassic) and in the early Aptian (Cretaceous) currently carry the best documentation for dramatic rises in temperature. In these three examples, and in other less well-documented cases, the lack of a definitive time-scale for the intervals in question hinders calculation of the rate of environmental change. However, comparison with the Palaeocene-Eocene thermal maximum (PETM) suggests that these older examples could have been similarly rapid. In both the early Toarcian and early Aptian cases, the negative carbon-isotope excursion precedes global excess carbon burial across a range of marine environments, a phenomenon that defines these intervals as oceanic anoxic events (OAEs). Osmium-isotope ratios ((187)Os/(188)Os) for both the early Toarcian OAE and the PETM show an excursion to more radiogenic values, demonstrating an increase in weathering and erosion of continental crust consonant with elevated temperatures. The more highly buffered strontium-isotope system ((87)Sr/(86)Sr

  12. A total petroleum system of the Browse Basin, Australia; Late Jurassic, Early Cretaceous-Mesozoic

    USGS Publications Warehouse

    Bishop, M.G.

    1999-01-01

    The Browse Basin Province 3913, offshore northern Australia, contains one important petroleum system, Late Jurassic, Early Cretaceous-Mesozoic. It is comprised of Late Jurassic through Early Cretaceous source rocks deposited in restricted marine environments and various Mesozoic reservoir rocks deposited in deep-water fan to fluvial settings. Jurassic age intraformational shales and claystones and Cretaceous regional claystones seal the reservoirs. Since 1967, when exploration began in this 105,000 km2 area, fewer than 40 wells have been drilled and only one recent oil discovery is considered potentially commercial. Prior to the most recent oil discovery, on the eastern side of the basin, a giant gas field was discovered in 1971, under a modern reef on the west side of the basin. Several additional oil and gas discoveries and shows were made elsewhere. A portion of the Vulcan sub-basin lies within Province 3913 where a small field, confirmed in 1987, produced 18.8 million barrels of oil (MMBO) up to 1995 and has since been shut in.

  13. Geochronology and geochemistry of late Paleozoic-early Mesozoic igneous rocks of the Erguna Massif, NE China: Implications for the early evolution of the Mongol-Okhotsk tectonic regime

    NASA Astrophysics Data System (ADS)

    Li, Yu; Xu, Wen-Liang; Wang, Feng; Tang, Jie; Zhao, Shuo; Guo, Peng

    2017-08-01

    We undertook geochemical and geochronological studies on late Paleozoic-early Mesozoic igneous rocks from the Erguna Massif with the aim of constraining the early evolution of the Mongol-Okhotsk tectonic regime. Zircon crystals from nine representative samples are euhedral-subhedral, display oscillatory growth zoning, and have Th/U values of 0.14-6.48, indicating a magmatic origin. U-Pb dating of zircon using SIMS and LA-ICP-MS indicates that these igneous rocks formed during the Late Devonian (∼365 Ma), late Carboniferous (∼303 Ma), late Permian (∼256 Ma), and Early-Middle Triassic (246-238 Ma). The Late Devonian rhyolites, together with coeval A-type granites, formed in an extensional environment related to the northwestwards subduction of the Heihe-Nenjiang oceanic plate. Their positive εHf(t) values (+8.4 to +14.4) and Hf two-stage model ages (TDM2 = 444-827 Ma) indicate they were derived from a newly accreted continental crustal source. The late Carboniferous granodiorites are geochemically similar to adakites, and their εHf(t) values (+10.4 to +12.3) and Hf two-stage model ages (TDM2 = 500-607 Ma) suggest they were sourced from thickened juvenile lower crustal material, this thickening may be related to the amalgamation of the Erguna-Xing'an and Songnen-Zhangguangcai Range massifs. Rocks of the late Permian to Middle Triassic suite comprise high-K calc-alkaline monzonites, quartz monzonites, granodiorites, and monzogranites. These rocks are relatively enriched in light rare earth elements and large ion lithophile elements, and depleted in heavy rare earth elements and high field strength elements. They were emplaced, together with coeval porphyry-type ore deposits, along an active continental margin where the Mongol-Okhotsk oceanic plate was subducting beneath the Erguna Massif.

  14. Paleozoic and Lower Mesozoic magmas from the eastern Klamath Mountains (North California) and the geodynamic evolution of northwestern America

    NASA Astrophysics Data System (ADS)

    Lapierre, H.; Brouxel, M.; Albarede, F.; Coulin, C.; Lecuyer, C.; Martin, P.; Mascle, G.; Rouer, O.

    1987-09-01

    The Paleozoic to Early Mesozoic geology of the eastern Klamath Mountains (N California) is characterized by three major magmatic events of Ordovician, Late Ordovician to Early Devonian, and Permo-Triassic ages. The Ordovician event is represented by a calc-alkalic island-arc sequence (Lovers Leap Butte sequence) developed in the vicinity of a continental margin. The Late Ordovician to Early Devonian event consists of the 430-480 Ma old Trinity ophiolite formed during the early development of a marginal basin, and a series of low-K tholeiitic volcanic suites (Lovers Leap Basalt—Keratophyre unit, Copley and Balaklala Formations) belonging to intraoceanic island-arcs. Finally, the Permo-Triassic event gave rise to three successives phases of volcanic activity (Nosoni, Dekkas and Bully Hill) represented by the highly differentiated basalt-to-rhyolite low-K tholeiitic series of mature island-arcs. The Permo-Triassic sediments are indicative of shallow to moderate depth in an open, warm sea. The geodynamic evolution of the eastern Klamath Mountains during Paleozoic to Early Mesozoic times is therefore constrained by the geological, petrological and geochemical features of its island-arcs and related marginal basin. A consistent plate-tectonic model is proposed for the area, consisting of six main stages: (1) development during Ordovician times of a calc-alkalic island-arc in the vicinity of a continental margin; (2) extrusion during Late Ordovician to Silurian times of a primitive basalt-andesite intraoceanic island-arc suite, which terminated with boninites, the latter suggest rifting in the fore-arc, followed by the breakup of the arc; (3) opening and development of the Trinity back-arc basin around 430-480 Ma ago; (4) eruption of the Balaklala Rhyolite either in the arc or in the fore-arc, ending in Early Devonian time with intrusion of the 400 Ma Mule Mountain stock; (5) break in volcanic activity from the Early Devonian to the Early Permian; and (6) development of

  15. Mesozoic and Cenozoic structural evolution of North Oman: New insights from high-quality 3D seismic from the Lekhwair area

    NASA Astrophysics Data System (ADS)

    Bazalgette, Loïc; Salem, Hisham

    2018-06-01

    This paper highlights the role of Triassic-Jurassic extension and late Cretaceous compression in the Mesozoic-Cenozoic (Alpine) structuring of North Oman. The syn/post-Mesozoic regional structural evolution is usually documented as a succession of two stages of deformation. The Alpine 1 phase, late Cretaceous in age, occurred in association with two ophiolite obduction stages (Semail and Masirah ophiolites). It was characterised by strike slip to extensional deformation in the North Oman foreland basin sub-surface. The Alpine 2 phase, Miocene in age, was related to the continental collision responsible for both the Zagros orogen and the uplift of the Oman Mountains. The Alpine 2 deformation was transpressional to compressional. Observation and interpretation of good quality 3D seismic in the Lekhwair High area enabled the distinction of two earlier phases. Early Mesozoic extension occurred concomitantly with the regional Triassic to Jurassic rifting, developing Jurassic-age normal faults. Late Cretaceous compression occurred prior to the main Alpine 1 phase and triggered the inversion of Jurassic-seated normal faults as well as the initiation of compressional folds in the Cretaceous overburden. These early phases have been ignored or overlooked as part of the North Oman history although they are at the origin of structures hosting major local and regional hydrocarbon accumulations.

  16. Spatial and temporal distribution of Mesozoic adakitic rocks along the Tan-Lu fault, Eastern China: Constraints on the initiation of lithospheric thinning

    NASA Astrophysics Data System (ADS)

    Gu, Hai-Ou; Xiao, Yilin; Santosh, M.; Li, Wang-Ye; Yang, Xiaoyong; Pack, Andreas; Hou, Zhenhui

    2013-09-01

    The Mesozoic tectonics in East China is characterized by significant lithospheric thinning of the North China Craton, large-scale strike-slip movement along the Tan-Lu fault, and regional magmatism with associated metallogeny. Here we address the possible connections between these three events through a systematic investigation of the geochemistry, zircon geochronology and whole rock oxygen isotopes of the Mesozoic magmatic rocks distributed along the Tan-Lu fault in the Shandong province. The characteristic spatial and temporal distributions of high-Mg adakitic rocks along the Tan-Lu fault with emplacement ages of 134-128 Ma suggest a strong structural control for the emplacement of these intrusions, with magma generation possibly associated with the subduction of the Pacific plate in the early Cretaceous. The low-Mg adakitic rocks (127-120 Ma) in the Su-Lu orogenic belt were formed later than the high-Mg adakitic rocks, whereas in the Dabie orogenic belt, most of the low-Mg adakitic rocks (143-129 Ma) were generated earlier than the high-Mg adakitic rocks. Based on available data, we suggest that the large scale strike-slip tectonics of the Tan-Lu fault in the Mesozoic initiated cratonic destruction at the south-eastern margin of the North China Craton, significantly affecting the lower continental crust within areas near the fault. This process resulted in crustal fragments sinking into the asthenosphere and reacting with peridotites, which increased the Mg# of the adakitic melts, generating the high-Mg adakitic rocks. The gravitationally unstable lower continental crust below the Tan-Lu fault in the Su-Lu orogenic belt triggered larger volume delamination of the lower continental crust or foundering of the root.

  17. Reconstruction of crustal blocks of California on the basis of initial strontium isotopic compositions of Mesozoic granitic rocks

    USGS Publications Warehouse

    Kistler, Ronald Wayne; Peterman, Zell E.

    1978-01-01

    Initial 87Sr/ 86 Sr was determined for samples of Mesozoic granitic rocks in the vicinity of the Garlock fault zone in California. These data along with similar data from the Sierra Nevada and along the San Andreas fault system permit a reconstruction of basement rocks offset by the Cenozoic lateral faulting along both the San Andreas and Garlock fault systems. The location of the line of initial 87Sr/ 86 Sr = 0.7060 can be related to the edge of the Precambrian continental crust in the western United States. Our model explains the present configuration of the edge of Precambrian continental crust as the result of two stages of rifting that occurred about 1,250 to 800 m.y. ago, during Belt sedimentation, and about 600 to 350 m.y. ago, prior to and during the development of the Cordilleran geosyncline and to left-lateral translation along a locus of disturbance identified in the central Mojave Desert. The variations in Rb, Sr, and initial 87Sr/ 86 Sr of the Mesozoic granitic rocks are interpreted as due to variations in composition and age of the source materials of the granitic rocks. The variations of Rb, Sr, and initial 87Sr/ 86 Sr in Mesozoic granitic rocks, the sedimentation history during the late Precambrian and Paleozoic, and the geographic position of loci of Mesozoic magmatism in the western United States are related to the development of the continental margin and different types of lithosphere during rifting.

  18. Neodymium, strontium, and oxygen isotopic variations in the crust of the western United States: Origin of Proterozoic continental crust and tectonic implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, V.C.

    1989-01-01

    Initial Nd isotopic ratios of crystalline rocks from an area of about 1.5 {times} 10{sup 6} km{sup 2} of the western United States have been determined in order to map Precambrian age province boundaries and thus document the growth and modification of the North American continent in the Proterozoic. Three age provinces have been delineated. It is demonstrated that large regions of Early Proterozoic continental crust were formed with anomalous isotopic compositions ({sup 143}Nd/{sup 144}Nd ratios lower than Early Proterozoic depleted-mantle). The variations in the initial {epsilon}{sub Nd} and {delta}{sup 18}O values correlate with each other, and correspond to themore » previously determined Nd isotopic provinces. The Pelona, Rand, Chocolate Mountain and Orocopia Schists are represented by 15 lithologically and structurally similar schist bodies exposed along the San Andreas and Garlock faults in southern California. The grayschists have measured {epsilon}{sub Nd} values from -1.7 to -11.7 with depleted-mantle model ages of 0.9 to 1.7 Ga. The Nd isotopic compositions can be modeled as variable mixtures of Early Proterozoic continental crust with a Mesozoic are component. The measured {sup 87}Sr/{sup 86}Sr ratios are from 0.7087 to 0.7129 and reflect the presence of an old continental source. Independent of age, the high initial {epsilon}{sub Nd} values ({sup +}9 {plus minus} 1.5) are consistent with derivation at an oceanic spreading center, either at a MORB or in a back-arc basin environment. The presence of both Early Proterozoic continental detritus and a younger sedimentary component in the grayschist protolith, and the MORB affinity of the metabasalts are compatible with formation of the protoliths of the Pelona and related schists in a Mesozoic basin adjacent to the southwestern United States continental margin.« less

  19. Field evidences for a Mesozoic palaeo-relief through the northern Tianshan

    NASA Astrophysics Data System (ADS)

    Gumiaux, Charles; Chen, Ke; Augier, Romain; Chen, Yan; Wang, Qingchen

    2010-05-01

    The modern Tianshan mountain belt, located in Central Asia, offers a natural laboratory to study orogenic processes linked with convergent geodynamical settings. Most of the previous studies either focused on the Paleozoic evolution of the range - subductions, arc accretions and continental collision - or on its Cenozoic intra-continental evolution linked with the India-Asia collision. At first order, the finite structure of this range obviously displays a remarkable uprising of Paleozoic "basement" rocks - as a crustal-scale ‘pop-up' - surrounded by two Cenozoic foreland basins. The present-day topography of the Tianshan is traditionally related to the latest intra-continental reactivation of the range. In contrast, the present field study of the northern Tianshan brings new and clear evidences for the existence of a significant relief, in this area, during Mesozoic times. The investigation zone is about 250 km long, from Wusu to Urumqi, along the northern flank of the Tianshan where the rivers deeply incised the topography. In such valleys, lithologies and structural relationships between Paleozoic basement rocks, Mesozoic and Cenozoic sedimentary series are particularly well exposed along several sections. Jurassic series are mostly characterized by coal-bearing, coarse-grained continental deposits. Within intra-mountain basins, sedimentary breccias, with clasts of Carboniferous basement rocks, have been locally found at the base of the series. This argues for the presence of a rather proximal palaeo-relief of basement rocks along the range front and the occurrence of proximal intra-mountain basins, during the Jurassic. Moreover, while a major thrust is mostly evoked between Jurassic deposits and the Paleozoic units, some of the studied sections show that the Triassic to Jurassic sedimentary series can be followed from the basin to the range. In these cases, the unconformity of the Mesozoic series on top of the Carboniferous basement has been locally clearly

  20. Development of continental lithospheric mantle as reflected in the chemistry of the Mesozoic Appalachian Tholeiites, U.S.A.

    NASA Astrophysics Data System (ADS)

    Pegram, William J.

    1990-03-01

    Geochemical analyses of dikes, sills, and volcanic rocks of the Mesozoic Appalachian Tholeiite (MAT) Province of the easternmost United States provide evidence that continental tholeiites are derived from continental lithospheric mantle sources that are genetically and geochronologically related to the overlying continental crust. Nineteen olivine tholeiites and sixteen quartz tholeiites from the length of this province, associated in space and time with the last opening of the Atlantic, display significant isotopic heterogeneity: initial ɛ Nd = +3.8 to -5.7; initial 87Sr/ 86Sr= 0.7044-0.7072; 206Pb/ 204Pb= 17.49-19.14; 207Pb/ 204Pb= 15.55-15.65; 208Pb/ 204Pb= 37.24-39.11. In Pb sbnd Pb space, the MAT define a linear array displaced above the field for MORB and thus resemble oceanic basalts with DUPAL Pb isotopic traits. A regression of this array yields a secondary Pb sbnd Pb isochron age of ≈ 1000 Ma (μ 1 = 8.26), similar to Sm/Nd isochrons from the southern half of the province and to the radiometric age of the Grenville crust underlying easternmost North America. The MAT exhibit significant trace element ratio heterogeneity (e.g., Sm/Nd= 0.226-0.327) and have trace element traits similar to convergent margin magmas [e.g., depletions of Nb and Ti relative to the rare earth elements on normalized trace element incompatibility diagrams, Ba/Nb ratios (19-75) that are significantly greater than those of MORB, and low TiO 2 (0.39-0.69%)]. Geochemical and geological considerations very strongly suggest that the MAT were not significantly contaminated during ascent through the continental crust. Further, isotope and trace element variations are not consistent with the involvement of contemporaneous MORB or OIB components. Rather, the materials that control the MAT incompatible element chemistry were derived from subcontinental lithospheric mantle. Thus: (1) the MAT/arc magma trace element similarities; (2) the Pb sbnd Pb and Sm/Nd isochron ages; and (3) the need

  1. Paleomagnetic Constraints on the Tectonic History of the Mesozoic Ophiolite and Arc Terranes of Western Mexico

    NASA Astrophysics Data System (ADS)

    Boschman, L.; Van Hinsbergen, D. J. J.; Langereis, C. G.; Molina-Garza, R. S.; Kimbrough, D. L.

    2017-12-01

    The North American Cordillera has been shaped by a long history of accretion of arcs and other buoyant crustal fragments to the western margin of the North American Plate since the Early Mesozoic. Accretion of these terranes resulted from a complex tectonic history interpreted to include episodes of both intra-oceanic subduction within the Panthalassa/Pacific Ocean, as well as continental margin subduction along the western margin of North America. Western Mexico, at the southern end of the Cordillera, contains a Late Cretaceous-present day long-lived continental margin arc, as well as Mesozoic arc and SSZ ophiolite assemblages of which the origin is under debate. Interpretations of the origin of these subduction-related rock assemblages vary from far-travelled exotic intra-oceanic island arc character to autochthonous or parautochthonous extended continental margin origin. We present new paleomagnetic data from four localities: (1) the Norian SSZ Vizcaíno peninsula Ophiolite; (2) its Lower Jurassic sedimentary cover; and (3) Barremian and (4) Aptian sediments derived from the Guerrero arc. The data show that the Mexican ophiolite and arc terranes have a paleolatitudinal plate motion history that is equal to that of the North American continent. This suggests that these rock assemblages were part of the overriding plate and were perhaps only separated from the North American continent by temporal fore- or back-arc spreading. These spreading phases resulted in the temporal existence of tectonic plates between the North American and Farallon Plates, and upon closure of the basins, in the growth of the North American continent without addition of any far-travelled exotic terranes.

  2. Compression-extension transition of continental crust in a subduction zone: A parametric numerical modeling study with implications on Mesozoic-Cenozoic tectonic evolution of the Cathaysia Block

    PubMed Central

    Chan, Lung Sang; Gao, Jian-Feng

    2017-01-01

    The Cathaysia Block is located in southeastern part of South China, which situates in the west Pacific subduction zone. It is thought to have undergone a compression-extension transition of the continental crust during Mesozoic-Cenozoic during the subduction of Pacific Plate beneath Eurasia-Pacific Plate, resulting in extensive magmatism, extensional basins and reactivation of fault systems. Although some mechanisms such as the trench roll-back have been generally proposed for the compression-extension transition, the timing and progress of the transition under a convergence setting remain ambiguous due to lack of suitable geological records and overprinting by later tectonic events. In this study, a numerical thermo-dynamical program was employed to evaluate how variable slab angles, thermal gradients of the lithospheres and convergence velocities would give rise to the change of crustal stress in a convergent subduction zone. Model results show that higher slab dip angle, lower convergence velocity and higher lithospheric thermal gradient facilitate the subduction process. The modeling results reveal the continental crust stress is dominated by horizontal compression during the early stage of the subduction, which could revert to a horizontal extension in the back-arc region, combing with the roll-back of the subducting slab and development of mantle upwelling. The parameters facilitating the subduction process also favor the compression-extension transition in the upper plate of the subduction zone. Such results corroborate the geology of the Cathaysia Block: the initiation of the extensional regime in the Cathaysia Block occurring was probably triggered by roll-back of the slowly subducting slab. PMID:28182640

  3. The Continental Margin of East Asia: a collage of multiple plates formed by convergence and extension from multiple directions

    NASA Astrophysics Data System (ADS)

    Mao, J.; Wang, T.; Ludington, S.; Qiu, Z.; Li, Z.

    2017-12-01

    East Asia is one of the most complex regions in the world. Its margin was divided into 4 parts: Northeast Asia, North China, South China and Southeast Asia. During the Phanerozoic, continental plates of East Asia have interacted successively with a) the Paleo Tethyan Ocean, b) the Tethyan and Paleo Pacific Oceans and c) the Pacific and Indian. In the Early Mesozoic, the Indosinian orogeny is characterized by the convergence and extension within multiple continental plates, whereas the Late Mesozoic Yanshanian orogeny is characterized by both convergence and compression due to oceanic subduction and by widespread extension. We propose this combination as "East Asia Continental Margin type." Except in Northeast Asia, where Jurassic and Cretaeous accretionary complexes are common, most magmatic rocks are the result of reworking of ancient margins of small continental plates; and oceanic island arc basalts and continental margin arc andesites are largely absent. Because South China is adjacent to the western margin of the Pacific Plate, some effects of its westward subduction must be unavoidable, but juvenile arc-related crust has not been identified. The East Asian Continental Margin is characterized by magmatic rocks that are the result of post-convergent tectonics, which differs markedly from the active continental margins of both South and North America. In summary, the chief characteristics of the East Asian Continental Margin are: 1) In Mesozoic, the periphery of multiple blocks experienced magmatism caused by lithospheric delamination and thinning in response to extension punctuated by shorter periods of convergence. 2) The main mechanism of magma generation was the partial melting of crustal rocks, due to underplating by upwelling mafic magma associated with the collapse of orogenic belts and both extension and compression between small continental blocks. 3) During orogeny, mostly high Sr/Y arc-related granitoids formed, whereas during post-orogenic times, A

  4. Mesozoic Continental Sediment-dispersal Systems of Mexico Linked to Development of the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Lawton, T. F.; Molina-Garza, R. S.; Barboza-Gudiño, R.; Rogers, R. D.

    2013-05-01

    Major sediment dispersal systems on western Pangea evolved in concert with thermal uplift, rift and drift phases of the Gulf of Mexico Basin, and were influenced by development of a continental arc on Pangea's western margin. Existing literature and preliminary data from fieldwork, sandstone petrology and detrital zircon analysis reveal how major drainages in Mexico changed from Late Triassic through Late Jurassic time and offer predictions for the ultimate destinations of sand-rich detritus along the Gulf and paleo-Pacific margins. Late Triassic rivers drained away from and across the present site of the Gulf of Mexico, which was then the location of a major thermal dome, the Texas uplift of recent literature. These high-discharge rivers with relatively mature sediment composition fed a large-volume submarine fan system on the paleo-Pacific continental margin of Mexico. Predictably, detrital zircon age populations are diverse and record sources as far away as the Amazonian craton. This enormous fluvial system was cut off abruptly near the Triassic-Jurassic boundary by extensive reorganization of continental drainages. Early and Middle Jurassic drainage systems had local headwaters and deposited sediment in extensional basins associated with arc magmatism. Redbeds accumulated across northern and eastern Mexico and Chiapas in long, narrow basins whose locations and dimensions are recorded primarily by inverted antiformal massifs. The Jurassic continental successions overlie Upper Triassic strata and local subvolcanic plutons; they contain interbedded volcanic rocks and thus have been interpreted as part of the Nazas continental-margin arc. The detritus of these fluvial systems is volcanic-lithic; syndepositional grain ages are common in the detrital zircon populations, which are mixed with Oaxaquia-derived Permo-Triassic and Grenville age populations. By this time, interior Pangea no longer supplied sediment to the paleo-Pacific margin, possibly because the

  5. Sedimentary facies and depositional environments of early Mesozoic Newark Supergroup basins, eastern North America

    USGS Publications Warehouse

    Smoot, J.P.

    1991-01-01

    The early Mesozoic Newark Supergroup consists of continental sedimentary rocks and basalt flows that occupy a NE-trending belt of elongate basins exposed in eastern North America. The basins were filled over a period of 30-40 m.y. spanning the Late Triassic to Early Jurassic, prior to the opening of the north Atlantic Ocean. The sedimentary rocks are here divided into four principal lithofacies. The alluvial-fan facies includes deposits dominated by: (1) debris flows; (2) shallow braided streams; (3) deeper braided streams (with trough crossbeds); or (4) intense bioturbation or hyperconcentrated flows (tabular, unstratified muddy sandstone). The fluvial facies include deposits of: (1) shallow, ephemeral braided streams; (2) deeper, flashflooding, braided streams (with poor sorting and crossbeds); (3) perennial braided rivers; (4) meandering rivers; (5) meandering streams (with high suspended loads); (6) overbank areas or local flood-plain lakes; or (7) local streams and/or colluvium. The lacustrine facies includes deposits of: (1) deep perennial lakes; (2) shallow perennial lakes; (3) shallow ephemeral lakes; (4) playa dry mudflats; (5) salt-encrusted saline mudflats; or (6) vegetated mudflats. The lake margin clastic facies includes deposits of: (1) birdfoot deltas; (2) stacked Gilbert-type deltas; (3) sheet deltas; (4) wave-reworked alluvial fans; or (5) wave-sorted sand sheets. Coal deposits are present in the lake margin clastic and the lacustrine facies of Carnian age (Late Triassic) only in basins of south-central Virginia and North and South Carolina. Eolian deposits are known only from the basins in Nova Scotia and Connecticut. Evaporites (and their pseudomorphs) occur mainly in the northern basins as deposits of saline soils and less commonly of saline lakes, and some evaporite and alkaline minerals present in the Mesozoic rocks may be a result of later diagenesis. These relationships suggest climatic variations across paleolatitudes, more humid to the

  6. Indo-Burma Range: a belt of accreted microcontinents, ophiolites and Mesozoic-Paleogene flyschoid sediments

    NASA Astrophysics Data System (ADS)

    Acharyya, S. K.

    2015-07-01

    This study provides an insight into the lithotectonic evolution of the N-S trending Indo-Burma Range (IBR), constituting the southern flank of the Himalayan syntaxis. Paleogene flyschoid sediments (Disang-Barail) that represent a shallow marine to deltaic environment mainly comprise the west-central sector of IBR, possibly resting upon a continental base. On the east, these sequences are tectonically flanked by the Eocene olistostromal facies of the Disang, which developed through accretion of trench sediments during the subduction. The shelf and trench facies sequences of the Disang underwent overthrusting from the east, giving rise to two ophiolite suites ( Naga Hills Lower Ophiolite ( NHLO) and Victoria Hills Upper Ophiolite ( VHUO), but with different accretion history. The ophiolite and ophiolite cover rock package were subsequently overthrusted by the Proterozoic metamorphic sequence, originated from the Burmese continent. The NHLO suite of Late Jurassic to Early Eocene age is unconformably overlain by mid-Eocene shallow marine ophiolite-derived clastics. On the south, the VHUO of Mesozoic age is structurally underlain by continental metamorphic rocks. The entire package in Victoria Hills is unconformably overlain by shallow marine Late Albian sediments. Both the ophiolite suites and the sandwiched continental metamorphic rocks are thrust westward over the Paleogene shelf sediments. These dismembered ophiolites and continental metamorphic rocks suggest thin-skinned tectonic detachment processes in IBR, as reflected from the presence of klippe of continental metamorphic rocks over the NHLO and the flyschoid Disang floor sediments and half windows exposing the Disang beneath the NHLO.

  7. Geology and tectonic development of the continental margin north of Alaska

    USGS Publications Warehouse

    Grantz, A.; Eittreim, S.; Dinter, D.A.

    1979-01-01

    The continental margin north of Alaska, as interpreted from seismic reflection profiles, is of the Atlantic type and consists of three sectors of contrasting structure and stratigraphy. The Chukchi sector, on the west, is characterized by the deep late Mesozoic and Tertiary North Chukchi basin and the Chukchi Continental Borderland. The Barrow sector of central northern Alaska is characterized by the Barrow arch and a moderately thick continental terrace build of Albian to Tertiary clastic sediment. The terrace sedimentary prism is underlain by lower Paleozoic metasedimentary rocks. The Barter Island sector of northeastern Alaska and Yukon Territory is inferred to contain a very thick prism of Jurassic, Cretaceous and Tertiary marine and nonmarine clastic sediment. Its structure is dominated by a local deep Tertiary depocenter and two regional structural arches. We postulate that the distinguishing characteristics of the three sectors are inherited from the configuration of the rift that separated arctic Alaska from the Canadian Arctic Archipelago relative to old pre-rift highlands, which were clastic sediment sources. Where the rift lay relatively close to northern Alaska, in the Chukchi and Barter Island sectors, and locally separated Alaska from the old source terranes, thick late Mesozoic and Tertiary sedimentary prisms extend farther south beneath the continental shelf than in the intervening Barrow sector. The boundary between the Chukchi and Barrow sectors is relatively well defined by geophysical data, but the boundary between the Barrow and Barter Island sectors can only be inferred from the distribution and thickness of Jurassic and Cretaceous sedimentary rocks. These boundaries may be extensions of oceanic fracture zones related to the rifting that is postulated to have opened the Canada Basin, probably beginning during the Early Jurassic. ?? 1979.

  8. The Mesozoic palaeo-relief and immature front belt of northern Tianshan

    NASA Astrophysics Data System (ADS)

    Chen, K.; Gumiaux, C.; Augier, R.; Chen, Y.; Wang, Q.

    2012-04-01

    The modern Tianshan (central Asia) extends east-west on about 2500 km long with an average of more than 2000 m in altitude. At first order, the finite structure of this range obviously displays a crust-scale 'pop-up' of Palaeozoic rocks surrounded by two Cenozoic foreland basins. Up to now, this range is regarded as a direct consequence of the Neogene to recent reactivation of a Palaeozoic belt due to the India - Asia collision. This study focuses on the structure of the northern front area of Tianshan and is mainly based on field structural works. In particular, relationships in between sedimentary cover and basement units allow discussing the tectonic and morphological evolution of the northern Tianshan during Mesozoic and Cenozoic times. The study area is about 250 km long, from Wusu to Urumqi, along the northern piedmont of the Tianshan. Continental sedimentary series of the basin as well as structure of the cover/basement interface can well be observed along several incised valleys. Sedimentological observations argue for a limited transport distance for Lower and Uppermost Jurassic deposits that are preserved within intra-mountainous basins or within the foreland basin, along the range front. Moreover, some of the studied geological sections show that Triassic to Jurassic sedimentary series can be continuously followed from the basin to the range where they unconformably overlie the Carboniferous basement. Such onlap type structures of the Jurassic series, on top of the Palaeozoic rock units, can also be observed at more local-scale (~a few 100 m). At different scales, our observations thus clearly evidence i) the existence of a substantial relief during Mesozoic times and ii) very limited deformation, after Mesozoic, along some segments of the northern range front. Yet, thrusting of the Palaeozoic basement on the Mesozoic or Cenozoic sedimentary series of the basin is also well exposed along some other river valleys. As a consequence, the northern front of

  9. Paleozoic–early Mesozoic gold deposits of the Xinjiang Autonomous Region, northwestern China

    USGS Publications Warehouse

    Rui, Zongyao; Goldfarb, Richard J.; Qiu, Yumin; Zhou, T.; Chen, R.; Pirajno, Franco; Yun, Grace

    2002-01-01

    The late Paleozoic–early Mesozoic tectonic evolution of Xinjiang Autonomous Region, northwestern China provided a favorable geological setting for the formation of lode gold deposits along the sutures between a number of the major Eastern Asia cratonic blocks. These sutures are now represented by the Altay Shan, Tian Shan, and Kunlun Shan ranges, with the former two separated by the Junggar basin and the latter two by the immense Tarim basin. In northernmost Xinjiang, final growth of the Altaid orogen, southward from the Angara craton, is now recorded in the remote mid- to late Paleozoic Altay Shan. Accreted Early to Middle Devonian oceanic rock sequences contain typically small, precious-metal bearing Fe–Cu–Zn VMS deposits (e.g. Ashele). Orogenic gold deposits are widespread along the major Irtysh (e.g. Duyolanasayi, Saidi, Taerde, Kabenbulake, Akexike, Shaerbulake) and Tuergen–Hongshanzui (e.g. Hongshanzui) fault systems, as well as in structurally displaced terrane slivers of the western Junggar (e.g. Hatu) and eastern Junggar areas. Geological and geochronological constraints indicate a generally Late Carboniferous to Early Permian episode of gold deposition, which was coeval with the final stages of Altaid magmatism and large-scale, right-lateral translation along older terrane-bounding faults. The Tian Shan, an exceptionally gold-rich mountain range to the west in the Central Asian republics, is only beginning to be recognized for its gold potential in Xinjiang. In this easternmost part to the range, northerly- and southerly-directed subduction/accretion of early to mid-Paleozoic and mid- to late Paleozoic oceanic terranes, respectively, to the Precambrian Yili block (central Tian Shan) was associated with 400 to 250 Ma arc magmatism and Carboniferous through Early Permian gold-forming hydrothermal events. The more significant resulting deposits in the terranes of the southern Tian Shan include the Sawayaerdun orogenic deposit along the Kyrgyzstan

  10. Structure and development of the southern Moroccan continental shelf

    USGS Publications Warehouse

    Dillon, William P.

    1974-01-01

    The structure of the continental shelf off southern Morocco was studied by means of 2,100 km of seismic reflection profiles, magnetic and bathymetric surveys, and dredge samples. The research area lies off four geologic divisions adjacent to the coast: the Atlas Mountains; the Souss Trough; the Anti-Atlas Mountains; and the Aaiun Basin. The continental shelf, along with the western Atlas Mountains, the western Souss Trough, and the entire Aaiun Basin, has subsided along a normal fault-flexure system. This system runs along the shore at the Anti-Atlas Mountains, and cuts off this cratonic block from the shelf subsidence. The shelf is narrow and characterized by out-building off the Anti-Atlas range, whereas it is broader and characterized by upbuilding to the north and south. Deposition was essentially continuous at least from Early Cretaceous through Eocene time. Published work suggests that the last cycle of sedimentation began during Permian rifting. After Eocene time, most sediments carried to the shelf must have bypassed it and gone to construct the slope and rise or to the deep sea. Tertiary orogenies caused extensive folding of Mesozoic and early Tertiary deposits off the Atlas Mountains. ?? 1974.

  11. The newfoundland basin - Ocean-continent boundary and Mesozoic seafloor spreading history

    NASA Technical Reports Server (NTRS)

    Sullivan, K. D.

    1983-01-01

    It is pointed out that over the past 15 years there has been considerable progress in the refinement of predrift fits and seafloor spreading models of the North Atlantic. With the widespread acceptance of these basic models has come increasing interest in resolution of specific paleogeographic and kinematic problems. Two such problems are the initial position of Iberia with respect to North America and the geometry and chronology of early (pre-80 m.y.) relative motions between these two plates. The present investigation is concerned with geophysical data from numerous Bedford Institute/Dalhousie University cruises to the Newfoundland Basin which were undrtaken to determine the location of the ocean-continent boundary (OCB) and the Mesozoic spreading history on the western side. From the examination of magnetic data in the Newfoundland Basin, the OCB east of the Grand Banks is defined as the seaward limit of the 'smooth' magnetic domain which characterizes the surrounding continental shelves. A substantial improvement in Iberia-North America paleographic reconstructions is achieved.

  12. The geology and Mesozoic collisional history of the Cordillera Real, Ecuador

    NASA Astrophysics Data System (ADS)

    Aspden, John A.; Litherland, Martin

    1992-04-01

    The geology of the metamorphic rocks of the Cordillera Real of Ecuador is described in terms of five informal lithotectonic divisions. We deduce that during the Mesozoic repeated accretionary events occurred and that dextral transpression has been of fundamental importance in determining the tectonic evolution of this part of the Northern Andes. The oldest event recognised, of probable Late Triassic age, may be related to the break-up of western Gondwana and generated a regional belt of 'S-type' plutons. During the Jurassic, major calc-alkaline batholiths were intruded. Following this, in latest Jurassic to Early Cretaceous time, a volcano-sedimentary terrane, of possible oceanic or marginal basin origin (the Alao division), and the most westerly, gneissic Chaucha-Arenillas terrane, were accreted to continental South America. The accretion of the oceanic Western Cordillera took place in latest Cretaceous to earliest Tertiary time. This latter event coincided with widespread thermal disturbance, as evidenced by the large number of young K-Ar mineral ages recorded from the Cordillera Real.

  13. Revisiting Mesozoic felsic intrusions in eastern South China: spatial and temporal variations and tectonic significance

    NASA Astrophysics Data System (ADS)

    Zhu, Kong-Yang; Li, Zheng-Xiang; Xia, Qun-Ke; Xu, Xi-Sheng; Wilde, Simon A.; Chen, Han-Lin

    2017-12-01

    Whole-rock and mineral geochemical data are used to place new constraints on the petrogenesis and tectonic setting of Mesozoic granitoids (including syenites) in eastern South China. In the Early Mesozoic, granitoids of variable compositions were intruded in the Cathaysia Block which by this time had developed a thickened and highly differentiated Paleoproterozoic crust through the influence of subduction. Late Triassic ( 225 Ma) syenites are significantly different from Jurassic-Cretaceous syenites in South China and from most trachytes (GEOROC database) in terms of their high Th/U, La/Nb and Gd/Yb ratios. Their low Rb contents, coupled with their high K/Rb and Nb/Ta, and low 87Sr/86Sr and 206Pb/204Pb ratios suggest a source that had undergone granulite-facies metamorphism at the base of thickened (> 45 km thick) continental crust where garnet and rutile are stable. The Late Triassic alkaline intrusions thus appear not to be related to continental rifting. Compared with the Late Triassic syenites, contemporaneous syenogranites have higher Ga/Al and Rb/K ratios and ISr values. Their Ga/Al ratios are positively correlated with ISr values, and their higher Ga/Al ratios likewise do not appear to be related to a rift setting but reflect the composition of the source. New Pb isotopic data from Cretaceous magmatic rocks reveal that 120-100 Ma I-type granitoids in Zhejiang Province were likely derived from mixing of three components: contemporaneous basaltic magma, an enriched crustal component and a depleted crustal component. Pb isotopes of both the I-type granitoids and the basalts become more radiogenic towards the coast, where the ca. 100 Ma intrusions dominate. Furthermore, zircon-melt partition of Ce and hornblende oxygen barometries indicate that the Early Cretaceous intrusions also became more oxidized towards the coast. In addition, the ca. 100 Ma granitoids have higher Gd/Yb and lower Fe/Mg ratios than those of the 120-110 Ma suite, implying crustal thickening

  14. Mesozoic paleogeography and paleoclimates - A discussion of the diverse greenhouse and hothouse conditions of an alien world

    NASA Astrophysics Data System (ADS)

    Holz, Michael

    2015-08-01

    The Mesozoic was the time of the break-up of Pangaea, with profound consequences not only for the paleocontinental configuration, but also for paleoclimates and for the evolution of life. Cool greenhouse conditions alternated with warm greenhouse and even hothouse conditions, with global average temperatures around 6-9 °C warmer than the present ones. There are only sparse and controversial evidence for polar ice; meanwhile, extensive evaporitic and desertic deposits are well described. Global sea levels were mainly high, and the content of atmospheric O2 was varying between 15 and 25%. These conditions make the Mesozoic Earth an alien world compared to present-day conditions. Degassing from volcanism linked to the rifting process of Pangaea and methane emissions from reptilian biotas were climate-controlling factors because they enhanced atmospheric CO2 concentrations up to 16 times compared to present-day levels. The continental break-up modified paleopositions and shoreline configurations of the landmasses, generating huge epicontinental seas and altering profoundly the oceanic circulation. The Mesozoic was also a time of important impact events as probable triggers for "impact winters"; and for the Era at least nine huge (diameter > 20 km) impact structures are known. This paper presents an abridged but updated overview of the Mesozoic paleogeographic and paleoclimatic variations, characterizing each period and sub-period in terms of paleoclimatic state and main tectonic and climatic events, and provides a brief geologic, stratigraphic, paleoclimatic and taphonomic characterization of dinosaur occurrences as recorded in the Brazilian continental basins.

  15. Continental basalts record the crust-mantle interaction in oceanic subduction channel: A geochemical case study from eastern China

    NASA Astrophysics Data System (ADS)

    Xu, Zheng; Zheng, Yong-Fei

    2017-09-01

    the crustal metasomatism through melt-peridotite reaction at the slab-mantle interface in oceanic subduction channels. Continental basalts of Mesozoic to Cenozoic ages from eastern China are used as a case example to illustrate the above petrogenetic mechanism. Subduction of the paleo-Pacific oceanic slab beneath the eastern edge of Eurasian continent in the Early Mesozoic would have transferred the crustal signatures into the mantle sources of these basalts. This process would be associated with rollback of the subducting slab at that time, whereas the partial melting of metasomatites takes place mainly in the Late Mesozoic to Cenozoic to produce the continental basalts. Therefore, OIB-like continental basalts are also the product of subduction-zone magmatism though they occur in intraplate settings.

  16. Astronomical pacing of the global silica cycle recorded in Mesozoic bedded cherts

    NASA Astrophysics Data System (ADS)

    Ikeda, Masayuki; Tada, Ryuji; Ozaki, Kazumi

    2017-06-01

    The global silica cycle is an important component of the long-term climate system, yet its controlling factors are largely uncertain due to poorly constrained proxy records. Here we present a ~70 Myr-long record of early Mesozoic biogenic silica (BSi) flux from radiolarian chert in Japan. Average low-mid-latitude BSi burial flux in the superocean Panthalassa is ~90% of that of the modern global ocean and relative amplitude varied by ~20-50% over the 100 kyr to 30 Myr orbital cycles during the early Mesozoic. We hypothesize that BSi in chert was a major sink for oceanic dissolved silica (DSi), with fluctuations proportional to DSi input from chemical weathering on timescales longer than the residence time of DSi (<~100 Kyr). Chemical weathering rates estimated by the GEOCARBSULFvolc model support these hypotheses, excluding the volcanism-driven oceanic anoxic events of the Early-Middle Triassic and Toarcian that exceed model limits. We propose that the Mega monsoon of the supercontinent Pangea nonlinearly amplified the orbitally paced chemical weathering that drove BSi burial during the early Mesozoic greenhouse world.

  17. Cretaceous-Eocene provenance connections between the Palawan Continental Terrane and the northern South China Sea margin

    NASA Astrophysics Data System (ADS)

    Shao, Lei; Cao, Licheng; Qiao, Peijun; Zhang, Xiangtao; Li, Qianyu; van Hinsbergen, Douwe J. J.

    2017-11-01

    The plate kinematic history of the South China Sea opening is key to reconstructing how the Mesozoic configuration of Panthalassa and Tethyan subduction systems evolved into today's complex Southeast Asian tectonic collage. The South China Sea is currently flanked by the Palawan Continental Terrane in the south and South China in the north and the two blocks have long been assumed to be conjugate margins. However, the paleogeographic history of the Palawan Continental Terrane remains an issue of uncertainty and controversy, especially regarding the questions of where and when it was separated from South China. Here we employ detrital zircon U-Pb geochronology and heavy mineral analysis on Cretaceous and Eocene strata from the northern South China Sea and Palawan to constrain the Late Mesozoic-Early Cenozoic provenance and paleogeographic evolution of the region testing possible connection between the Palawan Continental Terrane and the northern South China Sea margin. In addition to a revision of the regional stratigraphic framework using the youngest zircon U-Pb ages, these analyses show that while the Upper Cretaceous strata from the Palawan Continental Terrane are characterized by a dominance of zircon with crystallization ages clustering around the Cretaceous, the Eocene strata feature a large range of zircon ages and a new mineral group of rutile, anatase, and monazite. On the one hand, this change of sediment compositions seems to exclude the possibility of a latest Cretaceous drift of the Palawan Continental Terrane in response to the Proto-South China Sea opening as previously inferred. On the other hand, the zircon age signatures of the Cretaceous-Eocene strata from the Palawan Continental Terrane are largely comparable to those of contemporary samples from the northeastern South China Sea region, suggesting a possible conjugate relationship between the Palawan Continental Terrane and the eastern Pearl River Mouth Basin. Thus, the Palawan Continental

  18. Astronomical pacing of the global silica cycle recorded in Mesozoic bedded cherts

    PubMed Central

    Ikeda, Masayuki; Tada, Ryuji; Ozaki, Kazumi

    2017-01-01

    The global silica cycle is an important component of the long-term climate system, yet its controlling factors are largely uncertain due to poorly constrained proxy records. Here we present a ∼70 Myr-long record of early Mesozoic biogenic silica (BSi) flux from radiolarian chert in Japan. Average low-mid-latitude BSi burial flux in the superocean Panthalassa is ∼90% of that of the modern global ocean and relative amplitude varied by ∼20–50% over the 100 kyr to 30 Myr orbital cycles during the early Mesozoic. We hypothesize that BSi in chert was a major sink for oceanic dissolved silica (DSi), with fluctuations proportional to DSi input from chemical weathering on timescales longer than the residence time of DSi (<∼100 Kyr). Chemical weathering rates estimated by the GEOCARBSULFvolc model support these hypotheses, excluding the volcanism-driven oceanic anoxic events of the Early-Middle Triassic and Toarcian that exceed model limits. We propose that the Mega monsoon of the supercontinent Pangea nonlinearly amplified the orbitally paced chemical weathering that drove BSi burial during the early Mesozoic greenhouse world. PMID:28589958

  19. Astronomical pacing of the global silica cycle recorded in Mesozoic bedded cherts.

    PubMed

    Ikeda, Masayuki; Tada, Ryuji; Ozaki, Kazumi

    2017-06-07

    The global silica cycle is an important component of the long-term climate system, yet its controlling factors are largely uncertain due to poorly constrained proxy records. Here we present a ∼70 Myr-long record of early Mesozoic biogenic silica (BSi) flux from radiolarian chert in Japan. Average low-mid-latitude BSi burial flux in the superocean Panthalassa is ∼90% of that of the modern global ocean and relative amplitude varied by ∼20-50% over the 100 kyr to 30 Myr orbital cycles during the early Mesozoic. We hypothesize that BSi in chert was a major sink for oceanic dissolved silica (DSi), with fluctuations proportional to DSi input from chemical weathering on timescales longer than the residence time of DSi (<∼100 Kyr). Chemical weathering rates estimated by the GEOCARBSULFvolc model support these hypotheses, excluding the volcanism-driven oceanic anoxic events of the Early-Middle Triassic and Toarcian that exceed model limits. We propose that the Mega monsoon of the supercontinent Pangea nonlinearly amplified the orbitally paced chemical weathering that drove BSi burial during the early Mesozoic greenhouse world.

  20. Seismological constraints on the crustal structures generated by continental rejuvenation in northeastern China

    PubMed Central

    Zheng, Tian-Yu; He, Yu-Mei; Yang, Jin-Hui; Zhao, Liang

    2015-01-01

    Crustal rejuvenation is a key process that has shaped the characteristics of current continental structures and components in tectonic active continental regions. Geological and geochemical observations have provided insights into crustal rejuvenation, although the crustal structural fabrics have not been well constrained. Here, we present a seismic image across the North China Craton (NCC) and Central Asian Orogenic Belt (CAOB) using a velocity structure imaging technique for receiver functions from a dense array. The crustal evolution of the eastern NCC was delineated during the Mesozoic by a dominant low seismic wave velocity with velocity inversion, a relatively shallow Moho discontinuity, and a Moho offset beneath the Tanlu Fault Zone. The imaged structures and geochemical evidence, including changes in the components and ages of continental crusts and significant continental crustal growth during the Mesozoic, provide insight into the rejuvenation processes of the evolving crust in the eastern NCC caused by structural, magmatic and metamorphic processes in an extensional setting. The fossil structural fabric of the convergent boundary in the eastern CAOB indicates that the back-arc action of the Paleo-Pacific Plate subduction did not reach the hinterland of Asia. PMID:26443323

  1. Long lasting paleolandscapes stability of the French Massif Central during the Mesozoic

    NASA Astrophysics Data System (ADS)

    Ricordel-Prognon, C.; Thiry, M.; Theveniaut, H.; Lagroix, F.

    2009-04-01

    , and more importantly no Jurassic cover was preserved (if such a cover was even deposited?) on the massif. Consequently, the Massif Central probably never did support an important (more than 500 m) sedimentary cover during the Mesozoic. These paleosurface ages provide important constraints to crustal dynamics modeling. Identification and dating of the successive continental unconformities are evidence for long lasting continental evolution and landscape stability of large areas of the Massif Central during the Mesozoic. The alternative hypothesis was that the Massif Central was subsidizing during Mesozoic time and covered with a 2,000 m thick sedimentary series, which was fairly quickly eroded during early Tertiary (Barbarand et al., 2001). In the future, making substantial progress in paleoweathering profiles dating, especially in the scope of improving time resolution, will allow attempting efficient correlation between the continental records and the diverse processes involved in their development (eustatism, climate, global and regional tectonics). Moreover, progress in dating paleoweathering features and continental azoic deposits, will allow to develop a "continental stratigraphy" of climatic and geomorphological events and to establish a mass balances between weathering/erosion weathering/erosion on land and deposition in basins. References Barbarand J., Lucazeau F., Pagel M., Séranne M., 2001, Burial and exhumation history of the south-eastern Massif Central (France) constrained by apatite fission track thermochronology. Tectonophysics, 335, 3-4, p. 275-290. Besse, J., Courtillot, V., 2003. Apparent true polar wander and the geometry of the geomagnetic field over the last 200 Myr: Correction: Journal of Geophysical Research, 108, p. 2300. Cogné, J.P., 2003. PaleoMac: a MacintoshTM application for treating paleomagnetic data and making plate reconstructions. Geochemistry Geophysics Geosystems, 4 (1), 1007. Edel J.B., Duringer P., 1997, The apparent polar

  2. Sedimentation History and Provenance Analysis of a Late Mesozoic Rifting Event at Tavan Har, East Gobi, Mongolia

    ERIC Educational Resources Information Center

    Davidson, Sarah Cain

    2005-01-01

    The East Gobi Basin (EGB), which covers over 1.5 million square kilometers in southeastern Mongolia, is one of several basins in eastern China and Mongolia that was formed by extension and intracontinental rifting during the late Mesozoic. For reasons that are poorly understood, the continental lithosphere covering areas that are now known as…

  3. Pennsylvanian and Early Permian paleogeography of east-central California: Implications for the shape of the continental margin and the timing of continental truncation

    NASA Astrophysics Data System (ADS)

    Stone, Paul; Stevens, Calvin H.

    1988-04-01

    Pennsylvanian and Early Permian paleogeographic features in east-central California include a southeast-trending carbonate shelf edge and turbidite basin that we infer paralleled a segment of the western margin of the North American continent. This segment of the continental margin was oblique to an adjoining segment on the north that trended southwestward across Nevada into easternmost California. We propose that the southeast-trending segment of the margin originated by tectonic truncation of the originally longer southwest-trending segment in Early or Middle Pennsylvanian to late Early Permian time, significantly earlier than a previously hypothesized Late Permian or Early Triassic continental truncation event. We interpret the truncating structure to have been a sinistral transform fault zone along which a continental fragment was removed and carried southeastward into the Caborca-Hermosillo region of northern Mexico, where it is now represented by exposures of Late Proterozoic and Paleozoic miogeoclinal rocks.

  4. Comparison of clay mineral stratigraphy to other proxy palaeoclimate indicators in the Mesozoic of NW Europe.

    PubMed

    Ruffell, Alastair; McKinley, Jennifer M; Worden, Richard H

    2002-04-15

    This paper reviews the opportunities and pitfalls associated with using clay mineralogical analysis in palaeoclimatic reconstructions. Following this, conjunctive methods of improving the reliability of clay mineralogical analysis are reviewed. The Mesozoic succession of NW Europe is employed as a case study. This demonstrates the relationship between clay mineralogy and palaeoclimate. Proxy analyses may be integrated with clay mineralogical analysis to provide an assessment of aridity-humidity contrasts in the hinterland climate. As an example, the abundance of kaolinite through the Mesozoic shows that, while interpretations may be difficult, the Mesozoic climate of NW Europe was subject to great changes in rates of continental precipitation. We may compare sedimentological (facies, mineralogy, geochemistry) indicators of palaeoprecipitation with palaeotemperature estimates. The integration of clay mineralogical analyses with other sedimentological proxy indicators of palaeoclimate allows differentiation of palaeoclimatic effects from those of sea-level and tectonic change. We may also observe how widespread palaeoclimate changes were; whether they were diachronous or synchronous; how climate, sea level and tectonics interact to control sedimentary facies and what palaeoclimate indicators are reliable.

  5. A Temnospondyl Trackway from the Early Mesozoic of Western Gondwana and Its Implications for Basal Tetrapod Locomotion

    PubMed Central

    Marsicano, Claudia A.; Wilson, Jeffrey A.; Smith, Roger M. H.

    2014-01-01

    Background Temnospondyls are one of the earliest radiations of limbed vertebrates. Skeletal remains of more than 190 genera have been identified from late Paleozoic and early Mesozoic rocks. Paleozoic temnospondyls comprise mainly small to medium sized forms of diverse habits ranging from fully aquatic to fully terrestrial. Accordingly, their ichnological record includes tracks described from many Laurasian localities. Mesozoic temnospondyls, in contrast, include mostly medium to large aquatic or semi-aquatic forms. Exceedingly few fossil tracks or trackways have been attributed to Mesozoic temnospondyls, and as a consequence very little is known of their locomotor capabilities on land. Methodology/Principal Findings We report a ca. 200 Ma trackway, Episcopopus ventrosus, from Lesotho, southern Africa that was made by a 3.5 m-long animal. This relatively long trackway records the trackmaker dragging its body along a wet substrate using only the tips of its digits, which in the manus left characteristic drag marks. Based on detailed mapping, casting, and laser scanning of the best-preserved part of the trackway, we identified synapomorphies (e.g., tetradactyl manus, pentadactyl pes) and symplesiomorphies (e.g., absence of claws) in the Episcopopus trackway that indicate a temnospondyl trackmaker. Conclusions/Significance Our analysis shows that the Episcopopus trackmaker progressed with a sprawling posture, using a lateral-sequence walk. Its forelimbs were the major propulsive elements and there was little lateral bending of the trunk. We suggest this locomotor style, which differs dramatically from the hindlimb-driven locomotion of salamanders and other extant terrestrial tetrapods can be explained by the forwardly shifted center of mass resulting from the relatively large heads and heavily pectoral girdles of temnospondyls. PMID:25099971

  6. A Mesozoic gliding mammal from northeastern China.

    PubMed

    Meng, Jin; Hu, Yaoming; Wang, Yuanqing; Wang, Xiaolin; Li, Chuankui

    2006-12-14

    Gliding flight has independently evolved many times in vertebrates. Direct evidence of gliding is rare in fossil records and is unknown in mammals from the Mesozoic era. Here we report a new Mesozoic mammal from Inner Mongolia, China, that represents a previously unknown group characterized by a highly specialized insectivorous dentition and a sizable patagium (flying membrane) for gliding flight. The patagium is covered with dense hair and supported by an elongated tail and limbs; the latter also bear many features adapted for arboreal life. This discovery extends the earliest record of gliding flight for mammals to at least 70 million years earlier in geological history, and demonstrates that early mammals were diverse in their locomotor strategies and lifestyles; they had experimented with an aerial habit at about the same time as, if not earlier than, when birds endeavoured to exploit the sky.

  7. A bottom-up perspective on ecosystem change in Mesozoic oceans

    PubMed Central

    Follows, Michael J.

    2016-01-01

    Mesozoic and Early Cenozoic marine animals across multiple phyla record secular trends in morphology, environmental distribution, and inferred behaviour that are parsimoniously explained in terms of increased selection pressure from durophagous predators. Another systemic change in Mesozoic marine ecosystems, less widely appreciated than the first, may help to explain the observed animal record. Fossils, biomarker molecules, and molecular clocks indicate a major shift in phytoplankton composition, as mixotrophic dinoflagellates, coccolithophorids and, later, diatoms radiated across shelves. Models originally developed to probe the ecology and biogeography of modern phytoplankton enable us to evaluate the ecosystem consequences of these phytoplankton radiations. In particular, our models suggest that the radiation of mixotrophic dinoflagellates and the subsequent diversification of marine diatoms would have accelerated the transfer of primary production upward into larger size classes and higher trophic levels. Thus, phytoplankton evolution provides a mechanism capable of facilitating the observed evolutionary shift in Mesozoic marine animals. PMID:27798303

  8. A bottom-up perspective on ecosystem change in Mesozoic oceans.

    PubMed

    Knoll, Andrew H; Follows, Michael J

    2016-10-26

    Mesozoic and Early Cenozoic marine animals across multiple phyla record secular trends in morphology, environmental distribution, and inferred behaviour that are parsimoniously explained in terms of increased selection pressure from durophagous predators. Another systemic change in Mesozoic marine ecosystems, less widely appreciated than the first, may help to explain the observed animal record. Fossils, biomarker molecules, and molecular clocks indicate a major shift in phytoplankton composition, as mixotrophic dinoflagellates, coccolithophorids and, later, diatoms radiated across shelves. Models originally developed to probe the ecology and biogeography of modern phytoplankton enable us to evaluate the ecosystem consequences of these phytoplankton radiations. In particular, our models suggest that the radiation of mixotrophic dinoflagellates and the subsequent diversification of marine diatoms would have accelerated the transfer of primary production upward into larger size classes and higher trophic levels. Thus, phytoplankton evolution provides a mechanism capable of facilitating the observed evolutionary shift in Mesozoic marine animals. © 2016 The Authors.

  9. A comparative study of diversification events: the early Paleozoic versus the Mesozoic

    NASA Technical Reports Server (NTRS)

    Erwin, D. H.; Valentine, J. W.; Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)

    1987-01-01

    We compare two major long-term diversifications of marine animal families that began during periods of low diversity but produced strikingly different numbers of phyla, classes, and orders. The first is the early-Paleozoic diversification (late Vendian-Ordovician; 182 MY duration) and the other the Mesozoic phase of the post-Paleozoic diversification (183 MY duration). The earlier diversification was associated with a great burst of morphological invention producing many phyla, classes, and orders and displaying high per taxon rates of family origination. The later diversification lacked novel morphologies recognized as phyla and classes, produced fewer orders, and displayed lower per taxon rates of family appearances. The chief difference between the diversifications appears to be that the earlier one proceeded from relatively narrow portions of adaptive space, whereas the latter proceeded from species widely scattered among adaptive zones and representing a variety of body plans. This difference is believed to explain the major differences in the products of these great radiations. Our data support those models that hold that evolutionary opportunity is a major factor in the outcome of evolutionary processes.

  10. Strontium and oxygen isotopic variations in Mesozoic and Tertiary plutons of central Idaho

    USGS Publications Warehouse

    Fleck, R.J.; Criss, R.E.

    1985-01-01

    Regional variations in initial 87Sr/86Sr ratios (ri) of Mesozoic plutons in central Idaho locate the edge of Precambrian continental crust at the boundary between the late Paleozoic-Mesozoic accreted terranes and Precambrian sialic crust in western Idaho. The ri values increase abruptly but continuously from less than 0.704 in the accreted terranes to greater than 0.708 across a narrow, 5 to 15 km zone, characterized by elongate, lens-shaped, highly deformed plutons and schistose metasedimentary and metavolcanic units. The chemical and petrologic character of the plutons changes concomitantly from ocean-arc-type, diorite-tonalite-trondhjemite units to a weakly peraluminous, calcic to calcalkalic tonalite-granodiorite-granite suite (the Idaho batholith). Plutons in both suites yield Late Cretaceous ages, but Permian through Early Cretaceous bodies are confined to the accreted terranes and early Tertiary intrusions are restricted to areas underlain by Precambrian crust. The two major terranes were juxtaposed between 75 and 130 m.y. ago, probably between 80 and 95 m.y. Oxygen and strontium isotopic ratios and Rb and Sr concentrations of the plutonic rocks document a significant upper-crustal contribution to the magmas that intrude Precambrian crust. Magmas intruding the arc terranes were derived from the upper mantle/subducted oceanic lithosphere and may have been modified by anatexis of earlier island-arc volcanic and sedimentary units. Plutons near the edge of Precambrian sialic crust represent simple mixtures of the Precambrian wall-rocks with melts derived from the upper mantle or subducted oceanic lithosphere with ri of 0.7035. Rb/Sr varies linearly with ri, producing "pseudoisochrons" with apparent "ages" close to the age of the wall rocks. Measured ??18O values of the wall rocks are less than those required for the assimilated end-member by Sr-O covariation in the plutons, however, indicating that wall-rock ??18O was reduced significantly by exchange with

  11. The Colorado Plateau Coring Project: A Continuous Cored Non-Marine Record of Early Mesozoic Environmental and Biotic Change

    NASA Astrophysics Data System (ADS)

    Irmis, Randall; Olsen, Paul; Geissman, John; Gehrels, George; Kent, Dennis; Mundil, Roland; Rasmussen, Cornelia; Giesler, Dominique; Schaller, Morgan; Kürschner, Wolfram; Parker, William; Buhedma, Hesham

    2017-04-01

    The early Mesozoic is a critical time in earth history that saw the origin of modern ecosystems set against the back-drop of mass extinction and sudden climate events in a greenhouse world. Non-marine sedimentary strata in western North America preserve a rich archive of low latitude terrestrial ecosystem and environmental change during this time. Unfortunately, frequent lateral facies changes, discontinuous outcrops, and a lack of robust geochronologic constraints make lithostratigraphic and chronostratigraphic correlation difficult, and thus prevent full integration of these paleoenvironmental and paleontologic data into a regional and global context. The Colorado Plateau Coring Project (CPCP) seeks to remedy this situation by recovering a continuous cored record of early Mesozoic sedimentary rocks from the Colorado Plateau of the western United States. CPCP Phase 1 was initiated in 2013, with NSF- and ICDP-funded drilling of Triassic units in Petrified Forest National Park, northern Arizona, U.S.A. This phase recovered a 520 m core (1A) from the northern part of the park, and a 240 m core (2B) from the southern end of the park, comprising the entire Lower-Middle Triassic Moenkopi Formation, and most of the Upper Triassic Chinle Formation. Since the conclusion of drilling, the cores have been CT scanned at the University of Texas - Austin, and split, imaged, and scanned (e.g., XRF, gamma, and magnetic susceptibility) at the University of Minnesota LacCore facility. Subsequently, at the Rutgers University Core Repository, core 1A was comprehensively sampled for paleomagnetism, zircon geochronology, petrography, palynology, and soil carbonate stable isotopes. LA-ICPMS U-Pb zircon analyses are largely complete, and CA-TIMS U-Pb zircon, paleomagnetic, petrographic, and stable isotope analyses are on-going. Initial results reveal numerous horizons with a high proportion of Late Triassic-aged primary volcanic zircons, the age of which appears to be a close

  12. The pre-Mesozoic tectonic unit division of the Xing-Meng orogenic belt (XMOB)

    NASA Astrophysics Data System (ADS)

    Xu, Bei; Zhao, Pan

    2014-05-01

    According to the viewpoint that the paleo-Asian ocean closed by the end of early Paleozoic and extended during the late Paleozoic, a pre-Mesozoic tectonic unit division has been suggested. Five blocks and four sutures have been recognized in the pre-Devonia stage, the five blocks are called Erguna (EB), Xing'an (XB), Airgin Sum-Xilinhot (AXB), Songliao-Hunshandak (SHB) and Jiamusi (JB) blocks and four sutures, Xinlin-Xiguitu (XXS), Airgin Sum-Xilinhot-Heihe (AXHS), Ondor Sum-Jizhong-Yanji (OJYS) and Mudanjiang (MS) sutures. The EB contains the Precambrian base with the ages of 720-850Ma and ɛHf(T)=+2.5to +8.1. The XB is characterized by the Paleoproterozoic granitic gneiss with ɛHf(T)=-3.9 to -8.9. Several ages from 1150 to 1500 Ma bave been acquired in the AXB, proving presence of old block that links with Hutag Uul block in Mongolia to the west. The Paleoproterozoic (1.8-1.9Ga) and Neoproterozoic (750-850Ma) ages have been reported from southern and eastern parts of the SHB, respectively. As a small block in east margin of the XMOB, the JB outcrops magmatite and granitic gneiss bases with ages of 800-1000Ma. The XXS is marked by blueschists with zircon ages of 490-500Ma in Toudaoqiao village, ophiolites in Xiguitu County and granite with ages of about 500Ma along the northern segment of XXS. The AXHS is characterized by the early Paleozoic arc magmatic rocks with ages from 430Ma to 490Ma, mélange and the late Devonia molass basins, which indicates a northward subduction of the SHB beneath the AXB during the early-middle Paleozoic. The OJYS is composed of the early Paleozoic volcanic rocks, diorites and granites with ages of 425-475Ma, blueschists, ophiolitic mélange, the late Silurian flysch and Early-Middle Devonian molasses in western segment, granites (420-450Ma) in middle segment, and plagiogranites (443Ma) and the late Silurian molasses in eastern segment. This suture was caused by a southward subduction of the SHB beneath the North China block. The MS

  13. The Late Oligocene to Early Miocene early evolution of rifting in the southwestern part of the Roer Valley Graben

    NASA Astrophysics Data System (ADS)

    Deckers, Jef

    2016-06-01

    The Roer Valley Graben is a Mesozoic continental rift basin that was reactivated during the Late Oligocene. The study area is located in the graben area of the southwestern part of the Roer Valley Graben. Rifting initiated in the study area with the development of a large number of faults in the prerift strata. Some of these faults were rooted in preexisting zones of weakness in the Mesozoic strata. Early in the Late Oligocene, several faults died out in the study area as strain became focused upon others, some of which were able to link into several-kilometer-long systems. Within the Late Oligocene to Early Miocene northwestward prograding shallow marine syn-rift deposits, the number of active faults further decreased with time. A relatively strong decrease was observed around the Oligocene/Miocene boundary and represents a further focus of strain onto the long fault systems. Miocene extensional strain was not accommodated by further growth, but predominantly by displacements along the long fault systems. Since the Oligocene/Miocene boundary coincides with a radical change in the European intraplate stress field, the latter might have contributed significantly to the simultaneous change of fault kinematics in the study area.

  14. Accessory Mineral Depth-Profiling Applied to the Corsican Lower Crust: A Continuous Thermal History of Mesozoic Continental Rifting

    NASA Astrophysics Data System (ADS)

    Seymour, N. M.; Stockli, D. F.; Beltrando, M.; Smye, A.

    2015-12-01

    Despite advances in understanding the structural development of hyperextended magma-poor rift margins, the temporal and thermal evolution of lithospheric hyperextension during rifting remains only poorly understood. In contrast to classic pure-shear models, multi-stage rift models that include depth-dependent thinning predict significant lower-crustal reheating during the necking phase due to buoyant rise of the asthenosphere. The Santa Lucia nappe of NE Corsica is an ideal laboratory to test for lower-crustal reheating as it preserves Permian lower crust exhumed from granulitic conditions during Mesozoic Tethyan rifting. This study presents the first use of apatite U-Pb depth-profile thermochronology in conjunction with novel rutile U-Pb and zircon U-Pb thermo- and geochronology to reconstruct a continuous t-T path to constrain the syn-rift thermal evolution of this exposed lower-crustal section. LASS-ICP-MS depth-profile analyses of zircon reveal thin (<10 μm) ~210-180 Ma overgrowths on 300-270 Ma cores in lower-crustal lithologies, indicative of renewed thermal activity during Mesozoic rifting. Cooling due to rapid rift margin exhumation is recorded by the topology of rutile and apatite depth profiles caused by thermally-activated volume diffusion at T >400°C. Lower-crustal rutile reveal a rounded progression from core plateaus at ~170 Ma to 150-145 Ma at the outer 8-10 μm of grains while middle-crustal apatite records 170 Ma cores grading to 140-135 Ma rims. Inverse modeling of rutile profiles suggests the lower crust cooled from 700°C at 200 Ma to 425°C at 140 Ma. Middle-crustal apatite yield a two-stage history, with rapid cooling from 500°C at 200 Ma to 420°C at ~180 Ma followed by slow cooling to 400°C by 160 Ma. Combined with zircon overgrowth ages, these data indicate the Santa Lucia nappe underwent a thermal pulse in the late Triassic-early Jurassic associated with depth-dependent thinning and hyperextension of the Corsican margin.

  15. Brittle Deformation in the Ordos Basin in response to the Mesozoic destruction of the North China Craton

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Jiang, L.

    2012-12-01

    Craton is continental block that has been tectonically stable since at least Proterozoic. Some cratons, however, become unstable for some geodynamic reasons. The North China Craton (NCC) is an example. Structure geological, geochemical, and geophysical works have revealed that the NCC was destructed in Cretaceous and that lithosphere thickness beneath the eastern NCC were thinned by 120 km. The present study will focus on deformation of the western NCC, and to understand the effect of the Mesozoic destruction of the North China Craton (NCC). Structural partitioning of the Ordos Basin, which is located in the western NCC, from the eastern NCC occurred during the Mesozoic. Unlike the eastern NCC where many Cretaceous metamorphic core complexes developed, sedimentary cover of the NCC remains nearly horizontal and deformation is manifested by joint. We visited 216 sites of outcrops and got 1928 joints measurements, among which 270 from Jurassic sandstones, 1378 from the Upper Triassic sandstones, 124 from the Middle and Lower Triassic sandstones, and 156 from Paleozoic sandstones. In the interior of the Ordos Basin, joints developed quite well in the Triassic strata, while joints in the Jurassic stata developed weakly and no joint in the Cretaceous strata. The Mesozoic stratigraphic thickness are: 1000 meters for the Lower Triassic, the Middle Triassic sandstone with thickness of 800 meters, 3000 meters for the Upper Triassic, 4000 meters for the Jurassic, and 1100 meters for the Lower Cretaceous. The vertical difference in joint development might be related to the burying depth of the strata: the higher the strata, the smaller the lithostatic stress, and then the weaker the joint. Joints in all stratigraphic levels showed a similar strain direction with the sigma 1 (the maximum pressure stress) vertical and the sigma 3 (the minimum pressure stress) horizontal and running N-S. The unconformity below the Cretaceous further indicates that joints in Jurassic and Triassic

  16. Palaeozoic and Mesozoic tectonic implications of Central Afghanistan

    NASA Astrophysics Data System (ADS)

    Sliaupa, Saulius; Motuza, Gediminas

    2017-04-01

    The field and laboratory studies were carried out in Ghor Province situated in the central part of Afghanistan. It straddles juxtaposition of the Tajik (alternatively, North Afghanistan) and Farah Rod blocks separated by Band-e-Bayan zone. The recent studies indicate that Band-e-Bayan zone represents highly tectonised margin of the Tajik block (Motuza, Sliaupa, 2016). The Band-e-Bayan zone is the most representative in terms of sedimentary record. The subsidence trends and sediment lithologies suggest the passive margin setting during (Cambrian?) Ordovician to earliest Carboniferous times. A change to the foredeep setting is implied in middle Carboniferous through Early Permian; the large-thickness flysh-type sediments were derived from continental island arc provenance, as suggested by chemical composition of mudtstones. This stage can be correlated to the amalgamation of the Gondwana supercontinent. The new passive-margin stage can be inferred in the Band-e-Bayan zone and Tajik blocks in the Late Permian throughout the early Late Triassic that is likely related to breaking apart of Gondwana continent. A collisional event is suggested in latest Triassic, as seen in high-rate subsidence associating with dramatic change in litholgies, occurrence of volcanic rocks and granidoid intrusions. The continental volcanic island arc derived (based on geochemical indices) terrigens prevail at the base of Jurassic that were gradually replaced by carbonate platform in the Middle Jurassic pointing to cessation of the tectonic activity. A new tectonic episode (no deposition; and folding?) took place in the Tajik and Band-e-Bayan zone in Late Jurassic. The geological section of the Farah Rod block, situated to the south, is represented by Jurassic and Cretaceous sediments overlain by sporadic Cenozoic volcanic-sedimentary succession. The lower part of the Mesozoic succession is composed of terrigenic sediments giving way to upper Lower Cretaceous shallow water carbonates implying

  17. Petrology and tectonics of Phanerozoic continent formation: From island arcs to accretion and continental arc magmatism

    USGS Publications Warehouse

    Lee, C.-T.A.; Morton, D.M.; Kistler, R.W.; Baird, A.K.

    2007-01-01

    Mesozoic continental arcs in the North American Cordillera were examined here to establish a baseline model for Phanerozoic continent formation. We combine new trace-element data on lower crustal xenoliths from the Mesozoic Sierra Nevada Batholith with an extensive grid-based geochemical map of the Peninsular Ranges Batholith, the southern equivalent of the Sierras. Collectively, these observations give a three-dimensional view of the crust, which permits the petrogenesis and tectonics of Phanerozoic crust formation to be linked in space and time. Subduction of the Farallon plate beneath North America during the Triassic to early Cretaceous was characterized by trench retreat and slab rollback because old and cold oceanic lithosphere was being subducted. This generated an extensional subduction zone, which created fringing island arcs just off the Paleozoic continental margin. However, as the age of the Farallon plate at the time of subduction decreased, the extensional environment waned, allowing the fringing island arc to accrete onto the continental margin. With continued subduction, a continental arc was born and a progressively more compressional environment developed as the age of subducting slab continued to young. Refinement into a felsic crust occurred after accretion, that is, during the continental arc stage, wherein a thickened crustal and lithospheric column permitted a longer differentiation column. New basaltic arc magmas underplate and intrude the accreted terrane, suture, and former continental margin. Interaction of these basaltic magmas with pre-existing crust and lithospheric mantle created garnet pyroxenitic mafic cumulates by fractional crystallization at depth as well as gabbroic and garnet pyroxenitic restites at shallower levels by melting of pre-existing lower crust. The complementary felsic plutons formed by these deep-seated differentiation processes rose into the upper crust, stitching together the accreted terrane, suture and former

  18. Mesozoic evolution of northeast African shelf margin, Libya and Egypt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aadland, R.K.; Schamel, S.

    1989-03-01

    The present tectonic features of the northeast African shelf margin between the Nile delta and the Gulf of Sirte are products of (1) precursory late Paleozoic basement arches, (2) early Mesozoic rifting and plate separation, and (3) Late Cretaceous structural inversion. The 250 km-wide and highly differentiated Mesozoic passive margin in the Western Desert region of Egypt is developed above a broad northwest-trending Late Carboniferous basement arch. In northeastern Libya, in contrast, the passive margin is restricted to just the northernmost Cyrenaica platform, where subsidence was extremely rapid in the Jurassic and Early Cretaceous. The boundary between the Western Desertmore » basin and the Cyrenaica platform is controlled by the western flank of the basement arch. In the middle Cretaceous (100-90 Ma), subsidence accelerated over large areas of the Western desert, further enhancing a pattern of east-west-trending subbasins. This phase of rapid subsidence was abruptly ended about 80 Ma by the onset of structural inversion that uplifted the northern Cyrenaica shelf margin and further differentiated the Western Desert subbasin along a northeasterly trend.« less

  19. Extension style in the Orphan Basin during the Mesozoic North Atlantic rifting

    NASA Astrophysics Data System (ADS)

    Gouiza, Mohamed; Hall, Jeremy

    2013-04-01

    The Orphan Basin, lying along the Newfoundland passive continental margin, has formed in Mesozoic time during the opening of the North Atlantic Ocean and the breakup of Iberia/Eurasia from North America. Regional deep seismic reflection profiles across the basin indicate that the Neoproterozoic basement has been affected by repeated extensional episodes between the Late Triassic/Jurassic and the Early Cretaceous. Deformation initiated in the eastern part of the Orphan basin in the Jurassic and migrated toward the west in the Early Cretaceous, resulting in numerous rift structures filled with Jurassic-Lower Cretaceous syn-rift successions and sealed by thick Upper Cretaceous-Cenozoic post-rift sediments. The seismic data show an extremely attenuated crust underneath the eastern and western part of the deep basin, forming two sub-basins associated with the development of rifting. The two sub-basins are separated by a wide structural high with a relatively thick crust and are bounded to the west by the continental shelf domain. Restoration of the Orphan Basin along a 2D crustal section (520 km long), yields a total amount of stretching of about 144 km, while the total crustal thinning indicates an extension of around 250 km, assuming mass conservation along the section and an initial crustal thickness of 28 km. Brittle deformation accommodated by normal faults is documented in the seismic profiles and affected essentially the present-day upper portion of the crust, and represents only 60% of the total extension which thinned the Orphan crust. The remaining crustal thinning must involve other deformation processes which are not (easily) recognizable in the seismic data. We propose two models that could explain discrepancies between brittle deformation and total crustal thinning during lithospheric extension. The first model assumes the reactivation of pre-rift inherited structures, which act as crustal-scale detachments during the early stages of rifting. The second

  20. Study of crustal structure and stretch mechanism of central continental shelf of northern South China Sea

    NASA Astrophysics Data System (ADS)

    Cao, J.; Xia, S.; Sun, J.; Wan, K.; Xu, H.

    2017-12-01

    Known as a significant region to study tectonic relationship between South China block and South China Sea (SCS) block and the evolution of rifted basin in continental margin, the continental shelf of northern SCS documents the evolution from continental splitting to seafloor spreading of SCS. To investigate crustal structure of central continental shelf in northern SCS, two wide-angle onshore-offshore seismic experiments and coincident multi-channel seismic (MCS) profiles were carried out across the onshore-offshore transitional zone in northern SCS, 2010 and 2012. A total of 34 stations consisted of ocean bottom seismometers, portable and permanent land stations were deployed during the survey. The two-dimensional precise crustal structure models of central continental shelf in northern SCS was constructed from onshore to offshore, and the stretching factors along the P-wave velocity models were calculated. The models reveal that South China block is a typical continental crust with a 30-32 km Moho depth, and a localized high-velocity anomaly in middle-lower crust under land area near Hong Kong was imaged, which may reflect magma underplating caused by subduction of paleo-Pacific plate in late Mesozoic. The littoral fault zone is composed of several parallel, high-angle, normal faults that mainly trend northeast to northeast-to-east and dip to the southeast with a large displacement, and the fault is divided into several segments separated by the northwest-trending faults. The shelf zone south of LFZ was consisted of a differential thinning upper and lower continental crust, which indicate stretch thinning of passive continent margin during the Cenozoic spreading of the SCS. The results appear to further confirm that the northern margin of SCS experienced a transition from active margin to passive one during late Mesozoic and Cenozoic.

  1. Assessment of undiscovered oil and gas resources of the East Coast Mesozoic basins of the Piedmont, Blue Ridge Thrust Belt, Atlantic Coastal Plain, and New England Provinces, 2011

    USGS Publications Warehouse

    Milici, Robert C.; Coleman, James L.; Rowan, Elisabeth L.; Cook, Troy A.; Charpentier, Ronald R.; Kirschbaum, Mark A.; Klett, Timothy R.; Pollastro, Richard M.; Schenk, Christopher J.

    2012-01-01

    During the early opening of the Atlantic Ocean in the Mesozoic Era, numerous extensional basins formed along the eastern margin of the North American continent from Florida northward to New England and parts of adjacent Canada. The basins extend generally from the offshore Atlantic continental margin westward beneath the Atlantic Coastal Plain to the Appalachian Mountains. Using a geology-based assessment method, the U.S. Geological Survey estimated a mean undiscovered natural gas resource of 3,860 billion cubic feet and a mean undiscovered natural gas liquids resource of 135 million barrels in continuous accumulations within five of the East Coast Mesozoic basins: the Deep River, Dan River-Danville, and Richmond basins, which are within the Piedmont Province of North Carolina and Virginia; the Taylorsville basin, which is almost entirely within the Atlantic Coastal Plain Province of Virginia and Maryland; and the southern part of the Newark basin (herein referred to as the South Newark basin), which is within the Blue Ridge Thrust Belt Province of New Jersey. The provinces, which contain these extensional basins, extend across parts of Georgia, South Carolina, North Carolina, Virginia, Maryland, Delaware, Pennsylvania, New Jersey, New York, Connecticut, and Massachusetts.

  2. Re-Os isotope evidence from Mesozoic and Cenozoic basalts for secular evolution of the mantle beneath the North China Craton

    NASA Astrophysics Data System (ADS)

    Huang, Feng; Xu, Ji-Feng; Liu, Yong-Sheng; Li, Jie; Chen, Jian-Lin; Li, Xi-Yao

    2017-05-01

    The mechanism and process of lithospheric thinning beneath the North China Craton (NCC) are still debated. A key criterion in distinguishing among the proposed mechanisms is whether associated continental basalts were derived from the thinning lithospheric mantle or upwelling asthenosphere. Herein, we investigate the possible mechanisms of lithospheric thinning based on a systematic Re-Os isotopic study of Mesozoic to Cenozoic basalts from the NCC. Our whole-rock Re-Os isotopic results indicate that the Mesozoic basalts generally have high Re and Os concentrations that vary widely from 97.2 to 839.4 ppt and 74.4 to 519.6 ppt, respectively. They have high initial 187Os/188Os ratios ranging from 0.1513 to 0.3805, with corresponding variable γOs(t) values (+20 to +202). In contrast, the Re-Os concentrations and radiogenic Os isotope compositions of the Cenozoic basalts are typically lower than those of the Mesozoic basalts. The lowest initial 187Os/188Os ratios of the Cenozoic basalts are 0.1465 and 0.1479, with corresponding γOs(t) values of +15 and +16, which are within the range of ocean island basalts. These new Re-Os isotopic results, combined with the findings of previous studies, indicate that the Mesozoic basalts were a hybrid product of the melting of pyroxenite and peridotite in ancient lithospheric mantle beneath the NCC. The Cenozoic basalts were derived mainly from upwelling asthenosphere mixed with small amounts of lithospheric materials. The marked differences in geochemistry between the Mesozoic and Cenozoic basalts suggest a greatly reduced involvement of lithospheric mantle as the magma source from the Mesozoic to the Cenozoic. The subsequent lithospheric thinning of the NCC and replacement by upwelling asthenospheric mantle resulted in a change to asthenosphere-derived Cenozoic basalts.

  3. Late Pan-African and early Mesozoic brittle compressions in East and Central Africa: lithospheric deformation within the Congo-Tanzania Cratonic area

    NASA Astrophysics Data System (ADS)

    Delvaux, D.; Kipata, M. L.; Macheyeki, A. S.

    2012-04-01

    Tectonic reconstructions leading to the formation of the Central-African part of Gondwana have so far not much taken into account constraints provided by the evolution of brittle structures and related stress field. This is largely because little is known on continental brittle deformation in Equatorial Africa before the onset of the Mesozoic Central-African and Late Cenozoic East-African rifts. We present a synthesis of fault-kinematic data and paleostress inversion results from field surveys covering parts of Tanzania, Zambia and the Democratic Republic of Congo. It is based on investigations along the eastern margin of the Tanzanian craton, in the Ubendian belt between the Tanzanian craton and Bangweulu block, in the Lufilian Arc between the Kalahari and Congo cratons and along the Congo intracratonic basin. Paleostress tensors were computed for a substantial database by interactive stress tensor inversion and data subset separation, and the relative succession of major brittle events established. Two of them appear to be of regional importance and could be traced from one region to the other. The oldest one is the first brittle event recorded after the paroxysm of the Terminal Pan-African event that led to the amalgamation Gondwana at the Precambrian-Cambrian transition. It is related to compressional deformation with horizontal stress trajectories fluctuating from an E-W compression in Central Tanzania to NE-SW in the Ubende belt and Lufilian Arc. The second event is a transpressional inversion with a consistent NW-SE compression that we relate to the far-field effects of the active margin south of Gondwana during the late Triassic - early Jurassic.

  4. The structural evolution of the Ghadames and Illizi basins during the Paleozoic, Mesozoic and Cenozoic: Petroleum implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gauthier, F.J.; Boudjema, A.; Lounis, R.

    1995-08-01

    The Ghadames and Illizi basins cover the majority of the eastern Sahara of Algeria. Geologicaly, this part of the Central Saharan platform has been influenced by a series of structural arches and {open_quotes}moles{close_quotes} (continental highs) which controlled sedimentation and structure through geologic time. These features, resulting from and having been affected by nine major tectonic phases ranging from pre-Cambrian to Tertiary, completely bound the Ghadames and Illizi Basins. During the Paleozoic both basins formed one continuous depositional entity with the Ghadames basin being the distal portion of the continental sag basin where facies and thickness variations are observed over largemore » distances. It is during the Mesozoic-Cenozoic that the Ghadames basin starts to evolve differently from the Illizi Basin. Eustatic low-stand periods resulted in continental deposition yielding the major petroleum-bearing reservoir horizons (Cambrian, Ordovician, Siluro-Devonian and Carboniferous). High-stand periods corresponds to the major marine transgressions covering the majority of the Saharan platform. These transgressions deposited the principal source rock intervals of the Silurian and Middle to Upper Devonian. The main reservoirs of the Mesozoic and Cenozoic are Triassic sandstone sequences which are covered by a thick evaporite succession forming a super-seal. Structurally, the principal phases affecting this sequence are the extensional events related to the breakup of Pangea and the Alpine compressional events. The Ghadames and Illizi basins, therefore, have been controlled by a polphase tectonic history influenced by Pan African brittle basement fracturing which resulted in complex structures localized along the major basin bounding trends as well as several subsidiary trends within the basin. These trends, as demonstrated with key seismic data, have been found to contain the majority of hydrocarbons trapped.« less

  5. Age and tectonic setting of Mesozoic metavolcanic and metasedimentary rocks, northern White Mountains, California

    NASA Astrophysics Data System (ADS)

    Hanson, R. Brooks; Saleeby, Jason B.; Fates, D. Gilbert

    1987-11-01

    Mesozoic metavolcanic and metasedimentary rocks in the northern White Mountains, eastern California and western Nevada, are separated from lower Paleozoic and Precambrian rocks by Jurassic and Cretaceous plutons. The large stratigraphic hiatus across the plutons is called the Barcroft structural break. Recent mapping and new U/Pb zircon ages of 154 +3/-1 Ma and 137 ±1 Ma. from an ash-flow tuff and a hypabyssal intrusion, respectively, indicate that part of the Mesozoic section and the Barcroft structural break are younger than the 160 165 Ma Barcroft Granodiorite, in contrast to previous interpretations. The Barcroft Granodiorite has been thrust westward over most of the Mesozoic section. It is everywhere in fault contact with overturned metasedimentary rocks on the west side of the range, rocks which were previously thought to be upright and the oldest part of the Mesozoic section. The McAfee Creek Granite, which has a 100 ±1 Ma U/Pb zircon age, postdates thrusting; therefore, the Barcroft structural break is primarily Early Cretaceous in age. *Present addresses: Hanson—Department of Mineral Sciences, Smithsonian Institution, Washington, D.C. 20560; Fates—Dames & Moore, 455 S. Figueroa Street, Suite 3504, Los Angeles, California 90074

  6. An early Cambrian greenhouse climate.

    PubMed

    Hearing, Thomas W; Harvey, Thomas H P; Williams, Mark; Leng, Melanie J; Lamb, Angela L; Wilby, Philip R; Gabbott, Sarah E; Pohl, Alexandre; Donnadieu, Yannick

    2018-05-01

    The oceans of the early Cambrian (~541 to 509 million years ago) were the setting for a marked diversification of animal life. However, sea temperatures-a key component of the early Cambrian marine environment-remain unconstrained, in part because of a substantial time gap in the stable oxygen isotope (δ 18 O) record before the evolution of euconodonts. We show that previously overlooked sources of fossil biogenic phosphate have the potential to fill this gap. Pristine phosphatic microfossils from the Comley Limestones, UK, yield a robust δ 18 O signature, suggesting sea surface temperatures of 20° to 25°C at high southern paleolatitudes (~65°S to 70°S) between ~514 and 509 million years ago. These sea temperatures are consistent with the distribution of coeval evaporite and calcrete deposits, peak continental weathering rates, and also our climate model simulations for this interval. Our results support an early Cambrian greenhouse climate comparable to those of the late Mesozoic and early Cenozoic, offering a framework for exploring the interplay between biotic and environmental controls on Cambrian animal diversification.

  7. Continental temperatures through the early Eocene in western central Europe

    NASA Astrophysics Data System (ADS)

    Inglis, G. N.; Collinson, M. E.; Riegel, W.; Wilde, V.; Farnsworth, A.; Lunt, D. J.; Robson, B.; Scott, A. C.; Lenz, O.; Pancost, R.

    2016-12-01

    In contrast to the marine realm, our understanding of terrestrial temperature change during greenhouse climates is poorly constrained. Recently, branched glycerol dialkyl glycerol tetraethers (brGDGTs) have been used to successfully reconstruct mean annual air temperature (MAAT) during the early Paleogene. However, despite the potential to provide new insights into terrestrial climate, the application of this proxy in lignite and coal deposits is still limited. Using samples recovered from Schöningen, Germany ( 48°N), we provide the first detailed study into the occurrence and distribution of brGDGTs through a sequence of Early Eocene lignites and associated marine interbeds. Branched GDGTs are abundant and present in every sample. In comparison to modern studies, changes in vegetation type do not appear to significantly impact brGDGT distributions; however, there are subtle differences in these distributions between lignites and siliciclastic nearshore marine interbed sediments. Using the most recent brGDGT temperature calibration, we generate the first continental temperature record from central-western continental Europe through the Early Eocene. Lignite-derived MAAT estimates range from 23 to 26°C and those derived from the nearshore marine interbeds always exceed 20°C. These estimates are consistent with other mid-latitude palaeoclimate proxy records which indicate enhanced early Eocene warmth. In the basal part of the section, warming is recorded in both the lignites ( 2°C) and nearshore marine interbeds ( 2-3°C). This culminates in a long-term temperature maximum, likely including the Early Eocene Climatic Optimum (EECO). Although this trend is relatively well established in marginal marine sediments within the SW Pacific, it has rarely been shown in other regions or terrestrial settings. Using a suite of new climate model simulations, our warming trend is consistent with a doubling of CO2 (from 560ppmv to 1120ppmv) which broadly agrees with proxy

  8. A low-angle normal fault and basement structures within the Enping Sag, Pearl River Mouth Basin: Insights into late Mesozoic to early Cenozoic tectonic evolution of the South China Sea area

    NASA Astrophysics Data System (ADS)

    Ye, Qing; Mei, Lianfu; Shi, Hesheng; Shu, Yu; Camanni, Giovanni; Wu, Jing

    2018-04-01

    The basement structure of the Cenozoic Enping Sag, within the Pearl River Mouth Basin on the northern margin of South China Sea, is revealed by borehole-constrained high-quality 3D seismic reflection data. Such data suggest that the Enping Sag is bounded in the north by a low-angle normal fault. We interpret this low-angle normal fault to have developed as the result of the reactivation of a pre-existing thrust fault part of a pre-Cenozoic thrust system. This is demonstrated by the selective reactivation of the pre-existing thrust and by diffuse contractional deformation recognized from the accurate analysis of basement reflections. Another significant result of this study is the finding of some residual rift basins within the basement of the Enping Sag. Both the thrust system and the residual basins are interpreted to have developed after the emplacement of continental margin arc-related granitoids (J3-K1) that define the basement within the study area. Furthermore, seismic sections show that the pre-existing residual rift basins are offset by the main thrust fault and they are both truncated by the Tg unconformity. These structural relationships, interpreted in the frame of previous studies, help us to reconstruct a six-event structural evolution model for the Enping Sag from the late Mesozoic to the early Cenozoic. In particular, we interpret the residual rift basins to have formed as the result of back-arc extension due to the slab roll-back of the Paleo-Pacific Plate subduction in the early K2. The thrust system has recorded a compressional event in the late K2 that followed the back-arc extension in the SCS area. The mechanism of this compressional event is still to be clarified, and might be related to continuous subduction of the Paleo-Pacific Plate or to the continent-continent collision between a micro-continental block and the South China margin.

  9. Mid-latitude continental temperatures through the early Eocene in western Europe

    NASA Astrophysics Data System (ADS)

    Inglis, Gordon N.; Collinson, Margaret E.; Riegel, Walter; Wilde, Volker; Farnsworth, Alexander; Lunt, Daniel J.; Valdes, Paul; Robson, Brittany E.; Scott, Andrew C.; Lenz, Olaf K.; Naafs, B. David A.; Pancost, Richard D.

    2017-02-01

    Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are increasingly used to reconstruct mean annual air temperature (MAAT) during the early Paleogene. However, the application of this proxy in coal deposits is limited and brGDGTs have only been detected in immature coals (i.e. lignites). Using samples recovered from Schöningen, Germany (∼48°N palaeolatitude), we provide the first detailed study into the occurrence and distribution of brGDGTs through a sequence of early Eocene lignites and associated interbeds. BrGDGTs are abundant and present in every sample. In comparison to modern studies, changes in vegetation type do not appear to significantly impact brGDGT distributions; however, there are subtle differences between lignites - representing peat-forming environments - and siliciclastic nearshore marine interbed depositional environments. Using the most recent brGDGT temperature calibration (MATmr) developed for soils, we generate the first continental temperature record from central-western continental Europe through the early Eocene. Lignite-derived MAAT estimates range from 23 to 26 °C while those derived from the nearshore marine interbeds exceed 20 °C. These estimates are consistent with other mid-latitude environments and model simulations, indicating enhanced mid-latitude, early Eocene warmth. In the basal part of the section studied, warming is recorded in both the lignites (∼2 °C) and nearshore marine interbeds (∼2-3 °C). This culminates in a long-term temperature maximum, likely including the Early Eocene Climatic Optimum (EECO). Although this long-term warming trend is relatively well established in the marine realm, it has rarely been shown in terrestrial settings. Using a suite of model simulations we show that the magnitude of warming at Schöningen is broadly consistent with a doubling of CO2, in agreement with late Paleocene and early Eocene pCO2 estimates.

  10. Pre-mesozoic palinspastic reconstruction of the eastern great basin (Western United States).

    PubMed

    Levy, M; Christie-Blick, N

    1989-09-29

    The Great Basin of the western United States has proven important for studies of Proterozoic and Paleozoic geology [2500 to 245 million years ago (Ma)] and has been central to the development of ideas about the mechanics of crustal shortening and extension. An understanding of the deformational history of this region during Mesozoic and Cenozoic time (245 Ma to the present) is required for palinspastic reconstruction of now isolated exposures of older geology in order to place these in an appropriate regional geographic context. Considerable advances in unraveling both the crustal shortening that took place during Mesozoic to early Cenozoic time (especially from about 150 to 50 Ma) and the extension of the past 37 million years have shown that earlier reconstructions need to be revised significantly. A new reconstruction is developed for rocks of middle Proterozoic to Early Cambrian age based on evidence that total shortening by generally east-vergent thrusts and folds was at least 104 to 135 kilometers and that the Great Basin as a whole accommodated approximately 250 kilometers of extension in the direction 287 degrees +/- 12 degrees between the Colorado Plateau and the Sierra Nevada. Extension is assumed to be equivalent at all latitudes because available paleomagnetic evidence suggests that the Sierra Nevada experienced little or no rotation with respect to the extension direction since the late Mesozoic. An estimate of the uncertainty in the amount of extension obtained from geological and paleomagnetic uncertainties increases northward from +/-56 kilometers at 36 degrees 30N to (-87)(+108) kilometers at 40 degrees N. On the basis of the reconstruction, the original width of the preserved part of the late Proterozoic and Early Cambrian basin was about 150 to 300 kilometers, about 60 percent of the present width, and the basin was oriented slightly more north-south with respect to present-day coordinates.

  11. Timing of Exhumation of the Mesozoic Blue Nile Rift, Ethiopia: A New Study from Apatite Fission Track Thermochronology

    NASA Astrophysics Data System (ADS)

    Gani, N. D.; Bowden, S. M.

    2017-12-01

    At present, tectonic features of Ethiopia are dominated by the 2.5 km high Ethiopian Plateau, and the NE-SW striking continental rift, the East African Rift System (EARS) that dissected the plateau into the northwest and southeast plateaus. The stress direction of the EARS is nearly perpendicular to the stress direction of the Mesozoic rifts of the Central African Rift System (CARS), located mostly in Sudan, Ethiopia and Kenya. During the Gondwana splitting in Mesozoic, active lithospheric extension within the CARS resulted in several NW-SE striking continental rifts including the Blue Nile, Muglad, Melut and Anza that are well documented in Sudan and Kenya, from a combination of geophysical and drill core analysis and field investigations. However, the timing and evolution of the poorly documented Blue Nile Rift in Ethiopia, now hidden in the subsurface of the Ethiopian Plateau and the EARS, is largely unknown. This study investigates, for the first time, the timing of tectono-thermal evolution of the Blue Nile Rift from cooling ages deduced from apatite fission track (AFT) thermochronology to understand the rift flank exhumation. Here, we report the AFT results from basement samples collected in a vertical transect from the Ethiopian Plateau. The fission track ages of the samples show a general trend of increasing cooling ages with elevations. The time-temperature simulations of the fission track ages illustrate that the cooling started at least 80 Ma ago with a significant amount of rapid cooling between 80 and 70 Ma, followed by a slow cooling after 70 Ma and then another accelerated cooling starting around 10 Ma. The Cretaceous rapid cooling event likely related to the flank uplift of the Blue Nile Rift and associated faulting, during which much of the exhumation occurred. Today, the Blue Nile Rift is buried under the thick cover of Mesozoic sedimentary rocks and Cenozoic volcanics. The late Neogene rapid cooling agrees well with our previous thermal model

  12. Neoproterozoic, Paleozoic, and Mesozoic granitoid magmatism in the Qinling Orogen, China: Constraints on orogenic process

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoxia; Wang, Tao; Zhang, Chengli

    2013-08-01

    The Qinling Orogen is one of the main orogenic belts in Asia and is characterized by multi-stage orogenic processes and the development of voluminous magmatic intrusions. The results of zircon U-Pb dating indicate that granitoid magmatism in the Qinling Orogen mainly occurred in four distinct periods: the Neoproterozoic (979-711 Ma), Paleozoic (507-400 Ma), and Early (252-185 Ma) and Late (158-100 Ma) Mesozoic. The Neoproterozoic granitic magmatism in the Qinling Orogen is represented by strongly deformed S-type granites emplaced at 979-911 Ma, weakly deformed I-type granites at 894-815 Ma, and A-type granites at 759-711 Ma. They can be interpreted as the products of respectively syn-collisional, post-collisional and extensional setting, in response to the assembly and breakup of the Rodinia supercontinent. The Paleozoic magmatism can be temporally classified into three stages of 507-470 Ma, 460-422 Ma and ˜415-400 Ma. They were genetically related to the subduction of the Shangdan Ocean and subsequent collision of the southern North China Block and the South Qinling Belt. The 507-470 Ma magmatism is spatially and temporally related to ultrahigh-pressure metamorphism in the studied area. The 460-422 Ma magmatism with an extensive development in the North Qinling Belt is characterized by I-type granitoids and originated from the lower crust with the involvement of mantle-derived magma in a collisional setting. The magmatism with the formation age of ˜415-400 Ma only occurred in the middle part of the North Qinling Belt and is dominated by I-type granitoid intrusions, and probably formed in the late-stage of a collisional setting. Early Mesozoic magmatism in the study area occurred between 252 and 185 Ma, with the cluster in 225-200 Ma. It took place predominantly in the western part of the South Qinling Belt. The 250-240 Ma I-type granitoids are of small volume and show high Sr/Y ratios, and may have been formed in a continental arc setting related to subduction

  13. Near-Stasis in the Long-Term Diversification of Mesozoic Tetrapods

    PubMed Central

    Benson, Roger B. J.; Butler, Richard J.; Alroy, John; Mannion, Philip D.; Carrano, Matthew T.; Lloyd, Graeme T.

    2016-01-01

    How did evolution generate the extraordinary diversity of vertebrates on land? Zero species are known prior to ~380 million years ago, and more than 30,000 are present today. An expansionist model suggests this was achieved by large and unbounded increases, leading to substantially greater diversity in the present than at any time in the geological past. This model contrasts starkly with empirical support for constrained diversification in marine animals, suggesting different macroevolutionary processes on land and in the sea. We quantify patterns of vertebrate standing diversity on land during the Mesozoic–early Paleogene interval, applying sample-standardization to a global fossil dataset containing 27,260 occurrences of 4,898 non-marine tetrapod species. Our results show a highly stable pattern of Mesozoic tetrapod diversity at regional and local levels, underpinned by a weakly positive, but near-zero, long-term net diversification rate over 190 million years. Species diversity of non-flying terrestrial tetrapods less than doubled over this interval, despite the origins of exceptionally diverse extant groups within mammals, squamates, amphibians, and dinosaurs. Therefore, although speciose groups of modern tetrapods have Mesozoic origins, rates of Mesozoic diversification inferred from the fossil record are slow compared to those inferred from molecular phylogenies. If high speciation rates did occur in the Mesozoic, then they seem to have been balanced by extinctions among older clades. An apparent 4-fold expansion of species richness after the Cretaceous/Paleogene (K/Pg) boundary deserves further examination in light of potential taxonomic biases, but is consistent with the hypothesis that global environmental disturbances such as mass extinction events can rapidly adjust limits to diversity by restructuring ecosystems, and suggests that the gradualistic evolutionary diversification of tetrapods was punctuated by brief but dramatic episodes of radiation

  14. Early Mesozoic rift basin architecture and sediment routing system in the Moroccan High Atlas

    NASA Astrophysics Data System (ADS)

    Perez, N.; Teixell, A.; Gomez, D.

    2016-12-01

    Late Permian to Triassic extensional systems associated with Pangea breakup governed the structural framework and rift basin architecture that was inherited by Cenozoic High Atlas Mountains in Morocco. U-Pb detrital zircon geochronologic and mapping results from Permo-Triassic deposits now incorporated into the High Atlas Mountains provide new constraints on the geometry and interconnectivity among synextensional depocenters. U-Pb detrital zircon data provide provenance constraints of Permo-Triassic deposits, highlighting temporal changes in sediment sources and revealing the spatial pattern of sediment routing along the rift. We also characterize the U-Pb detrital zircon geochronologic signature of distinctive interfingering fluvial, tidal, and aeolian facies that are preferentially preserved near the controlling normal faults. These results highlight complex local sediment mixing patterns potentially linked to the interplay between fault motion, eustatic, and erosion/transport processes. We compare our U-Pb geochronologic results with existing studies of Gondwanan and Laurentian cratonic blocks to investigate continent scale sediment routing pathways, and with analogous early Mesozoic extensional systems situated in South America (Mitu basin, Peru) and North America (Newark Basin) to assess sediment mixing patterns in rift basins.

  15. The first iguanian lizard from the Mesozoic of Africa

    NASA Astrophysics Data System (ADS)

    Apesteguía, Sebastián; Daza, Juan D.; Simões, Tiago R.; Rage, Jean Claude

    2016-09-01

    The fossil record shows that iguanian lizards were widely distributed during the Late Cretaceous. However, the biogeographic history and early evolution of one of its most diverse and peculiar clades (acrodontans) remain poorly known. Here, we present the first Mesozoic acrodontan from Africa, which also represents the oldest iguanian lizard from that continent. The new taxon comes from the Kem Kem Beds in Morocco (Cenomanian, Late Cretaceous) and is based on a partial lower jaw. The new taxon presents a number of features that are found only among acrodontan lizards and shares greatest similarities with uromastycines, specifically. In a combined evidence phylogenetic dataset comprehensive of all major acrodontan lineages using multiple tree inference methods (traditional and implied weighting maximum-parsimony, and Bayesian inference), we found support for the placement of the new species within uromastycines, along with Gueragama sulamericana (Late Cretaceous of Brazil). The new fossil supports the previously hypothesized widespread geographical distribution of acrodontans in Gondwana during the Mesozoic. Additionally, it provides the first fossil evidence of uromastycines in the Cretaceous, and the ancestry of acrodontan iguanians in Africa.

  16. The Mesozoic and Palaeozoic granitoids of north-western New Guinea

    NASA Astrophysics Data System (ADS)

    Jost, Benjamin M.; Webb, Max; White, Lloyd T.

    2018-07-01

    A large portion of the Bird's Head Peninsula of NW New Guinea is an inlier that reveals the pre-Cenozoic geological history of the northern margin of eastern Gondwana. The peninsula is dominated by a regional basement high exposing Gondwanan ('Australian') Palaeozoic metasediments intruded by Palaeozoic and Mesozoic granitoids. Here, we present the first comprehensive study of these granitoids, including field and petrographic descriptions, bulk rock geochemistry, and U-Pb zircon age data. We further revise and update previous subdivisions of granitoids in the area. Most granitoids were emplaced as small to medium-scale intrusions during two episodes in the Devonian-Carboniferous and the Late Permian-Triassic, separated by a period of apparent magmatic quiescence. The oldest rocks went unrecognised until this study, likely due to the younger intrusive events resetting the K-Ar isotopic system used in previous studies. Most of the Palaeozoic and Mesozoic granitoids are peraluminous and in large parts derived from partial melts of the country rock. This is corroborated by local migmatites and country rock xenoliths. Although rare, metaluminous and mafic rocks show that partial melts of mantle-derived material played a minor role in granitoid petrogenesis, especially during the Permian-Triassic. The Devonian-Carboniferous granitoids and associated volcanics are locally restricted, whereas the Permian-Triassic intrusions are found across NW New Guinea and further afield. The latter were likely part of an extensive active continental margin above a subduction system spanning the length of what is now New Guinea and potentially extending southward through eastern Australia and Antarctica.

  17. Continental crustal growth and the supercontinental cycle: evidence from the Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Hong, Dawei; Zhang, Jisheng; Wang, Tao; Wang, Shiguang; Xie, Xilin

    2004-09-01

    Studies of supercontinental cycle are mainly concentrated on the assembly, breakup and dispersal of supercontinents, and studies of continental crustal growth largely on the growth and loss (recycling) of the crust. These two problems have long been studied separately from each other. The Paleozoic-Mesozoic granites in the Central Asian Orogenic Belt have commonly positive ɛNd values, implying large-scale continental crustal growth in the Phanerozoic. They coincided temporally and spatially with the Phanerozoic Pangea supercontinental cycle, and overlapped in space with the P-wave high- V anomalies and calculated positions of subducted slabs for the last 180 Ma, all this suggests that the Phanerozoic Laurasia supercontinental assembly was accompanied by large-scale continental crustal growth in central Asia. Based on these observations, this paper proposes that there may be close and original correlations between a supercontinental cycle, continental crustal growth and catastrophic slab avalanches in the mantle. In this model we suggest that rapid continental crustal growth occurred during supercontinent assembly, whereas during supercontinental breakup and dispersal new additions of the crust were balanced by losses, resulting in a steady state system. Supercontinental cycle and continental crustal growth are both governed by changing patterns of mantle convection.

  18. Initiation of Extension in South China Continental Margin during the Active-Passive Margin Transition: Thermochronological and Kinematic Constraints

    NASA Astrophysics Data System (ADS)

    Zuo, X.; Chan, L. S.

    2015-12-01

    The South China continental margin is characterized by a widespread magmatic belt, prominent NE-striking faults and numerous rifted basins filled by Cretaceous-Eocene sediments. The geology denotes a transition from active to passive margin, which led to rapid modifications of crustal stress configuration and reactivation of older faults in this area. Our zircon fission-track data in this region show two episodes of exhumation: The first episode, occurring during 170-120Ma, affected local parts of the Nanling Range. The second episode, a more regional exhumation event, occurred during 115-70Ma, including the Yunkai Terrane and the Nanling Range. Numerical geodynamic modeling was conducted to simulate the subduction between the paleo-Pacific plate and the South China Block. The modeling results could explain the fact that exhumation of the granite-dominant Nanling Range occurred earlier than that of the gneiss-dominant Yunkai Terrane. In addition to the difference in rock types, the heat from Jurassic-Early Cretaceous magmatism in Nanling may have softened the upper crust, causing the area to exhume more readily than Yunkai. Numerical modeling results also indicate that (1) high lithospheric geothermal gradient, high slab dip angle and low convergence velocity favor the reversal of crustal stress state from compression to extension in the upper continental plate; (2) late Mesozoic magmatism in South China was probably caused by a slab roll-back; and (3) crustal extension could have occurred prior to the cessation of plate subduction. The inversion of stress regime in the continental crust from compression to crustal extension imply that the Late Cretaceous-early Paleogene red-bed basins in South China could have formed during the late stage of the subduction, accounting for the occurrence of volcanic events in some sedimentary basins. We propose that the rifting started as early as Late Cretaceous, probably before the cessation of subduction process.

  19. Paleomagnetism and magnetic fabric of the Eastern Cordillera of Colombia: Evidence for oblique convergence and non-rotational reactivation of a Mesozoic intra-continental rift

    NASA Astrophysics Data System (ADS)

    Jiménez Díaz, G.; Speranza, F.; Faccenna, C.; Bayona, G.; Mora, A.

    2012-12-01

    The Eastern Cordillera of Colombia (EC) is a double-verging mountain system inverting a Mesozoic rift, and bounded by major reverse faults that locally involve crystalline and metamorphic Precambrian-Lower Paleozoic basement rocks, as well as Upper Paleozoic-Cenozoic sedimentary and volcanic sequences. In map view the EC is a curved mountain belt with a regional structural strike that ranges from NNE in the southern part to NNW in the northern part. The origin of its curvature has not been studied or discussed so far. We report on an extensive paleomagnetic and anisotropy of magnetic susceptibility (AMS) investigation of the EC, in order to address to test its non-rotational vs. oroclinal nature. Fifty-eight sites were gathered from Cretaceous to Miocene marine and continental strata, both from the southern and northern parts of the EC; additionally, we examined the southern Maracaibo plate, at the junction between the Santander Massif and the Merida Andes of Colombia (Cucuta zone). Twenty-three sites reveal no rotation of the EC range with respect to stable South America. In contrast, a 35°±9° clockwise rotation is documented in four post-Miocene magnetically overprinted sites from the Cucuta zone. Magnetic lineations from AMS analysis do not trend parallel to the chain, but are oblique to the main strike of the orogenic belt. By also considering GPS evidence of a ~1 cm/yr ENE displacement of central-western Colombia accommodated by the EC, we suggest that the late Miocene-recent deformation occurred by a ENE oblique convergence reactivating a NNE rift zone. Our data show that the EC is a non-rotational chain, and that the locations of the Mesozoic rift and the mountain chain roughly correspond. One possible solution is that the oblique shortening is partitioned in pure dip-slip shear characterizing thick-skinned frontal thrust sheets (well-known along both chain fronts), and by range-parallel right-lateral strike-slip fault(s), which have not been identified

  20. Syn- and post-rift anomalous vertical movements in the eastern Central Atlantic passive margin: a transect across the Moroccan passive continental margin.

    NASA Astrophysics Data System (ADS)

    Charton, Remi; Bertotti, Giovanni; Arantegui, Angel; Luber, Tim; Redfern, Jonathan

    2017-04-01

    Traditional models of passive margin evolution suggesting generalised regional subsidence with rates decreasing after the break-up have been questioned in the last decade by a number of detailed studies. The occurrence of episodic km-scale exhumation well within the post-rift stage, possibly associated with significant erosion, have been documented along the Atlantic continental margins. Despite the wide-spread and increasing body of evidence supporting post-rift exhumation, there is still limited understanding of the mechanism or scale of these phenomena. Most of these enigmatic vertical movements have been discovered using low-temperature geochronology and time-temperature modelling along strike of passive margins. As proposed in previous work, anomalous upward movements in the exhuming domain are coeval with higher-than-normal downward movements in the subsiding domain. These observations call for an integrated analysis of the entire source-to-sink system as a pre-requisite for a full understanding of the involved tectonics. We reconstruct the geological evolution of a 50km long transect across the Moroccan passive margin from the Western Anti-Atlas (Ifni area) to the offshore passive margin basin. Extending the presently available low-temperature geochronology database and using a new stratigraphic control of the Mesozoic sediments, we present a reconstruction of vertical movements in the area. Further, we integrate this with the analysis of an offshore seismic line and the pattern of vertical movements in the Anti-Atlas as documented in Gouiza et al. (2016). The results based on sampled rocks indicate exhumation by circa 6km after the Variscan orogeny until the Middle Jurassic. During the Late Jurassic to Early Cretaceous the region was subsequently buried by 1-2km, and later exhumed by 1-2km from late Early/Late Cretaceous onwards. From the Permian to present day, the Ifni region is the link between the generally exhuming Anti Atlas and continually subsiding

  1. Mesozoic architecture of a tract of the European-Iberian continental margin: Insights from preserved submarine palaeotopography in the Longobucco Basin (Calabria, Southern Italy)

    NASA Astrophysics Data System (ADS)

    Santantonio, Massimo; Fabbi, Simone; Aldega, Luca

    2016-01-01

    The sedimentary successions exposed in northeast Calabria document the Jurassic-Early Cretaceous tectonic-sedimentary evolution of a former segment of the European-Iberian continental margin. They are juxtaposed today to units representing the deformation of the African and Adriatic plates margins as a product of Apenninic crustal shortening. A complex pattern of unconformities reveals a multi-stage tectonic evolution during the Early Jurassic, which affected the facies and geometries of siliciclastic and carbonate successions deposited in syn- and post-rift environments ranging from fluvial to deep marine. Late Sinemurian/Early Pliensbachian normal faulting resulted in exposure of the Hercynian basement at the sea-floor, which was onlapped by marine basin-fill units. Shallow-water carbonate aprons and reefs developed in response to the production of new accommodation space, fringing the newborn islands which represent structural highs made of Paleozoic crystalline and metamorphic rock. Their drowning and fragmentation in the Toarcian led to the development of thin caps of Rosso Ammonitico facies. Coeval to these deposits, a thick (> 1 km) hemipelagic/siliciclastic succession was sedimented in neighboring hanging wall basins, which would ultimately merge with the structural high successions. Footwall blocks of the Early Jurassic rift, made of Paleozoic basement and basin-margin border faults with their onlapping basin-fill formations, are found today at the hanging wall of Miocene thrusts, overlying younger (Middle/Late Jurassic to Late Paleogene) folded basinal sediments. This paper makes use of selected case examples to describe the richly diverse set of features, ranging from paleontology to sedimentology, to structural geology, which are associated with the field identification of basin-margin unconformities. Our data provide key constraints for restoring the pre-orogenic architecture of a continental margin facing a branch of the Liguria-Piedmont ocean in the

  2. Early Jurassic Volcanism in the South Lhasa Terrane, Southern Tibet: Record of Back-arc Extension in the Active Continental Margin

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Zhao, Z.; Zhu, D. C.; Wang, Z.; Liu, D.; Mo, X.

    2015-12-01

    Indus-Yarlung Zangbo Suture Zone (IYZSZ) represents the Mesozoic remnants of the Neo-Tethyan Ocean lithosphere after its northward subduction beneath the Lhasa Terrane. The evolution of the Neo-Tethyan Ocean prior to India-Asia collision remains unclear. To explore this period of history, we investigate zircon U-Pb geochronology, geochemistry and Nd-Hf isotopes of the Early Jurassic bimodal-like volcanic sequence around Dagze area, south Tibet. The volcanic sequence comprises calc-alkaline basalts to rhyolites whereas intermediate components are volumetrically restricted. Zircons from a basaltic andesite yielded crystallization age of 178Ma whereas those from 5 silicic rocks were dated at 183-174Ma, which suggest that both the basaltic and the silicic rocks are coeval. The basaltic rocks are enriched in LREE and LILE, and depleted in HFSE, with Epsilon Nd(t) of 1.6-4.0 and zircon Epsilon Hf(t) of 0.7-11.8, which implies that they were derived from a heterogenetic mantle source metasomatized by subduction components. Trace element geochemistry shows that the basaltic rocks are compositionally transitional from normal mid-ocean ridge basalts (N-MORB) to island arc basalts (IAB, e.g. Zedong arc basalts of ~160-155Ma in the south margin of Lhasa Terrane), with the signature of immature back-arc basin basalts. The silicic rocks display similar Nd-Hf isotopic features of the Gangdese batholith with Epsilon Nd(t) of 0.9-3.4 and zircon Epsilon Hf(t) of 2.4-17.7, indicating that they were possibly generated by anatexis of basaltic juvenile lower crust, instead of derived from the basaltic magma. These results support an Early to Middle Jurassic (183-155Ma) model that the back-arc extension tectonic setting were existing in the active continental margin in the south Lhasa Terrane.

  3. The evolution of climate. [climatic effects of polar wandering and continental drift

    NASA Technical Reports Server (NTRS)

    Donn, W. L.; Shaw, D.

    1975-01-01

    A quantitative evaluation is made of the climatic effects of polar wandering plus continental drift in order to determine wether this mechanism alone could explain the deterioration of climate that occurred from the warmth of Mesozoic time to the ice age conditions of the late Cenozoic. By way of procedure, to investigate the effect of the changing geography of the past on climate Adem's thermodynamic model was selected. The application of the model is discussed and preliminary results are given.

  4. Study of southern CHAONAN sag lower continental slope basin deposition character in Northern South China Sea

    NASA Astrophysics Data System (ADS)

    Tang, Y.

    2009-12-01

    area includes three stages,that is Eogene,middle stage of lately Oligocene to early Miocene and middle Miocene to Present.Result shows that there are a good association of petroleum source rocks,reservoir rocks and seal rocks and structural traps in the Cenozoic and Mesozoic strata,as well as good conditions for the generation-migration-accumulation-preservation of petroleum in the lower continatal slope of Southern Chaoshan Sag.So the region has good petroleum prospect. Key words:Northern South China Sea;Chaoshan Sag; lower continental slope; deposition.

  5. Initiation of continental accretion in the Betic-Rif domain

    NASA Astrophysics Data System (ADS)

    Maxime, Daudet; Frederic, Mouthereau; Stéphanie, Brichau; Ana, Crespo-Blanc; Arnaud, Vacherat

    2017-04-01

    The Betic - Rif cordillera in southern Spain and northern Morocco, respectively, form one of the tightest orogenic arc on Earth. The formation of this arcuate orogenic belt resulted from the westward migration of the Alboran crustal domain, constituted by the internal zone of the orogeny and the basement of the Alboran back-arc basin, that collided with the rifted margins of Iberia and Africa at least since the early Miocene. This collision is intimately linked to the post-35-30Ma regional slab roll-back and back-arc extension in the western Mediterranean region. The geodynamics of the Betic-Rif domain, which is of great importance for the paleogeographic reconstructions of the Tethys-Altantic and the Mediterranean sea, is still largely debated. Answers will come from a more detailed structural analyses, including refinement of the time-temperature paths and kinematics of the main structural units, which is one of the main objectives of the OROGEN research project, co-financed by BRGM, TOTAL & CNRS. In this study, we focus on the well-developed flysch-type sediments now accreted in the Betics-Rif but initially deposited in a basin, north of the african margin and on the iberian margin from the Early Cretaceous to the Early Miocene. Using low-temperature thermochronology (fission-track and (U-Th)/He analyses) combined with zircon U-Pb geochronology on the flyschs deposited on the most distal part of the margin, we aim to constrain the thermal history of both the source rocks and accreted thrust sheets at the earliest stages of continental accretion. Sample have been collected in flyschs series ranging from Mesozoic, Paleogene to Neogene ages. Additional samples have been collected in the Rif where Cretaceous series are more developed. Combined with a detailed structural analysis, LT thermochronological constraints will refine the kinematics of thrust units when continental accretion started before the final thrust emplacement occurred in the Early Miocene

  6. Geochronology and geochemistry of Mesozoic intrusive rocks in the Xing'an Massif of NE China: Implications for the evolution and spatial extent of the Mongol-Okhotsk tectonic regime

    NASA Astrophysics Data System (ADS)

    Li, Yu; Xu, Wen-Liang; Tang, Jie; Pei, Fu-Ping; Wang, Feng; Sun, Chen-Yang

    2018-04-01

    This study presents new zircon U-Pb-Hf and whole-rock geochemical data for intrusive rocks in the Xing'an Massif of NE China, with the aim of furthering our understanding of the evolution and spatial influence of the Mongol-Okhotsk tectonic regime. Zircon U-Pb dating indicates that five stages of Mesozoic magmatism are recorded in the Xing'an Massif, namely during the Middle Triassic ( 237 Ma), the Late Triassic ( 225 Ma), the Early Jurassic ( 178 Ma), the Middle Jurassic ( 168 Ma), and the late Early Cretaceous ( 130 Ma). The Middle Triassic-Early Jurassic intrusive rocks in the Xing'an Massif are dominantly granodiorites, monzogranites, and syenogranites that formed from magma generated by partial melting of newly accreted continental crust. Geochemistry of the Middle Triassic-Early Jurassic granitoid suites of the Xing'an Massif indicates their formation at an active continental margin setting, related to the southwards subduction of the Mongol-Okhotsk oceanic plate. The Middle Jurassic monzogranites in the Xing'an Massif are geochemically similar to adakites and have εHf(t) values (+3.8 to +5.8) and Hf two-stage model ages (TDM2; 979-850 Ma) that are indicative of derivation from magma generated by partial melting of thickened juvenile lower crust. The Middle Jurassic monzogranites formed in a compressional setting related to the closure of the Mongol-Okhotsk Ocean. The late Early Cretaceous intrusive rocks in the Xing'an Massif are dominated by A-type granitoids that are associated with bimodal volcanic rocks, suggesting their formation in an extensional environment related to either (i) delamination of a previously thickened region of the crust, associated with the Mongol-Okhotsk tectonic regime; (ii) the subduction of the Paleo-Pacific Plate; or (iii) the combined influence of these two tectonic regimes.

  7. Diverse transitional giant fleas from the Mesozoic era of China.

    PubMed

    Huang, Diying; Engel, Michael S; Cai, Chenyang; Wu, Hao; Nel, André

    2012-02-29

    Fleas are one of the major lineages of ectoparasitic insects and are now highly specialized for feeding on the blood of birds or mammals. This has isolated them among holometabolan insect orders, although they derive from the Antliophora (scorpionflies and true flies). Like most ectoparasitic lineages, their fossil record is meagre and confined to Cenozoic-era representatives of modern families, so that we lack evidence of the origins of fleas in the Mesozoic era. The origins of the first recognized Cretaceous stem-group flea, Tarwinia, remains highly controversial. Here we report fossils of the oldest definitive fleas--giant forms from the Middle Jurassic and Early Cretaceous periods of China. They exhibit many defining features of fleas but retain primitive traits such as non-jumping hindlegs. More importantly, all have stout and elongate sucking siphons for piercing the hides of their hosts, implying that these fleas may be rooted among the pollinating 'long siphonate' scorpionflies of the Mesozoic. Their special morphology suggests that their earliest hosts were hairy or feathered 'reptilians', and that they radiated to mammalian and bird hosts later in the Cenozoic.

  8. Bone-eating Osedax worms lived on Mesozoic marine reptile deadfalls.

    PubMed

    Danise, Silvia; Higgs, Nicholas D

    2015-04-01

    We report fossil traces of Osedax, a genus of siboglinid annelids that consume the skeletons of sunken vertebrates on the ocean floor, from early-Late Cretaceous (approx. 100 Myr) plesiosaur and sea turtle bones. Although plesiosaurs went extinct at the end-Cretaceous mass extinction (66 Myr), chelonioids survived the event and diversified, and thus provided sustenance for Osedax in the 20 Myr gap preceding the radiation of cetaceans, their main modern food source. This finding shows that marine reptile carcasses, before whales, played a key role in the evolution and dispersal of Osedax and confirms that its generalist ability of colonizing different vertebrate substrates, like fishes and marine birds, besides whale bones, is an ancestral trait. A Cretaceous age for unequivocal Osedax trace fossils also dates back to the Mesozoic the origin of the entire siboglinid family, which includes chemosynthetic tubeworms living at hydrothermal vents and seeps, contrary to phylogenetic estimations of a Late Mesozoic-Cenozoic origin (approx. 50-100 Myr). © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  9. Structures in the transition zone of the northeast South China Sea: serpentinite dome vs mantle exhumation, or evidence of Mesozoic active subduction transferring to Cenozoic passive extension?

    NASA Astrophysics Data System (ADS)

    Sun, Z.; Zhou, D.

    2013-12-01

    Complete sedimentary sequences and weak erosion make the transition zone of the South China Sea the optimal place to study the entire evolution history of marginal sea basins, as well as the transition mechanism from active subduction to passive extension. 2D long cable seismic profiles revealed that both Baiyun and Liwan sag in the northeast South China Sea margin were lack of large controlling faults, especially in Liwan sag, syn-rift sequences waved above the basement. Dome-like uplifts(serpetinite uplifts?) or diapirs(?) came from below the basement, caused the syn-rift sequences pushed up around 36Ma(T80). Gravity inversion based on seismic reflection indicated that the dome has a lower density and a lower layer velocity than normal crust. Also around the Continent-Ocean Boundary (COB), a small segment similar to the lower crust was exposed. Between this exposed segment and the Cenozoic oceanic crust, mantle seems to be exhumed along the breakup point. Between the COB and roughly the shelf break, high velocity lower crust was discriminated in the northeast continental margin. Structures in northeast South China Sea seems having many similarities with Newfoundland-Iberia margin, by serpentinite(?) dome and exhumed mantle, although spreading rate here is intermediate. In fact, regional background suggests that there might be another interpretation: transition from Mesozoic subduction to Cenozoic extension occurred through paleo oceanic crust breakup in the northeast, which in turn retained Mesozoic subduction system beneath the northeast continental margin. Confined with magnetic anomaly, Bouguer gravity gradient anomaly, and well drilling lithological evidences, Cenozoic Baiyun sag developed upon Mesozoic fore-arc, while Cenozoic Liwan sag developed upon Mesozoic accretionary prism. The high velocity lower crust was caused by both remnant subducted slab and by Oceanic-Continent interaction due to subduction. There might also be serpentinite dome and exhumed

  10. Late Mesozoic and possible early Tertiary accretion in western Washington State: the Helena-Haystack melange and the Darrington- Devils Mountain fault zone

    USGS Publications Warehouse

    Tabor, R.W.

    1994-01-01

    The Helena-Haystack melange (HH melange) and coincident Darrington-Devils Mountain fault zone (DDMFZ) in northwestern Washington separate two terranes, the northwest Cascade System (NWCS) and the western and eastern melange belts (WEMB). The two terranes of Paleozoic and Mesozoic rocks superficially resemble each other but record considerable differences in structural and metamorphic history. The HH melange is a serpentinite-matrix melange containing blocks of adjacent terranes but also exotic blocks. The HH melange must have formed between early Cretaceous and late middle Eocene time, because it contains tectonic clasts of early Cretaceous Shuksan Greenschist and is overlain by late middle Eocene sedimentary and volcanic rocks. The possible continuation of the DDMFZ to the northwest as the San Juan and the West Coast faults on Vancouver Island suggests that the structure has had a major role in the emplacement of all the westernmost terranes in the Pacific Northwest. -from Author

  11. Mesozoic evolution of the northeast African shelf margin, Libya and Egypt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aadland, R.K.; Schamel, S.

    1988-08-01

    The present tectonic features of the northeast African shelf margin between the Nile delta and the Gulf of Sirte are products of (1) precursory late Paleozoic basement arches, (2) early Mesozoic rifting and plate separation, and (3) Late Cretaceous structural inversion. Isopach and structural maps, cross sections, and sediment accumulation (geohistory) curves constructed from 89 wells in the Western Desert and 27 wells in northeastern Libya depict the structural and stratigraphic development of the northeast African shelf margin.

  12. The role of tectonic inheritance in the morphostructural evolution of the Galicia continental margin and adjacent abyssal plains from digital bathymetric model (DBM) analysis (NW Spain)

    NASA Astrophysics Data System (ADS)

    Maestro, A.; Jané, G.; Llave, E.; López-Martínez, J.; Bohoyo, F.; Druet, M.

    2018-06-01

    The identification of recent major tectonic structures in the Galicia continental margin and adjacent abyssal plains was carried out by means of a quantitative analysis of the linear structures having bathymetric expression on the seabed. It was possible to identify about 5800 lineaments throughout the entire study area, of approximately 271,500 km2. Most lineaments are located in the Charcot and Coruña highs, in the western sector of the Galicia Bank, in the area of the Marginal Platforms and in the northern sector of the margin. Analysis of the lineament orientations shows a predominant NE-SW direction and three relative maximum directions: NW-SE, E-W and N-S. The total length of the lineaments identified is over 44,000 km, with a mode around 5000 m and an average length of about 7800 m. In light of different tectonic studies undertaken in the northwestern margin of the Iberian Peninsula, we establish that the lineaments obtained from analysis of the digital bathymetric model of the Galicia continental margin and adjacent abyssal plains would correspond to fracture systems. In general, the orientation of lineaments corresponds to main faults, tectonic structures following the directions of ancient faults that resulted from late stages of the Variscan orogeny and Mesozoic extension phases related to Triassic rifting and Upper Jurassic to Early Cretaceous opening of the North Atlantic Ocean. The N-S convergence between Eurasian and African plates since Palaeogene times until the Miocene, and NW-SE convergence from Neogene to present, reactivated the Variscan and Mesozoic fault systems and related physiography.

  13. The formation and rejuvenation of continental crust in the central North China Craton: Evidence from zircon U-Pb geochronology and Hf isotope

    NASA Astrophysics Data System (ADS)

    Li, Qing; Santosh, M.; Li, Sheng-Rong; Guo, Pu

    2014-12-01

    The Trans-North China Orogen (TNCO) along the central part of the North China Craton (NCC) is considered as a Paleoproterozoic suture along which the Eastern and Western Blocks of the NCC were amalgamated. Here we investigate the Precambrian crustal evolution history in the Fuping segment of the TNCO and the subsequent reactivation associated with extensive craton destruction during Mesozoic. We present zircon LA-ICP-MS U-Pb and Lu-Hf data on TTG (tonalite-trondhjemite-granodiorite) gneiss, felsic orthogneiss, amphibolite and granite from the Paleoproterozoic suite which show magmatic ages in the range of 2450-1900 Ma suggesting a long-lived convergent margin. The εHf(t) values of these zircons range from -11.9 to 12 and their model ages suggest magma derivation from both juvenile components and reworked Archean crust. The Mesozoic magmatic units in the Fuping area includes granite, diorite and mafic microgranular enclaves, the zircons from which define a tight range of 120-130 Ma ages suggesting a prominent Early Cretaceous magmatic event. However, the εHf(t) values of these zircons show wide a range from -30.3 to 0.2, indicating that the magmatic activity involved extensive rejuvenation of the older continental crust.

  14. Shyok Suture Zone, N Pakistan: late Mesozoic Tertiary evolution of a critical suture separating the oceanic Ladakh Arc from the Asian continental margin

    NASA Astrophysics Data System (ADS)

    Robertson, Alastair H. F.; Collins, Alan S.

    2002-02-01

    The Shyok Suture Zone (Northern Suture) of North Pakistan is an important Cretaceous-Tertiary suture separating the Asian continent (Karakoram) from the Cretaceous Kohistan-Ladakh oceanic arc to the south. In previously published interpretations, the Shyok Suture Zone marks either the site of subduction of a wide Tethyan ocean, or represents an Early Cretaceous intra-continental marginal basin along the southern margin of Asia. To shed light on alternative hypotheses, a sedimentological, structural and igneous geochemical study was made of a well-exposed traverse in North Pakistan, in the Skardu area (Baltistan). To the south of the Shyok Suture Zone in this area is the Ladakh Arc and its Late Cretaceous, mainly volcanogenic, sedimentary cover (Burje-La Formation). The Shyok Suture Zone extends northwards (ca. 30 km) to the late Tertiary Main Karakoram Thrust that transported Asian, mainly high-grade metamorphic rocks southwards over the suture zone. The Shyok Suture Zone is dominated by four contrasting units separated by thrusts, as follows: (1). The lowermost, Askore amphibolite, is mainly amphibolite facies meta-basites and turbiditic meta-sediments interpreted as early marginal basin rift products, or trapped Tethyan oceanic crust, metamorphosed during later arc rifting. (2). The overlying Pakora Formation is a very thick (ca. 7 km in outcrop) succession of greenschist facies volcaniclastic sandstones, redeposited limestones and subordinate basaltic-andesitic extrusives and flow breccias of at least partly Early Cretaceous age. The Pakora Formation lacks terrigenous continental detritus and is interpreted as a proximal base-of-slope apron related to rifting of the oceanic Ladakh Arc; (3). The Tectonic Melange (<300 m thick) includes serpentinised ultramafic rocks, near mid-ocean ridge-type volcanics and recrystallised radiolarian cherts, interpreted as accreted oceanic crust. (4). The Bauma-Harel Group (structurally highest) is a thick succession (several km

  15. EAG Eminent Speaker: Two types of Archean continental crust: plume and plate tectonics on early Earth

    NASA Astrophysics Data System (ADS)

    Van Kranendonk, M. J.

    2012-04-01

    Over 4.5 billion years, Earth has evolved from a molten ball to a cooler planet with large continental plates, but how and when continents grew and plate tectonics started remain poorly understood. In this paper, I review the evidence that 3.5-3.2 Ga continental nuclei of the Pilbara (Australia) and Kaapvaal (southern Africa) cratons formed as thick volcanic plateaux over hot, upwelling mantle and survived due to contemporaneous development of highly depleted, buoyant, unsubductable mantle roots. This type of crust is distinct from, but complimentary to, high-grade gneiss terranes, as exemplified by the North Atlantic Craton of West Greenland, which formed through subduction-accretion tectonics on what is envisaged as a vigorously convecting early Earth with small plates. Thus, it is proposed that two types of crust formed on early Earth, in much the same way as in modern Earth, but with distinct differences resulting from a hotter Archean mantle. Volcanic plateaux provided a variety of stable habitats for early life, including chemical nutrient rich, shallow-water hydrothermal systems and shallow marine carbonate platforms.

  16. How do I know if I’ve improved my continental scale flood early warning system?

    NASA Astrophysics Data System (ADS)

    Cloke, Hannah L.; Pappenberger, Florian; Smith, Paul J.; Wetterhall, Fredrik

    2017-04-01

    Flood early warning systems mitigate damages and loss of life and are an economically efficient way of enhancing disaster resilience. The use of continental scale flood early warning systems is rapidly growing. The European Flood Awareness System (EFAS) is a pan-European flood early warning system forced by a multi-model ensemble of numerical weather predictions. Responses to scientific and technical changes can be complex in these computationally expensive continental scale systems, and improvements need to be tested by evaluating runs of the whole system. It is demonstrated here that forecast skill is not correlated with the value of warnings. In order to tell if the system has been improved an evaluation strategy is required that considers both forecast skill and warning value. The combination of a multi-forcing ensemble of EFAS flood forecasts is evaluated with a new skill-value strategy. The full multi-forcing ensemble is recommended for operational forecasting, but, there are spatial variations in the optimal forecast combination. Results indicate that optimizing forecasts based on value rather than skill alters the optimal forcing combination and the forecast performance. Also indicated is that model diversity and ensemble size are both important in achieving best overall performance. The use of several evaluation measures that consider both skill and value is strongly recommended when considering improvements to early warning systems.

  17. Potential links between continental rifting, CO2 degassing and climate change through time

    NASA Astrophysics Data System (ADS)

    Brune, Sascha; Williams, Simon E.; Müller, R. Dietmar

    2017-12-01

    The concentration of CO2 in the atmosphere is a key influence on Earth's climate. Today, significant quantities of CO2 are emitted at continental rifts, suggesting that the spatial and temporal extent of rift systems may have influenced deep carbon fluxes and thus climate change throughout geological time. Here we test this hypothesis by conducting a worldwide census of continental rift lengths over the last 200 million years. We estimate tectonic CO2 release rates through time and show that along the extensive Mesozoic and Cenozoic rift systems, rift-related CO2 degassing rates reached more than 300% of present-day values. Using a numerical carbon cycle model, we find that two prominent periods of enhanced rifting 160 to 100 million years ago and after 55 million years ago coincided with greenhouse climate episodes, during which atmospheric CO2 concentrations were more than three times higher than today. We therefore propose that continental fragmentation and long-term climate change could plausibly be linked via massive CO2 degassing in rift systems.

  18. Continental crust formation on early Earth controlled by intrusive magmatism

    NASA Astrophysics Data System (ADS)

    Rozel, A. B.; Golabek, G. J.; Jain, C.; Tackley, P. J.; Gerya, T.

    2017-05-01

    The global geodynamic regime of early Earth, which operated before the onset of plate tectonics, remains contentious. As geological and geochemical data suggest hotter Archean mantle temperature and more intense juvenile magmatism than in the present-day Earth, two crust-mantle interaction modes differing in melt eruption efficiency have been proposed: the Io-like heat-pipe tectonics regime dominated by volcanism and the “Plutonic squishy lid” tectonics regime governed by intrusive magmatism, which is thought to apply to the dynamics of Venus. Both tectonics regimes are capable of producing primordial tonalite-trondhjemite-granodiorite (TTG) continental crust but lithospheric geotherms and crust production rates as well as proportions of various TTG compositions differ greatly, which implies that the heat-pipe and Plutonic squishy lid hypotheses can be tested using natural data. Here we investigate the creation of primordial TTG-like continental crust using self-consistent numerical models of global thermochemical convection associated with magmatic processes. We show that the volcanism-dominated heat-pipe tectonics model results in cold crustal geotherms and is not able to produce Earth-like primordial continental crust. In contrast, the Plutonic squishy lid tectonics regime dominated by intrusive magmatism results in hotter crustal geotherms and is capable of reproducing the observed proportions of various TTG rocks. Using a systematic parameter study, we show that the typical modern eruption efficiency of less than 40 per cent leads to the production of the expected amounts of the three main primordial crustal compositions previously reported from field data (low-, medium- and high-pressure TTG). Our study thus suggests that the pre-plate-tectonics Archean Earth operated globally in the Plutonic squishy lid regime rather than in an Io-like heat-pipe regime.

  19. Continental crust formation on early Earth controlled by intrusive magmatism.

    PubMed

    Rozel, A B; Golabek, G J; Jain, C; Tackley, P J; Gerya, T

    2017-05-18

    The global geodynamic regime of early Earth, which operated before the onset of plate tectonics, remains contentious. As geological and geochemical data suggest hotter Archean mantle temperature and more intense juvenile magmatism than in the present-day Earth, two crust-mantle interaction modes differing in melt eruption efficiency have been proposed: the Io-like heat-pipe tectonics regime dominated by volcanism and the "Plutonic squishy lid" tectonics regime governed by intrusive magmatism, which is thought to apply to the dynamics of Venus. Both tectonics regimes are capable of producing primordial tonalite-trondhjemite-granodiorite (TTG) continental crust but lithospheric geotherms and crust production rates as well as proportions of various TTG compositions differ greatly, which implies that the heat-pipe and Plutonic squishy lid hypotheses can be tested using natural data. Here we investigate the creation of primordial TTG-like continental crust using self-consistent numerical models of global thermochemical convection associated with magmatic processes. We show that the volcanism-dominated heat-pipe tectonics model results in cold crustal geotherms and is not able to produce Earth-like primordial continental crust. In contrast, the Plutonic squishy lid tectonics regime dominated by intrusive magmatism results in hotter crustal geotherms and is capable of reproducing the observed proportions of various TTG rocks. Using a systematic parameter study, we show that the typical modern eruption efficiency of less than 40 per cent leads to the production of the expected amounts of the three main primordial crustal compositions previously reported from field data (low-, medium- and high-pressure TTG). Our study thus suggests that the pre-plate-tectonics Archean Earth operated globally in the Plutonic squishy lid regime rather than in an Io-like heat-pipe regime.

  20. Predator-induced macroevolutionary trends in Mesozoic crinoids

    PubMed Central

    Gorzelak, Przemysław; Salamon, Mariusz A.; Baumiller, Tomasz K.

    2012-01-01

    Sea urchins are a major component of recent marine communities where they exert a key role as grazers and benthic predators. However, their impact on past marine organisms, such as crinoids, is hard to infer in the fossil record. Analysis of bite mark frequencies on crinoid columnals and comprehensive genus-level diversity data provide unique insights into the importance of sea urchin predation through geologic time. These data show that over the Mesozoic, predation intensity on crinoids, as measured by bite mark frequencies on columnals, changed in step with diversity of sea urchins. Moreover, Mesozoic diversity changes in the predatory sea urchins show a positive correlation with diversity of motile crinoids and a negative correlation with diversity of sessile crinoids, consistent with a crinoid motility representing an effective escape strategy. We contend that the Mesozoic diversity history of crinoids likely represents a macroevolutionary response to changes in sea urchin predation pressure and that it may have set the stage for the recent pattern of crinoid diversity in which motile forms greatly predominate and sessile forms are restricted to deep-water refugia. PMID:22509040

  1. Geochronologic and geochemical data from Mesozoic rocks in the Black Mountain area northeast of Victorville, San Bernardino County, California

    USGS Publications Warehouse

    Stone, Paul; Barth, Andrew P.; Wooden, Joseph L.; Fohey-Breting, Nicole K.; Vazquez, Jorge A.; Priest, Susan S.

    2013-01-01

    We present geochronologic and geochemical data for Mesozoic rocks in the Black Mountain area northeast of Victorville, California, to supplement previous geologic mapping. These data, together with previously published results, limit the depositional age of the sedimentary Fairview Valley Formation to Early Jurassic, refine the ages and chemical compositions of selected units in the overlying Jurassic Sidewinder Volcanics and of related intrusive units, and limit the age of some post-Sidewinder faulting in the Black Mountain area to a brief interval in the Late Jurassic. The new information contributes to a more complete understanding of the Mesozoic magmatic and tectonic evolution of the western Mojave Desert and surrounding regions.

  2. Raising the continental crust

    NASA Astrophysics Data System (ADS)

    Campbell, Ian H.; Davies, D. Rhodri

    2017-02-01

    The changes that occur at the boundary between the Archean and Proterozoic eons are arguably the most fundamental to affect the evolution of Earth's continental crust. The principal component of Archean continental crust is Granite-Greenstone Terranes (GGTs), with granites always dominant. The greenstones consist of a lower sequence of submarine komatiites and basalts, which erupted onto a pre-existing Tonalite-Trondhjemite-Granodiorite (TTG) crust. These basaltic rocks pass upwards initially into evolved volcanic rocks, such as andesites and dacites and, subsequently, into reworked felsic pyroclastic material and immature sediments. This transition coincides with widespread emplacement of granitoids, which stabilised (cratonised) the continental crust. Proterozoic supra-crustal rocks, on the other hand, are dominated by extensive flat-lying platform sequences of mature sediments, which were deposited on stable cratonic basements, with basaltic rocks appreciably less abundant. The siliceous TTGs cannot be produced by direct melting of the mantle, with most hypotheses for their origin requiring them to be underlain by a complimentary dense amphibole-garnet-pyroxenite root, which we suggest acted as ballast to the early continents. Ubiquitous continental pillow basalts in Archean lower greenstone sequences require the early continental crust to have been sub-marine, whereas the appearance of abundant clastic sediments, at higher stratigraphic levels, shows that it had emerged above sea level by the time of sedimentation. We hypothesise that the production of komatiites and associated basalts, the rise of the continental crust, widespread melting of the continental crust, the onset of sedimentation and subsequent cratonisation form a continuum that is the direct result of removal of the continent's dense amphibole-garnet-pyroxenite roots, triggered at a regional scale by the arrival of a mantle plume at the base of the lithosphere. Our idealised calculations suggest

  3. The Early Mesozoic volcanic arc of western North America in northeastern Mexico

    NASA Astrophysics Data System (ADS)

    Barboza-Gudiño, José Rafael; Orozco-Esquivel, María Teresa; Gómez-Anguiano, Martín; Zavala-Monsiváis, Aurora

    2008-02-01

    Volcanic successions underlying clastic and carbonate marine rocks of the Oxfordian-Kimmeridgian Zuloaga Group in northeastern Mexico have been attributed to magmatic arcs of Permo-Triassic and Early Jurassic ages. This work provides stratigraphic, petrographic geochronological, and geochemical data to characterize pre-Oxfordian volcanic rocks outcropping in seven localities in northeastern Mexico. Field observations show that the volcanic units overlie Paleozoic metamorphic rocks (Granjeno schist) or Triassic marine strata (Zacatecas Formation) and intrude Triassic redbeds or are partly interbedded with Lower Jurassic redbeds (Huizachal Group). The volcanic rocks include rhyolitic and rhyodacitic domes and dikes, basaltic to andesitic lava flows and breccias, and andesitic to rhyolitic pyroclastic rocks, including breccias, lapilli, and ashflow tuffs that range from welded to unwelded. Lower-Middle Jurassic ages (U/Pb in zircon) have been reported from only two studied localities (Huizachal Valley, Sierra de Catorce), and other reported ages (Ar/Ar and K-Ar in whole-rock or feldspar) are often reset. This work reports a new U/Pb age in zircon that confirms a Lower Jurassic (193 Ma) age for volcanic rocks exposed in the Aramberri area. The major and trace element contents of samples from the seven localities are typical of calc-alkaline, subduction-related rocks. The new geochronological and geochemical data, coupled with the lithological features and stratigraphic positions, indicate volcanic rocks are part of a continental arc, similar to that represented by the Lower-Middle Jurassic Nazas Formation of Durango and northern Zacatecas. On that basis, the studied volcanic sequences are assigned to the Early Jurassic volcanic arc of western North America.

  4. Preliminary report on geology along Atlantic Continental Margin of northeastern United States

    USGS Publications Warehouse

    Minard, J.P.; Perry, W.J.; Weed, E.G.A.; Rhodehamel, E.C.; Robbins, E.I.; Mixon, R.B.

    1974-01-01

    The U.S. Geological Survey is conducting a geologic and geophysical study of the northeastern United States outer continental shelf and the adjacent slope from Georges Bank to Cape Hatteras. The study also includes the adjacent coastal plain because it is a more accessible extension of the shelf. The total study area is about 324,000 sq km, of which the shelf and slope constitute about 181,000 sq km and the coastal plain constitutes 143,000 sq km. The shelf width ranges from about 30 km at Cape Hatteras to about 195 km off Raritan Bay and on Georges Bank. Analyses of bottom samples make it possible to construct a preliminary geologic map of the shelf and slope to a water depth of 2,000 m. The oldest beds cropping out in the submarine canyons and on the slope are of early ate Cretaceous age. Beds of Early Cretaceous and Jurassic age are present in deep wells onshore and probably are present beneath the shelf in the area of this study. Such beds are reported beneath the Scotian shelf on the northeast where they include limestone, salt, and anhydrite. Preliminary conclusions suggest a considerably thicker Mesozoic sedimentary sequence than has been described previously. The region is large; the sedimentary wedge is thick; structures seem favorable; and the hydrocarbon potential may be considerable.

  5. Late Jurassic - Early Cretaceous convergent margins of Northeastern Asia with Northwestern Pacific and Proto-Arctic oceans

    NASA Astrophysics Data System (ADS)

    Sokolov, Sergey; Luchitskaya, Marina; Tuchkova, Marianna; Moiseev, Artem; Ledneva, Galina

    2013-04-01

    Continental margin of Northeastern Asia includes many island arc terranes that differ in age and tectonic position. Two convergent margins are reconstructed for Late Jurassic - Early Cretaceous time: Uda-Murgal and Alazeya - Oloy island arc systems. A long tectonic zone composed of Upper Jurassic to Lower Cretaceous volcanic and sedimentary rocks is recognized along the Asian continent margin from the Mongol-Okhotsk thrust-fold belt on the south to the Chukotka Peninsula on the north. This belt represents the Uda-Murgal arc, which was developed along the convergent margin between Northeastern Asia and Northwestern Meso-Pacific. Several segments are identified in this arc based upon the volcanic and sedimentary rock assemblages, their respective compositions and basement structures. The southern and central parts of the Uda-Murgal island arc system were a continental margin belt with heterogeneous basement represented by metamorphic rocks of the Siberian craton, the Verkhoyansk terrigenous complex of Siberian passive margin and the Koni-Taigonos late Paleozoic to early Mesozoic island arc with accreted oceanic terranes. At the present day latitude of the Pekulney and Chukotka segments there was an ensimatic island arc with relicts of the South Anyui oceanic basin in backarc basin. Alazeya-Oloy island arc systems consists of Paleozoic and Mesozoic complexes that belong to the convergent margin between Northeastern Asia and Proto-Artic Ocean. It separated structures of the North American and Siberian continents. The Siberian margin was active whereas the North American margin was passive. The Late Jurassic was characterized by termination of a spreading in the Proto-Arctic Ocean and transformation of the latter into the closing South Anyui turbidite basin. In the beginning the oceanic lithosphere and then the Chukotka microcontinent had been subducted beneath the Alazeya-Oloy volcanic belt

  6. Circum-Pacific accretion of oceanic terranes to continental blocks: accretion of the Early Permian Dun Mountain ophiolite to the E Gondwana continental margin, South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Robertson, Alastair

    2016-04-01

    Accretionary orogens, in part, grow as a result of the accretion of oceanic terranes to pre-existing continental blocks, as in the circum-Pacific and central Asian regions. However, the accretionary processes involved remain poorly understood. Here, we consider settings in which oceanic crust formed in a supra-subduction zone setting and later accreted to continental terranes (some, themselves of accretionary origin). Good examples include some Late Cretaceous ophiolites in SE Turkey, the Jurassic Coast Range ophiolite, W USA and the Early Permian Dun Mountain ophiolite of South Island, New Zealand. In the last two cases, the ophiolites are depositionally overlain by coarse clastic sedimentary rocks (e.g. Permian Upukerora Formation of South Island, NZ) that then pass upwards into very thick continental margin fore-arc basin sequences (Great Valley sequence, California; Matai sequence, South Island, NZ). Field observations, together with petrographical and geochemical studies in South Island, NZ, summarised here, provide evidence of terrane accretion processes. In a proposed tectonic model, the Early Permian Dun Mountain ophiolite was created by supra-subduction zone spreading above a W-dipping subduction zone (comparable to the present-day Izu-Bonin arc and fore arc, W Pacific). The SSZ oceanic crust in the New Zealand example is inferred to have included an intra-oceanic magmatic arc, which is no longer exposed (other than within a melange unit in Southland), but which is documented by petrographic and geochemical evidence. An additional subduction zone is likely to have dipped westwards beneath the E Gondwana margin during the Permian. As a result, relatively buoyant Early Permian supra-subduction zone oceanic crust was able to dock with the E Gondwana continental margin, terminating intra-oceanic subduction (although the exact timing is debatable). The amalgamation ('soft collision') was accompanied by crustal extension of the newly accreted oceanic slab, and

  7. Early cretaceous dinosaurs from the sahara.

    PubMed

    Sereno, P C; Wilson, J A; Larsson, H C; Dutheil, D B; Sues, H D

    1994-10-14

    A major question in Mesozoic biogeography is how the land-based dinosaurian radiation responded to fragmentation of Pangaea. A rich fossil record has been uncovered on northern continents that spans the Cretaceous, when continental isolation reached its peak. In contrast, dinosaur remains on southern continents are scarce. The discovery of dinosaurian skeletons from Lower Cretaceous beds in the southern Sahara shows that several lineages of tetanuran theropods and broad-toothed sauropods had a cosmopolitan distribution across Pangaea before the onset of continental fragmentation. The distinct dinosaurian faunas of Africa, South America, and Asiamerica arose during the Cretaceous by differential survival of once widespread lineages on land masses that were becoming increasingly isolated from one another.

  8. Isotopic and paleomagnetic constraints on the Mesozoic tectonic evolution of south China

    NASA Astrophysics Data System (ADS)

    Gilder, Stuart A.; Gill, James; Coe, Robert S.; Zhao, Xixi; Liu, Zhongwei; Wang, Genxian; Yuan, Kuirong; Liu, Wenlong; Kuang, Guodun; Wu, Haoruo

    1996-07-01

    In order to better constrain the paleogeographic evolution of south China we measured Sm-Nd and Rb-Sr isotopic compositions for 23 Mesozoic granites that crop out throughout the area. Tightly grouped neodymium depleted mantle model ages (1.4 ± 0.3 Ga) suggest the region is underlain by relatively homogeneous Proterozoic crust and fail to define crustal provinces. Neither the isotopic nor geologic data suggest that a Mesozoic suture exists. However, granites possessing anomalously high Sm (>8 ppm) and Nd (>45 ppm) concentrations, relatively high initial epsilon neodymium (-4 to -8), and high but variable initial 87Sr/86Sr (0.759 to 0.713) form a northeast trending zone that coincides with two prominent Mesozoic basins. Southeast of the zone lie the majority of Mesozoic intrusives and Upper Triassic to Lower Cretaceous extensional basins found in south China. Mesozoic paleomagnetic poles are well clustered northwest of the zone. Pre-Cretaceous poles southeast of it are discordant with respect to those from the northwest. The only recognized tectonostratigraphic terrane in south China lies southeast of the zone. The terrane is bordered by a northeast trending sinistral fault that was active in the Mesozoic. Other faults in south China have similar attitudes, ages, and sense of shear. Together, the observations suggest that the Mesozoic tectonic regime in south China consisted of strike-slip activity plus concomitant rifting as terranes or fragments of similar crust were transported north along sinistral faults. The zone, defined by the granites enriched in Nd and Sm, demarcates displaced terranes to the southeast from relatively stable land to the northwest.

  9. Mesozoic and Cenozoic exhumation history of the SW Iberian Variscides inferred from low-temperature thermochronology

    NASA Astrophysics Data System (ADS)

    Vázquez-Vílchez, Mercedes; Jabaloy-Sánchez, Antonio; Azor, Antonio; Stuart, Finlay; Persano, Cristina; Alonso-Chaves, Francisco M.; Martín-Parra, Luis Miguel; Matas, Jerónimo; García-Navarro, Encarnación

    2015-11-01

    The post-Paleozoic tectonothermal evolution of the SW Iberian Variscides is poorly known mainly due to the scarce low-temperature geochronological data available. We have obtained new apatite fission-tracks and apatite (U-Th)/He ages to constrain the Mesozoic and Cenozoic tectonic evolution of this portion of the Iberian Massif located just north of the Betic-Rif Alpine orogen. We have obtained nine apatite fission-track ages on samples from Variscan and pre-Variscan granitoids. These ages range from 174.4 (± 10.8) to 54.1 (± 4.9) Ma, with mean track lengths between 10.3 and 13.9 μm. We have also performed 5 (U-Th)/He datings on some of the same samples, obtaining ages between 74.6 (± 1.6) and 18.5 (± 1.4) Ma. Time-temperature path modeling of these low-temperature geochronological data leads us to envisage four post-Paleozoic tectonically controlled exhumation episodes in the SW Iberian Variscides. Three of these episodes occurred in Mesozoic times (Middle Triassic to Early Jurassic, Early Cretaceous, and Late Cretaceous) at rates of ≈ 1.1 to 2.5 °C Ma- 1, separated by periods with almost no cooling. We relate these Mesozoic cooling events to the formation of important marginal reliefs during the rifting and opening of the central and northern Atlantic realm. The fourth exhumation episode occurred in Cenozoic times at rates of ≈ 3.2 to 3.6 °C Ma- 1, being only recorded in samples next to faults with topographic escarpments. These samples cooled below 80 °C at ≈ 20 Ma at rates of 3-13 °C Ma- 1 due to roughly N-S oriented compressional stresses affecting the whole Iberian plate, which, in the particular case of SW Iberia, reactivated some of the previous Late Paleozoic thrusts.

  10. Atlas of Mesozoic and Cenozoic Coastlines

    NASA Astrophysics Data System (ADS)

    Smith, A. G.; Smith, D. G.; Funnell, B. M.

    2004-03-01

    The inferred positions of global paleoshorelines through the 240 million years of the Mesozoic and Cenozoic are presented within this atlas. Thirty-one maps, generally corresponding to stratigraphic stages, provide a snapshot of the continents and their shorelines at approximately 8 million year intervals. The maps provide a representation of the gross changes in the distribution of land and sea throughout the Mesozoic and Cenozoic plotted on Mollweide projections of paleocontinental reconstruction. They do not distinguish between well and poorly defined shorelines, but the information sources are set out in a bibliography numbering more than 2000 primary paleographic references. This is a global compilation that presents the first attempt at delineating global shorelines at stage level, and which represents many years of work sponsored by British Petroleum International (BPI), and work by BPI themselves between 1981 and 1987.

  11. Total petroleum systems of the Bonaparte Gulf Basin area, Australia; Jurassic, Early Cretaceous-Mesozoic; Keyling, Hyland Bay-Permian; Milligans-Carboniferous, Permian

    USGS Publications Warehouse

    Bishop, M.G.

    1999-01-01

    The Bonaparte Gulf Basin Province (USGS #3910) of northern Australia contains three important hydrocarbon source-rock intervals. The oldest source-rock interval and associated reservoir rocks is the Milligans-Carboniferous, Permian petroleum system. This petroleum system is located at the southern end of Joseph Bonaparte Gulf and includes both onshore and offshore areas within a northwest to southeast trending Paleozoic rift that was initiated in the Devonian. The Milligans Formation is a Carboniferous marine shale that sources accumulations of both oil and gas in Carboniferous and Permian deltaic, marine shelf carbonate, and shallow to deep marine sandstones. The second petroleum system in the Paleozoic rift is the Keyling, Hyland Bay-Permian. Source rocks include Lower Permian Keyling Formation delta-plain coals and marginal marine shales combined with Upper Permian Hyland Bay Formation prodelta shales. These source-rock intervals provide gas and condensate for fluvial, deltaic, and shallow marine sandstone reservoirs primarily within several members of the Hyland Bay Formation. The Keyling, Hyland Bay-Permian petroleum system is located in the Joseph Bonaparte Gulf, north of the Milligans-Carboniferous, Permian petroleum system, and may extend northwest under the Vulcan graben sub-basin. The third and youngest petroleum system is the Jurassic, Early Cretaceous-Mesozoic system that is located seaward of Joseph Bonaparte Gulf on the Australian continental shelf, and trends southwest-northeast. Source-rock intervals in the Vulcan graben sub-basin include deltaic mudstones of the Middle Jurassic Plover Formation and organic-rich marine shales of the Upper Jurassic Vulcan Formation and Lower Cretaceous Echuca Shoals Formation. These intervals produce gas, oil, and condensate that accumulates in, shallow- to deep-marine sandstone reservoirs of the Challis and Vulcan Formations of Jurassic to Cretaceous age. Organic-rich, marginal marine claystones and coals of the

  12. Challenge for Mesozoic hydrocarbon exploration in the Eastern Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdullah, S.; Rukmiati, M.G.; Sitompul, N.

    1996-12-31

    The eastern part of Indonesia covers approximately 3 million square kilometers, 35 percent being landmass and 65 percent covered by ocean. Only three of 38 sedimentary basins are producing hydrocarbon (Salawati, Bintuni, and Seram Basins). Oil and gas have discovered in the Lariang, Bone, Timor, Banggai, Sula and Biak Basins, however the discoveries have not developed yet. Hydrocarbon systems in Northern Australia and Papua New Guinea give the major contributions to the geological idea of Pre-Tertiary section in the less explored area in the Eastern Indonesia. The Triassic-Middle Jurassic marine carbonaceous shale sequences are the main hydrocarbon source rock inmore » the Irian Jaya and surrounding area (Buton, gula and Seram basins). The main Mesozoic reservoir are the Kembelangan Formation in the Bintuni Basin of Irian Jaya and Bobong Formation in the North Sula Region. Exploration play types in the Eastern Indonesia can be divided into five types: 1 - Peri Cratonic, 2 - Marginal Rift Graben, 3 - Thrust Fold Belt Island Arc, 4 - Early Collision and 5 -Microcontinental Block - Advanced Collision. Recent discoveries through Mesozoic section in Eastern Indonesia are: Roabiba-1 (1990) in Bintuni Basin-Irian Jaya (Kambelangan Formation); Loku- 1 (1990) in North Sula region (Pre-Tertiary sediments); Oseil-1 (1993/94) in Bula-Seram Basin (Jurassic Manusela Formation); Elang-1 (1 994); Kakaktua-1 (1994) and Laminaria-1 in North Bonaparte Basin (Upper Jurassic Sands).« less

  13. Late Mesozoic tectonics of the Southern-Thai Peninsula: from transpression to basins opening

    NASA Astrophysics Data System (ADS)

    Sautter, Benjamin; Pubellier, Manuel; Menier, David

    2015-04-01

    The petroleum basins of the Southern Thailand Peninsula are poorly known and their final geometry is controlled by the Tertiary stress variations applied on pre-existing Paleozoic and Mesozoic basement structures. From the end of Mesozoic times, the arrival of Indian plate was accomodated by transpressionnal deformation along the Western Margin of Sunda Plate. Evidences of this strain are the motions along several regional strike Slip Faults (Sagaing, Three Pagodas, Mae Ping, Red River, Ranong and Klong Marui Faults) as well as compressional features (folds and thrusts) evidenced onshore. Due to changes in the boundary forces, these structures were reactivated during the Tertiary, leading to the opening of basins in this part of Sundaland. We present a structural analysis based on geomorphology, fieldwork and seismic interpretation of the Southern Thai Peninsula with emphasis on the deformation's style onshore from Ranong to Satun and offshore from Eastern Mergui to Songhkla. By analyzing morphostructures and drainage anomalies from Digital Elevation Model (SRTM and ASTER), we highlight a predominance of N-S structures in the Southern Thai Peninsula: both in the granitic belt and in the sedimentary cover. The Triassic-Jurassic (Indosinian) post-collision granitic belt is intensely fractured, with 2 penetrative directions: N140 and N50. On both sides, the sedimentary units appear folded at a large wavelength (~20km). On most of the studied outcrops, Triassic to Early Cretaceous series are gently tilted and weakly fractured whereas the Paleozoic ones shows intense fracturation and steep dipping beds. Moreover, all the Paleozoic stratas display a constant N-S S1 which does not appear in the Mezosoic sediments. Althought most of the post-Mesozoic sediments do not crop out due to thick vegetal cover, several Tertiary basins can be easily seen from seismic data both onshore and offshore. These data suggest that rifting started in the Eocene and was accommodated by large

  14. Mesozoic (Upper Jurassic-Lower Cretaceous) deep gas reservoir play, central and eastern Gulf coastal plain

    USGS Publications Warehouse

    Mancini, E.A.; Li, P.; Goddard, D.A.; Ramirez, V.O.; Talukdar, S.C.

    2008-01-01

    The Mesozoic (Upper Jurassic-Lower Cretaceous) deeply buried gas reservoir play in the central and eastern Gulf coastal plain of the United States has high potential for significant gas resources. Sequence-stratigraphic study, petroleum system analysis, and resource assessment were used to characterize this developing play and to identify areas in the North Louisiana and Mississippi Interior salt basins with potential for deeply buried gas reservoirs. These reservoir facies accumulated in Upper Jurassic to Lower Cretaceous Norphlet, Haynesville, Cotton Valley, and Hosston continental, coastal, and marine siliciclastic environments and Smackover and Sligo nearshore marine shelf, ramp, and reef carbonate environments. These Mesozoic strata are associated with transgressive and regressive systems tracts. In the North Louisiana salt basin, the estimate of secondary, nonassociated thermogenic gas generated from thermal cracking of oil to gas in the Upper Jurassic Smackover source rocks from depths below 3658 m (12,000 ft) is 4800 tcf of gas as determined using software applications. Assuming a gas expulsion, migration, and trapping efficiency of 2-3%, 96-144 tcf of gas is potentially available in this basin. With some 29 tcf of gas being produced from the North Louisiana salt basin, 67-115 tcf of in-place gas remains. Assuming a gas recovery factor of 65%, 44-75 tcf of gas is potentially recoverable. The expelled thermogenic gas migrated laterally and vertically from the southern part of this basin to the updip northern part into shallower reservoirs to depths of up to 610 m (2000 ft). Copyright ?? 2008. The American Association of Petroleum Geologists. All rights reserved.

  15. Mesozoic lacewings from China provide phylogenetic insight into evolution of the Kalligrammatidae (Neuroptera).

    PubMed

    Yang, Qiang; Wang, Yongjie; Labandeira, Conrad C; Shih, Chungkun; Ren, Dong

    2014-06-09

    The Kalligrammatidae are distinctive, large, conspicuous, lacewings found in Eurasia from the Middle Jurassic to mid Early Cretaceous. Because of incomplete and often inadequate fossil preservation, an absence of detailed morphology, unclear relationships, and unknown evolutionary trends, the Kalligrammatidae are poorly understood. We describe three new subfamilies, four new genera, twelve new species and four unassigned species from the late Middle Jurassic Jiulongshan and mid Early Cretaceous Yixian Formations of China. These kalligrammatid taxa exhibit diverse morphological characters, such as mandibulate mouthparts in one major clade and siphonate mouthparts in the remaining four major clades, the presence or absence of a variety of distinctive wing markings such as stripes, wing spots and eyespots, as well as multiple major wing shapes. Based on phylogenetic analyses, the Kalligrammatidae are divided into five principal clades: Kalligrammatinae Handlirsch, 1906, Kallihemerobiinae Ren & Engel, 2008, Meioneurinae subfam. nov., Oregrammatinae subfam. nov. and Sophogrammatinae subfam. nov., each of which is accorded subfamily-level status. Our results show significant morphological and evolutionary differentiation of the Kalligrammatidae family during a 40 million-year-interval of the mid Mesozoic. A new phylogeny and classification of five subfamilies and their constituent genera is proposed for the Kalligrammatidae. These diverse, yet highly specialized taxa from northeastern China suggest that eastern Eurasia likely was an important diversification center for the Kalligrammatidae. Kalligrammatids possess an extraordinary morphological breadth and panoply of adaptations during the mid-Mesozoic that highlight our conclusion that their evolutionary biology is much more complex than heretofore realized.

  16. Naturally occurring contaminants in the Piedmont and Blue Ridge crystalline-rock aquifers and Piedmont Early Mesozoic basin siliciclastic-rock aquifers, eastern United States, 1994–2008

    USGS Publications Warehouse

    Chapman, Melinda J.; Cravotta, Charles A.; Szabo, Zoltan; Lindsay, Bruce D.

    2013-01-01

    Groundwater quality and aquifer lithologies in the Piedmont and Blue Ridge Physiographic Provinces in the eastern United States vary widely as a result of complex geologic history. Bedrock composition (mineralogy) and geochemical conditions in the aquifer directly affect the occurrence (presence in rock and groundwater) and distribution (concentration and mobility) of potential naturally occurring contaminants, such as arsenic and radionuclides, in drinking water. To evaluate potential relations between aquifer lithology and the spatial distribution of naturally occurring contaminants, the crystalline-rock aquifers of the Piedmont and Blue Ridge Physiographic Provinces and the siliciclastic-rock aquifers of the Early Mesozoic basin of the Piedmont Physiographic Province were divided into 14 lithologic groups, each having from 1 to 16 lithochemical subgroups, based on primary rock type, mineralogy, and weathering potential. Groundwater-quality data collected by the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program from 1994 through 2008 from 346 wells and springs in various hydrogeologic and land-use settings from Georgia through New Jersey were compiled and analyzed for this study. Analyses for most constituents were for filtered samples, and, thus, the compiled data consist largely of dissolved concentrations. Concentrations were compared to criteria for protection of human health, such as U.S. Environmental Protection Agency (USEPA) drinking water maximum contaminant levels and secondary maximum contaminant levels or health-based screening levels developed by the USGS NAWQA Program in cooperation with the USEPA, the New Jersey Department of Environmental Protection, and Oregon Health & Science University. Correlations among constituent concentrations, pH, and oxidation-reduction (redox) conditions were used to infer geochemical controls on constituent mobility within the aquifers. Of the 23 trace-element constituents evaluated

  17. Mesozoic to Cenozoic magmatic history of the Pamir

    NASA Astrophysics Data System (ADS)

    Chapman, James B.; Scoggin, Shane H.; Kapp, Paul; Carrapa, Barbara; Ducea, Mihai N.; Worthington, James; Oimahmadov, Ilhomjon; Gadoev, Mustafo

    2018-01-01

    New geochronologic, geochemical, and isotopic data for Mesozoic to Cenozoic igneous rocks and detrital minerals from the Pamir Mountains help to distinguish major regional magmatic episodes and constrain the tectonic evolution of the Pamir orogenic system. After final accretion of the Central and South Pamir terranes during the Late Triassic to Early Jurassic, the Pamir was largely amagmatic until the emplacement of the intermediate (SiO2 > 60 wt.%), calc-alkaline, and isotopically evolved (-13 to -5 zircon εHf(t)) South Pamir batholith between 120-100 Ma, which is the most volumetrically significant magmatic complex in the Pamir and includes a high flux magmatic event at ∼105 Ma. The South Pamir batholith is interpreted as the northern (inboard) equivalent of the Cretaceous Karakoram batholith and the along-strike equivalent of an Early Cretaceous magmatic belt in the northern Lhasa terrane in Tibet. The northern Lhasa terrane is characterized by a similar high-flux event at ∼110 Ma. Migration of continental arc magmatism into the South Pamir terrane during the mid-Cretaceous is interpreted to reflect northward directed, low-angle to flat-slab subduction of the Neo-Tethyan oceanic lithosphere. Late Cretaceous magmatism (80-70 Ma) in the Pamir is scarce, but concentrated in the Central and northern South Pamir terranes where it is comparatively more mafic (SiO2 < 60 wt.%), alkaline, and isotopically juvenile (-2 to +2 zircon εHf(t)) than the South Pamir batholith. Late Cretaceous magmatism in the Pamir is interpreted here to be the result of extension associated with roll-back of the Neotethyan oceanic slab, which is consistent with similarly aged extension-related magmatism in the Karakoram terrane and Kohistan. There is an additional pulse of magmatism in the Pamir at 42-36 Ma that is geographically restricted (∼150 km diameter ellipsoidal area) and referred to as the Vanj magmatic complex. The Vanj complex comprises metaluminous, high-K calc-alkaline to

  18. A new reconstruction of the Paleozoic continental margin of southwestern North America: Implications for the nature and timing of continental truncation and the possible role of the Mojave-Sonora megashear

    USGS Publications Warehouse

    Stevens, C.H.; Stone, P.; Miller, J.S.

    2005-01-01

    Data bearing on interpretations of the Paleozoic and Mesozoic paleogeography of southwestern North America are important for testing the hypothesis that the Paleozoic miogeocline in this region has been tectonically truncated, and if so, for ascertaining the time of the event and the possible role of the Mojave-Sonora megashear. Here, we present an analysis of existing and new data permitting reconstruction of the Paleozoic continental margin of southwestern North America. Significant new and recent information incorporated into this reconstruction includes (1) spatial distribution of Middle to Upper Devonian continental-margin facies belts, (2) positions of other paleogeographically significant sedimentary boundaries on the Paleozoic continental shelf, (3) distribution of Upper Permian through Upper Triassic plutonic rocks, and (4) evidence that the southern Sierra Nevada and western Mojave Desert are underlain by continental crust. After restoring the geology of western Nevada and California along known and inferred strike-slip faults, we find that the Devonian facies belts and pre-Pennsylvanian sedimentary boundaries define an arcuate, generally south-trending continental margin that appears to be truncated on the southwest. A Pennsylvanian basin, a Permian coral belt, and a belt of Upper Permian to Upper Triassic plutons stretching from Sonora, Mexico, into westernmost central Nevada, cut across the older facies belts, suggesting that truncation of the continental margin occurred in the Pennsylvanian. We postulate that the main truncating structure was a left-lateral transform fault zone that extended from the Mojave-Sonora megashear in northwestern Mexico to the Foothills Suture in California. The Caborca block of northwestern Mexico, where Devonian facies belts and pre-Pennsylvanian sedimentary boundaries like those in California have been identified, is interpreted to represent a missing fragment of the continental margin that underwent ???400 km of left

  19. New Insights into Early Cenozoic Carbon Cycling: Continental Ecosystem Response to Orbital Forcing in the Lacustrine Green River Formation (Western US) at the Conclusion of the Early Eocene Climatic Optimum

    NASA Astrophysics Data System (ADS)

    Musher, D.; Grogan, D. S.; Whiteside, J. H.

    2010-12-01

    A series of extreme warming events, known as hyperthermals, interrupted the equable climate conditions predominant during the early Cenozoic hothouse. In marine sediments, these hyperthermals are marked by prominent negative carbon isotope excursions, indicative of dramatic and abrupt changes in the global exogenic carbon pool, as well as carbonate dissolution horizons and benthic foraminiferal extinctions. Hyperthermals are well documented in the marine record, but it is less clear how patterns of global carbon cycling manifested in early Cenozoic terrestrial environments, although some studies have documented amplified excursions relative to that of the marine record. The lacustrine Eocene Green River Formation of Utah is an excellent system for studying the continental environmental context of global carbon cycle dynamics during this time. These sediments span a ~15 Myr time interval, including the entire Early Eocene Climatic Optimum (EECO) and the transition to the long-term Cenozoic cooling trend. To investigate the relationship between the continental carbon record and global carbon cycling, climate, and orbital forcing, we studied a detailed section from the P-4 core drilled in the Uinta Basin bracketing the famous “Mahogany Bed”, a petroliferous layer of oil shale recording a period of enhanced productivity and carbon burial near the end of the EECO. Our carbon isotope measurements of high molecular weight n-alkanes across this boundary suggest a stable global carbon cycle and climate regime persisting ~400 kyr at the terminal EECO. Frequency spectra of published oil yield and gamma ray data from this section reveal concentrated power at Milankovitch frequencies, permitting the assembly of a robust age model. In concert with radioisotopic age control, our orbital chronology allows for comparison of our carbon cycle record to early Eocene astronomical solutions. We show that the Mahogany Bed corresponds to strong minima in short and long eccentricity

  20. Asthenospheric and lithospheric sources for Mesozoic dolerites from Liberia (Africa): trace element and isotopic evidence

    NASA Astrophysics Data System (ADS)

    Dupuy, C.; Marsh, J.; Dostal, J.; Michard, A.; Testa, S.

    1988-01-01

    Combined elemental, and Sr and Nd isotopic data are presented for Mesozoic dolerite dikes of Liberia (Africa) which are related to the initial stage of opening of the Atlantic Ocean. The large scatter of both trace element and isotopic data allows the identification of five groups of dolerites which cannot be related to each other by simple processes of mineral fractionation from a common source. On the contrary, the observed chemical and isotopic variation within some dolerites (Groups I and II) may result either from variable degrees of melting of an isotopically heterogeneous source or mixing between enriched and depleted oceanic type mantle. For the other dolerites (Groups III-V) mixing with a third mantle source with more radiogenic Sr and with element ratios characteristic of subduction environments is suggested. This third source is probably the subcontinental lithospheric mantle. Finally, no significant modification by interaction with continental crust is apparent in most of the analyzed samples.

  1. Mesozoic black shales, source mixing and carbon isotopes

    NASA Astrophysics Data System (ADS)

    Suan, Guillaume

    2016-04-01

    Over the last decades, considerable attention has been devoted to the paleoenvironmental and biogeochemical significance of Mesozoic black shales. Black shale-bearing successions indeed often display marked changes in the organic carbon isotope composition (δ13Corg), which have been commonly interpreted as evidence for dramatic perturbations of global carbon budgets and CO2 levels. Arguably the majority of these studies have discarded some more "local" explanations when interpreting δ13Corg profiles, most often because comparable profiles occur on geographically large and distant areas. Based on newly acquired data and selected examples from the literature, I will show that the changing contribution of organic components with distinct δ13C signatures exerts a major but overlooked influence of Mesozoic δ13Corg profiles. Such a bias occurs across a wide spectrum of sedimentological settings and ages, as shown by the good correlation between δ13Corg values and proxies of kerogen proportions (such as rock-eval, biomarker, palynofacies and palynological data) recorded in Mesozoic marginal to deep marine successions of Triassic, Jurassic and Cretaceous age. In most of these successions, labile, 12C-enriched amorphous organic matter of marine origin dominates strata deposited under anoxic conditions, while oxidation-resistant, 13C-rich terrestrial particles dominate strata deposited under well-oxygenated conditions. This influence is further illustrated by weathering profiles of Toarcian (Lower Jurassic) black shales from France, where weathered areas dominated by refractory organic matter show dramatic 13C-enrichment (and decreased total organic carbon and pyrite contents) compared to non-weathered portions of the same horizon. The implications of these results for chemostratigraphic correlations and pCO2 reconstructions of Mesozoic will be discussed, as well as strategies to overcome this major bias.

  2. A diminutive perinate European Enantiornithes reveals an asynchronous ossification pattern in early birds.

    PubMed

    Knoll, Fabien; Chiappe, Luis M; Sanchez, Sophie; Garwood, Russell J; Edwards, Nicholas P; Wogelius, Roy A; Sellers, William I; Manning, Phillip L; Ortega, Francisco; Serrano, Francisco J; Marugán-Lobón, Jesús; Cuesta, Elena; Escaso, Fernando; Sanz, Jose Luis

    2018-03-05

    Fossils of juvenile Mesozoic birds provide insight into the early evolution of avian development, however such fossils are rare. The analysis of the ossification sequence in these early-branching birds has the potential to address important questions about their comparative developmental biology and to help understand their morphological evolution and ecological differentiation. Here we report on an early juvenile enantiornithine specimen from the Early Cretaceous of Europe, which sheds new light on the osteogenesis in this most species-rich clade of Mesozoic birds. Consisting of a nearly complete skeleton, it is amongst the smallest known Mesozoic avian fossils representing post-hatching stages of development. Comparisons between this new specimen and other known early juvenile enantiornithines support a clade-wide asynchronous pattern of osteogenesis in the sternum and the vertebral column, and strongly indicate that the hatchlings of these phylogenetically basal birds varied greatly in size and tempo of skeletal maturation.

  3. Geochronological study of zircons from continental crust rocks in the Frido Unit (southern Apennines)

    NASA Astrophysics Data System (ADS)

    Laurita, Salvatore; Prosser, Giacomo; Rizzo, Giovanna; Langone, Antonio; Tiepolo, Massimo; Laurita, Alessandro

    2015-01-01

    Zircon crystals have been separated from gneisses and metagranitoids of the Pollino area (southern Apennines) in order to unravel the origin of these crustal slices within the ophiolite-bearing Frido Unit. The morphology of the zircon has been investigated by SEM, and the internal structure was revealed by cathodoluminescence. Data obtained by U/Pb dating have been used to deduce the age and significance of the different crystallization stages of zircon, connected to the evolutionary stages of the continental crust (Late Paleozoic-Early Mesozoic). Zircons in gneisses are characterized by inherited cores of magmatic origin, bordered by metamorphic rims. Inherited zircons generally show Paleoproterozoic to Ordovician ages, indicating the provenance of the sedimentary protolith from different sources. The exclusive presence of Late Neoproterozoic zircon cores in leucocratic gneisses may suggest a different magmatic source possibly connected to Pan-African events. Late Carboniferous-Early Permian ages are found mainly in zircon rims of metamorphic origin. These are similar to the emplacement ages of protolith of the metagranites in the middle crust portion. Late Carboniferous-Early Permian metamorphism and magmatism testify the extensional collapse of the Hercynian belt, recorded in European, particularly, in the Corsica-Sardinia block and in Calabria. Late Permian-Triassic ages have been detected in zircon rims from gneisses and metagranitoids. These younger ages appear related to deformation and emplacement of albite-quartz veins in both lithologies, and are related to an extensional episode predating the Middle Triassic to Middle Jurassic rifting in the Tethyan domain, followed by Middle to Late Jurassic spreading.

  4. Plate tectonic history of the Arctic

    NASA Technical Reports Server (NTRS)

    Burke, K.

    1984-01-01

    Tectonic development of the Arctic Ocean is outlined, and geological maps are provided for the Arctic during the mid-Cenozoic, later Cretaceous, late Jurassic, early Cretaceous, early Jurassic and late Devonian. It is concluded that Arctic basin history is moulded by the events of the following intervals: (1) continental collision and immediately subsequent rifting and ocean formation in the Devonian, and continental rifting ocean formation, rapid rotation of microcontinents, and another episode of collision in the latest Jurassic and Cretaceous. It is noted that Cenozoic Arctic basin formation is a smaller scale event superimposed on the late Mesozoic ocean basin.

  5. Mesozoic lacewings from China provide phylogenetic insight into evolution of the Kalligrammatidae (Neuroptera)

    PubMed Central

    2014-01-01

    Background The Kalligrammatidae are distinctive, large, conspicuous, lacewings found in Eurasia from the Middle Jurassic to mid Early Cretaceous. Because of incomplete and often inadequate fossil preservation, an absence of detailed morphology, unclear relationships, and unknown evolutionary trends, the Kalligrammatidae are poorly understood. Results We describe three new subfamilies, four new genera, twelve new species and four unassigned species from the late Middle Jurassic Jiulongshan and mid Early Cretaceous Yixian Formations of China. These kalligrammatid taxa exhibit diverse morphological characters, such as mandibulate mouthparts in one major clade and siphonate mouthparts in the remaining four major clades, the presence or absence of a variety of distinctive wing markings such as stripes, wing spots and eyespots, as well as multiple major wing shapes. Based on phylogenetic analyses, the Kalligrammatidae are divided into five principal clades: Kalligrammatinae Handlirsch, 1906, Kallihemerobiinae Ren & Engel, 2008, Meioneurinae subfam. nov., Oregrammatinae subfam. nov. and Sophogrammatinae subfam. nov., each of which is accorded subfamily-level status. Our results show significant morphological and evolutionary differentiation of the Kalligrammatidae family during a 40 million-year-interval of the mid Mesozoic. Conclusion A new phylogeny and classification of five subfamilies and their constituent genera is proposed for the Kalligrammatidae. These diverse, yet highly specialized taxa from northeastern China suggest that eastern Eurasia likely was an important diversification center for the Kalligrammatidae. Kalligrammatids possess an extraordinary morphological breadth and panoply of adaptations during the mid-Mesozoic that highlight our conclusion that their evolutionary biology is much more complex than heretofore realized. PMID:24912379

  6. A diminutive perinate European Enantiornithes reveals an asynchronous ossification pattern in early birds

    DOE PAGES

    Knoll, Fabien; Chiappe, Luis M.; Sanchez, Sophie; ...

    2018-03-05

    Fossils of juvenile Mesozoic birds provide insight into the early evolution of avian development, however such fossils are rare. The analysis of the ossification sequence in these early-branching birds has the potential to address important questions about their comparative developmental biology and to help understand their morphological evolution and ecological differentiation. Here we report on an early juvenile enantiornithine specimen from the Early Cretaceous of Europe, which sheds new light on the osteogenesis in this most species-rich clade of Mesozoic birds. Consisting of a nearly complete skeleton, it is amongst the smallest known Mesozoic avian fossils representing post-hatching stages ofmore » development. Finally, comparisons between this new specimen and other known early juvenile enantiornithines support a clade-wide asynchronous pattern of osteogenesis in the sternum and the vertebral column, and strongly indicate that the hatchlings of these phylogenetically basal birds varied greatly in size and tempo of skeletal maturation.« less

  7. A diminutive perinate European Enantiornithes reveals an asynchronous ossification pattern in early birds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knoll, Fabien; Chiappe, Luis M.; Sanchez, Sophie

    Fossils of juvenile Mesozoic birds provide insight into the early evolution of avian development, however such fossils are rare. The analysis of the ossification sequence in these early-branching birds has the potential to address important questions about their comparative developmental biology and to help understand their morphological evolution and ecological differentiation. Here we report on an early juvenile enantiornithine specimen from the Early Cretaceous of Europe, which sheds new light on the osteogenesis in this most species-rich clade of Mesozoic birds. Consisting of a nearly complete skeleton, it is amongst the smallest known Mesozoic avian fossils representing post-hatching stages ofmore » development. Finally, comparisons between this new specimen and other known early juvenile enantiornithines support a clade-wide asynchronous pattern of osteogenesis in the sternum and the vertebral column, and strongly indicate that the hatchlings of these phylogenetically basal birds varied greatly in size and tempo of skeletal maturation.« less

  8. Toward a continuous 405-kyr-calibrated Astronomical Time Scale for the Mesozoic Era

    NASA Astrophysics Data System (ADS)

    Hinnov, Linda; Ogg, James; Huang, Chunju

    2010-05-01

    Mesozoic cyclostratigraphy is being assembled into a continuous Astronomical Time Scale (ATS) tied to the Earth's cyclic orbital parameters. Recognition of a nearly ubiquitous, dominant ~400-kyr cycling in formations throughout the era has been particularly striking. Composite formations spanning contiguous intervals up to 50 myr clearly express these long-eccentricity cycles, and in some cases, this cycling is defined by third- or fourth-order sea-level sequences. This frequency is associated with the 405-kyr orbital eccentricity cycle, which provides a basic metronome and enables the extension of the well-defined Cenozoic ATS to scale the majority of the Mesozoic Era. This astronomical calibration has a resolution comparable to the 1% to 0.1% precision for radioisotope dating of Mesozoic ash beds, but with the added benefit of providing continuous stratigraphic coverage between dated beds. Extended portions of the Mesozoic ATS provide solutions to long-standing geologic problems of tectonics, eustasy, paleoclimate change, and rates of seafloor spreading.

  9. The inheritance of a Mesozoic landscape in western Scandinavia

    PubMed Central

    Fredin, Ola; Viola, Giulio; Zwingmann, Horst; Sørlie, Ronald; Brönner, Marco; Lie, Jan-Erik; Grandal, Else Margrethe; Müller, Axel; Margreth, Annina; Vogt, Christoph; Knies, Jochen

    2017-01-01

    In-situ weathered bedrock, saprolite, is locally found in Scandinavia, where it is commonly thought to represent pre-Pleistocene weathering possibly associated with landscape formation. The age of weathering, however, remains loosely constrained, which has an impact on existing geological and landscape evolution models and morphotectonic correlations. Here we provide new geochronological evidence that some of the low-altitude basement landforms on- and offshore southwestern Scandinavia are a rejuvenated geomorphological relic from Mesozoic times. K-Ar dating of authigenic, syn-weathering illite from saprolitic remnants constrains original basement exposure in the Late Triassic (221.3±7.0–206.2±4.2 Ma) through deep weathering in a warm climate and subsequent partial mobilization of the saprolitic mantle into the overlying sediment cascade system. The data support the bulk geomorphological development of west Scandinavia coastal basement rocks during the Mesozoic and later, long-lasting relative tectonic stability. Pleistocene glaciations played an additional geomorphological role, selectively stripping the landscape from the Mesozoic overburden and carving glacial landforms down to Plio–Pleistocene times. Saprolite K-Ar dating offers unprecedented possibilities to study past weathering and landscape evolution processes. PMID:28452366

  10. Phanerozoic polyphase orogenies recorded in the northeastern Okcheon Belt, Korea from SHRIMP U-Pb detrital zircon and K-Ar illite geochronologies

    NASA Astrophysics Data System (ADS)

    Jang, Yirang; Kwon, Sanghoon; Song, Yungoo; Kim, Sung Won; Kwon, Yi Kyun; Yi, Keewook

    2018-05-01

    We present the SHRIMP U-Pb detrital zircon and K-Ar illite 1Md/1M and 2M1 ages, suggesting new insight into the Phanerozoic polyphase orogenies preserved in the northeastern Okcheon Belt, Korea since the initial basin formation during Neoproterozoic rifting through several successive contractional orogens. The U-Pb detrital zircon ages from the Early Paleozoic strata of the Taebaeksan Zone suggest a Cambrian maximum deposition age, and are supported by trilobite and conodont biostratigraphy. Although the age spectra from two sedimentary groups, the Yeongwol and Taebaek Groups, show similar continuous distributions from the Late Paleoproterozoic to Early Paleozoic ages, a Grenville-age hiatus (1.3-0.9 Ga) in the continuous stratigraphic sequence from the Taebaek Group suggests the existence of different peripheral clastic sources along rifted continental margin(s). In addition, we present the K-Ar illite 1Md/1M ages of the fault gouges, which confirm fault formation/reactivation during the Late Cretaceous to Early Paleogene (ca. 82-62 Ma) and the Early Miocene (ca. 20-18 Ma). The 2M1 illite ages, at least those younger than the host rock ages, provide episodes of deformation, metamorphism and hydrothermal effects related to the tectonic events during the Devonian (ca.410 Ma) and Permo-Triassic (ca. 285-240 Ma). These results indicate that the northeastern Okcheon Belt experienced polyphase orogenic events, namely the Okcheon (Middle Paleozoic), Songrim (Late Paleozoic to Early Mesozoic), Daebo (Middle Mesozoic) and Bulguksa (Late Mesozoic to Early Cenozoic) Orogenies, reflecting the Phanerozoic tectonic evolution of the Korean Peninsula along the East Asian continental margin.

  11. Iberia versus Europe - Effects of continental break-up and round-up on hydrocarbon habitat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourrouilh, R.; Zolnai, G.

    1988-08-01

    Based on the continuity of foldbelts and the positions of intermountain continental nuclei and transcontinental megashears, a close Pangea fit is proposed for the central and north Atlantic borderlands. The Variscan arch segment missing between Brittany and Galicia in the Gulf of Gascony (Biscaye) can tentatively be identified with the Flemish Cap block off Newfoundland. At the same time the northwest African-Gondwana border (central Morocco) was located some 800 km farther to the west-northwest, as compared to its present position in southwestern Europe (Iberia). During the opening of the central and northern segments of the Atlantic Ocean (Jurassic and Cretaceous)more » and during the closure of the western Mediterranean basin, i.e., the thrust of Africa toward southern Europe (Tertiary), the European continental mass underwent deformation in the transtensive and transpressive modes, which reactivated parts of its inherited structural network. The trailing south European continental margin was partially dismembered into loosely bound continental blocks, to be assembled again during the subsequent Alpine orogenic cycle. These events can be compared with processes known in the northernmost and western segments of the North American continent. Mechanisms are proposed for the formation and deformation of inter- and intraplate basins by way of moderate shifts (wrenching) and slight rotations, the direction of which changed during the Mesozoic-Tertiary according to the global stress field. The above evolution and mechanisms had multiple and decisive effects on hydrocarbon generation, habitat, and accumulation.« less

  12. Chaotic evolution of the long-period Milankovitch cycle during the early Mesozoic: independent evidences from the Newark lacustrine sequence (North America) and the pelagic bedded chert sequence (Japan)

    NASA Astrophysics Data System (ADS)

    Ikeda, M.; Olsen, P. E.; Tada, R.

    2012-12-01

    The correlation of Earth's orbital parameters with climatic variations has been used to generate astronomically calibrated geologic time scales of high accuracy. However, because of the chaotic behavior of the solar planets, the orbital models have a large uncertainty beyond several tens of million years in the past. This chaotic behavior also causes the long-period astronomical cycles (> 0.5 Myr periodicity) to modulate their frequency and amplitude. In other words, their modulation patterns could be potential constraints for the orbital models. Here we report the first geologic constraints on the timing of frequency transition and amplitude modulation of the ~ 2 Myr long eccentricity cycles during the early Mesozoic. We examined the lake level records of the early Mesozoic Newark lacustrine sequence in North America and the biogenic silica burial rate of the pelagic bedded chert sequence in the Inuyama area, Japan, which are proven to be reflect the astronomical cycle (Olsen, 1986; Olsen and Kent, 1996; Ikeda et al., 2010). The time scales of the two sequences were orbitally calibrated with the end-Triassic mass extinction interval as the age anchor, covering ~ 30 Myr and ~ 65 Myr, respectively (Olsen et al., 2011; Ikeda et al., 2010, in prep). We find that the frequency modulation of ~ 2 Myr cycle between 2.4 Myr to 1.6 Myr cycle have occurred at least the Middle to Late Triassic. In addition, the ~ 2 Myr cycle modulate its amplitude with ~ 10 Myr periodicity with in-phase relation between the two. Similar modulation patterns of ~ 2 Myr cycles from the two independent geologic records indicate convincing evidences for the chaotic behavior of the Solar planets. Because these modulation patterns are different from the results of the orbital models by Laskar et al. (2004, 2011), our records will provide the new and challenging constraints for the orbital models in terms of chaotic behavior of Solar planets.

  13. Early Mesozoic paleogeography and tectonic evolution of the western United States: Insights from detrital zircon U-Pb geochronology, Blue Mountains Province, northeastern Oregon

    USGS Publications Warehouse

    LaMaskin, Todd A.; Vervoort, J.D.; Dorsey, R.J.; Wright, J.E.

    2011-01-01

    This study assesses early Mesozoic provenance linkages and paleogeographic-tectonic models for the western United States based on new petrographic and detrital zircon data from Triassic and Jurassic sandstones of the "Izee" and Olds Ferry terranes of the Blue Mountains Province, northeastern Oregon. Triassic sediments were likely derived from the Baker terrane offshore accretionary subduction complex and are dominated by Late Archean (ca. 2.7-2.5 Ga), Late Paleoproterozoic (ca. 2.2-1.6 Ga), and Paleozoic (ca. 380-255 Ma) detrital zircon grains. These detrital ages suggest that portions of the Baker terrane have a genetic affinity with other Cordilleran accretionary subduction complexes of the western United States, including those in the Northern Sierra and Eastern Klamath terranes. The abundance of Precambrian grains in detritus derived from an offshore complex highlights the importance of sediment reworking. Jurassic sediments are dominated by Mesozoic detrital ages (ca. 230-160 Ma), contain significant amounts of Paleozoic (ca. 290, 380-350, 480-415 Ma), Neoproterozoic (ca. 675-575 Ma), and Mesoproterozoic grains (ca. 1.4-1.0 Ga), and have lesser quantities of Late Paleoproterozoic grains (ca. 2.1-1.7 Ga). Detrital zircon ages in Jurassic sediments closely resemble well-documented age distributions in transcontinental sands of Ouachita-Appalachian provenance that were transported across the southwestern United States and modified by input from cratonal, miogeoclinal, and Cordilleran-arc sources during Triassic and Jurassic time. Jurassic sediments likely were derived from the Cordilleran arc and an orogenic highland in Nevada that yielded recycled sand from uplifted Triassic backarc basin deposits. Our data suggest that numerous Jurassic Cordilleran basins formed close to the Cordilleran margin and support a model for moderate post-Jurassic translation (~400 km) of the Blue Mountains Province. ?? 2011 Geological Society of America.

  14. New aragonite 87Sr/86Sr records of Mesozoic ammonoids and approach to the problem of N, O, C and Sr isotope cycles in the evolution of the Earth

    NASA Astrophysics Data System (ADS)

    Zakharov, Yuri D.; Dril, Sergei I.; Shigeta, Yasunari; Popov, Alexander M.; Baraboshkin, Eugenij Y.; Michailova, Irina A.; Safronov, Peter P.

    2018-02-01

    New Sr isotope data from well-preserved aragonite ammonoid shell material from the Mesozoic are compared with that from a living Nautilus shell. The prominent negative Sr isotope excursions known from the Middle Permian, Jurassic and Cretaceous probably have their origins in intensive plate tectonic activity, followed by enhanced hydrothermal activity at the mid-ocean ridges (mantle volcanism) which supplied low radiogenic Sr to seawater. The maximum positive (radiogenic) shift in the lower Mesozoic Sr isotope curve (Lower Triassic peak) was likely caused by a significant expansion of dry land surfaces (Dabie-Sulu Triassic orogeny) and their intensive silicate weathering in conditions of extreme warming and aridity in the very end of the Smithian, followed by warm and humid conditions in the late Spathian, which apparently resulted in a significant oceanic input of radiogenic Sr through riverine flux. The comparatively high 87Sr/86Sr ratio obtained from the living Nautilus shell is probably a function of both the Alpine orogeny, which was accompanied by significant continental weathering and input of radiogenic Sr to the oceans, and the weakening of mantle volcanism.

  15. Paleozoic-Mesozoic boundary in the Berry Creek Quadrangle, northwestern Sierra Nevada, California

    USGS Publications Warehouse

    Hietanen, Anna Martta

    1977-01-01

    Structural and petrologic studies in the Berry Creek quadrangle at the north end of the western metamorphic belt of the Sierra Nevada have yielded new information that helps in distinguishing between the chemically similar Paleozoic and Mesozoic rocks. The distinguishing features are structural and textural and result from different degrees of deformation. Most Paleozoic rocks are strongly deformed and thoroughly recrystallized. Phenocrysts in meta volcanic rocks are granulated and drawn out into lenses that have sutured outlines. In contrast, the phenocrysts in the Mesozoic metavolcanic rocks show well-preserved straight crystal faces, are only slightly or not at all granulated, and contain fewer mineral inclusions than do those in the Paleozoic rocks. The groundmass in the Paleozoic rocks is recrystallized to a fairly coarse grained albite-epidote-amphibole-chlorite rock, whereas in the Mesozoic rocks the groundmass is a very fine grained feltlike mesh with only spotty occurrence of well-recrystallized finegrained albite-epidote-chlorite-actinolite rock. Primary minerals, such as augite, are locally preserved in the Mesozoic rocks but are altered to a mixture of amphibole, chlorite, and epidote in the Paleozoic rocks. In the contact aureoles of the plutons, and within the Big Bend fault zone, which crosses the area parallel to the structural trends, all rocks are thoroughly recrystallized and strongly deformed. Identification of the Paleozoic and Mesozoic rocks in these parts of the area was based on the continuity of the rock units in the field and on gradual changes in microscopic textures toward the plutons.

  16. Paleogeographic atlas project-Mesozoic-Cenozoic tectonic map of the world

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowley, D.B.; Ziegler, A.M.; Hulver, M.

    1985-01-01

    A Mesozoic-Cenozoic tectonic map of the world has been compiled in order to provide the basis for detailed paleogeographic, first-order palin-spastic and paleo-tectonic reconstructions. The map is plotted from a digital database on two polar stereographic projections that depict both time and type of tectonic activity. Time of activity is shown using six colors, with each color representing approximately 40 m.y. intervals. The time divisions correspond with, and are defined on the basis of times of major changes in plate motions. Tectonic activity is divided into 7 major types: (1) Platformal regions unaffected by major tectonism; (2) Region as underlainmore » by oceanic lithosphere; (3) Regions affected by extensional tectonism-characterized by thinning and stretching of the crust, including Atlantic-type margins, Basin and Range, back-arc and pull-apart basin development; (4) Regions of crustal shortening and thickening, as in collisional orogens and Andean-type foreland-fold systems; (5) Strike-slip systems associated with little or no change in crustal thickness; (6) Subduction accretion prisms, associated with tectonic outbuilding of continental crust, and marking sutures within continents; and (7) Large scale oceanic volcanic/magmatic arcs and plateaus characterized by increased crustal thickness and buoyancy of the lithosphere. The map provides a basis for understanding the assembly of Asia, the Circum-Pacific, and the disaggregation of Pangea.« less

  17. The initiation of segmented buoyancy-driven melting during continental breakup

    PubMed Central

    Gallacher, Ryan J.; Keir, Derek; Harmon, Nicholas; Stuart, Graham; Leroy, Sylvie; Hammond, James O. S.; Kendall, J-Michael; Ayele, Atalay; Goitom, Berhe; Ogubazghi, Ghebrebrhan; Ahmed, Abdulhakim

    2016-01-01

    Melting of the mantle during continental breakup leads to magmatic intrusion and volcanism, yet our understanding of the location and dominant mechanisms of melt generation in rifting environments is impeded by a paucity of direct observations of mantle melting. It is unclear when during the rifting process the segmented nature of magma supply typical of seafloor spreading initiates. Here, we use Rayleigh-wave tomography to construct a high-resolution absolute three-dimensional shear-wave velocity model of the upper 250 km beneath the Afar triple junction, imaging the mantle response during progressive continental breakup. Our model suggests melt production is highest and melting depths deepest early during continental breakup. Elevated melt production during continental rifting is likely due to localized thinning and melt focusing when the rift is narrow. In addition, we interpret segmented zones of melt supply beneath the rift, suggesting that buoyancy-driven active upwelling of the mantle initiates early during continental rifting. PMID:27752044

  18. Rapid growth of some major segments of continental crust

    NASA Astrophysics Data System (ADS)

    Reymer, Arthur; Schubert, Gerald

    1986-04-01

    Some major segments of continental crust display a narrow range of Sm-Nd crustal formation ages. The sizes of the Canadian shield, the Svecokarelian province of northern Europe, the west-central United States, and the Arabian-Nubian shield suggest rapid crustal growth. Island-arc accretion models rank among the most favored tectonic models for the formation of these areas. A quantitative comparison of the growth rates of these crustal segments to Mesozoic-Cenozoic arc-addition rates shows, however, that island-arc accretion alone seems insufficient to account for the amount of crust that was produced in each of these terrains. Other additional mechanisms, such as hot-spot volcanism and underplating, may have been active in addition to arc accretion. Alternatively, large amounts of preexisting basement have gone so far undetected. *Present address: Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina 27695-8202

  19. First identifiable Mesozoic harvestman (Opiliones: Dyspnoi) from Cretaceous Burmese amber

    PubMed Central

    Giribet, Gonzalo; Dunlop, Jason A

    2005-01-01

    Two inclusions in a piece of Upper Cretaceous (Albian) Burmese amber from Myanmar are described as a harvestman (Arachnida: Opiliones), Halitherses grimaldii new genus and species. The first Mesozoic harvestman to be named can be referred to the suborder Dyspnoi for the following reasons: prosoma divided into two regions, the posterior formed by the fusion of the meso- and metapeltidium; palp lacking a terminal claw, with clavate setae, and tarsus considerably shorter than the tibia. The bilobed, anteriorly projecting ocular tubercle is reminiscent of that of ortholasmatine nemastomatids. The status of other Mesozoic fossils referred to Opiliones is briefly reviewed. PMID:16024358

  20. Late Mesozoic-Cenozoic intraplate magmatism in Central Asia and its relation with mantle diapirism: Evidence from the South Khangai volcanic region, Mongolia

    NASA Astrophysics Data System (ADS)

    Yarmolyuk, Vladimir V.; Kudryashova, Ekaterina A.; Kozlovsky, Alexander M.; Lebedev, Vladimir A.; Savatenkov, Valery M.

    2015-11-01

    The South Khangai volcanic region (SKVR) comprises fields of Late Mesozoic-Cenozoic volcanic rocks scattered over southern and central Mongolia. Evolution of the region from the Late Jurassic to the Late Cenozoic includes 13 successive igneous episodes that are more or less evenly distributed in time. Major patterns in the distribution of different-aged volcanic complexes were controlled by a systematic temporal migration of volcanic centers over the region. The total length of their trajectory exceeds 1600 km. Principle characteristics of local magmatism are determined. The composition of igneous rocks varies from basanites to rhyolites (predominantly, high-K rocks), with geochemistry close to that of OIB. The rock composition, however, underwent transformations in the Mesozoic-Cenozoic. Rejuvenation of mafic rocks is accompanied by decrease in the contents of HREE and increase of Nb and Ta. According to isotope data, the SKVR magmatic melts were derived from three isotope sources that differed in the Sr, Nd, and Pb isotopic compositions and successively alternated in time. In the Early Cretaceous, the predominant source composition was controlled by interaction of the EMII- and PREMA-type mantle materials. The PREMA-type mantle material dominated quantitatively in the Late Cretaceous and initial Early Cenozoic. From the latest Early Cenozoic to Late Cenozoic, the magma source also contained the EMI-type material along with the PREMA-type. The structural fabric, rock composition, major evolutionary pattern, and inner structure of SKVR generally comply with the criteria used to distinguish the mantle plume-related regions. Analogous features can be seen in other regions of recent volcanism in Central Asia (South Baikal, Udokan, Vitim, and Tok Stanovik). The structural autonomy of these regions suggests that distribution of the Late Mesozoic-Cenozoic volcanism in Central Asia was controlled by a group of relatively small hot finger-type mantle plumes associated with

  1. Vertical slab sinking and westward subduction offshore of Mesozoic North America

    NASA Astrophysics Data System (ADS)

    Sigloch, Karin; Mihalynuk, Mitchell G.

    2013-04-01

    Subducted slabs in the mantle, as imaged by seismic tomography, preserve a record of ancient subduction zones. Ongoing debate concerns how direct this link is. How long ago did each parcel of slab subduct, and where was the trench located relative to the imaged slab position? Resolving these questions will benefit paleogeographic reconstructions, and restrict the range of plausible rheologies for mantle convection simulations. We investigate one of the largest and best-constrained Mesozoic slab complexes, the "Farallon" in the transition zone and lower mantle beneath North America. We quantitatively integrate observations from whole-mantle P-wave tomography, global plate reconstructions, and land geological evidence from the North American Cordillera. These three data sets permit us to test the simplest conceivable hypothesis for linking slabs to paleo-trenches: that each parcel of slab sank only vertically shortly after entering the trench That is, we test whether within the limits of tomographic resolution, all slab material lies directly below the location where it subducted beneath its corresponding arc. Crucially and in contrast to previous studies, we do not accept or impose an Andean-style west coast trench (Farallon-beneath-continent subduction) since Jurassic times, as this scenario is inconsistent with many geological observations. Slab geometry alone suggests that trenches started out as intra-oceanic because tomography images massive, linear slab "walls" in the lower mantle, extending almost vertically from about 800 km to 2000+ km depth. Such steep geometries would be expected from slabs sinking vertically beneath trenches that were quasi-stationary over many tens of millions of years. Intra-oceanic trenches west of Mesozoic North America could have been stationary, whereas a coastal Farallon trench could not, because the continent moved westward continuously as the Atlantic opened. Overlap of North American west-coast positions, as reconstructed in a

  2. Volatile components and continental material of planets

    NASA Technical Reports Server (NTRS)

    Florenskiy, K. P.; Nikolayeva, O. V.

    1986-01-01

    It is shown that the continental material of the terrestrial planets varies in composition from planet to planet according to the abundances and composition of true volatiles (H20, CO2, etc.) in the outer shells of the planets. The formation of these shells occurs very early in a planet's evolution when the role of endogenous processes is indistinct and continental materials are subject to melting and vaporizing in the absence of an atmosphere. As a result, the chemical properties of continental materials are related not only to fractionation processes but also to meltability and volatility. For planets retaining a certain quantity of true volatile components, the chemical transformation of continental material is characterized by a close interaction between impact melting vaporization and endogeneous geological processes.

  3. Palinspastic reconstruction of Lower Mesozoic stratigraphic sequences near the latitude of Las Vegas: Implications for the entire Great Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marzolf, J.E.

    1993-04-01

    On the Colorado Plateau, lower Mesozoic stratigraphy is subdivided by regional unconformities into the Lower Triassic Moenkopi, Upper Triassic Chinle, Lower and Middle( ) Jurassic Glen Canyon, and Middle Jurassic lower San Rafael tectonosequences. Palinspastic reconstruction for Cenozoic extensional and mesozoic compressional deformations near the latitude of Las Vegas indicates the Moenkopi tectono-sequence constructed a passive-margin-like architecture of modest width overlapping folded. Thrust-faulted, and intruded Permian strata, with state boundaries fixed relative to the Colorado Plateau, comparison of the location of the Early Triassic shelf-slope break near latitude 36[degree] with the palinspastically restored location of the shelf-slope break in southeasternmore » Idaho implies strata of the Moenkopi tectonosequence in the Mesozoic marine province of northwest NV lay in western utah in the Early Triassic. This reconstruction: suggests that the Galconda and Last Chance faults are part of the same thrust system; aligns late Carnian paleovalleys of the chinle tectonosequence on the Colorado Plateau with a coeval northwest-trending paleovalley cut across the Star Pea, and the Norian Cottonwood paleovalley with the coeval Grass Valley delta; defines a narrow, northward deepening back-arc basin in which the Glen Canyon tectonosequence was deposited; aligns east-facing half grabens along the back side of the arc from the Cowhole Mountains to the Clan Alpine Range; projects the volcan-arc/back-arc transition from northwest Arizona to the east side of the Idaho batholith; and predicts the abrupt facies change from silicic volcanics to marine strata of the lower San Rafael sequence lay in western Utah. The paleogeographic was altered in the late Bathonian to Callovian by back-arc extension north of a line extending from Cedar City, UT to Mina, NV. The palinspastic reconstruction implies the Paleozoic was tectonically stacked at the close of the Paleozoic.« less

  4. Mesozoic units in SE Rhodope (Bulgaria): new structural and petrologic data and geodynamic implications for the Early Jurassic to Mid-Cretaceous evolution of the Vardar ocean basin

    NASA Astrophysics Data System (ADS)

    Bonev, N.; Stampfli, G.

    2003-04-01

    . Immobile trace element discrimination of both rock types constrains the volcanic (oceanic)-arc origin. They generally show low total REE concentrations (LREE>HREE) with enrichment of LIL elements relative to the HFS elements, and also very low Nb and relatively high Ce content consistent with an island-arc tectonic setting. We consider that the Meliata-Maliac ocean northern passive margin could be the source provenance for the Upper Permian clastics and Middle-Upper Triassic limestone blocks within the olistostromic melange-like unit, whereas turbidites and magmatic blocks may originate in an island arc-accretionary complex that relates to the southward subduction of the Maliac ocean under the supra-subduction back-arc Vardar ocean/island arc system. These new structural and petrologic data allow to precise the tectonic setting of the Mesozoic units and their geodynamic context in the frame of the Early Jurassic to Late Cretaceous evolution of the Vardar ocean.

  5. A Glimpse at Late Mesozoic to Early Tertiary Offshore Stratigraphy from Wilkes Land, East Antarctica: Results of Strategic Dredging of the Mertz-Ninnis Trough

    NASA Astrophysics Data System (ADS)

    Schrum, H.; Domack, E.; Desantis, L.; Leventer, A.; McMullen, K.; Escutia, C.

    2004-12-01

    infilling a rifted basin of late Cretaceous age. Seaward dipping reflectors above the syn-rift strata represent post-rift deposits ranging from Paleogene to Quaternary. Included within this stratigraphy are lithified diamictites containing Mesozoic palynomorphs in addition to palynomorphs of Early Tertiary age (including dinoflagellates). Seaward dipping reflectors in the deep axis of the Mertz-Ninnis Trough were not sampled directly by our dredges, but are believed to be Lower Cretaceous siltstones by extrapolation to core DF-79-38, 100 km along strike to the southeast (Domack et al., 1980). Furthermore, the thermal maturity of the lignite samples recovered in our collections suggests that the coal is of Early Tertiary age, as are numerous organic-rich mudstones, which contain Paleogene palynomorphs. These results indicate that sedimentary strata in this portion of the Wilkes Land Margin contain significantly thick (greater than 2.7 km) post-rift (drift phase) marine sequences of both pre- and synglacial character. Strategic dredging is a promising methodology by which to sample stratigraphic succession in a cost effective manner along the East Antarctic margin in the absence of, or preparation for, International Ocean Drilling Projects on the shelf. Domack, E. W., Fairchild, W. W., and Anderson, J. B. (1980) Lower Cretaceous sediment from the East Antarctic continental shelf, Nature, 287, 625-626.

  6. Joint geophysical and petrological models for the lithosphere structure of the Antarctic Peninsula continental margin

    NASA Astrophysics Data System (ADS)

    Yegorova, Tamara; Bakhmutov, Vladimir; Janik, Tomasz; Grad, Marek

    2011-01-01

    The Antarctic Peninsula (AP) is a composite magmatic arc terrane formed at the Pacific margin of Gondwana. Through the late Mesozoic and Cenozoic subduction has stopped progressively from southwest to northeast as a result of a series of ridge trench collisions. Subduction may be active today in the northern part of the AP adjacent to the South Shetland Islands. The subduction system is confined by the Shackleton and Hero fracture zones. The magmatic arc of the AP continental margin is marked by high-amplitude gravity and magnetic anomaly belts reaching highest amplitudes in the region of the South Shetland Islands and trench. The sources for these anomalies are highly magnetic and dense batholiths of mafic bulk composition, which were intruded in the Cretaceous, due to partial melting of upper-mantle and lower-crustal rocks. 2-D gravity and magnetic models provide new insights into crustal and upper-mantle structure of the active and passive margin segments of the northern AP. Our models incorporate seismic refraction constraints and physical property data. This enables us to better constrain both Moho geometry and petrological interpretations in the crust and upper mantle. Model along the DSS-12 profile crosses the AP margin near the Anvers Island and shows typical features of a passive continental margin. The second model along the DSS-17 profile extends from the Drake Passage through the South Shetland Trench/Islands system and Bransfield Strait to the AP and indicates an active continental margin linked to slow subduction and on-going continental rifting in the backarc region. Continental rifting beneath the Bransfield Strait is associated with an upward of hot upper mantle rocks and with extensive magmatic underplating.

  7. New 40Ar-39Ar dating of Lower Cretaceous basalts at the southern front of the Central High Atlas, Morocco: insights on late Mesozoic tectonics, sedimentation and magmatism

    NASA Astrophysics Data System (ADS)

    Moratti, G.; Benvenuti, M.; Santo, A. P.; Laurenzi, M. A.; Braschi, E.; Tommasini, S.

    2018-04-01

    This study is based upon a stratigraphic and structural revision of a Middle Jurassic-Upper Cretaceous mostly continental succession exposed between Boumalne Dades and Tinghir (Southern Morocco), and aims at reconstructing the relation among sedimentary, tectonic and magmatic processes that affected a portion of the Central High Atlas domains. Basalts interbedded in the continental deposits have been sampled in the two studied sites for petrographic, geochemical and radiogenic isotope analyses. The results of this study provide: (1) a robust support to the local stratigraphic revision and to a regional lithostratigraphic correlation based on new 40Ar-39Ar ages (ca. 120 Ma) of the intervening basalts; (2) clues for reconstructing the relation between magma emplacement in a structural setting characterized by syn-depositional crustal shortening pre-dating the convergent tectonic inversion of the Atlasic rifted basins; (3) a new and intriguing scenario indicating that the Middle Jurassic-Lower Cretaceous basalts of the Central High Atlas could represent the first signal of the present-day Canary Islands mantle plume impinging, flattening, and delaminating the base of the Moroccan continental lithosphere since the Jurassic, and successively dragged passively by the Africa plate motion to NE. The tectono-sedimentary and magmatic events discussed in this paper are preliminarily extended from their local scale into a peculiar geodynamic setting of a continental plate margin flanked by the opening and spreading Central Atlantic and NW Tethys oceans. It is suggested that during the late Mesozoic this setting created an unprecedented condition of intraplate stress for concurrent crustal shortening, related mountain uplift, and thinning of continental lithosphere.

  8. Deformation style of the Mesozoic sedimentary rocks in southern Thailand

    NASA Astrophysics Data System (ADS)

    Kanjanapayont, Pitsanupong

    2014-10-01

    Mesozoic sedimentary rocks in southern Thailand are widespread from NNE-SSW and N-S in Chumphon and Trang provinces. The Mesozoic stratigraphic units are the marine Triassic Sai Bon Formation and the non-marine Jurassic-Cretaceous Thung Yai Group, the latter subdivided into Khlong Min, Lam Thap, Sam Chom, and Phun Phin Formations. These units overlie Permian carbonate rocks with an angular unconformity, and are overlain unconformably by Cenozoic units and the Quaternary sediments. The Mesozoic rocks have been folded to form two huge first-ordered syncline or synclinoria, the Chumphon and Surat Thani-Krabi-Trang synclinoria. These synclinoria are elongated in NNE-SSW to N-S direction, and incorporate asymmetric lower-order parasitic folds. The folds have moderately to steeply dipping eastward limbs and more gently dipping westward limbs. These folds were transected by brittle fractures in four major directions. These geologic structures indicate WNW-ESE to E-W contraction with top-to-the-east simple shear at some time before the deposition of the Cenozoic sedimentary units. No major deformation has affected the rocks subsequently, apart from the formation of the fault-controlled Cenozoic basins.

  9. Lithostratigraphic and biostratigraphic evidence for brief and synchronous Early Mesozoic basalt eruption over the Maghreb (Northwest Africa)

    NASA Astrophysics Data System (ADS)

    Et-Touhami, M.; Et-Touhami, M.; Olsen, P. E.; Puffer, J.

    2001-05-01

    Previously very sparse biostratigraphic data suggested that the Early Mesozoic tholeiitic effusive and intrusive magmatism in the various basins of the Maghreb occurred over a long time (Ladinian-Hettangian). However, a detailed comparison of the stratigraphy underlying, interbedded with, and overlying the basalts in these basins shows not only remarkable similarities with each other, but also with sequences in the latest Triassic and earliest Jurassic of eastern North America. There, the sequences have been shown to be cyclical, controlled by Milankovitch-type climate cycles; the same seems to be true in at least part of the Maghreb. Thus, the Moroccan basins have cyclical sequences surrounding and interbedded with one or two basaltic units. In the Argana and Khemisset basins the Tr-J boundary is identified by palynology to be below the lowest basalt, and the remarkably close lithological similarity between the pre-basalt sequence in the other Moroccan basins and to the North American basins - especially the Fundy basin - suggests a tight correlation in time. Likewise, the strata above the lowest basalt in Morocco show a similar pattern to what is seen above the lowest basalt formation in eastern North America, as do the overlying sequences. Furthermore, geochemistry on basalts in the Argana, Bou Fekrane, Khemisset, and Iouawen basins indicate they are high-Ti quartz-normative tholeiites as are the Orange Mountain Basalt (Fundy basin) and the North Mountain Basalt (Newark basin). The remarkable lithostratigraphic similarity across the Maghreb of these strata suggest contemporaneous and synchronous eruption over a time span of less than 200 ky, based on Milankovitch calibration, and within a ~20 ky interval after the Triassic-Jurassic boundary. Differences with previous interpretations of the biostratigraphy can be rationalized as a result of: 1, an over-reliance on comparisons with northern European palynology; 2, over-interpretation of poorly preserved fossils

  10. Paleozoic and Mesozoic deformations in the central Sierra Nevada, California

    USGS Publications Warehouse

    Nokleberg, Warren J.; Kistler, Ronald Wayne

    1980-01-01

    Analysis of structural and stratigraphic data indicates that several periods of regional deformation, consisting of combined folding, faulting, cataclasis, and regional metamorphism, occurred throughout the central Sierra Nevada during Paleozoic and Mesozoic time. The oldest regional deformation occurred alono northward trends during the Devonian and Mississippian periods in most roof pendants containing lower Paleozoic metasedimentary rocks at the center and along the crest of the range. This deformation is expressed in some roof pendants by an angular unconformity separating older thrice-deformed from younger twice-deformed Paleozoic metasedimentary rocks. The first Mesozoic deformation, which consisted of uplift and erosion and was accompanied by the onset of Andean-type volcanism during the Permian and Triassic, is expressed by an angular unconformity in several roof pendants from the Saddlebag Lake to the Mount Morrison areas. This unconformity is defined by Permian and Triassic andesitic to rhyolitic metavolcanic rocks unconformably overlying more intensely deformed Pennsylvanian, Permian(?), and older metasedimentary rocks. A later regional deformation occurred during the Triassic along N. 20?_30? W. trends in Permian and Triassic metavolcanic rocks of the Saddlebag Lake and Mount Dana roof pendants, in upper Paleozoic rocks of the Pine Creek roof pendant, and in the Calaveras Formation of the western metamorphic belt; the roof pendants are crosscut by Upper Triassic granitic rocks of the Lee Vining intrusive epoch. A still later period of Early and Middle Jurassic regional deformation occurred along N. 30?-60? E. trends in upper Paleozoic rocks of the Calaveras Formation of the western metamorphic belt. A further period of deformation was the Late Jurassic Nevadan orogeny, which occurred along N. 20?_40? W. trends in Upper Jurassic rocks of the western metamorphic belt that are crosscut by Upper Jurassic granitic rocks of the Yosemite intrusive epoch

  11. Eclogite-facies metamorphism in impure marble from north Qaidam orogenic belt: Geodynamic implications for early Paleozoic continental-arc collision

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Xu, Rongke; Schertl, Hans-Peter; Zheng, Youye

    2018-06-01

    In the North Qaidam ultrahigh-pressure (UHP) metamorphic belt, impure marble and interbedded eclogite represent a particular sedimentary provenance and tectonic setting, which have important implications for a controversial problem - the dynamic evolution of early Paleozoic subduction-collision complexes. In this contribution, detailed field work, mineral chemistry, and whole-rock geochemistry are presented for impure marble to provide the first direct evidence for the recycling of carbonate sediments under ultrahigh-pressures during subduction and collision in the Yuka terrane, in the North Qaidam UHP metamorphic belt. According to conventional geothermobarometry, pre-peak subduction to 0.8-1.3 GPa/485-569 °C was followed by peak UHP metamorphism at 2.5-3.3 GPa/567-754 °C and cooling to amphibolite facies conditions at 0.6-0.7 GPa/571-589 °C. U-Pb dating of zircons from impure marble reveals a large group with ages ranging from 441 to 458 Ma (peak at 450 Ma), a smaller group ranging from 770 to 1000 Ma (peak at 780 Ma), and minor >1.8 Ga zircon aged ca. 430 Ma UHP metamorphism. The youngest detrital zircons suggest a maximum depositional age of ca. 442 Ma and a burial rate of ca. 1.0-1.1 cm/yr when combined with P-T conditions and UHP metamorphic age. The REE and trace element patterns of impure marble with positive Sr and U anomalies, negative high field strength elements (Nb, Ta, Zr, Hf, and Ti), and Ce anomalies imply that the marble had a marine limestone precursor. Impure marble intercalated with micaschist and eclogite was similar to limestone and siltstone protoliths deposited in continental fore-arc or arc setting with basic volcanic activity. Therefore, the Yuka terrane most likely evolved in a continental island arc setting during the Paleozoic. These data suggest that metasediments were derived from a mixture of Proterozoic continental crust and juvenile early Paleozoic oceanic and/or island arc crust. In addition, their protoliths were likely

  12. Palaeomagnetism of the Early Permian Mount Leyshon Intrusive Complex and Tuckers Igneous Complex, North Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Clark, D. A.; Lackie, M. A.

    2003-06-01

    This study provides reliable, precisely defined and well-dated Early Permian (286 +/- 6 Ma) palaeomagnetic poles for Australia from the Mount Leyshon Intrusive Complex (MLIC) and the Tuckers Igneous Complex (TIC). Both complexes are associated with prominent negative magnetic anomalies, indicating the presence of rocks carrying stable remanence of reverse polarity, with a Koenigsberger ratio greater than unity. The characteristic remanence carried by the intrusive phases and by locally remagnetized, contact-metamorphosed host rocks is always of reverse polarity, consistent with acquisition during the Permo-Carboniferous (Kiaman) Reverse Superchron. The corresponding palaeopoles confirm that Australia occupied high latitudes in the Early Permian. The pole positions are: MLIC: lat. = 43.2 °S, long. = 137.3 °E dp = 6.0°, dm = 6.4° Q= 6; TIC: lat. = 47.5 °S, long. = 143.0 °E, dp = 6.0°, dm = 6.6° Q= 6. Permian palaeomagnetic overprinting is detectable at considerable distances from the MLIC (2-3 km), well beyond the zone of visible alteration. The primary nature of the Early Permian palaeomagnetic signature is established by full baked contact/aureole tests at both localities. Other new data from Australia are consistent with the poles reported here. Comparison of the Australian, African and South American Apparent Polar Wander Paths (APWP) suggests that mean Permian and Triassic poles from West Gondwana, particularly from South America, are biased by remagnetization in the Jurassic-Cretaceous and that the Late Palaeozoic-Mesozoic APWP for Gondwana is best defined by Australian data. The Australian APWP exhibits substantial movement through the Mesozoic. Provided only that the time-averaged palaeofield was zonal, the Early Triassic palaeomagnetic data from Australia provide an important palaeogeographic constraint that the south geographic pole was within, or very close to, SE Australia around 240 Ma. The new Early Permian poles are apparently more consistent

  13. Variscan to Neogene thermal and exhumation history at the Moroccan passive continental margin assessed by low temperature thermochronology

    NASA Astrophysics Data System (ADS)

    Sehrt, M.; Glasmacher, U. A.; Stockli, D. F.; Kluth, O.; Jabour, H.

    2012-04-01

    In North Africa, a large amount of Mesozoic terrigenous sedimentary rocks are deposited in most of the basins along the continental margin indicating a major episode of erosion occurred during the rift and early post-rift period in the Central Atlantic. In the Tarfaya-Dakhla Basin, Morocco the sedimentary cover reaches thicknesses of up to 9000 m. The presence of high surface elevations in the Anti-Atlas mountain belt (2500 m) indicates a potential source area for the surrounding basins. The NE-SW oriented Anti-Atlas of Morocco is located at the northwestern fringe of the West African Craton and south of the High Atlas and represents the Phanerozoic foreland of the Late Paleozoic North African Variscides and the Cenozoic Atlas Belt. Variscan deformation affected most of Morocco. Paleozoic basins were folded and thrusted, with the major collision dated as late Devonian to Late Carboniferous. Zircon fission-track ages of 287 (±23) to 331 (±24) Ma confirmed the main exhumation referred to the Variscan folding, followed by rapid exhumation and the post-folding erosion. Currently, phases of uplift and exhumation in the Anti-Atlas during the Central Atlantic rifting and places where the associated erosion products are deposited are poorly constrained and there is little quantitative data available at present. The objective of the study is to determine the thermal and exhumation history of the Anti-Atlas and the connected Tarfaya-Dakhla Basin at the Moroccan passive continental margin. Besides zircon fission-track dating, apatite and zircon (U-Th-Sm)/He and apatite fission-track analyses and furthermore 2-D modelling with 'HeFTy' software has been carried out at Precambrian rocks of the Western Anti-Atlas and Cretaceous to Neogene sedimentary rocks from the Northern Tarfaya-Dakhla Basin. The apatite fission-track ages of 120 (±13) to 189 (±14) Ma in the Anti-Atlas and 176 (±20) to 216 (±18) Ma in the Tarfaya Basin indicate very obvious a Central Atlantic opening

  14. Preliminary digital geologic map of the Penokean (early Proterozoic) continental margin in northern Michigan and Wisconsin

    USGS Publications Warehouse

    Cannon, W.F.; Ottke, Doug

    1999-01-01

    The data on this CD consist of geographic information system (GIS) coverages and tabular data on the geology of Early Proterozoic and Archean rocks in part of the Early Proterozoic Penokean orogeny. The map emphasizes metasedimentary and metavolcanic rocks that were deposited along the southern margin of the Superior craton and were later deformed during continental collision at about 1850 Ma. The area includes the famous iron ranges of the south shore region of the Lake Superior district. Base maps, both as digital raster graphics (DRG) and digital line graphs (DLG) are also provided for the convenience of users. The map has been compiled from many individual studies, mostly by USGS researchers, completed during the past 50 years, including many detailed (1:24,000 scale) geologic maps. Data was compiled at 1:100,000 scale and preserves most of the details of source materials. This product is a preliminary release of the geologic map data bases during ongoing studies of the geology and metallogeny of the Penokean continental margin. Files are provided in three formats: Federal Spatial Data Transfer format (SDTS), Arc export format (.e00) files, and Arc coverages. All files can be accessed directly from the CD-ROM using either ARC/INFO 7.1.2 or later or Arc View 3.0 or later software. ESRI's Arc Explorer, a free GIS data viewer available at the web site: http://www.esri.com/software/arcexplorer/index.html also provides display and querying capability for these files.

  15. Location of deeply buried, offshore Mesozoic transform fault along the western margin of the Gulf of Mexico inferred from gravity and magnetic data

    NASA Astrophysics Data System (ADS)

    Nguyen, L. C.; Mann, P.; Bird, D. E.

    2013-12-01

    Several workers have proposed that a Jurassic age, 500-km-long, right-lateral transform fault along the western margin of the Gulf of Mexico, possibly extending southward and onshore for another 500 km onto the isthmus area of southern Mexico, was formed as the ocean basin opened. This proposed transform fault plays a critical role in the most widely accepted tectonic model for the Mesozoic opening of the Gulf of Mexico by a ~40 degree, CCW rotation of the Yucatan block about a pole near southern Florida. Previously proposed names for the fault include the Tamaulipas-Chiapas transform fault and the Western Main transform fault for the offshore fault and the Orizaba transform fault for the southern, onland continuation of the fault into southern Mexico. There are few direct geologic or geophysical observations on the location or characteristics of the proposed offshore transform because it is buried beneath an over 10-km-thick sedimentary wedge along the continental margin of eastern Mexico. To better define this offshore fault, we identify a 500-km-long, 40-km-wide gravity anomaly, concentric with, and located about 60-70 km off the eastern coast of Mexico. Two east-west 200/1200-km-long gravity models constructed to cross the anomaly at right angles are parallel to existing multi-channel seismic lines with age-correlated stratigraphy. Both gravity models reveal an abrupt crustal thickness change beneath the gravity anomaly: from 27 km to 12 km over a distance of 65 km in the southern profile, and from 23 km to 16 km over a distance of 30 km in northern profile. The linearity of the anomaly in map view combined with the abrupt change in thickness inferred from gravity modeling is consistent with the tectonic origin of a right-lateral transform fault separating continental rocks of Mexico from Mesozoic seafloor produced by the opening of the Gulf of Mexico. Magnetic profiles were analyzed using a Werner depth-to-magnetic source technique, coincident with the gravity

  16. Isotopic evidence for continental ice sheet in mid-latitude region in the supergreenhouse Early Cretaceous

    PubMed Central

    Yang, Wu-Bin; Niu, He-Cai; Sun, Wei-Dong; Shan, Qiang; Zheng, Yong-Fei; Li, Ning-Bo; Li, Cong-Ying; Arndt, Nicholas T.; Xu, Xing; Jiang, Yu-Hang; Yu, Xue-Yuan

    2013-01-01

    Cretaceous represents one of the hottest greenhouse periods in the Earth's history, but some recent studies suggest that small ice caps might be present in non-polar regions during certain periods in the Early Cretaceous. Here we report extremely negative δ18O values of −18.12‰ to −13.19‰ for early Aptian hydrothermal zircon from an A-type granite at Baerzhe in northeastern China. Given that A-type granite is anhydrous and that magmatic zircon of the Baerzhe granite has δ18O value close to mantle values, the extremely negative δ18O values for hydrothermal zircon are attributed to addition of meteoric water with extremely low δ18O, mostly likely transported by glaciers. Considering the paleoaltitude of the region, continental glaciation is suggested to occur in the early Aptian, indicating much larger temperature fluctuations than previously thought during the supergreenhouse Cretaceous. This may have impact on the evolution of major organism in the Jehol Group during this period. PMID:24061068

  17. Late Mesozoic deformations of the Verkhoyansk-Kolyma orogenic belt, Northeast Russia

    NASA Astrophysics Data System (ADS)

    Fridovsky, Valery

    2016-04-01

    The Verkhoyansk-Kolyma orogenic belt marks the boundary between the Kolyma-Omolon superterrane (microcontinent) and the submerged eastern margin of the North Asian craton. The orogenic system is remark able for its large number of economically viable gold deposits (Natalka, Pavlik, Rodionovskoe, Drazhnoe, Bazovskoe, Badran, Malo-Tarynskoe, etc.). The Verkhoyansk - Kolyma orogenic belt is subdivided into Kular-Nera and the Polousny-Debin terranes. The Kular-Nera terrane is mainly composed of the Upper Permian, Triassic, and Lower Jurassic black shales that are metamorphosed at lower greenschist facies conditions. The Charky-Indigirka and the Chai-Yureya faults separate the Kular-Nera from the Polousny-Debin terrane that is predominantly composed of the Jurassic flyschoi dturbidites. The deformation structure of the region evolved in association with several late Mesozoic tectonic events that took place in the north-eastern part ofthe Paleo-Pacific. In Late Jurassic-Early Cretaceous several generations of fold and thrust systems were formed due to frontal accretion of the Kolyma-Omolon superterrane to the eastern margin of the North Asian craton.Thrusting and folding was accompanied by granitic magmatism, metamorphic reworking of the Late Paleozoic and the Early Mesozoic sedimentary rocks, and formation of Au-Sn-W mineralization. Three stages of deformation related to frontal accretion can be distinguished. First stage D1 has developed in the north-eastern part of the Verkhoyansk - Kolyma orogenic belt. Early tight and isoclinal folds F1 and assosiated thrusts are characteristic of D1. Major thrusts, linear concentric folds F2 and cleavage were formed during D2. The main ore-controlling structures are thrust faults forming imbricate fan systems. Frontal and oblique ramps and systems of bedding and cross thrusts forming duplexes are common. It is notable that mineralized tectonized zones commonly develop along thrusts at the contacts of rocks of contrasting competence

  18. Molecular clocks indicate turnover and diversification of modern coleoid cephalopods during the Mesozoic Marine Revolution

    PubMed Central

    Fuchs, Dirk; Winkelmann, Inger E.; Gilbert, M. Thomas P.; Pankey, M. Sabrina; Ribeiro, Ângela M.; Kocot, Kevin M.; Halanych, Kenneth M.; Oakley, Todd H.; da Fonseca, Rute R.

    2017-01-01

    Coleoid cephalopod molluscs comprise squid, cuttlefish and octopuses, and represent nearly the entire diversity of modern cephalopods. Sophisticated adaptations such as the use of colour for camouflage and communication, jet propulsion and the ink sac highlight the unique nature of the group. Despite these striking adaptations, there are clear parallels in ecology between coleoids and bony fishes. The coleoid fossil record is limited, however, hindering confident analysis of the tempo and pattern of their evolution. Here we use a molecular dataset (180 genes, approx. 36 000 amino acids) of 26 cephalopod species to explore the phylogeny and timing of cephalopod evolution. We show that crown cephalopods diverged in the Silurian–Devonian, while crown coleoids had origins in the latest Palaeozoic. While the deep-sea vampire squid and dumbo octopuses have ancient origins extending to the Early Mesozoic Era, 242 ± 38 Ma, incirrate octopuses and the decabrachian coleoids (10-armed squid) diversified in the Jurassic Period. These divergence estimates highlight the modern diversity of coleoid cephalopods emerging in the Mesozoic Marine Revolution, a period that also witnessed the radiation of most ray-finned fish groups in addition to several other marine vertebrates. This suggests that that the origin of modern cephalopod biodiversity was contingent on ecological competition with marine vertebrates. PMID:28250188

  19. Mesozoic cyclostratigraphy, the 405-kyr orbital eccentricity metronome, and the Astronomical Time Scale (Invited)

    NASA Astrophysics Data System (ADS)

    Hinnov, L.; Ogg, J. G.

    2009-12-01

    Mesozoic cyclostratigraphy from around the world is being assessed to construct a continuous Astronomical Time Scale (ATS) based on Earth’s cyclic orbital parameters. The recognition of a prevalent sedimentary cycling with a ~400-kyr period associated with forcing by the stable 405-kyr orbital eccentricity variation is an important development. Numerous formations spanning 10 to 20 myr (and longer) intervals in the Cretaceous, Jurassic and Triassic clearly express this dominant cycle and provide a robust basis for 405-kyr-scale calibration of the ATS. This 405-kyr metronome will enable extension of the well-defined Cenozoic ATS for scaling of the past quarter-billion years of Earth history. This astronomical calibration has a resolution comparable to the 1% to 0.1% precision for radioisotope dating of Mesozoic ash beds, with the added benefit of providing continuous stratigraphic coverage between dated beds. Extended portions of the Mesozoic ATS have already provided new insights into long-standing geologic problems of seafloor spreading, tectonics, eustasy, and paleoclimate change. Ongoing work is focused on closing gaps in coverage and on collecting duplicate cyclostratigraphic records for the entire Mesozoic Era.

  20. How Continental Bank outsourced its "crown jewels.".

    PubMed

    Huber, R L

    1993-01-01

    No industry relies more on information than banking does, yet Continental, one of America's largest banks, outsources its information technology. Why? Because that's the best way to service the customers that form the core of the bank's business, says vice chairman Dick Huber. In the late 1970s and early 1980s, Continental participated heavily with Penn Square Bank in energy investments. When falling energy prices burst Penn Square's bubble in 1982, Continental was stuck with more than $1 billion in bad loans. Eight years later when Dick Huber came on board, Continental was working hard to restore its once solid reputation. Executives had made many tough decisions already, altering the bank's focus from retail to business banking and laying off thousands of employees. Yet management still needed to cut costs and improve services to stay afloat. Regulators, investors, and analysts were watching every step. Continental executives, eager to focus on the bank's core mission of serving business customers, decided to outsource one after another in-house service--from cafeteria services to information technology. While conventional wisdom holds that banks must retain complete internal control of IT, Continental bucked this argument when it entered into a ten-year, multimillion-dollar contract with Integrated Systems Solutions Corporation. Continental is already reaping benefits from outsourcing IT. Most important, Continental staffers today focus on their true core competencies: intimate knowledge of customers' needs and relationships with customers.

  1. Model of climate evolution based on continental drift and polar wandering

    NASA Technical Reports Server (NTRS)

    Donn, W. L.; Shaw, D. M.

    1977-01-01

    The thermodynamic meteorologic model of Adem is used to trace the evolution of climate from Triassic to present time by applying it to changing geography as described by continental drift and polar wandering. Results show that the gross changes of climate in the Northern Hemisphere can be fully explained by the strong cooling in high latitudes as continents moved poleward. High-latitude mean temperatures in the Northern Hemisphere dropped below the freezing point 10 to 15 m.y. ago, thereby accounting for the late Cenozoic glacial age. Computed meridional temperature gradients for the Northern Hemisphere steepened from 20 to 40 C over the 200-m.y. period, an effect caused primarily by the high-latitude temperature decrease. The primary result of the work is that the cooling that has occurred since the warm Mesozoic period and has culminated in glaciation is explainable wholly by terrestrial processes.

  2. Origin of a major cross-element zone: Moroccan Rif

    NASA Astrophysics Data System (ADS)

    Morley, C. K.

    1987-08-01

    Alpine age (Oligocene-Miocene) deformation in the western Mediterranean formed the Rif mountain belt of northern Morocco. A linear east-northeast-west-southwest trend of cross elements from Jebah (Mediterranean coast) to Arbaoua (near the Atlantic coast) extends through several thrust sheets in the western Rif. The cross elements are manifest as a lateral ramp, the northern limit of a large culmination, and they affect syntectonic turbidite sandstone distribution. Gravity anomalies indicate that the cross-element zone is coincident with a transition zone from normal thickness to thinner continental crust. It is suggested that an early Mesozoic strike-slip fault system related to rifting of North America from North Africa caused a strong east-northeast-west-southwest, basement block-fault trend to form on the normal thickness side of the thick-to-thin continental crustal transition zone. This trend later influenced the position of the Alpine age cross-element zone that traverses several different Mesozoic and Tertiary basins, inverted during the Alpine deformation.

  3. Field guide to the Mesozoic arc and accretionary complex of South-Central Alaska, Indian to Hatcher Pass

    USGS Publications Warehouse

    Karl, Susan M.; Oswald, P.J.; Hults, Chad P.

    2015-01-01

    This field trip traverses exposures of a multi-generation Mesozoic magmatic arc and subduction-accretion complex that had a complicated history of magmatic activity and experienced variations in composition and deformational style in response to changes in the tectonic environment. This Mesozoic arc formed at an unknown latitude to the south, was accreted to North America, and was subsequently transported along faults to its present location (Plafker and others, 1989; Hillhouse and Coe, 1994). Some of these faults are still active. Similar tectonic, igneous, and sedimentary processes to those that formed the Mesozoic arc complex persist today in southern Alaska, building on, and deforming the Mesozoic arc. The rocks we will see on this field trip provide insights on the three-dimensional composition of the modern arc, and the processes involved in the evolution of an arc and its companion accretionary complex.

  4. Late Cretaceous tectonothermal evolution of the southern Lhasa terrane, South Tibet: Consequence of a Mesozoic Andean-type orogeny

    NASA Astrophysics Data System (ADS)

    Dong, Xin; Zhang, Ze-ming; Klemd, Reiner; He, Zhen-yu; Tian, Zuo-lin

    2018-04-01

    The Lhasa terrane of the southern Tibetan Plateau participated in a Mesozoic Andean-type orogeny caused by the northward subduction of the Neo-Tethyan oceanic lithosphere. However, metamorphic rocks, which can unravel details of the geodynamic evolution, are rare and only exposed in the south-eastern part of the Lhasa terrane. Therefore, we conducted a detailed petrological, geochemical and U-Pb zircon geochronological study of the late Cretaceous metamorphic rocks and associated gabbros from the Nyemo inlier of the southern Lhasa terrane. The Nyemo metamorphic rocks including gneisses, schists, marbles and calc-silicate rocks, experienced peak amphibolite-facies contact metamorphism under P-T conditions of 3.5-4.0 kbar and 642-657 °C with a very high geothermal gradient of 45-50 °C/km, revealing a distinct deflection from the steady-state geotherm during low-pressure metamorphism. Inherited magmatic zircon cores from the metamorphic rocks yielded protolith ages of 197-194 Ma, while overgrowth zircon rims yielded metamorphic ages of ca. 86 Ma. Whole-rock chemistry and zircon Hf isotopes suggest that the protoliths of the gneisses and schists are andesites and tuffs of the early Jurassic Sangri Group, which were derived from a depleted mantle source of a continental arc affinity. The coeval intimately-associated gabbro (ca. 86 Ma) crystallized under P-T conditions of 3.5-5.3 kbar and 914-970 °C, supplying the heat flux high enough to cause the contact metamorphism of the Sangri Group rock types. We propose that the intrusion of the gabbro and a simultaneous pressure increase of up to 4.0 kbar, which is related to crustal thickening due to crustal overthrusting and the intrusion of mafic material, resulted in the late Cretaceous metamorphism of the early Jurassic Sangri Group during an Andean-type orogeny. Furthermore the Nyemo metamorphic rocks, which have previously been considered to represent slivers of the Precambrian metamorphic basement of the Lhasa terrane

  5. Mesozoic Bivalvia from Clerke and Mermaid Canyons, northwest Australian continental slope

    NASA Astrophysics Data System (ADS)

    Grant-Mackie, J. A.

    Four sets of rock samples from two sites off the northwest Australian shelf in 3625-4480 m of water contain macrofaunas, mainly bivalves, of warm shallow-water origin. Mermaid Canyon (16 deg 19 min S, 118 deg 23 min E) provided many samples of oolitic calcarenite containing Pseudopecten (Pseudopecten) dugong n.sp., indicating an Early Jurassic age and Tethyan relationship. Three hand-specimens from the ridge forming the western edge of Clerke Canyon (16 deg 29 min S, 118 deg 30 min E) yielded a Norian coral-?Lima-oyster assemblage and the Norian-Rhaetian bivalve Palaeocardita aff. globiformis (Boettger). The latter shows relationship with south-east Asian (Indonesia-Vietnam-south China) forms.

  6. Relict basin closure accommodates continental convergence with minimal crustal shortening or deceleration of plate motion as inferred from detrital zircon provenance in the Caucasus

    NASA Astrophysics Data System (ADS)

    Cowgill, E.; Forte, A. M.; Niemi, N. A.; Avdeev, B.; Tye, A. R.; Trexler, C. C.; Javakhishvili, Z.; Elashvili, M.; Godoladze, T.

    2016-12-01

    Comparison of plate convergence with the timing and magnitude of upper-crustal shortening in collisional orogens indicates both shortening deficits (200-1700 km) and significant (30-40%) plate deceleration during collision, the cause(s) for which remain debated. The Greater Caucasus Mountains, which result from post-collisional Cenozoic closure of a relict Mesozoic back-arc basin on the northern margin of the Arabia-Eurasia collision zone, help reconcile these debates. Here we use U-Pb detrital zircon provenance data and the regional geology of the Caucasus to investigate the width of the now-consumed Mesozoic back-arc basin and its closure history. The provenance data record distinct southern and northern provenance domains that persisted until at least the Miocene; maximum basin width was likely 350-400 km. We propose that closure of the back-arc basin initiated at 35 Ma, coincident with initial (soft) Arabia-Eurasia collision along the Bitlis suture, eventually leading to 5 Ma (hard) collision between the Lesser Caucasus arc and the Scythian platform to form the Greater Caucasus Mountains. Final basin closure triggered deceleration of plate convergence and tectonic reorganization throughout the collision. Post-collisional subduction of such small (500-1000 km wide) relict ocean basins can account for both shortening deficits and delays in plate deceleration by accommodating convergence via subduction/underthrusting, although such shortening is easily missed if it occurs along structures hidden within flysch/slate belts. Relict-basin closure is likely typical early in continental collision at the end of a Wilson cycle due to the irregularity of colliding margins and extensive back-arc basin development during closure of long-lived ocean basins.

  7. Preliminary Thermo-Chronometric and Paleo-Magnetic Results from the Western Margin of The Kırşehir Block: Implications for the Timing of Continental Collisions Occurred Along Neo-Tethyan Suture Zones (Central Anatolia, Turkey)

    NASA Astrophysics Data System (ADS)

    Gülyüz, Erhan; Özkaptan, Murat; Langereis, Cor G.; Kaymakcı, Nuretdin

    2017-04-01

    Closures of Paleo- (largely Paleozoic) and Neo-Tethys (largely Mesozoic) Oceans developed between Europe, Africa and Arabia are the main driving mechanisms behind the post-Triassic tectonics, magmatism and metamorphism occurred in Anatolia. Although various scenarios have been suggested for the timing and characteristics of the subduction systems, it is largely accepted that these blocks are progressively collided and amalgamated along the northern (İzmir-Ankara-Erzincan suture zone; IAESZ) and the southern (Bitlis-Zagros suture zone; BZSZ) branches of Neo-Tethys Ocean. The geographic positions of these suture zones in Anatolia are marked by imbricated stacks of largely metamorphosed remnants of the Paleo- and Neo-Tethys Oceans. In addition to this tectonic frame, the existence of another suture zone within the northern branch of the Neo-Tethys separating the Kırşehir Block, a triangular (200km*200km*200km) continental domain represented by mainly high-pressure (HP) meta-sedimentary rocks, from the Taurides, is proposed and named as Intra-Tauride Suture Zone (ITSZ). Although traces of the Neo-Tethyan closure and continental collisions in the Central Anatolia are recorded (1) in sedimentary basins as fold and thrust belt developments (as northern Taurides fold and thrust belt along IAESZ and central Taurides fold and thrust belt along ITSZ), (2) on metamorphic rocks with Late Cretaceous to Late Paleocene peak metamorphism, and (3) on magmatic rocks with Late Cretaceous - Paleocene arc-related intrusions and post-Paleocene post-collisional magmatism, timing of these continental collisions are discussed in limited studies and furthermore they indicate a large time span (post-Paleocene to Miocene) for the collisions. This study aims to date continental collisions occurred in Central Anatolia qualitatively. In this regard, low-temperature thermo-chronometric and paleo-magnetic studies were conducted on the sedimentary units cropped-out along the western and north

  8. Three-Dimensional Seismic Imaging of Eastern Russia

    DTIC Science & Technology

    2008-09-01

    small blocks or microplates within the ancient suture and present-day plate boundary zones. We assembled catalog picks from ~13,000 events and ~100... oceanic fragments that have been disrupted, deformed, and juxtaposed. The Kolyma-Omolon superterrane consists of a number of cratonal (Omolon...Prikolyma), continental margin (Omulevka), island arc (Alazeya, Khetachan), and oceanic terranes of diverse ages that amalgamated in the Early Mesozoic

  9. Astronomically forced paleoclimate change from middle Eocene to early Oligocene: continental conditions in central China compared with the global marine isotope record

    NASA Astrophysics Data System (ADS)

    Huang, C.; Hinnov, L. A.

    2010-12-01

    The early Eocene climatic optimum ended with a long interval of global cooling that began in the early Middle Eocene and ended at the Eocene-Oligocene transition. During this long-term cooling, a series of short-term warming reversals occurred in the marine realm. Here, we investigate corresponding continental climate conditions as revealed in the Qianjiang Formation of the Jianghan Basin in central China, which consists of more than 4000 m of saline lake sediments. The Qianjiang Formation includes, in its deepest sections, a halite-rich rhythmic sediment succession with dark mudstone, brownish-white siltstone and sandstone, and greyish-white halite. Alternating fresh water (humid/cool)—saline water (dry/hot) deposits reflect climate cycles driven by orbital forcing. High-resolution gamma ray (GR) logging from the basin center captures these pronounced lithological rhythms throughout the formation. Several halite-rich intervals are interpreted as short-term warming events within the middle Eocene to early Oligocene, and could be expressions of coeval warming events in the global marine oxygen isotope record, for example, the middle Eocene climate optimum (MECO) event around 41 Ma. The Eocene-Oligocene boundary is distinguished by a radical change from halite-rich to clastic sediments, indicating a dramatic climate change from warm to cool conditions. Power spectral analysis of the GR series indicates strong short (~100 kyr) eccentricity cycling during the warm/hot episodes. Amplitude modulation of the short eccentricity in the GR series occurs with a strong 405 kyr periodicity. This cycling is calibrated to the La2004 orbital eccentricity model. A climate reversal occurs at 36.5 Ma within the long-term marine cooling trend following MECO, which is reflected also in the Qianjiang GR series, with the latter indicating several brief warm/dry reversals within the trend. A ~2.6 Myr halite-rich warm interval occurs in the latest Eocene in the continental record; both

  10. Continental emergence and growth on a cooling earth

    NASA Astrophysics Data System (ADS)

    Vlaar, N. J.

    2000-07-01

    Isostasy considerations are connected to a 1-D model of mantle differentiation due to pressure release partial melting to obtain a model for the evolution of the relative sea level with respect to the continent during the earth secular cooling. In this context, a new mechanism is derived for the selective exhumation of exposed ancient cratons. The model results in a quantitative scenario for sea-level fall due to the changing thicknesses of the oceanic basaltic crust and its harzburgite residual layer as a function of falling mantle temperature. It is also shown that the buoyancy of the harzburgite root of a stabilized continental craton has an important effect on sea-level and on the isostatic readjustment and exhumation of exposed continental surface during the earth's secular cooling. The model does not depend on the usual assumption of constant continental freeboard and crustal thickness and its application is not restricted to the post-Archaean. It predicts large-scale continental emergence near the end of the Archaean and the early Proterozoic. This provides an explanation for reported late Archaean emergence and the subsequent formation of late Archaean cratonic platforms and early Proterozoic sedimentary basins. For a period of secular cooling of 3.8 Ga, corresponding to the length of the geological record, the model predicts a fall of the ocean floor of some 4 km or more. For a constant ocean depth, this implies a sea-level fall of the same magnitude. A formula is derived that allows for an increasing ocean depth due to either the changing ratio of continental with respect to oceanic area, or to a possible increase of the oceanic volume during the geological history. Increasing ocean depth results in a later emergence of submarine ancient geological formations compared to the case when ocean depth is constant. Selective exhumation is studied for the case of constant ocean depth. It is shown that for this case, early exposed continental crust can be exhumed

  11. The Miocene mammal Necrolestes demonstrates the survival of a Mesozoic nontherian lineage into the late Cenozoic of South America

    PubMed Central

    Rougier, Guillermo W.; Wible, John R.; Beck, Robin M. D.; Apesteguía, Sebastian

    2012-01-01

    The early Miocene mammal Necrolestes patagonensis from Patagonia, Argentina, was described in 1891 as the only known extinct placental “insectivore” from South America (SA). Since then, and despite the discovery of additional well-preserved material, the systematic status of Necrolestes has remained in flux, with earlier studies leaning toward placental affinities and more recent ones endorsing either therian or specifically metatherian relationships. We have further prepared the best-preserved specimens of Necrolestes and compared them with newly discovered nontribosphenic Mesozoic mammals from Argentina; based on this, we conclude that Necrolestes is related neither to marsupials nor placentals but is a late-surviving member of the recently recognized nontherian clade Meridiolestida, which is currently known only from SA. This conclusion is supported by a morphological phylogenetic analysis that includes a broad sampling of therian and nontherian taxa and that places Necrolestes within Meridiolestida. Thus, Necrolestes is a remnant of the highly endemic Mesozoic fauna of nontribosphenic mammals in SA and extends the known record of meridiolestidans by almost 45 million years. Together with other likely relictual mammals from earlier in the Cenozoic of SA and Antarctica, Necrolestes demonstrates the ecological diversity of mammals and the mosaic pattern of fauna replacement in SA during the Cenozoic. In contrast to northern continents, the Cenozoic faunal history of SA was characterized by a long period of interaction between endemic mammalian lineages of Mesozoic origin and metatherian and eutherian lineages that probably dispersed to SA during the latest Cretaceous or earliest Paleocene. PMID:23169652

  12. Porphyry deposits of the Canadian Cordillera

    USGS Publications Warehouse

    McMillan, W.J.; Thompson, J.F.H.; Hart, C.J.R.; Johnston, S.T.

    1996-01-01

    Porphyry deposits are intrusion-related, large tonnage low grade mineral deposits with metal assemblages that may include all or some of copper, molybdenum, gold and silver. The genesis of these deposits is related to the emplacement of intermediate to felsic, hypabyssal, generally porphyritic intrusions that are commonly formed at convergent plate margins. Porphyry deposits of the Canadian Cordillera occur in association with two distinctive intrusive suites: calc-alkalic and alkalic. In the Canadian Cordillera, these deposits formed during two separate time periods: Late Triassic to Middle Jurassic (early Mesozoic), and Late Cretaceous to Eocene (Mesozoic-Cenozoic). Deposits of the early Mesozoic period occur in at least three different arc terranes (Wrangellia, Stikinia and Quesnellia) with a single deposit occurring in the oceanic assemblage of the Cache Creek terrane. These terranes were located outboard from continental North America during formation of most of their contained early Mesozoic porphyry deposits. Some of the deposits of this early period may have been emplaced during terrane collisions. Metal assemblages in deposits of the calc-alkalic suite include Mo-Cu (Brenda), Cu-Mo (Highland Valley, Gibraltar), Cu-Mo-Au-Ag (Island Copper, Schaft Creek) and Cu-Au (Kemess, Kerr).The alkalic suite deposits are characterized by a Cu-Au assemblage (Copper Mountain, Afton-Ajax, Mt. Milligan, Mount Polley, Galore Creek). Although silver is recovered from calc-alkalic and alkalic porphyry copper mining operations, silver data are seldom included in the published reserve figures. Those available are in the range of 1-2 grams per tonne (g??t-1). Alkalic suite deposits are restricted to the early Mesozoic and display distinctive petrology, alteration and mineralization that suggest a similar tectonic setting for both Quesnellia and Stikinia in Early Jurassic time. The younger deposits, late Mesozoic to Cenozoic in age, formed in an intracontinental setting, after the

  13. Mesozoic evolution of the Amu Darya basin

    NASA Astrophysics Data System (ADS)

    Brunet, Marie-Françoise; Ershov, Andrey; Korotaev, Maxim; Mordvintsev, Dmitriy; Barrier, Eric; Sidorova, Irina

    2014-05-01

    This study, granted by the Darius Programme, aims at proposing a model of tectono-stratigraphic evolution of the Amu Darya basin since the Late Palaeozoic and to understand the relationship with the nearby basins. The Amu Darya basin, as its close eastern neighbour, the Afghan-Tajik basin, lies on the Turan platform, after the closure of the Turkestan Ocean during the Late Paleozoic. These two basins, spread on mainly lowlands of Turkmenistan, southwest Uzbekistan, Tajikistan, and northern Afghanistan, are separated from one another by the South-Western Gissar meganticline, where series of the northern Amu Darya margin are outcropping. The evolution is closely controlled by several periods of crustal thinning (post-collision rifting and back-arc extension), with some marine incursions, coming in between accretions of continental blocks and collisions that succeeded from the Late Triassic-Early Jurassic (Eo-Cimmerian orogeny) to the Cenozoic times. These orogenies controlled the deposition of thick clastics sequences, and the collision of the Indian Plate with Eurasia strongly deformed the sedimentary cover of the Afghan-Tajik basin. The more than 7 km thick Meso-Cenozoic sedimentary succession of the Amu Darya basin, lies on a complex system of rifts and blocks. Their orientation and age (late Permian, Triassic?) are not well known because of deep burial. The north-eastern margin, with the Bukhara (upper margin) and Chardzhou steps, is NW oriented, parallel to the Paleozoic Turkestan suture. The orientation bends to W-E, in the part of the Gissar situated to the North of the Afghan-Tajik basin. This EW trending orientation prevails also in the south(-eastern) margin of the basin (series of North Afghanistan highs) and in the Murgab depression, the south-eastern deepest portion of the Amu Darya basin. It is in this area and in the eastern part of the Amu Darya basin that the Jurassic as well as the lower Cretaceous sediments are the thickest. The south-western part

  14. Late Early Permian continental ichnofauna from Lake Kemp, north-central Texas, USA

    USGS Publications Warehouse

    Lucas, S.G.; Voigt, S.; Lerner, A.J.; Nelson, W.J.

    2011-01-01

    Continental trace fossils of Early Permian age are well known in the western United States from Wolfcampian (~. Asselian to Artinskian) strata, but few examples are known from Leonardian (~. Kungurian) deposits. A substantial ichnofauna from strata of the lower part of the Clear Fork Formation at Lake Kemp, Baylor County, Texas, augments the meager North American record of Leonardian continental trace fossil assemblages. Ichnofossils at Lake Kemp occur in the informally-named Craddock dolomite member of the Clear Fork Formation, which is 12-15. m above the local base of the Clear Fork. The trace-bearing stratum is an up-to-0.3. m thick, laminated to flaser-bedded, dolomitic siltstone that also contains mud cracks, raindrop impressions, microbially induced mat structures, and some land-plant impressions. We interpret the Craddock dolomite member as the feather-edge of a marine transgressive carbonate deposit of an irregular coastline marked by shallow bays or estuaries on the eastern shelf of the Midland basin, and the trace-fossil-bearing stratum at Lake Kemp is an unchannelized flow deposit on a muddy coastal plain. The fossil site at Lake Kemp yields a low to moderately diverse fauna of invertebrate and vertebrate traces. A sparse invertebrate ichnofauna consists of arthropod feeding and locomotion traces assigned to Walpia cf. W. hermitensis White, 1929 and Diplichnites gouldi Gevers in Gevers et al., 1971. Tetrapod footprints are most common and assigned to Batrachichnus salamandroides (Geinitz, 1861), cf. Amphisauropus kablikae (Geinitz and Deichm??ller, 1882), and Dromopus lacertoides (Geinitz, 1861), which represent small temnospondyl, seymouriamorph, and basal sauropsid trackmakers. Both the traces and sedimentary features of the fossil horizon indicate a freshwater setting at the time of track formation, and the trace assemblage represents the Scoyenia ichnofacies and the Batrachichnus ichnofacies in an overbank environment with sheet flooding and shallow

  15. Paleomagnetic tests for tectonic reconstructions of the Late Jurassic-Early Cretaceous Woyla Group, Sumatra

    NASA Astrophysics Data System (ADS)

    Advokaat, Eldert; Bongers, Mayke; van Hinsbergen, Douwe; Rudyawan, Alfend; Marshal, Edo

    2017-04-01

    SE Asia consists of multiple continental blocks, volcanic arcs and suture zones representing remnants of closing ocean basins. The core of this mainland is called Sundaland, and was formed by accretion of continental and arc fragments during the Paleozoic and Mesozoic. The former positions of these blocks are still uncertain but reconstructions based on tectonostratigraphic, palaeobiogeographic, geological and palaeomagnetic studies indicate the continental terranes separated from the eastern margin of Gondwana. During the mid-Cretaceous, more continental and arc fragments accreted to Sundaland, including the intra-oceanic Woyla Arc now exposed on Sumatra. These continental fragments were derived from Australia, but the former position of the Woyla Arc is unconstrained. Interpretations on the former position of the Woyla Arc fall in two end-member groups. The first group interprets the Woyla Arc to be separated from West Sumatra by a small back-arc basin. This back arc basin opened in the Late Jurassic, and closed mid-Cretaceous, when the Woyla Arc collided with West Sumatra. The other group interprets the Woyla Arc to be derived from Gondwana, at a position close to the northern margin of Greater India in the Late Jurassic. Subsequently the Woyla Arc moved northwards and collided with West Sumatra in the mid-Cretaceous. Since these scenarios predict very different plate kinematic evolutions for the Neotethyan realm, we here aim to place paleomagnetic constraints on paleolatitudinal evolution of the Woyla Arc. The Woyla Arc consists mainly of basaltic to andesitic volcanics and dykes, and volcaniclastic shales and sandstones. Associated limestones with volcanic debris are interpreted as fringing reefs. This assemblage is interpreted as remnants of an Early Cretaceous intra-oceanic arc. West Sumatra exposes granites, surrounded by quartz sandstones, shales and volcanic tuffs. These sediments are in part metamorphosed. This assemblage is interpreted as a Jurassic-Early

  16. Paleogeographic constraints on continental-scale source-to-sink systems: Northern South America and its Atlantic margins

    NASA Astrophysics Data System (ADS)

    Bajolet, Flora; Chardon, Dominique; Rouby, Delphine; Dall'Asta, Massimo; Roig, Jean-Yves; Loparev, Artiom; Coueffe, Renaud

    2017-04-01

    Our work aims at setting the evolving boundary conditions of erosion and sediments transfer, transit, and onshore-offshore accumulations on northern South America and along its Atlantic margins. Since the Early Mesozoic, the source-to-sink system evolved under the interplay of four main processes, which are (i) volcanism and arc building along the proto-Andes, (ii) long-term dynamics of the Amazon incratonic basin, (iii) rifting, relaxation and rejuvenation of the Atlantic margins and (iv) building of the Andes. We compiled information available from geological maps and the literature regarding tectonics, plate kinematics, magmatism, stratigraphy, sedimentology (including paleoenvironments and currents) and thermochronology to produce a series of paleogeographic maps showing the tectonic and kinematic framework of continental areas under erosion (sources), by-pass and accumulation (sinks) over the Amazonian craton, its adjacent regions and along its Atlantic margins. The maps also allow assessing the relative impact of (i) ongoing Pacific subduction, (ii) Atlantic rifting and its aftermath, and (iii) Atlantic slab retreat from under the Caribbean domain on the distribution and activity of onshore/offshore sedimentary basins. Stratigraphic and thermochronology data are also used to assess denudation / vertical motions due to sediment transfers and lithosphere-asthenosphere interactions. This study ultimately aims at linking the sediment routing system to long-wavelength deformation of northern South America under the influence of mountain building, intracratonic geodynamics, divergent margin systems and mantle dynamics.

  17. Stratigraphy of Atlantic coastal margin of United States north of Cape Hatteras; brief survey

    USGS Publications Warehouse

    Perry, W.J.; Minard, J.P.; Weed, E.G.A.; Robbins, E.I.; Rhodehamel, E.C.

    1975-01-01

    A synthesis of studies of sea-floor outcrops of the sedimentary wedge beneath the northeastern United States continental shelf and slope and a reassessment of coastal plain Mesozoic stratigraphy, particularly of the coastal margin, provide insight for estimating the oil and gas potential and provide geologic control for marine seismic investigations of the Atlantic continental margin. The oldest strata known to crop out on the continental slope are late Campanian in age. The Cretaceous-Tertiary contact along the slope ranges from a water depth of 0.6 to 1.5 km south of Georges Bank to 1.8 km in Hudson Canyon. Few samples are available from Tertiary and Late Cretaceous outcrops along the slope. Sediments of the Potomac Group, chiefly of Early Cretaceous age, constitute a major deltaic sequence in the emerged coastal plain. This thick sequence lies under coastal Virginia, Maryland, Delaware, southeastern New Jersey, and the adjacent continental shelf. Marine sands associated with this deltaic sequence may be present seaward under the outer continental shelf. South of the Norfolk arch, under coastal North Carolina, carbonate rocks interfinger with Lower Cretaceous clastic strata. From all available data, Mesozoic correlations in coastal wells between coastal Virginia and Long Island have been revised. The Upper-Lower Cretaceous boundary is placed at the transition between Albian and Cenomanian floras. Potential hydrocarbon source beds are present along the coast in the subsurface sediments of Cretaceous age. Potential reservoir sandstones are abundant in this sequence.

  18. Reconstructing Rodinia by Fitting Neoproterozoic Continental Margins

    USGS Publications Warehouse

    Stewart, John H.

    2009-01-01

    extensional in origin, supports recognition of the Neoproterozoic fragmentation pattern of Rodinia and outlines the major continental masses that, prior to the breakup, formed the supercontinent. Using this pattern, Rodinia can be assembled by fitting the pieces together. Evidence for Neoproterozoic margins is fragmentary. The most apparent margins are marked by miogeoclinal deposits (passive-margin deposits). The margins can also be outlined by the distribution of continental-margin magmatic-arc rocks, by juvenile ocean-floor rocks, or by the presence of continent-ward extending aulacogens. Most of the continental margins described here are Neoproterozoic, and some had an older history suggesting that they were major, long-lived lithospheric flaws. In particular, the western margin of North America appears to have existed for at least 1,470 Ma and to have been reactivated many times in the Neoproterozoic and Phanerozoic. The inheritance of trends from the Mesoproterozoic by the Neoproterozoic is particularly evident along the eastern United States, where a similarity of Mesoproterozoic (Grenville) and Neoproterozoic trends, as well as Paleozoic or Mesozoic trends, is evident. The model of Rodinia presented here is based on both geologic and paleomagnetic information. Geologic evidence is based on the distribution and shape of Neoproterozoic continents and on assembling these continents so as to match the shape, history, and scale of adjoining margins. The proposed model places the Laurasian continents?Baltica, Greenland, and Laurentia?west of the South American continents (Amazonia, Rio de La Plata, and Sa? Francisco). This assembly is indicated by conjugate pairs of Grenville-age rocks on the east side of Laurentia and on the west side of South America. In the model, predominantly late Neoproterozoic magmatic-arc rocks follow the trend of the Grenville rocks. The boundary between South America and Africa is interpreted as the site of a Wilson cycle

  19. Mesozoic Deformation and Its Geological Significance in the Southern Margin of the South China Sea

    NASA Astrophysics Data System (ADS)

    Zhu, Rongwei; Liu, Hailing; Yao, Yongjian; Wang, Yin

    2018-05-01

    The pre-Eocene history of the region around the present South China Sea is not well known. New multi-channel seismic profiles provide valuable insights into the probable Mesozoic history of this region. Detailed structural and stratigraphic interpretations of the multi-channel seismic profiles, calibrated with relevant drilling and dredging data, show major Mesozoic structural features. A structural restoration was done to remove the Cenozoic tectonic influence and calculate the Mesozoic tectonic compression ratios. The results indicate that two groups of compressive stress with diametrically opposite orientations, S(S)E-N(N)W and N(N)W-S(S)E, were active during the Mesozoic. The compression ratio values gradually decrease from north to south and from west to east in each stress orientation. The phenomena may be related to the opening of the proto-South China Sea (then located in south of the Nansha block) and the rate at which the Nansha block drifted northward in the late Jurassic to late Cretaceous. The Nansha block drifted northward until it collided and sutured with the southern China margin. The opening of the present South China Sea may be related to this suture zone, which was a tectonic zone of weakness.

  20. Tectonostratigraphy of the Passive Continental Margin Offshore Indus Pakistan

    NASA Astrophysics Data System (ADS)

    Aslam, K.; Khan, M.; Liu, Y.; Farid, A.

    2017-12-01

    The tectonic evolution and structural complexities are poorly understood in the passive continental margin of the Offshore Indus of Pakistan. In the present study, an attempt has been made to interpret the structural trends and seismic stratigraphic framework in relation to the tectonics of the region. Seismic reflection data revealed tectonically controlled, distinct episodes of normal faulting representing rifting at different ages and transpression in the Late Eocene time. This transpression has resulted in the reactivation of the Pre-Cambrian basement structures. The movement of these basement structures has considerably affected the younger sedimentary succession resulting in push up structures resembling anticlines. The structural growth of the push-up structures was computed. The most remarkable tectonic setting in the region is represented by the normal faulting and by the basement uplift which divides the rifting and transpression stages. Ten mappable seismic sequences have been identified on the seismic records. A Jurassic aged paleo-shelf has also been identified on all regional seismic profiles which is indicative of Indian-African Plates separation during the Jurassic time. Furthermore, the backstripping technique was applied which has been proved to be a powerful technique to quantify subsidence/uplift history of rift-type passive continental margins. The back strip curves suggest that transition from an extensional rifted margin to transpression occurred during Eocene time (50-30 Ma). The backstripping curves show uplift had happened in the area. We infer that the uplift has occurred due to the movement of basement structures by the transpression movements of Arabian and Indian Plates. The present study suggests that the structural styles and stratigraphy of the Offshore Indus Pakistan were significantly affected by the tectonic activities during the separation of Gondwanaland in the Mesozoic and northward movement of the Indian Plate, post

  1. Mesozoic carbonate-siliciclastic platform to basin systems of a South Tethyan margin (Egypt, East Mediterranean)

    NASA Astrophysics Data System (ADS)

    Tassy, Aurélie; Crouzy, Emmanuel; Gorini, Christian; Rubino, Jean-Loup

    2015-04-01

    The Mesozoïc Egyptian margin is the south margin of a remnant of the Neo-Tethys Ocean, at the African northern plate boundary. East Mediterranean basin developed during the late Triassic-Early Jurassic rifting with a NW-SE opening direction (Frizon de Lamotte et al., 2011). During Mesozoïc, Egypt margin was a transform margin with a NW-SE orientation of transform faults. In the Eastern Mediterranean basin, Mesozoïc margins are characterized by mixed carbonate-siliciclastics platforms where subsidence and eustacy are the main parameters controlling the facies distribution and geometries of the platform-to-basin transition. Geometries and facies on the platform-slope-basin system, today well constrained on the Levant area, where still poorly known on the Egyptian margin. Geometries and stratigraphic architecture of the Egyptian margin are revealed, thanks to a regional seismic and well data-base provided by an industrial-academic group (GRI, Total). The objective is to understand the sismostratigraphic architecture of the platform-slope-basin system in a key area from Western Desert to Nile delta and Levant margin. Mapping of the top Jurassic and top Cretaceous show seismic geomorphology of the margin, with the cartography of the hinge line from Western Desert to Sinaï. During the Jurassic, carbonate platform show a prograding profile and a distally thickening of the external platform, non-abrupt slope profiles, and palaeovalleys incisions. Since the Cretaceous, the aggrading and retrograding mixed carbonate-siliciclastic platform show an alternation of steep NW-SE oblique segments and distally steepened segments. These structures of the platform edge are strongly controlled by the inherited tethyan transform directions. Along the hinge line, embayments are interpreted as megaslides. The basin infilling is characterised by an alternation of chaotic seismic facies and high amplitude reflectors onlaping the paleoslopes. MTC deposits can mobilize thick sedimentary

  2. Temporal and Spatial Scales of Sub-Continental Mantle Convection: Comparison of Modern and Geological Observations of Dynamic Support

    NASA Astrophysics Data System (ADS)

    Jones, S. M.; Lovell, B.; Crosby, A. G.

    2011-12-01

    The topographies of Africa and Antarctica form patterns of interlocking swells. The admittance between swell topography and free-air gravity indicates that these swells are dynamically supported by mantle convection, with swell diameters of 1850±450 km and full heights between 800 and 1800 m. The implication is that mantle convection not only supports swells surrounding hotspots but also influences topography across the entire surface areas of Africa and Antarctica. Topographic swells and associated gravity anomalies with diameters over 1000 km are observed on other continents and throughout the oceans. Numerical models support the idea that dynamically supported swell topography is a worldwide phenomenon. We investigate whether dynamically supported swells are also observed throughout the geological record, focussing on intensively studied Mesozoic- Cenozoic sedimentary rocks around Britain and Ireland. Since 200 Ma, this region was affected by three dynamically supported swells that peaked during the Middle Jurassic, Early Cretaceous and Eocene (c. 175, 146 and 56 Ma), each several thousand kilometres in diameter, and the region now lies on the edge of the modern swell centred on Iceland. The diameters and maximum heights of the Mesozoic British swells and the modern African and Antarctic swells are similar. The ancient British swells grew in 5--10 Myr and decayed over 20--30 Myr, suggesting vertical motion rates comparable to those estimated from geomorphological studies of Africa. Igneous production rate and swell height are not correlated in the modern and the geological records. Vertical motions of Britain and Ireland, a typical piece of continental lithosphere far from a destructive plate boundary, have been demonstrably affected by convective support for over half of the past 200 Ma period. Mantle convection should be considered as a common control on regional sea-level at time periods from 10s down to 1 Myr or less, and with vertical motion rates in the

  3. Recycling of Amazonian detrital zircons in the Mixteco terrane, southern Mexico: Paleogeographic implications during Jurassic-Early Cretaceous and Paleogene times

    NASA Astrophysics Data System (ADS)

    Silva-Romo, Gilberto; Mendoza-Rosales, Claudia Cristina; Campos-Madrigal, Emiliano; Morales-Yáñez, Axél; de la Torre-González, Alam Israel; Nápoles-Valenzuela, Juan Ivan

    2018-04-01

    In the northeastern Mixteco terrane of southern Mexico, in the Ixcaquixtla-Atzumba region, the recycling of Amazonian detrital zircons records the paleogeography during the Mesozoic period in the context of the breakup of Pangea, a phenomenon that disarticulated the Sanozama-La Mora paleo-river. The clastic units of southern Mexico in the Ayuquila, Otlaltepec and Zapotitlán Mesozoic basins, as well as in the Atzumba Cenozoic basin, are characterized by detrital zircon contents with ages specific to the Amazonian craton, ranging between 3040 and 1278 Ma. The presence of zircons of Amazonian affinity suggests a provenance by recycling from carrier units such as the La Mora Formation or the Ayú Complex. In the area, the Ayú and Acatlán complexes form the Cosoltepec block, a paleogeographic element that during Early Cretaceous time acted as the divide between the slopes of the paleo-Gulf of Mexico and the paleo-Pacific Ocean. The sedimentological characteristics of the Jurassic-Cenozoic clastic successions in the Ixcaquixtla-Atzumba region denote relatively short transport in braided fluvial systems and alluvial fans. In this way, several basins are recognized around the Cosoltepec block. At the southeastern edge of the Cosoltepec block, the Ayuquila and Tecomazúchil formations accumulated in the Ayuquila continental basin on the paleo-Pacific Ocean slope. On the other hand, within the paleo-Gulf of Mexico slope, in the Otlaltepec continental basin, the Piedra Hueca and the Otlaltepec formations accumulated. The upper member of the Santa Lucía Formation accumulated in a transitional environment on the southwestern shoulder of the Zapotitlán basin, as well as on the paleo-Gulf of Mexico slope. In the Ayuquila basin, a marine transgression is recognized that advanced from south to north during the Late Jurassic. At the northeastern edge of the Cosoltepec block, we propose that the Santa Lucía formation attests to a transgression from the paleo-Gulf of Mexico

  4. The Paleozoic - Mesozoic Mekele Sedimentary Basin in Ethiopia: An example of an exhumed IntraCONtinental Sag (ICONS) basin

    NASA Astrophysics Data System (ADS)

    Alemu, Tadesse; Abdelsalam, Mohamed G.; Dawit, Enkurie L.; Atnafu, Balemwal; Mickus, Kevin L.

    2018-07-01

    We investigated the evolution of the Mekele Sedimentary Basin (MSB) in northern Ethiopia using geologic field and gravity data. The depth to Moho and lithospheric structure beneath the basin was imaged using two-dimensional (2D) radially-averaged power spectral analysis, Lithoflex three-dimensional (3D) forward and inverse modeling, and 2D forward modeling of the Bouguer gravity anomalies. Previous studies proposed that the basin was formed as part of a multi-branched rift system related to the breakup of Gondwana. Our results show that the MSB: (1) is circular to elliptical in map view and saucer shaped in cross sectional view, (2) is filled with terrestrial and shallow marine sedimentary rocks, (3) does not significantly structurally control the sedimentation and the major faults are post-depositional, (4) is characterized by a concentric gravity minima, (5) is underlain by an unstretched crust (∼40 km thick) and thicker lithosphere (∼120 km thick). These features compare positively with a group of basins known as IntraCONtinental Sags (ICONS), especially those ICONS formed over accretionary orogenic terranes. Since the MSB is located above the Neoproterozoic accretionary orogenic terranes of the Arabian-Nubian Shield (ANS), we propose that the formation of the MSB to be related to cooling and thickening of a juvenile sub-continental lithospheric mantle beneath the ANS, which most probably provided negative buoyancy, and hence subsidence in the MSB, leading to its formation as an ICONS. The MSB could be used as an outcrop analog for information about the internal facies architecture of ICONS because it is completely exhumed due to tectonic uplift on the western flank of the Afar Depression.

  5. Mayer Kangri metamorphic complexes in Central Qiangtang (Tibet, western China): implications for the Triassic-early Jurassic tectonics associated with the Paleo-Tethys Ocean

    NASA Astrophysics Data System (ADS)

    Wang, Yixuan; Liang, Xiao; Wang, Genhou; Yuan, Guoli; Bons, Paul D.

    2018-03-01

    The Mesozoic orogeny in Central Qiangtang Metamorphic Belt, northern Tibet, provides important insights into the geological evolution of the Paleo-Tethys Ocean. However, the Triassic-early Jurassic tectonics, particularly those associated with the continental collisionstage, remains poorly constrained. Here we present results from geological mapping, structural analysis, P-T data, and Ar-Ar geochronology of the Mayer Kangri metamorphic complex. Our data reveal an E-W-trending, 2 km wide dome-like structure associated with four successive tectonic events during the Middle Triassic and Early Jurassic. Field observations indicate that amphibolite and phengite schist complexes in this complex are separated from the overlying lower greenschist mélange by normal faulting with an evident dextral shearing component. Open antiform-like S2 foliation of the footwall phengite schist truncates the approximately north-dipping structures of the overlying mélange. Microtextures and mineral chemistry of amphibole reveal three stages of growth: Geothermobarometric estimates yield temperatures and pressures of 524 °C and 0.88 GPa for pargasite cores, 386 °C and 0.34 GPa for actinolite mantles, and 404 °C and 0.76 GPa for winchite rims. Peak blueschist metamorphism in the phengite schist occurred at 0.7-1.1 GPa and 400 °C. Our Ar-Ar dating of amphibole reveals rim-ward decreasing in age bands, including 242.4-241.2 Ma, ≥202.6-196.8, and 192.9-189.8 Ma. The results provide evidence for four distinct phases of Mesozoic tectonic evolution in Central Qiangtang: (1) northward oceanic subduction beneath North Qiangtang ( 244-220 Ma); (2) syn-collisional slab-break off (223-202 Ma); (3) early collisional extension driven by buoyant extrusion flow from depth ( 202.6-197 Ma); and (4) post-collision contraction and reburial (195.6-188.7 Ma).

  6. Paleozoic subduction complex and Paleozoic-Mesozoic island-arc volcano-plutonic assemblages in the northern Sierra terrane

    USGS Publications Warehouse

    Hanson, Richard E.; Girty, Gary H.; Harwood, David S.; Schweickert, Richard A.

    2000-01-01

    This field trip provides an overview of the stratigraphic and structural evolution of the northern Sierra terrane, which forms a significant part of the wall rocks on the western side of the later Mesozoic Sierra Nevada batholith in California. The terrane consists of a pre-Late Devonian subduction complex (Shoo Fly Complex) overlain by submarine arc-related deposits that record the evolution of three separate island-arc systems in the Late Sevonian-Early Mississippian, Permian, and Late Triassic-Jurassic. The two Paleozoic are packages and the underlying Shoo Fly Complex have an important bearing on plate-tectonic processes affecting the convergent margin outboard of the Paleozoic Cordilleran miogeocline, although their original paleogeographic relations to North America are controversial. The third arc package represents an overlap assemblage that ties the terrane to North America by the Late Triassic and helps constrain the nature and timing of Mesozoic orogenesis. Several of the field-trip stops examine the record of pre-Late Devonian subduction contained in the Shoo Fly Complex, as well as the paleovolcanology of the overlying Devonian to Jurassic arc rocks. Excellent glaciated exposures provide the opportunity to study a cross section through a tilted Devonian volcano-plutonic association. Additional stops focus on plutonic rocks emplaced during the Middle Jurassic arc magmatism in the terrane, and during the main pulse of Cretaceous magmatism in the Sierra Nevada batholith to the east.

  7. Growth of early continental crust by partial melting of eclogite.

    PubMed

    Rapp, Robert P; Shimizu, Nobumichi; Norman, Marc D

    2003-10-09

    The tectonic setting in which the first continental crust formed, and the extent to which modern processes of arc magmatism at convergent plate margins were operative on the early Earth, are matters of debate. Geochemical studies have shown that felsic rocks in both Archaean high-grade metamorphic ('grey gneiss') and low-grade granite-greenstone terranes are comprised dominantly of sodium-rich granitoids of the tonalite-trondhjemite-granodiorite (TTG) suite of rocks. Here we present direct experimental evidence showing that partial melting of hydrous basalt in the eclogite facies produces granitoid liquids with major- and trace-element compositions equivalent to Archaean TTG, including the low Nb/Ta and high Zr/Sm ratios of 'average' Archaean TTG, but from a source with initially subchondritic Nb/Ta. In modern environments, basalts with low Nb/Ta form by partial melting of subduction-modified depleted mantle, notably in intraoceanic arc settings in the forearc and back-arc regimes. These observations suggest that TTG magmatism may have taken place beneath granite-greenstone complexes developing along Archaean intraoceanic island arcs by imbricate thrust-stacking and tectonic accretion of a diversity of subduction-related terranes. Partial melting accompanying dehydration of these generally basaltic source materials at the base of thickened, 'arc-like' crust would produce compositionally appropriate TTG granitoids in equilibrium with eclogite residues.

  8. Lithospheric mantle structure beneath Northern Scotland: Pre-plume remnant or syn-plume signature?

    NASA Astrophysics Data System (ADS)

    Knapp, J.

    2003-04-01

    Upper mantle reflectors (Flannan and W) beneath the northwestern British Isles are some of the best-known and most-studied examples of preserved structure within the continental mantle lithosphere, and are spatially coincident with the surface location of early Iceland plume volcanism in the British Tertiary Province. First observed on BIRPS (British Institutions Reflection Profiling Syndicate) marine deep seismic reflection profiles in the early 1980's, these reflectors have subsequently been imaged and correlated on additional reflection and refraction profiles in the offshore area of northern and western Scotland. The age and tectonic significance of these reflectors remains a subject of wide debate, due in part to the absence of robust characterization of the upper mantle velocity structure in this tectonically complex area. Interpretations advanced over the past two decades for the dipping Flannan reflector range from fossilized subduction complex to large-scale extensional shear zone, and span ages from Proterozoic to early Mesozoic. Crustal geology of the region records early Paleozoic continental collision and late Paleozoic to Mesozoic extension. Significant modification of the British lithosphere in early Tertiary time, including dramatic thinning and extensive basaltic intrusion associated with initiation and development of the Iceland plume, suggests either (1) an early Tertiary age for the Flannan reflector or (2) preservation of ancient features within the mantle lithosphere despite such pervasive modification. Exisitng constraints are consistent with a model for early Tertiary origin of the Flannan reflector as the downdip continuation of the Rockall Trough extensional system of latest Cretaceous to earliest Tertiary age during opening of the northern Atlantic Ocean and initiation of the Iceland plume. Lithopsheric thinning beneath present-day northern Scotland could have served to focus the early expression of plume volcanism (British Tertiary

  9. Sedimentology of the Early Jurassic terrestrial Steierdorf Formation in Anina, Colonia Cehă Quarry, South Carpathians, Romania

    NASA Astrophysics Data System (ADS)

    Kędzior, Artur; Popa, Mihai E.

    2013-06-01

    Kędzior, A. and Popa, E.M. 2013. Sedimentology of the Early Jurassic terrestrial Steierdorf Formation in Anina, Colonia Cehă Quarry, South Carpathians, Romania. Acta Geologica Polonica, 63 (2), 175-199. Warszawa. The continental, coal bearing Steierdorf Formation, Hettangian - Sinemurian in age, is included in the Mesozoic cover of the Reşiţa Basin, Getic Nappe, South Carpathians, Romania. The Steierdorf Formation can be studied in Anina, a coal mining center and an exceptional locality for Early Jurassic flora and fauna, occurring in the middle of the Reşiţa Basin. This paper presents the results of sedimentological, stratigraphical and paleobotanical researches undertaken in Colonia Cehă open cast mine in Anina, where the Steierdorf Formation outcrops widely. Several sedimentary facies associations have been described, these associations permitting the reconstruction of various depositional systems such as alluvial fans, braided and meandering river systems, as well as lacustrine and coal generating marsh systems of the Steierdorf Formation. The sedimentary associations recorded within the Steierdorf Formation show a gradual fining upward trend, pointing to a rising marine water table and a decreasing relief within the source area.

  10. Mesozoic to Cenozoic tectonic transition process in Zhanhua Sag, Bohai Bay Basin, East China

    NASA Astrophysics Data System (ADS)

    Cheng, Yanjun; Wu, Zhiping; Lu, Shunan; Li, Xu; Lin, Chengyan; Huang, Zheng; Su, Wen; Jiang, Chao; Wang, Shouye

    2018-04-01

    The Zhanhua sag is part of the Bohai Bay intracontinental basin system that has developed since the Mesozoic in East China. The timing of this basin system coincides with the final assembly of East Asia and the development of Western Pacific-type plate margin. Here we use 3-D seismic and core log data to investigate the evolution of this basin and discuss its broad tectonic settings. Our new structural study of Zhanhua sag suggests that there are four major tectonic transitions occurred in the Bohai Bay Basin during Mesozoic and Cenozoic: (1) The first tectonic transition was from stable Craton to thrusting during the Triassic, mainly caused by the South China Block's subduction northward beneath the North China Block, which induced the formation of the NW-striking thrust faults. (2) The second tectonic transition was mainly characterized by a change from compression to extension, which can be further divided into two-stages. At the first stage, two episodes of NW-SE shortening occurred in East Asia during Early-Middle Jurassic and Late Jurassic-earliest Cretaceous, respectively. At the second stage, the extension and left-lateral shearing took place during Early Cretaceous while compression occurred during Late Cretaceous. The NW-striking thrust faults changed to normal faults and the NNE-striking left-lateral strike-slip faults started to influence the eastern part of the basin. (3) The third transition occurred when the NW-SE extension and NNE-striking right-lateral shearing started to form during Paleogene, and the peak deformation happen around 40 Ma due to the change of the subduction direction of Pacific Plate relative to Eurasia Plate. The NE-striking normal faults are the main structure, and the pre-existing NNE-striking strike-slip faults changed from left-lateral to right-lateral. (4) The fourth transition saw the regional subsidence during Neogene, which was probably caused by the India-Asia "Hard collision" between 25 and 20 Ma.

  11. Mesozoic to Recent, regional tectonic controls on subsidence patterns in the Gulf of Mexico basin

    NASA Astrophysics Data System (ADS)

    Almatrood, M.; Mann, P.; Bugti, M. N.

    2016-12-01

    We have produced subsidence plots for 26 deep wells into the deeper-water areas of the Gulf of Mexico (GOM) in order to identify regional tectonic controls and propose tectonic phases. Our results show three sub-regions of the GOM basin that have distinctive and correlative subsidence patterns: 1) Northern GOM from offshore Texas to central Florida (9 wells) - this area is characterized by a deeply buried, Triassic-early Jurassic rift event that is not represented by our wells that penetrate only the post-rift Cretaceous to recent passive margin phase. The sole complexity in the passive margin phase of this sub-region is the acceleration of prograding clastic margins including the Mississippi fan in Miocene time; 2) Southeastern GOM in the Straits of Florida and Cuba area (5 wells) - this area shows that the Cretaceous passive margin overlying the rift phase is abruptly drowned in late Cretaceous as this part of the passive margin of North America that is flexed and partially subducted beneath the Caribbean arc as it encroaches from the southwest to eventually collide with the North American passive margin in the Paleogene; 3) Western GOM along the length of the eastern continental margin of Mexico (12 wells) - this is the most complex of the three areas in that shares the Mesozic rifting and passive margin phase but is unique with a slightly younger collisional event and foreland basin phase associated with the Laramide orogeny in Mexico extending from the KT boundary to the Oligocene. Following this orogenic event there is a re-emergence of the passive margin phase during the Neogene along locally affected by extensional and convergent deformation associated with passive margin fold belts. In summary, the GOM basin exhibits evidence for widespread rifting and passive margin formation associated with the breakup of Pangea in Mesozoic times that was locally superimposed and deformed during the late Cretaceous-Paleogene period by: 1) Caribbean subduction and

  12. Rapid middle Miocene collapse of the Mesozoic orogenic plateau in north-central Nevada

    USGS Publications Warehouse

    Colgan, Joseph P.; Henry, Christopher D.

    2009-01-01

    The modern Sierra Nevada and Great Basin were likely the site of a high-elevation orogenic plateau well into Cenozoic time, supported by crust thickened during Mesozoic shortening. Although crustal thickening at this scale can lead to extension, the relationship between Mesozoic shortening and subsequent formation of the Basin and Range is difficult to unravel because it is unclear which of the many documented or interpreted extensional episodes was the most significant for net widening and crustal thinning. To address this problem, we integrate geologic and geochronologic data that bear on the timing and magnitude of Cenozoic extension along an ???200km east-west transect south of Winnemucca, Battle Mountain, and Elko, Nevada. Pre-Cenozoic rocks in this region record east-west Palaeozoic and Mesozoic compression that continued into the Cretaceous. Little to no tectonism and no deposition followed until intense magmatism began in the Eocene. Eocene and Oligocene ash-flow tuffs flowed as much as 200km down palaeovalleys cut as deeply as 1.5km into underlying Palaeozoic and Mesozoic rocks in a low-relief landscape. Eocene sedimentation was otherwise limited to shallow lacustrine basins in the Elko area; extensive, thick clastic deposits are absent. Minor surface extension related to magmatism locally accompanied intense Eocene magmatism, but external drainage and little or no surface deformation apparently persisted regionally until about 16-17Ma. Major upper crustal extension began across the region ca. 16-17Ma, as determined by cross-cutting relationships, low-temperature thermochronology, and widespread deposition of clastic basin fill. Middle Miocene extension was partitioned into high-strain (50-100%) domains separated by largely unextended crustal blocks, and ended by 10-12Ma. Bimodal volcanic rocks that erupted during middle Miocene extension are present across most of the study area, but are volumetrically minor outside the northern Nevada rift. The modern

  13. Geochemical and Nd-Sr isotopic constraints on the genesis of Mesozoic alkaline magmatism in Tu Le basin, Northern Vietnam

    NASA Astrophysics Data System (ADS)

    Tran, T. A.; Tran, T. H.; Lan, C. Y.; Chung, S. L.; Lo, C. H.; Wang, P. L.; Lee, T. Y.; Merztman, S. A.

    2003-04-01

    China, we propose an intraplate lithospheric extension setting to account for the Jurassic-Cretaceous magmatism whose generation postdated the continental collision between the Indochina and South China blocks in the early Triassic. Formed originally in the western margin of the South China block, SW China, the Tu Le basin and associated Mesozoic magmatic rocks were transported southeastward to the present location by the mid-Tertiary sinistral displacement of the Ailao Shan-Red River shear zone, related to the India-Asia collision.

  14. Final report. [Mesozoic tectonic history of the northeastern Great Basin (Nevada)

    NASA Technical Reports Server (NTRS)

    Zamudio, Joe

    1993-01-01

    In eastern Nevada and western Utah is an extensive terrane that has experienced a complex tectonic history of Mesozoic deformation and superposed Tertiary extension. The Mesozoic tectonic history of this area has been the subject of controversy for the past twenty or more years. The debate has centered on whether major Mesozoic geologic structures were due to compressional or extensional tectonic regimes. The goal of our research was to decipher the deformational history of the area by combining detailed geologic mapping, remote sensing data analysis, and U-Pb and K-Ar geochronology. This study area includes the Dolly Varden Mountains and adjacent Currie Hills, located in the semi-arid environment of the northeastern Great Basin in Nevada. Vegetation cover in the Dolly Varden Mountains typically ranges from about 10 percent to 50 percent, with some places along drainages and on high, north-facing slopes where vegetation cover approaches 100 percent. Sagebrush is found at less vegetated lower elevations, whereas pinon pine and juniper are prevalent above 2,000 meters. A variety of geologic materials is exposed in the study area. A sequence of Late Paleozoic and Triassic sedimentary rocks includes limestone, dolomite, chert, sandstone, siltstone and shale. A two-phase granitic stock, called the Melrose, intruded these rocks, resulting in metamorphism along the intrusive contact. Tertiary volcanic rocks cover most of the eastern part of the Dolly Varden Mountains and low-lying areas in the Currie Hills.

  15. Origin of a major cross-element zone: Moroccan Rif

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morley, C.K.

    1987-08-01

    Alpine age (Oligocene-Miocene) deformation in the western Mediterranean formed the Rif mountain belt of northern Morocco. A linear east-northeast-west-southwest trend of cross elements from Jebah (Mediterranean coast) to Arbaoua (near the Atlantic coast) extends through several thrust sheets in the western Rif. The cross elements are manifest as a lateral ramp, the northern limit of a large culmination, and they affect syntectonic turbidite sandstone distribution. Gravity anomalies indicate that the cross-element zone is coincident with a transition zone from normal thickness to thinner continental crust. It is suggested that an early Mesozoic strike-slip fault system related to rifting of Northmore » America from North Africa caused a strong east-northeast-west-southwest, basement block-fault trend to form on the normal thickness side of the thick-to-thin continental crustal transition zone. This trend later influenced the position of the Alpine age cross-element zone that traverses several different Mesozoic and Tertiary basins, inverted during the Alpine deformation.« less

  16. The Early to Middle Triassic continental-marine transition of NW Bulgaria: sedimentology, palynology and sequence stratigraphy

    NASA Astrophysics Data System (ADS)

    Ajdanlijsky, George; Götz, Annette E.; Strasser, André

    2018-04-01

    Sedimentary facies and cycles of the Triassic continental-marine transition of NW Bulgaria are documented in detail from reference sections along the Iskar river gorge between the villages of Tserovo and Opletnya. The depositional environments evolved from anastomosing and meandering river systems in the Petrohan Terrigenous Group to mixed fluvial and tidal settings in the Svidol Formation, and to peritidal and shallow-marine conditions in the Opletnya Member of the Mogila Formation. For the first time, the palynostratigraphic data presented here allow for dating the transitional interval and for the precise identification of a major sequence boundary between the Petrohan Terrigenous Group and the Svidol Formation (Iskar Carbonate Group). This boundary most probably corresponds to the major sequence boundary Ol4 occurring in the upper Olenekian of the Tethyan realm and thus enables interregional correlation. The identification of regionally traceable sequence boundaries based on biostratigraphic age control is a first step towards a more accurate stratigraphic correlation and palaeogeographic interpretation of the Early to early Middle Triassic in NW Bulgaria.

  17. Sedimentological context of the continental sabkhas of Abu Dhabi

    NASA Astrophysics Data System (ADS)

    Lokier, Stephen; Paul, Andreas; Bixiao, Xin

    2017-04-01

    For more than half a century, the coastal sabkhas of Abu Dhabi have been the focus of intensive research focusing on deposition, early diagenesis and the role of microbial communities. Given all of this activity, it is somewhat surprising that their continental counterparts have been largely neglected with only a brief mention in larger-scale regional studies. This study redresses this imbalance by documenting the sedimentological, mineralogical and early diagenetic characteristics of continental sabkhas that are hosted in the Rub al Khali desert of the United Arab Emirates. During reconnaissance surveys it has been established that organic-rich microbial mats and evaporite minerals, both similar to those observed in the coastal sabkha, also occur in these continental sabkha settings. Satellite imagery was utilised to identify potential field locations for surface and shallow sub surface investigation; subsequent field reconnaissance established the validity of sites in terms of anthropogenic disruption and accessibility. At each site, surface features were described in detail, particularly with reference to any microbial communities or evaporite crusts; sample pits were dug in order to document sub-surface facies geometries and to recover both sediment and pore water samples for subsequent analysis. In each pit, a range of environmental parameters was measured over a prolonged period, including surface and sub-surface temperatures, ground water salinity and dissolved oxygen. Sediment samples were subjected to a range of analyses in order to establish and quantify primary sediment composition and any early diagenetic mineral phases. The results of this study are used to build an atlas of sedimentary structures and textures that are associated with continental sabkha settings. These observations allow us to establish the defining sedimentological and early diagenetic characteristics that can be employed to identify similar depositional environments in ancient

  18. A Cretaceous eutriconodont and integument evolution in early mammals.

    PubMed

    Martin, Thomas; Marugán-Lobón, Jesús; Vullo, Romain; Martín-Abad, Hugo; Luo, Zhe-Xi; Buscalioni, Angela D

    2015-10-15

    The Mesozoic era (252-66 million years ago), known as the domain of dinosaurs, witnessed a remarkable ecomorphological diversity of early mammals. The key mammalian characteristics originated during this period and were prerequisite for their evolutionary success after extinction of the non-avian dinosaurs 66 million years ago. Many ecomorphotypes familiar to modern mammal fauna evolved independently early in mammalian evolutionary history. Here we report a 125-million-year-old eutriconodontan mammal from Spain with extraordinary preservation of skin and pelage that extends the record of key mammalian integumentary features into the Mesozoic era. The new mammalian specimen exhibits such typical mammalian features as pelage, mane, pinna, and a variety of skin structures: keratinous dermal scutes, protospines composed of hair-like tubules, and compound follicles with primary and secondary hairs. The skin structures of this new Mesozoic mammal encompass the same combination of integumentary features as those evolved independently in other crown Mammalia, with similarly broad structural variations as in extant mammals. Soft tissues in the thorax and abdomen (alveolar lungs and liver) suggest the presence of a muscular diaphragm. The eutriconodont has molariform tooth replacement, ossified Meckel's cartilage of the middle ear, and specialized xenarthrous articulations of posterior dorsal vertebrae, convergent with extant xenarthran mammals, which strengthened the vertebral column for locomotion.

  19. Mass extinction of ocean organisms at the Paleozoic-Mesozoic boundary: Effects and causes

    NASA Astrophysics Data System (ADS)

    Barash, M. S.

    2012-04-01

    At the end of the Permian, at the boundary between the Paleozoic and Mesozoic (251.0 ± 0.4 Ma), the largest mass extinction of organisms on the Earth occurred. Up to 96% of the species of marine invertebrates and ˜70% of the terrestrial vertebrates died off. A lot of factors were suggested and substantiated to explain this mass mortality, such as the disappearance of environmental niches in the course of the amalgamation of the continental plates into Pangea, sea level fluctuations, anoxia, an elevated CO2 content, H2S intoxication, volcanism, methane discharge from gas-hydrates, climate changes, impact events (collisions with large asteroids), or combinations of many of these reasons. Some of these factors are in subordination to others, while others are independent. Almost all of these factors developed relatively slowly and could not cause the sudden mass mortality of organisms globally. It could have happened when large asteroids, whose craters have been discovered lately, fell to the Earth. It is suggested that the impact events "finished off" the already suppressed biota. A simultaneous change in many of the factors responsible for the biodiversity, including those not connected in a cause-and-effect relationship, proves the existence of a common extrater-restrial cause that affected both the changes in the internal and external geospheres and the activation of asteroid attacks (the Sun's transit of spiral arms of our galaxy, the Sun's oscillations perpendicularly to the galactic plane, etc).

  20. The composition and structure of volcanic rifted continental margins in the North Atlantic: Further insight from shear waves

    NASA Astrophysics Data System (ADS)

    Eccles, Jennifer D.; White, Robert S.; Christie, Philip A. F.

    2011-07-01

    Imaging challenges caused by highly attenuative flood basalt sequences have resulted in the understanding of volcanic rifted continental margins lagging behind that of non-volcanic rifted and convergent margins. Massive volcanism occurred during break-up at 70% of the passive margins bordering the Atlantic Ocean, the causes and dynamics of which are still debated. This paper shows results from traveltime tomography of compressional and converted shear wave arrivals recorded on 170 four-component ocean bottom seismometers along two North Atlantic continental margin profiles. This traveltime tomography was performed using two different approaches. The first, a flexible layer-based parameterisation, enables the quality control of traveltime picks and investigation of the crustal structure. The second, with a regularised grid-based parameterisation, requires correction of converted shear wave traveltimes to effective symmetric raypaths and allows exploration of the model space via Monte Carlo analyses. The velocity models indicate high lower-crustal velocities and sharp transitions in both velocity and Vp/Vs ratios across the continent-ocean transition. The velocities are consistent with established mixing trends between felsic continental crust and high magnesium mafic rock on both margins. Interpretation of the high quality seismic reflection profile on the Faroes margin confirms that this mixing is through crustal intrusion. Converted shear wave data also provide constraints on the sub-basalt lithology on the Faroes margin, which is interpreted as a pre-break-up Mesozoic to Paleocene sedimentary system intruded by sills.

  1. Development of continental margins of the Atlantic Ocean and successive breakup of the Pangaea-3 supercontinent

    NASA Astrophysics Data System (ADS)

    Melankholina, E. N.; Sushchevskaya, N. M.

    2017-01-01

    Comparative tectonic analysis of passive margins of the Atlantic Ocean has been performed. Tectonotypes of both volcanic and nonvolcanic margins are described, and their comparison with other passive Atlantic margins is given. The structural features of margins, peculiarities of magmatism, its sources and reasons for geochemical enrichment of melts are discussed. The important role of melting of the continental lithosphere in the development of magmatism is demonstrated. Enriched EM I and EM II sources are determined for the lower parts of the volcanic section, and a depleted or poorly enriched source is determined for the upper parts of the volcanic section based on isotope data. The conclusions of the paper relate to tectonic settings of the initial occurrence of magmatism and rifting and breakup during the period of opening of the Mesozoic Ocean. It was found out that breakup and magmatism at proximal margins led only to insignificant structural transformations and reduction of the thickness of the ancient continental crust, while very important magmatic events happened later in the distal zone. New growth of magmatic crust at the stage of continental breakup is determined as a typical feature of distal zones of the margins under study. The relationship of development of margins with the impact of deep plumes as the source of magmatic material or a heat source only is discussed. Progradation of the zone of extension and breakup into the areas of cold lithosphere of the Atlantic and the formation of a single tectonomagmatic system of the ocean are under consideration.

  2. Testing co-evolutionary hypotheses over geological timescales: interactions between Mesozoic non-avian dinosaurs and cycads.

    PubMed

    Butler, Richard J; Barrett, Paul M; Kenrick, Paul; Penn, Malcolm G

    2009-02-01

    The significance of co-evolution over ecological timescales is well established, yet it remains unclear to what extent co-evolutionary processes contribute to driving large-scale evolutionary and ecological changes over geological timescales. Some of the most intriguing and pervasive long-term co-evolutionary hypotheses relate to proposed interactions between herbivorous non-avian dinosaurs and Mesozoic plants, including cycads. Dinosaurs have been proposed as key dispersers of cycad seeds during the Mesozoic, and temporal variation in cycad diversity and abundance has been linked to dinosaur faunal changes. Here we assess the evidence for proposed hypotheses of trophic and evolutionary interactions between these two groups using diversity analyses, a new database of Cretaceous dinosaur and plant co-occurrence data, and a geographical information system (GIS) as a visualisation tool. Phylogenetic evidence suggests that the origins of several key biological properties of cycads (e.g. toxins, bright-coloured seeds) likely predated the origin of dinosaurs. Direct evidence of dinosaur-cycad interactions is lacking, but evidence from extant ecosystems suggests that dinosaurs may plausibly have acted as seed dispersers for cycads, although it is likely that other vertebrate groups (e.g. birds, early mammals) also played a role. Although the Late Triassic radiations of dinosaurs and cycads appear to have been approximately contemporaneous, few significant changes in dinosaur faunas coincide with the late Early Cretaceous cycad decline. No significant spatiotemporal associations between particular dinosaur groups and cycads can be identified - GIS visualisation reveals disparities between the spatiotemporal distributions of some dinosaur groups (e.g. sauropodomorphs) and cycads that are inconsistent with co-evolutionary hypotheses. The available data provide no unequivocal support for any of the proposed co-evolutionary interactions between cycads and herbivorous dinosaurs

  3. Alpine inversion of the North African margin and delamination of its continental lithosphere

    NASA Astrophysics Data System (ADS)

    Roure, FrançOis; Casero, Piero; Addoum, Belkacem

    2012-06-01

    This paper aims at summarizing the current extent and architecture of the former Mesozoic passive margin of North Africa from North Algeria in the west up to the Ionian-Calabrian arc and adjacent Mediterranean Ridge in the east. Despite that most paleogeographic models consider that the Eastern Mediterranean Basin as a whole is still underlain by remnants of the Permo-Triassic or a younger Cretaceous Tethyan-Mesogean ocean, the strong similarities documented here in structural styles and timing of inversion between the Saharan Atlas, Sicilian Channel and the Ionian abyssal plain evidence that this portion of the Eastern Mediterranean Basin still belongs to the distal portion of the North African continental margin. A rim of Tethyan ophiolitic units can be also traced more or less continuously from Turkey and Cyprus in the east, in onshore Crete, in the Pindos in Greece and Mirdita in Albania, as well as in the Western Alps, Corsica and the Southern Apennines in the west, supporting the hypothesis that both the Apulia/Adriatic domain and the Eastern Mediterranean Basin still belong to the former southern continental margin of the Tethys. Because there is no clear evidence of crustal-scale fault offsetting the Moho, but more likely a continuous yet folded Moho extending between the foreland and the hinterland beneath the Mediterranean arcs, we propose here a new model of delamination of the continental lithosphere for the Apennines and the Aegean arcs. In this model, only the mantle lithosphere of Apulia and the Eastern Mediterranean is still locally subducted and recycled in the asthenosphere, most if not all the northern portion of the African crust and coeval Moho being currently decoupled from its former, currently delaminated and subducted mantle lithosphere.

  4. Tectono-sedimentary events and geodynamic evolution of the Mesozoic and Cenozoic basins of the Alpine Margin, Gulf of Tunis, north-eastern Tunisia offshore

    NASA Astrophysics Data System (ADS)

    Melki, Fetheddine; Zouaghi, Taher; Chelbi, Mohamed Ben; Bédir, Mourad; Zargouni, Fouad

    2010-09-01

    The structural pattern, tectono-sedimentary framework and geodynamic evolution for Mesozoic and Cenozoic deep structures of the Gulf of Tunis (north-eastern Tunisia) are proposed using petroleum well data and a 2-D seismic interpretation. The structural system of the study area is marked by two sets of faults that control the Mesozoic subsidence and inversions during the Paleogene and Neogene times: (i) a NE-SW striking set associated with folds and faults, which have a reverse component; and (ii) a NW-SE striking set active during the Tertiary extension episodes and delineating grabens and subsiding synclines. In order to better characterize the tectono-sedimentary evolution of the Gulf of Tunis structures, seismic data interpretations are compared to stratigraphic and structural data from wells and neighbouring outcrops. The Atlas and external Tell belonged to the southernmost Tethyan margin record a geodynamic evolution including: (i) rifting periods of subsidence and Tethyan oceanic accretions from Triassic until Early Cretaceous: we recognized high subsiding zones (Raja and Carthage domains), less subsiding zones (Gamart domain) and a completely emerged area (Raouad domain); (ii) compressive events during the Cenozoic with relaxation periods of the Oligocene-Aquitanian and Messinian-Early Pliocene. The NW-SE Late Eocene and Tortonian compressive events caused local inversions with sealed and eroded folded structures. During Middle to Late Miocene and Early Pliocene, we have identified depocentre structures corresponding to half-grabens and synclines in the Carthage and Karkouane domains. The north-south contractional events at the end of Early Pliocene and Late Pliocene periods are associated with significant inversion of subsidence and synsedimentary folded structures. Structuring and major tectonic events, recognized in the Gulf of Tunis, are linked to the common geodynamic evolution of the north African and western Mediterranean basins.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bird, P.R.; Johns, C.C.; Clark-Lowes, D.D.

    Western Turkey consists of a number of tectonic terranes joined together by a network of suture zones. The terranes originated as microcontinental plates that rifted away from the continental margins forming the northern and southern boundaries of the Tethyan sea. These micro-continents were united by a series of collisions beginning in the Late Triassic and ending in the Miocene, with the final closure of the Tethyan sea. The sedimentary cover of the microcontinents consists of Paleozoic and Mesozoic passive margin and rift basin sequences containing numerous potential source and reservoir intervals. Most of these sequences show affinities with Gondwanaland, withmore » the notable exception of the Istanbul nappe, which is strongly Laurasian in character. Forearc basin sequences were also deposited on the margins of the microcontinents during early Tertiary plate convergence. Ensuing continental collisions resulted in compressional deformation of sedimentary cover sequences. The intensity of deformation ranged from basin inversion producing numerous potential hydrocarbon traps, to large-scale overthrusting. Following continental suturing, continued compression in eastern Turkey has been accommodated since the Miocene by westward escape of continental lithosphere between the North and South Anatolian transform faults. Neotectonic pull-apart basins formed in response to these movements, accumulating large thicknesses of Miocene-Pliocene carbonates and clastic sediments. Potential reservoirs in the Neotectonic basins may be sourced either in situ or from underlying Paleozoic and Mesozoic source rocks that remain within the hydrocarbon generating window today.« less

  6. Role of deep-Earth water cycling in the growth and evolution of continental crust: Constraints from Cretaceous magmatism in southeast China

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Wang, Xuan-Ce; Wilde, Simon A.; Liu, Liang; Li, Wu-Xian; Yang, Xuemei

    2018-03-01

    The late Mesozoic igneous province in southeast China provides an excellent opportunity to understand the processes that controlled the growth and evolution of Phanerozoic continental crust. Here we report petrological, whole-rock geochemical and isotopic data, and in situ zircon U-Pb-Lu-Hf isotopic data from granitoids and associated gabbros in the Pingtan and Tong'an complexes, southeast China. Through combining the new results with published datasets in southeast China, we show that the Early Cretaceous magmatic rocks are dominated by juvenile Nd-Hf isotopic compositions, whereas the Late Cretaceous ones display less radiogenic Nd-Hf isotope signatures. Furthermore, Nd-Hf isotope systematics are coupled with decreasing abundance of hydrous minerals and an increase of zircon saturation temperatures. Compiled zircon Hf-O data indicates that the 117-116 Ma granites have zircon δ18O values ranging from mantle values (close to 5.3‰) to as low as 3.9‰, but with dominantly positive initial epsilon Hf (εHf(t)) values. Zircon grains from 105 to 98 Ma rocks have δ18O values plotting within the mantle-like range (6.5‰ - 4.5‰), but mainly with negative εHf(t) values. Zircon grains from ca. 87 Ma rocks have positive εHf(t) values (+ 9.8 to + 0.7) and a large range of δ18O values (6.3‰ - 3.5‰). The variations in Hf-Nd-O isotopic compositions are correlated with decreasing abundance of magma water contents, presenting a case that water-fluxed melting generated large-scale granitic magmatism. Deep-Earth water cycling provides an alternative or additional mechanism to supply volatiles (e.g., H2O) for hydrous basaltic underplating, continental crustal melting, and magmatic differentiation.

  7. Extensive crustal melting during craton destruction: Evidence from the Mesozoic magmatic suite of Junan, eastern North China Craton

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Santosh, M.; Tang, Li

    2018-05-01

    The cratonic destruction associated with the Pacific plate subduction beneath the eastern North China Craton (NCC) shows a close relationship with the widespread magmatism during the Late Mesozoic. Here we investigate a suite of intrusive and extrusive magmatic rocks from the Junan region of the eastern NCC in order to evaluate the role of extensive crustal melting related to decratonization. We present petrological, geochemical, zircon U-Pb geochronological and Lu-Hf isotopic data to evaluate the petrogenesis, timing and tectonic significance of the Early Cretaceous magmatism. Zircon grains in the basalt from the extrusive suite of Junan show multiple populations with Neoproterozoic and Early Paleozoic xenocrystic grains ranging in age from 764 Ma to 495 Ma as well as Jurassic grains with an age range of 189-165 Ma. The dominant population of magmatic zircon grains in the syenite defines three major age peaks of 772 Ma, 132 Ma and 126 Ma. Zircons in the granitoids including alkali syenite, monzonite and granodiorite yield a tightly restricted age range of 124-130 Ma representing their emplacement ages. The Neoproterozoic (841-547 Ma) zircon grains from the basalt and the syenite possess εHf(t) values of -22.9 to -8.4 and from -18.8 to -17.3, respectively. The Early Paleozoic (523-494 Ma) zircons from the basalt and the syenite also show markedly negative εHf(t) values of -22.7 to -18.0. The dominant population of Early Cretaceous (134-121 Ma) zircon grains presented in all the samples also displays negative εHf(t) values range from -31.7 to -21.1, with TDM of 1653-2017 Ma and TDMC in the range of 2193-3187 Ma. Accordingly, the Lu-Hf data suggest that the parent magma was sourced through melting of Mesoarchean to Paleoproterozoic basement rocks. Geochemical data on the Junan magmatic suite display features similar to those associated with the arc magmatic rocks involving subduction-related components, with interaction of fluids and melts in the suprasubduction

  8. Reconciling Paleomagnetism and Pangea

    NASA Astrophysics Data System (ADS)

    Domeier, M. M.; Van Der Voo, R.; Torsvik, T. H.

    2011-12-01

    Outside of the realm of paleomagnetic studies, it has been a long held tenet that Pangea amalgamated into and disseminated from essentially the same paleogeography, the conventional Pangea reconstruction of Alfred Wegener. There is widespread geologic and geophysical support for this re-assembly during the Late Triassic-Early Jurassic, but global paleomagnetic data have been repeatedly shown to be incompatible with this reconstruction for pre-Late Triassic time. This discrepancy, which has endured from the late 1950's to the present day, has developed into a fundamental enigma of late Paleozoic-early Mesozoic paleomagnetism. The problem stems from a large disparity in the apparent polar wander paths (APWPs) of Laurussia and Gondwana when the landmasses are restored to the conventional paleogeography. If the APWPs are made to coincide while the conventional fit is maintained, a substantial crustal misfit results; a continental overlap of approximately 10° latitude (1000+ km) occurs between Laurussia and Gondwana. To resolve this problem, alternative Pangea reconstructions have been built to accommodate the late Paleozoic-early Mesozoic paleomagnetic data, but these invariably require large-scale shearing between Laurussia and Gondwana to reach the conventional Pangea re-assembly, from which it is unanimously agreed that the Atlantic Ocean opened in the Jurassic. Evidence for a megashear between these landmasses is critically lacking. Another proposed solution invokes time-dependent non-dipole fields, but challenges the working assumption that the geomagnetic field has effectively been a geocentric axial dipole through the Phanerozoic. The final alternative is that the problem is a manifestation of artifacts/contamination in the paleomagnetic data. Previous investigations of this last hypothesis have demonstrated its theoretical plausibility, but lacked the exhaustive analysis of global paleomagnetic data necessary to assuredly dispel the problem as an enduring data

  9. The Sail-Backed Reptile Ctenosauriscus from the Latest Early Triassic of Germany and the Timing and Biogeography of the Early Archosaur Radiation

    PubMed Central

    Butler, Richard J.; Brusatte, Stephen L.; Reich, Mike; Nesbitt, Sterling J.; Schoch, Rainer R.; Hornung, Jahn J.

    2011-01-01

    Background Archosaurs (birds, crocodilians and their extinct relatives including dinosaurs) dominated Mesozoic continental ecosystems from the Late Triassic onwards, and still form a major component of modern ecosystems (>10,000 species). The earliest diverse archosaur faunal assemblages are known from the Middle Triassic (c. 244 Ma), implying that the archosaur radiation began in the Early Triassic (252.3–247.2 Ma). Understanding of this radiation is currently limited by the poor early fossil record of the group in terms of skeletal remains. Methodology/Principal Findings We redescribe the anatomy and stratigraphic position of the type specimen of Ctenosauriscus koeneni (Huene), a sail-backed reptile from the Early Triassic (late Olenekian) Solling Formation of northern Germany that potentially represents the oldest known archosaur. We critically discuss previous biomechanical work on the ‘sail’ of Ctenosauriscus, which is formed by a series of elongated neural spines. In addition, we describe Ctenosauriscus-like postcranial material from the earliest Middle Triassic (early Anisian) Röt Formation of Waldhaus, southwestern Germany. Finally, we review the spatial and temporal distribution of the earliest archosaur fossils and their implications for understanding the dynamics of the archosaur radiation. Conclusions/Significance Comprehensive numerical phylogenetic analyses demonstrate that both Ctenosauriscus and the Waldhaus taxon are members of a monophyletic grouping of poposauroid archosaurs, Ctenosauriscidae, characterised by greatly elongated neural spines in the posterior cervical to anterior caudal vertebrae. The earliest archosaurs, including Ctenosauriscus, appear in the body fossil record just prior to the Olenekian/Anisian boundary (c. 248 Ma), less than 5 million years after the Permian–Triassic mass extinction. These earliest archosaur assemblages are dominated by ctenosauriscids, which were broadly distributed across northern Pangea and which

  10. The sail-backed reptile Ctenosauriscus from the latest Early Triassic of Germany and the timing and biogeography of the early archosaur radiation.

    PubMed

    Butler, Richard J; Brusatte, Stephen L; Reich, Mike; Nesbitt, Sterling J; Schoch, Rainer R; Hornung, Jahn J

    2011-01-01

    Archosaurs (birds, crocodilians and their extinct relatives including dinosaurs) dominated Mesozoic continental ecosystems from the Late Triassic onwards, and still form a major component of modern ecosystems (>10,000 species). The earliest diverse archosaur faunal assemblages are known from the Middle Triassic (c. 244 Ma), implying that the archosaur radiation began in the Early Triassic (252.3-247.2 Ma). Understanding of this radiation is currently limited by the poor early fossil record of the group in terms of skeletal remains. We redescribe the anatomy and stratigraphic position of the type specimen of Ctenosauriscus koeneni (Huene), a sail-backed reptile from the Early Triassic (late Olenekian) Solling Formation of northern Germany that potentially represents the oldest known archosaur. We critically discuss previous biomechanical work on the 'sail' of Ctenosauriscus, which is formed by a series of elongated neural spines. In addition, we describe Ctenosauriscus-like postcranial material from the earliest Middle Triassic (early Anisian) Röt Formation of Waldhaus, southwestern Germany. Finally, we review the spatial and temporal distribution of the earliest archosaur fossils and their implications for understanding the dynamics of the archosaur radiation. Comprehensive numerical phylogenetic analyses demonstrate that both Ctenosauriscus and the Waldhaus taxon are members of a monophyletic grouping of poposauroid archosaurs, Ctenosauriscidae, characterised by greatly elongated neural spines in the posterior cervical to anterior caudal vertebrae. The earliest archosaurs, including Ctenosauriscus, appear in the body fossil record just prior to the Olenekian/Anisian boundary (c. 248 Ma), less than 5 million years after the Permian-Triassic mass extinction. These earliest archosaur assemblages are dominated by ctenosauriscids, which were broadly distributed across northern Pangea and which appear to have been the first global radiation of archosaurs.

  11. Methane Metabolizing Microbial Communities in the Cold Seep Areas in the Northern Continental Shelf of South China Sea

    NASA Astrophysics Data System (ADS)

    Wang, F.; Liang, Q.

    2016-12-01

    Marine sediment contains large amount of methane, estimated approximately 500-2500 gigatonnes of dissolved and hydrated methane carbon stored therein, mainly in continental margins. In localized specific areas named cold seeps, hydrocarbon (mainly methane) containing fluids rise to the seafloor, and support oases of ecosystem composed of various microorganisms and faunal assemblages. South China Sea (SCS) is surrounded by passive continental margins in the west and north and convergent margins in the south and east. Thick organic-rich sediments have accumulated in the SCS since the late Mesozoic, which are continuing sources to form gas hydrates in the sediments of SCS. Here, Microbial ecosystems, particularly those involved in methane transformations were investigated in the cold seep areas (Qiongdongnan, Shenhu, and Dongsha) in the northern continental shelf of SCS. Multiple interdisciplinary analytic tools such as stable isotope probing, geochemical analysis, and molecular ecology, were applied for a comprehensive understanding of the microbe mediated methane transformation in this project. A variety of sediments cores have been collected, the geochemical profiles and the associated microbial distribution along the sediment cores were recorded. The major microbial groups involved in the methane transformation in these sediment cores were revealed, known methane producing and oxidizing archaea including Methanosarcinales, anaerobic methane oxidizing groups ANME-1, ANME-2 and their niche preference in the SCS sediments were found. In-depth comparative analysis revealed the presence of SCS-specific archaeal subtypes which probably reflected the evolution and adaptation of these methane metabolizing microbes to the SCS environmental conditions. Our work represents the first comprehensive analysis of the methane metabolizing microbial communities in the cold seep areas along the northern continental shelf of South China Sea, would provide new insight into the

  12. Functional Morphometric Analysis of the Furcula in Mesozoic Birds

    PubMed Central

    Close, Roger A.; Rayfield, Emily J.

    2012-01-01

    The furcula displays enormous morphological and structural diversity. Acting as an important origin for flight muscles involved in the downstroke, the form of this element has been shown to vary with flight mode. This study seeks to clarify the strength of this form-function relationship through the use of eigenshape morphometric analysis coupled with recently developed phylogenetic comparative methods (PCMs), including phylogenetic Flexible Discriminant Analysis (pFDA). Additionally, the morphospace derived from the furculae of extant birds is used to shed light on possible flight adaptations of Mesozoic fossil taxa. While broad conclusions of earlier work are supported (U-shaped furculae are associated with soaring, strong anteroposterior curvature with wing-propelled diving), correlations between form and function do not appear to be so clear-cut, likely due to the significantly larger dataset and wider spectrum of flight modes sampled here. Interclavicular angle is an even more powerful discriminator of flight mode than curvature, and is positively correlated with body size. With the exception of the close relatives of modern birds, the ornithuromorphs, Mesozoic taxa tend to occupy unique regions of morphospace, and thus may have either evolved unfamiliar flight styles or have arrived at similar styles through divergent musculoskeletal configurations. PMID:22666324

  13. Re-Os-PGE constraints on continental lithosphere assembly: a case study in eastern Russia

    NASA Astrophysics Data System (ADS)

    Nelson, W. R.; Ionov, D. A.; Shirey, S. B.; Prikhod'Ko, V. S.

    2010-12-01

    Archean cratons are the old, stable nuclei around which continents are assembled as non-cratonic material is added to the periphery of cratons by subduction-driven accretion, volcanism, and reworking of existing material. In eastern Eurasia, Phanerozoic subduction-related processes have severely altered cratonic mantle at the SE margin of Siberia (Tok) and destabilized North China cratonic mantle, resulting in early Mesozoic delamination and possible recycling into the convecting mantle. It is unclear how younger, off-craton continental mantle lithosphere is produced and modified during subsequent subduction and collision events, what mantle compositions can form in these settings, and whether any previous cratonic lithosphere may be retained. In order to investigate this problem, we collected Re-Os and PGE data on 24 peridotite xenoliths from four basaltic eruptive centers - Fevralsky, Sveyagin, Medvezhy, and Kurose - located along a cross section of the eastern Eurasian mantle between the Siberian craton and Japan. Fevralsky spinel lherzolites are the closest xenoliths to the Siberian craton. Like peridotites from Tok (Ionov et al., 2006), some Fevralsky xenoliths record metasomatic influence (Al2O3 = 4.6-4.9 wt. %; Re =0.33-2.42 ppb). However, unlike the Tok peridotites, this event did not significantly affect primitive mantle-like abundances of Os (3.3-3.9 ppb) and other PGE, or 187Os/188Os ratios (0.1185-0.1282). Further south, Sveyagin spinel lherzolites are from a Proterozoic microcontinent accreted to Eurasia during the Mesozoic. Sveyagin xenoliths have not experienced Re addition. Instead, Re (0.06-0.20 ppb) and PGE concentrations, 187Os/188Os (0.120-0.129), and 187Re/188Os (0.182-0.433) are consistent with minor to moderate melt extraction from primitive mantle. A Re-Os isochron estimates that Sveyagin xenoliths formed at ~ 1.9 Ga, consistent with TMA ages (1.4-3.4 Ga). This may be coeval with a metasomatic event that affected the Tok region (Ionov et al

  14. Multiple Emplacement and Exhumation History of the Late Mesozoic Dayunshan-Mufushan Batholith in Southeast China and Its Tectonic Significance: 2. Magnetic Fabrics and Gravity Survey

    NASA Astrophysics Data System (ADS)

    Ji, Wenbin; Chen, Yan; Chen, Ke; Wei, Wei; Faure, Michel; Lin, Wei

    2018-01-01

    The Late Mesozoic magmatic province is a prominent feature of the South China Block (SCB). However, the tectonic regimes associated with the magmatism are still elusive. A combined anisotropy of magnetic susceptibility and gravity study has been carried out to determine the fabric patterns and shape at depth of the Dayunshan-Mufushan composite batholith in the north-central SCB. This is a companion paper to Part 1 that presented the structural and geochronological data of this batholith. The magnetic fabrics in the batholith interior predominantly reflect magma flow structures. Two distinct patterns of the magnetic lineations are defined, around NNE-SSW and WNW-ESE trends for the early-stage and late-stage intrusions of the batholith, respectively. The gravity survey reveals that the early-stage intrusion has a main feeder zone located below its northern part, while several linear feeder zones trending NNE-SSW are inferred for the late-stage intrusion. Integrating all results, a two-stage construction of the batholith with distinct tectonic regimes has been established. It is concluded that the early-stage intrusion experienced a southward magma transport during its emplacement, partially assisted by far-field compression from the north at ca. 150 Ma. Conversely, the emplacement and exhumation of the late-stage intrusion was accommodated by a NW-SE crustal stretching involving a lateral magma expansion above the multiple feeder zones (likely corresponding to extensional fractures) and ductile shearing during 132-95 Ma localized mainly along the Dayunshan detachment fault. Finally, we discuss the geodynamic linkage between the paleo-Pacific subduction and the Late Mesozoic tectonomagmatism in the SCB.

  15. Oblique strike-slip motion off the Southeastern Continental Margin of India: Implication for the separation of Sri Lanka from India

    NASA Astrophysics Data System (ADS)

    Desa, Maria Ana; Ismaiel, Mohammad; Suresh, Yenne; Krishna, Kolluru Sree

    2018-05-01

    The ocean floor in the Bay of Bengal has evolved after the breakup of India from Antarctica since the Early Cretaceous. Recent geophysical investigations including updated satellite derived gravity map postulated two phases for the tectonic evolution of the Bay of Bengal, the first phase of spreading occurred in the NW-SE direction forming its Western Basin, while the second phase occurred in the N-S direction resulting in its Eastern Basin. Lack of magnetic data along the spreading direction in the Western Basin prompted us to acquire new magnetic data along four tracks (totaling ∼3000 km) to validate the previously identified magnetic anomaly picks. Comparison of the synthetic seafloor spreading model with the observed magnetic anomalies confirmed the presence of Mesozoic anomalies M12n to M0 in the Western Basin. Further, the model suggests that this spreading between India and Antarctica took place with half-spreading rates of 2.7-4.5 cm/yr. The trend of the fracture zones in the Western Basin with respect to that of the Southeastern Continental Margin of India (SCMI) suggests that SCMI is an oblique transform margin with 37° obliquity. Further, the SCMI consists of two oblique transform segments separated by a small rift segment. The strike-slip motion along the SCMI is bounded by the rift segments of the Northeastern Continental Margin of India and the southern margin of Sri Lanka. The margin configuration and fracture zones inferred in its conjugate Western Enderby Basin, East Antarctica helped in inferring three spreading corridors off the SCMI in the Western Basin of the Bay of Bengal. Detailed grid reconstruction models traced the oblique strike-slip motion off the SCMI since M12n time. The strike-slip motion along the short northern transform segment ended by M11n time. The longer transform segment, found east of Sri Lanka lost its obliquity and became a pure oceanic transform fault by M0 time. The eastward propagation of the Africa

  16. Tectonic Evolution of Mozambique Ridge in East African continental margin

    NASA Astrophysics Data System (ADS)

    Tang, Yong

    2017-04-01

    Tectonic Evolution of Mozambique Ridge in East African continental margin Yong Tang He Li ES.Mahanjane Second Institute of Oceanography,SOA,Hangzhou The East Africa passive continental margin is a depression area, with widely distributed sedimentary wedges from southern Mozambique to northern Somali (>6500km in length, and about 6km in thickness). It was resulted from the separation of East Gondwana, and was developed by three stages: (1) rifting in Early-Middle Jurassic; (2) spreading from Late Jurassic to Early Cretaceous; (3) drifting since the Cretaceous period. Tectonic evolution of the Mozambique continental margin is distinguished by two main settings separated by a fossil transform, the Davie Fracture Zone; (i) rifting and transform setting in the northern margin related to opening of the Somali and Rovuma basins, and (ii) rifting and volcanism setting during the opening of the Mozambique basin in the southern margin. 2D reflection seismic investigation of the crustal structure in the Zambezi Delta Depression, provided key piece of evidence for two rifting phases between Africa and Antarctica. The magma-rich Rift I phase evolved from rift-rift-rift style with remarkable emplacement of dyke swarms (between 182 and 170 Ma). Related onshore outcrops are extensively studied, the Karoo volcanics in Mozambique, Zimbabwe and South Africa, all part of the Karoo "triple-junction". These igneous bodies flow and thicken eastwards and are now covered by up to 5 km of Cretaceous and Tertiary sediments and recorded by seismic and oil exploration wells. Geophysical and geological data recorded during oceanographic cruises provide very controversial results regarding the nature of the Mozambique Ridge. Two conflicting opinions remains open, since the early expeditions to the Indian Ocean, postulating that its character is either magmatic (oceanic) or continental origin. We have carried out an China-Mozambique Joint Cruise(CMJC) on southern Mozambique Basin on 1st June to

  17. 100-million-year dynasty of giant planktivorous bony fishes in the Mesozoic seas.

    PubMed

    Friedman, Matt; Shimada, Kenshu; Martin, Larry D; Everhart, Michael J; Liston, Jeff; Maltese, Anthony; Triebold, Michael

    2010-02-19

    Large-bodied suspension feeders (planktivores), which include the most massive animals to have ever lived, are conspicuously absent from Mesozoic marine environments. The only clear representatives of this trophic guild in the Mesozoic have been an enigmatic and apparently short-lived Jurassic group of extinct pachycormid fishes. Here, we report several new examples of these giant bony fishes from Asia, Europe, and North America. These fossils provide the first detailed anatomical information on this poorly understood clade and extend its range from the lower Middle Jurassic to the end of the Cretaceous, showing that this group persisted for more than 100 million years. Modern large-bodied, planktivorous vertebrates diversified after the extinction of pachycormids at the Cretaceous-Paleogene boundary, which is consistent with an opportunistic refilling of vacated ecospace.

  18. New Insight Into the Crustal Structure of the Continental Margin offshore NW Sabah/Borneo

    NASA Astrophysics Data System (ADS)

    Barckhausen, U.; Franke, D.; Behain, D.; Meyer, H.

    2002-12-01

    The continental margin offshore NW Sabah/Borneo (Malaysia) has been investigated with reflection and refraction seismics, magnetics, and gravity during the recent cruise BGR01-POPSCOMS. A total of 4000 km of geophysical profiles has been acquired, thereof 2900 km with reflection seismics. The focus of investigations was on the deep water areas. The margin looks like a typical accretionary margin and was presumably formed during the subduction of a proto South China Sea. Presently, no horizontal movements between the two plates are being observed. Like in major parts of the South China Sea, the area seaward of the Sabah Trough consists of extended continental lithosphere which is characterised by a pattern of rotated fault blocks and half grabens and a carbonate platform of Early Oligocene to Early Miocene age. We found evidence that the continental crust also underlies the Sabah Trough and the adjacent continental slope, a fact that raises many questions about the tectonic history and development of this margin. The tectonic pattern of the Dangerous Grounds' extended continental crust can be traced a long way landward of the Sabah Trough beneath the sedimentary succession of the upper plate. The magnetic anomalies which are dominated by the magnetic signatures of relatively young volcanic features also continue under the continental slope. The sedimentary rocks of the upper plate, in contrast, seem to generate hardly any magnetic anomalies. Based on the new data we propose the following scenario for the development of the NW Sabah continental margin: Seafloor spreading in the present South China Sea started at about 30 Ma in the Late Oligocene. The spreading process separated the Dangerous Grounds area from the SE Asian continent and ceased in late Early Miocene when the oceanic crust of the proto South China Sea was fully subducted in eastward direction along the Borneo-Palawan Trough. During Lower and/or Middle Miocene, Borneo rotated counterclockwise and was

  19. Miocene tectono-stratigraphic history of La Mision basin, northwestern Baja California: implications for early tectonic development of southern California continental borderland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashby, J.R.; Minch, J.

    1988-03-01

    The middle Miocene La Mision basin in northwestern Baja California, Mexico, provides a rare opportunity to study an onshore portion of the southern California continental borderland. Stratigraphy, geometry of dispersal, and a variety of lithotypes within the volcanic and volcaniclastic sediments of the Rosarito Beach Formation provide clues to the nature of early tectonic evolution of this area during the Miocene. The elongated, trough-shaped La Mision basin formed in response to peninsular basement uplifts and the formation of volcanic highlands west of the present coastline. Lithologies and depositional environments represented within the basin sediments include: subaerial basalt flows and airfallmore » tuffs, submarine muddy- and sandy-matrix mudflow breccias, lapilli tuffs, crystal tuffs, tuffaceous sandstones,d diatomites, and conglomerates. The environments of deposition range from fluvatile to intertidal to shallow marine. Early basin infilling is characterized by sediments and basalts, with a western source terrane, that were deposited against the faulted seacliffs. progressive infilling against the seacliff resulted in the formation of an extensive eastward-sloping basaltic platform extending eastward to the foothill coastal belt of the Peninsular Ranges. Marine transgression and subsequent regression are recorded by diverse marine volcaniclastic lithologies. Abundant fossils, K-Ar dates, and paleomagnetic data obtained from the La Mision basin allow precise correlation with other areas in the continental borderland and provide conclusive evidence that this block of the borderland was formed and in its present position by 16-14 Ma.« less

  20. An alternative plate tectonic model for the Palaeozoic Early Mesozoic Palaeotethyan evolution of Southeast Asia (Northern Thailand Burma)

    NASA Astrophysics Data System (ADS)

    Ferrari, O. M.; Hochard, C.; Stampfli, G. M.

    2008-04-01

    An alternative model for the geodynamic evolution of Southeast Asia is proposed and inserted in a modern plate tectonic model. The reconstruction methodology is based on dynamic plate boundaries, constrained by data such as spreading rates and subduction velocities; in this way it differs from classical continental drift models proposed so far. The different interpretations about the location of the Palaeotethys suture in Thailand are revised, the Tertiary Mae Yuam fault is seen as the emplacement of the suture. East of the suture we identify an Indochina derived terrane for which we keep the name Shan-Thai, formerly used to identify the Cimmerian block present in Southeast Asia, now called Sibumasu. This nomenclatural choice was made on the basis of the geographic location of the terrane (Eastern Shan States in Burma and Central Thailand) and in order not to introduce new confusing terminology. The closure of the Eastern Palaeotethys is related to a southward subduction of the ocean, that triggered the Eastern Neotethys to open as a back-arc, due to the presence of Late Carboniferous-Early Permian arc magmatism in Mergui (Burma) and in the Lhasa block (South Tibet), and to the absence of arc magmatism of the same age East of the suture. In order to explain the presence of Carboniferous-Early Permian and Permo-Triassic volcanic arcs in Cambodia, Upper Triassic magmatism in Eastern Vietnam and Lower Permian-Middle Permian arc volcanites in Western Sumatra, we introduce the Orang Laut terranes concept. These terranes were detached from Indochina and South China during back-arc opening of the Poko-Song Ma system, due to the westward subduction of the Palaeopacific. This also explains the location of the Cathaysian West Sumatra block to the West of the Cimmerian Sibumasu block.

  1. The Pennsylvanian-early permian bird spring carbonate shelf, Southeastern California: Fusulinid biostratigraphy, paleogeographic evolution, and tectonic implications

    USGS Publications Warehouse

    Stevens, C.H.; Stone, P.

    2007-01-01

    transported eastward on the Last Chance thrust. By middle Sakmarian (middle middle Wolfcampian) time (within Fusulinid Zone 4), emplacement of the Last Chance allochthon was complete, and subsidence caused by thrust loading had resulted in development of a new turbidite basin (Darwin Basin) along the former western part of the Bird Spring Shelf. At the same time, farther east into the craton, paralic facies began prograding westward, so that the youngest fusulinid-bearing limestones on the shelf in this area become progressively younger to the west. Eventually, in Artinskian to Kungurian (late Wolfcampian to Leonardian) time (Fusulinid Zones 5 and 6), deposition of fusulinid-bearing limestone on the shelf was restricted to a marginal belt between the prograding paralic facies to the east and the Darwin Basin to the west. Development of the Keeler Basin in Pennsylvanian to earliest Permian time was approximately coeval with collision between South America-Africa (Gondwana) and North America (Laurentia) on the Ouachita-Marathon orogenic belt. This basin developed inboard of a northwest-trending, sinistral fault zone that truncated the continental margin. Later, in the Early Permian, the Last Chance allochthon, which was part of a northeast-trending belt of deformation that extended into northeastern Nevada, was emplaced. This orogenic belt probably was driven by convergence at the continental margin to the northwest. This work adds significant detail to existing interpretations of the late Paleozoic as a time of major tectonic instability on the continental margin of southeastern California as it changed from a relatively passive margin that had characterized most of the Paleozoic to an active convergent margin that would characterize the Mesozoic. ?? 2007 The Geological Society of America. All rights reserved.

  2. Continental crust beneath southeast Iceland.

    PubMed

    Torsvik, Trond H; Amundsen, Hans E F; Trønnes, Reidar G; Doubrovine, Pavel V; Gaina, Carmen; Kusznir, Nick J; Steinberger, Bernhard; Corfu, Fernando; Ashwal, Lewis D; Griffin, William L; Werner, Stephanie C; Jamtveit, Bjørn

    2015-04-14

    The magmatic activity (0-16 Ma) in Iceland is linked to a deep mantle plume that has been active for the past 62 My. Icelandic and northeast Atlantic basalts contain variable proportions of two enriched components, interpreted as recycled oceanic crust supplied by the plume, and subcontinental lithospheric mantle derived from the nearby continental margins. A restricted area in southeast Iceland--and especially the Öræfajökull volcano--is characterized by a unique enriched-mantle component (EM2-like) with elevated (87)Sr/(86)Sr and (207)Pb/(204)Pb. Here, we demonstrate through modeling of Sr-Nd-Pb abundances and isotope ratios that the primitive Öræfajökull melts could have assimilated 2-6% of underlying continental crust before differentiating to more evolved melts. From inversion of gravity anomaly data (crustal thickness), analysis of regional magnetic data, and plate reconstructions, we propose that continental crust beneath southeast Iceland is part of ∼350-km-long and 70-km-wide extension of the Jan Mayen Microcontinent (JMM). The extended JMM was marginal to East Greenland but detached in the Early Eocene (between 52 and 47 Mya); by the Oligocene (27 Mya), all parts of the JMM permanently became part of the Eurasian plate following a westward ridge jump in the direction of the Iceland plume.

  3. Continental crust beneath southeast Iceland

    PubMed Central

    Torsvik, Trond H.; Amundsen, Hans E. F.; Trønnes, Reidar G.; Doubrovine, Pavel V.; Gaina, Carmen; Kusznir, Nick J.; Steinberger, Bernhard; Corfu, Fernando; Ashwal, Lewis D.; Griffin, William L.; Werner, Stephanie C.; Jamtveit, Bjørn

    2015-01-01

    The magmatic activity (0–16 Ma) in Iceland is linked to a deep mantle plume that has been active for the past 62 My. Icelandic and northeast Atlantic basalts contain variable proportions of two enriched components, interpreted as recycled oceanic crust supplied by the plume, and subcontinental lithospheric mantle derived from the nearby continental margins. A restricted area in southeast Iceland—and especially the Öræfajökull volcano—is characterized by a unique enriched-mantle component (EM2-like) with elevated 87Sr/86Sr and 207Pb/204Pb. Here, we demonstrate through modeling of Sr–Nd–Pb abundances and isotope ratios that the primitive Öræfajökull melts could have assimilated 2–6% of underlying continental crust before differentiating to more evolved melts. From inversion of gravity anomaly data (crustal thickness), analysis of regional magnetic data, and plate reconstructions, we propose that continental crust beneath southeast Iceland is part of ∼350-km-long and 70-km-wide extension of the Jan Mayen Microcontinent (JMM). The extended JMM was marginal to East Greenland but detached in the Early Eocene (between 52 and 47 Mya); by the Oligocene (27 Mya), all parts of the JMM permanently became part of the Eurasian plate following a westward ridge jump in the direction of the Iceland plume. PMID:25825769

  4. The structure of a Mesozoic basin beneath the Lake Tana area, Ethiopia, revealed by magnetotelluric imaging

    NASA Astrophysics Data System (ADS)

    Hautot, Sophie; Whaler, Kathryn; Gebru, Workneh; Desissa, Mohammednur

    2006-03-01

    The northwestern Plateau of Ethiopia is almost entirely covered with extensive Tertiary continental flood basalts that mask the underlying formations. Mesozoic and Tertiary sediments are exposed in a few locations surrounding the Lake Tana area suggesting that the Tana depression is an extensional basin buried by the 1-2 km thick Eocene-Oligocene flood basalt sequences in this region. A magnetotelluric survey has been carried out to investigate the deep structure of the Tana area. The objectives were to estimate the thickness of the volcanics and anticipated underlying sedimentary basin. We have collected 27 magnetotelluric soundings south and east of Lake Tana. Two-dimensional inversion of the data along a 160 km long profile gives a model consistent with a NW-SE trending sedimentary basin beneath the lava flows. The thickness of sediments overlying the Precambrian basement averages 1.5-2 km, which is comparable to the Blue Nile stratigraphic section, south of the area. A 1 km thickening of sediments over a 30-40 km wide section suggests that the form of the basin is a half-graben. It is suggested that electrically resistive features in the model are related to volcanic materials intruded within the rift basin sediments through normal faults. The results illustrate the strong control of the Precambrian fracture zones on the feeding of the Tertiary Trap series.

  5. Continental Arcs as Both Carbon Source and Sink in Regulating Long Term Climate

    NASA Astrophysics Data System (ADS)

    Jiang, H.; Lee, C. T.

    2017-12-01

    The long-term variability of atmospheric pCO2 is determined by the balance between the rate of geologic inputs of CO­­2 (e.g., magmatic/metamorphic degassing, carbonate weathering) and the rate of carbonate precipitation driven by silicate weathering. The Late Cretaceous-Early Cenozoic was characterized by elevated atmospheric pCO2 and greenhouse climate, likely due to increased magmatic flux from mid-ocean ridges and, in particular, continental arcs. However, it has been suggested that continental arc magmatism is accompanied by rapid uplift and erosion due to magmatic/tectonic thickening of the crust, thus continental arcs likely enhance the chemical weathering flux, in turn increasing the carbon sink. To assess the contribution of continental arcs to global carbon inputs and sinks, we conducted a case study in the Cretaceous Peninsular Ranges batholith (PRB) and associated forearc basin in southern California, USA, representing one segment of the Cretaceous Cordillera arc-forearc system. Arc magmatism occurred between 170-85 Ma, peaking at 100 Ma, but erosion of the arc continues into the early Eocene, with forearc sediments representing this protracted arc unroofing. During magmatism, we estimate the CO2 degassing flux from the PRB was at least 5-25*105 mol·km-2·yr-1. By calculating the depletion of Ca and Mg in the forearc sediments relative to their arc protoliths, we estimate the silicate weathering/carbonate precipitation flux to be 106 mol·km-2·yr-1 during Late Cretaceous magmatism, decreasing to 105 mol·km-2·yr-1 by the Early Eocene. We show that during active continental arc magmatism, the CO2 degassing flux is comparable to CO2 consumption driven by silicate weathering in the arc. However, after magmatism ends, a regional imbalance arises in which the arc no longer contributes to CO2 inputs but continued silicate weathering of the arc drives carbonate precipitation such that the arc indirectly becomes CO2 sink. We propose that the development of

  6. Mesozoic Compressional Folds of the Nansha Waters, Southern South China Sea

    NASA Astrophysics Data System (ADS)

    Zhu, R.; Liu, H.; Yao, Y.; Wang, Y.

    2017-12-01

    As an important part of the South China Sea, the southern margin of the South China Sea is fundamental to understand the interaction of the Eurasian, Pacific and Indian-Australian plates and the evolution of the South China Sea. Some multi-channel seismic profiles of the Nansha waters together with published drillings and dredge data were correlated for interpretation. The strata of the study region can be divided into the upper, middle and lower structural layers. The upper and middle structural layers with extensional tectonics are Cenozoic; the lower structural layer suffered compression is Mesozoic. Further structural restoration was done to remove the Cenozoic tectonic influence and to calculate the Mesozoic tectonic compression ratios. The results indicate that two diametrically opposite orientations of compressive stress, S(S)E towards N(N)W orientation and N(N)W towards S(S)E orientation respectively, once existed in the lower structural layer of the study area and shared the same variation trend. The compression ratio values gradually decrease both from the north to the south and from the west to the east in each stress orientation. The phenomena may be related to the opening of the proto-South China Sea (then located in south of the Nansha block) and the rate of the Nansha block drifted northward in Late Jurassic to Late Cretaceous, which had pushed the Nansha block drifted northward until it collided and sutured with the Southern China Margin. Thus the opening of the present-day South China Sea may be related to this suture zone, which was tectonically weakness zone.Key words: Mesozoic compression; structural restoration; proto-South China Sea; Nansha waters; Southern South China Sea; Acknowledgements: The work was granted by the National Natural Science Foundation of China (Grant Nos. 41476039, 91328205, 41576068 and 41606080).

  7. Astronomical Constraints on the Duration of Early Jurassic Stages and Global Carbon Cycle and Climatic Perturbations

    NASA Astrophysics Data System (ADS)

    Ruhl, M.; Hesselbo, S. P.; Hinnov, L.; Jenkyns, H. C.; Storm, M.; Xu, W.; Riding, J. B.; Ullmann, C. V.

    2015-12-01

    The Early Jurassic (201.3 to 174.1 Ma) is bracketed by the end-Triassic mass extinction and global warming event, and the Toarcian-Aalenian shift to (global) icehouse conditions (McElwain et al., 1999; Hesselbo et al., 2002; Ruhl et al., 2011; Korte et al., in review). It is further marked by the early Toarcian Oceanic Anoxic Event (T-OAE), with possibly the largest exogenic carbon cycle perturbation of the Mesozoic and related perturbations in global geochemical cycles, climate and the environment, which are linked to large igneous province emplacement in the Karoo-Ferrar region (Jenkyns, 2010; Burgess et al., 2015). Furthermore, Early Jurassic continental rifting and the break-up of Pangaea and subsequent Early Jurassic opening of the Hispanic Corridor and Viking Strait respectively linked the equatorial Tethys Ocean to Eastern Panthalassa and the high-latitude Arctic Boreal realm. This initiated changes in (global) ocean currents and Earth's heat distribution and ultimately was followed by the opening of the proto-North Atlantic (Porter et al., 2013; Korte et al., in review). Here, we present high-resolution (sub-precession scale) elemental concentration data from the Mochras borehole (UK), which represents ~1300m of possibly the most complete and expanded lower Jurassic hemi-pelagic marine sedimentary archive known. We construct a floating ~9 Myr astronomical time-scale for the complete Early Jurassic Pliensbachian stage and biozones. Combined with radiometric and astrochronological constraints on early Jurassic stage boundaries, we construct a new Early Jurassic Time-Scale. With this we assess the duration and rate of change of early Jurassic global carbon cycle and climatic perturbations and we asses fundamental changes in the nature and expression of Early Jurassic long (100 - 1000 kyr) eccentricity cycles.

  8. Preliminary Depositional and Provenance Records of Mesozoic Basin Evolution and Cenozoic Shortening in the High Andes, La Ramada Fold-Thrust Belt, Southern-Central Andes (32-33°S)

    NASA Astrophysics Data System (ADS)

    Mackaman-Lofland, C.; Horton, B. K.; Fuentes, F.; Constenius, K. N.; McKenzie, R.; Alvarado, P. M.

    2015-12-01

    The Argentinian Andes define key examples of retroarc shortening and basin evolution above a zone of active subduction. The La Ramada fold-thrust belt (RFTB) in the High Andes provides insights into the relative influence and temporal records of diverse convergent margin processes (e.g. flat-slab subduction, convergent wedge dynamics, structural inversion). The RFTB contains Mesozoic extensional basin strata deformed by later Andean shortening. New detrital zircon U-Pb analyses of Mesozoic rift sediments reveal: (1) a dominant Permo-Triassic age signature (220-280 Ma) associated with proximal sources of effective basement (Choiyoi Group) during Triassic synrift deposition; (2) upsection younging of maximum depositional ages from Late Triassic through Early Cretaceous (230 to 100 Ma) with the increasing influence of western Andean arc sources; and (3) a significant Late Cretaceous influx of Paleozoic (~350-550 Ma) and Proterozoic (~650-1300 Ma) populations during the earliest shift from back-arc post-extensional subsidence to upper-plate shortening. The Cenozoic detrital record of the Manantiales foreland basin (between the Frontal Cordillera and Precordillera) records RFTB deformation prior to flat-slab subduction. A Permo-Triassic Choiyoi age signature dominates the Miocene succession, consistent with sources in the proximal Espinacito range. Subordinate Mesozoic (~80-250 Ma) to Proterozoic (~850-1800 Ma) U-Pb populations record exhumation of the Andean magmatic arc and recycling of different structural levels in the RFTB during thrusting/inversion of Mesozoic rift basin strata and subjacent Paleozoic units. Whereas maximum depositional ages of sampled Manantiales units cluster at 18-20 Ma, the Estancia Uspallata basin (~50 km to the south) shows consistent upsection younging of Cenozoic populations attributed to proximal volcanic centers. Ongoing work will apply low-temperature thermochronology to pinpoint basin accumulation histories and thrust timing.

  9. Structural and kinematic evolution of the Yukon-Tanana upland tectonites, east-central Alaska: A record of late Paleozoic to Mesozoic crustal assembly

    USGS Publications Warehouse

    Hansen, V.L.; Dusel-Bacon, C.

    1998-01-01

    The Yukon-Tanana terrane, the largest tectonostratigraphic terrane in the northern North American Cordillera, is polygenetic and not a single terrane. Lineated and foliated (L-S) tectonites, which characterize the Yukon-Tanana terrane, record multiple deformations and formed at different times. We document the polyphase history recorded by L-S tectonites within the Yukon-Tanana upland, east-central Alaska. These upland tectonites compose a heterogeneous assemblage of deformed igneous and metamorphic rocks that form the Alaskan part of what has been called the Yukon-Tanana composite terrane. We build on previous kinematic data and establish the three-dimensional architecture of the upland tectonites through kinematic and structural analysis of more than 250 oriented samples, including quartz c-axis fabric analysis of 39 samples. Through this study we distinguish allochthonous tectonites from parautochthonous tectonites within the Yukon-Tanana upland. The upland tectonites define a regionally coherent stacking order: from bottom to top, they are lower plate North American parautochthonous attenuated continental margin; continentally derived marginal-basin strata; and upper plate ocean-basin and island-arc rocks, including some continental basement rocks. We delineate three major deformation events in time, space, and structural level across the upland from the United States-Canada border to Fairbanks, Alaska: (1) pre-Early Jurassic (>212 Ma) northeast-directed, apparent margin-normal contraction that affected oceanic rocks; (2) late Early to early Middle Jurassic (>188-185 Ma) northwest-directed, apparent margin-parallel contraction and imbrication that resulted in juxtaposition of the allochthonous tectonites with parautochthonous continental rocks; and (3) Early Cretaceous (135-110 Ma) southeast-directed crustal extension that resulted in exposure of the structurally deepest, parautochthonous continental rocks. The oldest event represents deformation within a west

  10. Constraints from Mesozoic siliciclastic cover rocks and satellite image analysis on the slip history of regional E-W faults in the southeast Western Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Tewksbury, Barbara J.; Mehrtens, Charlotte J.; Gohlke, Steven A.; Tarabees, Elhamy A.; Hogan, John P.

    2017-12-01

    In the southeast Western Desert of Egypt, a prominent set of E-W faults and co-located domes and basins involve sedimentary cover rock as young as the early Eocene. Although earlier Mesozoic slip on faults in southern Egypt has been widely mentioned in the literature and attributed to repeated reactivation of basement faults, evidence is indirect and based on the idea that regional stresses associated with tectonic events in the Syrian Arc would likely have reactivated basement faults in south Egypt in dextral strike slip during the Mesozoic as well as the Cenozoic. Here, we present direct evidence from the rock record for the sequence of development of features along these faults. Southwest of Aswan, a small structural dome in Mesozoic Nubia facies rocks occurs where the Seiyal Fault bends northward from west to east. The dome is cut by strands of the Seiyal Fault and a related set of cataclastic deformation bands showing dominantly right lateral strike slip, as well as by younger calcite veins with related patchy poikilotopic cement. High resolution satellite image analysis of the remote southwest Kharga Valley shows a similar sequence of events: older structural domes and basins located where E-W faults bend northward from west to east, right lateral offset of domes and basins along the E-W faults, and two sets of deformation band faults that lack co-located domes and basins. We suggest that field data, image analysis, and burial depth estimates are best explained by diachronous development of features along the E-W fault system. We propose that Late Mesozoic right lateral strike slip produced domes and basins in Nubia facies rocks in stepover regions above reactivated basement faults. We further suggest that the extensively linked segments of the E-W fault system in Nubia facies rocks, plus the deformation band systems, formed during the late Eocene when basement faults were again reactivated in dominantly right lateral strike slip.

  11. Dykes as Tracers of Continental Break-up: Argon Geochronology of Mesozoic Flood Basalts of Western Dronning Maud Land, Antarctica

    NASA Astrophysics Data System (ADS)

    Fazel, A.; Kelley, S. P.; Leat, P. T.; Hawkesworth, C.

    2003-04-01

    The British Antarctic Survey MAMOG Project (Magmatism as A Monitor Of Gondwana break up processes) is investigating the mantle processes that resulted in the eruption of the Karoo-Dronning Maud Land CFB suite and its importance in our understanding of the initial stages of Gondwana break-up. One of the problems of understanding the 180Ma continental flood basalts is knowing their precise age. Since they are erupted through more ancient (1000Ma) rocks we have to use the Ar-Ar dating technique to determine whether they are related to the continental break-up or are part of some older event. In addition, we have analysed the chemistry of the dykes and can relate them to several chemical types, the challenge is to test if dykes with similar chemistry all erupted at the same time. It has been suggested that many of the Jurassic dykes in western DML fed the CFB suite that is higher in the volcanic pile. We have found dykes of different ages in the Kirwanveggen and Ahlmannryggen regions of western DML. Although more work needs to be done, we now have mounting evidence to suggest that episodes of chemically similar magmatism in DML stretched from 1000-180Ma with some events separated by hundreds of millions of years implying a lithospheric mantle control on magma composition. The precise ages for the dykes are slightly younger than the accepted ages for the South African Karoo province. In addition to determining the ages of dyke intrusions, a high spatial resolution UV laser has been used to measure argon loss from diorite host rocks adjacent to the dykes. Progressive heating of the country rock during magma emplacement causes argon loss. Thermal modelling of the dykes will allow us to differentiate between various heat loss mechanisms and give an indication of the style, volume and rapidity of magma flow through the dyke. The UV results have shown that some of the dykes were active for long periods probably feeding the surface lava eruptions.

  12. NRC Continental Margins Workshop

    NASA Astrophysics Data System (ADS)

    Katsouros, Mary Hope

    The Ocean Studies Board of the National Research Council is organizing a workshop, “Continental Margins: Evolution of Passive Continental Margins and Active Marginal Processes,” to stimulate discussion and longterm planning in the scientific community about the evolution of all types of continental margins. We want to coordinate academic, industry, and government agency efforts in this field, and to enhance communication between sea-based and land-based research programs.The continental margins constitute the only available record of the long-term dynamic interaction of oceanic and continental lithosphere. Of great interest are the unique structures and thick sedimentary sequences associated with this interaction. A major focus of the workshop will be to define strategies for exploring and understanding the continental margins in three dimensions and through geologic time. The workshop will be divided into 7 working groups, each concentrating on a major issue in continental margins research. A background document is being prepared summarizing recent research in specific continental margin fields and identifying key scientific and technical issues.

  13. Distribution of oceanic and continental leads in the Arabian-Nubian Shield

    USGS Publications Warehouse

    Stacey, J.S.; Stoeser, D.B.

    1983-01-01

    New common lead data for feldspar, whole-rock, and galena samples from the Arabian-Nubian Shield, together with data from previous work, can be divided into two main groups. Group I leads have oceanic (mantle) characteristics, whereas group II leads have incorporated a continental-crustal component of at least early Proterozoic age. The group I leads are found in rocks from the Red Sea Hills of Egypt and the western and southern parts of the Arabian Shield. Group II leads are found in rocks from the northeastern and eastern parts of the Arabian Shield, as well as from the southeastern Shield near Najran. They are also found in rocks to the south in Yemen, to the east in Oman, and to the west at Aswan, Egypt. This distribution of data suggests that the Arabian-Nubian Shield has an oceanic core flanked by rocks that have developed, at least in part, from older continental material. Two mechanisms are suggested by which this older lead component could have been incorporated into the late Proterozoic rocks, and each may have operated in different parts of the Shield. The older lead component either was derived directly from an underlying early Proterozoic basement or was incorporated from subducted pelagic sediments or sediments derived from an adjacent continent. New U-Pb zircon data indicate the presence of an early Proterozoic basement southeast of Jabal Dahul in the eastern Arabian Shield. These data, together with 2,000-Ma-old zircons from the Al Amar fault zone, verify the implication of the common lead data that at least a part of the eastern Arabian Shield has an older continental basement. Because continental margins are particularly favorable locations for development of ore deposits, these findings may have important economic implications, particularly for tin, tungsten, and molybdenum exploration. ?? 1983 Springer-Verlag.

  14. Anorthosite belts, continental drift, and the anorthosite event

    USGS Publications Warehouse

    Herz, N.

    1969-01-01

    Most anorthosites lie in two principal belts when plotted on a predrift continental reconstruction. Anorthosite ages in the belts cluster around 1300 ?? 200 million years and range from 1100 to 1700 million years. This suggests that anorthosites are the product of a unique cataclysmic event or a thermal event that was normal only during the earth's early history.

  15. Anorthosite belts, continental drift, and the anorthosite event.

    PubMed

    Herz, N

    1969-05-23

    Most anorthosites lie in two principal belts when plotted on a predrift continental reconstruction. Anorthosite ages in the belts cluster around 1300 +/- 200 million years and range from 1100 to 1700 million years. This suggests that anorthosites are the product of a unique cataclysmic event or a thermal event that was normal only during the earth's early history.

  16. Formation of continental crust by intrusive magmatism

    NASA Astrophysics Data System (ADS)

    Rozel, A. B.; Golabek, G. J.; Jain, C.; Tackley, P. J.; Gerya, T.

    2017-09-01

    How were the continents formed in the Earth? No global numerical simulation of our planet ever managed to generate continental material self-consistently. In the present study, we show that the latest developments of the convection code StagYY enable to estimate how to produce the early continents, more than 3 billion years ago. In our models, melting of pyrolitic rocks generates a basaltic melt and leaves behind a depleted solid residue (a harzburgite). The melt generated in the mantle is transported to the surface. Only basaltic rocks melting again can generate continental crust. Should the basaltic melt always reach the open air and cool down? Should the melt be intruded warm in the pre-existing crust? The present study shows that both processes have to be considered to produce continents. Indeed, granitoids can only be created in a tight window of pressure-temperature. If all basalt is quickly cooled by surface volcanism, the lithosphere will be too cold. If all basalt is intruded warm below the crust then the lithosphere will be too warm. The key is to have both volcanism and plutonism (intrusive magmatism) to reach the optimal temperature and form massive volumes of continental material.

  17. Tectonics of Antarctica

    USGS Publications Warehouse

    Hamilton, W.

    1967-01-01

    Antarctica consists of large and wholly continental east Antarctica and smaller west Antarctica which would form large and small islands, even after isostatic rebound, if its ice cap were melted. Most of east Antarctica is a Precambrian Shield, in much of which charnockites are characteristic. The high Transantarctic Mountains, along the Ross and Weddell Seas, largely follow a geosyncline of Upper Precambrian sedimentary rocks that were deformed, metamorphosed and intruded by granitic rocks during Late Cambrian or Early Ordovician time. The rocks of the orogen were peneplained, then covered by thin and mostly continental Devonian-Jurassic sediments, which were intruded by Jurassic diabase sheets and overlain by plateau-forming tholeiites. Late Cenozoic doming and block-faulting have raised the present high mountains. Northeastern Victoria Land, the end of the Transantarctic Mountains south of New Zealand, preserves part of a Middle Paleozoic orogen. Clastic strata laid unconformably upon the Lower Paleozoic plutonic complex were metamorphosed at low grade, highly deformed and intruded by Late Devonian or Early Carboniferous granodiorites. The overlying Triassic continental sedimentary rocks have been broadly folded and normal-faulted. Interior west Antarctica is composed of miogeosynclinal clastic and subordinate carbonate rocks which span the Paleozoic Era and which were deformed, metamorphosed at generally low grade, and intruded by granitic rocks during Early Mesozoic time and possibly during other times also. Patterns of orogenic belts, if systematic, cannot yet be defined; but fragmentation and rotation of crustal blocks by oroclinal folding and strike-slip faulting can be suggested. The Ellsworth Mountains, for example, consist of Cambrian-Permian metasedimentary rocks that strike northward toward the noncorrelative and latitudinally striking Mesozoic terrane of the Antarctic Peninsula in one direction and southward toward that of the Lower Paleozoic: terrane

  18. Mongolian Oil Shale, hosted in Mesozoic Sedimentary Basins

    NASA Astrophysics Data System (ADS)

    Bat-Orshikh, E.; Lee, I.; Norov, B.; Batsaikhan, M.

    2016-12-01

    Mongolia contains several Mesozoic sedimentary basins, which filled >2000 m thick non-marine successions. Late Triassic-Middle Jurassic foreland basins were formed under compression tectonic conditions, whereas Late Jurassic-Early Cretaceous rift valleys were formed through extension tectonics. Also, large areas of China were affected by these tectonic events. The sedimentary basins in China host prolific petroleum and oil shale resources. Similarly, Mongolian basins contain hundreds meter thick oil shale as well as oil fields. However, petroleum system and oil shale geology of Mongolia remain not well known due to lack of survey. Mongolian oil shale deposits and occurrences, hosted in Middle Jurassic and Lower Cretaceous units, are classified into thirteen oil shale-bearing basins, of which oil shale resources were estimated to be 787 Bt. Jurassic oil shale has been identified in central Mongolia, while Lower Cretaceous oil shale is distributed in eastern Mongolia. Lithologically, Jurassic and Cretaceous oil shale-bearing units (up to 700 m thick) are similar, composed mainly of alternating beds of oil shale, dolomotic marl, siltstone and sandstone, representing lacustrine facies. Both Jurassic and Cretaceous oil shales are characterized by Type I kerogen with high TOC contents, up to 35.6% and low sulfur contents ranging from 0.1% to 1.5%. Moreover, S2 values of oil shales are up to 146 kg/t. The numbers indicate that the oil shales are high quality, oil prone source rocks. The Tmax values of samples range from 410 to 447, suggesting immature to early oil window maturity levels. PI values are consistent with this interpretation, ranging from 0.01 to 0.03. According to bulk geochemistry data, Jurassic and Cretaceous oil shales are identical, high quality petroleum source rocks. However, previous studies indicate that known oil fields in Eastern Mongolia were originated from Lower Cretaceous oil shales. Thus, further detailed studies on Jurassic oil shale and its

  19. Reinterpretation of Mesozoic and Cenozoic tectonic events, Mountain Pass area, northeastern San Bernardino County, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nance, M.A.

    1993-04-01

    Detailed mapping, stratigraphic structural analysis in the Mountain Pass area has resulted in a reinterpretation of Mesozoic and Cenozoic tectonic events in the area. Mesozoic events are characterized by north vergent folds and thrust faults followed by east vergent thrusting. Folding created two synclines and an anticline which were than cut at different stratigraphic levels by subsequent thrust faults. Thrusting created composite tectono-stratigraphic sections containing autochthonous, para-autothonous, and allochthonous sections. Normal faults cutting these composite sections including North, Kokoweef, White Line, and Piute fault must be post-thrusting, not pre-thrusting as in previous interpretations. Detailed study of these faults results inmore » differentiation of at least three orders of faults and suggest they represent Cenozoic extension correlated with regional extensional events between 11 and 19 my. Mesozoic stratigraphy reflects regional orogenic uplift, magmatic activity, and thrusting. Inclusion of Kaibab clasts in the Chinle, Kaibab and Chinle clasts in the Aztec, and Chinle, Aztec, and previously deposited Delfonte Volcanics clasts in the younger members of the Delfonte Volcanics suggest regional uplift prior to the thrusting of Cambrian Bonanza King over Delfonte Volcanics by the Mescal Thrust fault. The absence of clasts younger than Kaibab argues against pre-thrusting activity for the Kokoweef fault.« less

  20. The Mesozoic-Cenozoic igneous intrusions and related sediment-dominated hydrothermal activities in the South Yellow Sea Basin, the Western Pacific continental margin

    NASA Astrophysics Data System (ADS)

    Yumao, Pang; Xunhua, Zhang; Guolin, Xiao; Luning, Shang; Xingwei, Guo; Zhenhe, Wen

    2018-04-01

    Various igneous complexes were identified in multi-channel seismic reflection profiles from the South Yellow Sea Basin. It is not rare that magmatic intrusions in sedimentary basins cause strong thermal perturbations and hydrothermal activities. Some intrusion-related hydrothermal vent complexes have been identified and they are considered to originate from the deep sedimentary contact aureole around igneous intrusions and terminate in upper vents structures, and are linked by a vertical conduit system. The upper vent complexes are usually eye-shaped, dome-shaped, fault-related, crater-shaped or pock-shaped in seismic profiles. A schematic model was proposed to illustrate the structures of different types of hydrothermal vent complexes. A conceptual conduit model composed of an upper pipe-like part and a lower branching part was also derived. Hydrothermal vent complexes mainly developed during the Middle-Late Cretaceous, which is coeval with, or shortly after the intrusion. The back-arc basin evolution of the area which is related to the subduction of the Paleo-Pacific plate during the Mesozoic-Cenozoic may be the principal factor for voluminous igneous complexes and vent complexes in this area. It is significant to study the characteristics of igneous complexes and related hydrothermal vent complexes, which will have implications for the future study of this area.

  1. Mesozoic rift basins in western desert of Egypt, their southern extension and impact on future exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taha, M.A.

    1988-08-01

    Rift basins are a primary target of exploration in east, central, and west Africa. These intracratonic rift basins range in age from the Triassic to the Neogene and are filled with lagoonal-lacustrine sand-shale sequences. Several rift basins may be present in the Western Desert of Egypt. In the northeastern African platform, the Mesozoic Tethyan strand lines were previously interpreted to have limited southern extension onto the continent. This concept, based upon a relatively limited amount of subsurface data, has directed and focused the exploration for oil and gas to the northernmost 120 km of the Western Desert of Egypt. Recentmore » well and geophysical data indicate a southerly extension of mesozoic rift basins several hundred kilometers inland from the Mediterranean Sea. Shushan/Faghur and Abu Gharadig/Bahrein basins may represent subparallel Mesozoic basins, trending northeast-southwest. Marine Oxfordian-Kimmeridgian sediments were recently reported from wells drilled approximately 500 km south of the present-day Mediterranean shoreline. The link of these basins with the Sirte basin to the southwest in Libya is not well understood. Exploration is needed to evaluate the hydrocarbon potential of such basins.« less

  2. Geological history of the west Libyan offshore and adjoining regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benniran, M.M.; Taleb, T.M.; McCrossan, R.G.

    1988-08-01

    The continental margin of the African plate north of Libya is separated from the Saharan platform to the south by a major Variscan fault system running along the coastline. The structural evolution of three sedimentary basins within the margin is discussed. The Jeffara basin, onshore western Libya-southern Tunisia, formed as a right-lateral pull-part late in the Variscan event. When the strike-slip motion ceased in the Late Permian, the basin continued to subside thermally. The Sabratah (Tripolitanian) basin, offshore western Libya-southern Tunisia, and the Benghazi basin in the Sirte rise were both formed as left-lateral pull-aparts in the Late Triassic-Early Jurassic.more » From the Middle Jurassic to the present they have subsided thermally. Onshore the lower Mesozoic is characterized by continental and nearshore clastics, separated by an evaporite sequence of Late Triassic-Early Jurassic age. Offshore this sequence is thought to grade northward into open marine carbonates. Uplift along the edge of the Saharan platform during the Early Cretaceous sourced coarse clastics, which grade northward into a thick sequence of shallow-water carbonates. Throughout the Late Cretaceous and early Tertiary, high-energy carbonates were deposited around the flanks of the Sabratah basin, grading into deeper-water, fine-grained clastics and carbonates toward the center of the basin. The late Tertiary succession is dominated by clastics derived from the growing Tellian Atlas to the northwest. During the Mesozoic and Tertiary a thick sequence of carbonates was deposited on the Pelagian platform to the north of the Sabratah basin. Periodically the platform was exposed subaerially.« less

  3. Paleoclimatic and paleolatitude settings of accumulation of radiolarian siliceous-volcanogenic sequences in the middle Mesozoic Pacific: Evidence from allochthons of East Asia

    NASA Astrophysics Data System (ADS)

    Vishnevskaya, V. S.; Filatova, N. I.

    2017-09-01

    Jurassic-Cretaceous siliceous-volcanogenic rocks from nappes of tectonostratigraphic sequences of the East Asia Middle Cretaceous Okhotsk-Koryak orogenic belt are represented by a wide range of geodynamic sedimentation settings: oceanic (near-spreading zones, seamounts, and deep-water basins), marginal seas, and island arcs. The taxonomic compositions of radiolarian communities are used as paleolatitude indicators in the Northern Pacific. In addition, a tendency toward climate change in the Mesozoic is revealed based on these communities: from the warm Triassic to the cold Jurassic with intense warming from the Late Jurassic to the Early Cretaceous. Cretaceous warming led to heating of ocean waters even at moderately high latitudes and to the development of Tethyan radiolarians there. These data are confirmed by a global Cretaceous temperature peak coinciding with a high-activity pulse of the planetary mantle superplume system, which created thermal anomalies and the greenhouse effect. In addition, the Pacific superplume attributed to this system caused accelerated movement of oceanic plates, which resulted in a compression setting on the periphery of the Pacific and the formation of the Okhotsk-Koryak orogenic belt on its northwestern framing in the Middle Cretaceous, where Mesozoic rocks of different geodynamic and latitudinal-climate settings were juxtaposed into allochthonous units.

  4. Revisiting the Mesozoic opening of the Southeastern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Marton, G.; Pascoe, R. P.

    2016-12-01

    The Southeastern Gulf of Mexico (SEGOM) is defined here as the seaway between Yucatan and Florida, south of the Tampa Embayment. This area is regarded as a southward propagating rift in the Gulf of Mexico. There is an overwhelming amount of previous evidence that the Yucatan block rotated counterclockwise about 42 degrees around a pole located just north of present-day Cuba (23oN, 84oW) during the Late Jurassic to Earliest Cretaceous oceanic spreading phase. North of the pole in the SEGOM the rotational movement of Yucatan was accommodated by a uniformly increasing amount of SW-NE extension. The degree of extension north of 25oN was large enough to result in rifting and oceanic spreading. Lack of salt in the area south of the Tampa embayment indicates that the SEGOM was not affected by the large amount of NW-SE continental extension as observed in the rest of the Gulf of Mexico. Thus, the area between Yucatan and the Sarasota arch remained a land bridge between the proto- GOM and the Proto-Caribbean and formed a barrier to salt deposition. During the period of late Jurassic oceanic crust formation (and Yucatan rotation), the southern tip of the oceanic spreading center propagated south from 27oN to 25oN, or about 220 km. In the 220 km long zone from 25oN to the pole (23oN) the rotation of Yucatan was accommodated by continental rifting only. The validity of the above outlined propagating rift model in the SEGOM is also supported by the age differences in the observed post-rift unconformities along its margins. At the edge of the salt basin to the north, the post-rift unconformity in the upper crust occurs at the base of the Louann salt and thus is Callovian in age. In the southern continental rift segment of the SEGOM, a seismic to well tie at the DSDP Site 535 shows that the post-rift unconformity is no younger than Late Berriasian to Early Valanginian. This latter age bracket constrains a) the cessation of continental rifting in the SEGOM, b) the time when the

  5. Estimating long-wavelength dynamic topographic change of passive continental margins since the Early Cretaceous

    NASA Astrophysics Data System (ADS)

    Müller, Dietmar; Hassan, Rakib; Gurnis, Michael; Flament, Nicolas; Williams, Simon

    2017-04-01

    The influence of mantle convection on dynamic topographic change along continental margins is difficult to unravel, because their stratigraphic record is dominated by tectonic subsidence caused by rifting. Yet, dynamic topography can potentially introduce significant depth anomalies along passive margins, influencing their water depth, sedimentary environments and geohistory. Here we follow a three-fold approach to estimate changes in dynamic topography along both continental interiors and passive margins based on a set of seven global mantle convection models. These models include different methodologies (forward and hybrid backward-forward methods), different plate reconstructions and alternative mantle rheologies. We demonstrate that a geodynamic forward model that includes adiabatic heating in addition to internal heating from radiogenic sources, and a mantle viscosity profile with a gradual increase in viscosity below the mantle transition zone, provides a greatly improved match to the spectral range of residual topography end-members as compared with previous models at very long wavelengths (spherical degrees 2-3). We combine global sea level estimates with predicted surface dynamic topography to evaluate the match between predicted continental flooding patterns and published paleo-coastlines by comparing predicted versus geologically reconstructed land fractions and spatial overlaps of flooded regions for individual continents since 140 Ma. Modelled versus geologically reconstructed land fractions match within 10% for most models, and the spatial overlaps of inundated regions are mostly between 85% and 100% for the Cenozoic, dropping to about 75-100% in the Cretaceous. We categorise the evolution of modelled dynamic topography in both continental interiors and along passive margins using cluster analysis to investigate how clusters of similar dynamic topography time series are distributed spatially. A subdivision of four clusters is found to best reveal end

  6. Low post-Cenomanian denudation depths across the Brazilian Northeast: Implications for long-term landscape evolution at a transform continental margin

    NASA Astrophysics Data System (ADS)

    Peulvast, Jean-Pierre; Claudino Sales, Vanda; Bétard, François; Gunnell, Yanni

    2008-05-01

    The Brazilian Northeast affords good opportunities for obtaining reliable timings and rates of landscape evolution based on stratigraphic correlations across a vast region. The landscape formed in the context of an episodically fluctuating but continuously falling base level since the Cenomanian. After formation of the transform passive margin in Aptian times, landscape development was further driven by a swell-like uplift with its crest situated ˜ 300 km from the coastline. The seaward flank of this swell or broad monocline between the interior Araripe and coastal Potiguar basins was eroded, and currently forms a deeply embayed plain bordered by a semi-circular, north-facing erosional escarpment. The post-Cenomanian uplift caused an inversion of the Cretaceous basins and generated a landscape in which the most elevated landforms correspond either to resistant Mesozoic sedimentary caprock, or to eroded stumps of syn-rift Cretaceous footwall uplands. Denudation in the last 90 My never exceeded mean rates of 10 m·My - 1 and exhumed a number of Cretaceous stratigraphic unconformities. As a result, some topographic surfaces at low elevations are effectively Mesozoic land surfaces that became re-exposed in Cenozoic times. The Neogene Barreiras Formation forms a continuous and mostly clastic apron near the coast. It testifies to the last peak of erosion in the hinterland and coincided with the onset of more arid climates at ˜ 13 Ma or earlier. The semi-circular escarpment is not directly related to the initial breakup rift flanks, which had been mostly eroded before the end of the Mesozoic, but the cause and exact timing of post-Cenomanian crustal upwarping are poorly constrained. It could perhaps have been a flexural response of the low-rigidity lithosphere to sediment loads on the margin, and thus a slowly ongoing process since the late Cretaceous. Uplift could instead be the consequence of a more discrete dynamic event related either to Oligocene magmatism in the

  7. Late Paleozoic crustal history of central coastal Queensland interpreted from geochemistry of Mesozoic plutons: The effects of continental rifting

    USGS Publications Warehouse

    Allen, C.M.; Wooden, J.L.; Chappell, B.W.

    1997-01-01

    The eastern margin of Australia is understood to be the result of continental rifting during the Cretaceous and Tertiary. Consistent with this model, Cretaceous igneous rocks (granites to basalts) in a continental marginal setting near Bowen, Queensland are isotonically retarded, having isotopic ratios similar to those of most island arcs (Sri = 0.7030-0.7039, ??Nd = +6.46 to +3.00 and 206Pb/204Pb = 18.44-18.77, 207Pb/204Pb = 15.552-15.623, and 208Pb/204Pb = 37.90-38.52). These isotopic signatures are much less evolved than the Late Carboniferous-Permian batholith that many Cretaceous plutons intrude. As rocks ranging in age from about 300-100 Ma are well exposed near Bowen, we can track magma evolution through time. The significant change of magma source occurred much earlier than the Cretaceous based on the fact that Triassic granites in the same area are also isotonically primitive. We attribute the changes of magma composition to crustal rifting during the Late Permian and earliest Triassic. The Cretaceous rocks (actually latest Jurassic to Cretaceous, 145-98 Ma) themselves show compositional trends with time. Rocks of appropriate mineralogy for Al-in-hornblende geobarometry yield pressures ranging from 250 to 80 MPa for rocks ranging in age from 145 to 125 Ma, respectively. More significantly, this older group is relatively compositionally restricted, and is Sr-rich, and Y- and Zr-poor compared to 120-98 Ma rocks. This younger groups is bimodal, being comprised principally of basalts and rhyolites (granites). REE patterns for a given rock type, however, do not differ with age tribute these relatively subtle trace element differences to small differences in conditions (T, aH2O) at the site of melting. Cretaceous crustal rifting can explain the range of rock types and the spatial distribution of rocks < 120 Ma in a longitudinal strip between and overlapping with provinces of older Cretaceous intrusions. A subduction-related setting is assigned to the 145-125 Ma

  8. A global census of continental rift activity since 250 Ma reveals a missing element of the deep carbon cycle

    NASA Astrophysics Data System (ADS)

    Brune, Sascha; Williams, Simon; Müller, Dietmar

    2017-04-01

    The deep carbon cycle connects CO2 concentrations within the atmosphere to the vast carbon reservoir in Earth's mantle: subducted lithosphere carries carbon into the mantle, while extensional plate boundaries and arc volcanoes release it back to Earth's surface. The length of plate boundaries thereby exerts first-order control on global CO2 fluxes on geological time scales. Here we provide a global census of rift length from the Triassic to present day, combining a new plate reconstruction analysis technique with data from the geological rift record. We find that the most extensive rift phase during the fragmentation of Pangea occurred in the Jurassic/Early Cretaceous with extension along the South Atlantic (9700 km) and North Atlantic rifts (9100 km), within East Gondwana (8500 km), the failed African rift systems (4900 km), and between Australia and Antarctica (3700 km). The combined extent of these and other rift systems amounts to more than 50.000 km of simultaneously active continental rifts. During the Late Cretaceous, in the aftermath of this massive rift episode, the global rift length dropped by 60% to 20.000 km. We further show that a second pronounced rift episode starts in the Eocene with global rift lengths of up to 30.000 km. It is well-accepted that volcanoes at plate boundaries release large amounts of CO2 from the Earth's interior. Recent work, however, highlights the importance of deep-cutting faults and diffuse degassing on CO2 emissions in the East African Rift, which appear to be comparable to CO2 release rates at mid-ocean ridges worldwide. Upscaling measured CO2 fluxes from East Africa to all concurrently active global rift zones with due caution, we compute the first-order history of cumulative rift-related CO2 degassing rates for the last 250 Myr. We demonstrate that rift-related CO2 release in the Early Cretaceous may have reached 400% of present-day rates. In first-order agreement with paleo-atmospheric CO2 concentrations from proxy

  9. An early extensional event of the South China Block during the Late Mesozoic recorded by the emplacement of the Late Jurassic syntectonic Hengshan Composite Granitic Massif (Hunan, SE China)

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Chen, Yan; Faure, Michel; Martelet, Guillaume; Lin, Wei; Wang, Qingchen; Yan, Quanren; Hou, Quanlin

    2016-03-01

    Continental scaled extension is the major Late Mesozoic (Jurassic and Cretaceous) tectonic event in East Asia, characterized by faulting, magmatic intrusions and half-grabens in an area with a length of > 5000 km and a width of > 1000 km. Numerous studies have been conducted on this topic in the South China Block (SCB), However, the space and time ranges of the compressional or extensional regimes of the SCB during the Jurassic are still unclear, partly due to the lack of structural data. The emplacement fabrics of granitic plutons can help determine the regional tectonic background. In this study, a multidisciplinary approach, including Anisotropy of Magnetic Susceptibility (AMS), macro and microstructural analyses, quartz c-axis preferred orientation, gravity modeling and monazite EPMA dating, was conducted on the Hengshan composite granitic massif in SCB that consists of the Triassic Nanyue biotite granitic pluton and the Late Jurassic Baishifeng two-mica granitic pluton. The magnetic fabrics are characterized by a consistent NW-SE oriented lineation and weakly inclined foliation. A dominant high temperature deformation with a top-to-the-NW shear sense is identified for both plutons. The deformation increasing from the center of the Baishifeng pluton to its western border is associated to the development of the West Hengshan Boundary Fault (WHBF). The gravity modeling shows a ;saw tooth-shaped; NE-SW oriented structure of the Baishifeng pluton, which may be considered as NE-SW oriented tension-gashes formed due to the NW-SE extension. All results show that the Triassic Nanyue pluton was deformed under post-solidus conditions by the WHBF coeval with the emplacement of the Late Jurassic Baishifeng pluton. All these observations comply with the NW-SE extensional tectonics coeval with the emplacement of the Baishifeng pluton, which argues that the NW-SE crustal stretching started since the Late Jurassic, at least in this part of the SCB.

  10. Ocean processes at the Antarctic continental slope.

    PubMed

    Heywood, Karen J; Schmidtko, Sunke; Heuzé, Céline; Kaiser, Jan; Jickells, Timothy D; Queste, Bastien Y; Stevens, David P; Wadley, Martin; Thompson, Andrew F; Fielding, Sophie; Guihen, Damien; Creed, Elizabeth; Ridley, Jeff K; Smith, Walker

    2014-07-13

    The Antarctic continental shelves and slopes occupy relatively small areas, but, nevertheless, are important for global climate, biogeochemical cycling and ecosystem functioning. Processes of water mass transformation through sea ice formation/melting and ocean-atmosphere interaction are key to the formation of deep and bottom waters as well as determining the heat flux beneath ice shelves. Climate models, however, struggle to capture these physical processes and are unable to reproduce water mass properties of the region. Dynamics at the continental slope are key for correctly modelling climate, yet their small spatial scale presents challenges both for ocean modelling and for observational studies. Cross-slope exchange processes are also vital for the flux of nutrients such as iron from the continental shelf into the mixed layer of the Southern Ocean. An iron-cycling model embedded in an eddy-permitting ocean model reveals the importance of sedimentary iron in fertilizing parts of the Southern Ocean. Ocean gliders play a key role in improving our ability to observe and understand these small-scale processes at the continental shelf break. The Gliders: Excellent New Tools for Observing the Ocean (GENTOO) project deployed three Seagliders for up to two months in early 2012 to sample the water to the east of the Antarctic Peninsula in unprecedented temporal and spatial detail. The glider data resolve small-scale exchange processes across the shelf-break front (the Antarctic Slope Front) and the front's biogeochemical signature. GENTOO demonstrated the capability of ocean gliders to play a key role in a future multi-disciplinary Southern Ocean observing system.

  11. Ocean processes at the Antarctic continental slope

    PubMed Central

    Heywood, Karen J.; Schmidtko, Sunke; Heuzé, Céline; Kaiser, Jan; Jickells, Timothy D.; Queste, Bastien Y.; Stevens, David P.; Wadley, Martin; Thompson, Andrew F.; Fielding, Sophie; Guihen, Damien; Creed, Elizabeth; Ridley, Jeff K.; Smith, Walker

    2014-01-01

    The Antarctic continental shelves and slopes occupy relatively small areas, but, nevertheless, are important for global climate, biogeochemical cycling and ecosystem functioning. Processes of water mass transformation through sea ice formation/melting and ocean–atmosphere interaction are key to the formation of deep and bottom waters as well as determining the heat flux beneath ice shelves. Climate models, however, struggle to capture these physical processes and are unable to reproduce water mass properties of the region. Dynamics at the continental slope are key for correctly modelling climate, yet their small spatial scale presents challenges both for ocean modelling and for observational studies. Cross-slope exchange processes are also vital for the flux of nutrients such as iron from the continental shelf into the mixed layer of the Southern Ocean. An iron-cycling model embedded in an eddy-permitting ocean model reveals the importance of sedimentary iron in fertilizing parts of the Southern Ocean. Ocean gliders play a key role in improving our ability to observe and understand these small-scale processes at the continental shelf break. The Gliders: Excellent New Tools for Observing the Ocean (GENTOO) project deployed three Seagliders for up to two months in early 2012 to sample the water to the east of the Antarctic Peninsula in unprecedented temporal and spatial detail. The glider data resolve small-scale exchange processes across the shelf-break front (the Antarctic Slope Front) and the front's biogeochemical signature. GENTOO demonstrated the capability of ocean gliders to play a key role in a future multi-disciplinary Southern Ocean observing system. PMID:24891389

  12. Multiphased extension along continental margins: a case study of the Porcupine Basin, offshore Ireland

    NASA Astrophysics Data System (ADS)

    Bulois, Cédric; Shannon, Patrick, M.; Manuel, Pubellier; Nicolas, Chamot-Rooke; Louise, Watremez; Jacques, Deverchère

    2017-04-01

    Mesozoic faulting has been recognised in several Irish sedimentary basins as part of the northward propagation of the Atlantic rift system. However, the contribution of older structural elements remains poorly constrained. The present study documents the succession of extensional phases in the northern part of the Porcupine Basin sensu largo, offshore west of Ireland, in which structural inheritance and fault reactivation is commonly observed. The correlation of 2D and 3D seismic lines with exploration wells enables the precise definition of four overprinted extensional systems that link to specific tectonic stages identified along the Irish margin. The Porcupine Basin opened through a thickened continental crust that evolved during the Palaeozoic with the Caledonian and Variscan orogenic cycles. Extension initiated during the Carboniferous by reactivation of old structures, resulting in the migration of depocentres bounded by E-W, NE-SW and N-S structural trends. Subsequent episodic rifting occurred during several discrete events. The first rift episode, of Late Triassic to Early Jurassic age, is restricted to the North Porcupine Basin and most likely reactivated E-W structures of Caledonian age. Synrift sediments were generally deposited in a littoral setting that progressively deepened through time. The second episode, much more pronounced, occurred during the Upper Jurassic to lowermost Cretaceous (Neocomian). It resulted in shallow to deep marine deposition controlled by structural directions recognised in Caledonian and Variscan terranes. A third rift phase, evidenced by thick clastic deposition, locally occurred during the Aptian and finally died out with the opening of the Bay of Biscay located to the south of the region. A series of extensional megacycles are recognised from seismic unconformities and faulting geometries. Initial extension strongly followed the structural architecture of the continental crust (i.e. ancient folds, thrusts or orogenic fronts

  13. Geochemistry of Mesozoic plutons, southern Death Valley region, California: Insights into the origin of Cordilleran interior magmatism

    USGS Publications Warehouse

    Ramo, O.T.; Calzia, J.P.; Kosunen, P.J.

    2002-01-01

    Mesozoic granitoid plutons in the southern Death Valley region of southeastern California reveal substantial compositional and isotopic diversity for Mesozoic magmatism in the southwestern US Cordillera. Jurassic plutons of the region are mainly calc-alkaline mafic granodiorites with ??Ndi of -5 to -16, 87Sr/86Sri of 0.707-0.726, and 206Pb/204Pbi of 17.5-20.0. Cretaceous granitoids of the region are mainly monzogranites with ??Ndi of -6 to -19, 87Sr/86Sri of 0.707-0.723, and 206Pb/204Pbi of 17.4-18.6. The granitoids were generated by mixing of mantle-derived mafic melts and pre-existing crust - some of the Cretaceous plutons represent melting of Paleoproterozoic crust that, in the southern Death Valley region, is exceptionally heterogeneous. A Cretaceous gabbro on the southern flank of the region has an unuasually juvenile composition (??Ndi -3.2, 87Sr/86Sri 0.7060). Geographic position of the Mesozoic plutons and comparison with Cordillera plutonism in the Mojave Desert show that the Precambrian lithosphere (craton margin) in the eastern Mojave Desert region may consists of two crustal blocks separated by a more juvenile terrane.

  14. Structural elements of the Sulu Sea, Philippines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinz, K.; Block, M.; Kudrass, H.R.

    1994-07-01

    The structure and tectonic history of the Sulu Sea are described on the basis of seismic reflection data combined with the findings of onshore and offshore geological studies, and the results of ODP Leg 124 drilling. Closing of a hypothetical Mesozoic proto-South China Sea associated with the formation of oceanic crustal splinters in the late Eocene followed by southward subduction and, in turn, progressive collision of the north Palawan continental terrane with the micro-continental Borneo plate since the middle Miocene, resulted in the formation of the structurally complex Sulu-Borneo collision belt. The latter comprises north Sabah, southern and central Palawan,more » and the northwest Sulu basin. Fracturing of the Borneo micro-continental plate into the Sulu and Cagayan ridges initiated the opening of the southeast Sulu basin during the late Oligocene through the early Miocene. Collision of the north Palawan continental terrane with Cagayan Ridge in the late early Miocene and oblique collision of these blocks with the central Philippines resulted in the still ongoing closing of the southeast Sulu basin since the middle or late Miocene. Closing of the southeast Sulu basin began with the formation of an oceanic crustal slab.« less

  15. New evidence for late mesozoic-early Cenozoic evolution of the Chilean Andes in the upper Tinguiririca valley (35 °S), central Chile

    NASA Astrophysics Data System (ADS)

    Charrier, Reynaldo; Wyss, AndréR.; Flynn, John J.; Swisher, Carl C.; Norell, Mark A.; Zapatta, Franyo; McKenna, Malcolm C.; Novacek, Michael J.

    1996-11-01

    New geologic, paleontologic and isotopic geochronometric results from the Termas del Flaco region in the upper Tinguiririca River valley in central Chile demand considerable revision of the accepted geotectonic history of the Andean Main Range in this region. A diverse, transitional Eocene-Oligocene aged, land-mammal fauna was recovered from several sites in volcaniclastic sediments of the Coya-Machalí (=Abanico) Formation. Major results of our study include: 1) The 1000 + m thick studied deposits, previously attributed to the Cretaceous Colimapu Formation, belong to the Coya-Machalí (=Abanico) Formation. Radioisotopic data from levels immediately above (31.5 Ma) and below (37.S Ma) the fossiliferous horizon indicate a latest Eocene to early Oligocene age for the basal part of the formation and the fauna contained in it. 2) The fossiliferous unit rests with slight angular offset on different Mesozoic units: "Brownish-red Clastic Unit" (BRCU) and Baños del Flaco Formation; in a limited area it also overlies a white tuff dated at 104 Ma. 3) The contacts just discussed (none of which is attributable to faulting), demonstrate the existence of two, or possibly three, unconformities in the region. 4) Sedimentological criteria argue against reference of the BRCU to the Colimapu Formation, and imply correlation of the former unit to basal levels with in the late Cretaceous Neuquén Group of western Argentina. 5) The Coya-Machalí Formation, previously viewed as representing the western volcanic equivalent of Riográndico Supercycle deposits of western Argentino, is likely coeval to much younger units in that region such as the Agua de la Piedra Formation. 6) Paleomagnetic results from the fossil producing horizon indicate about 20 ° of post-early Oligocene, counterclockwise rotation. 7) Fossil mammals from the Coya-Machalí Formation near Termas del Flaco represent a distinct biochronologic interval not heretofore clearly recognized from elsewhere on the continent

  16. Blueschist metamorphism and its tectonic implication of Late Paleozoic-Early Mesozoic metabasites in the mélange zones, central Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Zhang, Jinrui; Wei, Chunjing; Chu, Hang

    2015-01-01

    Blueschists in central Inner Mongolia are distributed as layers and blocks in mélanges including the southern zone in Ondor Sum area and the northern zone in Manghete and Naomuhunni areas. They have been attributed to the subduction of Early Paleozoic oceanic crust. Blueschists from Ondor Sum and Naomuhunni are characterized by occurrence of sodic amphibole coexisting with epidote, albite, chlorite, calcic amphibole (in Ondor Sum) and muscovite (in Naomuhunni). Blueschists in Manghete contain porphyroblastic albite with inclusions of garnet and epidote in a matrix dominated by calcic-sodic amphibole, epidote, chlorite, albite and muscovite. Phase equilibria modeling for three blueschist samples using pseudosection suggest that the AlM2 contents in sodic amphibole can be used as a good barometer in the limited assemblage involving sodic amphibole + actinolite + epidote + chlorite + albite + quartz under pressures <4-6 kbar, while this barometer is largely influenced by temperature and bulk Fe2O3 contents in the actinolite-absent assemblage sodic amphibole + epidote + chlorite + albite + quartz of higher pressure and the AlM2 contents are not pressure-controlled in the albite-absent assemblage sodic amphibole + epidote + chlorite + quartz under pressures > 7-10 kbar. In the sodic amphibole-bearing assemblages, the NaM4 contents in sodic amphibole mainly decrease as temperature rises, being a potential thermometry. The calculated pseudosections constrain the P-T conditions of blueschists to be 3.2-4.2 kbar/355-415 °C in Ondor Sum, 8.2-9.0 kbar/455 °C-495 °C in Manghete and 6.6-8.1 kbar/420-470 °C in Naomuhunni. These P-T estimates indicate a rather high geothermal gradient of 18-25 °C/km for the blueschist metamorphism, being of intermediate P/T facies series. Available zircon U-Pb age data suggests that the protoliths of blueschists were formed later than Late Paleozoic-Early Mesozoic and metamorphosed soon afterwards. An alternative interpretation for the

  17. Correspondence of Mesozoic Eustatic Sea-Level Change with Palaeoclimate Proxies: Evidence for Glacio-Eustasy?

    NASA Astrophysics Data System (ADS)

    Simmons, M.; Davies, A.; Gréselle, B.

    2011-12-01

    Large-scale changes in stratigraphic architecture and facies that are brought about by changes in relative sea-level have been the focus of much academic and industry study over the last few decades. The authors, plus numerous colleagues, have studied over 11,000 stratigraphic sections worldwide. By applying biostratigraphic and chemostratigraphic calibration in suitable locations from this dataset it is possible to demonstrate over 250 synchronous global sequence stratigraphic events in the Phanerozoic including over 100 in the Mesozoic. This then raises the question - what causes globally synchronous eustatic sea-level change? To answer this question requires an understanding of both the pace and amplitude of the observed eustatic sea-level change. In successions where duration can be deduced from orbital forcing cycles, our observed sea-level changes appear to be relatively rapid - less than 500,000 years, for example, for sea-level rises in the Late Jurassic. The amplitude of such rises is in the order of tens of metres. Such rates and amplitudes as inferred from our global model preclude tectonism as a primary driver and implicate glacio-eustacy as a key driving mechanism, even in supposed "greenhouse times". Given the clear economic importance of understanding the underlying mechanisms driving this eustatic change we have compiled records of key isotopic proxies through the entire Mesozoic in an effort to explore the relationship between global sea-level and palaeoclimate. Our research reveals a clear link between many large-scale maximum flooding events with known episodes of palaeoclimatic warming and between climatic cooling events and lowstand intervals, further implicating glacio-eustacy. In addition to the isotopic proxy evidence we have also compiled direct indicators for the occurrence of cold polar conditions, including the presence of ice sheets, in the Mesozoic (e.g. tillites, glendonites). This has been incorporated into plate tectonic

  18. The Thermal Evolution of the Southeast Baffin Island Continental Margin: An Integrated Apatite Fission Track and Apatite (U-Th)/He Study

    NASA Astrophysics Data System (ADS)

    Jess, S.; Stephenson, R.; Brown, R. W.

    2017-12-01

    The elevated continental margins of the North Atlantic continue to be a focus of considerable geological and geomorphological debate, as the timing of major tectonic events and the age of topographic relief remain controversial. The West Greenland margin, on the eastern flank of Baffin Bay, is believed by some authors to have experienced tectonic rejuvenation and uplift during the Neogene. However, the opposing flank, Baffin Island, is considered to have experienced a protracted erosional regime with little tectonic activity since the Cretaceous. This work examines the thermal evolution of the Cumberland Peninsula, SE Baffin Island, using published apatite fission track (AFT) data with the addition of 103 apatite (U-Th)/He (AHe) ages. This expansion of available thermochronological data introduces a higher resolution of thermal modelling, whilst the application of the newly developed `Broken Crystals' technique provides a greater number of thermal constraints for an area dominated by AHe age dispersion. Results of joint thermal modelling of the AFT and AHe data exhibit two significant periods of cooling across the Cumberland Peninsula: Devonian/Carboniferous to the Triassic and Late Cretaceous to present. The earliest phase of cooling is interpreted as the result of major fluvial systems present throughout the Paleozoic that flowed across the Canadian Shield to basins in the north and south. The later stage of cooling is believed to result from rift controlled fluvial systems that flowed into Baffin Bay during the Mesozoic and Cenozoic during the early stages and culmination of rifting along the Labrador-Baffin margins. Glaciation in the Late Cenozoic has likely overprinted these later river systems creating a complex fjordal distribution that has shaped the modern elevated topography. This work demonstrates how surface processes, and not tectonism, can explain the formation of elevated continental margins and that recent methodological developments in the field of

  19. Possible Mesozoic age of Ellenville Zn-Pb-Cu(Ag) deposit, Shawangunk Mountains, New York

    USGS Publications Warehouse

    Friedman, J.D.; Conrad, J.E.; McKee, E.H.; Mutschler, F.E.; Zartman, R.E.

    1994-01-01

    Ore textures, epithermal open-space filling of Permian structures of the Alleghanian orogeny, and largely postorogenic mineralization of the Ellenville, New York, composite Zn-Pb-Cu(Ag) vein system, provide permissive evidence for post-Permian mineralization. Isochron ages determined by 40Ar/39Ar laser-fusion techniques for K-bearing liquid inclusions in main-stage quartz from the Ellenville deposit additionally suggest a Mesozoic time of mineralization, associated with extensional formation of the Newark basin. The best 40Ar/39Ar total-fusion age range is 165 ?? 30 to 193 ?? 35 Ma. The Mesozoic 40Ar/39Ar age agrees with that of many other dated northern Appalachian Zn-Pb-Cu(Ag) deposits with near-matching lead isotope ratios, and adds new evidence of Jurassic tectonism and mineralization as an overprint to Late Paleozoic tectonism at least as far north as Ellenville (lat. 41??43???N). ?? 1994 Springer-Verlag.

  20. The final pulse of the Early Cenozoic adakitic activity in the Eastern Pontides Orogenic Belt (NE Turkey): An integrated study on the nature of transition from adakitic to non-adakitic magmatism in a slab window setting

    NASA Astrophysics Data System (ADS)

    Eyuboglu, Yener; Dudas, Francis O.; Santosh, M.; Eroğlu-Gümrük, Tuğba; Akbulut, Kübra; Yi, Keewook; Chatterjee, Nilanjan

    2018-05-01

    The Eastern Pontides Orogenic Belt, one of the best examples of a fossil continental arc in the Alpine-Himalayan system, is characterized by adakitic magmatism during the Early Cenozoic. Popular models correlate the adakitic magmatism to syn- or post-collisional processes occurring after the collision between the Eastern Pontides Orogenic Belt and the Tauride Platform at the end of Late Mesozoic and/or beginning of the Cenozoic. We present new geological, petrological and chronological data from andesites and felsic tuffs exposed in the Bayburt area, in the southern part of the Eastern Pontides Orogenic Belt, and discuss the nature of the transition from adakitic to non-adakitic activities in a continental arc. Major, trace and rare earth element concentrations of both andesites and felsic tuffs clearly suggest that they are related to arc magmatism in a continental arc with adakitic composition. The isotopic compositions are permissive of mixing between a component similar to depleted mantle and a second component that is either mafic lower crust or subducted oceanic crust. 39Ar/40Ar hornblende and U/Pb zircon dating indicate that this adakitic magmatism in the Bayburt area ended by about 47 Ma, and transformed into non-adakitic, granitoid arc magmatism in the area immediately north of Bayburt in the Lutetian (∼46 Ma). Based on our new results in conjunction with available data, we propose that the beginning of northward rollback of a south-directed subducting slab, and simultaneous opening of a slab window related to ridge subduction, triggered both adakitic magmatism for approximately a 10 Myr period between 57.6 and 47 Ma and arc-parallel extension that caused the opening of the Early Cenozoic sedimentary basins. We also suggest that the shallow marine environment, in which Nummulite-bearing sandy limestones accumulated in the Early Cenozoic, was transformed into a saline-lake environment during the pyroclastic activity that produced the studied felsic tuffs

  1. Seismic investigation on the Littoral Faults Zone in the northern continental margin of South China Sea

    NASA Astrophysics Data System (ADS)

    Sun, J.; Xu, H.; Xia, S.; Cao, J.; Wan, K.

    2017-12-01

    The continental margin of the northern South China Sea (SCS) had experienced continuous evolution from an active continental margin in the late Mesozoic to a passive continental margin in the Cenozoic. The 1200km-long Littoral Faults Zone (LFZ) off the mainland South China was suggested to represent one of the sub-plate boundaries and play a key role during the evolution. Besides, four devastating earthquakes with magnitude over 7 and another 11 destructive events with M>6 were documented to have occurred along the LFZ. However, its approximity to the shoreline, the shallow water depth, and the heavy fishing activities make it hard to conduct a marine seismic investigation. As a result, understandings about the LFZ before 2000 were relatively poor and mostly descriptive. After two experiments of joint onshore-offshore wide-angle seismic surveys in the 1st decade of this century, several cruses aiming to unveil the deep structure of the LFZ were performed in the past few years, with five joint onshore-offshore wide-angle seismic survey profiles completed. Each of these profiles is perpendicular to the shoreline, with four to five seismometers of campaign mode deployed on the landside and over ten Ocean Bottom Seismometers (OBSs) spacing at 20km deployed on the seaside. Meanwhile, multi-channel seismic (MCS) data along these profiles were obtained simultaneously. Based on these data, velocity models from both forward modeling and inversion were obtained. According to these models, the LFZ was imaged to be a low-velocity fractured zone dipping to the SSE-SE at a high-angle and cutting through the thinned continental crust at some locations. Width of the fractured zone varies from 6km to more than 10km from site to site. With these results, it is suggested that the LFZ accommodates the stresses from both the east side, where the Eurasia/Philippine Sea plate converging and mountain building is ongoing, and the west side, where a strike-slip between the Indochina

  2. Sedimentary facies analysis of the Mesozoic clastic rocks in Southern Peru (Tacna, 18°S): Towards a paleoenvironmental Redefinition and stratigraphic Reorganization

    NASA Astrophysics Data System (ADS)

    Alván, Aldo; Jacay, Javier; Caracciolo, Luca; Sánchez, Elvis; Trinidad, Inés

    2018-07-01

    The Mesozoic rocks of southern Peru comprise a Middle Jurassic to Early Cretaceous sedimentary sequence deposited during a time interval of approximately 34 Myr. In Tacna, these rocks are detrital and constitute the Yura Group (Callovian to Tithonian) and the Hualhuani Formation (Berriasian). Basing on robust interpretation of facies and petrographic analysis, we reconstruct the depositional settings of such units and provide a refined stratigraphic framework. Accordingly, nine types of sedimentary facies and six architectural elements are defined. They preserve the record of a progradational fluvial system, in which two styless regulated the dispersion of sediments: (i) a high-to moderate-sinuosity meandering setting (Yura Group), and a later (ii) incipient braided setting (Hualhuani Formation). The Yura Group (Callovian-Tithonian) represents the onset of floodplain deposits and lateral accretion of point-bar deposits sited on a semi-flat topography. Nonetheless, the progradational sequence was affected by at least two rapid marine ingressions occurred during Middle Callovian and Tithonian times. Such marine ingressions reveal the proximity of a shallow marine setting and incipient carbonate deposition. In response to increase in topographic gradient, the Hualhuani Formation (Berriasian) deposited as extensive multistory sandy channels. The mineralogy of the Mesozoic sediments suggests sediment supplies and intense recycling from a craton interior (i.e. Amazon Craton and/or plutonic sources) located eastward of the study area.

  3. Geochronology, geochemistry, and tectonic environment of porphyry mineralization in the central Alaska Peninsula

    USGS Publications Warehouse

    Wilson, Frederic H.; Cox, Dennis P.

    1983-01-01

    Porphyry type sulfide systems on the central Alaska Peninsula occupy a transition zone between the Aleutian island magmatic arc and the continental magmatic arc of southern Alaska. Mineralization occurs associated with early and late Tertiary magmatic centers emplaced through a thick section of Mesozoic continental margin clastic sedimentary rocks. The systems are of the molybdenum-rich as opposed to gold-rich type and have anomalous tungsten, bismuth, and tin, attributes of continental-margin deposits, yet gravity data suggest that at least part of the study area is underlain by oceanic or transitional crust. Potassium-argon age determinations indicate a variable time span of up to 2 million years between emplacement and mineralization in a sulfide system with mineralization usually followed by postmineral intrusive events. Finally, mineralization in the study area occurred at many times during the time span of igneous activity and should be an expected stage in the history of a subduction related magmatic center.

  4. Thermochronological constraints on the Cambrian to recent geological evolution of the Argentina passive continental margin

    NASA Astrophysics Data System (ADS)

    Kollenz, Sebastian; Glasmacher, Ulrich A.; Rossello, Eduardo A.; Stockli, Daniel F.; Schad, Sabrina; Pereyra, Ricardo E.

    2017-10-01

    Passive continental margins are geo-archives that store information from the interplay of endogenous and exogenous forces related to continental rifting, post-breakup history, and climate changes. The recent South Atlantic passive continental margins (SAPCMs) in Brazil, Namibia, and South Africa are partly high-elevated margins ( 2000 m a.s.l.), and the recent N-S-trending SAPCM in Argentina and Uruguay is of low elevation. In Argentina, an exception in elevation is arising from the higher topography (> 1000 m a.s.l.) of the two NW-SE-trending mountain ranges Sierras Septentrionales and Sierras Australes. Precambrian metamorphic and intrusive rocks, and siliciclastic rocks of Ordovician to Permian age represent the geological evolution of both areas. The Sierras Australes have been deformed and metamorphosed (incipient - greenschist) during the Gondwanides Orogeny. The low-temperature thermochronological (LTT) data (< 240 °C) indicated that the Upper Jurassic to Lower Cretaceous opening of the South Atlantic has not completely thermally reset the surface rocks. The LTT archives apatite and zircon still revealed information on the pre- to post-orogenic history of the Gondwanides and the Mesozoic and Cenozoic South Atlantic geological evolution. Upper Carboniferous zircon (U-Th/He)-ages (ZHe) indicate the earliest cooling below 180 °C/1 Ma. Most of the ZHe-ages are of Upper Triassic to Jurassic age. The apatite fission-track ages (AFT) of Sierras Septentrionales and the eastern part of Sierras Australes indicate the South Atlantic rifting and, thereafter. AFT-ages of Middle to Upper Triassic on the western side of the Sierras Australes are in contrast, indicating a Triassic exhumation caused by the eastward thrusting along the Sauce Grande wrench. The corresponding t-T models report a complex subsidence and exhumation history with variable rates since the Ordovician. Based on the LTT-data and the numerical modelling we assume that the NW-SE-trending mountain ranges

  5. A new, well-preserved genus and species of fossil Glaphyridae (Coleoptera, Scarabaeoidea) from the Mesozoic Yixian Formation of Inner Mongolia, China

    PubMed Central

    Yan, Zhuo; Nikolajev, Georgiy V.; Ren, Dong

    2012-01-01

    Abstract A new genus and species of fossil Glaphyridae, Cretohypna cristata gen. et sp. n., is described and illustrated from the Mesozoic Yixian Formation. This new genus is characterized by the large body; large and strong mandibles; short labrum; elytra without longitudinal carina; and male meso- and possible metatibia apically modified. A list of described fossil glaphyrids of the world is provided. This significant finding broadens the known diversity of Glaphyridae in the Mesozoic China. PMID:23372414

  6. Petrogenesis of early Jurassic basalts in southern Jiangxi Province, South China: Implications for the thermal state of the Mesozoic mantle beneath South China

    NASA Astrophysics Data System (ADS)

    Cen, Tao; Li, Wu-xian; Wang, Xuan-ce; Pang, Chong-jin; Li, Zheng-xiang; Xing, Guang-fu; Zhao, Xi-lin; Tao, Jihua

    2016-07-01

    Early Jurassic bimodal volcanic and intrusive rocks in southern South China show distinct associations and distribution patterns in comparison with those of the Middle Jurassic and Cretaceous rocks in the area. It is widely accepted that these rocks formed in an extensional setting, although the timing of the onset and the tectonic driver for extension are debated. Here, we present systematic LA-ICP-MS zircon U-Pb ages, whole-rock geochemistry and Sr-Nd isotope data for bimodal volcanic rocks from the Changpu Formation in the Changpu-Baimianshi and Dongkeng-Linjiang basins in southern Jiangxi Province, South China. Zircon U-Pb ages indicate that the bimodal volcanic rocks erupted at ca. 190 Ma, contemporaneous with the Fankeng basalts ( 183 Ma). A compilation of geochronological results demonstrates that basin-scale basaltic eruptions occurred during the Early Jurassic within a relatively short interval (< 5 Ma). These Early Jurassic basalts have tholeiitic compositions and OIB-like trace element distribution patterns. Geochemical analyses show that the basalts were derived from depleted asthenospheric mantle, dominated by a volatile-free peridotite source. The calculated primary melt compositions suggest that the basalts formed at 1.9-2.1 GPa, with melting temperatures of 1378 °C-1405 °C and a mantle potential temperature (TP) ranging from 1383 °C to 1407 °C. The temperature range is somewhat hotter than normal mid-ocean-basalt (MORB) mantle but similar to an intra-plate continental mantle setting, such as the Basin and Range Province in western North America. This study provides an important constraint on the Early Jurassic mantle thermal state beneath South China. Reference: Raczek, I., Stoll, B., Hofmann, A.W., Jochum, K.P. 2001. High-precision trace element data for the USGS reference materials BCR-1, BCR-2, BHVO-1, BHVO-2, AGV-1, AGV-2, DTS-1, DTS-2, GSP-1 and GSP-2 by ID-TIMS and MIC-SSMS. Geostandards Newsletter 25(1), 77-86.

  7. Hydrocarbons in New Guinea, controlled by basement fabric, Mesozoic extension and Tertiary convergent margin tectonics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, K.C.; Kendrick, R.D.; Crowhurst, P.V.

    1996-01-01

    Most models for the tectonic evolution of New Guinea involve Early and Late Miocene arc-continent collisions, creating an orogenic belt. Structural trends and prospectivity are then analyzed in terms of belts across the country; the Fold Belt (with the discovered oil and gas fields), the Mobile Belt and the accreted arcs. This model inhibits realistic assessment of prospectivity. It now appears the Mobile Belt formed by Oligocene compression then by Early Miocene extension, related to slab-rollback, that unroofed metamorphic core complexes adjacent to starved half-grabens. The grabens filled in the Middle Miocene and were largely transported intact during the Pliocenemore » arc-collision. Early Miocene reefs and hypothesized starved basin source rocks create a viable play throughout northern New Guinea as in the Salawati Basin. The Pliocene clastic section is locally prospective due to overthrusting and deep burial. Within the Fold Belt, the site and types of oil and gas fields are largely controlled by the basement architecture. This controlled the transfer zones and depocentres during Mesozoic extension and the location of major basement uplifts during compression. In PNG, the Bosavi lineament separates an oil province from a gas province. In Irian Jaya the transition from a relatively competent sequence to a rifted sequence west of [approx]139[degrees]E may also be a gas-oil province boundary. Understanding, in detail, the compartmentalization of inverted blocks and areas of thin-skinned thrusting, controlled by the basement architecture, will help constrain hydrocarbon prospectivity.« less

  8. Hydrocarbons in New Guinea, controlled by basement fabric, Mesozoic extension and Tertiary convergent margin tectonics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, K.C.; Kendrick, R.D.; Crowhurst, P.V.

    1996-12-31

    Most models for the tectonic evolution of New Guinea involve Early and Late Miocene arc-continent collisions, creating an orogenic belt. Structural trends and prospectivity are then analyzed in terms of belts across the country; the Fold Belt (with the discovered oil and gas fields), the Mobile Belt and the accreted arcs. This model inhibits realistic assessment of prospectivity. It now appears the Mobile Belt formed by Oligocene compression then by Early Miocene extension, related to slab-rollback, that unroofed metamorphic core complexes adjacent to starved half-grabens. The grabens filled in the Middle Miocene and were largely transported intact during the Pliocenemore » arc-collision. Early Miocene reefs and hypothesized starved basin source rocks create a viable play throughout northern New Guinea as in the Salawati Basin. The Pliocene clastic section is locally prospective due to overthrusting and deep burial. Within the Fold Belt, the site and types of oil and gas fields are largely controlled by the basement architecture. This controlled the transfer zones and depocentres during Mesozoic extension and the location of major basement uplifts during compression. In PNG, the Bosavi lineament separates an oil province from a gas province. In Irian Jaya the transition from a relatively competent sequence to a rifted sequence west of {approx}139{degrees}E may also be a gas-oil province boundary. Understanding, in detail, the compartmentalization of inverted blocks and areas of thin-skinned thrusting, controlled by the basement architecture, will help constrain hydrocarbon prospectivity.« less

  9. Warm Middle Jurassic-Early Cretaceous high-latitude sea-surface temperatures from the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Jenkyns, H. C.; Schouten-Huibers, L.; Schouten, S.; Sinninghe Damsté, J. S.

    2012-02-01

    Although a division of the Phanerozoic climatic modes of the Earth into "greenhouse" and "icehouse" phases is widely accepted, whether or not polar ice developed during the relatively warm Jurassic and Cretaceous Periods is still under debate. In particular, there is a range of isotopic and biotic evidence that favours the concept of discrete "cold snaps", marked particularly by migration of certain biota towards lower latitudes. Extension of the use of the palaeotemperature proxy TEX86 back to the Middle Jurassic indicates that relatively warm sea-surface conditions (26-30 °C) existed from this interval (∼160 Ma) to the Early Cretaceous (∼115 Ma) in the Southern Ocean, with a general warming trend through the Late Jurassic followed by a general cooling trend through the Early Cretaceous. The lowest sea-surface temperatures are recorded from around the Callovian-Oxfordian boundary, an interval identified in Europe as relatively cool, but do not fall below 25 °C. The early Aptian Oceanic Anoxic Event, identified on the basis of published biostratigraphy, total organic carbon and carbon-isotope stratigraphy, records an interval with the lowest, albeit fluctuating Early Cretaceous palaeotemperatures (∼26 °C), recalling similar phenomena recorded from Europe and the tropical Pacific Ocean. Extant belemnite δ18O data, assuming an isotopic composition of waters inhabited by these fossils of -1‰ SMOW, give palaeotemperatures throughout the Upper Jurassic-Lower Cretaceous interval that are consistently lower by ∼14 °C than does TEX86 and the molluscs likely record conditions below the thermocline. The long-term, warm climatic conditions indicated by the TEX86 data would only be compatible with the existence of continental ice if appreciable areas of high altitude existed on Antarctica, and/or in other polar regions, during the Mesozoic Era.

  10. Ammonite paleobiogeography during the Pliensbachian-Toarcian crisis (Early Jurassic) reflecting paleoclimate, eustasy, and extinctions

    NASA Astrophysics Data System (ADS)

    Dera, Guillaume; Neige, Pascal; Dommergues, Jean-Louis; Brayard, Arnaud

    2011-08-01

    The Pliensbachian-Toarcian crisis (Early Jurassic) is one of the major Mesozoic paleoecological disturbances when ca. 20% of marine and continental families went extinct. Contemporaneously, profound paleobiogeographical changes occurred in most oceanic domains including a disruption of ammonite provincialism during the Early Toarcian. Here, we quantitatively reappraise the structure and evolution of paleobiogeographical patterns displayed by ammonite faunas before, during, and after the biological crisis, over a time-interval including 13 biochronozones. The high-resolution study presented here involves the use of hierarchical Cluster Analyses, non-metric Multi-Dimensional Scaling methods, and Bootstrap Spanning Network approaches that we apply to a large database including 772 ammonite species from 16 northwestern Tethyan and Arctic basins. Our results confirm a robust faunal dichotomy between Euro-Boreal and Mediterranean areas throughout the Pliensbachian, with the first emergence of an Arctic biome during the cooling regressive event of the Spinatum Zone. Whatever its complexity, Pliensbachian provincialism could be directly linked to paleogeographical barriers and to latitudinal paleoclimatic and paleoecological contrasts. During the Early Toarcian, this pattern was progressively lost, with northward expansions of Mediterranean ammonites during the Tenuicostatum Zone, followed by a strong interprovincial mixing during the Falciferum Zone. This faunal homogenization results from the combination of several parameters including a major sea-level rise facilitating basinal connections, a global warming event stretching the spatial range limits of southern taxa, and a mass extinction preferentially removing endemic species. Ammonite provincialism, although slightly different, was progressively re-established during the cooling regressive trend of the Middle Toarcian. These results therefore suggest a paramount influence of paleoclimatic, eustatic, and extinction

  11. Digital surfaces and hydrogeologic data for the Mesozoic through early Tertiary rocks in the Southeastern Coastal Plain in parts of Mississippi, Alabama, Georgia, South Carolina, and Florida

    USGS Publications Warehouse

    Cannon, Debra M.; Bellino, Jason C.; Williams, Lester J.

    2012-01-01

    A digital dataset of hydrogeologic data for Mesozoic through early Tertiary rocks in the Southeastern Coastal Plain was developed using data from five U.S. Geological Survey (USGS) reports published between 1951 and 1996. These reports contain maps and data depicting the extent and elevation of the Southeast Coastal Plain stratigraphic and hydrogeologic units in Florida and parts of Mississippi, Alabama, Georgia, and South Carolina. The reports are: Professional Paper 1410-B (Renken, 1996), Professional Paper 1088 (Brown and others, 1979), Professional Paper 524-G (Applin and Applin, 1967), Professional Paper 447 (Applin and Applin, 1965), and Circular 91 (Applin, 1951). The digital dataset provides hydrogeologic data for the USGS Energy Resources Program assessment of potential reservoirs for carbon sequestration and for the USGS Groundwater Resource Program assessment of saline aquifers in the southeastern United States. A Geographic Information System (ArcGIS 9.3.1) was used to construct 33 digital (raster) surfaces representing the top or base of key stratigraphic and hydrogeologic units. In addition, the Geographic Information System was used to generate 102 geo-referenced scanned maps from the five reports and a geo-database containing structural and thickness contours, faults, extent polygons, and common features. The dataset also includes point data of well construction and stratigraphic elevations and scanned images of two geologic cross sections and a nomenclature chart.

  12. Detrital zircon U-Pb geochronology and stratigraphy of the Cretaceous Sanjiang Basin in NE China: Provenance record of an abrupt tectonic switch in the mode and nature of the NE Asian continental margin evolution

    NASA Astrophysics Data System (ADS)

    Zhang, Feng-Qi; Chen, Han-Lin; Batt, Geoffrey E.; Dilek, Yildirim; A, Min-Na; Sun, Ming-Dao; Yang, Shu-Feng; Meng, Qi-An; Zhao, Xue-Qin

    2015-12-01

    The age spectra obtained from 505 spots of detrital zircon U-Pb ages of five representative sandstone samples from the Sanjiang Basin in NE China point to a significant change in its provenance during the Coniacian-Santonian. The predominant detrital source for the Sanjiang Basin during the early Cretaceous was the Zhangguangcai Range magmatic belt and Jiamusi Block along its western and southern periphery, whereas it changed in the late Cretaceous to its eastern periphery. The timing of these inferred changes in the detrital source regions and drainage patterns nearly coincide with the age of a regional unconformity in and across the basin. The time interval of non-deposition and unconformity development was coeval with a transitional period between an extensional tectonic regime in the early Cretaceous and a contractional deformation episode in the late Cretaceous. The Sanjiang Basin evolved during this time window from a backarc to a foreland basin. The migration of the coastal orogenic belt and the fold and thrust belt development farther inland during the late Cretaceous marked the onset of regional-scale shortening and surface uplift in the upper plate of a flat (or very shallow-dipping) subduction zone. The stratigraphic record, the detrital source and geochronology of the basinal strata, and the internal structure of the Sanjiang Basin present, therefore, an important record of a tectonic switch in the nature of continental margin evolution of Northeast Asia during the late Mesozoic.

  13. Mesozoic contractile and extensional structures in the Boyer Gap area, northern Dome Rock Mountains, Arizona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boettcher, S.S.

    1993-04-01

    Mesozoic polyphase contractile and superposed ductile extensional structures affect Proterozoic augen gneiss, Paleozoic metasedimentary rocks, and Jurassic granitoids in the Boyer Gap area of the northern Dome Rock Mtns, W-central Arizona. The nappe-style contractile structures are preserved in the footwall of the Tyson Thrust shear zone, which is one of the structurally lowest thrust faults in the E-trending Jurassic and Cretaceous Maria fold and thrust belt. Contractile deformation preceded emplacement of Late Cretaceous granite (ca 80 Ma, U-Pb zircon) and some may be older than variably deformed Late Jurassic leucogranite. Specifically, detailed structural mapping reveals the presence of a km-scalemore » antiformal syncline that apparently formed as a result of superposition of tight to isoclinal, south-facing folds on an earlier, north-facing recumbent fold. The stratigraphic sequence of metamorphosed Paleozoic cratonal strata is largely intact in the northern Dome Rock Mtns, such that overturned and upright stratigraphic units can be distinguished. A third phase of folding in the Boyer Gap area is distinguished by intersection lineations that are folded obliquely across the hinges of open to tight, sheath folds. The axial planes of the sheet folds are subparallel to the mylonitic foliation in top-to-the-northeast extensional shear zones. The timing of ductile extensional structures in the northern Dome Rock is constrained by [sup 40]Ar/[sup 39]Ar isochron ages of 56 Ma and 48 Ma on biotite from mylonitic rocks in both the hanging wall and footwall of the Tyson Thrust shear zone. The two early phases of folding are the dominant mechanism by which shortening was accommodated in the Boyer Gap area, as opposed to deformation along discrete thrust faults with large offset. All of the ductile extensional structures are spectacularly displayed at an outcrop scale but are not of sufficient magnitude to obliterate the km-scale Mesozoic polyphase contractile

  14. Early Cretaceous wedge extrusion in the Indo-Burma Range accretionary complex: implications for the Mesozoic subduction of Neotethys in SE Asia

    NASA Astrophysics Data System (ADS)

    Zhang, Ji'en; Xiao, Wenjiao; Windley, Brian F.; Cai, Fulong; Sein, Kyaing; Naing, Soe

    2017-06-01

    ± 3 Ma and 115 Ma, which are close to the zircon ages of nearby calc-alkaline granite and diorite, which belong to an active continental margin arc that extends along the western side of the Shan-Thai block. The IBR accretionary complex and the active continental margin arc were generated during Early Cretaceous (115-128 Ma) subduction of the Neotethys Ocean.

  15. Phanerozoic continental growth and gold metallogeny of Asia

    USGS Publications Warehouse

    Goldfarb, Richard J.; Taylor, Ryan D.; Collins, Gregory S.; Goryachev, Nicolay A.; Orlandini, Omero Felipe

    2014-01-01

    The Asian continent formed during the past 800 m.y. during late Neoproterozoic through Jurassic closure of the Tethyan ocean basins, followed by late Mesozoic circum-Pacific and Cenozoic Himalayan orogenies. The oldest gold deposits in Asia reflect accretionary events along the margins of the Siberia, Kazakhstan, North China, Tarim–Karakum, South China, and Indochina Precambrian blocks while they were isolated within the Paleotethys and surrounding Panthalassa Oceans. Orogenic gold deposits are associated with large-scale, terrane-bounding fault systems and broad areas of deformation that existed along many of the active margins of the Precambrian blocks. Deposits typically formed during regional transpressional to transtensional events immediately after to as much as 100 m.y. subsequent to the onset of accretion or collision. Major orogenic gold provinces associated with this growth of the Asian continental mass include: (1) the ca. 750 Ma Yenisei Ridge, ca. 500 Ma East Sayan, and ca. 450–350 Ma Patom provinces along the southern margins of the Siberia craton; (2) the 450 Ma Charsk belt of north-central Kazakhstan; (3) the 310–280 Ma Kalba belt of NE Kazakhstan, extending into adjacent NW Xinjiang, along the Siberia–Kazakhstan suture; (4) the ca. 300–280 Ma deposits within the Central Asian southern and middle Tien Shan (e.g., Kumtor, Zarmitan, Muruntau), marking the closure of the Turkestan Ocean between Kazakhstan and the Tarim–Karakum block; (5) the ca. 190–125 Ma Transbaikal deposits along the site of Permian to Late Jurassic diachronous closure of the Mongol–Okhotsk Ocean between Siberia and Mongolia/North China; (6) the probable Late Silurian–Early Devonian Jiagnan belt formed along the margin of Gondwana at the site of collision between the Yangtze and Cathaysia blocks; (7) Triassic deposits of the Paleozoic Qilian Shan and West Qinling orogens along the SW margin of the North China block developed during collision of South China

  16. Salt structure and sediment thickness, Texas-Louisiana continental slope, northwestern Gulf of Mexico

    USGS Publications Warehouse

    Martin, Raymond G.

    1973-01-01

    The objectives of this study were to determine the general configuration of the salt surface beneath the Texas-Louisiana continental slope and to isopach the Mesozoic-Cenozoic sedimentary section lying upon it. The structure contour map discloses that the entire slope province between the shelf edge and Sigsbee Escarpment is underlain by salt structures which interconnect at relatively shallow subbottom depths. Salt structures on the slope south of Louisiana and eastern Texas can be grouped according to structural relief and size which define morphological belts of decreasing deformational maturity in a downslope direction. Off northern Mexico and southernmost Texas, salt structures are anticlinal and their trends suggest a structural relationship with the folds of the Mexican Ridge province to the south. Structural trends in the two slope areas meet in the corner of the northwestern gulf where salt structure may have been influenced by a seaward extension of the San Marcos Arch, or an abrupt change in subsalt structural topography. Sediment thickness above the top of salt on the slope averages about 1,400 m (4,620 ft) which is a smaller average than expected from previous estimates. In some synclinal basins between salt structures, sediments may be as thick as 4,000-5,000 m (12,000-17,000 ft). On the average, sedimentary deposits in basins on the upper slope are thicker than on the lower slope. From the isopach map of sediments above salt it is estimated that the U.S. continental slope off Texas and Louisiana contains a sedimentary volume of about 170,000 km3 (41,000 mi3). The bulk of this volume is situated in synclinal basins between domes and principally in those beneath the upper and middle slope regions.

  17. Structure, mechanical properties and evolution of the lithosphere below the northwest continental margin of India

    NASA Astrophysics Data System (ADS)

    Rao, G. Srinivasa; Kumar, Manish; Radhakrishna, M.

    2018-02-01

    The continental breakup history at the northwest continental margin of India remained conjectural due to lack of clearly discernable magnetic anomaly identifications and the presence of several enigmatic structural/basement features whose structure was partly obscured by the Late Cretaceous Deccan magmatic event. In this study, a detailed analysis of the existing seismic and seismological data covering both onshore and offshore areas of the northwest Indian margin along with 3-D/2-D constrained potential field (gravity, magnetic and geoid) modeling has been carried out. The crustal structure and lithosphere-asthenosphere boundary (LAB) delineated across the margin provided valuable insights on the mechanism of continental extension. An analysis of the residual geoid anomaly (degree-10) map and the modeled LAB below Deccan volcanic province (DVP) revealed significant variation in upper mantle characteristics between the northwest (NW) and south central (SC) parts of DVP having thinner lithosphere in the NW part. The depth to LAB ranges 80-130 km at the margin with gradual thinning towards the western offshore having sharp gradient in the south (SC part of DVP) and gentle gradient in the north (NW part of DVP). The Moho configuration obtained from seismically constrained 3-D gravity inversion reveals that Moho depths vary 34-42 km below DVP and gradually thins to 16-20 km in the western offshore. The effective elastic thickness (Te) map computed through 3-D flexural modeling indicates that the Te values are in general lower in the region and range 12-25 km. Such lower Te values could be ascribed to the combined effect of the lithosphere stretching during Gondwana fragmentation in the Mesozoic and subsequent thermal influence of the Reunion plume. Based on the crustal stretching factors (β), Te estimates and the modeled lithosphere geometry at the margin in this study, we propose that the lithosphere below Laxmi-Gop basin region (β > 3.0) had undergone continuous

  18. Sediment underthrusting within a continental magmatic arc: Coast Mountains batholith, British Columbia

    NASA Astrophysics Data System (ADS)

    Pearson, David M.; MacLeod, Douglas R.; Ducea, Mihai N.; Gehrels, George E.; Jonathan Patchett, P.

    2017-10-01

    Though continental magmatic arcs are factories for new continental crust, a significant proportion of continental arc magmas are recycled from supracrustal material. To evaluate the relative contributions of retroarc underthrusting and trench side partial sediment subduction for introducing supracrustal rocks to the middle and lower crust of continental magmatic arcs, we present results from the deeply exposed country rocks of the Coast Mountains batholith of western British Columbia. Prior work demonstrates that these rocks underwent widespread partial melting that contributed to the Coast Mountains batholith. We utilize U-Pb zircon geochronology, Sm-Nd thermochronology, and field-based studies to document the protoliths and early burial history of amphibolite and granulite-facies metasedimentary rocks in the Central Gneiss Complex. U-Pb detrital zircon data from the structurally highest sample localities yielded 190 Ma unimodal age peaks and suggest that retroarc rocks of the Stikine terrane constitute a substantial portion of the Central Gneiss Complex. These supracrustal rocks underwent thrust-related burial and metamorphism at >25 km depths prior to 80 Ma. These rocks may also be underlain at the deepest exposed structural levels by Upper Cretaceous metasedimentary rocks, which may have been emplaced as a result of trench side underplating or intraarc burial. These results further our understanding of the mechanisms of material transport within the continental lithosphere along Cordilleran subduction margins.

  19. Palaeointensity determinations and rock magnetic properties on basalts from Shatsky Rise: new evidence for a Mesozoic dipole low

    NASA Astrophysics Data System (ADS)

    Carvallo, C.; Camps, P.; Ooga, M.; Fanjat, G.; Sager, W. W.

    2013-03-01

    IODP Expedition 324 cored igneous rocks from Shatsky Rise, an oceanic plateau in the northwest Pacific Ocean that formed mainly during late Jurassic and Early Cretaceous times. We selected 60 samples from 3 different holes for Thellier-Thellier palaeointensity determinations. Induced and remanent magnetization curves measured at low- and high-temperature suggest a diverse and complex magnetic mineralogy, with large variations in Ti content and oxidation state. Hysteresis and FORC measurements show that most samples contain single-domain magnetic grains. After carrying out the palaeointensity determinations, only 9 samples satisfied all reliability criteria. These gave palaeointensity values between 16.5 and 21.5 μT, which correspond to average VDM values of (4.9 ± 0.2) × 1022 Am2 for an estimated age of 140-142 Ma. This value is lower than that for the recent field, which agrees with the hypothesis of a Mesozoic Dipole Low.

  20. The development of the continental margin of eastern North America-conjugate continental margin to West Africa

    USGS Publications Warehouse

    Dillon, William P.; Schlee, J.S.; Klitgord, Kim D.

    1988-01-01

    The continental margin of eastern North America was initiated when West Africa and North America were rifted apart in Triassic-Early Jurassic time. Cooling of the crust and its thinning by rifting and extension caused subsidence. Variation in amounts of subsidence led to formation of five basins. These are listed from south to north. (1) The Blake Plateau Basin, the southernmost, is the widest basin and the one in which the rift-stage basement took longest to form. Carbonate platform deposition was active and persisted until the end of Early Cretaceous. In Late Cretaceous, deposition slowed while subsidence persisted, so a deep water platform was formed. Since the Paleocene the region has undergone erosion. (2) The Carolina Trough is narrow and has relatively thin basement, on the basis of gravity modeling. The two basins with thin basement, the Carolina Trough and Scotian Basin, also show many salt diapirs indicating considerable deposition of salt during their early evolution. In the Carolina Trough, subsidence of a large block of strata above the flowing salt has resulted in a major, active normal fault on the landward side of the basin. (3) The Baltimore Canyon Trough has an extremely thick sedimentary section; synrift and postrift sediments exceed 18 km in thickness. A Jurassic reef is well developed on the basin's seaward side, but post-Jurassic deposition was mainly non-carbonate. In general the conversion from carbonate to terrigenous deposition, characteristics of North American Basins, occurred progressively earlier toward the north. (4) The Georges Bank Basin has a complicated deep structure of sub-basins filled with thick synrift deposits. This may have resulted from some shearing that occurred at this offset of the continental margin. Postrift sediments apparently are thin compared to other basins-only about 8 km. (5) The Scotian Basin, off Canada, contains Jurassic carbonate rocks, sandstone, shale and coal covered by deltaic deposits and Upper

  1. Mesozoic intracontinental underthrust in the SE margin of the North China Block: Insights from the Xu-Huai thrust-and-fold belt

    NASA Astrophysics Data System (ADS)

    Shu, Liangshu; Yin, Hongwei; Faure, Michel; Chen, Yan

    2017-06-01

    The Xu-Huai thrust-and-fold belt, located in the southeastern margin of the North China Block, consists mainly of thrust and folded pre-Mesozoic strata. Its geodynamic evolution and tectonic setting are topics of long debate. This paper provides new evidence from geological mapping, structural analysis, and making balance cross-sections, with restoration of cross-sections. Results suggest that this belt was subjected to two-phase deformation, including an early-phase regional-scale NW-ward thrust and fold, and a late-phase extension followed by the emplacement of dioritic, monzodioritic porphyrites dated at 131-135 Ma and locally strike-slip shearing. According to the mapping, field observations and drill-hole data, three structural units were distinguished, namely, (1) the pre-Neoproterozoic crystalline basement in the eastern segment, (2) the nappe unit or the thrust-and-fold zone in the central segment, which is composed of Neoproterozoic to Ordovician carbonate rocks and Carboniferous-Permian coal-bearing rocks, about 2600 m thick, and (3) the western frontal zone. A major decollement fault has also been identified in the base of the nappe unit, on which dozen-meter to km-scale thrust-and-fold bodies were commonly developed. All pre-Mesozoic depositional sequences were involved into a widespread thrust and fold event. Six uncompetent-rock layers with biostratigraphic ages (Nanjing University, 1996) have been recognized, and each uncompetent-rock layer occurred mainly in the top of the footwall, playing an important role in the development of the Xu-Huai thrust-and-fold belt. Geometry of the major decollement fault suggests that the nappe unit of this belt was rooted in its eastern side, near the Tan-Lu Fault Zone. Two geological cross-sections were chosen for structural balancing and restoration. From the balanced cross-sections, ramp-flat and imbricated faults as well as fault-related folds were identified. A shortening of 20.6-29.6 km was obtained from

  2. Elemental and Sr-Nd isotopic geochemistry of Cretaceous to Early Paleogene granites and volcanic rocks in the Sikhote-Alin Orogenic Belt (Russian Far East): implications for the regional tectonic evolution

    NASA Astrophysics Data System (ADS)

    Zhao, Pan; Jahn, Bor-ming; Xu, Bei

    2017-09-01

    The Sikhote-Alin Orogenic Belt in Russian Far East is an important Late Mesozoic to Early Cenozoic accretionary orogen related to the subduction of the Paleo-Pacific Plate. This belt was generated by successive accretion of terranes made of accretionary prisms, turbidite basins and island arcs to the continental margin of northeastern Asia (represented by the Bureya-Jiamusi-Khanka Block) from Jurassic to Late Cretaceous. In order to study the tectonic and crustal evolution of this orogenic belt, we carried out zircon U-Pb dating, and whole-rock elemental and Sr-Nd isotopic analyses on granites and volcanic rocks from the Primorye region of southern Sikhote-Alin. Zircon dating revealed three episodes of granitoid emplacement: Permian, Early Cretaceous and Late Cretaceous to Early Paleogene. Felsic volcanic rocks (mainly rhyolite, dacite and ignimbrite) that overlay all tectonostratigraphic terranes were erupted during 80-57 Ma, postdating the accretionary process in the Sikhote-Alin belt. The Cretaceous-Paleogene magmatism represents the most intense tectonothermal event in the Sikhote-Alin belt. Whole-rock major and trace elemental data show arc-like affinity for granitoids and volcanic rocks, indicating that they were likely generated in a supra-subduction setting. Their initial 87Sr/86Sr ratios range from 0.7048 to 0.7114, and εNd(t) values vary from +1.7 to -3.8 (mostly < 0). Thus, the elemental and Sr-Nd isotopic data suggest that the felsic magmas were generated by partial melting of source rocks comprising mantle-derived juvenile component and recycled crustal component. In addition to the occurrence in the Sikhote-Alin orogenic belt, Cretaceous to Early Paleogene magmatic rocks are also widespread in NE China, southern Korean peninsula, Japanese islands and other areas of Russian Far East, particularly along the coastal regions of the Okhotsk and Bering Seas. These rocks constitute an extended magmatic belt along the continental margin of NE Asia. The

  3. Mesozoic-Early Cenozoic Retroarc Basin Evolution in Response to Changing Tectonic Regimes, Southern Central Andes

    NASA Astrophysics Data System (ADS)

    Mackaman-Lofland, C.; Horton, B. K.; Fuentes, F.; Constenius, K. N.; Stockli, D. F.

    2017-12-01

    Spatial and temporal variations in pre-Andean deformation, inherited lithospheric discontinuities, and subduction geometry have been documented for the southern Central Andes (27-40°S). However, the influence of inherited crustal structures and changing subduction zone dynamics on along-strike (N-S) and across-strike (E-W) variations in upper-plate deformation and basin evolution remains poorly understood. The La Ramada Basin in the High Andes at 32°S preserves the northernmost succession correlated with the well-studied Neuquen Basin to the south. New maximum depositional ages and provenance information provided by detrital zircon U-Pb geochronology refine the chronostratigraphic and provenance framework of La Ramada Basin deposits and improve reconstructions of structural activity and subsidence mechanisms during polyphase basin evolution. Updated along- and across-strike comparisons with Neuquen and intraplate depocenters provide an unparalleled opportunity to examine long-term fluctuations in stress regime, modes of variable plate coupling, structural reactivation, and basin evolution. Zircon U-Pb age distributions constrain Mesozoic-Cenozoic ages of La Ramada clastic units and identify a previously unrecognized period of Paleogene nonmarine deposition. Late Triassic-Jurassic synrift and post-rift deposits record sediment derivation from the eastern half-graben footwall and western Andean volcanic arc during periods of slab rollback and thermal subsidence. Uplift of the Coastal Cordillera and introduction of Coastal Cordillera sediment at 107 Ma represents the first signature of initial Andean uplift associated with accumulation in the La Ramada Basin. Finally, newly identified Paleogene extensional structures and intra-arc deposits in the western La Ramada Basin are correlated with the extensional Abanico Basin system ( 28°S-44°S) to the west in Chile. Development and inversion of this system of intra-arc depocenters suggests that shortening and uplift in

  4. Evolutionary history of continental southeast Asians: "early train" hypothesis based on genetic analysis of mitochondrial and autosomal DNA data.

    PubMed

    Jinam, Timothy A; Hong, Lih-Chun; Phipps, Maude E; Stoneking, Mark; Ameen, Mahmood; Edo, Juli; Saitou, Naruya

    2012-11-01

    The population history of the indigenous populations in island Southeast Asia is generally accepted to have been shaped by two major migrations: the ancient "Out of Africa" migration ∼50,000 years before present (YBP) and the relatively recent "Out of Taiwan" expansion of Austronesian agriculturalists approximately 5,000 YBP. The Negritos are believed to have originated from the ancient migration, whereas the majority of island Southeast Asians are associated with the Austronesian expansion. We determined 86 mitochondrial DNA (mtDNA) complete genome sequences in four indigenous Malaysian populations, together with a reanalysis of published autosomal single-nucleotide polymorphism (SNP) data of Southeast Asians to test the plausibility and impact of those migration models. The three Austronesian groups (Bidayuh, Selatar, and Temuan) showed high frequencies of mtDNA haplogroups, which originated from the Asian mainland ∼30,000-10,000 YBP, but low frequencies of "Out of Taiwan" markers. Principal component analysis and phylogenetic analysis using autosomal SNP data indicate a dichotomy between continental and island Austronesian groups. We argue that both the mtDNA and autosomal data suggest an "Early Train" migration originating from Indochina or South China around the late-Pleistocene to early-Holocene period, which predates, but may not necessarily exclude, the Austronesian expansion.

  5. Mesozoic Magmatism and Base-Metal Mineralization in the Fortymile Mining District, Eastern Alaska - Initial Results of Petrographic, Geochemical, and Isotopic Studies in the Mount Veta Area

    USGS Publications Warehouse

    Dusel-Bacon, Cynthia; Slack, John F.; Aleinikoff, John N.; Mortensen, James K.

    2009-01-01

    We present here the initial results of a petrographic, geochemical, and isotopic study of Mesozoic intrusive rocks and spatially associated Zn-Pb-Ag-Cu-Au prospects in the Fortymile mining district in the southern Eagle quadrangle, Alaska. Analyzed samples include mineralized and unmineralized drill core from 2006 and 2007 exploration by Full Metal Minerals, USA, Inc., at the Little Whiteman (LWM) and Fish prospects, and other mineralized and plutonic samples collected within the mining district is part of the USGS study. Three new ion microprobe U-Pb zircon ages are: 210 +- 3 Ma for quartz diorite from LWM, 187 +- 3 Ma for quartz monzonite from Fish, and 70.5 +- 1.1 Ma for altered rhyolite porphyry from Fish. We also present 11 published and unpublished Mesozoic thermal ionization mass spectrometric U-Pb zircon and titanite ages and whole-rock geochemical data for the Mesozoic plutonic rocks. Late Triassic and Early Jurassic plutons generally have intermediate compositions and are slightly foliated, consistent with synkinematic intrusion. Several Early Jurassic plutons contain magmatic epidote, indicating emplacement of the host plutons at mesozonal crustal depths of greater than 15 km. Trace-element geochemical data indicate an arc origin for the granitoids, with an increase in the crustal component with time. Preliminary study of drill core from the LWM Zn-Pb-Cu-Ag prospect supports a carbonate-replacement model of mineralization. LWM massive sulfides consist of sphalerite, galena, and minor pyrite and chalcopyrite, in a gangue of calcite and lesser quartz; silver resides in Sb-As-Ag sulfosalts and pyrargyrite, and probably in submicroscopic inclusions within galena. Whole-rock analyses of LWM drill cores also show elevated In, an important metal in high-technology products. Hypogene mineralized rocks at Fish, below the secondary Zn-rich zone, are associated with a carbonate host and also may be of replacement origin, or alternatively, may be a magnetite

  6. Depositional systems and stratigraphy of Paleozoic and Lower Mesozoic rocks in outcrop, Tassili region, southwest Algeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hertig, S.P.; Tye, R.S.; Coffield, D.Q.

    1991-08-01

    Paleozoic to Lower Mesozoic strata of the southeastern Algerian Tassili are traditionally subdivided by regionally extensive unconformities such as the Pan African, Taconic, Caledonian, and Hercynian. Using outcrop data from southeastern Algeria, this classic approach is modified by reinterpreting the genesis of these unconformities and rock sequences. Five prominent sequences, defined within the Paleozoic and lower Mesozoic section, usually consist of a succession of lowstand, transgressive, and highstand system tracts separated by sequence boundaries or transgressive surfaces. The Pan-African, Taconic, Caledonian, and Hercynian unconformities are sequence boundaries. Important sequence boundaries also occur within the Ordovician and Silurian sections. These sequencesmore » correlate with subsurface data in the Illizi basin and provide a framework for renewed exploration in the subsurface of the Algerian Sahara, where more than 30 billion bbl of recoverable oil and oil equivalent have been generated and trapped.« less

  7. The role of Mesozoic sedimentary basin tapers on the formation of Cenozoic crustal shortening structures and foredeep in the western Sichuan Basin, China

    NASA Astrophysics Data System (ADS)

    Wang, M.

    2017-12-01

    The foreland basin records important clues of tectonic and sedimentary process of mountain-building, thus to explore its dynamic mechanism on the formation is an important issue of the mountain-basin interaction. The Longmen Shan fold-and-thrust belt and its adjacent Sichuan basin located in the eastern margin of Tibetan Plateau, are one of the most-concerned regions of studying modern mountain-building and seismic process, and are also a natural laboratory of studying the dynamics of the formation and development of foreland basin. However, it still need further explore on the mechanics of the development of the Cenozoic foreland basin and thrust-belts in the western Sichuan Basin. The Longmen Shan thrust belt has experienced multi-stages of tectonics evolution, foreland basin formation and topography growth since Late Triassic, and whether the early formed basin architecture and large Mesozoic sedimentary basin taper can influence the formation and development of the Cenozoic foreland basin and thrust belts? To solve these issues, this project aim to focus on the Cenozoic foreland basin and internal crustal shortening structures in the western Sichuan basin, on the basis of growth critical wedge taper theory. We will reconstruct the shape of multi-phases of sedimentary basin tapers, the temporal-spatial distribution of crustal shortening and thrusting sequences, and analyze the control mechanism of Mesozoic sedimentary basin taper on the formation of Cenozoic foreland basins, and final explore the interaction between the tectonics geomorphology, stress field and dynamic propagation of foreland basin.

  8. 76 FR 2919 - Outer Continental Shelf Official Protraction Diagram and Supplemental Official Outer Continental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-18

    ...: Availability of Revised North American Datum of 1983 (NAD 83) Outer Continental Shelf Official Protraction... that effective with this publication, the following NAD 83-based Outer Continental Shelf (OCS) Official...

  9. A drowned Mesozoic bird breeding colony from the Late Cretaceous of Transylvania.

    PubMed

    Dyke, Gareth; Vremir, Mátyás; Kaiser, Gary; Naish, Darren

    2012-06-01

    Despite a rapidly improving fossil record, the reproductive biology of Mesozoic birds remains poorly known: only a handful of undisputed, isolated Cretaceous eggs (some containing embryonic remains) are known. We report here the first fossil evidence for a breeding colony of Mesozoic birds, preserved at the Late Cretaceous (Maastrichtian) Oarda de Jos (Od) site in the Sebeş area of Transylvania, Romania. A lens of calcareous mudstone with minimum dimensions of 80 cm length, 50 cm width and 20 cm depth contains thousands of tightly packed, morphologically homogenous eggshell fragments, seven near-complete eggs and neonatal and adult avialan skeletal elements. Eggshell forms 70-80 % of the matrix, and other fossils are entirely absent. The bones exhibit clear characters of the Cretaceous avialan clade Enantiornithes, and the eggshell morphology is also consistent with this identification. Both taphonomy and lithology show that the components of this lens were deposited in a single flood event, and we conclude that it represents the drowned remains of a larger enantiornithine breeding colony, swamped by rising water, washed a short distance and deposited in a shallow, low-energy pond. The same fate often befalls modern bird colonies. Such a large concentration of breeding birds suggests aquatic feeding in this species, augments our understanding of enantiornithine biology and shows that colonial nesting was not unique to crown birds.

  10. Diverse ages and origins of basement complexes, Luzon, Philippines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geary, E.E.; Harrison, T.M.; Heizler, M.

    1988-04-01

    Geological field investigations and /sup 40/Ar//sup 39/Ar ages from two basement complexes in southeast Luzon document the first known occurrences of pre-Late Cretaceous age rocks in the eastern Philippines. However, individual components within the two complexes vary in age from Late Jurassic (Caramoan basement complex) to Early Cretaceous and early Miocene (Camarines Norte-Calaguas Islands basement complex). These and other data show that southeast Luzon basement complexes are genetically diverse, and they indicate that the concept of an old, autochthonous basement in the Philippines is open to question. This supports the hypothesis that the Philippine Archipelago is an amalgamation of allochthonousmore » Mesozoic and Cenozoic island-arc, ocean-basin, and continental fragments that were assembled during the Tertiary.« less

  11. Tectono-stratigraphy and low-grade metamorphism of Late Permian and Early Jurassic accretionary complexes within the Kurosegawa belt, Southwest Japan: Implications for mechanisms of crustal displacement within active continental margin

    NASA Astrophysics Data System (ADS)

    Hara, Hidetoshi; Kurihara, Toshiyuki; Mori, Hiroshi

    2013-04-01

    We characterize the tectono-stratigraphic architecture and low-grade metamorphism of the accretionary complex preserved in the Kurosegawa belt of the Kitagawa district in eastern Shikoku, Southwest Japan, in order to understand its internal structure, tectono-metamorphic evolution, and assessments of displacement of continental fragments within the complex. We report the first ever documented occurrence of an Early Jurassic radiolarian assemblage within the accretionary complex of the Kurosegawa belt that has been previously classified as the Late Permian accretionary complex, thus providing a revised age interpretation for these rocks. The accretionary complex is subdivided into four distinct tectono-stratigraphic units: Late Permian mélange and phyllite units, and Early Jurassic mélange and sandstone units. The stratigraphy of these four units is structurally repeated due to an E-W striking, steeply dipping regional fault. We characterized low-grade metamorphism of the accretionary complex via illite crystallinity and Raman spectroscopy of carbonaceous material. The estimated pattern of low-grade metamorphism showed pronounced variability within the complex and revealed no discernible spatial trends. The primary thermal structure in these rocks was overprinted by later tectonic events. Based on geological and thermal structure, we conclude that continental fragments within the Kurosegawa belt were structurally translated into both the Late Permian and Early Jurassic accretionary complexes, which comprise a highly deformed zone affected by strike-slip tectonics during the Early Cretaceous. Different models have been proposed to explain the initial structural evolution of the Kurosegawa belt (i.e., micro-continent collision and klippe tectonic models). Even if we presuppose either model, the available geological evidence requires a new interpretation, whereby primary geological structures are overprinted and reconfigured by later tectonic events.

  12. Provenance and detrital zircon geochronologic evolution of lower Brookian foreland basin deposits of the western Brooks Range, Alaska, and implications for early Brookian tectonism

    USGS Publications Warehouse

    Moore, Thomas; O'Sullivan, Paul B.; Potter, Christopher J.; Donelick, Raymond A.

    2015-01-01

    detritus to the early Brookian foreland basin of the western Brooks Range: (1) local sources in the oceanic Angayucham terrane, which forms the upper plate of the orogen, and (2) a sedimentary source region outside of northern Alaska. Pre-Jurassic zircons and continental grain types suggest the latter detritus was derived from a thick succession of Triassic turbidites in the Russian Far East that were originally shed from source areas in the Uralian-Taimyr orogen and deposited in the South Anyui Ocean, interpreted here as an early Mesozoic remnant basin. Structural thickening and northward emplacement onto the continental margin of Chukotka during the Brookian structural event are proposed to have led to development of a highland source area located in eastern Chukotka, Wrangel Island, and Herald Arch region. The abundance of detritus from this source area in most of the samples argues that the Colville Basin and ancestral foreland basins were supplied by longitudinal sediment dispersal systems that extended eastward along the Brooks Range orogen and were tectonically recycled into the active foredeep as the thrust front propagated toward the foreland. Movement of clastic sedimentary material from eastern Chukotka, Wrangel Island, and Herald Arch into Brookian foreland basins in northern Alaska confirms the interpretations of previous workers that the Brookian deformational belt extends into the Russian Far East and demonstrates that the Arctic Alaska–Chukotka microplate was a unified geologic entity by the Early Cretaceous.

  13. Unexpected Early Triassic marine ecosystem and the rise of the Modern evolutionary fauna

    PubMed Central

    Brayard, Arnaud; Krumenacker, L. J.; Botting, Joseph P.; Jenks, James F.; Bylund, Kevin G.; Fara, Emmanuel; Vennin, Emmanuelle; Olivier, Nicolas; Goudemand, Nicolas; Saucède, Thomas; Charbonnier, Sylvain; Romano, Carlo; Doguzhaeva, Larisa; Thuy, Ben; Hautmann, Michael; Stephen, Daniel A.; Thomazo, Christophe; Escarguel, Gilles

    2017-01-01

    In the wake of the end-Permian mass extinction, the Early Triassic (~251.9 to 247 million years ago) is portrayed as an environmentally unstable interval characterized by several biotic crises and heavily depauperate marine benthic ecosystems. We describe a new fossil assemblage—the Paris Biota—from the earliest Spathian (middle Olenekian, ~250.6 million years ago) of the Bear Lake area, southeastern Idaho, USA. This highly diversified assemblage documents a remarkably complex marine ecosystem including at least seven phyla and 20 distinct metazoan orders, along with algae. Most unexpectedly, it combines early Paleozoic and middle Mesozoic taxa previously unknown from the Triassic strata, among which are primitive Cambrian-Ordovician leptomitid sponges (a 200–million year Lazarus taxon) and gladius-bearing coleoid cephalopods, a poorly documented group before the Jurassic (~50 million years after the Early Triassic). Additionally, the crinoid and ophiuroid specimens show derived anatomical characters that were thought to have evolved much later. Unlike previous works that suggested a sluggish postcrisis recovery and a low diversity for the Early Triassic benthic organisms, the unexpected composition of this exceptional assemblage points toward an early and rapid post-Permian diversification for these clades. Overall, it illustrates a phylogenetically diverse, functionally complex, and trophically multileveled marine ecosystem, from primary producers up to top predators and potential scavengers. Hence, the Paris Biota highlights the key evolutionary position of Early Triassic fossil ecosystems in the transition from the Paleozoic to the Modern marine evolutionary fauna at the dawn of the Mesozoic era. PMID:28246643

  14. Unexpected Early Triassic marine ecosystem and the rise of the Modern evolutionary fauna.

    PubMed

    Brayard, Arnaud; Krumenacker, L J; Botting, Joseph P; Jenks, James F; Bylund, Kevin G; Fara, Emmanuel; Vennin, Emmanuelle; Olivier, Nicolas; Goudemand, Nicolas; Saucède, Thomas; Charbonnier, Sylvain; Romano, Carlo; Doguzhaeva, Larisa; Thuy, Ben; Hautmann, Michael; Stephen, Daniel A; Thomazo, Christophe; Escarguel, Gilles

    2017-02-01

    In the wake of the end-Permian mass extinction, the Early Triassic (~251.9 to 247 million years ago) is portrayed as an environmentally unstable interval characterized by several biotic crises and heavily depauperate marine benthic ecosystems. We describe a new fossil assemblage-the Paris Biota-from the earliest Spathian (middle Olenekian, ~250.6 million years ago) of the Bear Lake area, southeastern Idaho, USA. This highly diversified assemblage documents a remarkably complex marine ecosystem including at least seven phyla and 20 distinct metazoan orders, along with algae. Most unexpectedly, it combines early Paleozoic and middle Mesozoic taxa previously unknown from the Triassic strata, among which are primitive Cambrian-Ordovician leptomitid sponges (a 200-million year Lazarus taxon) and gladius-bearing coleoid cephalopods, a poorly documented group before the Jurassic (~50 million years after the Early Triassic). Additionally, the crinoid and ophiuroid specimens show derived anatomical characters that were thought to have evolved much later. Unlike previous works that suggested a sluggish postcrisis recovery and a low diversity for the Early Triassic benthic organisms, the unexpected composition of this exceptional assemblage points toward an early and rapid post-Permian diversification for these clades. Overall, it illustrates a phylogenetically diverse, functionally complex, and trophically multileveled marine ecosystem, from primary producers up to top predators and potential scavengers. Hence, the Paris Biota highlights the key evolutionary position of Early Triassic fossil ecosystems in the transition from the Paleozoic to the Modern marine evolutionary fauna at the dawn of the Mesozoic era.

  15. Largest known Mesozoic multituberculate from Eurasia and implications for multituberculate evolution and biology.

    PubMed

    Xu, Li; Zhang, Xingliao; Pu, Hanyong; Jia, Songhai; Zhang, Jiming; Lü, Junchang; Meng, Jin

    2015-10-22

    A new multituberculate, Yubaartar zhongyuanensis gen. and sp. nov., is reported from the Upper Cretaceous of Luanchuan County, Henan Province, China. The holotype of the new taxon is a partial skeleton with nearly complete cranium and associated lower jaws with in situ dentitions. The new species is the southern-most record of a Late Cretaceous multituberculate from outside of the Mongolian Plateau in Asia and represents the largest known Mesozoic multituberculate from Eurasia. The new specimen displays some intriguing features previously unknown in multituberculates, such as the first evidence of replacement of the ultimate upper premolar and a unique paleopathological case in Mesozoic mammals in which the animal with a severely broken right tibia could heal and survive in natural condition. The phylogenetic analysis based on craniodental characters places Yubaartar as the immediate outgroup of Taeniolabidoidea, a group consisting of a North American clade and an Asian clade. This relationship indicates at least a faunal interchange of multituberculates before the K-Pg transition. The new evidence further supports the hypothesis that disparity in dental complexity, which relates to animal diets, increased with generic richness and disparity in body size, and that an adaptive shift towards increased herbivory across the K-Pg transitional interval.

  16. Late Eocene to early Oligocene quantitative paleotemperature record: Evidence from continental halite fluid inclusions

    PubMed Central

    Zhao, Yan-jun; Zhang, Hua; Liu, Cheng-lin; Liu, Bao-kun; Ma, Li-chun; Wang, Li-cheng

    2014-01-01

    Climate changes within Cenozoic extreme climate events such as the Paleocene–Eocene Thermal Maximum and the First Oligocene Glacial provide good opportunities to estimate the global climate trends in our present and future life. However, quantitative paleotemperatures data for Cenozoic climatic reconstruction are still lacking, hindering a better understanding of the past and future climate conditions. In this contribution, quantitative paleotemperatures were determined by fluid inclusion homogenization temperature (Th) data from continental halite of the first member of the Shahejie Formation (SF1; probably late Eocene to early Oligocene) in Bohai Bay Basin, North China. The primary textures of the SF1 halite typified by cumulate and chevron halite suggest halite deposited in a shallow saline water and halite Th can serve as an temperature proxy. In total, one-hundred-twenty-one Th data from primary and single-phase aqueous fluid inclusions with different depths were acquired by the cooling nucleation method. The results show that all Th range from 17.7°C to 50.7°C,with the maximum homogenization temperatures (ThMAX) of 50.5°C at the depth of 3028.04 m and 50.7°C at 3188.61 m, respectively. Both the ThMAX presented here are significantly higher than the highest temperature recorded in this region since 1954and agree with global temperature models for the year 2100 predicted by the Intergovernmental Panel on Climate Change. PMID:25047483

  17. Tectonic elements of the continental margin of East Antarctica, 38-164ºE

    USGS Publications Warehouse

    O'Brien, P.E.; Stagg, H.M.J.

    2007-01-01

    The East Antarctic continental margin from 38–164ºE is divided into western and eastern provinces that developed during the separation of India from Australia–Antarctica (Early Cretaceous) and Australia from Antarctica (Late Cretaceous). In the overlap between these provinces the geology is complex and bears the imprint of both extension/spreading episodes, with an overprinting of volcanism. The main rift-bounding faults appear to approximately coincide with the outer edge of the continental shelf. Inboard of these faults, the sedimentary cover thins above shallowing basement towards the coast where crystalline basement generally crops out. The continental slope and the landward flanks of the ocean basins, are blanketed by up to 9–10 km of mainly post-rift sediments in margin-parallel basins, except in the Bruce Rise area. Beneath this blanket, extensive rift basins are identified off Enderby and Wilkes Land/Terre Adélie; however, their extent and detailed structures are difficult to determine.

  18. Extent of Continental Crust Thickening Derived From Gravity Profile Leading From Aden Towards the Dhala Plateau in the Yemen Trap Series

    NASA Astrophysics Data System (ADS)

    Blecha, V.

    2003-12-01

    Gravity profile trends NNW from Aden and terminates at the Dhala plateau formed by Tertiary volcanics often referred to as the Yemen Trap Series. The length of profile is 120 km. Profile consists of 366 gravity stations with average distance of 300 m between stations. The mean square error of Bouguer anomalies is 0.06 mGal. This final error includes errors of gravity and altitude measurements and error in terrain corrections. Altitudes along profile are ranging from 0 m a.s.l. in the south to 1400 m a.s.l. at the northern side of profile. In the central part of the Gulf of Aden occurs juvenile oceanic crust. Stretched continental crust is assumed on the coast. Regional gravity field decreases from +38 mGal on the coast in Aden to -126 mGal at mountains of the Dhala plateau. According to gravity modeling the decrease of 164 mGal in gravity is caused by 8 km continental crust thickening over the distance of 120 km. Regional gravity field is accompanied by local anomalies with amplitudes of tens of mGal. Sources of local anomalies are from S to N: coastal sediments (negative), Tertiary intrusions and volcanics within the Dhala graben (positive), Mesozoic sediments (negative) and Tertiary volcanics of the Dhala plateau (positive). Gravity profile is most detailed and most precise regional gravity measurement carried out in the southern tip of Arabia and brings new information about geology of the area with scarce geophysical data.

  19. From Tethyan Oceans to the Western Mediterranean I - Plate reconstructions from the Present back to the Early Mesozoic

    NASA Astrophysics Data System (ADS)

    Schmid, Stefan; Handy, Mark; Bousquet, Romain; Kissling, Eduard; Bernoulli, Daniel

    2010-05-01

    A new reconstruction of the branches of Alpine Tethys combines available plate kinematic models of Africa-Europe motion with a wealth of new geological and geophysical data (seismic tomography and paleomagnetics) to shed light the evolution of the Western Mediterranean-Alps system, from sea-floor spreading through subduction to collision. Unlike previous models which relate the fate of Alpine Tethys solely to relative motions of the African plate with respect to Europe during opening of the Atlantic, our reconstruction invokes motions and rotations of four additional and temporarily independent microplates: Adria, Iberia, Alcapia and Alkapecia. Translations and rotations of these microplates with respect to Europe are constrained in the following way: (1) The retro-translations of Adria back to 94 Ma are obtained from shortening estimates in the Alps along geological-geophysical transects of the Alpine orogen and from geobarometric estimates of subduction depth in tectonic units that underwent high-pressure and ultrahigh-pressure metamorphism. Rotations are based on paleomagnetic data of Márton et al. (in press); (2) Iberia follows the motion paths of Savostin et al. (1986), based on magnetic anomalies in the Central and Northern Atlantic; the Corsica-Sardinia block later rifted from Iberia leading to Burdigalian opening of the Liguria-Provençal basin (Serranne 1999). (3) The Alcapia microplate, whose name is derived from the acronym ALCAPA (Alps-Carpathians-Pannonian Basin), separated from Adria in Cretaceous times. Its movement with respect to Adria was absorbed by Cretaceous orogeny in the Eastern Alps, constrained by the Adria-Europe displacement and rotation path; later, during Cenozoic orogeny in the Alps, associated with the closing of the Alpine Tethys, it became part of the Adria microplate again. (4) The introduction of an independent Alkapekia continental fragment and independent microplate during the Late Cenozoic only (Alboran

  20. Orbital pacing of carbon fluxes by a ∼9-My eccentricity cycle during the Mesozoic.

    PubMed

    Martinez, Mathieu; Dera, Guillaume

    2015-10-13

    Eccentricity, obliquity, and precession are cyclic parameters of the Earth's orbit whose climatic implications have been widely demonstrated on recent and short time intervals. Amplitude modulations of these parameters on million-year time scales induce "grand orbital cycles," but the behavior and the paleoenvironmental consequences of these cycles remain debated for the Mesozoic owing to the chaotic diffusion of the solar system in the past. Here, we test for these cycles from the Jurassic to the Early Cretaceous by analyzing new stable isotope datasets reflecting fluctuations in the carbon cycle and seawater temperatures. Our results document a prominent cyclicity of ∼9 My in the carbon cycle paced by changes in the seasonal dynamics of hydrological processes and long-term sea level fluctuations. These paleoenvironmental changes are linked to a great eccentricity cycle consistent with astronomical solutions. The orbital forcing signal was mainly amplified by cumulative sequestration of organic matter in the boreal wetlands under greenhouse conditions. Finally, we show that the ∼9-My cycle faded during the Pliensbachian, which could either reflect major paleoenvironmental disturbances or a chaotic transition affecting this cycle.

  1. Orbital pacing of carbon fluxes by a ∼9-My eccentricity cycle during the Mesozoic

    PubMed Central

    Martinez, Mathieu; Dera, Guillaume

    2015-01-01

    Eccentricity, obliquity, and precession are cyclic parameters of the Earth’s orbit whose climatic implications have been widely demonstrated on recent and short time intervals. Amplitude modulations of these parameters on million-year time scales induce ‟grand orbital cycles,” but the behavior and the paleoenvironmental consequences of these cycles remain debated for the Mesozoic owing to the chaotic diffusion of the solar system in the past. Here, we test for these cycles from the Jurassic to the Early Cretaceous by analyzing new stable isotope datasets reflecting fluctuations in the carbon cycle and seawater temperatures. Our results document a prominent cyclicity of ∼9 My in the carbon cycle paced by changes in the seasonal dynamics of hydrological processes and long-term sea level fluctuations. These paleoenvironmental changes are linked to a great eccentricity cycle consistent with astronomical solutions. The orbital forcing signal was mainly amplified by cumulative sequestration of organic matter in the boreal wetlands under greenhouse conditions. Finally, we show that the ∼9-My cycle faded during the Pliensbachian, which could either reflect major paleoenvironmental disturbances or a chaotic transition affecting this cycle. PMID:26417080

  2. Distribution and character of upper mesozoic subduction complexes along the west coast of North America

    USGS Publications Warehouse

    Jones, D.L.; Blake, M.C.; Bailey, E.H.; McLaughlin, R.J.

    1978-01-01

    Structurally complex sequences of sedimentary, volcanic, and intrusive igneous rocks characterize a nearly continuous narrow band along the Pacific coast of North America from Baja California, Mexico to southern Alaska. They occur in two modes: (1) as complexly folded but coherent sequences of graywacke and argillite that locally exhibit blueschist-grade metamorphism, and (2) as melanges containing large blocks of graywacke, chert, volcanic and plutonic rocks, high-grade schist, and limestone in a highly sheared pelitic, cherty, or sandstone matrix. Fossils from the coherent graywacke sequences range in age from late Jurassic to Eocene; fossils from limestone blocks in the melanges range in age from mid-Paleozoic to middle Cretaceous. Fossils from the matrix surrounding the blocks, however, are of Jurassic, Cretaceous, and rarely, Tertiary age, indicating that fossils from the blocks cannot be used to date the time of formation of the melanges. Both the deformation of the graywacke, with accompanying blueschist metamorphism, as well as the formation of the melanges, are believed to be the result of late Mesozoic and early Tertiary subduction. The origin of the melanges, particularly the emplacement of exotic tectonic blocks, is not understood. ?? 1978.

  3. Sub-basaltic Imaging of Ethiopian Mesozoic Sediments Using Surface Wave Dispersion

    NASA Astrophysics Data System (ADS)

    Mammo, T.; Maguire, P.; Denton, P.; Cornwell, D.

    2003-12-01

    The Ethiopia Afar Geoscientific Lithospheric Experiment (EAGLE) involved the deployment of a 400km NW-SE cross-rift profile across the Main Ethiopian Rift. The profile extended to about 150km on either side of the rift over the uplifted Ethiopian plateau characterized by voluminous Tertiary flood basalts covering a thick sequence of Mesozoic sediments. These consist of three major stratigraphic units, the Cretaceous Upper Sandstone (medium grained, friable and moderately to well-sorted) overlying the Jurassic Antalo limestone (with intercalations of marl, shale, mudstone and gypsum) above the Triassic Adigrat sandstone. These sediments are suggested to be approximately 1.5km thick at the north-western end of the profile, thickening to the south-east. They are considered a possible hydrocarbon reservoir and therefore crucial to the economy of Ethiopia. The EAGLE cross-rift profile included the deployment of 97 Guralp 6TD seismometers (30sec - 80Hz bandwidth) at a nominal 5km spacing. A 5.75 tonne explosion from the Muger quarry detonated specifically for the EAGLE project generated the surface waves used in this study. Preliminary processing involving the multiple filter technique has enabled the production of group velocity dispersion curves. These curves have been inverted to provide 1-D shear wave models, with the intention of providing an in-line cross-rift profile of Mesozoic sediment thickness. Preliminary results suggest that the sediments can be distinguished from both overlying plateau basalt and underlying basement, with their internal S-wave velocity structure possibly indicating that the three sediment units described above can be separately identified.

  4. Search for clues to Mesozoic graben on Long Island

    USGS Publications Warehouse

    Rogers, W.B.; Aparisi, M.; Sirkin, L.

    1989-01-01

    The position of Long Island between the Hartford Basin of Connecticut and graben structures reported from seismic reflection studies offshore to the south of the island suggests the possibility that other grabens associated with the early Mesozoic rifting might be buried beneath central Long Island. The hypothesis that post-rift tectonic activity would be related to the rift grabens and that such activity would be expressed in the post-rift sedimentary deposits led to a study of the Cretaceous and Pleistocene section to seek clues for buried grabens on Long Island. The Pleistocene glacial deposits in central and eastern Long Island have been mapped and a pollen zonation in the Upper Cretaceous section in the central part established. This work, combined with literature research, suggests the following: 1. (1) In central Long Island, the spacing of wells which reach basement enables a NE- striking zone free of basement samples to be defined where a buried graben could occur. This zone is referred to as the "permissible zone" because within it the data permit the existence of a hidden graben. 2. (2) The abrupt changes in the thickness of some pollen zones in the Upper Cretaceous deposits of central Long Island may be related to Cretaceous faulting. 3. (3) Buried preglacial valleys, the confluence of glacial lobes and major glacial outwash channels seem concentrated in west central and central Long Island. The loci of these drainage features may reflect structural control by a basement depression. 4. (4) The "permissible zone" is aligned with the zone of structures in an offshore zone south of central Long Island and with the Hartford Basin in Connecticut. Geophysical anomalies also fit into this pattern. 5. (5) A definitive answer to the question of a buried graben on Long Island will require a seismic line across the "permissible zone", or further drilling. ?? 1989.

  5. Age and geochemistry of western Hoh-Xil-Songpan-Ganzi granitoids, northern Tibet: Implications for the Mesozoic closure of the Paleo-Tethys ocean

    NASA Astrophysics Data System (ADS)

    Zhang, Li-Yun; Ding, Lin; Pullen, Alex; Xu, Qiang; Liu, De-Liang; Cai, Fu-Long; Yue, Ya-Hui; Lai, Qing-Zhou; Shi, Ren-Deng; Ducea, Mihai N.; Kapp, Paul; Chapman, Alan

    2014-03-01

    A geologic investigation was undertaken in the Hoh-Xil-Songpan-Ganzi (HXSG) complex, northern Tibet in order to better understand magma genesis and evolution during the late stages of Paleo-Tethys ocean closure. The HXSG complex is composed of vast accumulations of Middle-Upper Triassic marine gravity flow deposits that were extensively intruded by igneous rocks. These early Mesozoic rocks exposed in this area record a rich history of accretionary tectonics during the amalgamation of the Tibetan Plateau terranes. Eight plutons sampled from the western HXSG complex yield zircon U-Pb ages that range from 225 to 193 Ma. Muscovite 40Ar/39Ar ages for the Hudongliang and Zhuonai Lake plutons yield ages of 210.7 ± 2.5 Ma and 212.7 ± 2.5 Ma, respectively. These plutonic rocks can be subdivided into two geochemically distinct groups. Group 1 (221-212 Ma: Dapeng Lake, Changhong Lake and Heishibei Lake plutons) is composed of high-K calc-alkaline rocks that have strongly fractionated REE patterns with high (La/Yb)N ratios (91-18) and generally lack Eu anomalies (Eu*/Eu = 1.02-0.68). Rocks in Group 1 display pronounced negative Nb-Ta and Ti anomalies on primitive mantle-normalized spidergrams. Group 1 rocks exhibit high Sr (782-240 ppm) and low Y (6.3-16.0 ppm) contents with high Sr/Y ratios (84-20). Based on Sr-Nd-Hf isotopic data (87Sr/86Sri = 0.7079-0.7090, ɛNd(t) = - 7.7-- 4.7, ɛHf(t) = - 5.7-- 0.8) and low MgO contents (MgO = 1.10-2.18%), Group 1 rocks are geochemically similar to adakitic rocks and were probably derived from partial melting of the downgoing Paleo-Tethys oceanic slab and overlying marine sediments. Group 2 plutons (225-193 Ma: Daheishan, Yunwuling, Zhuonai Lake, Malanshan and Hudongliang plutons) display lower P2O5 with increasing SiO2 and are medium-K to high-K I-type calc-alkaline bodies with low Sr (14-549 ppm) and high Y (22.3-10.5 ppm) contents. Group 2 rocks have variable fractionated REE patterns ((La/Yb)N = 3-38) and negative Eu anomalies (Eu

  6. Paleoclimate in continental northwestern Europe during the Eemian and early Weichselian (125-97 ka): insights from a Belgian speleothem

    NASA Astrophysics Data System (ADS)

    Vansteenberge, Stef; Verheyden, Sophie; Cheng, Hai; Edwards, R. Lawrence; Keppens, Eddy; Claeys, Philippe

    2016-07-01

    The last interglacial serves as an excellent time interval for studying climate dynamics during past warm periods. Speleothems have been successfully used for reconstructing the paleoclimate of last interglacial continental Europe. However, all previously investigated speleothems are restricted to southern Europe or the Alps, leaving large parts of northwestern Europe undocumented. To better understand regional climate changes over the past, a larger spatial coverage of European last interglacial continental records is essential, and speleothems, because of their ability to obtain excellent chronologies, can provide a major contribution. Here, we present new, high-resolution data from a stalagmite (Han-9) obtained from the Han-sur-Lesse Cave in Belgium. Han-9 formed between 125.3 and ˜ 97 ka, with interruptions of growth occurring at 117.3-112.9 and 106.6-103.6 ka. The speleothem was investigated for its growth, morphology and stable isotope (δ13C and δ18O) composition. The speleothem started growing relatively late within the last interglacial, at 125.3 ka, as other European continental archives suggest that Eemian optimum conditions were already present during that time. It appears that the initiation of Han-9 growth is caused by an increase in moisture availability, linked to wetter conditions around 125.3 ka. The δ13C and δ18O proxies indicate a period of relatively stable conditions after 125.3 ka; however, at 120 ka the speleothem δ18O registered the first signs of regionally changing climate conditions, being a modification of ocean source δ18O linked to an increase in ice volume towards the Marine Isotope Stage (MIS) 5e-5d transition. At 117.5 ka, drastic vegetation changes are recorded by Han-9 δ13C immediately followed by a cessation of speleothem growth at 117.3 ka, suggesting a transition to significantly dryer conditions. The Han-9 record covering the early Weichselian displays larger amplitudes in both isotope proxies and changes in stalagmite

  7. New Fossil Evidence on the Sister-Group of Mammals and Early Mesozoic Faunal Distributions

    NASA Astrophysics Data System (ADS)

    Shubin, Neil H.; Crompton, A. W.; Sues, Hans-Dieter; Olsen, Paul E.

    1991-03-01

    Newly discovered remains of highly advanced mammal-like reptiles (Cynodontia: Tritheledontidae) from the Early Jurassic of Nova Scotia, Canada, have revealed that aspects of the characteristic mammalian occlusal pattern are primitive. Mammals and tritheledontids share an homologous pattern of occlusion that is not seen in other cynodonts. The new tritheledontids represent the first definite record of this family from North America. The extreme similarity of North American and African tritheledontids supports the hypothesis that the global distribution of terrestrial tetrapods was homogeneous in the Early Jurassic. This Early Jurassic cosmopolitanism represents the continuation of a trend toward increased global homogeneity among terrestrial tetrapod communities that began in the late Paleozoic.

  8. From hyperextended rift to convergent margin types: mapping the outer limit of the extended Continental Shelf of Spain in the Galicia area according UNCLOS Art. 76

    NASA Astrophysics Data System (ADS)

    Somoza, Luis; Medialdea, Teresa; Vázquez, Juan T.; González, Francisco J.; León, Ricardo; Palomino, Desiree; Fernández-Salas, Luis M.; Rengel, Juan

    2017-04-01

    Spain presented on 11 May 2009 a partial submission for delimiting the extended Continental Shelf in respect to the area of Galicia to the Commission on the Limits of the Continental Shelf (CLCS). The Galicia margin represents an example of the transition between two different types of continental margins (CM): a western hyperpextended margin and a northern convergent margin in the Bay of Biscay. The western Galicia Margin (wGM 41° to 43° N) corresponds to a hyper-extended rifted margin as result of the poly-phase development of the Iberian-Newfoundland conjugate margin during the Mesozoic. Otherwise, the north Galicia Margin (nGM) is the western end of the Cenozoic subduction of the Bay of Biscay along the north Iberian Margin (NIM) linked to the Pyrenean-Mediterranean collisional belt Following the procedure established by the CLCS Scientific and Technical Guidelines (CLCS/11), the points of the Foot of Slope (FoS) has to be determined as the points of maximum change in gradient in the region defined as the Base of the continental Slope (BoS). Moreover, the CLCS guidelines specify that the BoS should be contained within the continental margin (CM). In this way, a full-coverage multibeam bathymetry and an extensive dataset of up 4,736 km of multichannel seismic profiles were expressly obtained during two oceanographic surveys (Breogham-2005 and Espor-2008), aboard the Spanish research vessel Hespérides, to map the outer limit of the CM.In order to follow the criteria of the CLCS guidelines, two types of models reported in the CLCS Guidelines were applied to the Galicia Margin. In passive margins, the Commission's guidelines establish that the natural prolongation is based on that "the natural process by which a continent breaks up prior to the separation by seafloor spreading involves thinning, extension and rifting of the continental crust…" (para. 7.3, CLCS/11). The seaward extension of the wGM should include crustal continental blocks and the so

  9. Geology and assessment of undiscovered oil and gas resources of the Jan Mayen Microcontinent Province, 2008

    USGS Publications Warehouse

    Moore, Thomas E.; Pitman, Janet K.; Moore, Thomas E.; Gautier, D.L.

    2018-01-26

    The Jan Mayen Microcontinent encompasses a rectangular, mostly submarine fragment of continental crust that lies north of Iceland in the middle of the North Atlantic Ocean. These continental rocks were rifted away from the eastern margin of Greenland as a consequence of a westward jump of spreading centers from the now-extinct Aegir Ridge to the currently active Kolbeinsey Ridge in the Oligocene and early Miocene. The microcontinent is composed of the high-standing Jan Mayen Ridge and a series of smaller ridges that diminish southward in elevation and includes several deep basins that are underlain by strongly attenuated continental crust. The geology of this area is known principally from a loose collection of seismic reflection and refraction lines and several deep-sea scientific drill cores.The Jan Mayen Microcontinent petroleum province encompasses the entire area of the microcontinent and was defined as a single assessment unit (AU). Although its geology is poorly known, the microcontinent is thought to consist of late Paleozoic and Mesozoic rift basin stratigraphic sequences similar to those of the highly prospective Norwegian, North Sea, and Greenland continental margins. The prospectivity of the AU may be greatly diminished, however, by pervasive extensional deformation, basaltic magmatism, and exhumation that accompanied two periods of continental rifting and breakup in the Paleogene and early Neogene. The overall probability of at least one petroleum accumulation of >50 million barrels of oil equivalent was judged to be 5.6 percent. As a consequence of the low level of probability, a quantitative assessment of this AU was not conducted.

  10. Late Cenozoic sea-level changes and the onset of glaciation: impact on continental slope progradation off eastern Canada

    USGS Publications Warehouse

    Piper, D.J.W.; Normark, W.R.

    1989-01-01

    Late Cenozoic sedimentation from four varied sites on the continental slopes off southeastern Canada has been analysed using high-resolution airgun multichannel seismic profiles, supplemented with some single channel data. Biostratigraphic ties are available to exploratory wells at three of the sites. Uniform, slow accumulation of hemipelagic sediments was locally terminated by the late Miocene sea-level lowering, which is also reflected in changes in foraminiferan faunas on the continental shelf. Data are very limited for the early Pliocene but suggest a return to slow hemipelagic sedimentation. At the beginning of the late Pliocene, there was a change in sedimentation style marked by a several-fold increase in accumulation rates and cutting of slope valleys. This late Pliocene cutting of slope valleys corresponds to the onset of late Cenozoic growth of the Laurentian Fan and the initiation of turbidite sedimentation on the Sohm Abyssal Plain. Although it corresponds to a time of sea-level lowering, the contrast with the late Miocene lowstand indicates that there must also have been a change in sediment delivery to the coastline, perhaps as a result of increased rainfall or development of valley glaciers. High sedimentation rates continued into the early Pleistocene, but the extent of slope dissection by gullies increased. Gully-cutting episodes alternated with sediment-draping episodes. Throughout the southeastern Canadian continental margin, there was a change in sedimentation style in the middle Pleistocene that resulted from extensive ice sheets crossing the continental shelf and delivering coarse sediment directly to the continental slope. ?? 1989.

  11. Synchronizing early Eocene deep-sea and continental records - cyclostratigraphic age models for the Bighorn Basin Coring Project drill cores

    NASA Astrophysics Data System (ADS)

    Westerhold, Thomas; Röhl, Ursula; Wilkens, Roy H.; Gingerich, Philip D.; Clyde, William C.; Wing, Scott L.; Bowen, Gabriel J.; Kraus, Mary J.

    2018-03-01

    A consistent chronostratigraphic framework is required to understand the effect of major paleoclimate perturbations on both marine and terrestrial ecosystems. Transient global warming events in the early Eocene, at 56-54 Ma, show the impact of large-scale carbon input into the ocean-atmosphere system. Here we provide the first timescale synchronization of continental and marine deposits spanning the Paleocene-Eocene Thermal Maximum (PETM) and the interval just prior to the Eocene Thermal Maximum 2 (ETM-2). Cyclic variations in geochemical data come from continental drill cores of the Bighorn Basin Coring Project (BBCP, Wyoming, USA) and from marine deep-sea drilling deposits retrieved by the Ocean Drilling Program (ODP). Both are dominated by eccentricity-modulated precession cycles used to construct a common cyclostratigraphic framework. Integration of age models results in a revised astrochronology for the PETM in deep-sea records that is now generally consistent with independent 3He age models. The duration of the PETM is estimated at ˜ 200 kyr for the carbon isotope excursion and ˜ 120 kyr for the associated pelagic clay layer. A common terrestrial and marine age model shows a concurrent major change in marine and terrestrial biota ˜ 200 kyr before ETM-2. In the Bighorn Basin, the change is referred to as Biohorizon B and represents a period of significant mammalian turnover and immigration, separating the upper Haplomylus-Ectocion Range Zone from the Bunophorus Interval Zone and approximating the Wa-4-Wa-5 land mammal zone boundary. In sediments from ODP Site 1262 (Walvis Ridge), major changes in the biota at this time are documented by the radiation of a second generation of apical spine-bearing sphenolith species (e.g., S. radians and S. editus), the emergence of T. orthostylus, and the marked decline of D. multiradiatus.

  12. The ichnologic record of the continental invertebrate invasion: evolutionary trends in environmental expansion, ecospace utilization, and behavioral complexity

    USGS Publications Warehouse

    Buatois, L.A.; Mangano, M.G.; Genise, Jorge F.; Taylor, T.N.

    1998-01-01

    The combined study of continental trace fossils and associated sedimentary facies provides valuable evidence of colonization trends and events throughout the Phanerozoic. Colonization of continental environments was linked to the exploitation of empty or under-utilized ecospace. Although the nonmarine trace fossil record probably begins during the Late Ordovician, significant invasion of nonmarine biotopes began close to the Silurian-Devonian transition with the establishment of a mobile arthropod epifauna (Diplichnites ichnoguild) in coastal marine to alluvial plain settings. Additionally, the presence of vertical burrows in Devonian high-energy fluvial deposits reflects the establishment of a stationary, deep suspension-feeding infauna of the Skolithos ichnoguild. The earliest evidence of plant-arthropod interaction occurred close to the Silurian-Devonian boundary, but widespread and varied feeding patterns are known from the Carboniferous. During the Carboniferous, permanent subaqueous lacustrine settings were colonized by a diverse, mobile detritus-feeding epifauna of the Mermia ichnoguild, which reflects a significant palaeoenvironmental expansion of trace fossils. Paleozoic ichnologic evidence supports direct routes to the land from marginal marine environments, and migration to lakes from land settings. All nonmarine sedimentary environments were colonized by the Carboniferous, and subsequent patterns indicate an increase in ecospace utilization within already colonized depositional settings. During the Permian, back-filled traces of the Scoyenia ichnoguild record the establishment of a mobile, intermediate-depth, deposit-feeding in-fauna in alluvial and transitional alluvial-lacustrine sediment. Diversification of land plants and the establishment of ecologically diverse plant communities through time provided new niches to be exploited by arthropods. Nevertheless, most ot the evolutionary feeding innovations took place relatively early, during the Late

  13. Continental underplating after slab break-off

    NASA Astrophysics Data System (ADS)

    Magni, V.; Allen, M. B.; van Hunen, J.; Bouilhol, P.

    2017-09-01

    We present three-dimensional numerical models to investigate the dynamics of continental collision, and in particular what happens to the subducted continental lithosphere after oceanic slab break-off. We find that in some scenarios the subducting continental lithosphere underthrusts the overriding plate not immediately after it enters the trench, but after oceanic slab break-off. In this case, the continental plate first subducts with a steep angle and then, after the slab breaks off at depth, it rises back towards the surface and flattens below the overriding plate, forming a thick horizontal layer of continental crust that extends for about 200 km beyond the suture. This type of behaviour depends on the width of the oceanic plate marginal to the collision zone: wide oceanic margins promote continental underplating and marginal back-arc basins; narrow margins do not show such underplating unless a far field force is applied. Our models show that, as the subducted continental lithosphere rises, the mantle wedge progressively migrates away from the suture and the continental crust heats up, reaching temperatures >900 °C. This heating might lead to crustal melting, and resultant magmatism. We observe a sharp peak in the overriding plate rock uplift right after the occurrence of slab break-off. Afterwards, during underplating, the maximum rock uplift is smaller, but the affected area is much wider (up to 350 km). These results can be used to explain the dynamics that led to the present-day crustal configuration of the India-Eurasia collision zone and its consequences for the regional tectonic and magmatic evolution.

  14. Fossil evidence of avian crops from the Early Cretaceous of China

    PubMed Central

    Zheng, Xiaoting; Martin, Larry D.; Zhou, Zhonghe; Burnham, David A.; Zhang, Fucheng; Miao, Desui

    2011-01-01

    The crop is characteristic of seed-eating birds today, yet little is known about its early history despite remarkable discoveries of many Mesozoic seed-eating birds in the past decade. Here we report the discovery of some early fossil evidence for the presence of a crop in birds. Two Early Cretaceous birds, the basal ornithurine Hongshanornis and a basal avian Sapeornis, demonstrate that an essentially modern avian digestive system formed early in avian evolution. The discovery of a crop in two phylogenetically remote lineages of Early Cretaceous birds and its absence in most intervening forms indicates that it was independently acquired as a specialized seed-eating adaptation. Finally, the reduction or loss of teeth in the forms showing seed-filled crops suggests that granivory was possibly one of the factors that resulted in the reduction of teeth in early birds. PMID:21896733

  15. Continental Affinities of the Alpha Ridge

    NASA Astrophysics Data System (ADS)

    Jackson, H. Ruth; Li, Qingmou; Shimeld, John; Chian, Deping

    2017-04-01

    Identifying the crustal attributes of the Alpha Ridge (AR) part of the High Arctic Large Igneous Province and tracing the spreading centre across the Amerasia Basin plays a key role in understanding the opening history of the Arctic Ocean. In this approach, we report the evidence for a continental influence on the development of the AR and reduced ocean crust in the Amerasia Basin. These points are inferred from a documented continental sedimentation source in the Amerasia Basin and calculated diagnostic compressional and shear refraction waves, and from the tracing of the distinct spreading centre using the potential field data. (1) The circum-Arctic geology of the small polar ocean provides compelling evidence of a long-lived continental landmass north of the Sverdrup Basin in the Canadian Arctic Islands and north of the Barents Sea continental margin. Based on sediment distribution patterns in the Sverdrup Basin a continental source is required from the Triassic to mid Jurassic. In addition, an extensive continental sediment source to the north of the Barents Sea is required until the Barremian. (2) Offshore data suggest a portion of continental crust in the Alpha and Mendeleev ridges including measured shear wave velocities, similarity of compressional wave velocities with large igneous province with continental fragments and magnetic patterns. Ocean bottom seismometers recorded shear waves velocities that are sensitive to the quartz content of rocks across the Chukchi Borderland and the Mendeleev Ridge that are diagnostic of both an upper and lower continental crust. On the Nautilus Spur of the Alpha Ridge expendable sonobuoys recorded clear converted shear waves also consistent with continental crust. The magnetic patterns (amplitude, frequency, and textures) on the Northwind Ridge and the Nautilus Spur also have similarities. In fact only limited portions of the deepest water portions of the Canada Basin and the Makarov Basin have typical oceanic layer 2 and

  16. Deep continental margin reflectors

    USGS Publications Warehouse

    Ewing, J.; Heirtzler, J.; Purdy, M.; Klitgord, Kim D.

    1985-01-01

    In contrast to the rarity of such observations a decade ago, seismic reflecting and refracting horizons are now being observed to Moho depths under continental shelves in a number of places. These observations provide knowledge of the entire crustal thickness from the shoreline to the oceanic crust on passive margins and supplement Consortium for Continental Reflection Profiling (COCORP)-type measurements on land.

  17. Double subduction of continental lithosphere, a key to form wide plateau

    NASA Astrophysics Data System (ADS)

    Replumaz, Anne; Funiciello, Francesca; Reitano, Riccardo; Faccenna, Claudio; Balon, Marie

    2016-04-01

    The mechanisms involved in the creation of the high and wide topography, like the Tibetan Plateau, are still controversial. In particular, the behaviour of the indian and asian lower continental lithosphere during the collision is a matter of debate, either thickening, densifying and delaminating, or keeping its rigidity and subducting. But since several decades seismicity, seismic profiles and global tomography highlight the lithospheric structure of the Tibetan Plateau, and make the hypotheses sustaining the models more precise. In particular, in the western syntaxis, it is now clear that the indian lithosphere subducts northward beneath the Hindu Kush down to the transition zone, while the asian one subducts southward beneath Pamir (e.g. Negredo et al., 2007; Kufner et al., 2015). Such double subduction of continental lithospheres with opposite vergence has also been inferred in the early collision time. Cenozoic volcanic rocks between 50 and 30 Ma in the Qiangtang block have been interpreted as related to an asian subduction beneath Qiangtang at that time (De Celles et al., 2011; Guillot and Replumaz, 2013). We present here analogue experiments silicone/honey to explore the subduction of continental lithosphere, using a piston as analogue of far field forces. We explore the parameters that control the subductions dynamics of the 2 continental lithospheres and the thickening of the plates at the surface, and compare with the Tibetan Plateau evolution. We show that a continental lithosphere is able to subduct in a collision context, even lighter than the mantle, if the plate is rigid enough. In that case the horizontal force due to the collision context, modelled by the piston push transmitted by the indenter, is the driving force, not the slab pull which is negative. It is not a subduction driving by the weight of the slab, but a subduction induced by the collision, that we could call "collisional subduction".

  18. The Effect of Temperature Dependent Rheology on a Kinematic Model of Continental Breakup and Rifted Continental Margin Formation

    NASA Astrophysics Data System (ADS)

    Tymms, V. J.; Kusznir, N. J.

    2004-12-01

    The effect of temperature dependent rheology has been examined for a model of continental lithosphere thinning by an upwelling divergent flow field within continental lithosphere and asthenosphere leading to continental breakup and rifted continental margin formation. The model uses a coupled FE fluid flow and thermal solution and is kinematically driven using a half divergence rate Vx and upwelling velocity Vz. Viscosity structure is modified by the evolving temperature field of the model through the temperature dependent Newtonian rheology. Continental lithosphere and asthenosphere material are advected by the fluid-flow field in order to predict crustal and mantle lithosphere thinning leading to rifted continental margin formation. The results of the temperature dependent rheology model are compared with those of a simple isoviscous model. The temperature dependent rheology model predicts continental lithosphere thinning and depth dependent stretching, similar to that predicted by the uniform viscosity model. However compared with the uniform viscosity model the temperature dependent rheology predicts greater amounts of thinning of the continental crust and lithospheric mantle than the isoviscous solutions. An important parameter within the kinematic model of continental lithosphere breakup and rifted continental margin development is the velocity ratio Vz/Vx. For non-volcanic margins, Vz/Vx is thought to be around unity. Applying a velocity ratio Vz/Vx of unity gives a diffuse ocean-continent transition and exhumation of continental lithospheric mantle. For volcanic margins, Vz/Vx is of order 10, falling to unity with a half-life of order 10 Ma, leading to a more sharply defined ocean-continent transition. While Vx during continental breakup may be estimated, Vz can only be inferred. FE fluid flow solutions, in which Vz is not imposed and without an initial buoyancy driven flow component, predict a velocity ratio Vz/Vx of around unity for both temperature

  19. New insights on the geological evolution of the continental margin of Southeastern Brazil derived from zircon and apatite (U-Th-Sm)/He and fission-track data

    NASA Astrophysics Data System (ADS)

    Krob, Florian; Stippich, Christian; Glasmacher, Ulrich A.; Hackspacher, Peter

    2017-04-01

    thermochronological data. We used the geological model of the Paraná basin supersequences (Rio Ivaí, Paraná, Gondwana I-III and Bauru) to remodel the subsidence and exhumation history of our consisting thermochronological sample data. First indications include a fast exhumation during the early Paleozoic, a slow shallow (northern blocks) to fast and deep (Laguna block) subduction from middle Paleozoic to Mesozoic time and a extremely fast exhumation during the opening of the South Atlantic (Cretaceous time). This enables a possible interpretation of the southeastern Brazilian margin being an outer part of the Paraná basin and even the possible source area for the Ordovician to Carboniferous sediments. Further on, we try to research the newly gained exhumation history models for indications on the evolution and movement of the lithosphere of the southeastern Brazilian mantle.

  20. The Misis-Andırın Complex: a Mid-Tertiary melange related to late-stage subduction of the Southern Neotethys in S Turkey

    NASA Astrophysics Data System (ADS)

    Robertson, Alastair; Unlügenç, Ülvi Can; İnan, Nurdan; Ta ṡli, Kemal

    2004-01-01

    The Mid-Tertiary (Mid-Eocene to earliest Miocene) Misis-Andırın Complex documents tectonic-sedimentary processes affecting the northerly, active margin of the South Tethys (Neotethys) in the easternmost Mediterranean region. Each of three orogenic segments, Misis (in the SW), Andırın (central) and Engizek (in the NE) represent parts of an originally continuous active continental margin. A structurally lower Volcanic-Sedimentary Unit includes Late Cretaceous arc-related extrusives and their Lower Tertiary pelagic cover. This unit is interpreted as an Early Tertiary remnant of the Mesozoic South Tethys. The overlying melange unit is dominated by tectonically brecciated blocks (>100 m across) of Mesozoic neritic limestone that were derived from the Tauride carbonate platform to the north, together with accreted ophiolitic material. The melange matrix comprises polymict debris flows, high- to low-density turbidites and minor hemipelagic sediments. The Misis-Andırın Complex is interpreted as an accretionary prism related to the latest stages of northward subduction of the South Tethys and diachronous continental collision of the Tauride (Eurasian) and Arabian (African) plates during Mid-Eocene to earliest Miocene time. Slivers of Upper Cretaceous oceanic crust and its Early Tertiary pelagic cover were accreted, while blocks of Mesozoic platform carbonates slid from the overriding plate. Tectonic mixing and sedimentary recycling took place within a trench. Subduction culminated in large-scale collapse of the overriding (northern) margin and foundering of vast blocks of neritic carbonate into the trench. A possible cause was rapid roll back of dense downgoing Mesozoic oceanic crust, such that the accretionary wedge taper was extended leading to gravity collapse. Melange formation was terminated by underthrusting of the Arabian plate from the south during earliest Miocene time. Collision was diachronous. In the east (Engizek Range and SE Anatolia) collision generated

  1. Biostratigraphic interpretation for the cyclic sedimentation in northwestern Libya

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tekbali, A.O.; Cornell, W.C.

    1993-02-01

    Mesozoic sediments in western Libya are best exposed along the Jabal Nafusah escarpment. This northeast-southwest trending structure overlooks the Al Jifarah plain and extends more than 300 km westward to connect with a T-shaped anticlinorium in Algeria and Tunisia. The Al Aziziyan fault (normal, north side down) parallels the northern edge of the escarpment and marks its initial position. Alternate deposition of marine and continental sediments began in the Triassic before the formation of a major monocline in the Late Jurassic-Early Cretaceous time. Subsequent epiorogenic movements and isostatic adjustments initiated a westward sloping shelf along the southern edge of themore » Tethys. As a result, the eastern and central regions of western Libya were subjected to severe erosion and coalescing of unconformities towards the topographic highs, prior to the deposition of the overstepping Kiklah Formation. Geometrical and physical interpretation of the Mesozoic sediments in the region, combined with paleogeographic reconstruction indicate that the post-Hercynian epiorogenic adjustments and fluctuations of the Tethys resulted in local cyclic sedimentation. Accurate age assessment of the boundaries between the Jurassic-Early Cretaceous facies in northwestern Libya can be carried out on the basis of microfloral and faunal distribution and makes possible correlation of aquifers and probable oil-bearing sequences in western Libya.« less

  2. Initiation of extension in South China continental margin during the active-passive margin transition: kinematic and thermochronological constraints

    NASA Astrophysics Data System (ADS)

    ZUO, Xuran; CHAN, Lung

    2015-04-01

    The southern South China Block is characterized by a widespread magmatic belt, prominent NE-striking fault zones and numerous rifted basins filled by Cretaceous-Eocene sediments. The geology denotes a transition from an active to a passive margin, which led to rapid modifications of crustal stress configuration and reactivation of older faults in this area. In this study, we used zircon fission-track dating (ZFT) and numerical modeling to examine the timing and kinematics of the active-passive margin transition. Our ZFT results on granitic plutons in the SW Cathaysia Block show two episodes of exhumation of the granitic plutons. The first episode, occurring during 170 Ma - 120 Ma, affected local parts of the Nanling Range. The second episode, a more regional exhumation event, occurred during 115 Ma - 70 Ma. Numerical geodynamic modeling was conducted to simulate the subduction between the paleo-Pacific plate and the South China Block. The modeling results could explain the observation based on ZFT data that exhumation of the granite-dominant Nanling Range occurred at an earlier time than the gneiss-dominant Yunkai Terrane. In addition to the difference in geology between Yunkai and Nanling, the heating from Jurassic-Early Cretaceous magmatism in the Nanling Range may have softened the upper crust, causing the area to exhume more readily. Numerical modeling results also indicate that (1) high slab dip angle, high geothermal gradient of lithosphere and low convergence velocity favor the subduction process and the reversal of crustal stress state from compression to extension in the upper plate; (2) the late Mesozoic magmatism in South China was probably caused by a slab roll-back; and (3) crustal extension could have occurred prior to the cessation of plate subduction. The inversion of stress regime in the continental crust from compression to crustal extension has shed light on the geological condition producing the red bed basins during Late Cretaceous-early

  3. The origin of continental crust: Outlines of a general theory

    NASA Technical Reports Server (NTRS)

    Lowman, P. D., Jr.

    1985-01-01

    The lower continental crust, formerly very poorly understood, has recently been investigated by various geological and geophysical techniques that are beginning to yield a generally agreed on though still vague model (Lowman, 1984). As typified by at least some exposed high grade terranes, such as the Scottish Scourian complex, the lower crust in areas not affected by Phanerozoic orogeny or crustal extension appears to consist of gently dipping granulite gneisses of intermediate bulk composition, formed from partly or largely supracrustal precursors. This model, to the degree that it is correct, has important implications for early crustal genesis and the origin of continental crust in general. Most important, it implies that except for areas of major overthrusting (which may of course be considerable) normal superposition relations prevail, and that since even the oldest exposed rocks are underlain by tens of kilometers of sial, true primordial crust may still survive in the lower crustal levels (of. Phinney, 1981).

  4. Regulation of body temperature by some Mesozoic marine reptiles.

    PubMed

    Bernard, Aurélien; Lécuyer, Christophe; Vincent, Peggy; Amiot, Romain; Bardet, Nathalie; Buffetaut, Eric; Cuny, Gilles; Fourel, François; Martineau, François; Mazin, Jean-Michel; Prieur, Abel

    2010-06-11

    What the body temperature and thermoregulation processes of extinct vertebrates were are central questions for understanding their ecology and evolution. The thermophysiologic status of the great marine reptiles is still unknown, even though some studies have suggested that thermoregulation may have contributed to their exceptional evolutionary success as apex predators of Mesozoic aquatic ecosystems. We tested the thermal status of ichthyosaurs, plesiosaurs, and mosasaurs by comparing the oxygen isotope compositions of their tooth phosphate to those of coexisting fish. Data distribution reveals that these large marine reptiles were able to maintain a constant and high body temperature in oceanic environments ranging from tropical to cold temperate. Their estimated body temperatures, in the range from 35 degrees +/- 2 degrees C to 39 degrees +/- 2 degrees C, suggest high metabolic rates required for predation and fast swimming over large distances offshore.

  5. Transverse tectonic zonation of Cuba and its significance for oil exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levchenko, V.A.

    The Laramide structures of Cuba and its continental shelf, which are oriented sublatitudinally, are divided into variously elevated blocks by transverse faults of submeridional strike, movements along which have occurred since the end of the Paleozoic. This division, inherited from the region's pre-Mesozoic stage of development, has determined the heterogeneous composition of the Cuban geosyncline's folded basement, which may be characterized by an alternation of areas of Paleozoic uplifts and intervening grabens filled with metamorphosed deposits of Early and Middle Jurassic and Triassic age, and also areas of oceanic crust. In the concluding phase of the Laramide orogeny, there weremore » northward strike-slip movements of individual blocks in the central part of Cuba. The oil potential of Cuba is associated mainly with the depressed blocks, above which the section through the Mesozoic deposits may be presumed to be more complete. The best potential for finding oil exists in the zones of the transverse regional faults along which there may have been both lateral and vertical migration of oil hydrocarbons in the stages of crustal upwarp and extension.« less

  6. Diversity of developmental patterns in achelate lobsters-today and in the Mesozoic.

    PubMed

    Haug, Joachim T; Audo, Denis; Charbonnier, Sylvain; Haug, Carolin

    2013-11-01

    Modern achelate lobsters, slipper and spiny lobsters, have a specific post-embryonic developmental pattern with the following phases: phyllosoma, nisto (slipper lobsters) or puerulus (spiny lobsters), juvenile and adult. The phyllosoma is a peculiar larva, which transforms through a metamorphic moult into another larval form, the nisto or puerulus which largely resembles the juvenile. Unlike the nisto and puerulus, the phyllosoma is characterised by numerous morphological differences to the adult, e.g. a thin head shield, elongate appendages, exopods on these appendages and a special claw. Our reinvestigation of the 85 million years old fossil "Eryoneicus sahelalmae" demonstrates that it represents an unusual type of achelatan lobster larva, characterised by a mixture of phyllosoma and post-phyllosoma characters. We ascribe it to its own genus: Polzicaris nov. gen. We study its significance by comparisons with other cases of Mesozoic fossil larvae also characterised by a mixture of characters. Accordingly, all these larvae are interpreted as ontogenetic intermediates between phyllosoma and post-phyllosoma morphology. Remarkably, most of the larvae show a unique mixture of retained larval and already developed post-larval features. Considering the different-and incompatible-mixture of characters of each of these larvae and their wide geographical and temporal distribution, we interpret all these larvae as belonging to distinct species. The particular character combinations in the different larvae make it currently difficult to reconstruct an evolutionary scenario with a stepwise character acquisition. Yet, it can be concluded that a larger diversity of larval forms and developmental patterns occurred in Mesozoic than in modern faunas.

  7. Continental Scientific Drilling Program.

    DTIC Science & Technology

    1979-01-01

    Institute of Technology ALBERT W. BALLY, Shell Oil Company, Houston HUBERT L. BARNES, Pennsylvania State University ARTHUR L. BOETTCHER, University of...San Marcos arch near Victoria, Texas. Information from a hole would answer fundamental questions about ancient continental margins and would complement...did the uplift begin in this area? Is the crust continental or oceanic? Area 3 (Figure A-7), positioned upon the San Marcos arch to avoid the thick

  8. Brazilian continental cretaceous

    NASA Astrophysics Data System (ADS)

    Petri, Setembrino; Campanha, Vilma A.

    1981-04-01

    Cretaceous deposits in Brazil are very well developed, chiefly in continental facies and in thick sequences. Sedimentation occurred essentially in rift-valleys inland and along the coast. Three different sequences can be distinguished: (1) a lower clastic non-marine section, (2) a middle evaporitic section, (3) an upper marine section with non-marine regressive lithosomes. Continental deposits have been laid down chiefly between the latest Jurassic and Albian. The lower lithostratigraphic unit is represented by red shales with occasional evaporites and fresh-water limestones, dated by ostracods. A series of thick sandstone lithosomes accumulated in the inland rift-valleys. In the coastal basins these sequences are often incompletely preserved. Uplift in the beginning of the Aptian produced a widespread unconformity. In many of the inland rift-valleys sedimentation ceased at that time. A later transgression penetrated far into northeastern Brazil, but shortly after continental sedimentation continued, with the deposition of fluvial sandstones which once covered large areas of the country and which have been preserved in many places. The continental Cretaceous sediments have been laid down in fluvial and lacustrine environments, under warm climatic conditions which were dry from time to time. The fossil record is fairly rich, including besides plants and invertebrates, also reptiles and fishes. As faulting tectonism was rather strong, chiefly during the beginning of the Cretaceous, intercalations of igneous rocks are frequent in some places. Irregular uplift and erosion caused sediments belonging to the remainder of this period to be preserved only in tectonic basins scattered across the country.

  9. Tectono-stratigraphic evolution and crustal architecture of the Orphan Basin during North Atlantic rifting

    NASA Astrophysics Data System (ADS)

    Gouiza, Mohamed; Hall, Jeremy; Welford, J. Kim

    2017-04-01

    The Orphan Basin is located in the deep offshore of the Newfoundland margin, and it is bounded by the continental shelf to the west, the Grand Banks to the south, and the continental blocks of Orphan Knoll and Flemish Cap to the east. The Orphan Basin formed in Mesozoic time during the opening of the North Atlantic Ocean between eastern Canada and western Iberia-Europe. This work, based on well data and regional seismic reflection profiles across the basin, indicates that the continental crust was affected by several extensional episodes between the Jurassic and the Early Cretaceous, separated by events of uplift and erosion. The preserved tectono-stratigraphic sequences in the basin reveal that deformation initiated in the eastern part of the Orphan Basin in the Jurassic and spread towards the west in the Early Cretaceous, resulting in numerous rift structures filled with a Jurassic-Lower Cretaceous syn-rift succession and overlain by thick Upper Cretaceous to Cenozoic post-rift sediments. The seismic data show an extremely thinned crust (4-16 km thick) underneath the eastern and western parts of the Orphan Basin, forming two sub-basins separated by a wide structural high with a relatively thick crust (17 km thick). Quantifying the crustal architecture in the basin highlights the large discrepancy between brittle extension localized in the upper crust and the overall crustal thinning. This suggests that continental deformation in the Orphan Basin involved, in addition to the documented Jurassic and Early Cretaceous rifting, an earlier brittle rift phase which is unidentifiable in seismic data and a depth-dependent thinning of the crust driven by localized lower crust ductile flow.

  10. Geochemistry and geochronology of the Mesozoic Lanong ophiolitic mélange, northern Tibet: Implications for petrogenesis and tectonic evolution

    NASA Astrophysics Data System (ADS)

    Zhong, Yun; Liu, Wei-Liang; Xia, Bin; Liu, Jing-Nan; Guan, Yao; Yin, Zhen-Xing; Huang, Qiang-Tai

    2017-11-01

    Bangong-Nujiang Tethys Ocean beneath the Lhasa terrane during the Middle Triassic-Early Cretaceous. Namely, the OIB-like dolerites likely reflect an extensional rift setting featuring thin continental crust in the Middle Triassic, and the gabbros, gabbro-dolerites and basalts represent a later stage of a fore-arc basin during the Late Jurassic-Early Cretaceous.

  11. Early to Middle Jurassic tectonic evolution of the Bogda Mountains, Northwest China: Evidence from sedimentology and detrital zircon geochronology

    NASA Astrophysics Data System (ADS)

    Ji, Hongjie; Tao, Huifei; Wang, Qi; Qiu, Zhen; Ma, Dongxu; Qiu, Junli; Liao, Peng

    2018-03-01

    The Bogda Mountains, as an important intracontinental orogenic belt, are situated in the southern part of the Central Asian Orogenic Belt (CAOB), and are a key area for understanding the Mesozoic evolution of the CAOB. However, the tectonic evolution of the Bogda Mountains remains controversial during the Mesozoic Era, especially the Early to Middle Jurassic Periods. The successive Lower to Middle Jurassic strata are well preserved and exposed along the northern flank of the Western Bogda Mountains and record the uplift processes of the Bogda Mountains. In this study, we analysed sedimentary facies combined with detrital zircon U-Pb geochronology at five sections of Lower to Middle Jurassic strata to detect the tectonic evolution and changes of provenance in the Bogda area. During Early to Middle Jurassic times, the fluvial, deltaic and lacustrine environments dominated in the western section of the Bogda area. The existence of Early Triassic peak age indicates that the Bogda Mountains did not experience uplift during the period of early Badaowan Formation deposition. The Early Triassic to Late Permian granitoid plutons and Carboniferous volcanic rocks from the Barkol and Santanghu areas were the main provenances. The significant change in the U-Pb age spectrum implies that the Eastern Bogda Mountains initiated uplift in the period of late Badaowan Formation deposition, and the Eastern Junggar Basin and the Turpan-Hami Basin were partially partitioned. The Eastern Bogda Mountains gradually became the major provenance. From the period of early Sangonghe to early Toutunhe Formations deposition, the provenance of the sediments and basin-range frame were similar to that of late Badaowan. However, the Eastern Bogda Mountains suffered intermittent uplift three times, and successive denudation. The uplifts respectively happened in early Sangonghe, late Sangonghe to early Xishanyao, and late Xishanyao to early Toutunhe. During the deposition stage of Toutunhe Formation, a

  12. Large-scale removal of lithosphere underneath the North China Craton in the Early Cretaceous: Geochemical constraints from volcanic lavas in the Bohai Bay Basin

    NASA Astrophysics Data System (ADS)

    Sun, Jing; Liu, Zheng; Zhang, Shuai; Li, Xiaoguang; Qi, Jiafu

    2017-11-01

    Cratons are generally considered as the most stable tectonic units on the Earth. Rare magmatism, seismic activity, and intracrustal ductile deformation occur in them. However, several cratons experienced entirely different fates, including the North China Craton (NCC), and were subsequently destroyed. Geodynamic mechanisms and timing of the cratonic destruction are strongly debated. In this paper, we investigate a suite of Mesozoic intermediate to felsic volcanic rocks which are collected from boreholes in the Liaohe Depression of the Bohai Bay Basin the eastern NCC. These volcanic rocks have Precambrian basement-like Sr-Nd isotopic characteristics, consistent with derivation from the lower continental crust underneath the NCC. The Late Jurassic ( 165 Ma) intermediate volcanic rocks don't exhibit markedly negative Eu anomalies, which require a source beyond the plagioclase stability field. And the low heavy rare earth elements (HREEs) contents of these samples indicate that their source has garnet as residue. The Early Cretaceous ( 122 Ma) felsic volcanic rocks are depleted in HREEs but with remarkable Eu anomalies, suggesting that their source have both garnet and plagioclase. The crust thicknesses, estimated from the geochemistry of the intermediate and felsic rocks, are ≥ 50 km at 165 Ma and 30-50 km at 122 Ma, respectively. The crustal thinning is attributed to lithospheric delamination beneath the NCC. Our results combined with previous studies imply that the large-scale lithospheric removal occurred in the Early Cretaceous, between 140 and 120 Ma.

  13. Effects of climate oscillations on wildland fire potential in the continental United States

    Treesearch

    Shelby A. Mason; Peter E. Hamlington; Benjamin D. Hamlington; W. Matt Jolly; Chad M. Hoffman

    2017-01-01

    The effects of climate oscillations on spatial and temporal variations in wildland fire potential in the continental U.S. are examined from 1979 to 2015 using cyclostationary empirical orthogonal functions (CSEOFs). The CSEOF analysis isolates effects associated with the modulated annual cycle and the El Niño–Southern Oscillation (ENSO). The results show that, in early...

  14. The extent of ocean acidification on aragonite saturation state along the Washington-Oregon continental shelf margin in late summer 2012

    NASA Astrophysics Data System (ADS)

    Feely, R. A.; Alin, S. R.; Hales, B. R.; Juranek, L.; Greeley, D.

    2012-12-01

    The Washington-Oregon continental shelf region is exposed to conditions of low aragonite saturation state during the late spring/early summer upwelling season. However, the extent of its evolution in late summer/early fall has been largely unknown. Along this continental margin, ocean acidification, upwelling, biological productivity, and respiration processes in subsurface waters are major contributors to the variability in dissolved inorganic carbon (DIC), pH and aragonite saturation state. The persistence of water with aragonite saturation state <1 on the continental shelf off Washington and Oregon has been previously identified and could have profound ecological consequences for benthic and pelagic calcifying organisms such as mussels, oysters, abalone, echinoderms, and pteropods. In the late summer of 2012 we studied the extent of acidification conditions employing shipboard cruises and profiling gliders. We conducted several large-scale chemical and hydrographic surveys of the region in order to better understand the interrelationships between these natural and human-induced processes and their effects on aragonite saturation. We will compare the results of these new surveys with our previous work in 2011 and 2007.

  15. Evolution of mantis shrimps (Stomatopoda, Malacostraca) in the light of new Mesozoic fossils

    PubMed Central

    2010-01-01

    Background We describe new specimens of Mesozoic mantis shrimps (Stomatopoda, Malacostraca) that exhibit morphological and developmental information previously unknown. Results Specimens assigned to the taxon Sculda exhibit preserved pleopods, thoracopods including all four raptorial limbs as well as details of antennae and antennulae. The pleopods and the antennulae resemble those of the modern mantis shrimps, but the raptorial limbs are not as differentiated as in the modern species. In some specimens, the first raptorial limb (second thoracopod) is not significantly larger than the similar-sized posterior three pairs (as in extant species), but instead these appendages become progressively smaller along the series. In this respect they resemble certain Palaeozoic stomatopods. Another specimen, most likely belonging to another species, has one pair of large anterior raptorial thoracopods, a median-sized pair and two more pairs of small-sized raptorial appendages and, thus, shows a new, previously unknown type of morphology. A single specimen of Pseudosculda laevis also exhibits the size of the raptorial limbs; they are differentiated as in modern species, one large pair and three small pairs. Furthermore, we report additional larval specimens and show also post-larval changes, e.g., of the tail fan. Conclusions These new data are used to reconsider the phylogeny of Stomatopoda. We still need a strict taxonomical revision of the Mesozoic mantis shrimps, but this first examination already demonstrates the importance of these fossils for understanding mantis shrimp evolution and the interpretation of evolutionary pathways of particular features. PMID:20858249

  16. A synthesis of Jurassic and Early Cretaceous crustal evolution along the southern margin of the Arctic Alaska–Chukotka microplate and implications for defining tectonic boundaries active during opening of Arctic Ocean basins

    USGS Publications Warehouse

    Till, Alison B.

    2016-01-01

    A synthesis of Late Jurassic and Early Cretaceous collision-related metamorphic events in the Arctic Alaska–Chukotka microplate clarifies its likely movement history during opening of the Amerasian and Canada basins. Comprehensive tectonic reconstructions of basin opening have been problematic, in part, because of the large size of the microplate, uncertainties in the location and kinematics of structures bounding the microplate, and lack of information on its internal deformation history. Many reconstructions have treated Arctic Alaska and Chukotka as a single crustal entity largely on the basis of similarities in their Mesozoic structural trends and similar late Proterozoic and early Paleozoic histories. Others have located Chukotka near Siberia during the Triassic and Jurassic, on the basis of detrital zircon age populations, and suggested that it was Arctic Alaska alone that rotated. The Mesozoic metamorphic histories of Arctic Alaska and Chukotka can be used to test the validity of these two approaches.A synthesis of the distribution, character, and timing of metamorphic events reveals substantial differences in the histories of the southern margin of the microplate in Chukotka in comparison to Arctic Alaska and places specific limitations on tectonic reconstructions. During the Late Jurassic and earliest Cretaceous, the Arctic Alaska margin was subducted to the south, while the Chukotka margin was the upper plate of a north-dipping subduction zone or a zone of transpression. An early Aptian blueschist- and greenschist-facies belt records the most profound crustal thickening event in the evolution of the orogen. It may have resulted in thicknesses of 50–60 km and was likely the cause of flexural subsidence in the foredeep of the Brooks Range. This event involved northern Alaska and northeasternmost Chukotka; it did not involve central and western Chukotka. Arctic Alaska and Chukotka evolved separately until the Aptian thickening event, which was likely a

  17. What can we tell from particle morphology in Mesozoic charcoal assemblages?

    NASA Astrophysics Data System (ADS)

    Crawford, Alastair; Belcher, Claire

    2015-04-01

    Sedimentary charcoal particles provide a valuable record of palaeofire activity on both human and geological timescales. Charcoal is both an unambiguous indicator of wildfire, and a means of preservation of plant material in an inert form; thus it records not only the occurrence and extent of wildfire, but also the species affected. While scanning electron microscopy can be usefully employed for precise taxonomic identification of charcoals, the time and cost associated with this limit the extent to which the technique is employed. Morphometric analysis of mesocharcoal particles (c. 125-1000 µm) potentially provides a simple method for obtaining useful information from optical microscopy images. Grass fires have been shown to produce mesocharcoal particles with a higher length-to-width ratio than woodland fuel sources. In Holocene archives, aspect ratio measurements are thus used to infer the broad taxonomic affinity of the burned vegetation. Since Mesozoic charcoals display similarly heterogeneous morphologies, we investigate whether there is a similar potential to infer the broad botanical affinities of Mesozoic charcoal assemblages from simple morphological metrics. We have used image analysis to analyse a range of Jurassic and Cretaceous sedimentary rocks representing different vegetation communities and depositional environments, and also to determine the range of charcoal particle morphologies which can be produced from different modern taxa under laboratory conditions. We find that modern charcoals break down into mesocharcoal particles of very variable aspect ratio, and this appears to be dependent on taxonomic position. Our analysis of fragmented laboratory-produced charcoals indicates that pteridophytes produce much more elongate particles than either conifers or non-grass angiosperms. We suggest that for charcoal assemblages that predate the evolution of grasses, high average aspect ratios may be a useful indicator of the burning of a pteridophyte

  18. The Sidi Ifni transect across the rifted margin of Morocco (Central Atlantic): Vertical movements constrained by low-temperature thermochronology

    NASA Astrophysics Data System (ADS)

    Charton, Rémi; Bertotti, Giovanni; Arantegui, Angel; Bulot, Luc

    2018-05-01

    The occurrence of km-scale exhumations during syn- and post-rift stages has been documented along Atlantic continental margins, which are also characterised by basins undergoing substantial subsidence. The relationship between the exhuming and subsiding domains is poorly understood. In this study, we reconstruct the evolution of a 50 km long transect across the Moroccan rifted margin from the western Anti-Atlas to the Atlantic basin offshore the city of Sidi Ifni. Low-temperature thermochronology data from the Sidi Ifni area document a ca. 8 km exhumation between the Permian and the Early/Middle Jurassic. The related erosion fed sediments to the subsiding Mesozoic basin to the NW. Basement rocks along the transect were subsequently buried by 1-2 km between the Late Jurassic and the Early Cretaceous. From late Early/Late Cretaceous onwards, rocks present along the transect were exhumed to their present-day position.

  19. Continental fragmentation and the strontium isotopic evolution of seawater.

    NASA Astrophysics Data System (ADS)

    Eric, H.; Jean Pascal, C.

    2008-12-01

    The time evolution of the strontium isotopic composition of seawater over the last 600 million years has the form of an asymmetric trough. The values are highest in the Cambrian and recent and lowest in the Jurassic. Superimposed on this trend are a number of smaller oscillations. The mechanisms responsible for these global isotopic fluctuations are subject to much debates. In order to get a quantitative picture of the changing paleogeography, we have characterized land-ocean distributions over Late Proterozoic to Phanerozoic times from measurement of perimeters and areas of continental fragments, based on paleomagnetic reconstructions. These measurements served to calculate geophysically constrainted breakup and scatter indexes of continental land masses from 0 to 1100 Ma (Cogne and Humler, 2008). Both parameters (strontium isotopic ratios of seawater and continental fragmentation indexes) are obviously highly correlated during the last 600 Ma. Low continental dispersion (that is large continental land masses) are associated with low seawater strontium isotopic ratios (that is when the continental inputs to oceans are minimum) and high continental dispersion (that is relatively small and widely distributed continents) with high seawater strontium isotopic ratios (that is when the continental input to ocean is maximum). Importantly, this first order evolution appears to conflict with the common idea of mountains erosion as a source for radiogenic strontium to oceans because high strontium isotopic ratios in seawater correspond to period of maximum dispersion of continents and not with period of general collisions. At first glance, it would seem that continental erosion increases with the degree of continental dispersion. Models showing that continental precipitation increases when continental masses are smaller and more widely dispersed and/or the length of continental margins available for rivers to carry continental material to oceans are thus favoured in order

  20. Subduction-driven recycling of continental margin lithosphere.

    PubMed

    Levander, A; Bezada, M J; Niu, F; Humphreys, E D; Palomeras, I; Thurner, S M; Masy, J; Schmitz, M; Gallart, J; Carbonell, R; Miller, M S

    2014-11-13

    Whereas subduction recycling of oceanic lithosphere is one of the central themes of plate tectonics, the recycling of continental lithosphere appears to be far more complicated and less well understood. Delamination and convective downwelling are two widely recognized processes invoked to explain the removal of lithospheric mantle under or adjacent to orogenic belts. Here we relate oceanic plate subduction to removal of adjacent continental lithosphere in certain plate tectonic settings. We have developed teleseismic body wave images from dense broadband seismic experiments that show higher than expected volumes of anomalously fast mantle associated with the subducted Atlantic slab under northeastern South America and the Alboran slab beneath the Gibraltar arc region; the anomalies are under, and are aligned with, the continental margins at depths greater than 200 kilometres. Rayleigh wave analysis finds that the lithospheric mantle under the continental margins is significantly thinner than expected, and that thin lithosphere extends from the orogens adjacent to the subduction zones inland to the edges of nearby cratonic cores. Taking these data together, here we describe a process that can lead to the loss of continental lithosphere adjacent to a subduction zone. Subducting oceanic plates can viscously entrain and remove the bottom of the continental thermal boundary layer lithosphere from adjacent continental margins. This drives surface tectonics and pre-conditions the margins for further deformation by creating topography along the lithosphere-asthenosphere boundary. This can lead to development of secondary downwellings under the continental interior, probably under both South America and the Gibraltar arc, and to delamination of the entire lithospheric mantle, as around the Gibraltar arc. This process reconciles numerous, sometimes mutually exclusive, geodynamic models proposed to explain the complex oceanic-continental tectonics of these subduction zones.

  1. Processes in continental collision zones: Preface

    NASA Astrophysics Data System (ADS)

    Zheng, Yong-Fei; Zhang, Lifei; McClelland, William C.; Cuthbert, Simon

    2012-04-01

    Formation and exhumation of high-pressure (HP) to ultrahigh-pressure (UHP) metamorphic rocks in continental subduction zones are the two fundamental geodynamic aspects of collisional orogensis. This volume is based on the Session 08c titled "Geochemical processes in continental collision zones" at Goldschmidt 2010 in Knoxville, USA. It focuses on micro- to macro-scale processes that are temporally and spatially linked to different depths of crustal subduction/exhumation and associated mineralogical changes. They are a key to understanding a wide spectrum of phenomena, involving HP/UHP metamorphism and syn-/post-collisional magmatism. Papers in this volume report progresses in petrological, geochronological and geochemical studies of UHP metamorphic rocks and their derivatives in China, with tectonic settings varying from arc-continent collision to continent-continent collision. Microbeam in-situ analyses of metamorphic and magmatic minerals are successfully utilized to solve various problems in the study of continental deep subduction and UHP metamorphism. In addition to their geochronological applications to dating of HP to UHP metamorphic events during continental collision, microbeam techniques have also served as an efficient means to recognize different generations of mineral growth during continental subduction-zone metamorphism. Furthermore, metamorphic dehydration and partial melting of UHP metamorphic rocks during subduction and exhumation are highlighted with respect to their effects on fluid action and element mobilization. These have provided new insights into chemical geodynamics in continental subduction zones.

  2. Tectonic Evolution of the Central Andes during Mesozoic-Cenozoic times: Insights from the Salar de Atacama Basin

    NASA Astrophysics Data System (ADS)

    Peña Gomez, M. A.; Bascunan, S. A.; Becerra, J.; Rubilar, J. F.; Gómez, I.; Narea, K.; Martínez, F.; Arriagada, C.; Le Roux, J.; Deckart, K.

    2015-12-01

    The classic Salar de Atacama Basin, located in the Central Andes of northern Chile, holds a remarkable yet not fully understood record of tectonic events since mid-Cretaceous times. Based on the growing amount of data collected over the last years, such as high-detail maps and U-Pb geochronology, we present an updated model for the development of this area after the Triassic. A major compressional event is recorded around the mid-Late Cretaceous (ca. 107 Ma) with the deposition of synorogenic continental successions reflecting the uplift of the Coastal Cordillera area farther to the west, and effectively initiating the foreland basin. The deformation front migrated eastwards during the Late Campanian (ca. 79 Ma), where it exhumed and deformed the Late Cretaceous magmatic arc and the crystalline basement of Cordillera de Domeyko. The K-T Event (ca. 65 Ma), recently identified in the basin, involved the same source areas, though the facies indicate a closer proximity to the source. The compressional record of the basin is continued by the Eocene Incaic Event (ca. 45 Ma), with deep exhumation of the Cordillera de Domeyko and the cannibalization of previous deposits. A change to an extensional regime during the Oligocene (ca. 28 Ma) is shown by the deposition of more than 4 km of evaporitic and clastic successions. A partial inversion of the basin occurred during the Miocene (ca.10 Ma-present), as shown by the deformation seen in the Cordillera de la Sal. As such, the basin shows that the uplift of the Cordillera de Domeyko was not one isolated episode, but a prolonged and complex event, punctuated by episodes of major deformation. It also highlights the need to take into account the Mesozoic-Cenozoic deformation events for any model trying to explain the building of the modern-day Andes.

  3. Long-term landscape evolution of the South Atlantic passive continental margin along the Kaoko- and Damara Belts, NW-Namibia

    NASA Astrophysics Data System (ADS)

    Menges, Daniel; Glasmacher, Ulrich Anton; Hackspacher, Peter; Schneider, Gabriele; Salomon, Eric

    2015-04-01

    The Kaoko Belt in northwestern Namibia originates in the collision of the Rio de la Plata and Kongo Craton during the Pan-African Orogeny in the Neoproterozoic (1) and represents the northern arm of the Damara Orogen. NW-Namibias continental crust mainly consists of the NE-SW striking intracontinental branch of the Pan-African Damara mobile belt, which separates the Congo from the Kalahari craton. The Damara Orogen is divided into several tectonostratigraphic zones that are bounded by steeply dipping, ductile shear zones. These regional lineaments can be traced at least 150 km offshore (2). The lithostratigraphic units consist of Proterozoic and Cambrian metamorphosed rocks (534 (7) Ma - 481 (25) Ma (3) as well as Mesozoic sedimentary and igneous rocks. From Permo-Carboniferous to Mid Jurassic northern Namibia was affected by deep erosion of the Damara Orogen, Permo-Triassic collisional processes along the southern margin of Gondwana and eastern margin of Africa (4), and the deposition of the Nama Group sediments and the Karoo megasequence (5). Between the Otjihorongo and the Omaruru Lineament-Waterberg Thrust early Mesozoic tectonic activity is recorded by coarse clastic sediments deposited within NE trending half-graben structures. The Early Jurassic Karoo flood basalt lavas erupted rapidly at 183±1 Ma (6). The Early Cretaceous Paraná-Etendeka flood basalts (132±1 Ma) and mafic dike swarms mark the rift stage of the opening of the South Atlantic (7). Early Cretaceous alkaline intrusions (137-124 Ma) occur preferentially along Mesozoic half-graben structures and are called the Damaraland Igneous Province (8). Late Cretaceous alkaline intrusions and kimberlite pipes occur in northern Namibia. Post Early Paleocene siliciclastic sedimentation in Namibia was largely restricted to a 150 km wide zone (9) and is represented by the Tsondab Sandstone Formation (~ 300 m thickness). The oldest part has an age of early Paleocene and the upper part span from middle Miocene

  4. Seismic probing of continental subduction zones

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Xu, Xiaobing; Malusà, Marco G.

    2017-09-01

    High-resolution images of Earth's interior provide pivotal information for the understanding of a range of geodynamic processes, including continental subduction and exhumation of ultrahigh-pressure (UHP) metamorphic rocks. Here we present a synthesis of available global seismic observations on continental subduction zones, and selected examples of seismic probing from the European Alps, the Himalaya-Tibet and the Qinling-Dabie orogenic belts. Our synthesis and examples show that slabs recognized beneath exhumed continental UHP terranes generally have shallow dip angles (<45°) at depths <100 km, to become much steeper at depths >100 km. Slabs underlined by a clear high velocity anomaly from Earth's surface to the mantle are generally Cenozoic in age. Some of these slabs are continuous, whereas other continental subduction zones are located above discontinuous high velocity anomalies possibly suggesting slab breakoff. The density of seismic stations and the quality of recordings are of primary importance to get high-resolution images of the upper mantle to be used as a starting point to provide reliable geodynamic interpretations. In some cases, areas previously indicated as possible site of slab breakoff, such as the European Alps, have been later proven to be located above a continuous slab by using higher quality travel time data from denser seismic arrays. Discriminating between oceanic and continental slabs can be challenging, but valuable information can be provided by combining teleseismic tomography and receiver function analysis. The upper mantle beneath most continental UHP terranes generally shows complex seismic anisotropy patterns that are potentially preserved even in pre-Cenozoic subduction zones. These patterns can be used to provide information on continental slabs that are no longer highlighted by a clear high-velocity anomaly.

  5. Quaternary geology of the Rhode Island inner shelf

    USGS Publications Warehouse

    Needell, S. W.; O'Hara, C. J.; Knebel, H.J.

    1983-01-01

    Five sedimentary units and three erosional unconformities identified in high-resolution seismic-reflection profiles reveal the stratigraphic framework and Quaternary history of the inner continental shelf south of Narragansett Bay, Rhode Island. Late Tertiary to early Pleistocene rivers eroded the pre-Mesozoic bedrock and the Upper Cretaceous to lower Tertiary coastal plain and continental shelf strata to form a lowland and cuesta having a north-facing escarpment. The lowland and landward flanks of the cuesta were modified by glaciers during Pleistocene time and subsequently were overlain by drift and end moraine deposits of the late Wisconsinan ice advance. During deglaciation, freshwater lakes formed between the retreating ice and end moraines. Prior to sea-level rise, the drift and older deposits were cut by streams flowing south and southwestward toward Block Island Sound. As sea level rose, postglacial valleys were partly filled by fluvial, freshwater-peat, estuarine and salt-marsh deposits. Transgressing seas eroded the sea floor, exposing bedrock and coastal plain outcrops, and deposited marine sediments. ?? 1983.

  6. The Continental Margins Program in Georgia

    USGS Publications Warehouse

    Cocker, M.D.; Shapiro, E.A.

    1999-01-01

    From 1984 to 1993, the Georgia Geologic Survey (GGS) participated in the Minerals Management Service-funded Continental Margins Program. Geological and geophysical data acquisition focused on offshore stratigraphic framework studies, phosphate-bearing Miocene-age strata, distribution of heavy minerals, near-surface alternative sources of groundwater, and development of a PC-based Coastal Geographic Information System (GIS). Seven GGS publications document results of those investigations. In addition to those publications, direct benefits of the GGS's participation include an impetus to the GGS's investigations of economic minerals on the Georgia coast, establishment of a GIS that includes computer hardware and software, and seeds for additional investigations through the information and training acquired as a result of the Continental Margins Program. These addtional investigations are quite varied in scope, and many were made possible because of GIS expertise gained as a result of the Continental Margins Program. Future investigations will also reap the benefits of the Continental Margins Program.From 1984 to 1993, the Georgia Geologic Survey (GGS) participated in the Minerals Management Service-funded Continental Margins Program. Geological and geophysical data acquisition focused on offshore stratigraphic framework studies, phosphate-bearing Miocene-age strata, distribution of heavy minerals, near-surface alternative sources of groundwater, and development of a PC-based Coastal Geographic Information System (GIS). Seven GGS publications document results of those investigations. In addition to those publications, direct benefits of the GGS's participation include an impetus to the GGS's investigations of economic minerals on the Georgia coast, establishment of a GIS that includes computer hardware and software, and seeds for additional investigations through the information and training acquired as a result of the Continental Margins Program. These additional

  7. Self-Consistent Generation of Primordial Continental Crust in Global Mantle Convection Models

    NASA Astrophysics Data System (ADS)

    Jain, C.; Rozel, A.; Tackley, P. J.

    2017-12-01

    We present the generation of primordial continental crust (TTG rocks) using self-consistent and evolutionary thermochemical mantle convection models (Tackley, PEPI 2008). Numerical modelling commonly shows that mantle convection and continents have strong feedbacks on each other. However in most studies, continents are inserted a priori while basaltic (oceanic) crust is generated self-consistently in some models (Lourenco et al., EPSL 2016). Formation of primordial continental crust happened by fractional melting and crystallisation in episodes of relatively rapid growth from late Archean to late Proterozoic eras (3-1 Ga) (Hawkesworth & Kemp, Nature 2006) and it has also been linked to the onset of plate tectonics around 3 Ga. It takes several stages of differentiation to generate Tonalite-Trondhjemite-Granodiorite (TTG) rocks or proto-continents. First, the basaltic magma is extracted from the pyrolitic mantle which is both erupted at the surface and intruded at the base of the crust. Second, it goes through eclogitic transformation and then partially melts to form TTGs (Rudnick, Nature 1995; Herzberg & Rudnick, Lithos 2012). TTGs account for the majority of the Archean continental crust. Based on the melting conditions proposed by Moyen (Lithos 2011), the feasibility of generating TTG rocks in numerical simulations has already been demonstrated by Rozel et al. (Nature, 2017). Here, we have developed the code further by parameterising TTG formation. We vary the ratio of intrusive (plutonic) and extrusive (volcanic) magmatism (Crisp, Volcanol. Geotherm. 1984) to study the relative volumes of three petrological TTG compositions as reported from field data (Moyen, Lithos 2011). Furthermore, we systematically vary parameters such as friction coefficient, initial core temperature and composition-dependent viscosity to investigate the global tectonic regime of early Earth. Continental crust can also be destroyed by subduction or delamination. We will investigate

  8. Continental rifts and mineral resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, K.

    1992-01-01

    Continental rifts are widespread and range in age from the present to 3 b.y. Individual rifts may form parts of complex systems as in E. Africa and the Basin and Range. Rifts have originated in diverse environments such as arc-crests, sites of continental collision, collapsing mountain belts and on continents at rest over the mantle circulation pattern. Continental rift resources can be classified by depth of origin: For example, in the Great Dike, Norilsk and Mwadui magma from the mantle is the host. At shallower depths continental crust partly melted above mafic magma hosts ore (Climax, Henderson). Rift volcanics aremore » linked to local hydrothermal systems and to extensive zeolite deposits (Basin and Range, East Africa). Copper (Zambia, Belt), zinc (Red Dog) and lead ores (Benue) are related to hydrothermal systems which involve hot rock and water flow through both pre-rift basement and sedimentary and volcanic rift fill. Economically significant sediments in rifts include coals (the Gondwana of Inida), marine evaporites (Lou Ann of the Gulf of Mexico) and non-marine evaporites (East Africa). Oil and gas in rifts relate to a variety of source, reservoir and trap relations (North Sea, Libya), but rift-lake sediment sources are important (Sung Liao, Bo Hai, Mina, Cabinda). Some ancient iron ores (Hammersley) may have formed in rift lakes but Algoman ores and greenstone belt mineral deposits in general are linked to oceanic and island arc environments. To the extent that continental environments are represented in such areas as the Archean of the Superior and Slave they are Andean Arc environments which today have locally rifted crests (Ecuador, N. Peru). The Pongola, on Kaapvaal craton may, on the other hand represent the world's oldest preserved, little deformed, continental rift.« less

  9. Transformation and diversification in early mammal evolution.

    PubMed

    Luo, Zhe-Xi

    2007-12-13

    Evolution of the earliest mammals shows successive episodes of diversification. Lineage-splitting in Mesozoic mammals is coupled with many independent evolutionary experiments and ecological specializations. Classic scenarios of mammalian morphological evolution tend to posit an orderly acquisition of key evolutionary innovations leading to adaptive diversification, but newly discovered fossils show that evolution of such key characters as the middle ear and the tribosphenic teeth is far more labile among Mesozoic mammals. Successive diversifications of Mesozoic mammal groups multiplied the opportunities for many dead-end lineages to iteratively evolve developmental homoplasies and convergent ecological specializations, parallel to those in modern mammal groups.

  10. Evidence for a Battle Mountain-Eureka crustal fault zone, north-central Nevada, and its relation to Neoproterozoic-Early Paleozoic continental breakup

    USGS Publications Warehouse

    Grauch, V.J.S.; Rodriguez, B.D.; Bankey, V.; Wooden, J.L.

    2003-01-01

    Combined evidence from gravity, radiogenic isotope, and magnetotelluric (MT) data indicates a crustal fault zone that coincides with the northwest-trending Battle Mountain-Eureka (BME) mineral trend in north-central Nevada, USA. The BME crustal fault zone likely originated during Neoproterozoic-Early Paleozoic rifting of the continent and had a large influence on subsequent tectonic events, such as emplacement of allochthons and episodic deformation, magmatism, and mineralization throughout the Phanerozoic. MT models show the fault zone is about 10 km wide, 130-km long, and extends from 1 to 5 km below the surface to deep crustal levels. Isotope data and gravity models imply the fault zone separates crust of fundamentally different character. Geophysical evidence for such a long-lived structure, likely inherited from continental breakup, defies conventional wisdom that structures this old have been destroyed by Cenozoic extensional processes. Moreover, the coincidence with the alignment of mineral deposits supports the assertion by many economic geologists that these alignments are indicators of buried regional structures.

  11. Deformation and seismicity associated with continental rift zones propagating toward continental margins

    NASA Astrophysics Data System (ADS)

    Lyakhovsky, V.; Segev, A.; Schattner, U.; Weinberger, R.

    2012-01-01

    We study the propagation of a continental rift and its interaction with a continental margin utilizing a 3-D lithospheric model with a seismogenic crust governed by a damage rheology. A long-standing problem in rift-mechanics, known as thetectonic force paradox, is that the magnitude of the tectonic forces required for rifting are not large enough in the absence of basaltic magmatism. Our modeling results demonstrate that under moderate rift-driving tectonic forces the rift propagation is feasible even in the absence of magmatism. This is due to gradual weakening and "long-term memory" of fractured rocks that lead to a significantly lower yielding stress than that of the surrounding intact rocks. We show that the style, rate and the associated seismicity pattern of the rift zone formation in the continental lithosphere depend not only on the applied tectonic forces, but also on the rate of healing. Accounting for the memory effect provides a feasible solution for thetectonic force paradox. Our modeling results also demonstrate how the lithosphere structure affects the geometry of the propagating rift system toward a continental margin. Thinning of the crystalline crust leads to a decrease in the propagation rate and possibly to rift termination across the margin. In such a case, a new fault system is created perpendicular to the direction of the rift propagation. These results reveal that the local lithosphere structure is one of the key factors controlling the geometry of the evolving rift system and seismicity pattern.

  12. Growth of early continental crust by water-present eclogite melting in subduction zones

    NASA Astrophysics Data System (ADS)

    Laurie, A.; Stevens, G.

    2011-12-01

    The geochemistry of well preserved Paleo- to Meso-Archaean Tonalite-Trondhjemite-Granodiorite (TTG) suite rocks, such as the ca 3.45 Ga trondhjemites from the Barberton greenstone belt in South Africa, provides insight into the origins of Earth's early felsic continental crust. This is particularly well demonstrated by the high-Al2O3 variety of these magmas, such as the Barberton rocks, where the geochemistry requires that they are formed by high pressure (HP) melting of a garnet-rich metamafic source. This has been interpreted as evidence for the formation of these magmas by anatexis of the upper portions of slabs within Archaean subduction zones. Most of the experimental data relevant to Archaean TTG genesis has been generated by studies of fluid-absent melting of metabasaltic sources. However, water drives arc magmatism within Phanerozoic subduction zones and thus, understanding the behaviour of water in Archaean subduction zones, may have considerable value for understanding the genesis of these TTG magmas. Consequently, this study investigates the role of HP water-present melting of an eclogite-facies starting material, in the production of high-Al2O3 type TTG melts. Water-saturated partial melting experiments were conducted between 1.9 and 3.0GPa; and, 870°C and 900°C. The melting reaction is characterized by the breakdown of sodic Cpx, together with Qtz and H2O, to form melt in conjunction with a less sodic Cpx: Qtz + Cpx1 + Grt1 + H2O = Melt + Cpx2 + Grt2. In many of the experimental run products, melt segregated efficiently from residual crystals, allowing for the measurement of a full range of trace elements via Laser Ablation Inductively Coupled Plasma Mass Spectroscopy. The experimental glasses produced by this study have the compositions of peraluminous trondhjemites; and they are light rare earth element, Zr and Sr enriched; and heavy rare earth element, Y and Nb depleted. The compositions of the experimental glasses are similar to high-Al2O3 type

  13. An Investigation on the Spatial Variability of Manning Roughness Coefficients in Continental-scale River Routing Simulations

    NASA Astrophysics Data System (ADS)

    Luo, X.; Hong, Y.; Lei, X.; Leung, L. R.; Li, H. Y.; Getirana, A.

    2017-12-01

    As one essential component of the Earth system modeling, the continental-scale river routing computation plays an important role in applications of Earth system models, such as evaluating the impacts of the global change on water resources and flood hazards. The streamflow timing, which depends on the modeled flow velocities, can be an important aspect of the model results. River flow velocities have been estimated by using the Manning's equation where the Manning roughness coefficient is a key and sensitive parameter. In some early continental-scale studies, the Manning coefficient was determined with simplified methods, such as using a constant value for the entire basin. However, large spatial variability is expected in the Manning coefficients for the numerous channels composing the river network in distributed continental-scale hydrologic modeling. In the application of a continental-scale river routing model in the Amazon Basin, we use spatially varying Manning coefficients dependent on channel sizes and attempt to represent the dominant spatial variability of Manning coefficients. Based on the comparisons of simulation results with in situ streamflow records and remotely sensed river stages, we investigate the comparatively optimal Manning coefficients and explicitly demonstrate the advantages of using spatially varying Manning coefficients. The understanding obtained in this study could be helpful in the modeling of surface hydrology at regional to continental scales.

  14. Geology of continental margins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    With continued high interest in offshore petroleum exploration, the 1977 AAPG Short Course presents the latest interpretations of new data bearing on the geology and geophysics of continental margins. Seven well-known earth scientists have organized an integrated program covering major topics involved in the development of ocean basins and continental margins with emphasis on the slopes and rises. The discussion of plate tectonics and evolution of continental margins is followed by presentations on the stratigraphy and structure of pull-apart and compressional margins. Prospective petroleum source rocks, their organic content, rate of burial, and distribution on slopes and rises of differentmore » margin types is covered. Prospective reservoir rock patterns are related to depositional processes and to the sedimentary and structural histories for different types of continental margins. Finally, the seismic recognition of depositional facies on slopes and rises for different margin types with varying rates of sediment supply during eustatic sea-level changes are discussed. The course with this syllabus offers an invaluable opportunity for explorationists to refresh their understanding of the geology associated with an important petroleum frontier. In addition, the course sets forth a technical frame of reference for the case-histoy papers to be presented later in the AAPG Research Symposium on the Petroleum Potential of Slopes, Rises, and Plateaus.« less

  15. Old Continental Crust Underlying Juvenile Oceanic Arc: Evidence From Northern Arabian-Nubian Shield, Egypt

    NASA Astrophysics Data System (ADS)

    Li, Xian-Hua; Abd El-Rahman, Yasser; Abu Anbar, Mohamed; Li, Jiao; Ling, Xiao-Xiao; Wu, Li-Guang; Masoud, Ahmed E.

    2018-04-01

    The Neoproterozoic Arabian-Nubian Shield (ANS) is the best preserved and the largest exposed Neoproterozoic juvenile crust on Earth. While the lithology and early Sr and Nd isotopic data demonstrate that the ANS crust is overwhelmingly juvenile, pre-ANS old zircon crystals have been increasingly recognized in the ANS igneous and sedimentary rocks, casting doubt on the "juvenility" of the ANS crust. In order to understand the origin of the old continental materials in the ANS and its roles in generation of juvenile oceanic arcs, we carry out for the first time an integrated in situ analysis of zircon U-Pb age and Hf-O isotopes for greywacke and felsic volcanic cobble samples from the Atud Formation in the Eastern Desert of northwestern part of the ANS. Our data indicate that the Atud Formation was deposited between ca. 720 and 700 Ma, concurrent with the production of oceanic arcs in the ANS. The Atud greywacke was derived from the erosion of a proximal arc terrane that contains numerous old continental crust materials. We identify for the first time a 755-Ma felsic volcanic cobble from the Atud Formation that is derived from old continental materials during juvenile crust production, suggesting presence of an old continental crust substrate that underlies the ANS. Our work demonstrates that reworking of old continental crust played important roles in generation of oceanic arcs in the northwestern ANS that is likely much less juvenile than previously thought. Thus, the crustal growth rates calculated based on estimates of temporal island arc development need to be revised.

  16. Evolution of the stress field in the southern Scotia Arc from the late Mesozoic to the present-day

    NASA Astrophysics Data System (ADS)

    Maestro, Adolfo; López-Martínez, Jerónimo; Galindo-Zaldívar, Jesús; Bohoyo, Fernando; Mink, Sandra

    2014-12-01

    The geological evolution of the Scotia Arc, which developed between Antarctica and South America, has facilitated the connection between the Pacific and Atlantic oceans and, has important global implications. To improve the knowledge of the late Mesozoic evolution of the southern Scotia Arc, over 6000 brittle mesostructures were measured over the last 20 years at different outcrops from the northern Antarctic Peninsula and the South Shetland Islands as well as the James Ross and South Orkney archipelagos. This dataset covers a length of more than 1000 km of the arc. Fault data were analysed using the Etchecopar, y-R, Right Dihedra, Stress Inversion and Search Grid Inversion Palaeostress Determination methods. A total of 275 stress tensors were obtained. The results showed that the maximum horizontal stress was in the ENE-WSW and the NW-SE orientations and that the horizontal extension tensors were oriented NE-SW and NW-SE. In addition, seismic activity and focal mechanism solutions were analysed using the Gephart method to establish the present-day stress field and characterise the active tectonics. The results obtained suggest that there is a regional NE-SW compression and a NW-SE extension regime at the present day. The Southern Scotia Arc has a complex geological history due to the different tectonic settings (transform, convergent and divergent) that have affected this sector during its geological evolution from the late Mesozoic until the present day. Six stress fields were obtained from the brittle mesostructure population analysis in the region. The NW-SE and N-S maximum horizontal stresses were related to a combination of Mesozoic oceanic subduction of the former Phoenix Plate under the Pacific margin of the Antarctic Plate, Mesozoic-Cenozoic subduction of the northern Weddell Sea and the Oligocene to the Middle Miocene dextral strike-slip movement between the Scotia and Antarctic plates along the South Scotia Ridge. The NE-SW compression was related to

  17. The extent of continental crust beneath the Seychelles

    NASA Astrophysics Data System (ADS)

    Hammond, J. O. S.; Kendall, J.-M.; Collier, J. S.; Rümpker, G.

    2013-11-01

    The granitic islands of the Seychelles Plateau have long been recognised to overlie continental crust, isolated from Madagascar and India during the formation of the Indian Ocean. However, to date the extent of continental crust beneath the Seychelles region remains unknown. This is particularly true beneath the Mascarene Basin between the Seychelles Plateau and Madagascar and beneath the Amirante Arc. Constraining the size and shape of the Seychelles continental fragment is needed for accurate plate reconstructions of the breakup of Gondwana and has implications for the processes of continental breakup in general. Here we present new estimates of crustal thickness and VP/VS from H-κ stacking of receiver functions from a year long deployment of seismic stations across the Seychelles covering the topographic plateau, the Amirante Ridge and the northern Mascarene Basin. These results, combined with gravity modelling of historical ship track data, confirm that continental crust is present beneath the Seychelles Plateau. This is ˜30-33 km thick, but with a relatively high velocity lower crustal layer. This layer thins southwards from ˜10 km to ˜1 km over a distance of ˜50 km, which is consistent with the Seychelles being at the edge of the Deccan plume prior to its separation from India. In contrast, the majority of the Seychelles Islands away from the topographic plateau show no direct evidence for continental crust. The exception to this is the island of Desroche on the northern Amirante Ridge, where thicker low density crust, consistent with a block of continental material is present. We suggest that the northern Amirantes are likely continental in nature and that small fragments of continental material are a common feature of plume affected continental breakup.

  18. High-pressure metamorphic age and significance of eclogite-facies continental fragments associated with oceanic lithosphere in the Western Alps (Etirol-Levaz Slice, Valtournenche, Italy)

    NASA Astrophysics Data System (ADS)

    Fassmer, Kathrin; Obermüller, Gerrit; Nagel, Thorsten J.; Kirst, Frederik; Froitzheim, Nikolaus; Sandmann, Sascha; Miladinova, Irena; Fonseca, Raúl O. C.; Münker, Carsten

    2016-05-01

    The Etirol-Levaz Slice in the Penninic Alps (Valtournenche, Italy) is a piece of eclogite-facies continental basement sandwiched between two oceanic units, the blueschist-facies Combin Zone in the hanging wall and the eclogite-facies Zermatt-Saas Zone in the footwall. It has been interpreted as an extensional allochthon from the continental margin of Adria, emplaced onto ultramafic and mafic basement of the future Zermatt-Saas Zone by Jurassic, rifting-related detachment faulting, and later subducted together with the future Zermatt-Saas Zone. Alternatively, the Etirol-Levaz Slice could be derived from a different paleogeographic domain and be separated from the Zermatt-Saas Zone by an Alpine shear zone. We present Lu-Hf whole rock-garnet ages of two eclogite samples, one from the center of the unit and one from the border to the Zermatt-Saas Zone below. These data are accompanied by a new geological map of the Etirol-Levaz Slice and the surrounding area, as well as detailed petrology of these two samples. Assemblages, mineral compositions and garnet zoning in both samples indicate a clockwise PT-path and peak-metamorphic conditions of about 550-600 °C/20-25 kbar, similar to conditions proposed for the underlying Zermatt-Saas Zone. Prograde garnet ages of the two samples are 61.8 ± 1.8 Ma and 52.4 ± 2.1 Ma and reflect different timing of subduction. One of these is significantly older than published ages of eclogite-facies metamorphism in the Zermatt-Saas Zone and thus contradicts the hypothesis of Mesozoic emplacement. The occurrence of serpentinite and metagabbro bodies possibly derived from the Zermatt-Saas Zone inside the Etirol-Levaz Slice suggests that the latter is a tectonic composite. The basement slivers forming the Etirol-Levaz Slice and other continental fragments were subducted earlier than the Zermatt-Saas Zone, but nonetheless experienced similar pressure-temperature histories. Our results support the hypothesis that the Zermatt-Saas Zone and the

  19. Geology and physiography of the continental margin north of Alaska and implications for the origin of the Canada Basin

    USGS Publications Warehouse

    Grantz, Arthur; Eittreim, Stephen L.; Whitney, O.T.

    1979-01-01

    The continental margin north of Alaska is of Atlantic type. It began to form probably in Early Jurassic time but possibly in middle Early Cretaceous time, when the oceanic Canada Basin of the Arctic Ocean is thought to have opened by rifting about a pole of rotation near the Mackenzie Delta. Offsets of the rift along two fracture zones are thought to have divided the Alaskan margin into three sectors of contrasting structure and stratigraphy. In the Barter Island sector on the east and the Chukchi sector on the west the rift was closer to the present northern Alaska mainland than in the Barrow sector, which lies between them. In the Barter Island and Chukchi sectors the continental shelf is underlain by prisms of clastic sedimentary rocks that are inferred to include thick sections of Jurassic and Neocomian (lower Lower Cretaceous) strata of southern provenance. In the intervening Barrow sector the shelf is underlain by relatively thin sections of Jurassic and Neocomian strata derived from northern sources that now lie beneath the outer continental shelf. The rifted continental margin is overlain by a prograded prism of Albian (upper Lower Cretaceous) to Tertiary clastic sedimentary rocks that comprises the continental terrace of the western Beaufort and northern Chukchi Seas. On the south the prism is bounded by Barrow arch, which is a hingeline between the northward-tilted basement surface beneath the continental shelf of the western Beaufort Sea and the southward-tilted Arctic Platform of northern Alaska. The Arctic platform is overlain by shelf clastic and carbonate strata of Mississippian to Cretaceous age, and by Jurassic and Cretaceous clastic strata of the Colville foredeep. Both the Arctic platform and Colville foredeep sequences extend from northern Alaska beneath the northern Chukchi Sea. At Herald fault zone in the central Chukchi Sea they are overthrust by more strongly deformed Cretaceous to Paleozoic sedimentary rocks of Herald arch, which trends

  20. Mesozoic tectonic history and geochronology of the Kular Dome, Russia and Bendeleben Mountains, Seward Peninsula, Alaska

    NASA Astrophysics Data System (ADS)

    Harris, Daniel B.

    sandstones and Jurassic greywackes near the Kular Dome and compared to results from previously studied surrounding regions in Russia and the Arctic Alaska-Chukotka microplate in order to better define the relationship between the Arctic Alaska-Chukotka microplate and northern Russia during the Mesozoic. Results suggest that though the Chukotkan portion of the Arctic Alaska-Chukotka microplate was separated from the Kular Dome area during the Triassic, by the Tithonian it shared similar source regions for detrital zircon populations. Based on detrital zircon data from Chukotka, the Kular Dome, and the In’Yali Debin area, a new tectonic model for the formation of the Amerasian Basin and structures within is proposed. In this new model, Chukotka separated from and moved independently of the North Slope of Alaska during the Late Triassic-Early Jurassic, experiencing strike-slip emplacement along the northern coast of paleo-Russia and closed the South Anyui Ocean via transpression to form the South Anyui suture. Geochronologic and geochemical results from the Bendeleben and Windy Creek plutons of the southeastern Seward Peninsula were also studied to better describe Arctic tectonic conditions during the Late Mesozoic. In this area, six samples were collected from the multiple lithologies seen within the Bendeleben and Windy Creek plutons and were also dated by zircon U-Pb geochronology and analyzed for their major and trace element geochemistry. Results suggest that the Bendeleben and Windy Creek plutons were emplaced during multiple extensionally driven pulses of magmatism above a southward-retreating, northward-subducting slab causing extension in the overlying crust from about 104 Ma to 83 Ma. The magma chamber at depth was experiencing continuous replenishment and liquid segregation causing stratification of the Bendeleben pluton. Magmas of the felsic cap, which now form the outer region of the Bendeleben pluton, were emplaced first, followed by subsequent intrusion of

  1. The initial superposition of oceanic and continental units in the southern Western Alps: constraints on geometrical restoration and kinematics of the continental subduction wedge

    NASA Astrophysics Data System (ADS)

    Dumont, Thierry; Schwartz, Stéphane; Matthews, Steve; Malusa, Marco; Jouvent, Marine

    2017-04-01

    older in the oceanic rocks (Malusà et al. 2015). Finally, further SE, the Voltri massif shows a huge volume of serpentinized mantle which locally overlies continental basement (strongly metamorphosed), and is interpreted as an exhumed remnant of the subduction channel (Federico et al., 2007). In all these localities the transport directions during initial pulses of stacking were consistently oriented generally towards the NW to N, taking into account the subsequent Oligocene and younger collision-related deformation (complex folds, thrusts, backfolds and backthrusts, and block-rotations). It is thus possible to attempt reconstructing an early stage continental subduction wedge involving these different elements from the subduction channel to the most frontal part of the accretionary complex. However, this early Alpine orogen which was active throughout the Eocene is interpreted to have propagated generally towards the NW to N, prior to subsequent pulses of more westerly directed deformation from the Oligocene onwards within the southern part of the Western Alps arc. It is therefore essential to continually improve high-resolution 3D geophysical imaging to facilitate a better understanding of the complex western termination of the Alpine orogen. References: Dumont T., Schwartz S., Guillot S., Simon-Labric S., Tricart P. & Jourdan S. (2012), Structural and sedimentary record of the Oligocene revolution in the Western Alpine arc. Jour. Geodynamics, doi:10.1016/j.jog.2011.11.006 Federico L., Crispini L., Scambelluri M. & Capponi G. (2007), Ophiolite mélange zone records exhumation in a fossil subduction channel. Geology, 35, p. 499-502 Malusà M.G., Faccenna C., Baldwin S.L., Fitzgerald P.G., Rossetti F., Balestrieri M.L., Danišík M., Ellero A., Ottria G. & Piromallo C. (2015), Contrasting styles of (U)HP rock exhumation along the Cenozoic Adria-Europe plate boundary (Western Alps, Calabria, Corsica). Geochem. Geophys. Geosyst. ,16, p. 1786-1824 Tricart P. & Schwartz S

  2. Estimation of continental precipitation recycling

    NASA Technical Reports Server (NTRS)

    Brubaker, Kaye L.; Entekhabi, Dara; Eagleson, P. S.

    1993-01-01

    The total amount of water that precipitates on large continental regions is supplied by two mechanisms: 1) advection from the surrounding areas external to the region and 2) evaporation and transpiration from the land surface within the region. The latter supply mechanism is tantamount to the recycling of precipitation over the continental area. The degree to which regional precipitation is supplied by recycled moisture is a potentially significant climate feedback mechanism and land surface-atmosphere interaction, which may contribute to the persistence and intensification of droughts. Gridded data on observed wind and humidity in the global atmosphere are used to determine the convergence of atmospheric water vapor over continental regions. A simplified model of the atmospheric moisture over continents and simultaneous estimates of regional precipitation are employed to estimate, for several large continental regions, the fraction of precipitation that is locally derived. The results indicate that the contribution of regional evaporation to regional precipitation varies substantially with location and season. For the regions studied, the ratio of locally contributed to total monthly precipitation generally lies between 0. 10 and 0.30 but is as high as 0.40 in several cases.

  3. Constraints on the Final Stages of Breakup and Early Spreading history of the Eastern North American Margin from New Multichannel Seismic Data of the Community Seismic Experiment

    NASA Astrophysics Data System (ADS)

    Becel, A.

    2016-12-01

    In September-October 2014, the East North American Margin (ENAM) Community Seismic Experiment (CSE) acquired deep penetration multichannel seismic (MCS) reflection on a 500 km wide section of the Mid-Atlantic continental margin offshore North Carolina and Virginia. This margin formed after the Mesozoic breakup of supercontinent Pangea. One of the goals of this experiment is an improved understanding of events surrounding final stage of breakup including the relationship between the timing of rifting and the occurrence of offshore magmatism and early spreading history of this passive margin that remain poorly understood. Deep penetration MCS data were acquired with the 6600 cu.in. tuned airgun array and the 636 channel, 8-km-long streamer of the R/V Marcus Langseth. The source and the streamer were both towed at a depth of 9 m for deep imaging. Here we present initial results from MCS data along two offshore margin normal profiles (450-km long and 370-km-long, respectively), spanning from continental crust 50 km off the coast to mature oceanic crust and a 350-km-long MCS profile along the enigmatic Blake Spur Magnetic Anomaly (BSMA). Initial images reveal a major change in the basement roughness at the BSMA on both margin normal profiles. Landward of this anomaly, the basement is rough and more faulted whereas starting at the anomaly and seaward, the basement is very smooth and reflective. Clear Moho reflections are observed 2.5-3s (7.75-9.3 km assuming an average crustal velocity of 6.2 km/s) beneath the top of the basement on the seaward part of two margin normal profiles and on the margin parallel profile. Intracrustal reflections are also observed over both transitional and oceanic basement. A long-lived mantle thermal anomaly close to the ridge axis during the early opening of the Atlantic Ocean could explain the thicker than normal oceanic crust and smooth basement topography observed in the data.

  4. Controls of late Palaeozoic and Mesozoic extension in the British Isles: evidence from seismic reflection data in the Central North Sea

    NASA Astrophysics Data System (ADS)

    Smith, K.; Cameron, T. D. J.

    2009-04-01

    Controls of late Palaeozoic and Mesozoic extension in the British Isles: evidence from seismic reflection data in the Central North Sea. Kevin Smith (1) and Don Cameron (2) (1) British Geological Survey, Murchison House, West Mains Road, Edinburgh, EH9 3LA. (ksm@bgs.ac.uk). (2) British Geological Survey, 376 Gilmerton Road, Edinburgh, EH17 7QS. In the area of the British Isles during the late Devonian and early Carboniferous, the oblique convergence of Laurentia and Gondwana imposed a torque on the adjoining terranes of Baltica and Avalonia. Their resulting clockwise rotation was accommodated by widely distributed N-S extension in the intervening zones previously formed by Caledonian and Acadian convergence. South of Laurentia and Baltica, late Palaeozoic extension was focused (1) at terrane margins, (2) in areas of limited Caledonian-Acadian plutonism, and (3) in places where the western (Iapetus) and eastern (Tornquist) convergence zones intersect at a high angle. One of these latter areas lies in Central England immediately north of the Midland Microcraton (part of Eastern Avalonia), where thermal subsidence associated with early Carboniferous extension gave rise to the late Carboniferous Pennine Basin. Interpretation of an extensive set of 3D and 2D long-offset seismic reflection data suggests that a similar area of enhanced extension at a fold belt intersection lies to north of the Mid North Sea High in the middle of the Central North Sea. Variscan uplift and inversion of the late Palaeozoic basins began to predominate in mid-Carboniferous times as final amalgamation of all the different terranes to form Pangaea curtailed the initial episode of extension and thermal subsidence. This change in the tectonic regime was associated with the onset of tholeiitic volcanism within the convergence zones, and was followed by localised extension during the earliest Permian. Evidence obtained from seismic interpretation of the deep structure of the UK sector of the Central

  5. Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic

    NASA Astrophysics Data System (ADS)

    Golonka, J.

    2004-03-01

    Thirteen time interval maps were constructed, which depict the Triassic to Neogene plate tectonic configuration, paleogeography and general lithofacies of the southern margin of Eurasia. The aim of this paper is to provide an outline of the geodynamic evolution and position of the major tectonic elements of the area within a global framework. The Hercynian Orogeny was completed by the collision of Gondwana and Laurussia, whereas the Tethys Ocean formed the embayment between the Eurasian and Gondwanian branches of Pangea. During Late Triassic-Early Jurassic times, several microplates were sutured to the Eurasian margin, closing the Paleotethys Ocean. A Jurassic-Cretaceous north-dipping subduction boundary was developed along this new continental margin south of the Pontides, Transcaucasus and Iranian plates. The subduction zone trench-pulling effect caused rifting, creating the back-arc basin of the Greater Caucasus-proto South Caspian Sea, which achieved its maximum width during the Late Cretaceous. In the western Tethys, separation of Eurasia from Gondwana resulted in the formation of the Ligurian-Penninic-Pieniny-Magura Ocean (Alpine Tethys) as an extension of Middle Atlantic system and a part of the Pangean breakup tectonic system. During Late Jurassic-Early Cretaceous times, the Outer Carpathian rift developed. The opening of the western Black Sea occurred by rifting and drifting of the western-central Pontides away from the Moesian and Scythian platforms of Eurasia during the Early Cretaceous-Cenomanian. The latest Cretaceous-Paleogene was the time of the closure of the Ligurian-Pieniny Ocean. Adria-Alcapa terranes continued their northward movement during Eocene-Early Miocene times. Their oblique collision with the North European plate led to the development of the accretionary wedge of the Outer Carpathians and its foreland basin. The formation of the West Carpathian thrusts was completed by the Miocene. The thrust front was still propagating eastwards in

  6. Transition from continental to oceanic crust on the Wilkes-Adelie margin of Antarctica

    NASA Astrophysics Data System (ADS)

    Eittreim, Stephen L.

    1994-12-01

    The Wilkes-Adelie margin of East Antarctica, a passive margin rifted in the Early Cretaceous, has an unusually reflective Moho which can be traced seismically across the continent-ocean transition. Velocity models and depth sections were constructed from a combined set of U.S. and French multichannel seismic reflection lines to investigate the transition from continental to oceanic crust. These data show that the boundary between oldest oceanic crust and transitional continental crust is marked by a minimum in subsediment crustal thickness and, in places, by a shoaling of Moho. The Moho reflection is continuous across the edge of oceanic crust, and gradually deepens landward under the continental edge. A marginal rift basin, some tens of kilometers in width, lies in the transition between continental and oceanic crust, contains an average of about 4 km of synrift sediment that is prograded in places, and has characteristics of a former rift valley, now subsided to about 10 km. Three types of reflections in the seismic data are interpreted as volcanic deposits: (1) high-amplitude reflections that floor the marginal rift basin, (2) irregularly seaward dipping sequences that comprise an anomalously thick edge of oceanic crust, and (3) highly irregular and diffractive reflections from oceanic crustal basins that cap a normal-thickness ocean crust. The present depth to the prefit surface of continental crust is compatible with passive margin subsidence since 95 Ma, corrected for its load of synrift and postrift sediment and mechanically stretched by factors of beta = 1.8 or higher. Comparison of seismic crustal thickness measurements with inferred crustal thinning from subsidence analysis shows agreement for areas where beta less than 4. In areas where beta greater than 4, measured thickness is greater than that inferred from subsidence analysis, a result that could be explained by underplating the crust beneath the marginal rift basin.

  7. Geology of the Harpers Ferry Quadrangle, Virginia, Maryland, and West Virginia

    USGS Publications Warehouse

    Southworth, Scott; Brezinski, David K.

    1996-01-01

    The Harpers Ferry quadrangle covers a portion of the northeast-plunging Blue Ridge-South Mountain anticlinorium, a west-verging allochthonous fold complex of the late Paleozoic Alleghanian orogeny. The core of the anticlinorium consists of high-grade paragneisses and granitic gneisses that are related to the Grenville orogeny. These rocks are intruded by Late Proterozoic metadiabase and metarhyolite dikes and are unconformably overlain by Late Proterozoic metasedimentary rocks of the Swift Run Formation and metavolcanic rocks of the Catoctin Formation, which accumulated during continental rifting of Laurentia (native North America) that resulted in the opening of the Iapetus Ocean. Lower Cambrian metasedimentary rocks of the Loudoun, Weverton, Harpers, and Antietam Formations and carbonate rocks of the Tomstown Formation were deposited in the rift-to-drift transition as the early Paleozoic passive continental margin evolved. The Short Hill fault is an early Paleozoic normal fault that was contractionally reactivated as a thrust fault and folded in the late Paleozoic. The Keedysville detachment is a folded thrust fault at the contact of the Antietam and Tomstown Formations. Late Paleozoic shear zones and thrust faults are common. These rocks were deformed and metamorphosed to greenschist-facies during the formation of the anticlinorium. The Alleghanian deformation was accompanied by a main fold phase and a regional penetrative axial plane cleavage, which was followed by a minor fold phase with crenulation cleavage. Early Jurassic diabase dikes transected the anticlinorium during Mesozoic continental rifting that resulted in the opening of the Atlantic Ocean. Cenozoic deposits that overlie the bedrock include bedrock landslides, terraces, colluvium, and alluvium.

  8. Subduction history of the Paleo-Pacific plate beneath the Eurasian continent: Evidence from Mesozoic igneous rocks and accretionary complex in NE Asia

    NASA Astrophysics Data System (ADS)

    Xu, W.

    2015-12-01

    Mesozoic magmatisms in NE China can be subdivided into seven stages, i.e., Late Triassic, Early Jurassic, Middle Jurassic, Late Jurassic, early Early Cretaceous, late Early Cretaceous, and Late Cretaceous. Late Triassic magmatisms consist of calc-alkaline igneous rocks in the Erguna Massif, and bimodal igneous rocks in eastern margin of Eurasian continent. The former reveals southward subduction of the Mongol-Okhotsk oceanic plate, the latter reveals an extensional environment (Xu et al., 2013). Early Jurassic magmatisms are composed of calc-alkaline igneous rocks in the eastern margin of the Eurasian continent and the Erguna Massif, revealing westward subduction of the Paleo-pacific plate and southward subduction of the Mongol-Okhotsk oceanic plate (Tang et al., 2015), respectively. Middle Jurassic magmatism only occur in the Great Xing'an Range and the northern margin of the NCC, and consists of adakitic rocks that formed in crustal thickening, reflecting the closure of the Mongol-Okhotsk ocean (Li et al., 2015). Late Jurassic and early Early Cretaceous magmatisms only occur to the west of the Songliao Basin, and consist of trackyandesite and A-type of rhyolites, revealing an extensional environment related to delamination of thickened crust. The late Early Cretaceous magmatisms are widespread in NE China, and consist of calc-alkaline volcanics in eastern margin and bimodal volcanics in intracontinent, revealing westward subduction of the Paleo-pacific plate. Late Cretaceous magmatisms mainly occur to the east of the Songliao Basin, and consist of calc-alkaline volcanics in eastern margin and alkaline basalts in intracontinent (Xu et al., 2013), revealing westward subduction of the Paleo-pacific plate. The Heilongjiang complex with Early Jurassic deformation, together with Jurassic Khabarovsk complex in Russia Far East and Mino-Tamba complex in Japan, reveal Early Jurassic accretionary history. Additionally, the Raohe complex with the age of ca. 169 Ma was

  9. Arc-continent collision and the formation of continental crust: A new geochemical and isotopic record from the Ordovician Tyrone Igneous Complex, Ireland

    USGS Publications Warehouse

    Draut, Amy E.; Clift, Peter D.; Amato, Jeffrey M.; Blusztajn, Jerzy; Schouten, Hans

    2009-01-01

    Collisions between oceanic island-arc terranes and passive continental margins are thought to have been important in the formation of continental crust throughout much of Earth's history. Magmatic evolution during this stage of the plate-tectonic cycle is evident in several areas of the Ordovician Grampian-Taconic orogen, as we demonstrate in the first detailed geochemical study of the Tyrone Igneous Complex, Ireland. New U-Pb zircon dating yields ages of 493 2 Ma from a primitive mafic intrusion, indicating intra-oceanic subduction in Tremadoc time, and 475 10 Ma from a light rare earth element (LREE)-enriched tonalite intrusion that incorporated Laurentian continental material by early Arenig time (Early Ordovician, Stage 2) during arc-continent collision. Notably, LREE enrichment in volcanism and silicic intrusions of the Tyrone Igneous Complex exceeds that of average Dalradian (Laurentian) continental material that would have been thrust under the colliding forearc and potentially recycled into arc magmatism. This implies that crystal fractionation, in addition to magmatic mixing and assimilation, was important to the formation of new crust in the Grampian-Taconic orogeny. Because similar super-enrichment of orogenic melts occurred elsewhere in the Caledonides in the British Isles and Newfoundland, the addition of new, highly enriched melt to this accreted arc terrane was apparently widespread spatially and temporally. Such super-enrichment of magmatism, especially if accompanied by loss of corresponding lower crustal residues, supports the theory that arc-continent collision plays an important role in altering bulk crustal composition toward typical values for ancient continental crust. ?? 2009 Geological Society of London.

  10. Testing the Mojave-Sonora megashear hypothesis: Evidence from Paleoproterozoic igneous rocks and deformed Mesozoic strata in Sonora, Mexico

    USGS Publications Warehouse

    Amato, J.M.; Lawton, T.F.; Mauel, D.J.; Leggett, W.J.; Gonzalez-Leon, C. M.; Farmer, G.L.; Wooden, J.L.

    2009-01-01

    U-Pb ages and Nd isotope values of Proterozoic rocks in Sonora, Mexico, indicate the presence of Caborca-type basement, predicted to lie only south of the Mojave-Sonora mega-shear, 40 km north of the postulated megashear. Granitoids have U-Pb zircon ages of 1763-1737 Ma and 1076 Ma, with ??Nd(t) values from +1.4 to -4.3, typical of the Caborca block. Lower Jurassic strata near the Proterozoic rocks contain large granitic clasts with U-Pb ages and ??Nd(t) values indistinguishable from those of Caborcan basement. Caborca-type basement was thus present at this location north of the megashear by 190 Ma, the depositional age of the Jurassic strata. The Proterozoic rocks are interpreted as parautochthonous, exhumed and juxtaposed against the Mesozoic section by a reverse fault that formed a footwall shortcut across a Jurassic normal fault. Geochronology, isotope geochemistry, and structural geology are therefore inconsistent with Late Jurassic megashear displacement and require either that no major transcurrent structure is present in Sonora or that strike-slip displacement occurred prior to Early Jurassic time. ?? 2009 The Geological Society of America.

  11. Potential links between onshore tectonics and terrestrial organic carbon delivery to distal submarine fan environments: IODP Site U1417, Surveyor Fan, Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Childress, L. B.; Ridgway, K. D.; Blair, N. E.; Bahlburg, H.; Berbel, G.; Cowan, E. A.; Forwick, M.; Gulick, S. P.; Jaeger, J. M.; Maerz, C.; McClymont, E.; Moy, C. M.; Müller, J.; Nakamura, A.; Ribeiro, F.

    2013-12-01

    and the older uplifted parts of the Mesozoic continental margin to the distal submarine fan system. Since the early Pleistocene, the distal fan has been sourced from tidewater glaciers transporting sediment from the continental margin of south-central Alaska through the Surveyor Channel and related sediment pathways, levees, and overbank systems. We hypothesize that tectonic transport of the Yakutat Terrane and the onset of tidewater glaciation resulted in variation of the geochemical signature of ancient carbon delivered to the distal parts of the Surveyor Fan. Biomarker differences between the Neogene coal-bearing Kulthieth Formation and the Mesozoic continental strata material will allow us to confirm source material to the fan over the last ~ 10 Ma.

  12. Mesozoic to Eocene ductile deformation of western Central Iran: From Cimmerian collisional orogeny to Eocene exhumation

    NASA Astrophysics Data System (ADS)

    Kargaranbafghi, Fariba; Neubauer, Franz; Genser, Johann; Faghih, Ali; Kusky, Timothy

    2012-09-01

    To advance our understanding of the Mesozoic to Eocene tectonics and kinematics of basement units exposed in the south-western Central Iran plateau, this paper presents new structural and thermochronological data from the Chapedony metamorphic core complex and hangingwall units, particularly from the Posht-e-Badam complex. The overall Paleogene structural characteristics of the area are related to an oblique convergent zone. The Saghand area represents part of a deformation zone between the Arabian and Eurasian plates, and can be interpreted to result from the Central Iran intracontinental deformation acting as a weak zone during Mesozoic to Paleogene times. Field and microstructural evidence reveal that the metamorphic and igneous rocks suffered a ductile shear deformation including mylonitization at the hangingwall boundary of the Eocene Chapedony metamorphic core complex. Comparison of deformation features in the mylonites and other structural features within the footwall unit leads to the conclusion that the mylonites were formed in a subhorizontal shear zone by NE-SW stretching during Middle to Late Eocene extensional tectonics. The Chapedony metamorphic core complex is characterized by amphibolite-facies metamorphism and development of S and S-L tectonic fabrics. The Posht-e-Badam complex was deformed by two stages during Cimmerian tectonic processes forming the Paleo-Tethyan suture.

  13. Geochemistry, 40Ar/39Ar geochronology, and geodynamic implications of Early Cretaceous basalts from the western Qinling orogenic belt, China

    NASA Astrophysics Data System (ADS)

    Zhang, Feifei; Wang, Yuejun; Cawood, Peter A.; Dong, Yunpeng

    2018-01-01

    The Qinling-Dabie orogenic belt was formed by the collision of the North and South China Cratons during the Early Mesozoic and subsequently developed into an intracontinental tectonic process during late Mesozoic. Field investigations identified the presence of late Mesozoic basalts in the Duofutun and Hongqiang areas in the western Qinling orogenic belt. The petrogenesis of these basalts provides an important constraint on the late Mesozoic geodynamics of the orogen. The representative basaltic samples yield the 40Ar/39Ar plateau age of about 112 Ma. These samples belong to the alkaline series and have SiO2 ranging from 44.98 wt.% to 48.19 wt.%, Na2O + K2O from 3.44 wt% to 5.44 wt%, and MgO from 7.25 wt.% to 12.19 wt.%. They demonstrate the right-sloping chondrite-normalized REE patterns with negligible Eu anomalies (1.00-1.10) and PM-normalized patterns enriched in light rare earth element, large ion lithophile element and high field strength element, similar to those of OIB rocks. These samples additionally show an OIB-like Sr-Nd isotopic signature with εNd(t) values ranging from +6.13 to +10.15 and initial 87Sr/86Sr ratios from 0.7028 to 0.7039, respectively. These samples are geochemically subdivided into two groups. Group 1 is characterized by low Al2O3 and high TiO2 and P2O5 contents, as well as high La/Yb ratios (>20), being the product of the high-pressure garnet fractionation from the OIB-derived magma. Group 2 shows higher Al2O3 but lower P2O5 contents and La/Yb ratios (<20) than Group 1, originating from asthenospheric mantle with input of delaminated lithospheric component. In combination with available data, it is proposed for the petrogenetic model of the Early Cretaceous thickened lithospheric delamination in response to the asthenospheric upwelling along the western Qinling orogenic belt.

  14. Abbot Ice Shelf, the Amundsen Sea Continental Margin and the Southern Boundary of the Bellingshausen Plate Seaward of West Antarctica

    NASA Astrophysics Data System (ADS)

    Cochran, J. R.; Tinto, K. J.; Bell, R. E.

    2014-12-01

    The Abbot Ice Shelf extends 450 km along the coast of West Antarctica between 103°W and 89°W and straddles the boundary between the Bellingshausen Sea continental margin, which overlies a former subduction zone, and Amundsen Sea rifted continental margin. Inversion of NASA Operation IceBridge airborne gravity data for sub-ice bathymetry shows that the western part of the ice shelf, as well as Cosgrove Ice Shelf to the south, are underlain by a series of east-west trending rift basins. The eastern boundary of the rifted terrain coincides with the eastern boundary of rifting between Antarctica and Zealandia and the rifts formed during the early stages of this rifting. Extension in these rifts is minor as rifting quickly jumped north of Thurston Island. The southern boundary of the Cosgrove Rift is aligned with the southern boundary of a sedimentary basin under the Amundsen Embayment continental shelf to the west, also formed by Antarctica-Zealandia rifting. The shelf basin has an extension factor, β, of 1.5 - 1.7 with 80 -100 km of extension occurring in an area now ~250 km wide. Following this extension early in the rifting process, rifting centered to the north of the present shelf edge and proceeded to continental rupture. Since then, the Amundsen Embayment continental shelf has been tectonically quiescent and has primarily been shaped though subsidence, sedimentation and the passage of the West Antarctic Ice Sheet back and forth across it. The former Bellingshausen Plate was located seaward of the Amundsen Sea margin prior to its incorporation into the Antarctic Plate at ~62 Ma. During the latter part of its existence, Bellingshausen plate motion had a clockwise rotational component relative to Antarctica producing convergence between the Bellingshausen and Antarctic plates east of 102°W. Seismic reflection and gravity data show that this convergence is expressed by an area of intensely deformed sediments beneath the continental slope from 102°W to 95°W and

  15. Continental flood basalt weathering as a trigger for Neoproterozoic Snowball Earth

    NASA Astrophysics Data System (ADS)

    Cox, Grant M.; Halverson, Galen P.; Stevenson, Ross K.; Vokaty, Michelle; Poirier, André; Kunzmann, Marcus; Li, Zheng-Xiang; Denyszyn, Steven W.; Strauss, Justin V.; Macdonald, Francis A.

    2016-07-01

    Atmospheric CO2 levels and global climate are regulated on geological timescales by the silicate weathering feedback. However, this thermostat has failed multiple times in Earth's history, most spectacularly during the Cryogenian (c. 720-635 Ma) Snowball Earth episodes. The unique middle Neoproterozoic paleogeography of a rifting, low-latitude, supercontinent likely favored a globally cool climate due to the influence of the silicate weathering feedback and planetary albedo. Under these primed conditions, the emplacement and weathering of extensive continental flood basalt provinces may have provided the final trigger for runaway global glaciation. Weathering of continental flood basalts may have also contributed to the characteristically high carbon isotope ratios (δ13 C) of Neoproterozoic seawater due to their elevated P contents. In order to test these hypotheses, we have compiled new and previously published Neoproterozoic Nd isotope data from mudstones in northern Rodinia (North America, Australia, Svalbard, and South China) and Sr isotope data from carbonate rocks. The Nd isotope data are used to model the mafic detrital input into sedimentary basins in northern Rodinia. The results reveal a dominant contribution from continental flood basalt weathering during the ca. 130 m.y. preceding the onset of Cryogenian glaciation, followed by a precipitous decline afterwards. These data are mirrored by the Sr isotope record, which reflects the importance of chemical weathering of continental flood basalts on solute fluxes to the early-middle Neoproterozoic ocean, including a pulse of unradiogenic Sr input into the oceans just prior to the onset of Cyrogenian glaciation. Hence, our new data support the hypotheses that elevated rates of flood basalt weathering contributed to both the high average δ13 C of seawater in the Neoproterozoic and to the initiation of the first (Sturtian) Snowball Earth.

  16. Fault-Magma Interactions during Early Continental Rifting: Seismicity of the Magadi-Natron-Manyara basins, Africa

    NASA Astrophysics Data System (ADS)

    Weinstein, A.; Oliva, S. J.; Ebinger, C.; Aman, M.; Lambert, C.; Roecker, S. W.; Tiberi, C.; Muirhead, J.

    2017-12-01

    Although magmatism may occur during the earliest stages of continental rifting, its role in strain accommodation remains weakly constrained by largely 2D studies. We analyze seismicity data from a 13-month, 39-station broadband seismic array to determine the role of magma intrusion on state-of-stress and strain localization, and their along-strike variations. Precise earthquake locations using cluster analyses and a new 3D velocity model reveal lower crustal earthquakes along projections of steep border faults that degas CO2. Seismicity forms several disks interpreted as sills at 6-10 km below a monogenetic cone field. The sills overlie a lower crustal magma chamber that may feed eruptions at Oldoinyo Lengai volcano. After determining a new ML scaling relation, we determine a b-value of 0.87 ± 0.03. Focal mechanisms for 66 earthquakes, and a longer time period of relocated earthquakes from global arrays reveal an along-axis stress rotation of 50 o ( N150 oE) in the magmatically active zone. Using Kostrov summation of local and teleseismic mechanisms, we find opening directions of N122ºE and N92ºE north and south of the magmatically active zone. The stress rotation facilitates strain transfer from border fault systems, the locus of early stage deformation, to the zone of magma intrusion in the central rift. Our seismic, structural, and geochemistry results indicate that frequent lower crustal earthquakes are promoted by elevated pore pressures from volatile degassing along border faults, and hydraulic fracture around the margins of magma bodies. Earthquakes are largely driven by stress state around inflating magma bodies, and more dike intrusions with surface faulting, eruptions, and earthquakes are expected.

  17. Steady State Growth of Continental Crust?

    NASA Astrophysics Data System (ADS)

    Bowring, S. A.; Bauer, A.; Dudas, F. O.; Schoene, B.; McLean, N. M.

    2012-12-01

    More than twenty years since the publication of Armstrong's seminal paper, debate still rages about most aspects of the Earth's first billion years. Although orders of magnitude more data have been generated since then, the arguments remain the same. The debate is largely centered on the isotopic systematics of minerals and whole rocks, the major and trace element geochemistry of continental crust, and various geodynamic models for differentiation of the planet. Most agree that earth, like all the terrestrial planets, differentiated into a crust, mantle and core very early in its history. After that, models of crustal evolution diverge significantly, including the suggestions that modern style plate tectonics did not originate until ca. 2.7 Ga or younger and that plumes have played a major role in the generation of continental crust. Many believe that the preserved rock record and the detrital zircon record are consistent with episodic crustal growth, which in turn has led to geodynamic models of episodic mantle convection driving major crust forming events. High-precision and high-throughput geochronology have led to claims of episodicity even more pronounced than that presented in Gastil's 1960 paper. We believe that Earth history has been dominated by plate tectonics and that continental crust is formed largely by amalgamation of island arcs, seamounts, micro continents, and oceanic plateaus. While there are geochemical differences in the average composition of Archean igneous rocks when compared to younger rocks, the processes responsible for their formation may not have changed a great deal. In this view, the so-called crustal growth curves originated by Hurley are in fact crude approximations of crustal preservation. The most highly cited rationales for the view that little silicic crust formed during Earth's first billion years are the lack of known exposed crust older than 3.5 Ga and the paucity of detrital zircons older than 4.0 Ga in sedimentary rocks of

  18. Detrital zircons from the Tananao metamorphic complex of Taiwan: Implications for sediment provenance and Mesozoic tectonics

    NASA Astrophysics Data System (ADS)

    Yui, T. F.; Maki, K.; Lan, C. Y.; Hirata, T.; Chu, H. T.; Kon, Y.; Yokoyama, T. D.; Jahn, B. M.; Ernst, W. G.

    2012-05-01

    Taiwan formed during the Plio-Pleistocene collision of Eurasia with the outboard Luzon arc. Its pre-Tertiary basement, the Tananao metamorphic complex, consists of the western Tailuko belt and the eastern Yuli belt. These circum-Pacific belts have been correlated with the high-temperature/low-pressure (HT/LP) Ryoke belt and the high-pressure/low-temperature (HP/LT) Sanbagawa belt of Japan, respectively. To test this correlation and to reveal the architecture and plate-tectonic history of the Tananao metamorphic basement, detrital zircons were separated from 7 metasedimentary rock samples for U-Pb dating by LA-ICPMS techniques. Results of the present study, coupled with previous data, show that (1) the Tailuko belt consists of a Late Jurassic to earliest Cretaceous accretionary complex sutured against a Permian-Early Jurassic marble ± metabasaltic terrane, invaded in the north by scattered Late Cretaceous granitic plutons; the latter as well as minor Upper Cretaceous cover strata probably formed in a circum-Pacific forearc; (2) the Yuli belt is a mid- to Late Cretaceous accretionary complex containing HP thrust sheets that were emplaced attending the Late Cenozoic Eurasian plate-Luzon arc collision; (3) these two Late Mesozoic belts are not coeval, and in part were overprinted by low-grade metamorphism during the Plio-Pleistocene collision; (4) accreted clastic sediments of the Tailuko belt contain mainly Phanerozoic detrital zircons, indicating that terrigenous sediments were mainly sourced from western Cathaysia, whereas in contrast, clastic rocks of the Yuli accretionary complex contain a significant amount of Paleoproterozoic and distinctive Neoproterozoic zircons, probably derived from the North China craton and the Yangtze block ± eastern Cathaysia, as a result of continent uplift/exhumation after the Permo-Triassic South China-North China collision; and (5) the Late Jurassic-Late Cretaceous formation of the Tananao basement complex precludes the possibility

  19. Late Paleogene rifting along the Malay Peninsula thickened crust

    NASA Astrophysics Data System (ADS)

    Sautter, Benjamin; Pubellier, Manuel; Jousselin, Pierre; Dattilo, Paolo; Kerdraon, Yannick; Choong, Chee Meng; Menier, David

    2017-07-01

    Sedimentary basins often develop above internal zones of former orogenic belts. We hereafter consider the Malay Peninsula (Western Sunda) as a crustal high separating two regions of stretched continental crust; the Andaman/Malacca basins in the western side and the Thai/Malay basins in the east. Several stages of rifting have been documented thanks to extensive geophysical exploration. However, little is known on the correlation between offshore rifted basins and the onshore continental core. In this paper, we explore through mapping and seismic data, how these structures reactivate pre-existing Mesozoic basement heterogeneities. The continental core appears to be relatively undeformed after the Triassic Indosinian orogeny. The thick crustal mega-horst is bounded by complex shear zones (Ranong, Klong Marui and Main Range Batholith Fault Zones) initiated during the Late Cretaceous/Early Paleogene during a thick-skin transpressional deformation and later reactivated in the Late Paleogene. The extension is localized on the sides of this crustal backbone along a strip where earlier Late Cretaceous deformation is well expressed. To the west, the continental shelf is underlain by three major crustal steps which correspond to wide crustal-scale tilted blocks bounded by deep rooted counter regional normal faults (Mergui Basin). To the east, some pronounced rift systems are also present, with large tilted blocks (Western Thai, Songkhla and Chumphon basins) which may reflect large crustal boudins. In the central domain, the extension is limited to isolated narrow N-S half grabens developed on a thick continental crust, controlled by shallow rooted normal faults, which develop often at the contact between granitoids and the host-rocks. The outer limits of the areas affected by the crustal boudinage mark the boundary towards the large and deeper Andaman basin in the west and the Malay and Pattani basins in the east. At a regional scale, the rifted basins resemble N-S en

  20. Anatexis, hybridization and the modification of ancient crust: Mesozoic plutonism in the Old Woman Mountains area, California

    USGS Publications Warehouse

    Miller, C.F.; Wooden, J.L.

    1994-01-01

    A compositionally expanded array of granitic (s.l.) magmas intruded the > 2 Ga crust of the Old Woman Mountains area between 160 and 70 Ma. These magmas were emplaced near the eastern (inland) edge of the Jurassic/Cretaceous arcs of western North America, in an area where magma flux, especially during the Jurassic, was considerably lower than to the west. The Jurassic intrusives and over half of the Cretaceous intrusives are predominantly metaluminous and variable in composition; a major Cretaceous suite comprises only peraluminous monzogranite. Only the Jurassic intrusions show clear evidence for the presence of mafic liquids. All units, including the most mafic rocks, reveal isotopic evidence for a significant crustal component. However, none of the Mesozoic intrusives matches in isotopic composition either average pre-intrusion crust or any major unit of the exposed crust. Elemental inconsistencies also preclude closed system derivation from exposed crust. Emplacement of these magmas, which doubled the volume of the mid- to upper crust, did not dramatically change its elemental composition. It did, however, affect its Nd and especially Sr isotopic composition and modify some of the distinctive aspects of the elemental chemistry. We propose that Jurassic magmatism was open-system, with a major influx of mantle-derived mafic magma interacting strongly with the ancient crust. Mesozoic crustal thickening may have led to closed-system crustal melting by the Late Cretaceous, but the deep crust had been profoundly modified by earlier Mesozoic hybridization so that crustal melts did not simply reflect the original crustal composition. The clear evidence for a crustal component in magmas of the Old Woman Mountains area may not indicate any fundamental differences from the processes at work elsewhere in this or other magmatic arcs where the role of pre-existing crust is less certain. Rather, a compositionally distinctive, very old crust may simply have yielded a more

  1. Role of extensional structures on the location of folds and thrusts during tectonic inversion (northern Iberian Chain, Spain)

    NASA Astrophysics Data System (ADS)

    Cortés, Angel L.; Liesa, Carlos L.; Soria, Ana R.; Meléndez, Alfonso

    1999-03-01

    The Aguilón Subbasin (NE Spain) was originated daring the Late Jurassic-Early Cretaceous rifting due to the action of large normal faults, probably inherited from Late Variscan fracturing. WNW-ESE normal faults limit two major troughs filled by continental deposits (Valanginian to Early Barremian). NE-SW faults control the location of subsidiary depocenters within these troughs. These basins were weakly inverted during the Tertiary with folds and thrusts striking E-W to WNW-ESE involving the Mesozoic-Tertiary cover with a maximum estimated shortening of about 12 %. Tertiary compression did not produce the total inversion of the Mesozoic basin but extensional structures are responsible for the location of major Tertiary folds. Shortening of the cover during the Tertiary involved both reactivation of some normal faults and development of folds and thrusts nucleated on basement extensional steps. The inversion style depends mainly on the occurrence and geometry of normal faults limiting the basin. Steep normal faults were not reactivated but acted as buttresses to the cover translation. Around these faults, affecting both basement and cover, folds and thrusts were nucleated due to the stress rise in front of major faults. Within the cover, the buttressing against normal faults consists of folding and faulting implying little shortening without development of ceavage or other evidence of internal deformation.

  2. From Plate Tectonic to Continental Dynamics

    NASA Astrophysics Data System (ADS)

    Molnar, P. H.

    2017-12-01

    By the early 1970s, the basics of plate tectonics were known. Although much understanding remained to be gained, as a topic of research, plate tectonics no longer defined the forefront of earth science. Not only had it become a foundation on which to build, but also the methods used to reveal it became tools to take in new directions. For me as a seismologist studying earthquakes and active processes, the deformation of continents offered an obvious topic to pursue. Obviously examining the deformation of continents and ignoring the widespread geologic evidence of both ongoing and finite deformation of crust would be stupid. I was blessed with the opportunity to learn from and collaborate with two of the best, Paul Tapponnier and Clark Burchfiel. Continental deformation differed from plate tectonics both because deformation was widespread but more importantly because crust shortens (extends) horizontally and thickens (thins), processes that can be ignored where plate tectonics - the relative motion of rigid plates - occurs. Where a plate boundary passes into a continent, not only must the forces that move plates do work against friction or other dissipative processes, but where high terrain is created, they must also do work against gravity, to create gravitational potential energy in high terrain. Peter Bird and Kenneth Piper and Philip England and Dan McKenzie showed that a two-dimensional thin viscous sheet with vertically averaged properties enabled both sources of resistance to be included without introducing excessive complexity and to be scaled by one dimensionless number, what the latter pair called the Argand number. Increasingly over the past thirty years, emphasis has shifted toward the role played by the mantle lithosphere, because of both its likely strength and its negative buoyancy, which makes it gravitationally unstable. Despite progress since realizing that rigid plates (the essence of plate tectonics) provides a poor description of continental

  3. Anomalous Subsidence at the Ocean Continent Transition of the Gulf of Aden Rifted Continental Margin

    NASA Astrophysics Data System (ADS)

    Cowie, Leanne; Kusznir, Nick; Leroy, Sylvie

    2013-04-01

    It has been proposed that some rifted continental margins have anomalous subsidence and that at break-up they were elevated at shallower bathymetries than the isostatic response predicted by classical rift models (McKenzie, 1978). The existence of anomalous syn- or early-post break-up subsidence of this form would have important implications for our understanding of the geodynamics of continental break-up and sea-floor spreading initiation. We have investigated subsidence of the young rifted continental margin of the eastern Gulf of Aden, focussing on the western Oman margin (break-up age 17.6 Ma). Lucazeau et al. (2008) have found that the observed bathymetry here is approximately 1 km shallower than the predicted bathymetry. In order to examine the proposition of an anomalous early post break-up subsidence history of the Omani Gulf of Aden rifted continental margin, we have determined the subsidence of the oldest oceanic crust adjacent to the continent-ocean boundary (COB) using residual depth anomaly (RDA) analysis corrected for sediment loading and oceanic crustal thickness variation. RDAs corrected for sediment loading using flexural backstripping and decompaction have been calculated by comparing observed and age predicted oceanic bathymetries in order to identify anomalous subsidence of the Gulf of Aden rifted continental margin. Age predicted bathymetric anomalies have been calculated using the thermal plate model predictions of Crosby and McKenzie (2009). Non-zero RDAs at the Omani Gulf of Aden rifted continental margin can be the result of non standard oceanic crustal thickness or the effect of mantle dynamic topography or a non-classical rift and break-up model. Oceanic crustal basement thicknesses from gravity inversion together with Airy isostasy have been used to predict a "synthetic" gravity RDA, in order to determine the RDA contribution from non-standard oceanic crustal thickness. Gravity inversion, used to determine crustal basement thickness

  4. Gas hydrates of outer continental margins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kvenvolden, K.A.

    1990-05-01

    Gas hydrates are crystalline substances in which a rigid framework of water molecules traps molecules of gas, mainly methane. Gas-hydrate deposits are common in continental margin sediment in all major oceans at water depths greater than about 300 m. Thirty-three localities with evidence for gas-hydrate occurrence have been described worldwide. The presence of these gas hydrates has been inferred mainly from anomalous lacoustic reflectors seen on marine seismic records. Naturally occurring marine gas hydrates have been sampled and analyzed at about tensites in several regions including continental slope and rise sediment of the eastern Pacific Ocean and the Gulf ofmore » Mexico. Except for some Gulf of Mexico gas hydrate occurrences, the analyzed gas hydrates are composed almost exclusively of microbial methane. Evidence for the microbial origin of methane in gas hydrates includes (1) the inverse relation between methane occurence and sulfate concentration in the sediment, (2) the subparallel depth trends in carbon isotopic compositions of methane and bicarbonate in the interstitial water, and (3) the general range of {sup 13}C depletion ({delta}{sub PDB}{sup 13}C = {minus}90 to {minus}60 {per thousand}) in the methane. Analyses of gas hydrates from the Peruvian outer continental margin in particular illustrate this evidence for microbially generated methane. The total amount of methane in gas hydrates of continental margins is not known, but estimates of about 10{sup 16} m{sup 3} seem reasonable. Although this amount of methane is large, it is not yet clear whether methane hydrates of outer continental margins will ever be a significant energy resource; however, these gas hydrates will probably constitute a drilling hazard when outer continental margins are explored in the future.« less

  5. Remnants of Eoarchean continental crust derived from a subducted proto-arc.

    PubMed

    Ge, Rongfeng; Zhu, Wenbin; Wilde, Simon A; Wu, Hailin

    2018-02-01

    Eoarchean [3.6 to 4.0 billion years ago (Ga)] tonalite-trondhjemite-granodiorite (TTG) is the major component of Earth's oldest remnant continental crust, thereby holding the key to understanding how continental crust originated and when plate tectonics started in the early Earth. TTGs are mostly generated by partial melting of hydrated mafic rocks at different depths, but whether this requires subduction remains enigmatic. Recent studies show that most Archean TTGs formed at relatively low pressures (≤1.5 GPa) and do not require subduction. We report a suite of newly discovered Eoarchean tonalitic gneisses dated at ~3.7 Ga from the Tarim Craton, northwestern China. These rocks are probably the oldest high-pressure TTGs so far documented worldwide. Thermodynamic and trace element modeling demonstrates that the parent magma may have been generated by water-fluxed partial melting of moderately enriched arc-like basalts at 1.8 to 1.9 GPa and 800° to 830°C, indicating an apparent geothermal gradient (400° to 450°C GPa -1 ) typical for hot subduction zones. They also locally record geochemical evidence for magma interaction with a mantle wedge. Accordingly, we propose that these high-pressure TTGs were generated by partial melting of a subducted proto-arc during arc accretion. Our model implies that modern-style plate tectonics was operative, at least locally, at ~3.7 Ga and was responsible for generating some of the oldest continental nuclei.

  6. Remnants of Eoarchean continental crust derived from a subducted proto-arc

    PubMed Central

    Ge, Rongfeng; Zhu, Wenbin; Wilde, Simon A.; Wu, Hailin

    2018-01-01

    Eoarchean [3.6 to 4.0 billion years ago (Ga)] tonalite-trondhjemite-granodiorite (TTG) is the major component of Earth’s oldest remnant continental crust, thereby holding the key to understanding how continental crust originated and when plate tectonics started in the early Earth. TTGs are mostly generated by partial melting of hydrated mafic rocks at different depths, but whether this requires subduction remains enigmatic. Recent studies show that most Archean TTGs formed at relatively low pressures (≤1.5 GPa) and do not require subduction. We report a suite of newly discovered Eoarchean tonalitic gneisses dated at ~3.7 Ga from the Tarim Craton, northwestern China. These rocks are probably the oldest high-pressure TTGs so far documented worldwide. Thermodynamic and trace element modeling demonstrates that the parent magma may have been generated by water-fluxed partial melting of moderately enriched arc-like basalts at 1.8 to 1.9 GPa and 800° to 830°C, indicating an apparent geothermal gradient (400° to 450°C GPa−1) typical for hot subduction zones. They also locally record geochemical evidence for magma interaction with a mantle wedge. Accordingly, we propose that these high-pressure TTGs were generated by partial melting of a subducted proto-arc during arc accretion. Our model implies that modern-style plate tectonics was operative, at least locally, at ~3.7 Ga and was responsible for generating some of the oldest continental nuclei. PMID:29487901

  7. Mesozoic invasion of crust by MORB-source asthenospheric magmas, U.S. Cordilleran interior

    NASA Astrophysics Data System (ADS)

    Leventhal, Janet A.; Reid, Mary R.; Montana, Art; Holden, Peter

    1995-05-01

    Mafic and ultramafic xenoliths entrained in lavas of the Cima volcanic field have Nd and Sr isotopic ratios indicative of a source similar to that of mid-ocean ridge basalt (MORB). Nd and Sr internal isochrons demonstrate a Late Cretaceous intrusion age. These results, combined with evidence for emplacement in the lower crust and upper mantle, indicate invasion of the lower crust by asthenospheric magmas in the Late Cretaceous. Constituting the first prima facie evidence for depleted-mantle magmatism in the Basin and Range province prior to late Cenozoic volcanism, these results lend key support to models suggesting crustal heating by ascent of asthenosphere in the Mesozoic Cordilleran interior.

  8. Kinematic evolution of the southwestern Arabian continental margin: implications for the origin of the Red Sea

    NASA Astrophysics Data System (ADS)

    Voggenreiter, W.; Hötzl, H.

    The tectonic and magnetic evolution of the Jizan coastal plain (Tihama Asir) in southwest Arabia was dominated by SW-NE lithospheric extension related to the development of the Red Sea Rift. A well-exposed, isotopically-dated succession of magmatic rocks (Jizan Group volcanics, Tihama Asir Magmatic Complex) allows a kinematic analysis for this part of the Arabian Red Sea margin. A mafic dyke swarm and several generations of roughly NW-trending normal faults characterized the continental rift stage from Oligocene to early Miocene time. Major uplift of the Arabian graben shoulder probably began about 14 Ma ago. By this time, extension and magmatism ceased in the Jizan area and were followed by an approximately 10 Ma interval of tectonic and magmatic quiescence. A second phase of extension began in the Pliocene and facilitated a vast outpouring of alkaliolivine basalts on the coastal plain. The geometry of faulting in the Jizan area supports a Wernicke-type simple-shear mechanism of continental rifting for the southern Arabian continental margin of the Red Sea.

  9. Regional magnetic anomaly constraints on continental breakup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    von Frese, R.R.B.; Hinze, W.J.; Olivier, R.

    1986-01-01

    Continental lithosphere magnetic anomalies mapped by the Magsat satellite are related to tectonic features associated with regional compositional variations of the crust and upper mantle and crustal thickness and thermal perturbations. These continental-scale anomaly patterns when corrected for varying observation elevation and the global change in the direction and intensity of the geomagnetic field show remarkable correlation of regional lithospheric magnetic sources across rifted continental margins when plotted on a reconstruction of Pangea. Accordingly, these anomalies provide new and fundamental constraints on the geologic evolution and dynamics of the continents and oceans.

  10. The Wide Bay Canyon system: A case study of canyon morphology on the east Australian continental margin

    NASA Astrophysics Data System (ADS)

    Yu, P. W.; Hubble, T.; Airey, D.; Gallagher, S. J.; Clarke, S. L.

    2014-12-01

    A voyage was conducted aboard the RV Southern Surveyor in early 2013 to investigate the east Australian continental margin. From the continental slope of the Wide Bay region offshore Fraser Island, Queensland, Australia, remote sensing data and sediment samples were collected. Bathymetric data reveals that the continental slope of the region presents a mature canyon system. Eight dredge samples were recovered from the walls of Wide Bay Canyon and the adjacent, relatively intact continental slope along the entire length of the slope, from the start of the shelf break to the toe, in water depths ranging from 1100-2500 m. For these samples, sediment composition, biostratigraphic age, and bulk mineralogy data are reported. These slope-forming sediments are primarily comprised of calcareous sandy-silts. Occasional terrestrial plant fossils and minerals can be found in a mostly marine-fossiliferous composition, suggesting minor but significant riverine and aeolian input. Biostratigraphic dates extracted from the foraminiferal contents of these samples indicate that the intra-canyon and slope material was deposited between Middle Miocene to Pliocene, implying that the incision of this section of the margin and formation of the erosional features took place no earlier than the Pliocene. In conjunction with bathymetric data of the local continental slope, the depositional origins of this section of the east Australian continental margin, and the timing of major morphological events such as slope failure and canyon incision can be interpreted. The Wide Bay Canyon system can serve as a representative case study of local canyon formation, allowing a better understanding of the past or ongoing processes that are shaping the margin and giving way to similar morphologies.

  11. Drift of continental rafts with asymmetric heating.

    PubMed

    Knopoff, L; Poehls, K A; Smith, R C

    1972-06-02

    A laboratory model of a lithospheric raft is propelled through a viscous asthenospheric layer with constant velocity of scaled magnitude appropriate to continental drift. The propulsion is due to differential heat concentration in the model oceanic and continental crusts.

  12. Processes of lithosphere evolution: New evidence on the structure of the continental crust and uppermost mantle

    USGS Publications Warehouse

    Artemieva, I.M.; Mooney, W.D.; Perchuc, E.; Thybo, H.

    2002-01-01

    We discuss the structure of the continental lithosphere, its physical properties, and the mechanisms that formed and modified it since the early Archean. The structure of the upper mantle and the crust is derived primarily from global and regional seismic tomography studies of Eurasia and from global and regional data on seismic anisotropy. These data as documented in the papers of this special issue of Tectonophysics are used to illustrate the role of different tectonic processes in the lithospheric evolution since Archean to present. These include, but are not limited to, cratonization, terrane accretion and collision, continental rifting (both passive and active), subduction, and lithospheric basal erosion due to a relative motion of cratonic keels and the convective mantle. ?? 2002 Elsevier Science B.V. All rights reserved.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cregg, A.K.

    Kenya basins have evolved primarily through extension related to episodic continental rifting. In eastern Kenya, thick accumulations of sediments formed within grabens during the prerift phase (Precambrian to Carboniferous) of the Gondwana breakup. Synrift sedimentation (Late Carboniferous to Middle Jurassic) occurred within a north-south rift system, which included the Mandera basin, South Anza basin, and Lamu embayment. During the Early Jurassic, a marine transgression invaded the margins of the eastern Kenya rift basins, resulting in the deposition of platform carbonates and shales. A Callovian-aged salt basin formed in the offshore regions of the Lamu embayment. Intermittent tectonic activity and eustaticmore » sea-level changes controlled sedimentation, which produced marine shales, carbonates or evaporites, and fluvio-deltaic to lacustrine sandstones. From the Early Cretaceous to recent, continental sediments were deposited within the North Anza and Turkana basins. These fluvial-lacustrine sediments are similar to the Lower Cretaceous sequences that have produced oil in the Mesozoic Sudanese Abu Gabra rift. Although exploration activities began in the early 1950s, significant occurrences of potential reservoir, source, and seal lithologies as well as trapping configurations remain in many areas. Favorable structures and sequences of reservoir sandstones and carbonates overlain by potentially sealing lacustrine or marine shales, evaporites, or volcanics have been noted. Potential source beds are believed to be present within shales of the lacustrine or marine depositional environments.« less

  14. A record of Appalachian denudation in postrift Mesozoic and Cenozoic sedimentary deposits of the U.S. Middle Atlantic continental margin

    USGS Publications Warehouse

    Poag, C.W.; Sevon, W.D.

    1989-01-01

    The complex interplay between source-terrain uplift, basin subsidence, paleoclimatic shifts, and sea-level change, left an extensive sedimentary record in the contiguous offshore basins of the U.S. middle Atlantic margin (Salisbury Embayment, Baltimore Canyon Trough, and Hatteras Basin). Isopach maps of 23 postrift (Lower Jurassic to Quaternary) a allostratigraphic units, coupled with a revised stratigraphic framework, reveal that tectonism, by regulating sediment supply (accumulation rate), dominated the interplay of forcing mechanisms. Tectonic pulses are evidenced by abruptly accelerated sediment accumulation, marked latitudinal shifts in the location of depocenters, and regional changes in lithofacies. Relatively rapid tectonic subsidence during the Early and Middle Jurassic history of the basins may have enhanced sediment accumulation rates. Beginning in the Late Jurassic, however, subsidence rates decreased significantly, though occasional short pulses of subsidence may have effected relative sea-level rises. Sea-level change heavily influenced the distribution and redistribution of sediments one they reached the basins, and paleoclimate regulated the relative abundance of carbonates and evaporites in the basins. We conclude that source terrains of the central Appalachian Highlands were tectonically uplifted, intensely weathered, and rapidly eroded three times since the Late Triassic: (1) Early to Middle Jurassic (Aalenian to Callovian); (2) mid-Early Cretaceous (Barremian); and (3) Late Cenozoic (Middle Miocene). Intervals of tectonic quiescence following these three tectonic pulses provided conditions suitable for the formation of regional erosion surfaces, geomorphic features commonly reported to characterize the central Appalachian Highlands. This series of three, irregularly spaced, tectonic/quiescent cycles does not, however, match the traditional four-cycle concept of post-Triassic Appalachian "peneplanation". ?? 1989.

  15. Continental Basalts and Mantle Xenoliths

    NASA Astrophysics Data System (ADS)

    Zartman, Robert E.

    In this decade of the International Lithosphere Program, much scientific attention is being directed toward the deep continental crust and subadjacent mantle. The petrologic, geochemical, and isotopic signatures of basaltic magmas, which transect much of the lithosphere as they ascend from their site of melting, and of contained cognate and accidental xenoliths, which are found along the path of ascent, give us, perhaps, the best clues to composition and structure in the third dimension. Continental Basalts and Mantle Xenoliths provides an opportunity to sample the British school of thought on subjects such as differences between oceanic and continental basalts, effects of mantle metasomatism, and relationships between events in the subcontinental mantle and those in the overlying crust. This volume is recommended by the publisher as being of interest to senior undergraduates and postgraduate researchers; I would extend that readership to all scientists who seek access to a potpourri of recent findings and current ideas in a rapidly evolving field of research.

  16. The Eastern Sardinian Margin (Tyrrhenian Sea, Western Mediterranean) : a key area to study the rifting and post-breakup evolution of a back-arc passive continental margin

    NASA Astrophysics Data System (ADS)

    Gaullier, Virginie; Chanier, Frank; Vendeville, Bruno; Maillard, Agnès; Thinon, Isabelle; Graveleau, Fabien; Lofi, Johanna; Sage, Françoise

    2016-04-01

    The Eastern Sardinian passive continental margin formed during the opening of the Tyrrhenian Sea, which is a back-arc basin created by continental rifting and oceanic spreading related to the eastward migrating Apennine subduction system (middle Miocene to Pliocene). Up to now, rifting in this key area was considered to be pro parte coeval with the Messinian Salinity Crisis (MSC, 5.96-5.32 Ma). We use the MSC seismic markers and the deformation of viscous salt and its brittle overburden as proxies to better delineate the timing of rifting and post-rift reactivation, and especially to quantify vertical and horizontal movements. On this young, highly-segmented margin, the Messinian Erosion Surface and the Upper and Mobile Units are systematically associated, respectively, to basement highs and deeper basins, showing that a rifted deep-sea domain already existed by Messinian times, therefore a major pre-MSC rifting episode occurred across the entire domain. Data show that there are no signs of Messinian syn-rift sediments, hence no evidence for rifting after Late Tortonian times. Moreover, because salt tectonics creates fan-shaped geometries in sediments, syn-rift deposits have to be carefully re-examined to distinguish the effects of crustal tectonics (rifting) and salt tectonics. We also precise that rifting is clearly diachronous from the upper margin (East-Sardinia Basin) to the lower margin (Cornaglia Terrace) with two unconformities, attributed respectively to the necking and to the lithospheric breakup unconformities. The onshore part of the upper margin has been recently investigated in order to characterize the large crustal faults affecting the Mesozoic series (geometry, kinematics and chronology) and to decipher the role of the structural inheritance and of the early rifting. Seaward, we also try to constrain the architecture and timing of the continent-ocean transition, between the hyper-extended continental crust and the first oceanic crust. Widespread

  17. Structural evidence for northeastward movement on the Chocolate Mountains Thrust, southeasternmost California

    USGS Publications Warehouse

    Dillon, J.T.; Haxel, G.B.; Tosdal, R.M.

    1990-01-01

    The Late Cretaceous Chocolate Mountains Thrust of southeastern California and southwestern Arizona places a block of Proterozoic and Mesozoic continental crust over the late Mesozoic continental margin oceanic sedimentary and volcanic rocks of the Orocopia Schist. The Chocolate Mountains Thrust is interpreted as a thrust (burial, subduction) fault rather than a low-angle normal fault. An important parameter required to understand the tectonic significance of the Chocolate Mountains and related thrusts is their sense of movement. The only sense of movement consistent with collective asymmetry of the thrust zone folds is top to the northeast. Asymmetric microstructures studied at several localities also indicate top to the northeast movement. Paleomagnetic data suggest that the original sense of thrusting, prior to Neogene vertical axis tectonic rotation related to the San Andreas fault system, was northward. Movement of the upper plate of the chocolate Mountains thrust evidently was continentward. Continentward thrusting suggests a tectonic scenario in which an insular or peninsular microcontinental fragment collided with mainland southern California. -from Authors

  18. Sedimentation rhythmicity as a reflection of astronomical cyclicity

    NASA Astrophysics Data System (ADS)

    Avsyuk, Yu. N.; Saltykovskii, A. Ya.; Sokolova, Yu. F.

    2011-05-01

    The Mesozoic-Cenozoic rhythmic continental sedimentary rocks are analyzed for every particular period and epoch from the Triassic to the Pliocene. The maximal distribution areas of rhythmic deposits are within the latitudinal zone of 20°-40°. Investigation of rhythmic Mesozoic-Cenozoic carbonate-containing deposits of Europe and North America enables us to attribute rhythmicity to climate change owing to insolation and eustatic variations of oceanosphere's level, on the one hand, and to compare duration values of the rhythmic unit and rhythmic sequence with cycles of orbital precession, ecliptic plane inclination, and the eccentricity of the Earth's orbit, on the other hand.

  19. Meteoritic trace element toxification and the terminal Mesozoic mass extinction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickson, S.M.; Erickson, D.J. III

    1985-01-01

    Calculations of trace element fluxes to the earth associated with 5 and 10 kilometer diameter Cl chondrites and iron meteorites are presented. The data indicate that the masses of certain trace elements contained in the bolide, such as Fe, Co, Ni, Cr, Pb, and Cu, are as large as or larger than the world ocean burden. The authors believe that this pulse of trace elements was of sufficient magnitude to perturb the biogeochemical cycles operative 65 million years ago, a probably time of meteorite impact. Geochemical anomalies in Cretaceous-Tertiary boundary sediments suggest that elevated concentrations of trace elements may havemore » persisted for thousands of years in the ocean. Through direct exposure and bioaccumulation, many trophic levels of the global food chain, including that of the dinosaurs, would have been adversely affected by these meteoritic trace elements. The trace element toxification hypothesis may account for the selective extinction of both marine and terrestrial species in the enigmatic terminal Mesozoic event.« less

  20. A relatively reduced Hadean continental crust

    NASA Astrophysics Data System (ADS)

    Yang, Xiaozhi; Gaillard, Fabrice; Scaillet, Bruno

    2014-05-01

    Among the physical and chemical parameters used to characterize the Earth, oxidation state, as reflected by its prevailing oxygen fugacity (fO2), is a particularly important one. It controls many physicochemical properties and geological processes of the Earth's different reservoirs, and affects the partitioning of elements between coexisting phases and the speciation of degassed volatiles in melts. In the past decades, numerous studies have been conducted to document the evolution of mantle and atmospheric oxidation state with time and in particular the possible transition from an early reduced state to the present oxidized conditions. So far, it has been established that the oxidation state of the uppermost mantle is within ±2 log units of the quartz-fayalite-magnetite (QFM) buffer, probably back to ~4.4 billion years ago (Ga) based on trace-elements studies of mantle-derived komatiites, kimberlites, basalts, volcanics and zircons, and that the O2 levels of atmosphere were initially low and rose markedly ~2.3 Ga known as the Great Oxidation Event (GOE), progressively reaching its present oxidation state of ~10 log units above QFM. In contrast, the secular evolution of oxidation state of the continental crust, an important boundary separating the underlying upper mantle from the surrounding atmosphere and buffering the exchanges and interactions between the Earth's interior and exterior, has rarely been addressed, although the presence of evolved crustal materials on the Earth can be traced back to ~4.4 Ga, e.g. by detrital zircons. Zircon is a common accessory mineral in nature, occurring in a wide variety of igneous, sedimentary and metamorphic rocks, and is almost ubiquitous in crustal rocks. The physical and chemical durability of zircons makes them widely used in geochemical studies in terms of trace-elements, isotopes, ages and melt/mineral inclusions; in particular, zircons are persistent under most crustal conditions and can survive many secondary

  1. Continental volume and freeboard through geological time

    NASA Technical Reports Server (NTRS)

    Schubert, G.; Reymer, A. P. S.

    1985-01-01

    The consequences of approximately constant freeboard for continental growth are explored using a model that relates the volumes of isostatically compensated continents and oceans to the secular decline in terrestrial heat flow. It is found that a post-Archean increase in freeboard by 200 m requires continental growth of only 10 percent, while a decrease in freeboard by 200 m during this same period necessitates a crustal growth of 40 percent. Shrinkage of the continental crust since the end of the Archean can be ruled out. Changes of more than 10 percent in post-Archean crustal thickness are highly unlikely.

  2. Petrology and age of volcanic-arc rocks from the continental margin of the Bering Sea: implications for Early Eocene relocation of plate boundaries

    USGS Publications Warehouse

    Davis, A.S.; Pickthorn, L.-B.G.; Vallier, T.L.; Marlow, M. S.

    1989-01-01

    Eocene volcanic flow and dike rocks from the Beringian margin have arc characteristics, implying a convergent history for this region during the early Tertiary. Chemical and mineralogical compositions are similar to those of modern Aleutian-arc lavas. They also resemble volcanic-arc compositions from western mainland Alaska, although greater chemical diversity and a stronger continental influence are observed in the Alaskan mainland rocks. Early Eocene ages of 54.4-50.2 Ma for the Beringian samples are well constrained by conventional K-Ar ages of nine plagioclase separates and by concordant 40Ar/39Ar incremental heating and total-fusion experiments. A concordant U-Pb zircon age of 53 Ma for the quartz-diorite dike is in good agreement with the K-Ar data. Plate motion studies of the North Pacific Ocean indicate more northerly directed subduction prior to the Tertiary and a continuous belt of arc-type volcanism extending from Siberia, along the Beringian margin, into mainland Alaska. Around 56 Ma (chron 25-24), subduction changed to a more westerly direction and subduction-related volcanism ceased for most of mainland Alaska. The increasingly oblique angle of convergence should have ended subduction along the Beringian margin as well. However, consistent ages of 54-50 Ma indicate a final pulse in arc-type magmatism during this period of plate adjustment. -from Authors

  3. Zircon Hf-O isotopic constraints on the origin of Late Mesozoic felsic volcanic rocks from the Great Xing'an Range, NE China

    NASA Astrophysics Data System (ADS)

    Gong, Mingyue; Tian, Wei; Fu, Bin; Wang, Shuangyue; Dong, Jinlong

    2018-05-01

    The voluminous Late Mesozoic magmatism was related to extensive re-melting of juvenile materials that were added to the Central East Asia continent in Phanerozoic time. The most favoured magma generation mechanism of Late Mesozoic magmas is partial melting of underplated lower crust that had radiogenic Hf-Nd isotopic characteristics, but this mechanism faces difficulties when interpreting other isotopic data. The tectonic environment controlling the generation of the Late Mesozoic felsic magmas is also in dispute. In this study, we obtained new U-Pb ages, and geochemical and isotopic data of representative Jurassic (154.4 ± 1.5 Ma) and Cretaceous (140.2 ± 1.5 Ma) felsic volcanic samples. The Jurassic sample has inherited zircon cores of Permian age, with depleted mantle-like εHf(t) of +7.4 - +8.5, which is in contrast with those of the magmatic zircons (εHf(t) = +2.4 ± 0.7). Whereas the inherited cores and the magmatic zircons have identical mantle-like δ18O composition ranges (4.25-5.29‰ and 4.69-5.54‰, respectively). These Hf-O isotopic characteristics suggest a mixed source of enriched mantle materials rather than ancient crustal components and a depleted mantle source represented by the inherited Permian zircon core. This mechanism is manifested by the eruption of Jurassic alkaline basalts originated from an enriched mantle source. The Cretaceous sample has high εHf(t) of +7.0 - +10.5, suggesting re-melting of a mafic magma derived from a depleted mantle-source. However, the sub-mantle zircon δ18O values (3.70-4.58‰) suggest the depleted mantle-derived mafic source rocks had experienced high temperature hydrothermal alteration at upper crustal level. Therefore, the Cretaceous felsic magma, if not all, could be generated by re-melting of down-dropped supracrustal volcanic rocks that experienced high temperature oxygen isotope alteration. The two processes, enriched mantle-contribution and supracrustal juvenile material re-melting, are new

  4. The coastal oasis: ice age springs on emerged continental shelves

    NASA Astrophysics Data System (ADS)

    Faure, Hugues; Walter, Robert C.; Grant, Douglas R.

    2002-06-01

    lakes whose free-air water levels fell during periods of aridity. Such modern examples are seen in the Caspian Sea and Dead Sea, the Afar Depression, and the Sahara Desert. These modern analogues demonstrate the likelihood that underground water will be more abundant on emerged shelves during sea-level fall, causing springs, oases, and wetlands to appear. Our model creates an apparent paradox: in tropical and subtropical arid lands, such as most of Africa, sea-level fall during hyperarid glacial phases would produce abundant fresh water flow onto emerged continental shelves as the continental interior desiccated. Thus, emergent shoreline springs provided new habitats for terrestrial vegetation and animals displaced from the interior by increasingly arid conditions, shrinking ecosystems, and dwindling water supplies. Such a scenario would have had a profound influence on the vegetation that spreads naturally to colonize the emerged shelves during glacio-eustatic sea-level lowstands, as well as creating new habitats for terrestrial mammals, including early humans.

  5. A Facies Model for Temperate Continental Glaciers.

    ERIC Educational Resources Information Center

    Ashley, Gail Mowry

    1987-01-01

    Discusses the presence and dynamics of continental glaciers in the domination of the physical processes of erosion and deposition in the mid-latitudes during the Pleistocene period. Describes the use of a sedimentary facies model as a guide to recognizing ancient temperate continental glacial deposits. (TW)

  6. Increased risk for autochthonous vector-borne infections transmitted by Aedes albopictus in continental Europe.

    PubMed

    Gossner, Céline M; Ducheyne, Els; Schaffner, Francis

    2018-06-01

    Autochthonous outbreaks of chikungunya and dengue during the past decade showed that continental Europe is vulnerable to Aedes albopictus -borne infections. Ae. albopictus has spread geographically, resulting in more people exposed to risk. Timely application of adequate mosquito suppression measures may delay, or even prevent, the vector population from crossing the potential epidemic abundance threshold should a pathogen be introduced. Health authorities should be on alert to detect early cases to prevent autochthonous outbreaks.

  7. Geochronology and geochemistry of deep-seated crustal xenoliths in the northern North China Craton: Implications for the evolution and structure of the lower crust

    NASA Astrophysics Data System (ADS)

    Su, Yuping; Zheng, Jianping; Griffin, William L.; Huang, Yan; Wei, Ying; Ping, Xianquan

    2017-11-01

    The age and composition of the lower crust are critical in understanding the processes of continental formation and evolution, and deep-seated granulite xenoliths can offer direct information on the lower crust. Here, we report mineral chemistry, whole-rock major and trace elements, Sr-Nd isotopes and zircon U-Pb-Hf results for a suite of deep-seated crustal xenoliths, recently discovered in the Cenozoic basalts of the Nangaoya area in the northern part of the North China Craton (NCC). Based on the P-T estimates, these xenoliths including mafic, intermediate and felsic granulites and hornblendites were sampled from different levels of the lower crust. While a hornblendite has a flat REE pattern, all other xenoliths display LREE enrichment and depletion of Nb, Ta, Th and Ti. The mafic granulite xenolith has relatively high whole-rock εNd(t) value of - 13.37, and yields Mesozoic (188-59 Ma) zircons ages with high εHf(t) values from - 15.3 to - 9.2. The garnet-bearing intermediate granulite-facies rocks show low εNd(t) values from - 16.92 to - 17.48, and reveal both Paleoproterozoic (1948 Ma) and Mesozoic (222-63 Ma) zircon U-Pb ages. Their Mesozoic zircons have lower εHf(t) values (from - 18.4 to - 13.8) than those from the mafic xenolith. The remaining intermediate to felsic xenoliths show Paleoproterozoic zircon ages, and the lowest εNd(t) values (from - 20.78 to - 24.03). The mafic-intermediate granulites with Mesozoic zircons originated from the interaction of lower crust-derived magmas with mantle melts, with higher proportions of mantle magmas involved in the generation of mafic granulite, whereas intermediate to felsic xenoliths without Mesozoic zircons represent ancient Paleoproterozoic to Neoarchean deep crust. These deep-seated xenoliths reveal complicated crustal evolution processes, including crustal growth during Neoarchean (2.5-2.7 Ga), middle Paleoproterozoic (2.2-2.1 Ga) and Mesozoic, and reworking during early Paleoproterozoic, late

  8. Influence of fluvial processes on the quaternary geologic framework of the continental shelf, North Carolina, USA

    USGS Publications Warehouse

    Boss, S.K.; Hoffman, C.W.; Cooper, B.

    2002-01-01

    Digital, single-channel, high-resolution seismic reflection profiles were acquired from the insular continental shelf of North Carolina, USA along a data grid extending from Oregon Inlet northward 48 km to Duck, North Carolina and from the nearshore zone seaward approximately 28 km (total surveyed area= 1334 km2). These data were processed and interpreted to delineate principal reflecting horizons and develop a three-dimensional seismic stratigraphic framework for the continental shelf that was compared to stratigraphic data from the shoreward back-barrier (estuarine) and barrier island system. Six principal reflecting horizons (designated R0 through R5) were present within the upper 60 m of the shelf stratigraphic succession. Three-dimensional mapping of reflector R1 demonstrated its origin from fluvial incision of the continental shelf during an episode (or episodes) of lowered sea-level. Fluvial processes during development of reflector R1 were responsible for extensive reworking and re-deposition of sediment throughout most of the northern half of the study area. Five seismic stratigraphic units (designated S1 through S5) were tentatively correlated with depositional sequences previously identified from the North Carolina back-barrier (estuarine) and barrier island system. These five stratigraphic units span the Quaternary Period (S1 = early Holocene; S2 = 51-78 ka; S3 = 330-530 ka; S4 = 1.1-1.8 Ma; S5 = earliest Pleistocene). Unit S1 is composed of fine-grained fluvial/estuarine sediment that back-filled incised streams during early Holocene sea-level rise. The four other stratigraphic units (S2-S5) display tabular depositional geometries, low total relief, and thicken toward the east-southeast as their basal reflectors dip gently between 0.41 m km-1 (0.02??) and 0.54 m km-1 (0.03??). Knowledge of the three-dimensional subsurface stratigraphic architecture of the continental shelf enhances understanding of the development of shelf depositional successions and

  9. Comparison of unitary associations and probabilistic ranking and scaling as applied to mesozoic radiolarians

    NASA Astrophysics Data System (ADS)

    Baumgartner, Peter O.

    A database on Middle Jurassic-Early Cretaceous radiolarians consisting of first and final occurrences of 110 species in 226 samples from 43 localities was used to compute Unitary Associations and probabilistic ranking and scaling (RASC), in order to test deterministic versus probabilistic quantitative biostratigraphic methods. Because the Mesozoic radiolarian fossil record is mainly dissolution-controlled, the sequence of events differs greatly from section to section. The scatter of local first and final appearances along a time scale is large compared to the species range; it is asymmetrical, with a maximum near the ends of the range and it is non-random. Thus, these data do not satisfy the statistical assumptions made in ranking and scaling. Unitary Associations produce maximum ranges of the species relative to each other by stacking cooccurrence data from all sections and therefore compensate for the local dissolution effects. Ranking and scaling, based on the assumption of a normal random distribution of the events, produces average ranges which are for most species much shorter than the maximum UA-ranges. There are, however, a number of species with similar ranges in both solutions. These species are believed to be the most dissolution-resistant and, therefore, the most reliable ones for the definition of biochronozones. The comparison of maximum and average ranges may be a powerful tool to test reliability of species for biochronology. Dissolution-controlled fossil data yield high crossover frequencies and therefore small, statistically insignificant interfossil distances. Scaling has not produced a useful sequence for this type of data.

  10. Pre- versus post-mass extinction divergence of Mesozoic marine reptiles dictated by time-scale dependence of evolutionary rates.

    PubMed

    Motani, Ryosuke; Jiang, Da-Yong; Tintori, Andrea; Ji, Cheng; Huang, Jian-Dong

    2017-05-17

    The fossil record of a major clade often starts after a mass extinction even though evolutionary rates, molecular or morphological, suggest its pre-extinction emergence (e.g. squamates, placentals and teleosts). The discrepancy is larger for older clades, and the presence of a time-scale-dependent methodological bias has been suggested, yet it has been difficult to avoid the bias using Bayesian phylogenetic methods. This paradox raises the question of whether ecological vacancies, such as those after mass extinctions, prompt the radiations. We addressed this problem by using a unique temporal characteristic of the morphological data and a high-resolution stratigraphic record, for the oldest clade of Mesozoic marine reptiles, Ichthyosauromorpha. The evolutionary rate was fastest during the first few million years of ichthyosauromorph evolution and became progressively slower over time, eventually becoming six times slower. Using the later slower rates, estimates of divergence time become excessively older. The fast, initial rate suggests the emergence of ichthyosauromorphs after the end-Permian mass extinction, matching an independent result from high-resolution stratigraphic confidence intervals. These reptiles probably invaded the sea as a new ecosystem was formed after the end-Permian mass extinction. Lack of information on early evolution biased Bayesian clock rates. © 2017 The Author(s).

  11. Pre- versus post-mass extinction divergence of Mesozoic marine reptiles dictated by time-scale dependence of evolutionary rates

    PubMed Central

    Ji, Cheng; Huang, Jian-dong

    2017-01-01

    The fossil record of a major clade often starts after a mass extinction even though evolutionary rates, molecular or morphological, suggest its pre-extinction emergence (e.g. squamates, placentals and teleosts). The discrepancy is larger for older clades, and the presence of a time-scale-dependent methodological bias has been suggested, yet it has been difficult to avoid the bias using Bayesian phylogenetic methods. This paradox raises the question of whether ecological vacancies, such as those after mass extinctions, prompt the radiations. We addressed this problem by using a unique temporal characteristic of the morphological data and a high-resolution stratigraphic record, for the oldest clade of Mesozoic marine reptiles, Ichthyosauromorpha. The evolutionary rate was fastest during the first few million years of ichthyosauromorph evolution and became progressively slower over time, eventually becoming six times slower. Using the later slower rates, estimates of divergence time become excessively older. The fast, initial rate suggests the emergence of ichthyosauromorphs after the end-Permian mass extinction, matching an independent result from high-resolution stratigraphic confidence intervals. These reptiles probably invaded the sea as a new ecosystem was formed after the end-Permian mass extinction. Lack of information on early evolution biased Bayesian clock rates. PMID:28515201

  12. Latitudinal diversity gradients in Mesozoic non-marine turtles

    NASA Astrophysics Data System (ADS)

    Nicholson, David B.; Holroyd, Patricia A.; Valdes, Paul; Barrett, Paul M.

    2016-11-01

    The latitudinal biodiversity gradient (LBG)-the pattern of increasing taxonomic richness with decreasing latitude-is prevalent in the structure of the modern biota. However, some freshwater taxa show peak richness at mid-latitudes; for example, extant Testudines (turtles, terrapins and tortoises) exhibit their greatest diversity at 25° N, a pattern sometimes attributed to recent bursts of climatically mediated species diversification. Here, we test whether this pattern also characterizes the Mesozoic distribution of turtles, to determine whether it was established during either their initial diversification or as a more modern phenomenon. Using global occurrence data for non-marine testudinate genera, we find that subsampled richness peaks at palaeolatitudes of 15-30° N in the Jurassic, 30-45° N through the Cretaceous to the Campanian, and from 30° to 60° N in the Maastrichtian. The absence of a significant diversity peak in southern latitudes is consistent with results from climatic models and turtle niche modelling that demonstrate a dearth of suitable turtle habitat in Gondwana during the Jurassic and Late Cretaceous. Our analyses confirm that the modern testudinate LBG has a deep-time origin and further demonstrate that LBGs are not always expressed as a smooth, equator-to-pole distribution.

  13. Hydrothermal vent complexes offshore Northeast Greenland: A potential role in driving the PETM

    NASA Astrophysics Data System (ADS)

    Reynolds, P.; Planke, S.; Millett, J. M.; Jerram, D. A.; Trulsvik, M.; Schofield, N.; Myklebust, R.

    2017-06-01

    Continental rifting is often associated with voluminous magmatism and perturbations in the Earth's climate. In this study, we use 2D seismic data from the northeast Greenland margin to document two Paleogene-aged sill complexes ≥ 18 000 and ≥ 10 000 km2 in size. Intrusion of the sills resulted in the contact metamorphism of carbon-rich shales, producing thermogenic methane which was released via 52 newly discovered hydrothermal vent complexes, some of which reach up to 11 km in diameter. Mass balance calculations indicate that the volume of methane produced by these intrusive complexes is comparable to that required to have caused the negative δ13 C isotope excursion associated with the PETM. Combined with data from the conjugate Norwegian margin, our study provides evidence for margin-scale, volcanically-induced greenhouse gas release during the late Paleocene/early Eocene. Given the abundance of similar-aged sill complexes in Upper Paleozoic-Mesozoic and Cretaceous-Tertiary basins elsewhere along the northeast Atlantic continental margin, our findings support a major role for volcanism in driving global climate change.

  14. Tethys- and Atlas-related deformations in the Triassic Basin, Algeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, J.S.; Moore, S.R.; Quarles, A.I.

    1995-08-01

    Petroleum provinces of Algeria can be divided into Paleozoic and Mesozoic domains. Paleozoic basins are located on the Gondwanaland paleo-continent where the last significant tectonic episode is ascribed to the Late Paleozoic Hercynian Orogeny. Mesozoic basins are located on the south margin of the Neo-Tethyan seaway. These basins were subject to varying degrees of contractional deformation during the Cenozoic Atlas Orogeny. The Triassic Basin of Algeria is a Tethyan feature located above portions of the Paleozoic Oued M`ya and Ghadames Basins. Paleozoic strata are deeply truncated at the Hercynian Unconformity on a broad arch between the older basins. This ismore » interpreted to reflect rift margin rebound during Carboniferous time. Continental Lower Triassic sediments were deposited in a series of northeast trending basins which opened as the Neo-Tethys basin propagated from east to west between Africa and Europe. Middle Triassic marine transgression from the east resulted in evaporate deposition persisting through the Early Jurassic. Passive margin subsidence associated with carbonate marine deposition continued through the Early Cretaceous. Several zones of coeval wrench deformation cross the Atlas and adjoining regions. In the Triassic Basin, inversion occurred before the end of the Early Cretaceous. This episode created discrete uplifts, where major hydrocarbon accumulations have been discovered, along northeast trending lineaments. During the Eocene, the main phase of the Atlas Orogeny produced low amplitude folding of Jurassic and Cretaceous sediments. The folds detach within the Triassic-Jurassic evaporate interval. Many of these folds have been tested without success, as the deeper reservoirs do not show structural closure.« less

  15. Abbot Ice Shelf, structure of the Amundsen Sea continental margin and the southern boundary of the Bellingshausen Plate seaward of West Antarctica.

    PubMed

    Cochran, James R; Tinto, Kirsty J; Bell, Robin E

    2015-05-01

    Inversion of NASA Operation IceBridge airborne gravity over the Abbot Ice Shelf in West Antarctica for subice bathymetry defines an extensional terrain made up of east-west trending rift basins formed during the early stages of Antarctica/Zealandia rifting. Extension is minor, as rifting jumped north of Thurston Island early in the rifting process. The Amundsen Sea Embayment continental shelf west of the rifted terrain is underlain by a deeper, more extensive sedimentary basin also formed during rifting between Antarctica and Zealandia. A well-defined boundary zone separates the mildly extended Abbot extensional terrain from the deeper Amundsen Embayment shelf basin. The shelf basin has an extension factor, β , of 1.5-1.7 with 80-100 km of extension occurring across an area now 250 km wide. Following this extension, rifting centered north of the present shelf edge and proceeded to continental rupture. Since then, the Amundsen Embayment continental shelf appears to have been tectonically quiescent and shaped by subsidence, sedimentation, and the advance and retreat of the West Antarctic Ice Sheet. The Bellingshausen Plate was located seaward of the Amundsen Sea margin prior to incorporation into the Antarctic Plate at about 62 Ma. During the latter part of its independent existence, Bellingshausen plate motion had a clockwise rotational component relative to Antarctica producing convergence across the north-south trending Bellingshausen Gravity Anomaly structure at 94°W and compressive deformation on the continental slope between 94°W and 102°W. Farther west, the relative motion was extensional along an east-west trending zone occupied by the Marie Byrd Seamounts. Abbot Ice Shelf is underlain by E-W rift basins created at ∼90 Ma Amundsen shelf shaped by subsidence, sedimentation, and passage of the ice sheet Bellingshausen plate boundary is located near the base of continental slope and rise.

  16. Abbot Ice Shelf, structure of the Amundsen Sea continental margin and the southern boundary of the Bellingshausen Plate seaward of West Antarctica

    PubMed Central

    Cochran, James R; Tinto, Kirsty J; Bell, Robin E

    2015-01-01

    Inversion of NASA Operation IceBridge airborne gravity over the Abbot Ice Shelf in West Antarctica for subice bathymetry defines an extensional terrain made up of east-west trending rift basins formed during the early stages of Antarctica/Zealandia rifting. Extension is minor, as rifting jumped north of Thurston Island early in the rifting process. The Amundsen Sea Embayment continental shelf west of the rifted terrain is underlain by a deeper, more extensive sedimentary basin also formed during rifting between Antarctica and Zealandia. A well-defined boundary zone separates the mildly extended Abbot extensional terrain from the deeper Amundsen Embayment shelf basin. The shelf basin has an extension factor, β, of 1.5–1.7 with 80–100 km of extension occurring across an area now 250 km wide. Following this extension, rifting centered north of the present shelf edge and proceeded to continental rupture. Since then, the Amundsen Embayment continental shelf appears to have been tectonically quiescent and shaped by subsidence, sedimentation, and the advance and retreat of the West Antarctic Ice Sheet. The Bellingshausen Plate was located seaward of the Amundsen Sea margin prior to incorporation into the Antarctic Plate at about 62 Ma. During the latter part of its independent existence, Bellingshausen plate motion had a clockwise rotational component relative to Antarctica producing convergence across the north-south trending Bellingshausen Gravity Anomaly structure at 94°W and compressive deformation on the continental slope between 94°W and 102°W. Farther west, the relative motion was extensional along an east-west trending zone occupied by the Marie Byrd Seamounts. Key Points: Abbot Ice Shelf is underlain by E-W rift basins created at ∼90 Ma Amundsen shelf shaped by subsidence, sedimentation, and passage of the ice sheet Bellingshausen plate boundary is located near the base of continental slope and rise PMID:26709352

  17. A geodynamic constraint on Archean continental geotherms

    NASA Astrophysics Data System (ADS)

    Bailey, R. C.

    2003-04-01

    Dewey (1988) observed that gravitational collapse appears to currently limit the altitudes of large plateaus on Earth to about 3 to 5 km above sea level. Arndt (1999) summarized the evidence for the failure of large parts of the continental crust to reach even sea-level during the Archean. If this property of Archean continental elevations was also enforced by gravitational collapse, it permits an estimation of the geothermal gradient in Archean continental crust. If extensional (collapse) tectonics is primarily a balance between gravitational power and the power consumed by extensional (normal) faulting in the upper brittle crust, as analysed by Bailey (1999), then it occurs when continental elevations above ocean bottoms exceed about 0.4 times the thickness of the brittle crust (Bailey, 2000). Assuming an Archean oceanic depth of about 5 km, it follows that that the typical thickness of Archean continental brittle crustal must have been less than about 12 km. Assuming the brittle-ductile transition to occur at about 350 degrees Celsius, this suggests a steep geothermal gradient of at least 30 degrees Celsius per kilometer for Archean continents, during that part of the Archean when continents were primarily submarine. This result does not help resolve the Archean thermal paradox (England and Bickle, 1984) whereby the high global heat flow of the Archean conflicts with the rather shallow crustal Archean geotherms inferred from geobarometry. In fact, the low elevation of Archean continental platforms raises another paradox, a barometric one: that continents were significantly below sea-level implies, by isostasy, that continental crustal thicknesses were significantly less than 30 km, yet the geobarometric data utilized by England and Bickle indicated burial pressures of Archean continental material of up to 10 kb. One resolution of both paradoxes (as discussed by England and Bickle) would be to interpret such deep burials as transient crustal thickening events of

  18. Structure and development of the Southeast Georgia Embayment and northern Blake Plateau: Preliminary analysis

    USGS Publications Warehouse

    Dillon, William P.; Paull, Charles K.; Buffler, Richard T.; Fail, Jean-Pierre

    1979-01-01

    Multichannel seismic reflection profiles from the Southeast Georgia Embayment and northern Blake Plateau show reflectors that have been correlated tentatively with horizons of known age. The top of the Cretaceous extends smoothly seaward beneath the continental shelf and Blake Plateau, unaffected at the present shelf edge. A reflector inferred to correspond approximately to the top of the Jurassic section onlaps and pinches out against rocks below. A widespread smooth reflector probably represents a volcanic layer of Early Jurassic age that underlies only the northwestern part of the research area. A major unconformity beneath the inferred volcanic layer is probably of Late Triassic or Early Jurassic age. This unconformity dips rather smoothly seaward beneath the northern Blake Plateau, but south of a geological boundary near 31°N, it has subsided much more rapidly, and reaches depths of more than 12 km. Development of the continental margin north of the boundary began with rifting and subsidence of continental basement in the Triassic. An episode of volcanism may have been due to stresses associated with a spreading center jump at about 175 million years ago. Jurassic and Cretaceous deposits form an onlapping wedge above the inferred early Jurassic volcanics and Triassic sedimentary rocks. During Cenozoic times, development of Gulf Stream flow caused a radical decrease in sedimentation rates so that a shelf that was much narrower than the Mesozoic shelf was formed by progradation against the inner edge of the stream. South of the 31°N geological boundary, the basement probably is semi-oceanic and reef growth, unlike that in the area to the north, has been very active at the outer edge of the plateau.

  19. Basin evolution during the transition from continental rifting to subduction: Evidence from the lithofacies and modal petrology of the Jurassic Latady Group, Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Willan, Robert C. R.; Hunter, Morag A.

    2005-12-01

    The Jurassic Latady Basin (southern Antarctic Peninsula) developed in a broad rift zone associated with the early stages of Gondwana extension. Early Jurassic sedimentation (˜185 Ma) occurred in small, isolated terrestrial to lacustrine rift basins in the present-day northwest and west and became shallow marine by the early Middle Jurassic. Quantitative modal analysis reveals a high proportion of mature, quartzose sandstone derived from cratonic and quartzose recycled-orogen provenances, most likely in the direction of the Ellsworth-Whitmore Mountains in the Gondwana interior. Sandstones with a more volcanolithic provenance probably represent an influx of sands from a Permian volcanic source in West Antarctica. The Early Jurassic Latady sequence contains abundant volcanic quartz and rhyodacite grains, locally derived from the nearby ignimbrites of the rift-related Mount Poster Formation (˜185 Ma). Between the Middle and Late Jurassic (?160-150 Ma), there was a dramatic change throughout the Latady Basin to higher-energy conditions with marked lateral facies variations. Sandstones contain abundant fresh volcanic detritus and plot in the transitional arc field. Their source was a nearby, active continental margin arc, but there is no outcrop of arc material on the Antarctic Peninsula from this time. A possible source area is preserved on the Thurston Island block to the southwest. However, some fluvial systems still had access to areas of uplifted metamorphic/plutonic basement and quartzose, cratonic sources. Evidence of mixing of fluvial systems from different provenances and the lack of mixing of other fluvial systems suggest a complex topography of variably uplifted fault blocks with fluvial systems constrained in narrow valleys. The change from continental rift- to arc-related sources illustrates the shift from plume- (continental provenances) to continental margin arc-dominated tectonics. Thermal relaxation in the Late Jurassic led to the final phase of

  20. Insights on the opening of the Galerian mammal migration pathway from magnetostratigraphy of the Pleistocene marine-continental transition in the Arda River section (northern Italy)

    NASA Astrophysics Data System (ADS)

    Monesi, Edoardo; Muttoni, Giovanni; Scardia, Giancarlo; Felletti, Fabrizio; Bona, Fabio; Sala, Benedetto; Tremolada, Fabrizio; Francou, Carlo; Raineri, Gianluca

    2016-09-01

    We investigated the magnetostratigraphy of the Arda River section (northern Italy) where the transition from marine to continental sedimentation occurring in the Po River basin during the Pleistocene is registered. Four magnetic polarity reversals were used to construct an age model of sedimentation aided by marine biostratigraphy and tied to a standard δ18O curve from the literature. The section spans from the Olduvai subchron (1.94-1.78 Ma) across the Jaramillo subchron (1.07-0.99 Ma) up to the Brunhes-Matuyama boundary (0.78 Ma). The onset of continental deposition occurred during marine isotope stage (MIS) 30 at ˜1.04 Ma. An association of Villafranchian and Early Galerian mammals, including Sus strozzii and Ursus dolinensis, has been found in the continental sediments dated to MIS 29-27 (˜0.99 Ma). Above follows a prominent fluvial conglomerate attributed to the first major lowstand of the Pleistocene culminating with MIS 22 at ˜0.9 Ma during the late Early Pleistocene climate turnover (EPT). These and other data from the literature are used to reconstruct the onset of continental deposition in the greater Po basin and shed light on the opening of the migration pathway that brought far-traveled Galerian mammal immigrants to enter Europe for the first time during the EPT.

  1. Oceanic-type accretion may begin before complete continental break-up

    NASA Astrophysics Data System (ADS)

    Geoffroy, L.; Zalan, P. V.; Viana, A. R.

    2011-12-01

    Oceanic accretion is thought to be the process of oceanic crust (and lithosphere) edification through adiabatic melting of shallow convecting mantle at oceanic spreading ridges. It is usually considered as a post-breakup diagnostic process following continents rupturing. However, this is not always correct. The structure of volcanic passive margins (representing more than 50% of passive continental margins) outlines that the continental lithosphere is progressively changed into oceanic-type lithosphere during the stage of continental extension. This is clear at least, at crustal level. The continental crust is 'changed' from the earliest stages of extension into a typical -however thicker- oceanic crust with the typical oceanic magmatic layers (from top to bottom: lava flows/tuffs, sheeted dyke complexes, dominantly (sill-like) mafic intrusions in the lower crust). The Q-rich continental crust is highly extended and increases in volume (due to the magma) during the extensional process. At the continent-ocean transition there is, finally, no seismic difference between this highly transformed continental crust and the oceanic crust. Using a large range of data (including deep seismic reflection profiles), we discuss the mantle mechanisms that governs the process of mantle-assisted continental extension. We outline the large similarity between those mantle processes and those acting at purely-oceanic spreading axis and discuss the effects of the inherited continental lithosphere in the pattern of new mafic crust edification.

  2. Temporal and Spatial Differences in Microbial Composition during the Manufacture of a Continental-Type Cheese

    PubMed Central

    O'Sullivan, Daniel J.; O'Sullivan, Orla; McSweeney, Paul L. H.; Sheehan, Jeremiah J.

    2015-01-01

    We sought to determine if the time, within a production day, that a cheese is manufactured has an influence on the microbial community present within that cheese. To facilitate this, 16S rRNA amplicon sequencing was used to elucidate the microbial community dynamics of brine-salted continental-type cheese in cheeses produced early and late in the production day. Differences in the microbial composition of the core and rind of the cheese were also investigated. Throughout ripening, it was apparent that cheeses produced late in the day had a more diverse microbial population than their early equivalents. Spatial variation between the cheese core and rind was also noted in that cheese rinds were initially found to have a more diverse microbial population but thereafter the opposite was the case. Interestingly, the genera Thermus, Pseudoalteromonas, and Bifidobacterium, not routinely associated with a continental-type cheese produced from pasteurized milk, were detected. The significance, if any, of the presence of these genera will require further attention. Ultimately, the use of high-throughput sequencing has facilitated a novel and detailed analysis of the temporal and spatial distribution of microbes in this complex cheese system and established that the period during a production cycle at which a cheese is manufactured can influence its microbial composition. PMID:25636841

  3. Mantle plumes and continental tectonics.

    PubMed

    Hill, R I; Campbell, I H; Davies, G F; Griffiths, R W

    1992-04-10

    Mantle plumes and plate tectonics, the result of two distinct modes of convection within the Earth, operate largely independently. Although plumes are secondary in terms of heat transport, they have probably played an important role in continental geology. A new plume starts with a large spherical head that can cause uplift and flood basalt volcanism, and may be responsible for regional-scale metamorphism or crustal melting and varying amounts of crustal extension. Plume heads are followed by narrow tails that give rise to the familiar hot-spot tracks. The cumulative effect of processes associated with tail volcanism may also significantly affect continental crust.

  4. STRUCTURAL GEOMETRY OF AN EXHUMED UHP TERRANE IN THE EASTERN SULU OROGEN, CHINA: IMPLICATIONS FOR CONTINENTAL COLLISIONAL PROCESSES

    NASA Astrophysics Data System (ADS)

    Wang, L.; Kusky, T.

    2009-12-01

    High-precision 1:1,000 mapping of Yangkou Bay, eastern Sulu orogen, defines the structural geometry and history of the world’s most significant UHP (Ultrahigh Pressure) rock exposures. Four stages of folds are recognized in the UHP rocks and associated quartzo-feldspathic gneiss. Eclogite facies rootless F1 and isoclinal F2 folds are preserved locally in coesite-eclogite. Mylonitic to ultramylonitic cosesit-eclogite shear zones separate 5-10-meter-thick nappes of ultramafic-mafic UHP rocks from banded quartzo-feldspathic gneiss. These shear zones are folded, and progressively overprinted by amphibolite and greenschist facies shear zones that become wider with lower grade. The deformation sequences is explained by deep subduction of offscraped thrust slices of oceanic or lower continental crust, caught between the colliding North and South China cratons in the Mesozoic. After these slices were structurally isolated along the plate interface, they were rolled like ball-bearings, in the subduction channel during their exhumation, forming several generations of folds, sequentially lower-grade foliations and lineations, and intruded by several generations of in situ and exotically derived melts. The shear zones formed during different generations of deformation are wider with lower grades, suggesting that deep-crustal/upper mantle deformation operates efficiently (perhaps with more active crystallographic slip systems) than deformation at mid to upper crustal levels.

  5. Organic geochemistry, lithology, and paleontology of Tertiary and Mesozoic rocks from wells on the Alaska Peninsula

    USGS Publications Warehouse

    McLean, Hugh James

    1977-01-01

    Core chips and drill cuttings from eight of the nine wells drilled along the Bering Sea lowlands of the Alaska Peninsula were subjected to lithologic and paleontologic analyses. Results suggest that at least locally, sedimentary rocks of Tertiary age contain oil and gas source and reservoir rocks capable of generating and accumulating liquid and gas hydrocarbons. Paleogene strata rich in organic carbon are immature. However, strata in offshore basins to the north and south may have been subjected to a more productive thermal environment. Total organic carbon content of fine grained Neogene strata appears to be significantly lower than in Paleogene rocks, possibly reflecting nonmarine or brackish water environments of deposition. Neogene sandstone beds locally yield high values of porosity and permeability to depths of about 8,000 feet (2,439 m). Below this depth, reservoir potential rapidly declines. The General Petroleum, Great Basins No. 1 well drilled along the shore of Bristol Bay reached granitic rocks. Other wells drilled closer to the axis of the present volcanic arc indicate that both Tertiary and Mesozoic sedimentary rocks have been intruded by dikes and sills of andesite and basalt. Although the Alaska Peninsula has been the locus of igneous activity throughout much of Mesozoic and Tertiary time, thermal maturity indicators such as vitrinite reflectance and coal rank suggest, that on a regional scale, sedimentary rocks have not been subjected to abnormally high geothermal gradients.

  6. 78 FR 32184 - Importation of Fresh Apricots From Continental Spain

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-29

    .... APHIS-2011-0132] RIN 0579-AD62 Importation of Fresh Apricots From Continental Spain AGENCY: Animal and... United States of fresh apricots from continental Spain. This action will allow interested persons... importation of fruits and vegetables to allow the importation of fresh apricots from continental Spain into...

  7. Late Pleistocene and Holocene mammal extinctions on continental Africa

    NASA Astrophysics Data System (ADS)

    Faith, J. Tyler

    2014-01-01

    Understanding the cause of late Quaternary mammal extinctions is the subject of intense debate spanning the fields of archeology and paleontology. In the global context, the losses on continental Africa have received little attention and are poorly understood. This study aims to inspire new discussion of African extinctions through a review of the extinct species and the chronology and possible causes of those extinctions. There are at least 24 large mammal (> 5 kg) species known to have disappeared from continental Africa during the late Pleistocene or Holocene, indicating a much greater taxonomic breadth than previously recognized. Among the better sampled taxa, these losses are restricted to the terminal Pleistocene and early Holocene, between 13,000 and 6000 yrs ago. The African extinctions preferentially affected species that are grazers or prefer grasslands. Where good terrestrial paleoenvironmental records are present, extinctions are associated with changes in the availability, productivity, or structure of grassland habitats, suggesting that environmental changes played a decisive role in the losses. In the broader evolutionary context, these extinctions represent recent examples of selective taxonomic winnowing characterized by the loss of grassland specialists and the establishment of large mammal communities composed of more ecologically flexible taxa over the last million years. There is little reason to believe that humans played an important role in African extinctions.

  8. New tectonic concept of the Arctic region evolution

    NASA Astrophysics Data System (ADS)

    Petrov, O. V.; Morozov, A.; Grikurov, G.; Shokalsky, S.; Kashubin, S.; Sobolev, N. V.; Petrov, E.

    2012-12-01

    The international project "Atlas of Geological Maps of Circumpolar Arctic at 1:5 million scale" was launched in 2003. It was initiated by geological surveys of Circum-Arctic states with active support from the UNESCO Commission for the Geological Map of the World (CGMW). This work engages a number of scientists from national academies of sciences and universities. As of today, international working groups have accomplished the compilation of geological, magnetic and gravity maps at 1:5 million scale. Upon completion of those basic maps, it became possible to undertake the compilation of the Tectonic Map of the Arctic - TeMAr. The final draft of this map is being demonstrated at GeoExpo here in Brisbane. Analysis of the new tectonic map clearly shows the Neoproterozoic - Paleozoic - late Mesozoic Paleoasian oceanic structures. Among those structures are the Neoproterozoic Timan Orogen, the Baikalian fold basement in the Pre-Yenisey zone and the collisional systems of Uralides and Kimmerides whose age becomes successively younger northward from Late Carboniferous - Early Permian to Triassic - Jurassic. Seismic and isotope-geochemistry data recently obtained on Lomonosov Ridge and Mendeleev Rise suggest the possibility that Neoproterozoic-Mesozoic orogenic structures of the High Arctic may incorporate isolated blocks of Early Precambrian continental crust. The north-directed decrease of age refers not only to orogenies caused by gradual closing of the Asian paleo-ocean but also to post-orogenic rift-related processes superposed on continental crust and reflected in the first place in the formation of LIPs. This is well exemplified by transition from the Early Triassic Siberian trap province to Triassic West Siberian province and then to Late Jurassic - Cretaceous, locally Cenozoic basaltic province of the High Arctic. The center of the Canadian Basin so far remains enigmatic: it was probably formed by seafloor spreading that could follow intensive Jurassic-Early

  9. A numerical investigation of continental collision styles

    NASA Astrophysics Data System (ADS)

    Ghazian, Reza Khabbaz; Buiter, Susanne J. H.

    2013-06-01

    Continental collision after closure of an ocean can lead to different deformation styles: subduction of continental crust and lithosphere, lithospheric thickening, folding of the unsubducted continents, Rayleigh-Taylor (RT) instabilities and/or slab break-off. We use 2-D thermomechanical models of oceanic subduction followed by continental collision to investigate the sensitivity of these collision styles to driving velocity, crustal and lithospheric temperature, continental rheology and the initial density difference between the oceanic lithosphere and the asthenosphere. We find that these parameters influence the collision system, but that driving velocity, rheology and lithospheric (rather than Moho and mantle) temperature can be classified as important controls, whereas reasonable variations in the initial density contrast between oceanic lithosphere and asthenosphere are not necessarily important. Stable continental subduction occurs over a relatively large range of values of driving velocity and lithospheric temperature. Fast and cold systems are more likely to show folding, whereas slow and warm systems can experience RT-type dripping. Our results show that a continent with a strong upper crust can experience subduction of the entire crust and is more likely to fold. Accretion of the upper crust at the trench is feasible when the upper crust has a moderate to weak strength, whereas the entire crust can be scraped-off in the case of a weak lower crust. We also illustrate that weakening of the lithospheric mantle promotes RT-type of dripping in a collision system. We use a dynamic collision model, in which collision is driven by slab pull only, to illustrate that adjacent plates can play an important role in continental collision systems. In dynamic collision models, exhumation of subducted continental material and sediments is triggered by slab retreat and opening of a subduction channel, which allows upward flow of buoyant materials. Exhumation continues

  10. The Inception of the Colorado Plateau Coring Project: Filling the Triassic Geochronologic Gap and Providing a Continuous Record of Continental Environmental Change in Western Equatorial Pangea

    NASA Astrophysics Data System (ADS)

    Geissman, J. W.; Olsen, P. E.; Kent, D. V.; Irmis, R. B.; Gehrels, G. E.; Mundil, R.; Parker, W.; Bachmann, G. H.; Kurschner, W. M.; Sha, J.

    2014-12-01

    The Triassic Period was punctuated by two of the largest Phanerozoic mass-extinctions and witnessed the evolution of elements of the modern biota and the advent of the age of dinosaurs. A rich archive of biotic and environmental changes on land for the early Mesozoic is on the Colorado Plateau, which despite over 100 years of study still remains poorly calibrated in time and poorly registered to other global records. Over 15 years ago, a diverse team of scientists began to develop the concept of a multi-phase, long term Colorado Plateau Coring Project (CPCP). Planning involved two major meetings (DOSECC/NSFICDP supported in Fall, 2007, St. George, UT; and International Continental Drilling Program (ICDP) supported in Spring, 2009, Albuquerque, NM). The National Park Service embraced the concept of Phase One drilling at Petrified Forest National Park (PFNP) in northern Arizona, which exposes one of the most famous and best studied successions of the continental Triassic on Earth, and the Phase One target was decided. Most drilling operation costs were secured from ICDP in Summer, 2010. In late 2013, following more recent NSF support, the research team, utilizing Ruen Drilling Inc., drilled a continuous ~530 m core (60o plunge) through the entire section of Triassic strata (Chinle and Moenkopi fms.) in the north end and a ~240 m core (75o plunge) in lower Chinle and all Moenkopi strata at the south end of the PFNP. Our continuous sampling will place this record in a reliable quantitative and exportable time scale, as a reference section in which magnetostratigraphic, geochronologic, environmental, and paleontologic data are registered to a common thickness scale with unambiguous superposition using pristine samples. The cores are being scanned at the High Resolution X-ray Computed Tomography Facility at UT Austin. They will be transported to the LacCore National Lacustrine Core Facility at U Minnesota, where they will be split, imaged, and scanned for several

  11. The Lord Howe Rise continental ribbon: a fragment of eastern Gondwana that reveals the drivers of continental rifting and plate tectonics

    NASA Astrophysics Data System (ADS)

    Saito, S.; Hackney, R. I.; Bryan, S. E.; Kimura, J. I.; Müller, D.; Arculus, R. J.; Mortimer, N. N.; Collot, J.; Tamura, Y.; Yamada, Y.

    2016-12-01

    Plate tectonics and resulting changes in crustal architecture profoundly influence global climate, oceanic circulation, and the origin, distribution and sustainability of life. Ribbons of continental crust rifted from continental margins are one product of plate tectonics that can influence the Earth system. Yet we have been unable to fully resolve the tectonic setting and evolution of huge, thinned, submerged, and relatively inaccessible continental ribbons like the Lord Howe Rise (LHR), which formed during Cretaceous fragmentation of eastern Gondwana. Thinned continental ribbons like the LHR are not easily explained or predicted by plate-tectonic theory. However, because Cretaceous rift basins on the LHR preserve the stratigraphy of an un-accreted and intact continental ribbon, they can help to determine whether plate motion is self-organised—passively driven by the pull of negatively-buoyant subducting slabs—or actively driven by convective flow in the mantle. In a self-organising scenario, the LHR formed in response to ocean-ward retreat of the long-lived eastern Gondwana subduction zone and linked upper-plate extension. In the mantle-driven scenario, the LHR resulted from rifting near the eastern edge of Gondwana that was triggered by processes linked to emplacement of a silicic Large Igneous Province. These scenarios can be distinguished using the ribbon's extensional history and the composition and tectonic affinity of igneous rocks within rift basins. However, current knowledge of LHR rift basins is based on widely-distributed marine and satellite geophysical data, limited dredge samples, and sparse shallow drilling (<600 m below-seafloor). This limits our ability to understand the evolution of extended continental ribbons, but a recent deep crustal seismic survey across the LHR and a proposed IODP deep stratigraphic well through a LHR rift basin provide new opportunities to explore the drivers behind rifting, continental ribboning and plate tectonics.

  12. Cenozoic Tectonic Activity of the "Passive" North America Margin: Evidence for Cenozoic Activity on Mesozoic or Paleozoic Faults

    NASA Astrophysics Data System (ADS)

    Nedorub, O. I.; Knapp, C. C.

    2012-12-01

    The tectonic history of the Eastern North American Margin (ENAM) incorporates two cycles of continental assembly, multiple pulses of orogeny, rifting, and post-rift geodynamic evolution. This is reflected in the heterogeneous lithosphere of the ENAM which contains fault structures originated in Paleozoic to Mesozoic eras. The South Georgia Rift basin is probably the largest Mesozoic graben within its boundaries that is associated with the breakup of Pangea. It is composed of smaller sub-basins which appear to be bounded by high-angle normal faults, some of which may have been inverted in late Cretaceous and Cenozoic eras. Paleozoic structures may have been reactivated in Cenozoic time as well. The ENAM is characterized by N-NE maximum horizontal compressive stress direction. This maximum compressional stress field is sub-parallel to the strike of the Atlantic Coast province fault systems. Camden, Augusta, Allendale, and Pen Branch faults are four of the many such reactivated faults along the southern part of ENAM. These faults are now buried under the 0-400 m of loosely consolidated Cretaceous and Cenozoic age sediments and thus are either only partially mapped or currently not recognized. Some of the objectives of this study are to map the subsurface expression and geometry of these faults and to investigate the post Cretaceous deformation and possible causes of fault reactivation on a passive margin. This study employs an integrated geophysical approach to investigate the upper 200 m of identified locations of the above mentioned faults. 2-D high-resolution shallow seismic reflection and refraction methods, gravity surveys, GPR, 2-D electrical resistivity and well data are used for analyses and interpretation. Preliminary results suggest that Camden fault shows signs of Cenozoic reactivation through an approximately 30 m offset NW side up mainly along a steeply dipping fault zone in the basal contact of Coastal Plain sediments with the Carolina Piedmont. Drill

  13. Tectonic escape in the evolution of the continental crust

    NASA Technical Reports Server (NTRS)

    Burke, K.; Sengor, C.

    1986-01-01

    The continental crust originated by processes similar to those operating today and continents consist of material most of which originated long ago in arc-systems that have later been modified, especially at Andean margins and in continental collisions where crustal thickening is common. Collision-related strike-slip motion is a general process in continental evolution. Because buoyant continental (or arc) material generally moves during collision toward a nearby oceanic margin where less buoyant lithosphere crops out, the process of major strike-slip dominated motion toward a 'free-face' is called 'tectonic escape'. Tectonic escape is and has been an element in continental evolution throughout recorded earth-history. It promotes: (1) rifting and the formation of rift-basins with thinning of thickened crust; (2) pervasive strike-slip faulting late in orogenic history which breaks up mountain belts across strike and may juxtapose unrelated sectors in cross-section; (3) localized compressional mountains and related foreland-trough basins.

  14. Constraints on continental accretion from sedimentation

    NASA Technical Reports Server (NTRS)

    Abbott, Dallas

    1988-01-01

    Heat loss in the ancient Earth was discussed assuming that classical sea floor spreading was the only mechanism. This may be expressed as faster spreading or longer total ridge length. These have important implications as to the size and number of cratonic plates in the distant past, the degree to which they are flooded, the kinds of sediments and volcanics that would be expected, and the amount of recycling of continental material taking place. The higher proportion of marine sedimentary rocks and oceanic volcanics in the Archean, and the relative paucity of evaporites and continental volcanics may in part be due to smaller cratonic blocks. A model was developed of the percentage of continental flooding which utilizes round continents and a constant width of the zone of flooding. This model produces a reasonable good fit to the percentage of flooding on the present day continents.

  15. Viviparity and K-selected life history in a Mesozoic marine plesiosaur (Reptilia, Sauropterygia).

    PubMed

    O'Keefe, F R; Chiappe, L M

    2011-08-12

    Viviparity is known in several clades of Mesozoic aquatic reptiles, but evidence for it is lacking in the Plesiosauria. Here, we report a Late Cretaceous plesiosaur fossil consisting of a fetus preserved within an adult of the same taxon. We interpret this occurrence as a gravid female and unborn young and hence as definitive evidence for plesiosaur viviparity. Quantitative analysis indicates that plesiosaurs gave birth to large, probably single progeny. The combination of viviparity, large offspring size, and small brood number differs markedly from the pattern seen in other marine reptiles but does resemble the K-selected strategy of all extant marine mammals and a few extant lizards. Plesiosaurs may have shared other life history traits with these clades, such as sociality and maternal care.

  16. Astronomical tuning of the end-Permian extinction and the Early Triassic Epoch of South China and Germany

    NASA Astrophysics Data System (ADS)

    Li, Mingsong; Ogg, James; Zhang, Yang; Huang, Chunju; Hinnov, Linda; Chen, Zhong-Qiang; Zou, Zhuoyan

    2016-05-01

    The timing of the end-Permian mass extinction and subsequent prolonged recovery during the Early Triassic Epoch can be established from astronomically controlled climate cycles recorded in continuous marine sedimentary sections. Astronomical-cycle tuning of spectral gamma-ray logs from biostratigraphically-constrained cyclic stratigraphy through marine sections at Meishan, Chaohu, Daxiakou and Guandao in South China yields an integrated time scale for the Early Triassic, which is consistent with scaling of magnetostratigraphy from climatic cycles in continental deposits of the Germanic Basin. The main marine mass extinction interval at Meishan is constrained to less than 40% of a 100-kyr (kilo-year) cycle (i.e., <40 kyr) and the sharp negative excursion in δ13C is estimated to have lasted <6 kyr. The sharp positive shift in δ13C from - 2 ‰ to 4‰ across the Smithian-Spathian boundary at Chaohu was completed in 50 kyr. The earliest marine reptiles in the Mesozoic at Chaohu that are considered to represent a significant recovery of marine ecosystems did not appear until 4.7 myr (million years) after the end-Permian extinction. The durations of the Griesbachian, Dienerian, Smithian and Spathian substages, including the uncertainty in placement of widely used conodont biostratigraphic datums for their boundaries, are 1.4 ± 0.1, 0.6 ± 0.1, 1.7 ± 0.1 and 1.4 ± 0.1 myr, implying a total span for the Early Triassic of 5.1 ± 0.1 myr. Therefore, relative to an assigned 251.902 ± 0.024 Ma for the Permian-Triassic boundary from the Meishan GSSP, the ages for these substage boundaries are 250.5 ± 0.1 Ma for base Dienerian, 249.9 ± 0.1 Ma for base Smithian (base of Olenekian stage), 248.2 ± 0.1 Ma for base Spathian, and 246.8 ± 0.1 Ma for the base of the Anisian Stage. This astronomical-calibrated timescale provides rates for the recurrent carbon isotope excursions and for trends in sedimentation accumulation through the Early Triassic of studied sections in South

  17. Cenozoic oblique collision of South American and Caribbean plates: New evidence in the Coastal Cordillera of Venezuela and Trinidad

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Speed, R.C.; Russo, R.M.; Foland, K.A.

    The hinterland of the Caribbean Mts. orogen in Trinidad and Venezuela contains schist and gneiss whole protoliths are wholly or partly of continental provenance. The hinterland lies between the foreland thrust belt and terranes. The terranes are alien to continental South America (SA) and may have proto-Caribbean or Caribbean plate origins. The hinterland rocks were widely thought to come from sediments and granitoids of Mesozoic protolithic ages and to be of Cretaceous metamorphic age. Such rocks are now know to be of at least two or more types, as follows: (1) low grade, protoliths of pre-Mesozoic basement and shelfal covermore » of uncertain age range, inboard locus, Oligocene to mid-Miocene metamorphic ages younging eastward (Caracas, Paria, and Northern Range belts), and (2) higher grade including high P/T, varies protoliths of uncertain age range, Cretaceous and ( )early Paleogene metamorphic ages (Tacagua, Araya, Margarita). The geometry, protoliths, structures, and metamorphic ages of type 1 parautochthoneity and an origin as a thickened wedge of crust-cored passive margin cover. The wedge grew by accretion between about 35 and 20 Ma during oblique transport toward the foreland. The diachroneity of metamorphism implies, as does the timing of foreland deformation, that the wedge evolved in a right-oblique collision between northern SA and terranes moving wholly or partly with the Caribbean plate since the Eocene. Type 2 rocks probably came with the terranes and are products of convergent zone tectonics, either in the proto-Caribbean plate. The hinterland boundaries are brittle thrusts that are out of sequence and imply progressive contraction from mid-Cenozoic to the present.« less

  18. Basins in ARC-continental collisions

    USGS Publications Warehouse

    Draut, Amy E.; Clift, Peter D.; Busby, Cathy; Azor, Antonio

    2012-01-01

    Arc-continent collisions occur commonly in the plate-tectonic cycle and result in rapidly formed and rapidly collapsing orogens, often spanning just 5-15 My. Growth of continental masses through arc-continent collision is widely thought to be a major process governing the structural and geochemical evolution of the continental crust over geologic time. Collisions of intra-oceanic arcs with passive continental margins (a situation in which the arc, on the upper plate, faces the continent) involve a substantially different geometry than collisions of intra-oceanic arcs with active continental margins (a situation requiring more than one convergence zone and in which the arc, on the lower plate, backs into the continent), with variable preservation potential for basins in each case. Substantial differences also occur between trench and forearc evolution in tectonically erosive versus tectonically accreting margins, both before and after collision. We examine the evolution of trenches, trench-slope basins, forearc basins, intra-arc basins, and backarc basins during arc-continent collision. The preservation potential of trench-slope basins is low; in collision they are rapidly uplifted and eroded, and at erosive margins they are progressively destroyed by subduction erosion. Post-collisional preservation of trench sediment and trench-slope basins is biased toward margins that were tectonically accreting for a substantial length of time before collision. Forearc basins in erosive margins are usually floored by strong lithosphere and may survive collision with a passive margin, sometimes continuing sedimentation throughout collision and orogeny. The low flexural rigidity of intra-arc basins makes them deep and, if preserved, potentially long records of arc and collisional tectonism. Backarc basins, in contrast, are typically subducted and their sediment either lost or preserved only as fragments in melange sequences. A substantial proportion of the sediment derived from

  19. Structure of the North American Atlantic Continental Margin.

    ERIC Educational Resources Information Center

    Klitgord, K. K.; Schlee, J. S.

    1986-01-01

    Offers explanations on the origin of the North American Atlantic continental margin. Provides an analysis and illustrations of structural and strategraphic elements of cross sections of the Atlantic continental margin. Also explains the operations and applications of seismic-relection profiles in studying ocean areas. (ML)

  20. Geophysical survey within the Mesozoic magnetic anomaly sequence south of Bermuda

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purdy, G.M.; Rohr, K.

    1979-09-10

    This geophysical survey of an approximate 1/sup 0/ square covers Mesozoic magnetic anomalies M0, M2, and M4 south of Bermuda. Bathymetry, magnetics seismic reflection profiling, and seismic refraction data are presented. The isochron trend within the survey area at magnetic anomaly M4 times is 025/sup 0/. Two left lateral fracture zones exist: the southern fracture zone has an offset of <10 km at M4 time and 33 km at M0 time. The northern fracture zone has an offset of 37 km at M4 time and 26 km at M0 time. These changes in ofsett are accounted for by asymmetric spreading,more » an 11/sup 0/ change in trend of anomaly M0 relative to M4, and by M0 time, growth of a small right lateral fracture zone. Seismic refraction data provide poor control on the shallow crustal structure but suggest the presence of significant lateral inhomogeneities with layer 2.« less

  1. Thermal regime of the continental lithosphere

    NASA Technical Reports Server (NTRS)

    Morgan, P.; Sass, J. H.

    1984-01-01

    From studies of the global heat flow data set, it has been generalized, with respect to the continental lithosphere, that there is a negative correlation between heat flow and the lithosphere's tectonic edge, and that the lithosphere's thermal evolution is similar to that of the ocean basins, resulting in a 'stable geotherm' in both environments. It is presently noted that a regional study perspective for heat flow data leads to doubts concerning the general applicability of either statement. Rao et al. (1982) have demonstrated that the data are not normally distributed, and that it is not possible to establish a negative correlation between heat flow and age in a rigorous statistical fashion. While some sites of stable continental blocks may have a geotherm that is by chance similar to that for old ocean basins, this need not hold true generally, and many stable continental terranes will be characterized by geotherms very different from those for old ocean basins.

  2. Pre-existing oblique transfer zones and transfer/transform relationships in continental margins: New insights from the southeastern Gulf of Aden, Socotra Island, Yemen

    NASA Astrophysics Data System (ADS)

    Bellahsen, N.; Leroy, S.; Autin, J.; Razin, P.; d'Acremont, E.; Sloan, H.; Pik, R.; Ahmed, A.; Khanbari, K.

    2013-11-01

    Transfer zones are ubiquitous features in continental rifts and margins, as are transform faults in oceanic lithosphere. Here, we present a structural study of the Hadibo Transfer Zone (HTZ), located in Socotra Island (Yemen) in the southeastern Gulf of Aden. There, we interpret this continental transfer fault zone to represent a reactivated pre-existing structure. Its trend is oblique to the direction of divergence and it has been active from the early up to the latest stages of rifting. One of the main oceanic fracture zones (FZ), the Hadibo-Sharbithat FZ, is aligned with and appears to be an extension of the HTZ and is probably genetically linked to it. Comparing this setting with observations from other Afro-Arabian rifts as well as with passive margins worldwide, it appears that many continental transfer zones are reactivated pre-existing structures, oblique to divergence. We therefore establish a classification system for oceanic FZ based upon their relationship with syn-rift structures. Type 1 FZ form at syn-rift structures and are late syn-rift to early syn-OCT. Type 2 FZ form during the OCT formation and Type 3 FZ form within the oceanic domain, after the oceanic spreading onset. The latter are controlled by far-field forces, magmatic processes, spreading rates, and oceanic crust rheology.

  3. USArray Imaging of North American Continental Crust

    NASA Astrophysics Data System (ADS)

    Ma, Xiaofei

    The layered structure and bulk composition of continental crust contains important clues about its history of mountain-building, about its magmatic evolution, and about dynamical processes that continue to happen now. Geophysical and geological features such as gravity anomalies, surface topography, lithospheric strength and the deformation that drives the earthquake cycle are all directly related to deep crustal chemistry and the movement of materials through the crust that alter that chemistry. The North American continental crust records billions of years of history of tectonic and dynamical changes. The western U.S. is currently experiencing a diverse array of dynamical processes including modification by the Yellowstone hotspot, shortening and extension related to Pacific coast subduction and transform boundary shear, and plate interior seismicity driven by flow of the lower crust and upper mantle. The midcontinent and eastern U.S. is mostly stable but records a history of ancient continental collision and rifting. EarthScope's USArray seismic deployment has collected massive amounts of data across the entire United States that illuminates the deep continental crust, lithosphere and deeper mantle. This study uses EarthScope data to investigate the thickness and composition of the continental crust, including properties of its upper and lower layers. One-layer and two-layer models of crustal properties exhibit interesting relationships to the history of North American continental formation and recent tectonic activities that promise to significantly improve our understanding of the deep processes that shape the Earth's surface. Model results show that seismic velocity ratios are unusually low in the lower crust under the western U.S. Cordillera. Further modeling of how chemistry affects the seismic velocity ratio at temperatures and pressures found in the lower crust suggests that low seismic velocity ratios occur when water is mixed into the mineral matrix

  4. Different modes of continental break-up triggered by a sole mantle plume: a 2D and 3D numerical study

    NASA Astrophysics Data System (ADS)

    Beniest, Anouk; Koptev, Alexander; Leroy, Sylvie; Burov, Evgueni

    2017-04-01

    We used 2D and 3D numerical models to investigate the impact of a single mantle plume on continental rifting and breakup processes. We varied the thermo-rheological structure of the continental lithosphere, its geometry and the initial plume position. Based on the results of our 2D experiments, three continental break-up modes can be distinguished: A) 'central' continental break-up, the break-up center is located directly above the original mantle anomaly position, B) 'shifted' break-up, the break-up center is 50 to 200 km displaced from the initial plume location and C) 'distant' break-up, due to convection and/or slab-subduction/delamination, the break-up center is considerably shifted (300 to 800 km) from the primary plume position. Our 3D model, with a laterally homogeneous initial setup also results in continental break-up with the axis of continental break-up hundreds of kilometers shifted from the original plume location. The model results show that the classical, 'central' view of mantle plume induced continental break-up is not the only mode of break-up. When considering a diversity of break-up styles, it is possible to explain a variety of observed geophysical and geological features. For example, the mantle material glued to the base of the lithosphere at shallower depths corresponds geometrically and location-wise to high-velocity/high-density bodies observed on seismic data below the thinned continental lithosphere and the transition zone of the South Atlantic domain. During migration, products of partial melting of the mantle material can move vertically to (shallow) lower crustal levels. They might resemble high density bodies observed at lower crustal levels inside continental crust with similar geometries observed with gravity modelling. Also, topographic variation form in the very early stages of rifting on the first impingement of upwelled plume material. These variations remain visible, as the final position of the spreading center is shifted

  5. Larval cases of caddisfly (Insecta: Trichoptera) affinity in Early Permian marine environments of Gondwana

    NASA Astrophysics Data System (ADS)

    Mouro, Lucas D.; Zatoń, Michał; Fernandes, Antonio C. S.; Waichel, Breno L.

    2016-01-01

    Caddisflies (Trichoptera) are small, cosmopolitan insects closely related to the Lepidoptera (moths and butterflies). Most caddisflies construct protective cases during their larval development. Although the earliest recognisable caddisflies date back to the early Mesozoic (Early and Middle Triassic), being particularly numerous and diverse during the Late Jurassic and Early Cretaceous, the first records of their larval case constructions are known exclusively from much younger, Early to Middle Jurassic non-marine deposits in the northern hemisphere. Here we present fossils from the Early Permian (Asselian-Sakmarian) marine deposits of Brazil which have strong morphological and compositional similarity to larval cases of caddisflies. If they are, which is very probable, these finds not only push back the fossil record of true caddisflies, but also indicate that their larvae constructed cases at the very beginning of their evolution in marine environments. Since modern caddisflies that construct larval cases in marine environments are only known from eastern Australia and New Zealand, we suggest that this marine ecology may have first evolved in western Gondwana during the Early Permian and later spread across southern Pangea.

  6. Larval cases of caddisfly (Insecta: Trichoptera) affinity in Early Permian marine environments of Gondwana

    PubMed Central

    Mouro, Lucas D.; Zatoń, Michał; Fernandes, Antonio C.S.; Waichel, Breno L.

    2016-01-01

    Caddisflies (Trichoptera) are small, cosmopolitan insects closely related to the Lepidoptera (moths and butterflies). Most caddisflies construct protective cases during their larval development. Although the earliest recognisable caddisflies date back to the early Mesozoic (Early and Middle Triassic), being particularly numerous and diverse during the Late Jurassic and Early Cretaceous, the first records of their larval case constructions are known exclusively from much younger, Early to Middle Jurassic non-marine deposits in the northern hemisphere. Here we present fossils from the Early Permian (Asselian–Sakmarian) marine deposits of Brazil which have strong morphological and compositional similarity to larval cases of caddisflies. If they are, which is very probable, these finds not only push back the fossil record of true caddisflies, but also indicate that their larvae constructed cases at the very beginning of their evolution in marine environments. Since modern caddisflies that construct larval cases in marine environments are only known from eastern Australia and New Zealand, we suggest that this marine ecology may have first evolved in western Gondwana during the Early Permian and later spread across southern Pangea. PMID:26765261

  7. Larval cases of caddisfly (Insecta: Trichoptera) affinity in Early Permian marine environments of Gondwana.

    PubMed

    Mouro, Lucas D; Zatoń, Michał; Fernandes, Antonio C S; Waichel, Breno L

    2016-01-14

    Caddisflies (Trichoptera) are small, cosmopolitan insects closely related to the Lepidoptera (moths and butterflies). Most caddisflies construct protective cases during their larval development. Although the earliest recognisable caddisflies date back to the early Mesozoic (Early and Middle Triassic), being particularly numerous and diverse during the Late Jurassic and Early Cretaceous, the first records of their larval case constructions are known exclusively from much younger, Early to Middle Jurassic non-marine deposits in the northern hemisphere. Here we present fossils from the Early Permian (Asselian-Sakmarian) marine deposits of Brazil which have strong morphological and compositional similarity to larval cases of caddisflies. If they are, which is very probable, these finds not only push back the fossil record of true caddisflies, but also indicate that their larvae constructed cases at the very beginning of their evolution in marine environments. Since modern caddisflies that construct larval cases in marine environments are only known from eastern Australia and New Zealand, we suggest that this marine ecology may have first evolved in western Gondwana during the Early Permian and later spread across southern Pangea.

  8. Form, function and environments of the early angiosperms: merging extant phylogeny and ecophysiology with fossils.

    PubMed

    Feild, Taylor S; Arens, Nan Crystal

    2005-05-01

    The flowering plants--angiosperms--appeared during the Early Cretaceous period and within 10-30 Myr dominated the species composition of many floras worldwide. Emerging insights into the phylogenetics of development and discoveries of early angiosperm fossils are shedding increased light on the patterns and processes of early angiosperm evolution. However, we also need to integrate ecology, in particular how early angiosperms established a roothold in pre-existing Mesozoic plant communities. These events were critical in guiding subsequent waves of angiosperm diversification during the Aptian-Albian. Previous pictures of the early flowering plant ecology have been diverse, ranging from large tropical rainforest trees, weedy drought-adapted and colonizing shrubs, disturbance- and sun-loving rhizomatous herbs, and, more recently, aquatic herbs; however, none of these images were tethered to a robust hypothesis of angiosperm phylogeny. Here, we synthesize our current understanding of early angiosperm ecology, focusing on patterns of functional ecology, by merging recent molecular phylogenetic studies and functional studies on extant 'basal angiosperms' with the picture of early angiosperm evolution drawn by the fossil record.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nyagah, K.; Cloeter, J.J.; Maende, A.

    The Lamu basin occupies the coastal onshore and offshore areas of south-east Kenya. This fault bounded basin formed as a result of the Paleozoic-early Mesozoic phase of rifting that developed at the onset of Gondwana dismemberment. The resultant graben was filled by Karroo (Permian-Early Jurassic) continental siliciclastic sediments. Carbonate deposits associated with the Tethyan sea invasion, dominate the Middle to Late Jurassic basin fill. Cessation of the relative motion between Madagascar and Africa in the Early Cretaceous, heralded passive margin development and deltaic sediment progradation until the Paleogene. Shallow seas transgressed the basin in the Miocene when another carbonate regimemore » prevailed. The basin depositional history is characterized by pulses of transgressive and regressive cycles, bounded by tectonically enhanced unconformities dividing the total sedimentary succession into discrete megasequences. Source rock strata occur within Megasequence III (Paleogene) depositional cycle and were lowered into the oil window in Miocene time, when the coastal parts of the basin experienced the greatest amount of subsidence. The tectono-eustatic pulses of the Tertiary brought about source and reservoir strata into a spatial relationship in which hydrocarbons could be entrapped. A basement high on the continental shelf has potential for Karroo sandstone and Jurassic limestone reservoirs. Halokinesis of Middle Jurassic salt in Miocene time provides additional prospects in the offshore area. Paleogene deltaic sands occur in rotated listric fault blacks. A Miocene reef Play coincides with an Eocene source rock kitchen.« less

  10. Sea level during the Phanerozoic - what causes the fluctuations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, C.G.A.

    1985-01-01

    All possible causes of sea level change have been analyzed in order to explain the fall of sea level since the Cretaceous. The most important effect is the decrease in volume of the ridge crests due to an overall decrease in the rate of spreading since the Cretaceous. Other factors in order of decreasing importance are the reduction of the thermal bulge which accompanied the episode of Pacific volcanism between 110 and 70 my bp, the production of continental ice, the effect of the collision of India with Asia, and cooling of the ocean water. Sedimentation variation in the deepmore » ocean has the effect of raising sea level a modest amount. The net variation in sea level during the past 80 million years has been a reduction by about 280 m after having allowed for isostatic adjustment of the ocean floor. This is considerably larger, than sea level calculated from the amount of continental flooding, and it is proposed that the discrepancy is due to a change in the continental hypsographic curve following the breakup of Pangea. This hypothesis is born out by studies of flooding during the Phanerozoic which reveal that flooding was very low at the beginning of the Mesozoic during a time of continental agglomeration, and high during much of the Paleozoic, which was a time of continental separation. In the Cambrian there is evidence for an increase in flooding with time, and at the beginning of the Cambrian flooding was not much greater than at the beginning of the Mesozoic, suggesting that it marked a time just subsequent to the break up of a super continent.« less

  11. Continental drift before 1900.

    PubMed

    Rupke, N A

    1970-07-25

    The idea that Francis Bacon and other seventeenth and eighteenth century thinkers first conceived the notion of continental drift does not stand up to close scrutiny. The few authors who expressed the idea viewed the process as a catastrophic event.

  12. Impacts of continental arcs on global carbon cycling and climate

    NASA Astrophysics Data System (ADS)

    Lee, C. T.; Jiang, H.; Carter, L.; Dasgupta, R.; Cao, W.; Lackey, J. S.; Lenardic, A.; Barnes, J.; McKenzie, R.

    2017-12-01

    On myr timescales, climatic variability is tied to variations in atmospheric CO2, which in turn is driven by geologic sources of CO2 and modulated by the efficiency of chemical weathering and carbonate precipitation (sinks). Long-term variability in CO2 has largely been attributed to changes in mid-ocean ridge inputs or the efficiency of global weathering. For example, the Cretaceous greenhouse is thought to be related to enhanced oceanic crust production, while the late Cenozoic icehouse is attributed to enhanced chemical weathering associated with the Himalayan orogeny. Here, we show that continental arcs may play a more important role in controlling climate, both in terms of sources and sinks. Continental arcs differ from island arcs and mid-ocean ridges in that the continental plate through which arc magmas pass may contain large amounts of sedimentary carbonate, accumulated over the history of the continent. Interaction of arc magmas with crustal carbonates via assimilation, reaction or heating can significantly add to the mantle-sourced CO2 flux. Detrital zircons and global mapping of basement rocks shows that the length of continental arcs in the Cretaceous was more than twice that in the mid-Cenozoic; maps also show many of these arcs intersected crustal carbonates. The increased length of continental arc magmatism coincided with increased oceanic spreading rates, placing convergent margins into compression, which favors continental arcs. Around 50 Ma, however, nearly all the continental arcs in Eurasia and North America terminated as India collided with Eurasia and the western Pacific rolled back, initiating the Marianas-Tonga-Kermadec intra-oceanic subduction complex and possibly leading to a decrease in global CO2 production. Meanwhile, extinct continental arcs continued to erode, resulting in regionally enhanced chemical weathering unsupported by magmatic fluxes of CO2. Continental arcs, during their magmatic lifetimes, are thus a source of CO2, driving

  13. Pre-, syn-, and postcollisional stratigraphic framework and provenance of upper triassic-upper cretaceous strata in the northwestern talkeetna mountains, alaska

    USGS Publications Warehouse

    Hampton, B.A.; Ridgway, K.D.; O'Neill, J. M.; Gehrels, G.E.; Schmidt, J.; Blodgett, R.B.

    2007-01-01

    Mesozoic strata of the northwestern Talkeetna Mountains are located in a regional suture zone between the allochthonous Wrangellia composite terrane and the former Mesozoic continental margin of North America (i.e., the Yukon-Tanana terrane). New geologic mapping, measured stratigraphic sections, and provenance data define a distinct three-part stratigraphy for these strata. The lowermost unit is greater than 290 m thick and consists of Upper Triassic-Lower Jurassic mafic lavas, fossiliferous limestone, and a volcaniclastic unit that collectively we informally refer to as the Honolulu Pass formation. The uppermost 75 m of the Honolulu Pass formation represent a condensed stratigraphic interval that records limited sedimentation over a period of up to ca. 25 m.y. during Early Jurassic time. The contact between the Honolulu Pass formation and the overlying Upper Jurassic-Lower Cretaceous clastic marine strata of the Kahiltna assemblage represents a ca. 20 m.y. depositional hiatus that spans the Middle Jurassic and part of Late Jurassic time. The Kahiltna assemblage may to be up to 3000 m thick and contains detrital zircons that have a robust U-Pb peak probability age of 119.2 Ma (i.e., minimum crystallization age/maximum depositional age). These data suggest that the upper age of the Kahiltna assemblage may be a minimum of 10-15 m.y. younger than the previously reported upper age of Valanginian. Sandstone composition (Q-43% F-30% L-27%-Lv-71% Lm-18% Ls-11%) and U-Pb detrital zircon ages suggest that the Kahiltna assemblage received igneous detritus mainly from the active Chisana arc, remnant Chitina and Talkeetna arcs, and Permian-Triassic plutons (Alexander terrane) of the Wrangellia composite terrane. Other sources of detritus for the Kahiltna assemblage were Upper Triassic-Lower Jurassic plutons of the Taylor Mountains batholith and Devonian-Mississippian plutons; both of these source areas are part of the Yukon-Tanana terrane. The Kahiltna assemblage is overlain

  14. MAGSAT anomaly map and continental drift

    NASA Technical Reports Server (NTRS)

    Lemouel, J. L. (Principal Investigator); Galdeano, A.; Ducruix, J.

    1981-01-01

    Anomaly maps of high quality are needed to display unambiguously the so called long wave length anomalies. The anomalies were analyzed in terms of continental drift and the nature of their sources is discussed. The map presented confirms the thinness of the oceanic magnetized layer. Continental magnetic anomalies are characterized by elongated structures generally of east-west trend. Paleomagnetic reconstruction shows that the anomalies found in India, Australia, and Antarctic exhibit a fair consistency with the African anomalies. It is also shown that anomalies are locked under the continents and have a fixed geometry.

  15. Flow of material under compression in weak lower continental crust can cause post-rift uplift of passive continental margins

    NASA Astrophysics Data System (ADS)

    Chalmers, James

    2014-05-01

    There are mountain ranges up to more than 2 km high along many passive continental margins (e.g. Norway, eastern Australia, eastern Brazil, SE and SW Africa, east and west Greenland etc.), dubbed Elevated Passive Continental Margins (EPCMs). EPCMs contain several features in common and observations indicate that uplift of these margins took place after continental break-up. There are many explanations for their formation but none that satisfy all the observations. Lack of a geodynamical mechanism has meant that there has been difficulty in getting the community to accept the observational evidence. Formation of a passive continental margin must take place under conditions of tension. After rifting ceases, however, the margin can come under compression from forces originating elsewhere on or below its plate, e.g. orogeny elsewhere in the plate or sub-lithospheric drag. The World Stress Map (www.world-stress-mp.org) shows that, where data exists, all EPCMs are currently under compression. Under sufficient compression, crust and/or lithosphere can fold, and Cloetingh & Burov (2010) showed that many continental areas may have folded in this way. The wavelengths of folding observed by Cloetingh & Burov (2010) imply that the lower crust is likely to be of intermediate composition; granitic lower crust would fold with a shorter wavelength and basic lower crust would mean that the whole lithosphere would have to fold as a unit resulting in a much longer wavelength. Continental crust more than 20 km thick would be separated from the mantle by a weak layer. However, crust less thick than that would contain no weak layers would become effectively annealed to the underlying strong mantle. Under sufficient horizontal compression stress, material can flow in the lower weak layer towards a continental margin from the continental side. The annealed extended crust and mantle under the rift means, however, that flow cannot continue towards the ocean. Mid- and lower crustal material

  16. Following the Cantabrian (Ventaniella) fault into the Bay of Biscay: a deeply incised canyon, a change of trend, and 20002 km of unstable continental slope

    NASA Astrophysics Data System (ADS)

    Fernandez Viejo, G.; Lopez-Fernandez, C.; Dominguez-Cuesta, M.

    2012-12-01

    The Cantabrian fault, known traditionally with the local name of Ventaniella fault is a long-lived rectilinear feature that runs in a NW-SE direction for more than 200 km across northwest Spain. Its origins are linked to the end of the Variscan orogeny, but its important role took place during the extensional processes of the Mesozoic that led Iberia to become a microplate separated from Europe and Africa. With the initiation of the alpine orogeny Iberia converges with Europe pushed from the south by Africa, and the Ventaniella fault acted as a dextral strike slip fault with an important reverse component. It has a relatively low topographic expression, although its NE block is slightly uplifted with respect to the SW one. Traditionally it has been mapped offshore following the trace of the Aviles canyon, a deeply incised canyon 7 miles from the coast, oblique to the E-W coast trend and which descents from 160 m in the continental shelf , down to 4750 m in the abyssal plain of the Bay of Biscay . All this incision occurs along just 50 km length of the narrow continental shelf in this area, making the Aviles canyon one of the steepest in the Atlantic. Through seismic reflection lines across the continental shelf and slope, a bathymetric model up to date and a 3D geological model the fault has been mapped into the sea integrating the seismicity associated to its SW block and the newest geological mapping on land. At the same time, what is observed in the northwest prolongation and termination of the fault against the oceanic crust of the abyssal plain is a continental slope that is full of mass-wasting processes along more than 80 km length, showing gravitational and submarine slide processes in an area that roughly occupies 2000 km 2 and involves a volume of unstable mass estimated in more than 1000 km3 . One of the biggest displaced masses made the Aviles canyon change its trend to N-S in an almost 90° bend close to the middle slope. Although the displaced masses

  17. Tectonics, basin analysis and organic geochemical attributes of Permian through Mesozoic deposits and their derivative oils of the Turpan-Hami basin, northwestern China

    NASA Astrophysics Data System (ADS)

    Greene, Todd Jeremy

    The Turpan-Hami basin is a major physiographic and geologic feature of northwest China, yet considerable uncertainty exists as to the timing of its inception, its late Paleozoic and Mesozoic tectonic history, and the relationship of its petroleum systems to those of the nearby Junggar basin. Mesozoic sedimentary fades, regional unconformities, sediment dispersal patterns, and sediment compositions within the Turpan-Hami and southern Junggar basins suggest that these basins were initially separated between Early Triassic and Early Jurassic time. Prior to separation, Upper Permian profundal lacustrine and fan-delta fades and Triassic coarse-grained braided-fluvial/alluvial fades were deposited across a contiguous Junggar-Turpan-Hami basin. Permian through Triassic fades were derived mainly from the Tian Shan to the south as indicated by northward-directed paleocurrent directions and geochemical provenance of granitoid cobbles. Lower through Middle Jurassic strata begin to reflect ponded coal-forming, lake-plain environments within the Turpan-Hami basin. A sharp change in sedimentary-lithic-rich Lower Jurassic sandstone followed by a return to lithic volcanic-rich Middle Jurassic sandstone points to the initial uplift and unroofing of the largely andesitic Bogda Shan range, which first shed its sedimentary cover as it emerged to become the partition between the Turpan-Hami and southern Junggar basins. In Turpan-Hami, source rock age is one of three major statistically significant discriminators of effective source rocks in the basin. A newly developed biomarker parameter appears to track conifer evolution and can distinguish Permian rocks and their correlative oils from Jurassic coals and mudrocks, and their derivative oils. Source fades is a second key control on petroleum occurrence and character. By erecting rock-to-oil correlation models, the biomarker parameters separate oil families into end-member groups: Group 1 oils---Lower/Middle Jurassic peatland

  18. Petroleum systems of the Po Basin Province of northern Italy and the northern Adriatic Sea; Porto Garibaldi (biogenic), Meride/Riva di Solto (thermal), and Marnoso Arenacea (thermal)

    USGS Publications Warehouse

    Lindquist, Sandra J.

    1999-01-01

    The Porto Garibaldi total petroleum system dominates the Po Basin Province of onshore northern Italy and offshore Italy and Croatia in the northern Adriatic Sea. Porto Garibaldi contains Pliocene (primarily) and Pleistocene (secondarily) biogenic gas ? approximately 16 TCF (2.66 BBOE) ultimately recoverable ? accumulated in co-eval siliciclastic reservoirs. This area was the northwestern edge of the Gondwanan (African) continental plate in pre-Hercynian time until the assembly of Pangea, a dominantly carbonate passive continental margin during the Mesozoic breakup of Pangea, and a Cenozoic collision zone with siliciclastic foredeep and foreland regions surrounded by thrust belts. At least two other petroleum systems, with Triassic (Meride / Riva di Solto) and Miocene (Marnoso Arenacea) source rocks, contribute oil and thermal gas reserves (nearly 1 BBOE) to the province. The major time of hydrocarbon expulsion of the thermal systems was Late Neogene during the Alpine and Apennine orogenies. Local Mesozoic oil expulsion from Triassic rocks also occurred, but those oils either were not trapped or were leaked from faulty traps through time.

  19. Architecture of ductile-type, hyper-extended passive margins: Geological constraints from the inverted Cretaceous basin of the North-Pyrenean Zone ('Chaînons Béarnais', Western Pyrenees)

    NASA Astrophysics Data System (ADS)

    Corre, Benjamin; Lagabrielle, Yves; Labaume, Pierre; Lahfid, Abdeltif; Boulvais, Philippe; Bergamini, Geraldine; Fourcade, Serge; Clerc, Camille

    2017-04-01

    Sub-continental lithospheric mantle rocks are exhumed at the foot of magma-poor distal passive margins as a response to extreme stretching of the continental crust during plate separation. Remnants of the Northern Iberian paleo-passive margin are now exposed in the North-Pyrenean Zone (NPZ) and represent field analogues to study the processes of continental crust thinning and subcontinental mantle exhumation. The NPZ results from the inversion of basins opened between the Iberia and Europa plates during Albo-Cenomanian times. In the western NPZ, the 'Chaînons Béarnais' ranges display a fold-and-thrust structure involving the Mesozoic sedimentary cover, decoupled from its continental basement and associated with peridotite bodies in tectonic contact with Palaeozoic basement lenses of small size. Continental extension developed under hot thermal conditions, as demonstrated by the syn-metamorphic Cretaceous ductile deformation affecting both the crustal basement and the allochthonous Mesozoic cover. In this study, we present structural and geochemical data providing constraints to reconstruct the evolution of the northern Iberia paleo-margin. Field work confirms that the pre-rift Mesozoic cover is intimately associated to mantle rocks and to thin tectonic lenses of crustal basement. It also shows that the pre-rift cover was detached from its bedrock at the Keuper evaporites level and was welded to mantle rocks during their exhumation at the foot of the hyper-extended margin. The crust/mantle detachment fault is a major shear zone characterized by anastomosed shear bands defining a plurimetric phacoidal fabric at the top of the serpentinized mantle. The detachment is marked by a layer of metasomatic rocks, locally 20 meters thick, made of talc-chlorite-pyrite-rich rocks that developped under greenschist facies conditions. Raman Spectroscopy on Carbonaceous Materials (RSCM), performed on the Mesozoic cover reveal that the entire sedimentary pile underwent temperatures

  20. Temporal and spatial differences in microbial composition during the manufacture of a continental-type cheese.

    PubMed

    O'Sullivan, Daniel J; Cotter, Paul D; O'Sullivan, Orla; Giblin, Linda; McSweeney, Paul L H; Sheehan, Jeremiah J

    2015-04-01

    We sought to determine if the time, within a production day, that a cheese is manufactured has an influence on the microbial community present within that cheese. To facilitate this, 16S rRNA amplicon sequencing was used to elucidate the microbial community dynamics of brine-salted continental-type cheese in cheeses produced early and late in the production day. Differences in the microbial composition of the core and rind of the cheese were also investigated. Throughout ripening, it was apparent that cheeses produced late in the day had a more diverse microbial population than their early equivalents. Spatial variation between the cheese core and rind was also noted in that cheese rinds were initially found to have a more diverse microbial population but thereafter the opposite was the case. Interestingly, the genera Thermus, Pseudoalteromonas, and Bifidobacterium, not routinely associated with a continental-type cheese produced from pasteurized milk, were detected. The significance, if any, of the presence of these genera will require further attention. Ultimately, the use of high-throughput sequencing has facilitated a novel and detailed analysis of the temporal and spatial distribution of microbes in this complex cheese system and established that the period during a production cycle at which a cheese is manufactured can influence its microbial composition. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Tertiary or Mesozoic komatiites from Gorgona Island, Colombia: Field relations and geochemistry

    NASA Astrophysics Data System (ADS)

    Echeverría, Lina M.

    1980-08-01

    An exceptional occurrence of ultramafic lavas within the volcanic member of the Mesozoic (or younger) Gorgona Igneous Complex represents the first known komatiites of post-Precambrian age. Gorgona komatiites are virtually unaltered and display typical spinifex textures, with 7 10 cm long plates of olivine (Fo 88 to 91) surrounded by acicular aluminous augite, subordinate plagioclase (An 56 to 78), basaltic glass, and two spinel phases. The MgO contents of the komatiites range from 15 to 22 wt.%. Sr and Nd isotopic compositions are indicative of depletion of incompatible elements in the mantle source region, as is the case for “normal” mid-ocean ridge basalts. The komatiites are low in total REE abundances and extremely depleted in LREE. They represent primary melts generated by high degree of partial melting of the mantle. Eruption temperatures are estimated at 1,450° to 1,500° C.

  2. Ocean Drilling Program Leg 178 (Antarctic Peninsula): Sedimentology of glacially influenced continental margin topsets and foresets

    USGS Publications Warehouse

    Eyles, N.; Daniels, J.; Osterman, L.E.; Januszczak, N.

    2001-01-01

    Ocean Drilling Program Leg 178 (February-April 1998) drilled two sites (Sites 1097 and 1103) on the outer Antarctic Peninsula Pacific continental shelf. Recovered strata are no older than late Miocene or early Pliocene (<4.6 Ma). Recovery at shallow depths in loosely consolidated and iceberg-turbated bouldery sediment was poor but improved with increasing depth and consolidation to allow description of lithofacies and biofacies and interpretation of depositional environment. Site 1097 lies on the outer shelf within Marguerite Trough which is a major outlet for ice expanding seaward from the Antarctic Peninsula and reached a maximum depth drilled of 436.6 m below the sea floor (mbsf). Seismic stratigraphic data show flat-lying upper strata resting on strata that dip gently seaward. Uppermost strata, to a depth of 150 mbsf, were poorly recovered, but data suggest they consist of diamictites containing reworked and abraded marine microfauna. This interval is interpreted as having been deposited largely as till produced by subglacial cannibalization of marine sediments (deformation till) recording ice sheet expansion across the shelf. Underlying gently dipping strata show massive, stratified and graded diamictite facies with common bioturbation and slump stuctures that are interbedded with laminated and massive mudstones with dropstones. The succession contains a well-preserved in situ marine microfauna typical of open marine and proglacial marine environments. The lower gently dipping succession at Site 1097 is interpreted as a complex of sediment gravity flows formed of poorly sorted glacial debris. Site 1103 was drilled in that part of the continental margin that shows uppermost flat-lying continental shelf topsets overlying steeper dipping slope foresets seaward of a structural mid-shelf high. Drilling reached a depth of 363 mbsf with good recovery in steeply dipping continental slope foreset strata. Foreset strata are dominated by massive and chaotically

  3. West margin of North America - A synthesis of recent seismic transects

    USGS Publications Warehouse

    Fuis, G.S.

    1998-01-01

    A comparison of the deep structure along nine recent transects of the west margin of North America shows many important similarities and differences. Common tectonic elements identified in the deep structure along these transects include actively subducting oceanic crust, accreted oceanic/arc (or oceanic-like) lithosphere of Mesozoic through Cenozoic ages. Cenozoic accretionary prisms, Mesozoic accretionary prisms, backstops to the Mesozoic prisms, and undivided lower crust. Not all of these elements are present along all transects. In this study, nine transects, including four crossing subduction zones and five crossing transform faults, are plotted at the same scale and vertical exaggeration (V.E. 1:1), using the above scheme for identifying tectonic elements. The four subduction-zone transects contain actively subducting oceanic crust. Cenozoic accretionary prisms, and bodies of basaltic rocks accreted in the Cenozoic, including remnants of a large, oceanic plateau in the Oregon and Vancouver Island transects. Rocks of age and composition (Eocene basalt) similar to the oceanic plateau are currently subducting in southern Alaska, where they are doubled up on top of Pacific oceanic crust and have apparently created a giant asperity, or impediment to subduction. Most of the subduction-zone transects also contain Mesozoic accretionary prisms, and two of them, Vancouver Island and Alaska, also contain thick, technically underplated bodies of late Mesozoic/early Cenozoic oceanic lithosphere, interpreted as fragments of the extinct Kula plate. In the upper crust, most of the five transform-fault transects (all in California) reflect: (1) tectonic wedging of a Mesozoic accretionary prism into a backstop, which includes Mesozoic/early Cenozoic forearc rocks and Mesozoic ophiolitic/arc basement rocks: and (2) shuffling of the subduction margin of California by strike-slip faulting. In the lower crust, they may reflect migration of the Mendocino triple junction northward

  4. Groundwater dolocretes from the Upper Triassic of the Paris Basin, France: a case study of an arid, continental diagenetic facies

    USGS Publications Warehouse

    Spotl, S.; Wright, V.P.

    1992-01-01

    The majority of the dolomite consists of a finely crystalline groundmass of dolomicrospar and, less commonly, dolomicrite. Glaebules, irregular spar-filled cracks, spheroidal dolomite, silificiation and vuggy porosity are locally abundant in the massive dolomite. In contrast, biologically induced micromorphological features such as rhizocretions and alveolar-septal fabrics were observed in the thin, nodular dolomite beds. Petrographic observations argue in favour of primary (proto)dolomite precipitation, although early diagenetic replacement of calcite by (proto)dolomite cannot be ruled out. Strontium and carbon isotope data of early diagenetic dolocrete cements and oxygen isotope data of early diagenetic silica indicate an entirely non-marine, continental origin for the groundwaters. -from Authors

  5. Archean komatiite volcanism controlled by the evolution of early continents.

    PubMed

    Mole, David R; Fiorentini, Marco L; Thebaud, Nicolas; Cassidy, Kevin F; McCuaig, T Campbell; Kirkland, Christopher L; Romano, Sandra S; Doublier, Michael P; Belousova, Elena A; Barnes, Stephen J; Miller, John

    2014-07-15

    The generation and evolution of Earth's continental crust has played a fundamental role in the development of the planet. Its formation modified the composition of the mantle, contributed to the establishment of the atmosphere, and led to the creation of ecological niches important for early life. Here we show that in the Archean, the formation and stabilization of continents also controlled the location, geochemistry, and volcanology of the hottest preserved lavas on Earth: komatiites. These magmas typically represent 50-30% partial melting of the mantle and subsequently record important information on the thermal and chemical evolution of the Archean-Proterozoic Earth. As a result, it is vital to constrain and understand the processes that govern their localization and emplacement. Here, we combined Lu-Hf isotopes and U-Pb geochronology to map the four-dimensional evolution of the Yilgarn Craton, Western Australia, and reveal the progressive development of an Archean microcontinent. Our results show that in the early Earth, relatively small crustal blocks, analogous to modern microplates, progressively amalgamated to form larger continental masses, and eventually the first cratons. This cratonization process drove the hottest and most voluminous komatiite eruptions to the edge of established continental blocks. The dynamic evolution of the early continents thus directly influenced the addition of deep mantle material to the Archean crust, oceans, and atmosphere, while also providing a fundamental control on the distribution of major magmatic ore deposits.

  6. Archean komatiite volcanism controlled by the evolution of early continents

    PubMed Central

    Mole, David R.; Fiorentini, Marco L.; Thebaud, Nicolas; Cassidy, Kevin F.; McCuaig, T. Campbell; Kirkland, Christopher L.; Romano, Sandra S.; Doublier, Michael P.; Belousova, Elena A.; Barnes, Stephen J.; Miller, John

    2014-01-01

    The generation and evolution of Earth’s continental crust has played a fundamental role in the development of the planet. Its formation modified the composition of the mantle, contributed to the establishment of the atmosphere, and led to the creation of ecological niches important for early life. Here we show that in the Archean, the formation and stabilization of continents also controlled the location, geochemistry, and volcanology of the hottest preserved lavas on Earth: komatiites. These magmas typically represent 50–30% partial melting of the mantle and subsequently record important information on the thermal and chemical evolution of the Archean–Proterozoic Earth. As a result, it is vital to constrain and understand the processes that govern their localization and emplacement. Here, we combined Lu-Hf isotopes and U-Pb geochronology to map the four-dimensional evolution of the Yilgarn Craton, Western Australia, and reveal the progressive development of an Archean microcontinent. Our results show that in the early Earth, relatively small crustal blocks, analogous to modern microplates, progressively amalgamated to form larger continental masses, and eventually the first cratons. This cratonization process drove the hottest and most voluminous komatiite eruptions to the edge of established continental blocks. The dynamic evolution of the early continents thus directly influenced the addition of deep mantle material to the Archean crust, oceans, and atmosphere, while also providing a fundamental control on the distribution of major magmatic ore deposits. PMID:24958873

  7. Influence of mid-crustal rheology on the deformation behavior of continental crust in the continental subduction zone

    NASA Astrophysics Data System (ADS)

    Li, Fucheng; Sun, Zhen; Zhang, Jiangyang

    2018-06-01

    Although the presence of low-viscosity middle crustal layer in the continental crust has been detected by both geophysical and geochemical studies, its influence on the deformation behavior of continental crust during subduction remains poorly investigated. To illustrate the crustal deformation associated with layered crust during continental subduction, we conducted a suite of 2-D thermo-mechanical numerical studies with visco-brittle/plastic rheology based on finite-differences and marker-in-cell techniques. In the experiments, we established a three-layer crustal model with a quartz-rich middle crustal layer embedded between the upper and lower continental crust. Results show that the middle crustal layer determines the amount of the accreted upper crust, maximum subduction depth, and exhumation path of the subducted upper crust. By varying the initial effective viscosity and thickness of the middle crustal layer, the further effects can be summarized as: (1) a rheologically weaker and/or thicker middle crustal layer results in a larger percentage of the upper crust detaching from the underlying slab and accreting at the trench zone, thereby leading to more serious crustal deformation. The rest of the upper crust only subducts into the depths of high pressure (HP) conditions, causing the absence of ultra-high pressure (UHP) metamorphic rocks; (2) a rheologically stronger and/or thinner middle crustal layer favors the stable subduction of the continental crust, dragging the upper crust to a maximum depth of ∼100 km and forming UHP rocks; (3) the middle crustal layer flows in a ductile way and acts as an exhumation channel for the HP-UHP rocks in both situations. In addition, the higher convergence velocity decreases the amount of subducted upper crust. A detailed comparison of our modeling results with the Himalayan collisional belt are conducted. Our work suggests that the presence of low-viscosity middle crustal layer may be another possible mechanism for

  8. pre-Mesozoic evolution of the basement of the Catalan Coastal Ranges: implications from geochemical and Sm-Nd isotope data of the Palaeozoic succession of the Collserola Range

    NASA Astrophysics Data System (ADS)

    Vilà, Miquel; Pin, Christian

    2016-04-01

    In the whole of the Western Europe and neighbouring areas numerous studies have addressed the provenance of pre-Mesozoic sedimentary rocks and the Palaeozoic geodynamic evolution using the Sm-Nd systematics. However, at present, there are still large areas of the Variscan mountain chain without systematic determinations of their whole - rock Sm-Nd isotope signatures. This is the case of the Palaeozoic blocks of the Catalan Coastal Ranges (NE Iberia). In the context of the Variscan belt many authors interpret the Palaeozoic basement of the Catalan Coastal Ranges as part of the southern foreland basin of the mountain belt. The pre-Mesozoic rocks in the Catalan Coastal Ranges exhibit important stratigraphical affinities with those outcropping in the Eastern Pyrenees, Montagne Noire, Sardinia and Iberian Range. Paleogeographic reconstructions predict that the Catalan Coastal Ranges were located in a transitional area between the northern branch of the Ibero-Armorican arc and the core of the arc. The Collserola Range, located in the metropolitan area of Barcelona, includes a representative Palaeozoic stratigraphic section, from Cambro-Ordovician to Carboniferous, of the central part of the Catalan Coastal Ranges. In this presentation we present an up-to-date review of the stratigraphy and structure of the Palaeozoic of the Collserola Range, and provide geochemical and Sm-Nd isotope data to constrain the Pre-Mesozoic crustal evolution of this sector of the Variscan belt. Geochemical compositions indicate that the Palaeozoic siliciclastic rocks of the Collserola Range were fed by a relative mature heterogeneous source of sediment, comprising from quartz-rich sediments to intermediate igneous rocks. The siliciclastic rocks of the Collserola Range show great geochemical affinity with the turbidites of passive margins. The Sm-Nd signature of the siliciclastic rocks is compatible with those of the Palaeozoic and Late Proterozoic fine grained siliciclastic rocks of the

  9. Late Cretaceous-Cenozoic subduction-collision history of the Southern Neotethys: new evidence from the Çağlayancerit area, SE Turkey

    NASA Astrophysics Data System (ADS)

    Akıncı, Ahmet Can; Robertson, Alastair H. F.; Ünlügenç, Ulvi Can

    2016-01-01

    Evidence of the subduction-collision history of the S Neotethys is well exposed in the frontal part of the SE Anatolian thrust belt and the adjacent Arabian continental margin. The foreland succession in the study area begins with Eocene shelf carbonates, ranging from shallow marine to deeper marine, without sedimentary input from the Tauride continent to the north. After a regional hiatus (Oligocene), sedimentation resumed during the Early Miocene with terrigenous gravity-flow deposition in the north (Lice Formation) and shallow-marine carbonates further south. Clastic detritus was derived from the Tauride continent and oceanic accretionary material. The base of the overriding Tauride allochthon comprises ophiolite-derived debris flows, ophiolite-related mélange and dismembered ophiolitic rocks. Above this, the regional-scale Bulgurkaya sedimentary mélange (an olistostrome) includes blocks and dismembered thrust sheets of metamorphic rocks, limestone and sandstone, which include Late Cretaceous and Eocene foraminifera. The matrix is mainly strongly deformed Eocene-Oligocene mudrocks, hemipelagic marl and sandstone turbidites. The thrust stack is topped by a regionally extensive thrust sheet (Malatya metamorphic unit), which includes greenschist facies marble, calcschist, schist and phyllite, representing Tauride continental crust. Beginning during the Late Mesozoic, the S Neotethys subducted northwards beneath a backstop represented by the Tauride microcontinent (Malatya metamorphic unit). Ophiolites formed within the S Neotethys and accreted to the Tauride active margin. Large-scale sedimentary mélange developed along the Tauride active margin during Eocene-Oligocene. On the Arabian margin, a sedimentary hiatus and tilting (Oligocene) is interpreted to record initial continental collision. The Early Miocene terrigenous gravity flows represent a collision-related flexural foreland basin. Southward overthrusting of the Tauride allochthon took place during Early

  10. Temporal change in fragmentation of continental US forests

    Treesearch

    James D. Wickham; Kurt H. Riitters; Timothy G. Wade; Collin Homer

    2008-01-01

    Changes in forest ecosystem function and condition arise from changes in forest fragmentation. Previous studies estimated forest fragmentation for the continental United States (US). In this study, new temporal land-cover data from the National Land Cover Database (NLCD) were used to estimate changes in forest fragmentation at multiple scales for the continental US....

  11. Craton stability and continental lithosphere dynamics during plume-plate interaction

    NASA Astrophysics Data System (ADS)

    Wang, H.; Van Hunen, J.; Pearson, D.

    2013-12-01

    Survival of thick cratonic roots in a vigorously convecting mantle system for billions of years has long been studied by the geodynamical community. A high cratonic root strength is generally considered to be the most important factor. We first perform and discuss new numerical models to investigate craton stability in both Newtonian and non-Newtonian rheology in the stagnant lid regime. The results show that only a modest compositional rheological factor of Δη=10 with non-Newtonian rheology is required for the survival of cratonic roots in a stagnant lid regime. A larger rheological factor (100 or more) is needed to maintain similar craton longevity in a Newtonian rheology environment. Furthermore, chemical buoyancy plays an important role on craton stability and its evolution, but could only work with suitable compositional rheology. During their long lifespan, cratons experienced a suite of dynamic, tectonothermal events, such as nearby subduction and mantle plume activity. Cratonic nuclei are embedded in shorter-lived, more vulnerable continental areas of different thickness, composition and rheology, which would influence the lithosphere dynamic when tectonothermal events happen nearby. South Africa provides a very good example to investigate such dynamic processes as it hosts several cratons and there are many episodic thermal events since the Mesozoic as indicated by a spectrum of magmatic activity. We numerically investigate such an integrated system using the topographic evolution of cratons and surrounding lithosphere as a diagnostic observable. The post-70Ma thinning of pericratonic lithosphere by ~50km around Kaapvaal craton (Mather et al., 2011) is also investigated through our numerical models. The results show that the pericratonic lithosphere cools and grows faster than cratons do, but is also more likely to be effected by episodic thermal events. This leads to surface topography change that is significantly larger around the craton than within

  12. An alternative early opening scenario for the Central Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Labails, Cinthia; Olivet, Jean-Louis; Aslanian, Daniel; Roest, Walter R.

    2010-09-01

    The opening of the Central Atlantic Ocean basin that separated North America from northwest Africa is well documented and assumed to have started during the Late Jurassic. However, the early evolution and the initial breakup history of Pangaea are still debated: most of the existing models are based on one or multiple ridge jumps at the Middle Jurassic leaving the oldest crust on the American side, between the East Coast Magnetic Anomaly (ECMA) and the Blake Spur Magnetic Anomaly (BSMA). According to these hypotheses, the BSMA represents the limit of the initial basin and the footprint subsequent to the ridge jump. Consequently, the evolution of the northwest African margin is widely different from the northeast American margin. However, this setting is in contradiction with the existing observations. In this paper, we propose an alternative scenario for the continental breakup and the Mesozoic spreading history of the Central Atlantic Ocean. The new model is based on an analysis of geophysical data (including new seismic lines, an interpretation of the newly compiled magnetic data, and satellite derived gravimetry) and recently published results which demonstrate that the opening of the Central Atlantic Ocean started already during the Late Sinemurian (190 Ma), based on a new identification of the African conjugate to the ECMA and on the extent of salt provinces off Morocco and Nova Scotia. The identification of an African conjugate magnetic anomaly to BSMA, the African Blake Spur Magnetic Anomaly (ABSMA), together with the significant change in basement topography, are in good agreement with that initial reconstruction. The early opening history for the Central Atlantic Ocean is described in four distinct phases. During the first 20 Myr after the initial breakup (190-170 Ma, from Late Sinemurian to early Bajocian), oceanic accretion was extremely slow (˜ 0.8 cm/y). At the time of Blake Spur (170 Ma, early Bajocian), a drastic change occurred both in the relative

  13. Geomorphology of the Iberian Continental Margin

    NASA Astrophysics Data System (ADS)

    Maestro, Adolfo; López-Martínez, Jerónimo; Llave, Estefanía; Bohoyo, Fernando; Acosta, Juan; Hernández-Molina, F. Javier; Muñoz, Araceli; Jané, Gloria

    2013-08-01

    The submarine features and processes around the Iberian Peninsula are the result of a complex and diverse geological and oceanographical setting. This paper presents an overview of the seafloor geomorphology of the Iberian Continental Margin and the adjacent abyssal plains. The study covers an area of approximately 2.3 million km2, including a 50 to 400 km wide band adjacent to the coastline. The main morphological characteristics of the seafloor features on the Iberian continental shelf, continental slope, continental rise and the surrounding abyssal plains are described. Individual seafloor features existing on the Iberian Margin have been classified into three main groups according to their origin: tectonic and/or volcanic, depositional and erosional. Major depositional and erosional features around the Iberian Margin developed in late Pleistocene-Holocene times and have been controlled by tectonic movements and eustatic fluctuations. The distribution of the geomorphological features is discussed in relation to their genetic processes and the evolution of the margin. The prevalence of one or several specific processes in certain areas reflects the dominant morphotectonic and oceanographic controlling factors. Sedimentary processes and the resulting depositional products are dominant on the Valencia-Catalán Margin and in the northern part of the Balearic Promontory. Strong tectonic control is observed in the geomorphology of the Betic and the Gulf of Cádiz margins. The role of bottom currents is especially evident throughout the Iberian Margin. The Galicia, Portuguese and Cantabrian margins show a predominance of erosional features and tectonically-controlled linear features related to faults.

  14. Late Jurassic plutonism in the southwest U.S. Cordillera

    USGS Publications Warehouse

    Barth, A.P.; Wooden, J.L.; Howard, K.A.; Richards, J.L.

    2008-01-01

    Although plate reconstructions suggest that subduction was an approximately steady-state process from the mid-Mesozoic through the early Tertiary, recent precise geochronologic studies suggest highly episodic emplacement of voluminous continental-margin batholiths in the U.S. Cordillera. In central and southern California and western Arizona, major episodes of batholithic magmatism are known to have occurred in Permian-Triassic, Middle Jurassic, and late Early to Late Cretaceous time. However, recent studies of forearc-basin and continental-interior sediments suggest that Late Jurassic time was probably also a period of significant magmatism, although few dated plutons of this age have been recognized. We describe a belt of Late Jurassic plutonic and hypabyssal rocks at least 200 km in length that extends from the northwestern Mojave Desert through the Transverse Ranges. The belt lies outboard of both the voluminous Middle Jurassic arc and the ca. 148 Ma Independence dike swarm at these latitudes. The plutons include two intrusive suites emplaced between 157 and 149 Ma: a calc-alkaline suite compositionally unlike Permian-Triassic and Middle Jurassic mon-zonitic suites but similar to Late Cretaceous arc plutons emplaced across this region, and a contemporaneous but not comagmatic alkaline suite. The Late Jurassic was thus a time of both tectonic and magmatic transitions in the southern Cordillera. ?? 2008 The Geological Society of America.

  15. Do the pyramids show continental drift?

    PubMed

    Pawley, G S; Abrahamsen, N

    1973-03-02

    The mystery of the orientation of the Great Pyramids of Giza has remained unexplained for many decades. The general alignment is 4 minutes west of north. It is argued that this is not a builders' error but is caused by movement over the centuries. Modern theories of continental drift do not predict quite such large movements, but other causes of polar wandering give even smaller shifts. Thus, continental drift is the most likely explanation, although somewhat implausible, especially as relevant measurements have been made over a 50-year period, whereas geophysical measurements of sea-floor spreading relate to million-year time scales.

  16. Seismic imaging of deep crustal melt sills beneath Costa Rica suggests a method for the formation of the Archean continental crust

    NASA Astrophysics Data System (ADS)

    Harmon, Nicholas; Rychert, Catherine A.

    2015-11-01

    Continental crust formed billions of years ago but cannot be explained by a simple evolution of primary mantle magmas. A multi-step process is required that likely includes re-melting of wet metamorphosed basalt at high pressures. Such a process could occur at depth in oceanic crust that has been thickened by a large magmatic event. In Central America, variations in geologically inferred, pre-existing oceanic crustal thickness beneath the arc provides an excellent opportunity to study its effect on magma storage, re-melting of meta-basalts, and the potential for creating continental crust. We use surface waves derived from ambient noise tomography to image 6% radially anisotropic structures in the thickened oceanic plateau crust of Costa Rica that likely represent deep crustal melt sills. In Nicaragua, where the arc is forming on thinner oceanic crust, we do not image these deep crustal melt sills. The presence of these deep sills correlates with more felsic arc outputs from the Costa Rican Arc suggesting pre-existing thickened crust accelerates processing of primary basalts to continental compositions. In the Archean, reprocessing thickened oceanic crust by subsequent hydrated hotspot volcanism or subduction zone volcanism may have similarly enhanced formation of early continental crust. This mechanism may have been particularly important if subduction did not initiate until 3 Ga.

  17. From continental to oceanic rifting in the Gulf of California

    NASA Astrophysics Data System (ADS)

    Ferrari, Luca; Bonini, Marco; Martín, Arturo

    2017-11-01

    The continental margin of northwestern Mexico is the youngest example of the transition from a convergent plate boundary to an oblique divergent margin that formed the Gulf of California rift. Subduction of the Farallon oceanic plate during the Cenozoic progressively brought the East Pacific Rise (EPR) toward the North America trench. In this process increasingly younger and buoyant oceanic lithosphere entered the subduction zone until subduction ended just before most of the EPR could collide with the North America continental lithosphere. The EPR segments bounding the unsubducted parts of the Farallón plate remnants (Guadalupe and Magdalena microplates) also ceased spreading (Lonsdale, 1991) and a belt of the North American plate (California and Baja California Peninsula) became coupled with the Pacific Plate and started moving northwestward forming the modern Gulf of California oblique rift (Nicholson et al., 1994; Bohannon and Parsons, 1995). The timing of the change from plate convergence to oblique divergence off western Mexico has been constrained at the middle Miocene (15-12.5 Ma) by ocean floor morphology and magnetic anomalies as well as plate tectonic reconstructions (Atwater and Severinghaus, 1989; Stock and Hodges, 1989; Lonsdale, 1991), although the onset of transtensional deformation and the amount of right lateral displacement within the Gulf region are still being studied (Oskin et al., 2001; Fletcher et al., 2007; Bennett and Oskin, 2014). Other aspects of the formation of the Gulf of California remain not well understood. At present the Gulf of California straddles the transition from continental transtension in the north to oceanic spreading in the south. Seismic reflection-refraction data indicate asymmetric continent-ocean transition across conjugate margins of rift segments (González-Fernández et al., 2005; Lizarralde et al., 2007; Miller and Lizarralde, 2013; Martín-Barajas et al., 2013). The asymmetry may be related to crustal

  18. The subduction-accretion history of the Bangong-Nujiang Ocean: Constraints from provenance and geochronology of the Mesozoic strata near Gaize, central Tibet

    NASA Astrophysics Data System (ADS)

    Li, Shun; Ding, Lin; Guilmette, Carl; Fu, Jiajun; Xu, Qiang; Yue, Yahui; Henrique-Pinto, Renato

    2017-04-01

    The Mesozoic strata, within the Bangong-Nujiang suture zone in central Tibet, recorded critical information about the subduction-accretion processes of the Bangong-Nujiang Ocean prior to the Lhasa-Qiangtang collision. This paper reports detailed field observations, petrographic descriptions, sandstone detrital zircon U-Pb ages and Hf isotopic analyses from an accretionary complex (preserved as Mugagangri Group) and the unconformably overlying Shamuluo Formation near Gaize. The youngest detrital zircon ages, together with other age constraints from literature, suggest that the Mugagangri Group was deposited during late Triassic-early Jurassic, while the Shamuluo Formation was deposited during late Jurassic-early Cretaceous. Based on the differences in lithology, age and provenance, the Mugagangri Group is subdivided into the upper, middle and lower subunits. These units are younging structurally downward/southward, consistent with models of progressive off-scrapping and accretion in a southward-facing subduction complex. The upper subunit, comprising mainly quartz-sandstone and siliceous mud/shale, was deposited in abyssal plain environment close to the Qiangtang passive margin during late Triassic, with sediments derived from the southern Qiangtang block. The middle and lower subunits comprise mainly lithic-quartz-sandstone and mud/shale, containing abundant ultramafic/ophiolitic fragments. The middle subunit, of late Triassic-early Jurassic age, records a transition in tectono-depositional setting from abyssal plain to trench-wedge basin, with sudden influx of sediments sourced from the central Qiangtang metamorphic belt and northern Qiangtang magmatic belt. The appearance of ultramafic/ophiolitic fragments in the middle subunit reflects the subduction initiation. The lower subunit was deposited in a trench-wedge basin during early Jurassic, with influx of Jurassic-aged zircons originating from the newly active southern Qiangtang magmatic arc. The lower subunit

  19. Geochronology and geochemistry constraints of the Early Cretaceous Taibudai porphyry Cu deposit, northeast China, and its tectonic significance

    NASA Astrophysics Data System (ADS)

    Zhou, Zhen-Hua; Mao, Jing-Wen; Wu, Xin-Li; Ouyang, Hen-Gen

    2015-05-01

    The southern Great Xing'an Range (SGXR), located in the southeastern part of Inner Mongolia, China, shows intense Mesozoic tectono-magmatic activity and hosts economically important polymetallic (Cu-Pb-Zn-Sn-Fe-Ag-Au-Mo) mineralization. Here, we present new zircon U-Pb ages, whole-rock geochemical data, Nd-Sr-Hf isotopic data and Re-Os ages for the Taibudai deposit in the SGXR. The Taibudai granitoids show high SiO2 (70.62-72.13 wt.%) and alkali (Na2O + K2O = 7.04-8.60 wt.%) concentrations, low MgO (0.89-1.37 wt.%) and Al2O3 (∼14 wt.%), ASI ratios <1.1 (0.94-0.97), LILEs (e.g., Rb) enriched, HFSEs (e.g., Nb, Ta, Ti, and P) depleted, and have low Sr and Yb concentrations, classifying these rocks as fractionated I-type granites. The Taibudai granitoids have negative εNd (t) values ranging from -2.2 to -1.6 and relatively low initial 87Sr/86Sr ratios from 0.70536 to 0.70581. In situ Hf isotopic analyses on zircons using LA-MC-ICP-MS show variable positive εHf (t) values ranging from +0.80 to +13.55, corresponding to relatively young two-stage Hf model ages from 801 to 942 Ma (excluding one spot). These mineralogical, geochemical, and isotopic features strongly suggest that the primary magmas of the Taibudai granitoids were derived mainly from the partial remelting of Neoproterozoic juvenile crustal material, with no remarkable modification through incorporation of continental or subduction-related material. Re-Os isotope analyses of molybdenite from the deposit yield an ore-forming age of 137.1 ± 1.4 Ma. Re contents range from 4.37 to 41.77 ppm, implying ore material components have a mixed crust-mantle origin. SHRIMP analysis of zircons show that the monzogranitic porphyry and biotite granite in the Taibudai deposit were formed at 137.0 ± 0.9 Ma and 138.3 ± 0.9 Ma, respectively, indicating a temporal link between granitic magmatism and Cu mineralization. This result, combined with the regional geology, tectonic evolution, and age data from the literature

  20. Early Carboniferous magmatism in Lhasa generated in passive continental margin: constrained by new SIMS dating from Carboniferous arc in Qiantang terrane, Tibet

    NASA Astrophysics Data System (ADS)

    Zhang, X. Z.; Dan, W.; Wang, Q.; Hao, L. L.; Qi, Y.

    2016-12-01

    In today's oceans, they are rarely undergone subduction on one side and extension on the opposite side. In contrast, there are a few magmatisms in the passive continental margins in the Tethys Ocean. However, because of their long and complex evolution of the northern continental margin of the Gondwana, the geodynamics of the magmatism occurred in this area is speculative or highly depute. One of these examples is the geodynamics of the 360-350 Ma magmatism in southern Lhasa, Tibet. Many authors speculated that it was generated in back-arc setting. Our recent new high-resolution SIMS zircon U-Pb dating reveals that there is a subduction arc with ages of 370-350 Ma in the Qiangtang terrane. The arc rocks compose of andesites, plagiogranites, A-type granites and cumulated gabbros, indicating an initial subduction. This initial subduction arc is located on the north margin of the eastern Paleo-Tethys Ocean, and it was formed slightly earlier than the 360-350 Ma magmatism in southern Lhasa, located on the south margin of the eastern Paleo-Tethys Ocean. Combined with similar aged magmatism generating the back-arc basin in the Sanjiang area, the 360-350 Ma magmatism in southern Lhasa was proposed to be generated in a passive continental margin, and induced by the regional extensional setting related to the subduction in the north margin of the eastern Paleo-Tethys Ocean.