Sample records for early metabolite abnormalities

  1. Early Cord Metabolite Index and Outcome in Perinatal Asphyxia and Hypoxic-Ischaemic Encephalopathy.

    PubMed

    Ahearne, C E; Denihan, N M; Walsh, B H; Reinke, S N; Kenny, L C; Boylan, G B; Broadhurst, D I; Murray, D M

    2016-01-01

    A 1H-NMR-derived metabolomic index based on early umbilical cord blood alterations of succinate, glycerol, 3-hydroxybutyrate and O-phosphocholine has shown potential for the prediction of hypoxic-ischaemic encephalopathy (HIE) severity. To evaluate whether this metabolite score can predict 3-year neurodevelopmental outcome in infants with perinatal asphyxia and HIE, compared with current standard biochemical and clinical markers. From September 2009 to June 2011, infants at risk of perinatal asphyxia were recruited from a single maternity hospital. Cord blood was drawn and biobanked at delivery. Neonates were monitored for development of encephalopathy both clinically and electrographically. Neurodevelopmental outcome was assessed at 36-42 months using the Bayley Scales of Infant and Toddler Development, ed. III (BSID-III). Death and cerebral palsy were also considered as abnormal end points. Thirty-one infants had both metabolomic analysis and neurodevelopmental outcome at 36-42 months. No child had a severely abnormal BSID-III result. The metabolite index significantly correlated with outcome (ρ2 = 0.30, p < 0.01), which is robust to predict both severe outcome (area under the receiver operating characteristic curve: 0.92, p < 0.01) and intact survival (0.80, p = 0.01). There was no correlation between the index score and performance in the individual BSID-III subscales (cognitive, language, motor). The metabolite index outperformed other standard biochemical markers at birth for prediction of outcome at 3 years, but was not superior to EEG or the Sarnat score. © 2016 S. Karger AG, Basel.

  2. LC-MS/MS-based approach for obtaining exposure estimates of metabolites in early clinical trials using radioactive metabolites as reference standards.

    PubMed

    Zhang, Donglu; Raghavan, Nirmala; Chando, Theodore; Gambardella, Janice; Fu, Yunlin; Zhang, Duxi; Unger, Steve E; Humphreys, W Griffith

    2007-12-01

    An LC-MS/MS-based approach that employs authentic radioactive metabolites as reference standards was developed to estimate metabolite exposures in early drug development studies. This method is useful to estimate metabolite levels in studies done with non-radiolabeled compounds where metabolite standards are not available to allow standard LC-MS/MS assay development. A metabolite mixture obtained from an in vivo source treated with a radiolabeled compound was partially purified, quantified, and spiked into human plasma to provide metabolite standard curves. Metabolites were analyzed by LC-MS/MS using the specific mass transitions and an internal standard. The metabolite concentrations determined by this approach were found to be comparable to those determined by valid LC-MS/MS assays. This approach does not requires synthesis of authentic metabolites or the knowledge of exact structures of metabolites, and therefore should provide a useful method to obtain early estimates of circulating metabolites in early clinical or toxicological studies.

  3. Dialkyl phosphate urinary metabolites and chromosomal abnormalities in human sperm.

    PubMed

    Figueroa, Zaida I; Young, Heather A; Meeker, John D; Martenies, Sheena E; Barr, Dana Boyd; Gray, George; Perry, Melissa J

    2015-11-01

    The past decade has seen numerous human health studies seeking to characterize the impacts of environmental exposures, such as organophosphate (OP) insecticides, on male reproduction. Despite an extensive literature on OP toxicology, many hormone-mediated effects on the testes are not well understood. This study investigated environmental exposures to OPs and their association with the frequency of sperm chromosomal abnormalities (i.e., disomy) among adult men. Men (n=159) from a study assessing the impact of environmental exposures on male reproductive health were included in this investigation. Multi-probe fluorescence in situ hybridization (FISH) for chromosomes X, Y, and 18 was used to determine XX18, YY18, XY18 and total disomy in sperm nuclei. Urine was analyzed using gas chromatography coupled with mass spectrometry for concentrations of dialkyl phosphate (DAP) metabolites of OPs [dimethylphosphate (DMP); dimethylthiophosphate (DMTP); dimethyldithiophosphate (DMDTP); diethylphosphate (DEP); diethylthiophosphate (DETP); and diethyldithiophosphate (DEDTP)]. Poisson regression was used to model the association between OP exposures and disomy measures. Incidence rate ratios (IRRs) were calculated for each disomy type by exposure quartiles for most metabolites, controlling for age, race, BMI, smoking, specific gravity, total sperm concentration, motility, and morphology. A significant positive trend was seen for increasing IRRs by exposure quartiles of DMTP, DMDTP, DEP and DETP in XX18, YY18, XY18 and total disomy. A significant inverse association was observed between DMP and total disomy. Findings for total sum of DAP metabolites concealed individual associations as those results differed from the patterns observed for each individual metabolite. Dose-response relationships appeared nonmonotonic, with most of the increase in disomy rates occurring between the second and third exposure quartiles and without additional increases between the third and fourth

  4. Abnormal early cleavage events predict early embryo demise: sperm oxidative stress and early abnormal cleavage.

    PubMed

    Burruel, Victoria; Klooster, Katie; Barker, Christopher M; Pera, Renee Reijo; Meyers, Stuart

    2014-10-13

    Human embryos resulting from abnormal early cleavage can result in aneuploidy and failure to develop normally to the blastocyst stage. The nature of paternal influence on early embryo development has not been directly demonstrated although many studies have suggested effects from spermatozoal chromatin packaging, DNA damage, centriolar and mitotic spindle integrity, and plasma membrane integrity. The goal of this study was to determine whether early developmental events were affected by oxidative damage to the fertilizing sperm. Survival analysis was used to compare patterns of blastocyst formation based on P2 duration. Kaplan-Meier survival curves demonstrate that relatively few embryos with short (<1 hr) P2 times reached blastocysts, and the two curves diverged beginning on day 4, with nearly all of the embryos with longer P2 times reaching blastocysts by day 6 (p < .01). We determined that duration of the 2nd to 3rd mitoses were sensitive periods in the presence of spermatozoal oxidative stress. Embryos that displayed either too long or too short cytokineses demonstrated an increased failure to reach blastocyst stage and therefore survive for further development. Although paternal-derived gene expression occurs later in development, this study suggests a specific role in early mitosis that is highly influenced by paternal factors.

  5. Early physiological abnormalities after simian immunodeficiency virus infection.

    PubMed

    Horn, T F; Huitron-Resendiz, S; Weed, M R; Henriksen, S J; Fox, H S

    1998-12-08

    Central nervous system (CNS) damage and dysfunction are devastating consequences of HIV infection. Although the CNS is one of the initial targets for HIV infection, little is known about early viral-induced abnormalities that can affect CNS function. Here we report the detection of early physiological abnormalities in simian immunodeficiency virus-infected monkeys. The acute infection caused a disruption of the circadian rhythm manifested by rises in body temperature, observed in all five individuals between 1 and 2 weeks postinoculation (p.i.), accompanied by a reduction in daily motor activity to 50% of control levels. Animals remained hyperthermic at 1 and 2 months p.i. and returned to preinoculation temperatures at 3 months after viral inoculation. Although motor activity recovered to baseline values at 1 month p.i., activity levels then decreased to approximately 50% of preinoculation values over the next 2 months. Analysis of sensory-evoked responses 1 month p.i. revealed distinct infection-induced changes in auditory-evoked potential peak latencies that persisted at 3 months after viral inoculation. These early physiological abnormalities may precede the development of observable cognitive or motor deficiencies and can provide an assay to evaluate agents to prevent or alleviate neuronal dysfunction.

  6. Gross Motor Development, Movement Abnormalities, and Early Identification of Autism

    PubMed Central

    Young, Gregory S.; Goldring, Stacy; Greiss-Hess, Laura; Herrera, Adriana M.; Steele, Joel; Macari, Suzanne; Hepburn, Susan; Rogers, Sally J.

    2015-01-01

    Gross motor development (supine, prone, rolling, sitting, crawling, walking) and movement abnormalities were examined in the home videos of infants later diagnosed with autism (regression and no regression subgroups), developmental delays (DD), or typical development. Group differences in maturity were found for walking, prone, and supine, with the DD and Autism-No Regression groups both showing later developing motor maturity than typical children. The only statistically significant differences in movement abnormalities were in the DD group; the two autism groups did not differ from the typical group in rates of movement abnormalities or lack of protective responses. These findings do not replicate previous investigations suggesting that early motor abnormalities seen on home video can assist in early identification of autism. PMID:17805956

  7. Early physiological abnormalities after simian immunodeficiency virus infection

    PubMed Central

    Horn, Thomas F. W.; Huitron-Resendiz, Salvador; Weed, Michael R.; Henriksen, Steven J.; Fox, Howard S.

    1998-01-01

    Central nervous system (CNS) damage and dysfunction are devastating consequences of HIV infection. Although the CNS is one of the initial targets for HIV infection, little is known about early viral-induced abnormalities that can affect CNS function. Here we report the detection of early physiological abnormalities in simian immunodeficiency virus-infected monkeys. The acute infection caused a disruption of the circadian rhythm manifested by rises in body temperature, observed in all five individuals between 1 and 2 weeks postinoculation (p.i.), accompanied by a reduction in daily motor activity to 50% of control levels. Animals remained hyperthermic at 1 and 2 months p.i. and returned to preinoculation temperatures at 3 months after viral inoculation. Although motor activity recovered to baseline values at 1 month p.i., activity levels then decreased to approximately 50% of preinoculation values over the next 2 months. Analysis of sensory-evoked responses 1 month p.i. revealed distinct infection-induced changes in auditory-evoked potential peak latencies that persisted at 3 months after viral inoculation. These early physiological abnormalities may precede the development of observable cognitive or motor deficiencies and can provide an assay to evaluate agents to prevent or alleviate neuronal dysfunction. PMID:9844017

  8. Risk factors for early cytologic abnormalities after loop electrosurgical excision procedure.

    PubMed

    Dietrich, Charles S; Yancey, Michael K; Miyazawa, Kunio; Williams, David L; Farley, John

    2002-02-01

    To evaluate risk factors for early cytologic abnormalities and recurrent cervical dysplasia after loop electrosurgical excision procedure (LEEP). A retrospective analysis was performed of all pathology records for LEEPs performed at our institution from January 1996 through July 1998. Follow-up cytology from 2 through 12 months after LEEP was reviewed. Patients with abnormal cytology were referred for further colposcopic evaluation. Statistical analysis using chi2 test for trend, proportional hazards model test, Fisher exact tests, and life table analysis were performed to identify risk factors for early cytologic abnormalities after LEEP and to determine relative risk of recurrent dysplasia. A total of 298 women underwent LEEP during the study period, and 29% of these had cytologic abnormalities after LEEP. Grade of dysplasia, ectocervical marginal status, endocervical marginal status, and glandular involvement with dysplasia were not found to be independent risk factors for early cytologic abnormalities. However, when risk factors were analyzed cumulatively, the abnormal cytology rate increased from 24% with no risk factors to 67% with three risk factors present (P =.037). Of patients with abnormal cytology after LEEP, 40% developed subsequent dysplasia, and the mean time to diagnosis was approximately 6 months. The relative risk of subsequent dysplasia ranged from a 20% increase to twice the risk if post-LEEP cytology was low-grade squamous intraepithelial lesion or high-grade squamous intraepithelial lesion, respectively. Based on these results, consideration should be given for early colposcopic examination of patients who have evidence of marginal involvement or endocervical glandular involvement with dysplasia. These patients are at increased risk for abnormal cytology and recurrent dysplasia. This initial visit should occur at 6 months, as the mean time to recurrence of dysplasia was 6.5 months.

  9. [Relationship of abnormal sperm DNA methylation with early spontaneous abortion].

    PubMed

    Pan, Lian-Jun; Ma, Jie-Hua; Zhang, Feng-Lei; Zhao, Dan; Pan, Feng; Zhang, Xing-Yuan

    2016-10-01

    To investigate the relationship between the abnormal sperm DNA methylation level and early spontaneous abortion. We randomly selected 98 males who met the inclusion criteria and whose wives suffered from unexplained abortion or embryo abortion, and included another 46 normal healthy men present for pre-pregnancy check-up as controls. We examined the semen quality and sperm morphology, obtained the sperm DNA fragmentation index (DFI) by modified sperm chromatin dispersion, and measured the sperm DNA methylation level using the methylated DNA quantification kit and the colorimetric method. Compared with the normal controls, the men in the unexplained abortion group showed a significantly lower rate of big-halo sperm ([45.50 ± 26.27] vs [36.49 ± 23.06]%, P = 0.038), a higher rate of abnormal-head sperm ([77.08± 12.21] vs [81.09± 10.89]%, P = 0.049), and a lower level of sperm DNA methylation ([0.47 ± 0.33] vs [0.36 ± 0.26] ng/μl, P = 0.035). The sperm DNA methylation level was positively correlated with the percentage of big-halo sperm (OR=0.546, P<0.01). Multivariate regression analysis manifested that sperm head abnormality was an independent risk factor of early spontaneous abortion or embryo abortion (OR=1.032, P = 0.049), while the high methylation level was protective factor against early spontaneous abortion or embryo abortion (OR=0.244, P = 0.03). The abnormal level of sperm DNA methylation may be one of the important reasons for early spontaneous abortion or embryo abortion.

  10. Neurochemical abnormalities in premanifest and early spinocerebellar ataxias.

    PubMed

    Joers, James M; Deelchand, Dinesh K; Lyu, Tianmeng; Emir, Uzay E; Hutter, Diane; Gomez, Christopher M; Bushara, Khalaf O; Eberly, Lynn E; Öz, Gülin

    2018-04-01

    To investigate whether early neurochemical abnormalities are detectable by high-field magnetic resonance spectroscopy (MRS) in individuals with spinocerebellar ataxias (SCAs) 1, 2, 3, and 6, including patients without manifestation of ataxia. A cohort of 100 subjects (N = 18-21 in each SCA group, including premanifest mutation carriers; mean score on the Scale for the Assessment and Rating of Ataxia [SARA] <10 for all genotypes, and 22 matched controls) was scanned at 7 Tesla to obtain neurochemical profiles of the cerebellum and brainstem. A novel multivariate approach (distance-weighted discrimination) was used to combine regional profiles into an "MRS score." MRS scores robustly distinguished individuals with SCA from controls, with misclassification rates of 0% (SCA2), 2% (SCA3), 5% (SCA1), and 17% (SCA6). Premanifest mutation carriers with estimated disease onset within 10 years had MRS scores in the range of early-manifest SCA subjects. Levels of neuronal and glial markers significantly correlated with SARA and an Activities of Daily Living score in subjects with SCA. Regional neurochemical alterations were different between SCAs at comparable disease severity, with SCA2 displaying the most extensive neurochemical abnormalities, followed by SCA1, SCA3, and SCA6. Neurochemical abnormalities are detectable in individuals before manifest disease, which may allow premanifest enrollment in future SCA trials. Correlations with ataxia and quality-of-life scores show that neurochemical levels can serve as clinically meaningful endpoints in trials. Ranking of SCA types by degree of neurochemical abnormalities indicates that the neurochemistry may reflect synaptic function or density. Ann Neurol 2018;83:816-829. © 2018 American Neurological Association.

  11. Cerebrospinal fluid and neuroimaging biomarker abnormalities suggest early neurological injury in a subset of individuals during primary HIV infection.

    PubMed

    Peluso, Michael J; Meyerhoff, Dieter J; Price, Richard W; Peterson, Julia; Lee, Evelyn; Young, Andrew C; Walter, Rudy; Fuchs, Dietmar; Brew, Bruce J; Cinque, Paola; Robertson, Kevin; Hagberg, Lars; Zetterberg, Henrik; Gisslén, Magnus; Spudich, Serena

    2013-06-01

    Cerebrospinal fluid (CSF) and neuroimaging abnormalities demonstrate neuronal injury during chronic AIDS, but data on these biomarkers during primary human immunodeficiency virus (HIV) infection is limited. We compared CSF concentrations of neurofilament light chain, t-tau, p-tau, amyloid precursor proteins, and amyloid-beta 42 in 92 subjects with primary HIV infection and 25 controls. We examined relationships with disease progression and neuroinflammation, neuropsychological testing, and proton-magnetic resonance spectroscopy (MRS)-based metabolites. Neurofilament light chain was elevated in primary HIV infection compared with controls (P = .0004) and correlated with CSF neopterin (r = 0.38; P = .0005), interferon gamma-induced protein 10 (r = 0.39; P = .002), white blood cells (r = 0.32; P = .004), protein (r = 0.59; P < .0001), and CSF/plasma albumin ratio (r = 0.60; P < .0001). Neurofilament light chain correlated with decreased N-acteylaspartate/creatine and glutamate/creatine in the anterior cingulate (r = -0.35, P = .02; r = -0.40, P = .009, respectively), frontal white matter (r = -0.43, P = .003; r = -0.30, P = .048, respectively), and parietal gray matter (r = -0.43, P = .003; r = -0.47, P = .001, respectively). Beta-amyloid was elevated in the primary infection group (P = .0005) and correlated with time infected (r = 0.34; P = .003). Neither marker correlated with neuropsychological abnormalities. T-tau and soluble amyloid precursor proteins did not differ between groups. Elevated neurofilament light chain and its correlation with MRS-based metabolites suggest early neuronal injury in a subset of participants with primary HIV infection through mechanisms involving central nervous system inflammation.

  12. Absence of early epileptiform abnormalities predicts lack of seizures on continuous EEG.

    PubMed

    Shafi, Mouhsin M; Westover, M Brandon; Cole, Andrew J; Kilbride, Ronan D; Hoch, Daniel B; Cash, Sydney S

    2012-10-23

    To determine whether the absence of early epileptiform abnormalities predicts absence of later seizures on continuous EEG monitoring of hospitalized patients. We retrospectively reviewed 242 consecutive patients without a prior generalized convulsive seizure or active epilepsy who underwent continuous EEG monitoring lasting at least 18 hours for detection of nonconvulsive seizures or evaluation of unexplained altered mental status. The findings on the initial 30-minute screening EEG, subsequent continuous EEG recordings, and baseline clinical data were analyzed. We identified early EEG findings associated with absence of seizures on subsequent continuous EEG. Seizures were detected in 70 (29%) patients. A total of 52 patients had their first seizure in the initial 30 minutes of continuous EEG monitoring. Of the remaining 190 patients, 63 had epileptiform discharges on their initial EEG, 24 had triphasic waves, while 103 had no epileptiform abnormalities. Seizures were later detected in 22% (n = 14) of studies with epileptiform discharges on their initial EEG, vs 3% (n = 3) of the studies without epileptiform abnormalities on initial EEG (p < 0.001). In the 3 patients without epileptiform abnormalities on initial EEG but with subsequent seizures, the first epileptiform discharge or electrographic seizure occurred within the first 4 hours of recording. In patients without epileptiform abnormalities during the first 4 hours of recording, no seizures were subsequently detected. Therefore, EEG features early in the recording may indicate a low risk for seizures, and help determine whether extended monitoring is necessary.

  13. Absence of early epileptiform abnormalities predicts lack of seizures on continuous EEG

    PubMed Central

    Westover, M. Brandon; Cole, Andrew J.; Kilbride, Ronan D.; Hoch, Daniel B.; Cash, Sydney S.

    2012-01-01

    Objective: To determine whether the absence of early epileptiform abnormalities predicts absence of later seizures on continuous EEG monitoring of hospitalized patients. Methods: We retrospectively reviewed 242 consecutive patients without a prior generalized convulsive seizure or active epilepsy who underwent continuous EEG monitoring lasting at least 18 hours for detection of nonconvulsive seizures or evaluation of unexplained altered mental status. The findings on the initial 30-minute screening EEG, subsequent continuous EEG recordings, and baseline clinical data were analyzed. We identified early EEG findings associated with absence of seizures on subsequent continuous EEG. Results: Seizures were detected in 70 (29%) patients. A total of 52 patients had their first seizure in the initial 30 minutes of continuous EEG monitoring. Of the remaining 190 patients, 63 had epileptiform discharges on their initial EEG, 24 had triphasic waves, while 103 had no epileptiform abnormalities. Seizures were later detected in 22% (n = 14) of studies with epileptiform discharges on their initial EEG, vs 3% (n = 3) of the studies without epileptiform abnormalities on initial EEG (p < 0.001). In the 3 patients without epileptiform abnormalities on initial EEG but with subsequent seizures, the first epileptiform discharge or electrographic seizure occurred within the first 4 hours of recording. Conclusions: In patients without epileptiform abnormalities during the first 4 hours of recording, no seizures were subsequently detected. Therefore, EEG features early in the recording may indicate a low risk for seizures, and help determine whether extended monitoring is necessary. PMID:23054233

  14. Redox Abnormalities as a Vulnerability Phenotype for Autism and Related Alterations in CNS Development

    DTIC Science & Technology

    2011-10-01

    ming during pre- and post-natal neurodevelopment . Previously, we reported that many children with autism have abnormal plasma levels of metabolites...dysregulation in autism . 1. Introduction Autism is a behaviorally defined neurodevelopmental disor- der that usually presents in early childhood and is charac...Phenotype for Autism and Related Alterations in CNS Development PRINCIPAL INVESTIGATOR: Sandra Jill James, Ph.D

  15. Light adaptation does not prevent early retinal abnormalities in diabetic rats

    PubMed Central

    Kur, Joanna; Burian, Michael A.; Newman, Eric A.

    2016-01-01

    The aetiology of diabetic retinopathy (DR), the leading cause of blindness in the developed world, remains controversial. One hypothesis holds that retinal hypoxia, exacerbated by the high O2 consumption of rod photoreceptors in the dark, is a primary cause of DR. Based on this prediction we investigated whether early retinal abnormalities in streptozotocin-induced diabetic rats are alleviated by preventing the rods from dark adapting. Diabetic rats and their non-diabetic littermates were housed in a 12:12 hour light-dim light photocycle (30 lux during the day and 3 lux at night). Progression of early retinal abnormalities in diabetic rats was assessed by monitoring the ERG b-wave and oscillatory potentials, Müller cell reactive gliosis, and neuronal cell death, as assayed by TUNEL staining and retinal thickness at 6 and 12 weeks after diabetes induction. Maintaining diabetic animals in a dim-adapting light did not slow the progression of these neuronal and glial changes when compared to diabetic rats maintained in a standard 12:12 hour light-dark photocycle (30 lux during the day and 0 lux at night). Our results indicate that neuronal and glial abnormalities in early stages of diabetes are not exacerbated by rod photoreceptor O2 consumption in the dark. PMID:26852722

  16. Cerebrospinal Fluid and Neuroimaging Biomarker Abnormalities Suggest Early Neurological Injury in a Subset of Individuals During Primary HIV Infection

    PubMed Central

    Peluso, Michael J.; Meyerhoff, Dieter J.; Price, Richard W.; Peterson, Julia; Lee, Evelyn; Young, Andrew C.; Walter, Rudy; Fuchs, Dietmar; Brew, Bruce J.; Cinque, Paola; Robertson, Kevin; Hagberg, Lars; Zetterberg, Henrik; Gisslén, Magnus; Spudich, Serena

    2013-01-01

    Background. Cerebrospinal fluid (CSF) and neuroimaging abnormalities demonstrate neuronal injury during chronic AIDS, but data on these biomarkers during primary human immunodeficiency virus (HIV) infection is limited. Methods. We compared CSF concentrations of neurofilament light chain, t-tau, p-tau, amyloid precursor proteins, and amyloid-beta 42 in 92 subjects with primary HIV infection and 25 controls. We examined relationships with disease progression and neuroinflammation, neuropsychological testing, and proton-magnetic resonance spectroscopy (MRS)–based metabolites. Results. Neurofilament light chain was elevated in primary HIV infection compared with controls (P = .0004) and correlated with CSF neopterin (r = 0.38; P = .0005), interferon gamma-induced protein 10 (r = 0.39; P = .002), white blood cells (r = 0.32; P = .004), protein (r = 0.59; P < .0001), and CSF/plasma albumin ratio (r = 0.60; P < .0001). Neurofilament light chain correlated with decreased N-acteylaspartate/creatine and glutamate/creatine in the anterior cingulate (r = −0.35, P = .02; r = −0.40, P = .009, respectively), frontal white matter (r = −0.43, P = .003; r = −0.30, P = .048, respectively), and parietal gray matter (r = −0.43, P = .003; r = −0.47, P = .001, respectively). Beta-amyloid was elevated in the primary infection group (P = .0005) and correlated with time infected (r = 0.34; P = .003). Neither marker correlated with neuropsychological abnormalities. T-tau and soluble amyloid precursor proteins did not differ between groups. Conclusions. Elevated neurofilament light chain and its correlation with MRS-based metabolites suggest early neuronal injury in a subset of participants with primary HIV infection through mechanisms involving central nervous system inflammation. PMID:23460748

  17. Developmental social isolation affects adult behavior, social interaction, and dopamine metabolite levels in zebrafish.

    PubMed

    Shams, Soaleha; Amlani, Shahid; Buske, Christine; Chatterjee, Diptendu; Gerlai, Robert

    2018-01-01

    The zebrafish is a social vertebrate and an excellent translational model for a variety of human disorders. Abnormal social behavior is a hallmark of several human brain disorders. Social behavioral problems can arise as a result of adverse early social environment. Little is known about the effects of early social isolation in adult zebrafish. We compared zebrafish that were isolated for either short (7 days) or long duration (180 days) to socially housed zebrafish, testing their behavior across ontogenesis (ages 10, 30, 60, 90, 120, 180 days), and shoal cohesion and whole-brain monoamines and their metabolites in adulthood. Long social isolation increased locomotion and decreased shoal cohesion and anxiety in the open-field in adult. Additionally, both short and long social isolation reduced dopamine metabolite levels in response to social stimuli. Thus, early social isolation has lasting effects in zebrafish, and may be employed to generate zebrafish models of human neuropsychiatric conditions. © 2017 Wiley Periodicals, Inc.

  18. Longitudinal urinary metabolomic profiling reveals metabolites for asthma development in early childhood.

    PubMed

    Chiu, Chih-Yung; Lin, Gigin; Cheng, Mei-Ling; Chiang, Meng-Han; Tsai, Ming-Han; Su, Kuan-Wen; Hua, Man-Chin; Liao, Sui-Ling; Lai, Shen-Hao; Yao, Tsung-Chieh; Yeh, Kuo-Wei; Huang, Jing-Long

    2018-04-21

    Several metabolites and altered metabolic pathways have been reported to be associated with asthma. However, longitudinal analysis of the dynamics of metabolites contributing to the development of asthma has not yet been fully clarified. We sought to identify the metabolic mechanisms underlying asthma development in early childhood. Thirty children with asthma and paired healthy controls from a prospective birth cohort were enrolled. Time-series analysis of urinary metabolites collected at ages 1, 2, 3, and 4 years were assessed using 1 H-nuclear magnetic resonance (NMR) spectroscopy coupled with partial least-squares discriminant analysis (PLS-DA). Metabolites identified were studied in relation to changes over time in a linear mixed model for repeated measures. A total of 172 urine samples collected from the enrolled children were analyzed. Urinary metabolomics identified four metabolites significantly associated with childhood asthma development, with longitudinal analysis. Among them, dimethylamine, a metabolite produced by intestinal bacteria, appeared to shift from higher to lower level during asthma development. A persistent lower level of 1-methylnicotinamide and allantoin was found in children with asthma, with a peak difference at age 3 years (P = 0.032 and P = 0.021 respectively). Furthermore, a significant inverse correlation was found between allantoin and house dust mite sensitization (Spearman's r = -0.297 P = 0.035). Longitudinal urinary metabolomic profiling provides a link of microbe-environment interactions in the development of childhood asthma. 1-Methylnicotinamide and allantoin may participate in allergic reactions in response to allergen exposure, potentially serving as specific biomarkers for asthma. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. Promising Metabolite Profiles in the Plasma and CSF of Early Clinical Parkinson's Disease

    PubMed Central

    Stoessel, Daniel; Schulte, Claudia; Teixeira dos Santos, Marcia C.; Scheller, Dieter; Rebollo-Mesa, Irene; Deuschle, Christian; Walther, Dirk; Schauer, Nicolas; Berg, Daniela; Nogueira da Costa, Andre; Maetzler, Walter

    2018-01-01

    Parkinson's disease (PD) shows high heterogeneity with regard to the underlying molecular pathogenesis involving multiple pathways and mechanisms. Diagnosis is still challenging and rests entirely on clinical features. Thus, there is an urgent need for robust diagnostic biofluid markers. Untargeted metabolomics allows establishing low-molecular compound biomarkers in a wide range of complex diseases by the measurement of various molecular classes in biofluids such as blood plasma, serum, and cerebrospinal fluid (CSF). Here, we applied untargeted high-resolution mass spectrometry to determine plasma and CSF metabolite profiles. We semiquantitatively determined small-molecule levels (≤1.5 kDa) in the plasma and CSF from early PD patients (disease duration 0–4 years; n = 80 and 40, respectively), and sex- and age-matched controls (n = 76 and 38, respectively). We performed statistical analyses utilizing partial least square and random forest analysis with a 70/30 training and testing split approach, leading to the identification of 20 promising plasma and 14 CSF metabolites. These metabolites differentiated the test set with an AUC of 0.8 (plasma) and 0.9 (CSF). Characteristics of the metabolites indicate perturbations in the glycerophospholipid, sphingolipid, and amino acid metabolism in PD, which underscores the high power of metabolomic approaches. Further studies will enable to develop a potential metabolite-based biomarker panel specific for PD. PMID:29556190

  20. Effects of One-Week Empirical Antibiotic Therapy on the Early Development of Gut Microbiota and Metabolites in Preterm Infants.

    PubMed

    Zhu, Danping; Xiao, Sa; Yu, Jialin; Ai, Qing; He, Yu; Cheng, Chen; Zhang, Yunhui; Pan, Yun

    2017-08-14

    The early postnatal period is the most dynamic and vulnerable stage in the assembly of intestinal microbiota. Antibiotics are commonly prescribed to newborn preterm babies and are frequently used for a prolonged duration in China. We hypothesized that the prolonged antibiotic therapy would affect the early development of intestinal microbiota and their metabolites. To test this hypothesis, we analyzed the stool microbiota and metabolites in 36 preterm babies with or without antibiotic treatment. These babies were divided into three groups, including two groups treated with the combination of penicillin and moxalactam or piperacillin-tazobactam for 7 days, and the other group was free of antibiotics. Compared to the antibiotic-free group, both antibiotic-treated groups had distinct gut microbial communities and metabolites, including a reduction of bacterial diversity and an enrichment of harmful bacteria such as Streptococcus and Pseudomonas. In addition, there was a significant difference in the composition of gut microbiota and their metabolites between the two antibiotic-treated groups, where the piperacillin-tazobactam treatment group showed an overgrowth of Enterococcus. These findings suggest that prolonged antibiotic therapy affects the early development of gut microbiota in preterm infants, which should be considered when prescribing antibiotics for this population.

  1. Distal Predominance of Electrodiagnostic Abnormalities in Early Stage Amyotrophic Lateral Sclerosis.

    PubMed

    Shayya, Luay; Babu, Suma; Pioro, Erik P; Li, Jianbo; Li, Yuebing

    2018-05-09

    We compare the electrodiagnostic (EDX) yield of limb muscles in revealing lower motor neuron (LMN) dysfunction by electromyography (EMG) in early stage amyotrophic lateral sclerosis (ALS). Single-site retrospective review Results: This study includes 122 consecutive patients with possible ALS as defined by revised El Escorial Criteria. Distal limb muscles show more frequent EMG abnormalities than proximal muscles. EDX yield is higher in the limb where weakness begins and when clinical signs of LMN dysfunction are evident. Adoption of Awaji criteria increases the yield of EMG positive segments significantly in the cervical (p<0.0005) and lumbosacral regions (P<0.0001), and upgrades 19 patients into probable and 1 patient into definite categories. Electromyographic abnormalities are distal limb-predominant in early stage ALS. A redefinition of an EDX-positive cervical or lumbosacral segment, with an emphasis on distal limb muscles, may result in an earlier ALS diagnosis. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  2. Early Pregnancy Diabetes Screening and Diagnosis: Prevalence, Rates of Abnormal Test Results, and Associated Factors.

    PubMed

    Mission, John F; Catov, Janet; Deihl, Tiffany E; Feghali, Maisa; Scifres, Christina

    2017-11-01

    To evaluate the prevalence of early diabetes screening in pregnancy, rates of abnormal diabetes test results before 24 weeks of gestation, and factors associated with early diabetes screening. This was a retrospective cohort study of all singleton deliveries from 2012 to 2014 among diverse clinical practices at a large academic medical center. We assessed rates of early (less than 24 weeks of gestation) and routine (at or beyond 24 weeks of gestation) diabetes screening, with abnormal test results defined using the Carpenter-Coustan criteria, a 50-g glucose challenge test result greater than 200 mg/dL, or a hemoglobin A1C level greater than 6.5%. Univariate and multivariate analyses were used to evaluate clinical and demographic determinants of screening and diagnosis. Overall, 1,420 of 11,331 (12.5%) women underwent early screening. Increasing body mass index (BMI) category, race, public insurance, history of gestational diabetes mellitus, a family history of diabetes, and chronic hypertension were associated with early screening. Early screening rates rose with increasing BMI category, but only 268 of 551 (48.6%) of women with class III obesity underwent early screening. Among those screened early, 2.0% of normal-weight women, 4.0% of overweight women, 4.2% of class I obese women, 3.8% of class II obese women, and 9.0% of class III obese women had abnormal early test results (P<.001). Early diabetes screening is used inconsistently, and many women with risk factors do not undergo early screening. A significant proportion of women with class III obesity will test positive for gestational diabetes mellitus before 24 weeks of gestation, and studies are urgently needed to assess the effect of early diabetes screening and diagnosis on perinatal outcomes in high-risk women.

  3. Cerebrospinal Fluid Levels of Monoamine Metabolites in the Epileptic Baboon

    PubMed Central

    Szabó, C. Ákos; Patel, Mayuri; Uteshev, Victor V.

    2016-01-01

    The baboon represents a natural model for genetic generalized epilepsy and sudden unexpected death in epilepsy (SUDEP). In this retrospective study, cerebrospinal fluid (CSF) monoamine metabolites and scalp electroencephalography (EEG) were evaluated in 263 baboons of a pedigreed colony. CSF monoamine abnormalities have been linked to reduced seizure thresholds, behavioral abnormalities and SUDEP in various animal models of epilepsy. The levels of 3-hydroxy-4-methoxyphenylglycol, 5-hydroxyindolacetic acid and homovanillic acid in CSF samples drawn from the cisterna magna were analyzed using high-performance liquid chromatography. These levels were compared between baboons with seizures (SZ), craniofacial trauma (CFT) and asymptomatic, control (CTL) baboons, between baboons with abnormal and normal EEG studies. We hypothesized that the CSF levels of major monoaminergic metabolites (i.e., dopamine, serotonin and norepinephrine) associate with the baboons’ electroclinical status and thus can be used as clinical biomarkers applicable to seizures/epilepsy. However, despite apparent differences in metabolite levels between the groups, usually lower in SZ and CFT baboons and in baboons with abnormal EEG studies, we did not find any statistically significant differences using a logistic regression analysis. Significant correlations between the metabolite levels, especially between 5-HIAA and HVA, were preserved in all electroclinical groups. While we were not able to demonstrate significant differences in monoamine metabolites in relation to seizures or EEG markers of epilepsy, we cannot exclude the monoaminergic system as a potential source of pathogenesis in epilepsy and SUDEP. A prospective study evaluating serial CSF monoamine levels in baboons with recently witnessed seizures, and evaluation of abnormal expression and function of monoaminergic receptors and transporters within epilepsy-related brain regions, may impact the electroclinical status. PMID:26924854

  4. Abnormalities in metabolite concentrations in tourette's disorder and obsessive-compulsive disorder-A proton magnetic resonance spectroscopy study.

    PubMed

    Fan, Siyan; Cath, Danielle C; van den Heuvel, Odile A; van der Werf, Ysbrand D; Schöls, Caroline; Veltman, Dick J; Pouwels, Petra J W

    2017-03-01

    Abnormal glutamatergic transmission in cortico-striato-thalamo-cortical (CSTC) circuits is thought to be involved in the pathophysiology of Tourette's disorder (TD) and obsessive-compulsive disorder (OCD). Using proton magnetic resonance spectroscopy, the current study aimed to investigate regional concentrations of glutamatergic compounds in TD and OCD patients in comparison to healthy control subjects (HC). Twenty-three TD patients, 20 OCD patients and 22 HC were included. Short echo-time single-voxel 3T MRS was obtained from dorsal anterior cingulate cortex (dACC) and midline bilateral thalamus. The 3-group comparison showed a significant difference in choline concentration in the thalamus. Thalamic choline was highest in OCD patients, showing a significant difference with TD, and a trend compared to HC (post-hoc analyses). Glutamine in dACC correlated negatively with tic severity scores in TD patients, while glutamate in thalamus correlated positively with anxiety severity scores in OCD patients. These findings suggest subtle differences in metabolites in CSTC areas between TD and OCD. Alterations of choline concentrations seem to be both regional (only in thalamus, not in dACC) and disease specific in OCD pathology. The findings need replication in larger groups, but encourage further research into glutamatergic metabolites in TD and OCD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Early electrocardiographic abnormalities in Trypanosoma cruzi-seropositive children.

    PubMed

    de Andrade, A L; Zicker, F; Rassi, A; Rassi, A G; Oliveira, R M; Silva, S A; de Andrade, S S; Martelli, C M

    1998-10-01

    As part of a major epidemiologic study on Chagas' disease, we compared the prevalence of electrocardiographic (ECG) abnormalities among 141 school children 7-12 years of age and seropositive for Trypanosoma cruzi, and 282 age-, sex-, and school-matched seronegative children in an endemic area in Brazil. The prevalence of ECG abnormalities was 11.3% among seropositive children and 3.5% among seronegative children (odds ratio = 3.5, 95% confidence interval [CI] = 1.5-8.4). The prevalence rate of ECG alterations was 10.7% for seropositive males versus 8.9% for seropositive females. Complete right bundle branch block (CRBBB), which is highly suggestive of Chagas' disease cardiopathy, was diagnosed in nine (6.4%) seropositive children and in only one (0.3%) seronegative child (odds ratio = 18.5, 95% CI = 2.3-146.5, attributable fraction = 58.3%). Five incident new cases of CRBBB were diagnosed after a 36-month follow-up of seropositive children who were enrolled in an independent clinical field trial. No case of frequent and/or multifocal ventricular premature beats was found in the cohort of children. The surprisingly high frequency of early ECG abnormalities, which indicates a rapid evolution from infection to disease, suggests the existence of endemic areas with a particular accelerated disease progression that was not described before. Under such conditions, a public health chemotherapy program focusing on the treatment of young seropositive children would be recommended.

  6. Quantitative Folding Pattern Analysis of Early Primary Sulci in Human Fetuses with Brain Abnormalities.

    PubMed

    Im, K; Guimaraes, A; Kim, Y; Cottrill, E; Gagoski, B; Rollins, C; Ortinau, C; Yang, E; Grant, P E

    2017-07-01

    Aberrant gyral folding is a key feature in the diagnosis of many cerebral malformations. However, in fetal life, it is particularly challenging to confidently diagnose aberrant folding because of the rapid spatiotemporal changes of gyral development. Currently, there is no resource to measure how an individual fetal brain compares with normal spatiotemporal variations. In this study, we assessed the potential for automatic analysis of early sulcal patterns to detect individual fetal brains with cerebral abnormalities. Triplane MR images were aligned to create a motion-corrected volume for each individual fetal brain, and cortical plate surfaces were extracted. Sulcal basins were automatically identified on the cortical plate surface and compared with a combined set generated from 9 normal fetal brain templates. Sulcal pattern similarities to the templates were quantified by using multivariate geometric features and intersulcal relationships for 14 normal fetal brains and 5 fetal brains that were proved to be abnormal on postnatal MR imaging. Results were compared with the gyrification index. Significantly reduced sulcal pattern similarities to normal templates were found in all abnormal individual fetuses compared with normal fetuses (mean similarity [normal, abnormal], left: 0.818, 0.752; P < .001; right: 0.810, 0.753; P < .01). Altered location and depth patterns of sulcal basins were the primary distinguishing features. The gyrification index was not significantly different between the normal and abnormal groups. Automated analysis of interrelated patterning of early primary sulci could outperform the traditional gyrification index and has the potential to quantitatively detect individual fetuses with emerging abnormal sulcal patterns. © 2017 by American Journal of Neuroradiology.

  7. Basic abnormalities in visual processing affect face processing at an early age in autism spectrum disorder.

    PubMed

    Vlamings, Petra Hendrika Johanna Maria; Jonkman, Lisa Marthe; van Daalen, Emma; van der Gaag, Rutger Jan; Kemner, Chantal

    2010-12-15

    A detailed visual processing style has been noted in autism spectrum disorder (ASD); this contributes to problems in face processing and has been directly related to abnormal processing of spatial frequencies (SFs). Little is known about the early development of face processing in ASD and the relation with abnormal SF processing. We investigated whether young ASD children show abnormalities in low spatial frequency (LSF, global) and high spatial frequency (HSF, detailed) processing and explored whether these are crucially involved in the early development of face processing. Three- to 4-year-old children with ASD (n = 22) were compared with developmentally delayed children without ASD (n = 17). Spatial frequency processing was studied by recording visual evoked potentials from visual brain areas while children passively viewed gratings (HSF/LSF). In addition, children watched face stimuli with different expressions, filtered to include only HSF or LSF. Enhanced activity in visual brain areas was found in response to HSF versus LSF information in children with ASD, in contrast to control subjects. Furthermore, facial-expression processing was also primarily driven by detail in ASD. Enhanced visual processing of detailed (HSF) information is present early in ASD and occurs for neutral (gratings), as well as for socially relevant stimuli (facial expressions). These data indicate that there is a general abnormality in visual SF processing in early ASD and are in agreement with suggestions that a fast LSF subcortical face processing route might be affected in ASD. This could suggest that abnormal visual processing is causative in the development of social problems in ASD. Copyright © 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  8. Early Diagnosis of Respiratory Abnormalities in Asbestos-Exposed Workers by the Forced Oscillation Technique.

    PubMed

    de Sá, Paula Morisco; Castro, Hermano Albuquerque; Lopes, Agnaldo José; Melo, Pedro Lopes de

    2016-01-01

    The current reference test for the detection of respiratory abnormalities in asbestos-exposed workers is spirometry. However, spirometry has several shortcomings that greatly affect the efficacy of current asbestos control programs. The forced oscillation technique (FOT) represents the current state-of-the-art technique in the assessment of lung function. This method provides a detailed analysis of respiratory resistance and reactance at different oscillatory frequencies during tidal breathing. Here, we evaluate the FOT as an alternative method to standard spirometry for the early detection and quantification of respiratory abnormalities in asbestos-exposed workers. Seventy-two subjects were analyzed. The control group was composed of 33 subjects with a normal spirometric exam who had no history of smoking or pulmonary disease. Thirty-nine subjects exposed to asbestos were also studied, including 32 volunteers in radiological category 0/0 and 7 volunteers with radiological categories of 0/1 or 1/1. FOT data were interpreted using classical parameters as well as integer (InOr) and fractional-order (FrOr) modeling. The diagnostic accuracy was evaluated by investigating the area under the receiver operating characteristic curve (AUC). Exposed workers presented increased obstruction (resistance p<0.001) and a reduced compliance (p<0.001), with a predominance of obstructive changes. The FOT parameter changes were correlated with the standard pulmonary function analysis methods (R = -0.52, p<0.001). Early respiratory abnormalities were identified with a high diagnostic accuracy (AUC = 0.987) using parameters obtained from the FrOr modeling. This accuracy was significantly better than those obtained with classical (p<0.001) and InOr (p<0.001) model parameters. The FOT improved our knowledge about the biomechanical abnormalities in workers exposed to asbestos. Additionally, a high diagnostic accuracy in the diagnosis of early respiratory abnormalities in asbestos

  9. Neural abnormalities in early-onset and adolescence-onset conduct disorder.

    PubMed

    Passamonti, Luca; Fairchild, Graeme; Goodyer, Ian M; Hurford, Georgina; Hagan, Cindy C; Rowe, James B; Calder, Andrew J

    2010-07-01

    Conduct disorder (CD) is characterized by severe antisocial behavior that emerges in childhood (early-onset CD [EO-CD]) or adolescence (adolescence-onset CD [AO-CD]). Early-onset CD is proposed to have a neurodevelopmental basis, whereas AO-CD is thought to emerge owing to social mimicry of deviant peers. However, this developmental taxonomic theory is debated after reports of neuropsychological impairments in both CD subtypes. A critical, although unaddressed, issue is whether these subtypes present similar or distinct neurophysiological profiles. Hence, we investigated neurophysiological responses to emotional and neutral faces in regions associated with antisocial behavior (ie, the amygdala, ventromedial prefrontal cortex, insula, and orbitofrontal cortex) in individuals with EO-CD and AO-CD and in healthy control subjects. To investigate whether EO-CD and AO-CD subjects show neurophysiological abnormalities. Case-control study. Government research institute, university department. Seventy-five male adolescents and young adults aged 16 to 21 years, including 27 with EO-CD, 25 with AO-CD, and 23 healthy controls. Main Outcome Measure Neural activations measured by functional magnetic resonance imaging while participants viewed angry, sad, and neutral faces. Comparing angry vs neutral faces, participants with both CD subtypes displayed reduced responses in regions associated with antisocial behavior compared with controls; differences between the CD subtypes were not significant. Comparing each expression with fixation baseline revealed an abnormal (increased) amygdala response to neutral but not angry faces in both groups of CD relative to controls. For sad vs neutral faces, reduced amygdala activation was observed in EO-CD relative to AO-CD and control participants. Comparing each expression with fixation revealed hypoactive amygdala responses to sadness in individuals with EO-CD relative to AO-CD participants and controls. These findings were not accounted for

  10. Electrogastrography abnormalities appear early in children with diabetes type 1.

    PubMed

    Posfay-Barbe, Klara M; Lindley, Keith J; Schwitzgebel, Valérie M; Belli, Dominique C; Schäppi, Michela G

    2011-10-01

    The objective of the study was to evaluate gastric myoelectrical activity in young patients with diabetes and to correlate it with their metabolic control [fasting blood glucose, glycosylated haemoglobin, and fructosamine] and BMI during a 3 years follow-up. Surface electrogastrography (EGG) was performed on 49 children with diabetes aged 10.3±4.4 (mean±SD) years and 17 age-matched healthy controls after fasting glucose, glycosylated haemoglobin, and fructosamine were measured. EGG parameters [percentage of bradygastria, 3 cycles per minute, tachygastria, dominant frequency instability coefficient, and power ratio] were analysed and compared with blood analysis. Patients with diabetes exhibited an increase in preprandial bradygastria 7.9±8.8 cpm (mean±SD) compared with controls 2.1±1.0 (P=0.011), with an associated decrease in preprandial normogastria (72.2±14.5 vs. 82.7±14.7; P=0.013). Normogastric power ratio (postprandial/ preprandial power) was significantly increased in the children with diabetes compared with controls (mean: 6.67 vs. 3.14, P=0.034). A longer duration of diabetes was associated with an increased risk of EGG abnormalities (P=0.036). Marked hyperglycaemia at the time of study was associated with postprandial bradygastria (P=0.01) and power ratio bradygastria (P=0.042). Changes in glycosylated haemoglobin, fructosamine and BMI did not affect EGG parameters. EGG abnormalities, presented early in a high proportion of diabetic children, are related to the acute hyperglycaemia. These abnormalities are not consistently present in the follow-up studies and not related to the glycosylated haemoglobin and fructosamine. Diabetic autonomic neuropathy is therefore an unlikely pathogenic factor for EGG abnormalities in children with diabetes.

  11. Early primary biliary cholangitis is characterised by brain abnormalities on cerebral magnetic resonance imaging.

    PubMed

    Grover, V P B; Southern, L; Dyson, J K; Kim, J U; Crossey, M M E; Wylezinska-Arridge, M; Patel, N; Fitzpatrick, J A; Bak-Bol, A; Waldman, A D; Alexander, G J; Mells, G F; Chapman, R W; Jones, D E J; Taylor-Robinson, S D

    2016-11-01

    Brain change can occur in primary biliary cholangitis (PBC), potentially as a result of cholestatic and/or inflammatory processes. This change is linked to systemic symptoms of fatigue and cognitive impairment. To identify whether brain change occurs early in PBC. If the change develops early and is progressive, it may explain the difficulty in treating these symptoms. Early disease brain change was explored in 13 patients with newly diagnosed biopsy-proven precirrhotic PBC using magnetisation transfer, diffusion-weighted imaging and 1 H magnetic resonance spectroscopy. Results were compared to 17 healthy volunteers. Cerebral magnetisation transfer ratios were reduced in early PBC, compared to healthy volunteers, in the thalamus, putamen and head of caudate with no greater reduction in patients with greater symptom severity. Mean apparent diffusion coefficients were increased in the thalamus only. No 1 H magnetic resonance spectroscopy abnormalities were seen. Serum manganese levels were elevated in all PBC patients, but no relationship was seen with imaging or symptom parameters. There were no correlations between neuroimaging data, laboratory data, symptom severity scores or age. This is the first study to be performed in this precirrhotic patient population, and we have highlighted that neuroimaging changes are present at a much earlier stage than previously demonstrated. The neuroimaging abnormalities suggest that the brain changes seen in PBC occur early in the pathological process, even before significant liver damage has occurred. If such changes are linked to symptom pathogenesis, this could have important implications for the timing of second-line-therapy use. © 2016 The Authors. Alimentary Pharmacology & Therapeutics published by John Wiley & Sons Ltd.

  12. Acute toxicity and mutagenesis of three metabolites mixture of nitrobenzene in mice.

    PubMed

    Wang, Guixia; Zhang, Xiuying; Yao, Chunzhu; Tian, Meizhan

    2011-03-01

    Nitrobenzene is a synthetic compound, more than 95% of which is used in the production of aniline. Nitrobenzene has been demonstrated to be substantially metabolized to p-Nitrophenol, p-Aminophenol and p-Nitroaniline in food animals (e.g., bovines, fowls). There have been no studies on the acute toxicity and the mutagenesis of the mixture of the three metabolites mentioned above. The aim of the present study is to testify the acute toxicity and the mutagenesis of the three metabolites mixture. Seventy Kunming mice (half male, half female) received an intragastric administration exposure to metabolites-containing suspension of 750, 638, 542, 461, 392, 333 mg kg(-1) body weight and 0.5% sodium carboxymethyl cellulose (control), followed by a 14-day observation. The medial lethal dose (LD(50)) concentration for nitrobenzene metabolites mixture in this study was 499.92 mg/kg. Their mutagenic toxicology was studied through micronucleus and sperm abnormality test. Kunming mice were twice intragastrically exposed to 1/5 LD(50), 1/10 LD(50), 1/20 LD(50) mg kg(-1) nitrobenzene metabolites-containing suspension spaced 24-h apart. Cyclophosphamide, pure water and sodium carboxymethyl cellulose served as doses of the positive group, the negative group and the solvent control group, respectively. The incidence of micronucleus and sperm abnormality increased significantly in the 1/5 LD(50) and 1/10 LD(50) group compared with the negative and solvent control group. A dose-related increase in the incidence of micronucleus and sperm abnormality was noted. In conclusion, the three metabolites mixture of nitrobenzene was secondary toxicity and mutagenic substances in mice.

  13. Abnormal myocardial fluid retention as an early manifestation of ischemic injury.

    PubMed Central

    Willerson, J. T.; Scales, F.; Mukherjee, A.; Platt, M.; Templeton, G. H.; Fink, G. S.; Buja, L. M.

    1977-01-01

    Fifty-seven isolated, blood perfused, continuously weighed canine hearts have been utilized to study the development of abnormal myocardial fluid retention during early myocardial ischemic injury. Inflatable balloon catheters were positioned around the left anterior descending coronary arteries (LAD) of 54 hearts or the proximal left circumflex coronary arteries of three hearts for study of the following intervals of coronary occlusion: a) 10 minutes followed by 20 minutes of reflow, b) 40 minutes followed by either no reflow or by 20 minutes of reflow, and c) 60 minutes without reflow. After 60 minutes of fixed coronary occlusion, histologic and ultrastructural examination revealed mild swelling of many ischemic cardiac muscle cells in the absence of interstitial edema, cardiac weight gain, and obvious structural defects in cell membrane integrity. After 40 minutes of coronary occlusion and 20 minutes of reflow, significant cardiac weight gain occurred in association with characteristic alterations in the ischemic region, including widespread interstitial edema and focal vascular congestion and hemorrhage and swelling of cardiac muscle cells. Focal structural defects in cell membrane integrity were also noted. The development of abnormal myocardial fluid retention after 40 minutes of LAD occlusion occurred in association with a significant reduction in sodium-potassium-ATPase activity in the ischemic area, but with no significant alteration in either creatine phosphokinase or citrate synthase activity in the same region. Despite the abnormal myocardial fluid retention in these hearts, it was possible pharmacologically to vasodilate coronary vessels with adenosine and nitroglycerin infusion to maintain a consistently high coronary flow following release of the coronary occlusion after 40 minutes and to even exceed initial hyperemic flow values following release of the occlusion when adenosine and nitroglycerin infusion was delayed until 15 minutes after reflow

  14. Fish biliary PAH metabolites estimated by fixed-wavelength fluorescence as an indicator of environmental exposure and effects

    USGS Publications Warehouse

    Yang, X.; Peterson, D.S.; Baumann, P.C.; Lin, E.L.C.

    2003-01-01

    Biliary polynuclear aromatic hydrocarbon (PAH) metabolites have been studied since the mid 1980s as an indicator of exposure of fish to PAHs. However, the measurements of PAH metabolites are often costly and time-consuming. A simple and rapid method, fixed-wavelength fluorescence (FF), was used to measure the concentrations of benzo(a)pyrene (B[a]P)-type and naphthalene (NAPH)-type PAH metabolites in the bile of brown bullheads (Ameiurus nebulosus) collected from Old Woman Creek, Ottawa River, Cuyahoga River-harbor and Cuyahoga River-upstream. The biliary PAH metabolites in fish from the less contaminated Old Woman Creek were significantly lower than those from the industrially contaminated Ottawa and Cuyahoga rivers. The levels of biliary PAH metabolites were found to be related to the PAH sediment contamination for the four sites except Cuyahoga River-upstream, and to the prevalence of fish barbel abnormalities and external raised lesions observed in all rivers except Ottawa. Statistical analysis revealed a significant association between the occurrence of barbel abnormalities and concentrations of biliary NAPH-type metabolites and between the occurrence of raised lesions and concentrations of B[a]P-type metabolites. This study provides added evidence that FF is an effective bile analysis method for determining the exposure of fish to PAHs. This study also indicates that the measurement of PAH metabolites could help establish causal relationship between the chemical exposure and effects such as barbel abnormalities and raised lesions.

  15. 5Alpha-Reduced Steroids Are Major Metabolites in the Early Equine Embryo Proper and Its Membranes.

    PubMed

    Raeside, James I; Christie, Heather L; Betteridge, Keith J

    2015-09-01

    Steroid production and metabolism by early conceptuses are very important for the establishment and maintenance of pregnancy in horses. Our earlier work suggested the possible formation of 5alpha-reduced steroids in equine conceptuses. We have now demonstrated the formation of 5alpha-reduced metabolites of androstenedione, testosterone, and progesterone by the embryo and its membranes. A total of 44 conceptuses were collected from 26 mares between 20 and 31 days of pregnancy. Tissues from the embryo proper and from the separated components of the conceptus (bilaminar and trilaminar trophoblast, allantois) were incubated with tritium-labeled substrates. 5Alpha-reduced metabolites (5alpha-dihydro- and 3beta,5alpha-tetrahydro- steroids) as radiolabeled products were identified from a series of chromatographic steps using four solvent systems for high-performance liquid chromatography. Use of a 5alpha-reductase inhibitor confirmed the metabolites were indeed 5alpha-reduced steroids. For the embryo, the only products from androstenedione were 5alpha-dihydroandrostenedione and 3beta,5alpha-tetrahydroandrostenedione, with no evidence of more polar metabolites; there was some 3beta,5alpha-tetrahydrotestosterone but no 5alpha-dihydrotestosterone from testosterone, and formation of androstenedione was followed by the production of 5alpha-dihydroandrostenedione and 3beta,5alpha-tetrahydroandrostenedione. The major 5alpha-reduced product from progesterone was 3beta,5alpha-tetrahydroprogesterone, with lesser amounts of 5alpha-dihydroprogesterone. For the membranes, reductions to tetrahydro, 5alpha-reduced steroids were prominent in most instances, but also present were considerable amounts of products more polar than the substrates. The well-recognized activity of some 5alpha-reduced steroids--for example, 5alpha-dihydrotestosterone in male sexual differentiation--provokes interest in their even earlier appearance, as seen in this study, and suggests a possible role for them in

  16. Elevated Prostaglandin E Metabolites and Abnormal Plasma Fatty Acids at Baseline in Pediatric Cystic Fibrosis Patients: A Pilot Study

    PubMed Central

    O’Connor, Michael Glenn; Thomsen, Kelly; Brown, Rebekah F.; Laposata, Michael; Seegmiller, Adam

    2016-01-01

    Background Airway inflammation is a significant contributor to the morbidity of cystic fibrosis (CF) disease. One feature of this inflammation is the production of oxygenated metabolites, such as prostaglandins. Individuals with CF are known to have abnormal metabolism of fatty acids, typically resulting in reduced levels of linoleic acid (LA) and docosahexaenoic acid (DHA). Methods This is a randomized, double-blind, cross-over clinical trial of DHA supplementation with endpoints of plasma fatty acid levels and prostaglandin E metabolite (PGE-M) levels. Patients with CF age 6 to 18 years with pancreatic insufficiency were recruited. Each participant completed 3 four-week study periods: DHA at two different doses (high dose and low dose) and placebo with a minimum 4 week wash-out between each period. Blood, urine, and exhaled breath condensate (EBC) were collected at baseline and after each study period for measurement of plasma fatty acids as well as prostaglandin E metabolites. Results Seventeen participants were enrolled, and 12 participants completed all 3 study periods. Overall, DHA supplementation was well tolerated without significant adverse events. There was a significant increase in plasma DHA levels with supplementation, but no significant change in arachidonic acid (AA) or LA levels. However, at baseline, AA levels were lower and LA levels were higher than previously reported for individuals with CF. Urine PGE-M levels were elevated in the majority of participants at baseline, and while levels decreased with DHA supplementation, they also decreased with placebo. Conclusions Urine PGE-M levels are elevated at baseline in this cohort of pediatric CF patients, but there was no significant change in these levels with DHA supplementation compared to placebo. In addition, baseline plasma fatty acid levels for this cohort showed some difference to prior reports, including higher levels of LA and lower levels of AA, which may reflect changes in clinical care

  17. Elevated prostaglandin E metabolites and abnormal plasma fatty acids at baseline in pediatric cystic fibrosis patients: a pilot study.

    PubMed

    O'Connor, Michael Glenn; Thomsen, Kelly; Brown, Rebekah F; Laposata, Michael; Seegmiller, Adam

    2016-10-01

    Airway inflammation is a significant contributor to the morbidity of cystic fibrosis (CF) disease. One feature of this inflammation is the production of oxygenated metabolites, such as prostaglandins. Individuals with CF are known to have abnormal metabolism of fatty acids, typically resulting in reduced levels of linoleic acid (LA) and docosahexaenoic acid (DHA). This is a randomized, double-blind, cross-over clinical trial of DHA supplementation with endpoints of plasma fatty acid levels and prostaglandin E metabolite (PGE-M) levels. Patients with CF age 6-18 years with pancreatic insufficiency were recruited. Each participant completed 3 four-week study periods: DHA at two different doses (high dose and low dose) and placebo with a minimum 4 week wash-out between each period. Blood, urine, and exhaled breath condensate (EBC) were collected at baseline and after each study period for measurement of plasma fatty acids as well as prostaglandin E metabolites. Seventeen participants were enrolled, and 12 participants completed all 3 study periods. Overall, DHA supplementation was well tolerated without significant adverse events. There was a significant increase in plasma DHA levels with supplementation, but no significant change in arachidonic acid (AA) or LA levels. However, at baseline, AA levels were lower and LA levels were higher than previously reported for individuals with CF. Urine PGE-M levels were elevated in the majority of participants at baseline, and while levels decreased with DHA supplementation, they also decreased with placebo. Urine PGE-M levels are elevated at baseline in this cohort of pediatric CF patients, but there was no significant change in these levels with DHA supplementation compared to placebo. In addition, baseline plasma fatty acid levels for this cohort showed some difference to prior reports, including higher levels of LA and lower levels of AA, which may reflect changes in clinical care, and consequently warrants further

  18. Brain metabolite alterations and cognitive dysfunction in early Huntington’s Disease

    PubMed Central

    Unschuld, Paul G.; Edden, Richard A. E.; Carass, Aaron; Liu, Xinyang; Shanahan, Megan; Wang, Xin; Oishi, Kenichi; Brandt, Jason; Bassett, Susan S.; Redgrave, Graham W.; Margolis, Russell L.; van Zijl, Peter C. M.; Barker, Peter B.; Ross, Christopher A.

    2012-01-01

    Background Huntington’s Disease (HD) is a neurodegenerative disorder characterized by early cognitive decline, which progresses at later stages to dementia and severe movement disorder. HD is caused by a cytosine-adenine-guanine triplet-repeat expansion mutation in the Huntingtin gene, allowing early diagnosis by genetic testing. This study aims to identify the relationship of N-acetylaspartate and other brain metabolites to cognitive function in HD-mutation carriers by using high field strength magnetic-resonance-spectroscopy at 7-Tesla. Methods Twelve individuals with the HD-mutation in premanifest or early stage of disease versus twelve healthy controls underwent 1H magnetic-resonance-spectroscopy (7.2ml voxel in the posterior cingulate cortex) at 7-Tesla, and also T1-weighted structural magnetic-resonance-imaging. All participants received standardized tests of cognitive functioning including the Montreal Cognitive Assessment and standardized quantified neurological examination within an hour before scanning. Results Individuals with the HD mutation had significantly lower posterior cingulate cortex N-acetylaspartate (−9.6%, p=0.02) and glutamate levels (−10.1%, p=0.02) than controls. By contrast, in this small group, measures of brain morphology including striatal and ventricle volumes did not differ significantly. Linear regression with Montreal Cognitive Assessment scores revealed significant correlations with N-acetylaspartate (r2=0.50, p=0.01) and glutamate (r2=0.64, p=0.002) in HD subjects. Conclusions Our data suggest a relationship between reduced N-acetylaspartate and glutamate levels in the posterior cingulate cortex with cognitive decline in early stages of HD. N-acetylaspartate and glutamate magnetic-resonance-spectroscopy signals of the posterior cingulate cortex region may serve as potential biomarkers of disease progression or treatment outcome in HD and other neurodegenerative disorders with early cognitive dysfunction, when structural

  19. Brain metabolite abnormalities in ventromedial prefrontal cortex are related to duration of hypercortisolism and anxiety in patients with Cushing's syndrome.

    PubMed

    Crespo, Iris; Santos, Alicia; Gómez-Ansón, Beatriz; López-Mourelo, Olga; Pires, Patricia; Vives-Gilabert, Yolanda; Webb, Susan M; Resmini, Eugenia

    2016-09-01

    Chronic exposure to excessive glucocorticoid (GC) concentration in Cushing's syndrome (CS) can affect the brain structurally and functionally; ventromedial prefrontal cortex (vmPFC) is rich in GC receptors and therefore particularly vulnerable to excessive GC concentration. Proton magnetic resonance spectroscopy ((1)H-MRS) is a sensitive, non-invasive imaging technique that provides information on brain metabolites in vivo. Our aim was to investigate metabolite concentrations in vmPFC of CS patients and their relationship with clinical outcome. Twenty-two right-handed CS patients (7 active/15 in remission, 19 females, 41.6 ± 12.3 years) and 22 right-handed healthy controls (14 females, 41.7 ± 11 years) underwent brain MRI and (1)H-MRS exams at 3 Tesla. Concentrations of glutamate (Glu), glutamate + glutamine (Glx), creatine (Cr), N-Acetyl-aspartate (NAA), N-Acetyl-aspartate + N-acetylaspartylglutamate (total NAA), choline-containing compounds (Cho) and myoinositol (MI) were determined. Moreover, anxiety and depressive symptoms were evaluated with the State-Trait Anxiety Inventory (STAI) and the Beck Depression Inventory-II (BDI-II) test, respectively. CS patients had lower concentrations of glutamate and total NAA in the vmPFC than healthy controls (8.6 ± 1.2 vs. 9.3 ± 0.7 mmol/L, and 6.4 ± 0.8 vs. 6.8 ± 0.4 mmol/L, respectively; p < 0.05). Duration of hypercortisolism was negatively correlated with total NAA (r = -0.488, p < 0.05). Moreover, the concentration of total NAA was negatively correlated with anxiety state (r = -0.359, p < 0.05). Brain metabolites are abnormal in the vmPFC of patients with CS. Decreased total NAA and glutamate concentrations indicate neuronal dysfunction that appear to be related with duration of hypercortisolism and anxiety.

  20. Cytological effects of fungal metabolites produced by fungi isolated from Egyptian poultry feedstuffs.

    PubMed

    Abdou, R F; Megalla, S E; Moharram, A M; Abdel-Gawad, K M; Sherif, T H; el-Syed Mahmood, A L; Lottfy, A E

    1989-01-01

    The cytogenetic effects of fungal metabolites produced by 113 strains belonging to 36 fungal species and isolated form 5 substrates of commercial poultry feedstuffs were tested for their effect on the growing root meristems of Allium cepa. The fungal metabolites of Paecilomyces canescens, Aspergillus fumigatus, Syncephalastrum racemosum, Aspergillus terreus and Mucor hiemalis strongly suppressed cell division. Metabolites from other strains had less effect on cell division but permitted the appearance of several abnormalities through different mitotic stages. In general, chromosomal aberrations were more obvious with metabolites of Aspergillus species, Mucor circinelloides and Cladosporium cladosporioides. The mutagenic effects produced by these fungal metabolites reflect the risk that might take place through the consumption of these contaminated feedstuffs.

  1. Secondary metabolites from marine microorganisms.

    PubMed

    Kelecom, Alphonse

    2002-03-01

    After 40 years of intensive research, chemistry of marine natural products has become a mature field. Since 1995, there are signals of decreased interest in the search of new metabolites from traditional sources such as macroalgae and octocorals, and the number of annual reports on marine sponges stabilized. On the contrary, metabolites from microorganisms is a rapidly growing field, due, at least in part, to the suspicion that a number of metabolites obtained from algae and invertebrates may be produced by associated microorganisms. Studies are concerned with bacteria and fungi, isolated from seawater, sediments, algae, fish and mainly from marine invertebrates such as sponges, mollusks, tunicates, coelenterates and crustaceans. Although it is still to early to define tendencies, it may be stated that the metabolites from microorganisms are in most cases quite different from those produced by the invertebrate hosts. Nitrogenated metabolites predominate over acetate derivatives, and terpenes are uncommon. Among the latter, sesquiterpenes, diterpenes and carotenes have been isolated; among nitrogenated metabolites, amides, cyclic peptides and indole alkaloids predominate.

  2. Secondary Abnormalities of Neurotransmitters in Infants with Neurological Disorders

    ERIC Educational Resources Information Center

    Garcia-Cazorla, A.; Serrano, M.; Perez-Duenas, B.; Gonzalez, V.; Ormazabal, A.; Pineda, M.; Fernandez-Alvarez, E.; Campistol, J. M. D.; Artuch, R. M. D.

    2007-01-01

    Neurotransmitters are essential in young children for differentiation and neuronal growth of the developing nervous system. We aimed to identify possible factors related to secondary neurotransmitter abnormalities in pediatric patients with neurological disorders. We analyzed cerebrospinal fluid (CSF) and biogenic amine metabolites in 56 infants…

  3. Main Effects of Diagnoses, Brain Regions, and their Interaction Effects for Cerebral Metabolites in Bipolar and Unipolar Depressive Disorders

    NASA Astrophysics Data System (ADS)

    Tan, Hai-Zhu; Li, Hui; Liu, Chen-Feng; Guan, Ji-Tian; Guo, Xiao-Bo; Wen, Can-Hong; Ou, Shao-Min; Zhang, Yin-Nan; Zhang, Jie; Xu, Chong-Tao; Shen, Zhi-Wei; Wu, Ren-Hua; Wang, Xue-Qin

    2016-11-01

    Previous studies suggested patients with bipolar depressive disorder (BDd) or unipolar depressive disorder (UDd) have cerebral metabolites abnormalities. These abnormalities may stem from multiple sub-regions of gray matter in brain regions. Thirteen BDd patients, 20 UDd patients and 20 healthy controls (HC) were enrolled to investigate these abnormalities. Absolute concentrations of 5 cerebral metabolites (glutamate-glutamine (Glx), N-acetylaspartate (NAA), choline (Cho), myo-inositol (mI), creatine (Cr), parietal cortex (PC)) were measured from 4 subregions (the medial frontal cortex (mPFC), anterior cingulate cortex (ACC), posterior cingulate cortex (PCC), and parietal cortex (PC)) of gray matter. Main and interaction effects of cerebral metabolites across subregions of gray matter were evaluated. For example, the Glx was significantly higher in BDd compared with UDd, and so on. As the interaction analyses showed, some interaction effects existed. The concentrations of BDds’ Glx, Cho, Cr in the ACC and HCs’ mI and Cr in the PC were higher than that of other interaction effects. In addition, the concentrations of BDds’ Glx and Cr in the PC and HCs’ mI in the ACC were statistically significant lower than that of other interaction effects. These findings point to region-related abnormalities of cerebral metabolites across subjects with BDd and UDd.

  4. Main Effects of Diagnoses, Brain Regions, and their Interaction Effects for Cerebral Metabolites in Bipolar and Unipolar Depressive Disorders.

    PubMed

    Tan, Hai-Zhu; Li, Hui; Liu, Chen-Feng; Guan, Ji-Tian; Guo, Xiao-Bo; Wen, Can-Hong; Ou, Shao-Min; Zhang, Yin-Nan; Zhang, Jie; Xu, Chong-Tao; Shen, Zhi-Wei; Wu, Ren-Hua; Wang, Xue-Qin

    2016-11-21

    Previous studies suggested patients with bipolar depressive disorder (BDd) or unipolar depressive disorder (UDd) have cerebral metabolites abnormalities. These abnormalities may stem from multiple sub-regions of gray matter in brain regions. Thirteen BDd patients, 20 UDd patients and 20 healthy controls (HC) were enrolled to investigate these abnormalities. Absolute concentrations of 5 cerebral metabolites (glutamate-glutamine (Glx), N-acetylaspartate (NAA), choline (Cho), myo-inositol (mI), creatine (Cr), parietal cortex (PC)) were measured from 4 subregions (the medial frontal cortex (mPFC), anterior cingulate cortex (ACC), posterior cingulate cortex (PCC), and parietal cortex (PC)) of gray matter. Main and interaction effects of cerebral metabolites across subregions of gray matter were evaluated. For example, the Glx was significantly higher in BDd compared with UDd, and so on. As the interaction analyses showed, some interaction effects existed. The concentrations of BDds' Glx, Cho, Cr in the ACC and HCs' mI and Cr in the PC were higher than that of other interaction effects. In addition, the concentrations of BDds' Glx and Cr in the PC and HCs' mI in the ACC were statistically significant lower than that of other interaction effects. These findings point to region-related abnormalities of cerebral metabolites across subjects with BDd and UDd.

  5. Urinary Metabolite Markers of Precocious Puberty*

    PubMed Central

    Qi, Ying; Li, Pin; Zhang, Yongyu; Cui, Lulu; Guo, Zi; Xie, Guoxiang; Su, Mingming; Li, Xin; Zheng, Xiaojiao; Qiu, Yunping; Liu, Yumin; Zhao, Aihua; Jia, Weiping; Jia, Wei

    2012-01-01

    The incidence of precocious puberty (PP, the appearance of signs of pubertal development at an abnormally early age), is rapidly rising, concurrent with changes of diet, lifestyles, and social environment. The current diagnostic methods are based on a hormone (gonadotropin-releasing hormone) stimulation test, which is costly, time-consuming, and uncomfortable for patients. The lack of molecular biomarkers to support simple laboratory tests, such as a blood or urine test, has been a long standing bottleneck in the clinical diagnosis and evaluation of PP. Here we report a metabolomic study using an ultra performance liquid chromatography-quadrupole time of flight mass spectrometry and gas chromatography-time of flight mass spectrometry. Urine metabolites from 163 individuals were profiled, and the metabolic alterations were analyzed after treatment of central precocious puberty (CPP) with triptorelin depot. A panel of biomarkers selected from >70 differentially expressed urinary metabolites by receiver operating characteristic and logistic regression analysis provided excellent predictive power with high sensitivity and specificity for PP. The altered metabolic profile of the PP patients was characterized by three major perturbed metabolic pathways: catecholamine, serotonin metabolism, and tricarboxylic acid cycle, presumably resulting from activation of the sympathetic nervous system and the hypothalamic-pituitary-gonadal axis. Treatment with triptorelin depot was able to normalize these three altered pathways. Additionally, significant changes in the urine levels of 4-hydroxyphenylacetic acid, 5-hydroxyindoleacetic acid, indoleacetic acid, 5-hydroxytryptophan, and 5-hydroxykynurenamine in the CPP group suggest that the development of CPP condition may involve an alteration in symbiotic gut microbial composition. PMID:22027199

  6. Abnormal early dynamic individual patterns of functional networks in low gamma band for depression recognition.

    PubMed

    Bi, Kun; Chattun, Mahammad Ridwan; Liu, Xiaoxue; Wang, Qiang; Tian, Shui; Zhang, Siqi; Lu, Qing; Yao, Zhijian

    2018-06-13

    The functional networks are associated with emotional processing in depression. The mapping of dynamic spatio-temporal brain networks is used to explore individual performance during early negative emotional processing. However, the dysfunctions of functional networks in low gamma band and their discriminative potentialities during early period of emotional face processing remain to be explored. Functional brain networks were constructed from the MEG recordings of 54 depressed patients and 54 controls in low gamma band (30-48 Hz). Dynamic connectivity regression (DCR) algorithm analyzed the individual change points of time series in response to emotional stimuli and constructed individualized spatio-temporal patterns. The nodal characteristics of patterns were calculated and fed into support vector machine (SVM). Performance of the classification algorithm in low gamma band was validated by dynamic topological characteristics of individual patterns in comparison to alpha and beta band. The best discrimination accuracy of individual spatio-temporal patterns was 91.01% in low gamma band. Individual temporal patterns had better results compared to group-averaged temporal patterns in all bands. The most important discriminative networks included affective network (AN) and fronto-parietal network (FPN) in low gamma band. The sample size is relatively small. High gamma band was not considered. The abnormal dynamic functional networks in low gamma band during early emotion processing enabled depression recognition. The individual information processing is crucial in the discovery of abnormal spatio-temporal patterns in depression during early negative emotional processing. Individual spatio-temporal patterns may reflect the real dynamic function of subjects while group-averaged data may neglect some individual information. Copyright © 2018. Published by Elsevier B.V.

  7. Abnormality of G-protein-coupled receptor kinases at prodromal and early stages of Alzheimer's disease: an association with early beta-amyloid accumulation.

    PubMed

    Suo, Zhiming; Wu, Min; Citron, Bruce A; Wong, Gwendolyn T; Festoff, Barry W

    2004-03-31

    Overwhelming evidence indicates that the effects of beta-amyloid (Abeta) are dose dependent both in vitro and in vivo, which implies that Abeta is not directly detrimental to brain cells until it reaches a threshold concentration. In an effort to understand early Alzheimer's disease (AD) pathogenesis, this study focused on the effects of subthreshold soluble Abeta and the underlying molecular mechanisms in murine microglial cells and an AD transgenic mouse model. We found that there were two phases of dose-dependent Abeta effects on microglial cells: at the threshold of 5 microm and above, Abeta directly induced tumor necrosis factor-alpha (TNF-alpha) release, and at subthreshold doses, Abeta indirectly potentiated TNF-alpha release induced by certain G-protein-coupled receptor (GPCR) activators. Mechanistic studies revealed that subthreshold Abeta pretreatment in vitro reduced membrane GPCR kinase-2/5 (GRK2/5), which led to retarded GPCR desensitization, prolonged GPCR signaling, and cellular hyperactivity to GPCR agonists. Temporal analysis in an early-onset AD transgenic model, CRND8 mice, revealed that the membrane (functional) GRK2/5 in brain cortices were significantly reduced. More importantly, such a GRK abnormality took place before cognitive decline and changed in a manner corresponding with the mild to moderate soluble Abeta accumulation in these transgenic mice. Together, this study not only discovered a novel link between subthreshold Abeta and GRK dysfunction, it also demonstrated that the GRK abnormality in vivo occurs at prodromal and early stages of AD.

  8. Frontal Metabolite Concentration Deficits in Opiate Dependence Relate to Substance Use, Cognition, and Self-Regulation

    PubMed Central

    Murray, Donna E; Durazzo, Timothy C; Schmidt, Thomas P; Abé, Christoph; Guydish, Joseph; Meyerhoff, Dieter J

    2016-01-01

    Objective Proton magnetic resonance spectroscopy (1H MRS) in opiate dependence showed abnormalities in neuronal viability and glutamate concentration in the anterior cingulate cortex (ACC). Metabolite levels in dorsolateral prefrontal cortex (DLPFC) or orbitofrontal cortex (OFC) and their neuropsychological correlates have not been investigated in opiate dependence. Methods Single-volume proton MRS at 4 Tesla and neuropsychological testing were conducted in 21 opiate-dependent individuals (OD) on buprenorphine maintenance therapy. Results were compared to 28 controls (CON) and 35 alcohol-dependent individuals (ALC), commonly investigated treatment-seekers providing context for OD evaluation. Metabolite concentrations were measured from ACC, DLPFC, OFC and parieto-occipital cortical (POC) regions. Results Compared to CON, OD had lower concentrations of N-acetylaspartate (NAA), glutamate (Glu), creatine +phosphocreatine (Cr) and myo-Inositol (mI) in the DLPFC and lower NAA, Cr, and mI in the ACC. OD, ALC, and CON were equivalent on metabolite levels in the POC and γ-aminobutyric acid (GABA) concentration did not differ between groups in any region. In OD, prefrontal metabolite deficits in ACC Glu as well as DLPFC NAA and choline containing metabolites (Cho) correlated with poorer working memory, executive and visuospatial functioning; metabolite deficits in DLPFC Glu and ACC GABA and Cr correlated with substance use measures. In the OFC of OD, Glu and choline-containing metabolites were elevated and lower Cr concentration related to higher nonplanning impulsivity. Compared to 3 week abstinent ALC, OD had significant DLPFC metabolite deficits. Conclusion The anterior frontal metabolite profile of OD differed significantly from that of CON and ALC. The frontal lobe metabolite abnormalities in OD and their neuropsychological correlates may play a role in treatment outcome and could be explored as specific targets for improved OD treatment. PMID:27695638

  9. Variability and Predictors of Urinary Concentrations of Phthalate Metabolites during Early Childhood

    PubMed Central

    2015-01-01

    The variability and predictors of urinary concentrations of phthalate metabolites in preschool-aged children have not been thoroughly examined. Additionally, the impact of temporal changes in the use and restriction of phthalates in children’s products has not been assessed. Our objective was to identify demographic, behavioral, and temporal predictors of urinary phthalate metabolite concentrations in young children. Between 2004 and 2011, we collected up to five urine samples from each of 296 children participating in a prospective birth cohort during annual study visits at ages 1–5 years. We used linear mixed models to calculate intraclass correlation coefficients (ICCs), a measure of within-individual reproducibility, and identify demographic predictors of urinary phthalate metabolites. We used multivariable linear regression to examine cross-sectional relationships between food packaging or personal care product use and phthalate metabolites measured at age 5 years. Across annual measurements, monoethyl phthalate exhibited the least variation (ICC = 0.38), while di-2-ethylhexyl phthalate (ΣDEHP) metabolites exhibited the most variation (ICC = 0.09). Concentrations changed with age, suggesting age-related changes in phthalate exposure and perhaps metabolism. Our findings suggest that fast food consumption may be a source of butylbenzyl phthalate and di-isononyl phthalate (DiNP) exposure, and some personal care products may be sources of diethyl phthalate exposure. Concentrations of ΣDEHP metabolites decreased over the study period; however, concentrations of DiNP metabolites increased. This finding suggests that manufacturer practices and regulations, like the Consumer Product Safety Improvement Act of 2008, may decrease DEHP exposure, but additional work characterizing the nature and toxicity of replacements is critically needed. PMID:24977926

  10. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders.

    PubMed

    Hsiao, Elaine Y; McBride, Sara W; Hsien, Sophia; Sharon, Gil; Hyde, Embriette R; McCue, Tyler; Codelli, Julian A; Chow, Janet; Reisman, Sarah E; Petrosino, Joseph F; Patterson, Paul H; Mazmanian, Sarkis K

    2013-12-19

    Neurodevelopmental disorders, including autism spectrum disorder (ASD), are defined by core behavioral impairments; however, subsets of individuals display a spectrum of gastrointestinal (GI) abnormalities. We demonstrate GI barrier defects and microbiota alterations in the maternal immune activation (MIA) mouse model that is known to display features of ASD. Oral treatment of MIA offspring with the human commensal Bacteroides fragilis corrects gut permeability, alters microbial composition, and ameliorates defects in communicative, stereotypic, anxiety-like and sensorimotor behaviors. MIA offspring display an altered serum metabolomic profile, and B. fragilis modulates levels of several metabolites. Treating naive mice with a metabolite that is increased by MIA and restored by B. fragilis causes certain behavioral abnormalities, suggesting that gut bacterial effects on the host metabolome impact behavior. Taken together, these findings support a gut-microbiome-brain connection in a mouse model of ASD and identify a potential probiotic therapy for GI and particular behavioral symptoms in human neurodevelopmental disorders. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Nervous system disruption and concomitant behavioral abnormality in early hatched pufferfish larvae exposed to heavy oil.

    PubMed

    Kawaguchi, Masahumi; Sugahara, Yuki; Watanabe, Tomoe; Irie, Kouta; Ishida, Minoru; Kurokawa, Daisuke; Kitamura, Shin-Ichi; Takata, Hiromi; Handoh, Itsuki C; Nakayama, Kei; Murakami, Yasunori

    2011-08-01

    Spills of heavy oil (HO) over the oceans have been proven to have an adverse effect on marine life. It has been hypothesized that exposure of early larvae of sinking eggs to HO leads largely to normal morphology, whereas abnormal organization of the developing neural scaffold is likely to be found. HO-induced disruption of the nervous system, which controls animal behavior, may in turn cause abnormalities in the swimming behavior of hatched larvae. To clarify the toxicological effects of HO, we performed exposure experiments and morphological and behavioral analyses in pufferfish (Takifugu rubripes) larvae. Fertilized eggs of pufferfish were exposed to 50 mg/L of HO for 8 days and transferred to fresh seawater before hatching. The hatched larvae were observed for their swimming behavior, morphological appearance, and construction of muscles and nervous system. In HO-exposed larvae, we did not detect any anomaly of body morphology. However, they showed an abnormal swimming pattern and disorganized midbrain, a higher center controlling movement. Our results suggest that HO-exposed fishes suffer developmental disorder of the brain that triggers an abnormal swimming behavior and that HO may be selectively toxic to the brain and cause physical disability throughout the life span of these fishes.

  12. Urinary metabolomics of young Italian autistic children supports abnormal tryptophan and purine metabolism.

    PubMed

    Gevi, Federica; Zolla, Lello; Gabriele, Stefano; Persico, Antonio M

    2016-01-01

    Autism spectrum disorder (ASD) is still diagnosed through behavioral observation, due to a lack of laboratory biomarkers, which could greatly aid clinicians in providing earlier and more reliable diagnoses. Metabolomics on human biofluids provides a sensitive tool to identify metabolite profiles potentially usable as biomarkers for ASD. Initial metabolomic studies, analyzing urines and plasma of ASD and control individuals, suggested that autistic patients may share some metabolic abnormalities, despite several inconsistencies stemming from differences in technology, ethnicity, age range, and definition of "control" status. ASD-specific urinary metabolomic patterns were explored at an early age in 30 ASD children and 30 matched controls (age range 2-7, M:F = 22:8) using hydrophilic interaction chromatography (HILIC)-UHPLC and mass spectrometry, a highly sensitive, accurate, and unbiased approach. Metabolites were then subjected to multivariate statistical analysis and grouped by metabolic pathway. Urinary metabolites displaying the largest differences between young ASD and control children belonged to the tryptophan and purine metabolic pathways. Also, vitamin B 6 , riboflavin, phenylalanine-tyrosine-tryptophan biosynthesis, pantothenate and CoA, and pyrimidine metabolism differed significantly. ASD children preferentially transform tryptophan into xanthurenic acid and quinolinic acid (two catabolites of the kynurenine pathway), at the expense of kynurenic acid and especially of melatonin. Also, the gut microbiome contributes to altered tryptophan metabolism, yielding increased levels of indolyl 3-acetic acid and indolyl lactate. The metabolic pathways most distinctive of young Italian autistic children largely overlap with those found in rodent models of ASD following maternal immune activation or genetic manipulations. These results are consistent with the proposal of a purine-driven cell danger response, accompanied by overproduction of epileptogenic and

  13. Radiation induced abnormalities in early in vitro mouse embryos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirkpatrick, J.F.

    1973-08-01

    Female mice were superovulated and mated, and the two-cell embryos were collected and cultured in vitro. The embryos were exposed to x-irradiation (0 to 491 rads) during the two-cell stage before the appearance of the next cleavage plate, placed in new unirradiated culture medium and observed during subsequent development. Morphological abnormalities, which occurred as a result of irradiation, included fragmentation, disintegration, granlation, incomplete cleavage, cleavage cessation, nuclear degeneration and pycnosis and cytoplasmic vacuolization. There was no damage to the zona pellucida. The types of abnormalities indicate an agreement with the results of previous in vivo studies. A distinct correlation existedmore » between morphological abnormalities and embryo death. The greatest number of abnormalities resulted within five hours following irradiation, but increased through 20 hours post-exposure. At doses above 300 rads, the magnitude of damage was greater in the in vitro embryos than that shown in previous in vivo studies. (auth)« less

  14. Increasing cyanosis early after cavopulmonary connection caused by abnormal systemic venous channels.

    PubMed

    Gatzoulis, M A; Shinebourne, E A; Redington, A N; Rigby, M L; Ho, S Y; Shore, D F

    1995-02-01

    To show that abnormal systemic venous channels in patients who undergo cavopulmonary anastomoses can become manifest and haemodynamically important only after surgery despite detailed preoperative investigation. Descriptive study of patients fulfilling the above criteria selected from hospital records over the past three years. A tertiary referral centre. Of the three cases identified, two were isomeric, one with left atrial isomerism and hemiazygos continuation of the inferior vena cava who underwent bilateral bidirectional Glenn anastomoses and one with right isomerism who underwent total cavopulmonary anastomosis. Case 3 had absent left atrioventricular connection with a hypoplastic left lung and underwent a classic right Glenn procedure. All three cases presented with progressive cyanosis in the early postoperative period. Postoperative angiography in case 1 showed a remnant of a left inferior vena cava draining to the atrium to have become grossly dilated causing cyanosis, which resolved after redirection of this vessel and of the hepatic veins into the right pulmonary artery with an intra-atrial baffle. Cyanosis in case 2 was caused by intra-hepatic shunting to a hepatic vein draining to the left of the intra-atrial baffle. The diagnosis was made at necropsy, being overlooked on postoperative angiography. Repeat angiography in case 3 showed progressive dilatation of a small left superior vena cava to coronary sinus. Test occlusion with a view to embolisation revealed hitherto an undemonstrated hemiazygos continuation of inferior caval to brachiocephalic vein. The patient underwent surgical ligation of these two venous channels. Despite appropriate investigation some "abnormal" venous pathways manifest themselves, dilate, and become haemodynamically important only after surgical cavopulmonary anastomoses. In the presence of early postoperative cyanosis "new" systemic venous collateral channels should be considered as a possible cause, which may require

  15. Metabolites of Hypoxic Cardiomyocytes Induce the Migration of Cardiac Fibroblasts.

    PubMed

    Shi, Huairui; Zhang, Xuehong; He, Zekun; Wu, Zhiyong; Rao, Liya; Li, Yushu

    2017-01-01

    The migration of cardiac fibroblasts to the infarct region plays a major role in the repair process after myocardial necrosis or damage. However, few studies investigated whether early hypoxia in cardiomyocytes induces the migration of cardiac fibroblasts. The purpose of this study was to assess the role of metabolites of early hypoxic cardiomyocytes in the induction of cardiac fibroblast migration. Neonatal rat heart tissue was digested with a mixture of trypsin and collagenase at an appropriate ratio. Cardiomyocytes and cardiac fibroblasts were cultured via differential adhesion. The cardiomyocyte cultures were subjected to hypoxia for 2, 4, 6, 8, 10, and 12 h. The supernatants of the cardiomyocyte cultures were collected to determine the differences in cardiac fibroblast migration induced by hypoxic cardiomyocyte metabolites at various time points using a Transwell apparatus. Meanwhile, ELISA was performed to measure TNF-α, IL-1β and TGF-β expression levels in the cardiomyocyte metabolites at various time points. The metabolites of hypoxic cardiomyocytes significantly induced the migration of cardiac fibroblasts. The induction of cardiac fibroblast migration was significantly enhanced by cardiomyocyte metabolites in comparison to the control after 2, 4, and 6 h of hypoxia, and the effect was most significant after 2 h. The expression levels of TNF-α, IL-1β, IL-6, and TGF-β were substantially increased in the metabolites of cardiomyocytes, and neutralization with anti-TNF-α and anti-IL-1β antibodies markedly reduced the induction of cardiac fibroblast migration by the metabolites of hypoxic cardiomyocytes. The metabolites of early hypoxic cardiomyocytes can induce the migration of cardiac fibroblasts, and TNF-α and IL-1β may act as the initial chemotactic inducers. © 2017 The Author(s) Published by S. Karger AG, Basel.

  16. Development of automated analytical capability for the early detection of diabetes mellitus

    NASA Technical Reports Server (NTRS)

    Zlatkis, A.

    1976-01-01

    The total profile of volatile metabolites in urine of patients with diabetes mellitus was studied. Because of the drastic abnormalities in the metabolism of carbohydrates, lipids, and proteins connected with diabetes it was expected that apart from acetone further characteristic abnormalities occur in the profiles if volatile urinary metabolites in cases of diabetes mellitus. Quantitative and qualitative changes were found in these urines as compared to the urines of normal subjects.

  17. Abnormal early brain responses during visual search are evident in schizophrenia but not bipolar affective disorder.

    PubMed

    VanMeerten, Nicolaas J; Dubke, Rachel E; Stanwyck, John J; Kang, Seung Suk; Sponheim, Scott R

    2016-01-01

    People with schizophrenia show deficits in processing visual stimuli but neural abnormalities underlying the deficits are unclear and it is unknown whether such functional brain abnormalities are present in other severe mental disorders or in individuals who carry genetic liability for schizophrenia. To better characterize brain responses underlying visual search deficits and test their specificity to schizophrenia we gathered behavioral and electrophysiological responses during visual search (i.e., Span of Apprehension [SOA] task) from 38 people with schizophrenia, 31 people with bipolar disorder, 58 biological relatives of people with schizophrenia, 37 biological relatives of people with bipolar disorder, and 65 non-psychiatric control participants. Through subtracting neural responses associated with purely sensory aspects of the stimuli we found that people with schizophrenia exhibited reduced early posterior task-related neural responses (i.e., Span Endogenous Negativity [SEN]) while other groups showed normative responses. People with schizophrenia exhibited longer reaction times than controls during visual search but nearly identical accuracy. Those individuals with schizophrenia who had larger SENs performed more efficiently (i.e., shorter reaction times) on the SOA task suggesting that modulation of early visual cortical responses facilitated their visual search. People with schizophrenia also exhibited a diminished P300 response compared to other groups. Unaffected first-degree relatives of people with bipolar disorder and schizophrenia showed an amplified N1 response over posterior brain regions in comparison to other groups. Diminished early posterior brain responses are associated with impaired visual search in schizophrenia and appear to be specifically associated with the neuropathology of schizophrenia. Published by Elsevier B.V.

  18. Abnormal neural precursor cell regulation in the early postnatal Fragile X mouse hippocampus.

    PubMed

    Sourial, Mary; Doering, Laurie C

    2017-07-01

    The regulation of neural precursor cells (NPCs) is indispensable for a properly functioning brain. Abnormalities in NPC proliferation, differentiation, survival, or integration have been linked to various neurological diseases including Fragile X syndrome. Yet, no studies have examined NPCs from the early postnatal Fragile X mouse hippocampus despite the importance of this developmental time point, which marks the highest expression level of FMRP, the protein missing in Fragile X, in the rodent hippocampus and is when hippocampal NPCs have migrated to the dentate gyrus (DG) to give rise to lifelong neurogenesis. In this study, we examined NPCs from the early postnatal hippocampus and DG of Fragile X mice (Fmr1-KO). Immunocytochemistry on neurospheres showed increased Nestin expression and decreased Ki67 expression, which collectively indicated aberrant NPC biology. Intriguingly, flow cytometric analysis of the expression of the antigens CD15, CD24, CD133, GLAST, and PSA-NCAM showed a decreased proportion of neural stem cells (GLAST + CD15 + CD133 + ) and an increased proportion of neuroblasts (PSA-NCAM + CD15 + ) in the DG of P7 Fmr1-KO mice. This was mirrored by lower expression levels of Nestin and the mitotic marker phospho-histone H3 in vivo in the P9 hippocampus, as well as a decreased proportion of cells in the G 2 /M phases of the P7 DG. Thus, the absence of FMRP leads to fewer actively cycling NPCs, coinciding with a decrease in neural stem cells and an increase in neuroblasts. Together, these results show the importance of FMRP in the developing hippocampal formation and suggest abnormalities in cell cycle regulation in Fragile X. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  19. Endocidal Regulation of Secondary Metabolites in the Producing Organisms

    PubMed Central

    Li, Shiyou; Wang, Ping; Yuan, Wei; Su, Zushang; Bullard, Steven H.

    2016-01-01

    Secondary metabolites are defined as organic compounds that are not directly involved in the normal growth, development, and reproduction of an organism. They are widely believed to be responsible for interactions between the producing organism and its environment, with the producer avoiding their toxicities. In our experiments, however, none of the randomly selected 44 species representing different groups of plants and insects can avoid autotoxicity by its endogenous metabolites once made available. We coined the term endocides (endogenous biocides) to describe such metabolites that can poison or inhibit the parent via induced biosynthesis or external applications. Dosage-dependent endocides can selectively induce morphological mutations in the parent organism (e.g., shrubbiness/dwarfism, pleiocotyly, abnormal leaf morphogenesis, disturbed phyllotaxis, fasciated stems, and variegation in plants), inhibit its growth, development, and reproduction and cause death than non-closely related species. The propagule, as well as the organism itself contains or produces adequate endocides to kill itself. PMID:27389069

  20. Gyrification brain abnormalities associated with adolescence and early-adulthood cannabis use.

    PubMed

    Mata, Ignacio; Perez-Iglesias, Rocio; Roiz-Santiañez, Roberto; Tordesillas-Gutierrez, Diana; Pazos, Angel; Gutierrez, Agustin; Vazquez-Barquero, Jose Luis; Crespo-Facorro, Benedicto

    2010-03-04

    Although cannabis is the most widely used illicit drug in the world, the long-term effect of its use in the brain remains controversial. In order to determine whether adolescence and early-adulthood cannabis use is associated with gross volumetric and gyrification abnormalities in the brain, we set up a cross-sectional study using structural magnetic resonance imaging in a sample of general population subjects. Thirty cannabis-using subjects (mean age, 25.7 years; mean duration of regular use, 8.4 years, range: 3-21) with no history of polydrug use or neurologic/mental disorder and 44 non-using control subjects (mean age, 25.8 years) were included. Cannabis users showed bilaterally decreased concavity of the sulci and thinner sulci in the right frontal lobe. Among non-users, age was significantly correlated with decreased gyrification (i.e., less concave sulci and more convexe gyri) and decreased cortical thickness, supporting the notion of age-related gyrification changes. However, among cannabis users gyrification indices did not show significant dependency on age, age of regular cannabis use initiation, or cumulative exposure to cannabis. These results suggest that cannabis use in adolescence and early-adulthood might involve a premature alteration in cortical gyrification similar to what is normally observed at a later age, probably through disruption of normal neurodevelopment. 2009 Elsevier B.V. All rights reserved.

  1. Predictors of Abnormal Glucose Tolerance in the Early Postpartum Period in Patients with Gestational Diabetes.

    PubMed

    Inoue, Shigeru; Shinagawa, Takaaki; Horinouchi, Takashi; Kozuma, Yutaka; Yonemoto, Koji; Hori, Daizo; Ushijima, Kimio

    2016-01-01

    This study was designed to investigate the clinical predictors of abnormal glucose tolerance 5-7 weeks after delivery. Subjects were 155 women diagnosed with gestational diabetes mellitus (GDM) between October 2005 and September 2013 whose pregnancy and delivery were managed at our center. Subjects were divided into a normal glucose tolerance group (NGT; n = 113), or abnormal glucose tolerance group (AGT; n = 42) with borderline or overt diabetes mellitus, based on 75-g oral glucose tolerance test (75 gOGTT) results 5-7 weeks after delivery. We extracted profiles by which abnormal glucose tolerance levels 5-7 weeks after delivery were predicted using a classification and regression tree (CART) from parameters measured at the time of GDM diagnosis. Logistic regression analysis was used to determine prediction accuracy. Subjects with fasting plasma glucose (FPG) ≥92 mg/dL and immuno-reactive insulin level <100 μU/mL 60 min after load (IRI60min) at time of diagnosis showed a significantly higher risk of developing abnormal glucose tolerance 5-7 weeks after delivery than subjects with FPG <92 mg/dL (p < 0.0001). Subjects with FPG ≥92 mg/dL and IRI60min ≥ 100 μU/mL had the same risk as those with FPG of <92 mg/dL. Patients with gestational diabetes who met the criteria specified above at diagnosis were at a higher risk of developing diabetes mellitus in the future. By explaining this issue to patients, we expect to improve the rate of postpartum follow-up. This should facilitate early detection of diabetes, and help prevent associated complications.

  2. Involvement of metabolites in early defense mechanism of oil palm (Elaeis guineensis Jacq.) against Ganoderma disease.

    PubMed

    Nusaibah, S A; Siti Nor Akmar, A; Idris, A S; Sariah, M; Mohamad Pauzi, Z

    2016-12-01

    Understanding the mechanism of interaction between the oil palm and its key pathogen, Ganoderma spp. is crucial as the disease caused by this fungal pathogen leads to a major loss of revenue in leading palm oil producing countries in Southeast Asia. Here in this study, we assess the morphological and biochemical changes in Ganoderma disease infected oil palm seedling roots in both resistant and susceptible progenies. Rubber woodblocks fully colonized by G. boninense were applied as a source of inoculum to artificially infect the roots of resistant and susceptible oil palm progenies. Gas chromatography-mass spectrometry was used to measure an array of plant metabolites in 100 resistant and susceptible oil palm seedling roots treated with pathogenic Ganoderma boninense fungus. Statistical effects, univariate and multivariate analyses were used to identify key-Ganoderma disease associated metabolic agitations in both resistant and susceptible oil palm root tissues. Ganoderma disease related defense shifts were characterized based on (i) increased antifungal activity in crude extracts, (ii) increased lipid levels, beta- and gamma-sitosterol particularly in the resistant progeny, (iii) detection of heterocyclic aromatic organic compounds, benzo [h] quinoline, pyridine, pyrimidine (iv) elevation in antioxidants, alpha- and beta-tocopherol (iv) degraded cortical cell wall layers, possibly resulting from fungal hydrolytic enzyme activity needed for initial penetration. The present study suggested that plant metabolites mainly lipids and heterocyclic aromatic organic metabolites could be potentially involved in early oil palm defense mechanism against G. boninense infection, which may also highlight biomarkers for disease detection, treatment, development of resistant variety and monitoring. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Dihydroartemisinin promotes angiogenesis during the early embryonic development of zebrafish

    PubMed Central

    Ba, Qian; Duan, Juan; Tian, Jia-qiang; Wang, Zi-liang; Chen, Tao; Li, Xiao-guang; Chen, Pei-zhan; Wu, Song-jie; Xiang, Li; Li, Jing-quan; Chu, Rui-ai; Wang, Hui

    2013-01-01

    Aim: To investigate the embryotoxicity of dihydroartemisinin (DHA), the main active metabolite of artemisinin, in zebrafish, and explore the corresponding mechanisms. Methods: The embryos of wild type and TG (flk1:GFP) transgenic zebrafish were exposed to DHA. Developmental phenotypes of the embryos were observed. Development of blood vessels was directly observed in living embryos of TG (flk1:GFP) transgenic zebrafish under fluorescence microscope. The expression of angiogenesis marker genes vegfa, flk1, and flt1 in the embryos was detected using real-time PCR and RNA in situ hybridization assays. Results: Exposure to DHA (1–10 mg/L) dose-dependently caused abnormal zebrafish embryonic phenotypes in the early developmental stage. Furthermore, exposure to DHA (10 mg/L) resulted in more pronounced embryonic angiogenesis in TG (flk1:GFP) zebrafish line. Exposure to DHA (10 mg/L) significantly increased the mRNA expression of vegfa, flk1, and flt1 in the embryos. Knockdown of the flk1 protein partially blocked the effects of DHA on embryogenesis. Conclusion: DHA causes abnormal embryonic phenotypes and promotes angiogenesis in zebrafish early embryonic development, demonstrating the potential embryotoxicity of DHA. PMID:23708556

  4. Statistical distribution of blood serotonin as a predictor of early autistic brain abnormalities.

    PubMed

    Janusonis, Skirmantas

    2005-07-19

    A wide range of abnormalities has been reported in autistic brains, but these abnormalities may be the result of an earlier underlying developmental alteration that may no longer be evident by the time autism is diagnosed. The most consistent biological finding in autistic individuals has been their statistically elevated levels of 5-hydroxytryptamine (5-HT, serotonin) in blood platelets (platelet hyperserotonemia). The early developmental alteration of the autistic brain and the autistic platelet hyperserotonemia may be caused by the same biological factor expressed in the brain and outside the brain, respectively. Unlike the brain, blood platelets are short-lived and continue to be produced throughout the life span, suggesting that this factor may continue to operate outside the brain years after the brain is formed. The statistical distributions of the platelet 5-HT levels in normal and autistic groups have characteristic features and may contain information about the nature of this yet unidentified factor. The identity of this factor was studied by using a novel, quantitative approach that was applied to published distributions of the platelet 5-HT levels in normal and autistic groups. It was shown that the published data are consistent with the hypothesis that a factor that interferes with brain development in autism may also regulate the release of 5-HT from gut enterochromaffin cells. Numerical analysis revealed that this factor may be non-functional in autistic individuals. At least some biological factors, the abnormal function of which leads to the development of the autistic brain, may regulate the release of 5-HT from the gut years after birth. If the present model is correct, it will allow future efforts to be focused on a limited number of gene candidates, some of which have not been suspected to be involved in autism (such as the 5-HT4 receptor gene) based on currently available clinical and experimental studies.

  5. Serum metabolites associate with CT findings following TBI.

    PubMed

    Dickens, Alex Mountfort; Posti, Jussi P; Takala, Riikka Sk; Ala-Seppälä, Henna Maria; Mattila, Ismo; Coles, Jonathan Coles; Frantzén, Janek; Hutchinson, Peter John; Katila, Ari J; Kyllönen, Anna; Maanpää, Henna-Riikka; Newcombe, Virginia; Outtrim, Joanne; Tallus, Jussi; Carpenter, Keri; Menon, David; Hyotylainen, Tuulia; Tenovuo, Olli; Oresic, Matej

    2018-06-27

    There is a need to rapidly detect patients with traumatic brain injury (TBI) who require head computed tomography (CT). Given the energy crisis in the brain following TBI, we hypothesized that serum metabolomics would be a useful tool for developing a set of biomarkers to determine the need for CT and to distinguish between different types of injuries observed. Logistic regression models using metabolite data from the discovery cohort (n=144, Turku, Finland) were used to distinguish between patients with traumatic intracranial findings and negative findings on head CT. The resultant models were then tested in the validation cohort (n=66, Cambridge, UK). The levels of glial fibrillary acidic protein and ubiquitin C-terminal hydrolase-L1 were also quantified in the serum from the same patients. Despite there being significant differences in the protein biomarkers in patients with TBI, the model that determined the need for a CT scan validated poorly (AUC=0.64: Cambridge patients). However, using a combination of six metabolites (two amino acids, three sugar derivatives and one ketoacid) it was possible to discriminate patients with intracranial abnormalities on CT and patients with a normal CT (AUC=0.77 in Turku patients and AUC=0.73 in Cambridge patients). Furthermore, a combination of three metabolites could distinguish between diffuse brain injuries and mass lesions (AUC=0.87 in Turku patients and AUC=0.68 in Cambridge patients). This study identifies a set of validated serum polar metabolites, which associate with the need for a CT scan. Additionally, serum metabolites can also predict the nature of the brain injury. These metabolite markers may prevent unnecessary CT scans, thus reducing the cost of diagnostics and radiation load.

  6. Can we improve the prevention and detection of congenital abnormalities? An audit of early pregnancy care in New Zealand.

    PubMed

    Arroll, Nicola; Sadler, Lynn; Stone, Peter; Masson, Vicki; Farquhar, Cindy

    2013-08-16

    To determine whether there were "quality gaps" in the provision of care during pregnancies that resulted in a perinatal death due to congenital abnormality. Perinatal deaths from congenital cardiovascular, central nervous system or chromosomal abnormality in 2010 were identified retrospectively. Data were extracted by retrospective clinical note review and obtained by independent review of ultrasound scans. There were 137 perinatal deaths due to a congenital cardiovascular (35), central nervous system (29) or chromosomal abnormality (73). First contact with a health professional during pregnancy was predominantly with a general practitioner. First contact occurred within 14 weeks in 85% of pregnancies and there was often a significant delay before booking. Folate supplements were taken by 7% pre-conceptually and 54% of women in the antenatal period. There were 20 perinatal deaths from neural tube defects that could potentially have been prevented through the use of pre-conceptual folate. Antenatal screening was offered to 75% of the women who presented prior to 20 weeks and 84% of these undertook at least one of the available antenatal screening tests. Review of ultrasound images found five abnormalities could have been detected earlier. Delay in booking or failure to offer screening early were the most common reasons for delay in diagnosis of screen detectable abnormalities. The preventative value and timing of (pre-conceptual) folate needs emphasis.

  7. Treatment of abnormal vaginal flora in early pregnancy with clindamycin for the prevention of spontaneous preterm birth: a systematic review and metaanalysis

    PubMed Central

    Lamont, Ronald F.; Nhan-Chang, Chia-Ling; Sobel, Jack D.; Workowski, Kimberly; Conde-Agudelo, Agustin; Romero, Roberto

    2011-01-01

    The purpose of this study was to determine whether the administration of clindamycin to women with abnormal vaginal flora at <22 weeks of gestation reduces the risk of preterm birth and late miscarriage. We conducted a systematic review and metaanalysis of randomized controlled trials of the early administration of clindamycin to women with abnormal vaginal flora at <22 weeks of gestation. Five trials that comprised 2346 women were included. Clindamycin that was administered at <22 weeks of gestation was associated with a significantly reduced risk of preterm birth at <37 weeks of gestation and late miscarriage. There were no overall differences in the risk of preterm birth at <33 weeks of gestation, low birthweight, very low birthweight, admission to neonatal intensive care unit, stillbirth, peripartum infection, and adverse effects. Clindamycin in early pregnancy in women with abnormal vaginal flora reduces the risk of spontaneous preterm birth at <37 weeks of gestation and late miscarriage. There is evidence to justify further randomized controlled trials of clindamycin for the prevention of preterm birth. However, a deeper understanding of the vaginal microbiome, mucosal immunity, and the biology of bacterial vaginosis will be needed to inform the design of such trials. PMID:22071048

  8. Biochemical abnormalities in neonatal seizures.

    PubMed

    Sood, Arvind; Grover, Neelam; Sharma, Roshan

    2003-03-01

    The presence of seizure does not constitute a diagnoses but it is a symptom of an underlying central nervous system disorder due to systemic or biochemical disturbances. Biochemical disturbances occur frequently in the neonatal seizures either as an underlying cause or as an associated abnormality. In their presence, it is difficult to control seizure and there is a risk of further brain damage. Early recognition and treatment of biochemical disturbances is essential for optimal management and satisfactory long term outcome. The present study was conducted in the department of pediatrics in IGMC Shimla on 59 neonates. Biochemical abnormalities were detected in 29 (49.15%) of cases. Primary metabolic abnormalities occurred in 10(16.94%) cases of neonatal seizures, most common being hypocalcaemia followed by hypoglycemia, other metabolic abnormalities include hypomagnesaemia and hyponateremia. Biochemical abnormalities were seen in 19(38.77%) cases of non metabolic seizure in neonates. Associated metabolic abnormalities were observed more often with Hypoxic-ischemic-encephalopathy (11 out of 19) cases and hypoglycemia was most common in this group. No infant had hyponateremia, hyperkelemia or low zinc level.

  9. L-DOPS corrects neurochemical abnormalities in a Menkes disease mouse model

    PubMed Central

    Donsante, Anthony; Sullivan, Patricia; Goldstein, David S.; Brinster, Lauren R.; Kaler, Stephen G.

    2012-01-01

    Objective Menkes disease is a lethal neurodegenerative disorder of infancy caused by mutations in a copper-transporting ATPase gene, ATP7A. Among its multiple cellular tasks, ATP7A transfers copper to dopamine-beta-hydroxylase (DBH) within the lumen of the Golgi network or secretory granules, catalyzing the conversion of dopamine to norepinephrine. In a well-established mouse model of Menkes disease, mottled-brindled, we tested whether systemic administration of L-threo-dihydroxyphenylserine (L-DOPS), a drug used successfully to treat autosomal recessive norepinephrine deficiency, would improve brain neurochemical abnormalities and neuropathology. Methods At 8, 10, and 12 days of age, wild type and mo-br mice received intraperi-toneal injections of 200μg/g body weight of L-DOPS, or mock solution. Five hours after the final injection, the mice were euthanized and brains removed. We measured catecholamine metabolites affected by DBH via high-performance liquid chromatography with electrochemical detection, and assessed brain histopathology. Results Compared to mock-treated controls, mo-br mice that received intraperitoneal L-DOPS showed significant increases in brain norepinephrine (P<0.001) and its deaminated metabolite, dihydroxyphenylglycol (DHPG, P<0.05). The ratio of a non-beta-hydroxylated metabolite in the catecholamine biosynthetic pathway, dihydroxyphenylacetic acid, to the beta-hydroxylated metabolite, dihydroxyphenylglycol, improved equivalently to results obtained previously with brain-directed ATP7A gene therapy (P<0.01). However, L-DOPS treatment did not arrest global brain pathology or improve somatic growth, as gene therapy had. Interpretation We conclude that 1) L-DOPS crosses the blood-brain barrier in mo-br mice and corrects brain neurochemical abnormalities, 2) norepinephrine deficiency is not the cause of neurodegeneration in mo-br mice, and 3) L-DOPS treatment may ameliorate noradrenergic hypofunction in Menkes disease. PMID:23224983

  10. Mutagenic, cytotoxic, and teratogenic effects of 2-acetylaminofluorene and reactive metabolites in vitro.

    PubMed

    Faustman-Watts, E M; Yang, H Y; Namkung, M J; Greenaway, J C; Fantel, A G; Juchau, M R

    1984-01-01

    The embryotoxic, mutagenic, and cytotoxic properties of 2-acetylaminofluorene (AAF) and two of its reactive metabolites, N-acetoxy-2-acetylaminofluorene (AAAF) and 2-nitrosofluorene (NF) were assessed in vitro. A combined embryo culture/biotransformation system was used to determine the ability of these compounds to produce embryonic malformations, growth retardation, and/or embryolethality. Salmonella typhimurium auxotrophs (his-) were utilized to measure the mutagenic and cytotoxic potentials of these compounds. The parent compound, AAF, did not produce embryonic malformations or mutagenicity in the absence of an added cytochrome P-450-dependent monooxygenase system. Both metabolites produced each of the measured toxic effects without supplementation of a bioactivation system. However, the three chemicals each elicited a different spectrum of malformations. Bioactivated AAF produced neural tube abnormalities, whereas embryos treated with AAAF primarily exhibited prosencephalic malformations, and NF produced abnormalities of axial rotation or flexure. NF was approximately ten times more potent than AAAF as a direct-acting mutagen but only slightly more active in producing embryonic malformations in vitro. The results indicated that differential effects on the various measured parameters could be produced by these chemicals. The results indicated further that neither NF nor AAAF appeared to be individually responsible for the neural tube abnormalities generated by biotransformed AAF.

  11. Rosiglitazone reduces renal and plasma markers of oxidative injury and reverses urinary metabolite abnormalities in the amelioration of diabetic nephropathy.

    PubMed

    Zhang, Hongyu; Saha, Jharna; Byun, Jaeman; Schin, MaryLee; Lorenz, Matthew; Kennedy, Robert T; Kretzler, Matthias; Feldman, Eva L; Pennathur, Subramaniam; Brosius, Frank C

    2008-10-01

    Recent studies suggest that thiazolidinediones ameliorate diabetic nephropathy (DN) independently of their effect on hyperglycemia. In the current study, we confirm and extend these findings by showing that rosiglitazone treatment prevented the development of DN and reversed multiple markers of oxidative injury in DBA/2J mice made diabetic by low-dose streptozotocin. These diabetic mice developed a 14.2-fold increase in albuminuria and a 53% expansion of renal glomerular extracellular matrix after 12 wk of diabetes. These changes were largely abrogated by administration of rosiglitazone beginning 2 wk after the completion of streptozotocin injections. Rosiglitazone had no effect on glycemic control. Rosiglitazone had similar effects on insulin-treated diabetic mice after 24 wk of diabetes. Podocyte loss and glomerular fibronectin accumulation, other markers of early DN, were prevented by rosiglitazone in both 12- and 24-wk diabetic models. Surprisingly, glomerular GLUT1 levels did not increase and nephrin levels did not decrease in the diabetic animals; neither changed with rosiglitazone. Plasma and kidney markers of protein oxidation and lipid peroxidation were significantly elevated in the 24-wk diabetic animals despite insulin treatment and were reduced to near-normal levels by rosiglitazone. Finally, urinary metabolites were markedly altered by diabetes. Of 1,988 metabolite features identified by electrospray ionization time of flight mass spectrometry, levels of 56 were altered more than twofold in the urine of diabetic mice. Of these, 21 were returned to normal by rosiglitazone. Thus rosiglitazone has direct effects on the renal glomerulus to reduce reactive oxygen species accumulation to prevent type 1 diabetic mice from development of DN.

  12. R6/2 Huntington's disease mice develop early and progressive abnormal brain metabolism and seizures.

    PubMed

    Cepeda-Prado, Efrain; Popp, Susanna; Khan, Usman; Stefanov, Dimitre; Rodríguez, Jorge; Menalled, Liliana B; Dow-Edwards, Diana; Small, Scott A; Moreno, Herman

    2012-05-09

    A hallmark feature of Huntington's disease pathology is the atrophy of brain regions including, but not limited to, the striatum. Though MRI studies have identified structural CNS changes in several Huntington's disease (HD) mouse models, the functional consequences of HD pathology during the progression of the disease have yet to be investigated using in vivo functional MRI (fMRI). To address this issue, we first established the structural and functional MRI phenotype of juvenile HD mouse model R6/2 at early and advanced stages of disease. Significantly higher fMRI signals [relative cerebral blood volumes (rCBVs)] and atrophy were observed in both age groups in specific brain regions. Next, fMRI results were correlated with electrophysiological analysis, which showed abnormal increases in neuronal activity in affected brain regions, thus identifying a mechanism accounting for the abnormal fMRI findings. [(14)C] 2-deoxyglucose maps to investigate patterns of glucose utilization were also generated. An interesting mismatch between increases in rCBV and decreases in glucose uptake was observed. Finally, we evaluated the sensitivity of this mouse line to audiogenic seizures early in the disease course. We found that R6/2 mice had an increased susceptibility to develop seizures. Together, these findings identified seizure activity in R6/2 mice and show that neuroimaging measures sensitive to oxygen metabolism can be used as in vivo biomarkers, preceding the onset of an overt behavioral phenotype. Since fMRI-rCBV can also be obtained in patients, we propose that it may serve as a translational tool to evaluate therapeutic responses in humans and HD mouse models.

  13. Family history of psychosis moderates early auditory cortical response abnormalities in non-psychotic bipolar disorder

    PubMed Central

    Hamm, Jordan P; Ethridge, Lauren E; Shapiro, John R; Pearlson, Godfrey D; Tamminga, Carol A; Sweeney, John A; Keshavan, Matcheri S; Thaker, Gunvant K; Clementz, Brett A

    2017-01-01

    Objectives Bipolar I disorder is a disabling illness affecting 1% of people worldwide. Family and twin studies suggest that psychotic bipolar disorder (BDP) represents a homogenous subgroup with an etiology distinct from non-psychotic bipolar disorder (BDNP) and partially shared with schizophrenia. Studies of auditory electrophysiology [e.g., paired-stimulus and oddball measured with electroencephalography (EEG)] consistently report deviations in psychotic groups (schizophrenia, BDP), yet such studies comparing BDP and BDNP are sparse and, in some cases, conflicting. Auditory EEG responses are significantly reduced in unaffected relatives of psychosis patients, suggesting that they may relate to both psychosis liability and expression. Methods While 64-sensor EEGs were recorded, age- and gender-matched samples of 70 BDP, 35 BDNP {20 with a family history of psychosis [BDNP(+)]}, and 70 psychiatrically healthy subjects were presented typical auditory paired-stimuli and auditory oddball paradigms. Results Oddball P3b reductions were present and indistinguishable across all patient groups. P2s to paired-stimuli were abnormal only in BDP and BDNP(+). Conversely, N1 reductions to stimuli in both paradigms and P3a reductions were present in both BDP and BDNP(−) groups but were absent in BDNP(+). Conclusions While nearly all auditory neural response components studied were abnormal in BDP, BDNP abnormalities at early- and mid-latencies were moderated by family psychosis history. The relationship between psychosis expression, heritable psychosis risk, and neurophysiology within bipolar disorder, therefore, may be complex. Consideration of such clinical disease heterogeneity may be important for future investigations of the pathophysiology of major psychiatric disturbance. PMID:23941660

  14. The nurse response to abnormal vital sign recording in the emergency department.

    PubMed

    Johnson, Kimberly D; Mueller, Lindsey; Winkelman, Chris

    2017-01-01

    To examine what occurs after a recorded observation of at least one abnormal vital sign in the emergency department. The aims were to determine how often abnormal vital signs were recorded, what interventions were documented, and what factors were associated with documented follow-up for abnormal vital signs. Monitoring quality of care, and preventing or intervening before harm occurs to patients are central to nurses' roles. Abnormal vital signs have been associated with poor patient outcomes and require follow-up after the observation of abnormal readings to prevent patient harm related to a deteriorating status. This documentation is important to quality and safety of care. Observational, retrospective chart review. Modified Early Warning Score was calculated for all recorded vital signs for 195 charts. Comparisons were made between groups: (1) no abnormal vital signs, (2) abnormal vital sign present, but normal Modified Early Warning Score and (3) critically abnormal Modified Early Warning Score. About 62·1% of charts had an abnormal vital sign documented. Critically abnormal values were present in 14·9%. No documentation was present in 44·6% of abnormal cases. When interventions were documented, it was usually to notify the physician. The timing within the emergency department visit when the abnormalities were observed and the degree of abnormality had significant relationships to the presence of documentation. It is doubtful that nurses do not recognise abnormalities because more severely abnormal vital signs were more likely to have documented follow-up. Perhaps the interruptive nature of the emergency department or the prioritised actions of the nurse impacted documentation within this study. Further research is required to determine why follow-up is not being documented. To ensure safety and quality of patient care, accurate documentation of responses to abnormal vital signs is required. © 2016 John Wiley & Sons Ltd.

  15. Serum metabolites are associated with all-cause mortality in chronic kidney disease.

    PubMed

    Hu, Jiun-Ruey; Coresh, Josef; Inker, Lesley A; Levey, Andrew S; Zheng, Zihe; Rebholz, Casey M; Tin, Adrienne; Appel, Lawrence J; Chen, Jingsha; Sarnak, Mark J; Grams, Morgan E

    2018-06-02

    Chronic kidney disease (CKD) involves significant metabolic abnormalities and has a high mortality rate. Because the levels of serum metabolites in patients with CKD might provide insight into subclinical disease states and risk for future mortality, we determined which serum metabolites reproducibly associate with mortality in CKD using a discovery and replication design. Metabolite levels were quantified via untargeted liquid chromatography and mass spectroscopy from serum samples of 299 patients with CKD in the Modification of Diet in Renal Disease (MDRD) study as a discovery cohort. Six among 622 metabolites were significantly associated with mortality over a median follow-up of 17 years after adjustment for demographic and clinical covariates, including urine protein and measured glomerular filtration rate. We then replicated associations with mortality in 963 patients with CKD from the African American Study of Kidney Disease and Hypertension (AASK) cohort over a median follow-up of ten years. Three of the six metabolites identified in the MDRD cohort replicated in the AASK cohort: fumarate, allantoin, and ribonate, belonging to energy, nucleotide, and carbohydrate pathways, respectively. Point estimates were similar in both studies and in meta-analysis (adjusted hazard ratios 1.63, 1.59, and 1.61, respectively, per doubling of the metabolite). Thus, selected serum metabolites were reproducibly associated with long-term mortality in CKD beyond markers of kidney function in two well characterized cohorts, providing targets for investigation. Copyright © 2018 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  16. Statistical distribution of blood serotonin as a predictor of early autistic brain abnormalities

    PubMed Central

    Janušonis, Skirmantas

    2005-01-01

    Background A wide range of abnormalities has been reported in autistic brains, but these abnormalities may be the result of an earlier underlying developmental alteration that may no longer be evident by the time autism is diagnosed. The most consistent biological finding in autistic individuals has been their statistically elevated levels of 5-hydroxytryptamine (5-HT, serotonin) in blood platelets (platelet hyperserotonemia). The early developmental alteration of the autistic brain and the autistic platelet hyperserotonemia may be caused by the same biological factor expressed in the brain and outside the brain, respectively. Unlike the brain, blood platelets are short-lived and continue to be produced throughout the life span, suggesting that this factor may continue to operate outside the brain years after the brain is formed. The statistical distributions of the platelet 5-HT levels in normal and autistic groups have characteristic features and may contain information about the nature of this yet unidentified factor. Results The identity of this factor was studied by using a novel, quantitative approach that was applied to published distributions of the platelet 5-HT levels in normal and autistic groups. It was shown that the published data are consistent with the hypothesis that a factor that interferes with brain development in autism may also regulate the release of 5-HT from gut enterochromaffin cells. Numerical analysis revealed that this factor may be non-functional in autistic individuals. Conclusion At least some biological factors, the abnormal function of which leads to the development of the autistic brain, may regulate the release of 5-HT from the gut years after birth. If the present model is correct, it will allow future efforts to be focused on a limited number of gene candidates, some of which have not been suspected to be involved in autism (such as the 5-HT4 receptor gene) based on currently available clinical and experimental studies. PMID

  17. L-threo-dihydroxyphenylserine corrects neurochemical abnormalities in a Menkes disease mouse model.

    PubMed

    Donsante, Anthony; Sullivan, Patricia; Goldstein, David S; Brinster, Lauren R; Kaler, Stephen G

    2013-02-01

    Menkes disease is a lethal neurodegenerative disorder of infancy caused by mutations in a copper-transporting adenosine triphosphatase gene, ATP7A. Among its multiple cellular tasks, ATP7A transfers copper to dopamine beta hydroxylase (DBH) within the lumen of the Golgi network or secretory granules, catalyzing the conversion of dopamine to norepinephrine. In a well-established mouse model of Menkes disease, mottled-brindled (mo-br), we tested whether systemic administration of L-threo-dihydroxyphenylserine (L-DOPS), a drug used successfully to treat autosomal recessive norepinephrine deficiency, would improve brain neurochemical abnormalities and neuropathology. At 8, 10, and 12 days of age, wild-type and mo-br mice received intraperitoneal injections of 200μg/g body weight of L-DOPS, or mock solution. Five hours after the final injection, the mice were euthanized, and brains were removed. We measured catecholamine metabolites affected by DBH via high-performance liquid chromatography with electrochemical detection, and assessed brain histopathology. Compared to mock-treated controls, mo-br mice that received intraperitoneal L-DOPS showed significant increases in brain norepinephrine (p < 0.001) and its deaminated metabolite, dihydroxyphenylglycol (p < 0.05). The ratio of a non-beta-hydroxylated metabolite in the catecholamine biosynthetic pathway, dihydroxyphenylacetic acid, to the beta-hydroxylated metabolite, dihydroxyphenylglycol, improved equivalently to results obtained previously with brain-directed ATP7A gene therapy (p < 0.01). However, L-DOPS treatment did not arrest global brain pathology or improve somatic growth, as gene therapy had. We conclude that (1) L-DOPS crosses the blood-brain barrier in mo-br mice and corrects brain neurochemical abnormalities, (2) norepinephrine deficiency is not the cause of neurodegeneration in mo-br mice, and (3) L-DOPS treatment may ameliorate noradrenergic hypofunction in Menkes disease. Copyright © 2012 American

  18. Sulphur limitation and early sulphur deficiency responses in poplar: significance of gene expression, metabolites, and plant hormones.

    PubMed

    Honsel, Anne; Kojima, Mikiko; Haas, Richard; Frank, Wolfgang; Sakakibara, Hitoshi; Herschbach, Cornelia; Rennenberg, Heinz

    2012-03-01

    The influence of sulphur (S) depletion on the expression of genes related to S metabolism, and on metabolite and plant hormone contents was analysed in young and mature leaves, fine roots, xylem sap, and phloem exudates of poplar (Populus tremula×Populus alba) with special focus on early consequences. S depletion was applied by a gradual decrease of sulphate availability. The observed changes were correlated with sulphate contents. Based on the decrease in sulphate contents, two phases of S depletion could be distinguished that were denominated as 'S limitation' and 'early S deficiency'. S limitation was characterized by improved sulphate uptake (enhanced root-specific sulphate transporter PtaSULTR1;2 expression) and reduction capacities (enhanced adenosine 5'-phosphosulphate (APS) reductase expression) and by enhanced remobilization of sulphate from the vacuole (enhanced putative vacuolar sulphate transporter PtaSULTR4;2 expression). During early S deficiency, whole plant distribution of S was impacted, as indicated by increasing expression of the phloem-localized sulphate transporter PtaSULTR1;1 and by decreasing glutathione contents in fine roots, young leaves, mature leaves, and phloem exudates. Furthermore, at 'early S deficiency', expression of microRNA395 (miR395), which targets transcripts of PtaATPS3/4 (ATP sulphurylase) for cleavage, increased. Changes in plant hormone contents were observed at 'early S deficiency' only. Thus, S depletion affects S and plant hormone metabolism of poplar during 'S limitation' and 'early S deficiency' in a time series of events. Despite these consequences, the impact of S depletion on growth of poplar plants appears to be less severe than in Brassicaceae such as Arabidopsis thaliana or Brassica sp.

  19. Association between Metabolite Profiles, Metabolic Syndrome and Obesity Status.

    PubMed

    Allam-Ndoul, Bénédicte; Guénard, Frédéric; Garneau, Véronique; Cormier, Hubert; Barbier, Olivier; Pérusse, Louis; Vohl, Marie-Claude

    2016-05-27

    Underlying mechanisms associated with the development of abnormal metabolic phenotypes among obese individuals are not yet clear. Our aim is to investigate differences in plasma metabolomics profiles between normal weight (NW) and overweight/obese (Ov/Ob) individuals, with or without metabolic syndrome (MetS). Mass spectrometry-based metabolite profiling was used to compare metabolite levels between each group. Three main principal components factors explaining a maximum of variance were retained. Factor 1's (long chain glycerophospholipids) metabolite profile score was higher among Ov/Ob with MetS than among Ov/Ob and NW participants without MetS. This factor was positively correlated to plasma total cholesterol (total-C) and triglyceride levels in the three groups, to high density lipoprotein -cholesterol (HDL-C) among participants without MetS. Factor 2 (amino acids and short to long chain acylcarnitine) was positively correlated to HDL-C and negatively correlated with insulin levels among NW participants. Factor 3's (medium chain acylcarnitines) metabolite profile scores were higher among NW participants than among Ov/Ob with or without MetS. Factor 3 was negatively associated with glucose levels among the Ov/Ob with MetS. Factor 1 seems to be associated with a deteriorated metabolic profile that corresponds to obesity, whereas Factors 2 and 3 seem to be rather associated with a healthy metabolic profile.

  20. Early Environmental Enrichment Enhances Abnormal Brain Connectivity in a Rabbit Model of Intrauterine Growth Restriction.

    PubMed

    Illa, Miriam; Brito, Verónica; Pla, Laura; Eixarch, Elisenda; Arbat-Plana, Ariadna; Batallé, Dafnis; Muñoz-Moreno, Emma; Crispi, Fatima; Udina, Esther; Figueras, Francesc; Ginés, Silvia; Gratacós, Eduard

    2017-10-12

    The structural correspondence of neurodevelopmental impairments related to intrauterine growth restriction (IUGR) that persists later in life remains elusive. Moreover, early postnatal stimulation strategies have been proposed to mitigate these effects. Long-term brain connectivity abnormalities in an IUGR rabbit model and the effects of early postnatal environmental enrichment (EE) were explored. IUGR was surgically induced in one horn, whereas the contralateral one produced the controls. Postnatally, a subgroup of IUGR animals was housed in an enriched environment. Functional assessment was performed at the neonatal and long-term periods. At the long-term period, structural brain connectivity was evaluated by means of diffusion-weighted brain magnetic resonance imaging and by histological assessment focused on the hippocampus. IUGR animals displayed poorer functional results and presented altered whole-brain networks and decreased median fractional anisotropy in the hippocampus. Reduced density of dendritic spines and perineuronal nets from hippocampal neurons were also observed. Of note, IUGR animals exposed to enriched environment presented an improvement in terms of both function and structure. IUGR is associated with altered brain connectivity at the global and cellular level. A strategy based on early EE has the potential to restore the neurodevelopmental consequences of IUGR. © 2017 S. Karger AG, Basel.

  1. Brain and bone abnormalities of thanatophoric dwarfism.

    PubMed

    Miller, Elka; Blaser, Susan; Shannon, Patrick; Widjaja, Elysa

    2009-01-01

    The purpose of this article is to present the imaging findings of skeletal and brain abnormalities in thanatophoric dwarfism, a lethal form of dysplastic dwarfism. The bony abnormalities associated with thanatophoric dwarfism include marked shortening of the tubular bones and ribs. Abnormal temporal lobe development is a common associated feature and can be visualized as early as the second trimester. It is important to assess the brains of fetuses with suspected thanatophoric dwarfism because the presence of associated brain malformations can assist in the antenatal diagnosis of thanatophoric dwarfism.

  2. Early phenylpropanoid biosynthetic steps in Cannabis sativa: link between genes and metabolites.

    PubMed

    Docimo, Teresa; Consonni, Roberto; Coraggio, Immacolata; Mattana, Monica

    2013-06-28

    Phenylalanine ammonia-lyase (PAL), Cinnamic acid 4-hydroxylase (C4H) and 4-Coumarate: CoA ligase (4CL) catalyze the first three steps of the general phenylpropanoid pathway whereas chalcone synthase (CHS) catalyzes the first specific step towards flavonoids production. This class of specialized metabolites has a wide range of biological functions in plant development and defence and a broad spectrum of therapeutic activities for human health. In this study, we report the isolation of hemp PAL and 4CL cDNA and genomic clones. Through in silico analysis of their deduced amino acid sequences, more than an 80% identity with homologues genes of other plants was shown and phylogenetic relationships were highlighted. Quantitative expression analysis of the four above mentioned genes, PAL and 4CL enzymatic activities, lignin content and NMR metabolite fingerprinting in different Cannabis sativa tissues were evaluated. Furthermore, the use of different substrates to assay PAL and 4CL enzymatic activities indicated that different isoforms were active in different tissues. The diversity in secondary metabolites content observed in leaves (mainly flavonoids) and roots (mainly lignin) was discussed in relation to gene expression and enzymatic activities data.

  3. Early Phenylpropanoid Biosynthetic Steps in Cannabis sativa: Link between Genes and Metabolites

    PubMed Central

    Docimo, Teresa; Consonni, Roberto; Coraggio, Immacolata; Mattana, Monica

    2013-01-01

    Phenylalanine ammonia-lyase (PAL), Cinnamic acid 4-hydroxylase (C4H) and 4-Coumarate: CoA ligase (4CL) catalyze the first three steps of the general phenylpropanoid pathway whereas chalcone synthase (CHS) catalyzes the first specific step towards flavonoids production. This class of specialized metabolites has a wide range of biological functions in plant development and defence and a broad spectrum of therapeutic activities for human health. In this study, we report the isolation of hemp PAL and 4CL cDNA and genomic clones. Through in silico analysis of their deduced amino acid sequences, more than an 80% identity with homologues genes of other plants was shown and phylogenetic relationships were highlighted. Quantitative expression analysis of the four above mentioned genes, PAL and 4CL enzymatic activities, lignin content and NMR metabolite fingerprinting in different Cannabis sativa tissues were evaluated. Furthermore, the use of different substrates to assay PAL and 4CL enzymatic activities indicated that different isoforms were active in different tissues. The diversity in secondary metabolites content observed in leaves (mainly flavonoids) and roots (mainly lignin) was discussed in relation to gene expression and enzymatic activities data. PMID:23812081

  4. Early recognition of growth abnormalities permitting early intervention

    USDA-ARS?s Scientific Manuscript database

    Normal growth is a sign of good health. Monitoring for growth disturbances is fundamental to children's health care. Early detection and diagnosis of the causes of short stature allows management of underlying medical conditions, optimizing attainment of good health and normal adult height. This rev...

  5. Effect of early oral clindamycin on late miscarriage and preterm delivery in asymptomatic women with abnormal vaginal flora and bacterial vaginosis: a randomised controlled trial.

    PubMed

    Ugwumadu, Austin; Manyonda, Isaac; Reid, Fiona; Hay, Phillip

    2003-03-22

    Abnormal vaginal flora and bacterial vaginosis are associated with amplified risks of late miscarriage and spontaneous preterm delivery. We aimed to establish whether antibiotic treatment early in the second trimester might reduce these risks in a general obstetric population. We screened 6120 pregnant women attending hospital for their first antenatal visit--who were at 12-22 weeks' gestation (mean 15.6 weeks)--for bacterial vaginosis or abnormal vaginal flora. We used gram-stained slides of vaginal smears to diagnose abnormal vaginal flora or bacterial vaginosis, in accordance with Nugent's criteria. We randomly allocated 494 women with one of these signs to receive either clindamycin 300 mg or placebo orally twice daily for 5 days. Primary endpoints were spontaneous preterm delivery (birth > or =24 but <37 weeks) and late miscarriage (pregnancy loss > or =13 but <24 weeks). Analysis was intention to treat. Nine women were lost to follow-up or had elective termination. Thus, we analysed 485 women with complete outcome data. Women receiving clindamycin had significantly fewer miscarriages or preterm deliveries (13/244) than did those in the placebo group (38/241; percentage difference 10.4%, 95% CI 5.0-15.8, p=0.0003). Clindamycin also reduced adverse outcomes across the range of abnormal Nugent scores, with maximum effect in women with the highest Nugent score of 10. Treatment of asymptomatic abnormal vaginal flora and bacterial vaginosis with oral clindamycin early in the second trimester significantly reduces the rate of late miscarriage and spontaneous preterm birth in a general obstetric population.

  6. Sulphur limitation and early sulphur deficiency responses in poplar: significance of gene expression, metabolites, and plant hormones

    PubMed Central

    Honsel, Anne; Kojima, Mikiko; Haas, Richard; Frank, Wolfgang; Sakakibara, Hitoshi; Herschbach, Cornelia; Rennenberg, Heinz

    2012-01-01

    The influence of sulphur (S) depletion on the expression of genes related to S metabolism, and on metabolite and plant hormone contents was analysed in young and mature leaves, fine roots, xylem sap, and phloem exudates of poplar (Populus tremula×Populus alba) with special focus on early consequences. S depletion was applied by a gradual decrease of sulphate availability. The observed changes were correlated with sulphate contents. Based on the decrease in sulphate contents, two phases of S depletion could be distinguished that were denominated as ‘S limitation’ and ‘early S deficiency’. S limitation was characterized by improved sulphate uptake (enhanced root-specific sulphate transporter PtaSULTR1;2 expression) and reduction capacities (enhanced adenosine 5′-phosphosulphate (APS) reductase expression) and by enhanced remobilization of sulphate from the vacuole (enhanced putative vacuolar sulphate transporter PtaSULTR4;2 expression). During early S deficiency, whole plant distribution of S was impacted, as indicated by increasing expression of the phloem-localized sulphate transporter PtaSULTR1;1 and by decreasing glutathione contents in fine roots, young leaves, mature leaves, and phloem exudates. Furthermore, at ‘early S deficiency’, expression of microRNA395 (miR395), which targets transcripts of PtaATPS3/4 (ATP sulphurylase) for cleavage, increased. Changes in plant hormone contents were observed at ‘early S deficiency’ only. Thus, S depletion affects S and plant hormone metabolism of poplar during ‘S limitation’ and ‘early S deficiency’ in a time series of events. Despite these consequences, the impact of S depletion on growth of poplar plants appears to be less severe than in Brassicaceae such as Arabidopsis thaliana or Brassica sp. PMID:22162873

  7. Concentrations of isoflavones and their metabolites in the blood of pregnant and non-pregnant heifers fed soy bean.

    PubMed

    Woclawek-Potocka, Izabela; Piskula, Mariusz Krzysztof; Bah, Mamadou; Siemieniuch, Marta Jolanta; Korzekwa, Anna; Brzezicka, Edyta; Skarzynski, Dariusz Jan

    2008-10-01

    The present study compared the changes in isoflavones (daidzein and genistein) and their metabolite (equol and para-ethyl-phenol) concentrations in the blood plasma of cyclic and pregnant heifers after feeding with soy bean. Twelve healthy heifers were divided into three groups: cyclic heifers (days 8-12 of the estrous cycle; control group; n=4), an early pregnancy group (2 months pregnant; n=4) and a late pregnancy group (8 months pregnant; n=4). All heifers were fed a single dose of 2.5 kg of soy bean and then blood samples were taken from the jugular vein for 8 h at predetermined intervals. The concentrations of soy bean-derived isoflavones and their active metabolites were measured in the blood plasma on an HPLC system. In the blood plasma of the early- and late-pregnant heifers, we found lower concentrations and time-dependent decreases in daidzein and genistein in comparison to cyclic heifers (P<0.05). Moreover, we noticed significant increases of equol and para-ethyl-phenol in the blood plasma of the early-pregnant heifers (P<0.05). In contrast, in the blood plasma of the late-pregnant heifers, we did not find an increase in the isoflavone metabolite concentrations compared with the early-pregnant heifers (P>0.05). In conclusion, physiological status (cyclicity or pregnancy) of the females influenced the concentrations of isoflavone metabolites in the blood plasma of the heifers. The stage of pregnancy affects isoflavone absorption, biotransformation and metabolism differently and results in higher concentrations of active metabolites of isoflavones during early pregnancy in comparison to their lower concentrations during late pregnancy. Therefore, we surmise that cows are more sensitive to active isoflavone metabolite actions during early pregnancy than cyclic heifers and heifers in late pregnancy.

  8. Metabolite Profiling of Candidatus Liberibacter Infection in Hamlin Sweet Oranges.

    PubMed

    Hung, Wei-Lun; Wang, Yu

    2018-04-18

    Huanglongbing (HLB), also known as citrus greening disease, caused by Candidatus Liberibacter asiaticus (CLas), is considered the most serious citrus disease in the world. CLas infection has been shown to greatly affect metabolite profiles in citrus fruits. However, because of uneven distribution of CLas throughout the tree and a minimum bacterial titer requirement for polymerase chain reaction (PCR) detection, the infected trees may test false negative. To prevent this, metabolites of healthy Hamlin oranges (CLas-) obtained from the citrus undercover protection systems (CUPS) were investigated. Comparison of the metabolite profile of juice obtained from CLas- and CLas+ (asymptomatic and symptomatic) trees revealed significant differences in both volatile and nonvolatile metabolites. However, no consistent pattern could be observed in alcohols, esters, sesquiterpenes, sugars, flavanones, and limonoids as compared to previous studies. These results suggest that CLas may affect metabolite profiles of citrus fruits earlier than detecting infection by PCR. Citric acid, nobiletin, malic acid, and phenylalanine were identified as the metabolic biomarkers associated with the progression of HLB. Thus, the differential metabolites found in this study may serve as the biomarkers of HLB in its early stage, and the metabolite signature of CLas infection may provide useful information for developing a potential treatment strategy.

  9. Early white matter abnormalities, progressive brain pathology and motor deficits in a novel knock-in mouse model of Huntington's disease

    PubMed Central

    Jin, Jing; Peng, Qi; Hou, Zhipeng; Jiang, Mali; Wang, Xin; Langseth, Abraham J.; Tao, Michael; Barker, Peter B.; Mori, Susumu; Bergles, Dwight E.; Ross, Christopher A.; Detloff, Peter J.; Zhang, Jiangyang; Duan, Wenzhen

    2015-01-01

    White matter abnormalities have been reported in premanifest Huntington's disease (HD) subjects before overt striatal neuronal loss, but whether the white matter changes represent a necessary step towards further pathology and the underlying mechanism of these changes remains unknown. Here, we characterized a novel knock-in mouse model that expresses mouse HD gene homolog (Hdh) with extended CAG repeat- HdhQ250, which was derived from the selective breeding of HdhQ150 mice. HdhQ250 mice manifest an accelerated and robust phenotype compared with its parent line. HdhQ250 mice exhibit progressive motor deficits, reduction in striatal and cortical volume, accumulation of mutant huntingtin aggregation, decreased levels of DARPP32 and BDNF and altered striatal metabolites. The abnormalities detected in this mouse model are reminiscent of several aspects of human HD. In addition, disturbed myelination was evident in postnatal Day 14 HdhQ250 mouse brain, including reduced levels of myelin regulatory factor and myelin basic protein, and decreased numbers of myelinated axons in the corpus callosum. Thinner myelin sheaths, indicated by increased G-ratio of myelin, were also detected in the corpus callosum of adult HdhQ250 mice. Moreover, proliferation of oligodendrocyte precursor cells is altered by mutant huntingtin both in vitro and in vivo. Our data indicate that this model is suitable for understanding comprehensive pathogenesis of HD in white matter and gray matter as well as developing therapeutics for HD. PMID:25609071

  10. Disruption of dopamine transport by DDT and its metabolites

    PubMed Central

    Hatcher, Jaime M.; Delea, Kristin C.; Richardson, Jason R.; Pennell, Kurt D.; Miller, Gary W.

    2016-01-01

    Epidemiological studies suggest a link between pesticide exposure and an increased risk of developing Parkinson’s disease (PD). Although studies have been unable to clearly identify specific pesticides that contribute to PD, a few human studies have reported higher levels of the organochlorine pesticides dieldrin and DDE (a metabolite of DDT) in post-mortem PD brains. Previously, we found that exposure of mice to dieldrin caused perturbations in the nigrostriatal dopamine system consistent with those seen in PD. Given the concern over the environmental persistence and reintroduction of DDT for the control of malaria-carrying mosquitoes and other pests, we sought to determine whether DDT and its two major metabolites, DDD and DDE, could damage the dopamine system. In vitro analyses in mouse synaptosomes and vesicles demonstrated that DDT and its metabolites inhibit the plasma membrane dopamine transporter (DAT) and the vesicular monoamine transporter (VMAT2). However, exposure of mice to either DDT or DDE failed to show evidence of nigrostriatal damage or behavioral abnormalities in any of the measures examined. Thus, we report that in vitro effects of DDT and its metabolites on components of the dopamine system do not translate into neurotoxicological outcomes in orally exposed mice and DDT appears to have less dopamine toxicity when compared to dieldrin. These data suggest elevated DDE levels in PD patients may represent a measure of general pesticide exposure and that other pesticides may be responsible for the association between pesticide exposure and PD. PMID:18533268

  11. Root Secreted Metabolites and Proteins Are Involved in the Early Events of Plant-Plant Recognition Prior to Competition

    PubMed Central

    Badri, Dayakar V.; De-la-Peña, Clelia; Lei, Zhentian; Manter, Daniel K.; Chaparro, Jacqueline M.; Guimarães, Rejane L.; Sumner, Lloyd W.; Vivanco, Jorge M.

    2012-01-01

    The mechanism whereby organisms interact and differentiate between others has been at the forefront of scientific inquiry, particularly in humans and certain animals. It is widely accepted that plants also interact, but the degree of this interaction has been constricted to competition for space, nutrients, water and light. Here, we analyzed the root secreted metabolites and proteins involved in early plant neighbor recognition by using Arabidopsis thaliana Col-0 ecotype (Col) as our focal plant co-cultured in vitro with different neighbors [A. thaliana Ler ecotype (Ler) or Capsella rubella (Cap)]. Principal component and cluster analyses revealed that both root secreted secondary metabolites and proteins clustered separately between the plants grown individually (Col-0, Ler and Cap grown alone) and the plants co-cultured with two homozygous individuals (Col-Col, Ler-Ler and Cap-Cap) or with different individuals (Col-Ler and Col-Cap). In particularly, we observed that a greater number of defense- and stress- related proteins were secreted when our control plant, Col, was grown alone as compared to when it was co-cultured with another homozygous individual (Col-Col) or with a different individual (Col-Ler and Col-Cap). However, the total amount of defense proteins in the exudates of the co-cultures was higher than in the plant alone. The opposite pattern of expression was identified for stress-related proteins. These data suggest that plants can sense and respond to the presence of different plant neighbors and that the level of relatedness is perceived upon initial interaction. Furthermore, the role of secondary metabolites and defense- and stress-related proteins widely involved in plant-microbe associations and abiotic responses warrants reassessment for plant-plant interactions. PMID:23056382

  12. A snapshot of plasma metabolites in first-episode schizophrenia: a capillary electrophoresis time-of-flight mass spectrometry study.

    PubMed

    Koike, S; Bundo, M; Iwamoto, K; Suga, M; Kuwabara, H; Ohashi, Y; Shinoda, K; Takano, Y; Iwashiro, N; Satomura, Y; Nagai, T; Natsubori, T; Tada, M; Yamasue, H; Kasai, K

    2014-04-08

    Few biomarkers have been known that can easily measure clinical conditions in mental illnesses such as schizophrenia. Capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS) is a new method that can measure ionized and low-molecular-weight metabolites. To explore global metabolomic alterations that characterize the onset of schizophrenia and identify biomarkers, we profiled the relative and absolute concentrations of the plasma metabolites from 30 patients with first-episode schizophrenia (FESZ, four drug-naïve samples), 38 healthy controls and 15 individuals with autism spectrum disorders using CE-TOFMS. Five metabolites had robust changes (increased creatine and decreased betaine, nonanoic acid, benzoic acid and perillic acid) in two independent sample sets. Altered levels of these metabolites are consistent with well-known hypotheses regarding abnormalities of the homocysteine metabolism, creatine kinase-emia and oxidative stress. Although it should be considered that most patients with FESZ received medication, these metabolites are candidate biomarkers to improve the determination of diagnosis, severity and clinical stages, especially for FESZ.

  13. Morphological abnormalities during early-life development of the estuarine mummichog, Fundulus heteroclitus, as an indicator of androgenic and anti-androgenic endocrine disruption.

    PubMed

    Boudreau, Monica; Courtenay, Simon C; Maclatchy, Deborah L; Bérubé, Céline H; Hewitt, L Mark; Van Der Kraak, Glen J

    2005-03-04

    We tested the hypothesis that gross morphological abnormalities are a sensitive indicator of exposure to waterborne androgenic and anti-androgenic compounds during embryonic, larval and juvenile stages of development in the common estuarine killifish, the mummichog (Fundulus heteroclitus; Pisces: Cyprinodontidae). Static exposures with daily renewal were carried out with 10-100,000 ng/L of the androgen agonist, 17alpha-methyltestosterone (MT), or the androgen antagonist, cyproterone acetate (CA), for 60 days post-fertilization (PF) in duplicate exposures. Measured concentrations were 78.4-155.8% of nominal concentrations for MT and 13.5-168.1% for CA. No dose-related or consistent effects of MT or CA were observed before hatch. In 60 days PF juveniles, incidence of skeletal abnormalities (scoliosis, lordosis, head, facial and fin), soft tissue abnormality (anal swelling) and hemorrhaging were significantly increased by MT but only at high concentrations (> or =1000 ng/L). The 10,000 and 100,000 ng/L concentrations of MT produced a wider range of abnormalities than 1000ng/L. Over 90% of fish exposed to 10,000 or 100,000 ng/L were abnormal with an average of over 3.5 abnormalities per fish. CA did not increase the incidence of any type of abnormality. Survival of juveniles to the end of the exposure was reduced by MT at concentrations of 1000 ng/L and greater in the first experiment and at concentrations of 10,000 ng/L and greater in the second experiment. Juvenile length was reduced by high concentrations of MT (> or =10,000 ng/L) in the first experiment and by most concentrations in the second experiment. We conclude that morphological abnormalities in early-life stages of mummichogs are not a sensitive indicator of exposure to androgenic or anti-androgenic waterborne EDSs at environmentally relevant concentrations.

  14. Identification of metabolites, clinical chemistry markers and transcripts associated with hepatotoxicity.

    PubMed

    Buness, Andreas; Roth, Adrian; Herrmann, Annika; Schmitz, Oliver; Kamp, Hennicke; Busch, Kristina; Suter, Laura

    2014-01-01

    Early and accurate pre-clinical and clinical biomarkers of hepatotoxicity facilitate the drug development process and the safety monitoring in clinical studies. We selected eight known model compounds to be administered to male Wistar rats to identify biomarkers of drug induced liver injury (DILI) using transcriptomics, metabolite profiling (metabolomics) and conventional endpoints. We specifically explored early biomarkers in serum and liver tissue associated with histopathologically evident acute hepatotoxicity. A tailored data analysis strategy was implemented to better differentiate animals with no treatment-related findings in the liver from animals showing evident hepatotoxicity as assessed by histopathological analysis. From the large number of assessed parameters, our data analysis strategy allowed us to identify five metabolites in serum and five in liver tissue, 58 transcripts in liver tissue and seven clinical chemistry markers in serum that were significantly associated with acute hepatotoxicity. The identified markers comprised metabolites such as taurocholic acid and putrescine (measured as sum parameter together with agmatine), classical clinical chemistry markers like AST (aspartate aminotransferase), ALT (alanine aminotransferase), and bilirubin, as well as gene transcripts like Igfbp1 (insulin-like growth factor-binding protein 1) and Egr1 (early growth response protein 1). The response pattern of the identified biomarkers was concordant across all types of parameters and sample matrices. Our results suggest that a combination of several of these biomarkers could significantly improve the robustness and accuracy of an early diagnosis of hepatotoxicity.

  15. Investigation of metabolites for estimating blood deposition time.

    PubMed

    Lech, Karolina; Liu, Fan; Davies, Sarah K; Ackermann, Katrin; Ang, Joo Ern; Middleton, Benita; Revell, Victoria L; Raynaud, Florence J; Hoveijn, Igor; Hut, Roelof A; Skene, Debra J; Kayser, Manfred

    2018-01-01

    Trace deposition timing reflects a novel concept in forensic molecular biology involving the use of rhythmic biomarkers for estimating the time within a 24-h day/night cycle a human biological sample was left at the crime scene, which in principle allows verifying a sample donor's alibi. Previously, we introduced two circadian hormones for trace deposition timing and recently demonstrated that messenger RNA (mRNA) biomarkers significantly improve time prediction accuracy. Here, we investigate the suitability of metabolites measured using a targeted metabolomics approach, for trace deposition timing. Analysis of 171 plasma metabolites collected around the clock at 2-h intervals for 36 h from 12 male participants under controlled laboratory conditions identified 56 metabolites showing statistically significant oscillations, with peak times falling into three day/night time categories: morning/noon, afternoon/evening and night/early morning. Time prediction modelling identified 10 independently contributing metabolite biomarkers, which together achieved prediction accuracies expressed as AUC of 0.81, 0.86 and 0.90 for these three time categories respectively. Combining metabolites with previously established hormone and mRNA biomarkers in time prediction modelling resulted in an improved prediction accuracy reaching AUCs of 0.85, 0.89 and 0.96 respectively. The additional impact of metabolite biomarkers, however, was rather minor as the previously established model with melatonin, cortisol and three mRNA biomarkers achieved AUC values of 0.88, 0.88 and 0.95 for the same three time categories respectively. Nevertheless, the selected metabolites could become practically useful in scenarios where RNA marker information is unavailable such as due to RNA degradation. This is the first metabolomics study investigating circulating metabolites for trace deposition timing, and more work is needed to fully establish their usefulness for this forensic purpose.

  16. Detection of driver metabolites in the human liver metabolic network using structural controllability analysis

    PubMed Central

    2014-01-01

    Background Abnormal states in human liver metabolism are major causes of human liver diseases ranging from hepatitis to hepatic tumor. The accumulation in relevant data makes it feasible to derive a large-scale human liver metabolic network (HLMN) and to discover important biological principles or drug-targets based on network analysis. Some studies have shown that interesting biological phenomenon and drug-targets could be discovered by applying structural controllability analysis (which is a newly prevailed concept in networks) to biological networks. The exploration on the connections between structural controllability theory and the HLMN could be used to uncover valuable information on the human liver metabolism from a fresh perspective. Results We applied structural controllability analysis to the HLMN and detected driver metabolites. The driver metabolites tend to have strong ability to influence the states of other metabolites and weak susceptibility to be influenced by the states of others. In addition, the metabolites were classified into three classes: critical, high-frequency and low-frequency driver metabolites. Among the identified 36 critical driver metabolites, 27 metabolites were found to be essential; the high-frequency driver metabolites tend to participate in different metabolic pathways, which are important in regulating the whole metabolic systems. Moreover, we explored some other possible connections between the structural controllability theory and the HLMN, and find that transport reactions and the environment play important roles in the human liver metabolism. Conclusion There are interesting connections between the structural controllability theory and the human liver metabolism: driver metabolites have essential biological functions; the crucial role of extracellular metabolites and transport reactions in controlling the HLMN highlights the importance of the environment in the health of human liver metabolism. PMID:24885538

  17. Metabolomic Analysis of Overactive Bladder in Male Patients: Identification of Potential Metabolite Biomarkers.

    PubMed

    Shimura, Hiroshi; Mitsui, Takahiko; Kira, Satoru; Ihara, Tatsuya; Sawada, Norifumi; Nakagomi, Hiroshi; Miyamoto, Tatsuya; Tsuchiya, Sachiko; Kanda, Mie; Takeda, Masayuki

    2018-05-09

    To identify metabolites that are associated with an overactive bladder (OAB) using metabolomics. A total of 58 male patients without apparent neurologic disease completed 24-hour bladder diaries of their micturition behavior and International Prostate Symptom Score (IPSS) for the assessment of micturition behavior and lower urinary tract symptoms. Urgency was defined as an IPSS urgency score of ≥2 (OAB group), and patients with IPSS urgency scores of ≤1 belonged to the control group. A comprehensive study of plasma metabolites was also conducted using capillary electrophoresis time-of-flight mass spectrometry. Metabolite levels were compared between the control and OAB groups using the Mann-Whitney U test. Potential metabolite biomarkers were selected using multivariate logistic regression analysis. Of the 58 subjects, the control and OAB groups consisted of 32 and 26 male patients, respectively. Nocturnal urinary volume, 24-hour micturition frequency, nocturnal micturition frequency, and the nocturia index were significantly higher in the OAB group. Metabolomic analysis revealed 60 metabolites in the subjects' plasma. The levels of 11 metabolites differed between the control and OAB groups. Multivariate analysis showed that an increased glutamate level and reduced arginine, glutamine, and inosine monophosphate levels are significantly associated with OAB in male patients. Reduced levels of asparagine and hydroxyproline could also be associated with OAB. Urgency is associated with abnormal metabolism. Analyses of amino acid profiles might aid the search for new treatment targets for OAB. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Natural metabolites for parasitic weed management.

    PubMed

    Vurro, Maurizio; Boari, Angela; Evidente, Antonio; Andolfi, Anna; Zermane, Nadjia

    2009-05-01

    Compounds of natural origin, such as phytotoxins produced by fungi or natural amino acids, could be used in parasitic weed management strategies by interfering with the early growth stages of the parasites. These metabolites could inhibit seed germination or germ tube elongation, so preventing attachment to the host plant, or, conversely, stimulate seed germination in the absence of the host, contributing to a reduction in the parasite seed bank. Some of the fungal metabolites assayed were very active even at very low concentrations, such as some macrocyclic trichothecenes, which at 0.1 microM strongly suppressed the germination of Orobanche ramosa L. seeds. Interesting results were also obtained with some novel toxins, such as phyllostictine A, highly active in reducing germ tube elongation and seed germination both of O. ramosa and of Cuscuta campestris Yuncker. Among the amino acids tested, methionine and arginine were particularly interesting, as they were able to suppress seed germination at concentrations lower than 1 mM. Some of the fungal metabolites tested were also able to stimulate the germination of O. ramosa seeds. The major findings in this research field are described and discussed.

  19. Signs and symptoms of developmental abnormalities of the genitourinary tract.

    PubMed

    Nogueira, Paulo Cesar Koch; Paz, Isabel de Pádua

    2016-01-01

    The abnormalities of the genitourinary tract development are the leading cause of chronic kidney disease (CKD) in children. The diagnosis of this disease in Brazil is late and incomplete, which results in increased morbidity and mortality in this age group. Early diagnosis of this condition is the prerogative of generalist pediatricians, and the aim of this study was to review the clinical signs and symptoms associated with developmental abnormalities of the genitourinary tract. Based on the description of a symbolic clinical case, the authors conducted a non-systematic review of medical literature. The results suggest that the following data should be used as a warning for early diagnosis of affected children: (a) combined urinary tract abnormalities (chromosomal abnormalities; sequence of malformations [VACTERLand Prune-Belly]; and musculoskeletal, digestive tract, heart, and nervous system malformations); (b) previous history (congenital anomalies of the kidney and urinary tract [CAKUT] in the family, low birth weight, and oligoamnios); (c) clinical signs (polyuria/nocturia, urinary tract infection, systemic arterial hypertension, failure to thrive, weak urinary stream, difficulty to start urination, distended bladder, non-monosymptomatic enuresis, urinary/urge incontinence, and bowel and bladder dysfunction); and (d) pre- and postnatal ultrasonographic alterations (increased anteroposterior diameter of the renal pelvis, mainly in the third trimester of pregnancy; single kidney; hydronephrosis associated with other abnormalities; and hydronephrosis with parenchymal involvement in the post-neonatal assessment). The suggestions shown here can help the pediatrician to establish clinical hypotheses for the early diagnosis of developmental abnormalities of the genitourinary tract without resorting to expensive and invasive procedures. Copyright © 2016 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  20. Morphological and functional abnormalities of salience network in the early-stage of paranoid schizophrenia.

    PubMed

    Pu, Weidan; Li, Li; Zhang, Huiran; Ouyang, Xuan; Liu, Haihong; Zhao, Jingping; Li, Lingjiang; Xue, Zhimin; Xu, Ke; Tang, Haibo; Shan, Baoci; Liu, Zhening; Wang, Fei

    2012-10-01

    A salience network (SN), mainly composed of the anterior insula (AI) and anterior cingulate cortex (ACC), has been suggested to play an important role in salience attribution which has been proposed as central to the pathology of paranoid schizophrenia. The role of this SN in the pathophysiology of paranoid schizophrenia, however, still remains unclear. In the present study, voxel-based morphometry and resting-state functional connectivity analyses were combined to identify morphological and functional abnormalities in the proposed SN in the early-stage of paranoid schizophrenia (ESPS). Voxel-based morphometry and resting-state functional connectivity analyses were applied to 90 ESPS patients and 90 age- and sex-matched healthy controls (HC). Correlation analyses were performed to examine the relationships between various clinical variables and both gray matter morphology and functional connectivity within the SN in ESPS. Compared to the HC group, the ESPS group showed significantly reduced gray matter volume (GMV) in both bilateral AI and ACC. Moreover, significantly reduced functional connectivity within the SN sub-networks was identified in the ESPS group. These convergent morphological and functional deficits in SN were significantly associated with hallucinations. Additionally, illness duration correlated with reduced GMV in the left AI in ESPS. In conclusion, these findings provide convergent evidence for the morphological and functional abnormalities of the SN in ESPS. Moreover, the association of illness duration with the reduced GMV in the left AI suggests that the SN and the AI, in particular, may manifest progressive morphological changes that are especially important in the emergence of ESPS. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Abnormal resting-state connectivity of motor and cognitive networks in early manifest Huntington's disease.

    PubMed

    Wolf, R C; Sambataro, F; Vasic, N; Depping, M S; Thomann, P A; Landwehrmeyer, G B; Süssmuth, S D; Orth, M

    2014-11-01

    Functional magnetic resonance imaging (fMRI) of multiple neural networks during the brain's 'resting state' could facilitate biomarker development in patients with Huntington's disease (HD) and may provide new insights into the relationship between neural dysfunction and clinical symptoms. To date, however, very few studies have examined the functional integrity of multiple resting state networks (RSNs) in manifest HD, and even less is known about whether concomitant brain atrophy affects neural activity in patients. Using MRI, we investigated brain structure and RSN function in patients with early HD (n = 20) and healthy controls (n = 20). For resting-state fMRI data a group-independent component analysis identified spatiotemporally distinct patterns of motor and prefrontal RSNs of interest. We used voxel-based morphometry to assess regional brain atrophy, and 'biological parametric mapping' analyses to investigate the impact of atrophy on neural activity. Compared with controls, patients showed connectivity changes within distinct neural systems including lateral prefrontal, supplementary motor, thalamic, cingulate, temporal and parietal regions. In patients, supplementary motor area and cingulate cortex connectivity indices were associated with measures of motor function, whereas lateral prefrontal connectivity was associated with cognition. This study provides evidence for aberrant connectivity of RSNs associated with motor function and cognition in early manifest HD when controlling for brain atrophy. This suggests clinically relevant changes of RSN activity in the presence of HD-associated cortical and subcortical structural abnormalities.

  2. Early Standard Electroencephalogram Abnormalities Predict Mortality in Septic Intensive Care Unit Patients.

    PubMed

    Azabou, Eric; Magalhaes, Eric; Braconnier, Antoine; Yahiaoui, Lyria; Moneger, Guy; Heming, Nicholas; Annane, Djillali; Mantz, Jean; Chrétien, Fabrice; Durand, Marie-Christine; Lofaso, Frédéric; Porcher, Raphael; Sharshar, Tarek

    2015-01-01

    Sepsis is associated with increased mortality, delirium and long-term cognitive impairment in intensive care unit (ICU) patients. Electroencephalogram (EEG) abnormalities occurring at the acute stage of sepsis may correlate with severity of brain dysfunction. Predictive value of early standard EEG abnormalities for mortality in ICU septic patients remains to be assessed. In this prospective, single center, observational study, standard EEG was performed, analyzed and classified according to both Synek and Young EEG scales, in consecutive patients acutely admitted in ICU for sepsis. Delirium, coma and the level of sedation were assessed at the time of EEG recording; and duration of sedation, occurrence of in-ICU delirium or death were assessed during follow-up. Adjusted analyses were carried out using multiple logistic regression. One hundred ten patients were included, mean age 63.8 (±18.1) years, median SAPS-II score 38 (29-55). At the time of EEG recording, 46 patients (42%) were sedated and 22 (20%) suffered from delirium. Overall, 54 patients (49%) developed delirium, of which 32 (29%) in the days after EEG recording. 23 (21%) patients died in the ICU. Absence of EEG reactivity was observed in 27 patients (25%), periodic discharges (PDs) in 21 (19%) and electrographic seizures (ESZ) in 17 (15%). ICU mortality was independently associated with a delta-predominant background (OR: 3.36; 95% CI [1.08 to 10.4]), absence of EEG reactivity (OR: 4.44; 95% CI [1.37-14.3], PDs (OR: 3.24; 95% CI [1.03 to 10.2]), Synek grade ≥ 3 (OR: 5.35; 95% CI [1.66-17.2]) and Young grade > 1 (OR: 3.44; 95% CI [1.09-10.8]) after adjustment to Simplified Acute Physiology Score (SAPS-II) at admission and level of sedation. Delirium at the time of EEG was associated with ESZ in non-sedated patients (32% vs 10%, p = 0.037); with Synek grade ≥ 3 (36% vs 7%, p< 0.05) and Young grade > 1 (36% vs 17%, p< 0.001). Occurrence of delirium in the days after EEG was associated with a delta

  3. Teratogenicity in vitro of two deacetylated metabolites of N-hydroxy-2-acetylaminofluorene.

    PubMed

    Faustman-Watts, E M; Greenaway, J C; Namkung, M J; Fantel, A G; Juchau, M R

    1984-10-01

    In previous studies [E. Faustman-Watts, J. C. Greenaway, M. J. Namkung, A. G. Fantel, and M. R. Juchau (1983) Teratology 27, 19-28] an embryo culture system was utilized to investigate the role of biotransformation in the embryotoxicity of 2-acetylaminofluorene. For this investigation, the capacity of two deacetylated metabolites of N-hydroxy-2-acetylaminofluorene (N-OH-AAF) to produce malformations in cultured whole rat embryos is reported. The relative capacities of N-hydroxy-2-aminofluorene (N-OH-AF) and 2-nitrosofluorene (NF) to elicit embryotoxic effects, including embryolethality, malformations, growth retardation, and alterations in macromolecular content, were assessed and compared with effects produced by N-OH-AAF and bioactivated 2-acetylaminofluorene (AAF). Qualitatively similar patterns of malformations were produced by NF and N-OH-AF. At initial concentrations greater than 60 microM, both deacetylated compounds caused abnormalities in axial rotation (flexure), decreased viability, and decreases in embryonic DNA and protein content. Both chemicals were active in the absence of a bioactivating system. AAF produced a different spectrum of defects, and was active only in the presence of a complete monooxygenase system. The malformations produced by bioactivated AAF included abnormally open neural tubes; flexure abnormalities were rarely observed. The primary defect elicited by N-OH-AAF was prosencephalic hypoplasia. This chemical was active without an added bioactivating system. Temporal studies demonstrated that exposure of embryos to NF (128 microM) for as little as 2 hr was sufficient to elicit embryotoxic effects. None of the individual metabolites appeared to be solely responsible for the interruptions of neural tube closure produced by bioactivated AAF.

  4. Cerebral metabolic abnormalities in congestive heart failure detected by proton magnetic resonance spectroscopy.

    PubMed

    Lee, C W; Lee, J H; Kim, J J; Park, S W; Hong, M K; Kim, S T; Lim, T H; Park, S J

    1999-04-01

    Using proton magnetic resonance spectroscopy, we investigated cerebral metabolism and its determinants in congestive heart failure (CHF), and the effects of cardiac transplantation on these measurements. Few data are available about cerebral metabolism in CHF. Fifty patients with CHF (ejection fraction < or = 35%) and 20 healthy volunteers were included for this study. Of the patients, 10 patients underwent heart transplantation. All subjects performed symptom-limited bicycle exercise test. Proton magnetic resonance spectroscopy (1H MRS) was obtained from localized regions (8 to 10 ml) of occipital gray matter (OGM) and parietal white matter (PWM). Absolute levels of the metabolites (N-acetylaspartate, creatine, choline, myo-inositol) were calculated. In PWM only creatine level was significantly lower in CHF than in control subjects, but in OGM all four metabolite levels were decreased in CHF. The creatine level was independently correlated with half-recovery time and duration of heart failure symptoms in PWM (r = -0.56, p < 0.05), and with peak oxygen consumption and serum sodium concentration in OGM (r = 0.58, p < 0.05). Cerebral metabolic abnormalities were improved after successful cardiac transplantation. This study shows that cerebral metabolism is abnormally deranged in advanced CHF and it may serve as a potential marker of the disease severity.

  5. Methionine Metabolites in Patients With Sepsis.

    PubMed

    Wexler, Orren; Gough, Michael S; Morgan, Mary Anne M; Mack, Cynthia M; Apostolakos, Michael J; Doolin, Kathleen P; Mooney, Robert A; Arning, Erland; Bottiglieri, Teodoro; Pietropaoli, Anthony P

    2018-01-01

    Sepsis is characterized by microvascular dysfunction and thrombophilia. Several methionine metabolites may be relevant to this sepsis pathophysiology. S-adenosylmethionine (SAM) serves as the methyl donor for trans-methylation reactions. S-adenosylhomocysteine (SAH) is the by-product of these reactions and serves as the precursor to homocysteine. Relationships between plasma total homocysteine concentrations (tHcy) and vascular disease and thrombosis are firmly established. We hypothesized that SAM, SAH, and tHcy levels are elevated in patients with sepsis and associated with mortality. This was a combined case-control and prospective cohort study consisting of 109 patients with sepsis and 50 control participants without acute illness. The study was conducted in the medical and surgical intensive care units of the University of Rochester Medical Center. Methionine, SAM, SAH, and tHcy concentrations were compared in patients with sepsis versus control participants and in sepsis survivors versus nonsurvivors. Patients with sepsis had significantly higher plasma SAM and SAH concentrations than control participants (SAM: 164 [107-227] vs73 [59-87 nM], P < .001; SAH: 99 [60-165] vs 35 [28-45] nM, P < .001). In contrast, plasma tHcy concentrations were lower in sepsis patients compared to healthy control participants (4 [2-6]) vs 7 [5-9] μM; P = .04). In multivariable analysis, quartiles of SAM, SAH, and tHcy were independently associated with sepsis ( P = .006, P = .05, and P < .001, respectively). Sepsis nonsurvivors had significantly higher plasma SAM and SAH concentrations than survivors (SAM: 223 [125-260] vs 136 [96-187] nM; P = .01; SAH: 139 [81-197] vs 86 [55-130] nM, P = .006). Plasma tHcy levels were similar in survivors vs nonsurvivors. The associations between SAM or SAH and hospital mortality were no longer significant after adjusting for renal dysfunction. Methionine metabolite concentrations are abnormal in sepsis and linked with clinical outcomes

  6. Lichen secondary metabolites affect growth of Physcomitrella patens by allelopathy.

    PubMed

    Goga, Michal; Antreich, Sebastian J; Bačkor, Martin; Weckwerth, Wolfram; Lang, Ingeborg

    2017-05-01

    Lichen secondary metabolites can function as allelochemicals and affect the development and growth of neighboring bryophytes, fungi, vascular plants, microorganisms, and even other lichens. Lichen overgrowth on bryophytes is frequently observed in nature even though mosses grow faster than lichens, but there is still little information on the interactions between lichens and bryophytes.In the present study, we used extracts from six lichen thalli containing secondary metabolites like usnic acid, protocetraric acid, atranorin, lecanoric acid, nortistic acid, and thamnolic acid. To observe the influence of these metabolites on bryophytes, the moss Physcomitrella patens was cultivated for 5 weeks under laboratory conditions and treated with lichen extracts. Toxicity of natural mixtures of secondary metabolites was tested at three selected doses (0.001, 0.01, and 0.1 %). When the mixture contained substantial amounts of usnic acid, we observed growth inhibition of protonemata and reduced development of gametophores. Significant differences in cell lengths and widths were also noticed. Furthermore, usnic acid had a strong effect on cell division in protonemata suggesting a strong impact on the early stages of bryophyte development by allelochemicals contained in the lichen secondary metabolites.Biological activities of lichen secondary metabolites were confirmed in several studies such as antiviral, antibacterial, antitumor, antiherbivore, antioxidant, antipyretic, and analgetic action or photoprotection. This work aimed to expand the knowledge on allelopathic effects on bryophyte growth.

  7. Early Reticulocytosis and Anemia Are Associated with Abnormal and Conditional Transcranial Doppler Velocities in Children with Sickle Cell Anemia.

    PubMed

    Meier, Emily Riehm; Fasano, Ross M; Estrada, Monica; He, Jianping; Luban, Naomi L C; McCarter, Robert

    2016-02-01

    To improve prediction of sickle cell anemia severity at an early age, we evaluated whether absolute reticulocyte count (ARC) or hemoglobin (Hb) levels during early infancy (2-6 months of age) in patients with sickle cell anemia predict the risk of later developing an abnormal (abTCD) or conditional (cdTCD) Transcranial Doppler (TCD). We used chart review to identify 121 consecutive patients who underwent TCD screening and had steady state ARC and Hb levels recorded between 2 and 6 months of age. Cox regression analysis was used to determine the relationship between ARC, Hb levels, and risk of developing cdTCD/abTCD over time. Mean ARC in early infancy was highest and mean Hb lowest in those children with abTCDs and cdTCDs. Cox regression analysis revealed that those subjects with an ARC ≥200 K/μL in early infancy had nearly 3 times the risk of having an abTCD/cdTCD than the group with an ARC <200 K/μL, and patients with a Hb <8.5 g/dL had 2.7 times the risk of having an abTCD/cdTCD. These data suggest that both elevated ARC and low baseline Hb during early infancy are associated with an increased risk of developing a cdTCD or abTCD later in childhood. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Effect of Time-Dependent Pinning Pressure on Abnormal Grain Growth: Phase Field Simulation

    NASA Astrophysics Data System (ADS)

    Kim, Jeong Min; Min, Guensik; Shim, Jae-Hyeok; Lee, Kyung Jong

    2018-05-01

    The effect of the time-dependent pinning pressure of precipitates on abnormal grain growth has been investigated by multiphase field simulation with a simple precipitation model. The application of constant pinning pressure is problematic because it always induces abnormal grain growth or no grain growth, which is not reasonable considering the real situation. To produce time-dependent pinning pressure, both precipitation kinetics and precipitate coarsening kinetics have been considered with two rates: slow and fast. The results show that abnormal grain growth is suppressed at the slow precipitation rate. At the slow precipitation rate, the overall grain growth caused by the low pinning pressure in the early stage indeed plays a role in preventing abnormal grain growth by reducing the mobility advantage of abnormal grains. In addition, the fast precipitate coarsening rate tends to more quickly transform abnormal grain growth into normal grain growth by inducing the active growth of grains adjacent to the abnormal grains in the early stage. Therefore, the present study demonstrates that the time dependence of the pinning pressure of precipitates is a critical factor that determines the grain growth mode.

  9. Effect of Time-Dependent Pinning Pressure on Abnormal Grain Growth: Phase Field Simulation

    NASA Astrophysics Data System (ADS)

    Kim, Jeong Min; Min, Guensik; Shim, Jae-Hyeok; Lee, Kyung Jong

    2018-03-01

    The effect of the time-dependent pinning pressure of precipitates on abnormal grain growth has been investigated by multiphase field simulation with a simple precipitation model. The application of constant pinning pressure is problematic because it always induces abnormal grain growth or no grain growth, which is not reasonable considering the real situation. To produce time-dependent pinning pressure, both precipitation kinetics and precipitate coarsening kinetics have been considered with two rates: slow and fast. The results show that abnormal grain growth is suppressed at the slow precipitation rate. At the slow precipitation rate, the overall grain growth caused by the low pinning pressure in the early stage indeed plays a role in preventing abnormal grain growth by reducing the mobility advantage of abnormal grains. In addition, the fast precipitate coarsening rate tends to more quickly transform abnormal grain growth into normal grain growth by inducing the active growth of grains adjacent to the abnormal grains in the early stage. Therefore, the present study demonstrates that the time dependence of the pinning pressure of precipitates is a critical factor that determines the grain growth mode.

  10. Polyamines and Their Metabolites as Diagnostic Markers of Human Diseases

    PubMed Central

    Park, Myung Hee; Igarashi, Kazuei

    2013-01-01

    Polyamines, putrescine, spermidine and spermine, are ubiquitous in living cells and are essential for eukaryotic cell growth. These polycations interact with negatively charged molecules such as DNA, RNA, acidic proteins and phospholipids and modulate various cellular functions including macromolecular synthesis. Dysregulation of the polyamine pathway leads to pathological conditions including cancer, inflammation, stroke, renal failure and diabetes. Increase in polyamines and polyamine synthesis enzymes is often associated with tumor growth, and urinary and plasma contents of polyamines and their metabolites have been investigated as diagnostic markers for cancers. Of these, diacetylated derivatives of spermidine and spermine are elevated in the urine of cancer patients and present potential markers for early detection. Enhanced catabolism of cellular polyamines by polyamine oxidases (PAO), spermine oxidase (SMO) or acetylpolyamine oxidase (AcPAO), increases cellular oxidative stress and generates hydrogen peroxide and a reactive toxic metabolite, acrolein, which covalently incorporates into lysine residues of cellular proteins. Levels of protein-conjuagated acrolein (PC-Acro) and polyamine oxidizing enzymes were increased in the locus of brain infarction and in plasma in a mouse model of stroke and also in the plasma of stroke patients. When the combined measurements of PC-Acro, interleukin 6 (IL-6), and C-reactive protein (CRP) were evaluated, even silent brain infarction (SBI) was detected with high sensitivity and specificity. Considering that there are no reliable biochemical markers for early stage of stroke, PC-Acro and PAOs present promising markers. Thus the polyamine metabolites in plasma or urine provide useful tools in early diagnosis of cancer and stroke. PMID:24009852

  11. Abnormal Mitochondrial Dynamics and Synaptic Degeneration as Early Events in Alzheimer’s Disease: Implications to Mitochondria-Targeted Antioxidant Therapeutics

    PubMed Central

    Reddy, P. Hemachandra; Tripathy, Raghav; Troung, Quang; Thirumala, Karuna; Reddy, Tejaswini P.; Anekonda, Vishwanath; Shirendeb, Ulziibat P.; Calkins, Marcus J.; Reddy, Arubala P.; Mao, Peizhong; Manczak, Maria

    2011-01-01

    Synaptic pathology and mitochondrial oxidative damage are early events in Alzheimer’s disease (AD) progression. Loss of synapses and synaptic damage are the best correlate of cognitive deficits found in AD patients. Recent research on amyloid bet (Aβ) and mitochondria in AD revealed that Aβ accumulates in synapses and synaptic mitochondria, leading to abnormal mitochondrial dynamics and synaptic degeneration in AD neurons. Further, recent studies using live-cell imaging and primary neurons from amyloid beta precursor protein (AβPP) transgenic mice revealed that reduced mitochondrial mass, defective axonal transport of mitochondria and synaptic degeneration, indicating that Aβ is responsible for mitochondrial and synaptic deficiencies. Tremendous progress has been made in studying antioxidant approaches in mouse models of AD and clinical trials of AD patients. This article highlights the recent developments made in Aβ-induced abnormal mitochondrial dynamics, defective mitochondrial biogenesis, impaired axonal transport and synaptic deficiencies in AD. This article also focuses on mitochondrial approaches in treating AD, and also discusses latest research on mitochondria-targeted antioxidants in AD. PMID:22037588

  12. Comparison of DDT and its metabolites concentrations in cow milk from agricultural and industrial areas.

    PubMed

    Kuba, Jarosław; Tomza-Marciniak, Agnieszka; Pilarczyk, Bogumiła; Tarasewicz, Natalia; Pilarczyk, Renata; Ligocki, Marek

    2015-01-01

    The risk of pesticidal intoxication in humans is severe, especially because of the strongly negative impact on human health. The consequences of the exposure to these substances may include cancerogenesis or endocrine abnormalities resulting for example in decreased fertility. Therefore, the aim of our study was to evaluate the content of dichlorodiphenyltrichloroethane (DDT) and its metabolites in cow milk from two regions of Poland, varying by level of industrialization. Samples were collected from agricultural (n = 25) and industrial (n = 25) areas, and the concentrations of DDT and its metabolites were evaluated by gas chromatography. Residues of DDT were detected in all the milk samples tested, mostly in the samples from the agricultural area, where a total DDT median concentration reached 0.336 μg L(-1). In the milk samples from the industrial area, the median concentration was lower, at 0.131 μg L(-1). 4,4'-DDT was the main metabolite, constituting 83% of total DDT metabolites. Although none of the samples exceeded the level above which they should be considered dangerous, the results showed that the problem of DDT had not diminished and so should be constantly monitored.

  13. Measurement of salivary metabolite biomarkers for early monitoring of oral cancer with ultra performance liquid chromatography-mass spectrometry.

    PubMed

    Wang, Qihui; Gao, Pan; Cheng, Fei; Wang, Xiaoyi; Duan, Yixiang

    2014-02-01

    This study aimed to set-up an ultra performance liquid chromatography-electrospray ionization-mass spectrometry (UPLC-ESI-MS) method for the determination of salivary L-phenylalanine and L-leucine for early diagnosis of oral squamous cell carcinoma (OSCC). In addition, the diagnostic accuracy for both biomarkers was established by using receiver operating characteristic (ROC) analysis. Mean recoveries of l-phenylalanine and L-leucine ranged from 88.9 to 108.6% were obtained. Intra- and inter-day precision for both amino acids was less than 7%, with acceptable accuracy. Linear regression coefficients of both biomarkers were greater than 0.99. The diagnostic accuracy for both biomarkers was established by analyzing 60 samples from apparently healthy individuals and 30 samples from OSCC patients. Both potential biomarkers demonstrated significant differences in concentrations in distinguishing OSCC from control (P<0.05). As a single biomarker, L-leucine might have better predictive power in OSCC with T1-2 (early stage of OSCC including stage I and II), and L-phenylalanine might be used for screening and diagnosis of OSCC with T3-4 (advanced stage of OSCC including stage III and IV). The combination of L-phenylalanine and L-leucine will improve the sensitivity (92.3%) and specificity (91.7%) for early diagnosis of OSCC. The possibility of salivary metabolite biomarkers for OSCC diagnosis is successfully demonstrated in this study. This developed method shows advantages with non-invasive, simple, reliable, and also provides lower detection limits and excellent precision and accuracy. These non-invasive salivary biomarkers may lead to a simple clinical tool for the early diagnosis of OSCC. © 2013 Published by Elsevier B.V.

  14. Potential of small-molecule fungal metabolites in antiviral chemotherapy

    PubMed Central

    Roy, Biswajit G

    2017-01-01

    Various viral diseases, such as acquired immunodeficiency syndrome, influenza, and hepatitis, have emerged as leading causes of human death worldwide. Scientific endeavor since invention of DNA-dependent RNA polymerase of pox virus in 1967 resulted in better understanding of virus replication and development of various novel therapeutic strategies. Despite considerable advancement in every facet of drug discovery process, development of commercially viable, safe, and effective drugs for these viruses still remains a big challenge. Decades of intense research yielded a handful of natural and synthetic therapeutic options. But emergence of new viruses and drug-resistant viral strains had made new drug development process a never-ending battle. Small-molecule fungal metabolites due to their vast diversity, stereochemical complexity, and preapproved biocompatibility always remain an attractive source for new drug discovery. Though, exploration of therapeutic importance of fungal metabolites has started early with discovery of penicillin, recent prediction asserted that only a small percentage (5–10%) of fungal species have been identified and much less have been scientifically investigated. Therefore, exploration of new fungal metabolites, their bioassay, and subsequent mechanistic study bears huge importance in new drug discovery endeavors. Though no fungal metabolites so far approved for antiviral treatment, many of these exhibited high potential against various viral diseases. This review comprehensively discussed about antiviral activities of fungal metabolites of diverse origin against some important viral diseases. This also highlighted the mechanistic details of inhibition of viral replication along with structure–activity relationship of some common and important classes of fungal metabolites. PMID:28737040

  15. Choline and Choline Metabolite Patterns and Associations in Blood and Milk during Lactation in Dairy Cows

    PubMed Central

    Artegoitia, Virginia M.; Middleton, Jesse L.; Harte, Federico M.; Campagna, Shawn R.; de Veth, Michael J.

    2014-01-01

    Milk and dairy products are an important source of choline, a nutrient essential for human health. Infant formula derived from bovine milk contains a number of metabolic forms of choline, all contribute to the growth and development of the newborn. At present, little is known about the factors that influence the concentrations of choline metabolites in milk. The objectives of this study were to characterize and then evaluate associations for choline and its metabolites in blood and milk through the first 37 weeks of lactation in the dairy cow. Milk and blood samples from twelve Holstein cows were collected in early, mid and late lactation and analyzed for acetylcholine, free choline, betaine, glycerophosphocholine, lysophosphatidylcholine, phosphatidylcholine, phosphocholine and sphingomyelin using hydrophilic interaction liquid chromatography-tandem mass spectrometry, and quantified using stable isotope-labeled internal standards. Total choline concentration in plasma, which was almost entirely phosphatidylcholine, increased 10-times from early to late lactation (1305 to 13,535 µmol/L). In milk, phosphocholine was the main metabolite in early lactation (492 µmol/L), which is a similar concentration to that found in human milk, however, phosphocholine concentration decreased exponentially through lactation to 43 µmol/L in late lactation. In contrast, phosphatidylcholine was the main metabolite in mid and late lactation (188 µmol/L and 659 µmol/L, respectively), with the increase through lactation positively correlated with phosphatidylcholine in plasma (R 2 = 0.78). Unlike previously reported with human milk we found no correlation between plasma free choline concentration and milk choline metabolites. The changes in pattern of phosphocholine and phosphatidylcholine in milk through lactation observed in the bovine suggests that it is possible to manufacture infant formula that more closely matches these metabolites profile in human milk. PMID:25157578

  16. Early social enrichment rescues adult behavioral and brain abnormalities in a mouse model of fragile X syndrome.

    PubMed

    Oddi, Diego; Subashi, Enejda; Middei, Silvia; Bellocchio, Luigi; Lemaire-Mayo, Valerie; Guzmán, Manuel; Crusio, Wim E; D'Amato, Francesca R; Pietropaolo, Susanna

    2015-03-13

    Converging lines of evidence support the use of environmental stimulation to ameliorate the symptoms of a variety of neurodevelopmental disorders. Applying these interventions at very early ages is critical to achieve a marked reduction of the pathological phenotypes. Here we evaluated the impact of early social enrichment in Fmr1-KO mice, a genetic mouse model of fragile X syndrome (FXS), a major developmental disorder and the most frequent monogenic cause of autism. Enrichment was achieved by providing male KO pups and their WT littermates with enhanced social stimulation, housing them from birth until weaning with the mother and an additional nonlactating female. At adulthood they were tested for locomotor, social, and cognitive abilities; furthermore, dendritic alterations were assessed in the hippocampus and amygdala, two brain regions known to be involved in the control of the examined behaviors and affected by spine pathology in Fmr1-KOs. Enrichment rescued the behavioral FXS-like deficits displayed in adulthood by Fmr1-KO mice, that is, hyperactivity, reduced social interactions, and cognitive deficits. Early social enrichment also eliminated the abnormalities shown by adult KO mice in the morphology of hippocampal and amygdala dendritic spines, namely an enhanced density of immature vs mature types. Importantly, enrichment did not induce neurobehavioral changes in WT mice, thus supporting specific effects on FXS-like pathology. These findings show that early environmental stimulation has profound and long-term beneficial effects on the pathological FXS phenotype, thereby encouraging the use of nonpharmacological interventions for the treatment of this and perhaps other neurodevelopmental diseases.

  17. Early Standard Electroencephalogram Abnormalities Predict Mortality in Septic Intensive Care Unit Patients

    PubMed Central

    Azabou, Eric; Magalhaes, Eric; Braconnier, Antoine; Yahiaoui, Lyria; Moneger, Guy; Heming, Nicholas; Annane, Djillali; Mantz, Jean; Chrétien, Fabrice; Durand, Marie-Christine; Lofaso, Frédéric; Porcher, Raphael; Sharshar, Tarek

    2015-01-01

    Introduction Sepsis is associated with increased mortality, delirium and long-term cognitive impairment in intensive care unit (ICU) patients. Electroencephalogram (EEG) abnormalities occurring at the acute stage of sepsis may correlate with severity of brain dysfunction. Predictive value of early standard EEG abnormalities for mortality in ICU septic patients remains to be assessed. Methods In this prospective, single center, observational study, standard EEG was performed, analyzed and classified according to both Synek and Young EEG scales, in consecutive patients acutely admitted in ICU for sepsis. Delirium, coma and the level of sedation were assessed at the time of EEG recording; and duration of sedation, occurrence of in-ICU delirium or death were assessed during follow-up. Adjusted analyses were carried out using multiple logistic regression. Results One hundred ten patients were included, mean age 63.8 (±18.1) years, median SAPS-II score 38 (29–55). At the time of EEG recording, 46 patients (42%) were sedated and 22 (20%) suffered from delirium. Overall, 54 patients (49%) developed delirium, of which 32 (29%) in the days after EEG recording. 23 (21%) patients died in the ICU. Absence of EEG reactivity was observed in 27 patients (25%), periodic discharges (PDs) in 21 (19%) and electrographic seizures (ESZ) in 17 (15%). ICU mortality was independently associated with a delta-predominant background (OR: 3.36; 95% CI [1.08 to 10.4]), absence of EEG reactivity (OR: 4.44; 95% CI [1.37–14.3], PDs (OR: 3.24; 95% CI [1.03 to 10.2]), Synek grade ≥ 3 (OR: 5.35; 95% CI [1.66–17.2]) and Young grade > 1 (OR: 3.44; 95% CI [1.09–10.8]) after adjustment to Simplified Acute Physiology Score (SAPS-II) at admission and level of sedation. Delirium at the time of EEG was associated with ESZ in non-sedated patients (32% vs 10%, p = 0.037); with Synek grade ≥ 3 (36% vs 7%, p< 0.05) and Young grade > 1 (36% vs 17%, p< 0.001). Occurrence of delirium in the days after

  18. MetabolitePredict: A de novo human metabolomics prediction system and its applications in rheumatoid arthritis.

    PubMed

    Wang, QuanQiu; Xu, Rong

    2017-07-01

    Human metabolomics has great potential in disease mechanism understanding, early diagnosis, and therapy. Existing metabolomics studies are often based on profiling patient biofluids and tissue samples and are difficult owing to the challenges of sample collection and data processing. Here, we report an alternative approach and developed a computation-based prediction system, MetabolitePredict, for disease metabolomics biomarker prediction. We applied MetabolitePredict to identify metabolite biomarkers and metabolite targeting therapies for rheumatoid arthritis (RA), a last-lasting complex disease with multiple genetic and environmental factors involved. MetabolitePredict is a de novo prediction system. It first constructs a disease-specific genetic profile using genes and pathways data associated with an input disease. It then constructs genetic profiles for a total of 259,170 chemicals/metabolites using known chemical genetics and human metabolomic data. MetabolitePredict prioritizes metabolites for a given disease based on the genetic profile similarities between disease and metabolites. We evaluated MetabolitePredict using 63 known RA-associated metabolites. MetabolitePredict found 24 of the 63 metabolites (recall: 0.38) and ranked them highly (mean ranking: top 4.13%, median ranking: top 1.10%, P-value: 5.08E-19). MetabolitePredict performed better than an existing metabolite prediction system, PROFANCY, in predicting RA-associated metabolites (PROFANCY: recall: 0.31, mean ranking: 20.91%, median ranking: 16.47%, P-value: 3.78E-7). Short-chain fatty acids (SCFAs), the abundant metabolites of gut microbiota in the fermentation of fiber, ranked highly (butyrate, 0.03%; acetate, 0.05%; propionate, 0.38%). Finally, we established MetabolitePredict's potential in novel metabolite targeting for disease treatment: MetabolitePredict ranked highly three known metabolite inhibitors for RA treatments (methotrexate:0.25%; leflunomide: 0.56%; sulfasalazine: 0

  19. Metabolite profiling of human colon carcinoma--deregulation of TCA cycle and amino acid turnover.

    PubMed

    Denkert, Carsten; Budczies, Jan; Weichert, Wilko; Wohlgemuth, Gert; Scholz, Martin; Kind, Tobias; Niesporek, Silvia; Noske, Aurelia; Buckendahl, Anna; Dietel, Manfred; Fiehn, Oliver

    2008-09-18

    Apart from genetic alterations, development and progression of colorectal cancer has been linked to influences from nutritional intake, hyperalimentation, and cellular metabolic changes that may be the basis for new diagnostic and therapeutic approaches. However, in contrast to genomics and proteomics, comprehensive metabolomic investigations of alterations in malignant tumors have rarely been conducted. In this study we investigated a set of paired samples of normal colon tissue and colorectal cancer tissue with gas-chromatography time-of-flight mass-spectrometry, which resulted in robust detection of a total of 206 metabolites. Metabolic phenotypes of colon cancer and normal tissues were different at a Bonferroni corrected significance level of p=0.00170 and p=0.00005 for the first two components of an unsupervised PCA analysis. Subsequent supervised analysis found 82 metabolites to be significantly different at p<0.01. Metabolites were connected to abnormalities in metabolic pathways by a new approach that calculates the distance of each pair of metabolites in the KEGG database interaction lattice. Intermediates of the TCA cycle and lipids were found down-regulated in cancer, whereas urea cycle metabolites, purines, pyrimidines and amino acids were generally found at higher levels compared to normal colon mucosa. This study demonstrates that metabolic profiling facilitates biochemical phenotyping of normal and neoplastic colon tissue at high significance levels and points to GC-TOF-based metabolomics as a new method for molecular pathology investigations.

  20. Developmental antecedents of abnormal eating attitudes and behaviors in adolescence.

    PubMed

    Le Grange, Daniel; O'Connor, Meredith; Hughes, Elizabeth K; Macdonald, Jacqui; Little, Keriann; Olsson, Craig A

    2014-11-01

    This study capitalizes on developmental data from an Australian population-based birth cohort to identify developmental markers of abnormal eating attitudes and behaviors in adolescence. The aims were twofold: (1) to develop a comprehensive path model identifying infant and childhood developmental correlates of Abnormal Eating Attitudes and Behaviors in adolescence, and (2) to explore potential gender differences. Data were drawn from a 30-year longitudinal study that has followed the health and development of a population based cohort across 15 waves of data collection from infancy since 1983: The Australian Temperament Project. Participants in this analysis were the 1,300 youth who completed the 11th survey at 15-16 years (1998) and who completed the eating disorder inventory at this time point. Developmental correlates of Abnormal Eating Attitudes and Behaviors in mid-adolescence were temperamental persistence, early gestational age, persistent high weight, teen depression, stronger peer relationships, maternal dieting behavior, and pubertal timing. Overall, these factors accounted for 28% of the variance in Abnormal Eating Attitudes and Behaviors at 15-16 years of age. Depressive symptoms, maternal dieting behavior, and early puberty were more important factors for girls. Late puberty was a more important factor for boys. Findings address an important gap in our understanding of the etiology of Abnormal Eating Attitudes and Behaviors in adolescence and suggest multiple targets for preventive intervention. © 2014 Wiley Periodicals, Inc.

  1. Liquid chromatography/mass spectrometry for the detection of ash tree metabolites following Emerald Ash Borer infestation.

    PubMed

    Stock, Naomi L; Doran, Michael C; Bonners, Ron F; March, Raymond E

    2018-03-15

    The Emerald Ash Borer (EAB), Agrilus planipennis, an invasive insect detected in the USA and Canada in 2002, is a threat to ash trees with both ecological and economic implications. Early detection of EAB-infestation is difficult due to lack of visible signs and symptoms in the early stages of attack, but is essential to prevent ash mortality. An efficient and reliable tool for the early detection of EAB-infestation would be advantageous. A mass spectrometry based metabolomics approach, using liquid chromatography/mass spectrometry (LC/MS), has been used to investigate the leaf metabolites of both healthy and EAB-infested trees. Leaves from 40 healthy and 40 EAB-infested trees were extracted and analyzed using LC/MS. Resulting data were examined to differentiate between foliage from healthy and EAB-infested trees. Possible biomarkers of EAB attack have been detected. Twenty-one metabolites with increased average ion intensity in EAB-infested ash tree samples and nine metabolites with increased average ion intensity in healthy ash tree samples were identified. Results of this study indicate that metabolomic screening of leaf samples using LC/MS can be useful as a potential tool for the early detection of EAB-infestation. Copyright © 2018 John Wiley & Sons, Ltd.

  2. A New Paradigm for Known Metabolite Identification in Metabonomics/Metabolomics: Metabolite Identification Efficiency

    PubMed Central

    Everett, Jeremy R.

    2015-01-01

    A new paradigm is proposed for assessing confidence in the identification of known metabolites in metabonomics studies using NMR spectroscopy approaches. This new paradigm is based upon the analysis of the amount of metabolite identification information retrieved from NMR spectra relative to the molecular size of the metabolite. Several new indices are proposed including: metabolite identification efficiency (MIE) and metabolite identification carbon efficiency (MICE), both of which can be easily calculated. These indices, together with some guidelines, can be used to provide a better indication of known metabolite identification confidence in metabonomics studies than existing methods. Since known metabolite identification in untargeted metabonomics studies is one of the key bottlenecks facing the science currently, it is hoped that these concepts based on molecular spectroscopic informatics, will find utility in the field. PMID:25750701

  3. A new paradigm for known metabolite identification in metabonomics/metabolomics: metabolite identification efficiency.

    PubMed

    Everett, Jeremy R

    2015-01-01

    A new paradigm is proposed for assessing confidence in the identification of known metabolites in metabonomics studies using NMR spectroscopy approaches. This new paradigm is based upon the analysis of the amount of metabolite identification information retrieved from NMR spectra relative to the molecular size of the metabolite. Several new indices are proposed including: metabolite identification efficiency (MIE) and metabolite identification carbon efficiency (MICE), both of which can be easily calculated. These indices, together with some guidelines, can be used to provide a better indication of known metabolite identification confidence in metabonomics studies than existing methods. Since known metabolite identification in untargeted metabonomics studies is one of the key bottlenecks facing the science currently, it is hoped that these concepts based on molecular spectroscopic informatics, will find utility in the field.

  4. Fetal Alcohol Spectrum Disorders and Abnormal Neuronal Plasticity

    PubMed Central

    Medina, Alexandre E.

    2012-01-01

    The ingestion of alcohol during pregnancy can result in a group of neurobehavioral abnormalities collectively known as fetal alcohol spectrum disorders (FASD). During the past decade, studies using animal models indicated that early alcohol exposure can dramatically affect neuronal plasticity, an essential property of the central nervous system responsible for the normal wiring of the brain and involved in processes such as learning and memory. The abnormalities in neuronal plasticity caused by alcohol can explain many of the neurobehavioral deficits observed in FASD. Conversely, improving neuronal plasticity may have important therapeutic benefits. In this review, the author discuss the mechanisms that lead to these abnormalities and comment on recent pharmacological approaches that have been showing promising results in improving neuronal plasticity in FASD. PMID:21383101

  5. Musculo-Skeletal Abnormalities in Patients with Marfan Syndrome

    PubMed Central

    Al Kaissi, Ali; Zwettler, Elisabeth; Ganger, Rudolf; Schreiner, Simone; Klaushofer, Klaus; Grill, Franz

    2013-01-01

    Background A leptosomic body type is tall and thin with long hands. Marfanoid features may be familial in nature or pathological, as occurs in congenital contractual arachnodactyly (Beal’s syndrome) and Shprintzen-Goldberg syndrome mimicking some of the changes of Marfan syndrome, although not accompanied by luxation of lens and dissecting aneurysm of aorta. Methods In this article we collected eight patients who were consistent with the diagnosis of Marfan syndrome via phenotypic and genotypic characterization. Results Our patients manifested a constellation of variable presentations of musculo-skeletal abnormalities ranging from developmental dysplasia of the hip, protrusio acetabuli, leg length inequality, patellar instability, scoliosis, to early onset osteoarthritis. Each abnormality has been treated accordingly. Conclusion This is the first paper which includes the diagnosis and the management of the associated musculo-skeletal abnormalities in patients with Marfan syndrome, stressing that patients with Marfan syndrome are exhibiting great variability in the natural history and the severity of musculo-skeletal abnormalities. PMID:23399831

  6. Metabolite alterations in basal ganglia associated with methamphetamine-related psychiatric symptoms. A proton MRS study.

    PubMed

    Sekine, Yoshimoto; Minabe, Yoshio; Kawai, Masayoshi; Suzuki, Katsuaki; Iyo, Masaomi; Isoda, Haruo; Sakahara, Harumi; Ashby, Charles R; Takei, Nori; Mori, Norio

    2002-09-01

    Following the chronic use of methamphetamine, some individuals experience psychosis and anxiety. One reason may be the persistence of metabolite abnormalities in the brain of currently abstinent former methamphetamine users. In this study, N-acetylaspartate (NAA), creatine plus phosphocreatine (Cr+PCr), and choline-containing compound (Cho) levels were measured in the left and right basal ganglia using proton magnetic resonance spectroscopy (MRS) in 13 abstinent methamphetamine users and 11 healthy comparison subjects with no history of illicit drug use. The methamphetamine users showed a significantly reduced Cr+PCr/Cho ratio in the bilateral basal ganglia compared with the healthy comparison subjects. Furthermore, the reduction in the Cr+PCr/Cho ratio was significantly correlated with the duration of methamphetamine use and with the severity of residual psychiatric symptoms. NAA/Cho ratios in the bilateral basal ganglia did not significantly differ between methamphetamine users and comparison subjects. These findings suggest that protracted use of methamphetamine may cause metabolite alterations in the basal ganglia. Furthermore, residual psychiatric symptoms may be attributable to the metabolite alterations in the basal ganglia.

  7. Large-scale Metabolomic Analysis Reveals Potential Biomarkers for Early Stage Coronary Atherosclerosis.

    PubMed

    Gao, Xueqin; Ke, Chaofu; Liu, Haixia; Liu, Wei; Li, Kang; Yu, Bo; Sun, Meng

    2017-09-18

    Coronary atherosclerosis (CAS) is the pathogenesis of coronary heart disease, which is a prevalent and chronic life-threatening disease. Initially, this disease is not always detected until a patient presents with seriously vascular occlusion. Therefore, new biomarkers for appropriate and timely diagnosis of early CAS is needed for screening to initiate therapy on time. In this study, we used an untargeted metabolomics approach to identify potential biomarkers that could enable highly sensitive and specific CAS detection. Score plots from partial least-squares discriminant analysis clearly separated early-stage CAS patients from controls. Meanwhile, the levels of 24 metabolites increased greatly and those of 18 metabolites decreased markedly in early CAS patients compared with the controls, which suggested significant metabolic dysfunction in phospholipid, sphingolipid, and fatty acid metabolism in the patients. Furthermore, binary logistic regression showed that nine metabolites could be used as a combinatorial biomarker to distinguish early-stage CAS patients from controls. The panel of nine metabolites was then tested with an independent cohort of samples, which also yielded satisfactory diagnostic accuracy (AUC = 0.890). In conclusion, our findings provide insight into the pathological mechanism of early-stage CAS and also supply a combinatorial biomarker to aid clinical diagnosis of early-stage CAS.

  8. Radiographic Abnormalities in the Feet of Diabetic Patients with Neuropathy and Foot Ulceration.

    PubMed

    Viswanathan, Vijay; Kumpatla, Satyavani; Rao, V Narayan

    2014-11-01

    People with diabetic neuropathy are frequently prone to several bone and joint abnormalities. Simple radiographic findings have been proven to be quite useful in the detection of such abnormalities, which might be helpful not only for early diagnosis but also in following the course of diabetes through stages of reconstruction of the ulcerated foot.The present study was designed to identify the common foot abnormalities in south Indian diabetic subjects with and without neuropathy using radiographic imaging. About 150 (M:F 94:56) subjects with type 2 diabetes were categorised into three groups: Group I (50 diabetic patients), Group II (50 patients with neuropathy), and Group III (50 diabetic patients with both neuropathy and foot ulceration). Demographic details, duration of diabetes and HbA1c values were recorded. Vibration perception threshold was measured for assessment of neuropathy. Bone and joint abnormalities in the feet and legs of the study subjects were identified using standardised dorsi-plantar and lateral weight-bearing radiographs. Radiographic findings of the study subjects revealed that those with both neuropathy and foot ulceration and a longer duration of diabetes had more number of bone and joint abnormalities. Subjects with neuropathy alone also showed presence of several abnormalities, including periosteal reaction, osteopenia, and Charcot changes. The present findings highlight the impact of neuropathy and duration of diabetes on the development of foot abnormalities in subjects with diabetes. Using radiographic imaging can help in early identification of abnormalities and better management of the diabetic foot.

  9. Insular Cortex Metabolite Changes in Obstructive Sleep Apnea

    PubMed Central

    Yadav, Santosh K.; Kumar, Rajesh; Macey, Paul M.; Woo, Mary A.; Yan-Go, Frisca L.; Harper, Ronald M.

    2014-01-01

    Study Objective: Adults with obstructive sleep apnea (OSA) show significant autonomic and neuropsychologic deficits, which may derive from damage to insular regions that serve those functions. The aim was to assess glial and neuronal status from anterior insular metabolites in OSA versus controls, using proton magnetic resonance spectroscopy (PMRS), and thus to provide insights for neuroprotection against tissue changes, and to reduce injury consequences. Design: Cross-sectional study. Setting: University-based medical center. Participants: Thirty-six patients with OSA, 53 controls. Interventions: None. Measurements and Results: We performed PMRS in bilateral anterior insulae using a 3.0-Tesla magnetic resonance imaging scanner, calculated N-acetylaspartate/creatine (NAA/Cr), choline/creatine (Cho/Cr), myo-inositol/creatine (MI/Cr), and MI/NAA metabolite ratios, and examined daytime sleepiness (Epworth Sleepiness Scale, ESS), sleep quality (Pittsburgh Sleep Quality Index, PSQI), and neuropsychologic status (Beck Depression Inventory II [BDI-II] and Beck Anxiety Inventory [BAI]). Body mass index, BAI, BDI-II, PSQI, and ESS significantly differed between groups. NAA/ Cr ratios were significantly reduced bilaterally, and left-sided MI/Cr and MI/NAA ratios were increased in OSA over controls. Significant positive correlations emerged between left insular MI/Cr ratios and apnea-hypopnea index values, right insular Cho/Cr ratios and BDI-II and BAI scores, and negative correlations appeared between left insular NAA/Cr ratios and PSQI scores and between right-side MI/Cr ratios and baseline and nadir change in O2 saturation. Conclusions: Adults with obstructive sleep apnea showed bilaterally reduced N-acetylaspartate and left-side increased myo-inositol anterior insular metabolites, indicating neuronal damage and increased glial activation, respectively, which may contribute to abnormal autonomic and neuropsychologic functions in the condition. The activated glial status

  10. Secondary Metabolites Produced during the Germination of Streptomyces coelicolor.

    PubMed

    Čihák, Matouš; Kameník, Zdeněk; Šmídová, Klára; Bergman, Natalie; Benada, Oldřich; Kofroňová, Olga; Petříčková, Kateřina; Bobek, Jan

    2017-01-01

    Spore awakening is a series of actions that starts with purely physical processes and continues via the launching of gene expression and metabolic activities, eventually achieving a vegetative phase of growth. In spore-forming microorganisms, the germination process is controlled by intra- and inter-species communication. However, in the Streptomyces clade, which is capable of developing a plethora of valuable compounds, the chemical signals produced during germination have not been systematically studied before. Our previously published data revealed that several secondary metabolite biosynthetic genes are expressed during germination. Therefore, we focus here on the secondary metabolite production during this developmental stage. Using high-performance liquid chromatography-mass spectrometry, we found that the sesquiterpenoid antibiotic albaflavenone, the polyketide germicidin A, and chalcone are produced during germination of the model streptomycete, S. coelicolor . Interestingly, the last two compounds revealed an inhibitory effect on the germination process. The secondary metabolites originating from the early stage of microbial growth may coordinate the development of the producer ( quorum sensing ) and/or play a role in competitive microflora repression ( quorum quenching ) in their nature environments.

  11. Secondary Metabolites Produced during the Germination of Streptomyces coelicolor

    PubMed Central

    Čihák, Matouš; Kameník, Zdeněk; Šmídová, Klára; Bergman, Natalie; Benada, Oldřich; Kofroňová, Olga; Petříčková, Kateřina; Bobek, Jan

    2017-01-01

    Spore awakening is a series of actions that starts with purely physical processes and continues via the launching of gene expression and metabolic activities, eventually achieving a vegetative phase of growth. In spore-forming microorganisms, the germination process is controlled by intra- and inter-species communication. However, in the Streptomyces clade, which is capable of developing a plethora of valuable compounds, the chemical signals produced during germination have not been systematically studied before. Our previously published data revealed that several secondary metabolite biosynthetic genes are expressed during germination. Therefore, we focus here on the secondary metabolite production during this developmental stage. Using high-performance liquid chromatography-mass spectrometry, we found that the sesquiterpenoid antibiotic albaflavenone, the polyketide germicidin A, and chalcone are produced during germination of the model streptomycete, S. coelicolor. Interestingly, the last two compounds revealed an inhibitory effect on the germination process. The secondary metabolites originating from the early stage of microbial growth may coordinate the development of the producer (quorum sensing) and/or play a role in competitive microflora repression (quorum quenching) in their nature environments. PMID:29326665

  12. Detection and identification of plasma progesterone metabolites in the female Florida manatee (Trichechus manatus latirostris) using GC/MS/MS.

    PubMed

    Tripp, K M; Dubois, M; Delahaut, P; Verstegen, J P

    2009-08-01

    Florida manatees (Trichechus manatus latirostris) have relatively low peripheral concentrations of progesterone (P4). The objective of this study was to determine if these relatively low P4 concentrations are associated with a high ratio of progestin metabolites and to document metabolite concentrations from individual blood samples obtained from manatees during diestrus or pregnancy. Metabolites known to exist in elephants-terrestrial manatee relatives-were targeted. These included 5alpha-reduced progestins (5alpha-pregnane-3,20-dione [5alpha-DHP] and 3alpha-hydroxy-5alpha-pregnan-20-one [5alpha-P3-OH]) and 17alpha-hydroxyprogesterone (17alpha-OHP), which occurs in Asian elephants. An additional, inactive metabolite, 20alpha-hydroxyprogesterone (20alpha-OHP), indicative of P4 overproduction, was also targeted. Progesterone itself was the predominant progestin detected in pregnant and nonpregnant manatee plasma (n = 10) using gas chromatography-mass spectrometry with tandem quadrupole detectors (GC/MS/MS). Progesterone concentrations in pregnant females varied from early (moderate to high) through mid and late (low) pregnancy. Progesterone concentrations ranged from low to high in nonpregnant, nonlactating females. The most commonly detected metabolite was 5alpha-P3-OH (n = 7), which occurred in pregnant (lower limit of detection [LLOD] to high) and nonpregnant (trace to high) females. The 5alpha-DHP metabolite was also detected in pregnant (LLOD to moderate) and nonpregnant (low) females. The 17alpha-OHP metabolite was not detected in any tested female. The 20alpha-OHP metabolite was detected in one nonpregnant, nonlactating, captive female (LLOD). Metabolites were most prevalent during early pregnancy, concurrent with maximum P4 concentrations. Based on their concentrations in peripheral circulation, we inferred that these metabolites may have, opposite to elephants, a limited physiologic role during luteal, pregnant, and nonpregnant phases in the manatee.

  13. Neurochemical abnormalities in brains of renal failure patients treated by repeated hemodialysis.

    PubMed

    Perry, T L; Yong, V W; Kish, S J; Ito, M; Foulks, J G; Godolphin, W J; Sweeney, V P

    1985-10-01

    We examined autopsied brain from 10 patients with end-stage renal failure who had undergone repeated hemodialysis. Eight had classic symptoms, and two had suggestive symptoms of dialysis encephalopathy. Findings were compared with those in autopsied brain from control adults who had never been hemodialyzed. Mean gamma-aminobutyric acid (GABA) contents were significantly reduced in frontal and occipital cortex, cerebellar cortex, dentate nucleus, caudate nucleus, and medial-dorsal thalamus of the hemodialyzed patients, the reduction being greater than 40% in cerebral cortex and thalamus. Choline acetyltransferase activity was reduced by 25-35% in three cortical regions in the hemodialyzed patients. These two abnormalities were observed in the brain of each hemodialyzed patient, regardless of whether or not the patient died with unequivocal dialysis encephalopathy. Pyridoxal phosphate contents were substantially reduced in brains of the hemodialyzed patients, but metabolites of noradrenaline, 3,4-dihydroxyphenylethylamine (dopamine), and 5-hydroxytryptamine (serotonin) were present in normal amounts. Aluminum levels were abnormally high in frontal cortical gray matter in the hemodialyzed patients. Although this study does not clarify the role played by aluminum toxicity in the pathogenesis of dialysis encephalopathy, the abnormalities we found suggest the need for further neurochemical investigations in this disorder.

  14. Sensory Abnormalities in Autism: A Brief Report

    ERIC Educational Resources Information Center

    Klintwall Lars; Holm, Anette; Eriksson, Mats; Carlsson, Lotta Hoglund; Olsson, Martina Barnevik; Hedvall, Asa; Gillberg, Christopher; Fernell, Elisabeth

    2011-01-01

    Sensory abnormalities were assessed in a population-based group of 208 20-54-month-old children, diagnosed with autism spectrum disorder (ASD) and referred to a specialized habilitation centre for early intervention. The children were subgrouped based upon degree of autistic symptoms and cognitive level by a research team at the centre. Parents…

  15. Mechanisms and consequences of paternally transmitted chromosomal abnormalities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchetti, F; Wyrobek, A J

    Paternally transmitted chromosomal damage has been associated with pregnancy loss, developmental and morphological defects, infant mortality, infertility, and genetic diseases in the offspring including cancer. There is epidemiological evidence linking paternal exposure to occupational or environmental agents with an increased risk of abnormal reproductive outcomes. There is also a large body of literature on germ cell mutagenesis in rodents showing that treatment of male germ cells with mutagens has dramatic consequences on reproduction producing effects such as those observed in human epidemiological studies. However, we know very little about the etiology, transmission and early embryonic consequences of paternally-derived chromosomal abnormalities.more » The available evidence suggests that: (1) there are distinct patterns of germ cell-stage differences in the sensitivity of induction of transmissible genetic damage with male postmeiotic cells being the most sensitive; (2) cytogenetic abnormalities at first metaphase after fertilization are critical intermediates between paternal exposure and abnormal reproductive outcomes; and, (3) there are maternally susceptibility factors that may have profound effects on the amount of sperm DNA damage that is converted into chromosomal aberrations in the zygote and directly affect the risk for abnormal reproductive outcomes.« less

  16. Estimation of stress relaxation time for normal and abnormal breast phantoms using optical technique

    NASA Astrophysics Data System (ADS)

    Udayakumar, K.; Sujatha, N.

    2015-03-01

    Many of the early occurring micro-anomalies in breast may transform into a deadliest cancer tumor in future. Probability of curing early occurring abnormalities in breast is more if rightly identified. Even in mammogram, considered as a golden standard technique for breast imaging, it is hard to pick up early occurring changes in the breast tissue due to the difference in mechanical behavior of the normal and abnormal tissue when subjected to compression prior to x-ray or laser exposure. In this paper, an attempt has been made to estimate the stress relaxation time of normal and abnormal breast mimicking phantom using laser speckle image correlation. Phantoms mimicking normal breast is prepared and subjected to precise mechanical compression. The phantom is illuminated by a Helium Neon laser and by using a CCD camera, a sequence of strained phantom speckle images are captured and correlated by the image mean intensity value at specific time intervals. From the relation between mean intensity versus time, tissue stress relaxation time is quantified. Experiments were repeated for phantoms with increased stiffness mimicking abnormal tissue for similar ranges of applied loading. Results shows that phantom with more stiffness representing abnormal tissue shows uniform relaxation for varying load of the selected range, whereas phantom with less stiffness representing normal tissue shows irregular behavior for varying loadings in the given range.

  17. Semen phthalate metabolites, semen quality parameters and serum reproductive hormones: A cross-sectional study in China.

    PubMed

    Wang, Yi-Xin; Zeng, Qiang; Sun, Yang; Yang, Pan; Wang, Peng; Li, Jin; Huang, Zhen; You, Ling; Huang, Yue-Hui; Wang, Cheng; Li, Yu-Feng; Lu, Wen-Qing

    2016-04-01

    Exposure to phthalates has been found to have adverse effects on male reproductive function in animals. However, the findings from human studies are inconsistent. Here we examined the associations of phthalate exposure with semen quality and reproductive hormones in a Chinese population using phthalate metabolite concentrations measured in semen as biomarkers. Semen (n = 687) and blood samples (n = 342) were collected from the male partners of sub-fertile couples who presented to the Reproductive Center of Tongji Hospital in Wuhan, China. Semen quality parameters and serum reproductive hormone levels were determined. Semen concentrations of 8 phthalate metabolites were assessed using high-performance liquid chromatography and tandem mass spectrometry. Associations of the semen phthalate metabolites with semen quality parameters and serum reproductive hormones were assessed using confounder-adjusted linear and logistic regression models. Semen phthalate metabolites were significantly associated with decreases in semen volume [mono-n-butyl phthalate (MBP), mono-(2-ethylhexyl) phthalate (MEHP), mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono(2-ethyl-5-oxohexyl) phthalate (MEOHP)], sperm curvilinear velocity [monobenzyl phthalate (MBzP), MEHP, the percentage of di-(2-ethylhexyl)-phthalate metabolites excreted as MEHP (%MEHP)], and straight-line velocity (MBzP, MEHP, %MEHP), and also associated with an increased percentage of abnormal heads and tails (MBzP) (all p for trend <0.05). These associations remained suggestive or significant after adjustment for multiple testing. There were no significant associations between semen phthalate metabolites and serum reproductive hormones. Our findings suggest that environmental exposure to phthalates may impair human semen quality. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Abnormal findings in peers during skills learning.

    PubMed

    Wearn, Andy; Nakatsuji, Miriam; Bhoopatkar, Harsh

    2017-02-01

    Peer physical examination (PPE), where students examine each other, is common in contemporary clinical skills learning. A range of benefits and risks have been explored in the literature. One persistent concern has been the identification and management of abnormal physical findings. Two previous studies have attempted to quantify the risk, one through the discussion of two exemplar cases and the other with a retrospective student survey. Here, we report the first prospective study of the number and type of abnormalities encountered as part of early clinical skills learning in a medical programme. We have a formal written consent process for PPE, which includes the management of abnormal findings through the completion of an event form. Our data come from cohorts undertaking years 2 and 3 of the programme between 2003 and 2014. One persistent concern (of PPE) has been the identification and management of abnormal physical findings RESULTS: Nineteen event forms were completed over this period. The incidence rates per year ranged from 0.23 to 1.05 per cent. Abnormal findings included raised blood pressure, heart murmur, abnormal bedside test values, and eye and skin conditions. The low event rate, along with a feasible process for dealing with this issue, goes some way to reassuring those with concerns. We acknowledge that some abnormalities may have been missed, and that some data may have been lost as a result of incorrect process; however, even the highest annual rate is low in absolute terms. We recommend a formal process for managing abnormalities. Ideally this would be part of an overall PPE written policy, communicated to students, enacted by tutors and approved by the local ethics committee. © 2016 John Wiley & Sons Ltd.

  19. Profiling of Plasma Metabolites Suggests Altered Mitochondrial Fuel Usage and Remodeling of Sphingolipid Metabolism in Individuals With Type 2 Diabetes and Kidney Disease.

    PubMed

    Liu, Jian-Jun; Ghosh, Sujoy; Kovalik, Jean-Paul; Ching, Jianhong; Choi, Hyung Won; Tavintharan, Subramaniam; Ong, Choon Nam; Sum, Chee Fang; Summers, Scott A; Tai, E Shyong; Lim, Su Chi

    2017-05-01

    Pathophysiology of diabetic kidney disease (DKD) is incompletely understood. We aim to elucidate metabolic abnormalities associated with DKD in type 2 diabetes mellitus (T2DM) by targeted plasma metabolomics. A total of 126 T2DM participants with early DKD (urinary albumin-to-creatinine ratio [ACR] 30-299 mg/g and eGFR ≥ 60 ml/min/1.73 m 2 ), 154 overt DKD (ACR ≥ 300 mg/g or eGFR < 60 ml/min/1.73 m 2 ), and 129 non-DKD T2DM controls (ACR < 30 mg/g and eGFR ≥ 60 ml/min/1.73 m 2 ) were included in discovery study. Findings were subsequently validated in 149 T2DM with macroalbuminuria (ACR ≥ 300 mg/g) and 149 matched non-DKD T2DM controls. Plasma amino acid, acylcarnitine, Krebs cycle organic acid, and sphingolipids/ceramide levels were quantified by liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry. Of 123 metabolites included in the data analysis, 24 differed significantly between DKD and controls in the same direction in both discovery and validation subpopulations. A number of short acylcarnitines including their dicarboxylic derivatives (C2-C6) were elevated in DKD, suggesting abnormalities in fatty acids and amino acids metabolic pathways. Five phosphatidylcholines were lower whereas 4 metabolites in the sphingomyelin-ceramide subfamily were higher in DKD. Principal component regression revealed that long-chain ceramides were independently associated with ACR but not eGFR. Conversely, essential amino acids catabolism and short dicarboxylacylcarnitine accumulation were associated with eGFR but not ACR. DKD is associated with altered fuel substrate use and remodeling of sphingolipid metabolism in T2DM with DKD. Associations of albuminuria and impaired filtration function with distinct metabolomic signatures suggest different pathophysiology underlying these 2 manifestations of DKD.

  20. Natural history of echocardiographic abnormalities in mucopolysaccharidosis III.

    PubMed

    Wilhelm, Carolyn M; Truxal, Kristen V; McBride, Kim L; Kovalchin, John P; Flanigan, Kevin M

    2018-06-01

    Mucopolysaccharidosis (MPS) type III, Sanfilippo Syndrome, is an autosomal recessive lysosomal storage disorder. MPS I and II patients often develop cardiac involvement leading to early mortality, however there are limited data in MPS III. The objective of this study is to describe cardiac abnormalities in a large group of MPS III patients followed in a longitudinal natural history study designed to determine outcome measures for gene transfer trials. A single center study of MPS III patients who were enrolled in the Nationwide Children's Hospital natural history study in 2014. Two cardiologists reviewed all patient echocardiograms for anatomic, valvular, and functional abnormalities. Valve abnormalities were defined as abnormal morphology, trivial mitral regurgitation (MR) with abnormal morphology or at least mild MR, and any aortic regurgitation (AR). Abnormal left ventricular (LV) function was defined as ejection fraction < 50%. Group comparisons were assessed using two-sample t-tests or Wilcoxon rank sum tests for continuous variables and chi-square or Fisher's exact tests for categorical variables. Twenty-five patients, 15 Type A and 10 Type B MPS III, underwent 45 echocardiograms. Fifteen patients (60%) demonstrated an abnormal echocardiographic finding with age at first abnormal echocardiogram within the study being 6.8 ± 2.8 years. Left-sided valve abnormalities were common over time: 7 mitral valve thickening, 2 mitral valve prolapse, 16 MR (8 mild, 8 trivial), 3 aortic valve thickening, and 9 AR (7 mild, 2 trivial). Two patients had asymmetric LV septal hypertrophy. No valvular stenosis or ventricular function abnormalities were noted. Incidental findings included: mild aortic root dilation (2), bicommissural aortic valve (1), and mild tricuspid regurgitation (3). Individuals with Sanfilippo A and B demonstrate a natural history of cardiac involvement with valvular abnormalities most common. In short-term follow up, patients demonstrated only

  1. Age Related Changes in Metabolite Concentrations in the Normal Spinal Cord

    PubMed Central

    Abdel-Aziz, Khaled; Solanky, Bhavana S.; Yiannakas, Marios C.; Altmann, Daniel R.; Wheeler-Kingshott, Claudia A. M.; Thompson, Alan J.; Ciccarelli, Olga

    2014-01-01

    Magnetic resonance spectroscopy (MRS) studies have previously described metabolite changes associated with aging of the healthy brain and provided insights into normal brain aging that can assist us in differentiating age-related changes from those associated with neurological disease. The present study investigates whether age-related changes in metabolite concentrations occur in the healthy cervical spinal cord. 25 healthy volunteers, aged 23–65 years, underwent conventional imaging and single-voxel MRS of the upper cervical cord using an optimised point resolved spectroscopy sequence on a 3T Achieva system. Metabolite concentrations normalised to unsuppressed water were quantified using LCModel and associations between age and spinal cord metabolite concentrations were examined using multiple regressions. A linear decline in total N-Acetyl-aspartate concentration (0.049 mmol/L lower per additional year of age, p = 0.010) and Glutamate-Glutamine concentration (0.054 mmol/L lower per additional year of age, p = 0.002) was seen within our sample age range, starting in the early twenties. The findings suggest that neuroaxonal loss and/or metabolic neuronal dysfunction, and decline in glutamate-glutamine neurotransmitter pool progress with aging. PMID:25310093

  2. Radiation-Induced Growth Retardation and Microstructural and Metabolite Abnormalities in the Hippocampus

    PubMed Central

    Zawaski, Janice A.; Sahnoune, Iman

    2016-01-01

    Cranial radiotherapy (CRT) increases survival in pediatric brain-tumor patients but can cause deleterious effects. This study evaluates the acute and long-term impact of CRT delivered during childhood/adolescence on the brain and body using a rodent model. Rats received CRT, either 4 Gy fractions × 5 d (fractionated) or a cumulative dose of 20 Gy (single dose) at 28 d of age. Animals were euthanized 1 d, 5 d, or 3.5 mo after CRT. The 3.5 mo group was imaged prior to euthanasia. At 3.5 mo, we observed significant growth retardation in irradiated animals, versus controls, and the effects of single dose on brain and body weights were more severe than fractionated. Acutely single dose significantly reduced body weight but increased brain weight, whereas fractionation significantly reduced brain but not body weights, versus controls. CRT suppressed cell proliferation in the hippocampal subgranular zone acutely. Fractional anisotropy (FA) in the fimbria was significantly lower in the single dose versus controls. Hippocampal metabolite levels were significantly altered in the single dose animals, reflecting a heightened state of inflammation that was absent in the fractionated. Our findings indicate that despite the differences in severity between the doses they both demonstrated an effect on cell proliferation and growth retardation, important factors in pediatric CRT. PMID:27242931

  3. Radiation-Induced Growth Retardation and Microstructural and Metabolite Abnormalities in the Hippocampus.

    PubMed

    Rodgers, Shaefali P; Zawaski, Janice A; Sahnoune, Iman; Leasure, J Leigh; Gaber, M Waleed

    2016-01-01

    Cranial radiotherapy (CRT) increases survival in pediatric brain-tumor patients but can cause deleterious effects. This study evaluates the acute and long-term impact of CRT delivered during childhood/adolescence on the brain and body using a rodent model. Rats received CRT, either 4 Gy fractions × 5 d (fractionated) or a cumulative dose of 20 Gy (single dose) at 28 d of age. Animals were euthanized 1 d, 5 d, or 3.5 mo after CRT. The 3.5 mo group was imaged prior to euthanasia. At 3.5 mo, we observed significant growth retardation in irradiated animals, versus controls, and the effects of single dose on brain and body weights were more severe than fractionated. Acutely single dose significantly reduced body weight but increased brain weight, whereas fractionation significantly reduced brain but not body weights, versus controls. CRT suppressed cell proliferation in the hippocampal subgranular zone acutely. Fractional anisotropy (FA) in the fimbria was significantly lower in the single dose versus controls. Hippocampal metabolite levels were significantly altered in the single dose animals, reflecting a heightened state of inflammation that was absent in the fractionated. Our findings indicate that despite the differences in severity between the doses they both demonstrated an effect on cell proliferation and growth retardation, important factors in pediatric CRT.

  4. Genetics and Early Detection in Idiopathic Pulmonary Fibrosis

    PubMed Central

    Putman, Rachel K.; Rosas, Ivan O.

    2014-01-01

    Genetic studies hold promise in helping to identify patients with early idiopathic pulmonary fibrosis (IPF). Recent studies using chest computed tomograms (CTs) in smokers and in the general population have demonstrated that imaging abnormalities suggestive of an early stage of pulmonary fibrosis are not uncommon and are associated with respiratory symptoms, physical examination abnormalities, and physiologic decrements expected, but less severe than those noted in patients with IPF. Similarly, recent genetic studies have demonstrated strong and replicable associations between a common promoter polymorphism in the mucin 5B gene (MUC5B) and both IPF and the presence of abnormal imaging findings in the general population. Despite these findings, it is important to note that the definition of early-stage IPF remains unclear, limited data exist to definitively connect abnormal imaging findings to IPF, and genetic studies assessing early-stage pulmonary fibrosis remain in their infancy. In this perspective we provide updated information on interstitial lung abnormalities and their connection to IPF. We summarize information on the genetics of pulmonary fibrosis by focusing on the recent genetic findings of MUC5B. Finally, we discuss the implications of these findings and suggest a roadmap for the use of genetics in the detection of early IPF. PMID:24547893

  5. Implications for Metabolite Quantification by Mass Spectrometry in the Absence of Authentic Standards.

    PubMed

    Hatsis, Panos; Waters, Nigel J; Argikar, Upendra A

    2017-05-01

    Quantification of metabolites by mass spectrometry in the absence of authentic reference standards or without a radiolabel is often called "semiquantitative," which acknowledges that mass spectrometric responses are not truly quantitative. For many researchers, it is tempting to pursue this practice of semiquantification in early drug discovery and even preclinical development, when radiolabeled absorption, distribution, metabolism, and excretion studies are being deferred to later stages of drug development. The caveats of quantifying metabolites based on parent drug response are explored in this investigation. A set of 71 clinically relevant drugs/metabolites encompassing common biotransformation pathways was subjected to flow injection analysis coupled with electrospray ionization (ESI) mass spectrometry. The results revealed a large variation in ESI response even for structurally similar parent drug/metabolite pairs. The ESI response of each metabolite was normalized to that of the parent drug to generate an ESI relative response factor. Overall, relative response factors ranged from 0.014 (>70-fold lower response than parent) to 8.6 (8.6-fold higher response than parent). Various two-dimensional molecular descriptors were calculated that describe physicochemical, topological, and structural properties for each drug/metabolite. The molecular descriptors, along with the ESI response factors, were used in univariate analyses as well as a principal components analysis to ascertain which molecular descriptors best account for the observed discrepancies in drug/metabolite ESI response. This investigation has shown that the practice of using parent drug response to quantify metabolites should be used with caution. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  6. Abnormal Magnetic Field Effects on Electrogenerated Chemiluminescence

    NASA Astrophysics Data System (ADS)

    Pan, Haiping; Shen, Yan; Wang, Hongfeng; He, Lei; Hu, Bin

    2015-03-01

    We report abnormal magnetic field effects on electrogenerated chemiluminescence (MFEECL) based on triplet emission from the Ru(bpy)3Cl2-TPrA electrochemical system: the appearance of MFEECL after magnetic field ceases. In early studies the normal MFEECL have been observed from electrochemical systems during the application of magnetic field. Here, the abnormal MFEECL suggest that the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes may become magnetized in magnetic field and experience a long magnetic relaxation after removing magnetic field. Our analysis indicates that the magnetic relaxation can gradually increase the density of charge-transfer complexes within reaction region due to decayed magnetic interactions, leading to a positive component in the abnormal MFEECL. On the other hand, the magnetic relaxation facilitates an inverse conversion from triplets to singlets within charge-transfer complexes. The inverse triplet --> singlet conversion reduces the density of triplet light-emitting states through charge-transfer complexes and gives rise to a negative component in the abnormal MFEECL. The combination of positive and negative components can essentially lead to a non-monotonic profile in the abnormal MFEECL after ceasing magnetic field. Nevertheless, our experimental studies may reveal un-usual magnetic behaviors with long magnetic relaxation from the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes in solution at room temperature.

  7. High prevalence of abnormal motor repertoire at 3 months corrected age in extremely preterm infants.

    PubMed

    Fjørtoft, Toril; Evensen, Kari Anne I; Øberg, Gunn Kristin; Songstad, Nils Thomas; Labori, Cathrine; Silberg, Inger Elisabeth; Loennecken, Marianne; Møinichen, Unn Inger; Vågen, Randi; Støen, Ragnhild; Adde, Lars

    2016-03-01

    To compare early motor repertoire between extremely preterm and term-born infants. An association between the motor repertoire and gestational age and birth weight was explored in extremely preterm infants without severe ultrasound abnormalities. In a multicentre study, the early motor repertoire of 82 infants born extremely preterm (ELGAN:<28 weeks) and/or with extremely low birth weight (ELBW:<1000 g) and 87 term-born infants were assessed by the "Assessment of Motor Repertoire - 2 to 5 Months" (AMR) which is part of Prechtl's "General Movement Assessment", at 12 weeks post-term age. Fidgety movements were classified as normal if present and abnormal if absent, sporadic or exaggerated. Concurrent motor repertoire was classified as normal if smooth and fluent and abnormal if monotonous, stiff, jerky and/or predominantly fast or slow. Eight-teen ELBW/ELGAN infants had abnormal fidgety movements (8 absent, 7 sporadic and 3 exaggerated fidgety movements) compared with 2 control infants (OR:12.0; 95%CI:2.7-53.4) and 46 ELBW/ELGAN infants had abnormal concurrent motor repertoire compared with 17 control infants (OR:5.3; 95%CI:2.6-10.5). Almost all detailed aspects of the AMR differed between the groups. Results were the same when three infants with severe ultrasound abnormalities were excluded. In the remaining ELBW/ELGAN infants, there was no association between motor repertoire and gestational age or birth weight. ELBW/ELGAN infants had poorer quality of early motor repertoire than term-born infants.The findings were not explained by severe abnormalities on neonatal ultrasound scans and were not correlated to the degree of prematurity. The consequences of these abnormal movement patterns remain to be seen in future follow-up studies. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  8. Gene and Metabolite Regulatory Network Analysis of Early Developing Fruit Tissues Highlights New Candidate Genes for the Control of Tomato Fruit Composition and Development1[C][W][OA

    PubMed Central

    Mounet, Fabien; Moing, Annick; Garcia, Virginie; Petit, Johann; Maucourt, Michael; Deborde, Catherine; Bernillon, Stéphane; Le Gall, Gwénaëlle; Colquhoun, Ian; Defernez, Marianne; Giraudel, Jean-Luc; Rolin, Dominique; Rothan, Christophe; Lemaire-Chamley, Martine

    2009-01-01

    Variations in early fruit development and composition may have major impacts on the taste and the overall quality of ripe tomato (Solanum lycopersicum) fruit. To get insights into the networks involved in these coordinated processes and to identify key regulatory genes, we explored the transcriptional and metabolic changes in expanding tomato fruit tissues using multivariate analysis and gene-metabolite correlation networks. To this end, we demonstrated and took advantage of the existence of clear structural and compositional differences between expanding mesocarp and locular tissue during fruit development (12–35 d postanthesis). Transcriptome and metabolome analyses were carried out with tomato microarrays and analytical methods including proton nuclear magnetic resonance and liquid chromatography-mass spectrometry, respectively. Pairwise comparisons of metabolite contents and gene expression profiles detected up to 37 direct gene-metabolite correlations involving regulatory genes (e.g. the correlations between glutamine, bZIP, and MYB transcription factors). Correlation network analyses revealed the existence of major hub genes correlated with 10 or more regulatory transcripts and embedded in a large regulatory network. This approach proved to be a valuable strategy for identifying specific subsets of genes implicated in key processes of fruit development and metabolism, which are therefore potential targets for genetic improvement of tomato fruit quality. PMID:19144766

  9. Sulindac metabolites inhibit epidermal growth factor receptor activation and expression.

    PubMed

    Pangburn, Heather A; Kraus, Hanna; Ahnen, Dennis J; Rice, Pamela L

    2005-09-02

    Regular use of nonsteroidal anti-inflammatory drugs (NSAIDs) is associated with a decreased mortality from colorectal cancer (CRC). NSAIDs induce apoptotic cell death in colon cancer cells in vitro and inhibit growth of neoplastic colonic mucosa in vivo however, the biochemical mechanisms required for these growth inhibitory effects are not well defined. We previously reported that metabolites of the NSAID sulindac downregulate extracellular-signal regulated kinase 1/2 (ERK1/2) signaling and that this effect is both necessary and sufficient for the apoptotic effects of these drugs. The goal of this project was to specifically test the hypothesis that sulindac metabolites block activation and/or expression of the epidermal growth factor (EGF) receptor (EGFR). HT29 human colon cancer cells were treated with EGF, alone, or in the presence of sulindac sulfide or sulindac sulfone. Cells lysates were assayed by immunoblotting for phosphorylated EGFR (pEGFR, pY1068), total EGFR, phosphorylated ERK1/2 (pERK1/2), total ERK1/2, activated caspase-3, and alpha-tubulin. EGF treatment rapidly induced phosphorylation of both EGFR and ERK1/2 in HT29 colon cancer cells. Pretreatment with sulindac metabolites for 24 h blocked EGF-induced phosphorylation of both EGFR and ERK1/2 and decreased total EGFR protein expression. Under basal conditions, downregulation of pEGFR and total EGFR was detected as early as 12 h following sulindac sulfide treatment and persisted through at least 48 h. Sulindac sulfone induced downregulation of pEGFR and total EGFR was detected as early as 1 h and 24 h, respectively, following drug treatment, and persisted through at least 72 h. EGFR downregulation by sulindac metabolites was observed in three different CRC cell lines, occurred prior to the observed downregulation of pERK1/2 and induction of apoptosis by these drugs, and was not dependent of caspase activation. These results suggest that downregulation of EGFR signaling by sulindac metabolites may

  10. Abnormal experimentally- and behaviorally-induced LTP-like plasticity in focal hand dystonia.

    PubMed

    Belvisi, Daniele; Suppa, Antonio; Marsili, Luca; Di Stasio, Flavio; Parvez, Ahmad Khandker; Agostino, Rocco; Fabbrini, Giovanni; Berardelli, Alfredo

    2013-02-01

    Idiopathic focal hand dystonia (FHD) arises from abnormal plasticity in the primary motor cortex (M1) possibly reflecting abnormal sensori-motor integration processes. In this transcranial magnetic stimulation (TMS) study in FHD, we evaluated changes in motor evoked potentials (MEPs) after intermittent theta burst stimulation (iTBS) and paired associative stimulation (PAS), techniques that elicit different forms of experimentally-induced long-term potentiation (LTP)-like plasticity in M1. We also examined behaviorally-induced LTP-like plasticity as reflected by early motor learning of a simple motor task. We studied 14 patients with FHD and 14 healthy subjects. MEPs were recorded before and after iTBS and PAS at the 25 ms interstimulus interval (PAS(25)) in separate sessions. Subjects did a simple motor task entailing repetitive index finger abductions. To measure early motor learning we tested practice-related improvement in peak velocity and peak acceleration. In FHD patients iTBS failed to elicit the expected MEP changes and PAS(25) induced abnormally increased MEPs in target and non-target muscles. In the experiment testing early motor learning, patients lacked the expected practice-related changes in kinematic variables. In FHD, the degree of early motor learning correlated with patients' clinical features. We conclude that experimentally-induced (iTBS and PAS) and behaviorally-induced LTP-like plasticity are both altered in FHD. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Metabolite Profiles and the Risk of Developing Diabetes

    PubMed Central

    Wang, Thomas J.; Larson, Martin G.; Vasan, Ramachandran S.; Cheng, Susan; Rhee, Eugene P.; McCabe, Elizabeth; Lewis, Gregory D.; Fox, Caroline S.; Jacques, Paul F.; Fernandez, Céline; O’Donnell, Christopher J.; Carr, Stephen A.; Mootha, Vamsi K.; Florez, Jose C.; Souza, Amanda; Melander, Olle; Clish, Clary B.; Gerszten, Robert E.

    2011-01-01

    Emerging technologies allow the high-throughput profiling of metabolic status from a blood specimen (metabolomics). We investigated whether metabolite profiles could predict the development of diabetes. Among 2,422 normoglycemic individuals followed for 12 years, 201 developed diabetes. Amino acids, amines, and other polar metabolites were profiled in baseline specimens using liquid chromatography-tandem mass spectrometry. Cases and controls were matched for age, body mass index and fasting glucose. Five branched-chain and aromatic amino acids had highly-significant associations with future diabetes: isoleucine, leucine, valine, tyrosine, and phenylalanine. A combination of three amino acids predicted future diabetes (>5-fold higher risk for individuals in top quartile). The results were replicated in an independent, prospective cohort. These findings underscore the potential importance of amino acid metabolism early in the pathogenesis of diabetes, and suggest that amino acid profiles could aid in diabetes risk assessment. PMID:21423183

  12. Metabolite profiles and the risk of developing diabetes.

    PubMed

    Wang, Thomas J; Larson, Martin G; Vasan, Ramachandran S; Cheng, Susan; Rhee, Eugene P; McCabe, Elizabeth; Lewis, Gregory D; Fox, Caroline S; Jacques, Paul F; Fernandez, Céline; O'Donnell, Christopher J; Carr, Stephen A; Mootha, Vamsi K; Florez, Jose C; Souza, Amanda; Melander, Olle; Clish, Clary B; Gerszten, Robert E

    2011-04-01

    Emerging technologies allow the high-throughput profiling of metabolic status from a blood specimen (metabolomics). We investigated whether metabolite profiles could predict the development of diabetes. Among 2,422 normoglycemic individuals followed for 12 years, 201 developed diabetes. Amino acids, amines and other polar metabolites were profiled in baseline specimens by liquid chromatography-tandem mass spectrometry (LC-MS). Cases and controls were matched for age, body mass index and fasting glucose. Five branched-chain and aromatic amino acids had highly significant associations with future diabetes: isoleucine, leucine, valine, tyrosine and phenylalanine. A combination of three amino acids predicted future diabetes (with a more than fivefold higher risk for individuals in top quartile). The results were replicated in an independent, prospective cohort. These findings underscore the potential key role of amino acid metabolism early in the pathogenesis of diabetes and suggest that amino acid profiles could aid in diabetes risk assessment.

  13. Neural mechanisms of oculomotor abnormalities in the infantile strabismus syndrome.

    PubMed

    Walton, Mark M G; Pallus, Adam; Fleuriet, Jérome; Mustari, Michael J; Tarczy-Hornoch, Kristina

    2017-07-01

    Infantile strabismus is characterized by numerous visual and oculomotor abnormalities. Recently nonhuman primate models of infantile strabismus have been established, with characteristics that closely match those observed in human patients. This has made it possible to study the neural basis for visual and oculomotor symptoms in infantile strabismus. In this review, we consider the available evidence for neural abnormalities in structures related to oculomotor pathways ranging from visual cortex to oculomotor nuclei. These studies provide compelling evidence that a disturbance of binocular vision during a sensitive period early in life, whatever the cause, results in a cascade of abnormalities through numerous brain areas involved in visual functions and eye movements. Copyright © 2017 the American Physiological Society.

  14. Insular cortex metabolite changes in obstructive sleep apnea.

    PubMed

    Yadav, Santosh K; Kumar, Rajesh; Macey, Paul M; Woo, Mary A; Yan-Go, Frisca L; Harper, Ronald M

    2014-05-01

    Adults with obstructive sleep apnea (OSA) show significant autonomic and neuropsychologic deficits, which may derive from damage to insular regions that serve those functions. The aim was to assess glial and neuronal status from anterior insular metabolites in OSA versus controls, using proton magnetic resonance spectroscopy (PMRS), and thus to provide insights for neuroprotection against tissue changes, and to reduce injury consequences. Cross-sectional study. University-based medical center. Thirty-six patients with OSA, 53 controls. None. We performed PMRS in bilateral anterior insulae using a 3.0-Tesla magnetic resonance imaging scanner, calculated N-acetylaspartate/creatine (NAA/Cr), choline/creatine (Cho/Cr), myo-inositol/creatine (MI/Cr), and MI/NAA metabolite ratios, and examined daytime sleepiness (Epworth Sleepiness Scale, ESS), sleep quality (Pittsburgh Sleep Quality Index, PSQI), and neuropsychologic status (Beck Depression Inventory II [BDI-II] and Beck Anxiety Inventory [BAI]). Body mass index, BAI, BDI-II, PSQI, and ESS significantly differed between groups. NAA/ Cr ratios were significantly reduced bilaterally, and left-sided MI/Cr and MI/NAA ratios were increased in OSA over controls. Significant positive correlations emerged between left insular MI/Cr ratios and apnea-hypopnea index values, right insular Cho/Cr ratios and BDI-II and BAI scores, and negative correlations appeared between left insular NAA/Cr ratios and PSQI scores and between right-side MI/Cr ratios and baseline and nadir change in O2 saturation. Adults with obstructive sleep apnea showed bilaterally reduced N-acetylaspartate and left-side increased myo-inositol anterior insular metabolites, indicating neuronal damage and increased glial activation, respectively, which may contribute to abnormal autonomic and neuropsychologic functions in the condition. The activated glial status likely indicates increased inflammatory action that may induce more neuronal injury, and suggests

  15. Bioanalytical methods for determination of tamoxifen and its phase I metabolites: a review.

    PubMed

    Teunissen, S F; Rosing, H; Schinkel, A H; Schellens, J H M; Beijnen, J H

    2010-12-17

    The selective estrogen receptor modulator tamoxifen is used in the treatment of early and advanced breast cancer and in selected cases for breast cancer prevention in high-risk subjects. The cytochrome P450 enzyme system and flavin-containing monooxygenase are responsible for the extensive metabolism of tamoxifen into several phase I metabolites that vary in toxicity and potencies towards estrogen receptor (ER) alpha and ER beta. An extensive overview of publications on the determination of tamoxifen and its phase I metabolites in biological samples is presented. In these publications techniques were used such as capillary electrophoresis, liquid, gas and thin layer chromatography coupled with various detection techniques (mass spectrometry, ultraviolet or fluorescence detection, liquid scintillation counting and nuclear magnetic resonance spectroscopy). A trend is seen towards the use of liquid chromatography coupled to mass spectrometry (LC-MS). State-of-the-art LC-MS equipment allowed for identification of unknown metabolites and quantification of known metabolites reaching lower limit of quantification levels in the sub pg mL(-1) range. Although tamoxifen is also metabolized into phase II metabolites, the number of publications reporting on phase II metabolism of tamoxifen is scarce. Therefore the focus of this review is on phase I metabolites of tamoxifen. We conclude that in the past decades tamoxifen metabolism has been studied extensively and numerous metabolites have been identified. Assays have been developed for both the identification and quantification of tamoxifen and its metabolites in an array of biological samples. This review can be used as a resource for method transfer and development of analytical methods used to support pharmacokinetic and pharmacodynamic studies of tamoxifen and its phase I metabolites. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Apolipoprotein E4 causes early olfactory network abnormalities and short-term olfactory memory impairments.

    PubMed

    Peng, Katherine Y; Mathews, Paul M; Levy, Efrat; Wilson, Donald A

    2017-02-20

    While apolipoprotein (Apo) E4 is linked to increased incidence of Alzheimer's disease (AD), there is growing evidence that it plays a role in functional brain irregularities that are independent of AD pathology. However, ApoE4-driven functional differences within olfactory processing regions have yet to be examined. Utilizing knock-in mice humanized to ApoE4 versus the more common ApoE3, we examined a simple olfactory perceptual memory that relies on the transfer of information from the olfactory bulb (OB) to the piriform cortex (PCX), the primary cortical region involved in higher order olfaction. In addition, we have recorded in vivo resting and odor-evoked local field potentials (LPF) from both brain regions and measured corresponding odor response magnitudes in anesthetized young (6-month-old) and middle-aged (12-month-old) ApoE mice. Young ApoE4 compared to ApoE3 mice exhibited a behavioral olfactory deficit coinciding with hyperactive odor-evoked response magnitudes within the OB that were not observed in older ApoE4 mice. Meanwhile, middle-aged ApoE4 compared to ApoE3 mice exhibited heightened response magnitudes in the PCX without a corresponding olfactory deficit, suggesting a shift with aging in ApoE4-driven effects from OB to PCX. Interestingly, the increased ApoE4-specific response in the PCX at middle-age was primarily due to a dampening of baseline spontaneous activity rather than an increase in evoked response power. Our findings indicate that early ApoE4-driven olfactory memory impairments and OB network abnormalities may be a precursor to later network dysfunction in the PCX, a region that not only is targeted early in AD, but may be selectively vulnerable to ApoE4 genotype. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Timeline and bibliography of early isolations of plant metabolites (1770-1820) and their impact to pharmacy: A critical study.

    PubMed

    Drobnik, Jacek; Drobnik, Elżbieta

    2016-10-27

    Plant metabolites became objects of chemical research for pharmaceutical and medicinal reasons. The period of pure plant substances in chemistry started 1770 with isolation of tartaric acid from wine (wine in pharmacy is a plant-derived preparation). Carl Scheele isolated 7 plant acids: tartaric, benzoic, citric, oxalic, malic, glucuronic and gallic. The era of alkaloids started 1803 when narcotine was discovered and published. Since that time, pharmacists and toxicologists began to recognize alkaloids (or substances regarded as such) as highly active principles responsible for their powerful, thus easily-observed actions to humans and test animals. By 1820 when solanine was isolated, pharmaceutical chemistry has dealt with increasing number of natural plant-derived substances as organic medicines or reagents. The following historical facts have been unknown: Scheele's tartaric acid was introduced officially as a medicinal substance as early as in 1775, benzoic, citric and oxalic acids became official by the end of the 18th century. Morphine was effectively published in 1806 (not 1804), hence the first alkaloid known in isolated state is narcotine (published 1803, official since 1827). Morphine became official in French pharmacy in 1818. And, 1814 is the year when 2 first toxicological accounts on plant-derived acids (oxalic and tartaric) appeared. Practical use in therapy, sometimes soon after discovery, inspired practical pharmacy and stimulated the progress of toxicology. We studied the earliest 50years of plant metabolites isolations era. A revised bibliography and a timeline chart for 24 plant substances from this period is provided. Plants from original publications are taxonomically identified. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. VASCULAR ABNORMALITIES IN DIABETIC RETINOPATHY ASSESSED WITH SWEPT-SOURCE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY WIDEFIELD IMAGING.

    PubMed

    Schaal, Karen B; Munk, Marion R; Wyssmueller, Iris; Berger, Lieselotte E; Zinkernagel, Martin S; Wolf, Sebastian

    2017-11-10

    To detect vascular abnormalities in diabetic retinopathy using swept-source optical coherence tomography angiography (SS-OCTA) widefield images, and to compare the findings with color fundus photographs (CFPs) using Early Treatment Diabetic Retinopathy Study severity grading. 3 mm × 3 mm and 12 mm × 12 mm scans were acquired to cover 70° to 80° of the posterior pole using a 100-kHz SS-OCTA instrument. Two masked graders assessed the presence of vascular abnormalities on SS-OCTA and the Early Treatment Diabetic Retinopathy Study level on CFP. The grading results were then compared. A total of 120 diabetic eyes (60 patients) were imaged with the SS-OCTA instrument. Cohort 1 (91 eyes; SS-OCTA grading only) showed microaneurysms in 91% (n = 83), intraretinal microvascular abnormalities in 79% (n = 72), and neovascularization in 21% (n = 19) of cases. Cohort 2 (52 eyes; CFP grading compared with SS-OCTA) showed microaneurysms on CFP in 90% (n = 47) and on SS-OCTA in 96% (n = 50) of cases. Agreement in intraretinal microvascular abnormality detection was fair (k = 0.2). Swept-source optical coherence tomography angiography detected 50% of intraretinal microvascular abnormality cases (n = 26), which were missed on CFP. Agreement in detecting neovascularization was moderate (k = 0.5). Agreement in detection of diabetic retinopathy features on CFP and SS-OCTA varies depending on the vascular changes examined. Swept-source optical coherence tomography angiography shows a higher detection rate of intraretinal microvascular abnormalities (P = 0.039), compared with Early Treatment Diabetic Retinopathy Study grading.

  19. New Methodology for Known Metabolite Identification in Metabonomics/Metabolomics: Topological Metabolite Identification Carbon Efficiency (tMICE).

    PubMed

    Sanchon-Lopez, Beatriz; Everett, Jeremy R

    2016-09-02

    A new, simple-to-implement and quantitative approach to assessing the confidence in NMR-based identification of known metabolites is introduced. The approach is based on a topological analysis of metabolite identification information available from NMR spectroscopy studies and is a development of the metabolite identification carbon efficiency (MICE) method. New topological metabolite identification indices are introduced, analyzed, and proposed for general use, including topological metabolite identification carbon efficiency (tMICE). Because known metabolite identification is one of the key bottlenecks in either NMR-spectroscopy- or mass spectrometry-based metabonomics/metabolomics studies, and given the fact that there is no current consensus on how to assess metabolite identification confidence, it is hoped that these new approaches and the topological indices will find utility.

  20. Metabolic regulation and overproduction of primary metabolites

    PubMed Central

    Sanchez, Sergio; Demain, Arnold L.

    2008-01-01

    Summary Overproduction of microbial metabolites is related to developmental phases of microorganisms. Inducers, effectors, inhibitors and various signal molecules play a role in different types of overproduction. Biosynthesis of enzymes catalysing metabolic reactions in microbial cells is controlled by well‐known positive and negative mechanisms, e.g. induction, nutritional regulation (carbon or nitrogen source regulation), feedback regulation, etc. The microbial production of primary metabolites contributes significantly to the quality of life. Fermentative production of these compounds is still an important goal of modern biotechnology. Through fermentation, microorganisms growing on inexpensive carbon and nitrogen sources produce valuable products such as amino acids, nucleotides, organic acids and vitamins which can be added to food to enhance its flavour, or increase its nutritive values. The contribution of microorganisms goes well beyond the food and health industries with the renewed interest in solvent fermentations. Microorganisms have the potential to provide many petroleum‐derived products as well as the ethanol necessary for liquid fuel. Additional applications of primary metabolites lie in their impact as precursors of many pharmaceutical compounds. The roles of primary metabolites and the microbes which produce them will certainly increase in importance as time goes on. In the early years of fermentation processes, development of producing strains initially depended on classical strain breeding involving repeated random mutations, each followed by screening or selection. More recently, methods of molecular genetics have been used for the overproduction of primary metabolic products. The development of modern tools of molecular biology enabled more rational approaches for strain improvement. Techniques of transcriptome, proteome and metabolome analysis, as well as metabolic flux analysis. have recently been introduced in order to identify new and

  1. An abnormal periventricular magnetization transfer ratio gradient occurs early in multiple sclerosis.

    PubMed

    Brown, J William L; Pardini, Matteo; Brownlee, Wallace J; Fernando, Kryshani; Samson, Rebecca S; Prados Carrasco, Ferran; Ourselin, Sebastien; Gandini Wheeler-Kingshott, Claudia A M; Miller, David H; Chard, Declan T

    2017-02-01

    magnetization transfer ratio gradient was not significantly affected by the presence of brain lesions [T 2 lesions (P = 0.918), periventricular T 2 lesions (P = 0.580) or gadolinium-enhancing T 1 lesions (P = 0.724)]. The magnetization transfer ratio gradient also correlated with Expanded Disability Status Scale score 5 years later (Spearman r = 0.313, P = 0.027). An abnormal periventricular magnetization transfer ratio gradient occurs early in multiple sclerosis, is clinically relevant, and may arise from one or more mechanisms that are at least partly independent of lesion formation. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Student nurses' recognition of early signs of abnormal vital sign recordings.

    PubMed

    Leonard, Martha M; Kyriacos, Una

    2015-09-01

    There is increasing urgency for nurses to recognize early signs of deterioration in patients and to take appropriate action to prevent serious adverse effects. To assess respondents' ability to identify abnormal recordings for respiratory and heart rate, oxygen saturation level, systolic blood pressure, level of consciousness, urinary output and normal temperature. A descriptive observational survey. A nursing college in Cape Town, South Africa. A sample of 77/212 (36.3%) fourth year students. A self-administered adapted questionnaire was employed to collect demographic data and respondents' selections of recorded physiological values for the purpose of deciding when to call for more skilled help. The median age for 62/77 (80.5%) of the respondents was 25years; 3/76 (3.9%) had a previous certificate in nursing. Most respondents were female (66/76, 85.7%). Afrikaans was the first language preference of 33 (42.9%) respondents, followed by isiXhosa (31/77, 40.3%) and English (10/77, 13.0%). Most respondents (48/77, 62.3%) recognized a normal temperature reading (35-38.4°C). However, overall there would have been delays in calling for more skilled assistance in 288/416 (69.2%) instances of critical illness for a high-score MEWS of 3 and in 226/639 (35.4%) instances at a medium-score MEWS of 2 for physiological parameters. In 96/562 (17.1%) instances, respondents would have called for assistance for a low-score MEWS of 1. Non-recognition of deterioration in patients' clinical status and delayed intervention by nurses has implications for the development of serious adverse events. The MEWS is recommended as a track-and-trigger system for nursing curricula in South Africa and for implementation in practice. Copyright © 2015. Published by Elsevier Ltd.

  3. [Secondary Metabolites from Marine Microorganisms. I. Secondary Metabolites from Marine Actinomycetes].

    PubMed

    Orlova, T I; Bulgakova, V G; Polin, A N

    2015-01-01

    Review represents data on new active metabolites isolated from marine actinomycetes published in 2007 to 2014. Marine actinomycetes are an unlimited source of novel secondary metabolites with various biological activities. Among them there are antibiotics, anticancer compounds, inhibitors of biochemical processes.

  4. Subtle abnormalities of gait detected early in vitamin B6 deficiency in aged and weanling rats with hind leg gait analysis.

    PubMed

    Schaeffer, M C; Cochary, E F; Sadowski, J A

    1990-04-01

    Motor abnormalities have been observed in every species made vitamin B6 deficient, and have been detected and quantified early in vitamin B6 deficiency in young adult female Long-Evans rats with hind leg gait analysis. Our objective was to determine if hind leg gait analysis could be used to detect vitamin B6 deficiency in weanling (3 weeks) and aged (23 months) Fischer 344 male rats. Rats (n = 10 per group) were fed: the control diet ad libitum (AL-CON); the control diet devoid of added pyridoxine hydrochloride (DEF); or the control diet pair-fed to DEF (PF-CON). At 10 weeks, plasma pyridoxal phosphate concentration confirmed deficiency in both age groups. Gait abnormalities were detected in the absence of gross motor disturbances in both aged and weanling DEF rats at 2-3 weeks. Width of step was significantly reduced (16%, p less than 0.003) in DEF aged rats compared to AL- and PF-CON. This pattern of response was similar to that reported previously in young adult rats. In weanling rats, pair feeding alone reduced mean width of step (+/- SEM) by 25% compared to ad libitum feeding (2.7 +/- 0.1 vs 3.6 +/- 0.1 cm for PF- vs AL-CON, respectively, p less than 0.05). In DEF weanling rats, width (3.0 +/- 0.1 cm) was increased compared to PF-CON (11%, p less than 0.05) but decreased compared to AL-CON (16%, p less than 0.05). Width of step was significantly altered early in B6 deficiency in rats of different ages and strains and in both sexes.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Identification of phenylbutyrate-generated metabolites in Huntington disease patients using parallel liquid chromatography/electrochemical array/mass spectrometry and off-line tandem mass spectrometry.

    PubMed

    Ebbel, Erika N; Leymarie, Nancy; Schiavo, Susan; Sharma, Swati; Gevorkian, Sona; Hersch, Steven; Matson, Wayne R; Costello, Catherine E

    2010-04-15

    Oral sodium phenylbutyrate (SPB) is currently under investigation as a histone deacetylation (HDAC) inhibitor in Huntington disease (HD). Ongoing studies indicate that symptoms related to HD genetic abnormalities decrease with SPB therapy. In a recently reported safety and tolerability study of SPB in HD, we analyzed overall chromatographic patterns from a method that employs gradient liquid chromatography with series electrochemical array, ultraviolet (UV), and fluorescence (LCECA/UV/F) for measuring SPB and its metabolite phenylacetate (PA). We found that plasma and urine from SPB-treated patients yielded individual-specific patterns of approximately 20 metabolites that may provide a means for the selection of subjects for extended trials of SPB. The structural identification of these metabolites is of critical importance because their characterization will facilitate understanding the mechanisms of drug action and possible side effects. We have now developed an iterative process with LCECA, parallel LCECA/LCMS, and high-performance tandem MS for metabolite characterization. Here we report the details of this method and its use for identification of 10 plasma and urinary metabolites in treated subjects, including indole species in urine that are not themselves metabolites of SPB. Thus, this approach contributes to understanding metabolic pathways that differ among HD patients being treated with SPB. Copyright 2010 Elsevier Inc. All rights reserved.

  6. Sperm shape abnormality and urine mutagenicity in mice treated with niclosamide.

    PubMed

    Vega, S G; Guzmán, P; García, L; Espinosa, J; Cortinas de Nava, C

    1988-02-01

    Niclosamide, a widely used anthelmintic drug in underdeveloped countries, is known to be mutagenic in the Salmonella typhimurium microsomal test system. The urine obtained from mice treated with niclosamide is mutagenic in the TA98 and TA1538 strains. Its effects on mouse-sperm morphology were evaluated in CD1 and (BALB/cJ x DBA/2J) F1 mice after 5 daily oral niclosamide doses of either 60, 80, 100 or 120 mg/kg. A statistically significant increase in abnormal sperm morphology was detected in both CD1 and (BALB/cJ x DBA/2J) F1 mice. No drug-related effects on testis weight nor on sperm count were observed in either genotype. Urine samples obtained from niclosamide-treated F1 mice were assayed with the Salmonella typhimurium strain TA1538 both in the absence and presence of beta-glucuronidase. In the absence of glucuronidase, urine mutagenicity increased with increasing dose and the highest doses were toxic. In the presence of glucuronidase, urine mutagenicity and toxicity also increased. Only at the highest dose (120 mg/kg), however, was there a positive correlation between the urine mutagenic activity and an increase in the number of abnormal sperm. The results of this study suggest that the increase in abnormal sperm depends on the systemic presence of non-conjugated niclosamide metabolites.

  7. Engineering Microbial Metabolite Dynamics and Heterogeneity.

    PubMed

    Schmitz, Alexander C; Hartline, Christopher J; Zhang, Fuzhong

    2017-10-01

    As yields for biological chemical production in microorganisms approach their theoretical maximum, metabolic engineering requires new tools, and approaches for improvements beyond what traditional strategies can achieve. Engineering metabolite dynamics and metabolite heterogeneity is necessary to achieve further improvements in product titers, productivities, and yields. Metabolite dynamics, the ensemble change in metabolite concentration over time, arise from the need for microbes to adapt their metabolism in response to the extracellular environment and are important for controlling growth and productivity in industrial fermentations. Metabolite heterogeneity, the cell-to-cell variation in a metabolite concentration in an isoclonal population, has a significant impact on ensemble productivity. Recent advances in single cell analysis enable a more complete understanding of the processes driving metabolite heterogeneity and reveal metabolic engineering targets. The authors present an overview of the mechanistic origins of metabolite dynamics and heterogeneity, why they are important, their potential effects in chemical production processes, and tools and strategies for engineering metabolite dynamics and heterogeneity. The authors emphasize that the ability to control metabolite dynamics and heterogeneity will bring new avenues of engineering to increase productivity of microbial strains. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Anorexia nervosa and body dysmorphic disorder are associated with abnormalities in processing visual information.

    PubMed

    Li, W; Lai, T M; Bohon, C; Loo, S K; McCurdy, D; Strober, M; Bookheimer, S; Feusner, J

    2015-07-01

    Anorexia nervosa (AN) and body dysmorphic disorder (BDD) are characterized by distorted body image and are frequently co-morbid with each other, although their relationship remains little studied. While there is evidence of abnormalities in visual and visuospatial processing in both disorders, no study has directly compared the two. We used two complementary modalities--event-related potentials (ERPs) and functional magnetic resonance imaging (fMRI)--to test for abnormal activity associated with early visual signaling. We acquired fMRI and ERP data in separate sessions from 15 unmedicated individuals in each of three groups (weight-restored AN, BDD, and healthy controls) while they viewed images of faces and houses of different spatial frequencies. We used joint independent component analyses to compare activity in visual systems. AN and BDD groups demonstrated similar hypoactivity in early secondary visual processing regions and the dorsal visual stream when viewing low spatial frequency faces, linked to the N170 component, as well as in early secondary visual processing regions when viewing low spatial frequency houses, linked to the P100 component. Additionally, the BDD group exhibited hyperactivity in fusiform cortex when viewing high spatial frequency houses, linked to the N170 component. Greater activity in this component was associated with lower attractiveness ratings of faces. Results provide preliminary evidence of similar abnormal spatiotemporal activation in AN and BDD for configural/holistic information for appearance- and non-appearance-related stimuli. This suggests a common phenotype of abnormal early visual system functioning, which may contribute to perceptual distortions.

  9. Factors influencing annual fecal testosterone metabolite profiles in captive male polar bears (Ursus maritimus).

    PubMed

    Curry, E; Roth, T L; MacKinnon, K M; Stoops, M A

    2012-12-01

    The objectives of this study were to assess the effects of season, breeding activity, age and latitude on fecal testosterone metabolite concentrations in captive, adult male polar bears (Ursus maritimus). Fourteen polar bears from 13 North American zoos were monitored for 12-36 months, producing 25-year-long testosterone profiles. Results indicated that testosterone was significantly higher during the breeding season (early January through the end of May) compared with the non-breeding season with the highest concentrations excreted from early January through late March. Variations in excretion patterns were observed among individuals and also between years within an individual, with testosterone peaks closely associated with breeding activity. Results indicate that fecal testosterone concentrations are influenced by season, breeding activity and age, but not by latitude. This is the first report describing longitudinal fecal testosterone metabolite concentrations in individual adult male polar bears. © 2012 Blackwell Verlag GmbH.

  10. Identification of Serum Metabolites Associated With Incident Hypertension in the European Prospective Investigation into Cancer and Nutrition-Potsdam Study.

    PubMed

    Dietrich, Stefan; Floegel, Anna; Weikert, Cornelia; Prehn, Cornelia; Adamski, Jerzy; Pischon, Tobias; Boeing, Heiner; Drogan, Dagmar

    2016-08-01

    Metabolomics is a promising tool to gain new insights into early metabolic alterations preceding the development of hypertension in humans. We therefore aimed to identify metabolites associated with incident hypertension using measured data of serum metabolites of the European Prospective Investigation Into Cancer and Nutrition (EPIC)-Potsdam study. Targeted metabolic profiling was conducted on serum blood samples of a randomly drawn EPIC-Potsdam subcohort consisting of 135 cases and 981 noncases of incident hypertension, all of them being free of hypertension and not on antihypertensive therapy at the time of blood sampling. Mean follow-up was 9.9 years. A validated set of 127 metabolites was statistically analyzed with a random survival forest backward selection algorithm to identify predictive metabolites of incident hypertension taking into account important epidemiological hypertension risk markers. Six metabolites were identified to be most predictive for the development of hypertension. Higher concentrations of serine, glycine, and acyl-alkyl-phosphatidylcholines C42:4 and C44:3 tended to be associated with higher and diacyl-phosphatidylcholines C38:4 and C38:3 with lower predicted 10-year hypertension-free survival, although visualization by partial plots revealed some nonlinearity in the above associations. The identified metabolites improved prediction of incident hypertension when used together with known risk markers of hypertension. In conclusion, these findings indicate that metabolic alterations occur early in the development of hypertension. However, these alterations are confined to a few members of the amino acid or phosphatidylcholine metabolism, respectively. © 2016 American Heart Association, Inc.

  11. Ultrastructural and cellular basis for the development of abnormal myocardial mechanics during the transition from hypertension to heart failure.

    PubMed

    Shah, Sanjiv J; Aistrup, Gary L; Gupta, Deepak K; O'Toole, Matthew J; Nahhas, Amanda F; Schuster, Daniel; Chirayil, Nimi; Bassi, Nikhil; Ramakrishna, Satvik; Beussink, Lauren; Misener, Sol; Kane, Bonnie; Wang, David; Randolph, Blake; Ito, Aiko; Wu, Megan; Akintilo, Lisa; Mongkolrattanothai, Thitipong; Reddy, Mahendra; Kumar, Manvinder; Arora, Rishi; Ng, Jason; Wasserstrom, J Andrew

    2014-01-01

    Although the development of abnormal myocardial mechanics represents a key step during the transition from hypertension to overt heart failure (HF), the underlying ultrastructural and cellular basis of abnormal myocardial mechanics remains unclear. We therefore investigated how changes in transverse (T)-tubule organization and the resulting altered intracellular Ca(2+) cycling in large cell populations underlie the development of abnormal myocardial mechanics in a model of chronic hypertension. Hearts from spontaneously hypertensive rats (SHRs; n = 72) were studied at different ages and stages of hypertensive heart disease and early HF and were compared with age-matched control (Wistar-Kyoto) rats (n = 34). Echocardiography, including tissue Doppler and speckle-tracking analysis, was performed just before euthanization, after which T-tubule organization and Ca(2+) transients were studied using confocal microscopy. In SHRs, abnormalities in myocardial mechanics occurred early in response to hypertension, before the development of overt systolic dysfunction and HF. Reduced longitudinal, circumferential, and radial strain as well as reduced tissue Doppler early diastolic tissue velocities occurred in concert with T-tubule disorganization and impaired Ca(2+) cycling, all of which preceded the development of cardiac fibrosis. The time to peak of intracellular Ca(2+) transients was slowed due to T-tubule disruption, providing a link between declining cell ultrastructure and abnormal myocardial mechanics. In conclusion, subclinical abnormalities in myocardial mechanics occur early in response to hypertension and coincide with the development of T-tubule disorganization and impaired intracellular Ca(2+) cycling. These changes occur before the development of significant cardiac fibrosis and precede the development of overt cardiac dysfunction and HF.

  12. Nailfold capillary abnormalities in erectile dysfunction of systemic sclerosis: a EUSTAR group analysis.

    PubMed

    Keck, Andrea D; Foocharoen, Chingching; Rosato, Edoardo; Smith, Vanessa; Allanore, Yannick; Distler, Oliver; Stamenkovic, Bojana; Pereira Da Silva, José Antonio; Hadj Khelifa, Sondess; Denisov, Lev N; Hachulla, Eric; García de la Peña Lefebvre, Paloma; Sibilia, Jean; Airò, Paolo; Caramaschi, Paola; Müller-Ladner, Ulf; Wiland, Piotr; Walker, Ulrich A

    2014-04-01

    The objective of this study was to analyse an association between nailfold capillary abnormalities and the presence and severity of erectile dysfunction (ED) in men with SSc. A cross-sectional analysis of the prospective European League Against Rheumatism (EULAR) Scleroderma Trial and Research database was performed. Men with SSc were included if they had undergone nailfold capillaroscopy and simultaneous ED assessment with the 5-item International Index for Erectile Function (IIEF-5). Eighty-six men met the inclusion criteria. Eight men (9.3%) had not had sexual intercourse and could not be assigned an IIEF-5 score. Sixty-nine of the 78 men (88.5%) with an IIEF-5 score had nailfold capillary abnormalities, of whom 54 (78.3%) suffered from ED. Nine men (11.5%) had no nailfold capillary abnormalities, of whom six (66.7%) had ED (P = 0.44). ED was more frequent in older men (P = 0.002) and in men with diffuse disease (P = 0.06). Men with abnormal capillaroscopy had a higher median EULAR disease activity than men without (P = 0.02), a lower diffusing capacity of the lung (P = 0.001) and a higher modified Rodnan skin score (P = 0.04), but mean IIEF-5 scores did not differ [15.7 (S.D. 6.2) vs 15.7 (S.D. 6.3)]. IIEF-5 scores did not differ between men with early (n = 12), active (n = 27) or late (n = 27) patterns (IIEF-5 scores of 17.9, 16.3 and 14.7, respectively). There were no differences in the prevalence of early, active and late capillaroscopy patterns between men with or without ED. Neither the presence or absence of abnormal capillaroscopy findings nor the subdivision into early, active and late patterns is associated with coexistent ED in SSc.

  13. Biomarker metabolite signatures pave the way for electronic-nose applications in early clinical disease diagnoses

    Treesearch

    Alphus Dan Wilson

    2017-01-01

    Background: Analysis of volatile metabolites derived from the human breath or biofluids provides noninvasive means of detecting and monitoring diseases that occur throughout the body. Diseases arise from different mechanisms that cause alterations in normal physiological processes. Mechanisms of disease (pathogenesis) result in the...

  14. Metabolomics for secondary metabolite research.

    PubMed

    Breitling, Rainer; Ceniceros, Ana; Jankevics, Andris; Takano, Eriko

    2013-11-11

    Metabolomics, the global characterization of metabolite profiles, is becoming an increasingly powerful tool for research on secondary metabolite discovery and production. In this review we discuss examples of recent technological advances and biological applications of metabolomics in the search for chemical novelty and the engineered production of bioactive secondary metabolites.

  15. Prevalence of macular abnormalities assessed by optical coherence tomography in patients with Usher syndrome.

    PubMed

    Testa, Francesco; Melillo, Paolo; Rossi, Settimio; Marcelli, Vincenzo; de Benedictis, Antonella; Colucci, Raffaella; Gallo, Beatrice; Brunetti-Pierri, Raffaella; Donati, Simone; Azzolini, Claudio; Marciano, Elio; Simonelli, Francesca

    2018-01-01

    To investigate the prevalence of macular abnormalities in patients affected by Usher syndrome (USH), by comparing the clinical findings between two types (i.e., USH1 and USH2). A retrospective study was performed by reviewing optical coherence tomography (OCT) in 134 USH patients to determine the presence of macular abnormalities, including cystoid macular edema (CME), epiretinal membrane (ERM), vitreo-macular traction syndrome (VMT), and macular hole (MH). Macular abnormalities were observed in 126/268 (47.0%) examined eyes. The most frequent abnormality was ERM observed in 51 eyes (19%), followed by CME observed in 42 eyes (15.7%). Moreover, CME was significantly (p < 0.05) associated with younger age (CME: 30.1 ± 11.1 years; without CME: 36.9 ± 14.9 years), whereas VMT and full thickness MH were associated with older age (p < 0.05). Moreover, a significantly (p < 0.05) decreased best-corrected visual acuity was associated with MH compared to eyes without MH. Finally, CME was more frequent in USH1 compared to USH2. Our study, for the first time in the literature, showed the distribution of all macular abnormalities assessed by SD-OCT in a large USH cohort, comparing USH1 and USH2 patients. We observed that ocular abnormalities are highly prevalent in USH patients compared to general population, with ERM and CME being the most common alterations. Based on these findings, OCT screening in USH patients is recommended for early detection of macular changes and early treatment.

  16. A Brief History of the Development of Abnormal Psychology: A Training Guide. Final Report.

    ERIC Educational Resources Information Center

    Phelps, William R.

    Presented for practitioners is a history of the development of abnormal psychology. Areas covered include the following: Early medical concepts, ideas carried over from literature, early treatment of the mentally ill, development of the psychological viewpoint, Freud's psychoanalytic theory, Jung's analytic theory, the individual psychology of…

  17. Perturbational Profiling of Metabolites in Patient Fibroblasts Implicates α-Aminoadipate as a Potential Biomarker for Bipolar Disorder

    PubMed Central

    Huang, Joanne H.; Berkovitch, Shaunna S.; Iaconelli, Jonathan; Watmuff, Bradley; Park, Hyoungjun; Chattopadhyay, Shrikanta; McPhie, Donna; Öngür, Dost; Cohen, Bruce M.; Clish, Clary B.; Karmacharya, Rakesh

    2016-01-01

    Many studies suggest the presence of aberrations in cellular metabolism in bipolar disorder. We studied the metabolome in bipolar disorder to gain insight into cellular pathways that may be dysregulated in bipolar disorder and to discover evidence of novel biomarkers. We measured polar and nonpolar metabolites in fibroblasts from subjects with bipolar I disorder and matched healthy control subjects, under normal conditions and with two physiologic perturbations: low-glucose media and exposure to the stress-mediating hormone dexamethasone. Metabolites that were significantly different between bipolar and control subjects showed distinct separation by principal components analysis methods. The most statistically significant findings were observed in the perturbation experiments. The metabolite with the lowest p value in both the low-glucose and dexamethasone experiments was α-aminoadipate, whose intracellular level was consistently lower in bipolar subjects. Our study implicates α-aminoadipate as a possible biomarker in bipolar disorder that manifests under cellular stress. This is an intriguing finding given the known role of α-aminoadipate in the modulation of kynurenic acid in the brain, especially as abnormal kynurenic acid levels have been implicated in bipolar disorder. PMID:27606323

  18. Identification of drug metabolites in human plasma or serum integrating metabolite prediction, LC-HRMS and untargeted data processing.

    PubMed

    Jacobs, Peter L; Ridder, Lars; Ruijken, Marco; Rosing, Hilde; Jager, Nynke Gl; Beijnen, Jos H; Bas, Richard R; van Dongen, William D

    2013-09-01

    Comprehensive identification of human drug metabolites in first-in-man studies is crucial to avoid delays in later stages of drug development. We developed an efficient workflow for systematic identification of human metabolites in plasma or serum that combines metabolite prediction, high-resolution accurate mass LC-MS and MS vendor independent data processing. Retrospective evaluation of predictions for 14 (14)C-ADME studies published in the period 2007-January 2012 indicates that on average 90% of the major metabolites in human plasma can be identified by searching for accurate masses of predicted metabolites. Furthermore, the workflow can identify unexpected metabolites in the same processing run, by differential analysis of samples of drug-dosed subjects and (placebo-dosed, pre-dose or otherwise blank) control samples. To demonstrate the utility of the workflow we applied it to identify tamoxifen metabolites in serum of a breast cancer patient treated with tamoxifen. Previously published metabolites were confirmed in this study and additional metabolites were identified, two of which are discussed to illustrate the advantages of the workflow.

  19. Radiographic abnormalities among construction workers exposed to quartz containing dust

    PubMed Central

    Tjoe, N; Burdorf, A; Parker, J; Attfield, M; van Duivenbooden, C; Heederik, D

    2003-01-01

    Background: Construction workers are exposed to quartz containing respirable dust, at levels that may cause fibrosis in the lungs. Studies so far have not established a dose-response relation for radiographic abnormalities for this occupational group. Aims: To measure the extent of radiographic abnormalities among construction workers primarily exposed to quartz containing respirable dust. Methods: A cross sectional study on radiographic abnormalities indicative of pneumoconiosis was conducted among 1339 construction workers mainly involved in grinding, (jack)-hammering, drilling, cutting, sawing, and polishing. Radiological abnormalities were determined by median results of the 1980 International Labour Organisation system of three certified "B" readers. Questionnaires were used for assessment of occupational history, presence of respiratory diseases, and symptoms and smoking habits. Results: An abnormality of ILO profusion category 1/0 and greater was observed on 10.2% of the chest radiographs, and profusion category of 1/1 or greater on 2.9% of the radiographs. The average duration of exposure of this group was 19 years and the average age was 42. The predominant type of small opacities (irregularly shaped) is presumably indicative of mixed dust pneumoconiosis. The prevalence of early signs of nodular silicosis (small rounded opacities of category 1/0 or greater) was low (0.8%). Conclusions: The study suggests an elevated risk of radiographic abnormalities among these workers with expected high exposure. An association between radiographic abnormalities and cumulative exposure to quartz containing dust from construction sites was observed, after correction for potentially confounding variables. PMID:12771392

  20. Adverse factors increase preeclampsia-like changes in pregnant mice with abnormal lipid metabolism.

    PubMed

    Ding, Xiaoyan; Yang, Zi; Han, Yiwei; Yu, Huan

    2014-01-01

    Preeclampsia (PE) is a multifactorial pregnancy complication. Maternal underlying condition and adverse factors both influence the pathogenesis of PE. Abnormal lipid metabolism as a maternal underlying disease may participate in the occurrence and development of PE. This study aimed to observe the effects of adverse factors on PE-like symptoms of pregnant mice with genetic abnormal lipid metabolism. Apolipoprotein C-III (ApoC3) transgenic mice with abnormal lipid metabolism were subcutaneously injected with L-arginine methyl ester (L-NAME) or normal saline (NS) daily starting at Day 7 or 16 of pregnancy (ApoC3+L-NA and ApoC3+NS groups), and wild-type (WT) mice served as a control (WT+L-NA and WT+NS groups). All mice were subdivided into early and late subgroups by injection time. The mean arterial pressure (MAP) and urinary protein were measured. Pregnancy outcomes, including fetal weight, placental weight, live birth rate, and fetal absorption rate, were analyzed. Pathologic changes in the placenta were observed by hematoxylin-eosin staining. One-way analysis of variance, t-test, and χ(2) test were used for statistical analysis. MAP significantly increased for ApoC3+NS groups compared with WT+NS groups (P < 0.05), without significant difference in urine protein. Following L-NAME injection, MAP and urinary protein significantly increased for ApoC3+L-NA and WT+L-NA compared with the corresponding NS groups (P < 0.05), and the increase for ApoC3+L-NA was more obvious. Urinary protein levels in early ApoC3+L-NA and WT+L-NA significantly increased compared with the corresponding late groups (P < 0.05). Fetal absorption rate significantly increased and fetal and placental weights significantly decreased in early ApoC3+L-NA and WT+L-NA compared with the corresponding NS groups (P < 0.05), without significant difference in late ApoC3+L-NA and WT+L-NA groups. Fetal weight in early ApoC3+L-NA was significantly lower than in early WT+L-NA group (P < 0.05). Morphologic

  1. Serum Metabolite Biomarkers Discriminate Healthy Smokers from COPD Smokers

    PubMed Central

    Chen, Qiuying; Deeb, Ruba S.; Ma, Yuliang; Staudt, Michelle R.; Crystal, Ronald G.; Gross, Steven S.

    2015-01-01

    COPD (chronic obstructive pulmonary disease) is defined by a fixed expiratory airflow obstruction associated with disordered airways and alveolar destruction. COPD is caused by cigarette smoking and is the third greatest cause of mortality in the US. Forced expiratory volume in 1 second (FEV1) is the only validated clinical marker of COPD, but it correlates poorly with clinical features and is not sensitive enough to predict the early onset of disease. Using LC/MS global untargeted metabolite profiling of serum samples from a well-defined cohort of healthy smokers (n = 37), COPD smokers (n = 41) and non-smokers (n = 37), we sought to discover serum metabolic markers with known and/or unknown molecular identities that are associated with early-onset COPD. A total of 1,181 distinct molecular ions were detected in 95% of sera from all study subjects and 23 were found to be differentially-expressed in COPD-smokers vs. healthy-smokers. These 23 putative biomarkers were differentially-correlated with lung function parameters and used to generate a COPD prediction model possessing 87.8% sensitivity and 86.5% specificity. In an independent validation set, this model correctly predicted COPD in 8/10 individuals. These serum biomarkers included myoinositol, glycerophopshoinositol, fumarate, cysteinesulfonic acid, a modified version of fibrinogen peptide B (mFBP), and three doubly-charged peptides with undefined sequence that significantly and positively correlate with mFBP levels. Together, elevated levels of serum mFBP and additional disease-associated biomarkers point to a role for chronic inflammation, thrombosis, and oxidative stress in remodeling of the COPD airways. Serum metabolite biomarkers offer a promising and accessible window for recognition of early-stage COPD. PMID:26674646

  2. A metabolomic study on high-risk stroke patients determines low levels of serum lysine metabolites: a retrospective cohort study.

    PubMed

    Lee, Yeseung; Khan, Adnan; Hong, Seri; Jee, Sun Ha; Park, Youngja H

    2017-05-30

    Identifying changes in serum metabolites during cerebral ischemia is an important approach for early diagnosis of thrombotic stroke. Herein, we highlight novel biomarkers for early diagnosis of patients at high risk of thrombotic stroke using high resolution metabolomics (HRM). In this retrospective cohort study, serum samples obtained from patients at risk of thrombotic stroke (n  =  62) and non-risk individuals (n  =  348) were tested using HRM, coupled with LC-MS/MS, to discriminate between metabolic profiles of control and stroke risk patients. Multivariate analysis and orthogonal partial least square-discriminant analysis (OPLS-DA) were performed to determine the top 5% metabolites within 95% group identities, followed by filtering with p-value <0.05 and annotating significant metabolites using a Metlin database. Mapping identified features from Kyoto Encyclopedia of Genes and Genomes (KEGG) and Mummichog resulted in 341 significant features based on OPLS-DA with p-value <0.05. Among these 341 features, nine discriminated the thrombotic stroke risk group from the control group: low levels of N 6 -acetyl-l-lysine, 5-aminopentanoate, cadaverine, 2-oxoglutarate, nicotinamide, l-valine, S-(2-methylpropionyl)-dihydrolipoamide-E and ubiquinone, and elevated levels of homocysteine sulfinic acid. Further analysis showed that these metabolite biomarkers are specifically related to stroke occurrence, and unrelated to other factors such as diabetes or smoking. Lower levels of lysine catabolites in thrombotic stroke risk patients, as compared to the control, supports targeting these compounds as novel biomarkers for early and non-invasive detection of a thrombotic stroke.

  3. [Investigation of metabolites of Triptergium wilfordii on liver toxicity by LC-MS].

    PubMed

    Zhao, Xiao-mei; Liu, Xin-ying; Xu, Chang; Ye, Tao; Jin, Cheng; Zhao, Kui-jun; Ma, Zhi-jie; Xiao, Xiao-he

    2015-10-01

    In this paper, biomarkers of liver toxicity of Triptergium wilfordii based on metabolomics was screened, and mechanism of liver toxicity was explored to provide a reference for the clinical diagnosis for liver toxicity of Triptergium wilfordii. MS method was carried on the analysis to metabolic fingerprint spectrum between treatment group and control group. The potential biomarkers were compared and screened using the multivariate statistical methods. As well, metabolic pathway would be detailed description. Combined with PCA and OPLS-DA pattern recognition analysis, 20 metabolites were selected which showed large differences between model group and blank group (VIP > 1.0). Seven possible endogenous biomarkers were analyzed and identified. They were 6-phosphate glucosamine, lysophospholipid, tryptophan, guanidine acetic acid, 3-indole propionic acid, cortisone, and ubiquinone. The level changes of above metabolites indicated that the metabolism pathways of amino acid, glucose, phospholipid and hormone were disordered. It is speculated that liver damage of T. wilfordii may be associated with the abnormal energy metabolism in citric acid cycle, amino acid metabolism in urea cycle, and glucose metabolism. It will be helpful to further research liver toxicity ingredients of Triptergium wilfordii.

  4. Early school outcomes for extremely preterm infants with transient neurological abnormalities.

    PubMed

    Harmon, Heidi M; Taylor, H Gerry; Minich, Nori; Wilson-Costello, Deanne; Hack, Maureen

    2015-09-01

    To determine if transient neurological abnormalities (TNA) at 9 months corrected age predict cognitive, behavioral, and motor outcomes at 6 years of age in extremely preterm infants. A cohort of 124 extremely preterm infants (mean gestational age 25.5wks; 55 males, 69 females), admitted to our unit between 2001 and 2003, were classified based on the Amiel-Tison Neurological Assessment at 9 months and 20 months corrected age as having TNA (n=17), normal neurological assessment (n=89), or neurologically abnormal assessment (n=18). The children were assessed at a mean age of 5 years 11 months (SD 4mo) on cognition, academic achievement, motor ability, and behavior. Compared with children with a normal neurological assessment, children with TNA had higher postnatal exposure to steroids (35% vs 9%) and lower adjusted mean scores on spatial relations (84 [standard error {SE} 5] vs 98 [SE 2]), visual matching (79 [SE 5] vs 91 [SE 2]), letter-word identification (97 [SE 4] vs 108 [SE 1]), and spelling (76 [SE 4] vs 96 [SE 2]) (all p<0.05). Despite a normalized neurological assessment, extremely preterm children with a history TNA are at higher risk for lower cognitive and academic skills than those with normal neurological findings during their first year of school. © 2015 Mac Keith Press.

  5. Early school outcomes for extremely preterm infants with transient neurological abnormalities

    PubMed Central

    Harmon, Heidi; Taylor, H Gerry; Minich, Nori; Wilson-Costello, Deanne; Hack, Maureen

    2015-01-01

    AIM To determine if transient neurological abnormalities (TNA) at 9 months corrected age predict cognitive, behavioral, and motor outcomes at 6 years of age in extremely preterm infants. METHOD A cohort of 124 extremely preterm infants (mean gestational age 25.5wk; 55 males, 69 females), admitted to our unit between 2001 and 2003, were classified based on the Amiel-Tison Neurological Assessment at 9 months and 20 months corrected age as having TNA (n=17), normal neurological assessment (n=89), or neurologically abnormal assessment (n=18). The children were assessed at a mean age of 5 years 11 months (SD 4mo) on cognition, academic achievement, motor ability, and behavior. RESULTS Compared with children with a normal neurological assessment, children with TNA had higher postnatal exposure to steroids (35% vs 9%) and lower adjusted mean scores on spatial relations (84 [standard error {SE} 5] vs 98 [SE 2]), visual matching (79 [SE 5] vs 91 [SE 2]), letter–word identification (97 [SE 4] vs 108 [SE 1]), and spelling (76 [SE 4] vs 96 [SE 2]) (all p<0.05). INTERPRETATION Despite a normalized neurological assessment, extremely preterm children with a history TNA are at higher risk for lower cognitive and academic skills than those with normal neurological findings during their first year of school. PMID:26014665

  6. Autism spectrum disorder and early motor abnormalities: Connected or coincidental companions?

    PubMed

    Setoh, Peipei; Marschik, Peter B; Einspieler, Christa; Esposito, Gianluca

    2017-01-01

    Research in the past decade has produced a growing body of evidence showing that motor abnormalities in individuals with autism spectrum disorder (ASD) are the rule rather than the exception. The paper by Chinello and colleagues furthers our understanding of the importance of studying motor functions in ASD by testing a non-clinical population of parents-infant triads. Chinello and colleagues' findings seem to suggest that subclinical motor impairments may exist in the typical population with inherited non-clinical ASD traits. Chinello and colleagues' discovery also urges us to ask why motor abnormalities exist in typically developing infants when their parents present some subclinical ASD traits. We believe that there are at least two possibilities. In the first possible scenario, motor impairments and ASD traits form a single cluster of symptoms unique to a subgroup of individuals with autism. A second possible scenario is that motor atypicalities are the first warning signs of vulnerability often associated with atypical development. In conclusion, Chinello et al.'s findings inform us that subclinical atypical phenotypes such as sociocommunicative anomalies may be related to subclinical motor performances in the next generation. This adds to our knowledge by shedding some light on the relation of vulnerability in one domain with vulnerability in another domain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Long wavelength fluorescence based biosensors for in vivo continuous monitoring of metabolites

    NASA Astrophysics Data System (ADS)

    Thomas, Joseph; Ambroise, Arounaguiry; Birchfield, Kara; Cai, Wensheng; Sandmann, Christian; Singh, Sarabjit; Weidemaier, Kristin; Pitner, J. Bruce

    2006-02-01

    The early stage development studies of novel implantable continuous metabolite sensor systems for glucose, lactate and fatty acids are discussed. These sensors utilize non-enzymatic "reagentless" sensor systems based on NIR fluorophore-labeled binding proteins. For in vivo applications, NIR fluorescence based systems (beyond 600 nm) have the added benefit of reduced interference from background scattering, tissue and serum absorption and cell auto-fluorescence. The long wavelength emission facilitates implanted sensor disks to transmit fluorescence to an external reader through wireless connections and the resulting fluorescence signals can be correlated to metabolite concentrations. We have developed a prototype optical system that uses a bifurcated optical fiber to transmit excitation and read emission at the surface of the skin. With this system, fluorescence signals were read over time through animal skin. The changes in glucose concentration were studied using immobilized sensor proteins and were compared to non-immobilized sensors in solution. For sensors in solution, no response delay was observed. For immobilized systems, the fluorescence response showed a delay corresponding to the diffusion time for the metabolite to equilibrate within the sensor.

  8. Metabolite and transcript markers for the prediction of potato drought tolerance.

    PubMed

    Sprenger, Heike; Erban, Alexander; Seddig, Sylvia; Rudack, Katharina; Thalhammer, Anja; Le, Mai Q; Walther, Dirk; Zuther, Ellen; Köhl, Karin I; Kopka, Joachim; Hincha, Dirk K

    2018-04-01

    Potato (Solanum tuberosum L.) is one of the most important food crops worldwide. Current potato varieties are highly susceptible to drought stress. In view of global climate change, selection of cultivars with improved drought tolerance and high yield potential is of paramount importance. Drought tolerance breeding of potato is currently based on direct selection according to yield and phenotypic traits and requires multiple trials under drought conditions. Marker-assisted selection (MAS) is cheaper, faster and reduces classification errors caused by noncontrolled environmental effects. We analysed 31 potato cultivars grown under optimal and reduced water supply in six independent field trials. Drought tolerance was determined as tuber starch yield. Leaf samples from young plants were screened for preselected transcript and nontargeted metabolite abundance using qRT-PCR and GC-MS profiling, respectively. Transcript marker candidates were selected from a published RNA-Seq data set. A Random Forest machine learning approach extracted metabolite and transcript markers for drought tolerance prediction with low error rates of 6% and 9%, respectively. Moreover, by combining transcript and metabolite markers, the prediction error was reduced to 4.3%. Feature selection from Random Forest models allowed model minimization, yielding a minimal combination of only 20 metabolite and transcript markers that were successfully tested for their reproducibility in 16 independent agronomic field trials. We demonstrate that a minimum combination of transcript and metabolite markers sampled at early cultivation stages predicts potato yield stability under drought largely independent of seasonal and regional agronomic conditions. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  9. Movement Disorders and Other Motor Abnormalities in Adults With 22q11.2 Deletion Syndrome

    PubMed Central

    Boot, Erik; Butcher, Nancy J; van Amelsvoort, Thérèse AMJ; Lang, Anthony E; Marras, Connie; Pondal, Margarita; Andrade, Danielle M; Fung, Wai Lun Alan; Bassett, Anne S

    2015-01-01

    Movement abnormalities are frequently reported in children with 22q11.2 deletion syndrome (22q11.2DS), but knowledge in this area is scarce in the increasing adult population. We report on five individuals illustrative of movement disorders and other motor abnormalities in adults with 22q11.2DS. In addition to an increased susceptibility to neuropsychiatric disorders, seizures, and early-onset Parkinson disease, the underlying brain dysfunction associated with 22q11.2DS may give rise to an increased vulnerability to multiple movement abnormalities, including those influenced by medications. Movement abnormalities may also be secondary to treatable endocrine diseases and congenital musculoskeletal abnormalities. We propose that movement abnormalities may be common in adults with 22q11.2DS and discuss the implications and challenges important to clinical practice. PMID:25684639

  10. The Metabolite Transporters of the Plastid Envelope: An Update

    PubMed Central

    Facchinelli, Fabio; Weber, Andreas P. M.

    2011-01-01

    The engulfment of a photoautotrophic cyanobacterium by a primitive mitochondria-bearing eukaryote traces back to more than 1.2 billion years ago. This single endosymbiotic event not only provided the early petroalgae with the metabolic capacity to perform oxygenic photosynthesis, but also introduced a plethora of other metabolic routes ranging from fatty acids and amino acids biosynthesis, nitrogen and sulfur assimilation to secondary compounds synthesis. This implicated the integration and coordination of the newly acquired metabolic entity with the host metabolism. The interface between the host cytosol and the plastidic stroma became of crucial importance in sorting precursors and products between the plastid and other cellular compartments. The plastid envelope membranes fulfill different tasks: they perform important metabolic functions, as they are involved in the synthesis of carotenoids, chlorophylls, and galactolipids. In addition, since most genes of cyanobacterial origin have been transferred to the nucleus, plastidial proteins encoded by nuclear genes are post-translationally transported across the envelopes through the TIC–TOC import machinery. Most importantly, chloroplasts supply the photoautotrophic cell with photosynthates in form of reduced carbon. The innermost bilayer of the plastidic envelope represents the permeability barrier for the metabolites involved in the carbon cycle and is literally stuffed with transporter proteins facilitating their transfer. The intracellular metabolite transporters consist of polytopic proteins containing membrane spans usually in the number of four or more α-helices. Phylogenetic analyses revealed that connecting the plastid with the host metabolism was mainly a process driven by the host cell. In Arabidopsis, 58% of the metabolite transporters are of host origin, whereas only 12% are attributable to the cyanobacterial endosymbiont. This review focuses on the metabolite transporters of the inner envelope

  11. Microsomal metabolism of trenbolone acetate metabolites ...

    EPA Pesticide Factsheets

    Trenbolone acetate (TBA) is a synthetic growth promoter widely used in animal agriculture, and its metabolites are suspected endocrine disrupting compounds in agriculturally impacted receiving waters. However, beyond the three widely recognized TBA metabolites (17-trenbolone, 17-trenbolone and trendione), little is known about other metabolites formed in vivo and subsequently discharged into the environment, with some evidence suggesting these unknown metabolites comprise a majority of the TBA mass dosed to the animal. Here, we explored the metabolism of the three known TBA metabolites using rat liver microsome studies. All TBA metabolites are transformed into a complex mixture of monohydroxylated products. Based on product characterization, the majority are more polar than the parent metabolites but maintain their characteristic trienone backbone. A minor degree of interconversion between known metabolites was also observed, as were higher order hydroxylated products with a greater extent of reaction. Notably, the distribution and yield of products were generally comparable across a series of variably induced rat liver microsomes, as well as during additional studies with human and bovine liver microsomes. Bioassays conducted with mixtures of these transformation products suggest that androgen receptor (AR) binding activity is diminished as a result of the microsomal treatment, suggesting that the transformation products are generally less potent than

  12. Feeling Abnormal: Simulation of Deviancy in Abnormal and Exceptionality Courses.

    ERIC Educational Resources Information Center

    Fernald, Charles D.

    1980-01-01

    Describes activity in which student in abnormal psychology and psychology of exceptional children classes personally experience being judged abnormal. The experience allows the students to remember relevant research, become sensitized to the feelings of individuals classified as deviant, and use caution in classifying individuals as abnormal.…

  13. Evidence that glucose is the major transferred metabolite in dinoflagellate-cnidarian symbiosis.

    PubMed

    Burriesci, Matthew S; Raab, Theodore K; Pringle, John R

    2012-10-01

    Reef-building corals and many other cnidarians are symbiotic with dinoflagellates of the genus Symbiodinium. It has long been known that the endosymbiotic algae transfer much of their photosynthetically fixed carbon to the host and that this can provide much of the host's total energy. However, it has remained unclear which metabolite(s) are directly translocated from the algae into the host tissue. We reexamined this question in the small sea anemone Aiptasia using labeling of intact animals in the light with (13)C-bicarbonate, rapid homogenization and separation of animal and algal fractions, and analysis of metabolite labeling by gas chromatography-mass spectrometry. We found labeled glucose in the animal fraction within 2 min of exposure to (13)C-bicarbonate, whereas no significant labeling of other compounds was observed within the first 10 min. Although considerable previous evidence has suggested that glycerol might be a major translocated metabolite, we saw no significant labeling of glycerol within the first hour, and incubation of intact animals with (13)C-labeled glycerol did not result in a rapid production of (13)C-glucose. In contrast, when Symbiodinium cells freshly isolated from host tissue were exposed to light and (13)C-bicarbonate in the presence of host homogenate, labeled glycerol, but not glucose, was detected in the medium. We also observed early production of labeled glucose, but not glycerol, in three coral species. Taken together, the results suggest that glucose is the major translocated metabolite in dinoflagellate-cnidarian symbiosis and that the release of glycerol from isolated algae may be part of a stress response.

  14. Improved detection rate of structural abnormalities in the first trimester using an extended examination protocol.

    PubMed

    Iliescu, D; Tudorache, S; Comanescu, A; Antsaklis, P; Cotarcea, S; Novac, L; Cernea, N; Antsaklis, A

    2013-09-01

    To assess the potential of first-trimester sonography in the detection of fetal abnormalities using an extended protocol that is achievable with reasonable resources of time, personnel and ultrasound equipment. This was a prospective two-center 2-year study of 5472 consecutive unselected pregnant women examined at 12 to 13 + 6 gestational weeks. Women were examined using an extended morphogenetic ultrasound protocol that, in addition to the basic evaluation, involved a color Doppler cardiac sweep and identification of early contingent markers for major abnormalities. The prevalence of lethal and severe malformations was 1.39%. The first-trimester scan identified 40.6% of the cases detected overall and 76.3% of major structural defects. The first-trimester detection rate (DR) for major congenital heart disease (either isolated or associated with extracardiac abnormalities) was 90% and that for major central nervous system anomalies was 69.5%. In fetuses with increased nuchal translucency (NT), the first-trimester DR for major anomalies was 96%, and in fetuses with normal NT it was 66.7%. Most (67.1%) cases with major abnormalities presented with normal NT. A detailed first-trimester anomaly scan using an extended protocol is an efficient screening method to detect major fetal structural abnormalities in low-risk pregnancies. It is feasible at 12 to 13 + 6 weeks with ultrasound equipment and personnel already used for routine first-trimester screening. Rate of detection of severe malformations is greater in early- than in mid-pregnancy and on postnatal evaluation. Early heart investigation could be improved by an extended protocol involving use of color Doppler. Copyright © 2013 ISUOG. Published by John Wiley & Sons Ltd.

  15. Abnormal Uterine Bleeding

    MedlinePlus

    ... abnormal uterine bleeding? Abnormal uterine bleeding is any heavy or unusual bleeding from the uterus (through your ... one symptom of abnormal uterine bleeding. Having extremely heavy bleeding during your period can also be considered ...

  16. Adenotonsillar hypertrophy as a risk factor of dentofacial abnormality in Korean children.

    PubMed

    Kim, Dong-Kyu; Rhee, Chae Seo; Yun, Pil-Young; Kim, Jeong-Whun

    2015-11-01

    No studies for the role of adenotonsillar hypertrophy in development of dentofacial abnormalities have been performed in Asian pediatric population. Thus, we aimed to investigate the relationship between adenotonsillar hypertrophy and dentofacial abnormalities in Korean children. The present study included consecutive children who visited a pediatric clinic for sleep-disordered breathing due to habitual mouth breathing, snoring or sleep apnea. Their palatine tonsils and adenoids were graded by oropharyngeal endoscopy and lateral cephalometry. Anterior open bite, posterior crossbite, and Angle's class malocclusions were evaluated for dentofacial abnormality. The receiver-operating characteristic curve analysis was used to identify age cutoffs to predict dentofacial abnormality. A total of 1,083 children were included. The presence of adenotonsillar hypertrophy was significantly correlated with the prevalence of dentofacial abnormality [adjusted odds ratio = 4.587, 95% CI (2.747-7.658)] after adjusting age, sex, body mass index, allergy, and Korean version of obstructive sleep apnea-18 score. The cutoff age associated with dentofacial abnormality was 5.5 years (sensitivity = 75.5%, specificity = 67%) in the children with adenotonsillar hypertrophy and 6.5 years (sensitivity = 70.6%, specificity = 57%) in those without adenotonsillar hypertrophy. In conclusion, adenotonsillar hypertrophy may be a risk factor for dentofacial abnormalities in Korean children and early surgical intervention could be considered with regards to dentofacial abnormality.

  17. Intraspinal anomalies in early-onset idiopathic scoliosis.

    PubMed

    Pereira, E A C; Oxenham, M; Lam, K S

    2017-06-01

    In the United Kingdom, lower incidences of intraspinal abnormalities in patients with early onset idiopathic scoliosis have been observed than in studies in other countries. We aimed to determine the rates of these abnormalities in United Kingdom patients diagnosed with idiopathic scoliosis before the age of 11 years. This retrospective study of patients attending an urban scoliosis clinic identified 71 patients satisfying a criteria of: clinical diagnosis of idiopathic scoliosis; age of onset ten years and 11 months or less; MRI screening for intraspinal abnormalities. United Kingdom census data combined with patient referral data was used to calculate incidence. Mean age at diagnosis was six years with 39 right-sided and 32 left-sided curves. Four patients (5.6%) were found to have intraspinal abnormalities on MRI. These consisted of: two combined Arnold-Chiari type 1 malformations with syrinx; one syrinx with a low lying conus; and one isolated syrinx. Overall annual incidence of early onset idiopathic scoliosis was one out of 182 000 (0.0006%). This study reports the lowest rates to date of intraspinal anomalies in patients with early onset idiopathic scoliosis, adding to knowledge regarding current incidences of these abnormalities as well as any geographical variation in the nature of the disease. Cite this article: Bone Joint J 2017;99-B:829-33. ©2017 The British Editorial Society of Bone & Joint Surgery.

  18. New Pioglitazone Metabolites and Absence of Opened-Ring Metabolites in New N-Substituted Thiazolidinedione.

    PubMed

    Campos, Michel Leandro; Cerqueira, Letícia Bonancio; Silva, Bruna Cristina Ulian; Franchin, Taísa Busaranho; Galdino-Pitta, Marina Rocha; Pitta, Ivan Rocha; Peccinini, Rosângela Gonçalves; Pontarolo, Roberto

    2018-06-01

    Thiazolidinediones (TZDs) are drugs used to treat type 2 diabetes mellitus; however, several safety concerns remain regarding the available drugs in this class. Therefore, the search for new TZD candidates is ongoing; metabolism studies play a crucial step in the development of new candidates. Pioglitazone, one of the most commonly used TZDs, and GQ-11, a new N -substituted TZD, were investigated in terms of their metabolic activity in rat and human liver microsomes to assess their metabolic stability and investigate their metabolites. Methods for preparation of samples were based on liquid-liquid extraction and protein precipitation. Quantitation was performed using liquid chromatography (LC)-tandem mass spectrometry, and the metabolite investigation was performed using ultraperformance LC coupled to a hybrid quadrupole-time of flight mass spectrometer. The predicted intrinsic clearance of GQ-11 was 70.3 and 46.1 ml/kg per minute for rats and humans, respectively. The predicted intrinsic clearance of pioglitazone was 24.1 and 15.9 ml/kg per minute for rats and humans, respectively. The pioglitazone metabolite investigation revealed two unpublished metabolites (M-D and M-A). M-A is a hydration product and may be related to the mechanism of ring opening and the toxicity of pioglitazone. The metabolites of GQ-11 are products of oxidation; no ring-opening metabolite was observed for GQ-11. In conclusion, under the same experimental conditions, a ring-opening metabolite was observed only for pioglitazone. The resistance of GQ-11 to the ring opening is probably related to N -substitution in the TZD ring. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  19. Anterior ocular abnormalities of captive Asian elephants (Elephas maximus indicus) in Thailand.

    PubMed

    Kraiwong, Natapong; Sanyathitiseree, Pornchai; Boonprasert, Khajohnpat; Diskul, Phiphatanachatr; Charoenphan, Patara; Pintawong, Weerasak; Thayananuphat, Aree

    2016-07-01

    To survey and classify anterior ocular abnormalities in 1478 captive Asian elephants (Elephas maximus indicus) in six regions of Thailand. Anterior ocular examination was performed in both eyes (n = 2956) of 1478 elephants selected from the annual health check program involving 2958 animals within six regions of Thailand from January to November 2013. Lesions were described and compared between age and gender. A total of 17.83% (527/2956) of examined eyes from 24.97% (369/1478) of examined elephants had anterior ocular abnormalities. The most common lesions in these examined eyes were frothy ocular discharge (5.85%), corneal edema (5.31%), and conjunctivitis (5.18%). In addition, epiphora, phthisis bulbi, other corneal abnormalities, anterior uveitis, and lens abnormalities were noted. Almost all lesions increased in frequency with age (P < 0.01). Regular ophthalmic examination in elephants should be included in their annual health check program. Early detection and treatment of any ocular abnormality may avoid the development of subsequent irreversible ocular pathology. © 2015 American College of Veterinary Ophthalmologists.

  20. Biomarker discovery in biological specimens (plasma, hair, liver and kidney) of diabetic mice based upon metabolite profiling using ultra-performance liquid chromatography with electrospray ionization time-of-flight mass spectrometry.

    PubMed

    Tsutsui, Haruhito; Maeda, Toshio; Min, Jun Zhe; Inagaki, Shinsuke; Higashi, Tatsuya; Kagawa, Yoshiyuki; Toyo'oka, Toshimasa

    2011-05-12

    The number of diabetic patients has recently been increasing worldwide. Diabetes is a multifactorial disorder based on environmental factors and genetic background. In many cases, diabetes is asymptomatic for a long period and the patient is not aware of the disease. Therefore, the potential biomarker(s), leading to the early detection and/or prevention of diabetes mellitus, are strongly required. However, the diagnosis of the prediabetic state in humans is a very difficult issue, because the lifestyle is variable in each person. Although the development of a diagnosis method in humans is the goal of our research, the extraction and structural identification of biomarker candidates in several biological specimens (i.e., plasma, hair, liver and kidney) of ddY strain mice, which undergo naturally occurring diabetes along with aging, were carried out based upon a metabolite profiling study. The low-molecular-mass compounds including metabolites in the biological specimens of diabetic mice (ddY-H) and normal mice (ddY-L) were globally separated by ultra-performance liquid chromatography (UPLC) using different reversed-phase columns (i.e., T3-C18 and HS-F5) and detected by electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS). The biomarker candidates related to diabetes mellitus were extracted from a multivariate statistical analysis, such as an orthogonal partial least-squares-discriminant analysis (OPLS-DA), followed by a database search, such as ChemSpider, KEGG and HMDB. Many metabolites and unknown compounds in each biological specimen were detected as the biomarker candidates related to diabetic mellitus. Among them, the elucidation of the chemical structures of several possible metabolites, including more than two biological specimens, was carried out along with the comparison of the tandem MS/MS analyses using authentic compounds. One metabolite was clearly identified as N-acetyl-L-leucine based upon the MS/MS spectra and the retention time on

  1. Serum metabolite signatures of type 2 diabetes mellitus complications.

    PubMed

    Wu, Tao; Xie, Guoxiang; Ni, Yan; Liu, Tao; Yang, Ming; Wei, Huafeng; Jia, Wei; Ji, Guang

    2015-01-02

    A number of metabolic conditions, including hypoglycemia, high blood pressure (HBP), dyslipidemia, nerve damage and amputation, and vision problems, occur as a result of uncontrolled blood glucose levels over a prolonged period of time. The different components of diabetic complications are not independent but rather interdependent of each other, rendering the disease difficult to diagnose and control. The underlying pathogenesis of those components cannot be easily elucidated because of the heterogeneous, polygenic, and multifactorial nature of the disease. Metabonomics offers a snapshot of distinct biochemical variations that may reflect the unique metabolic phenotype under pathophysiological conditions. Here we report a mass-spectrometry-based metabonomic study designed to identify the distinct metabolic changes associated with several complications of type 2 diabetes mellitus (T2DM). The 292 patients recruited in the study were divided into five groups, including T2DM with HBP, T2DM with nonalcoholic fatty liver disease (NAFLD), T2DM with HBP and NAFLD, T2DM with HBP and coronary heart disease (CHD), and T2DM with HBP, NAFLD, and CHD. Serum differential metabolites were identified in each group of T2DM complication, mainly involving bile acid, fatty acid, amino acid, lipid, carbohydrate, steroids metabolism, and tricarboxylic acids cycle. These broad-spectrum metabolic changes emphasize the complex abnormalities present among these complications with elevated blood glucose levels, providing a novel strategy for stratifying patients with T2DM complications using blood-based metabolite markers.

  2. Noninvasive evaluation of corneal abnormalities using static and dynamic light scattering

    NASA Astrophysics Data System (ADS)

    Ansari, Rafat R.; Misra, Anup K.; Leung, Alfred B.; King, James F.; Datiles, Manuel B., III

    2002-06-01

    A preliminary study of corneal abnormalities in intact bovine eyes is presented. Twenty-one eyes were treated with chemicals, cotton swabs, and radial and photo-refractive surgeries. Dynamic and static light scattering was performed as a function of the penetration depth into the corneal tissue. Topographical maps of corneal refractive power from untreated and treated corneas were also obtained using videokeratoscopy and results compared. The ultimate aim is to develop the technique of dynamic light scattering (DLS) for clinical applications in early evaluation of corneal complications after laser-assisted in situ keratomileusis (LASIK) surgeries and other corneal abnormalities.

  3. Abnormal Metabolite in Alcoholic Subjects,

    DTIC Science & Technology

    1982-01-01

    this study included alcoholic hepatitis or cirrhosis of the liver in 29. of the alcoholic subjects; diabetes mellitus in 8 and Korsakoff’s syndrome in 6...evidence of -7- Korsakoff’s syndrome and the presence or absence of 2,3-butanediol. There was, however, a suggestive correlation with independently...Gamma GT 193, SGPT 29 b 0 0.023 0.05 51a F.B. 22 M 28 0.029 0.14 b 0 ɘ.01 0.12 77 J.N.S. 52 M 0 0.027 0.11 57 JJ.S 45 m 4. 0.25 .35 Korsakoff ’s

  4. THE EFFECTS OF ATRAZINE METABOLITES ON PUBERTY AND THYROID FUNCTION IN THE MALE WISTAR RAT

    EPA Science Inventory

    The Effects of Atrazine Metabolites on Puberty and Thyroid Function in the Male Wistar Rat. Stoker, T.E1., Guidici, D.L.2, Laws, S.C.2 and Cooper, R.L.2 Gamete and Early Embryo Biology Branch and 2 Endocrinology Branch, Reproductive Toxicology Division, National Health and Envir...

  5. Abnormal lung function at preschool age asthma in adolescence?

    PubMed

    Lajunen, Katariina; Kalliola, Satu; Kotaniemi-Syrjänen, Anne; Sarna, Seppo; Malmberg, L Pekka; Pelkonen, Anna S; Mäkelä, Mika J

    2018-05-01

    Asthma often begins early in childhood. However, the risk for persistence is challenging to evaluate. This longitudinal study relates lung function assessed with impulse oscillometry (IOS) in preschool children to asthma in adolescence. Lung function was measured with IOS in 255 children with asthma-like symptoms aged 4-7 years. Baseline measurements were followed by exercise challenge and bronchodilation tests. At age 12-16 years, 121 children participated in the follow-up visit, when lung function was assessed with spirometry, followed by a bronchodilation test. Asthma symptoms and medication were recorded by a questionnaire and atopy defined by skin prick tests. Abnormal baseline values in preschool IOS were significantly associated with low lung function, the need for asthma medication, and asthma symptoms in adolescence. Preschool abnormal R5 at baseline (z-score ≥1.645 SD) showed 9.2 odds ratio (95%CI 2.7;31.7) for abnormal FEV1/FVC, use of asthma medication in adolescence, and 9.9 odds ratio (95%CI 2.9;34.4) for asthma symptoms. Positive exercise challenge and modified asthma-predictive index at preschool age predicted asthma symptoms and the need for asthma medication, but not abnormal lung function at teenage. Abnormal preschool IOS is associated with asthma and poor lung function in adolescence and might be utilised for identification of asthma persistence. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Accuracy investigation of phthalate metabolite standards.

    PubMed

    Langlois, Éric; Leblanc, Alain; Simard, Yves; Thellen, Claude

    2012-05-01

    Phthalates are ubiquitous compounds whose metabolites are usually determined in urine for biomonitoring studies. Following suspect and unexplained results from our laboratory in an external quality-assessment scheme, we investigated the accuracy of all phthalate metabolite standards in our possession by comparing them with those of several suppliers. Our findings suggest that commercial phthalate metabolite certified solutions are not always accurate and that lot-to-lot discrepancies significantly affect the accuracy of the results obtained with several of these standards. These observations indicate that the reliability of the results obtained from different lots of standards is not equal, which reduces the possibility of intra-laboratory and inter-laboratory comparisons of results. However, agreements of accuracy have been observed for a majority of neat standards obtained from different suppliers, which indicates that a solution to this issue is available. Data accuracy of phthalate metabolites should be of concern for laboratories performing phthalate metabolite analysis because of the standards used. The results of our investigation are presented from the perspective that laboratories performing phthalate metabolite analysis can obtain accurate and comparable results in the future. Our findings will contribute to improving the quality of future phthalate metabolite analyses and will affect the interpretation of past results.

  7. Abnormal plasma DNA profiles in early ovarian cancer using a non-invasive prenatal testing platform: implications for cancer screening.

    PubMed

    Cohen, Paul A; Flowers, Nicola; Tong, Stephen; Hannan, Natalie; Pertile, Mark D; Hui, Lisa

    2016-08-24

    Non-invasive prenatal testing (NIPT) identifies fetal aneuploidy by sequencing cell-free DNA in the maternal plasma. Pre-symptomatic maternal malignancies have been incidentally detected during NIPT based on abnormal genomic profiles. This low coverage sequencing approach could have potential for ovarian cancer screening in the non-pregnant population. Our objective was to investigate whether plasma DNA sequencing with a clinical whole genome NIPT platform can detect early- and late-stage high-grade serous ovarian carcinomas (HGSOC). This is a case control study of prospectively-collected biobank samples comprising preoperative plasma from 32 women with HGSOC (16 'early cancer' (FIGO I-II) and 16 'advanced cancer' (FIGO III-IV)) and 32 benign controls. Plasma DNA from cases and controls were sequenced using a commercial NIPT platform and chromosome dosage measured. Sequencing data were blindly analyzed with two methods: (1) Subchromosomal changes were called using an open source algorithm WISECONDOR (WIthin-SamplE COpy Number aberration DetectOR). Genomic gains or losses ≥ 15 Mb were prespecified as "screen positive" calls, and mapped to recurrent copy number variations reported in an ovarian cancer genome atlas. (2) Selected whole chromosome gains or losses were reported using the routine NIPT pipeline for fetal aneuploidy. We detected 13/32 cancer cases using the subchromosomal analysis (sensitivity 40.6 %, 95 % CI, 23.7-59.4 %), including 6/16 early and 7/16 advanced HGSOC cases. Two of 32 benign controls had subchromosomal gains ≥ 15 Mb (specificity 93.8 %, 95 % CI, 79.2-99.2 %). Twelve of the 13 true positive cancer cases exhibited specific recurrent changes reported in HGSOC tumors. The NIPT pipeline resulted in one "monosomy 18" call from the cancer group, and two "monosomy X" calls in the controls. Low coverage plasma DNA sequencing used for prenatal testing detected 40.6 % of all HGSOC, including 38 % of early stage cases. Our

  8. Antioxidant potential of fungal metabolite nigerloxin during eye lens abnormalities in galactose-fed rats.

    PubMed

    Suresha, Bharathinagar S; Srinivasan, Krishnapura

    2013-10-01

    The role of osmotic and oxidative stress has been strongly implicated in the pathogenesis of cataract. Nigerloxin, a fungal metabolite, has been shown to possess aldose reductase inhibition and improved antioxidant defense system in lens of diabetic rats. In the present study, the beneficial influence of nigerloxin was investigated in galactose-induced cataract in experimental animals. Cataract was induced in Wistar rats by feeding 30% galactose in diet. Groups of galactose-fed rats were orally administered with nigerloxin (25 and 100 mg/kg body weight/day) for 24 days. Lens aldose reductase activity was increased significantly in galactose-fed animals. Lens lipid peroxides and advanced glycation end products were also significantly increased. Antioxidant molecule - reduced glutathione, total thiols and activities of antioxidant enzymes superoxide dismutase and glutathione peroxidase were decreased in the lens of galactose-fed animals. Oral administration of nigerloxin once a day for 24 days at a dose of 100 mg/kg body weight, significantly decreased lens lipid peroxides and advanced glycation end products in galactose-fed rats. Lens aldose reductase activity was reduced and lens antioxidant molecules and antioxidant enzyme activities were elevated significantly by nigerloxin administration. The results suggest that alteration in polyol pathway and antioxidant defense system were countered by nigerloxin in the lens of galactose-fed animals, suggesting the potential of nigerloxin in ameliorating the development of galactose-induced cataract in experimental animals.

  9. Early White-Matter Abnormalities of the Ventral Frontostriatal Pathway in Fragile X Syndrome

    ERIC Educational Resources Information Center

    Haas, Brian W.; Barnea-Goraly, Naama; Lightbody, Amy A.; Patnaik, Swetapadma S.; Hoeft, Fumiko; Hazlett, Heather; Piven, Joseph; Reiss, Allan L.

    2009-01-01

    Aim: Fragile X syndrome is associated with cognitive deficits in inhibitory control and with abnormal neuronal morphology and development. Method: In this study, we used a diffusion tensor imaging (DTI) tractography approach to reconstruct white-matter fibers in the ventral frontostriatal pathway in young males with fragile X syndrome (n = 17;…

  10. Abnormal Grief: Should We Consider a More Patient-Centered Approach?

    PubMed

    Moayedoddin, Babak; Markowitz, John C

    2015-01-01

    Grief, the psychological reaction to the loss of a significant other, varies complexly in its cause, experience, evolution, and prognosis. Although most bereaved individuals experience a normal grieving process, some develop complicated grief (CG) or major depressive disorder (MDD). The DSM-5, which controversially altered the nosology, recognizes grief-related major depression (GRMD) as a diagnostic subtype if a patient meets MDD criteria two weeks post bereavement. The (DSM-5) tries to distinguish between grief and MDD, but remains a symptom-based, centered approach to grief that is not patient centered. This article reviews grief in its normal and abnormal dimensions. Using an illustrative clinical case in which interpersonal psychotherapy (IPT) was employed, we discuss the need for a more patient-centered approach to treating abnormal grief, considering the patient's personal history, perceptions, experiences of bereavement, and interpersonal environment. Clinical studies need to better identify subgroups of individuals susceptible to abnormal grief and to evaluate their response to early interventions.

  11. Enhanced metabolite generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chidambaram, Devicharan

    The present invention relates to the enhanced production of metabolites by a process whereby a carbon source is oxidized with a fermentative microbe in a compartment having a portal. An electron acceptor is added to the compartment to assist the microbe in the removal of excess electrons. The electron acceptor accepts electrons from the microbe after oxidation of the carbon source. Other transfers of electrons can take place to enhance the production of the metabolite, such as acids, biofuels or brewed beverages.

  12. Axonal abnormalities in vanishing white matter.

    PubMed

    Klok, Melanie D; Bugiani, Marianna; de Vries, Sharon I; Gerritsen, Wouter; Breur, Marjolein; van der Sluis, Sophie; Heine, Vivi M; Kole, Maarten H P; Baron, Wia; van der Knaap, Marjo S

    2018-04-01

    We aimed to study the occurrence and development of axonal pathology and the influence of astrocytes in vanishing white matter. Axons and myelin were analyzed using electron microscopy and immunohistochemistry on Eif2b4 and Eif2b5 single- and double-mutant mice and patient brain tissue. In addition, astrocyte-forebrain co-culture studies were performed. In the corpus callosum of Eif2b5- mutant mice, myelin sheath thickness, axonal diameter, and G-ratio developed normally up to 4 months. At 7 months, however, axons had become thinner, while in control mice axonal diameters had increased further. Myelin sheath thickness remained close to normal, resulting in an abnormally low G-ratio in Eif2b5- mutant mice. In more severely affected Eif2b4-Eif2b5 double-mutants, similar abnormalities were already present at 4 months, while in milder affected Eif2b4 mutants, few abnormalities were observed at 7 months. Additionally, from 2 months onward an increased percentage of thin, unmyelinated axons and increased axonal density were present in Eif2b5 -mutant mice. Co-cultures showed that Eif2b5 mutant astrocytes induced increased axonal density, also in control forebrain tissue, and that control astrocytes induced normal axonal density, also in mutant forebrain tissue. In vanishing white matter patient brains, axons and myelin sheaths were thinner than normal in moderately and severely affected white matter. In mutant mice and patients, signs of axonal transport defects and cytoskeletal abnormalities were minimal. In vanishing white matter, axons are initially normal and atrophy later. Astrocytes are central in this process. If therapy becomes available, axonal pathology may be prevented with early intervention.

  13. Abnormal parietal encephalomalacia associated with schizophrenia: A case report.

    PubMed

    Pan, Fen; Wang, Jun-Yuan; Xu, Yi; Huang, Man-Li

    2017-03-01

    It is widely believed that structural abnormalities of the brain contribute to the pathophysiology of schizophrenia. The parietal lobe is a central hub of multisensory integration, and abnormities in this region might account for the clinical features of schizophrenia. However, few cases of parietal encephalomalacia associated with schizophrenia have been described. In this paper, we present a case of a 25-year-old schizophrenia patient with abnormal parietal encephalomalacia. The patient had poor nutrition and frequently had upper respiratory infections during childhood and adolescence. She showed severe schizophrenic symptoms such as visual hallucinations for 2 years. After examining all her possible medical conditions, we found that the patient had a lesion consistent with the diagnosis of encephalomalacia in her right parietal lobe and slight brain atrophy. The patient was prescribed olanzapine (10 mg per day). Her symptoms significantly improved after antipsychotic treatment and were still well controlled 1 year later. This case suggested that parietal encephalomalacia, which might be caused by inflammatory and infectious conditions in early life and be aggravated by undernutrition, might be implicated in the etiology of schizophrenia.

  14. Abnormal Eye Movements in Creutzfeldt-Jakob Disease

    NASA Technical Reports Server (NTRS)

    Grant, Michael P.; Cohen, Mark; Petersen, Robert B.; Halmagyi, G. Michael; McDougall, Alan; Tusa, Ronald J.; Leigh, R. John

    1993-01-01

    We report 3 patients with autopsy-proven Creutzfeldt-Jakob disease who, early in their course, developed abnormal eye movements that included periodic alternating nystagmus and slow vertical saccades. These findings suggested involvement of the cerebellar nodulus and uvula, and the brainstem reticular formation, respectively. Cerebellar ataxia was also an early manifestation and, in one patient, a frontal lobe brain biopsy was normal at a time when ocular motor and cerebellar signs were conspicuous. As the disease progressed, all saccades and quick phases of nystagmus were lost, but periodic alternating gaze deviation persisted. At autopsy, 2 of the 3 patients had pronounced involvement of the cerebellum, especially of the midline structures. Creutzfeldt-Jakob disease should be considered in patients with subacute progressive neurological disease when cognitive changes are overshadowed by ocular motor findings or ataxia.

  15. Insulin induces a shift in lipid and primary carbon metabolites in a model of fasting-induced insulin resistance.

    PubMed

    Olmstead, Keedrian I; La Frano, Michael R; Fahrmann, Johannes; Grapov, Dmitry; Viscarra, Jose A; Newman, John W; Fiehn, Oliver; Crocker, Daniel E; Filipp, Fabian V; Ortiz, Rudy M

    2017-05-01

    Prolonged fasting in northern elephant seals (NES) is characterized by a reliance on lipid metabolism, conservation of protein, and reduced plasma insulin. During early fasting, glucose infusion previously reduced plasma free fatty acids (FFA); however, during late-fasting, it induced an atypical elevation in FFA despite comparable increases in insulin during both periods suggestive of a dynamic shift in tissue responsiveness to glucose-stimulated insulin secretion. To better assess the contribution of insulin to this fasting-associated shift in substrate metabolism. We compared the responses of plasma metabolites (amino acids (AA), FFA, endocannabinoids (EC), and primary carbon metabolites (PCM)) to an insulin infusion (65 mU/kg) in early- and late-fasted NES pups (n = 5/group). Plasma samples were collected prior to infusion (T0) and at 10, 30, 60, and 120 min post-infusion, and underwent untargeted and targeted metabolomics analyses utilizing a variety of GC-MS and LC-MS technologies. In early fasting, the majority (72%) of metabolite trajectories return to baseline levels within 2 h, but not in late fasting indicative of an increase in tissue sensitivity to insulin. In late-fasting, increases in FFA and ketone pools, coupled with decreases in AA and PCM, indicate a shift toward lipolysis, beta-oxidation, ketone metabolism, and decreased protein catabolism. Conversely, insulin increased PCM AUC in late fasting suggesting that gluconeogenic pathways are activated. Insulin also decreased FFA AUC between early and late fasting suggesting that insulin suppresses triglyceride hydrolysis. Naturally adapted tolerance to prolonged fasting in these mammals is likely accomplished by suppressing insulin levels and activity, providing novel insight on the evolution of insulin during a condition of temporary, reversible insulin resistance.

  16. Characterization of proflavine metabolites in rainbow trout.

    PubMed

    Yu, Z; Hayton, W L; Chan, K K

    1997-04-01

    Proflavine (3,6-diaminoacridine) has potential for use as an antiinfective in fish, and its metabolism by rainbow trout was therefore studied. Fourteen hours after intraarterial bolus administration of 10 mg/kg of proflavine, three metabolites were found in liver and bile, and one metabolite was found in plasma using reversed-phase HPLC with UV detection at 262 nm. Treatment with hydrochloric acid converted the three metabolites to proflavine, which suggested that the metabolites were proflavine conjugates. Treatment with beta-glucuronidase and saccharic acid 1,4-lactone, a specific beta-glucuronidase inhibitor, revealed that two metabolites were proflavine glucuronides. For determination of UV-VIS absorption and mass spectra, HPLC-purified metabolites were isolated from liver. Data from these experiments suggested that the proflavine metabolites were 3-N-glucuronosyl proflavine (PG), 3-N-glucuronosyl,6-N-acetyl proflavine (APG), and 3-N-acetylproflavine (AP). The identities of the metabolites were verified by chemical synthesis. When synthetic PG and AP were compared with the two metabolites isolated from trout, they had the same molecular weight as determined by matrix-assisted, laser desorption ionization, time-of-flight MS. In addition, they coeluted on HPLC under different mobile phase conditions. Finally, the in vitro incubation with liver subcellular preparations confirmed this characterization and provided the evidence that APG can be formed by glucuronidation of AP or acetylation of PG.

  17. Maternal Choline Status, but Not Fetal Genotype, Influences Cord Plasma Choline Metabolite Concentrations.

    PubMed

    Visentin, Carly E; Masih, Shannon; Plumptre, Lesley; Malysheva, Olga; Nielsen, Daiva E; Sohn, Kyoung-Jin; Ly, Anna; Lausman, Andrea Y; Berger, Howard; Croxford, Ruth; El-Sohemy, Ahmed; Caudill, Marie A; O'Connor, Deborah L; Kim, Young-In

    2015-07-01

    Choline deficiency during pregnancy can lead to adverse birth outcomes, including impaired neurodevelopment and birth defects. Genetic variants of choline and one-carbon metabolism may also influence birth outcomes by altering plasma choline concentrations. The effects of maternal ad libitum choline intake during pregnancy and fetal genetic variants on maternal and cord concentrations of choline and its metabolites are unknown. This prospective study sought to assess the effect of 1) maternal dietary choline intake on maternal and cord plasma concentrations of choline and its metabolites, and 2) fetal genetic polymorphisms on cord plasma concentrations. The dietary choline intake of 368 pregnant Canadian women was assessed in early (0-16 wk) and late (23-37 wk) pregnancy with the use of a food frequency questionnaire. Plasma concentrations of free choline and its metabolites were measured in maternal samples at recruitment and delivery, and in the cord blood. Ten fetal genetic variants in choline and one-carbon metabolism were assessed for their association with cord plasma concentrations of free choline and its metabolites. Mean maternal plasma free choline, dimethylglycine, and trimethylamine N-oxide (TMAO) concentrations increased during pregnancy by 49%, 17%, and 13%, respectively (P < 0.005), whereas betaine concentrations decreased by 21% (P < 0.005). Cord plasma concentrations of free choline, betaine, dimethylglycine, and TMAO were 3.2, 2.0, 1.3, and 0.88 times corresponding maternal concentrations at delivery, respectively (all P < 0.005). Maternal plasma concentrations of betaine, dimethylglycine, and TMAO (r(2) = 0.19-0.51; P < 0.0001) at delivery were moderately strong, whereas maternal concentrations of free choline were not significant (r(2) = 0.12; P = 0.06), predictors of cord plasma concentrations of these metabolites. Neither maternal dietary intake nor fetal genetic variants predicted maternal or cord plasma concentrations of choline and its

  18. Meiotic abnormalities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1993-12-31

    Chapter 19, describes meiotic abnormalities. These include nondisjunction of autosomes and sex chromosomes, genetic and environmental causes of nondisjunction, misdivision of the centromere, chromosomally abnormal human sperm, male infertility, parental age, and origin of diploid gametes. 57 refs., 2 figs., 1 tab.

  19. Beyond static measures: A review of functional magnetic resonance spectroscopy and its potential to investigate dynamic glutamatergic abnormalities in schizophrenia.

    PubMed

    Jelen, Luke A; King, Sinead; Mullins, Paul G; Stone, James M

    2018-05-01

    Abnormalities of the glutamate system are increasingly implicated in schizophrenia but their exact nature remains unknown. Proton magnetic resonance spectroscopy ( 1 H-MRS), while fundamental in revealing glutamatergic alterations in schizophrenia, has, until recently, been significantly limited and thought to only provide static measures. Functional magnetic resonance spectroscopy (fMRS), which uses sequential scans for dynamic measurement of a range of brain metabolites in activated brain areas, has lately been applied to a variety of task or stimulus conditions, producing interesting insights into neurometabolite responses to neural activation. Here, we summarise the existing 1 H-MRS studies of brain glutamate in schizophrenia. We then present a comprehensive review of research studies that have utilised fMRS, and lastly consider how fMRS methods might further the understanding of glutamatergic abnormalities in schizophrenia.

  20. Functional metabolite assemblies—a review

    NASA Astrophysics Data System (ADS)

    Aizen, Ruth; Tao, Kai; Rencus-Lazar, Sigal; Gazit, Ehud

    2018-05-01

    Metabolites are essential for the normal operation of cells and fulfill various physiological functions. It was recently found that in several metabolic disorders, the associated metabolites could self-assemble to generate amyloid-like structures, similar to canonical protein amyloids that have a role in neurodegenerative disorders. Yet, assemblies with typical amyloid characteristics are also known to have physiological function. In addition, many non-natural proteins and peptides presenting amyloidal properties have been used for the fabrication of functional nanomaterials. Similarly, functional metabolite assemblies are also found in nature, demonstrating various physiological roles. A notable example is the structural color formed by guanine crystals or fluorescent crystals in feline eyes responsible for enhanced night vision. Moreover, some metabolites have been used for the in vitro fabrication of functional materials, such as glycine crystals presenting remarkable piezoelectric properties or indigo films used to assemble organic semi-conductive electronic devices. Therefore, we believe that the study of metabolite assemblies is not only important in order to understand their role in normal physiology and in pathology, but also paves a new route in exploring the fabrication of organic, bio-compatible materials.

  1. Diphenamid metabolism in pepper and an ozone effect. II. Herbicide metabolite characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodgson, R.H.; Hoffer, B.L.

    Metabolites of diphenamid (N,N-dimethyl-2,2-diphenyl-acetamide) were purified from extracts of pepper plants (Capsicum frutescens L. Early Calwonder) treated via nutrient solution with the herbicide or several of its analogs. The major metabolites were characterized. Diphenamid was metabolized partially via a previously unreported pathway to N,N-dimethyl-2-phenyl-2-((hydroxyphenyl)-..beta..-0-D-glucosyl) acetamide and its monomethyl analog, and to N-hydroxy-methyl glycosides previously reported in other species. Ozone fumigation stimulated the production of both types of glycoside-conjugates. Leaves of plants that had been treated with 30 ..mu..M diphenamid and fumigated with ozone for 146 to 149 h contained 304 and 560 nmoles per gram of fresh weight of themore » hydroxyphenyl and N-hydroxymethyl conjugates, respectively. 7 references, 1 figure, 3 tables.« less

  2. Abnormal branching and regression of the notochord and its relationship to foregut abnormalities.

    PubMed

    Vleesch Dubois, V N; Quan Qi, B; Beasley, S W; Williams, A

    2002-04-01

    An abnormally positioned notochord has been reported in embryos that develop foregut abnormalities, vertebral defects and other abnormalities of the VATER association. This study examines the patterns of regression of the abnormal notochord in the rat model of the VATER association and investigates the relationship between developmental abnormalities of the notochord and those of the vertebra and foregut. Timed-pregnant Sprague-Dawley rats were given daily intraperitoneal injections of 1.75 mg/kg adriamycin on gestational days 6 - 9 inclusive. Rats were sacrificed between days 14 and 20 and their embryos harvested, histologically sectioned and stained and examined serially. The location and appearance of the degenerating notochord and its relationship to regional structural defects were analysed. All 26 embryos exposed to adriamycin developed foregut abnormalities and had an abnormal notochord. The notochord disappeared by a process of apoptotic degeneration that lagged behind that of the normal embryo: the notochord persisted in the abnormal embryo beyond day 17, whereas in the normal rat it had already disappeared. Similarly, formation of the nucleus pulposus was delayed. Vertebral abnormalities occurred when the notochord was ventrally-positioned. The notochord disappears during day 16 in the normal embryo whereas abnormal branches of the notochord persist until day 19 in the adriamycin-treated embryo. Degeneration of the notochord is dominated by apoptosis. An excessively ventrally-placed notochord is closely associated with abnormalities of the vertebral column, especially hemivertebrae.

  3. Prediction of future risk of insulin resistance and metabolic syndrome based on Korean boy's metabolite profiling.

    PubMed

    Lee, AeJin; Jang, Han Byul; Ra, Moonjin; Choi, Youngshim; Lee, Hye-Ja; Park, Ju Yeon; Kang, Jae Heon; Park, Kyung-Hee; Park, Sang Ick; Song, Jihyun

    2015-01-01

    Childhood obesity is strongly related to future insulin resistance and metabolic syndrome. Thus, identifying early biomarkers of obesity-related diseases based on metabolic profiling is useful to control future metabolic disorders. We compared metabolic profiles between obese and normal-weight children and investigated specific biomarkers of future insulin resistance and metabolic syndrome. In all, 186 plasma metabolites were analysed at baseline and after 2 years in 109 Korean boys (age 10.5±0.4 years) from the Korean Child Obesity Cohort Study using the AbsoluteIDQ™ p180 Kit. We observed that levels of 41 metabolites at baseline and 40 metabolites at follow-up were significantly altered in obese children (p<0.05). Obese children showed significantly higher levels of branched-chain amino acids (BCAAs) and several acylcarnitines and lower levels of acyl-alkyl phosphatidylcholines. Also, baseline BCAAs were significantly positively correlated with both homeostasis model assessment for insulin resistance (HOMA-IR) and continuous metabolic risk score at the 2-year follow-up. In logistic regression analyses with adjustments for degree of obesity at baseline, baseline BCAA concentration, greater than the median value, was identified as a predictor of future risk of insulin resistance and metabolic syndrome. High BCAA concentration could be "early" biomarkers for predicting future metabolic diseases. Copyright © 2014 Asian Oceanian Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  4. High wavenumber Raman spectroscopy in the characterization of urinary metabolites of normal subjects, oral premalignant and malignant patients

    NASA Astrophysics Data System (ADS)

    Brindha, Elumalai; Rajasekaran, Ramu; Aruna, Prakasarao; Koteeswaran, Dornadula; Ganesan, Singaravelu

    2017-01-01

    Urine has emerged as one of the diagnostically potential bio fluids, as it has many metabolites. As the concentration and the physiochemical properties of the urinary metabolites may vary under pathological transformation, Raman spectroscopic characterization of urine has been exploited as a significant tool in identifying several diseased conditions, including cancers. In the present study, an attempt was made to study the high wavenumber (HWVN) Raman spectroscopic characterization of urine samples of normal subjects, oral premalignant and malignant patients. It is concluded that the urinary metabolites flavoproteins, tryptophan and phenylalanine are responsible for the observed spectral variations between the normal and abnormal groups. Principal component analysis-based linear discriminant analysis was carried out to verify the diagnostic potentiality of the present technique. The discriminant analysis performed across normal and oral premalignant subjects classifies 95.6% of the original and 94.9% of the cross-validated grouped cases correctly. In the second analysis performed across normal and oral malignant groups, the accuracy of the original and cross-validated grouped cases was 96.4% and 92.1% respectively. Similarly, the third analysis performed across three groups, normal, oral premalignant and malignant groups, classifies 93.3% and 91.2% of the original and cross-validated grouped cases correctly.

  5. Detection of chromosomal abnormalities, congenital abnormalities and transfusion syndrome in twins.

    PubMed

    Sperling, L; Kiil, C; Larsen, L U; Brocks, V; Wojdemann, K R; Qvist, I; Schwartz, M; Jørgensen, C; Espersen, G; Skajaa, K; Bang, J; Tabor, A

    2007-05-01

    To evaluate the outcome of screening for structural malformations in twins and the outcome of screening for twin-twin transfusion syndrome (TTTS) among monochorionic twins through a number of ultrasound scans from 12 weeks' gestation. Enrolled into this prospective multicenter observational study were women with twin pregnancies diagnosed before 14 + 6 gestational weeks. The monochorionic pregnancies were scanned every second week until 23 weeks in order to rule out early TTTS. All pregnancies had an anomaly scan in week 19 and fetal echocardiography in week 21 that was performed by specialists in fetal echocardiography. Zygosity was determined by DNA analysis in all twin pairs with the same sex. Among the 495 pregnancies the prenatal detection rate for severe structural abnormalities including chromosomal aneuploidies was 83% by the combination of a first-trimester nuchal translucency scan and the anomaly scan in week 19. The incidence of severe structural abnormalities was 2.6% and two-thirds of these anomalies were cardiac. There was no significant difference between the incidence in monozygotic and dizygotic twins, nor between twins conceived naturally or those conceived by assisted reproduction. The incidence of TTTS was 23% from 12 weeks until delivery, and all those monochorionic twin pregnancies that miscarried had signs of TTTS. Twin pregnancies have an increased risk of congenital malformations and one out of four monochorionic pregnancies develops TTTS. Ultrasound screening to assess chorionicity and follow-up of monochorionic pregnancies to detect signs of TTTS, as well as malformation screening, are therefore essential in the antenatal care of twin pregnancies. Copyright (c) 2007 ISUOG.

  6. Abnormal transsulfuration metabolism and reduced antioxidant capacity in Chinese children with autism spectrum disorders.

    PubMed

    Han, Yu; Xi, Qian-qian; Dai, Wei; Yang, Shu-han; Gao, Lei; Su, Yuan-yuan; Zhang, Xin

    2015-11-01

    Autism spectrum disorder (ASD) is a neurological disorder that presents a spectrum of qualitative impairments in social interaction, communication, as well as restricted and stereotyped behavioral patterns, interests, and activities. Several studies have suggested that the etiology of ASD can be partly explained by oxidative stress. However, the implications of abnormal transsulfuration metabolism and oxidative stress, and their relation with ASD are still unclear. The purpose of this study was to evaluate several transsulfuration pathway metabolites in Chinese participants diagnosed with ASD, to better understand their role in the etiology of this disorder. Fifty children (39 male, 11 female) diagnosed with ASD and 50 age- and gender-matched non-ASD children (i.e., control group) were included in this study. This prospective blinded study was undertaken to assess transsulfuration and oxidative metabolites, including levels of homocysteine (Hcy), cysteine (Cys), total glutathione (tGSH), reduced glutathione (GSH), oxidized glutathione (GSSG), and glutathione ratio (GSH/GSSG). The clinical severity of ASD was evaluated with the Childhood Autism Rating Scale (CARS), and the autistic children's present behavior was measured by the Autism Behavior Checklist (ABC). The results indicated that Hcy and GSSG levels were significantly higher in children diagnosed with ASD, Cys, tGSH and GSH levels as well as the GSH/GSSG ratio showed remarkably lower values in ASD children compared to control subjects. Hcy levels correlated significantly with increasing CARS scores and GSSG levels in children with ASD. Our results suggest that an abnormal transsulfuration metabolism and reduced antioxidant capacity (i.e., hyperhomocysteinemia and increased oxidative stress), and Hcy level appears to have a potentially negative impact on clinical severity of autistic disorder. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Non-Invasive Evaluation of Corneal Abnormalities Using Static and Dynamic Light Scattering

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Misra, Anup K.; Leung, Alfred B.; King, James F.; Datiles, Manuel B., III

    2002-01-01

    A preliminary study of corneal abnormalities in intact bovine eyes is presented. Twenty-one eyes were treated with chemicals, cotton swabs, and radial and photo-refractive surgeries. Dynamic and static light scattering was performed as a function of the penetration depth into the corneal tissue. Topographical maps of corneal refractive power from untreated and treated corneas were also obtained using videokeratoscopy and results compared. The ultimate aim is to develop the technique of dynamic light scattering (DLS) for clinical applications in early evaluation of corneal complications after laser-assisted in situ keratomileusis (LASIK) surgeries and other corneal abnormalities.

  8. Metabolite profiling of somatic embryos of Cyclamen persicum in comparison to zygotic embryos, endosperm, and testa

    PubMed Central

    Winkelmann, Traud; Ratjens, Svenja; Bartsch, Melanie; Rode, Christina; Niehaus, Karsten; Bednarz, Hanna

    2015-01-01

    Somatic embryogenesis has been shown to be an efficient in vitro plant regeneration system for many crops such as the important ornamental plant Cyclamen persicum, for which this regeneration pathway of somatic embryogenesis is of interest for the vegetative propagation of parental lines as well as elite plants. However, somatic embryogenesis is not commercially used in many crops due to several unsolved problems, such as malformations, asynchronous development, deficiencies in maturation and germination of somatic embryos. In contrast, zygotic embryos in seeds develop and germinate without abnormalities in most cases. Instead of time-consuming and labor-intensive experiments involving tests of different in vitro culture conditions and plant growth regulator supplements, we follow a more directed approach. Zygotic embryos served as a reference and were compared to somatic embryos in metabolomic analyses allowing the future optimization of the in vitro system. The aims of this study were to detect differences in the metabolite profiles of torpedo stage somatic and zygotic embryos of C. persicum. Moreover, major metabolites in endosperm and testa were identified and quantified. Two sets of extracts of two to four biological replicates each were analyzed. In total 52 metabolites were identified and quantified in the different tissues. One of the most significant differences between somatic and zygotic embryos was that the proline concentration in the zygotic embryos was about 40 times higher than that found in somatic embryos. Epicatechin, a scavenger for reactive oxygen species, was found in highest abundance in the testa. Sucrose, the most abundant metabolite was detected in significantly higher concentrations in zygotic embryos. Also, a yet unknown trisaccharide, was significantly enriched in zygotic embryos. PMID:26300898

  9. Set-membership fault detection under noisy environment with application to the detection of abnormal aircraft control surface positions

    NASA Astrophysics Data System (ADS)

    El Houda Thabet, Rihab; Combastel, Christophe; Raïssi, Tarek; Zolghadri, Ali

    2015-09-01

    The paper develops a set membership detection methodology which is applied to the detection of abnormal positions of aircraft control surfaces. Robust and early detection of such abnormal positions is an important issue for early system reconfiguration and overall optimisation of aircraft design. In order to improve fault sensitivity while ensuring a high level of robustness, the method combines a data-driven characterisation of noise and a model-driven approach based on interval prediction. The efficiency of the proposed methodology is illustrated through simulation results obtained based on data recorded in several flight scenarios of a highly representative aircraft benchmark.

  10. Secondary metabolites in fungus-plant interactions

    PubMed Central

    Pusztahelyi, Tünde; Holb, Imre J.; Pócsi, István

    2015-01-01

    Fungi and plants are rich sources of thousands of secondary metabolites. The genetically coded possibilities for secondary metabolite production, the stimuli of the production, and the special phytotoxins basically determine the microscopic fungi-host plant interactions and the pathogenic lifestyle of fungi. The review introduces plant secondary metabolites usually with antifungal effect as well as the importance of signaling molecules in induced systemic resistance and systemic acquired resistance processes. The review also concerns the mimicking of plant effector molecules like auxins, gibberellins and abscisic acid by fungal secondary metabolites that modulate plant growth or even can subvert the plant defense responses such as programmed cell death to gain nutrients for fungal growth and colonization. It also looks through the special secondary metabolite production and host selective toxins of some significant fungal pathogens and the plant response in form of phytoalexin production. New results coming from genome and transcriptional analyses in context of selected fungal pathogens and their hosts are also discussed. PMID:26300892

  11. Metabolite damage and repair in metabolic engineering design.

    PubMed

    Sun, Jiayi; Jeffryes, James G; Henry, Christopher S; Bruner, Steven D; Hanson, Andrew D

    2017-11-01

    The necessarily sharp focus of metabolic engineering and metabolic synthetic biology on pathways and their fluxes has tended to divert attention from the damaging enzymatic and chemical side-reactions that pathway metabolites can undergo. Although historically overlooked and underappreciated, such metabolite damage reactions are now known to occur throughout metabolism and to generate (formerly enigmatic) peaks detected in metabolomics datasets. It is also now known that metabolite damage is often countered by dedicated repair enzymes that undo or prevent it. Metabolite damage and repair are highly relevant to engineered pathway design: metabolite damage reactions can reduce flux rates and product yields, and repair enzymes can provide robust, host-independent solutions. Herein, after introducing the core principles of metabolite damage and repair, we use case histories to document how damage and repair processes affect efficient operation of engineered pathways - particularly those that are heterologous, non-natural, or cell-free. We then review how metabolite damage reactions can be predicted, how repair reactions can be prospected, and how metabolite damage and repair can be built into genome-scale metabolic models. Lastly, we propose a versatile 'plug and play' set of well-characterized metabolite repair enzymes to solve metabolite damage problems known or likely to occur in metabolic engineering and synthetic biology projects. Copyright © 2017 International Metabolic Engineering Society. All rights reserved.

  12. Metabolite damage and repair in metabolic engineering design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Jiayi; Jeffryes, James G.; Henry, Christopher S.

    The necessarily sharp focus of metabolic engineering and metabolic synthetic biology on pathways and their fluxes has tended to divert attention from the damaging enzymatic and chemical side-reactions that pathway metabolites can undergo. Although historically overlooked and underappreciated, such metabolite damage reactions are now known to occur throughout metabolism and to generate (formerly enigmatic) peaks detected in metabolomics datasets. It is also now known that metabolite damage is often countered by dedicated repair enzymes that undo or prevent it. Metabolite damage and repair are highly relevant to engineered pathway design: metabolite damage reactions can reduce flux rates and product yields,more » and repair enzymes can provide robust, host-independent solutions. Herein, after introducing the core principles of metabolite damage and repair, we use case histories to document how damage and repair processes affect efficient operation of engineered pathways - particularly those that are heterologous, non-natural, or cell-free. We then review how metabolite damage reactions can be predicted, how repair reactions can be prospected, and how metabolite damage and repair can be built into genome-scale metabolic models. Lastly, we propose a versatile 'plug and play' set of well-characterized metabolite repair enzymes to solve metabolite damage problems known or likely to occur in metabolic engineering and synthetic biology projects.« less

  13. Type I Diabetic Akita Mouse Model is Characterized by Abnormal Cardiac Deformation During Early Stages of Diabetic Cardiomyopathy with Speckle-Tracking Based Strain Imaging.

    PubMed

    Zhou, Yingchao; Xiao, Hong; Wu, Jianfei; Zha, Lingfeng; Zhou, Mengchen; Li, Qianqian; Wang, Mengru; Shi, Shumei; Li, Yanze; Lyu, Liangkun; Wang, Qing; Tu, Xin; Lu, Qiulun

    2018-01-01

    Diabetes mellitus (DM) has been demonstrated to have a strong association with heart failure. Conventional echocardiographic analysis cannot sensitively monitor cardiac dysfunction in type I diabetic Akita hearts, but the phenotype of heart failure is observed in molecular levels during the early stages. Male Akita (Ins2WT/C96Y) mice were monitored with echocardiographic imaging at various ages, and then with conventional echocardiographic analysis and speckle-tracking based strain analyses. With speckle-tracking based strain analyses, diabetic Akita mice showed changes in average global radial strain at the age of 12 weeks, as well as decreased longitudinal strain. These changes occurred in the early stage and remained throughout the progression of diabetic cardiomyopathy in Akita mice. Speckle-tracking showed that the detailed and precise changes of cardiac deformation in the progression of diabetic cardiomyopathy in the genetic type I diabetic Akita mice were uncoupled. We monitored early-stage changes in the heart of diabetic Akita mice. We utilize this technique to elucidate the underlying mechanism for heart failure in Akita genetic type I diabetic mice. It will further advance the assessment of cardiac abnormalities, as well as the discovery of new drug treatments using Akita genetic type I diabetic mice. © 2018 The Author(s). Published by S. Karger AG, Basel.

  14. [Role of BoBs technology in early missed abortion chorionic villi].

    PubMed

    Li, Z Y; Liu, X Y; Peng, P; Chen, N; Ou, J; Hao, N; Zhou, J; Bian, X M

    2018-05-25

    Objective: To investigate the value of bacterial artificial chromosome-on-beads (BoBs) technology in the genetic analysis of early missed abortion chorionic villi. Methods: Early missed abortion chorionic villi were detected with both conventional karyotyping method and BoBs technology in Peking Union Medical Hospital from July 2014 to March 2015. Compared the results of BoBs with conventional karyotyping analysis to evaluate the sensitivity, specificity and accuracy of this new method. Results: (1) A total of 161 samples were tested successfully in the technology of BoBs, 131 samples were tested successfully in the method of conventional karyotyping. (2) All of the cases obtained from BoBs results in (2.7±0.6) days and obtained from conventional karyotyping results in (22.5±1.9) days. There was significant statistical difference between the two groups ( t= 123.315, P< 0.01) . (3) Out of 161 cases tested in BoBs, 85 (52.8%, 85/161) cases had the abnormal chromosomes, including 79 cases chromosome number abnormality, 4 cases were chromosome segment deletion, 2 cases mosaic. Out of 131 cases tested successfully in conventional karyotyping, 79 (60.3%, 79/131) cases had the abnormal chromosomes including 62 cases chromosome number abnormality, 17 cases other chromosome number abnormality, and the rate of chromosome abnormality between two methods was no significant differences ( P =0.198) . (4) Conventional karyotyping results were served as the gold standard, the accuracy of BoBs for abnormal chromosomes was 82.4% (108/131) , analysed the normal chromosomes (52 cases) and chromosome number abnormality (62 cases) tested in conventional karyotyping, the accuracy of BoBs for chromosome number abnormality was 94.7% (108/114) . Conclusion: BoBs is a rapid reliable and easily operated method to test early missed abortion chorionic villi chromosomal abnormalities.

  15. Identification of urinary metabolites that correlate with clinical improvements in children with autism treated with sulforaphane from broccoli.

    PubMed

    Bent, Stephen; Lawton, Brittany; Warren, Tracy; Widjaja, Felicia; Dang, Katherine; Fahey, Jed W; Cornblatt, Brian; Kinchen, Jason M; Delucchi, Kevin; Hendren, Robert L

    2018-01-01

    Children with autism spectrum disorder (ASD) have urinary metabolites suggesting impairments in several pathways, including oxidative stress, inflammation, mitochondrial dysfunction, and gut microbiome alterations. Sulforaphane, a supplement with indirect antioxidant effects that are derived from broccoli sprouts and seeds, was recently shown to lead to improvements in behavior and social responsiveness in children with ASD. We conducted the current open-label study to determine if we could identify changes in urinary metabolites that were associated with clinical improvements with the goal of identifying a potential mechanism of action. Children and young adults enrolled in a school for children with ASD and related neurodevelopmental disorders were recruited to participate in a 12-week, open-label study of sulforaphane. Fasting urinary metabolites and measures of behavior (Aberrant Behavior Checklist-ABC) and social responsiveness (Social Responsiveness Scale-SRS) were measured at baseline and at the end of the study. Pearson's correlation coefficient was calculated for the pre- to post-intervention change in each of the two clinical scales (ABS and SRS) versus the change in each metabolite. Fifteen children completed the 12-week study. Mean scores on both symptom measures showed improvements (decreases) over the study period, but only the change in the SRS was significant. The ABC improved - 7.1 points (95% CI - 17.4 to 3.2), and the SRS improved - 9.7 points (95% CI - 18.7 to - 0.8). We identified 77 urinary metabolites that were correlated with changes in symptoms, and they clustered into pathways of oxidative stress, amino acid/gut microbiome, neurotransmitters, hormones, and sphingomyelin metabolism. Urinary metabolomics analysis is a useful tool to identify pathways that may be involved in the mechanism of action of treatments targeting abnormal physiology in ASD. This study was prospectively registered at clinicaltrials.gov (NCT02654743) on

  16. Arginine-Nitric Oxide Metabolites and Cardiac Dysfunction in Patients With Breast Cancer.

    PubMed

    Finkelman, Brian S; Putt, Mary; Wang, Teresa; Wang, Le; Narayan, Hari; Domchek, Susan; DeMichele, Angela; Fox, Kevin; Matro, Jennifer; Shah, Payal; Clark, Amy; Bradbury, Angela; Narayan, Vivek; Carver, Joseph R; Tang, W H Wilson; Ky, Bonnie

    2017-07-11

    Oxidative/nitrosative stress and endothelial dysfunction are hypothesized to be central to cancer therapeutics-related cardiac dysfunction (CTRCD). However, the relationship between circulating arginine-nitric oxide (NO) metabolites and CTRCD remains unstudied. This study sought to examine the relationship between arginine-NO metabolites and CTRCD in a prospective cohort of 170 breast cancer patients treated with doxorubicin with or without trastuzumab. Plasma levels of arginine, citrulline, ornithine, asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA), and N-monomethylarginine (MMA) were quantified at baseline, 1 month, and 2 months after doxorubicin initiation. Determinants of baseline biomarker levels were identified using multivariable linear regression, and Cox regression defined the association between baseline levels and 1- or 2-month biomarker changes and CTRCD rate in 139 participants with quantitated echocardiograms at all time points. Age, hypertension, body mass index, and African-American race were independently associated with ≥1 of baseline citrulline, ADMA, SDMA, and MMA levels. Decreases in arginine and citrulline and increases in ADMA were observed at 1 and 2 months (all p < 0.05). Overall, 32 participants experienced CTRCD over a maximum follow-up of 5.4 years. Hazard ratios for ADMA and MMA at 2 months were 3.33 (95% confidence interval [CI]: 1.12 to 9.96) and 2.70 (95% CI: 1.35 to 5.41), respectively, and 0.78 (95% CI: 0.64 to 0.97) for arginine at 1 month. In breast cancer patients undergoing doxorubicin therapy, early alterations in arginine-NO metabolite levels occurred, and early biomarker changes were associated with a greater CTRCD rate. Our findings highlight the potential mechanistic and translational relevance of this pathway to CTRCD. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  17. Insulin induces a shift in lipid and primary carbon metabolites in a model of fasting-induced insulin resistance

    PubMed Central

    Olmstead, Keedrian I.; La Frano, Michael R.; Fahrmann, Johannes; Grapov, Dmitry; Viscarra, Jose A.; Newman, John W.; Fiehn, Oliver; Crocker, Daniel E.; Filipp, Fabian V.; Ortiz, Rudy M.

    2017-01-01

    Introduction Prolonged fasting in northern elephant seals (NES) is characterized by a reliance on lipid metabolism, conservation of protein, and reduced plasma insulin. During early fasting, glucose infusion previously reduced plasma free fatty acids (FFA); however, during late-fasting, it induced an atypical elevation in FFA despite comparable increases in insulin during both periods suggestive of a dynamic shift in tissue responsiveness to glucose-stimulated insulin secretion. Objective To better assess the contribution of insulin to this fasting-associated shift in substrate metabolism. Methods We compared the responses of plasma metabolites (amino acids (AA), FFA, endocannabinoids (EC), and primary carbon metabolites (PCM)) to an insulin infusion (65 mU/kg) in early- and late-fasted NES pups (n = 5/group). Plasma samples were collected prior to infusion (T0) and at 10, 30, 60, and 120 min post-infusion, and underwent untargeted and targeted metabolomics analyses utilizing a variety of GC-MS and LC-MS technologies. Results In early fasting, the majority (72%) of metabolite trajectories return to baseline levels within 2 h, but not in late fasting indicative of an increase in tissue sensitivity to insulin. In late-fasting, increases in FFA and ketone pools, coupled with decreases in AA and PCM, indicate a shift toward lipolysis, beta-oxidation, ketone metabolism, and decreased protein catabolism. Conversely, insulin increased PCM AUC in late fasting suggesting that gluconeogenic pathways are activated. Insulin also decreased FFA AUC between early and late fasting suggesting that insulin suppresses triglyceride hydrolysis. Conclusion Naturally adapted tolerance to prolonged fasting in these mammals is likely accomplished by suppressing insulin levels and activity, providing novel insight on the evolution of insulin during a condition of temporary, reversible insulin resistance. PMID:28757815

  18. Morphometric brain abnormalities in boys with conduct disorder.

    PubMed

    Huebner, Thomas; Vloet, Timo D; Marx, Ivo; Konrad, Kerstin; Fink, Gereon R; Herpertz, Sabine C; Herpertz-Dahlmann, Beate

    2008-05-01

    Children with the early-onset type of conduct disorder (CD) are at high risk for developing an antisocial personality disorder. Although there have been several neuroimaging studies on morphometric differences in adults with antisocial personality disorder, little is known about structural brain aberrations in boys with CD. Magnetic resonance imaging and voxel-based morphometry were used to assess abnormalities in gray matter volumes in 23 boys ages 12 to 17 years with CD (17 comorbid for attention-deficit/hyperactivity disorder) in comparison with age- and IQ-matched controls. Compared with healthy controls, mean gray matter volume was 6% smaller in the clinical group. Compared with controls, reduced gray matter volumes were found in the left orbitofrontal region and bilaterally in the temporal lobes, including the amygdala and hippocampus on the left side in the CD group. Regression analyses in the clinical group indicated an inverse association of hyperactive/impulsive symptoms and widespread gray matter abnormalities in the frontoparietal and temporal cortices. By contrast, CD symptoms correlated primarily with gray matter reductions in limbic brain structures. The data suggest that boys with CD and comorbid attention-deficit/hyperactivity disorder show brain abnormalities in frontolimbic areas that resemble structural brain deficits, which are typically observed in adults with antisocial behavior.

  19. Metabolites Associated With Malnutrition in the Intensive Care Unit Are Also Associated With 28-Day Mortality.

    PubMed

    Mogensen, Kris M; Lasky-Su, Jessica; Rogers, Angela J; Baron, Rebecca M; Fredenburgh, Laura E; Rawn, James; Robinson, Malcolm K; Massarro, Anthony; Choi, Augustine M K; Christopher, Kenneth B

    2017-02-01

    We hypothesized that metabolic profiles would differ in critically ill patients with malnutrition relative to those without. We performed a prospective cohort study on 85 adult patients with systemic inflammatory response syndrome or sepsis admitted to a 20-bed medical intensive care unit (ICU) in Boston. We generated metabolomic profiles using gas and liquid chromatography and mass spectroscopy. We followed this by logistic regression and partial least squares discriminant analysis to identify individual metabolites that were significant. We then interrogated the entire metabolomics profile using metabolite set enrichment analysis and network model construction of chemical-protein target interactions to identify groups of metabolites and pathways that were differentiates in patients with and without malnutrition. Of the cohort, 38% were malnourished at admission to the ICU. Metabolomic profiles differed in critically ill patients with malnutrition relative to those without. Ten metabolites were significantly associated with malnutrition ( P < .05). A parsimonious model of 5 metabolites effectively differentiated patients with malnutrition (AUC = 0.76), including pyroglutamine and hypoxanthine. Using pathway enrichment analysis, we identified a critical role of glutathione and purine metabolism in predicting nutrition. Nutrition status was associated with 28-day mortality, even after adjustment for known phenotypic variables associated with ICU mortality. Importantly, 7 metabolites associated with nutrition status were also associated with 28-day mortality. Malnutrition is associated with differential metabolic profiles early in critical illness. Common to all of our metabolome analyses, glutathione and purine metabolism, which play principal roles in cellular redox regulation and accelerated tissue adenosine triphosphate degradation, respectively, were significantly altered with malnutrition.

  20. Neurodevelopmental origins of abnormal cortical morphology in dissociative identity disorder.

    PubMed

    Reinders, A A T S; Chalavi, S; Schlumpf, Y R; Vissia, E M; Nijenhuis, E R S; Jäncke, L; Veltman, D J; Ecker, C

    2018-02-01

    To examine the two constitutes of cortical volume (CV), that is, cortical thickness (CT) and surface area (SA), in individuals with dissociative identity disorder (DID) with the view of gaining important novel insights into the underlying neurobiological mechanisms mediating DID. This study included 32 female patients with DID and 43 matched healthy controls. Between-group differences in CV, thickness, and SA, the degree of spatial overlap between differences in CT and SA, and their relative contribution to differences in regional CV were assessed using a novel spatially unbiased vertex-wise approach. Whole-brain correlation analyses were performed between measures of cortical anatomy and dissociative symptoms and traumatization. Individuals with DID differed from controls in CV, CT, and SA, with significantly decreased CT in the insula, anterior cingulate, and parietal regions and reduced cortical SA in temporal and orbitofrontal cortices. Abnormalities in CT and SA shared only about 3% of all significantly different cerebral surface locations and involved distinct contributions to the abnormality of CV in DID. Significant negative associations between abnormal brain morphology (SA and CV) and dissociative symptoms and early childhood traumatization (0 and 3 years of age) were found. In DID, neuroanatomical areas with decreased CT and SA are in different locations in the brain. As CT and SA have distinct genetic and developmental origins, our findings may indicate that different neurobiological mechanisms and environmental factors impact on cortical morphology in DID, such as early childhood traumatization. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. The influence of brain abnormalities on psychosocial development, criminal history and paraphilias in sexual murderers.

    PubMed

    Briken, Peer; Habermann, Niels; Berner, Wolfgang; Hill, Andreas

    2005-09-01

    The aim of this study was to investigate the number and type of brain abnormalities and their influence on psychosocial development, criminal history and paraphilias in sexual murderers. We analyzed psychiatric court reports of 166 sexual murderers and compared a group with notable signs of brain abnormalities (N = 50) with those without any signs (N = 116). Sexual murderers with brain abnormalities suffered more from early behavior problems. They were less likely to cohabitate with the victim at the time of the homicide and had more victims at the age of six years or younger. Psychiatric diagnoses revealed a higher total number of paraphilias: Transvestic fetishism and paraphilias not otherwise specified were more frequent in offenders with brain abnormalities. A binary logistic regression identified five predictors that accounted for 46.8% of the variance explaining the presence of brain abnormalities. Our results suggest the importance of a comprehensive neurological and psychological examination of this special offender group.

  2. [Molecular regulation of microbial secondary metabolites--a review].

    PubMed

    Wang, Linqi; Tan, Huarong

    2009-04-01

    Microbial secondary metabolites play an important role in the field of industry, agriculture, medicine and human health. The molecular regulation of secondary metabolites is gradually becoming noticeable and intriguing. In recent years, many researches have demonstrated that secondary metabolite biosynthesis is tightly linked to the physiological and developmental status in its producer. It is suggested that the biosynthesis of secondary metabolites involves in complex process concerning multi-level regulation. Here we reviewed the recent research progress on the molecular regulation of secondary metabolites in microorganisms. In known about ten thousand kinds of natural secondary metabolites, most of them (about 60%) were produced by Streptomycete. Therefore, the regulation of secondary metabolites in Streptomyces is chosen as the mainline in this review. Additionally, several well-studied antibiotics as the representative members were targeted. Finally, some suggestions, in response to the issues at present, have been presented in this paper.

  3. Standardization of infrared breast thermogram acquisition protocols and abnormality analysis of breast thermograms

    NASA Astrophysics Data System (ADS)

    Bhowmik, Mrinal Kanti; Gogoi, Usha Rani; Das, Kakali; Ghosh, Anjan Kumar; Bhattacharjee, Debotosh; Majumdar, Gautam

    2016-05-01

    The non-invasive, painless, radiation-free and cost-effective infrared breast thermography (IBT) makes a significant contribution to improving the survival rate of breast cancer patients by early detecting the disease. This paper presents a set of standard breast thermogram acquisition protocols to improve the potentiality and accuracy of infrared breast thermograms in early breast cancer detection. By maintaining all these protocols, an infrared breast thermogram acquisition setup has been established at the Regional Cancer Centre (RCC) of Government Medical College (AGMC), Tripura, India. The acquisition of breast thermogram is followed by the breast thermogram interpretation, for identifying the presence of any abnormality. However, due to the presence of complex vascular patterns, accurate interpretation of breast thermogram is a very challenging task. The bilateral symmetry of the thermal patterns in each breast thermogram is quantitatively computed by statistical feature analysis. A series of statistical features are extracted from a set of 20 thermograms of both healthy and unhealthy subjects. Finally, the extracted features are analyzed for breast abnormality detection. The key contributions made by this paper can be highlighted as -- a) the designing of a standard protocol suite for accurate acquisition of breast thermograms, b) creation of a new breast thermogram dataset by maintaining the protocol suite, and c) statistical analysis of the thermograms for abnormality detection. By doing so, this proposed work can minimize the rate of false findings in breast thermograms and thus, it will increase the utilization potentiality of breast thermograms in early breast cancer detection.

  4. Secondary metabolites from Ganoderma.

    PubMed

    Baby, Sabulal; Johnson, Anil John; Govindan, Balaji

    2015-06-01

    Ganoderma is a genus of medicinal mushrooms. This review deals with secondary metabolites isolated from Ganoderma and their biological significance. Phytochemical studies over the last 40years led to the isolation of 431 secondary metabolites from various Ganoderma species. The major secondary compounds isolated are (a) C30 lanostanes (ganoderic acids), (b) C30 lanostanes (aldehydes, alcohols, esters, glycosides, lactones, ketones), (c) C27 lanostanes (lucidenic acids), (d) C27 lanostanes (alcohols, lactones, esters), (e) C24, C25 lanostanes (f) C30 pentacyclic triterpenes, (g) meroterpenoids, (h) farnesyl hydroquinones (meroterpenoids), (i) C15 sesquiterpenoids, (j) steroids, (k) alkaloids, (l) prenyl hydroquinone (m) benzofurans, (n) benzopyran-4-one derivatives and (o) benzenoid derivatives. Ganoderma lucidum is the species extensively studied for its secondary metabolites and biological activities. Ganoderma applanatum, Ganoderma colossum, Ganoderma sinense, Ganoderma cochlear, Ganoderma tsugae, Ganoderma amboinense, Ganoderma orbiforme, Ganoderma resinaceum, Ganoderma hainanense, Ganoderma concinna, Ganoderma pfeifferi, Ganoderma neo-japonicum, Ganoderma tropicum, Ganoderma australe, Ganoderma carnosum, Ganoderma fornicatum, Ganoderma lipsiense (synonym G. applanatum), Ganoderma mastoporum, Ganoderma theaecolum, Ganoderma boninense, Ganoderma capense and Ganoderma annulare are the other Ganoderma species subjected to phytochemical studies. Further phytochemical studies on Ganoderma could lead to the discovery of hitherto unknown biologically active secondary metabolites. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Abnormal Uterine Bleeding FAQ

    MedlinePlus

    ... Abnormal Uterine Bleeding • What is a normal menstrual cycle? • When is bleeding abnormal? • At what ages is ... abnormal bleeding? •Glossary What is a normal menstrual cycle? The normal length of the menstrual cycle is ...

  6. HdhQ111 Mice Exhibit Tissue Specific Metabolite Profiles that Include Striatal Lipid Accumulation

    PubMed Central

    Carroll, Jeffrey B.; Deik, Amy; Fossale, Elisa; Weston, Rory M.; Guide, Jolene R.; Arjomand, Jamshid; Kwak, Seung; Clish, Clary B.; MacDonald, Marcy E.

    2015-01-01

    The HTT CAG expansion mutation causes Huntington’s Disease and is associated with a wide range of cellular consequences, including altered metabolism. The mutant allele is expressed widely, in all tissues, but the striatum and cortex are especially vulnerable to its effects. To more fully understand this tissue-specificity, early in the disease process, we asked whether the metabolic impact of the mutant CAG expanded allele in heterozygous B6.HdhQ111/+ mice would be common across tissues, or whether tissues would have tissue-specific responses and whether such changes may be affected by diet. Specifically, we cross-sectionally examined steady state metabolite concentrations from a range of tissues (plasma, brown adipose tissue, cerebellum, striatum, liver, white adipose tissue), using an established liquid chromatography-mass spectrometry pipeline, from cohorts of 8 month old mutant and wild-type littermate mice that were fed one of two different high-fat diets. The differential response to diet highlighted a proportion of metabolites in all tissues, ranging from 3% (7/219) in the striatum to 12% (25/212) in white adipose tissue. By contrast, the mutant CAG-expanded allele primarily affected brain metabolites, with 14% (30/219) of metabolites significantly altered, compared to wild-type, in striatum and 11% (25/224) in the cerebellum. In general, diet and the CAG-expanded allele both elicited metabolite changes that were predominantly tissue-specific and non-overlapping, with evidence for mutation-by-diet interaction in peripheral tissues most affected by diet. Machine-learning approaches highlighted the accumulation of diverse lipid species as the most genotype-predictive metabolite changes in the striatum. Validation experiments in cell culture demonstrated that lipid accumulation was also a defining feature of mutant HdhQ111 striatal progenitor cells. Thus, metabolite-level responses to the CAG expansion mutation in vivo were tissue specific and most evident

  7. Developmental abnormalities of the gonad and abnormal sex hormone concentrations in juvenile alligators from contaminated and control lakes in Florida.

    PubMed Central

    Guillette, L J; Gross, T S; Masson, G R; Matter, J M; Percival, H F; Woodward, A R

    1994-01-01

    The reproductive development of alligators from a contaminated and a control lake in central Florida was examined. Lake Apopka is adjacent to an EPA Superfund site, listed due to an extensive spill of dicofol and DDT or its metabolites. These compounds can act as estrogens. Contaminants in the lake also have been derived from extensive agricultural activities around the lake that continue today and a sewage treatment facility associated with the city of Winter Garden, Florida. We examined the hypothesis that an estrogenic contaminant has caused the current failure in recruitment of alligators on Lake Apopka. Supporting data include the following: At 6 months of age, female alligators from Lake Apopka had plasma estradiol-17 beta concentrations almost two times greater than normal females from the control lake, Lake Woodruff. The Apopka females exhibited abnormal ovarian morphology with large numbers of polyovular follicles and polynuclear oocytes. Male juvenile alligators had significantly depressed plasma testosterone concentrations comparable to levels observed in normal Lake Woodruff females but more than three times lower than normal Lake Woodruff males. Additionally, males from Lake Apopka had poorly organized testes and abnormally small phalli. The differences between lakes and sexes in plasma hormone concentrations of juvenile alligators remain even after stimulation with luteinizing hormone. Our data suggest that the gonads of juveniles from Lake Apopka have been permanently modified in ovo, so that normal steroidogenesis is not possible, and thus normal sexual maturation is unlikely. Images p680-a Figure 1. Figure 2. Figure 3. A Figure 3. B Figure 3. C Figure 4. A Figure 4. B Figure 4. C Figure 4. D Figure 5. A Figure 5. B Figure 5. C PMID:7895709

  8. Brain and blood metabolite signatures of pathology and progression in Alzheimer disease: A targeted metabolomics study.

    PubMed

    Varma, Vijay R; Oommen, Anup M; Varma, Sudhir; Casanova, Ramon; An, Yang; Andrews, Ryan M; O'Brien, Richard; Pletnikova, Olga; Troncoso, Juan C; Toledo, Jon; Baillie, Rebecca; Arnold, Matthias; Kastenmueller, Gabi; Nho, Kwangsik; Doraiswamy, P Murali; Saykin, Andrew J; Kaddurah-Daouk, Rima; Legido-Quigley, Cristina; Thambisetty, Madhav

    2018-01-01

    The metabolic basis of Alzheimer disease (AD) is poorly understood, and the relationships between systemic abnormalities in metabolism and AD pathogenesis are unclear. Understanding how global perturbations in metabolism are related to severity of AD neuropathology and the eventual expression of AD symptoms in at-risk individuals is critical to developing effective disease-modifying treatments. In this study, we undertook parallel metabolomics analyses in both the brain and blood to identify systemic correlates of neuropathology and their associations with prodromal and preclinical measures of AD progression. Quantitative and targeted metabolomics (Biocrates AbsoluteIDQ [identification and quantification] p180) assays were performed on brain tissue samples from the autopsy cohort of the Baltimore Longitudinal Study of Aging (BLSA) (N = 44, mean age = 81.33, % female = 36.36) from AD (N = 15), control (CN; N = 14), and "asymptomatic Alzheimer's disease" (ASYMAD, i.e., individuals with significant AD pathology but no cognitive impairment during life; N = 15) participants. Using machine-learning methods, we identified a panel of 26 metabolites from two main classes-sphingolipids and glycerophospholipids-that discriminated AD and CN samples with accuracy, sensitivity, and specificity of 83.33%, 86.67%, and 80%, respectively. We then assayed these 26 metabolites in serum samples from two well-characterized longitudinal cohorts representing prodromal (Alzheimer's Disease Neuroimaging Initiative [ADNI], N = 767, mean age = 75.19, % female = 42.63) and preclinical (BLSA) (N = 207, mean age = 78.68, % female = 42.63) AD, in which we tested their associations with magnetic resonance imaging (MRI) measures of AD-related brain atrophy, cerebrospinal fluid (CSF) biomarkers of AD pathology, risk of conversion to incident AD, and trajectories of cognitive performance. We developed an integrated blood and brain endophenotype score that summarized the relative importance of each

  9. Brain and blood metabolite signatures of pathology and progression in Alzheimer disease: A targeted metabolomics study

    PubMed Central

    Oommen, Anup M.; Varma, Sudhir; Casanova, Ramon; An, Yang; O’Brien, Richard; Pletnikova, Olga; Kastenmueller, Gabi; Doraiswamy, P. Murali; Kaddurah-Daouk, Rima; Thambisetty, Madhav

    2018-01-01

    Background The metabolic basis of Alzheimer disease (AD) is poorly understood, and the relationships between systemic abnormalities in metabolism and AD pathogenesis are unclear. Understanding how global perturbations in metabolism are related to severity of AD neuropathology and the eventual expression of AD symptoms in at-risk individuals is critical to developing effective disease-modifying treatments. In this study, we undertook parallel metabolomics analyses in both the brain and blood to identify systemic correlates of neuropathology and their associations with prodromal and preclinical measures of AD progression. Methods and findings Quantitative and targeted metabolomics (Biocrates AbsoluteIDQ [identification and quantification] p180) assays were performed on brain tissue samples from the autopsy cohort of the Baltimore Longitudinal Study of Aging (BLSA) (N = 44, mean age = 81.33, % female = 36.36) from AD (N = 15), control (CN; N = 14), and “asymptomatic Alzheimer’s disease” (ASYMAD, i.e., individuals with significant AD pathology but no cognitive impairment during life; N = 15) participants. Using machine-learning methods, we identified a panel of 26 metabolites from two main classes—sphingolipids and glycerophospholipids—that discriminated AD and CN samples with accuracy, sensitivity, and specificity of 83.33%, 86.67%, and 80%, respectively. We then assayed these 26 metabolites in serum samples from two well-characterized longitudinal cohorts representing prodromal (Alzheimer’s Disease Neuroimaging Initiative [ADNI], N = 767, mean age = 75.19, % female = 42.63) and preclinical (BLSA) (N = 207, mean age = 78.68, % female = 42.63) AD, in which we tested their associations with magnetic resonance imaging (MRI) measures of AD-related brain atrophy, cerebrospinal fluid (CSF) biomarkers of AD pathology, risk of conversion to incident AD, and trajectories of cognitive performance. We developed an integrated blood and brain endophenotype score that

  10. Metabolite differences in the lenticular nucleus in type 2 diabetes mellitus shown by proton MR spectroscopy.

    PubMed

    Lin, Y; Zhou, J; Sha, L; Li, Y; Qu, X; Liu, L; Chen, H; An, Z; Wang, Y; Sun, C

    2013-09-01

    Previous studies by using proton MR spectroscopy found metabolite abnormalities in the cerebral cortex and white matter of patients with type 2 diabetes mellitus. The present study was undertaken to detect metabolite differences in the lenticular nuclei and thalamus in patients with T2DM. Twenty subjects with T2DM and 22 age-matched control subjects underwent single-voxel MR spectroscopy in the left and right lenticular nuclei and left and right thalami. NAA/Cr and Cho/Cr ratios were calculated. Brain lactic acid, fasting blood glucose, and glycosylated hemoglobin levels were also monitored. The NAA/Cr ratio was lower in the left lenticular nuclei of subjects with T2DM (P = .007), whereas the Cho/Cr ratio was increased in both the and right lenticular nuclei (P = .001). The NAA/Cr ratio was negatively correlated with FBG in the left (r = -0.573, P = .008) and right nuclei (r = -0.564, P = .010). It was also negatively correlated to HbA1c in the left (r = -0.560, P = .010) and right (r = -0.453, P = .045) nuclei. The Cho/Cr ratio was positively correlated with these variables (P < .05). No significant differences in NAA/Cr or Cho/Cr ratios were observed in the thalamus of patients with T2DM. Lactic acid was not detected in any of the patients in the study. The different metabolic statuses of the lenticular nuclei and thalamus suggest different effects of T2DM in each of these brain nuclei, with the lenticular nuclei being more vulnerable than the thalamus. The abnormal metabolic status was observed before lesions had appeared in these brain areas.

  11. Association between early administration of high-dose erythropoietin in preterm infants and brain MRI abnormality at term-equivalent age.

    PubMed

    Leuchter, Russia Ha-Vinh; Gui, Laura; Poncet, Antoine; Hagmann, Cornelia; Lodygensky, Gregory Anton; Martin, Ernst; Koller, Brigitte; Darqué, Alexandra; Bucher, Hans Ulrich; Hüppi, Petra Susan

    2014-08-27

    Premature infants are at risk of developing encephalopathy of prematurity, which is associated with long-term neurodevelopmental delay. Erythropoietin was shown to be neuroprotective in experimental and retrospective clinical studies. To determine if there is an association between early high-dose recombinant human erythropoietin treatment in preterm infants and biomarkers of encephalopathy of prematurity on magnetic resonance imaging (MRI) at term-equivalent age. A total of 495 infants were included in a randomized, double-blind, placebo-controlled study conducted in Switzerland between 2005 and 2012. In a nonrandomized subset of 165 infants (n=77 erythropoietin; n=88 placebo), brain abnormalities were evaluated on MRI acquired at term-equivalent age. Participants were randomly assigned to receive recombinant human erythropoietin (3000 IU/kg; n=256) or placebo (n=239) intravenously before 3 hours, at 12 to 18 hours, and at 36 to 42 hours after birth. The primary outcome of the trial, neurodevelopment at 24 months, has not yet been assessed. The secondary outcome, white matter disease of the preterm infant, was semiquantitatively assessed from MRI at term-equivalent age based on an established scoring method. The resulting white matter injury and gray matter injury scores were categorized as normal or abnormal according to thresholds established in the literature by correlation with neurodevelopmental outcome. At term-equivalent age, compared with untreated controls, fewer infants treated with recombinant human erythropoietin had abnormal scores for white matter injury (22% [17/77] vs 36% [32/88]; adjusted risk ratio [RR], 0.58; 95% CI, 0.35-0.96), white matter signal intensity (3% [2/77] vs 11% [10/88]; adjusted RR, 0.20; 95% CI, 0.05-0.90), periventricular white matter loss (18% [14/77] vs 33% [29/88]; adjusted RR, 0.53; 95% CI, 0.30-0.92), and gray matter injury (7% [5/77] vs 19% [17/88]; adjusted RR, 0.34; 95% CI, 0.13-0.89). In an analysis of secondary

  12. Chemical defense of early life stages of benthic marine invertebrates.

    PubMed

    Lindquist, Niels

    2002-10-01

    Accurate knowledge of factors affecting the survival of early life stages of marine invertebrates is critically important for understanding their population dynamics and the evolution of their diverse reproductive and life-history characteristics. Chemical defense is an important determinant of survival for adult stages of many sessile benthic invertebrates, yet relatively little consideration has been given to chemical defenses at the early life stages. This review examines the taxonomic breadth of early life-stage chemical defense in relation to various life-history and reproductive characteristics, as well as possible constraints on the expression of chemical defense at certain life stages. Data on the localization of defensive secondary metabolites in larvae and the fitness-related consequences of consuming even a small amount of toxic secondary metabolites underpin proposals regarding the potential for Müllerian and Batesian mimicry to occur among marine larvae. The involvement of microbial symbionts in the chemical defense of early life stages illustrates its complexity for some species. As our knowledge of chemical defenses in early life stages grows, we will be able to more rigorously examine connections among phylogeny, chemical defenses, and the evolution of reproductive and life-history characteristics among marine invertebrates.

  13. Differential microstructural and morphological abnormalities in mild cognitive impairment and Alzheimer's disease: Evidence from cortical and deep gray matter.

    PubMed

    Gong, Nan-Jie; Chan, Chun-Chung; Leung, Lam-Ming; Wong, Chun-Sing; Dibb, Russell; Liu, Chunlei

    2017-05-01

    One aim of this study is to use non-Gaussian diffusion kurtosis imaging (DKI) for capturing microstructural abnormalities in gray matter of Alzheimer's disease (AD). The other aim is to compare DKI metrics against thickness of cortical gray matter and volume of deep gray matter, respectively. A cohort of 18 patients with AD, 18 patients with amnestic mild cognitive impairment (MCI), and 18 normal controls underwent morphological and DKI MR imaging. Images were investigated using regions-of-interest-based analyses for deep gray matter and vertex-wise analyses for cortical gray matter. In deep gray matter, more regions showed DKI parametric abnormalities than atrophies at the early MCI stage. Mean kurtosis (MK) exhibited the largest number of significant abnormalities among all DKI metrics. At the later AD stage, diffusional abnormalities were observed in fewer regions than atrophies. In cortical gray matter, abnormalities in thickness were mainly in the medial and lateral temporal lobes, which fit the locations of known early pathological changes. Microstructural abnormalities were predominantly in the parietal and even frontal lobes, which fit the locations of known late pathological changes. In conclusion, MK can complement conventional diffusion metrics for detecting microstructural changes, especially in deep gray matter. This study also provides evidence supporting the notion that microstructural changes predate morphological changes. Hum Brain Mapp 38:2495-2508, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Urine - abnormal color

    MedlinePlus

    ... medlineplus.gov/ency/article/003139.htm Urine - abnormal color To use the sharing features on this page, please enable JavaScript. The usual color of urine is straw-yellow. Abnormally colored urine ...

  15. Inhibition of Late and Early Phases of Cancer Metastasis by the NF-κB Inhibitor DHMEQ Derived from Microbial Bioactive Metabolite Epoxyquinomicin: A Review.

    PubMed

    Lin, Yinzhi; Ukaji, Tamami; Koide, Naoki; Umezawa, Kazuo

    2018-03-03

    We previously designed and synthesized dehydroxyepoxyquinomicin (DHMEQ) as an inhibitor of NF-κB based on the structure of microbial secondary metabolite epoxyquinomicin C. DHMEQ showed anti-inflammatory and anticancer activity in various in vivo disease models without toxicity. On the other hand, the process of cancer metastasis consists of cell detachment from the primary tumor, invasion, transportation by blood or lymphatic vessels, invasion, attachment, and formation of secondary tumor. Cell detachment from the primary tumor and subsequent invasion are considered to be early phases of metastasis, while tumor cell attachment to the tissue and secondary tumor formation the late phases. The assay system for the latter phase was set up with intra-portal-vein injection of pancreatic cancer cells. Intraperitoneal administration of DHMEQ was found to inhibit liver metastasis possibly by decreasing the expression of MMP-9 and IL-8. Also, when the pancreatic cancer cells treated with DHMEQ were inoculated into the peritoneal cavity of mice, the metastatic foci formation was inhibited. These results indicate that DHMEQ is likely to inhibit the late phase of metastasis. Meanwhile, we have recently employed three-dimensional (3D) culture of breast cancer cells for the model of early phase metastasis, since the 3D invasion just includes cell detachment and invasion into the matrix. DHMEQ inhibited the 3D invasion of breast cancer cells at 3D-nontoxic concentrations. In this way, DHMEQ was shown to inhibit the late and early phases of metastasis. Thus, DHMEQ is likely to be useful for the suppression of cancer metastasis.

  16. Acute administration of fluoxetine normalizes rapid eye movement sleep abnormality, but not depressive behaviors in olfactory bulbectomized rats.

    PubMed

    Wang, Yi-Qun; Tu, Zhi-Cai; Xu, Xing-Yuan; Li, Rui; Qu, Wei-Min; Urade, Yoshihiro; Huang, Zhi-Li

    2012-01-01

    In humans, depression is associated with altered rapid eye movement (REM) sleep. However, the exact nature of the relationship between depressive behaviors and sleep abnormalities is debated. In this study, bilateral olfactory bulbectomy (OBX) was carried out to create a model of depression in rats. The sleep-wake profiles were assayed using a cutting-edge sleep bioassay system, and depressive behaviors were evaluated by open field and forced swimming tests. The monoamine content and monoamine metabolite levels in the brain were determined by a HPLC-electrochemical detection system. OBX rats exhibited a significant increase in REM sleep, especially between 15:00 and 18:00 hours during the light period. Acute treatment with fluoxetine (10 mg/kg, i.p.) immediately abolished the OBX-induced increase in REM sleep, but hyperactivity in the open field test and the time spent immobile in the forced swimming test remained unchanged. Neurochemistry studies revealed that acute administration of fluoxetine increased serotonin (5-HT) levels in the hippocampus, thalamus, and midbrain and decreased levels of the 5-HT metabolite 5-hydroxyindoleacetic acid (5-HIAA). The ratio of 5-HIAA to 5-HT decreased in almost all regions of the brain. These results indicate that acute administration of fluoxetine can reduce the increase in REM sleep but does not change the depressive behaviors in OBX rats, suggesting that there was no causality between REM sleep abnormalities and depressive behaviors in OBX rats. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  17. Antifungal activity of microbial secondary metabolites.

    PubMed

    Coleman, Jeffrey J; Ghosh, Suman; Okoli, Ikechukwu; Mylonakis, Eleftherios

    2011-01-01

    Secondary metabolites are well known for their ability to impede other microorganisms. Reanalysis of a screen of natural products using the Caenorhabditis elegans-Candida albicans infection model identified twelve microbial secondary metabolites capable of conferring an increase in survival to infected nematodes. In this screen, the two compound treatments conferring the highest survival rates were members of the epipolythiodioxopiperazine (ETP) family of fungal secondary metabolites, acetylgliotoxin and a derivative of hyalodendrin. The abundance of fungal secondary metabolites indentified in this screen prompted further studies investigating the interaction between opportunistic pathogenic fungi and Aspergillus fumigatus, because of the ability of the fungus to produce a plethora of secondary metabolites, including the well studied ETP gliotoxin. We found that cell-free supernatant of A. fumigatus was able to inhibit the growth of Candida albicans through the production of a secreted product. Comparative studies between a wild-type and an A. fumigatus ΔgliP strain unable to synthesize gliotoxin demonstrate that this secondary metabolite is the major factor responsible for the inhibition. Although toxic to organisms, gliotoxin conferred an increase in survival to C. albicans-infected C. elegans in a dose dependent manner. As A. fumigatus produces gliotoxin in vivo, we propose that in addition to being a virulence factor, gliotoxin may also provide an advantage to A. fumigatus when infecting a host that harbors other opportunistic fungi.

  18. Antifungal Activity of Microbial Secondary Metabolites

    PubMed Central

    Okoli, Ikechukwu; Mylonakis, Eleftherios

    2011-01-01

    Secondary metabolites are well known for their ability to impede other microorganisms. Reanalysis of a screen of natural products using the Caenorhabditis elegans-Candida albicans infection model identified twelve microbial secondary metabolites capable of conferring an increase in survival to infected nematodes. In this screen, the two compound treatments conferring the highest survival rates were members of the epipolythiodioxopiperazine (ETP) family of fungal secondary metabolites, acetylgliotoxin and a derivative of hyalodendrin. The abundance of fungal secondary metabolites indentified in this screen prompted further studies investigating the interaction between opportunistic pathogenic fungi and Aspergillus fumigatus, because of the ability of the fungus to produce a plethora of secondary metabolites, including the well studied ETP gliotoxin. We found that cell-free supernatant of A. fumigatus was able to inhibit the growth of Candida albicans through the production of a secreted product. Comparative studies between a wild-type and an A. fumigatus ΔgliP strain unable to synthesize gliotoxin demonstrate that this secondary metabolite is the major factor responsible for the inhibition. Although toxic to organisms, gliotoxin conferred an increase in survival to C. albicans-infected C. elegans in a dose dependent manner. As A. fumigatus produces gliotoxin in vivo, we propose that in addition to being a virulence factor, gliotoxin may also provide an advantage to A. fumigatus when infecting a host that harbors other opportunistic fungi. PMID:21966496

  19. Metabolic differentiation and classification of abnormal Savda Munziq's pharmacodynamic role on rat models with different diseases by nuclear magnetic resonance-based metabonomics.

    PubMed

    Mamtimin, Batur; Xia, Guo; Mijit, Mahmut; Hizbulla, Mawlanjan; Kurbantay, Nazuk; You, Li; Upur, Halmurat

    2015-01-01

    Abnormal Savda Munziq (ASMq) is a traditional Uyghur herbal preparation used as a therapy for abnormal Savda-related diseases. In this study, we investigate ASMq's dynamic effects on abnormal Savda rat models under different disease conditions. Abnormal Savda rat models with hepatocellular carcinoma (HCC), type 2 diabetes mellitus (T2DM), and asthma dosed of ASMq. Serum samples of each animal tested by nuclear magnetic resonance spectroscopy and analyzed by orthogonal projection to latent structure with discriminant analysis. Compared with healthy controls, HCC rats had higher concentrations of amino acids, fat-related metabolites, lactate, myoinositol, and citrate, but lower concentrations of α-glucose, β-glucose, and glutamine. Following ASMq treatment, the serum acetone very low-density lipoprotein (VLDL), LDL, unsaturated lipids, acetylcysteine, and pyruvate concentration decreased, but α-glucose, β-glucose, and glutamine concentration increased (P < 0.05). T2DM rats had higher concentrations of α- and β-glucose, but lower concentrations of isoleucine, leucine, valine, glutamine, glycoprotein, lactate, tyrosine, creatine, alanine, carnitine, and phenylalanine. After ASMq treated T2DM groups showed reduced α- and β-glucose and increased creatine levels (P < 0.05). Asthma rats had higher acetate, carnitine, formate, and phenylalanine levels, but lower concentrations of glutamine, glycoprotein, lactate, VLDL, LDL, and unsaturated lipids. ASMq treatment showed increased glutamine and reduced carnitine, glycoprotein, formate, and phenylalanine levels (P < 0.05). Low immune function, decreased oxidative defense, liver function abnormalities, amino acid deficiencies, and energy metabolism disorders are common characteristics of abnormal Savda-related diseases. ASMq may improve the abnormal metabolism and immune function of rat models with different diseases combined abnormal Savda.

  20. Abnormal placental invasion--a novel approach to treatment case report and review.

    PubMed

    Ophir, Ella; Singer-Jordan, Jonathan; Odeh, Marwan; Hirch, Yael; Maksimovsky, Olga; Shaider, Oleg; Yvry, Simon; Solt, Ido; Bornstein, Jacob

    2009-12-01

    The incidence of abnormal placental invasion has increased 10-fold in the past 50 years, reflecting the increased number of cesarean sections performed. Management relies on accurate early diagnosis with appropriate perioperative multidisciplinary planning to anticipate and avoid massive obstetric hemorrhage at delivery. Women at risk should plan to deliver at an institution with appropriate expertise and resources for managing this condition. We report a case of placenta increta management comprising preoperative placement of a pelvic artery balloon catheter, prophylactic balloon occlusion after delivery of the fetus, and embolization-assisted resection of the invaded uterine wall. We review incidence, methods of prenatal diagnosis, risk factors, and management of abnormally invasive placenta.

  1. Binocular combination in abnormal binocular vision

    PubMed Central

    Ding, Jian; Klein, Stanley A.; Levi, Dennis M.

    2013-01-01

    We investigated suprathreshold binocular combination in humans with abnormal binocular visual experience early in life. In the first experiment we presented the two eyes with equal but opposite phase shifted sine waves and measured the perceived phase of the cyclopean sine wave. Normal observers have balanced vision between the two eyes when the two eyes' images have equal contrast (i.e., both eyes contribute equally to the perceived image and perceived phase = 0°). However, in observers with strabismus and/or amblyopia, balanced vision requires a higher contrast image in the nondominant eye (NDE) than the dominant eye (DE). This asymmetry between the two eyes is larger than predicted from the contrast sensitivities or monocular perceived contrast of the two eyes and is dependent on contrast and spatial frequency: more asymmetric with higher contrast and/or spatial frequency. Our results also revealed a surprising NDE-to-DE enhancement in some of our abnormal observers. This enhancement is not evident in normal vision because it is normally masked by interocular suppression. However, in these abnormal observers the NDE-to-DE suppression was weak or absent. In the second experiment, we used the identical stimuli to measure the perceived contrast of a cyclopean grating by matching the binocular combined contrast to a standard contrast presented to the DE. These measures provide strong constraints for model fitting. We found asymmetric interocular interactions in binocular contrast perception, which was dependent on both contrast and spatial frequency in the same way as in phase perception. By introducing asymmetric parameters to the modified Ding-Sperling model including interocular contrast gain enhancement, we succeeded in accounting for both binocular combined phase and contrast simultaneously. Adding binocular contrast gain control to the modified Ding-Sperling model enabled us to predict the results of dichoptic and binocular contrast discrimination experiments

  2. Binocular combination in abnormal binocular vision.

    PubMed

    Ding, Jian; Klein, Stanley A; Levi, Dennis M

    2013-02-08

    We investigated suprathreshold binocular combination in humans with abnormal binocular visual experience early in life. In the first experiment we presented the two eyes with equal but opposite phase shifted sine waves and measured the perceived phase of the cyclopean sine wave. Normal observers have balanced vision between the two eyes when the two eyes' images have equal contrast (i.e., both eyes contribute equally to the perceived image and perceived phase = 0°). However, in observers with strabismus and/or amblyopia, balanced vision requires a higher contrast image in the nondominant eye (NDE) than the dominant eye (DE). This asymmetry between the two eyes is larger than predicted from the contrast sensitivities or monocular perceived contrast of the two eyes and is dependent on contrast and spatial frequency: more asymmetric with higher contrast and/or spatial frequency. Our results also revealed a surprising NDE-to-DE enhancement in some of our abnormal observers. This enhancement is not evident in normal vision because it is normally masked by interocular suppression. However, in these abnormal observers the NDE-to-DE suppression was weak or absent. In the second experiment, we used the identical stimuli to measure the perceived contrast of a cyclopean grating by matching the binocular combined contrast to a standard contrast presented to the DE. These measures provide strong constraints for model fitting. We found asymmetric interocular interactions in binocular contrast perception, which was dependent on both contrast and spatial frequency in the same way as in phase perception. By introducing asymmetric parameters to the modified Ding-Sperling model including interocular contrast gain enhancement, we succeeded in accounting for both binocular combined phase and contrast simultaneously. Adding binocular contrast gain control to the modified Ding-Sperling model enabled us to predict the results of dichoptic and binocular contrast discrimination experiments

  3. Prenatal and Early Postnatal Exposure to Cigarette Smoke Decreases BDNF/TrkB Signaling and Increases Abnormal Behaviors Later in Life

    PubMed Central

    Xiao, Lan; Kish, Vincent L.; Benders, Katherine M.

    2016-01-01

    Background: Cigarette smoke exposure during prenatal and early postnatal periods increases the incidence of a variety of abnormal behaviors later in life. The purpose of this study was to identify the possible critical period of susceptibility to cigarette smoke exposure and evaluate the possibe effects of cigarette smoke during early life on brain-derived neurotrophic factor/neurotrophic tyrosine kinase receptor B signaling in the brain. Methods: Three different age of imprinting control region mice were exposed to cigarette smoke or filtered air for 10 consecutive days beginning on either gestational day 7 by maternal exposure, or postnatal days 2 or 21 by direct inhalation. A series of behavioral profiles and neurotrophins in brain were measured 24 hours after mice received acute restraint stress for 1 hour on postnatal day 59. Results: Cigarette smoke exposure in gestational day 7 and postnatal day 2 produced depression-like behaviors as evidenced by significantly increased immobility in both tail suspension and forced-swim test. Increased entry latencies, but not ambulation in the open field test, were also observed in the gestational day 7 and postnatal day 2 cigarette smoke exposure groups. Genetic analysis showed that gestational day 7 cigarette smoke exposure significantly altered mRNA level of brain-derived neurotrophic factor/tyrosine kinase receptor B in the hippocampus. However, behavioral profiles and brain-derived neurotrophic factor/tyrosine kinase receptor B signaling were not significantly changed in PND21 cigarette smoke exposure group compared with FA group. Conclusions: These results suggest that a critical period of susceptibility to cigarette smoke exposure exists in the prenatal and early postnatal period, which results a downregulation in brain-derived neurotrophic factor/tyrosine kinase receptor B signaling in the hippocampus and enhances depression-like behaviors later in life. PMID:26503133

  4. Differential release of cell-signaling metabolites by male and female bovine embryos cultured in vitro.

    PubMed

    Gómez, E; Carrocera, S; Martin, D; Herrero, P; Canela, N; Muñoz, M

    2018-07-01

    Male and female early bovine embryos show dimorphic transcription that impacts metabolism. Individual release of metabolites was examined in a 24h single culture medium from Day-6 male and female morulae that developed to Day-7 expanded blastocysts. Embryos were produced in vitro, fertilized with a single bull and cultured in SOFaaci+6  g/L BSA. The embryonic sex was identified (amelogenin gene amplification). Embryos (N = 10 males and N = 10 females) and N = 6 blank samples (i.e. SOFaaci+6  g/L BSA incubated with no embryos) were collected from 3 replicates. Metabolome was analyzed by UHPLC-TOF-MS in spent culture medium. After tentative identification, N = 13 metabolites significantly (P < 0.05; ANOVA) differed in their concentrations between male and female embryos, although N = 10 of these metabolites showed heterogeneity (Levene's test; P > 0.05). LysoPC(15:0) was the only metabolite found at higher concentration in females (fold change [FC] male to female = 0.766). FC of metabolites more abundant in male culture medium (N = 12) varied from 1.069 to 1.604. Chemical taxonomy grouped metabolites as amino-acids and related compounds (DL-2 aminooctanoic acid, arginine, 5-hydroxy-l-tryptophan, and palmitoylglycine); lipids (2-hexenoylcarnitine; Lauroyl diethanolamide; 5,6 dihydroxyprostaglandin F1a; LysoPC(15:0); DG(14:0/14:1(9Z)/0:0) and triterpenoid); endogenous amine ((S)-N-Methylsalsolinol/(R)-N-Methylsalsolinol); n-acyl-alpha-hexosamine (N-acetyl-alpha-d-galactosamine 1-phosphate); and dUMP, a product of pyrimidine metabolism. Among the compounds originally contained in CM, female embryos significantly depleted more arginine than males and blank controls (P < 0.001). Male and female embryos induce different concentrations of metabolites with potential signaling effects. The increased abundance of metabolites released from males is consistent with the higher metabolic activity attributed to such blastocysts. Copyright © 2018 Elsevier

  5. Phthalate metabolites in Norwegian mothers and children: Levels, diurnal variation and use of personal care products.

    PubMed

    Sakhi, Amrit Kaur; Sabaredzovic, Azemira; Cequier, Enrique; Thomsen, Cathrine

    2017-12-01

    Exposure to phthalates has been associated with reproductive and developmental toxicity. Data on levels of these compounds in the Norwegian population is limited. In this study, urine samples were collected from 48 mothers and their children in two counties in Norway. Eleven different phthalate metabolites originating from six commonly used phthalates in consumer products were determined. Concentrations of phthalate metabolites were significantly higher in children compared to mothers except for mono-ethyl phthalate (MEP). The mothers provided several urine samples during 24hours (h) and diurnal variation showed that the concentrations in the morning urine samples (24-8h) were significantly higher than at other time-periods for most of the phthalate metabolites. Intraclass correlation coefficients (ICCs) for 24-hour time-period were in the range of 0.49-0.81. These moderate to high ICCs indicate that one spot urine sample can be used to estimate the exposure to phthalates. Since a significant effect of time of day was observed, it is still advisable to standardize the collection time point to reduce the variation. For the mothers, the use of personal care products (PCPs) were less associated with morning urine samples than early day (8-12h) and evening (16-24h) urine samples. The use of perfume and hair products were positively associated with the urinary concentrations of low molecular weight phthalates. Use of shower soap and shampoo were positively associated with urinary concentration of di(2-ethylhexyl) phthalate (DEHP) metabolites. For children, face cream use was positively associated with phthalate metabolites in the morning samples, and hand soap use was negatively associated with concentration of urinary DEHP metabolites in afternoon/evening samples. Since different PCPs were associated with the urinary phthalate metabolites in different time-periods during a day, more than one spot urine sample might be required to study associations between urinary

  6. Yeast synthetic biology for high-value metabolites.

    PubMed

    Dai, Zhubo; Liu, Yi; Guo, Juan; Huang, Luqi; Zhang, Xueli

    2015-02-01

    Traditionally, high-value metabolites have been produced through direct extraction from natural biological sources which are inefficient, given the low abundance of these compounds. On the other hand, these high-value metabolites are usually difficult to be synthesized chemically, due to their complex structures. In the last few years, the discovery of genes involved in the synthetic pathways of these metabolites, combined with advances in synthetic biology tools, has allowed the construction of increasing numbers of yeast cell factories for production of these metabolites from renewable biomass. This review summarizes recent advances in synthetic biology in terms of the use of yeasts as microbial hosts for the identification of the pathways involved in the synthesis, as well as for the production of high-value metabolites. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  7. Urine Metabonomics Reveals Early Biomarkers in Diabetic Cognitive Dysfunction.

    PubMed

    Song, Lili; Zhuang, Pengwei; Lin, Mengya; Kang, Mingqin; Liu, Hongyue; Zhang, Yuping; Yang, Zhen; Chen, Yunlong; Zhang, Yanjun

    2017-09-01

    Recently, increasing attention has been paid to diabetic encephalopathy, which is a frequent diabetic complication and affects nearly 30% of diabetics. Because cognitive dysfunction from diabetic encephalopathy might develop into irreversible dementia, early diagnosis and detection of this disease is of great significance for its prevention and treatment. This study is to investigate the early specific metabolites biomarkers in urine prior to the onset of diabetic cognitive dysfunction (DCD) by using metabolomics technology. An ultra-high performance liquid-chromatography-quadrupole time-of-flight-mass spectrometry (UPLC-Q/TOF-MS) platform was used to analyze the urine samples from diabetic mice that were associated with mild cognitive impairment (MCI) and nonassociated with MCI in the stage of diabetes (prior to the onset of DCD). We then screened and validated the early biomarkers using OPLS-DA model and support vector machine (SVM) method. Following multivariate statistical and integration analysis, we found that seven metabolites could be accepted as early biomarkers of DCD, and the SVM results showed that the prediction accuracy is as high as 91.66%. The identities of four biomarkers were determined by mass spectrometry. The identified biomarkers were largely involved in nicotinate and nicotinamide metabolism, glutathione metabolism, tryptophan metabolism, and sphingolipid metabolism. The present study first revealed reliable biomarkers for early diagnosis of DCD. It provides new insight and strategy for the early diagnosis and treatment of DCD.

  8. Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach.

    PubMed

    Floegel, Anna; Stefan, Norbert; Yu, Zhonghao; Mühlenbruch, Kristin; Drogan, Dagmar; Joost, Hans-Georg; Fritsche, Andreas; Häring, Hans-Ulrich; Hrabě de Angelis, Martin; Peters, Annette; Roden, Michael; Prehn, Cornelia; Wang-Sattler, Rui; Illig, Thomas; Schulze, Matthias B; Adamski, Jerzy; Boeing, Heiner; Pischon, Tobias

    2013-02-01

    Metabolomic discovery of biomarkers of type 2 diabetes (T2D) risk may reveal etiological pathways and help to identify individuals at risk for disease. We prospectively investigated the association between serum metabolites measured by targeted metabolomics and risk of T2D in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam (27,548 adults) among all incident cases of T2D (n = 800, mean follow-up 7 years) and a randomly drawn subcohort (n = 2,282). Flow injection analysis tandem mass spectrometry was used to quantify 163 metabolites, including acylcarnitines, amino acids, hexose, and phospholipids, in baseline serum samples. Serum hexose; phenylalanine; and diacyl-phosphatidylcholines C32:1, C36:1, C38:3, and C40:5 were independently associated with increased risk of T2D and serum glycine; sphingomyelin C16:1; acyl-alkyl-phosphatidylcholines C34:3, C40:6, C42:5, C44:4, and C44:5; and lysophosphatidylcholine C18:2 with decreased risk. Variance of the metabolites was largely explained by two metabolite factors with opposing risk associations (factor 1 relative risk in extreme quintiles 0.31 [95% CI 0.21-0.44], factor 2 3.82 [2.64-5.52]). The metabolites significantly improved T2D prediction compared with established risk factors. They were further linked to insulin sensitivity and secretion in the Tübingen Family study and were partly replicated in the independent KORA (Cooperative Health Research in the Region of Augsburg) cohort. The data indicate that metabolic alterations, including sugar metabolites, amino acids, and choline-containing phospholipids, are associated early on with a higher risk of T2D.

  9. Multimodal neuroimaging of frontal white matter microstructure in early phase schizophrenia: the impact of early adolescent cannabis use

    PubMed Central

    2013-01-01

    Background A disturbance in connectivity between different brain regions, rather than abnormalities within the separate regions themselves, could be responsible for the clinical symptoms and cognitive dysfunctions observed in schizophrenia. White matter, which comprises axons and their myelin sheaths, provides the physical foundation for functional connectivity in the brain. Myelin sheaths are located around the axons and provide insulation through the lipid membranes of oligodendrocytes. Empirical data suggests oligodendroglial dysfunction in schizophrenia, based on findings of abnormal myelin maintenance and repair in regions of deep white matter. The aim of this in vivo neuroimaging project is to assess the impact of early adolescent onset of regular cannabis use on brain white matter tissue integrity, and to differentiate this impact from the white matter abnormalities associated with schizophrenia. The ultimate goal is to determine the liability of early adolescent use of cannabis on brain white matter, in a vulnerable brain. Methods/Design Young adults with schizophrenia at the early stage of the illness (less than 5 years since diagnosis) will be the focus of this project. Four magnetic resonance imaging measurements will be used to assess different cellular aspects of white matter: a) diffusion tensor imaging, b) localized proton magnetic resonance spectroscopy with a focus on the neurochemical N-acetylaspartate, c) the transverse relaxation time constants of regional tissue water, d) and of N-acetylaspartate. These four neuroimaging indices will be assessed within the same brain region of interest, that is, a large white matter fibre bundle located in the frontal region, the left superior longitudinal fasciculus. Discussion We will expand our knowledge regarding current theoretical models of schizophrenia with a more comprehensive multimodal neuroimaging approach to studying the underlying cellular abnormalities of white matter, while taking into

  10. Multimodal neuroimaging of frontal white matter microstructure in early phase schizophrenia: the impact of early adolescent cannabis use.

    PubMed

    Bernier, Denise; Cookey, Jacob; McAllindon, David; Bartha, Robert; Hanstock, Christopher C; Newman, Aaron J; Stewart, Sherry H; Tibbo, Philip G

    2013-10-17

    A disturbance in connectivity between different brain regions, rather than abnormalities within the separate regions themselves, could be responsible for the clinical symptoms and cognitive dysfunctions observed in schizophrenia. White matter, which comprises axons and their myelin sheaths, provides the physical foundation for functional connectivity in the brain. Myelin sheaths are located around the axons and provide insulation through the lipid membranes of oligodendrocytes. Empirical data suggests oligodendroglial dysfunction in schizophrenia, based on findings of abnormal myelin maintenance and repair in regions of deep white matter. The aim of this in vivo neuroimaging project is to assess the impact of early adolescent onset of regular cannabis use on brain white matter tissue integrity, and to differentiate this impact from the white matter abnormalities associated with schizophrenia. The ultimate goal is to determine the liability of early adolescent use of cannabis on brain white matter, in a vulnerable brain. Young adults with schizophrenia at the early stage of the illness (less than 5 years since diagnosis) will be the focus of this project. Four magnetic resonance imaging measurements will be used to assess different cellular aspects of white matter: a) diffusion tensor imaging, b) localized proton magnetic resonance spectroscopy with a focus on the neurochemical N-acetylaspartate, c) the transverse relaxation time constants of regional tissue water, d) and of N-acetylaspartate. These four neuroimaging indices will be assessed within the same brain region of interest, that is, a large white matter fibre bundle located in the frontal region, the left superior longitudinal fasciculus. We will expand our knowledge regarding current theoretical models of schizophrenia with a more comprehensive multimodal neuroimaging approach to studying the underlying cellular abnormalities of white matter, while taking into consideration the important confounding

  11. A Rabbit Model for Assessment of Volatile Metabolite Changes Observed from Skin: a Pressure Ulcer Case Study

    PubMed Central

    Schivo, Michael; Aksenov, Alexander A; Pasamontes, Alberto; Cumeras, Raquel; Weisker, Sandra; Oberbauer, Anita M; Davis, Cristina E

    2017-01-01

    Human skin presents a large, easily accessible matrix that is potentially useful for diagnostic applications based on whole body metabolite changes – some of which will be volatile and detected using minimally invasive tools. Unfortunately, identifying skin biomarkers that can be reliably linked to a particular condition is challenging due to a large variability of genetics, dietary intake, environmental exposures within human populations. This leads to a paucity of clinically validated volatile skin biomarker compounds. Animal models present a very convenient and attractive way to circumvent many of the variability issues. The rabbit (Leporidae) is a potentially logistically useful model to study the skin metabolome, but very limited knowledge of its skin metabolites exists. Here we present the first comprehensive assessment of the volatile fraction of rabbit skin metabolites using polydimethylsiloxane sorbent patch sampling in conjunction with gas chromatography / mass spectrometry (GC/MS). A collection of compounds that are secreted from rabbit skin was documented, and predominantly acyclic long-chain alkyls and alcohols were detected. We then utilized this animal model to study differences between intact skin and skin with early pressure ulcers, as the latter are a major problem in intensive care units. Four New Zealand female white rabbits underwent ulcer formation on one ear with the other ear as a control. Early-stage ulcers were created with neodymium magnets. Histologic analysis showed acute heterophilic dermatitis, edema, and micro-hemorrhage on the ulcerated ears with normal findings on the control ears. The metabolomic analysis revealed subtle but noticeable differences, with several compounds associated with the oxidative stress-related degradation of lipids found to be present in greater abundances in ulcerated ears. The metabolomic findings correlate with histologic evidence of early-stage ulcers. We postulate that the Leporidae model recapitulated

  12. Hydrophobicity and Charge Shape Cellular Metabolite Concentrations

    PubMed Central

    Bar-Even, Arren; Noor, Elad; Flamholz, Avi; Buescher, Joerg M.; Milo, Ron

    2011-01-01

    What governs the concentrations of metabolites within living cells? Beyond specific metabolic and enzymatic considerations, are there global trends that affect their values? We hypothesize that the physico-chemical properties of metabolites considerably affect their in-vivo concentrations. The recently achieved experimental capability to measure the concentrations of many metabolites simultaneously has made the testing of this hypothesis possible. Here, we analyze such recently available data sets of metabolite concentrations within E. coli, S. cerevisiae, B. subtilis and human. Overall, these data sets encompass more than twenty conditions, each containing dozens (28-108) of simultaneously measured metabolites. We test for correlations with various physico-chemical properties and find that the number of charged atoms, non-polar surface area, lipophilicity and solubility consistently correlate with concentration. In most data sets, a change in one of these properties elicits a ∼100 fold increase in metabolite concentrations. We find that the non-polar surface area and number of charged atoms account for almost half of the variation in concentrations in the most reliable and comprehensive data set. Analyzing specific groups of metabolites, such as amino-acids or phosphorylated nucleotides, reveals even a higher dependence of concentration on hydrophobicity. We suggest that these findings can be explained by evolutionary constraints imposed on metabolite concentrations and discuss possible selective pressures that can account for them. These include the reduction of solute leakage through the lipid membrane, avoidance of deleterious aggregates and reduction of non-specific hydrophobic binding. By highlighting the global constraints imposed on metabolic pathways, future research could shed light onto aspects of biochemical evolution and the chemical constraints that bound metabolic engineering efforts. PMID:21998563

  13. Clinical features and hormonal profiles of cloprostenol-induced early abortions in heifers monitored by ultrasonography

    PubMed Central

    Lobago, Fikre; Gustafsson, Hans; Bekana, Merga; Beckers, Jean-François; Kindahl, Hans

    2006-01-01

    Background The present study describes the clinical features and plasma profiles of bovine pregnancy-associated glycoprotein 1 (bPAG1), the main metabolite of prostaglandin F2α (PG metabolite) and progesterone (P4) in heifers in which early abortions were induced. Methods Early abortions were induced in four heifers with cloprostenol and monitored by ultrasonography. Blood samples were collected and the plasma were analyzed for bPAG 1, P4 and PG metabolite. Results The foetal heartbeat rates varied from 170–186 beats per minute for all foetuses up to the date of cloprostenol treatment. Foetal death was confirmed within two days after cloprostenol treatment. Prior to cloprostenol injection, blood plasma concentrations of bPAG1, PG metabolite and P4 varied from 8.4 – 40.0 ng/mL, 158 – 275 pmol/L and 20.7 – 46.9 nmol/L, respectively. After the foetus expelled, the plasma level of bPAG1 began to decrease but the decrease was small and gradual. The estimated half-life of bPAG1 was 1.8 – 6.6 days. The plasma level of the PG metabolite started to have short lasting peaks (above 300 pmol/L) within three hours after cloprostenol treatment. The plasma concentrations of P4 dropped sharply to less than 4 nmol/L after 24 hours of cloprostenol injection. Conclusion The current findings indicated that after early closprostenol-induced foetal death, the plasma concentration of bPAG1 decreased gradually and showed a tendency of variation with the stages of pregnancy. PMID:17121683

  14. Abnormal pressures as hydrodynamic phenomena

    USGS Publications Warehouse

    Neuzil, C.E.

    1995-01-01

    So-called abnormal pressures, subsurface fluid pressures significantly higher or lower than hydrostatic, have excited speculation about their origin since subsurface exploration first encountered them. Two distinct conceptual models for abnormal pressures have gained currency among earth scientists. The static model sees abnormal pressures generally as relict features preserved by a virtual absence of fluid flow over geologic time. The hydrodynamic model instead envisions abnormal pressures as phenomena in which flow usually plays an important role. This paper develops the theoretical framework for abnormal pressures as hydrodynamic phenomena, shows that it explains the manifold occurrences of abnormal pressures, and examines the implications of this approach. -from Author

  15. Gonadotrophin abnormalities in an infant with Lowe syndrome.

    PubMed

    Warner, Bronwen E; Inward, Carol D; Burren, Christine P

    2017-01-01

    been reported, but has focused on abnormalities in adolescence and young adulthood: pubertal delay and infertility.We present an infant with isolated LH elevation at baseline and on GnRH stimulation testing who also had bilateral impalpable testes.Early testing of the HPG axis in patients with Lowe syndrome may help predict gonadal abnormalities from a younger age, which will enhance the overall case management into adolescence.

  16. Production of Secondary Metabolites in Extreme Environments: Food- and Airborne Wallemia spp. Produce Toxic Metabolites at Hypersaline Conditions

    PubMed Central

    Frisvad, Jens C.; Kocev, Dragi; Džeroski, Sašo; Gunde-Cimerman, Nina

    2016-01-01

    The food- and airborne fungal genus Wallemia comprises seven xerophilic and halophilic species: W. sebi, W. mellicola, W. canadensis, W. tropicalis, W. muriae, W. hederae and W. ichthyophaga. All listed species are adapted to low water activity and can contaminate food preserved with high amounts of salt or sugar. In relation to food safety, the effect of high salt and sugar concentrations on the production of secondary metabolites by this toxigenic fungus was investigated. The secondary metabolite profiles of 30 strains of the listed species were examined using general growth media, known to support the production of secondary metabolites, supplemented with different concentrations of NaCl, glucose and MgCl2. In more than two hundred extracts approximately one hundred different compounds were detected using high-performance liquid chromatography-diode array detection (HPLC-DAD). Although the genome data analysis of W. mellicola (previously W. sebi sensu lato) and W. ichthyophaga revealed a low number of secondary metabolites clusters, a substantial number of secondary metabolites were detected at different conditions. Machine learning analysis of the obtained dataset showed that NaCl has higher influence on the production of secondary metabolites than other tested solutes. Mass spectrometric analysis of selected extracts revealed that NaCl in the medium affects the production of some compounds with substantial biological activities (wallimidione, walleminol, walleminone, UCA 1064-A and UCA 1064-B). In particular an increase in NaCl concentration from 5% to 15% in the growth media increased the production of the toxic metabolites wallimidione, walleminol and walleminone. PMID:28036382

  17. Urine and plasma metabolites predict the development of diabetic nephropathy in individuals with Type 2 diabetes mellitus.

    PubMed

    Pena, M J; Lambers Heerspink, H J; Hellemons, M E; Friedrich, T; Dallmann, G; Lajer, M; Bakker, S J L; Gansevoort, R T; Rossing, P; de Zeeuw, D; Roscioni, S S

    2014-09-01

    Early detection of individuals with Type 2 diabetes mellitus or hypertension at risk for micro- or macroalbuminuria may facilitate prevention and treatment of renal disease. We aimed to discover plasma and urine metabolites that predict the development of micro- or macroalbuminuria. Patients with Type 2 diabetes (n = 90) and hypertension (n = 150) were selected from the community-cohort 'Prevention of REnal and Vascular End-stage Disease' (PREVEND) and the Steno Diabetes Center for this case-control study. Cases transitioned in albuminuria stage (from normo- to microalbuminuria or micro- to macroalbuminuria). Controls, matched for age, gender, and baseline albuminuria stage, remained in normo- or microalbuminuria stage during follow-up. Median follow-up was 2.9 years. Metabolomics were performed on plasma and urine. The predictive performance of a metabolite for albuminuria transition was assessed by the integrated discrimination index. In patients with Type 2 diabetes with normoalbuminuria, no metabolites discriminated cases from controls. In patients with Type 2 diabetes with microalbuminuria, plasma histidine was lower (fold change = 0.87, P = 0.02) and butenoylcarnitine was higher (fold change = 1.17, P = 0.007) in cases vs. controls. In urine, hexose, glutamine and tyrosine were lower in cases vs. controls (fold change = 0.20, P < 0.001; 0.32, P < 0.001; 0.51, P = 0.006, respectively). Adding the metabolites to a model of baseline albuminuria and estimated glomerular filtration rate metabolites improved risk prediction for macroalbuminuria transition (plasma integrated discrimination index = 0.28, P < 0.001; urine integrated discrimination index = 0.43, P < 0.001). These metabolites did not differ between hypertensive cases and controls without Type 2 diabetes. Type 2 diabetes-specific plasma and urine metabolites were discovered that predict the development of macroalbuminuria beyond established renal risk markers. These results should be confirmed in a large

  18. Do abnormal responses show utilitarian bias?

    PubMed

    Kahane, Guy; Shackel, Nicholas

    2008-03-20

    Neuroscience has recently turned to the study of utilitarian and non-utilitarian moral judgement. Koenigs et al. examine the responses of normal subjects and those with ventromedial-prefrontal-cortex (VMPC) damage to moral scenarios drawn from functional magnetic resonance imaging studies by Greene et al., and claim that patients with VMPC damage have an abnormally "utilitarian" pattern of moral judgement. It is crucial to the claims of Koenigs et al. that the scenarios of Greene et al. pose a conflict between utilitarian consequence and duty: however, many of them do not meet this condition. Because of this methodological problem, it is too early to claim that VMPC patients have a utilitarian bias.

  19. Lysosomal abnormalities in hereditary spastic paraplegia types SPG15 and SPG11

    PubMed Central

    Renvoisé, Benoît; Chang, Jaerak; Singh, Rajat; Yonekawa, Sayuri; FitzGibbon, Edmond J; Mankodi, Ami; Vanderver, Adeline; Schindler, Alice B; Toro, Camilo; Gahl, William A; Mahuran, Don J; Blackstone, Craig; Pierson, Tyler Mark

    2014-01-01

    Objective Hereditary spastic paraplegias (HSPs) are among the most genetically diverse inherited neurological disorders, with over 70 disease loci identified (SPG1-71) to date. SPG15 and SPG11 are clinically similar, autosomal recessive disorders characterized by progressive spastic paraplegia along with thin corpus callosum, white matter abnormalities, cognitive impairment, and ophthalmologic abnormalities. Furthermore, both have been linked to early-onset parkinsonism. Methods We describe two new cases of SPG15 and investigate cellular changes in SPG15 and SPG11 patient-derived fibroblasts, seeking to identify shared pathogenic themes. Cells were evaluated for any abnormalities in cell division, DNA repair, endoplasmic reticulum, endosomes, and lysosomes. Results Fibroblasts prepared from patients with SPG15 have selective enlargement of LAMP1-positive structures, and they consistently exhibited abnormal lysosomal storage by electron microscopy. A similar enlargement of LAMP1-positive structures was also observed in cells from multiple SPG11 patients, though prominent abnormal lysosomal storage was not evident. The stabilities of the SPG15 protein spastizin/ZFYVE26 and the SPG11 protein spatacsin were interdependent. Interpretation Emerging studies implicating these two proteins in interactions with the late endosomal/lysosomal adaptor protein complex AP-5 are consistent with shared abnormalities in lysosomes, supporting a converging mechanism for these two disorders. Recent work with Zfyve26−/− mice revealed a similar phenotype to human SPG15, and cells in these mice had endolysosomal abnormalities. SPG15 and SPG11 are particularly notable among HSPs because they can also present with juvenile parkinsonism, and this lysosomal trafficking or storage defect may be relevant for other forms of parkinsonism associated with lysosomal dysfunction. PMID:24999486

  20. Late onset canonical babbling: a possible early marker of abnormal development.

    PubMed

    Oller, D K; Eilers, R E; Neal, A R; Cobo-Lewis, A B

    1998-11-01

    By their 10th month of life, typically developing infants produce canonical babbling, which includes the well-formed syllables required for meaningful speech. Research suggests that emerging speech or language-related disorders might be associated with late onset of canonical babbling. Onset of canonical babbling was investigated for 1,536 high-risk infants, at about 10-months corrected age. Parental report by open-ended questionnaire was found to be an efficient method for ascertaining babbling status. Although delays were infrequent, they were often associated with genetic, neurological, anatomical, and/or physiological abnormalities. Over half the cases of late canonical babbling were not, at the time they were discovered associated with prior significant medical diagnoses. Late canonical-babbling onset may be a predictor of later developmental disabilities, including problems in speech, language, and reading.

  1. Xeroderma pigmentosum neurological abnormalities correlate with colony-forming ability after ultraviolet radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, A.D.; Barrett, S.F.; Robbins, J.H.

    1978-04-01

    Xeroderma pigmentosum is an autosomal recessive disease in which DNA repair processes are defective. All xeroderma pigmentosum patients develop premature aging of sun exposed skin, and some develop neurological abnormalities due to premature death of nerve cells. Sensitivity to ultraviolet radiation of 24 xeroderma pigmentosum fibroblast strains was studied in vitro by measuring each strain's ability to divide and form colonies after irradiation. The most sensitive strains were derived from patients who had an early onset of neurological abnormalities; less sensitive strains were from patients with a later onset; and the most resistant strains were from patients without neurological abnormalities.more » The uv sensitivities of strains from each member of a sibling pair with xeroderma pigmentosum were identical, indicating that uv sensitivity of xeroderma pigmentosum strains is determined by the patient's inherited DNA repair defect. The results suggest that effective DNA repair is required to maintain the functional integrity of the human nervous system by preventing premature death of neurons.« less

  2. Metabolic Responses of Poplar to Apripona germari (Hope) as Revealed by Metabolite Profiling

    PubMed Central

    Wang, Lijuan; Qu, Liangjian; Zhang, Liwei; Hu, Jianjun; Tang, Fang; Lu, Mengzhu

    2016-01-01

    Plants have developed biochemical responses to adapt to biotic stress. To characterize the resistance mechanisms in poplar tree against Apripona germari, comprehensive metabolomic changes of poplar bark and xylem in response to A. germari infection were examined by gas chromatography time-of-flight mass spectrometry (GC–TOF/MS). It was found that, four days after feeding (stage I), A. germari infection brought about changes in various metabolites, such as phenolics, amino acids and sugars in both bark and xylem. Quinic acid, epicatechin, epigallocatechin and salicin might play a role in resistance response in bark, while coniferyl alcohol, ferulic acid and salicin contribute resistance in xylem. At feeding stages II when the larvae fed for more than one month, fewer defensive metabolites were induced, but levels of many intermediates of glycolysis and the tricarboxylic acid (TCA) cycle were reduced, especially in xylem. These results suggested that the defense strategies against A. germari might depend mainly on the early defense responses in poplar. In addition, it was found that bark and xylem in infected trees accumulated higher levels of salicylic acid and 4-aminobutyric acid, respectively, these tissues displaying a direct and systemic reaction against A. germari. However, the actual role of the two metabolites in A. germari-induced defense in poplar requires further investigation. PMID:27331808

  3. Effects of red pepper powder on microbial communities and metabolites during kimchi fermentation.

    PubMed

    Jeong, Sang Hyeon; Lee, Hyo Jung; Jung, Ji Young; Lee, Se Hee; Seo, Hye-Young; Park, Wan-Soo; Jeon, Che Ok

    2013-01-01

    To investigate the effects of red pepper powder on kimchi fermentation, Baechu (Chinese cabbage) and Mu (radish) kimchi, with and without red pepper powder, were prepared and their characteristics, including pH, colony-forming units (CFU), microbial communities, and metabolites, were periodically monitored for 40days. Measurements of pH and CFU showed that the lag phases of kimchi fermentation were clearly extended by the addition of red pepper powder. Microbial community analysis using a barcoded pyrosequencing analysis showed that the bacterial diversities in kimchi with red pepper powder decreased more slowly than kimchi without red pepper powder as kimchi fermentation progressed. The kimchi microbial communities were represented mainly by the genera Leuconostoc and Lactobacillus in all kimchi, and the abundance of Weissella was negligible in kimchi without red pepper powder. However, interestingly, kimchi with red pepper powder contained much higher proportions of Weissella than kimchi without red pepper powder, while the proportions of Leuconostoc and Lactobacillus were evidently lower in kimchi with red pepper powder compared to kimchi without red pepper powder. Metabolite analysis using a (1)H NMR technique also showed that the fermentation of kimchi with red pepper powder progressed a little more slowly than that of kimchi without red pepper powder. Principle component analysis using microbial communities and metabolites supported the finding that the addition of red pepper powder into kimchi resulted in the slowing of the kimchi fermentation process, especially during the early fermentation period and influenced the microbial succession and metabolite production during the kimchi fermentation processes. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Abnormal Liver Biochemistry Is Common in Pediatric Inflammatory Bowel Disease: Prevalence and Associations.

    PubMed

    Valentino, Pamela L; Feldman, Brian M; Walters, Thomas D; Griffiths, Anne M; Ling, Simon C; Pullenayegum, Eleanor M; Kamath, Binita M

    2015-12-01

    Liver enzymes (LEs) abnormalities associated with pediatric inflammatory bowel diseases (IBD) are understudied. We undertook to describe the development and associations of abnormal LEs in pediatric IBD. We ascertained a cohort of 300 children with IBD and collected retrospective data. A Kaplan-Meier analysis determined the time to development of different thresholds of abnormal LEs. Associations between clinical variables and the development of abnormal LEs were determined. The probability of developing the first episode of abnormal LEs above the upper limit of normal (ULN) within 150 months was 58.1% (16.3% by 1 mo post-IBD diagnosis). There was a 6% prevalence of primary sclerosing cholangitis (PSC) or autoimmune sclerosing cholangitis (ASC) in this cohort. Of those diagnosed with PSC/ASC, 93% had persistent LE elevations at a threshold of >2× ULN, while those without PSC/ASC had a 4% probability of this abnormality. Elevated gamma glutamyltranspeptidase levels of 252 U/L had a 99% sensitivity and 71% specificity for PSC/ASC in IBD. After exclusion of patients with PSC/ASC, corticosteroids, antibiotics, and exclusive enteral nutrition demonstrated strongly positive associations with the first development of abnormal LEs >ULN (hazard ratio 2.1 [95% confidence interval, 1.3-3.3], hazard ratio 5.6 [95% confidence interval, 3.6-8.9], hazard ratio 4.2 [95% confidence interval, 1.6-11.3], respectively). Abnormal LEs are common in pediatric IBD and occur early. PSC/ASC is associated with persistently high LEs and gamma glutamyltranspeptidase levels >252 U/L. Children with IBD are at risk of elevated LEs if they require medications other than 5-ASA to induce IBD remission.

  5. Gamma abnormalities during perception of illusory figures in autism.

    PubMed

    Brown, Caroline; Gruber, Thomas; Boucher, Jill; Rippon, Gina; Brock, Jon

    2005-06-01

    This experiment was designed to test the hypothesis that perceptual abnormalities in autism might be associated with alteration of induced gamma activity patterns overlying visual cortical regions. EEG was recorded from six adolescents with autism and eight controls matched on chronological age, and verbal and nonverbal mental age, whilst identifying the presence or absence of an illusory Kanizsa shape. Although there were no reaction time or accuracy differences between the groups there were significant task-related differences in cortical activity. Control participants showed typical gamma-band activity over parietal regions at around 350 msec post onset of shape trials, similar to gamma patterns found in previous studies with non-impaired adults. In contrast, autistic participants showed overall increased activity, including an early 100 msec gamma peak and a late induced peak, 50 to 70 msec earlier than that shown by the control group. We interpret the abnormal gamma activity to reflect decreased "signal to noise" due to decreased inhibitory processing. In this experiment we did not establish a link between altered perception and abnormal gamma, as the autistic participants' behaviour did not differ from the controls. Future work should be designed to replicate this phenomenon and establish the perceptual consequences of altered gamma activity.

  6. Deficits in Neurite Density Underlie White Matter Structure Abnormalities in First-Episode Psychosis.

    PubMed

    Rae, Charlotte L; Davies, Geoff; Garfinkel, Sarah N; Gabel, Matt C; Dowell, Nicholas G; Cercignani, Mara; Seth, Anil K; Greenwood, Kathryn E; Medford, Nick; Critchley, Hugo D

    2017-11-15

    Structural abnormalities across multiple white matter tracts are recognized in people with early psychosis, consistent with dysconnectivity as a neuropathological account of symptom expression. We applied advanced neuroimaging techniques to characterize microstructural white matter abnormalities for a deeper understanding of the developmental etiology of psychosis. Thirty-five first-episode psychosis patients, and 19 healthy controls, participated in a quantitative neuroimaging study using neurite orientation dispersion and density imaging, a multishell diffusion-weighted magnetic resonance imaging technique that distinguishes white matter fiber arrangement and geometry from changes in neurite density. Fractional anisotropy (FA) and mean diffusivity images were also derived. Tract-based spatial statistics compared white matter structure between patients and control subjects and tested associations with age, symptom severity, and medication. Patients with first-episode psychosis had lower regional FA in multiple commissural, corticospinal, and association tracts. These abnormalities predominantly colocalized with regions of reduced neurite density, rather than aberrant fiber bundle arrangement (orientation dispersion index). There was no direct relationship with active symptoms. FA decreased and orientation dispersion index increased with age in patients, but not control subjects, suggesting accelerated effects of white matter geometry change. Deficits in neurite density appear fundamental to abnormalities in white matter integrity in early psychosis. In the first application of neurite orientation dispersion and density imaging in psychosis, we found that processes compromising axonal fiber number, density, and myelination, rather than processes leading to spatial disruption of fiber organization, are implicated in the etiology of psychosis. This accords with a neurodevelopmental origin of aberrant brain-wide structural connectivity predisposing individuals to

  7. Early life permethrin exposure leads to hypervitaminosis D, nitric oxide and catecholamines impairment.

    PubMed

    Fedeli, Donatella; Carloni, Manuel; Nasuti, Cinzia; Gambini, Anna; Scocco, Vitangelo; Gabbianelli, Rosita

    2013-09-01

    The aim of this study is to gain more knowledge on the impact of early life pesticide exposure on premature aging. The effect of a low dose of the insecticide permethrin administered to rats during early life (1/50 LD50, from 6th to 21st day of life) was analyzed by measuring some metabolites in plasma and urine of 500-day-old animals. Significant differences in early life treated rats compared to the control group were found in the plasma levels of Ca(++), Na(+), 25-hydroxy-vitamin D, adrenaline, noradrenaline, nitric oxide, cholesterol and urea while in urine only Na(+) content was different. These results add information on the impact of permethrin during the neonatal period, supporting the evidence that early life environmental exposure to xenobiotics has long-term effects, inducing modifications in adulthood that can be revealed by the analysis of some macroelements, metabolites and catecholamines in plasma, when rats are 500 days old. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Biologically Active Secondary Metabolites from the Fungi.

    PubMed

    Bills, Gerald F; Gloer, James B

    2016-11-01

    Many Fungi have a well-developed secondary metabolism. The diversity of fungal species and the diversification of biosynthetic gene clusters underscores a nearly limitless potential for metabolic variation and an untapped resource for drug discovery and synthetic biology. Much of the ecological success of the filamentous fungi in colonizing the planet is owed to their ability to deploy their secondary metabolites in concert with their penetrative and absorptive mode of life. Fungal secondary metabolites exhibit biological activities that have been developed into life-saving medicines and agrochemicals. Toxic metabolites, known as mycotoxins, contaminate human and livestock food and indoor environments. Secondary metabolites are determinants of fungal diseases of humans, animals, and plants. Secondary metabolites exhibit a staggering variation in chemical structures and biological activities, yet their biosynthetic pathways share a number of key characteristics. The genes encoding cooperative steps of a biosynthetic pathway tend to be located contiguously on the chromosome in coregulated gene clusters. Advances in genome sequencing, computational tools, and analytical chemistry are enabling the rapid connection of gene clusters with their metabolic products. At least three fungal drug precursors, penicillin K and V, mycophenolic acid, and pleuromutilin, have been produced by synthetic reconstruction and expression of respective gene clusters in heterologous hosts. This review summarizes general aspects of fungal secondary metabolism and recent developments in our understanding of how and why fungi make secondary metabolites, how these molecules are produced, and how their biosynthetic genes are distributed across the Fungi. The breadth of fungal secondary metabolite diversity is highlighted by recent information on the biosynthesis of important fungus-derived metabolites that have contributed to human health and agriculture and that have negatively impacted crops

  9. Effect of early pregnancy diagnosis by per rectum amniotic sac palpation on pregnancy loss, calving rates, and abnormalities in newborn dairy calves.

    PubMed

    Romano, Juan E; Bryan, Kelsey; Ramos, Roney S; Velez, Juan; Pinedo, Pablo

    2016-02-01

    The objectives of the present study were to evaluate the effect of per rectal amniotic sac palpation (ASP) for pregnancy diagnosis during the late embryonic period on pregnancy loss, calving rates, and abnormalities in newborn calves. A controlled, randomized, blocked, blind experiment containing 680 lactating pregnant dairy cows with a viable embryo diagnosed by transrectal ultrasonography was performed. Two dairy operation sites (farm A and farm B) were selected. At each farm, the cows were randomly divided into control (CON) and ASP groups. The CON group was not subjected to pregnancy diagnosis via per rectum palpation. The ASP examinations were performed by one experienced veterinarian between Days 34 and 45 after breeding. All cows were reevaluated by transrectal ultrasonography only between 2 and 4 weeks later. Two calving rates were calculated: calving rate 1 (cows that calved from the initial number of pregnant cows) and calving rate 2 (cows that calved from cows pregnant at reexamination). In farm A, the percentages of early pregnancy loss were 11.5% (19 of 165) and 13.2% (24 of 182) for the CON and the ASP groups, respectively (P = 0.64). In farm B, the percentage of early pregnancy loss was 11.2% (19 of 170) for the CON group and 8.8% (14 of 159; P = 0.48) for the ASP group. In farm A, the percentage of late pregnancy loss was 7.6% (11 of 145) for the CON group and 5.5% (8 of 155; P = 0.39) for the ASP group. In farm B, the percentage of late pregnancy loss was 3.7% (5 of 137) for the CON group and 6.3% (8 of 127; P = 0.32) for the ASP group. In farm A, early pregnancy loss was higher than late pregnancy loss (12.4% vs. 6.3%; P = 0.01), and in farm B, the same tendency was detected (10.0% vs. 4.9%, for early and late pregnancy loss, respectively; P = 0.02). In farm A, calving rate 1 was 81.2% (134 of 165) for the CON group and 80.8% (147 of 182; P = 0.92) for the ASP group. Calving rate 2 for the same groups was 92.4% (134 of 145) and 94.8% (147 of 155

  10. Drug repositioning for enzyme modulator based on human metabolite-likeness.

    PubMed

    Lee, Yoon Hyeok; Choi, Hojae; Park, Seongyong; Lee, Boah; Yi, Gwan-Su

    2017-05-31

    Recently, the metabolite-likeness of the drug space has emerged and has opened a new possibility for exploring human metabolite-like candidates in drug discovery. However, the applicability of metabolite-likeness in drug discovery has been largely unexplored. Moreover, there are no reports on its applications for the repositioning of drugs to possible enzyme modulators, although enzyme-drug relations could be directly inferred from the similarity relationships between enzyme's metabolites and drugs. We constructed a drug-metabolite structural similarity matrix, which contains 1,861 FDA-approved drugs and 1,110 human intermediary metabolites scored with the Tanimoto similarity. To verify the metabolite-likeness measure for drug repositioning, we analyzed 17 known antimetabolite drugs that resemble the innate metabolites of their eleven target enzymes as the gold standard positives. Highly scored drugs were selected as possible modulators of enzymes for their corresponding metabolites. Then, we assessed the performance of metabolite-likeness with a receiver operating characteristic analysis and compared it with other drug-target prediction methods. We set the similarity threshold for drug repositioning candidates of new enzyme modulators based on maximization of the Youden's index. We also carried out literature surveys for supporting the drug repositioning results based on the metabolite-likeness. In this paper, we applied metabolite-likeness to repurpose FDA-approved drugs to disease-associated enzyme modulators that resemble human innate metabolites. All antimetabolite drugs were mapped with their known 11 target enzymes with statistically significant similarity values to the corresponding metabolites. The comparison with other drug-target prediction methods showed the higher performance of metabolite-likeness for predicting enzyme modulators. After that, the drugs scored higher than similarity score of 0.654 were selected as possible modulators of enzymes for

  11. The WEIZMASS spectral library for high-confidence metabolite identification

    NASA Astrophysics Data System (ADS)

    Shahaf, Nir; Rogachev, Ilana; Heinig, Uwe; Meir, Sagit; Malitsky, Sergey; Battat, Maor; Wyner, Hilary; Zheng, Shuning; Wehrens, Ron; Aharoni, Asaph

    2016-08-01

    Annotation of metabolites is an essential, yet problematic, aspect of mass spectrometry (MS)-based metabolomics assays. The current repertoire of definitive annotations of metabolite spectra in public MS databases is limited and suffers from lack of chemical and taxonomic diversity. Furthermore, the heterogeneity of the data prevents the development of universally applicable metabolite annotation tools. Here we present a combined experimental and computational platform to advance this key issue in metabolomics. WEIZMASS is a unique reference metabolite spectral library developed from high-resolution MS data acquired from a structurally diverse set of 3,540 plant metabolites. We also present MatchWeiz, a multi-module strategy using a probabilistic approach to match library and experimental data. This strategy allows efficient and high-confidence identification of dozens of metabolites in model and exotic plants, including metabolites not previously reported in plants or found in few plant species to date.

  12. Testosterone metabolism revisited: discovery of new metabolites.

    PubMed

    Pozo, Oscar J; Marcos, Josep; Ventura, Rosa; Fabregat, Andreu; Segura, Jordi

    2010-10-01

    The metabolism of testosterone is revisited. Four previously unreported metabolites were detected in urine after hydrolysis with KOH using a liquid chromatography-tandem mass spectrometry method and precursor ion scan mode. The metabolites were characterized by a product ion scan obtained with accurate mass measurements. Androsta-4,6-dien-3,17-dione, androsta-1,4-dien-3,17-dione, 17-hydroxy-androsta-4,6-dien-3-one and 15-androsten-3,17-dione were proposed as feasible structures for these metabolites on the basis of the mass spectrometry data. The proposed structures were confirmed by analysis of synthetic reference compounds. Only 15-androsten-3,17-dione could not be confirmed, owing to the lack of a commercially available standard. That all four compounds are testosterone metabolites was confirmed by the qualitative analysis of several urine samples collected before and after administration of testosterone undecanoate. The metabolite androsta-1,4-dien-3,17-dione has a structure analogous to that of the exogenous anabolic steroid boldenone. Specific transitions for boldenone and its metabolite 17β-hydroxy-5β-androst-1-en-3-one were also monitored. Both compounds were also detected after KOH treatment, suggesting that this metabolic pathway is involved in the endogenous detection of boldenone previously reported by several authors.

  13. SPECT brain perfusion abnormalities in mild or moderate traumatic brain injury.

    PubMed

    Abdel-Dayem, H M; Abu-Judeh, H; Kumar, M; Atay, S; Naddaf, S; El-Zeftawy, H; Luo, J Q

    1998-05-01

    The purpose of this atlas is to present a review of the literature showing the advantages of SPECT brain perfusion imaging (BPI) in mild or moderate traumatic brain injury (TBI) over other morphologic imaging modalities such as x-ray CT or MRI. The authors also present the technical recommendations for SPECT brain perfusion currently practiced at their center. For the radiopharmaceutical of choice, a comparison between early and delayed images using Tc-99m HMPAO and Tc-99m ECD showed that Tc-99m HMPAO is more stable in the brain with no washout over time. Therefore, the authors feel that Tc-99m HMPAO is preferable to Tc-99m ECD. Recommendations regarding standardizing intravenous injection, the acquisition, processing parameters, and interpretation of scans using a ten grade color scale, and use of the cerebellum as the reference organ are presented. SPECT images of 228 patients (age range, 11 to 88; mean, 40.8 years) with mild or moderate TBI and no significant medical history that interfered with the results of the SPECT BP were reviewed. The etiology of the trauma was in the following order of frequency: motor vehicle accidents (45%) followed by blow to the head (36%) and a fall (19%). Frequency of the symptoms was headache (60.9%), memory problems (27.6%), dizziness (26.7%), and sleep disorders (8.7%). Comparison between patients imaged early (<3 months) versus those imaged delayed (>3 months) from the time of the accident, showed that early imaging detected more lesions (4.2 abnormal lesions per study compared to 2.7 in those imaged more than 3 months after the accident). Of 41 patients who had mild traumatic injury without loss of consciousness and had normal CT, 28 studies were abnormal. Focal areas of hypoperfusion were seen in 77% (176 patients, 612 lesions) of the group of 228 patients. The sites of abnormalities were in the following order: basal ganglia and thalami, 55.2%, frontal lobes, 23.8%, temporal lobes, 13%, parietal, 3.7%, insular and occipital

  14. Non-targeted metabolite profiling of citrus juices as a tool for variety discrimination and metabolite flow analysis.

    PubMed

    Arbona, Vicent; Iglesias, Domingo J; Gómez-Cadenas, Aurelio

    2015-02-05

    Genetic diversity of citrus includes intrageneric hybrids, cultivars arising from cross-pollination and/or somatic mutations with particular biochemical compounds such as sugar, acids and secondary metabolite composition. Secondary metabolite profiles of juices from 12 commercial varieties grouped into blonde and navel types, mandarins, lemons and grapefruits were analyzed by LC/ESI-QTOF-MS. HCA on metabolite profiling data revealed the existence of natural groups demarcating fruit types and varieties associated to specific composition patterns. The unbiased classification provided by HCA was used for PLS-DA to find the potential variables (mass chromatographic features) responsible for the classification. Abscisic acid and derivatives, several flavonoids and limonoids were identified by analysis of mass spectra. To facilitate interpretation, metabolites were represented as flow charts depicting biosynthetic pathways. Mandarins 'Fortune' and 'Hernandina' along with oranges showed higher ABA contents and ABA degradation products were present as glycosylated forms in oranges and certain mandarins. All orange and grapefruit varieties showed high limonin contents and its glycosylated form, that was only absent in lemons. The rest of identified limonoids were highly abundant in oranges. Particularly, Sucrenya cultivar showed a specific accumulation of obacunone and limonoate A-ring lactone. Polymethoxylated flavanones (tangeritin and isomers) were absolutely absent from lemons and grapefruits whereas kaempferol deoxyhexose hexose isomer #2, naringin and neohesperidin were only present in these cultivars. Analysis of relative metabolite build-up in closely-related genotypes allowed the efficient demarcation of cultivars and suggested the existence of genotype-specific regulatory mechanisms underlying the differential metabolite accumulation.

  15. The differential metabolite profiles of acute lymphoblastic leukaemic patients treated with 6-mercaptopurine using untargeted metabolomics approach.

    PubMed

    Bannur, Z; Teh, L K; Hennesy, T; Rosli, W R W; Mohamad, N; Nasir, A; Ankathil, R; Zakaria, Z A; Baba, A; Salleh, M Z

    2014-04-01

    Acute lymphoblastic leukaemia (ALL) has posed challenges to the clinician due to variable patients' responses and late diagnosis. With the advance in metabolomics, early detection and personalised treatment are possible. Metabolomic profile of 21 ALL patients treated with 6-mercaptopurine and 10 healthy volunteers were analysed using liquid chromatography/mass spectrometry quadrupole-time of flight (LC/MS Q-TOF). Principal components analysis (PCA), recursive analysis, clustering and pathway analysis were performed using MassHunter Qualitative and Mass Profiler Professional (MPP) software. Several metabolites were found to be expressed differently in patients treated with 6-mercaptopurine. Interestingly, 13 metabolites were significantly differently expressed [p-value <0.01 (unpaired t-test) and 2-fold change] in 19% of the patients who had relapses in their treatment. Down-regulated metabolites in relapsed patients were 1-tetrahexanoyl-2-(8-[3]-ladderane-octanyl)-sn-GPEtn, GPEtn (18:1(9Z)/0:0), GPCho(O-6:0/O-6:0), GPCho(O-2:0/O-1:0), methyl 8-[2-(2-formyl-vinyl)-3-hydroxy-5-oxo-cyclopentyl]-octanoate and plasma free amino acids (PFAA). Characterizing the subjects according to their ITPA 94C>A genotypes reveal differential expression of metabolites. Our research contributes to identification of metabolites that could be used to monitor disease progress of patients and allow targeted therapy for ALL at different stages, especially in preventing complication of relapse. Copyright © 2014 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  16. GC-MS Metabolomics Identifies Metabolite Alterations That Precede Subclinical Mastitis in the Blood of Transition Dairy Cows.

    PubMed

    Dervishi, Elda; Zhang, Guanshi; Dunn, Suzanna M; Mandal, Rupasri; Wishart, David S; Ametaj, Burim N

    2017-02-03

    The objectives of this study were to determine alterations in the serum metabolites related to amino acid (AA), carbohydrate, and lipid metabolism in transition dairy cows before diagnosis of subclinical mastitis (SCM), during, and after diagnosis of disease. A subclinical mastitis case was determined as a cow having somatic cell count (SCC) > 200 000/mL of milk for two or more consecutive reports. Blood samples were collected from 100 Holstein dairy cows at five time points at -8 and -4 weeks before parturition, at the week of SCM diagnosis, and +4 and +8 weeks after parturition. Twenty healthy control cows (CON) and six cows that were diagnosed with SCM were selected for serum analysis with GC-MS. At -8 weeks a total of 13 metabolites were significantly altered in SCM cows. In addition, at the week of SCM diagnosis 17 metabolites were altered in these cows. Four weeks after parturition 10 metabolites were altered in SCM cows and at +8 weeks 11 metabolites were found to be different between the two groups. Valine (Val), serine (Ser), tyrosine (Tyr), and phenylalanine (Phe) had very good predictive abilities for SCM and could be used at -8 weeks and -4 weeks before calving. Combination of Val, isoleucine (Ile), Ser, and proline (Pro) can be used as diagnostic biomarkers of SCM during early stages of lactation at +4 to +8 weeks after parturition. In conclusion, SCM is preceded and followed by alteration in AA metabolism.

  17. Abnormal pressure in hydrocarbon environments

    USGS Publications Warehouse

    Law, B.E.; Spencer, C.W.

    1998-01-01

    Abnormal pressures, pressures above or below hydrostatic pressures, occur on all continents in a wide range of geological conditions. According to a survey of published literature on abnormal pressures, compaction disequilibrium and hydrocarbon generation are the two most commonly cited causes of abnormally high pressure in petroleum provinces. In young (Tertiary) deltaic sequences, compaction disequilibrium is the dominant cause of abnormal pressure. In older (pre-Tertiary) lithified rocks, hydrocarbon generation, aquathermal expansion, and tectonics are most often cited as the causes of abnormal pressure. The association of abnormal pressures with hydrocarbon accumulations is statistically significant. Within abnormally pressured reservoirs, empirical evidence indicates that the bulk of economically recoverable oil and gas occurs in reservoirs with pressure gradients less than 0.75 psi/ft (17.4 kPa/m) and there is very little production potential from reservoirs that exceed 0.85 psi/ft (19.6 kPa/m). Abnormally pressured rocks are also commonly associated with unconventional gas accumulations where the pressuring phase is gas of either a thermal or microbial origin. In underpressured, thermally mature rocks, the affected reservoirs have most often experienced a significant cooling history and probably evolved from an originally overpressured system.

  18. Abnormal temperament in patients with morbid obesity seeking surgical treatment.

    PubMed

    Amann, Benedikt; Mergl, Roland; Torrent, Carla; Perugi, Giulio; Padberg, Frank; El-Gjamal, Nadja; Laakmann, Gregor

    2009-11-01

    Obesity and its related disorders are growing epidemic across the world. Research on links between the bipolar spectrum and obesity has proliferated in the last few years. As some forms of abnormal temperament are considered as subtypes of the soft bipolar spectrum, we aimed to evaluate abnormal temperaments in morbidly obese patients. Using a short version of the Temperament Evaluation of Memphis, Pisa, Paris and San Diego, we investigated abnormal depressive, cyclothymic, hyperthymic, irritable or anxious temperament in 213 patients with morbid obesity compared to a control group of 90 patients admitted prior to organ transplantation. Additionally, the Beck-Depression Inventory (BDI) and the Self-Report Manic Inventory (SRMI) were applied to assess current mood status. The obese group showed statistically significantly more psychiatric comorbidities compared to the control group. Abnormal temperaments were significantly more often observed in patients with morbid obesity rather than in controls. Cyclothymic, irritable and anxious temperaments showed specificity to obesity. Obese patients had significantly higher scores on the BDI, while no difference for SRMI scores was found among the whole groups. All temperaments were positively correlated with BDI and SRMI in the obese group. The control group was not matched for demographic characteristics. Our results need replication but indicate an affective overlap in the form of abnormal temperament and depressive symptoms in obese patients, whereas mood swings should be evaluated and early mood stabilization considered for patients with significant weight gain to prevent obesity or to reduce already existing overweight. Studies of mood stabilizers and prospective observations would shed further insight on this complex interface of a major clinical and public health issue.

  19. Variability in urinary phthalate metabolite levels across pregnancy and sensitive windows of exposure for the risk of preterm birth

    PubMed Central

    Ferguson, Kelly K.; McElrath, Thomas F.; Ko, Yi-An; Mukherjee, Bhramar; Meeker, John D.

    2014-01-01

    Background Preterm birth is a significant public health problem, affecting over 1 in 10 live births and contributing largely to infant mortality and morbidity. Everyday exposure to environmental chemicals such as phthalates could contribute, and may be modifiable. In the present study we examine variability in phthalate exposure across gestation and identify windows of susceptibility for the relationship with preterm birth. Methods Women were recruited early in pregnancy as part of a prospective, longitudinal birth cohort at the Brigham and Women’s Hospital in Boston, Massachusetts. Urine samples were collected at up to 4 time points during gestation for phthalate measurement, and birth outcomes were recorded at delivery. From this population we selected all 130 cases of preterm birth, defined as delivery before 37 weeks completed gestation, as well as 352 random controls. Results Urinary phthalate metabolite levels were moderately variable over pregnancy, but levels measured at multiple time points were associated with increased odds of preterm birth. Adjusted odds ratios (aOR) for spontaneous preterm birth were strongest in association with phthalate metabolite concentrations measured at the beginning of the third trimester (aOR for summed di-2-ethylhexyl phthalate metabolites [∑DEHP]=1.33, 95% confidence interval [CI]=1.02, 1.73). Odds ratios for placental preterm birth, defined as delivery with presentation of preeclampsia or intrauterine growth restriction, were slightly elevated in the first trimester for DEHP metabolites (aOR for ∑DEHP=1.33, 95% CI=0.99, 1.78). Conclusions Pregnant women with exposure to phthalates both early and late in pregnancy are at increased risk of delivering preterm, but mechanisms may differ based on etiology. PMID:24934852

  20. Genetics Home Reference: early-onset glaucoma

    MedlinePlus

    ... called a syndrome. If glaucoma appears before the age of 5 without other associated abnormalities, it is called primary congenital glaucoma. Other individuals experience early onset of primary open-angle glaucoma, the most ...

  1. Abnormal aldosterone physiology and cardiometabolic risk factors.

    PubMed

    Vaidya, Anand; Underwood, Patricia C; Hopkins, Paul N; Jeunemaitre, Xavier; Ferri, Claudio; Williams, Gordon H; Adler, Gail K

    2013-04-01

    Abnormal aldosterone physiology has been implicated in the pathogenesis of cardiometabolic diseases. Single aldosterone measurements capture only a limited range of aldosterone physiology. New methods of characterizing aldosterone physiology may provide a more comprehensive understanding of its relationship with cardiometabolic disease. We evaluated whether novel indices of aldosterone responses to dietary sodium modulation, the sodium-modulated aldosterone suppression-stimulation index (SASSI for serum and SAUSSI for urine), could predict cardiometabolic risk factors. We performed cross-sectional analyses on 539 subjects studied on liberal and restricted sodium diets with serum and urinary aldosterone measurements. SASSI and SAUSSI were calculated as the ratio of aldosterone on liberal (maximally suppressed aldosterone) to the aldosterone on restricted (stimulated aldosterone) diets and associated with risk factors using adjusted regression models. Cardiometabolic risk factors associated with either impaired suppression of aldosterone on liberal diet, or impaired stimulation on restricted diet, or both; in all of these individual cases, these risk factors associated with higher SASSI or SAUSSI. In the context of abnormalities that constitute the metabolic syndrome, there was a strong positive association between the number of metabolic syndrome components (0-4) and both SASSI and SAUSSI (P<0.0001) that was independent of known aldosterone secretagogues (angiotensin II, corticotropin, potassium). SASSI and SAUSSI exhibited a high sensitivity in detecting normal individuals with zero metabolic syndrome components (86% for SASSI and 83% for SAUSSI). Assessing the physiological range of aldosterone responses may provide greater insights into adrenal pathophysiology. Dysregulated aldosterone physiology may contribute to, or result from, early cardiometabolic abnormalities.

  2. Identification of Serum Metabolites Associated With Risk of Type 2 Diabetes Using a Targeted Metabolomic Approach

    PubMed Central

    Floegel, Anna; Stefan, Norbert; Yu, Zhonghao; Mühlenbruch, Kristin; Drogan, Dagmar; Joost, Hans-Georg; Fritsche, Andreas; Häring, Hans-Ulrich; Hrabě de Angelis, Martin; Peters, Annette; Roden, Michael; Prehn, Cornelia; Wang-Sattler, Rui; Illig, Thomas; Schulze, Matthias B.; Adamski, Jerzy; Boeing, Heiner; Pischon, Tobias

    2013-01-01

    Metabolomic discovery of biomarkers of type 2 diabetes (T2D) risk may reveal etiological pathways and help to identify individuals at risk for disease. We prospectively investigated the association between serum metabolites measured by targeted metabolomics and risk of T2D in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam (27,548 adults) among all incident cases of T2D (n = 800, mean follow-up 7 years) and a randomly drawn subcohort (n = 2,282). Flow injection analysis tandem mass spectrometry was used to quantify 163 metabolites, including acylcarnitines, amino acids, hexose, and phospholipids, in baseline serum samples. Serum hexose; phenylalanine; and diacyl-phosphatidylcholines C32:1, C36:1, C38:3, and C40:5 were independently associated with increased risk of T2D and serum glycine; sphingomyelin C16:1; acyl-alkyl-phosphatidylcholines C34:3, C40:6, C42:5, C44:4, and C44:5; and lysophosphatidylcholine C18:2 with decreased risk. Variance of the metabolites was largely explained by two metabolite factors with opposing risk associations (factor 1 relative risk in extreme quintiles 0.31 [95% CI 0.21–0.44], factor 2 3.82 [2.64–5.52]). The metabolites significantly improved T2D prediction compared with established risk factors. They were further linked to insulin sensitivity and secretion in the Tübingen Family study and were partly replicated in the independent KORA (Cooperative Health Research in the Region of Augsburg) cohort. The data indicate that metabolic alterations, including sugar metabolites, amino acids, and choline-containing phospholipids, are associated early on with a higher risk of T2D. PMID:23043162

  3. Hippocampal Morphology and Distinguishing Late-Onset From Early-Onset Elderly Depression

    PubMed Central

    Ballmaier, Martina; Narr, Katherine L.; Toga, Arthur W.; Elderkin-Thompson, Virginia; Thompson, Paul M.; Hamilton, Liberty; Haroon, Ebrahim; Pham, Daniel; Heinz, Andreas; Kumar, Anand

    2010-01-01

    Objective Despite evidence for hippocampal abnormalities in elderly depression, it is unknown whether these changes are regionally specific. This study used three-dimensional mapping techniques to identify regional hippocampal abnormalities in early- and late-onset depression. Neuropsychological correlates of hippocampal morphology were also investigated. Method With high-resolution magnetic resonance imaging, hippocampal morphology was compared among elderly patients with early- (N=24) and late-onset (N=22) depression and comparison subjects (N=34). Regional structural abnormalities were identified by comparing distances, measured from homologous hippocampal surface points to the central core of each individual’s hippocampal surface model, between groups. Results Hippocampal volumes differed between depressed patients and comparison subjects but not between patients with early- and late-onset depression. However, statistical mapping results showed that regional surface contractions were significantly pronounced in late-compared to early-onset depression in the anterior of the subiculum and lateral posterior of the CA1 subfield in the left hemisphere. Significant shape differences were observed bilaterally in anterior CA1–CA3 subfields and the subiculum in patients in relation to comparison subjects. These results were similar when each disease group was separately compared to comparison subjects. Hippocampal surface contractions significantly correlated with memory measures among late- but not early-onset depressed patients or comparison subjects. Conclusions More pronounced regional volume deficits and their associations with memory in late-onset depression may suggest that these patients are more likely to develop cognitive impairment over time than individuals with early-onset depression. Mapping regional hippocampal abnormalities and their cognitive correlates may help guide research in defining risk profiles and treatment strategies. PMID:17986679

  4. Effect of storage time on metabolite profile and alpha-glucosidase inhibitory activity of Cosmos caudatus leaves - GCMS based metabolomics approach.

    PubMed

    Javadi, Neda; Abas, Faridah; Mediani, Ahmed; Abd Hamid, Azizah; Khatib, Alfi; Simoh, Sanimah; Shaari, Khozirah

    2015-09-01

    Cosmos caudatus, which is a commonly consumed vegetable in Malaysia, is locally known as "Ulam Raja". It is a local Malaysian herb traditionally used as a food and medicinal herb to treat several maladies. Its bioactive or nutritional constituents consist of a wide range of metabolites, including glucosinolates, phenolics, amino acids, organic acids, and sugars. However, many of these metabolites are not stable and easily degraded or modified during storage. In order to investigate the metabolomics changes occurring during post-harvest storage, C. caudatus samples were subjected to seven different storage times (0 hours, 2 hours, 4 hours, 6 hours, 8 hours, 10 hours, and 12 hours) at room temperature. As the model experiment, the metabolites identified by gas chromatography-mass spectrometry (GC-MS) were correlated with α-glucosidase inhibitory activity analyzed with multivariate data analysis (MVDA) to find out the variation among samples and metabolites contributing to the activity. Orthogonal partial least squares (OPLS) analysis was applied to investigate the metabolomics changes. A profound chemical alteration, both in primary and secondary metabolites, was observed. The α-tocopherol, catechin, cyclohexen-1-carboxylic acid, benzoic acid, myo-inositol, stigmasterol, and lycopene compounds were found to be the discriminating metabolites at early storage; however, sugars such as sucrose, α-d-galactopyranose, and turanose were detected, which was attributed to the discriminating metabolites for late storage. The result shows that the MVDA method is a promising technique to identify biomarker compounds relative to storage at different times. Copyright © 2015. Published by Elsevier B.V.

  5. Using Molecular Networking for Microbial Secondary Metabolite Bioprospecting.

    PubMed

    Purves, Kevin; Macintyre, Lynsey; Brennan, Debra; Hreggviðsson, Guðmundur Ó; Kuttner, Eva; Ásgeirsdóttir, Margrét E; Young, Louise C; Green, David H; Edrada-Ebel, Ruangelie; Duncan, Katherine R

    2016-01-08

    The oceans represent an understudied resource for the isolation of bacteria with the potential to produce novel secondary metabolites. In particular, actinomyces are well known to produce chemically diverse metabolites with a wide range of biological activities. This study characterised spore-forming bacteria from both Scottish and Antarctic sediments to assess the influence of isolation location on secondary metabolite production. Due to the selective isolation method used, all 85 isolates belonged to the phyla Firmicutes and Actinobacteria, with the majority of isolates belonging to the genera Bacillus and Streptomyces. Based on morphology, thirty-eight isolates were chosen for chemical investigation. Molecular networking based on chemical profiles (HR-MS/MS) of fermentation extracts was used to compare complex metabolite extracts. The results revealed 40% and 42% of parent ions were produced by Antarctic and Scottish isolated bacteria, respectively, and only 8% of networked metabolites were shared between these locations, implying a high degree of biogeographic influence upon secondary metabolite production. The resulting molecular network contained over 3500 parent ions with a mass range of m/z 149-2558 illustrating the wealth of metabolites produced. Furthermore, seven fermentation extracts showed bioactivity against epithelial colon adenocarcinoma cells, demonstrating the potential for the discovery of novel bioactive compounds from these understudied locations.

  6. Using Molecular Networking for Microbial Secondary Metabolite Bioprospecting

    PubMed Central

    Purves, Kevin; Macintyre, Lynsey; Brennan, Debra; Hreggviðsson, Guðmundur Ó.; Kuttner, Eva; Ásgeirsdóttir, Margrét E.; Young, Louise C.; Green, David H.; Edrada-Ebel, Ruangelie; Duncan, Katherine R.

    2016-01-01

    The oceans represent an understudied resource for the isolation of bacteria with the potential to produce novel secondary metabolites. In particular, actinomyces are well known to produce chemically diverse metabolites with a wide range of biological activities. This study characterised spore-forming bacteria from both Scottish and Antarctic sediments to assess the influence of isolation location on secondary metabolite production. Due to the selective isolation method used, all 85 isolates belonged to the phyla Firmicutes and Actinobacteria, with the majority of isolates belonging to the genera Bacillus and Streptomyces. Based on morphology, thirty-eight isolates were chosen for chemical investigation. Molecular networking based on chemical profiles (HR-MS/MS) of fermentation extracts was used to compare complex metabolite extracts. The results revealed 40% and 42% of parent ions were produced by Antarctic and Scottish isolated bacteria, respectively, and only 8% of networked metabolites were shared between these locations, implying a high degree of biogeographic influence upon secondary metabolite production. The resulting molecular network contained over 3500 parent ions with a mass range of m/z 149–2558 illustrating the wealth of metabolites produced. Furthermore, seven fermentation extracts showed bioactivity against epithelial colon adenocarcinoma cells, demonstrating the potential for the discovery of novel bioactive compounds from these understudied locations. PMID:26761036

  7. Mutagenicity of 1-nitropyrene metabolites from lung S9.

    PubMed

    King, L C; Kohan, M J; Ball, L M; Lewtas, J

    1984-04-01

    The mutagenicity of 1-nitropyrene metabolites from rabbit lung S9 incubates was evaluated using the Salmonella typhimurium plate incorporation assay with strain TA98, with and without Aroclor-induced rat liver S9. The following metabolites were isolated, identified and quantitated by HPLC: 1-nitropyrene -4,5- or -9,10-dihydrodiol (K-DHD), N-acetyl-1-aminopyrene ( NAAP ), 1-aminopyrene (1-AMP), 10-hydroxy-1-nitropyrene, 4-, 5-, 6-, 8- or 9-monohydroxy-1-nitropyrene (phenols) and 3-hydroxy-1-nitropyrene. The predominant metabolites formed by lung S9 incubates were K-DHD, 3-OH-1-nitropyrene and phenols. All of the metabolites were mutagenic in the absence of the exogenous rat liver S9 metabolic activation system, and several, including two unidentified metabolites were more potent than the parent 1-nitropyrene. The mutagenicity of 3 of the metabolites ( NAAP , 10-OH-1-nitropyrene and phenols) were enhanced by S9 while most of the other metabolites were less mutagenic in the presence of S9. These results indicate that lung tissue is capable of both oxidative and reductive metabolism which produced mutagenic metabolites, several of which were more potent than the parent compound, 1-NP.

  8. Lysophosphatidylcholine and amide as metabolites for detecting alzheimer disease using ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectrometry-based metabonomics.

    PubMed

    Cui, Yu; Liu, Xiuqin; Wang, Maoqing; Liu, Liyan; Sun, Xiaohong; Ma, Lan; Xie, Wei; Wang, Chao; Tang, Sisi; Wang, Decai; Wu, Qunhong

    2014-10-01

    Alzheimer disease (AD) can be diagnosed by clinical and neuropsychologic tests and at autopsy, but there are no simple effective diagnostic methods for detecting biomarkers in patients at early stages of cognitive impairment. Early metabolic alterations that may facilitate AD diagnosis have not been thoroughly explored. We applied a nontargeted metabonomic approach using ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectrometry to analyze serum and urine samples from 46 patients with AD and 36 healthy controls. Metabolite profiles were processed using multivariate analysis to identify potential metabolites, which were further confirmed using tandem mass spectrometry. Ultrahigh-performance liquid chromatography mass spectrometry methods were additionally used to quantify potentially important biomarkers. Independent samples were then selected to validate the identified biomarkers. There was a clear separation between healthy controls and AD patients; AD patient samples had disordered amino acid and phospholipid metabolism and dysregulated palmitic amide. Receiver operator characteristic curve and quantification suggested that palmitic amide, lysophosphatidylcholine (LysoPC, 18:0), LysoPC(18:2), L-glutamine, and 5-L-glutamylglycine were the optimal metabolites. In addition, areas under the curve from the palmitic amide, LysoPC(18:2), and 5-L-glutamylglycine in the validation study were 0.714, 0.996, and 0.734, respectively. These data elucidate the metabolic alterations associated with AD and suggest new biomarkers for AD diagnosis, thereby permitting early intervention designed to prevent disease progression.

  9. [The dose response decrease of lung function associated with the urinary polycyclic aromatic hydrocarbons metabolites in coke oven workers].

    PubMed

    Hu, Die; Deng, Qi-fei; Huang, Su-li; He, Yun-feng; Guo, Huan; Wu, Tang-chun

    2012-12-01

    To analyze the relationship between metabolites of polycyclic aromatic hydrocarbons (PAHs) and lung function in coke oven workers, and to provide scientific basis for further exploring the potential mechanism and developing the preventing strategies of the workers' early lung damage. We measured carbon monoxide, sulfur dioxide, benzene soluble matter, particulate matters, and PAHs at different workplaces of a coke oven plant. Detailed information on demography and occupational health condition of 912 workers were collected. We divided these workers into control group and coke oven group according to their workplaces and the different concentrations of COEs in the environment. We detected 10 urinary PAH metabolites and lung function using gas chromatography-mass spectrometry and spirometric tests, respectively. FEV(1.0) (91.12 ± 13.31) and FEV(1.0)/FVC (108.61 ± 20.37) of the coke oven group is significantly lower than the control group (94.16 ± 15.57, 113.45 ± 19.70). In the coke oven group, the hydroxyphenanthrene and 1-hydroxypyrene are negatively correlated with FEV(1.0)/FVC (β = -0.136, β = -0.100), Ptrend < 0.05 for all. The dose response decrease of lung function is associated with the urinary PAH metabolites in coke oven workers. Indicated that the long exposure to PAHs may cause the early lung damage in coke oven workers, phenanthrene and pyrene may be the main factors.

  10. Changes of brain metabolite concentrations during maturation in different brain regions measured by chemical shift imaging.

    PubMed

    Bültmann, Eva; Nägele, Thomas; Lanfermann, Heinrich; Klose, Uwe

    2017-01-01

    We examined the effect of maturation on the regional distribution of brain metabolite concentrations using multivoxel chemical shift imaging. From our pool of pediatric MRI examinations, we retrospectively selected patients showing a normal cerebral MRI scan or no pathologic signal abnormalities at the level of the two-dimensional 1H MRS-CSI sequence and an age-appropriate global neurological development, except for focal neurological deficits. Seventy-one patients (4.5 months-20 years) were identified. Using LC Model, spectra were evaluated from voxels in the white matter, caudate head, and corpus callosum. The concentration of total N-acetylaspartate increased in all regions during infancy and childhood except in the right caudate head where it remained constant. The concentration of total creatine decreased in the caudate nucleus and splenium and minimally in the frontal white matter and genu. It remained largely constant in the parietal white matter. The concentration of choline-containing compounds had the tendency to decrease in all regions except in the parietal white matter where it remained constant. The concentration of myoinositol decreased slightly in the splenium and right frontal white matter, remained constant on the left side and in the caudate nucleus, and rose slightly in the parietal white matter and genu. CSI determined metabolite concentrations in multiple cerebral regions during routine MRI. The obtained data will be helpful in future pediatric CSI measurements deciding whether the ratios of the main metabolites are within the range of normal values or have to be considered as probably pathologic.

  11. Abnormal high-energy phosphate molecule metabolism during regional brain activation in patients with bipolar disorder.

    PubMed

    Yuksel, C; Du, F; Ravichandran, C; Goldbach, J R; Thida, T; Lin, P; Dora, B; Gelda, J; O'Connor, L; Sehovic, S; Gruber, S; Ongur, D; Cohen, B M

    2015-09-01

    Converging evidence suggests bioenergetic abnormalities in bipolar disorder (BD). In the brain, phosphocreatine (PCr) acts a reservoir of high-energy phosphate (HEP) bonds, and creatine kinases (CK) catalyze the transfer of HEP from adenosine triphosphate (ATP) to PCr and from PCr back to ATP, at times of increased need. This study examined the activity of this mechanism in BD by measuring the levels of HEP molecules during a stimulus paradigm that increased local energy demand. Twenty-three patients diagnosed with BD-I and 22 healthy controls (HC) were included. Levels of phosphorus metabolites were measured at baseline and during visual stimulation in the occipital lobe using (31)P magnetic resonance spectroscopy at 4T. Changes in metabolite levels showed different patterns between the groups. During stimulation, HC had significant reductions in PCr but not in ATP, as expected. In contrast, BD patients had significant reductions in ATP but not in PCr. In addition, PCr/ATP ratio was lower at baseline in patients, and there was a higher change in this measure during stimulation. This pattern suggests a disease-related failure to replenish ATP from PCr through CK enzyme catalysis during tissue activation. Further studies measuring the CK flux in BD are required to confirm and extend this finding.

  12. Craniometaphyseal dysplasia with obvious biochemical abnormality and rickets-like features.

    PubMed

    Wu, Bo; Jiang, Yan; Wang, Ou; Li, Mei; Xing, Xiao-Ping; Xia, Wei-Bo

    2016-05-01

    Craniometaphyseal dysplasia (CMD) is a rare genetic disorder that is characterized by progressive sclerosis of the craniofacial bones and metaphyseal widening of long bones, and biochemical indexes were mostly normal. To further the understanding of the disease from a biochemical perspective, we reported a CMD case with obviously abnormal biochemical indexes. A 1-year-old boy was referred to our clinic. Biochemical test showed obviously increased alkaline phosphatase (ALP) and parathyroid hormone (PTH), mild hypocalcemia and hypophosphatemia. Moreover, significant elevated receptor activator of nuclear factor kappa-B ligand (RANKL) level, but normal β-C-terminal telopeptide of type I collagen (β-CTX) concentration were revealed. He was initially suspected of rickets, because the radiological examination also showed broadened epiphysis in his long bones. Supplementation with calcium and calcitriol alleviated biochemical abnormality. However, the patient gradually developed osteosclerosis which was inconformity with rickets. Considering that he was also presented with facial paralysis and nasal obstruction symptom, the diagnosis of craniometaphyseal dysplasia was suspected, and then was confirmed by the mutation analysis of ANKH of the proband and his family, which showed a de novo heterozygous mutation (C1124-1126delCCT) on exon 9. Our study revealed that obvious biochemical abnormality and rickets-like features might present as uncommon characteristics in CMD patients, and the calcium and calcitriol supplementation could alleviate biochemical abnormalities. Furthermore, although early osteoclast differentiation factor was excited in CMD patient, activity of osteoclast was still inert. Copyright © 2016. Published by Elsevier B.V.

  13. Abnormal maternal echocardiographic findings in triplet pregnancies presenting with dyspnoea.

    PubMed

    Elhenicky, Marie; Distelmaier, Klaus; Mailath-Pokorny, Mariella; Worda, Christof; Langer, Martin; Worda, Katharina

    2016-03-01

    The objective of our study was to evaluate the prevalence of abnormal maternal echocardiographic findings in triplet pregnancies presenting with dyspnoea. Between 2003 and 2013, patients' records of 96 triplet pregnancies at our department were analysed including maternal and fetal outcome, echocardiographic parameters and N-terminal pro-B-type natriuretic peptide (NT-proBNP) levels. After exclusion of triplet pregnancies with fetal demise before 23 + 0 weeks, selective feticide or missing outcome data, the study population consisted of 60 triplet pregnancies. All women with dyspnoea underwent echocardiography and measurement of NT-proBNP. Dyspnoea towards the end of pregnancy was observed in 13.3% (8/60) of all women with triplet pregnancies, and all of these women underwent echocardiography. The prevalence of abnormal echocardiographic findings in women with dyspnoea was 37.5% (3/8) with peripartum cardiomyopathy in one woman. Median serum NT-proBNP was significantly higher in women with abnormal echocardiographic findings compared with those without (1779 ng/ml, range 1045-6076 ng/ml vs 172 ng/ml, range 50-311 ng/ml; p < 0.001 by Mann-Whitney-U Test). We conclude that triplet pregnancies presenting with dyspnoea show a high prevalence of abnormal echocardiographic findings. Since dyspnoea is a common sign in triplet pregnancies and is associated with a high rate of cardiac involvement, echocardiography and evaluation of maternal NT-proBNP could be considered to improve early diagnosis and perinatal management.

  14. 1H magnetic resonance spectroscopy metabolite profiles of neonatal rat hippocampus and brainstem regions following early postnatal exposure to intermittent hypoxia

    NASA Astrophysics Data System (ADS)

    Darnall, Robert A.; Chen, Xi; Nemani, Krishnamurthy V.; Sirieix, Chrystelle M.; Gimi, Barjor

    2017-03-01

    Most premature infants born at less than 30 weeks gestation are exposed to periods of mild intermittent hypoxia (IH) associated with apnea of prematurity and periodic breathing. In adults, IH associated with sleep apnea causes neurochemical and structural alterations in the brain. However, it is unknown whether IH in the premature infant leads to neurodevelopmental impairment. Quantification of biochemical markers that can precisely identify infants at risk of adverse neurodevelopmental outcome is essential. In vivo 1H magnetic resonance spectroscopy (1H MRS) facilitates the quantification of metabolites from distinct regions of the developing brain. We report the changes in metabolite profiles in the brainstem and hippocampal regions of developing rat brains, resulting from exposure to IH. Rat pups were chosen for study because there is rapid postnatal hippocampal development that occurs during the first 4 weeks in the developing rat brain, which corresponds to the first 2-3 postnatal years of development in humans. The brainstem was examined because of our interest in respiratory control disorders in the newborn and because of brainstem gliosis described in infants who succumb to Sudden Infant Death Syndrome (SIDS). Metabolite profiles were compared between hypoxia treated rat pups (n = 9) and normoxic controls (n = 6). Metabolite profiles were acquired using the Point-RESolved spectroscopy (PRESS) MRS sequence and were quantified using the TARQUIN software. There was a significant difference in the concentrations of creatine (p = 0.031), total creatine (creatine + phosphocreatine) (p = 0.028), and total choline (p = 0.001) in the brainstem, and glycine (p = 0.031) in the hippocampal region. The changes are consistent with altered cellular bioenergetics and metabolism associated with hypoxic insult.

  15. STUDIES OF METABOLITE-PROTEIN INTERACTIONS: A REVIEW

    PubMed Central

    Matsuda, Ryan; Bi, Cong; Anguizola, Jeanethe; Sobansky, Matthew; Rodriquez, Elliot; Badilla, John Vargas; Zheng, Xiwei; Hage, Benjamin; Hage, David S.

    2014-01-01

    The study of metabolomics can provide valuable information about biochemical pathways and processes at the molecular level. There have been many reports that have examined the structure, identity and concentrations of metabolites in biological systems. However, the binding of metabolites with proteins is also of growing interest. This review examines past reports that have looked at the binding of various types of metabolites with proteins. An overview of the techniques that have been used to characterize and study metabolite-protein binding is first provided. This is followed by examples of studies that have investigated the binding of hormones, fatty acids, drugs or other xenobiotics, and their metabolites with transport proteins and receptors. These examples include reports that have considered the structure of the resulting solute-protein complexes, the nature of the binding sites, the strength of these interactions, the variations in these interactions with solute structure, and the kinetics of these reactions. The possible effects of metabolic diseases on these processes, including the impact of alterations in the structure and function of proteins, are also considered. PMID:24321277

  16. Early Brain Vulnerability in Wolfram Syndrome

    PubMed Central

    Hershey, Tamara; Lugar, Heather M.; Shimony, Joshua S.; Rutlin, Jerrel; Koller, Jonathan M.; Perantie, Dana C.; Paciorkowski, Alex R.; Eisenstein, Sarah A.; Permutt, M. Alan

    2012-01-01

    Wolfram Syndrome (WFS) is a rare autosomal recessive disease characterized by insulin-dependent diabetes mellitus, optic nerve atrophy, diabetes insipidus, deafness, and neurological dysfunction leading to death in mid-adulthood. WFS is caused by mutations in the WFS1 gene, which lead to endoplasmic reticulum (ER) stress-mediated cell death. Case studies have found widespread brain atrophy in late stage WFS. However, it is not known when in the disease course these brain abnormalities arise, and whether there is differential vulnerability across brain regions and tissue classes. To address this limitation, we quantified regional brain abnormalities across multiple imaging modalities in a cohort of young patients in relatively early stages of WFS. Children and young adults with WFS were evaluated with neurological, cognitive and structural magnetic resonance imaging measures. Compared to normative data, the WFS group had intact cognition, significant anxiety and depression, and gait abnormalities. Compared to healthy and type 1 diabetic control groups, the WFS group had smaller intracranial volume and preferentially affected gray matter volume and white matter microstructural integrity in the brainstem, cerebellum and optic radiations. Abnormalities were detected in even the youngest patients with mildest symptoms, and some measures did not follow the typical age-dependent developmental trajectory. These results establish that WFS is associated with smaller intracranial volume with specific abnormalities in the brainstem and cerebellum, even at the earliest stage of clinical symptoms. This pattern of abnormalities suggests that WFS has a pronounced impact on early brain development in addition to later neurodegenerative effects, representing a significant new insight into the WFS disease process. Longitudinal studies will be critical for confirming and expanding our understanding of the impact of ER stress dysregulation on brain development. PMID:22792385

  17. Novel Approach to Classify Plants Based on Metabolite-Content Similarity.

    PubMed

    Liu, Kang; Abdullah, Azian Azamimi; Huang, Ming; Nishioka, Takaaki; Altaf-Ul-Amin, Md; Kanaya, Shigehiko

    2017-01-01

    Secondary metabolites are bioactive substances with diverse chemical structures. Depending on the ecological environment within which they are living, higher plants use different combinations of secondary metabolites for adaptation (e.g., defense against attacks by herbivores or pathogenic microbes). This suggests that the similarity in metabolite content is applicable to assess phylogenic similarity of higher plants. However, such a chemical taxonomic approach has limitations of incomplete metabolomics data. We propose an approach for successfully classifying 216 plants based on their known incomplete metabolite content. Structurally similar metabolites have been clustered using the network clustering algorithm DPClus. Plants have been represented as binary vectors, implying relations with structurally similar metabolite groups, and classified using Ward's method of hierarchical clustering. Despite incomplete data, the resulting plant clusters are consistent with the known evolutional relations of plants. This finding reveals the significance of metabolite content as a taxonomic marker. We also discuss the predictive power of metabolite content in exploring nutritional and medicinal properties in plants. As a byproduct of our analysis, we could predict some currently unknown species-metabolite relations.

  18. Novel Approach to Classify Plants Based on Metabolite-Content Similarity

    PubMed Central

    Abdullah, Azian Azamimi; Huang, Ming; Nishioka, Takaaki

    2017-01-01

    Secondary metabolites are bioactive substances with diverse chemical structures. Depending on the ecological environment within which they are living, higher plants use different combinations of secondary metabolites for adaptation (e.g., defense against attacks by herbivores or pathogenic microbes). This suggests that the similarity in metabolite content is applicable to assess phylogenic similarity of higher plants. However, such a chemical taxonomic approach has limitations of incomplete metabolomics data. We propose an approach for successfully classifying 216 plants based on their known incomplete metabolite content. Structurally similar metabolites have been clustered using the network clustering algorithm DPClus. Plants have been represented as binary vectors, implying relations with structurally similar metabolite groups, and classified using Ward's method of hierarchical clustering. Despite incomplete data, the resulting plant clusters are consistent with the known evolutional relations of plants. This finding reveals the significance of metabolite content as a taxonomic marker. We also discuss the predictive power of metabolite content in exploring nutritional and medicinal properties in plants. As a byproduct of our analysis, we could predict some currently unknown species-metabolite relations. PMID:28164123

  19. Abnormal placental development and early embryonic lethality in EpCAM-null mice.

    PubMed

    Nagao, Keisuke; Zhu, Jianjian; Heneghan, Mallorie B; Hanson, Jeffrey C; Morasso, Maria I; Tessarollo, Lino; Mackem, Susan; Udey, Mark C

    2009-12-31

    EpCAM (CD326) is encoded by the tacstd1 gene and expressed by a variety of normal and malignant epithelial cells and some leukocytes. Results of previous in vitro experiments suggested that EpCAM is an intercellular adhesion molecule. EpCAM has been extensively studied as a potential tumor marker and immunotherapy target, and more recent studies suggest that EpCAM expression may be characteristic of cancer stem cells. To gain insights into EpCAM function in vivo, we generated EpCAM -/- mice utilizing an embryonic stem cell line with a tacstd1 allele that had been disrupted. Gene trapping resulted in a protein comprised of the N-terminus of EpCAM encoded by 2 exons of the tacstd1 gene fused in frame to betageo. EpCAM +/- mice were viable and fertile and exhibited no obvious abnormalities. Examination of EpCAM +/- embryos revealed that betageo was expressed in several epithelial structures including developing ears (otocysts), eyes, branchial arches, gut, apical ectodermal ridges, lungs, pancreas, hair follicles and others. All EpCAM -/- mice died in utero by E12.5, and were small, developmentally delayed, and displayed prominent placental abnormalities. In developing placentas, EpCAM was expressed throughout the labyrinthine layer and by spongiotrophoblasts as well. Placentas of EpCAM -/- embryos were compact, with thin labyrinthine layers lacking prominent vascularity. Parietal trophoblast giant cells were also dramatically reduced in EpCAM -/- placentas. EpCAM was required for differentiation or survival of parietal trophoblast giant cells, normal development of the placental labyrinth and establishment of a competent maternal-fetal circulation. The findings in EpCAM-reporter mice suggest involvement of this molecule in development of vital organs including the gut, kidneys, pancreas, lungs, eyes, and limbs.

  20. Habitat quality affects the incidence of morphological abnormalities in the endangered salamander Ambystoma ordinarium

    PubMed Central

    2017-01-01

    Identification of early warning signals previous to the occurrence of population decline or extinction is a major challenge for the conservation of animal species. Prevalence of morphological abnormalities in a population can be one of these signals. We registered morphological abnormalities in the salamander Ambystoma ordinarium. We also evaluated the relation between habitat quality and the prevalence of abnormalities in this species. We used scores from rapid bioassessment protocols (RBPs) to assess the habitat quality of streams inhabited by A. ordinarium. A preliminary survey indicated that of 29 streams where this species has been historically registered, 13 might have few or no A. ordinarium. The association between habitat quality and the incidence of morphological abnormalities was evaluated in these 16 streams. Of 502 sampled individuals, 224 (44.62%) had at least one body abnormality. Of the 224 individuals with body abnormalities, 84 (37.5%) presented more than one abnormality. Of a total of 5,522 evaluated morphological characters, 344 (6.74%) were abnormal. Partial loss of gills and missing digits were the most frequent abnormalities. Results of a binomial logistic regression indicated that the probability of a character of an individual to be abnormal was significantly associated with habitat quality; as the levels of the quality of the habitat increased, the prevalence of morphological abnormalities decreased. These results suggest that RBPs are a quick and useful method for assessing the habitat quality of streams inhabited by A. ordinarium. Given that RBPs provide rapid and cost-effective assessments of the ecological health of aquatic ecosystems, it will be important to test if the RBPs protocols can be used to rapidly assess habitat quality for other species of stream amphibians. The negative association between habitat quality and the prevalence of morpohological abnormalities that we found indicates that habitat condition plays an important

  1. Differential Neurodevelopmental Trajectories in Patients With Early-Onset Bipolar and Schizophrenia Disorders

    PubMed Central

    Arango, Celso

    2014-01-01

    Schizophrenia and bipolar disorders share not only clinical features but also some risk factors such as genetic markers and childhood adversity, while other risk factors such as urbanicity and obstetric complications seem to be specific to schizophrenia. An intriguing question is whether the well-established abnormal neurodevelopment present in many children and adolescents who eventually develop schizophrenia is also present in bipolar patients. The literature on adult bipolar patients is controversial. We report data on a subgroup of patients with pediatric-onset psychotic bipolar disorder who seem to share some developmental trajectories with patients with early-onset schizophrenia. These early-onset psychotic bipolar patients have low intelligence quotient, more neurological signs, reduced frontal gray matter at the time of their first psychotic episode, and greater brain changes than healthy controls in a pattern similar to early-onset schizophrenia cases. However, patients with early-onset schizophrenia seem to have more social impairment, developmental abnormalities (eg, language problems), and lower academic achievement in childhood than early-onset bipolar patients. We suggest that some of these abnormal developmental trajectories are more related to the phenotypic features (eg, early-onset psychotic symptoms) of these 2 syndromes than to categorically defined Diagnostic and Statistical Manual of Mental Disorders disorders. PMID:24371326

  2. A Decade in the MIST: Learnings from Investigations of Drug Metabolites in Drug Development under the "Metabolites in Safety Testing" Regulatory Guidance.

    PubMed

    Schadt, Simone; Bister, Bojan; Chowdhury, Swapan K; Funk, Christoph; Hop, Cornelis E C A; Humphreys, W Griffith; Igarashi, Fumihiko; James, Alexander D; Kagan, Mark; Khojasteh, S Cyrus; Nedderman, Angus N R; Prakash, Chandra; Runge, Frank; Scheible, Holger; Spracklin, Douglas K; Swart, Piet; Tse, Susanna; Yuan, Josh; Obach, R Scott

    2018-06-01

    Since the introduction of metabolites in safety testing (MIST) guidance by the Food and Drug Administration in 2008, major changes have occurred in the experimental methods for the identification and quantification of metabolites, ways to evaluate coverage of metabolites, and the timing of critical clinical and nonclinical studies to generate this information. In this cross-industry review, we discuss how the increased focus on human drug metabolites and their potential contribution to safety and drug-drug interactions has influenced the approaches taken by industry for the identification and quantitation of human drug metabolites. Before the MIST guidance was issued, the method of choice for generating comprehensive metabolite profile was radio chromatography. The MIST guidance increased the focus on human drug metabolites and their potential contribution to safety and drug-drug interactions and led to changes in the practices of drug metabolism scientists. In addition, the guidance suggested that human metabolism studies should also be accelerated, which has led to more frequent determination of human metabolite profiles from multiple ascending-dose clinical studies. Generating a comprehensive and quantitative profile of human metabolites has become a more urgent task. Together with technological advances, these events have led to a general shift of focus toward earlier human metabolism studies using high-resolution mass spectrometry and to a reduction in animal radiolabel absorption/distribution/metabolism/excretion studies. The changes induced by the MIST guidance are highlighted by six case studies included herein, reflecting different stages of implementation of the MIST guidance within the pharmaceutical industry. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  3. Dietary exposure to brominated flame retardants and abnormal Pap test results.

    PubMed

    Jamieson, Denise J; Terrell, Metrecia L; Aguocha, Nnenna N; Small, Chanley M; Cameron, Lorraine L; Marcus, Michele

    2011-09-01

    This study examined a possible association of dietary exposure to polybrominated biphenyls (PBBs), a brominated flame retardant, and self-reported abnormal Pap test results and cervical dysplasia as a precursor to cervical cancer. Women in Michigan who ingested contaminated poultry, beef, and dairy products in the early 1970s were enrolled in a population-based cohort study in Michigan. Serum PBB and serum polychlorinated biphenyl (PCB) concentrations were measured. Reproductive history and health information, including Pap test results, were self-reported by participants. Of the women, 23% (223 of 956) reported an abnormal Pap test. In unadjusted analyses, self-reporting an abnormal Pap test was associated with younger age, current smoking (hazard ratio [HR] 1.61, 95% confidence interval [CI] 1.19-2.17), and longer duration of lifetime use of oral contraceptives (≥10 years; HR 1.92, 95% CI 1.21-3.06). When adjusting for PCB exposure, age at the interview, and smoking history, there was a slightly elevated risk of self-reporting an abnormal Pap test among the highly exposed women compared to women with nondetectable PBB concentrations (PBB≥13 μg/L, HR 1.23, 95% CI 0.74-2.06); however, the CI was imprecise. When breastfeeding duration after the initial PBB measurement was taken into account, there was a reduced risk of self-reporting an abnormal Pap test among the highly exposed women who breastfed for ≥12 months (HR 0.41, 95% CI 0.06-3.03; referent group: women with nondetectable PBB concentrations who did not breastfeed). It remains important to evaluate the potential reproductive health consequences of this class of chemicals as well as other potential predictors of abnormal Pap tests.

  4. Dietary Exposure to Brominated Flame Retardants and Abnormal Pap Test Results

    PubMed Central

    Jamieson, Denise J.; Terrell, Metrecia L.; Aguocha, Nnenna N.; Small, Chanley M.; Cameron, Lorraine L.

    2011-01-01

    Abstract Objective This study examined a possible association of dietary exposure to polybrominated biphenyls (PBBs), a brominated flame retardant, and self-reported abnormal Pap test results and cervical dysplasia as a precursor to cervical cancer. Methods Women in Michigan who ingested contaminated poultry, beef, and dairy products in the early 1970s were enrolled in a population-based cohort study in Michigan. Serum PBB and serum polychlorinated biphenyl (PCB) concentrations were measured. Reproductive history and health information, including Pap test results, were self-reported by participants. Results Of the women, 23% (223 of 956) reported an abnormal Pap test. In unadjusted analyses, self-reporting an abnormal Pap test was associated with younger age, current smoking (hazard ratio [HR] 1.61, 95% confidence interval [CI] 1.19-2.17), and longer duration of lifetime use of oral contraceptives (≥10 years; HR 1.92, 95% CI 1.21-3.06). When adjusting for PCB exposure, age at the interview, and smoking history, there was a slightly elevated risk of self-reporting an abnormal Pap test among the highly exposed women compared to women with nondetectable PBB concentrations (PBB≥13 μg/L, HR 1.23, 95% CI 0.74-2.06); however, the CI was imprecise. When breastfeeding duration after the initial PBB measurement was taken into account, there was a reduced risk of self-reporting an abnormal Pap test among the highly exposed women who breastfed for ≥12 months (HR 0.41, 95% CI 0.06-3.03; referent group: women with nondetectable PBB concentrations who did not breastfeed). Conclusions It remains important to evaluate the potential reproductive health consequences of this class of chemicals as well as other potential predictors of abnormal Pap tests. PMID:21797757

  5. Anorectal Manometric Dysfunctions in Newly Diagnosed, Early-Stage Parkinson's Disease

    PubMed Central

    Sung, Hye Young; Kim, Yeong-In; Lee, Kwang-Soo

    2012-01-01

    Background and Purpose Anorectal dysmotility is common in advanced Parkinson's disease (PD), but there have been few evaluations in newly diagnosed PD patients. Methods We conducted anorectal manometric evaluations in 19 newly diagnosed, drug-naïve, early-stage PD patients. All of the PD patients were questioned regarding the presence of anorectal symptoms. Results Anorectal manometry was abnormal in 12 of the 19 patients. These abnormalities were more common in patients with more severe anorectal symptoms, as measured using a self-reported scale. However, more than 40% of patients with no or minimal symptoms also exhibited manometric abnormalities. Conclusions These results suggest that anorectal dysmotility manifests in many early-stage PD patients, which this represent evidence for the involvement of neuronal structures in such nonmotor manifestations in PD. PMID:23091527

  6. Urinary pesticide metabolites in school students from northern Thailand.

    PubMed

    Panuwet, Parinya; Prapamontol, Tippawan; Chantara, Somporn; Barr, Dana B

    2009-05-01

    We evaluated exposure to pesticides among secondary school students aged 12-13 years old in Chiang Mai Province, Thailand. Pesticide-specific urinary metabolites were used as biomarkers of exposure for a variety of pesticides, including organophosphorus insecticides, synthetic pyrethroid insecticides and selected herbicides. We employed a simple solid-phase extraction with analysis using isotope dilution high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). A total of 207 urine samples from Thai students were analyzed for 18 specific pesticide metabolites. We found 14 metabolites in the urine samples tested; seven of them were detected with a frequency > or=17%. The most frequently detected metabolites were 2-[(dimethoxyphosphorothioyl) sulfanyl] succinic acid (malathion dicarboxylic acid), para-nitrophenol (PNP), 3,5,6-trichloro-2-pyridinol (TPCY; metabolite of chlorpyrifos), 2,4-dichlorophenoxyacetic acid (2,4-D), cis- and trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane-1-carboxylic acids (c-DCCA and t-DCCA; metabolite of permethrin) and 3-phenoxybenzoic acid (3-PBA; metabolite of pyrethroids). The students were classified into 4 groups according to their parental occupations: farmers (N=60), merchants and traders (N=39), government and company employees (N=52), and laborers (N=56). Children of farmers had significantly higher urinary concentrations of pyrethroid insecticide metabolites than did other children (p<0.05). Similarly, children of agricultural families had significantly higher pyrethroid metabolite concentrations. Males had significantly higher values of PNP (Mann-Whitney test, p=0.009); however, no other sex-related differences were observed. Because parental occupation and agricultural activities seemed to have little influence on pesticide levels, dietary sources were the likely contributors to the metabolite levels observed.

  7. Cytochrome P450 and Lipoxygenase Metabolites on Renal Function

    PubMed Central

    Imig, John D.; Hye Khan, Md. Abdul

    2018-01-01

    Arachidonic acid metabolites have a myriad of biological actions including effects on the kidney to alter renal hemodynamics and tubular transport processes. Cyclooxygenase metabolites are products of an arachidonic acid enzymatic pathway that has been extensively studied in regards to renal function. Two lesser-known enzymatic pathways of arachidonic acid metabolism are the lipoxygenase (LO) and cytochrome P450 (CYP) pathways. The importance of LO and CYP metabolites to renal hemodynamics and tubular transport processes is now being recognized. LO and CYP metabolites have actions to alter renal blood flow and glomerular filtration rate. Proximal and distal tubular sodium transport and fluid and electrolyte homeostasis are also significantly influenced by renal CYP and LO levels. Metabolites of the LO and CYP pathways also have renal actions that influence renal inflammation, proliferation, and apoptotic processes at vascular and epithelial cells. These renal LO and CYP pathway actions occur through generation of specific metabolites and cell-signaling mechanisms. Even though the renal physiological importance and actions for LO and CYP metabolites are readily apparent, major gaps remain in our understanding of these lipid mediators to renal function. Future studies will be needed to fill these major gaps regarding LO and CYP metabolites on renal function. PMID:26756638

  8. Do schizophrenia patients age early?

    PubMed

    Shivakumar, Venkataram; Kalmady, Sunil V; Venkatasubramanian, Ganesan; Ravi, Vasanthapuram; Gangadhar, Bangalore N

    2014-08-01

    The etiopathogenesis of schizophrenia is poorly understood. Within the proposed "neurodegeneration paradigm", observations have been put forth for "accelerated aging" in this disorder. This proposition is largely based on the neuroscience research that demonstrates progressive changes in brain as well as other systemic abnormalities supportive of faster aging process in patients with this disorder. In this review, we have summarized the literature related to the concept of early aging in schizophrenia. These studies include P300 abnormalities & visual motion discrimination, neuroimaging findings, telomere dynamics as well as neuropathology of related brain regions. We also propose a role of vitamin D, neuroimmunological changes and elevated oxidative stress as well as mitochondrial dysfunction in addition to the above factors with 'vitamin-D deficiency' as the central paradox. Put together, the evidence supporting early aging in schizophrenia is compelling and this requires further systematic studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Digitized Spiral Drawing: A Possible Biomarker for Early Parkinson's Disease.

    PubMed

    San Luciano, Marta; Wang, Cuiling; Ortega, Roberto A; Yu, Qiping; Boschung, Sarah; Soto-Valencia, Jeannie; Bressman, Susan B; Lipton, Richard B; Pullman, Seth; Saunders-Pullman, Rachel

    2016-01-01

    Pre-clinical markers of Parkinson's Disease (PD) are needed, and to be relevant in pre-clinical disease, they should be quantifiably abnormal in early disease as well. Handwriting is impaired early in PD and can be evaluated using computerized analysis of drawn spirals, capturing kinematic, dynamic, and spatial abnormalities and calculating indices that quantify motor performance and disability. Digitized spiral drawing correlates with motor scores and may be more sensitive in detecting early changes than subjective ratings. However, whether changes in spiral drawing are abnormal compared with controls and whether changes are detected in early PD are unknown. 138 PD subjects (50 with early PD) and 150 controls drew spirals on a digitizing tablet, generating x, y, z (pressure) data-coordinates and time. Derived indices corresponded to overall spiral execution (severity), shape and kinematic irregularity (second order smoothness, first order zero-crossing), tightness, mean speed and variability of spiral width. Linear mixed effect adjusted models comparing these indices and cross-validation were performed. Receiver operating characteristic analysis was applied to examine discriminative validity of combined indices. All indices were significantly different between PD cases and controls, except for zero-crossing. A model using all indices had high discriminative validity (sensitivity = 0.86, specificity = 0.81). Discriminative validity was maintained in patients with early PD. Spiral analysis accurately discriminates subjects with PD and early PD from controls supporting a role as a promising quantitative biomarker. Further assessment is needed to determine whether spiral changes are PD specific compared with other disorders and if present in pre-clinical PD.

  10. Composite technique for regional neurochemical studies: measurement of energy and neurotransmitter metabolites in single tissue sample.

    PubMed

    Djuricic, B M; Ueki, Y; Spatz, M

    1985-06-01

    A combined method is described for the determination of various metabolites from a single tissue sample of the brain. It comprises a quick inactivation of cerebral enzymes by microwave irradiation, easy separation of the desired brain regions, and perchloric acid extraction of tissue substances, which are assayed either by specific enzymatic techniques or by HPLC with electrochemical detection. The obtained values of most energy and neurotransmitter metabolites in the brain are in agreement with those reported using other methods. However, this technique, in contrast to the brain freezing in vitro or freeze-blowing, provides a more efficient procedure for rapid arrest of cerebral metabolism even in the deep brain structures and is therefore suitable for detection of early changes particularly those occurring in experimental pathological conditions such as ischemia.

  11. An abnormal periventricular magnetization transfer ratio gradient occurs early in multiple sclerosis

    PubMed Central

    Brown, J William L; Pardini, Matteo; Brownlee, Wallace J; Fernando, Kryshani; Samson, Rebecca S; Prados Carrasco, Ferran; Ourselin, Sebastien; Gandini Wheeler-Kingshott, Claudia A M; Miller, David H; Chard, Declan T

    2017-01-01

    sclerosis. The magnetization transfer ratio gradient was not significantly affected by the presence of brain lesions [T2 lesions (P = 0.918), periventricular T2 lesions (P = 0.580) or gadolinium-enhancing T1 lesions (P = 0.724)]. The magnetization transfer ratio gradient also correlated with Expanded Disability Status Scale score 5 years later (Spearman r = 0.313, P = 0.027). An abnormal periventricular magnetization transfer ratio gradient occurs early in multiple sclerosis, is clinically relevant, and may arise from one or more mechanisms that are at least partly independent of lesion formation. PMID:28043954

  12. Central nervous system abnormalities in Fanconi anaemia: patterns and frequency on magnetic resonance imaging

    PubMed Central

    Alston, Robert; Wright, Neville B; Chandler, Kate; Bonney, Denise; Wynn, Robert F; Will, Andrew M; Punekar, Maqsood; Loughran, Sean; Kilday, John-Paul; Schindler, Detlev; Patel, Leena; Meyer, Stefan

    2015-01-01

    Objective: Fanconi anaemia (FA) is an inherited disease associated with congenital and developmental abnormalities resulting from the disruption of a multigenic DNA damage response pathway. This study aimed to define the MRI appearances of the brain in patients with FA in correlation with their genetic and clinical features. Methods: A review of the brain MRI in 20 patients with FA was performed. Pituitary size and frequencies of the radiological findings of individuals with FA and age-matched controls were determined. Results: Abnormalities were identified in 18 (90%) patients with FA, the commonest being a small pituitary (68%, p < 0.01 females and p < 0.001 males). In five cases (25%, p = 0.02), the pituitary morphology was also abnormal. Posterior fossa abnormalities were seen in six cases (30%, p = 0.01) including Chiari I malformation (n = 3), Dandy–Walker variant (n = 2) and cerebellar atrophy (n = 2). Six patients (30%, p = 0.01) had morphological structural variation of the corpus callosum (CC). Conclusion: The incidence of central nervous system (CNS) abnormalities in FA is higher than previously reported, with a midline predominance that points to impact in the early stages of CNS development. MRI brain imaging is important for endocrine assessment and pre-transplant evaluation and can make an important contribution to clinical decision-making. Advances in knowledge: The incidence of brain structural abnormalities in FA is higher than previously reported, with abnormalities of the posterior fossa, CC and pituitary being common. There is an association with gender and reduction in pituitary size which does not strongly correlate with biochemically evident endocrine abnormality. PMID:26369989

  13. Frequency and Prognostic Significance of Abnormal Liver Function Tests in Patients With Cardiogenic Shock.

    PubMed

    Jäntti, Toni; Tarvasmäki, Tuukka; Harjola, Veli-Pekka; Parissis, John; Pulkki, Kari; Sionis, Alessandro; Silva-Cardoso, Jose; Køber, Lars; Banaszewski, Marek; Spinar, Jindrich; Fuhrmann, Valentin; Tolonen, Jukka; Carubelli, Valentina; diSomma, Salvatore; Mebazaa, Alexandre; Lassus, Johan

    2017-10-01

    Cardiogenic shock (CS) is a cardiac emergency often leading to multiple organ failure and death. Assessing organ dysfunction and appropriate risk stratification are central for the optimal management of these patients. The purpose of this study was to assess the prevalence of abnormal liver function tests (LFTs), as well as early changes of LFTs and their impact on outcome in CS. We measured LFTs in 178 patients in CS from serial blood samples taken at 0 hours, 12 hours, and 24 hours. The associations of LFT abnormalities and their early changes with all-cause 90-day mortality were estimated using Fisher's exact test and Cox proportional hazards regression analysis. Baseline alanine aminotransferase (ALT) was abnormal in 58% of the patients, more frequently in nonsurvivors. Abnormalities in other LFTs analyzed (alkaline phosphatase, gamma-glutamyl transferase, and total bilirubin) were not associated with short-term mortality. An increase in ALT of >20% within 24 hours (ΔALT>+20%) was observed in 24% of patients. ΔALT>+20% was associated with a more than 2-fold increase in mortality compared with those with stable or decreasing ALT (70% and 28%, p <0.001). Multivariable regression analysis showed that ΔALT>+20% was associated with increased 90-day mortality independent of other known risk factors. In conclusion, an increase in ALT in the initial phase was seen in 1/4 of patients in CS and was independently associated with 90-day mortality. This finding suggests that serial ALT measurements should be incorporated in the clinical assessment of patients in CS. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Investigation of urinary volatile organic metabolites as potential cancer biomarkers by solid-phase microextraction in combination with gas chromatography-mass spectrometry

    PubMed Central

    Silva, C L; Passos, M; Câmara, J S

    2011-01-01

    Background: Non-invasive diagnostic strategies aimed at identifying biomarkers of cancer are of great interest for early cancer detection. Urine is potentially a rich source of volatile organic metabolites (VOMs) that can be used as potential cancer biomarkers. Our aim was to develop a generally reliable, rapid, sensitive, and robust analytical method for screening large numbers of urine samples, resulting in a broad spectrum of native VOMs, as a tool to evaluate the potential of these metabolites in the early diagnosis of cancer. Methods: To investigate urinary volatile metabolites as potential cancer biomarkers, urine samples from 33 cancer patients (oncological group: 14 leukaemia, 12 colorectal and 7 lymphoma) and 21 healthy (control group, cancer-free) individuals were qualitatively and quantitatively analysed. Dynamic solid-phase microextraction in headspace mode (dHS-SPME) using a carboxen-polydimethylsiloxane (CAR/PDMS) sorbent in combination with GC-qMS-based metabolomics was applied to isolate and identify the volatile metabolites. This method provides a potential non-invasive method for early cancer diagnosis as a first approach. To fulfil this objective, three important dHS-SPME experimental parameters that influence extraction efficiency (fibre coating, extraction time and temperature of sampling) were optimised using a univariate optimisation design. The highest extraction efficiency was obtained when sampling was performed at 50°C for 60 min using samples with high ionic strengths (17% sodium chloride, w v−1) and under agitation. Results: A total of 82 volatile metabolites belonging to distinct chemical classes were identified in the control and oncological groups. Benzene derivatives, terpenoids and phenols were the most common classes for the oncological group, whereas ketones and sulphur compounds were the main classes that were isolated from the urine headspace of healthy subjects. The results demonstrate that compound concentrations were

  15. Cortical gyrification is abnormal in children with prenatal alcohol exposure.

    PubMed

    Hendrickson, Timothy J; Mueller, Bryon A; Sowell, Elizabeth R; Mattson, Sarah N; Coles, Claire D; Kable, Julie A; Jones, Kenneth L; Boys, Christopher J; Lim, Kelvin O; Riley, Edward P; Wozniak, Jeffrey R

    2017-01-01

    Prenatal alcohol exposure (PAE) adversely affects early brain development. Previous studies have shown a wide range of structural and functional abnormalities in children and adolescents with PAE. The current study adds to the existing literature specifically on cortical development by examining cortical gyrification in a large sample of children with PAE compared to controls. Relationships between cortical development and intellectual functioning are also examined. Included were 92 children with PAE and 83 controls ages 9-16 from four sites in the Collaborative Initiative on FASD (CIFASD). All PAE participants had documented heavy PAE. All underwent a formal evaluation of physical anomalies and dysmorphic facial features. MRI data were collected using modified matched protocols on three platforms (Siemens, GE, and Philips). Cortical gyrification was examined using a semi-automated procedure. Whole brain group comparisons using Monte Carlo z-simulation for multiple comparisons showed significantly lower cortical gyrification across a large proportion of the cerebral cortex amongst PAE compared to controls. Whole brain comparisons and ROI based analyses showed strong positive correlations between cortical gyrification and IQ (i.e. less developed cortex was associated with lower IQ). Abnormalities in cortical development were seen across the brain in children with PAE compared to controls. Cortical gyrification and IQ were strongly correlated, suggesting that examining mechanisms by which alcohol disrupts cortical formation may yield clinically relevant insights and potential directions for early intervention.

  16. Emerging new strategies for successful metabolite identification in metabolomics

    PubMed Central

    Bingol, Kerem; Bruschweiler-Li, Lei; Li, Dawei; Zhang, Bo; Xie, Mouzhe; Brüschweiler, Rafael

    2016-01-01

    This review discusses strategies for the identification of metabolites in complex biological mixtures, as encountered in metabolomics, which have emerged in the recent past. These include NMR database-assisted approaches for the identification of commonly known metabolites as well as novel combinations of NMR and MS analysis methods for the identification of unknown metabolites. The use of certain chemical additives to the NMR tube can permit identification of metabolites with specific physical chemical properties. PMID:26915807

  17. Regulation and Role of Fungal Secondary Metabolites.

    PubMed

    Macheleidt, Juliane; Mattern, Derek J; Fischer, Juliane; Netzker, Tina; Weber, Jakob; Schroeckh, Volker; Valiante, Vito; Brakhage, Axel A

    2016-11-23

    Fungi have the capability to produce a tremendous number of so-called secondary metabolites, which possess a multitude of functions, e.g., communication signals during coexistence with other microorganisms, virulence factors during pathogenic interactions with plants and animals, and in medical applications. Therefore, research on this topic has intensified significantly during the past 10 years and thus knowledge of regulatory mechanisms and the understanding of the role of secondary metabolites have drastically increased. This review aims to depict the complexity of all the regulatory elements involved in controlling the expression of secondary metabolite gene clusters, ranging from epigenetic control and signal transduction pathways to global and specific transcriptional regulators. Furthermore, we give a short overview on the role of secondary metabolites, focusing on the interaction with other microorganisms in the environment as well as on pathogenic relationships.

  18. Dynamic microbial succession of Shanxi aged vinegar and its correlation with flavor metabolites during different stages of acetic acid fermentation.

    PubMed

    Zhu, Yunping; Zhang, Feifei; Zhang, Chengnan; Yang, Li; Fan, Guangsen; Xu, Youqiang; Sun, Baoguo; Li, Xiuting

    2018-06-05

    Shanxi aged vinegar (SAV), one of the famous Chinese vinegars, is produced by multispecies solid-state fermentation in which the acetic acid fermentation stage (AAF) is especially important. However, how bacterial succession and their metabolites change along with the different stages of AAF is still poorly understood. In this study, we investigated the dynamic bacterial succession and flavor formation in three batches of SAV using high-throughput sequencing and metabolomics approaches. It is interesting to find that AAF can be divided into three stages based on its bacterial community succession (early stage, days 0-4; medium stage, days 5-21; and later stage, days 22-26). Pantoea, Pediococcus, Lactococcus and Rhizobium played an important role in the early stage; Lactobacillus was dominant in the medium stage (67.72%); and Acetobacter, Komagataeibacter and Kroppenstedtia were the key bacteria in the later stage. A total of seven organic acids and 42 volatile constituents (esters, alcohol, ketones and aldehydes) were detected during the AAF. Spearman correlation analysis showed a significant correlation between the bacterial community and these flavor metabolites during the AAF of the SAV. This is the first report to explore the relationships between volatile flavor metabolites and bacterial community succession by a three-staged method and provide theoretical support for a flavor formation mechanism in traditional SAV.

  19. Early Detection of Diabetic Retinopathy.

    PubMed

    Safi, Hamid; Safi, Sare; Hafezi-Moghadam, Ali; Ahmadieh, Hamid

    2018-04-18

    Diabetic retinopathy (DR) is a primary cause of visual impairment worldwide. Diabetes mellitus may be associated with ophthalmoscopically nonvisible neurovascular damage that progresses before the first clinical signs of DR appear. Reduction of the inner neuroretinal layer thickness on macular optical coherence tomography (OCT), reduced contrast sensitivity primarily at low spatial frequencies, abnormal results in color vision and microperimetry tests, and a prolonged implicit time recorded by multifocal electroretinography have been proposed for detection of early functional and nonvisible structural neuroretinal changes. Vascular abnormalities such as changes in the retinal vessels caliber, architectural indices, and blood flow have been investigated to evaluate the early stages of DR. The results of OCT angiography, retinal vessel oxygen saturation patterns, and elevated levels of circulating blood markers and cytokines have been suggested as early signs of DR. Light-based molecular imaging in rodents has been developed to demonstrate changes in protein expressions in the retinal microvessels as diagnostic biomarkers. Future clinical studies will examine the safety and efficacy of this approach in humans. We summarize all studies related to subclinical DR biomarkers. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Abnormalities of neural circuitry in Alzheimer's disease: hippocampus and cortical cholinergic innervation.

    PubMed

    Geula, C

    1998-07-01

    Severe pathology in Alzheimer's disease (AD) results in marked disruption of cortical circuitry. Formation of neurofibrillary tangles, neuronal loss, decrease in dendritic extent, and synaptic depletion combine to halt communication among various cortical areas, resulting in anatomic isolation and fragmentation of many cortical zones. The clinical manifestation of this disruption is severe and debilitating cognitive dysfunction, often accompanied by psychiatric and behavioral disturbances and a diminished ability to perform activities of daily living. However, different cortical circuits are not equally vulnerable to AD pathology. In particular, two cortical systems that appear to be involved in the neural processing of memory are selectively vulnerable to degeneration in AD. One consists of connections between the hippocampus and its neighboring cortical structures within the temporal lobe. The second is the cortical cholinergic system that originates in neurons within the basal forebrain and innervates the entire cortical mantle. The circuitry in these systems shows early and severe degenerative changes in the course of AD. The selective vulnerability of these circuits is the probable reason for the early and marked loss of memory observed in these patients. This review presents current knowledge of the general pattern of cortical circuitry, followed by a summary of abnormalities of this circuitry in AD. The cortical circuits that exhibit selective pathology in AD are described in greater detail. Therapeutic implications of the abnormal circuitry in AD are also discussed. For therapies to be effective, early diagnosis of AD is necessary. Future efforts at AD therapy must be combined with an equally intense effort to develop tools capable of early diagnosis of AD, preferably at a preclinical stage before the onset of cognitive symptoms.

  1. MIDAS: a database-searching algorithm for metabolite identification in metabolomics.

    PubMed

    Wang, Yingfeng; Kora, Guruprasad; Bowen, Benjamin P; Pan, Chongle

    2014-10-07

    A database searching approach can be used for metabolite identification in metabolomics by matching measured tandem mass spectra (MS/MS) against the predicted fragments of metabolites in a database. Here, we present the open-source MIDAS algorithm (Metabolite Identification via Database Searching). To evaluate a metabolite-spectrum match (MSM), MIDAS first enumerates possible fragments from a metabolite by systematic bond dissociation, then calculates the plausibility of the fragments based on their fragmentation pathways, and finally scores the MSM to assess how well the experimental MS/MS spectrum from collision-induced dissociation (CID) is explained by the metabolite's predicted CID MS/MS spectrum. MIDAS was designed to search high-resolution tandem mass spectra acquired on time-of-flight or Orbitrap mass spectrometer against a metabolite database in an automated and high-throughput manner. The accuracy of metabolite identification by MIDAS was benchmarked using four sets of standard tandem mass spectra from MassBank. On average, for 77% of original spectra and 84% of composite spectra, MIDAS correctly ranked the true compounds as the first MSMs out of all MetaCyc metabolites as decoys. MIDAS correctly identified 46% more original spectra and 59% more composite spectra at the first MSMs than an existing database-searching algorithm, MetFrag. MIDAS was showcased by searching a published real-world measurement of a metabolome from Synechococcus sp. PCC 7002 against the MetaCyc metabolite database. MIDAS identified many metabolites missed in the previous study. MIDAS identifications should be considered only as candidate metabolites, which need to be confirmed using standard compounds. To facilitate manual validation, MIDAS provides annotated spectra for MSMs and labels observed mass spectral peaks with predicted fragments. The database searching and manual validation can be performed online at http://midas.omicsbio.org.

  2. 40 CFR 159.179 - Metabolites, degradates, contaminants, and impurities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... chemical properties of the metabolite or degradate. (B) Data regarding structurally analogous chemicals. (C) Data regarding chemical reactivity of the metabolite or degradate and structurally analogous substances... any person described in § 159.158(a) that the metabolite or degradate, or analogous chemicals, may...

  3. 40 CFR 159.179 - Metabolites, degradates, contaminants, and impurities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... chemical properties of the metabolite or degradate. (B) Data regarding structurally analogous chemicals. (C) Data regarding chemical reactivity of the metabolite or degradate and structurally analogous substances... any person described in § 159.158(a) that the metabolite or degradate, or analogous chemicals, may...

  4. Clock Regulation of Metabolites Reveals Coupling between Transcription and Metabolism.

    PubMed

    Krishnaiah, Saikumari Y; Wu, Gang; Altman, Brian J; Growe, Jacqueline; Rhoades, Seth D; Coldren, Faith; Venkataraman, Anand; Olarerin-George, Anthony O; Francey, Lauren J; Mukherjee, Sarmistha; Girish, Saiveda; Selby, Christopher P; Cal, Sibel; Er, Ubeydullah; Sianati, Bahareh; Sengupta, Arjun; Anafi, Ron C; Kavakli, I Halil; Sancar, Aziz; Baur, Joseph A; Dang, Chi V; Hogenesch, John B; Weljie, Aalim M

    2017-04-04

    The intricate connection between the circadian clock and metabolism remains poorly understood. We used high temporal resolution metabolite profiling to explore clock regulation of mouse liver and cell-autonomous metabolism. In liver, ∼50% of metabolites were circadian, with enrichment of nucleotide, amino acid, and methylation pathways. In U2 OS cells, 28% were circadian, including amino acids and NAD biosynthesis metabolites. Eighteen metabolites oscillated in both systems and a subset of these in primary hepatocytes. These 18 metabolites were enriched in methylation and amino acid pathways. To assess clock dependence of these rhythms, we used genetic perturbation. BMAL1 knockdown diminished metabolite rhythms, while CRY1 or CRY2 perturbation generally shortened or lengthened rhythms, respectively. Surprisingly, CRY1 knockdown induced 8 hr rhythms in amino acid, methylation, and vitamin metabolites, decoupling metabolite from transcriptional rhythms, with potential impact on nutrient sensing in vivo. These results provide the first comprehensive views of circadian liver and cell-autonomous metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Twelve-lead electrocardiography in the young: physiologic and pathologic abnormalities.

    PubMed

    Kobza, Richard; Cuculi, Florim; Abächerli, Roger; Toggweiler, Stefan; Suter, Yves; Frey, Franz; Schmid, Johann Jakob; Erne, Paul

    2012-12-01

    BACKGROUND/ OBJECTIVE: The purpose of the present study was to analyze the prevalence of physiologic and pathologic ECG abnormalities in a cohort of young conscripts that represents the whole young generation of today. ECGs of all Swiss citizens who underwent conscription for the army during a 29-month period were analyzed manually. ECGs of 43,401 conscripts (mean age 19.2 ± 1.1 years) were analyzed; 158 conscripts were female. Incomplete right bundle branch block was found in 5870 (13.5%) and left anterior fascicular block in 360 (0.83%). First-degree AV block was present in 329 (0.8%) and Mobitz type I (Wenckebach) second-degree AV block in 3 (0.01%). Early repolarization was observed in 1035 (2.4%), T-wave inversion in 39 (0.09%), and minor T-wave changes in 182 (0.42%). Brugada-like abnormalities were observed in 6 (0.01%). None of the conscripts had atrial fibrillation or flutter. ECG abnormalities can be found in a relatively large proportion of young individuals. Incomplete right bundle branch block, left fascicular block, and first-degree AV block are the most frequent findings. No conscript presented with atrial fibrillation or flutter. Copyright © 2012 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  6. Abnormal endocrine pancreas function at birth in cystic fibrosis ferrets

    PubMed Central

    Olivier, Alicia K.; Yi, Yaling; Sun, Xingshen; Sui, Hongshu; Liang, Bo; Hu, Shanming; Xie, Weiliang; Fisher, John T.; Keiser, Nicholas W.; Lei, Diana; Zhou, Weihong; Yan, Ziying; Li, Guiying; Evans, Turan I.A.; Meyerholz, David K.; Wang, Kai; Stewart, Zoe A.; Norris, Andrew W.; Engelhardt, John F.

    2012-01-01

    Diabetes is a common comorbidity in cystic fibrosis (CF) that worsens prognosis. The lack of an animal model for CF-related diabetes (CFRD) has made it difficult to dissect how the onset of pancreatic pathology influences the emergence of CFRD. We evaluated the structure and function of the neonatal CF endocrine pancreas using a new CFTR-knockout ferret model. Although CF kits are born with only mild exocrine pancreas disease, progressive exocrine and endocrine pancreatic loss during the first months of life was associated with pancreatic inflammation, spontaneous hyperglycemia, and glucose intolerance. Interestingly, prior to major exocrine pancreas disease, CF kits demonstrated significant abnormalities in blood glucose and insulin regulation, including diminished first-phase and accentuated peak insulin secretion in response to glucose, elevated peak glucose levels following glucose challenge, and variably elevated insulin and C-peptide levels in the nonfasted state. Although there was no difference in lobular insulin and glucagon expression between genotypes at birth, significant alterations in the frequencies of small and large islets were observed. Newborn cultured CF islets demonstrated dysregulated glucose-dependent insulin secretion in comparison to controls, suggesting intrinsic abnormalities in CF islets. These findings demonstrate that early abnormalities exist in the regulation of insulin secretion by the CF endocrine pancreas. PMID:22996690

  7. Enhanced exosome secretion in Down syndrome brain - a protective mechanism to alleviate neuronal endosomal abnormalities.

    PubMed

    Gauthier, Sébastien A; Pérez-González, Rocío; Sharma, Ajay; Huang, Fang-Ke; Alldred, Melissa J; Pawlik, Monika; Kaur, Gurjinder; Ginsberg, Stephen D; Neubert, Thomas A; Levy, Efrat

    2017-08-29

    A dysfunctional endosomal pathway and abnormally enlarged early endosomes in neurons are an early characteristic of Down syndrome (DS) and Alzheimer's disease (AD). We have hypothesized that endosomal material can be released by endosomal multivesicular bodies (MVBs) into the extracellular space via exosomes to relieve neurons of accumulated endosomal contents when endosomal pathway function is compromised. Supporting this, we found that exosome secretion is enhanced in the brains of DS patients and a mouse model of the disease, and by DS fibroblasts. Furthermore, increased levels of the tetraspanin CD63, a regulator of exosome biogenesis, were observed in DS brains. Importantly, CD63 knockdown diminished exosome release and worsened endosomal pathology in DS fibroblasts. Taken together, these data suggest that increased CD63 expression enhances exosome release as an endogenous mechanism mitigating endosomal abnormalities in DS. Thus, the upregulation of exosome release represents a potential therapeutic goal for neurodegenerative disorders with endosomal pathology.

  8. Abnormal nuclear envelopes in the striatum and motor deficits in DYT11 myoclonus-dystonia mouse models.

    PubMed

    Yokoi, Fumiaki; Dang, Mai T; Zhou, Tong; Li, Yuqing

    2012-02-15

    DYT11 myoclonus-dystonia (M-D) is a movement disorder characterized by myoclonic jerks with dystonic symptoms and caused by mutations in paternally expressed SGCE, which codes for ε-sarcoglycan. Paternally inherited Sgce heterozygous knock-out (KO) mice exhibit motor deficits and spontaneous myoclonus. Abnormal nuclear envelopes have been reported in cellular and mouse models of early-onset DYT1 generalized torsion dystonia; however, the relationship between the abnormal nuclear envelopes and motor symptoms are not clear. Furthermore, it is not known whether abnormal nuclear envelope exists in non-DYT1 dystonia. In the present study, abnormal nuclear envelopes in the striatal medium spiny neurons (MSNs) were found in Sgce KO mice. To analyze whether the loss of ε-sarcoglycan in the striatum alone causes abnormal nuclear envelopes, motor deficits or myoclonus, we produced paternally inherited striatum-specific Sgce conditional KO (Sgce sKO) mice and analyzed their phenotypes. Sgce sKO mice exhibited motor deficits in both beam-walking and accelerated rotarod tests, while they did not exhibit abnormal nuclear envelopes, alteration in locomotion, or myoclonus. The results suggest that the loss of ε-sarcoglycan in the striatum contributes to motor deficits, while it alone does not produce abnormal nuclear envelopes or myoclonus. Development of therapies targeting the striatum to compensate for the loss of ε-sarcoglycan function may rescue the motor deficits in DYT11 M-D patients.

  9. Developmental abnormalities in Glomeris marginata (Villers 1789) (Myriapoda: Diplopoda): implications for body axis determination in a myriapod

    NASA Astrophysics Data System (ADS)

    Janssen, Ralf

    2013-01-01

    Abnormally developing embryos (ADEs) of the common pill millipede Glomeris marginata have been investigated by means of nuclear staining and mRNA in situ hybridization. It showed that all ADEs represent cases of Duplicitas posterior, which means that the posterior body pole is duplicated. The severity of the duplication ranges from duplicated posterior trunk segments in one specimen to an almost completely duplicated specimen that only shares the very anterior head region. Remarkably, none of the encountered ADEs represents a case of Duplicitas anterior (duplicated anterior pole) or a case of Duplicitas cruciata (cruciate duplication with two anterior and two posterior poles). This observation is discussed in the light of earlier reports on G. marginata ADEs that claim to have found these abnormalities. The lack of any other axial abnormality aside from D. posterior implies that early axis determination in G. marginata, and possibly myriapods in general, underlies the developmental mechanisms that prevent the formation of any other type of axial duplication. It is proposed that the formation of D. posterior-type embryos could be caused by the formation of two instead of only one posterior cumulus early during development.

  10. Analysis of Intracellular Metabolites from Microorganisms: Quenching and Extraction Protocols

    PubMed Central

    Villas-Boas, Silas G.; Aggio, Raphael

    2017-01-01

    Sample preparation is one of the most important steps in metabolome analysis. The challenges of determining microbial metabolome have been well discussed within the research community and many improvements have already been achieved in last decade. The analysis of intracellular metabolites is particularly challenging. Environmental perturbations may considerably affect microbial metabolism, which results in intracellular metabolites being rapidly degraded or metabolized by enzymatic reactions. Therefore, quenching or the complete stop of cell metabolism is a pre-requisite for accurate intracellular metabolite analysis. After quenching, metabolites need to be extracted from the intracellular compartment. The choice of the most suitable metabolite extraction method/s is another crucial step. The literature indicates that specific classes of metabolites are better extracted by different extraction protocols. In this review, we discuss the technical aspects and advancements of quenching and extraction of intracellular metabolite analysis from microbial cells. PMID:29065530

  11. Impact of maternal metabolic abnormalities in pregnancy on human milk and subsequent infant metabolic development: methodology and design.

    PubMed

    Ley, Sylvia H; O'Connor, Deborah L; Retnakaran, Ravi; Hamilton, Jill K; Sermer, Mathew; Zinman, Bernard; Hanley, Anthony J

    2010-10-06

    Childhood obesity is on the rise and is a major risk factor for type 2 diabetes later in life. Recent evidence indicates that abnormalities that increase risk for diabetes may be initiated early in infancy. Since the offspring of women with diabetes have an increased long-term risk for obesity and type 2 diabetes, the impact of maternal metabolic abnormalities on early nutrition and infant metabolic trajectories is of considerable interest. Human breast milk, the preferred food during infancy, contains not only nutrients but also an array of bioactive substances including metabolic hormones. Nonetheless, only a few studies have reported concentrations of metabolic hormones in human milk specifically from women with metabolic abnormalities. We aim to investigate the impact of maternal metabolic abnormalities in pregnancy on human milk hormones and subsequently on infant development over the first year of life. The objective of this report is to present the methodology and design of this study. The current investigation is a prospective study conducted within ongoing cohort studies of women and their offspring. Pregnant women attending outpatient obstetrics clinics in Toronto, Canada were recruited. Between April 2009 and July 2010, a total of 216 pregnant women underwent a baseline oral glucose tolerance test and provided medical and lifestyle history. Follow-up visits and telephone interviews are conducted and expected to be completed in October 2011. Upon delivery, infant birth anthropometry measurements and human breast milk samples are collected. At 3 and 12 months postpartum, mothers and infants are invited for follow-up assessments. Interim telephone interviews are conducted during the first year of offspring life to characterize infant feeding and supplementation behaviors. An improved understanding of the link between maternal metabolic abnormalities in pregnancy and early infant nutrition may assist in the development of optimal prevention and intervention

  12. Abnormal regional activity and functional connectivity in resting-state brain networks associated with etiology confirmed unilateral pulsatile tinnitus in the early stage of disease.

    PubMed

    Lv, Han; Zhao, Pengfei; Liu, Zhaohui; Li, Rui; Zhang, Ling; Wang, Peng; Yan, Fei; Liu, Liheng; Wang, Guopeng; Zeng, Rong; Li, Ting; Dong, Cheng; Gong, Shusheng; Wang, Zhenchang

    2017-03-01

    Abnormal neural activities can be revealed by resting-state functional magnetic resonance imaging (rs-fMRI) using analyses of the regional activity and functional connectivity (FC) of the networks in the brain. This study was designed to demonstrate the functional network alterations in the patients with pulsatile tinnitus (PT). In this study, we recruited 45 patients with unilateral PT in the early stage of disease (less than 48 months of disease duration) and 45 normal controls. We used regional homogeneity (ReHo) and seed-based FC computational methods to reveal resting-state brain activity features associated with pulsatile tinnitus. Compared with healthy controls, PT patients showed regional abnormalities mainly in the left middle occipital gyrus (MOG), posterior cingulate gyrus (PCC), precuneus and right anterior insula (AI). When these regions were defined as seeds, we demonstrated widespread modification of interaction between the auditory and non-auditory networks. The auditory network was positively connected with the cognitive control network (CCN), which may associate with tinnitus related distress. Both altered regional activity and changed FC were found in the visual network. The modification of interactions of higher order networks were mainly found in the DMN, CCN and limbic networks. Functional connectivity between the left MOG and left parahippocampal gyrus could also be an index to reflect the disease duration. This study helped us gain a better understanding of the characteristics of neural network modifications in patients with pulsatile tinnitus. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Electrocardiographic abnormalities in opiate addicts.

    PubMed

    Wallner, Christina; Stöllberger, Claudia; Hlavin, Anton; Finsterer, Josef; Hager, Isabella; Hermann, Peter

    2008-12-01

    To determine in a cross-sectional study the prevalence of electrocardiographic (ECG) abnormalities in opiate addicts who were therapy-seeking and its association with demographic, clinical and drug-specific parameters. In consecutive therapy-seeking opiate addicts, a 12-lead ECG was registered within 24 hours after admission and evaluated according to a pre-set protocol between October 2004 and August 2006. Additionally, demographic, clinical and drug-specific parameters were recorded. Included were 511 opiate-addicts, 25% female, with a mean age of 29 years (range 17-59 years). One or more ECG abnormalities were found in 314 patients (61%). In the 511 patients we found most commonly ST abnormalities (19%), QTc prolongation (13%), tall R- and/or S-waves (11%) and missing R progression (10%). ECG abnormalities were more common in males than in females (64 versus 54%, P < 0.05), and in patients with positive than negative urine findings for cannabis (68 versus 57%, P < 0.05). Patients with ST abnormalities were more often males than females (21 versus 11%, P < 0.05), had a history of seizures less often (16 versus 27%, P < 0.05), had positive than negative urine findings for cannabis more often (26 versus 15%, P < 0.01) and had negative than positive urine findings for methadone more often (21 versus 11%, P < 0.05). QTc prolongation was more frequent in patients with high dosages of maintenance drugs than in patients with medium or low dosages (27 versus 12 versus 10%, P < 0.05) and in patients whose urine findings were positive than negative for methadone (23 versus 11%, P < 0.001) as well as for benzodiazepines (17 versus 9%, P < 0.05). Limitations of the data are that in most cases other risk factors for the cardiac abnormalities were not known. ECG abnormalities are frequent in opiate addicts. The most frequent ECG abnormalities are ST abnormalities, QTc prolongation and tall R- and/or S-waves. ST abnormalities are associated with cannabis, and QTc prolongation

  14. [Synthetic biology toward microbial secondary metabolites and pharmaceuticals].

    PubMed

    Wu, Lin-Zhuan; Hong, Bin

    2013-02-01

    Microbial secondary metabolites are one of the major sources of anti-bacterial, anti-fungal, antitumor, anti-virus and immunosuppressive agents for clinical use. Present challenges in microbial pharmaceutical development are the discovery of novel secondary metabolites with significant biological activities, improving the fermentation titers of industrial microbial strains, and production of natural product drugs by re-establishing their biosynthetic pathways in suitable microbial hosts. Synthetic biology, which is developed from systematic biology and metabolic engineering, provides a significant driving force for microbial pharmaceutical development. The review describes the major applications of synthetic biology in novel microbial secondary metabolite discovery, improved production of known secondary metabolites and the production of some natural drugs in genetically modified or reconstructed model microorganisms.

  15. Ruta graveolens Extracts and Metabolites against Spodoptera frugiperda.

    PubMed

    Ayil-Gutiérrez, Benjamin A; Villegas-Mendoza, Jesús M; Santes-Hernndez, Zuridai; Paz-González, Alma D; Mireles-Martínez, Maribel; Rosas-García, Ninfa M; Rivera, Gildardo

    2015-11-01

    The biological activity of Ruta graveolens leaf tissue extracts obtained with different solvents (ethyl acetate, ethanol, and water) and metabolites (psoralen, 2- undecanone and rutin) against Spodoptera frugiperda was evaluated. Metabolites levels in extracts were quantified by HPLC and GC. Ethyl acetate and ethanol extracts showed 94% and 78% mortality, respectively. Additionally, psoralen metabolite showed a high mortality as cypermethrin. Metabolite quantification in extracts shows the presence of 2-undecanone (87.9 µmoles mg(-1) DW), psoralen (3.6 µmoles mg(-1) DW) and rutin (0.001 pmoles mg(-1) DW). We suggest that these concentrations of 2-undecanone and psoralen in R. graveolens leaf tissue extracts could be responsible for S. frugiperda mortality.

  16. Cellular stress created by intermediary metabolite imbalances.

    PubMed

    Lee, Sang Jun; Trostel, Andrei; Le, Phuoc; Harinarayanan, Rajendran; Fitzgerald, Peter C; Adhya, Sankar

    2009-11-17

    Small molecules generally activate or inhibit gene transcription as externally added substrates or as internally accumulated end-products, respectively. Rarely has a connection been made that links an intracellular intermediary metabolite as a signal of gene expression. We report that a perturbation in the critical step of a metabolic pathway--the D-galactose amphibolic pathway--changes the dynamics of the pathways leading to accumulation of the intermediary metabolite UDP-galactose. This accumulation causes cell stress and transduces signals that alter gene expression so as to cope with the stress by restoring balance in the metabolite pool. This underscores the importance of studying the global effects of alterations in the level of intermediary metabolites in causing stress and coping with it by transducing signals to genes to reach a stable state of equilibrium (homeostasis). Such studies are an essential component in the integration of metabolomics, proteomics, and transcriptomics.

  17. Persistence of chromosomal abnormalities additional to the Philadelphia chromosome after Philadelphia chromosome disappearance during imatinib therapy for chronic myeloid leukemia.

    PubMed

    Zaccaria, Alfonso; Valenti, Anna Maria; Donti, Emilio; Gozzetti, Alessandro; Ronconi, Sonia; Spedicato, Francesco

    2007-04-01

    Five Philadelphia chromosome positive (Ph+) chronic myeloid leukemia (CML) patients with additional chromosome abnormalities at diagnosis have been followed during Imatinib therapy. In all, the Ph chromosome disappeared, while the 5 cases, additional abnormalities [dup(1); del(5), +8 (2 patients) and +14] persisted in the subsequent studies, performed over a period of 11 to 49 months, either alone or together with a karyotypically normal cell population. This finding is consistent with a secondary origin of the Ph chromosome in these patients. It is still to early to evaluate the possible prognostic value of these additional abnormalities.

  18. Serum metabolites and risk of myocardial infarction and ischemic stroke: a targeted metabolomic approach in two German prospective cohorts.

    PubMed

    Floegel, Anna; Kühn, Tilman; Sookthai, Disorn; Johnson, Theron; Prehn, Cornelia; Rolle-Kampczyk, Ulrike; Otto, Wolfgang; Weikert, Cornelia; Illig, Thomas; von Bergen, Martin; Adamski, Jerzy; Boeing, Heiner; Kaaks, Rudolf; Pischon, Tobias

    2018-01-01

    Metabolomic approaches in prospective cohorts may offer a unique snapshot into early metabolic perturbations that are associated with a higher risk of cardiovascular diseases (CVD) in healthy people. We investigated the association of 105 serum metabolites, including acylcarnitines, amino acids, phospholipids and hexose, with risk of myocardial infarction (MI) and ischemic stroke in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam (27,548 adults) and Heidelberg (25,540 adults) cohorts. Using case-cohort designs, we measured metabolites among individuals who were free of CVD and diabetes at blood draw but developed MI (n = 204 and n = 228) or stroke (n = 147 and n = 121) during follow-up (mean, 7.8 and 7.3 years) and among randomly drawn subcohorts (n = 2214 and n = 770). We used Cox regression analysis and combined results using meta-analysis. Independent of classical CVD risk factors, ten metabolites were associated with risk of MI in both cohorts, including sphingomyelins, diacyl-phosphatidylcholines and acyl-alkyl-phosphatidylcholines with pooled relative risks in the range of 1.21-1.40 per one standard deviation increase in metabolite concentrations. The metabolites showed positive correlations with total- and LDL-cholesterol (r ranged from 0.13 to 0.57). When additionally adjusting for total-, LDL- and HDL-cholesterol, triglycerides and C-reactive protein, acyl-alkyl-phosphatidylcholine C36:3 and diacyl-phosphatidylcholines C38:3 and C40:4 remained associated with risk of MI. When added to classical CVD risk models these metabolites further improved CVD prediction (c-statistics increased from 0.8365 to 0.8384 in EPIC-Potsdam and from 0.8344 to 0.8378 in EPIC-Heidelberg). None of the metabolites was consistently associated with stroke risk. Alterations in sphingomyelin and phosphatidylcholine metabolism, and particularly metabolites of the arachidonic acid pathway are independently associated with risk of MI in

  19. Patterns of magnetic resonance imaging abnormalities in symptomatic patients with Krabbe disease correspond to phenotype.

    PubMed

    Abdelhalim, Ahmed N; Alberico, Ronald A; Barczykowski, Amy L; Duffner, Patricia K

    2014-02-01

    Initial magnetic resonance imaging studies of individuals with Krabbe disease were analyzed to determine whether the pattern of abnormalities corresponded to the phenotype. This was a retrospective, nonblinded study. Families/patients diagnosed with Krabbe disease submitted medical records and magnetic resonance imaging discs for central review. Institutional review board approval/informed consents were obtained. Sixty-four magnetic resonance imaging scans were reviewed by two neuroradiologists and a child neurologist according to phenotype: early infantile (onset 0-6 months) = 39 patients; late infantile (onset 7-12 months) = 10 patients; later onset (onset 13 months-10 years) = 11 patients; adolescent (onset 11-20 years) = one patient; and adult (21 years or greater) = three patients. Local interpretations were compared with central review. Magnetic resonance imaging abnormalities differed among phenotypes. Early infantile patients had a predominance of increased intensity in the dentate/cerebellar white matter as well as changes in the deep cerebral white matter. Later onset patients did not demonstrate involvement in the dentate/cerebellar white matter but had extensive involvement of the deep cerebral white matter, parieto-occipital region, and posterior corpus callosum. Late infantile patients exhibited a mixed pattern; 40% had dentate/cerebellar white matter involvement while all had involvement of the deep cerebral white matter. Adolescent/adult patients demonstrated isolated corticospinal tract involvement. Local and central reviews primarily differed in interpretation of the early infantile phenotype. Analysis of magnetic resonance imaging in a large cohort of symptomatic patients with Krabbe disease demonstrated imaging abnormalities correspond to specific phenotypes. Knowledge of these patterns along with typical clinical signs/symptoms should promote earlier diagnosis and facilitate treatment. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Influence of abiotic stress signals on secondary metabolites in plants

    PubMed Central

    Ramakrishna, Akula; Ravishankar, Gokare Aswathanarayana

    2011-01-01

    Plant secondary metabolites are unique sources for pharmaceuticals, food additives, flavors, and industrially important biochemicals. Accumulation of such metabolites often occurs in plants subjected to stresses including various elicitors or signal molecules. Secondary metabolites play a major role in the adaptation of plants to the environment and in overcoming stress conditions. Environmental factors viz. temperature, humidity, light intensity, the supply of water, minerals, and CO2 influence the growth of a plant and secondary metabolite production. Drought, high salinity, and freezing temperatures are environmental conditions that cause adverse effects on the growth of plants and the productivity of crops. Plant cell culture technologies have been effective tools for both studying and producing plant secondary metabolites under in vitro conditions and for plant improvement. This brief review summarizes the influence of different abiotic factors include salt, drought, light, heavy metals, frost etc. on secondary metabolites in plants. The focus of the present review is the influence of abiotic factors on secondary metabolite production and some of important plant pharmaceuticals. Also, we describe the results of in vitro cultures and production of some important secondary metabolites obtained in our laboratory. PMID:22041989

  1. Metabolism and metabolites of polychlorinated biphenyls (PCBs)

    PubMed Central

    Grimm, FA; Hu, D; Kania-Korwel, I; Lehmler, HJ; Ludewig, G; Hornbuckle, KC; Duffel, MW; Bergman, A; Robertson, LW

    2015-01-01

    The metabolism of polychlorinated biphenyls (PCBs) is complex and has an impact on toxicity and thereby assessment of PCB risks. A large number of reactive and stable metabolites are formed in the processes of biotransformation in biota in general and in humans in particular. The aim of this document is to provide an overview of PCB metabolism and to identify metabolites of concern and their occurrence. Emphasis is given to mammalian metabolism of PCBs and their hydroxyl, methylsulfonyl, and sulfated metabolites, especially those that persist in human blood. Potential intracellular targets and health risks are also discussed. PMID:25629923

  2. Metabolite profiling of symbiont and host during thermal stress and bleaching in the coral Acropora aspera

    NASA Astrophysics Data System (ADS)

    Hillyer, Katie E.; Dias, Daniel A.; Lutz, Adrian; Wilkinson, Shaun P.; Roessner, Ute; Davy, Simon K.

    2017-03-01

    Rising seawater temperatures pose a significant threat to the persistence of coral reefs. Despite the importance of these systems, major gaps remain in our understanding of how thermal stress and bleaching affect the metabolic networks that underpin holobiont function. We applied gas chromatography-mass spectrometry (GC-MS) metabolomics to detect changes in the intracellular free metabolite pools (polar and semi-polar compounds) of in hospite dinoflagellate symbionts and their coral hosts (and any associated microorganisms) during early- and late-stage thermal bleaching (a reduction of approximately 50 and 70% in symbiont density, respectively). We detected characteristic changes to the metabolite profiles of each symbiotic partner associated with individual cellular responses to thermal, oxidative and osmotic stress, which progressed with the severity of bleaching. Alterations were also indicative of changes to energy-generating and biosynthesis pathways in both partners, with a shift to the increased catabolism of lipid stores. Specifically, in symbiont intracellular metabolite pools, we observed accumulations of multiple free fatty acids, plus the chloroplast-associated antioxidant alpha-tocopherol. In the host, we detected a decline in the abundance of pools of multiple carbohydrates, amino acids and intermediates, in addition to the antioxidant ascorbate. These findings further our understanding of the metabolic changes that occur to symbiont and host (and its associated microorganisms) during thermal bleaching. These findings also provide further insight into the largely undescribed roles of free metabolite pools in cellular homeostasis, signalling and acclimation to thermal stress in the cnidarian-dinoflagellate symbiosis.

  3. Prospective study of blood metabolites associated with colorectal cancer risk.

    PubMed

    Shu, Xiang; Xiang, Yong-Bing; Rothman, Nathaniel; Yu, Danxia; Li, Hong-Lan; Yang, Gong; Cai, Hui; Ma, Xiao; Lan, Qing; Gao, Yu-Tang; Jia, Wei; Shu, Xiao-Ou; Zheng, Wei

    2018-02-26

    Few prospective studies, and none in Asians, have systematically evaluated the relationship between blood metabolites and colorectal cancer risk. We conducted a nested case-control study to search for risk-associated metabolite biomarkers for colorectal cancer in an Asian population using blood samples collected prior to cancer diagnosis. Conditional logistic regression was performed to assess associations of metabolites with cancer risk. In this study, we included 250 incident cases with colorectal cancer and individually matched controls nested within two prospective Shanghai cohorts. We found 35 metabolites associated with risk of colorectal cancer after adjusting for multiple comparisons. Among them, 12 metabolites were glycerophospholipids including nine associated with reduced risk of colorectal cancer and three with increased risk [odds ratios per standard deviation increase of transformed metabolites: 0.31-1.98; p values: 0.002-1.25 × 10 -10 ]. The other 23 metabolites associated with colorectal cancer risk included nine lipids other than glycerophospholipid, seven aromatic compounds, five organic acids and four other organic compounds. After mutual adjustment, nine metabolites remained statistically significant for colorectal cancer. Together, these independently associated metabolites can separate cancer cases from controls with an area under the curve of 0.76 for colorectal cancer. We have identified that dysregulation of glycerophospholipids may contribute to risk of colorectal cancer. © 2018 UICC.

  4. Brainstem abnormalities and vestibular nerve enhancement in acute neuroborreliosis.

    PubMed

    Farshad-Amacker, Nadja A; Scheffel, Hans; Frauenfelder, Thomas; Alkadhi, Hatem

    2013-12-21

    Borreliosis is a widely distributed disease. Neuroborreliosis may present with unspecific symptoms and signs and often remains difficult to diagnose in patients with central nervous system symptoms, particularly if the pathognomonic erythema chronica migrans does not develop or is missed. Thus, vigilance is mandatory in cases with atypical presentation of the disease and with potentially severe consequences if not recognized early. We present a patient with neuroborreliosis demonstrating brain stem and vestibular nerve abnormalities on magnetic resonance imaging. A 28-year-old Caucasian female presented with headaches, neck stiffness, weight loss, nausea, tremor, and gait disturbance. Magnetic resonance imaging showed T2-weighted hyperintense signal alterations in the pons and in the vestibular nerves as well as bilateral post-contrast enhancement of the vestibular nerves. Serologic testing of the cerebrospinal fluid revealed the diagnosis of neuroborreliosis. Patients infected with neuroborreliosis may present with unspecific neurologic symptoms and magnetic resonance imaging as a noninvasive imaging tool showing signal abnormalities in the brain stem and nerve root enhancement may help in establishing the diagnosis.

  5. Chorionic villus sampling for abnormal screening compared to historical indications: prevalence of abnormal karyotypes.

    PubMed

    Marshall, Nicole E; Fraley, Gwen; Feist, Cori; Burns, Michael J; Pereira, Leonardo

    2012-08-01

    To determine the prevalence of abnormal karyotype results in women undergoing chorionic villus sampling (CVS) for abnormal first trimester screening compared to CVS for historical indications (advanced maternal age (AMA) or prior aneuploidy). Retrospective cohort of all patients undergoing CVS at Oregon Health & Science University from January 2006 to June 2010. Patients were separated based on CVS indication: (1) positive ultrasound (U/S) or serum screening; or (2) AMA or prior aneuploidy with normal or no screening. Prevalence of abnormal karyotype results were compared between groups. Fetal karyotyping was successful in 500 of 506 CVS procedures performed. 203 CVS were performed for positive screening with 69 abnormal karyotypes (34.0%). 264 CVS were performed for historical indications with 11 abnormal karyotypes (4.2%). This difference was statistically significant (χ(2) 71.9, p < 0.001; OR 11.8 [95% CI 5.8, 24.6]). There were two age-related aneuplodies in AMA women without positive screening. 42 out of 44 AMA women diagnosed with aneuploidy (95.5%) had abnormal U/S and/or serum screening (35 U/S, 4 serum, 3 U/S and serum). Combined ultrasound and serum screening should be recommended to all women, including AMA women, prior to undergoing invasive testing to improve risk-based counseling and minimize morbidity.

  6. High Frequency of Neuroimaging Abnormalities Among Pediatric Patients With Sepsis Who Undergo Neuroimaging.

    PubMed

    Sandquist, Mary K; Clee, Mark S; Patel, Smruti K; Howard, Kelli A; Yunger, Toni; Nagaraj, Usha D; Jones, Blaise V; Fei, Lin; Vadivelu, Sudhakar; Wong, Hector R

    2017-07-01

    This study was intended to describe and correlate the neuroimaging findings in pediatric patients after sepsis. Retrospective chart review. Single tertiary care PICU. Patients admitted to Cincinnati Children's Hospital Medical Center with a discharge diagnosis of sepsis or septic shock between 2004 and 2013 were crossmatched with patients who underwent neuroimaging during the same time period. All neuroimaging studies that occurred during or subsequent to a septic event were reviewed, and all new imaging findings were recorded and classified. As many patients experienced multiple septic events and/or had multiple neuroimaging studies after sepsis, our statistical analysis utilized the most recent or "final" imaging study available for each patient so that only brain imaging findings that persisted were included. A total of 389 children with sepsis and 1,705 concurrent or subsequent neuroimaging studies were included in the study. Median age at first septic event was 3.4 years (interquartile range, 0.7-11.5). Median time from first sepsis event to final neuroimaging was 157 days (interquartile range, 10-1,054). The most common indications for final imaging were follow-up (21%), altered mental status (18%), and fever/concern for infection (15%). Sixty-three percentage (n = 243) of final imaging studies demonstrated abnormal findings, the most common of which were volume loss (39%) and MRI signal and/or CT attenuation abnormalities (21%). On multivariable logistic regression, highest Pediatric Risk of Mortality score and presence of oncologic diagnosis/organ transplantation were independently associated with any abnormal final neuroimaging study findings (odds ratio, 1.032; p = 0.048 and odds ratio, 1.632; p = 0.041), although early timing of neuroimaging demonstrated a negative association (odds ratio, 0.606; p = 0.039). The most common abnormal finding of volume loss was independently associated with highest Pediatric Risk of Mortality score (odds ratio, 1.037; p

  7. Trichoderma secondary metabolites that affect plant metabolism.

    PubMed

    Vinale, Francesco; Sivasithamparam, Krishnapillai; Ghisalberti, Emilio L; Ruocco, Michelina; Wood, Sheridan; Lorito, Matteo

    2012-11-01

    Recently, there have been many exciting new developments relating to the use of Trichoderma spp. as agents for biocontrol of pathogens and as plant growth promoters. Several mechanisms have been proposed to explain the positive effects of these microorganisms on the plant host. One factor that contributes to their beneficial biological activities is related to the wide variety of metabolites that they produce. These metabolites have been found not only to directly inhibit the growth and pathogenic activities of the parasites, but also to increase disease resistance by triggering the system of defence in the plant host. In addition, these metabolites are also capable of enhancing plant growth, which enables the plant to counteract the disease with compensatory vegetative growth by the augmented production of root and shoot systems. This review takes into account the Trichoderma secondary metabolites that affect plant metabolism and that may play an important role in the complex interactions of this biocontrol agent with the plant and pathogens.

  8. Tryptophan-kynurenine and lipid related metabolites as blood biomarkers for first-episode drug-naïve patients with major depressive disorder: An exploratory pilot case-control study.

    PubMed

    Kuwano, Nobuki; Kato, Takahiro A; Setoyama, Daiki; Sato-Kasai, Mina; Shimokawa, Norihiro; Hayakawa, Kohei; Ohgidani, Masahiro; Sagata, Noriaki; Kubo, Hiroaki; Kishimoto, Junji; Kang, Dongchon; Kanba, Shigenob

    2018-04-15

    Early intervention in depression has been critical to prevent its negative impact including suicide. Recent blood biomarker studies for major depressive disorder (MDD) have suggested that tryptophan-kynurenine and lipid related metabolites are involved in the pathophysiology of MDD. However, there have been limited studies investigating these blood biomarkers in first-episode drug-naïve MDD, which are particularly important for early intervention in depression. As an exploratory pilot case-control study, we examined the above blood biomarkers, and analyzed how these biomarkers are associated with clinical variables in first-episode drug-naïve MDD patients, based on metabolome/lipidome analysis. Plasma tryptophan and kynurenine levels were significantly lower in MDD group (N = 15) compared to healthy controls (HC) group (N = 19), and plasma tryptophan was the significant biomarker to identify MDD group (area under the curve = 0.740). Lower serum high density lipoprotein-cholesterol (HDL-C) was the predictive biomarker for severity of depression in MDD group (R 2 = 0.444). Interestingly, depressive symptoms were variously correlated with plasma tryptophan-kynurenine and lipid related metabolites. Moreover, plasma tryptophan-kynurenine metabolites and cholesteryl esters (CEs) were significantly correlated in MDD group, but not in HC group. This study had small sample size, and we did not use the multiple test correction. This is the first study to suggest that not only tryptophan-kynurenine metabolites but also HDL-C and CEs are important blood biomarkers for first-episode drug-naïve MDD patients. The present study sheds new light on early intervention in clinical practice in depression, and further clinical studies especially large-scale prospective studies are warranted. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Metabolite identification through multiple kernel learning on fragmentation trees.

    PubMed

    Shen, Huibin; Dührkop, Kai; Böcker, Sebastian; Rousu, Juho

    2014-06-15

    Metabolite identification from tandem mass spectrometric data is a key task in metabolomics. Various computational methods have been proposed for the identification of metabolites from tandem mass spectra. Fragmentation tree methods explore the space of possible ways in which the metabolite can fragment, and base the metabolite identification on scoring of these fragmentation trees. Machine learning methods have been used to map mass spectra to molecular fingerprints; predicted fingerprints, in turn, can be used to score candidate molecular structures. Here, we combine fragmentation tree computations with kernel-based machine learning to predict molecular fingerprints and identify molecular structures. We introduce a family of kernels capturing the similarity of fragmentation trees, and combine these kernels using recently proposed multiple kernel learning approaches. Experiments on two large reference datasets show that the new methods significantly improve molecular fingerprint prediction accuracy. These improvements result in better metabolite identification, doubling the number of metabolites ranked at the top position of the candidates list. © The Author 2014. Published by Oxford University Press.

  10. [Autism and Autism-associated Metabolites].

    PubMed

    Watanabe, Kunitomo

    2016-06-01

    Gene-microbiota interactions are now proposed to be a special case of gene-environmental interaction. Preclinical and clinical data summarized in this article reveal that a specific serum metabolite, associated with alterations in gut microbiome composition, might have an emerging role in the onset and pathogenesis of autism. Altered level of this specified metabolite may induce perturbations in the epigenome and modulate the expression of key disease susceptible genes in neurons and their associated cells during critical periods of neurodevelopment. The gut microbiota itself is now regarded as a reservoir for environmental epigenetic factors.

  11. Tissue Specific Diurnal Rhythms of Metabolites and Their Regulation during Herbivore Attack in a Native Tobacco, Nicotiana attenuata

    PubMed Central

    Kim, Sang-Gyu; Gulati, Jyotasana; Baldwin, Ian T.

    2011-01-01

    Ecological performance is all about timing and the endogenous clock that allows the entrainment of rhythms and anticipation of fitness-determining events is being rapidly characterized. How plants anticipate daily abiotic stresses, such as cold in early mornings and drought at noon, as well as biotic stresses, such as the timing of pathogen infections, is being explored, but little is known about the clock's role in regulating responses to insect herbivores and mutualists, whose behaviors are known to be strongly diurnally regulated and whose attack is known to reconfigure plant metabolomes. We developed a liquid chromatography-mass spectrometry procedure and analyzed its output with model-based peak picking algorithms to identify metabolites with diurnal accumulation patterns in sink/source leaves and roots in an unbiased manner. The response of metabolites with strong diurnal patterns to simulated attack from the specialist herbivore, Manduca sexta larvae was analyzed and annotated with in-house and public databases. Roots and leaves had largely different rhythms and only 10 ions of 182 oscillating ions in leaves and 179 oscillating ions in roots were rhythmic in both tissues: root metabolites mainly peaked at dusk or night, while leaf metabolites peaked during the day. Many oscillating metabolites showed tissue-specific regulation by simulated herbivory of which systemic responses in unattacked tissues were particularly pronounced. Diurnal and herbivory-elicited accumulation patterns of disaccharide, phenylalanine, tyrosine, lyciumoside I, coumaroyl tyramine, 12-oxophytodienoic acid and jasmonic acid and those of their related biosynthetic transcripts were examined in detail. We conclude that oscillating metabolites of N. attenuata accumulate in a highly tissue-specific manner and the patterns reveal pronounced diurnal rhythms in the generalized and specialized metabolism that mediates the plant's responses to herbivores and mutualists. We propose that diurnal

  12. Metabolic control analysis using transient metabolite concentrations. Determination of metabolite concentration control coefficients.

    PubMed Central

    Delgado, J; Liao, J C

    1992-01-01

    The methodology previously developed for determining the Flux Control Coefficients [Delgado & Liao (1992) Biochem. J. 282, 919-927] is extended to the calculation of metabolite Concentration Control Coefficients. It is shown that the transient metabolite concentrations are related by a few algebraic equations, attributed to mass balance, stoichiometric constraints, quasi-equilibrium or quasi-steady states, and kinetic regulations. The coefficients in these relations can be estimated using linear regression, and can be used to calculate the Control Coefficients. The theoretical basis and two examples are discussed. Although the methodology is derived based on the linear approximation of enzyme kinetics, it yields reasonably good estimates of the Control Coefficients for systems with non-linear kinetics. PMID:1497632

  13. Abnormal nuclear envelopes in the striatum and motor deficits in DYT11 myoclonus-dystonia mouse models

    PubMed Central

    Yokoi, Fumiaki; Dang, Mai T.; Zhou, Tong; Li, Yuqing

    2012-01-01

    DYT11 myoclonus-dystonia (M-D) is a movement disorder characterized by myoclonic jerks with dystonic symptoms and caused by mutations in paternally expressed SGCE, which codes for ɛ-sarcoglycan. Paternally inherited Sgce heterozygous knock-out (KO) mice exhibit motor deficits and spontaneous myoclonus. Abnormal nuclear envelopes have been reported in cellular and mouse models of early-onset DYT1 generalized torsion dystonia; however, the relationship between the abnormal nuclear envelopes and motor symptoms are not clear. Furthermore, it is not known whether abnormal nuclear envelope exists in non-DYT1 dystonia. In the present study, abnormal nuclear envelopes in the striatal medium spiny neurons (MSNs) were found in Sgce KO mice. To analyze whether the loss of ɛ-sarcoglycan in the striatum alone causes abnormal nuclear envelopes, motor deficits or myoclonus, we produced paternally inherited striatum-specific Sgce conditional KO (Sgce sKO) mice and analyzed their phenotypes. Sgce sKO mice exhibited motor deficits in both beam-walking and accelerated rotarod tests, while they did not exhibit abnormal nuclear envelopes, alteration in locomotion, or myoclonus. The results suggest that the loss of ɛ-sarcoglycan in the striatum contributes to motor deficits, while it alone does not produce abnormal nuclear envelopes or myoclonus. Development of therapies targeting the striatum to compensate for the loss of ɛ-sarcoglycan function may rescue the motor deficits in DYT11 M-D patients. PMID:22080833

  14. Methodological considerations for measuring glucocorticoid metabolites in feathers

    PubMed Central

    Berk, Sara A.; McGettrick, Julie R.; Hansen, Warren K.; Breuner, Creagh W.

    2016-01-01

    In recent years, researchers have begun to use corticosteroid metabolites in feathers (fCORT) as a metric of stress physiology in birds. However, there remain substantial questions about how to measure fCORT most accurately. Notably, small samples contain artificially high amounts of fCORT per millimetre of feather (the small sample artefact). Furthermore, it appears that fCORT is correlated with circulating plasma corticosterone only when levels are artificially elevated by the use of corticosterone implants. Here, we used several approaches to address current methodological issues with the measurement of fCORT. First, we verified that the small sample artefact exists across species and feather types. Second, we attempted to correct for this effect by increasing the amount of methanol relative to the amount of feather during extraction. We consistently detected more fCORT per millimetre or per milligram of feather in small samples than in large samples even when we adjusted methanol:feather concentrations. We also used high-performance liquid chromatography to identify hormone metabolites present in feathers and measured the reactivity of these metabolites against the most commonly used antibody for measuring fCORT. We verified that our antibody is mainly identifying corticosterone (CORT) in feathers, but other metabolites have significant cross-reactivity. Lastly, we measured faecal glucocorticoid metabolites in house sparrows and correlated these measurements with corticosteroid metabolites deposited in concurrently grown feathers; we found no correlation between faecal glucocorticoid metabolites and fCORT. We suggest that researchers should be cautious in their interpretation of fCORT in wild birds and should seek alternative validation methods to examine species-specific relationships between environmental challenges and fCORT. PMID:27335650

  15. Biosynthesis of human diazepam and clonazepam metabolites.

    PubMed

    de Paula, Núbia C; Araujo Cordeiro, Kelly C F; de Melo Souza, Paula L; Nogueira, Diogo F; da Silva e Sousa, Diego B; Costa, Maísa B; Noël, François; de Oliveira, Valéria

    2015-03-01

    A screening of fungal and microbial strains allowed to select the best microorganisms to produce in high yields some of the human metabolites of two benzodiazepine drugs, diazepam and clonazepam, in order to study new pharmacological activities and for chemical standard proposes. Among the microorganisms tested, Cunninghamella echinulata ATCC 9244 and Rhizopus arrhizus ATCC 11145 strains, were the most active producers of the mains metabolites of diazepam which included demethylated, hydroxylated derivatives. Beauveria bassiana ATCC 7159 and Chaetomium indicum LCP 984200 produced the 7 amino-clonazepam metabolite and a product of acid hydrolysis of this benzodiazepine. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Primary hypertension is a disease of premature vascular aging associated with neuro-immuno-metabolic abnormalities.

    PubMed

    Litwin, Mieczysław; Feber, Janusz; Niemirska, Anna; Michałkiewicz, Jacek

    2016-02-01

    There is an increasing amount of data indicating that primary hypertension (PH) is not only a hemodynamic phenomenon but also a complex syndrome involving abnormal fat tissue distribution, over-activity of the sympathetic nervous system (SNS), metabolic abnormalities, and activation of the immune system. In children, PH usually presents with a typical phenotype of disturbed body composition, accelerated biological maturity, and subtle immunological and metabolic abnormalities. This stage of the disease is potentially reversible. However, long-lasting over-activity of the SNS and immuno-metabolic alterations usually lead to an irreversible stage of cardiovascular disease. We describe an intermediate phenotype of children with PH, showing that PH is associated with accelerated development, i.e., early premature aging of the immune, metabolic, and vascular systems. The associations and determinants of hypertensive organ damage, the principles of treatment, and the possibility of rejuvenation of the cardiovascular system are discussed.

  17. Dissection of Trichoderma longibrachiatum-induced defense in onion (Allium cepa L.) against Fusarium oxysporum f. sp. cepa by target metabolite profiling.

    PubMed

    Abdelrahman, Mostafa; Abdel-Motaal, Fatma; El-Sayed, Magdi; Jogaiah, Sudisha; Shigyo, Masayoshi; Ito, Shin-Ichi; Tran, Lam-Son Phan

    2016-05-01

    Trichoderma spp. are versatile opportunistic plant symbionts that can cause substantial changes in the metabolism of host plants, thereby increasing plant growth and activating plant defense to various diseases. Target metabolite profiling approach was selected to demonstrate that Trichoderma longibrachiatum isolated from desert soil can confer beneficial agronomic traits to onion and induce defense mechanism against Fusarium oxysporum f. sp. cepa (FOC), through triggering a number of primary and secondary metabolite pathways. Onion seeds primed with Trichoderma T1 strain displayed early seedling emergence and enhanced growth compared with Trichoderma T2-treatment and untreated control. Therefore, T1 was selected for further investigations under greenhouse conditions, which revealed remarkable improvement in the onion bulb growth parameters and resistance against FOC. The metabolite platform of T1-primed onion (T1) and T1-primed onion challenged with FOC (T1+FOC) displayed significant accumulation of 25 abiotic and biotic stress-responsive metabolites, representing carbohydrate, phenylpropanoid and sulfur assimilation metabolic pathways. In addition, T1- and T1+FOC-treated onion plants showed discrete antioxidant capacity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) compared with control. Our findings demonstrated the contribution of T. longibrachiatum to the accumulation of key metabolites, which subsequently leads to the improvement of onion growth, as well as its resistance to oxidative stress and FOC. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Chromosomal abnormalities in human sperm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, R.H.

    1985-01-01

    The ability to analyze human sperm chromosome complements after penetration of zona pellucida-free hamster eggs provides the first opportunity to study the frequency and type of chromosomal abnormalities in human gametes. Two large-scale studies have provided information on normal men. We have studied 1,426 sperm complements from 45 normal men and found an abnormality rate of 8.9%. Brandriff et al. (5) found 8.1% abnormal complements in 909 sperm from 4 men. The distribution of numerical and structural abnormalities was markedly dissimilar in the 2 studies. The frequency of aneuploidy was 5% in our sample and only 1.6% in Brandriff's, perhapsmore » reflecting individual variability among donors. The frequency of 24,YY sperm was low: 0/1,426 and 1/909. This suggests that the estimates of nondisjunction based on fluorescent Y body data (1% to 5%) are not accurate. We have also studied men at increased risk of sperm chromosomal abnormalities. The frequency of chromosomally unbalanced sperm in 6 men heterozygous for structural abnormalities varied dramatically: 77% for t11;22, 32% for t6;14, 19% for t5;18, 13% for t14;21, and 0% for inv 3 and 7. We have also studied 13 cancer patients before and after radiotherapy and demonstrated a significant dose-dependent increase of sperm chromosome abnormalities (numerical and structural) 36 months after radiation treatment.« less

  19. Secondary Metabolites from Higher Fungi: Discovery, Bioactivity, and Bioproduction

    NASA Astrophysics Data System (ADS)

    Zhong, Jian-Jiang; Xiao, Jian-Hui

    Medicinal higher fungi such as Cordyceps sinensis and Ganoderma lucidum have been used as an alternative medicine remedy to promote health and longevity for people in China and other regions of the world since ancient times. Nowadays there is an increasing public interest in the secondary metabolites of those higher fungi for discovering new drugs or lead compounds. Current research in drug discovery from medicinal higher fungi involves a multifaceted approach combining mycological, biochemical, pharmacological, metabolic, biosynthetic and molecular techniques. In recent years, many new secondary metabolites from higher fungi have been isolated and are more likely to provide lead compounds for new drug discovery, which may include chemopreventive agents possessing the bioactivity of immunomodulatory, anticancer, etc. However, numerous challenges of secondary metabolites from higher fungi are encountered including bioseparation, identification, biosynthetic metabolism, and screening model issues, etc. Commercial production of secondary metabolites from medicinal mushrooms is still limited mainly due to less information about secondary metabolism and its regulation. Strategies for enhancing secondary metabolite production by medicinal mushroom fermentation include two-stage cultivation combining liquid fermentation and static culture, two-stage dissolved oxygen control, etc. Purification of bioactive secondary metabolites, such as ganoderic acids from G. lucidum, is also very important to pharmacological study and future pharmaceutical application. This review outlines typical examples of the discovery, bioactivity, and bioproduction of secondary metabolites of higher fungi origin.

  20. Detecting Beer Intake by Unique Metabolite Patterns.

    PubMed

    Gürdeniz, Gözde; Jensen, Morten Georg; Meier, Sebastian; Bech, Lene; Lund, Erik; Dragsted, Lars Ove

    2016-12-02

    Evaluation of the health related effects of beer intake is hampered by the lack of accurate tools for assessing intakes (biomarkers). Therefore, we identified plasma and urine metabolites associated with recent beer intake by untargeted metabolomics and established a characteristic metabolite pattern representing raw materials and beer production as a qualitative biomarker of beer intake. In a randomized, crossover, single-blinded meal study (MSt1), 18 participants were given, one at a time, four different test beverages: strong, regular, and nonalcoholic beers and a soft drink. Four participants were assigned to have two additional beers (MSt2). In addition to plasma and urine samples, test beverages, wort, and hops extract were analyzed by UPLC-QTOF. A unique metabolite pattern reflecting beer metabolome, including metabolites derived from beer raw material (i.e., N-methyl tyramine sulfate and the sum of iso-α-acids and tricyclohumols) and the production process (i.e., pyro-glutamyl proline and 2-ethyl malate), was selected to establish a compliance biomarker model for detection of beer intake based on MSt1. The model predicted the MSt2 samples collected before and up to 12 h after beer intake correctly (AUC = 1). A biomarker model including four metabolites representing both beer raw materials and production steps provided a specific and accurate tool for measurement of beer consumption.

  1. Pharmaceutically active secondary metabolites of marine actinobacteria.

    PubMed

    Manivasagan, Panchanathan; Venkatesan, Jayachandran; Sivakumar, Kannan; Kim, Se-Kwon

    2014-04-01

    Marine actinobacteria are one of the most efficient groups of secondary metabolite producers and are very important from an industrial point of view. Many representatives of the order Actinomycetales are prolific producers of thousands of biologically active secondary metabolites. Actinobacteria from terrestrial sources have been studied and screened since the 1950s, for many important antibiotics, anticancer, antitumor and immunosuppressive agents. However, frequent rediscovery of the same compounds from the terrestrial actinobacteria has made them less attractive for screening programs in the recent years. At the same time, actinobacteria isolated from the marine environment have currently received considerable attention due to the structural diversity and unique biological activities of their secondary metabolites. They are efficient producers of new secondary metabolites that show a range of biological activities including antibacterial, antifungal, anticancer, antitumor, cytotoxic, cytostatic, anti-inflammatory, anti-parasitic, anti-malaria, antiviral, antioxidant, anti-angiogenesis, etc. In this review, an evaluation is made on the current status of research on marine actinobacteria yielding pharmaceutically active secondary metabolites. Bioactive compounds from marine actinobacteria possess distinct chemical structures that may form the basis for synthesis of new drugs that could be used to combat resistant pathogens. With the increasing advancement in science and technology, there would be a greater demand for new bioactive compounds synthesized by actinobacteria from various marine sources in future. Copyright © 2013 Elsevier GmbH. All rights reserved.

  2. Effects of Early Motor Intervention in the Prone Position of Full-Term Infants through the First Year of Life.

    ERIC Educational Resources Information Center

    Douret, L.

    1993-01-01

    Full-term infants who had slept in the prone position since birth were followed to detect early postural abnormalities and differentiate potential peripheral abnormality from abnormalities of a central origin. Results showed that disappearance of initial signs of abnormality appeared to be muscular, and symptoms disappeared faster when a motor…

  3. Metabolites in vertebrate Hedgehog signaling.

    PubMed

    Roberg-Larsen, Hanne; Strand, Martin Frank; Krauss, Stefan; Wilson, Steven Ray

    2014-04-11

    The Hedgehog (HH) signaling pathway is critical in embryonic development, stem cell biology, tissue homeostasis, chemoattraction and synapse formation. Irregular HH signaling is associated with a number of disease conditions including congenital disorders and cancer. In particular, deregulation of HH signaling has been linked to skin, brain, lung, colon and pancreatic cancers. Key mediators of the HH signaling pathway are the 12-pass membrane protein Patched (PTC), the 7-pass membrane protein Smoothened (SMO) and the GLI transcription factors. PTC shares homology with the RND family of small-molecule transporters and it has been proposed that it interferes with SMO through metabolites. Although a conclusive picture is lacking, substantial efforts are made to identify and understand natural metabolites/sterols, including cholesterol, vitamin D3, oxysterols and glucocorticoides, that may be affected by, or influence the HH signaling cascade at the level of PTC and SMO. In this review we will elaborate the role of metabolites in HH signaling with a focus on oxysterols, and discuss advancements in modern analytical approaches in the field. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Sex-specific cognitive abnormalities in early-onset psychosis.

    PubMed

    Ruiz-Veguilla, Miguel; Moreno-Granados, Josefa; Salcedo-Marin, Maria D; Barrigon, Maria L; Blanco-Morales, Maria J; Igunza, Evelio; Cañabate, Anselmo; Garcia, Maria D; Guijarro, Teresa; Diaz-Atienza, Francisco; Ferrin, Maite

    2017-01-01

    Brain maturation differs depending on the area of the brain and sex. Girls show an earlier peak in maturation of the prefrontal cortex. Although differences between adult females and males with schizophrenia have been widely studied, there has been less research in girls and boys with psychosis. The purpose of this study was to examine differences in verbal and visual memory, verbal working memory, auditory attention, processing speed, and cognitive flexibility between boys and girls. We compared a group of 80 boys and girls with first-episode psychosis to a group of controls. We found interactions between group and sex in verbal working memory (p = 0.04) and auditory attention (p = 0.01). The female controls showed better working memory (p = 0.01) and auditory attention (p = 0.001) than males. However, we did not find any sex differences in working memory (p = 0.91) or auditory attention (p = 0.93) in the psychosis group. These results are consistent with the presence of sex-modulated cognitive profiles at first presentation of early-onset psychosis.

  5. Prototype of an intertwined secondary-metabolite supercluster

    Treesearch

    Phillipp Wiemann; Chun-Jun. Guo; Jonathan M. Palmer; Relebohile Sekonyela; Clay C.C. Wang; Nancy P. Keller

    2013-01-01

    The hallmark trait of fungal secondary-metabolite gene clusters is well established, consisting of contiguous enzymatic and often regulatory gene(s) devoted to the production of a metabolite of a specific chemical class. Unexpectedly, we have found a deviation from this motif in a subtelomeric region of Aspergillus fumigatus. This region, under the...

  6. Early Intermodal Integration in Offspring of Parents With Psychosis

    PubMed Central

    Gamma, Franziska; Goldstein, Jill M.; Seidman, Larry J.; Fitzmaurice, Garrett M.; Tsuang, Ming T.; Buka, Stephen L.

    2014-01-01

    Identifying early developmental indicators of risk for schizophrenia is important for prediction and possibly illness prevention. Disturbed intermodality has been proposed as one important neurodevelopmental risk for schizophrenia. Early intermodal integration (EII) is the infant’s ability to link motility and perception and to relate perception across modalities. We hypothesized that infants of parents with schizophrenia would have more EII abnormalities than infants of healthy parents and that infants of parents with affective psychosis would be intermediate in severity. The New England Family Study high-risk sample, ascertained from community populations, was utilized. Eight-month-old infants of parents with schizophrenia (n = 58), affective psychoses (n = 128), and healthy controls (n = 174) were prospectively assessed. Diagnoses of parents were determined 30 years later blind to offspring data. EII measures were grouped into 3 domains characterizing different aspects of infant development: (1) one’s own body, (2) objects, and (3) social interactions. Results demonstrated that body- and object-related EII abnormalities were significantly increased for infants of parents with schizophrenia compared with control infants and not significantly increased for infants of parents with affective psychoses. EII abnormalities in relation to social interactions were significantly increased in infants of parents with schizophrenia and affective psychoses. Thus, body- and object-related EII abnormalities were most severe in infants of parents with schizophrenia, supporting the importance of intermodality dysfunction as an early indicator of the vulnerability to schizophrenia. Future research should evaluate how this dysfunction evolves with development and its associations with other psychopathological and neurodevelopmental deficits in youth at risk for psychosis. PMID:23986303

  7. [Early recurrent miscarriage: Evaluation and management].

    PubMed

    Gallot, V; Nedellec, S; Capmas, P; Legendre, G; Lejeune-Saada, V; Subtil, D; Nizard, J; Levêque, J; Deffieux, X; Hervé, B; Vialard, F

    2014-12-01

    To establish recommendations for early recurrent miscarriages (≥3 miscarriages before 14weeks of amenorrhea). Literature review, establishing levels of evidence and recommendations for grades of clinical practice. Women evaluation includes the search for a diabetes (grade A), an antiphospholipid syndrome (APS) (grade A), a thyroid dysfunction (grade A), a hyperprolactinemia (grade B), a vitamin deficiency and a hyperhomocysteinemia (grade C), a uterine abnormality (grade C), an altered ovarian reserve (grade C), and a couple chromosome analysis (grade A). For unexplained early recurrent miscarriages, treatment includes folic acid and progesterone supplementation, and a reinsurance policy in the first quarter (grade C). It is recommended to prescribe the combination of aspirin and low-molecular-weight heparin when APS (grade A), glycemic control in diabetes (grade A), L-Thyroxine in case of hypothyroidism (grade A) or the presence of thyroid antibodies (grade B), bromocriptine if hyperprolactinemia (grade B), a substitution for vitamin deficiency or hyperhomocysteinemia (grade C), sectionning a uterine septum (grade C) and treating an uterine acquired abnormality (grade C). These recommendations should improve the management of couples faced with early recurrent miscarriages. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  8. Metabolite Identification of Halon Replacement Compounds.

    DTIC Science & Technology

    1992-06-01

    inhalation to a 1 % atmosphere for 2 h. Tlissues were analyzed for volatile metabolites, and urine was analyzed for fluoride and carboxylic acid metabolites...M*vass Spectrometry, lialocarbons, 35 lialon 1211, IICFC- 123, IICIFC 124, IICFC 142b, llvdro~chlorofluoro-tcarbIonis ( 1 ICFCs), Inhalation Exposure...trifluoroethane HCFC- 142b 1 -Chloro-1,1 - difluoroethane HCI Hydrochloric acid kg Kilogram L Liter m Meter M Moles/liter mg Milligram MHz Megahertz min Minute

  9. Benzene: a case study in parent chemical and metabolite interactions.

    PubMed

    Medinsky, M A; Kenyon, E M; Schlosser, P M

    1995-12-28

    Benzene, an important industrial solvent, is also present in unleaded gasoline and cigarette smoke. The hematotoxic effects of benzene in humans are well documented and include aplastic anemia and pancytopenia, and acute myelogenous leukemia. A combination of metabolites (hydroquinone and phenol for example) is apparently necessary to duplicate the hematotoxic effect of benzene, perhaps due in part to the synergistic effect of phenol on myeloperoxidase-mediated oxidation of hydroquinone to the reactive metabolite benzoquinone. Since benzene and its hydroxylated metabolites (phenol, hydroquinone and catechol) are substrates for the same cytochrome P450 enzymes, competitive interactions among the metabolites are possible. In vivo data on metabolite formation by mice exposed to various benzene concentrations are consistent with competitive inhibition of phenol oxidation by benzene. In vitro studies of the metabolic oxidation of benzene, phenol and hydroquinone are consistent with the mechanism of competitive interaction among the metabolites. The dosimetry of benzene and its metabolites in the target tissue, bone marrow, depends on the balance of activation processes such as enzymatic oxidation and deactivation processes such as conjugation and excretion. Phenol, the primary benzene metabolite, can undergo both oxidation and conjugation. Thus, the potential exists for competition among various enzymes for phenol. However, zonal localization of Phase I and Phase II enzymes in various regions of the liver acinus regulates this competition. Biologically-based dosimetry models that incorporate the important determinants of benzene flux, including interactions with other chemicals, will enable prediction of target tissue doses of benzene and metabolites at low exposure concentrations relevant for humans.

  10. Morphostructural MRI abnormalities related to neuropsychiatric disorders associated to multiple sclerosis.

    PubMed

    Bonavita, Simona; Tedeschi, Gioacchino; Gallo, Antonio

    2013-01-01

    Multiple Sclerosis associated neuropsychiatric disorders include major depression (MD), obsessive-compulsive disorder (OCD), bipolar affective disorder, euphoria, pseudobulbar affect, psychosis, and personality change. Magnetic Resonance Imaging (MRI) studies focused mainly on identifying morphostructural correlates of MD; only a few anecdotal cases on OCD associated to MS (OCD-MS), euphoria, pseudobulbar affect, psychosis, personality change, and one research article on MRI abnormalities in OCD-MS have been published. Therefore, in the present review we will report mainly on neuroimaging abnormalities found in MS patients with MD and OCD. All together, the studies on MD associated to MS suggest that, in this disease, depression is linked to a damage involving mainly frontotemporal regions either with discrete lesions (with those visible in T1 weighted images playing a more significant role) or subtle normal appearing white matter abnormalities. Hippocampal atrophy, as well, seems to be involved in MS related depression. It is conceivable that grey matter pathology (i.e., global and regional atrophy, cortical lesions), which occurs early in the course of disease, may involve several areas including the dorsolateral prefrontal cortex, the orbitofrontal cortex, and the anterior cingulate cortex whose disruption is currently thought to explain late-life depression. Further MRI studies are necessary to better elucidate OCD pathogenesis in MS.

  11. Morphostructural MRI Abnormalities Related to Neuropsychiatric Disorders Associated to Multiple Sclerosis

    PubMed Central

    Bonavita, Simona; Tedeschi, Gioacchino; Gallo, Antonio

    2013-01-01

    Multiple Sclerosis associated neuropsychiatric disorders include major depression (MD), obsessive-compulsive disorder (OCD), bipolar affective disorder, euphoria, pseudobulbar affect, psychosis, and personality change. Magnetic Resonance Imaging (MRI) studies focused mainly on identifying morphostructural correlates of MD; only a few anecdotal cases on OCD associated to MS (OCD-MS), euphoria, pseudobulbar affect, psychosis, personality change, and one research article on MRI abnormalities in OCD-MS have been published. Therefore, in the present review we will report mainly on neuroimaging abnormalities found in MS patients with MD and OCD. All together, the studies on MD associated to MS suggest that, in this disease, depression is linked to a damage involving mainly frontotemporal regions either with discrete lesions (with those visible in T1 weighted images playing a more significant role) or subtle normal appearing white matter abnormalities. Hippocampal atrophy, as well, seems to be involved in MS related depression. It is conceivable that grey matter pathology (i.e., global and regional atrophy, cortical lesions), which occurs early in the course of disease, may involve several areas including the dorsolateral prefrontal cortex, the orbitofrontal cortex, and the anterior cingulate cortex whose disruption is currently thought to explain late-life depression. Further MRI studies are necessary to better elucidate OCD pathogenesis in MS. PMID:23691320

  12. Abnormal subchondral bone microstructure following steroid administration is involved in the early pathogenesis of steroid-induced osteonecrosis.

    PubMed

    Wang, L; Zhang, L; Pan, H; Peng, S; Zhao, X; Lu, W W

    2016-01-01

    Loss of bone microstructure integrity is thought to be related to osteonecrosis. But the relationship between the time when bone microstructure integrity loss appears and the onset of osteonecrosis has not yet been determined. Our study demonstrated abnormal changes of subchondral bone microstructure involved in the early pathogenesis of osteonecrosis. Using a rabbit model, we investigated the changes of subchondral bone microstructure following steroid administration to identify the onset of abnormal bone microstructure development in steroid-induced osteonecrosis. Fifty-five adult female Japanese White rabbits (mean body weight 3.5 kg; mean age 24 months) were used and randomly divided among three time points (3, 7, and 14 days) consisting of 15 rabbits each, received a single intramuscular injection of methylprednisolone acetate (MP; Pfizer Manufacturing Belgium NV) at a dose of 4 mg/kg, and a control group consisting of 10 rabbits was fed and housed under identical conditions but were not given steroid injections. A micro-CT scanner was applied to detect changes in the trabecular region of subchondral bone of excised femoral head samples. Parameters including bone volume fraction (BV/TV), bone surface (BS), trabecular bone pattern factor (Tb.Pf), trabecular thickness/number/separation (Tb.Th, Tb.N, and Tb.Sp), and structure model index (SMI) were evaluated using the software CTAn (SkyScan). After micro-CT scans, bilateral femoral heads were cut in the coronal plane at a thickness of 4 μm. The sections were then stained with haematoxylin-eosin and used for the diagnosis of osteonecrosis and the rate of development of osteonecrosis. The BV/TV, BS, Tb.Th and Tb.N demonstrated a time-dependent decline from 3, 7, and 14 days compared with the control group, while the Tb.Pf, Tb.Sp and SMI demonstrated an increase at 3, 7, and 14 days compared with the control group. For the histopathology portion, osteonecrosis was not seen 3 days after steroid treatment, but was

  13. Microbial secondary metabolites and their impacts on insect symbioses.

    PubMed

    Klassen, Jonathan L

    2014-10-01

    All insects host communities of microbes that interact both with the insect and each other. Secondary metabolites are understood to mediate many of these interactions, although examples having robust genetic, chemical and/or ecological evidence are relatively rare. Here, I review secondary metabolites mediating community interactions in the beewolf, entomopathogenic nematode and fungus-growing ant symbioses, using the logic of Koch's postulates to emphasize well-validated symbiotic functions mediated by these metabolites. I especially highlight how these interaction networks are structured by both ecological and evolutionary processes, and how selection acting on secondary metabolite production can be multidimensional. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Digitized Spiral Drawing: A Possible Biomarker for Early Parkinson’s Disease

    PubMed Central

    San Luciano, Marta; Wang, Cuiling; Ortega, Roberto A.; Yu, Qiping; Boschung, Sarah; Soto-Valencia, Jeannie; Bressman, Susan B.; Lipton, Richard B.; Pullman, Seth; Saunders-Pullman, Rachel

    2016-01-01

    Introduction Pre-clinical markers of Parkinson’s Disease (PD) are needed, and to be relevant in pre-clinical disease, they should be quantifiably abnormal in early disease as well. Handwriting is impaired early in PD and can be evaluated using computerized analysis of drawn spirals, capturing kinematic, dynamic, and spatial abnormalities and calculating indices that quantify motor performance and disability. Digitized spiral drawing correlates with motor scores and may be more sensitive in detecting early changes than subjective ratings. However, whether changes in spiral drawing are abnormal compared with controls and whether changes are detected in early PD are unknown. Methods 138 PD subjects (50 with early PD) and 150 controls drew spirals on a digitizing tablet, generating x, y, z (pressure) data-coordinates and time. Derived indices corresponded to overall spiral execution (severity), shape and kinematic irregularity (second order smoothness, first order zero-crossing), tightness, mean speed and variability of spiral width. Linear mixed effect adjusted models comparing these indices and cross-validation were performed. Receiver operating characteristic analysis was applied to examine discriminative validity of combined indices. Results All indices were significantly different between PD cases and controls, except for zero-crossing. A model using all indices had high discriminative validity (sensitivity = 0.86, specificity = 0.81). Discriminative validity was maintained in patients with early PD. Conclusion Spiral analysis accurately discriminates subjects with PD and early PD from controls supporting a role as a promising quantitative biomarker. Further assessment is needed to determine whether spiral changes are PD specific compared with other disorders and if present in pre-clinical PD. PMID:27732597

  15. A Pilot Study of Abnormal Growth in Autism Spectrum Disorders and Other Childhood Psychiatric Disorders

    ERIC Educational Resources Information Center

    Rommelse, Nanda N. J.; Peters, Cindy T. R.; Oosterling, Iris J.; Visser, Janne C.; Bons, Danielle; van Steijn, Daphne J.; Draaisma, Jos; van der Gaag, Rutger-Jan; Buitelaar, Jan. K.

    2011-01-01

    The aims of the current study were to examine whether early growth abnormalities are (a) comparable in autism spectrum disorders (ASD) and other childhood psychiatric disorders, and (b) specific to the brain or generalized to the whole body. Head circumference, height, and weight were measured during the first 19 months of life in 129 children…

  16. Current approaches toward production of secondary plant metabolites

    PubMed Central

    Hussain, Md. Sarfaraj; Fareed, Sheeba; Ansari, Saba; Rahman, Md. Akhlaquer; Ahmad, Iffat Zareen; Saeed, Mohd.

    2012-01-01

    Plants are the tremendous source for the discovery of new products with medicinal importance in drug development. Today several distinct chemicals derived from plants are important drugs, which are currently used in one or more countries in the world. Secondary metabolites are economically important as drugs, flavor and fragrances, dye and pigments, pesticides, and food additives. Many of the drugs sold today are simple synthetic modifications or copies of the naturally obtained substances. The evolving commercial importance of secondary metabolites has in recent years resulted in a great interest in secondary metabolism, particularly in the possibility of altering the production of bioactive plant metabolites by means of tissue culture technology. Plant cell and tissue culture technologies can be established routinely under sterile conditions from explants, such as plant leaves, stems, roots, and meristems for both the ways for multiplication and extraction of secondary metabolites. In vitro production of secondary metabolite in plant cell suspension cultures has been reported from various medicinal plants, and bioreactors are the key step for their commercial production. Based on this lime light, the present review is aimed to cover phytotherapeutic application and recent advancement for the production of some important plant pharmaceuticals. PMID:22368394

  17. Perinatal Bisphenol A Exposure Induces Chronic Inflammation in Rabbit Offspring via Modulation of Gut Bacteria and Their Metabolites

    PubMed Central

    Veeramachaneni, D. N. Rao; Walters, William A.; Lozupone, Catherine; Palmer, Jennifer; Hewage, M. K. Kurundu; Bhatnagar, Rohil; Amir, Amnon; Kennett, Mary J.; Knight, Rob

    2017-01-01

    ABSTRACT Bisphenol A (BPA) accumulates in the maturing gut and liver in utero and is known to alter gut bacterial profiles in offspring. Gut bacterial dysbiosis may contribute to chronic colonic and systemic inflammation. We hypothesized that perinatal BPA exposure-induced intestinal (and liver) inflammation in offspring is due to alterations in the microbiome and colonic metabolome. The 16S rRNA amplicon sequencing analysis revealed differences in beta diversity with a significant reduction in the relative abundances of short-chain fatty acid (SCFA) producers such as Oscillospira and Ruminococcaceae due to BPA exposure. Furthermore, BPA exposure reduced fecal SCFA levels and increased systemic lipopolysaccharide (LPS) levels. BPA exposure-increased intestinal permeability was ameliorated by the addition of SCFA in vitro. Metabolic fingerprints revealed alterations in global metabolism and amino acid metabolism. Thus, our findings indicate that perinatal BPA exposure may cause gut bacterial dysbiosis and altered metabolite profiles, particularly SCFA profiles, leading to chronic colon and liver inflammation. IMPORTANCE Emerging evidence suggests that environmental toxicants may influence inflammation-promoted chronic disease susceptibility during early life. BPA, an environmental endocrine disruptor, can transfer across the placenta and accumulate in fetal gut and liver. However, underlying mechanisms for BPA-induced colonic and liver inflammation are not fully elucidated. In this report, we show how perinatal BPA exposure in rabbits alters gut microbiota and their metabolite profiles, which leads to colonic and liver inflammation as well as to increased gut permeability as measured by elevated serum lipopolysaccharide (LPS) levels in the offspring. Also, perinatal BPA exposure leads to reduced levels of gut bacterial diversity and bacterial metabolites (short-chain fatty acids [SCFA]) and elevated gut permeability—three common early biomarkers of inflammation

  18. Metabonomics reveals metabolite changes in biliary atresia infants.

    PubMed

    Zhou, Kejun; Xie, Guoxiang; Wang, Jun; Zhao, Aihua; Liu, Jiajian; Su, Mingming; Ni, Yan; Zhou, Ying; Pan, Weihua; Che, Yanran; Zhang, Ting; Xiao, Yongtao; Wang, Yang; Wen, Jie; Jia, Wei; Cai, Wei

    2015-06-05

    Biliary atresia (BA) is a rare neonatal cholestatic disorder caused by obstruction of extra- and intra-hepatic bile ducts. If untreated, progressive liver cirrhosis will lead to death within 2 years. Early diagnosis and operation improve the outcome significantly. Infants with neonatal hepatitis syndrome (NHS) present similar symptoms, confounding the early diagnosis of BA. The lack of noninvasive diagnostic methods to differentiate BA from NHS greatly delays the surgery of BA infants, thus deteriorating the outcome. Here we performed a metabolomics study in plasma of BA, NHS, and healthy infants using gas chromatography-time-of-flight mass spectrometry. Scores plots of orthogonal partial least-squares discriminant analysis clearly separated BA from NHS and healthy infants. Eighteen metabolites were found to be differentially expressed between BA and NHS, among which seven (l-glutamic acid, l-ornithine, l-isoleucine, l-lysine, l-valine, l-tryptophan, and l-serine) were amino acids. The altered amino acids were quantitatively verified using ultraperformance liquid chromatography-tandem mass spectrometry. Ingenuity pathway analysis revealed the network of "Cellular Function and Maintenance, Hepatic System Development and Function, Neurological Disease" was altered most significantly. This study suggests that plasma metabolic profiling has great potential in differentiating BA from NHS, and amino acid metabolism is significantly different between the two diseases.

  19. Herbicide Metabolites in Surface Water and Groundwater: Introduction and Overview

    USGS Publications Warehouse

    Thurman, E.M.; Meyer, M.T.

    1996-01-01

    Several future research topics for herbicide metabolites in surface and ground water are outlined in this chapter. They are herbicide usage, chemical analysis of metabolites, and fate and transport of metabolites in surface and ground water. These three ideas follow the themes in this book, which are the summary of a symposium of the American Chemical Society on herbicide metabolites in surface and ground water. First, geographic information systems allow the spatial distribution of herbicide-use data to be combined with geochemical information on fate and transport of herbicides. Next these two types of information are useful in predicting the kinds of metabolites present and their probable distribution in surface and ground water. Finally, methods development efforts may be focused on these specific target analytes. This chapter discusses these three concepts and provides an introduction to this book on the analysis, chemistry, and fate and transport of herbicide metabolites in surface and ground water.

  20. Interactions among filamentous fungi Aspergillus niger, Fusarium verticillioides and Clonostachys rosea: fungal biomass, diversity of secreted metabolites and fumonisin production.

    PubMed

    Chatterjee, Subhankar; Kuang, Yi; Splivallo, Richard; Chatterjee, Paramita; Karlovsky, Petr

    2016-05-10

    Interactions among fungi colonizing dead organic matter involve exploitation competition and interference competition. Major mechanism of interference competition is antibiosis caused by secreted secondary metabolites. The effect of competition on secondary metabolite production by fungi is however poorly understood. Fungal biomass was rarely monitored in interaction studies; it is not known whether dominance in pairwise interactions follows congruent patterns. Pairwise interactions of three fungal species with different life styles were studied. The saprophyte Aspergillus niger (A.n.), the plant pathogen Fusarium verticillioides (F.v.), and the mycoparasite Clonostachys rosea (C.r.) were grown in single and dual cultures in minimal medium with asparagine as nitrogen source. Competitive fitness shifted with time: in dual C.r./F.v. cultures after 10 d F.v. grew well while C.r. was suppressed; after 20 d C.r. recovered while F.v. became suppressed; and after 30 d most F.v. was destroyed. At certain time points fungal competitive fitness exhibited a rock-paper-scissors pattern: F.v. > A.n., A.n. > C.r., and C.r. > F.v. Most metabolites secreted to the medium at early stages in single and dual cultures were not found at later times. Many metabolites occurring in supernatants of single cultures were suppressed in dual cultures and many new metabolites not occurring in single cultures were found in dual cultures. A. niger showed the greatest ability to suppress the accumulation of metabolites produced by the other fungi. A. niger was also the species with the largest capacity of transforming metabolites produced by other fungi. Fumonisin production by F. verticillioides was suppressed in co-cultures with C. rosea but fumonisin B1 was not degraded by C. rosea nor did it affect the growth of C. rosea up to a concentration of 160 μg/ml. Competitive fitness in pairwise interactions among fungi is incongruent, indicating that species-specific factors and/or effects are

  1. [Abnormality of blood coagulation indexes in patients with de novo acute leukemia and its clinical significance].

    PubMed

    Xiao, Fang-Fang; Hu, Kai-Xun; Guo, Mei; Qiao, Jian-Hui; Sun, Qi-Yun; Ai, Hui-Sheng; Yu, Chang-Lin

    2013-04-01

    To explore hemorrhage risk and the clinical significance of abnormal change of prothrombin time (PT), activated partial thromboplastin time (APTT), plasma fibrinogen (FIB), plasma thrombin time (TT) and d-dimer (D-D) in de novo acute leukemia (except for APL), the different bleeding manifestations of 114 cases of de novo acute leukemia with different coagulation indexes were analyzed retrospectively. The correlation between these blood coagulation indexes and the possible correlative clinical characteristics were analysed, including age, sex, type of acute leukemia, initial white blood cell(WBC) and platelet(Plt) count, the proportion of blast cells in bone marrow and cytogenetic abnormality of patients at diagnosis. The results indicated that the incidence of abnormal blood coagulation was as high as 78.1% for de novo AL patients. These patients with 5 normal blood coagulation indexes may have mild bleeding manifestation, but the more abnormal indexes, the more severe bleeding. Both PT and D-D were sensitive indexes for diagnosis of level II bleeding. Incidence of abnormal blood coagulation significantly correlates with the proportion of blast cells in bone marrow (χ(2) = 4.184, OR = 1.021, P < 0.05) and more with D-D (P < 0.01), while age, sex, type of AL, WBC count, Plt count and abnormality of cytogenetics did not correlate with abnormal blood coagulation. It is concluded that the coagulation and fibrinolysis are abnormal in most patients with de novo acute leukemia. More abnormal indexes indicate more severe bleeding, and both PT and D-D are sensitive indexes for diagnosis of level II bleeding. Higher proportion of blast cells in bone marrow predicts higher incidence of abnormal blood clotting. Acute leukemia with elderly age, high white blood cell count and adverse cytogenetics do not predict severer abnormal blood clotting. Detection of PT, APTT, TT, FIB, and D-D may help to judge whether the patients are in a state of hypercoagulability or disseminated

  2. Microdialysis Sampling from Wound Fluids Enables Quantitative Assessment of Cytokines, Proteins, and Metabolites Reveals Bone Defect-Specific Molecular Profiles.

    PubMed

    Förster, Yvonne; Schmidt, Johannes R; Wissenbach, Dirk K; Pfeiffer, Susanne E M; Baumann, Sven; Hofbauer, Lorenz C; von Bergen, Martin; Kalkhof, Stefan; Rammelt, Stefan

    2016-01-01

    Bone healing involves a variety of different cell types and biological processes. Although certain key molecules have been identified, the molecular interactions of the healing progress are not completely understood. Moreover, a clinical routine for predicting the quality of bone healing after a fracture in an early phase is missing. This is mainly due to a lack of techniques to comprehensively screen for cytokines, growth factors and metabolites at their local site of action. Since all soluble molecules of interest are present in the fracture hematoma, its in-depth assessment could reveal potential markers for the monitoring of bone healing. Here, we describe an approach for sampling and quantification of cytokines and metabolites by using microdialysis, combined with solid phase extractions of proteins from wound fluids. By using a control group with an isolated soft tissue wound, we could reveal several bone defect-specific molecular features. In bone defect dialysates the neutrophil chemoattractants CXCL1, CXCL2 and CXCL3 were quantified with either a higher or earlier response compared to dialysate from soft tissue wound. Moreover, by analyzing downstream adaptions of the cells on protein level and focusing on early immune response, several proteins involved in the immune cell migration and activity could be identified to be specific for the bone defect group, e.g. immune modulators, proteases and their corresponding inhibitors. Additionally, the metabolite screening revealed different profiles between the bone defect group and the control group. In summary, we identified potential biomarkers to indicate imbalanced healing progress on all levels of analysis.

  3. Microdialysis Sampling from Wound Fluids Enables Quantitative Assessment of Cytokines, Proteins, and Metabolites Reveals Bone Defect-Specific Molecular Profiles

    PubMed Central

    Wissenbach, Dirk K.; Pfeiffer, Susanne E. M.; Baumann, Sven; Hofbauer, Lorenz C.; von Bergen, Martin; Kalkhof, Stefan; Rammelt, Stefan

    2016-01-01

    Bone healing involves a variety of different cell types and biological processes. Although certain key molecules have been identified, the molecular interactions of the healing progress are not completely understood. Moreover, a clinical routine for predicting the quality of bone healing after a fracture in an early phase is missing. This is mainly due to a lack of techniques to comprehensively screen for cytokines, growth factors and metabolites at their local site of action. Since all soluble molecules of interest are present in the fracture hematoma, its in-depth assessment could reveal potential markers for the monitoring of bone healing. Here, we describe an approach for sampling and quantification of cytokines and metabolites by using microdialysis, combined with solid phase extractions of proteins from wound fluids. By using a control group with an isolated soft tissue wound, we could reveal several bone defect-specific molecular features. In bone defect dialysates the neutrophil chemoattractants CXCL1, CXCL2 and CXCL3 were quantified with either a higher or earlier response compared to dialysate from soft tissue wound. Moreover, by analyzing downstream adaptions of the cells on protein level and focusing on early immune response, several proteins involved in the immune cell migration and activity could be identified to be specific for the bone defect group, e.g. immune modulators, proteases and their corresponding inhibitors. Additionally, the metabolite screening revealed different profiles between the bone defect group and the control group. In summary, we identified potential biomarkers to indicate imbalanced healing progress on all levels of analysis. PMID:27441377

  4. Early Alzheimer's Disease Neuropathology Detected by Proton MR Spectroscopy

    PubMed Central

    Murray, Melissa E.; Przybelski, Scott A.; Lesnick, Timothy G.; Liesinger, Amanda M.; Spychalla, Anthony; Zhang, Bing; Gunter, Jeffrey L.; Parisi, Joseph E.; Boeve, Bradley F.; Knopman, David S.; Petersen, Ronald C.; Jack, Clifford R.; Dickson, Dennis W.

    2014-01-01

    Proton magnetic resonance spectroscopy (1H-MRS) is sensitive to early neurodegenerative processes associated with Alzheimer's disease (AD). Although 1H-MRS metabolite ratios of N-acetyl aspartate (NAA)/creatine (Cr), NAA/myoinositol (mI), and mI/Cr measured in the posterior cingulate gyrus reveal evidence of disease progression in AD, pathologic underpinnings of the 1H-MRS metabolite changes in AD are unknown. Pathologically diagnosed human cases ranging from no likelihood to high likelihood AD (n = 41, 16 females and 25 males) who underwent antemortem 1H-MRS of the posterior cingulate gyrus at 3 tesla were included in this study. Immunohistochemical evaluation was performed on the posterior cingulate gyrus using antibodies to synaptic vesicles, hyperphosphorylated tau (pTau), neurofibrillary tangle conformational-epitope (cNFT), amyloid-β, astrocytes, and microglia. The slides were digitally analyzed using Aperio software, which allows neuropathologic quantification in the posterior cingulate gray matter. MRS and pathology associations were adjusted for time from scan to death. Significant associations across AD and control subjects were found between reduced synaptic immunoreactivity and both NAA/Cr and NAA/mI in the posterior cingulate gyrus. Higher pTau burden was associated with lower NAA/Cr and NAA/mI. Higher amyloid-β burden was associated with elevated mI/Cr and lower NAA/mI ratios, but not with NAA/Cr. 1H-MRS metabolite levels reveal early neurodegenerative changes associated with AD pathology. Our findings support the hypothesis that a decrease in NAA/Cr is associated with loss of synapses and early pTau pathology, but not with amyloid-β or later accumulation of cNFT pathology in the posterior cingulate gyrus. In addition, elevation of mI/Cr is associated with the occurrence of amyloid-β plaques in AD. PMID:25471565

  5. ABNORMAL ALDOSTERONE PHYSIOLOGY AND CARDIO-METABOLIC RISK FACTORS

    PubMed Central

    Vaidya, Anand; Underwood, Patricia C.; Hopkins, Paul N.; Jeunemaitre, Xavier; Ferri, Claudio; Williams, Gordon H.; Adler, Gail K.

    2013-01-01

    Abnormal aldosterone physiology has been implicated in the pathogenesis of cardio-metabolic diseases. Single aldosterone measurements capture only a limited range of aldosterone physiology. New methods of characterizing aldosterone physiology may provide a more comprehensive understanding of its relationship with cardio-metabolic disease. We evaluated whether novel indices of aldosterone responses to dietary sodium modulation, the Sodium-modulated Aldosterone Suppression-Stimulation Index (SASSI for serum and SAUSSI for urine), could predict cardio-metabolic risk factors. We performed cross-sectional analyses on 539 subjects studied on liberal (LIB) and restricted (RES) sodium diets with serum and urinary aldosterone measurements. SASSI and SAUSSI were calculated as the ratio of aldosterone on LIB (maximally suppressed aldosterone) to aldosterone on RES (stimulated aldosterone) diets, and associated with risk factors using adjusted regression models. Cardio-metabolic risk factors associated with either impaired suppression of aldosterone on LIB diet, or impaired stimulation on RES diet, or both; in all of these individual cases, these risk factors associated with higher SASSI or SAUSSI. In the context of abnormalities that comprise the metabolic syndrome (MetS), there was a strong positive association between the number of MetS components (0–4) and both SASSI and SAUSSI (P<0.0001) that was independent of known aldosterone secretagogues (angiotensin II, corticotropin, potassium). SASSI and SAUSSI exhibited a high sensitivity in detecting normal individuals with zero MetS components (86% for SASSI and 83% for SAUSSI). Assessing the physiologic range of aldosterone responses may provide greater insights into adrenal pathophysiology. Dysregulated aldosterone physiology may contribute to, and/or result from, early cardio-metabolic abnormalities. PMID:23399714

  6. New secondary metabolites of phenylbutyrate in humans and rats.

    PubMed

    Kasumov, Takhar; Brunengraber, Laura L; Comte, Blandine; Puchowicz, Michelle A; Jobbins, Kathryn; Thomas, Katherine; David, France; Kinman, Renee; Wehrli, Suzanne; Dahms, William; Kerr, Douglas; Nissim, Itzhak; Brunengraber, Henri

    2004-01-01

    Phenylbutyrate is used to treat inborn errors of ureagenesis, malignancies, cystic fibrosis, and thalassemia. High-dose phenylbutyrate therapy results in toxicity, the mechanism of which is unexplained. The known metabolites of phenylbutyrate are phenylacetate, phenylacetylglutamine, and phenylbutyrylglutamine. These are excreted in urine, accounting for a variable fraction of the dose. We identified new metabolites of phenylbutyrate in urine of normal humans and in perfused rat livers. These metabolites result from interference between the metabolism of phenylbutyrate and that of carbohydrates and lipids. The new metabolites fall into two categories, glucuronides and phenylbutyrate beta-oxidation side products. Two questions are raised by these data. First, is the nitrogen-excreting potential of phenylbutyrate diminished by ingestion of carbohydrates or lipids? Second, does competition between the metabolism of phenylbutyrate, carbohydrates, and lipids alter the profile of phenylbutyrate metabolites? Finally, we synthesized glycerol esters of phenylbutyrate. These are partially bioavailable in rats and could be used to administer large doses of phenylbutyrate in a sodium-free, noncaustic form.

  7. FDR-controlled metabolite annotation for high-resolution imaging mass spectrometry.

    PubMed

    Palmer, Andrew; Phapale, Prasad; Chernyavsky, Ilya; Lavigne, Regis; Fay, Dominik; Tarasov, Artem; Kovalev, Vitaly; Fuchser, Jens; Nikolenko, Sergey; Pineau, Charles; Becker, Michael; Alexandrov, Theodore

    2017-01-01

    High-mass-resolution imaging mass spectrometry promises to localize hundreds of metabolites in tissues, cell cultures, and agar plates with cellular resolution, but it is hampered by the lack of bioinformatics tools for automated metabolite identification. We report pySM, a framework for false discovery rate (FDR)-controlled metabolite annotation at the level of the molecular sum formula, for high-mass-resolution imaging mass spectrometry (https://github.com/alexandrovteam/pySM). We introduce a metabolite-signal match score and a target-decoy FDR estimate for spatial metabolomics.

  8. Amygdalo-cortical sprouting continues into early adulthood: implications for the development of normal and abnormal function during adolescence.

    PubMed

    Cunningham, Miles Gregory; Bhattacharyya, Sujoy; Benes, Francine Mary

    2002-11-11

    Adolescence is a critical stage for the development of emotional maturity and diverse forms of psychopathology. The posterior basolateral nucleus of the amygdala is known to mediate fear and anxiety and is important in assigning emotional valence to cognitive processes. The medial prefrontal cortex, a homologue of the human anterior cingulate cortex, mediates emotional, attentional, and motivational behaviors at the cortical level. We postulate that the development of connectivity between these two corticolimbic regions contributes to an enhanced integration of emotion and cognition during the postnatal period. In order to characterize the development of this relay, injections of the anterograde tracer biocytin were stereotaxically placed within the posterior basolateral nucleus of the amygdala of rats at successive postnatal time points (postnatal days 6-120). Labeled fibers in the medial prefrontal cortex were evaluated using a combination of brightfield, confocal, and electron microscopy. We found that the density of labeled fibers originating from the posterior basolateral nucleus shows a sharp curvilinear increase within layers II and V of the anterior cingulate cortex and the infralimbic subdivisions of medial prefrontal cortex during the late postweanling period. This increase was paralleled by a linear rise in the number of axospinous and axodendritic synapses present in the neuropil. Based on these results, we propose that late maturation of amygdalo-cortical connectivity may provide an anatomical basis for the development and integration of normal and possibly abnormal emotional behavior during adolescence and early adulthood. Copyright 2002 Wiley-Liss, Inc.

  9. Microbial succession and metabolite changes during fermentation of dongchimi, traditional Korean watery kimchi.

    PubMed

    Jeong, Sang Hyeon; Jung, Ji Young; Lee, Se Hee; Jin, Hyun Mi; Jeon, Che Ok

    2013-06-03

    Dongchimi, one of the most common types of watery kimchi in Korea, was prepared using radish and its pH values, microbial cell numbers, bacterial communities, and metabolites were monitored periodically to investigate the fermentation process of watery kimchi. The bacterial abundance increased quickly during the early fermentation period and the pH values concurrently decreased rapidly without any initial pH increase. After 15 days of fermentation, the bacterial abundance decreased rapidly with the increase of Saccharomyces abundance and then increased again with a decrease of Saccharomyces abundance after 40 days of fermentation, suggesting that bacteria and Saccharomyces have a direct antagonistic relationship. Finally, after 60 days of fermentation, a decrease in bacterial abundance and the growth of Candida were concurrently observed. Community analysis using pyrosequencing revealed that diverse genera such as Leuconostoc, Lactobacillus, Pseudomonas, Pantoea, and Weissella were present at initial fermentation (day 0), but Leuconostoc became predominant within only three days of fermentation and remained predominant until the end of fermentation (day 100). Metabolite analysis using (1)H NMR showed that the concentrations of free sugars (fructose and glucose) were very low during the early fermentation period, but their concentrations increased rapidly although lactate, mannitol, and acetate were produced. After 30 days of fermentation, quick consumption of free sugars and production of glycerol and ethanol were observed concurrently with the growth of Saccharomyces, levels of which might be considered for use as a potential indicator of dongchimi quality and fermentation time. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Functional Genomics of Novel Secondary Metabolites from Diverse Cyanobacteria Using Untargeted Metabolomics

    PubMed Central

    Baran, Richard; Ivanova, Natalia N.; Jose, Nick; Garcia-Pichel, Ferran; Kyrpides, Nikos C.; Gugger, Muriel; Northen, Trent R.

    2013-01-01

    Mass spectrometry-based metabolomics has become a powerful tool for the detection of metabolites in complex biological systems and for the identification of novel metabolites. We previously identified a number of unexpected metabolites in the cyanobacterium Synechococcus sp. PCC 7002, such as histidine betaine, its derivatives and several unusual oligosaccharides. To test for the presence of these compounds and to assess the diversity of small polar metabolites in other cyanobacteria, we profiled cell extracts of nine strains representing much of the morphological and evolutionary diversification of this phylum. Spectral features in raw metabolite profiles obtained by normal phase liquid chromatography coupled to mass spectrometry (MS) were manually curated so that chemical formulae of metabolites could be assigned. For putative identification, retention times and MS/MS spectra were cross-referenced with those of standards or available sprectral library records. Overall, we detected 264 distinct metabolites. These included indeed different betaines, oligosaccharides as well as additional unidentified metabolites with chemical formulae not present in databases of metabolism. Some of these metabolites were detected only in a single strain, but some were present in more than one. Genomic interrogation of the strains revealed that generally, presence of a given metabolite corresponded well with the presence of its biosynthetic genes, if known. Our results show the potential of combining metabolite profiling and genomics for the identification of novel biosynthetic genes. PMID:24084783

  11. [Incidence and risk factors for mental abnormalities in children of psychiatric inpatients].

    PubMed

    Stelzig-Schöler, Renate; Hasselbring, Laura; Yazdi, Kurosch; Thun-Hohenstein, Leonhard; Stuppäck, Christoph; Aichhorn, Wolfgang

    2011-01-01

    Children of mentally ill parents are exposed to a variety of stress- and harmful life events. To which extent the mental illness of one or both parents affects their children's mental development is barely studied. Therefore, over a period of 6 months 142 patients with children below the age of 18 (n=237 children), who were admitted to the Dept. for Psychiatry and Psychotherapy 1 of the Paracelsus Medical University Salzburg, were questioned for abnormalities in their children's mental development. Additionally all these patients were assessed for their family situation, demographic data and psychiatric disorder. 38.4% (n=91) of the children showed mental abnormalities. The most common one were emotional (n=41), social (n=41) and learning (n=34) disabilities. Parental duration of the illness (p=0.001), age of the children (p=0.044), illness of both parents (p=0.008), longlasting family conflicts (p=0.003) and living with only one parent (p=0.012) were correlated significantly with mental abnormalities in children. The results confirm an increase risk for mental abnormalities in children of psychiatric patients. This risk varies with existing risk and protective factors, which can be partially influenced. Therefore children of mentally ill parents with problems in their mental development should be detected early. Even if genetic risk factors cannot be changed reducing known psychosocial risk factors and promotion protective factors can significantly influence a healthy development of these vulnerable children.

  12. Antiviral treatment normalizes neurophysiological but not movement abnormalities in simian immunodeficiency virus–infected monkeys

    PubMed Central

    Fox, Howard S.; Weed, Michael R.; Huitron-Resendiz, Salvador; Baig, Jamal; Horn, Thomas F.W.; Dailey, Peter J.; Bischofberger, Norbert; Henriksen, Steven J.

    2000-01-01

    Simian immunodeficiency virus (SIV) infection of rhesus monkeys provides an excellent model of the central nervous system (CNS) consequences of HIV infection. To discern the relationship between viral load and abnormalities induced in the CNS by the virus, we infected animals with SIV and later instituted antiviral treatment to lower peripheral viral load. Measurement of sensory-evoked potentials, assessing CNS neuronal circuitry, revealed delayed latencies after infection that could be reversed by lowering viral load. Cessation of treatment led to the reappearance of these abnormalities. In contrast, the decline in general motor activity induced by SIV infection was unaffected by antiviral treatment. An acute increase in the level of the chemokine monocyte chemoattractant protein-1 (MCP-1) was found in the cerebrospinal fluid (CSF) relative to plasma in the infected animals at the peak of acute viremia, likely contributing to an early influx of immune cells into the CNS. Examination of the brains of the infected animals after return of the electrophysiological abnormalities revealed diverse viral and inflammatory findings. Although some of the physiological abnormalities resulting from SIV infection can be at least temporarily reversed by lowering viral load, the viral-host interactions initiated by infection may result in long-lasting changes in CNS-mediated functions. PMID:10880046

  13. Antiviral treatment normalizes neurophysiological but not movement abnormalities in simian immunodeficiency virus-infected monkeys.

    PubMed

    Fox, H S; Weed, M R; Huitron-Resendiz, S; Baig, J; Horn, T F; Dailey, P J; Bischofberger, N; Henriksen, S J

    2000-07-01

    Simian immunodeficiency virus (SIV) infection of rhesus monkeys provides an excellent model of the central nervous system (CNS) consequences of HIV infection. To discern the relationship between viral load and abnormalities induced in the CNS by the virus, we infected animals with SIV and later instituted antiviral treatment to lower peripheral viral load. Measurement of sensory-evoked potentials, assessing CNS neuronal circuitry, revealed delayed latencies after infection that could be reversed by lowering viral load. Cessation of treatment led to the reappearance of these abnormalities. In contrast, the decline in general motor activity induced by SIV infection was unaffected by antiviral treatment. An acute increase in the level of the chemokine monocyte chemoattractant protein-1 (MCP-1) was found in the cerebrospinal fluid (CSF) relative to plasma in the infected animals at the peak of acute viremia, likely contributing to an early influx of immune cells into the CNS. Examination of the brains of the infected animals after return of the electrophysiological abnormalities revealed diverse viral and inflammatory findings. Although some of the physiological abnormalities resulting from SIV infection can be at least temporarily reversed by lowering viral load, the viral-host interactions initiated by infection may result in long-lasting changes in CNS-mediated functions.

  14. Effect of intravaginal clindamycin cream on pregnancy outcome and on abnormal vaginal microbial flora of pregnant women.

    PubMed Central

    Rosenstein, I J; Morgan, D J; Lamont, R F; Sheehan, M; Doré, C J; Hay, P E; Taylor-Robinson, D

    2000-01-01

    OBJECTIVES: To determine whether intravaginal clindamycin cream reduces the incidence of abnormal pregnancy outcome in women with abnormal vaginal microbial flora graded as intermediate or BV and to investigate the effect of the antibiotic on vaginal microbial flora. METHODS: A prospective cohort study of pregnant women in an antenatal clinic of a district general hospital. The subjects were 268 women who had abnormal vaginal microbial flora at first clinic visit by examination of a Gram-stained vaginal smear and 34 women with a normal vaginal flora. Two hundred and thirty-seven women were evaluable. Women with abnormal Gram-stained smears (graded as II or III) on clinic recall were randomised to receive treatment (intravaginal clindamycin cream) or placebo and followed to assess outcome of pregnancy, vaginal flora, and detection of Mycoplasma hominis and Ureaplasma urealyticum after treatment. RESULTS: Abnormal outcomes of pregnancy were not significantly different in treated and placebo groups by Chi square (P = 0.2). However, women with grade III flora responded better to clindamycin than women with grade II flora by numbers of abnormal outcomes (P = 0.03) and return to normal vaginal flora (P = 0.01) (logistic regression analysis model). This may be due to differences in vaginal bacterial species in these grades. Women whose abnormal vaginal flora had spontaneously returned to normal on follow-up and were therefore not treated (revertants) had as many abnormal outcomes as placebos suggesting that damage by abnormal bacterial species occurred early in pregnancy. CONCLUSIONS: Gram-stain screening distinguishing grade II from grade III flora may be helpful in prescribing treatment other than clindamycin for women with grade II flora. Earlier diagnosis and treatment may be more effective in preventing an abnormal outcome, possibly as soon as pregnancy is diagnosed or even offered as a pre-conception screen. PMID:10968599

  15. Effect of intravaginal clindamycin cream on pregnancy outcome and on abnormal vaginal microbial flora of pregnant women.

    PubMed

    Rosenstein, I J; Morgan, D J; Lamont, R F; Sheehan, M; Doré, C J; Hay, P E; Taylor-Robinson, D

    2000-01-01

    To determine whether intravaginal clindamycin cream reduces the incidence of abnormal pregnancy outcome in women with abnormal vaginal microbial flora graded as intermediate or BV and to investigate the effect of the antibiotic on vaginal microbial flora. A prospective cohort study of pregnant women in an antenatal clinic of a district general hospital. The subjects were 268 women who had abnormal vaginal microbial flora at first clinic visit by examination of a Gram-stained vaginal smear and 34 women with a normal vaginal flora. Two hundred and thirty-seven women were evaluable. Women with abnormal Gram-stained smears (graded as II or III) on clinic recall were randomised to receive treatment (intravaginal clindamycin cream) or placebo and followed to assess outcome of pregnancy, vaginal flora, and detection of Mycoplasma hominis and Ureaplasma urealyticum after treatment. Abnormal outcomes of pregnancy were not significantly different in treated and placebo groups by Chi square (P = 0.2). However, women with grade III flora responded better to clindamycin than women with grade II flora by numbers of abnormal outcomes (P = 0.03) and return to normal vaginal flora (P = 0.01) (logistic regression analysis model). This may be due to differences in vaginal bacterial species in these grades. Women whose abnormal vaginal flora had spontaneously returned to normal on follow-up and were therefore not treated (revertants) had as many abnormal outcomes as placebos suggesting that damage by abnormal bacterial species occurred early in pregnancy. Gram-stain screening distinguishing grade II from grade III flora may be helpful in prescribing treatment other than clindamycin for women with grade II flora. Earlier diagnosis and treatment may be more effective in preventing an abnormal outcome, possibly as soon as pregnancy is diagnosed or even offered as a pre-conception screen.

  16. Volatile Metabolites

    PubMed Central

    Rowan, Daryl D.

    2011-01-01

    Volatile organic compounds (volatiles) comprise a chemically diverse class of low molecular weight organic compounds having an appreciable vapor pressure under ambient conditions. Volatiles produced by plants attract pollinators and seed dispersers, and provide defense against pests and pathogens. For insects, volatiles may act as pheromones directing social behavior or as cues for finding hosts or prey. For humans, volatiles are important as flavorants and as possible disease biomarkers. The marine environment is also a major source of halogenated and sulfur-containing volatiles which participate in the global cycling of these elements. While volatile analysis commonly measures a rather restricted set of analytes, the diverse and extreme physical properties of volatiles provide unique analytical challenges. Volatiles constitute only a small proportion of the total number of metabolites produced by living organisms, however, because of their roles as signaling molecules (semiochemicals) both within and between organisms, accurately measuring and determining the roles of these compounds is crucial to an integrated understanding of living systems. This review summarizes recent developments in volatile research from a metabolomics perspective with a focus on the role of recent technical innovation in developing new areas of volatile research and expanding the range of ecological interactions which may be mediated by volatile organic metabolites. PMID:24957243

  17. Metabolite toxicity determines the pace of molecular evolution within microbial populations.

    PubMed

    Lilja, Elin E; Johnson, David R

    2017-02-14

    The production of toxic metabolites has shaped the spatial and temporal arrangement of metabolic processes within microbial cells. While diverse solutions to mitigate metabolite toxicity have evolved, less is known about how evolution itself is affected by metabolite toxicity. We hypothesized that the pace of molecular evolution should increase as metabolite toxicity increases. At least two mechanisms could cause this. First, metabolite toxicity could increase the mutation rate. Second, metabolite toxicity could increase the number of available mutations with large beneficial effects that selection could act upon (e.g., mutations that provide tolerance to toxicity), which consequently would increase the rate at which those mutations increase in frequency. We tested this hypothesis by experimentally evolving the bacterium Pseudomonas stutzeri under denitrifying conditions. The metabolite nitrite accumulates during denitrification and has pH-dependent toxic effects, which allowed us to evolve P. stutzeri at different magnitudes of nitrite toxicity. We demonstrate that increased nitrite toxicity results in an increased pace of molecular evolution. We further demonstrate that this increase is generally due to an increased number of available mutations with large beneficial effects and not to an increased mutation rate. Our results demonstrate that the production of toxic metabolites can have important impacts on the evolutionary processes of microbial cells. Given the ubiquity of toxic metabolites, they could also have implications for understanding the evolutionary histories of biological organisms.

  18. NMR-based metabolite profiling of human milk: A pilot study of methods for investigating compositional changes during lactation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Junfang; Domellöf, Magnus; Zivkovic, Angela M.

    Low-molecular-weight metabolites in human milk are gaining increasing interest in studies of infant nutrition. In the present study, the milk metabolome from a single mother was explored at different stages of lactation. Metabolites were extracted from sample aliquots using either methanol/water (MeOH/H{sub 2}O) extraction or ultrafiltration. Nuclear magnetic resonance (NMR) spectroscopy was used for metabolite identification and quantification, and multi- and univariate statistical data analyses were used to detect changes over time of lactation. Compared to MeOH/H{sub 2}O extraction, ultrafiltration more efficiently reduced the interference from lipid and protein resonances, thereby enabling the identification and quantification of 36 metabolites. Themore » human milk metabolomes at the early (9–24 days after delivery) and late (31–87 days after delivery) stages of lactation were distinctly different according to multi- and univariate statistics. The late lactation stage was characterized by significantly elevated concentrations of lactose, choline, alanine, glutamate, and glutamine, as well as by reduced levels of citrate, phosphocholine, glycerophosphocholine, and N-acetylglucosamine. Our results indicate that there are significant compositional changes of the human milk metabolome also in different phases of the matured lactation stage. These findings complement temporal studies on the colostrum and transitional metabolome in providing a better understanding of the nutritional variations received by an infant. - Highlights: • 36 metabolites were simultaneously quantified in human milk by NMR. • Ultrafiltration more efficiently reduces interferences than MeOH/H{sub 2}O extraction. • Compositional changes of the human milk exist during the matured lactation stage.« less

  19. Electronic Nose: A Promising Tool For Early Detection Of Alicyclobacillus spp In Soft Drinks

    NASA Astrophysics Data System (ADS)

    Concina, I.; Bornšek, M.; Baccelliere, S.; Falasconi, M.; Sberveglieri, G.

    2009-05-01

    In the present work we investigate the potential use of the Electronic Nose EOS835 (SACMI scarl, Italy) to early detect Alicyclobacillus spp in two flavoured soft drinks. These bacteria have been acknowledged by producer companies as a major quality control target microorganisms because of their ability to survive commercial pasteurization processes and produce taint compounds in final product. Electronic Nose was able to distinguish between uncontaminated and contaminated products before the taint metabolites were identifiable by an untrained panel. Classification tests showed an excellent rate of correct classification for both drinks (from 86% uo to 100%). High performance liquid chromatography analyses showed no presence of the main metabolite at a level of 200 ppb, thus confirming the skill of the Electronic Nose technology in performing an actual early diagnosis of contamination.

  20. Comparing metabolite profiles of habitual diet in serum and urine123

    PubMed Central

    Playdon, Mary C; Sampson, Joshua N; Cross, Amanda J; Sinha, Rashmi; Guertin, Kristin A; Moy, Kristin A; Rothman, Nathaniel; Irwin, Melinda L; Mayne, Susan T; Stolzenberg-Solomon, Rachael; Moore, Steven C

    2016-01-01

    Background: Diet plays an important role in chronic disease etiology, but some diet-disease associations remain inconclusive because of methodologic limitations in dietary assessment. Metabolomics is a novel method for identifying objective dietary biomarkers, although it is unclear what dietary information is captured from metabolites found in serum compared with urine. Objective: We compared metabolite profiles of habitual diet measured from serum with those measured from urine. Design: We first estimated correlations between consumption of 56 foods, beverages, and supplements assessed by a food-frequency questionnaire, with 676 serum and 848 urine metabolites identified by untargeted liquid chromatography mass spectrometry, ultra-high performance liquid chromatography tandem mass spectrometry, and gas chromatography mass spectrometry in a colon adenoma case–control study (n = 125 cases and 128 controls) while adjusting for age, sex, smoking, fasting, case-control status, body mass index, physical activity, education, and caloric intake. We controlled for multiple comparisons with the use of a false discovery rate of <0.1. Next, we created serum and urine multiple-metabolite models to predict food intake with the use of 10-fold crossvalidation least absolute shrinkage and selection operator regression for 80% of the data; predicted values were created in the remaining 20%. Finally, we compared predicted values with estimates obtained from self-reported intake for metabolites measured in serum and urine. Results: We identified metabolites associated with 46 of 56 dietary items; 417 urine and 105 serum metabolites were correlated with ≥1 food, beverage, or supplement. More metabolites in urine (n = 154) than in serum (n = 39) were associated uniquely with one food. We found previously unreported metabolite associations with leafy green vegetables, sugar-sweetened beverages, citrus, added sugar, red meat, shellfish, desserts, and wine. Prediction of dietary

  1. Proteomics Analysis Reveals Abnormal Electron Transport and Excessive Oxidative Stress Cause Mitochondrial Dysfunction in Placental Tissues of Early-Onset Preeclampsia.

    PubMed

    Xu, Zhongwei; Jin, Xiaohan; Cai, Wei; Zhou, Maobin; Shao, Ping; Yang, Zhen; Fu, Rong; Cao, Jin; Liu, Yan; Yu, Fang; Fan, Rong; Zhang, Yan; Zou, Shuang; Zhou, Xin; Yang, Ning; Chen, Xu; Li, Yuming

    2018-04-20

    Early-onset preeclampsia (EOS-PE) refers to preeclampsia that occurred before 34 gestation weeks. This study is conducted to explore the relationship between mitochondrial dysfunction and the pathogenesis of EOS-PE using proteomic strategy. To identify altering expressed mitochondrial proteins between severe EOS-PE and healthy pregnancies, enrichment of mitochondria coupled with iTRAQ-based quantitative proteomic method is performed. Immunohistochemistry (IHC) and western blot are performed to detect the alteration of changing expression proteins, and confirmed the accuracy of proteomic results. A total of 1372 proteins were quantified and 132 altering expressed proteins were screened, including 86 downregulated expression proteins and 46 upregulated expression proteins (p < 0.05). Bioinformatics analysis showed that differentially expressed proteins participated in numerous biological processes, including oxidation-reduction process, respiratory electron transport chain, and oxidative phosphorylation. Especially, mitochondria-related molecules, PRDX2, PARK7, BNIP3, BCL2, PDHA1, SUCLG1, ACADM, and NDUFV1, are involved in energy-production process in the matrix and membrane of mitochondria. Results of the experiment show that abnormal electron transport, excessive oxidative stress, and mitochondrion disassembly might be the main cause of mitochondrial dysfunction, and is related to the pathogenesis of EOS-PE. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Metabolomics and Cheminformatics Analysis of Antifungal Function of Plant Metabolites

    PubMed Central

    Cuperlovic-Culf, Miroslava; Rajagopalan, NandhaKishore; Tulpan, Dan; Loewen, Michele C.

    2016-01-01

    Fusarium head blight (FHB), primarily caused by Fusarium graminearum, is a devastating disease of wheat. Partial resistance to FHB of several wheat cultivars includes specific metabolic responses to inoculation. Previously published studies have determined major metabolic changes induced by pathogens in resistant and susceptible plants. Functionality of the majority of these metabolites in resistance remains unknown. In this work we have made a compilation of all metabolites determined as selectively accumulated following FHB inoculation in resistant plants. Characteristics, as well as possible functions and targets of these metabolites, are investigated using cheminformatics approaches with focus on the likelihood of these metabolites acting as drug-like molecules against fungal pathogens. Results of computational analyses of binding properties of several representative metabolites to homology models of fungal proteins are presented. Theoretical analysis highlights the possibility for strong inhibitory activity of several metabolites against some major proteins in Fusarium graminearum, such as carbonic anhydrases and cytochrome P450s. Activity of several of these compounds has been experimentally confirmed in fungal growth inhibition assays. Analysis of anti-fungal properties of plant metabolites can lead to the development of more resistant wheat varieties while showing novel application of cheminformatics approaches in the analysis of plant/pathogen interactions. PMID:27706030

  3. Abnormal sensory reactivity in preterm infants during the first year correlates with adverse neurodevelopmental outcomes at 2 years of age.

    PubMed

    Chorna, Olena; Solomon, Jessica E; Slaughter, James C; Stark, Ann R; Maitre, Nathalie L

    2014-11-01

    Sensory experience is the basis for learning in infancy. In older children, abnormal sensory reactivity is associated with behavioural and developmental disorders. We hypothesised that in preterm infants, abnormal sensory reactivity during infancy would be associated with perinatal characteristics and correlate with 2-year neurodevelopmental outcomes. We conducted a prospective observational study of infants with birth weight ≤1500 g using the Test of Sensory Function in Infants (TSFI) in the first year. Infants with gestational age ≤30 weeks were tested with the Bayley Scales of Infant and Toddler Development III (BSID III) at 24 months. Of the 72 participants evaluated at 4-12 months corrected age (median 8 months), 59 (82%) had a least one TSFI score concerning for abnormal sensory reactivity. Lower gestational age was associated with abnormal reactivity to deep pressure and vestibular stimulation (p<0.001). Poor ocular-motor control predicted worse cognitive and motor scores in early childhood (OR 16.7; p=0.004), but was tightly correlated to the presence of severe white matter injury. Poor adaptive motor function in response to tactile stimuli predicted worse BSID III motor (p=0.01) and language scores (p=0.04) at 2 years, even after adjusting for confounders. Abnormal sensory reactivity is common in preterm infants; is associated with immaturity at birth, severe white matter injury and lower primary caregiver education; and predicts neurodevelopmental delays. Early identification of abnormal sensory reactivity of very preterm infants may promote parental support and education and may facilitate improved neurodevelopment. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  4. Prevalence of prenatal brain abnormalities in fetuses with congenital heart disease: a systematic review.

    PubMed

    Khalil, A; Bennet, S; Thilaganathan, B; Paladini, D; Griffiths, P; Carvalho, J S

    2016-09-01

    -matter abnormalities and delayed brain development. Fetuses with CHD were more likely than those without CHD to have reduced brain volume, delay in brain maturation and altered brain circulation, most commonly in the form of reduced middle cerebral artery pulsatility index and cerebroplacental ratio. These changes were usually evident in the third trimester, but some studies reported them from as early as the second trimester. In the absence of known major aneuploidy or genetic syndromes, fetuses with CHD are at increased risk of brain abnormalities, which are discernible prenatally. Copyright © 2016 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2016 ISUOG. Published by John Wiley & Sons Ltd.

  5. Aspergillus flavus secondary metabolites: more than just aflatoxins

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus is best known for producing the family of potent carcinogenic secondary metabolites known as aflatoxins. However, this opportunistic plant and animal pathogen also produces numerous other secondary metabolites, many of which have also been shown to be toxic. While about forty of t...

  6. Discovering the secondary metabolite potential encoded within Entomopathogenic Fungi

    USDA-ARS?s Scientific Manuscript database

    This article discusses the secondary metabolite potential of the insect pathogens Metarhizium and Beauveria, including a bioinformatics analysis of secondary metabolite genes for which no products are yet identified....

  7. Analysis of Multiple Metabolites of Tocopherols and Tocotrienols in Mice and Humans

    PubMed Central

    Zhao, Yang; Lee, Mao-Jung; Cheung, Connie; Ju, Ji-Hyeung; Chen, Yu-Kuo; Liu, Ba; Hu, Long-Qin; Yang, Chung S.

    2010-01-01

    Tocopherols and tocotrienols, collectively known as vitamin E, are essential antioxidant nutrients. The biological fates and metabolite profiles of the different forms are not clearly understood. The objective of this study is to simultaneously analyze the metabolites of different tocopherols and tocotrienols in mouse and human samples. Using HPLC/electrochemical detection and mass spectrometry, 18 tocopherol-derived and 24 tocotrienol-derived side-chain degradation metabolites were identified in fecal samples. Short-chain degradation metabolites, in particular γ- and δ- carboxyethyl hydroxychromans (CEHCs) and carboxymethylbutyl hydroxychromans (CMBHCs) were detected in urine, serum and liver samples, with tocopherols additionally detected in serum and liver samples. The metabolite profiles of tocotrienols and tocopherols were similar, but new tocotrienol metabolites with double bonds were identified. This is the first comprehensive report describing simultaneous analysis of different side-chain metabolites of tocopherols and tocotrienols in mice and humans. Urinary metabolites may serve as useful biomarkers for nutritional assessment of vitamin E. PMID:20222730

  8. Direct detection of glucuronide metabolites of lidocaine in sheep urine.

    PubMed

    Doran, Gregory S; Smith, Alistair K; Rothwell, Jim T; Edwards, Scott H

    2018-02-15

    The anaesthetic lidocaine is metabolised quickly to produce a series of metabolites, including several hydroxylated metabolites, which are further metabolised by addition of a glucuronic acid moiety. Analysis of these glucuronide metabolites in urine is performed indirectly by cleaving the glucuronic acid group using β-glucuronidase. However, direct analysis of intact glucuronide conjugates is a more straightforward approach as it negates the need for long hydrolysis incubations, and minimises the oxidation of sensitive hydrolysis products, while also distinguishing between the two forms of hydroxylated metabolites. A method was developed to identify three intact glucuronides of lidocaine in sheep urine using LC-MS/MS, which was further confirmed by the synthesis of glucuronide derivatives of 3OH-MEGX and 4OH-LIDO. Direct analysis of urine allowed the detection of the glucuronide metabolites of hydroxylidocaine (OH-LIDO), hydroxyl-monoethylglycinexylidide (OH-MEGX), and hydroxy-2,6-xylidine (OH-XYL). Analysis of urine before and after β-glucuronidase digestion showed that the efficiency of hydrolysis of these glucuronide metabolites may be underestimated in some studies. Analysis of urine in the current study from three different sheep with similar glucuronide metabolite concentrations resulted in different hydrolysis efficiencies, which may have been a result of different levels of substrate binding by matrix components, preventing enzyme cleavage. The use of direct analysis of intact glucuronides has the benefit of being less influenced by these matrix effects, while also allowing analysis of unstable metabolites like 4OH-XYL, which rapidly oxidises after hydrolysis. Additionally, direct analysis is less expensive and less time consuming, while providing more information about the status of hydroxylated metabolites in urine. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  9. Optimizing Metabolite Production Using Periodic Oscillations

    PubMed Central

    Sowa, Steven W.; Baldea, Michael; Contreras, Lydia M.

    2014-01-01

    Methods for improving microbial strains for metabolite production remain the subject of constant research. Traditionally, metabolic tuning has been mostly limited to knockouts or overexpression of pathway genes and regulators. In this paper, we establish a new method to control metabolism by inducing optimally tuned time-oscillations in the levels of selected clusters of enzymes, as an alternative strategy to increase the production of a desired metabolite. Using an established kinetic model of the central carbon metabolism of Escherichia coli, we formulate this concept as a dynamic optimization problem over an extended, but finite time horizon. Total production of a metabolite of interest (in this case, phosphoenolpyruvate, PEP) is established as the objective function and time-varying concentrations of the cellular enzymes are used as decision variables. We observe that by varying, in an optimal fashion, levels of key enzymes in time, PEP production increases significantly compared to the unoptimized system. We demonstrate that oscillations can improve metabolic output in experimentally feasible synthetic circuits. PMID:24901332

  10. Progesterone and estradiol profiles in different reproductive stages of captive collared peccary (Pecari tajacu) females assessed by fecal metabolites.

    PubMed

    Ahuja-Aguirre, Concepción; López-deBuen, Lorena; Rojas-Maya, Susana; Hernández-Cruz, Bertha C

    2017-05-01

    The study determined the fecal progesterone and estradiol profiles in different reproductive stages of captive collared peccary (Pecari tajacu) females from eastern Mexico. Fifteen adult females were included. At the start of the study the females were either pregnant (early, mid, or late pregnancy), lactating, or non-lactating of unknown pregnancy status. Feces from each female were collected once a week during nine consecutive months to determine concentrations of fecal progesterone and estradiol metabolites using ELISA. Progesterone was similar in early (2048±285ng/g), mid (2254±274ng/g), and late pregnancy (2491±374ng/g), and in early-pregnant and non-lactating females (1154±274ng/g). Progesterone in lactating females (442±255ng/g) was lower than in females at any stage of pregnancy, but was similar to non-lactating females. Overall progesterone in pregnant females (2229±173ng/g) was higher than in lactating and non-lactating females together (772±189ng/g). Estradiol was similar in early (66±8ng/g), mid (83±9ng/g), late pregnant (109±15ng/g), and non-lactating females (64±9ng/g). Estradiol in lactating females (34±8ng/g) was similar to estradiol in early-pregnant and non-lactating females, but was lower than in females in late and mid pregnancy. Overall estradiol in pregnant females (79±6ng/g) was similar to non-lactating females, but higher than in lactating females. The progesterone and estradiol profiles of captive collared peccary females at different reproductive stages were determined by assessing concentrations of fecal hormone metabolites. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Early embryonic demise: no evidence of abnormal spiral artery transformation or trophoblast invasion.

    PubMed

    Ball, E; Robson, S C; Ayis, S; Lyall, F; Bulmer, J N

    2006-03-01

    Invasion by extravillous trophoblast of uterine decidua and myometrium and the associated spiral artery 'transformation' are essential for the development of normal pregnancy. Small pilot studies of placental bed and basal plate tissues from miscarriages have suggested that impaired interstitial and endovascular trophoblast invasion may play a role in the pathogenesis of miscarriage. The hypothesis that early miscarriage is associated with reduced extravillous trophoblast invasion and spiral artery transformation was tested in a large series of placental bed biopsies containing decidua and myometrium and at least one spiral artery from early, karyotyped embryonic miscarriages (early miscarriage and also did not differ significantly from normal pregnancy. These findings suggest that failed trophoblast invasion and spiral artery transformation do not have a pivotal role in the pathogenesis of early miscarriage.

  12. Multimodal Imaging in Rat Model Recapitulates Alzheimer's Disease Biomarkers Abnormalities.

    PubMed

    Parent, Maxime J; Zimmer, Eduardo R; Shin, Monica; Kang, Min Su; Fonov, Vladimir S; Mathieu, Axel; Aliaga, Antonio; Kostikov, Alexey; Do Carmo, Sonia; Dea, Doris; Poirier, Judes; Soucy, Jean-Paul; Gauthier, Serge; Cuello, A Claudio; Rosa-Neto, Pedro

    2017-12-13

    Imaging biomarkers are frequently proposed as endpoints for clinical trials targeting brain amyloidosis in Alzheimer's disease (AD); however, the specific impact of amyloid-β (Aβ) aggregation on biomarker abnormalities remains elusive in AD. Using the McGill-R-Thy1-APP transgenic rat as a model of selective Aβ pathology, we characterized the longitudinal progression of abnormalities in biomarkers commonly used in AD research. Middle-aged (9-11 months) transgenic animals (both male and female) displayed mild spatial memory impairments and disrupted cingulate network connectivity measured by resting-state fMRI, even in the absence of hypometabolism (measured with PET [ 18 F]FDG) or detectable fibrillary amyloidosis (measured with PET [ 18 F]NAV4694). At more advanced ages (16-19 months), cognitive deficits progressed in conjunction with resting connectivity abnormalities; furthermore, hypometabolism, Aβ plaque accumulation, reduction of CSF Aβ 1-42 concentrations, and hippocampal atrophy (structural MRI) were detectable at this stage. The present results emphasize the early impact of Aβ on brain connectivity and support a framework in which persistent Aβ aggregation itself is sufficient to impose memory circuits dysfunction, which propagates to adjacent brain networks at later stages. SIGNIFICANCE STATEMENT The present study proposes a "back translation" of the Alzheimer pathological cascade concept from human to animals. We used the same set of Alzheimer imaging biomarkers typically used in large human cohorts and assessed their progression over time in a transgenic rat model, which allows for a finer spatial resolution not attainable with mice. Using this translational platform, we demonstrated that amyloid-β pathology recapitulates an Alzheimer-like profile of biomarker abnormalities even in the absence of other hallmarks of the disease such as neurofibrillary tangles and widespread neuronal losses. Copyright © 2017 Parent et al.

  13. Multimodal Imaging in Rat Model Recapitulates Alzheimer's Disease Biomarkers Abnormalities

    PubMed Central

    Parent, Maxime J.; Kang, Min Su; Mathieu, Axel; Aliaga, Antonio; Do Carmo, Sonia; Dea, Doris; Gauthier, Serge; Cuello, A. Claudio

    2017-01-01

    Imaging biomarkers are frequently proposed as endpoints for clinical trials targeting brain amyloidosis in Alzheimer's disease (AD); however, the specific impact of amyloid-β (Aβ) aggregation on biomarker abnormalities remains elusive in AD. Using the McGill-R-Thy1-APP transgenic rat as a model of selective Aβ pathology, we characterized the longitudinal progression of abnormalities in biomarkers commonly used in AD research. Middle-aged (9–11 months) transgenic animals (both male and female) displayed mild spatial memory impairments and disrupted cingulate network connectivity measured by resting-state fMRI, even in the absence of hypometabolism (measured with PET [18F]FDG) or detectable fibrillary amyloidosis (measured with PET [18F]NAV4694). At more advanced ages (16–19 months), cognitive deficits progressed in conjunction with resting connectivity abnormalities; furthermore, hypometabolism, Aβ plaque accumulation, reduction of CSF Aβ1-42 concentrations, and hippocampal atrophy (structural MRI) were detectable at this stage. The present results emphasize the early impact of Aβ on brain connectivity and support a framework in which persistent Aβ aggregation itself is sufficient to impose memory circuits dysfunction, which propagates to adjacent brain networks at later stages. SIGNIFICANCE STATEMENT The present study proposes a “back translation” of the Alzheimer pathological cascade concept from human to animals. We used the same set of Alzheimer imaging biomarkers typically used in large human cohorts and assessed their progression over time in a transgenic rat model, which allows for a finer spatial resolution not attainable with mice. Using this translational platform, we demonstrated that amyloid-β pathology recapitulates an Alzheimer-like profile of biomarker abnormalities even in the absence of other hallmarks of the disease such as neurofibrillary tangles and widespread neuronal losses. PMID:29097597

  14. Primary Cortical Folding in the Human Newborn: An Early Marker of Later Functional Development

    ERIC Educational Resources Information Center

    Dubois, J.; Benders, M.; Borradori-Tolsa, C.; Cachia, A.; Lazeyras, F.; Leuchter, R. Ha-Vinh; Sizonenko, S. V.; Warfield, S. K.; Mangin, J. F.; Huppi, P. S.

    2008-01-01

    In the human brain, the morphology of cortical gyri and sulci is complex and variable among individuals, and it may reflect pathological functioning with specific abnormalities observed in certain developmental and neuropsychiatric disorders. Since cortical folding occurs early during brain development, these structural abnormalities might be…

  15. Comparison of brain volume abnormalities between ADHD and conduct disorder in adolescence

    PubMed Central

    Stevens, Michael C.; Haney-Caron, Emily

    2012-01-01

    associated with numerous frontal lobe structural deficits, a conclusion that is not strongly supported following direct comparison of diagnostically pure groups. The results are important for future etiological studies, particularly those seeking to identify how early expression of specific brain structure abnormalities could potentiate the risk for antisocial behaviour. PMID:22663946

  16. Metabolite Depletion Affects Flux Profiling of Cell Lines.

    PubMed

    Nilsson, A; Haanstra, J R; Teusink, B; Nielsen, J

    2018-06-01

    Quantifying the rate of consumption and release of metabolites (i.e., flux profiling) has become integral to the study of cancer. The fluxes as well as the growth of the cells may be affected by metabolite depletion during cultivation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Discovery of a vezatin-like protein for dynein-mediated early endosome transport

    PubMed Central

    Yao, Xuanli; Arst, Herbert N.; Wang, Xiangfeng; Xiang, Xin

    2015-01-01

    Early endosomes are transported bidirectionally by cytoplasmic dynein and kinesin-3, but how the movements are regulated in vivo remains unclear. Here our forward genetic study led to the discovery of VezA, a vezatin-like protein in Aspergillus nidulans, as a factor critical for early endosome distribution. Loss of vezA causes an abnormal accumulation of early endosomes at the hyphal tip, where microtubule plus ends are located. This abnormal accumulation depends on kinesin-3 and is due to a decrease in the frequency but not the speed of dynein-mediated early endosome movement. VezA-GFP signals are enriched at the hypha tip in an actin-dependent manner but are not obviously associated with early endosomes, thus differing from the early endosome association of the cargo adapter HookA (Hook in A. nidulans). On loss of VezA, HookA associates normally with early endosomes, but the interaction between dynein-dynactin and the early-endosome-bound HookA is significantly decreased. However, VezA is not required for linking dynein-dynactin to the cytosolic ∆C-HookA, lacking the cargo-binding C-terminus. These results identify VezA as a novel regulator required for the interaction between dynein and the Hook-bound early endosomes in vivo. PMID:26378255

  18. Genetic variability of the phloem sap metabolite content of maize (Zea mays L.) during the kernel-filling period.

    PubMed

    Yesbergenova-Cuny, Zhazira; Dinant, Sylvie; Martin-Magniette, Marie-Laure; Quilleré, Isabelle; Armengaud, Patrick; Monfalet, Priscilla; Lea, Peter J; Hirel, Bertrand

    2016-11-01

    Using a metabolomic approach, we have quantified the metabolite composition of the phloem sap exudate of seventeen European and American lines of maize that had been previously classified into five main groups on the basis of molecular marker polymorphisms. In addition to sucrose, glutamate and aspartate, which are abundant in the phloem sap of many plant species, large quantities of aconitate and alanine were also found in the phloem sap exudates of maize. Genetic variability of the phloem sap composition was observed in the different maize lines, although there was no obvious relationship between the phloem sap composition and the five previously classified groups. However, following hierarchical clustering analysis there was a clear relationship between two of the subclusters of lines defined on the basis of the composition of the phloem sap exudate and the earliness of silking date. A comparison between the metabolite contents of the ear leaves and the phloem sap exudates of each genotype, revealed that the relative content of most of the carbon- and nitrogen-containing metabolites was similar. Correlation studies performed between the metabolite content of the phloem sap exudates and yield-related traits also revealed that for some carbohydrates such as arabitol and sucrose there was a negative or positive correlation with kernel yield and kernel weight respectively. A posititive correlation was also found between kernel number and soluble histidine. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Neurologic abnormalities in murderers.

    PubMed

    Blake, P Y; Pincus, J H; Buckner, C

    1995-09-01

    Thirty-one individuals awaiting trial or sentencing for murder or undergoing an appeal process requested a neurologic examination through legal counsel. We attempted in each instance to obtain EEG, MRI or CT, and neuropsychological testing. Neurologic examination revealed evidence of "frontal" dysfunction in 20 (64.5%). There were symptoms or some other evidence of temporal lobe abnormality in nine (29%). We made a specific neurologic diagnosis in 20 individuals (64.5%), including borderline or full mental retardation (9) and cerebral palsy (2), among others. Neuropsychological testing revealed abnormalities in all subjects tested. There were EEG abnormalities in eight of the 20 subjects tested, consisting mainly of bilateral sharp waves with slowing. There were MRI or CT abnormalities in nine of the 19 subjects tested, consisting primarily of atrophy and white matter changes. Psychiatric diagnoses included paranoid schizophrenia (8), dissociative disorder (4), and depression (9). Virtually all subjects had paranoid ideas and misunderstood social situations. There was a documented history of profound, protracted physical abuse in 26 (83.8%) and of sexual abuse in 10 (32.3%). It is likely that prolonged, severe physical abuse, paranoia, and neurologic brain dysfunction interact to form the matrix of violent behavior.

  20. Enhanced photo(geno)toxicity of demethylated chlorpromazine metabolites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palumbo, Fabrizio

    Chlorpromazine (CPZ) is an anti-psychotic drug widely used to treat disorders such as schizophrenia or manic-depression. Unfortunately, CPZ exhibits undesirable side effects such as phototoxic and photoallergic reactions in humans. In general, the influence of drug metabolism on this type of reactions has not been previously considered in photosafety testing. Thus, the present work aims to investigate the possible photo(geno)toxic potential of drug metabolites, using CPZ as an established reference compound. In this case, the metabolites selected for the study are demethylchlorpromazine (DMCPZ), didemethylchlorpromazine (DDMCPZ) and chlorpromazine sulfoxide (CPZSO). The demethylated CPZ metabolites DMCPZ and DDMCPZ maintain identical chromophore tomore » the parent drug. In this work, it has been found that the nature of the aminoalkyl side chain modulates the hydrophobicity and the photochemical properties (for instance, the excited state lifetimes), but it does not change the photoreactivity pattern, which is characterized by reductive photodehalogenation, triggered by homolytic carbon-chlorine bond cleavage with formation of highly reactive aryl radical intermediates. Accordingly, these metabolites are phototoxic to cells, as revealed by the 3T3 NRU assay; their photo-irritation factors are even higher than that of CPZ. The same trend is observed in photogenotoxicity studies, both with isolated and with cellular DNA, where DMCPZ and DDMCPZ are more active than CPZ itself. In summary, side-chain demethylation of CPZ, as a consequence of Phase I biotransformation, does not result a photodetoxification. Instead, it leads to metabolites that exhibit in an even enhanced photo(geno)toxicity. - Highlights: • Demethylated CPZ metabolites are phototoxic to cells, as revealed by the NRU assay. • Single cell electrophoresis (Comet Assay) confirms the photodamage to cellular DNA. • DNA single strand breaks formation is observed on agarose gel electrophoresis.

  1. Reparation and Immunomodulating Properties of Bacillus sp. Metabolites from Permafrost.

    PubMed

    Kalenova, L F; Melnikov, V P; Besedin, I M; Bazhin, A S; Gabdulin, M A; Kolyvanova, S S

    2017-09-01

    An ointment containing metabolites of Bacillus sp. microorganisms isolated from permafrost samples was applied onto the skin wound of BALB/c mice. Metabolites isolated during culturing of Bacillus sp. at 37°C produced a potent therapeutic effect and promoted wound epithelialization by 30% in comparison with the control (ointment base) and by 20% in comparison with Solcoseryl. Treatment with Bacillus sp. metabolites stimulated predominantly humoral immunity, reduced the time of wound contraction and the volume of scar tissue, and promoted complete hair recovery. These metabolites can be considered as modulators of the wound process with predominance of regeneration mechanisms.

  2. Abnormal metabolic brain networks in Parkinson's disease from blackboard to bedside.

    PubMed

    Tang, Chris C; Eidelberg, David

    2010-01-01

    Metabolic imaging in the rest state has provided valuable information concerning the abnormalities of regional brain function that underlie idiopathic Parkinson's disease (PD). Moreover, network modeling procedures, such as spatial covariance analysis, have further allowed for the quantification of these changes at the systems level. In recent years, we have utilized this strategy to identify and validate three discrete metabolic networks in PD associated with the motor and cognitive manifestations of the disease. In this chapter, we will review and compare the specific functional topographies underlying parkinsonian akinesia/rigidity, tremor, and cognitive disturbance. While network activity progressed over time, the rate of change for each pattern was distinctive and paralleled the development of the corresponding clinical symptoms in early-stage patients. This approach is already showing great promise in identifying individuals with prodromal manifestations of PD and in assessing the rate of progression before clinical onset. Network modulation was found to correlate with the clinical effects of dopaminergic treatment and surgical interventions, such as subthalamic nucleus (STN) deep brain stimulation (DBS) and gene therapy. Abnormal metabolic networks have also been identified for atypical parkinsonian syndromes, such as multiple system atrophy (MSA) and progressive supranuclear palsy (PSP). Using multiple disease-related networks for PD, MSA, and PSP, we have developed a novel, fully automated algorithm for accurate classification at the single-patient level, even at early disease stages. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Dandy-Walker syndrome and chromosomal abnormalities.

    PubMed

    Imataka, George; Yamanouchi, Hideo; Arisaka, Osamu

    2007-12-01

    Dandy-Walker syndrome (DWS) is a brain malformation of unknown etiology, but several reports have been published indicating that there is a causal relationship to various types of chromosomal abnormalities and malformation syndromes. In the present article, we present a bibliographical survey of several previously issued reports on chromosomal abnormalities associated with DWS, including our case of DWS found in trisomy 18. There are various types of chromosomal abnormalities associated with DWS; most of them are reported in chromosome 3, 9, 13 and 18. We also summarize some other chromosomal abnormalities and various congenital malformation syndromes.

  4. Software automation tools for increased throughput metabolic soft-spot identification in early drug discovery.

    PubMed

    Zelesky, Veronica; Schneider, Richard; Janiszewski, John; Zamora, Ismael; Ferguson, James; Troutman, Matthew

    2013-05-01

    The ability to supplement high-throughput metabolic clearance data with structural information defining the site of metabolism should allow design teams to streamline their synthetic decisions. However, broad application of metabolite identification in early drug discovery has been limited, largely due to the time required for data review and structural assignment. The advent of mass defect filtering and its application toward metabolite scouting paved the way for the development of software automation tools capable of rapidly identifying drug-related material in complex biological matrices. Two semi-automated commercial software applications, MetabolitePilot™ and Mass-MetaSite™, were evaluated to assess the relative speed and accuracy of structural assignments using data generated on a high-resolution MS platform. Review of these applications has demonstrated their utility in providing accurate results in a time-efficient manner, leading to acceleration of metabolite identification initiatives while highlighting the continued need for biotransformation expertise in the interpretation of more complex metabolic reactions.

  5. Extracellular Metabolites from Industrial Microalgae and Their Biotechnological Potential

    PubMed Central

    Liu, Lu; Pohnert, Georg; Wei, Dong

    2016-01-01

    Industrial microalgae, as a big family of promising producers of renewable biomass feedstock, have been commercially exploited for functional food, living feed and feed additives, high-value chemicals in nutraceuticals, cosmeceuticals, and chemical reagents. Recently, microalgae have also been considered as a group that might play an important role in biofuel development and environmental protection. Almost all current products of industrial microalgae are derived from their biomass; however, large amounts of spent cell-free media are available from mass cultivation that is mostly unexploited. In this contribution we discuss that these media, which may contain a remarkable diversity of bioactive substances are worthy to be recovered for further use. Obviously, the extracellular metabolites from industrial microalgae have long been neglected in the development of production methods for valuable metabolites. With the advances in the last ten years, more and more structures and properties from extracellular metabolites have been identified, and the potential utilization over wide fields is attracting attention. Some of these extracellular metabolites can be potentially used as drugs, antioxidants, growth regulators or metal chelators. The purpose of this review is to provide an overview of the known extracellular metabolites from industrial microalgae which might be of commercial interest. The attention mainly focuses on the reports of extracellular bioactive metabolites and their potential application in biotechnology. PMID:27775594

  6. Extracellular Metabolites from Industrial Microalgae and Their Biotechnological Potential.

    PubMed

    Liu, Lu; Pohnert, Georg; Wei, Dong

    2016-10-20

    Industrial microalgae, as a big family of promising producers of renewable biomass feedstock, have been commercially exploited for functional food, living feed and feed additives, high-value chemicals in nutraceuticals, cosmeceuticals, and chemical reagents. Recently, microalgae have also been considered as a group that might play an important role in biofuel development and environmental protection. Almost all current products of industrial microalgae are derived from their biomass; however, large amounts of spent cell-free media are available from mass cultivation that is mostly unexploited. In this contribution we discuss that these media, which may contain a remarkable diversity of bioactive substances are worthy to be recovered for further use. Obviously, the extracellular metabolites from industrial microalgae have long been neglected in the development of production methods for valuable metabolites. With the advances in the last ten years, more and more structures and properties from extracellular metabolites have been identified, and the potential utilization over wide fields is attracting attention. Some of these extracellular metabolites can be potentially used as drugs, antioxidants, growth regulators or metal chelators. The purpose of this review is to provide an overview of the known extracellular metabolites from industrial microalgae which might be of commercial interest. The attention mainly focuses on the reports of extracellular bioactive metabolites and their potential application in biotechnology.

  7. Metabolites from inhalation of aerosolized S-8 synthetic jet fuel in rats.

    PubMed

    Tremblay, Raphael T; Martin, Sheppard A; Fisher, Jeffrey W

    2011-01-01

    Alternative fuels are being considered for civilian and military uses. One of these is S-8, a replacement jet fuel synthesized using the Fischer-Tropsch process, which contains no aromatic compounds and is mainly composed of straight and branched alkanes. Metabolites of S-8 fuel in laboratory animals have not been identified. The goal of this study was to identify metabolic products from exposure to aerosolized S-8 and a designed straight-chain alkane/polyaromatic mixture (decane, undecane, dodecane, tridecane, tetradecane, pentadecane, naphthalene, and 2-methylnaphthalene) in male Fischer 344 rats. Collected blood and tissue samples were analyzed for 70 straight and branched alcohols and ketones ranging from 7 to 15 carbons. No fuel metabolites were observed in the blood, lungs, brain, and fat following S-8 exposure. Metabolites were detected in the liver, urine, and feces. Most of the metabolites were 2- and 3-position alcohols and ketones of prominent hydrocarbons with very few 1- or 4-position metabolites. Following exposure to the alkane mixture, metabolites were observed in the blood, liver, and lungs. Interestingly, heavy metabolites (3-tridecanone, 2-tridecanol, and 2-tetradecanol) were observed only in the lung tissues possibly indicating that metabolism occurred in the lungs. With the exception of these heavy metabolites, the metabolic profiles observed in this study are consistent with previous studies reporting on the metabolism of individual alkanes. Further work is needed to determine the potential metabolic interactions of parent, primary, and secondary metabolites and identify more polar metabolites. Some metabolites may have potential use as biomarkers of exposure to fuels.

  8. Parkinsonian abnormality of foot strike: a phenomenon of ageing and/or one responsive to levodopa therapy?

    PubMed Central

    Hughes, J R; Bowes, S G; Leeman, A L; O'Neill, C J; Deshmukh, A A; Nicholson, P W; Dobbs, S M; Dobbs, R J

    1990-01-01

    1. Normally during walking, the heel strikes the ground before the forefoot. Abnormalities of foot strike in idiopathic Parkinson's disease may be amenable to therapy: objective measurements may reveal response which is not clinically apparent. Occult changes in foot strike leading to instability may parallel the normal, age-related loss of striatal dopamine. 2. The nature of foot strike was studied using pedobarography in 160 healthy volunteers, aged 15 to 91 years. Although 16% of strikes were made simultaneously by heel and forefoot, there were no instances of the forefoot preceding the heel. No significant effect of age on an index of normality of foot strikes was detected (P greater than 0.3). 3. The effect on foot strike of substituting placebo for a morning dose of a levodopa/carbidopa combination was studied in a double-blind, cross-over trial in 14 patients, aged 64 to 88 years, with no overt fluctuations in control of their idiopathic Parkinson's disease in relation to dosing. On placebo treatment there was a highly significant (P = 0.004) reduction in the number of more normal strikes, i.e. heel strikes plus simultaneous heel and forefoot strikes. The effect appeared unrelated to the corresponding difference between active and placebo treatments in plasma concentration of levodopa or a metabolite of long half-time, 3-O-methyldopa (3OMD). However, it correlated negatively (P less than 0.05) with the mean of the 3OMD concentrations. 4. It appears that some abnormalities of foot strike due to Parkinson's disease are reversible. Employing test conditions, designed to provoke abnormalities of foot strike, might be useful in screening for pre-clinical Parkinson's disease. PMID:2306409

  9. [Impact of indirect factors on the growing prevalence of workers with abnormal findings in periodic general health examinations: a survey on the definition and detection of such abnormal workers by occupational health organizations].

    PubMed

    Hoshuyama, T; Takahashi, K; Fujishiro, K; Uchida, K; Okubo, T

    2000-05-01

    The prevalence of workers with abnormal findings in periodic general health examinations (PGHEx) has been growing recently in Japan and reached 41.2% in 1998. To clarify the indirect factors related to such an increase in workers with abnormal findings in the PGHEx, we carried out a questionnaire survey on the content of the statutory notification form of results of the PGHEx among a representative sample of 136 Occupational Health Organizations (OHOs). Questions on how those workers with abnormal findings were defined and detected and when the definition and the reference intervals for total cholesterol became available were included. Of the 107 OHOs which answered the questionnaire, 85 were included in the analyses because they actually calculated the number of workers with abnormal findings in each company and helped the employer fill out the notification form. The results revealed that there was no standardized definition of workers with abnormal findings in the PGHEx. Both reference intervals of items in the PGHEx and algorithm in detecting workers with abnormal findings in the PGHEx varied among the OHOs. When detecting the workers, 13 OHOs (15.3%) selected them taking into consideration medical background factors such as previous results of the PGHEx and current medical treatment. From the late 1980s to the early 1990s, many OHOs modified the definition of workers with abnormal findings, and have tended to reduce the upper limit of the reference interval for serum cholesterol. This is mainly due to amendment of the Industrial Safety and Health Law and a new recommendation for a reference interval/value proposed by the related scientific society. Although the prevalence of workers with abnormal findings in the PGHEx has continuously increased, it is not valid to compare the prevalence over the years because of modification in the definition of such workers. The prevalence of workers with abnormal findings in the PGHEx, which is one of the most important

  10. Stress-sensitive arterial hypertension, haemodynamic changes and brain metabolites in hypertensive ISIAH rats: MRI investigation.

    PubMed

    Seryapina, A A; Shevelev, O B; Moshkin, M P; Markel, A L; Akulov, A E

    2017-05-01

    What is the central question of this study? Stress-sensitive arterial hypertension is considered to be controlled by changes in central and peripheral sympathetic regulating mechanisms, which eventually result in haemodynamic alterations and blood pressure elevation. Therefore, study of the early stages of development of hypertension is of particular interest, because it helps in understanding the aetiology of the disease. What is the main finding and its importance? Non-invasive in vivo investigation in ISIAH rats demonstrated that establishment of sustainable stress-sensitive hypertension is accompanied by a decrease in prefrontal cortex activity and mobilization of hypothalamic processes, with considerable correlations between haemodynamic parameters and individual metabolite ratios. The study of early development of arterial hypertension in association with emotional stress is of great importance for better understanding of the aetiology and pathogenesis of the hypertensive disease. Magnetic resonance imaging (MRI) was applied to evaluate the changes in haemodynamics and brain metabolites in 1- and 3-month-old inherited stress-induced arterial hypertension (ISIAH) rats (10 male rats) with stress-sensitive arterial hypertension and in control normotensive Wistar Albino Glaxo (WAG) rats (eight male rats). In the 3-month-old ISIAH rats, the age-dependent increase in blood pressure was associated with increased blood flow through the renal arteries and decreased blood flow in the lower part of the abdominal aorta. The renal vascular resistance in the ISIAH rats decreased during ageing, although at both ages it remained higher than the renal vascular resistance in WAG rats. An integral metabolome portrait demonstrated that development of hypertension in the ISIAH rats was associated with an attenuation of the excitatory and energetic activity in the prefrontal cortex, whereas in the WAG rats the opposite age-dependent changes were observed. In contrast, in the

  11. Abnormal olanzapine toxicokinetic profiles--population pharmacokinetic analysis.

    PubMed

    Tylutki, Zofia; Jawień, Wojciech; Ciszowski, Krzysztof; Wilimowska, Jolanta; Anand, Jacek Sein

    2015-01-01

    Olanzapine is widely used in the treatment of schizophrenia and it is becoming more frequently responsible for overdoses. Standard pharmacokinetic models do not fit to the toxic concentration data. The aim of present study is to investigate the reasons for an abnormal olanzapine plasma concentration time curve in the range of toxic concentrations. Two hypotheses were verified: entering the enterohepatic cycle, and drug deposition and its desorption from activated charcoal used for gastrointestinal decontamination. One-hundred thirty-five plasma concentration data from 21 patients hospitalized for acute olanzapine poisoning were analyzed with the use of the population pharmacokinetic approach. A non-linear mixed-effects modeling approach with Monolix 4.3.1 was employed. A model assuming gallbladder emptying at irregular intervals was developed. Also, a model that describes desorption of olanzapine from the charcoal surface, in which the dose is divided into two absorbed fractions, was constructed. The analysis has found gastrointestinal decontamination and previous olanzapine treatment, as the significant covariates for toxicokinetic parameters of olanzapine. Our study provides interesting models for investigation of toxic concentration of olanzapine, which may also be used as the basis for further model development for other drugs as well. The investigated population was not large enough to reliably confirm any of the proposed models. It would be well worth continuing this study with more substantial data. Also, any additional information about olanzapine metabolite concentration could be vital.

  12. The pharmacokinetics of anthocyanins and their metabolites in humans.

    PubMed

    de Ferrars, R M; Czank, C; Zhang, Q; Botting, N P; Kroon, P A; Cassidy, A; Kay, C D

    2014-07-01

    Anthocyanins are phytochemicals with reported vasoactive bioactivity. However, given their instability at neutral pH, they are presumed to undergo significant degradation and subsequent biotransformation. The aim of the present study was to establish the pharmacokinetics of the metabolites of cyanidin-3-glucoside (C3G), a widely consumed dietary phytochemical with potential cardioprotective properties. A 500 mg oral bolus dose of 6,8,10,3',5'-(13)C5-C3G was fed to eight healthy male participants, followed by a 48 h collection (0, 0.5, 1, 2, 4, 6, 24, 48 h) of blood, urine and faecal samples. Samples were analysed by HPLC-ESI-MS/MS with elimination kinetics established using non-compartmental pharmacokinetic modelling. Seventeen (13)C-labelled compounds were identified in the serum, including (13)C5-C3G, its degradation products, protocatechuic acid (PCA) and phloroglucinaldehyde (PGA), 13 metabolites of PCA and 1 metabolite derived from PGA. The maximal concentrations of the phenolic metabolites (Cmax ) ranged from 10 to 2000 nM, between 2 and 30 h (tmax) post-consumption, with half-lives of elimination observed between 0.5 and 96 h. The major phenolic metabolites identified were hippuric acid and ferulic acid, which peaked in the serum at approximately 16 and 8 h respectively. Anthocyanins are metabolized to a structurally diverse range of metabolites that exhibit dynamic kinetic profiles. Understanding the elimination kinetics of these metabolites is key to the design of future studies examining their utility in dietary interventions or as therapeutics for disease risk reduction. © 2014 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of The British Pharmacological Society.

  13. Obstetrical outcomes in patients with early onset gestational diabetes.

    PubMed

    Gupta, Simi; Dolin, Cara; Jadhav, Ashwin; Chervenak, Judith; Timor-Tritsch, Ilan; Monteagudo, Ana

    2016-01-01

    The objective of this study was to characterize patients with early onset gestational diabetes and compare outcomes to patients diagnosed with standard gestational diabetes and pregestational diabetes. This is a retrospective cohort study of patients diagnosed with gestational or pregestational diabetes. All patients received a glucose challenge test at their first prenatal visit to diagnose early onset gestational diabetes and were recommended to have postpartum glucose tolerance tests to detect undiagnosed type 2 diabetes. Outcomes were compared between patients with early onset gestational diabetes and both standard gestational diabetes and pregestational diabetes with p < 0.05 was used for significance. Four hundred and twenty-four patients met the inclusion criteria. Nine percent of the patients with early onset gestational diabetes were found to have undiagnosed type 2 diabetes based on postpartum testing and 91% to have resolution in the postpartum period. No patient with early onset gestational diabetes and resolution in the postpartum period had abnormal screening for renal or ophthalmologic disease, but 5% had abnormal fetal echocardiograms. These patients were more likely to require pharmacotherapy for glycemic control than patients with standard gestational diabetes and less likely than patients with pregestational diabetes (55% versus 39% versus 81%). Most patients diagnosed with early onset gestational diabetes do not have undiagnosed type 2 diabetes but do have unique characteristics and obstetrical outcomes.

  14. Genotoxicity and fetal abnormality in streptozotocin-induced diabetic rats exposed to cigarette smoke prior to and during pregnancy.

    PubMed

    Damasceno, D C; Volpato, G T; Sinzato, Y K; Lima, P H O; Souza, M S S; Iessi, I L; Kiss, A C I; Takaku, M; Rudge, M V C; Calderon, I M P

    2011-10-01

    Maternal hyperglycemia during early pregnancy is associated with increased risk of abnormalities in the offspring. Malformation rates among the offspring of diabetic mothers are 2-5-fold higher than that of the normal population, and congenital malformations are the major cause of mortality and morbidity in the offspring of diabetic mothers. Metabolic changes, such as hyperglycemia and the metabolites obtained from cigarettes both increase the production of reactive oxygen species (ROS) in the embryo or fetus, causing DNA damage. To evaluate the maternal and fetal genotoxicity, and to assess the incidence of fetal anomaly in diabetic female rats exposed to cigarette smoke at different stages of pregnancy in rats. Diabetes was induced by streptozotocin administration and cigarette smoke exposure was produced by a mechanical smoking device that generated mainstream smoke that was delivered into a chamber. Female Wistar rats were randomly assigned to: non-diabetic (ND) and diabetic (D) groups exposed to filtered air; a diabetic group exposed to cigarette smoke prior to and during pregnancy (DS) and a diabetic group only exposed to cigarette smoke prior to pregnancy (DSPP). On pregnancy day 21, blood samples were obtained for DNA damage analysis and fetuses were collected for congenital anomaly assessment. Statistical significance was set at p<0.05 for all analysis. Exposure of diabetic rats to tobacco smoke prior to pregnancy increased fetal DNA damage, but failed to induce teratogenicity. Thus, these results reinforce the importance for women to avoid exposure to cigarette smoke long before they become pregnant. © J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York.

  15. Right ventricular pressure response to exercise in adults with isolated ventricular septal defect closed in early childhood.

    PubMed

    Moller, Thomas; Lindberg, Harald; Lund, May Brit; Holmstrom, Henrik; Dohlen, Gaute; Thaulow, Erik

    2018-06-01

    We previously demonstrated an abnormally high right ventricular systolic pressure response to exercise in 50% of adolescents operated on for isolated ventricular septal defect. The present study investigated the prevalence of abnormal right ventricular systolic pressure response in 20 adult (age 30-45 years) patients who underwent surgery for early ventricular septal defect closure and its association with impaired ventricular function, pulmonary function, or exercise capacity. The patients underwent cardiopulmonary tests, including exercise stress echocardiography. Five of 19 patients (26%) presented an abnormal right ventricular systolic pressure response to exercise ⩾ 52 mmHg. Right ventricular systolic function was mixed, with normal tricuspid annular plane systolic excursion and fractional area change, but abnormal tricuspid annular systolic motion velocity (median 6.7 cm/second) and isovolumetric acceleration (median 0.8 m/second2). Left ventricular systolic and diastolic function was normal at rest as measured by the peak systolic velocity of the lateral wall and isovolumic acceleration, early diastolic velocity, and ratio of early diastolic flow to tissue velocity, except for ejection fraction (median 53%). The myocardial performance index was abnormal for both the left and right ventricle. Peak oxygen uptake was normal (mean z score -0.4, 95% CI -2.8-0.3). There was no association between an abnormal right ventricular systolic pressure response during exercise and right or left ventricular function, pulmonary function, or exercise capacity. Abnormal right ventricular pressure response is not more frequent in adult patients compared with adolescents. This does not support the theory of progressive pulmonary vascular disease following closure of left-to-right shunts.

  16. LC-MS/MS profiling-based secondary metabolite screening of Myxococcus xanthus.

    PubMed

    Kim, Jiyoung; Choi, Jung Nam; Kim, Pil; Sok, Dai-Eun; Nam, Soo-Wan; Lee, Choong Hwan

    2009-01-01

    Myxobacteria, Gram-negative soil bacteria, are a well-known producer of bioactive secondary metabolites. Therefore, this study presents a methodological approach for the high-throughput screening of secondary metabolites from 4 wild-type Myxococcus xanthus strains. First, electrospray ionization mass spectrometry (ESI-MS) was performed using extracellular crude extracts. As a result, 22 metabolite peaks were detected, and the metabolite profiling was then conducted using the m/z value, retention time, and MS/MS fragmentation pattern analyses. Among the peaks, one unknown compound peak was identified as analogous to the myxalamid A, B, and C series. An analysis of the tandem mass spectrometric fragmentation patterns and HR-MS identified myxalamid K as a new compound derived from M. xanthus. In conclusion, LC-MS/MS-based chemical screening of diverse secondary metabolites would appear to be an effective approach for discovering unknown microbial secondary metabolites.

  17. Association of environmental chemicals & estrogen metabolites in children.

    PubMed

    Ihde, Erin Speiser; Loh, Ji Meng; Rosen, Lawrence

    2015-12-17

    The prevalence of pediatric hormonal disorders and hormonally-sensitive cancers are rising. Chemicals including bisphenol A (BPA), phthalates, parabens, 4-nonylphenol (4NP) and triclosan have been linked to disruption of endocrine pathways and altered hormonal status in both animal and human studies. Additionally, changes in estrogen metabolism have been associated with pediatric endocrine disorders and linked to estrogen-dependent cancers. The main objective of the study was to measure the presence of these environmental chemicals in prepubescent children and assess the relationship between chemical metabolites and estrogen metabolism. 50 subjects (25 male, 25 female) were recruited from the principal investigator's existing patient population at his pediatric primary care office. The first 5 boys and 5 girls in each age group (4 through 8 years old inclusive) who presented for annual examinations were included, as long as they were Tanner Stage I (prepubertal) on physical exam, without diagnosis of hormonally-related condition and/or cancer and able to give a urine sample. Urine samples were collected in glass containers for analysis of chemical and estrogen metabolites. Study kits and lab analysis were provided by Genova Diagnostics (Duluth, GA). Summary statistics for the concentrations of each chemical metabolite as well as estrogen metabolites were computed (minimum, maximum, median and inter-quartile range) for males only, for females only and for all subjects. Comparisons between groups (e.g. males v. females) were assessed using the nonparametric Wilcoxon test, since the data was skewed. The correlation between concentrations of chemical metabolites and estrogen metabolites in prepubescent children were examined by the Spearman's correlation coefficient (ρ). 100 % of subjects had detectable levels of at least five chemicals [corrected] in their urine, and 74 % had detectable levels of eight or more chemicals. 28 % of subjects had measurable levels of 4NP

  18. Identification of allocryptopine and protopine metabolites in rat liver S9 by high-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry.

    PubMed

    Huang, Ya-Jun; Xiao, Sa; Sun, Zhi-Liang; Zeng, Jian-Guo; Liu, Yi-Song; Liu, Zhao-Ying

    2016-07-15

    Allocryptopine (AL) and protopine (PR) have been extensively studied because of their anti-parasitic, anti-arrhythmic, anti-thrombotic, anti-inflammatory and anti-bacterial activity. However, limited information on the pharmacokinetics and metabolism of AL and PR has been reported. Therefore, the purpose of the present study was to investigate the in vitro metabolism of AL and PR in rat liver S9 using a rapid and accurate high-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry (HPLC/QqTOFMS) method. The incubation mixture was processed with 15% trichloroacetic acid (TCA). Multiple scans of AL and PR metabolites and accurate mass measurements were automatically performed simultaneously through data-dependent acquisition in only a 30-min analysis. The structural elucidations of these metabolites were performed by comparing their changes in accurate molecular masses and product ions with those of the precursor ion or metabolite. Eight and five metabolites of AL and PR were identified in rat liver S9, respectively. Among these metabolites, seven and two metabolites of AL and PR were identified in the first time, respectively. The demethylenation of the 2,3-methylenedioxy, the demethylation of the 9,10-vicinal methoxyl group and the 2,3-methylenedioxy group were the main metabolic pathways of AL and PR in liver S9, respectively. In addition, the cleavage of the methylenedioxy group of the drugs and subsequent methylation or O-demethylation were also the common metabolic pathways of drugs in liver S9. In addition, the hydroxylation reaction was also the metabolic pathway of AL. This was the first investigation of in vitro metabolism of AL and PR in rat liver S9. The detailed structural elucidations of AL and PR metabolites were performed using a rapid and accurate HPLC/QqTOFMS method. The metabolic pathways of AL and PR in rat were tentatively proposed based on these characterized metabolites and early reports. Copyright © 2016 John Wiley

  19. The use of secondary metabolite profiling in chemotaxonomy of filamentous fungi.

    PubMed

    Frisvad, Jens C; Andersen, Birgitte; Thrane, Ulf

    2008-02-01

    A secondary metabolite is a chemical compound produced by a limited number of fungal species in a genus, an order, or even phylum. A profile of secondary metabolites consists of all the different compounds a fungus can produce on a given substratum and includes toxins, antibiotics and other outward-directed compounds. Chemotaxonomy is traditionally restricted to comprise fatty acids, proteins, carbohydrates, or secondary metabolites, but has sometimes been defined so broadly that it also includes DNA sequences. It is not yet possible to use secondary metabolites in phylogeny, because of the inconsistent distribution throughout the fungal kingdom. However, this is the very quality that makes secondary metabolites so useful in classification and identification. Four groups of organisms are particularly good producers of secondary metabolites: plants, fungi, lichen fungi, and actinomycetes, whereas yeasts, protozoa, and animals are less efficient producers. Therefore, secondary metabolites have mostly been used in plant and fungal taxonomy, whereas chemotaxonomy has been neglected in bacteriology. Lichen chemotaxonomy has been based on few biosynthetic families (chemosyndromes), whereas filamentous fungi have been analysed for a wide array of terpenes, polyketides, non-ribosomal peptides, and combinations of these. Fungal chemotaxonomy based on secondary metabolites has been used successfully in large ascomycete genera such as Alternaria, Aspergillus, Fusarium, Hypoxylon, Penicillium, Stachybotrys, Xylaria and in few basidiomycete genera, but not in Zygomycota and Chytridiomycota.

  20. Metabolomics as a promising tool for early osteoarthritis diagnosis.

    PubMed

    de Sousa, E B; Dos Santos, G C; Duarte, M E L; Moura, V; Aguiar, D P

    2017-09-21

    Osteoarthritis (OA) is the main cause of disability worldwide, due to progressive articular cartilage loss and degeneration. According to recent research, OA is more than just a degenerative disease due to some metabolic components associated to its pathogenesis. However, no biomarker has been identified to detect this disease at early stages or to track its development. Metabolomics is an emerging field and has the potential to detect many metabolites in a single spectrum using high resolution nuclear magnetic resonance (NMR) techniques or mass spectrometry (MS). NMR is a reproducible and reliable non-destructive analytical method. On the other hand, MS has a lower detection limit and is more destructive, but it is more sensitive. NMR and MS are useful for biological fluids, such as urine, blood plasma, serum, or synovial fluid, and have been used for metabolic profiling in dogs, mice, sheep, and humans. Thus, many metabolites have been listed as possibly associated to OA pathogenesis. The goal of this review is to provide an overview of the studies in animal models and humans, regarding the use of metabolomics as a tool for early osteoarthritis diagnosis. The concept of osteoarthritis as a metabolic disease and the importance of detecting a biomarker for its early diagnosis are highlighted. Then, some studies in plasma and synovial tissues are shown, and finally the application of metabolomics in the evaluation of synovial fluid is described.

  1. Genome-wide Expression Analysis and Metabolite Profiling Elucidate Transcriptional Regulation of Flavonoid Biosynthesis and Modulation under Abiotic Stresses in Banana

    PubMed Central

    Pandey, Ashutosh; Alok, Anshu; Lakhwani, Deepika; Singh, Jagdeep; Asif, Mehar H.; Trivedi, Prabodh K.

    2016-01-01

    Flavonoid biosynthesis is largely regulated at the transcriptional level due to the modulated expression of genes related to the phenylpropanoid pathway in plants. Although accumulation of different flavonoids has been reported in banana, a staple fruit crop, no detailed information is available on regulation of the biosynthesis in this important plant. We carried out genome-wide analysis of banana (Musa acuminata, AAA genome) and identified 28 genes belonging to 9 gene families associated with flavonoid biosynthesis. Expression analysis suggested spatial and temporal regulation of the identified genes in different tissues of banana. Analysis revealed enhanced expression of genes related to flavonol and proanthocyanidin (PA) biosynthesis in peel and pulp at the early developmental stages of fruit. Genes involved in anthocyanin biosynthesis were highly expressed during banana fruit ripening. In general, higher accumulation of metabolites was observed in the peel as compared to pulp tissue. A correlation between expression of genes and metabolite content was observed at the early stage of fruit development. Furthermore, this study also suggests regulation of flavonoid biosynthesis, at transcriptional level, under light and dark exposures as well as methyl jasmonate (MJ) treatment in banana. PMID:27539368

  2. Genome-wide Expression Analysis and Metabolite Profiling Elucidate Transcriptional Regulation of Flavonoid Biosynthesis and Modulation under Abiotic Stresses in Banana.

    PubMed

    Pandey, Ashutosh; Alok, Anshu; Lakhwani, Deepika; Singh, Jagdeep; Asif, Mehar H; Trivedi, Prabodh K

    2016-08-19

    Flavonoid biosynthesis is largely regulated at the transcriptional level due to the modulated expression of genes related to the phenylpropanoid pathway in plants. Although accumulation of different flavonoids has been reported in banana, a staple fruit crop, no detailed information is available on regulation of the biosynthesis in this important plant. We carried out genome-wide analysis of banana (Musa acuminata, AAA genome) and identified 28 genes belonging to 9 gene families associated with flavonoid biosynthesis. Expression analysis suggested spatial and temporal regulation of the identified genes in different tissues of banana. Analysis revealed enhanced expression of genes related to flavonol and proanthocyanidin (PA) biosynthesis in peel and pulp at the early developmental stages of fruit. Genes involved in anthocyanin biosynthesis were highly expressed during banana fruit ripening. In general, higher accumulation of metabolites was observed in the peel as compared to pulp tissue. A correlation between expression of genes and metabolite content was observed at the early stage of fruit development. Furthermore, this study also suggests regulation of flavonoid biosynthesis, at transcriptional level, under light and dark exposures as well as methyl jasmonate (MJ) treatment in banana.

  3. Amelioration of Behavioral Abnormalities in BH4-deficient Mice by Dietary Supplementation of Tyrosine

    PubMed Central

    Kwak, Sang Su; Jeong, Mikyoung; Choi, Ji Hye; Kim, Daesoo; Min, Hyesun; Yoon, Yoosik; Hwang, Onyou; Meadows, Gary G.; Joe, Cheol O.

    2013-01-01

    This study reports an amelioration of abnormal motor behaviors in tetrahydrobiopterin (BH4)-deficient Spr −/− mice by the dietary supplementation of tyrosine. Since BH4 is an essential cofactor for the conversion of phenylalanine into tyrosine as well as the synthesis of dopamine neurotransmitter within the central nervous system, the levels of tyrosine and dopamine were severely reduced in brains of BH4-deficient Spr −/− mice. We found that Spr −/− mice display variable ‘open-field’ behaviors, impaired motor functions on the ‘rotating rod’, and dystonic ‘hind-limb clasping’. In this study, we report that these aberrant motor deficits displayed by Spr −/− mice were ameliorated by the therapeutic tyrosine diet for 10 days. This study also suggests that dopamine deficiency in brains of Spr −/− mice may not be the biological feature of aberrant motor behaviors associated with BH4 deficiency. Brain levels of dopamine (DA) and its metabolites in Spr −/− mice were not substantially increased by the dietary tyrosine therapy. However, we found that mTORC1 activity severely suppressed in brains of Spr −/− mice fed a normal diet was restored 10 days after feeding the mice the tyrosine diet. The present study proposes that brain mTORC1 signaling pathway is one of the potential targets in understanding abnormal motor behaviors associated with BH4-deficiency. PMID:23577163

  4. Analysis of Particulate and Dissolved Metabolite Pools at Station ALOHA

    NASA Astrophysics Data System (ADS)

    Boysen, A.; Carlson, L.; Hmelo, L.; Ingalls, A. E.

    2016-02-01

    Metabolomic studies focus on identifying and quantifying the small organic molecules that are the currency by which an organism lives and dies. Metabolite profiles of microorganisms have the potential to elucidate mechanisms of chemically mediated interactions that influence the success of microbial groups living in a complex environment. However, the chemical diversity of metabolites makes resolving a wide range of compounds analytically challenging. As such, metabolomics has lagged behind other genomic analyses. Here we conduct targeted analysis of over 200 primary and secondary metabolites present in the intracellular and extracellular metabolite pools at Station ALOHA using both reverse phase and hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry. We selected the metabolites in our method due to their known importance in primary metabolism, secondary metabolism, and interactions between marine microorganisms such as nutrient exchange, growth promotion, and cell signaling. Through these analyses we obtain a snapshot of microbial community status that, blended with other forms of genomic data, can further our understanding of microbial dynamics. We hypothesize that monitoring a large suite of important metabolites across environmental gradients and diurnal cycles can elucidate factors controlling the distribution and activity of important microbial groups.

  5. Identification of Unique Metabolites of the Designer Opioid Furanyl Fentanyl.

    PubMed

    Goggin, Melissa M; Nguyen, An; Janis, Gregory C

    2017-06-01

    The illicit drug market has seen an increase in designer opioids, including fentanyl and methadone analogs, and other structurally unrelated opioid agonists. The designer opioid, furanyl fentanyl, is one of many fentanyl analogs clandestinely synthesized for recreational use and contributing to the fentanyl and opioid crisis. A method has been developed and validated for the analysis of furanyl fentanyl and furanyl norfentanyl in urine specimens from pain management programs. Approximately 10% of samples from a set of 500 presumptive heroin-positive urine specimens were found to contain furanyl fentanyl, with an average concentration of 33.8 ng/mL, and ranging from 0.26 to 390 ng/mL. Little to no furanyl norfentanyl was observed; therefore, the furanyl fentanyl specimens were further analyzed by untargeted high-resolution mass spectrometry to identify other metabolites. Multiple metabolites, including a dihydrodiol metabolite, 4-anilino-N-phenethyl-piperidine (4-ANPP) and a sulfate metabolite were identified. The aim of the presented study was to identify the major metabolite(s) of furanyl fentanyl and estimate their concentrations for the purpose of toxicological monitoring. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Effects of resocialization on post-weaning social isolation-induced abnormal aggression and social deficits in rats.

    PubMed

    Tulogdi, Aron; Tóth, Máté; Barsvári, Beáta; Biró, László; Mikics, Eva; Haller, József

    2014-01-01

    As previously shown, rats isolated from weaning develop abnormal social and aggressive behavior characterized by biting attacks targeting vulnerable body parts of opponents, reduced attack signaling, and increased defensive behavior despite increased attack counts. Here we studied whether this form of violent aggression could be reversed by resocialization in adulthood. During the first weak of resocialization, isolation-reared rats showed multiple social deficits including increased defensiveness and decreased huddling during sleep. Deficits were markedly attenuated in the second and third weeks. Despite improved social functioning in groups, isolated rats readily showed abnormal features of aggression in a resident-intruder test performed after the 3-week-long resocialization. Thus, post-weaning social isolation-induced deficits in prosocial behavior were eliminated by resocialization during adulthood, but abnormal aggression was resilient to this treatment. Findings are compared to those obtained in humans who suffered early social maltreatment, and who also show social deficits and dysfunctional aggression in adulthood. © 2013 Wiley Periodicals, Inc.

  7. Chromatographic analysis of tryptophan metabolites

    PubMed Central

    Sadok, Ilona; Gamian, Andrzej

    2017-01-01

    The kynurenine pathway generates multiple tryptophan metabolites called collectively kynurenines and leads to formation of the enzyme cofactor nicotinamide adenine dinucleotide. The first step in this pathway is tryptophan degradation, initiated by the rate‐limiting enzymes indoleamine 2,3‐dioxygenase, or tryptophan 2,3‐dioxygenase, depending on the tissue. The balanced kynurenine metabolism, which has been a subject of multiple studies in last decades, plays an important role in several physiological and pathological conditions such as infections, autoimmunity, neurological disorders, cancer, cataracts, as well as pregnancy. Understanding the regulation of tryptophan depletion provide novel diagnostic and treatment opportunities, however it requires reliable methods for quantification of kynurenines in biological samples with complex composition (body fluids, tissues, or cells). Trace concentrations, interference of sample components, and instability of some tryptophan metabolites need to be addressed using analytical methods. The novel separation approaches and optimized extraction protocols help to overcome difficulties in analyzing kynurenines within the complex tissue material. Recent developments in chromatography coupled with mass spectrometry provide new opportunity for quantification of tryptophan and its degradation products in various biological samples. In this review, we present current accomplishments in the chromatographic methodologies proposed for detection of tryptophan metabolites and provide a guide for choosing the optimal approach. PMID:28590049

  8. Embryotoxic potential of N-methyl-pyrrolidone (NMP) and three of its metabolites using the rat whole embryo culture system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flick, Burkhard; Talsness, Chris E.; Jaeckh, Rudolf

    2009-06-01

    N-methyl-2-pyrrolidone (NMP), which undergoes extensive biotransformation, has been shown in vivo to cause developmental toxicity and, especially after oral treatment, malformations in rats and rabbits. Data are lacking as to whether the original compound or one of its main metabolites is responsible for the toxic effects observed. Therefore, the relative embryotoxicity of the parent compound and its metabolites was evaluated using rat whole embryo culture (WEC) and the balb/c 3T3 cytotoxicity test. The resulting data were evaluated using two strategies; namely, one based on using all endpoints determined in the WEC and the other including endpoints from both the WECmore » and the cytotoxicity test. On basis of the first analysis, the substance with the highest embryotoxic potential is NMP, followed by 5-hydroxy-N-methyl-pyrrolidone (5-HNMP), 2-hydroxy-N-methylsuccinimide (2-HMSI) and N-methylsuccinimide (MSI). Specific dysmorphogeneses induced by NMP and 5-HNMP were aberrations in the head region of the embryos, abnormal development of the second visceral arches and open neural pores. The second evaluation strategy used only two endpoints of the WEC, i.e. the no observed adverse effect concentration (NOAEC{sub WEC}) and the lowest concentration leading to dysmorphogenesis in 100% of the cultured embryos (IC{sub MaxWEC}). In addition to these WEC endpoints the IC{sub 503T3} from the cytotoxicity test (balb/c 3T3 fibroblasts) was included in the evaluation scheme. These three endpoints were applied to a prediction model developed during a validation study of the European Centre for the Validation of Alternative Methods (ECVAM) allowing the classification of the embryotoxic potential of each compound into three classes (non-, weakly- and strongly embryotoxic). Consistent results from both evaluation strategies were observed, whereby NMP and its metabolites revealed a direct embryotoxic potential. Hereby, only NMP and 5-HNMP induced specific embryotoxic effects and

  9. VITAL SIGNS AND FIRST OCCURRENCES IN NORMAL AND ABNORMAL NEWBORN ASIAN ELEPHANT ( ELEPHAS MAXIMUS) CALVES.

    PubMed

    Wiedner, Ellen; Kiso, Wendy K; Aria, Janice; Isaza, Ramiro; Lindsay, William; Jacobson, Gary; Jacobson, Kathy; Schmitt, Dennis

    2017-12-01

    Sixteen years of medical records documenting 19 births within a herd of Asian elephants ( Elephas maximus) at a private facility in the southeastern United States were reviewed. Of the 19 calves, 11 were normal at birth, requiring no additional veterinary care, and eight were abnormal, requiring veterinary care immediately or within the first week of birth. Descriptive statistics were used to evaluate morphometrics, vital signs, and behavioral milestones in newborn calves both normal and abnormal. Blood work and urinalysis results from all calves were compared to values for adult elephants. Medical management of abnormal calves is described. All calves had faster heart rates and respiratory rates than did adult elephants, but rectal temperatures were the same. Calves were precocious with regard to sitting and standing but could be very slow to nurse. The most-common medical conditions of newborn calves were umbilical abnormalities and problems associated with nursing. Two calves required cardiopulmonary resuscitation after birth but made full recoveries. Some conditions were not apparent at birth but were recognized a few hours or days later. Following veterinary intervention, six of the eight calves made full recoveries, suggesting that early identification and treatment of problems can greatly decrease mortality. This is the first report of multiple veterinary and behavioral parameters in normal and abnormal neonatal Asian elephants from a facility with a calf survival rate above 90%. This information may be helpful to other elephant-holding facilities in providing care to their newborn elephant calves.

  10. Prevalence of Abnormal Papanicolaou Test Results and Related Factors among Women Living in Zanjan, Iran.

    PubMed

    Maleki, Azam; Ahmadnia, Elahe; Avazeh, Azar; Mazloomzadeh, Saeideh; Molaei, Behnaz; Jalilvand, Ahmad

    2015-01-01

    Currently, a comprehensive program for screening and early detection of cervical cancer does not exist in Iran. This study aimed to determine the prevalence of abnormal Papanicolaou (Pap) smears and some related factors among women living in Zanjan, Iran. This cross-sectional study was conducted in 2012 in Zanjan on 4274 married women aged 20-65 years. The study participants were selected through two-stage cluster sampling. After obtaining written consent, demographic and fertility questionnaires were completed. Samples from cervix were obtained through a standard method using the Rover Cervex- Brush. Evaluation and interpretation of the samples were reported using the Bethesda 2001 method. Data were statistically analyzed using chi-square and logistic regression models. Most inflammatory changes in the samples were mild (37.4%). Abnormal atypical changes in the epithelial cells were found in 4.04%. The highest percentage of abnormal changes in the epithelial cells was atypical squamous cells of undetermined significance (ASCUS) (1.9%). Abnormal results of Pap smear was significantly and independently associated with age, papillomavirus infection, and lack of awareness about Pap smear tests. Given the high prevalence of inflammatory and precancerous changes in this study, compared to other studies in Iran and other Muslim countries, and the effect of demographic variables and individual factors on abnormal results, increasing the awareness of women and their families regarding the risk factors for cervical cancer, preventive measures such as screening, and timely treatment seem necessary.

  11. Extended Duration Nocturnal Hemodialysis and Changes in Plasma Metabolite Profiles.

    PubMed

    Kalim, Sahir; Wald, Ron; Yan, Andrew T; Goldstein, Marc B; Kiaii, Mercedeh; Xu, Dihua; Berg, Anders H; Clish, Clary; Thadhani, Ravi; Rhee, Eugene P; Perl, Jeffrey

    2018-03-07

    In-center, extended duration nocturnal hemodialysis has been associated with variable clinical benefits, but the effect of extended duration hemodialysis on many established uremic solutes and other components of the metabolome is unknown. We determined the magnitude of change in metabolite profiles for patients on extended duration nocturnal hemodialysis. In a 52-week prospective, observational study, we followed 33 patients receiving conventional thrice weekly hemodialysis who converted to nocturnal hemodialysis (7-8 hours per session, three times per week). A separate group of 20 patients who remained on conventional hemodialysis (3-4 hours per session, three times per week) served as a control group. For both groups, we applied liquid chromatography-mass spectrometry-based metabolite profiling on stored plasma samples collected from all participants at baseline and after 1 year. We examined longitudinal changes in 164 metabolites among those who remained on conventional hemodialysis and those who converted to nocturnal hemodialysis using Wilcoxon rank sum tests adjusted for multiple comparisons (false discovery rate <0.05). On average, the nocturnal group had 9.6 hours more dialysis per week than the conventional group. Among 164 metabolites, none changed significantly from baseline to study end in the conventional group. Twenty-nine metabolites changed in the nocturnal group, 21 of which increased from baseline to study end (including all branched-chain amino acids). Eight metabolites decreased after conversion to nocturnal dialysis, including l-carnitine and acetylcarnitine. By contrast, several established uremic retention solutes, including p -cresol sulfate, indoxyl sulfate, and trimethylamine N -oxide, did not change with extended dialysis. Across a wide array of metabolites examined, extended duration hemodialysis was associated with modest changes in the plasma metabolome, with most differences relating to metabolite increases, despite increased

  12. Risk factors associated with abnormal glucose tolerance in the early postpartum period among Japanese women with gestational diabetes.

    PubMed

    Kugishima, Yukari; Yasuhi, Ichiro; Yamashita, Hiroshi; Fukuda, Masashi; Kuzume, Akiko; Sugimi, So; Umezaki, Yasushi; Suga, Sachie; Kusuda, Nobuko

    2015-04-01

    To identify the risk factors associated with abnormal glucose tolerance (AGT) on the first postpartum oral glucose tolerance test (OGTT) among Japanese women with gestational diabetes (GDM). In a retrospective study, data were analyzed from women with GDM who underwent their first postpartum OGTT 6-8weeks post partum at a center in Omura, Japan, between January 1, 2007, and December 31, 2011. Women with diabetes or impaired glucose tolerance were deemed to have postpartum AGT. The association between postpartum AGT and various risk factors was analyzed. Among 169 women who underwent a postpartum OGTT, 58 (34.3%) had AGT. The significant risk factors associated with postpartum AGT in univariate analysis were pre-pregnancy body mass index (P=0.096), 1-hour plasma glucose (P=0.006), hemoglobin A1c (P<0.001), insulinogenic index (P=0.05), an insulinogenic index of less than 0.4 (P=0.006), and insulin therapy during pregnancy (P<0.001). Independent risk factors identified by multivariate logistic regression models were insulinogenic index (odds ratio [OR] 0.10, 95% confidence interval [CI] 0.01-0.74; P=0.002), an insulinogenic index of less than 0.4 (OR 5.70, 95% CI 1.69-21.66; P=0.005), and insulin therapy during pregnancy (OR 3.43, 95% CI 1.03-12.55; P=0.044). Among Japanese women with GDM, a lower insulinogenic index and use of insulin therapy during pregnancy are associated with early postpartum AGT. Copyright © 2014 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.

  13. Metabolite profiling of microfluidic cell culture conditions for droplet based screening.

    PubMed

    Bjork, Sara M; Sjostrom, Staffan L; Andersson-Svahn, Helene; Joensson, Haakan N

    2015-07-01

    We investigate the impact of droplet culture conditions on cell metabolic state by determining key metabolite concentrations in S. cerevisiae cultures in different microfluidic droplet culture formats. Control of culture conditions is critical for single cell/clone screening in droplets, such as directed evolution of yeast, as cell metabolic state directly affects production yields from cell factories. Here, we analyze glucose, pyruvate, ethanol, and glycerol, central metabolites in yeast glucose dissimilation to establish culture formats for screening of respiring as well as fermenting yeast. Metabolite profiling provides a more nuanced estimate of cell state compared to proliferation studies alone. We show that the choice of droplet incubation format impacts cell proliferation and metabolite production. The standard syringe incubation of droplets exhibited metabolite profiles similar to oxygen limited cultures, whereas the metabolite profiles of cells cultured in the alternative wide tube droplet incubation format resemble those from aerobic culture. Furthermore, we demonstrate retained droplet stability and size in the new better oxygenated droplet incubation format.

  14. Spatio-temporal distribution and natural variation of metabolites in citrus fruits.

    PubMed

    Wang, Shouchuang; Tu, Hong; Wan, Jian; Chen, Wei; Liu, Xianqing; Luo, Jie; Xu, Juan; Zhang, Hongyan

    2016-05-15

    To study the natural variation and spatio-temporal accumulation of citrus metabolites, liquid chromatography tandem mass spectrometry (LC-MS) based metabolome analysis was performed on four fruit tissues (flavedo, albedo, segment membrane and juice sacs) and different Citrus species (lemon, pummelo and grapefruit, sweet orange and mandarin). Using a non-targeted metabolomics approach, more than 2000 metabolite signals were detected, from which more than 54 metabolites, including amino acids, flavonoids and limonoids, were identified/annotated. Differential accumulation patterns of both primary metabolites and secondary metabolites in various tissues and species were revealed by our study. Further investigation indicated that flavedo accumulates more flavonoids while juice sacs contain more amino acids. Besides this, cluster analysis based on the levels of metabolites detected in 47 individual Citrus accessions clearly grouped them into four distinct clusters: pummelos and grapefruits, lemons, sweet oranges and mandarins, while the cluster of pummelos and grapefruits lay distinctly apart from the other three species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Abnormal Notochord Branching Is Associated with Foregut Malformations in the Adriamycin Treated Mouse Model

    PubMed Central

    Hajduk, Piotr; Sato, Hideaki; Puri, Prem; Murphy, Paula

    2011-01-01

    Oesophageal atresia (OA) and tracheooesophageal fistula (TOF) are relatively common human congenital malformations of the foregut where the oesophagus does not connect with the stomach and there is an abnormal connection between the stomach and the respiratory tract. They require immediate corrective surgery and have an impact on the future health of the individual. These abnormalities are mimicked by exposure of rat and mouse embryos in utero to the drug adriamycin. The causes of OA/TOF during human development are not known, however a number of mouse mutants where different signalling pathways are directly affected, show similar abnormalities, implicating multiple and complex signalling mechanisms. The similarities in developmental outcome seen in human infants and in the adriamycin treated mouse model underline the potential of this model to unravel the early embryological events and further our understanding of the processes disturbed, leading to such abnormalities. Here we report a systematic study of the foregut and adjacent tissues in embryos treated with adriamycin at E7 and E8 and analysed between E9 and E12, comparing morphology in 3D in 149 specimens. We describe a spectrum of 8 defects, the most common of which is ventral displacement and branching of the notochord (in 94% of embryos at E10) and a close spatial correspondence between the site of notochord branching and defects of the foregut. In addition gene expression analysis shows altered dorso-ventral foregut patterning in the vicinity of notochord branches. This study shows a number of features of the adriamycin mouse model not previously reported, implicates the notochord as a primary site of disturbance in such abnormalities and underlines the importance of the model to further address the mechanistic basis of foregut congenital abnormalities. PMID:22132119

  16. Abnormal notochord branching is associated with foregut malformations in the adriamycin treated mouse model.

    PubMed

    Hajduk, Piotr; Sato, Hideaki; Puri, Prem; Murphy, Paula

    2011-01-01

    Oesophageal atresia (OA) and tracheooesophageal fistula (TOF) are relatively common human congenital malformations of the foregut where the oesophagus does not connect with the stomach and there is an abnormal connection between the stomach and the respiratory tract. They require immediate corrective surgery and have an impact on the future health of the individual. These abnormalities are mimicked by exposure of rat and mouse embryos in utero to the drug adriamycin. The causes of OA/TOF during human development are not known, however a number of mouse mutants where different signalling pathways are directly affected, show similar abnormalities, implicating multiple and complex signalling mechanisms. The similarities in developmental outcome seen in human infants and in the adriamycin treated mouse model underline the potential of this model to unravel the early embryological events and further our understanding of the processes disturbed, leading to such abnormalities. Here we report a systematic study of the foregut and adjacent tissues in embryos treated with adriamycin at E7 and E8 and analysed between E9 and E12, comparing morphology in 3D in 149 specimens. We describe a spectrum of 8 defects, the most common of which is ventral displacement and branching of the notochord (in 94% of embryos at E10) and a close spatial correspondence between the site of notochord branching and defects of the foregut. In addition gene expression analysis shows altered dorso-ventral foregut patterning in the vicinity of notochord branches. This study shows a number of features of the adriamycin mouse model not previously reported, implicates the notochord as a primary site of disturbance in such abnormalities and underlines the importance of the model to further address the mechanistic basis of foregut congenital abnormalities.

  17. Effects of Heat Stress on Metabolite Accumulation and Composition, and Nutritional Properties of Durum Wheat Grain.

    PubMed

    de Leonardis, Anna Maria; Fragasso, Mariagiovanna; Beleggia, Romina; Ficco, Donatella Bianca Maria; de Vita, Pasquale; Mastrangelo, Anna Maria

    2015-12-19

    Durum wheat (Triticum turgidum (L.) subsp. turgidum (L.) convar. durum (Desf.)) is momentous for human nutrition, and environmental stresses can strongly limit the expression of yield potential and affect the qualitative characteristics of the grain. The aim of this study was to determine how heat stress (five days at 37 °C) applied five days after flowering affects the nutritional composition, antioxidant capacity and metabolic profile of the grain of two durum wheat genotypes: "Primadur", an elite cultivar with high yellow index, and "T1303", an anthocyanin-rich purple cultivar. Qualitative traits and metabolite evaluation (by gas chromatography linked to mass spectrometry) were carried out on immature (14 days after flowering) and mature seeds. The effects of heat stress were genotype-dependent. Although some metabolites (e.g., sucrose, glycerol) increased in response to heat stress in both genotypes, clear differences were observed. Following the heat stress, there was a general increase in most of the analyzed metabolites in "Primadur", with a general decrease in "T1303". Heat shock applied early during seed development produced changes that were observed in immature seeds and also long-term effects that changed the qualitative and quantitative parameters of the mature grain. Therefore, short heat-stress treatments can affect the nutritional value of grain of different genotypes of durum wheat in different ways.

  18. Effects of Heat Stress on Metabolite Accumulation and Composition, and Nutritional Properties of Durum Wheat Grain

    PubMed Central

    de Leonardis, Anna Maria; Fragasso, Mariagiovanna; Beleggia, Romina; Ficco, Donatella Bianca Maria; de Vita, Pasquale; Mastrangelo, Anna Maria

    2015-01-01

    Durum wheat (Triticum turgidum (L.) subsp. turgidum (L.) convar. durum (Desf.)) is momentous for human nutrition, and environmental stresses can strongly limit the expression of yield potential and affect the qualitative characteristics of the grain. The aim of this study was to determine how heat stress (five days at 37 °C) applied five days after flowering affects the nutritional composition, antioxidant capacity and metabolic profile of the grain of two durum wheat genotypes: “Primadur”, an elite cultivar with high yellow index, and “T1303”, an anthocyanin-rich purple cultivar. Qualitative traits and metabolite evaluation (by gas chromatography linked to mass spectrometry) were carried out on immature (14 days after flowering) and mature seeds. The effects of heat stress were genotype-dependent. Although some metabolites (e.g., sucrose, glycerol) increased in response to heat stress in both genotypes, clear differences were observed. Following the heat stress, there was a general increase in most of the analyzed metabolites in “Primadur”, with a general decrease in “T1303”. Heat shock applied early during seed development produced changes that were observed in immature seeds and also long-term effects that changed the qualitative and quantitative parameters of the mature grain. Therefore, short heat-stress treatments can affect the nutritional value of grain of different genotypes of durum wheat in different ways. PMID:26703576

  19. Pharmaceutical metabolites in the environment: analytical challenges and ecological risks.

    PubMed

    Celiz, Mary D; Tso, Jerry; Aga, Diana S

    2009-12-01

    The occurrence of human and veterinary pharmaceuticals in the environment has been a subject of concern for the past decade because many of these emerging contaminants have been shown to persist in soil and water. Although recent studies indicate that pharmaceutical contaminants can pose long-term ecological risks, many of the investigations regarding risk assessment have only considered the ecotoxicity of the parent drug, with very little attention given to the potential contributions that metabolites may have. The scarcity of available environmental data on the human metabolites excreted into the environment or the microbial metabolites formed during environmental biodegradation of pharmaceutical residues can be attributed to the difficulty in analyzing trace amounts of previously unknown compounds in complex sample matrices. However, with the advent of highly sensitive and powerful analytical instrumentations that have become available commercially, it is likely that an increased number of pharmaceutical metabolites will be identified and included in environmental risk assessment. The present study will present a critical review of available literature on pharmaceutical metabolites, primarily focusing on their analysis and toxicological significance. It is also intended to provide an overview on the recent advances in analytical tools and strategies to facilitate metabolite identification in environmental samples. This review aims to provide insight on what future directions might be taken to help scientists in this challenging task of enhancing the available data on the fate, behavior, and ecotoxicity of pharmaceutical metabolites in the environment.

  20. Secondary Metabolites from Three Florida Sponges with Antidepressant Activity

    PubMed Central

    Kochanowska, Anna J.; Rao, Karumanchi V.; Childress, Suzanne; El-Alfy, Abir; Matsumoto, Rae R.; Kelly, Michelle; Stewart, Gina S.; Sufka, Kenneth J.; Hamann, Mark T.

    2016-01-01

    Brominated indole alkaloids are a common class of metabolites reported from sponges of the order Verongida. Herein we report the isolation, structure determination, and activity of metabolites from three Florida sponges, namely, Verongula rigida (order Verongida, family Aplysinidae), Smenospongia aurea, and S. cerebriformis (order Dictyoceratida, family Thorectidae). All three species were investigated chemically, revealing similarities in secondary metabolites. Brominated compounds, as well as sesquiterpene quinones and hydroquinones, were identified from both V. rigida and S. aurea despite their apparent taxonomic differences at the ordinal level. Similar metabolites found in these distinct sponge species of two different genera provide evidence for a microbial origin of the metabolites. Isolated compounds were evaluated in the Porsolt forced swim test (FST) and the chick anxiety–depression continuum model. Among the isolated compounds, 5,6-dibromo-N,N-dimethyltryptamine (1) exhibited significant antidepressant-like action in the rodent FST model, while 5-bromo-N,N-dimethyltryptamine (2) caused significant reduction of locomotor activity indicative of a potential sedative action. The current study provides ample evidence that marine natural products with the diversity of brominated marine alkaloids will provide potential leads for antidepressant and anxiolytic drugs. PMID:18217716

  1. Secondary metabolites from three Florida sponges with antidepressant activity.

    PubMed

    Kochanowska, Anna J; Rao, Karumanchi V; Childress, Suzanne; El-Alfy, Abir; Matsumoto, Rae R; Kelly, Michelle; Stewart, Gina S; Sufka, Kenneth J; Hamann, Mark T

    2008-02-01

    Brominated indole alkaloids are a common class of metabolites reported from sponges of the order Verongida. Herein we report the isolation, structure determination, and activity of metabolites from three Florida sponges, namely, Verongula rigida (order Verongida, family Aplysinidae), Smenospongia aurea, and S. cerebriformis (order Dictyoceratida, family Thorectidae). All three species were investigated chemically, revealing similarities in secondary metabolites. Brominated compounds, as well as sesquiterpene quinones and hydroquinones, were identified from both V. rigida and S. aurea despite their apparent taxonomic differences at the ordinal level. Similar metabolites found in these distinct sponge species of two different genera provide evidence for a microbial origin of the metabolites. Isolated compounds were evaluated in the Porsolt forced swim test (FST) and the chick anxiety-depression continuum model. Among the isolated compounds, 5,6-dibromo- N,N-dimethyltryptamine ( 1) exhibited significant antidepressant-like action in the rodent FST model, while 5-bromo- N,N-dimethyltryptamine ( 2) caused significant reduction of locomotor activity indicative of a potential sedative action. The current study provides ample evidence that marine natural products with the diversity of brominated marine alkaloids will provide potential leads for antidepressant and anxiolytic drugs.

  2. Thermodynamics-based Metabolite Sensitivity Analysis in metabolic networks.

    PubMed

    Kiparissides, A; Hatzimanikatis, V

    2017-01-01

    The increasing availability of large metabolomics datasets enhances the need for computational methodologies that can organize the data in a way that can lead to the inference of meaningful relationships. Knowledge of the metabolic state of a cell and how it responds to various stimuli and extracellular conditions can offer significant insight in the regulatory functions and how to manipulate them. Constraint based methods, such as Flux Balance Analysis (FBA) and Thermodynamics-based flux analysis (TFA), are commonly used to estimate the flow of metabolites through genome-wide metabolic networks, making it possible to identify the ranges of flux values that are consistent with the studied physiological and thermodynamic conditions. However, unless key intracellular fluxes and metabolite concentrations are known, constraint-based models lead to underdetermined problem formulations. This lack of information propagates as uncertainty in the estimation of fluxes and basic reaction properties such as the determination of reaction directionalities. Therefore, knowledge of which metabolites, if measured, would contribute the most to reducing this uncertainty can significantly improve our ability to define the internal state of the cell. In the present work we combine constraint based modeling, Design of Experiments (DoE) and Global Sensitivity Analysis (GSA) into the Thermodynamics-based Metabolite Sensitivity Analysis (TMSA) method. TMSA ranks metabolites comprising a metabolic network based on their ability to constrain the gamut of possible solutions to a limited, thermodynamically consistent set of internal states. TMSA is modular and can be applied to a single reaction, a metabolic pathway or an entire metabolic network. This is, to our knowledge, the first attempt to use metabolic modeling in order to provide a significance ranking of metabolites to guide experimental measurements. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier

  3. Leach and mold resistance of essential oil metabolites

    Treesearch

    Carol A. Clausen; Vina W. Yang

    2011-01-01

    Purified primary metabolites from essential oils were previously shown to be bioactive inhibitors of mold fungi on unleached Southern pine sapwood, either alone or in synergy with a second metabolite. This study evaluated the leachability of these compounds in Southern pine that was either dip- or vacuum-treated. Following laboratory leach tests, specimens were...

  4. The nuclear receptor PPARγ individually responds to serotonin- and fatty acid-metabolites

    PubMed Central

    Waku, Tsuyoshi; Shiraki, Takuma; Oyama, Takuji; Maebara, Kanako; Nakamori, Rinna; Morikawa, Kosuke

    2010-01-01

    The nuclear receptor, peroxisome proliferator-activated receptor γ (PPARγ), recognizes various synthetic and endogenous ligands by the ligand-binding domain. Fatty-acid metabolites reportedly activate PPARγ through conformational changes of the Ω loop. Here, we report that serotonin metabolites act as endogenous agonists for PPARγ to regulate macrophage function and adipogenesis by directly binding to helix H12. A cyclooxygenase inhibitor, indomethacin, is a mimetic agonist of these metabolites. Crystallographic analyses revealed that an indole acetate functions as a common moiety for the recognition by the sub-pocket near helix H12. Intriguingly, a serotonin metabolite and a fatty-acid metabolite each bind to distinct sub-pockets, and the PPARγ antagonist, T0070907, blocked the fatty-acid agonism, but not that of the serotonin metabolites. Mutational analyses on receptor-mediated transcription and coactivator binding revealed that each metabolite individually uses coregulator and/or heterodimer interfaces in a ligand-type-specific manner. Furthermore, the inhibition of the serotonin metabolism reduced the expression of the endogenous PPARγ-target gene. Collectively, these results suggest a novel agonism, in which PPARγ functions as a multiple sensor in response to distinct metabolites. PMID:20717101

  5. Porritoxins, metabolites of Alternaria porri, as anti-tumor-promoting active compounds.

    PubMed

    Horiuchi, Masayuki; Tokuda, Harukuni; Ohnishi, Keiichiro; Yamashita, Masakazu; Nishino, Hoyoku; Maoka, Takashi

    2006-02-01

    To search for possible cancer chemopreventive agents from natural sources, we performed primary screening of metabolites of Alternaria porri by examining their possible inhibitory effects on Epstein-Barr virus early antigen (EBV-EA) activation induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) in Raji cells. The ethyl acetate extract of A. porri showed the inhibitory effect on EBV-EA activation. Three porritoxins (1-3) were obtained as inhibitory active compounds for EBV-EA from ethyl acetate extract. 6-(3',3'-Dimethylallyloxy)-4-methoxy-5-methylphthalide (2) showed the strongest activity among them. Inhibitory effect of porritoxin (1) and (2) was superior to that of beta-carotene, a well-known anti-tumor promoter. Furthermore, the structure-activity correlation of porritoxins and their related compounds were discussed.

  6. Multiplexed, quantitative, and targeted metabolite profiling by LC-MS/MRM.

    PubMed

    Wei, Ru; Li, Guodong; Seymour, Albert B

    2014-01-01

    Targeted metabolomics, which focuses on a subset of known metabolites representative of biologically relevant metabolic pathways, is a valuable tool to discover biomarkers and link disease phenotypes to underlying mechanisms or therapeutic modes of action. A key advantage of targeted metabolomics, compared to discovery metabolomics, is its immediate readiness for extracting biological information derived from known metabolites and quantitative measurements. However, simultaneously analyzing hundreds of endogenous metabolites presents a challenge due to their diverse chemical structures and properties. Here we report a method which combines different chromatographic separation conditions, optimal ionization polarities, and the most sensitive triple-quadrupole MS-based data acquisition mode, multiple reaction monitoring (MRM), to quantitatively profile 205 endogenous metabolites in 10 min.

  7. Novel rapid liquid chromatography tandem masspectrometry method for vemurafenib and metabolites in human plasma, including metabolite concentrations at steady state.

    PubMed

    Vikingsson, Svante; Strömqvist, Malin; Svedberg, Anna; Hansson, Johan; Höiom, Veronica; Gréen, Henrik

    2016-08-01

    A novel, rapid and sensitive liquid chromatography tandem-mass spectrometry method for quantification of vemurafenib in human plasma, that also for the first time allows for metabolite semi-quantification, was developed and validated to support clinical trials and therapeutic drug monitoring. Vemurafenib was analysed by precipitation with methanol followed by a 1.9 min isocratic liquid chromatography tandem masspectrometry analysis using an Acquity BEH C18 column with methanol and formic acid using isotope labelled internal standards. Analytes were detected in multireaction monitoring mode on a Xevo TQ. Semi-quantification of vemurafenib metabolites was performed using the same analytical system and sample preparation with gradient elution. The vemurafenib method was successfully validated in the range 0.5-100 μg/mL according to international guidelines. The metabolite method was partially validated owing to the lack of commercially available reference materials. For the first time concentration levels at steady state for melanoma patients treated with vemurafenib is presented. The low abundance of vemurafenib metabolites suggests that they lack clinical significance. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Changes in ultrasonography indicators of abnormally invasive placenta during pregnancy.

    PubMed

    Calì, Giuseppe; Timor-Trisch, Ilan E; Palacios-Jaraquemada, Josè; Monteaugudo, Ana; Forlani, Francesco; Minneci, Gabriella; Foti, Francesca; Buca, Danilo; Familiari, Alessandra; Scambia, Giovanni; Liberati, Marco; D'Antonio, Francesco

    2018-03-01

    To ascertain whether the prevalence of ultrasonography signs of abnormally invasive placenta (AIP) changes during pregnancy. The present retrospective analysis included women with a prenatal diagnosis of AIP that was confirmed at delivery between January 1, 2007, and April 30, 2017, at the Department of Obstetrics and Gynaecology, Arnas Civico Hospital, Palermo, Italy. Ultrasonography signs of AIP were recorded at four different intervals during pregnancy: early first (6-9 weeks), first (11-14 weeks), second (15-24 weeks), and third trimester (25-36 weeks). There were 105 pregnancies included. Low implantation of the gestational sac was present on all ultrasonography images from the early first trimester compared with on 23 of 83 (27.7%) images from 11-14 weeks of pregnancy. The identification of loss of the clear space, placental lacunae, bladder wall interruption, and uterovesical hypervascularity all increased (all P<0.001) from the early first trimester onwards; these could all be identified in a majority of patients at 11-14 weeks of pregnancy. The prevalence of ultrasonography signs suggestive of AIP varied throughout pregnancy. During the early first trimester, indicators of AIP were similar to those of a cesarean scar pregnancy; classical ultrasonography signs of AIP were already present at 11-14 weeks of pregnancy for most patients. © 2017 International Federation of Gynecology and Obstetrics.

  9. MRI and MRS alterations in the preclinical phase of murine prion disease: association with neuropathological and behavioural changes.

    PubMed

    Broom, Kerry A; Anthony, Daniel C; Lowe, John P; Griffin, Julian L; Scott, Helen; Blamire, Andrew M; Styles, Peter; Perry, V Hugh; Sibson, Nicola R

    2007-06-01

    Prion diseases are fatal chronic neurodegenerative diseases. Previous qualitative magnetic resonance imaging (MRI) and spectroscopy (MRS) studies report conflicting results in the symptomatic stages of the disease, but little work has been carried out during the earlier stages of the disease. Here we have used the murine ME7 model of prion disease to quantitatively investigate MRI and MRS changes during the period prior to the onset of overt clinical signs (20+ weeks) and have correlated these with pathological and behavioural abnormalities. Using in vivo MRI, at the later stages of the preclinical period (18 weeks) the diffusion of tissue water was significantly reduced, coinciding with significant microglial activation and behavioural hyperactivity. Using in vivo MRS, we found early (12 weeks) decreases in the ratio of N-acetyl aspartate to both choline (NAA/Cho) and creatine (NAA/Cr) in the thalamus and hippocampus, which were associated with early behavioural deficits. Ex vivo MRS of brain extracts confirmed and extended these findings, showing early (8-12 weeks) decreases in both the neuronal metabolites NAA and glutamate, and the metabolic metabolites lactate and glucose. Increases in the glial metabolite myo-inositol were observed at later stages when microglial and astrocyte activation is substantial. These changes in MRI and MRS signals, which precede overt clinical signs of disease, could provide insights into the pathogenesis of this disease and may enable early detection of pathology.

  10. Differences in metabolite profiles caused by pre-analytical blood processing procedures.

    PubMed

    Nishiumi, Shin; Suzuki, Makoto; Kobayashi, Takashi; Yoshida, Masaru

    2018-05-01

    Recently, the use of metabolomic analysis of human serum and plasma for biomarker discovery and disease diagnosis in clinical studies has been increasing. The feasibility of using a metabolite biomarker for disease diagnosis is strongly dependent on the metabolite's stability during pre-analytical blood processing procedures, such as serum or plasma sampling and sample storage prior to centrifugation. However, the influence of blood processing procedures on the stability of metabolites has not been fully characterized. In the present study, we compared the levels of metabolites in matched human serum and plasma samples using gas chromatography coupled with mass spectrometry and liquid chromatography coupled with mass spectrometry. In addition, we evaluated the changes in plasma metabolite levels induced by storage at room temperature or at a cold temperature prior to centrifugation. As a result, it was found that 76 metabolites exhibited significant differences between their serum and plasma levels. Furthermore, the pre-centrifugation storage conditions significantly affected the plasma levels of 45 metabolites. These results highlight the importance of blood processing procedures during metabolome analysis, which should be considered during biomarker discovery and the subsequent use of biomarkers for disease diagnosis. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Streptomyces metabolites in divergent microbial interactions.

    PubMed

    Takano, Hideaki; Nishiyama, Tatsuya; Amano, Sho-ichi; Beppu, Teruhiko; Kobayashi, Michihiko; Ueda, Kenji

    2016-03-01

    Streptomyces and related bacteria produce a wide variety of secondary metabolites. Of these, many compounds have industrial applications, but the question of why this group of microorganism produces such various kinds of biologically active substances has not yet been clearly answered. Here, we overview the results from our studies on the novel function and role of Streptomyces metabolites. The diverged action of negative and positive influences onto the physiology of various microorganisms infers the occurrence of complex microbial interactions due to the effect of small molecules produced by Streptomyces. The interactions may serve as a basis for the constitution of biological community.

  12. Pinna abnormalities and low-set ears

    MedlinePlus

    ... Pinna abnormalities; Genetic defect - pinna; Congenital defect - pinna Images Ear abnormalities Pinna of the newborn ear References Haddad J, Keesecker S. Congenital malformations. In: Kliegman RM, Stanton BF, ...

  13. Metabonomics identifies serum metabolite markers of colorectal cancer.

    PubMed

    Tan, Binbin; Qiu, Yunping; Zou, Xia; Chen, Tianlu; Xie, Guoxiang; Cheng, Yu; Dong, Taotao; Zhao, Linjing; Feng, Bo; Hu, Xiaofang; Xu, Lisa X; Zhao, Aihua; Zhang, Menghui; Cai, Guoxiang; Cai, Sanjun; Zhou, Zhanxiang; Zheng, Minhua; Zhang, Yan; Jia, Wei

    2013-06-07

    Recent studies suggest that biofluid-based metabonomics may identify metabolite markers promising for colorectal cancer (CRC) diagnosis. We report here a follow-up replication study, after a previous CRC metabonomics study, aiming to identify a distinct serum metabolic signature of CRC with diagnostic potential. Serum metabolites from newly diagnosed CRC patients (N = 101) and healthy subjects (N = 102) were profiled using gas chromatography time-of-flight mass spectrometry (GC-TOFMS) and ultraperformance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-QTOFMS). Differential metabolites were identified with statistical tests of orthogonal partial least-squares-discriminant analysis (VIP > 1) and the Mann-Whitney U test (p < 0.05). With a total of 249 annotated serum metabolites, we were able to differentiate CRC patients from the healthy controls using an orthogonal partial least-squares-discriminant analysis (OPLS-DA) in a learning sample set of 62 CRC patients and 62 matched healthy controls. This established model was able to correctly assign the rest of the samples to the CRC or control groups in a validation set of 39 CRC patients and 40 healthy controls. Consistent with our findings from the previous study, we observed a distinct metabolic signature in CRC patients including tricarboxylic acid (TCA) cycle, urea cycle, glutamine, fatty acids, and gut flora metabolism. Our results demonstrated that a panel of serum metabolite markers is of great potential as a noninvasive diagnostic method for the detection of CRC.

  14. MSD-MAP: A Network-Based Systems Biology Platform for Predicting Disease-Metabolite Links.

    PubMed

    Wathieu, Henri; Issa, Naiem T; Mohandoss, Manisha; Byers, Stephen W; Dakshanamurthy, Sivanesan

    2017-01-01

    Cancer-associated metabolites result from cell-wide mechanisms of dysregulation. The field of metabolomics has sought to identify these aberrant metabolites as disease biomarkers, clues to understanding disease mechanisms, or even as therapeutic agents. This study was undertaken to reliably predict metabolites associated with colorectal, esophageal, and prostate cancers. Metabolite and disease biological action networks were compared in a computational platform called MSD-MAP (Multi Scale Disease-Metabolite Association Platform). Using differential gene expression analysis with patient-based RNAseq data from The Cancer Genome Atlas, genes up- or down-regulated in cancer compared to normal tissue were identified. Relational databases were used to map biological entities including pathways, functions, and interacting proteins, to those differential disease genes. Similar relational maps were built for metabolites, stemming from known and in silico predicted metabolite-protein associations. The hypergeometric test was used to find statistically significant relationships between disease and metabolite biological signatures at each tier, and metabolites were assessed for multi-scale association with each cancer. Metabolite networks were also directly associated with various other diseases using a disease functional perturbation database. Our platform recapitulated metabolite-disease links that have been empirically verified in the scientific literature, with network-based mapping of jointly-associated biological activity also matching known disease mechanisms. This was true for colorectal, esophageal, and prostate cancers, using metabolite action networks stemming from both predicted and known functional protein associations. By employing systems biology concepts, MSD-MAP reliably predicted known cancermetabolite links, and may serve as a predictive tool to streamline conventional metabolomic profiling methodologies. Copyright© Bentham Science Publishers; For any

  15. The Significance of Lichens and Their Metabolites

    NASA Astrophysics Data System (ADS)

    Huneck, S.

    Lichens, symbiontic organisms of fungi and algae, synthesize numerous metabolites, the "lichen substances," which comprise aliphatic, cycloaliphatic, aromatic, and terpenic compounds. Lichens and their metabolites have a manifold biological activity: antiviral, antibiotic, antitumor, allergenic, plant growth inhibitory, antiherbivore, and enzyme inhibitory. Usnic acid, a very active lichen substance is used in pharmaceutical preparations. Large amounts of Pseudevernia furfuracea and Evernia prunastri are processed in the perfume industry, and some lichens are sensitive reagents for the evaluation of air pollution.

  16. Technology platform development for targeted plasma metabolites in human heart failure.

    PubMed

    Chan, Cy X'avia; Khan, Anjum A; Choi, Jh Howard; Ng, Cm Dominic; Cadeiras, Martin; Deng, Mario; Ping, Peipei

    2013-01-01

    Heart failure is a multifactorial disease associated with staggeringly high morbidity and motility. Recently, alterations of multiple metabolites have been implicated in heart failure; however, the lack of an effective technology platform to assess these metabolites has limited our understanding on how they contribute to this disease phenotype. We have successfully developed a new workflow combining specific sample preparation with tandem mass spectrometry that enables us to extract most of the targeted metabolites. 19 metabolites were chosen ascribing to their biological relevance to heart failure, including extracellular matrix remodeling, inflammation, insulin resistance, renal dysfunction, and cardioprotection against ischemic injury. In this report, we systematically engineered, optimized and refined a protocol applicable to human plasma samples; this study contributes to the methodology development with respect to deproteinization, incubation, reconstitution, and detection with mass spectrometry. The deproteinization step was optimized with 20% methanol/ethanol at a plasma:solvent ratio of 1:3. Subsequently, an incubation step was implemented which remarkably enhanced the metabolite signals and the number of metabolite peaks detected by mass spectrometry in both positive and negative modes. With respect to the step of reconstitution, 0.1% formic acid was designated as the reconstitution solvent vs. 6.5 mM ammonium bicarbonate, based on the comparable number of metabolite peaks detected in both solvents, and yet the signal detected in the former was higher. By adapting this finalized protocol, we were able to retrieve 13 out of 19 targeted metabolites from human plasma. We have successfully devised a simple albeit effective workflow for the targeted plasma metabolites relevant to human heart failure. This will be employed in tandem with high throughput liquid chromatography mass spectrometry platform to validate and characterize these potential metabolic

  17. Extending metabolome coverage for untargeted metabolite profiling of adherent cultured hepatic cells.

    PubMed

    García-Cañaveras, Juan Carlos; López, Silvia; Castell, José Vicente; Donato, M Teresa; Lahoz, Agustín

    2016-02-01

    MS-based metabolite profiling of adherent mammalian cells comprises several challenging steps such as metabolism quenching, cell detachment, cell disruption, metabolome extraction, and metabolite measurement. In LC-MS, the final metabolome coverage is strongly determined by the separation technique and the MS conditions used. Human liver-derived cell line HepG2 was chosen as adherent mammalian cell model to evaluate the performance of several commonly used procedures in both sample processing and LC-MS analysis. In a first phase, metabolite extraction and sample analysis were optimized in a combined manner. To this end, the extraction abilities of five different solvents (or combinations) were assessed by comparing the number and the levels of the metabolites comprised in each extract. Three different chromatographic methods were selected for metabolites separation. A HILIC-based method which was set to specifically separate polar metabolites and two RP-based methods focused on lipidome and wide-ranging metabolite detection, respectively. With regard to metabolite measurement, a Q-ToF instrument operating in both ESI (+) and ESI (-) was used for unbiased extract analysis. Once metabolite extraction and analysis conditions were set up, the influence of cell harvesting on metabolome coverage was also evaluated. Therefore, different protocols for cell detachment (trypsinization or scraping) and metabolism quenching were compared. This study confirmed the inconvenience of trypsinization as a harvesting technique, and the importance of using complementary extraction solvents to extend metabolome coverage, minimizing interferences and maximizing detection, thanks to the use of dedicated analytical conditions through the combination of HILIC and RP separations. The proposed workflow allowed the detection of over 300 identified metabolites from highly polar compounds to a wide range of lipids.

  18. Microbial secondary metabolites in homes in association with moisture damage and asthma.

    PubMed

    Kirjavainen, P V; Täubel, M; Karvonen, A M; Sulyok, M; Tiittanen, P; Krska, R; Hyvärinen, A; Pekkanen, J

    2016-06-01

    We aimed to characterize the presence of microbial secondary metabolites in homes and their association with moisture damage, mold, and asthma development. Living room floor dust was analyzed by LC-MS/MS for 333 secondary metabolites from 93 homes of 1-year-old children. Moisture damage was present in 15 living rooms. At 6 years, 8 children had active and 15 lifetime doctor-diagnosed asthma. The median number of different metabolites per house was 17 (range 8-29) and median sum load 65 (4-865) ng/m(2) . Overall 42 different metabolites were detected. The number of metabolites present tended to be higher in homes with mold odor or moisture damage. The higher sum loads and number of metabolites with loads over 10 ng/m(2) were associated with lower prevalence of active asthma at 6 years (aOR 0.06 (95% CI <0.001-0.96) and 0.05 (<0.001-0.56), respectively). None of the individual metabolites, which presence tended (P < 0.2) to be increased by moisture damage or mold, were associated with increased risk of asthma. Microbial secondary metabolites are ubiquitously present in home floor dust. Moisture damage and mold tend to increase their numbers and amount. There was no evidence indicating that the secondary metabolites determined would explain the association between moisture damage, mold, and the development of asthma. © 2015 The Authors. Indoor Air published by John Wiley & Sons Ltd.

  19. Epileptiform abnormalities predict delayed cerebral ischemia in subarachnoid hemorrhage.

    PubMed

    Kim, J A; Rosenthal, E S; Biswal, S; Zafar, S; Shenoy, A V; O'Connor, K L; Bechek, S C; Valdery Moura, J; Shafi, M M; Patel, A B; Cash, S S; Westover, M B

    2017-06-01

    To identify whether abnormal neural activity, in the form of epileptiform discharges and rhythmic or periodic activity, which we term here ictal-interictal continuum abnormalities (IICAs), are associated with delayed cerebral ischemia (DCI). Retrospective analysis of continuous electroencephalography (cEEG) reports and medical records from 124 patients with moderate to severe grade subarachnoid hemorrhage (SAH). We identified daily occurrence of seizures and IICAs. Using survival analysis methods, we estimated the cumulative probability of IICA onset time for patients with and without delayed cerebral ischemia (DCI). Our data suggest the presence of IICAs indeed increases the risk of developing DCI, especially when they begin several days after the onset of SAH. We found that all IICA types except generalized rhythmic delta activity occur more commonly in patients who develop DCI. In particular, IICAs that begin later in hospitalization correlate with increased risk of DCI. IICAs represent a new marker for identifying early patients at increased risk for DCI. Moreover, IICAs might contribute mechanistically to DCI and therefore represent a new potential target for intervention to prevent secondary cerebral injury following SAH. These findings imply that IICAs may be a novel marker for predicting those at higher risk for DCI development. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  20. Filamentous fungal biofilm for production of human drug metabolites.

    PubMed

    Amadio, Jessica; Casey, Eoin; Murphy, Cormac D

    2013-07-01

    In drug development, access to drug metabolites is essential for assessment of toxicity and pharmacokinetic studies. Metabolites are usually acquired via chemical synthesis, although biological production is potentially more efficient with fewer waste management issues. A significant problem with the biological approach is the effective half-life of the biocatalyst, which can be resolved by immobilisation. The fungus Cunninghamella elegans is well established as a model of mammalian metabolism, although it has not yet been used to produce metabolites on a large scale. Here, we describe immobilisation of C. elegans as a biofilm, which can transform drugs to important human metabolites. The biofilm was cultivated on hydrophilic microtiter plates and in shake flasks containing a steel spring in contact with the glass. Fluorescence and confocal scanning laser microscopy revealed that the biofilm was composed of a dense network of hyphae, and biochemical analysis demonstrated that the matrix was predominantly polysaccharide. The medium composition was crucial for both biofilm formation and biotransformation of flurbiprofen. In shake flasks, the biofilm transformed 86% of the flurbiprofen added to hydroxylated metabolites within 24 h, which was slightly more than planktonic cultures (76%). The biofilm had a longer effective lifetime than the planktonic cells, which underwent lysis after 2×72 h cycles, and diluting the Sabouraud dextrose broth enabled the thickness of the biofilm to be controlled while retaining transformation efficiency. Thus, C. elegans biofilm has the potential to be applied as a robust biocatalyst for the production of human drug metabolites required for drug development.