Sample records for early microbial colonization

  1. Metaproteomics Reveals Functional Shifts in Microbial and Human Proteins During Infant Gut Colonization Case

    DOE PAGES

    Young, Jacque C.; Pan, Chongle; Adams, Rachel M.; ...

    2015-01-01

    The microbial colonization of the human gastrointestinal tract plays an important role in establishing health and homeostasis. However, the time-dependent functional signatures of microbial and human proteins during early colonization of the gut have yet to be determined. Thus, we employed shotgun proteomics to simultaneously monitor microbial and human proteins in fecal samples from a preterm infant during the first month of life. Microbial community complexity and functions increased over time, with compositional changes that were consistent with previous metagenomic and rRNA gene data indicating three distinct colonization phases. Overall microbial community functions were established relatively early in development andmore » remained stable. Human proteins detected included those responsible for epithelial barrier function and antimicrobial activity. Some neutrophil-derived proteins increased in abundance early in the study period, suggesting activation of the innate immune system. Moreover, abundances of cytoskeletal and mucin proteins increased later in the time course, suggestive of subsequent adjustment to the increased microbial load. Our study provides the first snapshot of coordinated human and microbial protein expression in the infant gut during early development.« less

  2. The composition of the gut microbiota throughout life, with an emphasis on early life

    PubMed Central

    Rodríguez, Juan Miguel; Murphy, Kiera; Stanton, Catherine; Ross, R. Paul; Kober, Olivia I.; Juge, Nathalie; Avershina, Ekaterina; Rudi, Knut; Narbad, Arjan; Jenmalm, Maria C.; Marchesi, Julian R.; Collado, Maria Carmen

    2015-01-01

    The intestinal microbiota has become a relevant aspect of human health. Microbial colonization runs in parallel with immune system maturation and plays a role in intestinal physiology and regulation. Increasing evidence on early microbial contact suggest that human intestinal microbiota is seeded before birth. Maternal microbiota forms the first microbial inoculum, and from birth, the microbial diversity increases and converges toward an adult-like microbiota by the end of the first 3–5 years of life. Perinatal factors such as mode of delivery, diet, genetics, and intestinal mucin glycosylation all contribute to influence microbial colonization. Once established, the composition of the gut microbiota is relatively stable throughout adult life, but can be altered as a result of bacterial infections, antibiotic treatment, lifestyle, surgical, and a long-term change in diet. Shifts in this complex microbial system have been reported to increase the risk of disease. Therefore, an adequate establishment of microbiota and its maintenance throughout life would reduce the risk of disease in early and late life. This review discusses recent studies on the early colonization and factors influencing this process which impact on health. PMID:25651996

  3. Characteristics of microbial community involved in early biofilms formation under the influence of wastewater treatment plant effluent.

    PubMed

    Peng, Yuke; Li, Jie; Lu, Junling; Xiao, Lin; Yang, Liuyan

    2018-04-01

    Effluents from wastewater treatment plants (WWTPs) containing microorganisms and residual nutrients can influence the biofilm formation. Although the process and mechanism of bacterial biofilm formation have been well characterized, little is known about the characteristics and interaction of bacteria, archaea and eukaryotes in the early colonization, especially under the influence of WWTP effluent. The aim of this study was to characterize the important bacterial, archaeal and eukaryotic species in the early stage of biofilm formation downstream of the WWTP outlet. Water and biofilm samples were collected 24 and 48hr after the deposition of bio-cords in the stream. Illumina Miseq sequencing of the 16S and 18S rDNA showed that, among the three domains, the bacterial biofilm community had the largest alpha and beta diversity. The early bacterial colonizers appeared to be "biofilm-specific", with only a few dominant operational taxonomic units (OTUs) shared between the biofilm and the ambient water environment. Alpha-proteobacteria and Ciliophora tended to dominate the bacterial and eukaryotic communities, respectively, of the early biofilm already at 24hr, whereas archaea played only a minor role during the early stage of colonization. The network analysis showed that the three domains of microbial community connected highly during the early colonization and it might be a characteristic of the microbial communities in the biofilm formation process where co-occurrence relationships could drive coexistence and diversity maintenance within the microbial communities. Copyright © 2017. Published by Elsevier B.V.

  4. OC28 - Effect of mode of delivery on early oral colonization and childhood dental caries: a systematic review.

    PubMed

    Antão, Celeste; Teixeira, Cristina; Gomes, Maria José

    2016-05-09

    Theme: Multidisciplinary team working. Oral colonization starts at birth by vertical transmission. To determine whether mode of delivery influences the oral colonization of infants and contributes to the risk of childhood dental caries. A systematic review was conducted in the electronic database Web of Science for articles published from January 1995 to December 2015 by using a set of keywords. From 2,644 citations identified through electronic search, ten studies met the inclusion criteria. According to the studies mode of delivery influences oral microbial density, oral microbial profile and the timing of oral colonization by cariogenic microbiota. However, there are no consistent results concerning either the prevalence of children harboring cariogenic microbiota or the prevalence of early childhood caries by mode of delivery. Mode of delivery influences early oral colonization. However, it seems that other determinants rather than mode of delivery could be major contributors to the development of early childhood caries.

  5. Genome-resolved metaproteomic characterization of preterm infant gut microbiota development reveals species-specific metabolic shifts and variabilities during early life

    DOE PAGES

    Xiong, Weili; Brown, Christopher T.; Morowitz, Michael J.; ...

    2017-07-10

    Establishment of the human gut microbiota begins at birth. This early-life microbiota development can impact host physiology during infancy and even across an entire life span. But, the functional stability and population structure of the gut microbiota during initial colonization remain poorly understood. Metaproteomics is an emerging technology for the large-scale characterization of metabolic functions in complex microbial communities (gut microbiota). We applied a metagenome-informed metaproteomic approach to study the temporal and inter-individual differences of metabolic functions during microbial colonization of preterm human infants’ gut. By analyzing 30 individual fecal samples, we identified up to 12,568 protein groups for eachmore » of four infants, including both human and microbial proteins. With genome-resolved matched metagenomics, proteins were confidently identified at the species/strain level. The maximum percentage of the proteome detected for the abundant organisms was ~45%. A time-dependent increase in the relative abundance of microbial versus human proteins suggested increasing microbial colonization during the first few weeks of early life. We observed remarkable variations and temporal shifts in the relative protein abundances of each organism in these preterm gut communities. Given the dissimilarity of the communities, only 81 microbial EggNOG orthologous groups and 57 human proteins were observed across all samples. These conserved microbial proteins were involved in carbohydrate, energy, amino acid and nucleotide metabolism while conserved human proteins were related to immune response and mucosal maturation. We also identified seven proteome clusters for the communities and showed infant gut proteome profiles were unstable across time and not individual-specific. By applying a gut-specific metabolic module (GMM) analysis, we found that gut communities varied primarily in the contribution of nutrient (carbohydrates, lipids, and amino acids) utilization and short-chain fatty acid production. Overall, this study reports species-specific proteome profiles and metabolic functions of human gut microbiota during early colonization. In particular, our work contributes to reveal microbiota-associated shifts and variations in the metabolism of three major nutrient sources and short-chain fatty acid during colonization of preterm infant gut.« less

  6. Genome-resolved metaproteomic characterization of preterm infant gut microbiota development reveals species-specific metabolic shifts and variabilities during early life

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Weili; Brown, Christopher T.; Morowitz, Michael J.

    Establishment of the human gut microbiota begins at birth. This early-life microbiota development can impact host physiology during infancy and even across an entire life span. But, the functional stability and population structure of the gut microbiota during initial colonization remain poorly understood. Metaproteomics is an emerging technology for the large-scale characterization of metabolic functions in complex microbial communities (gut microbiota). We applied a metagenome-informed metaproteomic approach to study the temporal and inter-individual differences of metabolic functions during microbial colonization of preterm human infants’ gut. By analyzing 30 individual fecal samples, we identified up to 12,568 protein groups for eachmore » of four infants, including both human and microbial proteins. With genome-resolved matched metagenomics, proteins were confidently identified at the species/strain level. The maximum percentage of the proteome detected for the abundant organisms was ~45%. A time-dependent increase in the relative abundance of microbial versus human proteins suggested increasing microbial colonization during the first few weeks of early life. We observed remarkable variations and temporal shifts in the relative protein abundances of each organism in these preterm gut communities. Given the dissimilarity of the communities, only 81 microbial EggNOG orthologous groups and 57 human proteins were observed across all samples. These conserved microbial proteins were involved in carbohydrate, energy, amino acid and nucleotide metabolism while conserved human proteins were related to immune response and mucosal maturation. We also identified seven proteome clusters for the communities and showed infant gut proteome profiles were unstable across time and not individual-specific. By applying a gut-specific metabolic module (GMM) analysis, we found that gut communities varied primarily in the contribution of nutrient (carbohydrates, lipids, and amino acids) utilization and short-chain fatty acid production. Overall, this study reports species-specific proteome profiles and metabolic functions of human gut microbiota during early colonization. In particular, our work contributes to reveal microbiota-associated shifts and variations in the metabolism of three major nutrient sources and short-chain fatty acid during colonization of preterm infant gut.« less

  7. Genome-resolved metaproteomic characterization of preterm infant gut microbiota development reveals species-specific metabolic shifts and variabilities during early life.

    PubMed

    Xiong, Weili; Brown, Christopher T; Morowitz, Michael J; Banfield, Jillian F; Hettich, Robert L

    2017-07-10

    Establishment of the human gut microbiota begins at birth. This early-life microbiota development can impact host physiology during infancy and even across an entire life span. However, the functional stability and population structure of the gut microbiota during initial colonization remain poorly understood. Metaproteomics is an emerging technology for the large-scale characterization of metabolic functions in complex microbial communities (gut microbiota). We applied a metagenome-informed metaproteomic approach to study the temporal and inter-individual differences of metabolic functions during microbial colonization of preterm human infants' gut. By analyzing 30 individual fecal samples, we identified up to 12,568 protein groups for each of four infants, including both human and microbial proteins. With genome-resolved matched metagenomics, proteins were confidently identified at the species/strain level. The maximum percentage of the proteome detected for the abundant organisms was ~45%. A time-dependent increase in the relative abundance of microbial versus human proteins suggested increasing microbial colonization during the first few weeks of early life. We observed remarkable variations and temporal shifts in the relative protein abundances of each organism in these preterm gut communities. Given the dissimilarity of the communities, only 81 microbial EggNOG orthologous groups and 57 human proteins were observed across all samples. These conserved microbial proteins were involved in carbohydrate, energy, amino acid and nucleotide metabolism while conserved human proteins were related to immune response and mucosal maturation. We identified seven proteome clusters for the communities and showed infant gut proteome profiles were unstable across time and not individual-specific. Applying a gut-specific metabolic module (GMM) analysis, we found that gut communities varied primarily in the contribution of nutrient (carbohydrates, lipids, and amino acids) utilization and short-chain fatty acid production. Overall, this study reports species-specific proteome profiles and metabolic functions of human gut microbiota during early colonization. In particular, our work contributes to reveal microbiota-associated shifts and variations in the metabolism of three major nutrient sources and short-chain fatty acid during colonization of preterm infant gut.

  8. Acquisition and maturation of oral microbiome throughout childhood: An update

    PubMed Central

    Sampaio-Maia, Benedita; Monteiro-Silva, Filipa

    2014-01-01

    Traditional microbiology concepts are being renewed since the development of new microbiological technologies, such as, sequencing and large-scale genome analysis. Since the entry into the new millennium, a lot of new information has emerged regarding the oral microbiome. This revision presents an overview of this renewed knowledge on oral microbial community acquisition in the newborn and on the evolution of this microbiome to adulthood. Throughout childhood, the oral microbial load increases, but the microbial diversity decreases. The initial colonizers are related to the type of delivery, personal relationships, and living environment. These first colonizers seem to condition the subsequent colonization, which will lead to more complex and stable ecosystems in adulthood. These early oral microbial communities, therefore, play a major role in the development of the adult oral microbiota and may represent a source of both pathogenic and protective microorganisms in a very early stage of human life. The implications of this knowledge on the daily clinical practice of odontopediatrics are highlighted. PMID:25097637

  9. Manipulating rumen microbiome and fermentation through interventions during early life: a review

    PubMed Central

    Yáñez-Ruiz, David R.; Abecia, Leticia; Newbold, Charles J.

    2015-01-01

    The nutritional manipulations of the rumen microbiome to enhance productivity and health are rather limited by the resilience of the ecosystem once established in the mature rumen. Based on recent studies, it has been suggested that the microbial colonization that occurs soon after birth opens a possibility of manipulation with potential to produce lasting effects into adult life. This paper presents the state-of-the-art in relation to early life nutritional interventions by addressing three areas: the development of the rumen as an organ in regards to the nutrition of the new-born, the main factors that determine the microbial population that first colonizes and establishes in the rumen, and the key immunity players that contribute to shaping the commensal microbiota in the early stage of life to understand host-microbiome specificity. The development of the rumen epithelium and muscularization are differently affected by the nature of the diet and special care should be taken with regards to transition from liquid (milk) to solid feed. The rumen is quickly colonized by all type of microorganisms straight after birth and the colonization pattern may be influenced by several factors such as presence/absence of adult animals, the first solid diet provided, and the inclusion of compounds that prevent/facilitate the establishment of some microorganisms or the direct inoculation of specific strains. The results presented show how early life events may be related to the microbial community structure and/or the rumen activity in the animals post-weaning. This would create differences in adaptive capacity due to different early life experiences and leads to the idea of microbial programming. However, many elements need to be further studied such as: the most sensitive window of time for interventions, the best means to test long term effectiveness, the role of key microbial groups and host-immune regulations. PMID:26528276

  10. Microbial biofilms associated with fluid chemistry and megafaunal colonization at post-eruptive deep-sea hydrothermal vents

    NASA Astrophysics Data System (ADS)

    O'Brien, Charles E.; Giovannelli, Donato; Govenar, Breea; Luther, George W.; Lutz, Richard A.; Shank, Timothy M.; Vetriani, Costantino

    2015-11-01

    At deep-sea hydrothermal vents, reduced, super-heated hydrothermal fluids mix with cold, oxygenated seawater. This creates temperature and chemical gradients that support chemosynthetic primary production and a biomass-rich community of invertebrates. In late 2005/early 2006 an eruption occurred on the East Pacific Rise at 9°50‧N, 104°17‧W. Direct observations of the post-eruptive diffuse-flow vents indicated that the earliest colonizers were microbial biofilms. Two cruises in 2006 and 2007 allowed us to monitor and sample the early steps of ecosystem recovery. The main objective of this work was to characterize the composition of microbial biofilms in relation to the temperature and chemistry of the hydrothermal fluids and the observed patterns of megafaunal colonization. The area selected for this study had local seafloor habitats of active diffuse flow (in-flow) interrupted by adjacent habitats with no apparent expulsion of hydrothermal fluids (no-flow). The in-flow habitats were characterized by higher temperatures (1.6-25.2 °C) and H2S concentrations (up to 67.3 μM) than the no-flow habitats, and the microbial biofilms were dominated by chemosynthetic Epsilonproteobacteria. The no-flow habitats had much lower temperatures (1.2-5.2 °C) and H2S concentrations (0.3-2.9 μM), and Gammaproteobacteria dominated the biofilms. Siboglinid tubeworms colonized only in-flow habitats, while they were absent at the no-flow areas, suggesting a correlation between siboglinid tubeworm colonization, active hydrothermal flow, and the composition of chemosynthetic microbial biofilms.

  11. Microbial shaping of wrinkle structures in siliciclastic deposits

    NASA Astrophysics Data System (ADS)

    Bosak, T.; Mariotti, G.; Pruss, S. B.; Perron, J.; O'Grady, M.

    2013-12-01

    Wrinkle structures are millimeter- to centimeter-scale elongated or reticulate sedimentary structures that resemble symmetric ripples. Sharp-crested and flat-topped wrinkle structures up to 1 cm wide occur on numerous bedding planes in the Neoproterozoic and Cambrian, as well as in some Archean and Phanerozoic siliciclastic deposits. Because similar, but unlithified structures occur in some modern, microbially-colonized sands, wrinkle structures are typically interpreted as microbially induced sedimentary structures. However, it is unclear if physical processes, such as the motion of suspended sand grains, can produce similar features in sand even before microbial colonization. We introduced mat fragments to the surface of silica sand in wave tanks and generated sharp-crested, flat-topped and pitted wrinkle structures. The abrasion of the sandy surface by rolling, low density, millimeter-size fragments of microbial mats produces wrinkle structures at extremely weak orbital velocities that cannot move sand grains in the absence of light particles. Wrinkle structures form in a few hours and can become colonized by microbial mats within weeks. Thus, wrinkle structures are patterns formed by microbially mediated sand motion at low orbital velocities in the absence of bioturbation. Once formed, wrinkle structures can be colonized and stabilized by microbial mats, but the shape of these mats does not dictate the shape of wrinkle structures. These experiments bolster the interpretation of wrinkle structures as morphological signatures of organic particles and early life in Archean and Proterozoic siliciclastic deposits.

  12. Maternal Antibiotic-Induced Early Changes in Microbial Colonization Selectively Modulate Colonic Permeability and Inducible Heat Shock Proteins, and Digesta Concentrations of Alkaline Phosphatase and TLR-Stimulants in Swine Offspring

    PubMed Central

    Arnal, Marie-Edith; Zhang, Jing; Erridge, Clett; Smidt, Hauke; Lallès, Jean-Paul

    2015-01-01

    Elevated intake of high energy diets is a risk factor for the development of metabolic diseases and obesity. High fat diets cause alterations in colonic microbiota composition and increase gut permeability to bacterial lipopolysaccharide, and subsequent low-grade chronic inflammation in mice. Chronic inflammatory bowel diseases are increasing worldwide and may involve alterations in microbiota-host dialog. Metabolic disorders appearing in later life are also suspected to reflect changes in early programming. However, how the latter affects the colon remains poorly studied. Here, we hypothesized that various components of colonic physiology, including permeability, ion exchange and protective inducible heat shock proteins (HSP) are influenced in the short- and long-terms by early disturbances in microbial colonization. The hypothesis was tested in a swine model. Offspring were born to control mothers (n = 12) or mothers treated with the antibiotic (ATB) amoxicillin around parturition (n = 11). Offspring were slaughtered between 14 and 42 days of age to study short-term effects. For long-term effects, young adult offspring from the same litters consumed a normal or a palm oil-enriched diet for 4 weeks between 140 and 169 days of age. ATB treatment transiently modified maternal fecal microbiota although the minor differences observed for offspring colonic microbiota were nonsignificant. In the short-term, consistently higher HSP27 and HSP70 levels and transiently increased horseradish peroxidase permeability in ATB offspring colon were observed. Importantly, long-term consequences included reduced colonic horseradish peroxidase permeability, and increased colonic digesta alkaline phosphatase (AP) and TLR2- and TLR4-stimulant concentrations in rectal digesta in adult ATB offspring. Inducible HSP27 and HSP70 did not change. Interactions between early ATB treatment and later diet were noted for paracellular permeability and concentrations of colonic digesta AP. In conclusion, our data suggest that early ATB-induced changes in bacterial colonization modulate important aspects of colonic physiology in the short- and long-terms. PMID:25689154

  13. Maternal antibiotic-induced early changes in microbial colonization selectively modulate colonic permeability and inducible heat shock proteins, and digesta concentrations of alkaline phosphatase and TLR-stimulants in swine offspring.

    PubMed

    Arnal, Marie-Edith; Zhang, Jing; Erridge, Clett; Smidt, Hauke; Lallès, Jean-Paul

    2015-01-01

    Elevated intake of high energy diets is a risk factor for the development of metabolic diseases and obesity. High fat diets cause alterations in colonic microbiota composition and increase gut permeability to bacterial lipopolysaccharide, and subsequent low-grade chronic inflammation in mice. Chronic inflammatory bowel diseases are increasing worldwide and may involve alterations in microbiota-host dialog. Metabolic disorders appearing in later life are also suspected to reflect changes in early programming. However, how the latter affects the colon remains poorly studied. Here, we hypothesized that various components of colonic physiology, including permeability, ion exchange and protective inducible heat shock proteins (HSP) are influenced in the short- and long-terms by early disturbances in microbial colonization. The hypothesis was tested in a swine model. Offspring were born to control mothers (n = 12) or mothers treated with the antibiotic (ATB) amoxicillin around parturition (n = 11). Offspring were slaughtered between 14 and 42 days of age to study short-term effects. For long-term effects, young adult offspring from the same litters consumed a normal or a palm oil-enriched diet for 4 weeks between 140 and 169 days of age. ATB treatment transiently modified maternal fecal microbiota although the minor differences observed for offspring colonic microbiota were nonsignificant. In the short-term, consistently higher HSP27 and HSP70 levels and transiently increased horseradish peroxidase permeability in ATB offspring colon were observed. Importantly, long-term consequences included reduced colonic horseradish peroxidase permeability, and increased colonic digesta alkaline phosphatase (AP) and TLR2- and TLR4-stimulant concentrations in rectal digesta in adult ATB offspring. Inducible HSP27 and HSP70 did not change. Interactions between early ATB treatment and later diet were noted for paracellular permeability and concentrations of colonic digesta AP. In conclusion, our data suggest that early ATB-induced changes in bacterial colonization modulate important aspects of colonic physiology in the short- and long-terms.

  14. Tracking microbial colonization patterns associated with micro-environments of rice

    NASA Astrophysics Data System (ADS)

    Schmidt, Hannes; Eickhorst, Thilo

    2015-04-01

    The interface between soil and roots (i.e. the rhizosphere) represents a highly dynamic micro-environment for microbial populations. Root-derived compounds are released into the rhizosphere and may attract, stimulate, or inhibit native soil microorganisms. Microbes associated with the rhizosphere, in turn, may have deleterious, neutral, or promoting effects on the plant. Such influences of microbial populations on the plant and vice versa are likely to be greatest in close vicinity to the root surface. It is therefore essential to detect and visualize preferential micro-sites of microbial root colonization to identify potential areas of microbe-plant interaction. We present a single-cell based approach allowing for the localization, quantification, and visualization of native microbial populations in the rhizosphere and on the rhizoplane of soil-grown roots in situ. Catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) in combination with confocal laser scanning microscopy was applied to observe colonization densities and patterns of microbial populations associated with wetland rice. Hybridizations with domain- and phylum-specific oligonucleotide probes showed that the growth stage of the rice plant as well as the distance to the root surface had a strong influence on microbial colonization patterns. Three-dimensional visualizations of root-associated microbes revealed micro-sites of preferential colonization. Highest cell numbers of archaea and bacteria were found at flowering stage of rice plant development. Irregular distribution patterns of microbiota observed at early growth stages shifted towards more uniform colonization with plant age. Accordingly, the highest colonization densities shifted from the tip to more mature regions of rice roots. Methanogenic archaea and methanotrophic bacteria were found to be co-localized at basal regions of lateral roots. Beneficial effects of a close association with root surfaces were indicated by proportionally higher numbers of methane-oxidizing bacteria on the rhizoplane compared to the rhizosphere. Such spatial effects could not be observed for methanogenic archaea. As a consequence, the detection and visualization of microbial colonization patterns on a micro-scale via CARD-FISH represents an instrumental approach in revealing potential sites of interaction between microbes and plants in soil micro-environments.

  15. Factors affecting the conversion of apple polyphenols to phenolic acids and fruit matrix to short-chain fatty acids by human faecal microbiota in vitro.

    PubMed

    Bazzocco, Sarah; Mattila, Ismo; Guyot, Sylvain; Renard, Catherine M G C; Aura, Anna-Marja

    2008-12-01

    Proanthocyanidins (PAs) in apples are condensed tannins comprised mostly of (-)-epicatechin units with some terminal (+)-catechins. PAs, especially those having a long chain-length, are absorbed in the upper intestine only to a small extent and are passed to the colon. In the colon they are subjected to microbial metabolism by colonic microbiota. In the present article, the ability of human microbiota to ferment apple PAs is studied. Freeze-dried fruit preparations (apple, enzymatically digested apple, isolated cell-walls, isolated PAs or ciders) from two varieties, Marie Ménard and Avrolles, containing PAs of different chain lengths, were compared. Fermentation studies were performed in an in vitro colon model using human faecal microbiota as an inoculum. The maximal extent of conversion to known microbial metabolites, was observed at late time point for Marie Ménard cider, having short PAs. In this case, the initial dose also contributed to the extent of conversion. Long-chain PAs were able to inhibit the in vitro microbial metabolism of PAs shown as low maxima at early time points. Presence of isolated PAs also suppressed SCFA formation from carbohydrates as compared with that from apple cell wall or faecal suspension without substrates. The low maximal extents at early time points suggest that there is a competition between the inhibitory effect of the PAs on microbial activity, and the ability to convert PAs by the microbiota.

  16. Transcriptome changes in artificial dosing of rumen content in neonatal calves

    USDA-ARS?s Scientific Manuscript database

    In mammals, microbial colonization in the digestive tract (GIT) occurs right after birth by the main bacteria groups. Numerous human and mouse studies have reported the importance of early gut microbial inhabitants on host health. However, few attempts have been undertaken to understand the role of ...

  17. Global study of probiotic effect on gut microbial communities in fish larvae

    USDA-ARS?s Scientific Manuscript database

    The goal of this project was to test the long term effects of early microbial colonization on fish gut microbiota composition. To do so, axenically raised tilapia larvae were either reared under conventional conditions in activated suspension tanks (AST) or first exposed to a single strain probioti...

  18. Microbial ecology and host-microbiota interactions during early life stages

    PubMed Central

    Collado, Maria Carmen; Cernada, Maria; Baüerl, Christine; Vento, Máximo; Pérez-Martínez, Gaspar

    2012-01-01

    The role of human microbiota has been redefined during recent years and its physiological role is now much more important than earlier understood. Intestinal microbial colonization is essential for the maturation of immune system and for the developmental regulation of the intestinal physiology. Alterations in this process of colonization have been shown to predispose and increase the risk to disease later in life. The first contact of neonates with microbes is provided by the maternal microbiota. Moreover, mode of delivery, type of infant feeding and other perinatal factors can influence the establishment of the infant microbiota. Taken into consideration all the available information it could be concluded that the exposure to the adequate microbes early in gestation and neonatal period seems to have a relevant role in health. Maternal microbial environment affects maternal and fetal immune physiology and, of relevance, this interaction with microbes at the fetal-maternal interface could be modulated by specific microbes administered to the pregnant mother. Indeed, probiotic interventions aiming to reduce the risk of immune-mediated diseases may appear effective during early life. PMID:22743759

  19. Maternal influences on fetal microbial colonization and immune development

    PubMed Central

    Romano-Keeler, Joann; Weitkamp, Jörn-Hendrik

    2014-01-01

    While critical for normal development, the exact timing of establishment of the intestinal microbiome is unknown. For example, although preterm labor and birth have been associated with bacterial colonization of the amniotic cavity and fetal membranes for many years, the prevailing dogma of a sterile intrauterine environment during normal term pregnancies has been challenged more recently. While found to be a key contributor of evolution in the animal kingdom, maternal transmission of commensal bacteria may also constitute a critical process during healthy pregnancies in humans with yet unclear developmental importance. Metagenomic sequencing has elucidated a rich placental microbiome in normal term pregnancies likely providing important metabolic and immune contributions to the growing fetus. Conversely, an altered microbial composition during pregnancy may produce aberrant metabolites impairing fetal brain development and life-long neurological outcomes. Here we review the current understanding of microbial colonization at the feto-maternal interface and explain how normal gut colonization drives a balanced neonatal mucosal immune system, while dysbiosis contributes to aberrant immune function early in life and beyond. We discuss how maternal genetics, diet, medications, and probiotics inform the fetal microbiome in preparation for perinatal and postnatal bacterial colonization. PMID:25310759

  20. Neonatal microbial colonization in mice promotes prolonged dominance of CD11b(+)Gr-1(+) cells and accelerated establishment of the CD4(+) T cell population in the spleen.

    PubMed

    Kristensen, Matilde B; Metzdorff, Stine B; Bergström, Anders; Damlund, Dina S M; Fink, Lisbeth N; Licht, Tine R; Frøkiær, Hanne

    2015-09-01

    To assess the microbial influence on postnatal hematopoiesis, we examined the role of early life microbial colonization on the composition of leukocyte subsets in the neonatal spleen. A high number of CD11b(+)Gr-1(+) splenocytes present perinatally was sustained for a longer period in conventionally colonized (CONV) mice than in mono-colonized (MC) and germfree (GF) mice, and the CD4(+) T cell population established faster in CONV mice. At the day of birth, compared to GF mice, the expression of Cxcl2 was up-regulated and Arg1 down-regulated in livers of CONV mice. This coincided with lower abundance of polylobed cells in the liver of CONV mice. An earlier peak in the expression of the genes Tjp1, Cdh1, and JamA in intestinal epithelial cells of CONV mice indicated an accelerated closure of the epithelial barrier. In conclusion, we have identified an important microbiota-dependent neonatal hematopoietic event, which we suggest impacts the subsequent development of the T cell population in the murine spleen.

  1. Customizing laboratory mice by modifying gut microbiota and host immunity in an early "window of opportunity".

    PubMed

    Hansen, Camilla H F; Metzdorff, Stine B; Hansen, Axel K

    2013-01-01

    We recently investigated how post-natal microbial gut colonization is important for the development of the immune system, especially in the systemic compartments. This addendum presents additional data which in accordance with our previous findings show that early life microbial colonization is critical for a fine-tuned immune homeostasis to develop also in the intestinal environment. A generalized reduction in the expression of immune signaling related genes in the small intestine may explain previously shown increased systemic adaptive immune reactivity, if the regulatory cross-talk between intra- and extra-intestinal immune cells is immature following a neonatal germ-free period. These findings are furthermore discussed in the context of recently published results on how lack of microbial exposure in the neonatal life modifies disease expression in rodents used as models mimicking human inflammatory diseases. In particular, with a focus on how these interesting findings could be used to optimize the use of rodent models.

  2. Probiotic legacy on gut microbial assembly in fish larvae

    USDA-ARS?s Scientific Manuscript database

    Considerable efforts have been put into developing effective strategies for establishing beneficial interactions between a host and its microbiota. Early contact of fish with bacteria from their environment and its effect on early colonization in the gut has been studied in the past years. However, ...

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beam, Jake; Bernstein, Hans C.; Jay, Z.

    Iron oxide microbial mats are ubiquitous geobiological features on Earth and occur in extant acidic hot springs of Yellowstone National Park (YNP), WY, USA, and form as a result of microbial processes. The relative contribution of different organisms to the development of these mat ecosystems is of specific interest. We hypothesized that chemolithoautotrophic organisms contribute to the early development and production of Fe(III)-oxide mats, which could support later-colonizing heterotrophic microorganisms. Sterile glass slides were incubated in the outflow channels of two acidic geothermal springs in YNP, and spatiotemporal changes in Fe(III)-oxide accretion and abundance of relevant community members were measured.more » Lithoautotrophic Hydrogenobaculum spp. were first colonizers and the most abundant taxa identified during early successional stages (7 – 40 days). Populations of M. yellowstonensis colonized after ~ 7 days, corresponding to visible Fe(III)-oxide accretion. Heterotrophic archaea colonized after 30 days, and emerge as the dominant functional guild in mature iron oxide mats (1 – 2 cm thick) that form after 70 – 120 days. First-order rate constants of iron oxide accretion ranged from 0.05 – 0.046 day-1, and reflected the absolute amount of iron accreted. Micro- and macroscale microterracettes were identified during iron oxide mat development, and suggest that the mass transfer of oxygen limits microbial growth. This was also demonstrated using microelectrode measurements of oxygen as a function of mat depth, which showed steep gradients in oxygen from the aqueous mat interface to ~ 1 mm. The formation and succession of amorphous Fe(III)-oxide mat communities follows a predictable pattern of distinct stages and growth. The successional stages and microbial signatures observed in these extant Fe(III)-oxide mat communities may be relevant to other past or present Fe(III)-oxide mineralizing systems.« less

  4. Intervention strategies for cesarean section–induced alterations in the microbiota-gut-brain axis

    PubMed Central

    Moya-Pérez, Angela; Luczynski, Pauline; Renes, Ingrid B.; Wang, Shugui; Borre, Yuliya; Anthony Ryan, C.; Knol, Jan; Stanton, Catherine; Dinan, Timothy G.

    2017-01-01

    Microbial colonization of the gastrointestinal tract is an essential process that modulates host physiology and immunity. Recently, researchers have begun to understand how and when these microorganisms colonize the gut and the early-life factors that impact their natural ecological establishment. The vertical transmission of maternal microbes to the offspring is a critical factor for host immune and metabolic development. Increasing evidence also points to a role in the wiring of the gut-brain axis. This process may be altered by various factors such as mode of delivery, gestational age at birth, the use of antibiotics in early life, infant feeding, and hygiene practices. In fact, these early exposures that impact the intestinal microbiota have been associated with the development of diseases such as obesity, type 1 diabetes, asthma, allergies, and even neurodevelopmental disorders. The present review summarizes the impact of cesarean birth on the gut microbiome and the health status of the developing infant and discusses possible preventative and restorative strategies to compensate for early-life microbial perturbations. PMID:28379454

  5. Metabolome progression during early gut microbial colonization of gnotobiotic mice

    PubMed Central

    Marcobal, Angela; Yusufaly, Tahir; Higginbottom, Steven; Snyder, Michael; Sonnenburg, Justin L.; Mias, George I.

    2015-01-01

    The microbiome has been implicated directly in host health, especially host metabolic processes and development of immune responses. These are particularly important in infants where the gut first begins being colonized, and such processes may be modeled in mice. In this investigation we follow longitudinally the urine metabolome of ex-germ-free mice, which are colonized with two bacterial species, Bacteroides thetaiotaomicron and Bifidobacterium longum. High-throughput mass spectrometry profiling of urine samples revealed dynamic changes in the metabolome makeup, associated with the gut bacterial colonization, enabled by our adaptation of non-linear time-series analysis to urine metabolomics data. Results demonstrate both gradual and punctuated changes in metabolite production and that early colonization events profoundly impact the nature of small molecules circulating in the host. The identified small molecules are implicated in amino acid and carbohydrate metabolic processes, and offer insights into the dynamic changes occurring during the colonization process, using high-throughput longitudinal methodology. PMID:26118551

  6. Development of the Human Mycobiome over the First Month of Life and across Body Sites.

    PubMed

    Ward, Tonya L; Dominguez-Bello, Maria Gloria; Heisel, Tim; Al-Ghalith, Gabriel; Knights, Dan; Gale, Cheryl A

    2018-01-01

    With the advent of next-generation sequencing and microbial community characterization, we are beginning to understand the key factors that shape early-life microbial colonization and associated health outcomes. Studies characterizing infant microbial colonization have focused mostly on bacteria in the microbiome and have largely neglected fungi (the mycobiome), despite their relevance to mucosal infections in healthy infants. In this pilot study, we characterized the skin, oral, and anal mycobiomes of infants over the first month of life ( n = 17) and the anal and vaginal mycobiomes of mothers ( n = 16) by internal transcribed spacer 2 (ITS2) amplicon sequencing. We found that infant mycobiomes differed by body site, with the infant mycobiomes at the anal sites being different from those at the skin and oral sites. The relative abundances of body site-specific taxa differed by birth mode, with significantly more Candida albicans fungi present on the skin of vaginally born infants on day 30 and significantly more Candida orthopsilosis fungi present in the oral cavity of caesarean section-born infants throughout the first month of life. We found the mycobiomes within individual infants to be variable over the first month of life, and vaginal birth did not result in infant mycobiomes that were more similar to the mother's vaginal mycobiome. Therefore, although vertical transmission of specific fungal isolates from mother to infant has been reported, it is likely that other sources (environment, other caregivers) also contribute to early-life mycobiome establishment. Thus, future longitudinal studies of mycobiome and bacterial microbiome codevelopment, with dense sampling from birth to beyond the first month of life, are warranted. IMPORTANCE Humans are colonized by diverse fungi (mycobiome), which have received much less study to date than colonizing bacteria. We know very little about the succession of fungal colonization in early life and whether it may relate to long-term health. To better understand fungal colonization and its sources, we studied the skin, oral, and anal mycobiomes of healthy term infants and the vaginal and anal mycobiomes of their mothers. Generally, infants were colonized by few fungal taxa, and fungal alpha diversity did not increase over the first month of life. There was no clear community maturation over the first month of life, regardless of body site. Key body-site-specific taxa, but not overall fungal community structures, were impacted by birth mode. Thus, additional studies to characterize mycobiome acquisition and succession throughout early life are needed to form a foundation for research into the relationship between mycobiome development and human disease.

  7. Early diagenesis and recrystallization of bone

    NASA Astrophysics Data System (ADS)

    Keenan, Sarah W.; Engel, Annette Summers

    2017-01-01

    One of the most challenging problems in paleobiology is determining how bone transforms from a living tissue into a fossil. The geologic record is replete with vertebrate fossils preserved from a range of depositional environments, including wetland systems. However, thermodynamic models suggest that bone (modeled as hydroxylapatite) is generally unstable in a range of varying geochemical conditions and should readily dissolve if it does not alter to a more thermodynamically stable phase, such as a fluorine-enriched apatite. Here, we assess diagenesis of alligator bone from fleshed, articulated skeletons buried in wetland soils and from de-fleshed bones in experimental mesocosms with and without microbial colonization. When microbial colonization of bone was inhibited, bioapatite recrystallization to a more stable apatite phase occurred after one month of burial. Ca-Fe-phosphate phases in bone developed after several months to years due to ion substitutions from the protonation of the hydroxyl ion. These rapid changes demonstrate a continuum of structural and bonding transformations to bone that have not been observed previously. When bones were directly in contact with sediment and microbial cells, rapid bioerosion and compositional alteration occurred after one week, but slowed after one month because biofilms reduced exposed surfaces and subsequent bioapatite lattice substitutions. Microbial contributions are likely essential in forming stable apatite phases during early diagenesis and for enabling bone preservation and fossilization.

  8. Colonic transit time is related to bacterial metabolism and mucosal turnover in the gut.

    PubMed

    Roager, Henrik M; Hansen, Lea B S; Bahl, Martin I; Frandsen, Henrik L; Carvalho, Vera; Gøbel, Rikke J; Dalgaard, Marlene D; Plichta, Damian R; Sparholt, Morten H; Vestergaard, Henrik; Hansen, Torben; Sicheritz-Pontén, Thomas; Nielsen, H Bjørn; Pedersen, Oluf; Lauritzen, Lotte; Kristensen, Mette; Gupta, Ramneek; Licht, Tine R

    2016-06-27

    Little is known about how colonic transit time relates to human colonic metabolism and its importance for host health, although a firm stool consistency, a proxy for a long colonic transit time, has recently been positively associated with gut microbial richness. Here, we show that colonic transit time in humans, assessed using radio-opaque markers, is associated with overall gut microbial composition, diversity and metabolism. We find that a long colonic transit time associates with high microbial richness and is accompanied by a shift in colonic metabolism from carbohydrate fermentation to protein catabolism as reflected by higher urinary levels of potentially deleterious protein-derived metabolites. Additionally, shorter colonic transit time correlates with metabolites possibly reflecting increased renewal of the colonic mucosa. Together, this suggests that a high gut microbial richness does not per se imply a healthy gut microbial ecosystem and points at colonic transit time as a highly important factor to consider in microbiome and metabolomics studies.

  9. Microbial trace-fossil formation, biogenous, and abiotic weathering in the Antarctic cold desert

    NASA Technical Reports Server (NTRS)

    Friedmann, E. Imre; Weed, Rebecca

    1987-01-01

    In the Antarctic cold desert (Ross Desert), the survival of the cryptoendolithic microorganisms that colonize the near-surface layer of porous sandstone rocks depends on a precarious equilibrium of biological and geological factors. An unfavorable shift of this equilibrium results in death, and this may be followed by formation of trace fossils that preserve the characteristic iron-leaching pattern caused by microbial activity. Similar microbial trace fossils may exist in the geological record. If life ever arose on early Mars, similar processes may have occurred there and left recognizable traces.

  10. Contrasting effects of biochar versus manure on soil microbial communities and enzyme activities in an Aridisol.

    PubMed

    Elzobair, Khalid A; Stromberger, Mary E; Ippolito, James A; Lentz, Rodrick D

    2016-01-01

    Biochar can increase microbial activity, alter microbial community structure, and increase soil fertility in arid and semi-arid soils, but at relatively high rates that may be impractical for large-scale field studies. This contrasts with organic amendments such as manure, which can be abundant and inexpensive if locally available, and thus can be applied to fields at greater rates than biochar. In a field study comparing biochar and manure, a fast pyrolysis hardwood biochar (22.4 Mg ha(-1)), dairy manure (42 Mg ha(-1) dry wt), a combination of biochar and manure at the aforementioned rates, or no amendment (control) was applied to an Aridisol (n=3) in fall 2008. Plots were annually cropped to corn (Zea maize L.). Surface soils (0-30 cm) were sampled directly under corn plants in late June 2009 and early August 2012, and assayed for microbial community fatty acid methyl ester (FAME) profiles and six extracellular enzyme activities involved in soil C, N, and P cycling. Arbuscular mycorrhizal (AM) fungal colonization was assayed in corn roots in 2012. Biochar had no effect on microbial biomass, community structure, extracellular enzyme activities, or AM fungi root colonization of corn. In the short-term, manure amendment increased microbial biomass, altered microbial community structure, and significantly reduced the relative concentration of the AM fungal biomass in soil. Manure also reduced the percent root colonization of corn by AM fungi in the longer-term. Thus, biochar and manure had contrasting short-term effects on soil microbial communities, perhaps because of the relatively low application rate of biochar. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Intervention strategies for cesarean section-induced alterations in the microbiota-gut-brain axis.

    PubMed

    Moya-Pérez, Angela; Luczynski, Pauline; Renes, Ingrid B; Wang, Shugui; Borre, Yuliya; Anthony Ryan, C; Knol, Jan; Stanton, Catherine; Dinan, Timothy G; Cryan, John F

    2017-04-01

    Microbial colonization of the gastrointestinal tract is an essential process that modulates host physiology and immunity. Recently, researchers have begun to understand how and when these microorganisms colonize the gut and the early-life factors that impact their natural ecological establishment. The vertical transmission of maternal microbes to the offspring is a critical factor for host immune and metabolic development. Increasing evidence also points to a role in the wiring of the gut-brain axis. This process may be altered by various factors such as mode of delivery, gestational age at birth, the use of antibiotics in early life, infant feeding, and hygiene practices. In fact, these early exposures that impact the intestinal microbiota have been associated with the development of diseases such as obesity, type 1 diabetes, asthma, allergies, and even neurodevelopmental disorders. The present review summarizes the impact of cesarean birth on the gut microbiome and the health status of the developing infant and discusses possible preventative and restorative strategies to compensate for early-life microbial perturbations. © The Author(s) 2017. Published by Oxford University Press on behalf of the International Life Sciences Institute.

  12. Mode of Birth Influences Preterm Infant Intestinal Colonization with Bacteroides Over the Early Neonatal Period

    PubMed Central

    Gregory, Katherine E.; LaPlante, Rose D.; Shan, Gururaj; Kumar, Deepak Vijaya; Gregas, Matt

    2015-01-01

    Background Intestinal colonization during infancy is important to short and long term health outcomes. Bacteroides, an early member of the intestinal microbiome, are necessary for breaking down complex molecules within the intestine and function to assist the body’s immune system in fighting against potentially harmful pathogens. Little is known about the colonization pattern of Bacteroides in preterm infants during the early neonatal period. Purpose This study measured Bacteroides colonization during the early neonatal period in a population of preterm infants based on clinical factors including mode of birth, antibiotics, and nutrition. Methods Bacterial DNA was isolated from 144 fecal samples from 29 preterm infants and analyzed using quantitative real time polymerase chain reaction (PCR). Analyses included liner mixed models to determine which clinical factors affect Bacteroides colonization of the infant gut. Results We found that infants born via vaginal canal had a higher rate of increase in Bacteroides than infants born via Cesarean section (p<.001). We did not find significant associations between antibiotic administration and differences in nutritional exposures with Bacteroides colonization. Implications for Practice These findings highlight the significant influence of mode of birth on Bacteroides colonization. While mode of birth is not always modifiable, these study findings may help develop interventions for preterm infants born via Cesarean section aimed at overcoming delayed Bacteroides colonization. Implications for Research Greater study of the intestinal microbiome and the clinical factors relevant to the preterm infant is needed so that interventions may be developed and tested, resulting in optimal microbial and immune health. PMID:26551793

  13. The gut microbiota and its role in the development of allergic disease: a wider perspective.

    PubMed

    West, C E; Jenmalm, M C; Prescott, S L

    2015-01-01

    The gut microbiota are critical in the homoeostasis of multiple interconnected host metabolic and immune networks. If early microbial colonization is delayed, the gut-associated lymphoid tissues (GALT) fail to develop, leading to persistent immune dysregulation in mice. Microbial colonization has also been proposed as a major driver for the normal age-related maturation of both Th1 and T regulatory (Treg) pathways that appear important in suppressing early propensity for Th2 allergic responses. There is emerging evidence that resident symbionts induce tolerogenic gut-associated Treg cells and dendritic cells that ensure the preferential growth of symbionts; keeping pathogenic strains in check and constraining proinflammatory Th1, Th2, and Th17 clones. Some effects of symbionts are mediated by short-chain fatty acids, which play a critical role in mucosal integrity and local and systemic metabolic function and stimulate the regulatory immune responses. The homoeostatic IL-10/TGF-β dominated tolerogenic response within the GALT also signals the production of secretory IgA, which have a regulating role in mucosal integrity. Contrary to the 'sterile womb' paradigm, recent studies suggest that maternal microbial transfer to the offspring begins during pregnancy, providing a pioneer microbiome. It is likely that appropriate microbial stimulation both pre- and postnatally is required for optimal Th1 and Treg development to avoid the pathophysiological processes leading to allergy. Disturbed gut colonization patterns have been associated with allergic disease, but whether microbial variation is the cause or effect of these diseases is still under investigation. We are far from understanding what constitutes a 'healthy gut microbiome' that promotes tolerance. This remains a major limitation and might explain some of the inconsistency in human intervention studies with prebiotics and probiotics. Multidisciplinary integrative approaches with researchers working in networks, using harmonized outcomes and methodologies, are needed to advance our understanding in this field. © 2014 John Wiley & Sons Ltd.

  14. Early gut colonizers shape parasite susceptibility and microbiota composition in honey bee workers

    USDA-ARS?s Scientific Manuscript database

    Microbial symbionts living within animal guts are largely composed of resident bacterial species, forming communities that often provide benefits to the host. Gut microbiomes of adult honey bees (Apis mel- lifera) include core residents such as the betaproteobacterium Snod- grassella alvi, alongside...

  15. Trace fossils of microbial colonization on Mars: Criteria for search and for sample return

    NASA Technical Reports Server (NTRS)

    Friedmann, E. I.

    1988-01-01

    The recent discovery of microbial trace-fossil formation in the frigid Ross Desert of Antarctica suggests that early primitive life on Mars may have left behind similar signatures. These trace fossils are apparent as chemical or physical changes in rock (or sediment) structure (or chemistry) caused by the activity of organisms. Life on Mars, if it ever existed, almost certainly did not evolve above the level of microorganisms, and this should be considered in search for fossil life. For the reasons detailed here, microbial trace fossils seem to be a better and more realistic target for search than would be true microbial fossils (remnants of cellular structures).

  16. Microbial colonization and lung function in adolescents with cystic fibrosis.

    PubMed

    Hector, Andreas; Kirn, Tobias; Ralhan, Anjali; Graepler-Mainka, Ute; Berenbrinker, Sina; Riethmueller, Joachim; Hogardt, Michael; Wagner, Marlies; Pfleger, Andreas; Autenrieth, Ingo; Kappler, Matthias; Griese, Matthias; Eber, Ernst; Martus, Peter; Hartl, Dominik

    2016-05-01

    With intensified antibiotic therapy and longer survival, patients with cystic fibrosis (CF) are colonized with a more complex pattern of bacteria and fungi. However, the clinical relevance of these emerging pathogens for lung function remains poorly defined. The aim of this study was to assess the association of bacterial and fungal colonization patterns with lung function in adolescent patients with CF. Microbial colonization patterns and lung function parameters were assessed in 770 adolescent European (German/Austrian) CF patients in a retrospective study (median follow-up time: 10years). Colonization with Pseudomonas aeruginosa and MRSA were most strongly associated with loss of lung function, while mainly colonization with Haemophilus influenzae was associated with preserved lung function. Aspergillus fumigatus was the only species that was associated with an increased risk for infection with P. aeruginosa. Microbial interaction analysis revealed three distinct microbial clusters within the longitudinal course of CF lung disease. Collectively, this study identified potentially protective and harmful microbial colonization patterns in adolescent CF patients. Further studies in different patient cohorts are required to evaluate these microbial patterns and to assess their clinical relevance. Copyright © 2016 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  17. Microbial community development in a dynamic gut model is reproducible, colon region specific, and selective for Bacteroidetes and Clostridium cluster IX.

    PubMed

    Van den Abbeele, Pieter; Grootaert, Charlotte; Marzorati, Massimo; Possemiers, Sam; Verstraete, Willy; Gérard, Philippe; Rabot, Sylvie; Bruneau, Aurélia; El Aidy, Sahar; Derrien, Muriel; Zoetendal, Erwin; Kleerebezem, Michiel; Smidt, Hauke; Van de Wiele, Tom

    2010-08-01

    Dynamic, multicompartment in vitro gastrointestinal simulators are often used to monitor gut microbial dynamics and activity. These reactors need to harbor a microbial community that is stable upon inoculation, colon region specific, and relevant to in vivo conditions. Together with the reproducibility of the colonization process, these criteria are often overlooked when the modulatory properties from different treatments are compared. We therefore investigated the microbial colonization process in two identical simulators of the human intestinal microbial ecosystem (SHIME), simultaneously inoculated with the same human fecal microbiota with a high-resolution phylogenetic microarray: the human intestinal tract chip (HITChip). Following inoculation of the in vitro colon compartments, microbial community composition reached steady state after 2 weeks, whereas 3 weeks were required to reach functional stability. This dynamic colonization process was reproducible in both SHIME units and resulted in highly diverse microbial communities which were colon region specific, with the proximal regions harboring saccharolytic microbes (e.g., Bacteroides spp. and Eubacterium spp.) and the distal regions harboring mucin-degrading microbes (e.g., Akkermansia spp.). Importantly, the shift from an in vivo to an in vitro environment resulted in an increased Bacteroidetes/Firmicutes ratio, whereas Clostridium cluster IX (propionate producers) was enriched compared to clusters IV and XIVa (butyrate producers). This was supported by proportionally higher in vitro propionate concentrations. In conclusion, high-resolution analysis of in vitro-cultured gut microbiota offers new insight on the microbial colonization process and indicates the importance of digestive parameters that may be crucial in the development of new in vitro models.

  18. Early microbial contact, the breast milk microbiome and child health.

    PubMed

    Rautava, S

    2016-02-01

    The significance of contact with microbes in early life for subsequent health has been the subject of intense research during the last 2 decades. Disturbances in the establishment of the indigenous intestinal microbiome caused by cesarean section delivery or antibiotic exposure in early life have been linked to the risk of immune-mediated and inflammatory conditions such as atopic disorders, inflammatory bowel disease and obesity later in life. Distinct microbial populations have recently been discovered at maternal sites including the amniotic cavity and breast milk, as well as meconium, which have previously been thought to be sterile. Our understanding of the impact of fetal microbial contact on health outcomes is still rudimentary. Breast milk is known to modulate immune and metabolic programming. The breast milk microbiome is hypothesized to guide infant gut colonization and is affected by maternal health status and mode of delivery. Immunomodulatory factors in breast milk interact with the maternal and infant gut microbiome and may mediate some of the health benefits associated with breastfeeding. The intimate connection between the mother and the fetus or the infant is a potential target for microbial therapeutic interventions aiming to support healthy microbial contact and protect against disease.

  19. Effect of Antimicrobial Interventions on the Oral Microbiota Associated with Early Childhood Caries.

    PubMed

    Li, Yihong; Tanner, Anne

    2015-01-01

    The purposes of this systematic literature review were to identify research-based evidence for an effect of antimicrobial therapeutic approaches on the cariogenic microbiota and early childhood caries (ECC) outcomes; and to review methods used to perform microbial assessments in clinical studies of ECC. Multiple databases were searched; only clinical cohort studies and randomized controlled trials published from 1998 to 2014 were selected. A total of 471 titles and abstracts were identified; 114 studies met the inclusion criteria for a full review, from which 41 studies were included in the meta-analyses. In most of the reviewed studies, moderate reductions in cariogenic bacterial levels, mainly in mutans streptococci (MS), were demonstrated following the use of antimicrobial agents, but bacterial regrowth occurred and new carious lesions developed once the treatment had ceased, particularly in high-risk children. Relatively consistent findings suggested that anti-cariogenic microbial interventions in mothers significantly reduced MS acquisition by children. However, studies of the long-term benefits of ECC prevention are lacking. Based on the meta-analyses, antimicrobial interventions and treatments show temporary reductions in MS colonization levels. However, there is insufficient evidence to indicate that the approaches used produced sustainable effects on cariogenic microbial colonization or ECC reduction and prevention.

  20. The Intestinal Microbiome in Early Life: Health and Disease

    PubMed Central

    Arrieta, Marie-Claire; Stiemsma, Leah T.; Amenyogbe, Nelly; Brown, Eric M.; Finlay, Brett

    2014-01-01

    Human microbial colonization begins at birth and continues to develop and modulate in species abundance for about 3 years, until the microbiota becomes adult-like. During the same time period, children experience significant developmental changes that influence their health status as well as their immune system. An ever-expanding number of articles associate several diseases with early-life imbalances of the gut microbiota, also referred to as gut microbial dysbiosis. Whether early-life dysbiosis precedes and plays a role in disease pathogenesis, or simply originates from the disease process itself is a question that is beginning to be answered in a few diseases, including IBD, obesity, and asthma. This review describes the gut microbiome structure and function during the formative first years of life, as well as the environmental factors that determine its composition. It also aims to discuss the recent advances in understanding the role of the early-life gut microbiota in the development of immune-mediated, metabolic, and neurological diseases. A greater understanding of how the early-life gut microbiota impacts our immune development could potentially lead to novel microbial-derived therapies that target disease prevention at an early age. PMID:25250028

  1. Early Microbes Modify Immune System Development and Metabolic Homeostasis—The “Restaurant” Hypothesis Revisited

    PubMed Central

    Nash, Michael J.; Frank, Daniel N.; Friedman, Jacob E.

    2017-01-01

    The developing infant gut microbiome affects metabolism, maturation of the gastrointestinal tract, immune system function, and brain development. Initial seeding of the neonatal microbiota occurs through maternal and environmental contact. Maternal diet, antibiotic use, and cesarean section alter the offspring microbiota composition, at least temporarily. Nutrients are thought to regulate initial perinatal microbial colonization, a paradigm known as the “Restaurant” hypothesis. This hypothesis proposes that early nutritional stresses alter both the initial colonizing bacteria and the development of signaling pathways controlled by microbial mediators. These stresses fine-tune the immune system and metabolic homeostasis in early life, potentially setting the stage for long-term metabolic and immune health. Dysbiosis, an imbalance or a maladaptation in the microbiota, can be caused by several factors including dietary alterations and antibiotics. Dysbiosis can alter biological processes in the gut and in tissues and organs throughout the body. Misregulated development and activity of both the innate and adaptive immune systems, driven by early dysbiosis, could have long-lasting pathologic consequences such as increased autoimmunity, increased adiposity, and non-alcoholic fatty liver disease (NAFLD). This review will focus on factors during pregnancy and the neonatal period that impact a neonate’s gut microbiome, as well as the mechanisms and possible links from early infancy that can drive increased risk for diseases including obesity and NAFLD. The complex pathways that connect diet, the microbiota, immune system development, and metabolism, particularly in early life, present exciting new frontiers for biomedical research. PMID:29326657

  2. Early changes in microbial colonization selectively modulate intestinal enzymes, but not inducible heat shock proteins in young adult Swine.

    PubMed

    Arnal, Marie-Edith; Zhang, Jing; Messori, Stefano; Bosi, Paolo; Smidt, Hauke; Lallès, Jean-Paul

    2014-01-01

    Metabolic diseases and obesity are developing worldwide in a context of plethoric intake of high energy diets. The intestine may play a pivotal role due to diet-induced alterations in microbiota composition and increased permeability to bacterial lipopolysaccharide inducing metabolic inflammation. Early programming of metabolic disorders appearing in later life is also suspected, but data on the intestine are lacking. Therefore, we hypothesized that early disturbances in microbial colonization have short- and long-lasting consequences on selected intestinal components including key digestive enzymes and protective inducible heat shock proteins (HSP). The hypothesis was tested in swine offspring born to control mothers (n = 12) or mothers treated with the antibiotic amoxicillin around parturition (n = 11), and slaughtered serially at 14, 28 and 42 days of age to assess short-term effects. To evaluate long-term consequences, young adult offspring from the same litters were offered a normal or a fat-enriched diet for 4 weeks between 140 and 169 days of age and were then slaughtered. Amoxicillin treatment transiently modified both mother and offspring microbiota. This was associated with early but transient reduction in ileal alkaline phosphatase, HSP70 (but not HSP27) and crypt depth, suggesting a milder or delayed intestinal response to bacteria in offspring born to antibiotic-treated mothers. More importantly, we disclosed long-term consequences of this treatment on jejunal alkaline phosphatase (reduced) and jejunal and ileal dipeptidylpeptidase IV (increased and decreased, respectively) of offspring born to antibiotic-treated dams. Significant interactions between early antibiotic treatment and later diet were observed for jejunal alkaline phosphatase and sucrase. By contrast, inducible HSPs were not affected. In conclusion, our data suggest that early changes in bacterial colonization not only modulate intestinal architecture and function transiently, but also exert site- and sometimes diet-specific long-term effects on key components of intestinal homeostasis.

  3. Early Changes in Microbial Colonization Selectively Modulate Intestinal Enzymes, but Not Inducible Heat Shock Proteins in Young Adult Swine

    PubMed Central

    Arnal, Marie-Edith; Zhang, Jing; Messori, Stefano; Bosi, Paolo; Smidt, Hauke; Lallès, Jean-Paul

    2014-01-01

    Metabolic diseases and obesity are developing worldwide in a context of plethoric intake of high energy diets. The intestine may play a pivotal role due to diet-induced alterations in microbiota composition and increased permeability to bacterial lipopolysaccharide inducing metabolic inflammation. Early programming of metabolic disorders appearing in later life is also suspected, but data on the intestine are lacking. Therefore, we hypothesized that early disturbances in microbial colonization have short- and long-lasting consequences on selected intestinal components including key digestive enzymes and protective inducible heat shock proteins (HSP). The hypothesis was tested in swine offspring born to control mothers (n = 12) or mothers treated with the antibiotic amoxicillin around parturition (n = 11), and slaughtered serially at 14, 28 and 42 days of age to assess short-term effects. To evaluate long-term consequences, young adult offspring from the same litters were offered a normal or a fat-enriched diet for 4 weeks between 140 and 169 days of age and were then slaughtered. Amoxicillin treatment transiently modified both mother and offspring microbiota. This was associated with early but transient reduction in ileal alkaline phosphatase, HSP70 (but not HSP27) and crypt depth, suggesting a milder or delayed intestinal response to bacteria in offspring born to antibiotic-treated mothers. More importantly, we disclosed long-term consequences of this treatment on jejunal alkaline phosphatase (reduced) and jejunal and ileal dipeptidylpeptidase IV (increased and decreased, respectively) of offspring born to antibiotic-treated dams. Significant interactions between early antibiotic treatment and later diet were observed for jejunal alkaline phosphatase and sucrase. By contrast, inducible HSPs were not affected. In conclusion, our data suggest that early changes in bacterial colonization not only modulate intestinal architecture and function transiently, but also exert site- and sometimes diet-specific long-term effects on key components of intestinal homeostasis. PMID:24505340

  4. Perinatal microbial exposure may influence aortic intima-media thickness in early infancy.

    PubMed

    McCloskey, Kate; Vuillermin, Peter; Carlin, John B; Cheung, Michael; Skilton, Michael R; Tang, Mimi Lk; Allen, Katie; Gilbert, Gwendolyn L; Ranganathan, Sarath; Collier, Fiona; Dwyer, Terence; Ponsonby, Anne-Louise; Burgner, David

    2017-02-01

    The maternal and infant microbiome may influence infant cardiovascular risk through immune programming. The maternal vagino-enteric microbiome is often sampled for group B streptococcus (GBS) colonization during pregnancy. Our aim was to investigate the association between maternal GBS colonization, intrapartum antibiotics, antenatal pet exposure and infant aortic intima-media thickness (aIMT), an intermediate vascular phenotype, and whether this association varied by mode of delivery. The Barwon Infant Study is a population-derived pre-birth cohort. Perinatal data were collected on participants. Women were tested for vagino-enteric group B streptococcus (GBS) colonization during third trimester. Six-week infant aIMT was measured by trans-abdominal ultrasound. Adjustment for confounders included maternal age, pre-pregnancy body mass index (BMI), smoking, socioeconomic status, gestational diabetes, length of gestation, infant sex, birthweight and aortic internal diameter. Data were available on 835 mother-infant pairs. Of these, 574 (69%) women delivered vaginally; of those, 129 (22%) were GBS-colonized; and of these women, 111 (86%) received prophylactic intrapartum antibiotics. An association between maternal GBS colonization and infant aIMT was observed among those delivered vaginally (β = 19.5 µm, 95% CI 9.5, 29.4; P  < 0.0001) but not by Caesarean section ( P for interaction = 0.02). A similar pattern was seen for intrapartum antibiotics. There was a negative association between antenatal pet exposure and aIMT observed in those delivered vaginally. Maternal GBS colonization and intrapartum antibiotics were associated with increased infant aIMT in those delivered vaginally, whereas antenatal pet exposure was associated with decreased aIMT. These data suggest that differences in early life microbial experience may contribute to an increased cardiovascular risk. © The Author 2016; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association

  5. The Development of Microbiota and Metabolome in Small Intestine of Sika Deer (Cervus nippon) from Birth to Weaning

    PubMed Central

    Li, Zhipeng; Wang, Xiaoxu; Zhang, Ting; Si, Huazhe; Nan, Weixiao; Xu, Chao; Guan, Leluo; Wright, André-Denis G.; Li, Guangyu

    2018-01-01

    The dense and diverse community of microorganisms inhabiting the gastrointestinal tract of ruminant animals plays critical roles in the metabolism and absorption of nutrients, and gut associated immune function. Understanding microbial colonization in the small intestine of new born ruminants is a vital first step toward manipulating gut function through interventions during early life to produce long-term positive effects on host productivity and health. Yet the knowledge of microbiota colonization and its induced metabolites of small intestine during early life is still limited. In the present study, we examined the microbiota and metabolome in the jejunum and ileum of neonatal sika deer (Cervus nippon) from birth to weaning at days 1, 42, and 70. The microbial data showed that diversity and richness were increased with age, but a highly individual variation was observed at day 1. Principal coordinate analysis revealed significant differences in microbial community composition across three time points in the jejunum and ileum. The abundance of Halomonas spp., Lactobacillus spp., Escherichia–Shigella, and Bacteroides spp. tended to be decreased, while the proportion of Intestinibacter spp., Cellulosilyticum spp., Turicibacter spp., Clostridium sensu stricto 1 and Romboutsia spp. was significantly increased with age. For metabolome, metabolites separated from each other across the three time points in both jejunum and ileum. Moreover, the amounts of methionine, threonine, and putrescine were increased, while the amounts of myristic acid and pentadecanoic acid were decreased with age, respectively. The present study demonstrated that microbiota colonization and the metabolome becomes more developed in the small intestine with age. This may shed new light on the microbiota-metabolome-immune interaction during development. PMID:29410651

  6. The Development of Microbiota and Metabolome in Small Intestine of Sika Deer (Cervus nippon) from Birth to Weaning.

    PubMed

    Li, Zhipeng; Wang, Xiaoxu; Zhang, Ting; Si, Huazhe; Nan, Weixiao; Xu, Chao; Guan, Leluo; Wright, André-Denis G; Li, Guangyu

    2018-01-01

    The dense and diverse community of microorganisms inhabiting the gastrointestinal tract of ruminant animals plays critical roles in the metabolism and absorption of nutrients, and gut associated immune function. Understanding microbial colonization in the small intestine of new born ruminants is a vital first step toward manipulating gut function through interventions during early life to produce long-term positive effects on host productivity and health. Yet the knowledge of microbiota colonization and its induced metabolites of small intestine during early life is still limited. In the present study, we examined the microbiota and metabolome in the jejunum and ileum of neonatal sika deer ( Cervus nippon ) from birth to weaning at days 1, 42, and 70. The microbial data showed that diversity and richness were increased with age, but a highly individual variation was observed at day 1. Principal coordinate analysis revealed significant differences in microbial community composition across three time points in the jejunum and ileum. The abundance of Halomonas spp., Lactobacillus spp., Escherichia - Shigella , and Bacteroides spp. tended to be decreased, while the proportion of Intestinibacter spp., Cellulosilyticum spp., Turicibacter spp., Clostridium sensu stricto 1 and Romboutsia spp. was significantly increased with age. For metabolome, metabolites separated from each other across the three time points in both jejunum and ileum. Moreover, the amounts of methionine, threonine, and putrescine were increased, while the amounts of myristic acid and pentadecanoic acid were decreased with age, respectively. The present study demonstrated that microbiota colonization and the metabolome becomes more developed in the small intestine with age. This may shed new light on the microbiota-metabolome-immune interaction during development.

  7. Effect of Antimicrobial Intervention on Oral Microbiota Associated with Early Childhood Caries

    PubMed Central

    Li, Yihong; Tanner, Anne

    2015-01-01

    Purpose The aim of this systematic literature review was to identify research-based evidence for an effect of antimicrobial therapeutic approaches on the cariogenic microbiota and early childhood caries (ECC) outcomes. Additionally, we reviewed methods used to perform microbial assessments in clinical studies of ECC. Methods Multiple database searches were conducted; only clinical cohort studies and randomized controlled trials published from 1998 to 2014 were selected for the review. A total of 471 titles and abstracts were identified; 114 studies met the inclusion criteria for a full review, and finally 41 studies were selected for the meta-analyses. Results Moderate reductions in cariogenic bacterial levels, mainly in mutans streptococci (MS), were demonstrated following the use of antimicrobial agents. The results varied depending on the different approaches used. In most of the reviewed studies MS levels were reduced after treatment, but the bacterial regrowth occurred once the treatment had ceased, and new caries lesions developed, particularly in high-risk children. Relatively consistent findings suggested that anti-cariogenic-microbial interventions in mothers significantly reduced MS acquisition by children. However, studies of the long-term benefits of ECC prevention are lacking. Conclusion Based on the meta-analyses, antimicrobial interventions and treatments show temporary reductions in MS colonization levels. However, insufficient evidence suggest that the approaches used produced sustainable effects on cariogenic microbial colonization, caries reduction, and ECC prevention. PMID:26063552

  8. Mucosal innate response stimulation induced by lipopolysaccharide protects against Bordetella pertussis colonization.

    PubMed

    Errea, A; Moreno, G; Sisti, F; Fernández, J; Rumbo, M; Hozbor, Daniela Flavia

    2010-05-01

    Non-specific enhancement of the airways innate response has been shown to impair lung infections in several models of infection such diverse as influenza A, Streptococcus pneumoniae, and Aspergillus niger. Our aim was to evaluate whether a similar event could operate in the context of Bordetella pertussis respiratory infection, not only to enrich the knowledge of host-bacteria interaction but also to establish immunological basis for the development of new control strategies against the pathogen. Using a B. pertussis intranasal infection model and coadministration of different TLR agonists at the moment of the infection, we observed that the enhancement of innate response activation, in a TLR4-dependent way, could efficiently impair B. pertussis colonization (P < 0.001). While LPS from different microbial sources were equally effective in promoting this effect, flagellin and poly I:C coadministration, in spite of inducing expression of innate response markers TNFalpha, CXCL2, CXCL10 and IL6, was not effective to prevent B. pertussis colonization. Our results indicate that during the early stage of infection, specific anti-microbial mechanisms triggered by TLR4 stimulation are able to impair B. pertussis colonization. These findings could complement our current view of the role of TLR4-dependent processes that contribute to anti-pertussis immunity.

  9. Microbial Surface Colonization and Biofilm Development in Marine Environments

    PubMed Central

    2015-01-01

    SUMMARY Biotic and abiotic surfaces in marine waters are rapidly colonized by microorganisms. Surface colonization and subsequent biofilm formation and development provide numerous advantages to these organisms and support critical ecological and biogeochemical functions in the changing marine environment. Microbial surface association also contributes to deleterious effects such as biofouling, biocorrosion, and the persistence and transmission of harmful or pathogenic microorganisms and their genetic determinants. The processes and mechanisms of colonization as well as key players among the surface-associated microbiota have been studied for several decades. Accumulating evidence indicates that specific cell-surface, cell-cell, and interpopulation interactions shape the composition, structure, spatiotemporal dynamics, and functions of surface-associated microbial communities. Several key microbial processes and mechanisms, including (i) surface, population, and community sensing and signaling, (ii) intraspecies and interspecies communication and interaction, and (iii) the regulatory balance between cooperation and competition, have been identified as critical for the microbial surface association lifestyle. In this review, recent progress in the study of marine microbial surface colonization and biofilm development is synthesized and discussed. Major gaps in our knowledge remain. We pose questions for targeted investigation of surface-specific community-level microbial features, answers to which would advance our understanding of surface-associated microbial community ecology and the biogeochemical functions of these communities at levels from molecular mechanistic details through systems biological integration. PMID:26700108

  10. Microbial Surface Colonization and Biofilm Development in Marine Environments.

    PubMed

    Dang, Hongyue; Lovell, Charles R

    2016-03-01

    Biotic and abiotic surfaces in marine waters are rapidly colonized by microorganisms. Surface colonization and subsequent biofilm formation and development provide numerous advantages to these organisms and support critical ecological and biogeochemical functions in the changing marine environment. Microbial surface association also contributes to deleterious effects such as biofouling, biocorrosion, and the persistence and transmission of harmful or pathogenic microorganisms and their genetic determinants. The processes and mechanisms of colonization as well as key players among the surface-associated microbiota have been studied for several decades. Accumulating evidence indicates that specific cell-surface, cell-cell, and interpopulation interactions shape the composition, structure, spatiotemporal dynamics, and functions of surface-associated microbial communities. Several key microbial processes and mechanisms, including (i) surface, population, and community sensing and signaling, (ii) intraspecies and interspecies communication and interaction, and (iii) the regulatory balance between cooperation and competition, have been identified as critical for the microbial surface association lifestyle. In this review, recent progress in the study of marine microbial surface colonization and biofilm development is synthesized and discussed. Major gaps in our knowledge remain. We pose questions for targeted investigation of surface-specific community-level microbial features, answers to which would advance our understanding of surface-associated microbial community ecology and the biogeochemical functions of these communities at levels from molecular mechanistic details through systems biological integration. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Brief Report: Dialister as a Microbial Marker of Disease Activity in Spondyloarthritis.

    PubMed

    Tito, Raul Y; Cypers, Heleen; Joossens, Marie; Varkas, Gaëlle; Van Praet, Liesbet; Glorieus, Elien; Van den Bosch, Filip; De Vos, Martine; Raes, Jeroen; Elewaut, Dirk

    2017-01-01

    Dysbiosis of the intestinal microbiota has been widely established in inflammatory bowel disease (IBD). There is significant clinical and genetic overlap between spondyloarthritis (SpA) and IBD, and up to 50% of all patients with SpA exhibit microscopic signs of bowel inflammation, often bearing particular resemblance to early Crohn's disease, a subtype of IBD. This study was undertaken to assess the relationship between intestinal microbial composition, gut histology, and disease activity markers in SpA. Gene analysis by 16S ribosomal RNA amplicon sequencing was used to compare the microbial composition in ileal and colonic biopsy specimens from 27 patients with SpA (14 with microscopic bowel inflammation, 13 without) and 15 healthy control subjects (ileal samples from all 15 subjects and colonic samples from 6). Spearman's rank correlation tests were used to assess correlations of the microbial composition with disease activity measures. The intestinal inflammation status (histologically normal versus acute or chronic inflammation) was strongly associated with the mucosal microbiota profile of patients with SpA. In inflamed biopsy tissue, the detected bacterial community composition clustered separately from that in noninflamed biopsy tissue (P < 0.05 by permutational multivariate analysis of variance, using hierarchical clustering on Bray-Curtis distances). Interestingly, abundance of the genus Dialister was found to be positively correlated with the Ankylosing Spondylitis Disease Activity Score (Spearman's rho = 0.62, false discovery rate-corrected q < 0.01). This finding was further supported by the low frequency of Dialister observed in noninflamed ileal and colonic biopsy tissue from patients with SpA and healthy controls. These findings demonstrate a significant difference in the intestinal microbial composition in patients with SpA who have microscopic gut inflammation compared to those without microscopic gut inflammation. Moreover, Dialister may represent a potential microbial marker of disease activity in SpA. © 2016, American College of Rheumatology.

  12. Probiotic legacy effects on gut microbial assembly in tilapia larvae

    PubMed Central

    Giatsis, Christos; Sipkema, Detmer; Ramiro-Garcia, Javier; Bacanu, Gianina M.; Abernathy, Jason; Verreth, Johan; Smidt, Hauke; Verdegem, Marc

    2016-01-01

    The exposure of fish to environmental free-living microbes and its effect on early colonization in the gut have been studied in recent years. However, little is known regarding how the host and environment interact to shape gut communities during early life. Here, we tested whether the early microbial exposure of tilapia larvae affects the gut microbiota at later life stages. The experimental period was divided into three stages: axenic, probiotic and active suspension. Axenic tilapia larvae were reared either under conventional conditions (active suspension systems) or exposed to a single strain probiotic (Bacillus subtilis) added to the water. Microbial characterization by Illumina HiSeq sequencing of 16S rRNA gene amplicons showed the presence of B. subtilis in the gut during the seven days of probiotic application. Although B. subtilis was no longer detected in the guts of fish exposed to the probiotic after day 7, gut microbiota of the exposed tilapia larvae remained significantly different from that of the control treatment. Compared with the control, fish gut microbiota under probiotic treatment was less affected by spatial differences resulting from tank replication, suggesting that the early probiotic contact contributed to the subsequent observation of low inter-individual variation. PMID:27670882

  13. Microbial colonization of basaltic glasses in hydrothermal organic-rich sediments at Guaymas Basin

    PubMed Central

    Callac, Nolwenn; Rommevaux-Jestin, Céline; Rouxel, Olivier; Lesongeur, Françoise; Liorzou, Céline; Bollinger, Claire; Ferrant, Antony; Godfroy, Anne

    2013-01-01

    Oceanic basalts host diverse microbial communities with various metabolisms involved in C, N, S, and Fe biogeochemical cycles which may contribute to mineral and glass alteration processes at, and below the seafloor. In order to study the microbial colonization on basaltic glasses and their potential biotic/abiotic weathering products, two colonization modules called AISICS (“Autonomous in situ Instrumented Colonization System”) were deployed in hydrothermal deep-sea sediments at the Guaymas Basin for 8 days and 22 days. Each AISICS module contained 18 colonizers (including sterile controls) filled with basaltic glasses of contrasting composition. Chemical analyses of ambient fluids sampled through the colonizers showed a greater contribution of hydrothermal fluids (maximum temperature 57.6°C) for the module deployed during the longer time period. For each colonizer, the phylogenetic diversity and metabolic function of bacterial and archaeal communities were explored using a molecular approach by cloning and sequencing. Results showed large microbial diversity in all colonizers. The bacterial distribution was primarily linked to the deployment duration, as well as the depth for the short deployment time module. Some 16s rRNA sequences formed a new cluster of Epsilonproteobacteria. Within the Archaea the retrieved diversity could not be linked to either duration, depth or substrata. However, mcrA gene sequences belonging to the ANME-1 mcrA-guaymas cluster were found sometimes associated with their putative sulfate-reducers syntrophs depending on the colonizers. Although no specific glass alteration texture was identified, nano-crystals of barite and pyrite were observed in close association with organic matter, suggesting a possible biological mediation. This study gives new insights into the colonization steps of volcanic rock substrates and the capability of microbial communities to exploit new environmental conditions. PMID:23986754

  14. Colonization Habitat Controls Biomass, Composition, and Metabolic Activity of Attached Microbial Communities in the Columbia River Hyporheic Corridor.

    PubMed

    Stern, Noah; Ginder-Vogel, Matthew; Stegen, James C; Arntzen, Evan; Kennedy, David W; Larget, Bret R; Roden, Eric E

    2017-08-15

    Hydrologic exchange plays a critical role in biogeochemical cycling within the hyporheic zone (the interface between river water and groundwater) of riverine ecosystems. Such exchange may set limits on the rates of microbial metabolism and impose deterministic selection on microbial communities that adapt to dynamically changing dissolved organic carbon (DOC) sources. This study examined the response of attached microbial communities ( in situ colonized sand packs) from groundwater, hyporheic, and riverbed habitats within the Columbia River hyporheic corridor to "cross-feeding" with either groundwater, river water, or DOC-free artificial fluids. Our working hypothesis was that deterministic selection during in situ colonization would dictate the response to cross-feeding, with communities displaying maximal biomass and respiration when supplied with their native fluid source. In contrast to expectations, the major observation was that the riverbed colonized sand had much higher biomass and respiratory activity, as well as a distinct community structure, compared with those of the hyporheic and groundwater colonized sands. 16S rRNA gene amplicon sequencing revealed a much higher proportion of certain heterotrophic taxa as well as significant numbers of eukaryotic algal chloroplasts in the riverbed colonized sand. Significant quantities of DOC were released from riverbed sediment and colonized sand, and separate experiments showed that the released DOC stimulated respiration in the groundwater and piezometer colonized sand. These results suggest that the accumulation and degradation of labile particulate organic carbon (POC) within the riverbed are likely to release DOC, which may enter the hyporheic corridor during hydrologic exchange, thereby stimulating microbial activity and imposing deterministic selective pressure on the microbial community composition. IMPORTANCE The influence of river water-groundwater mixing on hyporheic zone microbial community structure and function is an important but poorly understood component of riverine biogeochemistry. This study employed an experimental approach to gain insight into how such mixing might be expected to influence the biomass, respiration, and composition of hyporheic zone microbial communities. Colonized sands from three different habitats (groundwater, river water, and hyporheic) were "cross-fed" with either groundwater, river water, or DOC-free artificial fluids. We expected that the colonization history would dictate the response to cross-feeding, with communities displaying maximal biomass and respiration when supplied with their native fluid source. By contrast, the major observation was that the riverbed communities had much higher biomass and respiration, as well as a distinct community structure compared with those of the hyporheic and groundwater colonized sands. These results highlight the importance of riverbed microbial metabolism in organic carbon processing in hyporheic corridors. Copyright © 2017 American Society for Microbiology.

  15. Immunological effects of reduced mucosal integrity in the early life of BALB/c mice.

    PubMed

    Bendtsen, Katja Maria; Hansen, Camilla Hartmann Friis; Krych, Łukasz; Skovgaard, Kerstin; Kot, Witold; Vogensen, Finn Kvist; Hansen, Axel Kornerup

    2017-01-01

    Certain stimuli at the gut barrier may be necessary in early life to establish a proper balance of immune tolerance. We evaluated a compromised barrier in juvenile mice in relation to microbiota and local and systemic immunity. BALB/c mice were treated with a low dose of dextran sulfate sodium (DSS) with or without ampicillin and lipopolysaccharide (LPS) to clarify the importance of microbial antigens and interaction between microbial-associated patterns and toll-like receptors. The barrier breach resulted in increased plasma LPS, which was highest in mice treated simultaneously with ampicillin. Adding LPS in the food reduced its levels in plasma. Regulatory T cells were acutely increased in mesenteric lymph nodes (MLN) and spleen during DSS treatment regardless of simultaneous ampicillin treatment. In contrast, NK T and NK cells decreased in MLN and in spleen. This acute DSS effect was reflected in fold changes of haptoglobin and Il1a in colon, and this was also more pronounced in mice simultaneously treated with ampicillin. On day 1 post-treatment, major upregulations of Ifng, Foxp3, Il1b, Il2, and Il6 genes in colon were only observed in the mice simultaneously treated with ampicillin. A two-fold upregulation of colonic Foxp3 and Il1a was evident 25 days post-treatment. DSS skewed the microbiota in favor of Gram negative phyla. Therefore, increased permeability induced tolerogenic immunity independent of microbiota, and this was enhanced by LPS stimulation.

  16. Variable effects of plant colonization on black slate uptake into microbial PLFAs

    NASA Astrophysics Data System (ADS)

    Seifert, Anne-Gret; Trumbore, Susan; Xu, Xiaomei; Zhang, Dachung; Gleixner, Gerd

    2013-04-01

    Microbial degradation of carbon derived from black shale and slate has been shown in vitro. However, in natural settings where other labile carbon sources are likely to exist, this has not been previously demonstrated. We investigated the uptake of ancient carbon derived from slate weathering and from recently photosynthesised organic matter by different groups of microorganisms. Therefore we isolated microbial biomarkers (phospholipid fatty acids, PLFAs) from black slates collected at a chronosequence of waste piles which differed in age and vegetation cover. We quantified the amount of PLFAs and performed stable isotope and radiocarbon measurements on individual or grouped PLFAs to quantify the fraction of slate derived carbon. We used black slate from a pile heaped in the 1950s with either uncovered black slate material (bare site) or material slightly colonized by small plants (greened site) and from a forested leaching pile (forested site) used for alum-mining in the 19th century. Colonization by plants influenced the amount and composition of the microbial community. Greater amounts of PLFAs (5410 ng PLFA/g dw) were extracted from slate sampled at the forested site as opposed to the bare site (960 ng PLFAs/g dw) or the greened (annual grasses and mosses) rock waste pile (1050 ng PLFAs/g dw). We found the highest proportion of PLFAs representing Gram-negative bacteria on the forested site and the highest proportion of PLFAs representing Gram-positive bacteria on the bare site. The fungal PLFA was most abundant at the greened site. Sites with less plant colonization (bare and greened site) tended to have more depleted δ13C values compared to the forested site. Radiocarbon measurements on PLFAs indicated that fungi and Gram-positive bacteria were best adapted to black slate carbon uptake. In the fungal PLFA (combined bare and greened waste pile sample) and in PLFAs of Gram-positive bacteria (greened site) we measured 39.7% and 28.9% ancient carbon uptake, respectively. Our results prove that black slate degradation followed by carbon uptake takes place in situ. Results imply that plant colonization might additionally affect this process. Slight colonization with few plants increased slate derived carbon uptake in PLFAs of Gram-positive bacteria. Evidently, Gram-positive bacteria represented by specific PLFAs from the greened site held more ancient carbon than from the bare site. In contrast, no black slate derived carbon was used by microorganisms at the forested site with 2-3 times greater carbon content. Results suggest that the use of ancient slate derived carbon dominates mainly in early stages of microbial colonization of surfaces and that with increasing ecosystem development recycling of plant derived carbon dominates.

  17. Postnatal colonization with human "infant-type" Bifidobacterium species alters behavior of adult gnotobiotic mice.

    PubMed

    Luk, Berkley; Veeraragavan, Surabi; Engevik, Melinda; Balderas, Miriam; Major, Angela; Runge, Jessica; Luna, Ruth Ann; Versalovic, James

    2018-01-01

    Accumulating studies have defined a role for the intestinal microbiota in modulation of host behavior. Research using gnotobiotic mice emphasizes that early microbial colonization with a complex microbiota (conventionalization) can rescue some of the behavioral abnormalities observed in mice that grow to adulthood completely devoid of bacteria (germ-free mice). However, the human infant and adult microbiomes vary greatly, and effects of the neonatal microbiome on neurodevelopment are currently not well understood. Microbe-mediated modulation of neural circuit patterning in the brain during neurodevelopment may have significant long-term implications that we are only beginning to appreciate. Modulation of the host central nervous system by the early-life microbiota is predicted to have pervasive and lasting effects on brain function and behavior. We sought to replicate this early microbe-host interaction by colonizing gnotobiotic mice at the neonatal stage with a simplified model of the human infant gut microbiota. This model consortium consisted of four "infant-type" Bifidobacterium species known to be commensal members of the human infant microbiota present in high abundance during postnatal development. Germ-free mice and mice neonatally-colonized with a complex, conventional murine microbiota were used for comparison. Motor and non-motor behaviors of the mice were tested at 6-7 weeks of age, and colonization patterns were characterized by 16S ribosomal RNA gene sequencing. Adult germ-free mice were observed to have abnormal memory, sociability, anxiety-like behaviors, and motor performance. Conventionalization at the neonatal stage rescued these behavioral abnormalities, and mice colonized with Bifidobacterium spp. also exhibited important behavioral differences relative to the germ-free controls. The ability of Bifidobacterium spp. to improve the recognition memory of both male and female germ-free mice was a prominent finding. Together, these data demonstrate that the early-life gut microbiome, and human "infant-type" Bifidobacterium species, affect adult behavior in a strongly sex-dependent manner, and can selectively recapitulate the results observed when mice are colonized with a complex microbiota.

  18. Preservation in microbial mats: mineralization by a talc-like phase of a fish embedded in a microbial sarcophagus

    NASA Astrophysics Data System (ADS)

    Iniesto, Miguel; Zeyen, Nina; López-Archilla, Ana; Bernard, Sylvain; Buscalioni, Ángela; Guerrero, M. Carmen; Benzerara, Karim

    2015-09-01

    Microbial mats have been repeatedly suggested to promote early fossilization of macroorganisms. Yet, experimental simulations of this process remain scarce. Here, we report results of 5 year-long experiments performed onfish carcasses to document the influence of microbial mats on mineral precipitation during early fossilization. Carcasses were initially placed on top of microbial mats. After two weeks, fishes became coated by the mats forming a compact sarcophagus, which modified the microenvironment close to the corpses. Our results showed that these conditions favoured the precipitation of a poorly crystalline silicate phase rich in magnesium. This talc-like mineral phase has been detected in three different locations within the carcasses placed in microbial mats for more than 4 years: 1) within inner tissues, colonized by several bacillary cells; 2) at the surface of bones of the upper face of the corpse buried in the mat; and 3) at the surface of several bones such as the dorsal fin which appeared to be gradually replaced by the Mg-silicate phase. This mineral phase has been previously shown to promote bacteria fossilization. Here we provide first experimental evidence that such Mg-rich phase can also be involved in exceptional preservation of animals.

  19. Colonization strategy of the endophytic plant growth-promoting strains of Pseudomonas fluorescens and Klebsiella oxytoca on the seeds, seedlings and roots of the epiphytic orchid, Dendrobium nobile Lindl.

    PubMed

    Pavlova, A S; Leontieva, M R; Smirnova, T A; Kolomeitseva, G L; Netrusov, A I; Tsavkelova, E A

    2017-04-29

    Orchids form strong mycorrhizal associations, but their interactions with bacteria are poorly understood. We aimed to investigate the distribution of plant growth promoting rhizobacteria (PGPR) at different stages of orchid development and to study if there is any selective specificity in choosing PGPR partners. Colonization patterns of gfp-tagged Pseudomonas fluorescens and Klebsiella oxytoca were studied on roots, seeds, and seedlings of Dendrobium nobile. Endophytic rhizobacteria rapidly colonized velamen and core parenchyma entering through exodermis and the passage cells, whereas at the early stages, they stayed restricted to the surface and the outer layers of the protocorms and rhizoids. The highest amounts of auxin (indole-3-acetic acid) were produced by K. oxytoca and P. fluorescens in the nitrogen-limiting and NO 3 -containing media respectively. Bacterization of D. nobile seeds resulted in promotion of their in vitro germination. The plant showed no selective specificity to the tested strains. Klebsiella oxytoca demonstrated more intense colonization activity and more efficient growth promoting impact under tryptophan supplementation, while P. fluorescens revealed its growth-promoting capacity without tryptophan. Both strategies are regarded as complementary, improving adaptive potentials of the orchid when different microbial populations colonize the plant. This study enlarges our knowledge on orchid-microbial interactions, and provides new features on application of the nonorchid PGPR in orchid seed germination and conservation. © 2017 The Society for Applied Microbiology.

  20. Association Between Early Childhood Caries and Colonization with Streptococcus mutans Genotypes From Mothers.

    PubMed

    Childers, Noel K; Momeni, Stephanie S; Whiddon, Jennifer; Cheon, Kyounga; Cutter, Gary R; Wiener, Howard W; Ghazal, Tariq S; Ruby, John D; Moser, Stephen A

    2017-03-15

    The purpose of this study was to evaluate Streptococcus mutans genotypes (GT) between mother and child (M-C) in a high caries risk cohort to explore the association with early childhood caries (ECC). Sixty-nine infants (each approximately one year old) had periodic oral examinations (dmfs) and microbial samples collected from dental plaque, saliva, and other oral surfaces. Their mothers had an examination and plaque collected. S mutans isolates were genotyped using repetitive extragenic palindromic-PCR (rep-PCR). Statistical analyses were conducted for associations of S mutans in M-C dyads with caries outcomes. Twenty-seven S mutans genotypes (GT) from 3,414 isolates were identified. M-C were categorized as GT match (n equals 40) or no-match (n equals 29). When modeling the severity of ECC at 36 months (approximately four years old), the estimated dmfs in the match group was 2.61 times that of the no-match group (P=.014). Colonization of children with Streptococcus mutans genotypes that matched with mothers was shown to be highly associated with early childhood caries. Although the data suggest vertical transmission of S mutans in 40 of 69 children that shared GT with their mother, it is possible that other individuals transmitted the S mutans. Nonetheless, these findings support the importance of the mother's oral microbial status as a contributing influence to their children's oral health.

  1. Microbes on a Bottle: Substrate, Season and Geography Influence Community Composition of Microbes Colonizing Marine Plastic Debris.

    PubMed

    Oberbeckmann, Sonja; Osborn, A Mark; Duhaime, Melissa B

    2016-01-01

    Plastic debris pervades in our oceans and freshwater systems and the potential ecosystem-level impacts of this anthropogenic litter require urgent evaluation. Microbes readily colonize aquatic plastic debris and members of these biofilm communities are speculated to include pathogenic, toxic, invasive or plastic degrading-species. The influence of plastic-colonizing microorganisms on the fate of plastic debris is largely unknown, as is the role of plastic in selecting for unique microbial communities. This work aimed to characterize microbial biofilm communities colonizing single-use poly(ethylene terephthalate) (PET) drinking bottles, determine their plastic-specificity in contrast with seawater and glass-colonizing communities, and identify seasonal and geographical influences on the communities. A substrate recruitment experiment was established in which PET bottles were deployed for 5-6 weeks at three stations in the North Sea in three different seasons. The structure and composition of the PET-colonizing bacterial/archaeal and eukaryotic communities varied with season and station. Abundant PET-colonizing taxa belonged to the phylum Bacteroidetes (e.g. Flavobacteriaceae, Cryomorphaceae, Saprospiraceae-all known to degrade complex carbon substrates) and diatoms (e.g. Coscinodiscophytina, Bacillariophytina). The PET-colonizing microbial communities differed significantly from free-living communities, but from particle-associated (>3 μm) communities or those inhabiting glass substrates. These data suggest that microbial community assembly on plastics is driven by conventional marine biofilm processes, with the plastic surface serving as raft for attachment, rather than selecting for recruitment of plastic-specific microbial colonizers. A small proportion of taxa, notably, members of the Cryomorphaceae and Alcanivoraceae, were significantly discriminant of PET but not glass surfaces, conjuring the possibility that these groups may directly interact with the PET substrate. Future research is required to investigate microscale functional interactions at the plastic surface.

  2. Microbes on a Bottle: Substrate, Season and Geography Influence Community Composition of Microbes Colonizing Marine Plastic Debris

    PubMed Central

    Osborn, A. Mark

    2016-01-01

    Plastic debris pervades in our oceans and freshwater systems and the potential ecosystem-level impacts of this anthropogenic litter require urgent evaluation. Microbes readily colonize aquatic plastic debris and members of these biofilm communities are speculated to include pathogenic, toxic, invasive or plastic degrading-species. The influence of plastic-colonizing microorganisms on the fate of plastic debris is largely unknown, as is the role of plastic in selecting for unique microbial communities. This work aimed to characterize microbial biofilm communities colonizing single-use poly(ethylene terephthalate) (PET) drinking bottles, determine their plastic-specificity in contrast with seawater and glass-colonizing communities, and identify seasonal and geographical influences on the communities. A substrate recruitment experiment was established in which PET bottles were deployed for 5–6 weeks at three stations in the North Sea in three different seasons. The structure and composition of the PET-colonizing bacterial/archaeal and eukaryotic communities varied with season and station. Abundant PET-colonizing taxa belonged to the phylum Bacteroidetes (e.g. Flavobacteriaceae, Cryomorphaceae, Saprospiraceae—all known to degrade complex carbon substrates) and diatoms (e.g. Coscinodiscophytina, Bacillariophytina). The PET-colonizing microbial communities differed significantly from free-living communities, but from particle-associated (>3 μm) communities or those inhabiting glass substrates. These data suggest that microbial community assembly on plastics is driven by conventional marine biofilm processes, with the plastic surface serving as raft for attachment, rather than selecting for recruitment of plastic-specific microbial colonizers. A small proportion of taxa, notably, members of the Cryomorphaceae and Alcanivoraceae, were significantly discriminant of PET but not glass surfaces, conjuring the possibility that these groups may directly interact with the PET substrate. Future research is required to investigate microscale functional interactions at the plastic surface. PMID:27487037

  3. Colonization Habitat Controls Biomass, Composition, and Metabolic Activity of Attached Microbial Communities in the Columbia River Hyporheic Corridor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stern, Noah; Ginder-Vogel, Matthew; Stegen, James C.

    Hydrologic exchange plays a critical role in biogeochemical cycling within the hyporheic zone (the interface between river water and groundwater) of riverine ecosystems. Such exchange may set limits on the rates of microbial metabolism and impose deterministic selection on microbial communities that adapt to dynamically changing dissolved organic carbon (DOC) sources. This study examined the response of attached microbial communities (in situcolonized sand packs) from groundwater, hyporheic, and riverbed habitats within the Columbia River hyporheic corridor to “cross-feeding” with either groundwater, river water, or DOC-free artificial fluids. Our working hypothesis was that deterministic selection duringin situcolonization would dictate the responsemore » to cross-feeding, with communities displaying maximal biomass and respiration when supplied with their native fluid source. In contrast to expectations, the major observation was that the riverbed colonized sand had much higher biomass and respiratory activity, as well as a distinct community structure, compared with those of the hyporheic and groundwater colonized sands. 16S rRNA gene amplicon sequencing revealed a much higher proportion of certain heterotrophic taxa as well as significant numbers of eukaryotic algal chloroplasts in the riverbed colonized sand. Significant quantities of DOC were released from riverbed sediment and colonized sand, and separate experiments showed that the released DOC stimulated respiration in the groundwater and piezometer colonized sand. These results suggest that the accumulation and degradation of labile particulate organic carbon (POC) within the riverbed are likely to release DOC, which may enter the hyporheic corridor during hydrologic exchange, thereby stimulating microbial activity and imposing deterministic selective pressure on the microbial community composition. IMPORTANCEThe influence of river water-groundwater mixing on hyporheic zone microbial community structure and function is an important but poorly understood component of riverine biogeochemistry. This study employed an experimental approach to gain insight into how such mixing might be expected to influence the biomass, respiration, and composition of hyporheic zone microbial communities. Colonized sands from three different habitats (groundwater, river water, and hyporheic) were “cross-fed” with either groundwater, river water, or DOC-free artificial fluids. We expected that the colonization history would dictate the response to cross-feeding, with communities displaying maximal biomass and respiration when supplied with their native fluid source. By contrast, the major observation was that the riverbed communities had much higher biomass and respiration, as well as a distinct community structure compared with those of the hyporheic and groundwater colonized sands. These results highlight the importance of riverbed microbial metabolism in organic carbon processing in hyporheic corridors.« less

  4. Metaproteogenomic Profiling of Microbial Communities Colonizing Actively Venting Hydrothermal Chimneys

    PubMed Central

    Pjevac, Petra; Meier, Dimitri V.; Markert, Stephanie; Hentschker, Christian; Schweder, Thomas; Becher, Dörte; Gruber-Vodicka, Harald R.; Richter, Michael; Bach, Wolfgang; Amann, Rudolf; Meyerdierks, Anke

    2018-01-01

    At hydrothermal vent sites, chimneys consisting of sulfides, sulfates, and oxides are formed upon contact of reduced hydrothermal fluids with oxygenated seawater. The walls and surfaces of these chimneys are an important habitat for vent-associated microorganisms. We used community proteogenomics to investigate and compare the composition, metabolic potential and relative in situ protein abundance of microbial communities colonizing two actively venting hydrothermal chimneys from the Manus Basin back-arc spreading center (Papua New Guinea). We identified overlaps in the in situ functional profiles of both chimneys, despite differences in microbial community composition and venting regime. Carbon fixation on both chimneys seems to have been primarily mediated through the reverse tricarboxylic acid cycle and fueled by sulfur-oxidation, while the abundant metabolic potential for hydrogen oxidation and carbon fixation via the Calvin–Benson–Bassham cycle was hardly utilized. Notably, the highly diverse microbial community colonizing the analyzed black smoker chimney had a highly redundant metabolic potential. In contrast, the considerably less diverse community colonizing the diffusely venting chimney displayed a higher metabolic versatility. An increased diversity on the phylogenetic level is thus not directly linked to an increased metabolic diversity in microbial communities that colonize hydrothermal chimneys. PMID:29696004

  5. Living microorganisms change the information (Shannon) content of a geophysical system.

    PubMed

    Tang, Fiona H M; Maggi, Federico

    2017-06-12

    The detection of microbial colonization in geophysical systems is becoming of interest in various disciplines of Earth and planetary sciences, including microbial ecology, biogeochemistry, geomicrobiology, and astrobiology. Microorganisms are often observed to colonize mineral surfaces, modify the reactivity of minerals either through the attachment of their own biomass or the glueing of mineral particles with their mucilaginous metabolites, and alter both the physical and chemical components of a geophysical system. Here, we hypothesise that microorganisms engineer their habitat, causing a substantial change to the information content embedded in geophysical measures (e.g., particle size and space-filling capacity). After proving this hypothesis, we introduce and test a systematic method that exploits this change in information content to detect microbial colonization in geophysical systems. Effectiveness and robustness of this method are tested using a mineral sediment suspension as a model geophysical system; tests are carried out against 105 experiments conducted with different suspension types (i.e., pure mineral and microbially-colonized) subject to different abiotic conditions, including various nutrient and mineral concentrations, and different background entropy production rates. Results reveal that this method can systematically detect microbial colonization with less than 10% error in geophysical systems with low-entropy background production rate.

  6. The social structure of microbial community involved in colonization resistance.

    PubMed

    He, Xuesong; McLean, Jeffrey S; Guo, Lihong; Lux, Renate; Shi, Wenyuan

    2014-03-01

    It is well established that host-associated microbial communities can interfere with the colonization and establishment of microbes of foreign origins, a phenomenon often referred to as bacterial interference or colonization resistance. However, due to the complexity of the indigenous microbiota, it has been extremely difficult to elucidate the community colonization resistance mechanisms and identify the bacterial species involved. In a recent study, we have established an in vitro mice oral microbial community (O-mix) and demonstrated its colonization resistance against an Escherichia coli strain of mice gut origin. In this study, we further analyzed the community structure of the O-mix by using a dilution/regrowth approach and identified the bacterial species involved in colonization resistance against E. coli. Our results revealed that, within the O-mix there were three different types of bacterial species forming unique social structure. They act as 'Sensor', 'Mediator' and 'Killer', respectively, and have coordinated roles in initiating the antagonistic action and preventing the integration of E. coli. The functional role of each identified bacterial species was further confirmed by E. coli-specific responsiveness of the synthetic communities composed of different combination of the identified players. The study reveals for the first time the sophisticated structural and functional organization of a colonization resistance pathway within a microbial community. Furthermore, our results emphasize the importance of 'Facilitation' or positive interactions in the development of community-level functions, such as colonization resistance.

  7. Microbial Community Functional Change during Vertebrate Carrion Decomposition

    PubMed Central

    Pechal, Jennifer L.; Crippen, Tawni L.; Tarone, Aaron M.; Lewis, Andrew J.; Tomberlin, Jeffery K.; Benbow, M. Eric

    2013-01-01

    Microorganisms play a critical role in the decomposition of organic matter, which contributes to energy and nutrient transformation in every ecosystem. Yet, little is known about the functional activity of epinecrotic microbial communities associated with carrion. The objective of this study was to provide a description of the carrion associated microbial community functional activity using differential carbon source use throughout decomposition over seasons, between years and when microbial communities were isolated from eukaryotic colonizers (e.g., necrophagous insects). Additionally, microbial communities were identified at the phyletic level using high throughput sequencing during a single study. We hypothesized that carrion microbial community functional profiles would change over the duration of decomposition, and that this change would depend on season, year and presence of necrophagous insect colonization. Biolog EcoPlates™ were used to measure the variation in epinecrotic microbial community function by the differential use of 29 carbon sources throughout vertebrate carrion decomposition. Pyrosequencing was used to describe the bacterial community composition in one experiment to identify key phyla associated with community functional changes. Overall, microbial functional activity increased throughout decomposition in spring, summer and winter while it decreased in autumn. Additionally, microbial functional activity was higher in 2011 when necrophagous arthropod colonizer effects were tested. There were inconsistent trends in the microbial function of communities isolated from remains colonized by necrophagous insects between 2010 and 2011, suggesting a greater need for a mechanistic understanding of the process. These data indicate that functional analyses can be implemented in carrion studies and will be important in understanding the influence of microbial communities on an essential ecosystem process, carrion decomposition. PMID:24265741

  8. Linking Microbial Dynamics and Physicochemical Processes in High-temperature Acidic Fe(III)- Mineralizing Systems

    NASA Astrophysics Data System (ADS)

    Inskeep, W.

    2014-12-01

    Microbial activity is responsible for the mineralization of Fe(III)-oxides in high-temperature chemotrophic communities that flourish within oxygenated zones of low pH (2.5 - 4) geothermal outflow channels (Yellowstone National Park, WY). High-temperature Fe(II)-oxidizing communities contain several lineages of Archaea, and are excellent model systems for studying microbial interactions and spatiotemporal dynamics across geochemical gradients. We hypothesize that acidic Fe(III)-oxide mats form as a result of constant interaction among primary colonizers including Hydrogenobaculum spp. (Aquificales) and Metallosphaera spp. (Sulfolobales), and subsequent colonization by archaeal heterotrophs, which vary in abundance as a function of oxygen, pH and temperature. We are integrating a complementary suite of geochemical, stable isotope, genomic, proteomic and modeling analyses to study the role of microorganisms in Fe(III)-oxide mat development, and to elucidate the primary microbial interactions that are coupled with key abiotic events. Curated de novo assemblies of major phylotypes are being used to analyze additional -omics datasets from these microbial mats. Hydrogenobaculum spp. (Aquificales) are the dominant bacterial population(s) present, and predominate during early mat development (< 30 d). Other Sulfolobales populations known to oxidize Fe(II) and fix carbon dioxide (e.g., Metallosphaera spp.) represent a secondary stage of mat development (e.g., 14 - 30 d). Hydrogenobaculum filaments appear to promote the nucleation and subsequent mineralization of Fe(III)-oxides, which likely affect the growth and turnover rates of these organisms. Other heterotrophs colonize Fe(III)-oxide mats during succession (> 30 d), including novel lineages of Archaea and representatives within the Crenarchaeota, Euryarchaeota, Thaumarchaeota and Nanoarchaeota. In situ oxygen consumption rates show that steep gradients occur within the top 1 mm of mat surface, and which correlate with changes in the abundance of different organisms that occupy these microenvironments. The relative consumption of oxygen by different members of Fe(II)-oxidizing mat communities has implications for autotroph-heterotroph associations and the dynamic micromorphology of active Fe(III)-oxide terraces.

  9. Microbial colonization is required for normal neurobehavioral development in zebrafish..

    EPA Science Inventory

    Host-associated microbiota are a dynamic system that shapes organismal development. There is growing evidence that microbiota modify the toxicokinetics and/or toxicodynamics of environmental chemicals. To delineate the neurobehavioral consequences of microbial colonization, we ex...

  10. Microbial colonization is required for normal neurobehavioral development in zebrafish.

    EPA Science Inventory

    Host-associated microbiota are a dynamic system that shapes organismal development. There is growing evidence that microbiota modify the toxicokinetics and/or toxicodynamics of environmental chemicals. To delineate the neurobehavioral consequences of microbial colonization, we ex...

  11. Effect of vitamin C on azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced colitis-associated early colon cancer in mice.

    PubMed

    Jeon, Hee-Jin; Yeom, Yiseul; Kim, Yoo-Sun; Kim, Eunju; Shin, Jae-Ho; Seok, Pu Reum; Woo, Moon Jea; Kim, Yuri

    2018-04-01

    The objective of this study was to investigate the effects of vitamin C on inflammation, tumor development, and dysbiosis of intestinal microbiota in an azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced inflammation-associated early colon cancer mouse model. Male BALB/c mice were injected intraperitoneally with AOM [10 mg/kg body weight (b.w)] and given two 7-d cycles of 2% DSS drinking water with a 14 d inter-cycle interval. Vitamin C (60 mg/kg b.w. and 120 mg/kg b.w.) was supplemented by gavage for 5 weeks starting 2 d after the AOM injection. The vitamin C treatment suppressed inflammatory morbidity, as reflected by disease activity index (DAI) in recovery phase and inhibited shortening of the colon, and reduced histological damage. In addition, vitamin C supplementation suppressed mRNA levels of pro-inflammatory mediators and cytokines, including cyclooxygenase-2, microsomal prostaglandin E synthase-2, tumor necrosis factor-α, Interleukin (IL)-1β , and IL-6 , and reduced expression of the proliferation marker, proliferating cell nuclear antigen, compared to observations of AOM/DSS animals. Although the microbial composition did not differ significantly between the groups, administration of vitamin C improved the level of inflammation-related Lactococcus and JQ084893 to control levels. Vitamin C treatment provided moderate suppression of inflammation, proliferation, and certain inflammation-related dysbiosis in a murine model of colitis associated-early colon cancer. These findings support that vitamin C supplementation can benefit colonic health. Long-term clinical studies with various doses of vitamin C are warranted.

  12. Microbial Response to a Deep-Sea Volcanic Eruption at 9N on the East Pacific Rise

    NASA Astrophysics Data System (ADS)

    Sievert, S. M.; Gulmann, L. K.; Hugler, M.; Taylor, C. D.; Molyneaux, S. J.; Sylva, S. P.; Beaulieu, S. E.; Shank, T. M.; Summons, R. E.; Wirsen, C. O.

    2006-12-01

    Microorganisms form the basis of deep-sea hydrothermal vent ecosystems. Never is this more apparent than after an eruption, which basically wipes out the lush animal communities typically associated with these systems. However, the consequences of eruptions and other perturbations to the microbial communities are only poorly understood. This contrasts with faunal communities, for which disturbances and succession have been described, in particular after the eruption at 9 ° N EPR in 1991. Thus, the recent eruption that occurred at this site represents a unique opportunity to not only follow the faunal communities, but to also study the microbial communities after a major disturbance and to follow their succession through time. During the RESET06 cruise on R/V Atlantis in June/July 2006 we had the opportunity to visit the this site approximately 5 months after an eruption. During dives with the research submersible ALVIN we identified a diffuse vent site for more detailed studies. This site lies within the former Marker 82 area and was marked with a new marker. Extensive diffuse flow was observed at this site with temperatures ranging between 10 and 30 ° C. New lava flow covered the area and in areas of diffuse flow the new basalt was covered with white staining. In addition, tubeworms of the genus Tevnia had already started colonizing these rocks, particularly the underside. 16S rDNA clone libraries constructed with genomic DNA extracted from basalt revealed that the white staining was in fact a biofilm predominantly composed of epsilon proteobacteria, with additional phylotypes belonging to the gamma and delta proteobacteria as well as the CFB phylum. Archaea were not detected. In addition, we analyzed a biofilm that had formed on a colonization device that was exposed to diffuse hydrothermal fluids for four days to look. In this case, the microbial community was entirely composed of epsilon-proteobacteria, with sequences related to Candidatus Arcobacter sulfidicus, a chemolithoautotrophic sulfur oxidizing bacterium that forms filamentous sulfur, dominating. Arcobacter related sequences were not observed on the basalt samples, indicating that these organisms might be early colonizers, which subsequently get replaced by other bacteria. This supports our hypothesis that autotrophic epsilon- proteobacteria, such as Arcobacter, will be the first colonizers, followed by increasing numbers of heterotrophic microorganisms over time. These autotrophic microbes appear to predominantly live in the subsurface at vents, allowing the rapid colonization of newly exposed surfaces. To confirm this hypothesis we also filtered large volumes of water in situ to access the composition of the microbial communities associated with the expelled fluids. Shipboard incubations with 13C-labeled bicarbonate were further carried out to identify chemolithoautotrophic microbes. The data obtained in this study will further be compared with recent colonization experiments that were carried out at 9 ° N EPR prior to the eruption. Overall, our studies show that microorganisms rapidly colonize newly exposed surfaces at sites where warm water emanates from the sub-seafloor. Furthermore there appears to be a succession of microbes, with epsilon-proteobacteria and in particular Arcobacter species as primary colonizers, possibly triggering the settlement of larvae. Finally, the data obtained during this cruise will serve as a benchmark for future cruises and analyses to document the changes in the microbial communities occurring over time.

  13. Association of Colonization with Streptococcus mutans Genotypes from Mothers and Early Childhood Caries

    PubMed Central

    Childers, Noel K.; Momeni, Stephanie S.; Whiddon, Jennifer; Cheon, Kyounga; Cutter, Gary R.; Wiener, Howard W.; Ghazal, Tariq S.; Ruby, John D.; Moser, Stephen A.

    2016-01-01

    Purpose This study evaluated Streptococcus mutans (Sm) genotypes (GT) between mother and child (M-C) in a high caries risk cohort to explore the association with early childhood caries (ECC). Methods Sixty-nine infants (~1 year-old) had periodic oral examination (dmfs) and collection of microbial samples from dental plaque, saliva and oral other surfaces. Their mothers had an examination and plaque collected. Sm isolates were genotyped using repetitive extragenic palindromic-PCR (rep-PCR). Statistical analyses were conducted for associations of Sm in M-C dyads with caries outcomes. Results Twenty-seven Sm genotypes (GT) from 3,414 isolates were identified. M-C were categorized as GT Match (N=40) or no-Match (N=29). When modeling the severity of ECC at 36-months (~4 years old), the estimated dmfs in the Match group was 2.61 times that in the no-Match group (P=.014). Conclusions Colonization of children with Sm GT that matched with mothers was shown to be highly associated with ECC. Although the data suggest vertical transmission of Sm in 40 of 69 children that shared GT with their mother, it is possible that other individuals transmitted the Sm. Nonetheless, these findings support the importance of the mother's oral microbial status as a contributing influence to their children's oral health. PMID:28390463

  14. Insights into the respiratory tract microbiota of patients with cystic fibrosis during early Pseudomonas aeruginosa colonization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keravec, Marlène; Mounier, Jérôme; Prestat, Emmanuel

    Pseudomonas aeruginosa plays a major role in cystic fibrosis (CF) progression. Therefore, it is important to understand the initial steps of P. aeruginosa infection. The structure and dynamics of CF respiratory tract microbial communities during the early stages of P. aeruginosa colonization were characterized by pyrosequencing and cloning-sequencing. The respiratory microbiota showed high diversity, related to the young age of the CF cohort (mean age 10 years). Wide inter- and intra-individual variations were revealed. A common core microbiota of 5 phyla and 13 predominant genera was found, the majority of which were obligate anaerobes. A few genera were significantly moremore » prevalent in patients never infected by P. aeruginosa. Persistence of an anaerobic core microbiota regardless of P. aeruginosa status suggests a major role of certain anaerobes in the pathophysiology of lung infections in CF. Some genera may be potential biomarkers of pulmonary infection state.« less

  15. Insights into the respiratory tract microbiota of patients with cystic fibrosis during early Pseudomonas aeruginosa colonization

    DOE PAGES

    Keravec, Marlène; Mounier, Jérôme; Prestat, Emmanuel; ...

    2015-08-09

    Pseudomonas aeruginosa plays a major role in cystic fibrosis (CF) progression. Therefore, it is important to understand the initial steps of P. aeruginosa infection. The structure and dynamics of CF respiratory tract microbial communities during the early stages of P. aeruginosa colonization were characterized by pyrosequencing and cloning-sequencing. The respiratory microbiota showed high diversity, related to the young age of the CF cohort (mean age 10 years). Wide inter- and intra-individual variations were revealed. A common core microbiota of 5 phyla and 13 predominant genera was found, the majority of which were obligate anaerobes. A few genera were significantly moremore » prevalent in patients never infected by P. aeruginosa. Persistence of an anaerobic core microbiota regardless of P. aeruginosa status suggests a major role of certain anaerobes in the pathophysiology of lung infections in CF. Some genera may be potential biomarkers of pulmonary infection state.« less

  16. Microbial Biotransformation of a Polyphenol-Rich Potato Extract Affects Antioxidant Capacity in a Simulated Gastrointestinal Model

    PubMed Central

    Khairallah, Joelle; Sadeghi Ekbatan, Shima; Sabally, Kebba; Iskandar, Michèle M.; Hussain, Raza; Sleno, Lekha; Rodes, Laetitia; Prakash, Satya

    2018-01-01

    A multistage human gastrointestinal model was used to digest a polyphenol-rich potato extract containing chlorogenic acid, caffeic acid, ferulic acid, and rutin as the primary polyphenols, to assess for their microbial biotransformation and to measure changes in antioxidant capacity in up to 24 h of digestion. The biotransformation of polyphenols was assessed by liquid chromatography–mass spectrometry. Antioxidant capacity was measured by the ferric reducing antioxidant power (FRAP) assay. Among the colonic reactors, parent (poly)phenols were detected in the ascending (AC), but not the transverse (TC) or descending (DC) colons. The most abundant microbial phenolic metabolites in all colonic reactors included derivatives of propionic acid, acetic acid, and benzoic acid. As compared to the baseline, an earlier increase in antioxidant capacity (T = 8 h) was seen in the stomach and small intestine vessels as compared to the AC (T = 16 h) and TC and DC (T = 24 h). The increase in antioxidant capacity observed in the DC and TC can be linked to the accumulation of microbial smaller-molecular-weight phenolic catabolites, as the parent polyphenolics had completely degraded in those vessels. The colonic microbial digestion of potato-based polyphenols could lead to improved colonic health, as this generates phenolic metabolites with significant antioxidant potential. PMID:29558385

  17. Genome resolved analysis of a premature infant gut microbial community reveals a Varibaculum cambriense genome and a shift towards fermentation-based metabolism during the third week of life.

    PubMed

    Brown, Christopher T; Sharon, Itai; Thomas, Brian C; Castelle, Cindy J; Morowitz, Michael J; Banfield, Jillian F

    2013-12-17

    The premature infant gut has low individual but high inter-individual microbial diversity compared with adults. Based on prior 16S rRNA gene surveys, many species from this environment are expected to be similar to those previously detected in the human microbiota. However, the level of genomic novelty and metabolic variation of strains found in the infant gut remains relatively unexplored. To study the stability and function of early microbial colonizers of the premature infant gut, nine stool samples were taken during the third week of life of a premature male infant delivered via Caesarean section. Metagenomic sequences were assembled and binned into near-complete and partial genomes, enabling strain-level genomic analysis of the microbial community.We reconstructed eleven near-complete and six partial bacterial genomes representative of the key members of the microbial community. Twelve of these genomes share >90% putative ortholog amino acid identity with reference genomes. Manual curation of the assembly of one particularly novel genome resulted in the first essentially complete genome sequence (in three pieces, the order of which could not be determined due to a repeat) for Varibaculum cambriense (strain Dora), a medically relevant species that has been implicated in abscess formation.During the period studied, the microbial community undergoes a compositional shift, in which obligate anaerobes (fermenters) overtake Escherichia coli as the most abundant species. Other species remain stable, probably due to their ability to either respire anaerobically or grow by fermentation, and their capacity to tolerate fluctuating levels of oxygen. Metabolic predictions for V. cambriense suggest that, like other members of the microbial community, this organism is able to process various sugar substrates and make use of multiple different electron acceptors during anaerobic respiration. Genome comparisons within the family Actinomycetaceae reveal important differences related to respiratory metabolism and motility. Genome-based analysis provided direct insight into strain-specific potential for anaerobic respiration and yielded the first genome for the genus Varibaculum. Importantly, comparison of these de novo assembled genomes with closely related isolate genomes supported the accuracy of the metagenomic methodology. Over a one-week period, the early gut microbial community transitioned to a community with a higher representation of obligate anaerobes, emphasizing both taxonomic and metabolic instability during colonization.

  18. Genome resolved analysis of a premature infant gut microbial community reveals a Varibaculum cambriense genome and a shift towards fermentation-based metabolism during the third week of life

    PubMed Central

    2013-01-01

    Background The premature infant gut has low individual but high inter-individual microbial diversity compared with adults. Based on prior 16S rRNA gene surveys, many species from this environment are expected to be similar to those previously detected in the human microbiota. However, the level of genomic novelty and metabolic variation of strains found in the infant gut remains relatively unexplored. Results To study the stability and function of early microbial colonizers of the premature infant gut, nine stool samples were taken during the third week of life of a premature male infant delivered via Caesarean section. Metagenomic sequences were assembled and binned into near-complete and partial genomes, enabling strain-level genomic analysis of the microbial community. We reconstructed eleven near-complete and six partial bacterial genomes representative of the key members of the microbial community. Twelve of these genomes share >90% putative ortholog amino acid identity with reference genomes. Manual curation of the assembly of one particularly novel genome resulted in the first essentially complete genome sequence (in three pieces, the order of which could not be determined due to a repeat) for Varibaculum cambriense (strain Dora), a medically relevant species that has been implicated in abscess formation. During the period studied, the microbial community undergoes a compositional shift, in which obligate anaerobes (fermenters) overtake Escherichia coli as the most abundant species. Other species remain stable, probably due to their ability to either respire anaerobically or grow by fermentation, and their capacity to tolerate fluctuating levels of oxygen. Metabolic predictions for V. cambriense suggest that, like other members of the microbial community, this organism is able to process various sugar substrates and make use of multiple different electron acceptors during anaerobic respiration. Genome comparisons within the family Actinomycetaceae reveal important differences related to respiratory metabolism and motility. Conclusions Genome-based analysis provided direct insight into strain-specific potential for anaerobic respiration and yielded the first genome for the genus Varibaculum. Importantly, comparison of these de novo assembled genomes with closely related isolate genomes supported the accuracy of the metagenomic methodology. Over a one-week period, the early gut microbial community transitioned to a community with a higher representation of obligate anaerobes, emphasizing both taxonomic and metabolic instability during colonization. PMID:24451181

  19. PCR Conditions for 16S Primers for Analysis of Microbes in the Colon of Rats.

    PubMed

    Guillen, I A; Camacho, H; Tuero, A D; Bacardí, D; Palenzuela, D O; Aguilera, A; Silva, J A; Estrada, R; Gell, O; Suárez, J; Ancizar, J; Brown, E; Colarte, A B; Castro, J; Novoa, L I

    2016-09-01

    The study of the composition of the intestinal flora is important to the health of the host, playing a key role in maintaining intestinal homeostasis and the evolution of the immune system. For these studies, various universal primers of the 16S rDNA gene are used in microbial taxonomy. Here, we report an evaluation of 5 universal primers to explore the presence of microbial DNA in colon biopsies preserved in RNAlater solution. The DNA extracted was used for the amplification of PCR products containing the variable (V) regions of the microbial 16S rDNA gene. The PCR products were studied by restriction fragment length polymorphism (RFLP) analysis and DNA sequence, whose percent of homology with microbial sequences reported in GenBank was verified using bioinformatics tools. The presence of microbes in the colon of rats was quantified by the quantitative PCR (qPCR) technique. We obtained microbial DNA from rat, useful for PCR analysis with the universal primers for the bacteria 16S rDNA. The sequences of PCR products obtained from a colon biopsy of the animal showed homology with the classes bacilli (Lactobacillus spp) and proteobacteria, normally represented in the colon of rats. The proposed methodology allowed the attainment of DNA of bacteria with the quality and integrity for use in qPCR, sequencing, and PCR-RFLP analysis. The selected universal primers provided knowledge of the abundance of microorganisms and the formation of a preliminary test of bacterial diversity in rat colon biopsies.

  20. Microbial Changes during Pregnancy, Birth, and Infancy

    PubMed Central

    Nuriel-Ohayon, Meital; Neuman, Hadar; Koren, Omry

    2016-01-01

    Several healthy developmental processes such as pregnancy, fetal development, and infant development include a multitude of physiological changes: weight gain, hormonal, and metabolic changes, as well as immune changes. In this review, we present an additional important factor which both influences and is affected by these physiological processes—the microbiome. We summarize the known changes in microbiota composition at a variety of body sites including gut, vagina, oral cavity, and placenta, throughout pregnancy, fetal development, and early childhood. There is still a lot to be discovered; yet several pieces of research point to the healthy desired microbial changes. Future research is likely to unravel precise roles and mechanisms of the microbiota in gestation; perhaps linking the metabolic, hormonal, and immune changes together. Although some research has started to link microbial dysbiosis and specific microbial populations with unhealthy pregnancy complications, it is important to first understand the context of the natural healthy microbial changes occurring. Until recently the placenta and developing fetus were considered to be germ free, containing no apparent microbiome. We present multiple study results showing distinct microbiota compositions in the placenta and meconium, alluding to early microbial colonization. These results may change dogmas and our overall understanding of the importance and roles of microbiota from the beginning of life. We further review the main factors shaping the infant microbiome—modes of delivery, feeding, weaning, and exposure to antibiotics. Taken together, we are starting to build a broader understanding of healthy vs. abnormal microbial alterations throughout major developmental time-points. PMID:27471494

  1. Carrying Capacity and Colonization Dynamics of Curvibacter in the Hydra Host Habitat

    PubMed Central

    Wein, Tanita; Dagan, Tal; Fraune, Sebastian; Bosch, Thomas C. G.; Reusch, Thorsten B. H.; Hülter, Nils F.

    2018-01-01

    Most eukaryotic species are colonized by a microbial community – the microbiota – that is acquired during early life stages and is critical to host development and health. Much research has focused on the microbiota biodiversity during the host life, however, empirical data on the basic ecological principles that govern microbiota assembly is lacking. Here we quantify the contribution of colonizer order, arrival time and colonization history to microbiota assembly on a host. We established the freshwater polyp Hydra vulgaris and its dominant colonizer Curvibacter as a model system that enables the visualization and quantification of colonizer population size at the single cell resolution, in vivo, in real time. We estimate the carrying capacity of a single Hydra polyp as 2 × 105 Curvibacter cells, which is robust among individuals and time. Colonization experiments reveal a clear priority effect of first colonizers that depends on arrival time and colonization history. First arriving colonizers achieve a numerical advantage over secondary colonizers within a short time lag of 24 h. Furthermore, colonizers primed for the Hydra habitat achieve a numerical advantage in the absence of a time lag. These results follow the theoretical expectations for any bacterial habitat with a finite carrying capacity. Thus, Hydra colonization and succession processes are largely determined by the habitat occupancy over time and Curvibacter colonization history. Our experiments provide empirical data on the basic steps of host-associated microbiota establishment – the colonization stage. The presented approach supplies a framework for studying habitat characteristics and colonization dynamics within the host–microbe setting. PMID:29593687

  2. Gut microbial functional maturation and succession during human early life.

    PubMed

    Cerdó, Tomás; Ruiz, Alicia; Acuña, Inmaculada; Jáuregui, Ruy; Jehmlich, Nico; Haange, Sven-Bastian; von Bergen, Martin; Suárez, Antonio; Campoy, Cristina

    2018-04-24

    The evolutional trajectory of gut microbial colonization from birth has been shown to prime for health later in life. Here, we combined cultivation-independent 16S rRNA gene sequencing and metaproteomics to investigate the functional maturation of gut microbiota in faecal samples from full-term healthy infants collected at 6 and 18 months of age. Phylogenetic analysis of the metaproteomes showed that Bifidobacterium provided the highest number of distinct protein groups. Considerable divergences between taxa abundance and protein phylogeny were observed at all taxonomic ranks. Age had a profound effect on early microbiota where compositional and functional diversity of less dissimilar communities increased with time. Comparisons of the relative abundances of proteins revealed the transition of taxon-associated saccharolytic and fermentation strategies from milk and mucin-derived monosaccharide catabolism feeding acetate/propanoate synthesis to complex food-derived hexoses fuelling butanoate production. Furthermore, co-occurrence network analysis uncovered two anti-correlated modules of functional taxa. A low-connected Bifidobacteriaceae-centred guild of facultative anaerobes was succeeded by a rich club of obligate anaerobes densely interconnected around Lachnospiraceae, underpinning their pivotal roles in microbial ecosystem assemblies. Our findings establish a framework to visualize whole microbial community metabolism and ecosystem succession dynamics, proposing opportunities for microbiota-targeted health-promoting strategies early in life. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. A Spatially Continuous Model of Carbohydrate Digestion and Transport Processes in the Colon

    PubMed Central

    Moorthy, Arun S.; Brooks, Stephen P. J.; Kalmokoff, Martin; Eberl, Hermann J.

    2015-01-01

    A spatially continuous mathematical model of transport processes, anaerobic digestion and microbial complexity as would be expected in the human colon is presented. The model is a system of first-order partial differential equations with context determined number of dependent variables, and stiff, non-linear source terms. Numerical simulation of the model is used to elucidate information about the colon-microbiota complex. It is found that the composition of materials on outflow of the model does not well-describe the composition of material in other model locations, and inferences using outflow data varies according to model reactor representation. Additionally, increased microbial complexity allows the total microbial community to withstand major system perturbations in diet and community structure. However, distribution of strains and functional groups within the microbial community can be modified depending on perturbation length and microbial kinetic parameters. Preliminary model extensions and potential investigative opportunities using the computational model are discussed. PMID:26680208

  4. Age-related changes in select fecal bacteria in foals

    USDA-ARS?s Scientific Manuscript database

    Adult horses depend on the microbial community in the hindgut to produce VFAs that are utilized for energy. Microbial colonization in the gastrointestinal tract of foals is essential to develop a healthy symbiotic relationship and prevent proliferation of pathogenic bacteria. However, colonization i...

  5. Effect of anti-biofouling potential of multi-walled carbon nanotubes-filled polydimethylsiloxane composites on pioneer microbial colonization.

    PubMed

    Sun, Yuan; Lang, Yanhe; Sun, Qian; Liang, Shuang; Liu, Yongkang; Zhang, Zhizhou

    2016-09-01

    In this paper, two carbon nanotube (CNT) nanofillers, namely the multi-walled carbon nanotubes (MWCNTs) and the carboxyl-modified MWCNTs (cMWCNTs), were introduced into the polydimethylsiloxane (PDMS) matrix respectively, in order to produce the PDMS composites with reinforced anti-biofouling properties. The anti-biofouling capacity of the silicone-based coatings, including the unfilled PDMS (P0), the MWCNTs-filled PDMS (PM) and the cMWCNTs-filled PDMS (PC), was examined via the field assays conducted in Weihai, China. The effect of different silicone-based coatings on the dynamic variations of the pioneer microbial-community diversity was analyzed using the single-strand conformation polymorphism (SSCP) technique. The PM and PC surfaces have exhibited excellent anti-biofouling properties in contrast to that of the PDMS surface, with extremely low attachment of the early colonizers, such as juvenile invertebrates, seaweeds and algae sporelings. The PM and PC surfaces can effectively prevent biofouling for more than 12 weeks. These combined results suggest that the incorporation of MWCNTs or cMWCNTs into the PDMS matrix can dramatically reinforce its anti-biofouling properties. The SSCP analysis reveals that compared with the PDMS surfaces, the PM and PC surfaces have strong modulating effect on the pioneer prokaryotic and eukaryotic communities, particularly on the colonization of pioneer eukaryotic microbes. The significantly reduced pioneer eukaryotic-community diversity may contribute to the weakening of the subsequent colonization of macrofoulers. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Establishment of Normal Gut Microbiota Is Compromised under Excessive Hygiene Conditions

    PubMed Central

    Schmidt, Bettina; Mulder, Imke E.; Musk, Corran C.; Aminov, Rustam I.; Lewis, Marie; Stokes, Christopher R.; Bailey, Mick; Prosser, James I.; Gill, Bhupinder P.; Pluske, John R.; Kelly, Denise

    2011-01-01

    Background Early gut colonization events are purported to have a major impact on the incidence of infectious, inflammatory and autoimmune diseases in later life. Hence, factors which influence this process may have important implications for both human and animal health. Previously, we demonstrated strong influences of early-life environment on gut microbiota composition in adult pigs. Here, we sought to further investigate the impact of limiting microbial exposure during early life on the development of the pig gut microbiota. Methodology/Principal Findings Outdoor- and indoor-reared animals, exposed to the microbiota in their natural rearing environment for the first two days of life, were transferred to an isolator facility and adult gut microbial diversity was analyzed by 16S rRNA gene sequencing. From a total of 2,196 high-quality 16S rRNA gene sequences, 440 phylotypes were identified in the outdoor group and 431 phylotypes in the indoor group. The majority of clones were assigned to the four phyla Firmicutes (67.5% of all sequences), Proteobacteria (17.7%), Bacteroidetes (13.5%) and to a lesser extent, Actinobacteria (0.1%). Although the initial maternal and environmental microbial inoculum of isolator-reared animals was identical to that of their naturally-reared littermates, the microbial succession and stabilization events reported previously in naturally-reared outdoor animals did not occur. In contrast, the gut microbiota of isolator-reared animals remained highly diverse containing a large number of distinct phylotypes. Conclusions/Significance The results documented here indicate that establishment and development of the normal gut microbiota requires continuous microbial exposure during the early stages of life and this process is compromised under conditions of excessive hygiene. PMID:22164261

  7. Microbial diversity of supra- and subgingival biofilms on freshly colonized titanium implant abutments in the human mouth.

    PubMed

    Heuer, W; Stiesch, M; Abraham, W R

    2011-02-01

    Supra- and subgingival biofilm formation is considered to be mainly responsible for early implant failure caused by inflammations of periimplant tissues. Nevertheless, little is known about the complex microbial diversity and interindividual similarities around dental implants. An atraumatic assessment was made of the diversity of microbial communities around titanium implants by single strand conformation polymorphism (SSCP) analysis of the 16S rRNA gene amplicons as well as subsequent sequence analysis. Samples of adherent supra- and subgingival periimplant biofilms were collected from ten patients. Additionally, samples of sulcusfluid were taken at titanium implant abutments and remaining teeth. The bacteria in the samples were characterized by SSCP and sequence analysis. A high diversity of bacteria varying between patients and within one patient at different locations was found. Bacteria characteristic for sulcusfluid and supra- and subgingival biofilm communities were identified. Sulcusfluid of the abutments showed higher abundance of Streptococcus species than from residual teeth. Prevotella and Rothia species frequently reported from the oral cavity were not detected at the abutments suggesting a role as late colonizers. Different niches in the human mouth are characterized by specific groups of bacteria. Implant abutments are a very valuable approach to study dental biofilm development in vivo.

  8. Lactobacillus plantarum IFPL935 favors the initial metabolism of red wine polyphenols when added to a colonic microbiota.

    PubMed

    Barroso, Elvira; Sánchez-Patán, Fernando; Martín-Alvarez, Pedro J; Bartolomé, Begoña; Moreno-Arribas, María Victoria; Peláez, Carmen; Requena, Teresa; van de Wiele, Tom; Martínez-Cuesta, M Carmen

    2013-10-23

    This work aimed to unravel the role of Lactobacillus plantarum IFPL935 strain in the colonic metabolism of a polyphenolic red wine extract, when added to a complex human colonic microbiota from the dynamic simulator of the human intestinal microbial ecosystem (SHIME). The concentration of microbial-derived phenolic metabolites and microbial community changes along with fermentative and proteolytic activities were monitored. The results showed that L. plantarum IFPL935 significantly increased the concentration of the initial microbial ring-fission catabolite of catechins and procyanidins, diphenylpropanol, and, similarly, 4-hydroxy-5-(3'-hydroxyphenyl)valeric acid production. Overall, the addition of L. plantarum IFPL935 did not have an impact on the total concentration of phenolic metabolites, except for batches inoculated with colonic microbiota from the effluent compartment (EC), where the figures were significantly higher when L. plantarum IFPL935 was added (24 h). In summary, the data highlighted that L. plantarum IFPL935 may have an impact on the bioavailability of these dietary polyphenols. Some of the microbial-derived metabolites may play a key role in the protective effects that have been linked to a polyphenol-rich diet.

  9. Characterizing the microbial colonization of a dolostone quarry: implications for stone biodeterioration and response to biocide treatments.

    PubMed

    Cámara, Beatriz; De los Ríos, Asuncion; Urizal, Marta; de Buergo, Mónica Alvarez; Varas, Maria Jose; Fort, Rafael; Ascaso, Carmen

    2011-08-01

    This study examines the microbial colonization of three fronts of an abandoned dolostone quarry (Redueña, Madrid, Spain) exposed to atmospheric conditions for different time periods since Roman times to the present. Through scanning electron microscopy in backscattered electron mode (SEM-BSE), endolithic colonization was predominantly detected in the most recently exposed front, while in the longer exposed quarry fronts, epilithic forms of growth were most often observed. These observations were confirmed by denaturing gradient gel electrophoresis (DGGE) analysis. Based on the distribution pattern of microbial colonization in the different quarry fronts, we then established a sequence of colonization events that took place over this long time frame. Bioalteration processes related to this sequential colonization were also identified. Characterizing these sequential processes can be useful for interpreting biodeterioration processes in historic dolostone monuments, especially those affecting constructions in the area of the Redueña stone quarry. In a second experimental stage, different biocide treatments were tested on this quarry rock to find the best way to avoid the microbial colonization effects identified. Through combined SEM-BSE/DGGE analysis, the efficacy of several biocides against the microorganisms inhabiting the dolostones was assessed after 4 and 16 months treatment. In general, all treatments were effective at reducing around 80% of the lichen cover, although effects on endolithic lithobiontic communities were dependent on how well the rock surface had been mechanically cleaned prior to treatment and gradually disappeared over time.

  10. Effect of vitamin C on azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced colitis-associated early colon cancer in mice

    PubMed Central

    2018-01-01

    BACKGROUND/OBJECTIVES The objective of this study was to investigate the effects of vitamin C on inflammation, tumor development, and dysbiosis of intestinal microbiota in an azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced inflammation-associated early colon cancer mouse model. MATERIALS/METHODS Male BALB/c mice were injected intraperitoneally with AOM [10 mg/kg body weight (b.w)] and given two 7-d cycles of 2% DSS drinking water with a 14 d inter-cycle interval. Vitamin C (60 mg/kg b.w. and 120 mg/kg b.w.) was supplemented by gavage for 5 weeks starting 2 d after the AOM injection. RESULTS The vitamin C treatment suppressed inflammatory morbidity, as reflected by disease activity index (DAI) in recovery phase and inhibited shortening of the colon, and reduced histological damage. In addition, vitamin C supplementation suppressed mRNA levels of pro-inflammatory mediators and cytokines, including cyclooxygenase-2, microsomal prostaglandin E synthase-2, tumor necrosis factor-α, Interleukin (IL)-1β, and IL-6, and reduced expression of the proliferation marker, proliferating cell nuclear antigen, compared to observations of AOM/DSS animals. Although the microbial composition did not differ significantly between the groups, administration of vitamin C improved the level of inflammation-related Lactococcus and JQ084893 to control levels. CONCLUSION Vitamin C treatment provided moderate suppression of inflammation, proliferation, and certain inflammation-related dysbiosis in a murine model of colitis associated-early colon cancer. These findings support that vitamin C supplementation can benefit colonic health. Long-term clinical studies with various doses of vitamin C are warranted. PMID:29629026

  11. The effect of the timing of exposure to Campylobacter jejuni on the gut microbiome and inflammatory responses of broiler chickens.

    PubMed

    Connerton, Phillippa L; Richards, Philip J; Lafontaine, Geraldine M; O'Kane, Peter M; Ghaffar, Nacheervan; Cummings, Nicola J; Smith, Darren L; Fish, Neville M; Connerton, Ian F

    2018-05-12

    Campylobacters are an unwelcome member of the poultry gut microbiota in terms of food safety. The objective of this study was to compare the microbiota, inflammatory responses, and zootechnical parameters of broiler chickens not exposed to Campylobacter jejuni with those exposed either early at 6 days old or at the age commercial broiler chicken flocks are frequently observed to become colonized at 20 days old. Birds infected with Campylobacter at 20 days became cecal colonized within 2 days of exposure, whereas birds infected at 6 days of age did not show complete colonization of the sample cohort until 9 days post-infection. All birds sampled thereafter were colonized until the end of the study at 35 days (mean 6.1 log 10 CFU per g of cecal contents). The cecal microbiota of birds infected with Campylobacter were significantly different to age-matched non-infected controls at 2 days post-infection, but generally, the composition of the cecal microbiota were more affected by bird age as the time post infection increased. The effects of Campylobacter colonization on the cecal microbiota were associated with reductions in the relative abundance of OTUs within the taxonomic family Lactobacillaceae and the Clostridium cluster XIVa. Specific members of the Lachnospiraceae and Ruminococcaceae families exhibit transient shifts in microbial community populations dependent upon the age at which the birds become colonized by C. jejuni. Analysis of ileal and cecal chemokine/cytokine gene expression revealed increases in IL-6, IL-17A, and Il-17F consistent with a Th17 response, but the persistence of the response was dependent on the stage/time of C. jejuni colonization that coincide with significant reductions in the abundance of Clostridium cluster XIVa. This study combines microbiome data, cytokine/chemokine gene expression with intestinal villus, and crypt measurements to compare chickens colonized early or late in the rearing cycle to provide insights into the process and outcomes of Campylobacter colonization. Early colonization results in a transient growth rate reduction and pro-inflammatory response but persistent modification of the cecal microbiota. Late colonization produces pro-inflammatory responses with changes in the cecal microbiota that will endure in market-ready chickens.

  12. MICROBIAL COLONIZATION, RESPIRATION, AND BREAKDOWN OF MAPLE LEAVES ALONG A STREAM-MARSH CONTINUUM

    EPA Science Inventory

    Breakdown rates, macroinvertebrate and bacterial colonization, and microbial respiration were measured on decaying maple (Acer saccharum) leaves at three sites along a stream-marsh continuum. Breakdown rates (-k+-SE) were 0.0284+-0.0045 d-1 for leaves in a high-gradient, non-tida...

  13. MICROBIAL COLONIZATION, RESPIRATION AND BREAKDOWN OF MAPLE LEAVES ALONG A STREAM-MARSH CONTINUUM

    EPA Science Inventory

    Breakdown rates, macroinvertebrate and bacterial colonization, and microbial respiration were measured on decaying maple leaves at three sites along a stream-marsh continuum. Breakdown rates were 0.0284+/-0.0045 d-1 for leaves in a high-gradient, non-tidal stream; 0.0112 +/- 0.0...

  14. Microbial exposure early in life regulates airway inflammation in mice after infection with Streptococcus pneumoniae with enhancement of local resistance.

    PubMed

    Yasuda, Yasuki; Matsumura, Yoko; Kasahara, Kazuki; Ouji, Noriko; Sugiura, Shigeki; Mikasa, Keiichi; Kita, Eiji

    2010-01-01

    The immunological explanation for the "hygiene hypothesis" has been proposed to be induction of T helper 1 (Th1) responses by microbial products. However, the protective results of hygiene hypothesis-linked microbial exposures are currently shown to be unlikely to result from a Th1-skewed response. Until now, effect of microbial exposure early in life on airway innate resistance remained unclear. We examined the role of early life exposure to microbes in airway innate resistance to a respiratory pathogen. Specific pathogen-free weanling mice were nasally exposed to the mixture of microbial extracts or PBS (control) every other day for 28 days and intratracheally infected with Streptococcus pneumoniae 10 days after the last exposure. Exposure to microbial extracts facilitated colonization of aerobic gram-positive bacteria, anaerobic microorganisms, and Lactobacillus in the airway, compared with control exposure. In pneumococcal pneumonia, the exposure prolonged mouse survival days by suppressing bacterial growth and by retarding pneumococcal blood invasion, despite significantly low levels of leukocyte recruitment in the lung. Enhancement of airway resistance was associated with a significant decrease in production of leukocyte chemokine (KC) and TNFalpha, and suppression of matrix metalloproteinase (MMP-9) expression/activation with enhancement of tissue inhibitor of MMP (TIMP-3) activation. The exposure increased production of IFN-gamma, IL-4, and monocyte chemoattractant-1 following infection. Furthermore, expression of Toll-like receptor 2, 4, and 9 was promoted by the exposure but no longer upregulated upon pneumococcal infection. Thus, we suggest that hygiene hypothesis is more important in regulating the PMN-dominant inflammatory response than in inducing a Th1-dominant response.

  15. Effects of encapsulated Lactobacillus acidophilus along with pasteurized longan juice on the colon microbiota residing in a dynamic simulator of the human intestinal microbial ecosystem.

    PubMed

    Chaikham, Pittaya; Apichartsrangkoon, Arunee

    2014-01-01

    The effect of encapsulated Lactobacillus acidophilus LA5 along with pasteurized longan juice on the colon microbiota was investigated by applying a dynamic model of the human gastrointestinal tract. Encapsulated L. acidophilus LA5 in pasteurized longan juice or sole encapsulated L. acidophilus LA5 exhibited the efficiency of colonizing the colon and enabling the growth of colon lactobacilli as well as beneficial bifidobacteria but inhibited the growth of fecal coliforms and clostridia. Moreover, these treatments gave rise to a significant increase of lactic acid and short-chain fatty acids such as acetate, propionate, and butyrate. Although acetate displayed the highest quantity, it was likely that after incorporating encapsulated L. acidophilus LA5 plus pasteurized longan juice, quantity of butyrate exceed propionate, and acetate in comparison with their controls. Denaturant gradient gel electrophoresis patterns confirmed that various treatments affected the alteration of microbial community within the simulator of the human intestinal microbial ecosystem.

  16. Inhibition and enhancement of microbial surface colonization: the role of silicate composition

    USGS Publications Warehouse

    Roberts, Jennifer A.

    2004-01-01

    Classical treatment of cell attachment by models of filtration or coulombic attraction assumes that attachment of cells to mineral surfaces would be controlled by factors such as response to predation, collision efficiency, or coulombic attraction between the charged groups at the mineral and cell surfaces. In the study reported here, the passive model of attachment was investigated using a native microbial consortium and a variety of Al- and Fe-bearing silicates and oxides to determine if other controls, such as mineral composition, also influence the interaction between cells and surfaces. Results from in situ colonization studies in an anaerobic groundwater at pH 6.8 combined with most probable number analyses (MPN) of surface-adherent cells demonstrate that electrostatic effects dominate microbial colonization on positively charged oxide surfaces regardless of mineral composition. In contrast, on negatively charged silicate minerals and glasses, the solid phase composition is a factor in determining the extent of microbial colonization, as well as the diversity of the attached community. In particular, silicates containing more than 1.2% Al exhibit less biomass than Al-poor silicates and MPN suggests a shift in community diversity, possibly indicating Al toxicity on these surfaces. When Fe is present in the silicate, however, this trend is reversed and abundant colonization of the surface is observed. Here, microorganisms preferentially colonize those silicate surfaces that offer beneficial nutrients and avoid those that contain potentially toxic elements.

  17. Improving microbial fitness in the mammalian gut by in vivo temporal functional metagenomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yaung, Stephanie J.; Deng, Luxue; Li, Ning

    Elucidating functions of commensal microbial genes in the mammalian gut is challenging because many commensals are recalcitrant to laboratory cultivation and genetic manipulation. We present Temporal FUnctional Metagenomics sequencing (TFUMseq), a platform to functionally mine bacterial genomes for genes that contribute to fitness of commensal bacteria in vivo. Our approach uses metagenomic DNA to construct large-scale heterologous expression libraries that are tracked over time in vivo by deep sequencing and computational methods. To demonstrate our approach, we built a TFUMseq plasmid library using the gut commensal Bacteroides thetaiotaomicron (Bt) and introduced Escherichia coli carrying this library into germfree mice. Populationmore » dynamics of library clones revealed Bt genes conferring significant fitness advantages in E. coli over time, including carbohydrate utilization genes, with a Bt galactokinase central to early colonization, and subsequent dominance by a Bt glycoside hydrolase enabling sucrose metabolism coupled with co-evolution of the plasmid library and E. coli genome driving increased galactose utilization. Here, our findings highlight the utility of functional metagenomics for engineering commensal bacteria with improved properties, including expanded colonization capabilities in vivo.« less

  18. Improving microbial fitness in the mammalian gut by in vivo temporal functional metagenomics

    DOE PAGES

    Yaung, Stephanie J.; Deng, Luxue; Li, Ning; ...

    2015-03-11

    Elucidating functions of commensal microbial genes in the mammalian gut is challenging because many commensals are recalcitrant to laboratory cultivation and genetic manipulation. We present Temporal FUnctional Metagenomics sequencing (TFUMseq), a platform to functionally mine bacterial genomes for genes that contribute to fitness of commensal bacteria in vivo. Our approach uses metagenomic DNA to construct large-scale heterologous expression libraries that are tracked over time in vivo by deep sequencing and computational methods. To demonstrate our approach, we built a TFUMseq plasmid library using the gut commensal Bacteroides thetaiotaomicron (Bt) and introduced Escherichia coli carrying this library into germfree mice. Populationmore » dynamics of library clones revealed Bt genes conferring significant fitness advantages in E. coli over time, including carbohydrate utilization genes, with a Bt galactokinase central to early colonization, and subsequent dominance by a Bt glycoside hydrolase enabling sucrose metabolism coupled with co-evolution of the plasmid library and E. coli genome driving increased galactose utilization. Here, our findings highlight the utility of functional metagenomics for engineering commensal bacteria with improved properties, including expanded colonization capabilities in vivo.« less

  19. A secreted antibacterial neuropeptide shapes the microbiome of Hydra.

    PubMed

    Augustin, René; Schröder, Katja; Murillo Rincón, Andrea P; Fraune, Sebastian; Anton-Erxleben, Friederike; Herbst, Eva-Maria; Wittlieb, Jörg; Schwentner, Martin; Grötzinger, Joachim; Wassenaar, Trudy M; Bosch, Thomas C G

    2017-09-26

    Colonization of body epithelial surfaces with a highly specific microbial community is a fundamental feature of all animals, yet the underlying mechanisms by which these communities are selected and maintained are not well understood. Here, we show that sensory and ganglion neurons in the ectodermal epithelium of the model organism hydra (a member of the animal phylum Cnidaria) secrete neuropeptides with antibacterial activity that may shape the microbiome on the body surface. In particular, a specific neuropeptide, which we call NDA-1, contributes to the reduction of Gram-positive bacteria during early development and thus to a spatial distribution of the main colonizer, the Gram-negative Curvibacter sp., along the body axis. Our findings warrant further research to test whether neuropeptides secreted by nerve cells contribute to the spatial structure of microbial communities in other organisms.Certain neuropeptides, in addition to their neuromodulatory functions, display antibacterial activities of unclear significance. Here, the authors show that a secreted neuropeptide modulates the distribution of bacterial communities on the body surface during development of the model organism Hydra.

  20. Transmission of the major skin microbiota, Malassezia, from mother to neonate.

    PubMed

    Nagata, Rie; Nagano, Hiroshi; Ogishima, Daiki; Nakamura, Yasushi; Hiruma, Masataro; Sugita, Takashi

    2012-06-01

    Skin surface colonization starts after birth. It is thought that early microbial colonization affects the development of skin immune functions. Although Malassezia is the predominant fungus in the skin microbiota in healthy individuals, the microorganism is associated with atopic dermatitis and seborrheic dermatitis. In the present study, transmission of skin microbiota from mothers to their neonates was elucidated using the Malassezia microbiota as an indicator. Temporal changes in the level of Malassezia colonization of the skin from 27 neonates and mothers were investigated by real-time polymerase chain reaction assay. The genotypes of Malassezia colonizing the neonate and mother were also determined. Malassezia was detected from 89% and 100% of neonate samples on days 0 and 1 after birth, respectively. Subsequently, the level of Malassezia colonization of the neonates increased with time, whereas that of the mothers did not change. The Malassezia diversity of neonates shifted to the adult type by day 30. The genotype of Malassezia colonizing the skin of neonates agreed well with that of Malassezia colonizing the skin of the mothers. Fungal microbiota colonization of neonates began on day 0, and the fungal microbiota of neonates had changed to the adult type by day 30. To our knowledge, this is the first report of a molecular analysis of the fungal microbiota of neonates. © 2012 The Authors. Pediatrics International © 2012 Japan Pediatric Society.

  1. The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota.

    PubMed

    Milani, Christian; Duranti, Sabrina; Bottacini, Francesca; Casey, Eoghan; Turroni, Francesca; Mahony, Jennifer; Belzer, Clara; Delgado Palacio, Susana; Arboleya Montes, Silvia; Mancabelli, Leonardo; Lugli, Gabriele Andrea; Rodriguez, Juan Miguel; Bode, Lars; de Vos, Willem; Gueimonde, Miguel; Margolles, Abelardo; van Sinderen, Douwe; Ventura, Marco

    2017-12-01

    The human gut microbiota is engaged in multiple interactions affecting host health during the host's entire life span. Microbes colonize the neonatal gut immediately following birth. The establishment and interactive development of this early gut microbiota are believed to be (at least partially) driven and modulated by specific compounds present in human milk. It has been shown that certain genomes of infant gut commensals, in particular those of bifidobacterial species, are genetically adapted to utilize specific glycans of this human secretory fluid, thus representing a very intriguing example of host-microbe coevolution, where both partners are believed to benefit. In recent years, various metagenomic studies have tried to dissect the composition and functionality of the infant gut microbiome and to explore the distribution across the different ecological niches of the infant gut biogeography of the corresponding microbial consortia, including those corresponding to bacteria and viruses, in healthy and ill subjects. Such analyses have linked certain features of the microbiota/microbiome, such as reduced diversity or aberrant composition, to intestinal illnesses in infants or disease states that are manifested at later stages of life, including asthma, inflammatory bowel disease, and metabolic disorders. Thus, a growing number of studies have reported on how the early human gut microbiota composition/development may affect risk factors related to adult health conditions. This concept has fueled the development of strategies to shape the infant microbiota composition based on various functional food products. In this review, we describe the infant microbiota, the mechanisms that drive its establishment and composition, and how microbial consortia may be molded by natural or artificial interventions. Finally, we discuss the relevance of key microbial players of the infant gut microbiota, in particular bifidobacteria, with respect to their role in health and disease. Copyright © 2017 American Society for Microbiology.

  2. Helicobacter pylori-infected C57BL/6 mice with different gastrointestinal microbiota have contrasting gastric pathology, microbial and host immune responses.

    PubMed

    Ge, Zhongming; Sheh, Alexander; Feng, Yan; Muthupalani, Sureshkumar; Ge, Lili; Wang, Chuanwu; Kurnick, Susanna; Mannion, Anthony; Whary, Mark T; Fox, James G

    2018-05-22

    C57BL/6 (B6) mice from Taconic Sciences (Tac) and the Jackson Laboratory (Jax) were infected with H. pylori PMSS1 (Hp) for 16 week; there was no significant difference in the gastric histologic activity index between Hp infected Tac and Jax B6. However, the degree of gastric mucous metaplasia and Th1-associated IgG2c levels in response to Hp infection were increased in Tac mice over Jax mice, whereas the colonization levels of gastric Hp were higher by 8-fold in Jax B6 compared with Tac B6. Additionally, mRNA expression of gastric Il-1β, Il-17A and RegIIIγ were significantly lower in the infected Tac compared to the infected Jax mice. There were significant differences in the microbial community structures in stomach, colon, and feces between Jax and Tac B6 females. Differences in gastric microbial communities between Jax and Tac B6 females are predicted to affect the metagenome. Moreover, Hp infection perturbed the microbial community structures in the stomach, colon and feces of Jax mice, but only altered the colonic microbial composition of Tac mice. Our data indicate that the GI microbiome of Tac B6 mice is compositionally distinct from Jax B6 mice, which likely resulted in different pathological, immunological, and microbial responses to Hp infection.

  3. The first thousand days - intestinal microbiology of early life: establishing a symbiosis.

    PubMed

    Wopereis, Harm; Oozeer, Raish; Knipping, Karen; Belzer, Clara; Knol, Jan

    2014-08-01

    The development of the intestinal microbiota in the first years of life is a dynamic process significantly influenced by early-life nutrition. Pioneer bacteria colonizing the infant intestinal tract and the gradual diversification to a stable climax ecosystem plays a crucial role in establishing host-microbe interactions essential for optimal symbiosis. This colonization process and establishment of symbiosis may profoundly influence health throughout life. Recent developments in microbiologic cultivation-independent methods allow a detailed view of the key players and factors involved in this process and may further elucidate their roles in a healthy gut and immune maturation. Aberrant patterns may lead to identifying key microbial signatures involved in developing immunologic diseases into adulthood, such as asthma and atopic diseases. The central role of early-life nutrition in the developmental human microbiota, immunity, and metabolism offers promising strategies for prevention and treatment of such diseases. This review provides an overview of the development of the intestinal microbiota, its bidirectional relationship with the immune system, and its role in impacting health and disease, with emphasis on allergy, in early life. © 2014 Danone Nutricia Research. Pediatric Allergy and Immunology published by John Wiley & Sons Ltd.

  4. Morphology and ultrastructure of epilithic versus cryptic, microbial growth in lower Cambrian phosphorites from the Montagne Noire, France.

    PubMed

    Alvaro, J J; Clausen, S

    2010-03-01

    The lower Cambrian grainy phosphorites of the northern Montagne Noire occur interbedded with grey to black, laminated to massive shales and limestones deposited along the edge of a continental shelf, associated with slope-related facies and unstable substrates. The concentration of phosphate took place by repeated alternations of low sedimentation rates and condensation (hardgrounds), in situ early-diagenetic precipitation of fluorapatite, winnowing and polyphase reworking of previously phosphatized skeletons and hardground-derived clasts. The succession of repeated cycles of sedimentation, phosphate concentration, and reworking led to multi-event phosphate deposits rich in allochthonous particles. Phosphogenesis was primarily mediated by microbial activity, which is evidenced by the abundance of phosphatized putative microbial remains. These occur as smooth and segmented filaments, sheaths, and ovoid-shaped coccoids. These simple morphologies commonly form composite frameworks as a result of their aggregation and entanglement, leading to the record of biofilms, microbial mats, and complex networks. These infested the calcitic skeletonized microfossils that littered the substrate. Microbial activity evidences epilithic (anisotropic coatings on skeletons), euendolithic (perforating skeletal walls), and cryptoendolithic (lining inter- and intraparticulate pores) strategies, the latter dominated by bundles of filaments and globular clusters that grew along the cavities of helcionellids and hyoliths. According to their epilithic versus cryptic strategies, microbial populations that penetrated and dwelled inside hard skeletal substrates show different network and colonial morphologies. These early Cambrian shell concentrations were the loci of a stepwise colonization made by saprophytic to mutualistic, cyanobacterial-fungal consortia. Their euendolithic and cryptoendolithic ecological niches provided microbial refugia to manage the grazing impact mainly led by metazoans.

  5. Man and his spaceships: Vehicles for extraterrestrial colonization?

    PubMed

    Siefert, Janet L

    2012-11-01

    The resiliency and adaptive ability of microbial life in real time on Earth relies heavily upon horizontal gene transfer. Based on that knowledge, how likely is earth based microbial life to colonize extraterrestrial targets such as Mars? To address this question, we consider manned and unmanned space exploration, the resident microbiota that is likely to inhabit those vehicles, the adaptive potential of that microbiota in an extraterrestrial setting especially with regards to mobile genetic elements, and the likelihood that Mars like environments could initiate and sustain colonization.

  6. The Fecal Microbial Community of Breast-fed Infants from Armenia and Georgia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Zachery T.; Sidamonidze, Ketevan; Tsaturyan, Vardan

    Multiple factors help shape the infant intestinal microbiota early in life. Environmental conditions such as the presence of bioactive molecules from breast milk dictate gut microbial growth and survival. Infants also receive distinct, personalized, bacterial exposures leading to differential colonization. Microbial exposures and gut environmental conditions differ between infants in different locations, as does the typical microbial community structure in an infant’s gut. Here we evaluate potential influences on the infant gut microbiota through a longitudinal study on cohorts of breast-fed infants from the neighboring countries of Armenia and Georgia, an area of the world for which the infant microbiomemore » has not been previously investigated. Marker gene sequencing of 16S ribosomal genes revealed that the gut microbial communities of infants from these countries were dominated by bifidobacteria, were different from each other, and were marginally influenced by their mother’s secretor status. Species-level differences in the bifidobacterial communities of each country and birth method were also observed. These community differences suggest that environmental variation between individuals in different locations may influence the gut microbiota of infants.« less

  7. The Fecal Microbial Community of Breast-fed Infants from Armenia and Georgia

    PubMed Central

    Lewis, Zachery T; Sidamonidze, Ketevan; Tsaturyan, Vardan; Tsereteli, David; Khachidze, Nika; Pepoyan, Astghik; Zhgenti, Ekaterine; Tevzadze, Liana; Manvelyan, Anahit; Balayan, Marine; Imnadze, Paata; Torok, Tamas; Lemay, Danielle G.; Mills, David A.

    2017-01-01

    Multiple factors help shape the infant intestinal microbiota early in life. Environmental conditions such as the presence of bioactive molecules from breast milk dictate gut microbial growth and survival. Infants also receive distinct, personalized, bacterial exposures leading to differential colonization. Microbial exposures and gut environmental conditions differ between infants in different locations, as does the typical microbial community structure in an infant’s gut. Here we evaluate potential influences on the infant gut microbiota through a longitudinal study on cohorts of breast-fed infants from the neighboring countries of Armenia and Georgia, an area of the world for which the infant microbiome has not been previously investigated. Marker gene sequencing of 16S ribosomal genes revealed that the gut microbial communities of infants from these countries were dominated by bifidobacteria, were different from each other, and were marginally influenced by their mother’s secretor status. Species-level differences in the bifidobacterial communities of each country and birth method were also observed. These community differences suggest that environmental variation between individuals in different locations may influence the gut microbiota of infants. PMID:28150690

  8. The Fecal Microbial Community of Breast-fed Infants from Armenia and Georgia

    DOE PAGES

    Lewis, Zachery T.; Sidamonidze, Ketevan; Tsaturyan, Vardan; ...

    2017-02-02

    Multiple factors help shape the infant intestinal microbiota early in life. Environmental conditions such as the presence of bioactive molecules from breast milk dictate gut microbial growth and survival. Infants also receive distinct, personalized, bacterial exposures leading to differential colonization. Microbial exposures and gut environmental conditions differ between infants in different locations, as does the typical microbial community structure in an infant’s gut. Here we evaluate potential influences on the infant gut microbiota through a longitudinal study on cohorts of breast-fed infants from the neighboring countries of Armenia and Georgia, an area of the world for which the infant microbiomemore » has not been previously investigated. Marker gene sequencing of 16S ribosomal genes revealed that the gut microbial communities of infants from these countries were dominated by bifidobacteria, were different from each other, and were marginally influenced by their mother’s secretor status. Species-level differences in the bifidobacterial communities of each country and birth method were also observed. These community differences suggest that environmental variation between individuals in different locations may influence the gut microbiota of infants.« less

  9. Analysis of gut microbial regulation of host gene expression along the length of the gut and regulation of gut microbial ecology through MyD88.

    PubMed

    Larsson, Erik; Tremaroli, Valentina; Lee, Ying Shiuan; Koren, Omry; Nookaew, Intawat; Fricker, Ashwana; Nielsen, Jens; Ley, Ruth E; Bäckhed, Fredrik

    2012-08-01

    The gut microbiota has profound effects on host physiology but local host-microbial interactions in the gut are only poorly characterised and are likely to vary from the sparsely colonised duodenum to the densely colonised colon. Microorganisms are recognised by pattern recognition receptors such as Toll-like receptors, which signal through the adaptor molecule MyD88. To identify host responses induced by gut microbiota along the length of the gut and whether these required MyD88, transcriptional profiles of duodenum, jejunum, ileum and colon were compared from germ-free and conventionally raised wild-type and Myd88-/- mice. The gut microbial ecology was assessed by 454-based pyrosequencing and viruses were analysed by PCR. The gut microbiota modulated the expression of a large set of genes in the small intestine and fewer genes in the colon but surprisingly few microbiota-regulated genes required MyD88 signalling. However, MyD88 was essential for microbiota-induced colonic expression of the antimicrobial genes Reg3β and Reg3γ in the epithelium, and Myd88 deficiency was associated with both a shift in bacterial diversity and a greater proportion of segmented filamentous bacteria in the small intestine. In addition, conventionally raised Myd88-/- mice had increased expression of antiviral genes in the colon, which correlated with norovirus infection in the colonic epithelium. This study provides a detailed description of tissue-specific host transcriptional responses to the normal gut microbiota along the length of the gut and demonstrates that the absence of MyD88 alters gut microbial ecology.

  10. Internal Porosity of Mineral Coating Supports Microbial Activity in Rapid Sand Filters for Groundwater Treatment

    PubMed Central

    Gülay, Arda; Tatari, Karolina; Musovic, Sanin; Mateiu, Ramona V.; Albrechtsen, Hans-Jørgen

    2014-01-01

    A mineral coating develops on the filter grain surface when groundwater is treated via rapid sand filtration in drinking water production. The coating changes the physical and chemical properties of the filter material, but little is known about its effect on the activity, colonization, diversity, and abundance of microbiota. This study reveals that a mineral coating can positively affect the colonization and activity of microbial communities in rapid sand filters. To understand this effect, we investigated the abundance, spatial distribution, colonization, and diversity of all and of nitrifying prokaryotes in filter material with various degrees of mineral coating. We also examined the physical and chemical characteristics of the mineral coating. The amount of mineral coating correlated positively with the internal porosity, the packed bulk density, and the biologically available surface area of the filter material. The volumetric NH4+ removal rate also increased with the degree of mineral coating. Consistently, bacterial 16S rRNA and amoA abundances positively correlated with increased mineral coating levels. Microbial colonization could be visualized mainly within the outer periphery (60.6 ± 35.6 μm) of the mineral coating, which had a thickness of up to 600 ± 51 μm. Environmental scanning electron microscopic (E-SEM) observations suggested an extracellular polymeric substance-rich matrix and submicron-sized bacterial cells. Nitrifier diversity profiles were similar irrespective of the degree of mineral coating, as indicated by pyrosequencing analysis. Overall, our results demonstrate that mineral coating positively affects microbial colonization and activity in rapid sand filters, most likely due to increased volumetric cell abundances facilitated by the large surface area of internal mineral porosity accessible for microbial colonization. PMID:25192987

  11. Microbial Diversity and Putative Opportunistic Pathogens in Dishwasher Biofilm Communities

    PubMed Central

    2018-01-01

    ABSTRACT Extreme habitats are not only limited to natural environments, but also exist in manmade systems, for instance, household appliances such as dishwashers. Limiting factors, such as high temperatures, high and low pHs, high NaCl concentrations, presence of detergents, and shear force from water during washing cycles, define microbial survival in this extreme system. Fungal and bacterial diversity in biofilms isolated from rubber seals of 24 different household dishwashers was investigated using next-generation sequencing. Bacterial genera such as Pseudomonas, Escherichia, and Acinetobacter, known to include opportunistic pathogens, were represented in most samples. The most frequently encountered fungal genera in these samples belonged to Candida, Cryptococcus, and Rhodotorula, also known to include opportunistic pathogenic representatives. This study showed how specific conditions of the dishwashers impact the abundance of microbial groups and investigated the interkingdom and intrakingdom interactions that shape these biofilms. The age, usage frequency, and hardness of incoming tap water of dishwashers had significant impact on bacterial and fungal community compositions. Representatives of Candida spp. were found at the highest prevalence (100%) in all dishwashers and are assumed to be one of the first colonizers in recently purchased dishwashers. Pairwise correlations in tested microbiomes showed that certain bacterial groups cooccur, as did the fungal groups. In mixed bacterial-fungal biofilms, early adhesion, contact, and interactions were vital in the process of biofilm formation, where mixed complexes of bacteria and fungi could provide a preliminary biogenic structure for the establishment of these biofilms. IMPORTANCE Worldwide demand for household appliances, such as dishwashers and washing machines, is increasing, as is the number of immunocompromised individuals. The harsh conditions in household dishwashers should prevent the growth of most microorganisms. However, our research shows that persisting polyextremotolerant groups of microorganisms in household appliances are well established under these unfavorable conditions and supported by the biofilm mode of growth. The significance of our research is in identifying the microbial composition of biofilms formed on dishwasher rubber seals, how diverse abiotic conditions affect microbiota, and which key microbial members were represented in early colonization and contamination of dishwashers, as these appliances can present a source of domestic cross-contamination that leads to broader medical impacts. PMID:29330184

  12. The influence of stents on microbial colonization of the airway in children after slide tracheoplasty: a 14-year single-center experience.

    PubMed

    Rijnberg, Friso M; Butler, Colin R; Speggiorin, Simone; Fierens, Anja; Wallis, Colin; Nouraei, Reza; McLaren, Clare A; Roebuck, Derek J; Hewitt, Richard; Elliott, Martin J

    2015-01-01

    This study describes the microbial colonization profile of the airway in children after slide tracheoplasty (STP) with and without stents, and compares colonization to children undergoing cardiothoracic surgical procedures without airway related disease. A 14-year retrospective single case note review was performed on patients undergoing STP and stent insertion. Nose and throat (NT) and bronchoalveolar lavage (BAL) specimens were analyzed for microbial profile and expressed as cumulative mean microorganisms per patient (MMP). Forty-three patients (median age ± SD 15.02 ± 31.76 months) underwent STP and 141 patients underwent cardiothoracic but no airway surgery (median age ± SD 31.7 ± 47.2 months). Sixteen patients required a stent after STP. One-hundred seventy-two positive microbial specimens were identified. The predominant 6 microorganisms were (1) Staphylococcus aureus; (2) Pseudomonas aeruginosa; (3) Haemophilus influenzae not type B; (4) Coliforms; (5) Streptococcus pneumoniae; and (6) Candida Albicans, and accounted for 128 (74%) of all positive specimens found. Children with stents had more MMP compared to children without stents after STP [4.06 ± 2.38 and 2.04 ± 2.24 MMP (P < 0.001), respectively]. Both groups of children after STP had more MMP compared to the control group (P < 0.001). Children with stents had more microbial colonization of their lower respiratory tract compared to their upper respiratory tract (3.36 ± 2.02 and 1.36 ± 0.93 MMP (P < 0.01) respectively). Staphylococcus aureus colonization of the lower respiratory tract was significantly higher in children with stents compared to children without stents after STP [0.5 and 0.15 MMP (P < 0.05) respectively]. This study indicates airway surgery and the subsequent use of stents to be a significant risk factor for microbial colonization of the airway in children. More specifically airway stents appear to increase colonization in the distal airway, which appears unrelated to that of the upper respiratory tract. © 2014 Wiley Periodicals, Inc.

  13. Multi-Body-Site Microbiome and Culture Profiling of Military Trainees Suffering from Skin and Soft Tissue Infections at Fort Benning, Georgia

    PubMed Central

    Singh, Jatinder; Johnson, Ryan C.; Schlett, Carey D.; Elassal, Emad M.; Crawford, Katrina B.; Mor, Deepika; Lanier, Jeffrey B.; Law, Natasha N.; Walters, William A.; Teneza-Mora, Nimfa; Bennett, Jason W.; Hall, Eric R.; Millar, Eugene V.; Ellis, Michael W.

    2016-01-01

    ABSTRACT Skin and soft tissue infections (SSTIs) are common in the general population, with increased prevalence among military trainees. Previous research has revealed numerous nasal microbial signatures that correlate with SSTI development and Staphylococcus aureus colonization. Thus, we hypothesized that the ecology of the inguinal, oropharynx, and perianal regions may also be altered in response to SSTI and/or S. aureus colonization. We collected body site samples from 46 military trainees with purulent abscess (SSTI group) as well as from 66 asymptomatic controls (non-SSTI group). We also collected abscess cavity samples to assess the microbial composition of these infections. Samples were analyzed by culture, and the microbial communities were characterized by high-throughput sequencing. We found that the nasal, inguinal, and perianal regions were similar in microbial composition and significantly differed from the oropharynx. We also observed differences in Anaerococcus and Streptococcus abundance between the SSTI and non-SSTI groups for the nasal and oropharyngeal regions, respectively. Furthermore, we detected community membership differences between the SSTI and non-SSTI groups for the nasal and inguinal sites. Compared to that of the other regions, the microbial compositions of the nares of S. aureus carriers and noncarriers were dramatically different; we noted an inverse correlation between the presence of Corynebacterium and the presence of Staphylococcus in the nares. This correlation was also observed for the inguinal region. Culture analysis revealed elevated methicillin-resistant S. aureus (MRSA) colonization levels for the SSTI group in the nasal and inguinal body sites. Together, these data suggest significant microbial variability in patients with SSTI as well as between S. aureus carriers and noncarriers. IMPORTANCE While it is evident that nasal colonization with S. aureus increases the likelihood of SSTI, there is a significant lack of information regarding the contribution of extranasal colonization to the overall risk of a subsequent SSTI. Furthermore, the impact of S. aureus colonization on bacterial community composition outside the nasal microbiota is unclear. Thus, this report represents the first investigation that utilized both culture and high-throughput sequencing techniques to analyze microbial dysbiosis at multiple body sites of healthy and diseased/colonized individuals. The results described here may be useful in the design of future methodologies to treat and prevent SSTIs. PMID:27747300

  14. Investigation of the microbial communities colonizing prepainted steel used for roofing and walling.

    PubMed

    Huynh, Tran T; Jamil, Ili; Pianegonda, Nicole A; Blanksby, Stephen J; Barker, Philip J; Manefield, Mike; Rice, Scott A

    2017-04-01

    Microbial colonization of prepainted steel, commonly used in roofing applications, impacts their aesthetics, durability, and functionality. Understanding the relevant organisms and the mechanisms by which colonization occurs would provide valuable information that can be subsequently used to design fouling prevention strategies. Here, next-generation sequencing and microbial community finger printing (T-RFLP) were used to study the community composition of microbes colonizing prepainted steel roofing materials at Burrawang, Australia and Kapar, Malaysia over a 52-week period. Community diversity was low and was dominated by Bacillus spp., cyanobacteria, actinobacteria, Cladosporium sp., Epicoccum nigrum, and Teratosphaeriaceae sp. Cultivation-based methods isolated approximately 20 different fungi and bacteria, some of which, such as E. nigrum and Cladosporium sp., were represented in the community sequence data. Fluorescence in situ hybridization imaging showed that fungi were the most dominant organisms present. Analysis of the sequence and T-RFLP data indicated that the microbial communities differed significantly between locations and changed significantly over time. The study demonstrates the utility of molecular ecology tools to identify and characterize microbial communities associated with the fouling of painted steel surfaces and ultimately can enable the targeted development of control strategies based on the dominant species responsible for fouling. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  15. Optical Measurement of Cell Colonization Patterns on Individual Suspended Sediment Aggregates

    NASA Astrophysics Data System (ADS)

    Nguyen, Thu Ha; Tang, Fiona H. M.; Maggi, Federico

    2017-10-01

    Microbial processes can make substantial differences to the way in which particles settle in aquatic environments. A novel method (OMCEC, optical measurement of cell colonization) is introduced to systematically map the biological spatial distribution over individual suspended sediment aggregates settling through a water column. OMCEC was used to investigate (1) whether a carbon source concentration has an impact on cell colonization, (2) how cells colonize minerals, and (3) if a correlation between colonization patterns and aggregate geometry exists. Incubations of Saccharomyces cerevisiae and stained montmorillonite at four sucrose concentrations were tested in a settling column equipped with a full-color microparticle image velocimetry system. The acquired high-resolution images were processed to map the cell distribution on aggregates based on emission spectra separation. The likelihood of cells colonizing minerals increased with increasing sucrose concentration. Colonization patterns were classified into (i) scattered, (ii) well touched, and (iii) poorly touched, with the second being predominant. Cell clusters in well-touched patterns were found to have lower capacity dimension than those in other patterns, while the capacity dimension of the corresponding aggregates was relatively high. A strong correlation of colonization patterns with aggregate biomass fraction and properties suggests dynamic colonization mechanisms from cell attachment to minerals, to joining of isolated cell clusters, and finally cell growth over the entire aggregate. This paper introduces a widely applicable method for analyses of microbial-affected sediment dynamics and highlights the microbial control on aggregate geometry, which can improve the prediction of large-scale morphodynamics processes.

  16. Insights into the respiratory tract microbiota of patients with cystic fibrosis during early Pseudomonas aeruginosa colonization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keravec, Marlene; Mounier, Jerome; Prestat , Emmanuel

    Abstract Pseudomonas aeruginosa plays a major role in cystic fibrosis (CF) progression. Therefore, it is important to understand the initial steps of P. aeruginosa infection. The structure and dynamics of CF respiratory tract microbial communities during the early stages of P. aeruginosa colonization were characterized by pyrosequencing and cloning-sequencing. The respiratory microbiota showed high diversity, related to the young age of the CF cohort (mean age 10 years). Wide inter- and intra-individual variations were revealed. A common core microbiota of 5 phyla and 13 predominant genera was found, the majority of which were obligate anaerobes. A few genera were significantlymore » more prevalent in patients never infected by P. aeruginosa. Persistence of an anaerobic core microbiota regardless of P. aeruginosa status suggests a major role of certain anaerobes in the pathophysiology of lung infections in CF. Some genera may be potential biomarkers of pulmonary infection state.« less

  17. Early colonization of thermal niches in a silica-depositing hot spring in central Tibet.

    PubMed

    Lau, C Y; Aitchison, J C; Pointing, S B

    2008-03-01

    Thermophilic microbial mats dominated by the anoxygenic phototroph Roseiflexus castenholzii commonly develop around sinter-depositing geysers in the Daggyai Tso geothermal field of central Tibet. In this study we used morphological and molecular genetic techniques to reveal a diverse pioneer biofilm community including both archaea and bacteria involved in early colonization of such thermal niches at temperatures ranging from 46 to 77 degrees C. Sinter precipitation and biomineralization were evident at all locations, but the latter was selective between taxa and most evident on filamentous cells. Evidence for possible indirect biosignatures from biofilms overwhelmed by sinter deposition was found. Succession to a mature community appeared to relate to the growth rate for key taxa outpacing that of silicification within an optimum temperature range of 54-61 degrees C. The thin surface layer of silicification-resistant cyanobacteria that developed on the surface of mature mats may play a role in preventing biomineralization of the susceptible R. castenholzii beneath within these communities.

  18. Microbiome and Malignancy

    PubMed Central

    Plottel, Claudia S.; Blaser, Martin J.

    2011-01-01

    Current knowledge is insufficient to explain why only a proportion of individuals exposed to environmental carcinogens or carrying a genetic predisposition to cancer develop disease. Clearly, other factors must be important and one such element that has recently received attention is the human microbiome, the residential microbes including Bacteria, Archaea, Eukaryotes, and viruses that colonize humans. Here, we review principles and paradigms of microbiome-related malignancy, as illustrated by three specific microbial-host interactions. We review the effects of the microbiota on local and adjacent-neoplasia, present the estrobolome model of distant effects, and discuss the complex interactions with a latent virus leading to malignancy. These are separate facets of a complex biology interfacing all the microbial species we harbor from birth onward toward early reproductive success and eventual senescence. PMID:22018233

  19. Bacterial Endophyte Colonization and Distribution within Plants

    PubMed Central

    Kandel, Shyam L.; Joubert, Pierre M.

    2017-01-01

    The plant endosphere contains a diverse group of microbial communities. There is general consensus that these microbial communities make significant contributions to plant health. Both recently adopted genomic approaches and classical microbiology techniques continue to develop the science of plant-microbe interactions. Endophytes are microbial symbionts residing within the plant for the majority of their life cycle without any detrimental impact to the host plant. The use of these natural symbionts offers an opportunity to maximize crop productivity while reducing the environmental impacts of agriculture. Endophytes promote plant growth through nitrogen fixation, phytohormone production, nutrient acquisition, and by conferring tolerance to abiotic and biotic stresses. Colonization by endophytes is crucial for providing these benefits to the host plant. Endophytic colonization refers to the entry, growth and multiplication of endophyte populations within the host plant. Lately, plant microbiome research has gained considerable attention but the mechanism allowing plants to recruit endophytes is largely unknown. This review summarizes currently available knowledge about endophytic colonization by bacteria in various plant species, and specifically discusses the colonization of maize plants by Populus endophytes. PMID:29186821

  20. A central venous catheter coated with benzalkonium chloride for the prevention of catheter-related microbial colonization.

    PubMed

    Moss, H A; Tebbs, S E; Faroqui, M H; Herbst, T; Isaac, J L; Brown, J; Elliott, T S

    2000-11-01

    In an attempt to overcome infections associated with central venous catheters, a new antiseptic central venous catheter coated with benzalkonium chloride on the internal and external surfaces has been developed and evaluated in a clinical trial. Patients (235) randomly received either a triple-lumen central venous catheter coated with benzalkonium chloride (117) or a polyurethane non-antiseptic catheter (118). The incidence of microbial colonization of both catheters and retained antiseptic activity of the benzalkonium chloride device following removal were determined. The benzalkonium chloride resulted in a significant reduction of the incidence of microbial colonization on both the internal and external catheter surfaces. The reduction in colonization was detected at both the intradermal (21 benzalkonium chloride catheters vs. 38 controls, P = 0.0016) and distal segments of the antiseptic-coated catheters. Following catheter removal retained activity was demonstrated in benzalkonium chloride catheters which had been in place for up to 12 days. No patients developed adverse reactions to the benzalkonium chloride catheters. The findings demonstrate that the benzalkonium chloride catheter significantly reduced the incidence of catheter-associated colonization.

  1. Microbial colonization of biopolymeric thin films containing natural compounds and antibiotics fabricated by MAPLE

    NASA Astrophysics Data System (ADS)

    Cristescu, R.; Surdu, A. V.; Grumezescu, A. M.; Oprea, A. E.; Trusca, R.; Vasile, O.; Dorcioman, G.; Visan, A.; Socol, G.; Mihailescu, I. N.; Mihaiescu, D.; Enculescu, M.; Chifiriuc, M. C.; Boehm, R. D.; Narayan, R. J.; Chrisey, D. B.

    2015-05-01

    Although a great number of antibiotics are currently available, they are often rendered ineffective by the ability of microbial strains to develop genetic resistance and to grow in biofilms. Since many antimicrobial agents poorly penetrate biofilms, biofilm-associated infections often require high concentrations of antimicrobial agents for effective treatment. Among the various strategies that may be used to inhibit microbial biofilms, one strategy that has generated significant interest involves the use of bioactive surfaces that are resistant to microbial colonization. In this respect, we used matrix assisted pulsed laser evaporation (MAPLE) involving a pulsed KrF* excimer laser source (λ = 248 nm, τ = 25 ns, ν = 10 Hz) to obtain thin composite biopolymeric films containing natural (flavonoid) or synthetic (antibiotic) compounds as bioactive substances. Chemical composition and film structures were investigated by Fourier transform infrared spectroscopy and X-ray diffraction. Films morphology was studied by scanning electron microscopy and transmission electron microscopy. The antimicrobial assay of the microbial biofilms formed on these films was assessed by the viable cell counts method. The flavonoid-containing thin films showed increased resistance to microbial colonization, highlighting their potential to be used for the design of anti-biofilm surfaces.

  2. Colonization and Succession within the Human Gut Microbiome by Archaea, Bacteria, and Microeukaryotes during the First Year of Life.

    PubMed

    Wampach, Linda; Heintz-Buschart, Anna; Hogan, Angela; Muller, Emilie E L; Narayanasamy, Shaman; Laczny, Cedric C; Hugerth, Luisa W; Bindl, Lutz; Bottu, Jean; Andersson, Anders F; de Beaufort, Carine; Wilmes, Paul

    2017-01-01

    Perturbations to the colonization process of the human gastrointestinal tract have been suggested to result in adverse health effects later in life. Although much research has been performed on bacterial colonization and succession, much less is known about the other two domains of life, archaea, and eukaryotes. Here we describe colonization and succession by bacteria, archaea and microeukaryotes during the first year of life (samples collected around days 1, 3, 5, 28, 150, and 365) within the gastrointestinal tract of infants delivered either vaginally or by cesarean section and using a combination of quantitative real-time PCR as well as 16S and 18S rRNA gene amplicon sequencing. Sequences from organisms belonging to all three domains of life were detectable in all of the collected meconium samples. The microeukaryotic community composition fluctuated strongly over time and early diversification was delayed in infants receiving formula milk. Cesarean section-delivered (CSD) infants experienced a delay in colonization and succession, which was observed for all three domains of life. Shifts in prokaryotic succession in CSD infants compared to vaginally delivered (VD) infants were apparent as early as days 3 and 5, which were characterized by increased relative abundances of the genera Streptococcus and Staphylococcus , and a decrease in relative abundance for the genera Bifidobacterium and Bacteroides . Generally, a depletion in Bacteroidetes was detected as early as day 5 postpartum in CSD infants, causing a significantly increased Firmicutes/Bacteroidetes ratio between days 5 and 150 when compared to VD infants. Although the delivery mode appeared to have the strongest influence on differences between the infants, other factors such as a younger gestational age or maternal antibiotics intake likely contributed to the observed patterns as well. Our findings complement previous observations of a delay in colonization and succession of CSD infants, which affects not only bacteria but also archaea and microeukaryotes. This further highlights the need for resolving bacterial, archaeal, and microeukaryotic dynamics in future longitudinal studies of microbial colonization and succession within the neonatal gastrointestinal tract.

  3. Colonization and Succession within the Human Gut Microbiome by Archaea, Bacteria, and Microeukaryotes during the First Year of Life

    PubMed Central

    Wampach, Linda; Heintz-Buschart, Anna; Hogan, Angela; Muller, Emilie E. L.; Narayanasamy, Shaman; Laczny, Cedric C.; Hugerth, Luisa W.; Bindl, Lutz; Bottu, Jean; Andersson, Anders F.; de Beaufort, Carine; Wilmes, Paul

    2017-01-01

    Perturbations to the colonization process of the human gastrointestinal tract have been suggested to result in adverse health effects later in life. Although much research has been performed on bacterial colonization and succession, much less is known about the other two domains of life, archaea, and eukaryotes. Here we describe colonization and succession by bacteria, archaea and microeukaryotes during the first year of life (samples collected around days 1, 3, 5, 28, 150, and 365) within the gastrointestinal tract of infants delivered either vaginally or by cesarean section and using a combination of quantitative real-time PCR as well as 16S and 18S rRNA gene amplicon sequencing. Sequences from organisms belonging to all three domains of life were detectable in all of the collected meconium samples. The microeukaryotic community composition fluctuated strongly over time and early diversification was delayed in infants receiving formula milk. Cesarean section-delivered (CSD) infants experienced a delay in colonization and succession, which was observed for all three domains of life. Shifts in prokaryotic succession in CSD infants compared to vaginally delivered (VD) infants were apparent as early as days 3 and 5, which were characterized by increased relative abundances of the genera Streptococcus and Staphylococcus, and a decrease in relative abundance for the genera Bifidobacterium and Bacteroides. Generally, a depletion in Bacteroidetes was detected as early as day 5 postpartum in CSD infants, causing a significantly increased Firmicutes/Bacteroidetes ratio between days 5 and 150 when compared to VD infants. Although the delivery mode appeared to have the strongest influence on differences between the infants, other factors such as a younger gestational age or maternal antibiotics intake likely contributed to the observed patterns as well. Our findings complement previous observations of a delay in colonization and succession of CSD infants, which affects not only bacteria but also archaea and microeukaryotes. This further highlights the need for resolving bacterial, archaeal, and microeukaryotic dynamics in future longitudinal studies of microbial colonization and succession within the neonatal gastrointestinal tract. PMID:28512451

  4. Bacterial Colonization of Disposable Soft Contact Lenses Is Greater during Corneal Infiltrative Events than during Asymptomatic Extended Lens Wear

    PubMed Central

    Sankaridurg, Padmaja R.; Sharma, Savitri; Willcox, Mark; Naduvilath, Thomas J.; Sweeney, Deborah F.; Holden, Brien A.; Rao, Gullapalli N.

    2000-01-01

    Microorganisms, especially gram-negative bacteria, are considered to play a role in the etiology of certain corneal infiltrative events (CIEs) observed during soft contact lens wear. This study explored the possibility of microbial colonization of soft contact lenses as a risk factor leading to CIEs. In a clinical trial conducted from March 1993 to January 1996, 330 subjects wore disposable soft contact lenses on a 6-night extended-wear and disposal schedule. During this period, 4,321 lenses (118 during CIEs; 4,203 during asymptomatic lens wear) were recovered aseptically and analyzed for microbial colonization. A greater percentage of lenses were free from microbial colonization during asymptomatic wear than during CIEs (42 versus 23%; P < 0.0001). The incidence of gram-positive bacteria, gram-negative bacteria and fungi was greater during CIEs than during asymptomatic lens wear (P < 0.05). During asymptomatic lens wear, gram-positive bacteria were isolated most frequently and were usually normal external ocular microbiota. Of the gram-positive bacteria, the incidence of Streptococcus pneumoniae was greater during CIE than during asymptomatic wear (7.6 versus 0.6%; P < 0.0001). While gram-negative bacteria were seen in few cases during asymptomatic wear, their incidence during CIE in comparison to asymptomatic wear was substantial and significant (23.7 versus 3.8%; P < 0.0001). Also, the level of colonization was high. Of CIEs, events of microbial keratitis, contact lens acute red eye, and asymptomatic infiltrative keratitis were associated with lens colonization with gram-negative bacteria or S. pneumoniae. Colonization of soft contact lenses with pathogenic bacteria, especially gram-negative bacteria and S. pneumoniae, appears to be a significant risk factor leading to CIE. PMID:11101574

  5. Preterm infant gut microbiota affects intestinal epithelial development in a humanized microbiome gnotobiotic mouse model.

    PubMed

    Yu, Yueyue; Lu, Lei; Sun, Jun; Petrof, Elaine O; Claud, Erika C

    2016-09-01

    Development of the infant small intestine is influenced by bacterial colonization. To promote establishment of optimal microbial communities in preterm infants, knowledge of the beneficial functions of the early gut microbiota on intestinal development is needed. The purpose of this study was to investigate the impact of early preterm infant microbiota on host gut development using a gnotobiotic mouse model. Histological assessment of intestinal development was performed. The differentiation of four epithelial cell lineages (enterocytes, goblet cells, Paneth cells, enteroendocrine cells) and tight junction (TJ) formation was examined. Using weight gain as a surrogate marker for health, we found that early microbiota from a preterm infant with normal weight gain (MPI-H) induced increased villus height and crypt depth, increased cell proliferation, increased numbers of goblet cells and Paneth cells, and enhanced TJs compared with the changes induced by early microbiota from a poor weight gain preterm infant (MPI-L). Laser capture microdissection (LCM) plus qRT-PCR further revealed, in MPI-H mice, a higher expression of stem cell marker Lgr5 and Paneth cell markers Lyz1 and Cryptdin5 in crypt populations, along with higher expression of the goblet cell and mature enterocyte marker Muc3 in villus populations. In contrast, MPI-L microbiota failed to induce the aforementioned changes and presented intestinal characteristics comparable to a germ-free host. Our data demonstrate that microbial communities have differential effects on intestinal development. Future studies to identify pioneer settlers in neonatal microbial communities necessary to induce maturation may provide new insights for preterm infant microbial ecosystem therapeutics. Copyright © 2016 the American Physiological Society.

  6. Linking the Gut Microbial Ecosystem with the Environment: Does Gut Health Depend on Where We Live?

    PubMed Central

    Tasnim, Nishat; Abulizi, Nijiati; Pither, Jason; Hart, Miranda M.; Gibson, Deanna L.

    2017-01-01

    Global comparisons reveal a decrease in gut microbiota diversity attributed to Western diets, lifestyle practices such as caesarian section, antibiotic use and formula-feeding of infants, and sanitation of the living environment. While gut microbial diversity is decreasing, the prevalence of chronic inflammatory diseases such as inflammatory bowel disease, diabetes, obesity, allergies and asthma is on the rise in Westernized societies. Since the immune system development is influenced by microbial components, early microbial colonization may be a key factor in determining disease susceptibility patterns later in life. Evidence indicates that the gut microbiota is vertically transmitted from the mother and this affects offspring immunity. However, the role of the external environment in gut microbiome and immune development is poorly understood. Studies show that growing up in microbe-rich environments, such as traditional farms, can have protective health effects on children. These health-effects may be ablated due to changes in the human lifestyle, diet, living environment and environmental biodiversity as a result of urbanization. Importantly, if early-life exposure to environmental microbes increases gut microbiota diversity by influencing patterns of gut microbial assembly, then soil biodiversity loss due to land-use changes such as urbanization could be a public health threat. Here, we summarize key questions in environmental health research and discuss some of the challenges that have hindered progress toward a better understanding of the role of the environment on gut microbiome development. PMID:29056933

  7. Influence of Infant Feeding Type on Gut Microbiome Development in Hospitalized Preterm Infants

    PubMed Central

    Cong, Xiaomei; Judge, Michelle; Xu, Wanli; Diallo, Ana; Janton, Susan; Brownell, Elizabeth A.; Maas, Kendra; Graf, Joerg

    2016-01-01

    Background Premature infants have a high risk for dysbiosis of the gut microbiome. Mother’s own breastmilk (MOM) has been found to favorably alter gut microbiome composition in infants born at term. Evidence about the influence of feeding type on gut microbial colonization of preterm infants is limited. Objective The purpose of this study was to explore the effect of feeding types on gut microbial colonization of preterm infants in the neonatal intensive care unit (NICU). Methods Thirty-three stable preterm infants were recruited at birth and followed-up for the first 30 days of life. Daily feeding information was used to classify infants into six groups (mother’s own milk [MOM], human donated milk [HDM], formula, MOM+HDM, MOM+Formula, and HDM+forumla) during postnatal days 0–10, 11–20, and 21–30 after birth. Stool samples were collected daily. DNA extracted from stool was used to sequence the 16S rRNA gene. Exploratory data analysis was conducted with a focus on temporal changes of microbial patterns and diversities among infants from different feeding cohorts. Prediction of gut microbial diversity from feeding type was estimated using linear mixed models. Results Preterm infants fed MOM (at least 70% of the total diet) had highest abundance of Clostridiales, Lactobacillales, and Bacillales compared to infants in other feeding groups, whereas infants fed primarily human donor milk or formula had a high abundance of Enterobacteriales compared to infants fed MOM. After controlling for gender, postnatal age, weight and birth gestational age, the diversity of gut microbiome increased over time and was constantly higher in infants fed MOM relative to infants with other feeding types (p < .01). Discussion Mother’s own breast milk benefits gut microbiome development of preterm infants, including balanced microbial community pattern and increased microbial diversity in early life. PMID:28252573

  8. Investigating Bacterial-Animal Symbioses with Light Sheet Microscopy

    PubMed Central

    Taormina, Michael J.; Jemielita, Matthew; Stephens, W. Zac; Burns, Adam R.; Troll, Joshua V.; Parthasarathy, Raghuveer; Guillemin, Karen

    2014-01-01

    SUMMARY Microbial colonization of the digestive tract is a crucial event in vertebrate development, required for maturation of host immunity and establishment of normal digestive physiology. Advances in genomic, proteomic, and metabolomic technologies are providing a more detailed picture of the constituents of the intestinal habitat, but these approaches lack the spatial and temporal resolution needed to characterize the assembly and dynamics of microbial communities in this complex environment. We report the use of light sheet microscopy to provide high resolution imaging of bacterial colonization of the zebrafish intestine. The methodology allows us to characterize bacterial population dynamics across the entire organ and the behaviors of individual bacterial and host cells throughout the colonization process. The large four-dimensional datasets generated by these imaging approaches require new strategies for image analysis. When integrated with other “omics” datasets, information about the spatial and temporal dynamics of microbial cells within the vertebrate intestine will provide new mechanistic insights into how microbial communities assemble and function within hosts. PMID:22983029

  9. Unique aspects of the perinatal immune system.

    PubMed

    Zhang, Xiaoming; Zhivaki, Dania; Lo-Man, Richard

    2017-08-01

    The early stages of life are associated with increased susceptibility to infection, which is in part due to an ineffective immune system. In the context of infection, the immune system must be stimulated to provide efficient protection while avoiding insufficient or excessive activation. Yet, in early life, age-dependent immune regulation at molecular and cellular levels contributes to a reduced immunological fitness in terms of pathogen clearance and response to vaccines. To enable microbial colonization to be tolerated at birth, epigenetic immune cell programming and early life-specific immune regulatory and effector mechanisms ensure that vital functions and organ development are supported and that tissue damage is avoided. Advancement in our understanding of age-related remodelling of immune networks and the consequent tuning of immune responsiveness will open up new possibilities for immune intervention and vaccine strategies that are designed specifically for early life.

  10. Early-Life Exposure to Antibiotics, Alterations in the Intestinal Microbiome, and Risk of Metabolic Disease in Children and Adults.

    PubMed

    Yallapragada, Sushmita G; Nash, Colleen B; Robinson, Daniel T

    2015-11-01

    The intestinal microbiome is a complex ecosystem of microorganisms that colonize the human gastrointestinal tract. The microbiome evolves rapidly in early life with contributions from diet, genetics and immunomodulatory factors. Changes in composition of the microbiota due to antibiotics may lead to negative long-term effects including obesity and diabetes mellitus, as evidenced by both animal and large human studies. Inappropriate exposures to antibiotics occur frequently in early childhood. Therefore, an evidence-based system of antimicrobial use should be employed by all providers, especially those who care for pediatric patients. This article explores the natural evolution of the intestinal microbiome from the perinatal period into early childhood, the effect of antibiotics on the microbial ecology, and the implications for future health and disease. Copyright 2015, SLACK Incorporated.

  11. Supplementation of fructooligosaccharides to suckling piglets affects intestinal microbiota colonization and immune development.

    PubMed

    Schokker, Dirkjan; Fledderus, Jan; Jansen, Rutger; Vastenhouw, Stephanie A; de Bree, Freddy M; Smits, Mari A; Jansman, Alfons A J M

    2018-06-04

    Emerging knowledge shows the importance of early life events in programming the intestinal mucosal immune system and development of the intestinal barrier function. These processes depend heavily on close interactions between gut microbiota and host cells in the intestinal mucosa. In turn, development of the intestinal microbiota is largely dependent on available nutrients required for the specific microbial community structures to expand. It is currently not known what the specificities are of intestinal microbial community structures in relation to the programming of the intestinal mucosal immune system and development of the intestinal barrier function. The objective of the present study was to investigate the effects of a nutritional intervention on intestinal development of suckling piglets by daily oral administration of fructooligosaccharides (FOS) over a period of 12 d (days 2-14 of age). At the microbiota community level, a clear "bifidogenic" effect of the FOS administration was observed in the colon digesta at day 14. The former, however, did not translate into significant changes of local gene expression in the colonic mucosa. In the jejunum, significant changes were observed for microbiota composition at day 14, and microbiota diversity at day 25. In addition, significant differentially expressed gene sets in mucosal tissues of the jejunum were identified at both days 14 and 25 of age. At the age of 14 d, a lower activity of cell cycle-related processes and a higher activity of extracellular matrix processes were observed in the jejunal mucosa of piglets supplemented with FOS compared with control piglets. At day 25, the lower activity of immune-related processes in jejunal tissue was seen in piglets supplemented with FOS. Villi height and crypt depth in the jejunum were significantly different at day 25 between the experimental and control groups, where piglets supplemented with FOS had greater villi and deeper crypts. We conclude that oral FOS administration during the early suckling period of piglets had significant bifidogenic effects on the microbiota in the colon and on gene expression in the jejunal mucosa by thus far unknown mechanisms.

  12. Tracking microbial colonization in fecal microbiota transplantation experiments via genome-resolved metagenomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sonny T. M.; Kahn, Stacy A.; Delmont, Tom O.

    Fecal microbiota transplantation (FMT) is an effective treatment for recurrent Clostridium difficile infection and shows promise for treating other medical conditions associated with intestinal dysbioses. However, we lack a sufficient understanding of which microbial populations successfully colonize the recipient gut, and the widely used approaches to study the microbial ecology of FMT experiments fail to provide enough resolution to identify populations that are likely responsible for FMT-derived benefits. Here, we used shotgun metagenomics together with assembly and binning strategies to reconstruct metagenome-assembled genomes (MAGs) from fecal samples of a single FMT donor. We then used metagenomic mapping to track themore » occurrence and distribution patterns of donor MAGs in two FMT recipients. Our analyses revealed that 22% of the 92 highly complete bacterial MAGs that we identified from the donor successfully colonized and remained abundant in two recipients for at least 8 weeks. Most MAGs with a high colonization rate belonged to the order Bacteroidales. The vast majority of those that lacked evidence of colonization belonged to the order Clostridiales, and colonization success was negatively correlated with the number of genes related to sporulation. Our analysis of 151 publicly available gut metagenomes showed that the donor MAGs that colonized both recipients were prevalent, and the ones that colonized neither were rare across the participants of the Human Microbiome Project. Although our dataset showed a link between taxonomy and the colonization ability of a given MAG, we also identified MAGs that belong to the same taxon with different colonization properties, highlighting the importance of an appropriate level of resolution to explore the functional basis of colonization and to identify targets for cultivation, hypothesis generation, and testing in model systems. Lastly, the analytical strategy adopted in our study can provide genomic insights into bacterial populations that may be critical to the efficacy of FMT due to their success in gut colonization and metabolic properties, and guide cultivation efforts to investigate mechanistic underpinnings of this procedure beyond associations.« less

  13. Tracking microbial colonization in fecal microbiota transplantation experiments via genome-resolved metagenomics

    DOE PAGES

    Lee, Sonny T. M.; Kahn, Stacy A.; Delmont, Tom O.; ...

    2017-05-04

    Fecal microbiota transplantation (FMT) is an effective treatment for recurrent Clostridium difficile infection and shows promise for treating other medical conditions associated with intestinal dysbioses. However, we lack a sufficient understanding of which microbial populations successfully colonize the recipient gut, and the widely used approaches to study the microbial ecology of FMT experiments fail to provide enough resolution to identify populations that are likely responsible for FMT-derived benefits. Here, we used shotgun metagenomics together with assembly and binning strategies to reconstruct metagenome-assembled genomes (MAGs) from fecal samples of a single FMT donor. We then used metagenomic mapping to track themore » occurrence and distribution patterns of donor MAGs in two FMT recipients. Our analyses revealed that 22% of the 92 highly complete bacterial MAGs that we identified from the donor successfully colonized and remained abundant in two recipients for at least 8 weeks. Most MAGs with a high colonization rate belonged to the order Bacteroidales. The vast majority of those that lacked evidence of colonization belonged to the order Clostridiales, and colonization success was negatively correlated with the number of genes related to sporulation. Our analysis of 151 publicly available gut metagenomes showed that the donor MAGs that colonized both recipients were prevalent, and the ones that colonized neither were rare across the participants of the Human Microbiome Project. Although our dataset showed a link between taxonomy and the colonization ability of a given MAG, we also identified MAGs that belong to the same taxon with different colonization properties, highlighting the importance of an appropriate level of resolution to explore the functional basis of colonization and to identify targets for cultivation, hypothesis generation, and testing in model systems. Lastly, the analytical strategy adopted in our study can provide genomic insights into bacterial populations that may be critical to the efficacy of FMT due to their success in gut colonization and metabolic properties, and guide cultivation efforts to investigate mechanistic underpinnings of this procedure beyond associations.« less

  14. Spatio temporal analysis of microbial habitats in soil-root interfaces

    NASA Astrophysics Data System (ADS)

    Eickhorst, Thilo; Schmidt, Hannes

    2017-04-01

    Microbial habitats in soils are formed by the arrangement and availability of inorganic and organic compounds. They can be characterized by physico-chemical parameters and the resulting colonization by microorganisms. Areas being preferably colonized are known as microbial hot spots which can be found in (bio)pores within the aggregatusphere or in the rhizosphere. The latter is directly influenced by plants i.e. the growth and activity of plant roots which has an influence on physico-chemical dynamics in the rhizosphere and can even shape plants' root microbiome. As microbial communities play an important role in nutrient cycling their response in soil-root interfaces is of great importance. Especially in complex systems such as paddy soils used for the cultivation of wetland rice the analysis of spatio-temporal aspects is important to get knowledge about their influence on the microbial dynamics in the respective habitats. But also other spatial variations on larger scales up to landscape scale may have an impact on the soil microorganisms in their habitats. This PICO presentation will introduce a set of techniques which are useful to analyze both the physico-chemical characteristics of microbial habitats and the microbial colonization and dynamics in soil-root interfaces. Examples will be given on various studies from rice cultivation in different paddy soils up to an European transect representing rhizosphere soils of selected plant species.

  15. A Systems Biology Approach Reveals Differences in the Dynamics of Colonization and Degradation of Grass vs. Hay by Rumen Microbes with Minor Effects of Vitamin E Supplementation

    PubMed Central

    Belanche, Alejandro; Newbold, Charles J.; Lin, Wanchang; Rees Stevens, Pauline; Kingston-Smith, Alison H.

    2017-01-01

    Increasing the efficiency of utilization of fresh and preserved forage is a key target for ruminant science. Vitamin E is often used as additive to improve product quality but its impact of the rumen function is unknown. This study investigated the successional microbial colonization of ryegrass (GRA) vs. ryegrass hay (HAY) in presence of zero or 50 IU/d supplementary vitamin E, using a rumen simulation technique. A holistic approach was used to link the dynamics of feed degradation with the structure of the liquid-associated (LAB) and solid-associated bacteria (SAB). Results showed that forage colonization by SAB was a tri-phasic process highly affected by the forage conservation method: Early colonization (0–2 h after feeding) by rumen microbes was 2× faster for GRA than HAY diets and dominated by Lactobacillus and Prevotella which promoted increased levels of lactate (+56%) and ammonia (+18%). HAY diets had lower DM degradation (-72%) during this interval being Streptococcus particularly abundant. During secondary colonization (4–8 h) the SAB community increased in size and decreased in diversity as the secondary colonizers took over (Pseudobutyrivibrio) promoting the biggest differences in the metabolomics profile between diets. Secondary colonization was 3× slower for HAY vs. GRA diets, but this delay was compensated by a greater bacterial diversity (+197 OTUs) and network complexity resulting in similar feed degradations. Tertiary colonization (>8 h) consisted of a slowdown in the colonization process and simplification of the bacterial network. This slowdown was less evident for HAY diets which had higher levels of tertiary colonizers (Butyrivibrio and Ruminococcus) and may explain the higher DM degradation (+52%) during this interval. The LAB community was particularly active during the early fermentation of GRA and during the late fermentation for HAY diets indicating that the availability of nutrients in the liquid phase reflects the dynamics of feed degradation. Vitamin E supplementation had minor effects but promoted a simplification of the LAB community and a slight acceleration in the SAB colonization sequence which could explain the higher DM degradation during the secondary colonization. Our findings suggest that when possible, grass should be fed instead of hay, in order to accelerate feed utilization by rumen microbes. PMID:28824585

  16. Ecology of Root Colonizing Massilia (Oxalobacteraceae)

    PubMed Central

    Ofek, Maya; Hadar, Yitzhak; Minz, Dror

    2012-01-01

    Background Ecologically meaningful classification of bacterial populations is essential for understanding the structure and function of bacterial communities. As in soils, the ecological strategy of the majority of root-colonizing bacteria is mostly unknown. Among those are Massilia (Oxalobacteraceae), a major group of rhizosphere and root colonizing bacteria of many plant species. Methodology/Principal Findings The ecology of Massilia was explored in cucumber root and seed, and compared to that of Agrobacterium population, using culture-independent tools, including DNA-based pyrosequencing, fluorescence in situ hybridization and quantitative real-time PCR. Seed- and root-colonizing Massilia were primarily affiliated with other members of the genus described in soil and rhizosphere. Massilia colonized and proliferated on the seed coat, radicle, roots, and also on hyphae of phytopathogenic Pythium aphanidermatum infecting seeds. High variation in Massilia abundance was found in relation to plant developmental stage, along with sensitivity to plant growth medium modification (amendment with organic matter) and potential competitors. Massilia absolute abundance and relative abundance (dominance) were positively related, and peaked (up to 85%) at early stages of succession of the root microbiome. In comparison, variation in abundance of Agrobacterium was moderate and their dominance increased at later stages of succession. Conclusions In accordance with contemporary models for microbial ecology classification, copiotrophic and competition-sensitive root colonization by Massilia is suggested. These bacteria exploit, in a transient way, a window of opportunity within the succession of communities within this niche. PMID:22808103

  17. Ecology of root colonizing Massilia (Oxalobacteraceae).

    PubMed

    Ofek, Maya; Hadar, Yitzhak; Minz, Dror

    2012-01-01

    Ecologically meaningful classification of bacterial populations is essential for understanding the structure and function of bacterial communities. As in soils, the ecological strategy of the majority of root-colonizing bacteria is mostly unknown. Among those are Massilia (Oxalobacteraceae), a major group of rhizosphere and root colonizing bacteria of many plant species. The ecology of Massilia was explored in cucumber root and seed, and compared to that of Agrobacterium population, using culture-independent tools, including DNA-based pyrosequencing, fluorescence in situ hybridization and quantitative real-time PCR. Seed- and root-colonizing Massilia were primarily affiliated with other members of the genus described in soil and rhizosphere. Massilia colonized and proliferated on the seed coat, radicle, roots, and also on hyphae of phytopathogenic Pythium aphanidermatum infecting seeds. High variation in Massilia abundance was found in relation to plant developmental stage, along with sensitivity to plant growth medium modification (amendment with organic matter) and potential competitors. Massilia absolute abundance and relative abundance (dominance) were positively related, and peaked (up to 85%) at early stages of succession of the root microbiome. In comparison, variation in abundance of Agrobacterium was moderate and their dominance increased at later stages of succession. In accordance with contemporary models for microbial ecology classification, copiotrophic and competition-sensitive root colonization by Massilia is suggested. These bacteria exploit, in a transient way, a window of opportunity within the succession of communities within this niche.

  18. Colonization-Induced Host-Gut Microbial Metabolic Interaction

    PubMed Central

    Claus, Sandrine P.; Ellero, Sandrine L.; Berger, Bernard; Krause, Lutz; Bruttin, Anne; Molina, Jérôme; Paris, Alain; Want, Elizabeth J.; de Waziers, Isabelle; Cloarec, Olivier; Richards, Selena E.; Wang, Yulan; Dumas, Marc-Emmanuel; Ross, Alastair; Rezzi, Serge; Kochhar, Sunil; Van Bladeren, Peter; Lindon, John C.; Holmes, Elaine; Nicholson, Jeremy K.

    2011-01-01

    The gut microbiota enhances the host’s metabolic capacity for processing nutrients and drugs and modulate the activities of multiple pathways in a variety of organ systems. We have probed the systemic metabolic adaptation to gut colonization for 20 days following exposure of axenic mice (n = 35) to a typical environmental microbial background using high-resolution 1H nuclear magnetic resonance (NMR) spectroscopy to analyze urine, plasma, liver, kidney, and colon (5 time points) metabolic profiles. Acquisition of the gut microbiota was associated with rapid increase in body weight (4%) over the first 5 days of colonization with parallel changes in multiple pathways in all compartments analyzed. The colonization process stimulated glycogenesis in the liver prior to triggering increases in hepatic triglyceride synthesis. These changes were associated with modifications of hepatic Cyp8b1 expression and the subsequent alteration of bile acid metabolites, including taurocholate and tauromuricholate, which are essential regulators of lipid absorption. Expression and activity of major drug-metabolizing enzymes (Cyp3a11 and Cyp2c29) were also significantly stimulated. Remarkably, statistical modeling of the interactions between hepatic metabolic profiles and microbial composition analyzed by 16S rRNA gene pyrosequencing revealed strong associations of the Coriobacteriaceae family with both the hepatic triglyceride, glucose, and glycogen levels and the metabolism of xenobiotics. These data demonstrate the importance of microbial activity in metabolic phenotype development, indicating that microbiota manipulation is a useful tool for beneficially modulating xenobiotic metabolism and pharmacokinetics in personalized health care. PMID:21363910

  19. Prolonged restraint stressor exposure in outbred CD-1 mice impacts microbiota, colonic inflammation, and short chain fatty acids.

    PubMed

    Maltz, Ross M; Keirsey, Jeremy; Kim, Sandra C; Mackos, Amy R; Gharaibeh, Raad Z; Moore, Cathy C; Xu, Jinyu; Bakthavatchalu, Vasudevan; Somogyi, Arpad; Bailey, Michael T

    2018-01-01

    Stressor-exposure has been shown to exacerbate inflammation and change the composition of the gastrointestinal microbiota; however stressor-induced effects on microbiota-derived metabolites and their receptors are unknown. Thus, bacterial-produced short chain fatty acids (SCFAs), as well as microbial community composition, were assessed in the colons of mice exposed to stress during infection with Citrobacter rodentium. Mice were exposed to overnight restraint on 7 consecutive nights, or left undisturbed as a control. After the first exposure of restraint, mice were orally challenged with C. rodentium or with vehicle. Microbial community composition was assessed using 16S rRNA gene sequencing and SCFA levels measured using gas chromatography-mass spectrometry (GC-MS). Pathogen levels and colonic inflammation were also assessed 6 days post-infection. Results demonstrated that the microbial community structure and SCFA production were significantly affected by both stressor exposure and C. rodentium-infection. Exposure to prolonged restraint in the absence of infection significantly reduced SCFAs (acetic acid, butyric acid, and propionic acid). Multiple bacterial taxa were affected by stressor exposure, with the relative abundance of Lactobacillus being significantly reduced and directly correlated with propionic acid. Lactobacillus abundances were inversely correlated with colonic inflammation, supporting the contention that Lactobacillus helps to regulate mucosal inflammatory responses. Our data indicates that restraint stressor can have significant effects on pathogen-induced colonic inflammation and suggest that stressor-induced changes in the microbiota, microbial-produced SCFAs and their receptors may be involved.

  20. Wheat bran extract alters colonic fermentation and microbial composition, but does not affect faecal water toxicity: a randomised controlled trial in healthy subjects.

    PubMed

    Windey, Karen; De Preter, Vicky; Huys, Geert; Broekaert, Willem F; Delcour, Jan A; Louat, Thierry; Herman, Jean; Verbeke, Kristin

    2015-01-28

    Wheat bran extract (WBE), containing arabinoxylan-oligosaccharides that are potential prebiotic substrates, has been shown to modify bacterial colonic fermentation in human subjects and to beneficially affect the development of colorectal cancer (CRC) in rats. However, it is unclear whether these changes in fermentation are able to reduce the risk of developing CRC in humans. The aim of the present study was to evaluate the effects of WBE on the markers of CRC risk in healthy volunteers, and to correlate these effects with colonic fermentation. A total of twenty healthy subjects were enrolled in a double-blind, cross-over, randomised, controlled trial in which the subjects ingested WBE (10 g/d) or placebo (maltodextrin, 10 g/d) for 3 weeks, separated by a 3-week washout period. At the end of each study period, colonic handling of NH3 was evaluated using the biomarker lactose[15N, 15N']ureide, colonic fermentation was characterised through a metabolomics approach, and the predominant microbial composition was analysed using denaturing gradient gel electrophoresis. As markers of CRC risk, faecal water genotoxicity was determined using the comet assay and faecal water cytotoxicity using a colorimetric cell viability assay. Intake of WBE induced a shift from urinary to faecal 15N excretion, indicating a stimulation of colonic bacterial activity and/or growth. Microbial analysis revealed a selective stimulation of Bifidobacterium adolescentis. In addition, WBE altered the colonic fermentation pattern and significantly reduced colonic protein fermentation compared with the run-in period. However, faecal water cytotoxicity and genotoxicity were not affected. Although intake of WBE clearly affected colonic fermentation and changed the composition of the microbiota, these changes were not associated with the changes in the markers of CRC risk.

  1. Early-Life Events, Including Mode of Delivery and Type of Feeding, Siblings and Gender, Shape the Developing Gut Microbiota.

    PubMed

    Martin, Rocio; Makino, Hiroshi; Cetinyurek Yavuz, Aysun; Ben-Amor, Kaouther; Roelofs, Mieke; Ishikawa, Eiji; Kubota, Hiroyuki; Swinkels, Sophie; Sakai, Takafumi; Oishi, Kenji; Kushiro, Akira; Knol, Jan

    2016-01-01

    Colonization of the infant gut is believed to be critically important for a healthy growth as it influences gut maturation, metabolic, immune and brain development in early life. Understanding factors that influence this process is important, since an altered colonization has been associated with a higher risk of diseases later in life. Fecal samples were collected from 108 healthy neonates in the first half year of life. The composition and functionality of the microbiota was characterized by measuring 33 different bacterial taxa by qPCR/RT qPCR, and 8 bacterial metabolites. Information regarding gender, place and mode of birth, presence of siblings or pets; feeding pattern and antibiotic use was collected by using questionnaires. Regression analysis techniques were used to study associations between microbiota parameters and confounding factors over time. Bacterial DNA was detected in most meconium samples, suggesting bacterial exposure occurs in utero. After birth, colonization by species of Bifidobacterium, Lactobacillus and Bacteroides was influenced by mode of delivery, type of feeding and presence of siblings, with differences found at species level and over time. Interestingly, infant-type bifidobacterial species such as B. breve or B. longum subsp infantis were confirmed as early colonizers apparently independent of the factors studied here, while B. animalis subsp. lactis presence was found to be dependent solely on the type of feeding, indicating that it might not be a common infant gut inhabitant. One interesting and rather unexpected confounding factor was gender. This study contributes to our understanding of the composition of the microbiota in early life and the succession process and the evolution of the microbial community as a function of time and events occurring during the first 6 months of life. Our results provide new insights that could be taken into consideration when selecting nutritional supplementation strategies to support the developing infant gut microbiome.

  2. Early-Life Events, Including Mode of Delivery and Type of Feeding, Siblings and Gender, Shape the Developing Gut Microbiota

    PubMed Central

    Cetinyurek Yavuz, Aysun; Ben-Amor, Kaouther; Roelofs, Mieke; Ishikawa, Eiji; Kubota, Hiroyuki; Swinkels, Sophie; Sakai, Takafumi; Oishi, Kenji; Kushiro, Akira; Knol, Jan

    2016-01-01

    Colonization of the infant gut is believed to be critically important for a healthy growth as it influences gut maturation, metabolic, immune and brain development in early life. Understanding factors that influence this process is important, since an altered colonization has been associated with a higher risk of diseases later in life. Fecal samples were collected from 108 healthy neonates in the first half year of life. The composition and functionality of the microbiota was characterized by measuring 33 different bacterial taxa by qPCR/RT qPCR, and 8 bacterial metabolites. Information regarding gender, place and mode of birth, presence of siblings or pets; feeding pattern and antibiotic use was collected by using questionnaires. Regression analysis techniques were used to study associations between microbiota parameters and confounding factors over time. Bacterial DNA was detected in most meconium samples, suggesting bacterial exposure occurs in utero. After birth, colonization by species of Bifidobacterium, Lactobacillus and Bacteroides was influenced by mode of delivery, type of feeding and presence of siblings, with differences found at species level and over time. Interestingly, infant-type bifidobacterial species such as B. breve or B. longum subsp infantis were confirmed as early colonizers apparently independent of the factors studied here, while B. animalis subsp. lactis presence was found to be dependent solely on the type of feeding, indicating that it might not be a common infant gut inhabitant. One interesting and rather unexpected confounding factor was gender. This study contributes to our understanding of the composition of the microbiota in early life and the succession process and the evolution of the microbial community as a function of time and events occurring during the first 6 months of life. Our results provide new insights that could be taken into consideration when selecting nutritional supplementation strategies to support the developing infant gut microbiome. PMID:27362264

  3. Microbial community composition and endolith colonization at an Arctic thermal spring are driven by calcite precipitation

    USGS Publications Warehouse

    Starke, Verena; Kirshtein, Julie; Fogel, Marilyn L.; Steele, Andrew

    2013-01-01

    Environmental conditions shape community composition. Arctic thermal springs provide an opportunity to study how environmental gradients can impose strong selective pressures on microbial communities and provide a continuum of niche opportunities. We use microscopic and molecular methods to conduct a survey of microbial community composition at Troll Springs on Svalbard, Norway, in the high Arctic. Microorganisms there exist under a wide range of environmental conditions: in warm water as periphyton, in moist granular materials, and in cold, dry rock as endoliths. Troll Springs has two distinct ecosystems, aquatic and terrestrial, together in close proximity, with different underlying environmental factors shaping each microbial community. Periphyton are entrapped during precipitation of calcium carbonate from the spring's waters, providing microbial populations that serve as precursors for the development of endolithic communities. This process differs from most endolith colonization, in which the rock predates the communities that colonize it. Community composition is modulated as environmental conditions change within the springs. At Troll, the aquatic environments show a small number of dominant operational taxonomic units (OTUs) that are specific to each sample. The terrestrial environments show a more even distribution of OTUs common to multiple samples.

  4. Cryptic oxygen oases: Hypolithic photosynthesis in hydrothermal areas and implications for Archean surface oxidation

    NASA Astrophysics Data System (ADS)

    Havig, J. R.; Hamilton, T. L.

    2017-12-01

    Mounting geochemical evidence suggests microorganisms capable of oxygenic photosynthesis (e.g., Cyanobacteria) colonized Archean continental surfaces, driving oxidative weathering of detrital pyrites prior to the 2.5 Ga great oxidation event. Modern terrestrial environments dominated by single-celled phototrophs include hydrothermal systems (e.g., Yellowstone National Park) and hypolithic communities found in arid to hyper-arid deserts (e.g., McMurdo Dry Valleys of Antarctica, Atacama Desert of Chile). Recent work indicates terrestrial hydrothermal systems date back at least as far as 3.5 Ga. Here, we explore phototrophic communities in both hypolithic (sub-sinter) and hydrothermal (subaqueous and subaerial) environments in Yellowstone National Park as potential analogs to Archean continental surfaces. Hydrothermal sub-sinter environments provide ideal conditions for phototrophic microbial communities, including blocking of harmful UV radiation, trapping and retention of moisture, and protection from erosion by rain and surface runoff. Hypolithic communities in geothermal settings were similar in both composition and carbon uptake rates to nearby hot spring communities. We hypothesize that hydrothermal area hypolithic communities represent modern analogs of phototrophic microbial communities that colonized Archean continental surfaces, producing oxygen locally and facilitating microbially-mediated pyrite oxidation prior to the presence of free oxygen in the global atmosphere. These results have implications for oxidation of the early Earth surface, the search for biosignatures in the rock record, as well as for potential harbors of past life on Mars and the search for life on Exoplanets.

  5. Ignimbrite textural properties as determinants of endolithic colonization patterns from hyper-arid Atacama Desert.

    PubMed

    Cámara, Beatriz; Suzuki, Shino; Nealson, Kenneth H; Wierzchos, Jacek; Ascaso, Carmen; Artieda, Octavio; de los Ríos, Asunción

    2014-12-01

    This study explores the photosynthetic microbial colonization of rhyolitic ignimbrites in Lomas de Tilocalar, a hyper-arid region of the Atacama Desert, Chile. Colonization appeared in the form of a green layer a few millimeters beneath the ignimbrite surface. Some ignimbrite rocks revealed two distinct micromorphological areas of identical mineralogical and chemical composition but different textural properties. According to texture, colonization patterns varied in terms of the extension and depth of colonization. The diversity of photosynthetic microorganisms was assessed by denaturing gradient gel electrophoresis (DGGE) of the 23S rRNA gene and by generating clone libraries of the 16S rRNA gene. We observed a low diversity of photosynthetic microorganisms colonizing the ignimbrite microhabitat. Most rRNA gene sequences recovered greatly resembled those of Chroococcidiopsis hypolith clones from arid deserts. These results point to highly restrictive conditions of the hyper-arid Atacama Desert conditioning the diversity of cyanobacteria, and suggest that microbial colonization and composition patterns might be determined by the microscale physico-chemical properties of the ignimbrite rocks. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  6. The earliest stages of ecosystem succession in high-elevation (5000 metres above sea level), recently deglaciated soils.

    PubMed

    Schmidt, S K; Reed, Sasha C; Nemergut, Diana R; Grandy, A Stuart; Cleveland, Cory C; Weintraub, Michael N; Hill, Andrew W; Costello, Elizabeth K; Meyer, A F; Neff, J C; Martin, A M

    2008-12-22

    Global climate change has accelerated the pace of glacial retreat in high-latitude and high-elevation environments, exposing lands that remain devoid of vegetation for many years. The exposure of 'new' soil is particularly apparent at high elevations (5000 metres above sea level) in the Peruvian Andes, where extreme environmental conditions hinder plant colonization. Nonetheless, these seemingly barren soils contain a diverse microbial community; yet the biogeochemical role of micro-organisms at these extreme elevations remains unknown. Using biogeochemical and molecular techniques, we investigated the biological community structure and ecosystem functioning of the pre-plant stages of primary succession in soils along a high-Andean chronosequence. We found that recently glaciated soils were colonized by a diverse community of cyanobacteria during the first 4-5 years following glacial retreat. This significant increase in cyanobacterial diversity corresponded with equally dramatic increases in soil stability, heterotrophic microbial biomass, soil enzyme activity and the presence and abundance of photosynthetic and photoprotective pigments. Furthermore, we found that soil nitrogen-fixation rates increased almost two orders of magnitude during the first 4-5 years of succession, many years before the establishment of mosses, lichens or vascular plants. Carbon analyses (pyrolysis-gas chromatography/mass spectroscopy) of soil organic matter suggested that soil carbon along the chronosequence was of microbial origin. This indicates that inputs of nutrients and organic matter during early ecosystem development at these sites are dominated by microbial carbon and nitrogen fixation. Overall, our results indicate that photosynthetic and nitrogen-fixing bacteria play important roles in acquiring nutrients and facilitating ecological succession in soils near some of the highest elevation receding glaciers on the Earth.

  7. Longitudinal Analysis of the Premature Infant Intestinal Microbiome Prior to Necrotizing Enterocolitis: A Case-Control Study

    PubMed Central

    Zhou, Yanjiao; Shan, Gururaj; Sodergren, Erica; Weinstock, George; Walker, W. Allan; Gregory, Katherine E.

    2015-01-01

    Necrotizing enterocolitis (NEC) is an inflammatory disease of the newborn bowel, primarily affecting premature infants. Early intestinal colonization has been implicated in the pathogenesis of NEC. The objective of this prospective case-control study was to evaluate differences in the intestinal microbiota between infants who developed NEC and unaffected controls prior to disease onset. We conducted longitudinal analysis of the 16S rRNA genes of 312 samples obtained from 12 NEC cases and 26 age-matched controls with a median frequency of 7 samples per subject and median sampling interval of 3 days. We found that the microbiome undergoes dynamic development during the first two months of life with day of life being the major factor contributing to the colonization process. Depending on when the infant was diagnosed with NEC (i.e. early vs. late onset), the pattern of microbial progression was different for cases and controls. The difference in the microbiota was most overt in early onset NEC cases and controls. In proximity to NEC onset, the abundances of Clostridium sensu stricto from Clostridia class were significantly higher in early onset NEC subjects comparing to controls. In late onset NEC, Escherichia/Shigella among Gammaproteobacteria, showed an increasing pattern prior to disease onset, and was significantly higher in cases than controls six days before NEC onset. Cronobacter from Gammaproteobacteria was also significantly higher in late onset NEC cases than controls 1-3 days prior to NEC onset. Thus, the specific infectious agent associated with NEC may vary by the age of infant at disease onset. We found that intravenously administered antibiotics may have an impact on the microbial diversity present in fecal material. Longitudinal analysis at multiple time points was an important strategy utilized in this study, allowing us to appreciate the dynamics of the premature infant intestinal microbiome while approaching NEC at various points. PMID:25741698

  8. Potential sources of microbial colonizers in an initial soil ecosystem after retreat of an alpine glacier

    PubMed Central

    Rime, Thomas; Hartmann, Martin; Frey, Beat

    2016-01-01

    Rapid disintegration of alpine glaciers has led to the formation of new terrain consisting of mineral debris colonized by microorganisms. Despite the importance of microbial pioneers in triggering the formation of terrestrial ecosystems, their sources (endogenous versus exogenous) and identities remain elusive. We used 454-pyrosequencing to characterize the bacterial and fungal communities in endogenous glacier habitats (ice, sub-, supraglacial sediments and glacier stream leaving the glacier forefront) and in atmospheric deposition (snow, rain and aeolian dust). We compared these microbial communities with those occurring in recently deglaciated barren soils before and after snow melt (snow-covered soil and barren soil). Atmospheric bacteria and fungi were dominated by plant-epiphytic organisms and differed from endogenous glacier habitats and soils indicating that atmospheric input of microorganisms is not a major source of microbial pioneers in newly formed soils. We found, however, that bacterial communities in newly exposed soils resembled those of endogenous habitats, which suggests that bacterial pioneers originating from sub- and supraglacial sediments contributed to the colonization of newly exposed soils. Conversely, fungal communities differed between habitats suggesting a lower dispersal capability than bacteria. Yeasts putatively adapted to cold habitats characteristic of snow and supraglacial sediments were similar, despite the fact that these habitats were not spatially connected. These findings suggest that environmental filtering selects particular fungi in cold habitats. Atmospheric deposition provided important sources of dissolved organic C, nitrate and ammonium. Overall, microbial colonizers triggering soil development in alpine environments mainly originate from endogenous glacier habitats, whereas atmospheric deposition contributes to the establishment of microbial communities by providing sources of C and N. PMID:26771926

  9. Potential sources of microbial colonizers in an initial soil ecosystem after retreat of an alpine glacier.

    PubMed

    Rime, Thomas; Hartmann, Martin; Frey, Beat

    2016-07-01

    Rapid disintegration of alpine glaciers has led to the formation of new terrain consisting of mineral debris colonized by microorganisms. Despite the importance of microbial pioneers in triggering the formation of terrestrial ecosystems, their sources (endogenous versus exogenous) and identities remain elusive. We used 454-pyrosequencing to characterize the bacterial and fungal communities in endogenous glacier habitats (ice, sub-, supraglacial sediments and glacier stream leaving the glacier forefront) and in atmospheric deposition (snow, rain and aeolian dust). We compared these microbial communities with those occurring in recently deglaciated barren soils before and after snow melt (snow-covered soil and barren soil). Atmospheric bacteria and fungi were dominated by plant-epiphytic organisms and differed from endogenous glacier habitats and soils indicating that atmospheric input of microorganisms is not a major source of microbial pioneers in newly formed soils. We found, however, that bacterial communities in newly exposed soils resembled those of endogenous habitats, which suggests that bacterial pioneers originating from sub- and supraglacial sediments contributed to the colonization of newly exposed soils. Conversely, fungal communities differed between habitats suggesting a lower dispersal capability than bacteria. Yeasts putatively adapted to cold habitats characteristic of snow and supraglacial sediments were similar, despite the fact that these habitats were not spatially connected. These findings suggest that environmental filtering selects particular fungi in cold habitats. Atmospheric deposition provided important sources of dissolved organic C, nitrate and ammonium. Overall, microbial colonizers triggering soil development in alpine environments mainly originate from endogenous glacier habitats, whereas atmospheric deposition contributes to the establishment of microbial communities by providing sources of C and N.

  10. The Colonic Microbiome and Epithelial Transcriptome Are Altered in Rats Fed a High-Protein Diet Compared with a Normal-Protein Diet.

    PubMed

    Mu, Chunlong; Yang, Yuxiang; Luo, Zhen; Guan, Leluo; Zhu, Weiyun

    2016-03-01

    A high-protein diet (HPD) can produce hazardous compounds and reduce butyrate-producing bacteria in feces, which may be detrimental to gut health. However, information on whether HPD affects intestinal function is limited. The aim of this study was to determine the impact of an HPD on the microbiota, microbial metabolites, and epithelial transcriptome in the colons of rats. Adult male Wistar rats were fed either a normal-protein diet (20% protein, 56% carbohydrate) or an HPD (45% protein, 30% carbohydrate) for 6 wk (n = 10 rats per group, individually fed). After 6 wk, the colonic microbiome, microbial metabolites, and epithelial transcriptome were determined. Compared with the normal-protein diet, the HPD adversely altered the colonic microbiota by increasing (P < 0.05) Escherichia/Shigella, Enterococcus, Streptococcus, and sulfate-reducing bacteria by 54.9-fold, 31.3-fold, 5.36-fold, and 2.59-fold, respectively. However, the HPD reduced Ruminococcus (8.04-fold), Akkermansia (not detected in HPD group), and Faecalibacterium prausnitzii (3.5-fold) (P < 0.05), which are generally regarded as beneficial bacteria in the colon. Concomitant increases in cadaverine (4.88-fold), spermine (31.2-fold), and sulfide (4.8-fold) (P < 0.05) and a decrease in butyrate (2.16-fold) (P < 0.05) in the HPD rats indicated an evident shift toward the production of unhealthy microbial metabolites. In the colon epithelium of the HPD rats, transcriptome analysis identified an upregulation of genes (P < 0.05) involved in disease pathogenesis; these genes are involved in chemotaxis, the tumor necrosis factor signal process, and apoptosis. The HPD was also associated with a downregulation of many genes (P < 0.05) involved in immunoprotection, such as genes involved in innate immunity, O-linked glycosylation of mucin, and oxidative phosphorylation, suggesting there may be an increased disease risk in these rats. The abundance of Escherichia/Shigella, Enterococcus, and Streptococcus was positively correlated (Spearman's ρ > 0.7, P < 0.05) with genes and metabolites generally regarded as being involved in disease pathogenesis, suggesting these bacteria may mediate the detrimental effects of HPDs on colonic health. Our findings suggest that the HPD altered the colonic microbial community, shifted the metabolic profile, and affected the host response in the colons of rats toward an increased risk of colonic disease. © 2016 American Society for Nutrition.

  11. From birth to ‘immuno-health’, allergies and enterocolitis

    PubMed Central

    Houghteling, Pearl D.; Walker, W. Allan

    2015-01-01

    Microbial signals stimulate development and maintenance of the neonatal immune system. The process begins in utero, with limited exposure to microbes in the intrauterine environment, as well as maternal immune signals priming the developing immune system. After birth and initial colonization, the immune system must be able to activate against pathogens, but also achieve oral tolerance of food and resident gut microbes. Through microbial signals and appropriate nutrition, the immune system is able to achieve homeostasis. Major challenges to successful colonization and immune system regulation include abnormal microbial inoculi (cesarean section, hygiene) and antibiotics. When normal colonization is interrupted, dysbiosis occurs. This imbalance of microbes and subsequently of the immune system can result in allergic diseases, asthma or necrotizing enterocolitis. Probiotics and probiotic-derived therapies represent an exciting avenue to replete the population of commensal microbes and to prevent the immune-mediated sequelae of dysbiosis. PMID:26447970

  12. Investigating How the Microbiome Interacts With Environmental Chemicals in Zebrafish

    EPA Pesticide Factsheets

    This internship will use an innovative experimental system comprised of colonized and microbe-free zebrafish to learn how microbial colonization status affects the toxicity of environmental chemicals.

  13. On Growth and Form of the Zebrafish Gut Microbiome

    NASA Astrophysics Data System (ADS)

    Jemielita, Matthew; Taormina, Michael; Rolig, Annah; Burns, Adam; Hampton, Jennifer; Guillemin, Karen; Parthasarathy, Raghuveer

    2014-03-01

    The vertebrate gut is home to a diverse microbial community whose composition has a strong influence on the development and health of the host organism. Researchers can identify the members of the microbiota, yet little is known about the spatial and temporal dynamics of these microbial communities, including the mechanisms guiding their nucleation, growth, and interactions. We address these issues using the larval zebrafish (Danio rerio) as a model organism, which are raised microbe-free and then inoculated with controlled compositions of fluorophore-expressing bacteria. Live imaging using light sheet fluorescence microscopy enables visualization of the gut's entire microbial population over the first 24 hours of colonization. Image analysis allows us to quantify microbial populations that range from a few individuals to tens of thousands of microbes, and analyze the structure and growth kinetics of gut bacterial communities. We find that genetically-identical microbes can show surprisingly different growth rates and colonization abilities depending on their order of arrival. This demonstrates that knowing only the constituents of the gut community is insufficient to determine their dynamics; rather, the history of colonization matters.

  14. A unique in vivo approach for investigating antimicrobial materials utilizing fistulated animals

    NASA Astrophysics Data System (ADS)

    Berean, Kyle J.; Adetutu, Eric M.; Zhen Ou, Jian; Nour, Majid; Nguyen, Emily P.; Paull, David; McLeod, Jess; Ramanathan, Rajesh; Bansal, Vipul; Latham, Kay; Bishop-Hurley, Greg J.; McSweeney, Chris; Ball, Andrew S.; Kalantar-Zadeh, Kourosh

    2015-06-01

    Unique in vivo tests were conducted through the use of a fistulated ruminant, providing an ideal environment with a diverse and vibrant microbial community. Utilizing such a procedure can be especially invaluable for investigating the performance of antimicrobial materials related to human and animal related infections. In this pilot study, it is shown that the rumen of a fistulated animal provides an excellent live laboratory for assessing the properties of antimicrobial materials. We investigate microbial colonization onto model nanocomposites based on silver (Ag) nanoparticles at different concentrations into polydimethylsiloxane (PDMS). With implantable devices posing a major risk for hospital-acquired infections, the present study provides a viable solution to understand microbial colonization with the potential to reduce the incidence of infection through the introduction of Ag nanoparticles at the optimum concentrations. In vitro measurements were also conducted to show the validity of the approach. An optimal loading of 0.25 wt% Ag is found to show the greatest antimicrobial activity and observed through the in vivo tests to reduce the microbial diversity colonizing the surface.

  15. Who's on First? Part II: Bacterial and fungal colonization of fresh soil minerals

    NASA Astrophysics Data System (ADS)

    Whitman, T.; Neurath, R.; Zhang, P.; Yuan, T.; Weber, P. K.; Zhou, J.; Pett-Ridge, J.; Firestone, M. K.

    2015-12-01

    Soil organic matter (SOM) stabilization by soil minerals is an important mechanism influencing soil C cycling. Microbes make up only a few percent of total SOM, but have a disproportionate impact on SOM cycling. Their direct interactions with soil minerals, however, are not well characterized. We studied colonization of fresh minerals by soil microbes in an Avena barbata (wild oat) California grassland soil microcosm. Examining quartz, ferrihydrite, kaolinite, and the heavy fraction of the native soil, we asked: (1) Do different minerals select for different communities, or do random processes drive the colonization of fresh minerals? (2) What factors influence which taxa colonize fresh minerals? After incubating mesh bags (<18 μm) of minerals buried next to actively growing plant roots for 2 months, we used high-throughput sequencing of 16S and ITS2 genes to characterize the microbial communities colonizing the minerals. We found significant differences between the microbial community composition of different minerals and soil for both bacteria and fungi. We found a higher relative abundance of arbuscular mycorrhial fungi with ferrihydrite and quartz, and nanoscale secondary ion mass spectrometry (NanoSIMS) imaging of these minerals suggests that some fungal hyphae are moving C directly from roots to mineral surfaces. The enriched presence of both nematode-associated fungi (Pochonia sp.) and bacteria (Candidatus Xiphinematobacter) in the minerals suggests that these minerals may be a habitat for nematodes. Bacteria of the family Chitinophagaceae and genus Janthinobacterium were significantly enriched on both ferrihydrite and quartz minerals, both of which may interact with colonizing fungi. These findings suggest that: (1) Microbial colonization of fresh minerals is not a fully passive or neutral process. (2) Mineral exploration by plant-associated fungi and soil fauna transport may be factors in determining the initial colonization of minerals and subsequent C protection.

  16. Post-Genomics Approaches towards Monitoring Changes within the Microbial Ecology of the Gut

    NASA Astrophysics Data System (ADS)

    Tuohy, Kieran M.; Abecia, Leticia; Deaville, Eddie R.; Fava, Francesca; Klinder, Annett; Shen, Qing

    The human gut microbiota, comprising many hundreds of different microbial species, has closely co-evolved with its human host over the millennia. Diet has been a major driver of this co-evolution, in particular dietary non-digestible carbohydrates. This dietary fraction reaches the colon and becomes available for microbial fermentation, and it is in the colon that the great diversity of gut microorganisms resides. For the vast majority of our evolutionary history humans followed hunter-gatherer life-styles and consumed diets with many times more non-digestible carbohydrates, fiber and whole plant polyphenol rich foods than typical Western style diets today.

  17. Rhizosphere effect of colonizer plant species on the development of soil microbial community during primary succession on postmining sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elhottova, D.; Kristufek, V.; Maly, S.

    2009-07-01

    The impact of pioneer plant species Tussilago farfara on structural, functional, and growth characterization of microbial community colonizing the spoil colliery substrate was studied in a laboratory microcosm experiment. Microcosms consisting of spoil substrate (0.7 dm{sup 3} of tertiary alkaline clay sediment from Sokolov brown-coal mine area) from a pioneer site (without vegetation, 5 years after heaping) were cultivated in a greenhouse with one plant of this species. Plant roots substantially increased microbial diversity and biomass after one season (7 months) of cultivation. Roots influenced the microbial community and had nearly twice the size, higher growth, and metabolic potential inmore » comparison to the control. The development of microbial specialists improves the plant nutrient status. Bacterial nitrogen (N{sub 2}) fixators (Bradyrhizobium japonicum, Rhizobium radiobacter) and arbuscular mycorrhizal fungi were confirmed in the rhizosphere of Tussilago farfara.« less

  18. Fungal Colonization and Biodeterioration of Plasticized Polyvinyl Chloride

    PubMed Central

    Webb, Jeremy S.; Nixon, Marianne; Eastwood, Ian M.; Greenhalgh, Malcolm; Robson, Geoffrey D.; Handley, Pauline S.

    2000-01-01

    Significant substratum damage can occur when plasticized PVC (pPVC) is colonized by microorganisms. We investigated microbial colonization of pPVC in an in situ, longitudinal study. Pieces of pPVC containing the plasticizers dioctyl phthalate and dioctyl adipate (DOA) were exposed to the atmosphere for up to 2 years. Fungal and bacterial populations were quantified, and colonizing fungi were identified by rRNA gene sequencing and morphological characteristics. Aureobasidium pullulans was the principal colonizing fungus, establishing itself on the pPVC between 25 and 40 weeks of exposure. A group of yeasts and yeast-like fungi, including Rhodotorula aurantiaca and Kluyveromyces spp., established themselves on the pPVC much later (after 80 weeks of exposure). Numerically, these organisms dominated A. pullulans after 95 weeks, with a mean viable count ± standard error of 1,000 ± 200 yeast CFU cm−2, compared to 390 ± 50 A. pullulans CFU cm−2. No bacterial colonization was observed. We also used in vitro tests to characterize the deteriogenic properties of fungi isolated from the pPVC. All strains of A. pullulans tested could grow with the intact pPVC formulation as the sole source of carbon, degrade the plasticizer DOA, produce extracellular esterase, and cause weight loss of the substratum during growth in vitro. In contrast, several yeast isolates could not grow on pPVC or degrade DOA. These results suggest that microbial succession may occur during the colonization of pPVC and that A. pullulans is critical to the establishment of a microbial community on pPVC. PMID:10919769

  19. Microbial and metabolic signatures of necrotizing enterocolitis in formula-fed piglets

    USDA-ARS?s Scientific Manuscript database

    Major risk factors for necrotizing enterocolitis (NEC) include premature birth, formula feeding, and microbial colonization of the gastrointestinal tract. We previously showed that feeding formula composed of lactose vs corn syrup solids protects against NEC in preterm pigs, however the microbial an...

  20. Bacterial community succession in a high-altitude subarctic glacier foreland is a three-stage process.

    PubMed

    Kazemi, Sina; Hatam, Ido; Lanoil, Brian

    2016-11-01

    Alpine glaciers are retreating rapidly, exposing foreland minerals, which develop into soils. Bacterial communities in glacier forelands exhibit high rates of turnover and undergo dramatic shifts in composition within the first 50 years after deglaciation, followed by relative stabilization and convergence. This period of microbial development occurs simultaneously with plant colonization in most systems; thus, it remains unclear whether the changes in the bacterial communities occur primarily as the result of edaphic, climatic or biotic factors. We examined bacterial community structure along two replicate chronosequences within the glacial foreland of Duke River Glacier, Yukon, Canada. This foreland is estimated to include >200 years of bare soils before an appreciable grassline, likely due to the high latitude and altitude of the glacier. This enabled us to examine bacterial community development prior to plant colonization over a longer period than previous studies. We observed three successional groups in the chronosequence: (i) an 'early' group in soils of less than approximately 50 years since deglaciation; (ii) an 'intermediate' group within bare soils, after the early period but before the grassline, containing communities with a relatively high degree of variability in composition; and (iii) a 'grassline' group in soils collected after plant colonization with higher diversity but lower age-group variability in community composition. These findings suggest rapid replacement and addition of species better adapted to glacier foreland conditions followed by slower community shifts over the next 150 years and, finally, indications of a possible response to plant colonization. © 2016 John Wiley & Sons Ltd.

  1. Oral Fusobacterium nucleatum subsp. polymorphum binds to human salivary α-amylase.

    PubMed

    Zulfiqar, M; Yamaguchi, T; Sato, S; Oho, T

    2013-12-01

    Fusobacterium nucleatum acts as an intermediate between early and late colonizers in the oral cavity. In this study, we showed that F. nucleatum subsp. polymorphum can bind to a salivary component with a molecular weight of approximately 110 kDa and identified the protein and another major factor of 55 kDa, as salivary α-amylase by time-of-flight mass spectrometry and immuno-reactions. Salivary α-amylase is present in both monomeric and dimeric forms and we found that formation of the dimer depends on copper ions. The F. nucleatum adhered to both monomeric and dimeric salivary α-amylases, but the numbers of bacteria bound to the dimeric form were more than those bound to the monomeric form. The degree of adherence of F. nucleatum to four α-amylases from different sources was almost the same, however its binding to β-amylase was considerably decreased. Among four α-amylase inhibitors tested, acarbose and type 1 and 3 inhibitors derived from wheat flour showed significant activity against the adhesion of F.nucleatum to monomeric and dimeric amylases, however voglibose had little effect. Moreover F. nucleatum cells inhibited the enzymatic activity of salivary α-amylase in a dose-dependent manner. These results suggest that F. nucleatum plays more important and positive role as an early colonizer for maturation of oral microbial colonization. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Putative fossil life in a hydrothermal system of the Dellen impact structure, Sweden

    NASA Astrophysics Data System (ADS)

    Lindgren, Paula; Ivarsson, Magnus; Neubeck, Anna; Broman, Curt; Henkel, Herbert; Holm, Nils G.

    2010-07-01

    Impact-generated hydrothermal systems are commonly proposed as good candidates for hosting primitive life on early Earth and Mars. However, evidence of fossil microbial colonization in impact-generated hydrothermal systems is rarely reported in the literature. Here we present the occurrence of putative fossil microorganisms in a hydrothermal system of the 89 Ma Dellen impact structure, Sweden. We found the putative fossilized microorganisms hosted in a fine-grained matrix of hydrothermal alteration minerals set in interlinked fractures of an impact breccia. The putative fossils appear as semi-straight to twirled filaments, with a thickness of 1-2 μm, and a length between 10 and 100 μm. They have an internal structure with segmentation, and branching of filaments occurs frequently. Their composition varies between an outer and an inner layer of a filament, where the inner layer is more iron rich. Our results indicate that hydrothermal systems in impact craters could potentially be capable of supporting microbial life. This could have played an important role for the evolution of life on early Earth and Mars.

  3. The shared microbiota of humans and companion animals as evaluated from Staphylococcus carriage sites.

    PubMed

    Misic, Ana M; Davis, Meghan F; Tyldsley, Amanda S; Hodkinson, Brendan P; Tolomeo, Pam; Hu, Baofeng; Nachamkin, Irving; Lautenbach, Ebbing; Morris, Daniel O; Grice, Elizabeth A

    2015-01-01

    Staphylococcus aureus and other coagulase-positive staphylococci (CPS) colonize skin and mucous membrane sites and can cause skin and soft tissue infections (SSTIs) in humans and animals. Factors modulating methicillin-resistant S. aureus (MRSA) colonization and infection in humans remain unclear, including the role of the greater microbial community and environmental factors such as contact with companion animals. In the context of a parent study evaluating the households of outpatients with community MRSA SSTI, the objectives of this study were 1) to characterize the microbiota that colonizes typical coagulase-positive Staphylococcus spp. carriage sites in humans and their companion pets, 2) to analyze associations between Staphylococcus infection and carriage and the composition and diversity of microbial communities, and 3) to analyze factors that influence sharing of microbiota between pets and humans. We enrolled 25 households containing 56 pets and 30 humans. Sampling locations were matched to anatomical sites cultured by the parent study for MRSA and other CPS. Bacterial microbiota were characterized by sequencing of 16S ribosomal RNA genes. Household membership was strongly associated with microbial communities, in both humans and pets. Pets were colonized with a greater relative abundance of Proteobacteria, whereas people were colonized with greater relative abundances of Firmicutes and Actinobacteria. We did not detect differences in microbiota associated with MRSA SSTI, or carriage of MRSA, S. aureus or CPS. Humans in households without pets were more similar to each other than humans in pet-owning households, suggesting that companion animals may play a role in microbial transfer. We examined changes in microbiota over a 3-month time period and found that pet staphylococcal carriage sites were more stable than human carriage sites. We characterized and identified patterns of microbiota sharing and stability between humans and companion animals. While we did not detect associations with MRSA SSTI, or carriage of MRSA, S. aureus or CPS in this small sample size, larger studies are warranted to fully explore how microbial communities may be associated with and contribute to MRSA and/or CPS colonization, infection, and recurrence.

  4. Phylogenetic trait conservatism and the evolution of functional trade-offs in arbuscular mycorrhizal fungi.

    PubMed

    Powell, Jeff R; Parrent, Jeri L; Hart, Miranda M; Klironomos, John N; Rillig, Matthias C; Maherali, Hafiz

    2009-12-07

    The diversity of functional and life-history traits of organisms depends on adaptation as well as the legacy of shared ancestry. Although the evolution of traits in macro-organisms is well studied, relatively little is known about character evolution in micro-organisms. Here, we surveyed an ancient and ecologically important group of microbial plant symbionts, the arbuscular mycorrhizal (AM) fungi, and tested hypotheses about the evolution of functional and life-history traits. Variation in the extent of root and soil colonization by AM fungi is constrained to a few nodes basal to the most diverse groups within the phylum, with relatively little variation associated with recent divergences. We found no evidence for a trade-off in biomass allocated to root versus soil colonization in three published glasshouse experiments; rather these traits were positively correlated. Partial support was observed for correlated evolution between fungal colonization strategies and functional benefits of the symbiosis to host plants. The evolution of increased soil colonization was positively correlated with total plant biomass and shoot phosphorus content. Although the effect of AM fungi on infection by root pathogens was phylogenetically conserved, there was no evidence for correlated evolution between the extent of AM fungal root colonization and pathogen infection. Variability in colonization strategies evolved early in the diversification of AM fungi, and we propose that these strategies were influenced by functional interactions with host plants, resulting in an evolutionary stasis resembling trait conservatism.

  5. Hospitalized Premature Infants Are Colonized by Related Bacterial Strains with Distinct Proteomic Profiles

    PubMed Central

    Xiong, Weili; Olm, Matthew R.; Thomas, Brian C.; Baker, Robyn; Firek, Brian; Morowitz, Michael J.; Hettich, Robert L.

    2018-01-01

    ABSTRACT During the first weeks of life, microbial colonization of the gut impacts human immune system maturation and other developmental processes. In premature infants, aberrant colonization has been implicated in the onset of necrotizing enterocolitis (NEC), a life-threatening intestinal disease. To study the premature infant gut colonization process, genome-resolved metagenomics was conducted on 343 fecal samples collected during the first 3 months of life from 35 premature infants housed in a neonatal intensive care unit, 14 of whom developed NEC, and metaproteomic measurements were made on 87 samples. Microbial community composition and proteomic profiles remained relatively stable on the time scale of a week, but the proteome was more variable. Although genetically similar organisms colonized many infants, most infants were colonized by distinct strains with metabolic profiles that could be distinguished using metaproteomics. Microbiome composition correlated with infant, antibiotics administration, and NEC diagnosis. Communities were found to cluster into seven primary types, and community type switched within infants, sometimes multiple times. Interestingly, some communities sampled from the same infant at subsequent time points clustered with those of other infants. In some cases, switches preceded onset of NEC; however, no species or community type could account for NEC across the majority of infants. In addition to a correlation of protein abundances with organism replication rates, we found that organism proteomes correlated with overall community composition. Thus, this genome-resolved proteomics study demonstrated that the contributions of individual organisms to microbiome development depend on microbial community context. PMID:29636439

  6. In Vitro Continuous Fermentation Model (PolyFermS) of the Swine Proximal Colon for Simultaneous Testing on the Same Gut Microbiota

    PubMed Central

    Tanner, Sabine A.; Zihler Berner, Annina; Rigozzi, Eugenia; Grattepanche, Franck; Chassard, Christophe; Lacroix, Christophe

    2014-01-01

    In vitro gut modeling provides a useful platform for a fast and reproducible assessment of treatment-related changes. Currently, pig intestinal fermentation models are mainly batch models with important inherent limitations. In this study we developed a novel in vitro continuous fermentation model, mimicking the porcine proximal colon, which we validated during 54 days of fermentation. This model, based on our recent PolyFermS design, allows comparing different treatment effects on the same microbiota. It is composed of a first-stage inoculum reactor seeded with immobilized fecal swine microbiota and used to constantly inoculate (10% v/v) five second-stage reactors, with all reactors fed with fresh nutritive chyme medium and set to mimic the swine proximal colon. Reactor effluents were analyzed for metabolite concentrations and bacterial composition by HPLC and quantitative PCR, and microbial diversity was assessed by 454 pyrosequencing. The novel PolyFermS featured stable microbial composition, diversity and metabolite production, consistent with bacterial activity reported for swine proximal colon in vivo. The constant inoculation provided by the inoculum reactor generated reproducible microbial ecosystems in all second-stage reactors, allowing the simultaneous investigation and direct comparison of different treatments on the same porcine gut microbiota. Our data demonstrate the unique features of this novel PolyFermS design for the swine proximal colon. The model provides a tool for efficient, reproducible and cost-effective screening of environmental factors, such as dietary additives, on pig colonic fermentation. PMID:24709947

  7. In vitro continuous fermentation model (PolyFermS) of the swine proximal colon for simultaneous testing on the same gut microbiota.

    PubMed

    Tanner, Sabine A; Zihler Berner, Annina; Rigozzi, Eugenia; Grattepanche, Franck; Chassard, Christophe; Lacroix, Christophe

    2014-01-01

    In vitro gut modeling provides a useful platform for a fast and reproducible assessment of treatment-related changes. Currently, pig intestinal fermentation models are mainly batch models with important inherent limitations. In this study we developed a novel in vitro continuous fermentation model, mimicking the porcine proximal colon, which we validated during 54 days of fermentation. This model, based on our recent PolyFermS design, allows comparing different treatment effects on the same microbiota. It is composed of a first-stage inoculum reactor seeded with immobilized fecal swine microbiota and used to constantly inoculate (10% v/v) five second-stage reactors, with all reactors fed with fresh nutritive chyme medium and set to mimic the swine proximal colon. Reactor effluents were analyzed for metabolite concentrations and bacterial composition by HPLC and quantitative PCR, and microbial diversity was assessed by 454 pyrosequencing. The novel PolyFermS featured stable microbial composition, diversity and metabolite production, consistent with bacterial activity reported for swine proximal colon in vivo. The constant inoculation provided by the inoculum reactor generated reproducible microbial ecosystems in all second-stage reactors, allowing the simultaneous investigation and direct comparison of different treatments on the same porcine gut microbiota. Our data demonstrate the unique features of this novel PolyFermS design for the swine proximal colon. The model provides a tool for efficient, reproducible and cost-effective screening of environmental factors, such as dietary additives, on pig colonic fermentation.

  8. Early changes in arbuscular mycorrhiza development in sugarcane under two harvest management systems.

    PubMed

    de Azevedo, Lucas Carvalho Basilio; Stürmer, Sidney Luiz; Lambais, Marcio Rodrigues

    2014-01-01

    Sugarcane (Saccharum spp.) is grown on over 8 million ha in Brazil and is used to produce ethanol and sugar. Some sugarcane fields are burned to facilitate harvesting, which can affect the soil microbial community. However, whether sugarcane pre-harvest burning affects the community of arbuscular mycorrhizal fungi (AMF) and symbioses development is not known. In this study, we investigated the early impacts of harvest management on AMF spore communities and root colonization in three sugarcane varieties, under two harvest management systems (no-burning and pre-harvest burning). Soil and root samples were collected in the field after the first harvest of sugarcane varieties SP813250, SP801842, and RB72454, and AMF species were identified based on spore morphology. Diversity indices were determined based on spore populations and root colonization determined as an indicator of symbioses development. Based on the diversity indices, spore number and species occurrence in soil, no significant differences were observed among the AMF communities, regardless of harvest management type, sugarcane variety or interactions between harvest management type and sugarcane variety. However, mycorrhiza development was stimulated in sugarcane under the no-burning management system. Our data suggest that the sugarcane harvest management system may cause early changes in arbuscular mycorrhiza development.

  9. Early changes in arbuscular mycorrhiza development in sugarcane under two harvest management systems

    PubMed Central

    de Azevedo, Lucas Carvalho Basilio; Stürmer, Sidney Luiz; Lambais, Marcio Rodrigues

    2014-01-01

    Sugarcane (Saccharum spp.) is grown on over 8 million ha in Brazil and is used to produce ethanol and sugar. Some sugarcane fields are burned to facilitate harvesting, which can affect the soil microbial community. However, whether sugarcane pre-harvest burning affects the community of arbuscular mycorrhizal fungi (AMF) and symbioses development is not known. In this study, we investigated the early impacts of harvest management on AMF spore communities and root colonization in three sugarcane varieties, under two harvest management systems (no-burning and pre-harvest burning). Soil and root samples were collected in the field after the first harvest of sugarcane varieties SP813250, SP801842, and RB72454, and AMF species were identified based on spore morphology. Diversity indices were determined based on spore populations and root colonization determined as an indicator of symbioses development. Based on the diversity indices, spore number and species occurrence in soil, no significant differences were observed among the AMF communities, regardless of harvest management type, sugarcane variety or interactions between harvest management type and sugarcane variety. However, mycorrhiza development was stimulated in sugarcane under the no-burning management system. Our data suggest that the sugarcane harvest management system may cause early changes in arbuscular mycorrhiza development. PMID:25477936

  10. Bacteria from diverse habitats colonize and compete in the mouse gut.

    PubMed

    Seedorf, Henning; Griffin, Nicholas W; Ridaura, Vanessa K; Reyes, Alejandro; Cheng, Jiye; Rey, Federico E; Smith, Michelle I; Simon, Gabriel M; Scheffrahn, Rudolf H; Woebken, Dagmar; Spormann, Alfred M; Van Treuren, William; Ursell, Luke K; Pirrung, Megan; Robbins-Pianka, Adam; Cantarel, Brandi L; Lombard, Vincent; Henrissat, Bernard; Knight, Rob; Gordon, Jeffrey I

    2014-10-09

    To study how microbes establish themselves in a mammalian gut environment, we colonized germ-free mice with microbial communities from human, zebrafish, and termite guts, human skin and tongue, soil, and estuarine microbial mats. Bacteria from these foreign environments colonized and persisted in the mouse gut; their capacity to metabolize dietary and host carbohydrates and bile acids correlated with colonization success. Cohousing mice harboring these xenomicrobiota or a mouse cecal microbiota, along with germ-free "bystanders," revealed the success of particular bacterial taxa in invading guts with established communities and empty gut habitats. Unanticipated patterns of ecological succession were observed; for example, a soil-derived bacterium dominated even in the presence of bacteria from other gut communities (zebrafish and termite), and human-derived bacteria colonized germ-free bystander mice before mouse-derived organisms. This approach can be generalized to address a variety of mechanistic questions about succession, including succession in the context of microbiota-directed therapeutics. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Effects of fermented milk treatment on microbial population and metabolomic outcomes in a three-stage semi-continuous culture system.

    PubMed

    Cha, Kwang Hyun; Lee, Eun Ha; Yoon, Hyo Shin; Lee, Jae Ho; Kim, Joo Yun; Kang, Kyungsu; Park, Jin-Soo; Jin, Jong Beom; Ko, GwangPyo; Pan, Cheol-Ho

    2018-10-15

    We investigated the impact of a fermented milk product on gut microbiota and their metabolism in 3 different conditions of the colon with a systemic viewpoint. An in vitro semi-continuous anaerobic cultivation was used to assess the colon compartment-specific influence of fermented milk, followed by a multiomics approach combining 16S rDNA amplicon sequencing and nuclear magnetic resonance (NMR) spectroscopy. The microbiome profiling and metabolomic features were significantly different across three colon compartments and after fermented milk treatment. Integrative correlation analysis indicated that the alteration of butyrate-producing microbiota (Veillonella, Roseburia, Lachnospira, and Coprococcus) and some primary metabolites (butyrate, ethanol, lactate, and isobutyrate) in the treatment group had a strong association with the fermented milk microorganisms. Our findings suggested that fermented milk treatment significantly affected microbial population in an in vitro cultivation system as well as the colonic metabolome in different ways in each of colon compartment. Copyright © 2018. Published by Elsevier Ltd.

  12. Microbial fuel cell as power supply for implantable medical devices: a novel configuration design for simulating colonic environment.

    PubMed

    Dong, Kun; Jia, Boyang; Yu, Chaoling; Dong, Wenbo; Du, Fangzhou; Liu, Hong

    2013-03-15

    This study focused on providing power for implantable medical devices (IMDs) using a microbial fuel cell (MFC) implanted in human transverse colon. Considering the condition of colonic environment, a continuous-flow single-chamber MFC without membrane was set up. The performance of the MFC was investigated. The power output of 1.6 mW under the steady state was not rich enough for some high energy-consuming IMDs. Moreover, the parameters of the simulated colonic environment, such as pH and ORP value, varied along with the time. Hence, a new MFC configuration was developed. In this novel model, pH transducers were placed in cathodic and anodic areas, so as to regulate the reactor operation timely via external intervention. And two ORP transducers were inserted next to the pH transducers, for monitoring and adjusting the MFC operation efficiently. Besides, colonic haustra were designed in order to increase the difference between cathodic and anodic areas. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Inheritance and Establishment of Gut Microbiota in Chickens

    PubMed Central

    Ding, Jinmei; Dai, Ronghua; Yang, Lingyu; He, Chuan; Xu, Ke; Liu, Shuyun; Zhao, Wenjing; Xiao, Lu; Luo, Lingxiao; Zhang, Yan; Meng, He

    2017-01-01

    In mammals, the microbiota can be transmitted from the placenta, uterus, and vagina of the mother to the infant. Unlike mammals, development of the avian embryo is a process isolated from the mother and thus in the avian embryo the gut microbial developmental process remains elusive. To explore the establishment and inheritance of the gut microbiome in the avian embryo, we used the chicken as the model organism to investigate the gut microbial composition in embryos, chicks, and maternal hens. We observed: (1) 28 phyla and 162 genera of microbes in embryos where the dominated genus was Halomonas (79%). (2) 65 genera were core microbiota in all stages with 42% and 62% gut microbial genera of embryo were found in maternal hen and chick, respectively. There was a moderate correlation (0.40) between the embryo and maternal, and 0.52 between the embryo and chick at the family level. (3) Gut microbes that are involved in substance metabolism, infectious disease, and environmental adaptation are enriched in embryos, chicks, and maternal hens, respectively. (4) 94% genera of gut microbial composition were similar among three different chicken breeds which were maintained under similar conditions. Our findings provide evidence to support the hypothesis that part of the microbial colonizers harbored in early embryos were inherited from maternal hens, and the gut microbial abundance and diversity were influenced by environmental factors and host genetic variation during development. PMID:29067020

  14. Differential Bacterial Colonization of Volcanic Minerals in Deep Thermal Basalts

    NASA Astrophysics Data System (ADS)

    Smith, A. R.; Popa, R.; Fisk, M. R.; Nielsen, M.; Wheat, G.; Jannasch, H.; Fisher, A.; Sievert, S.

    2010-04-01

    There are reports of microbial weathering patterns in volcanic glass and minerals of both terrestrial and Martian origin. Volcanic minerals are colonized differentially in subsurface hydrothermal environments by a variety of physiological types.

  15. Man and his spaceships

    PubMed Central

    Siefert, Janet L.

    2012-01-01

    The resiliency and adaptive ability of microbial life in real time on Earth relies heavily upon horizontal gene transfer. Based on that knowledge, how likely is earth based microbial life to colonize extraterrestrial targets such as Mars? To address this question, we consider manned and unmanned space exploration, the resident microbiota that is likely to inhabit those vehicles, the adaptive potential of that microbiota in an extraterrestrial setting especially with regards to mobile genetic elements, and the likelihood that Mars like environments could initiate and sustain colonization. PMID:23481263

  16. Effects of antimicrobial treatment on fiberglass-acrylic filters.

    PubMed

    Cecchini, C; Verdenelli, M C; Orpianesi, C; Dadea, G M; Cresci, A

    2004-01-01

    The aims of the present study were to: (i) analyse a group of antimicrobial agents and to select the most active against test microbial strains; (ii) test the effect of the antimicrobial treatment on air filters in order to reduce microbial colonization. Different kinds of antimicrobial agents were analysed to assess their compatibility with the production process of air filter media. The minimal inhibitory concentration for each antimicrobial agent was determined against a defined list of microbial strains, and an antimicrobial activity assay of filter prototypes was developed to determine the most active agent among the compatible antimicrobials. Then, the most active was chosen and added directly to the filter during the production process. The microbial colonization of treated and untreated filter media was assessed at different working times for different incubation times by stereomicroscope and scanning electron microscope analysis. Some of the antimicrobial agents analysed were more active against microbial test strains and compatible with the production process of the filter media. Filter sections analysis of treated filter media showed a significantly lower microbial colonization than those untreated, a reduction of species both in density and varieties and of the presence of bacteria and fungal hyphae with reproductive structures. This study demonstrated the ability of antimicrobial treatments to inhibit the growth of micro-organisms in filter media and subsequently to increase indoor air quality (IAQ), highlighting the value of adding antimicrobials to filter media. To make a contribution to solving the problem of microbial contamination of air filters, by demonstrating the efficacy of incorporating antimicrobial agents in the filter media to improve IAQ and health.

  17. Microbial community profiles of the colon from steers differing in feed efficiency

    USDA-ARS?s Scientific Manuscript database

    Ruminal microbial fermentation plays an essential role in host nutrition, and as a result, the rumen microbiota have been a major focus of research examining bovine feed efficiency. Microbial communities within other sections of the gastrointestinal tract may also be important with regard to feed ef...

  18. Alteration of the gastrointestinal microbiota of mice by edible blue-green algae.

    PubMed

    Rasmussen, H E; Martínez, I; Lee, J Y; Walter, J

    2009-10-01

    To characterize the effect of edible blue-green algae (cyanobacteria) on the gastrointestinal microbiota of mice. C57BL/6J mice were fed a diet supplemented with 0% or 5% dried Nostoc commune, Spirulina platensis or Afanizominon flos-aquae (w/w) for 4 weeks. Molecular fingerprinting of the colonic microbiota using denaturing gradient gel electrophoresis revealed that administration of N. commune induced major alterations in colonic microbiota composition, while administration of S. platensis or A. flos-aquae had a more subtle impact. Community profile analysis revealed that administration of N. commune did not reduce microbial diversity indices of the colonic microbiota. Despite its pronounced effects on the bacterial composition in the colon, total bacterial numbers in the gut of mice fed N. commune were not reduced as assessed by quantitative real-time PCR and bacteriological culture. The results presented here show that administration of blue-green algae, and especially N. commune, alters colonic microbiota composition in mice with limited effects on total bacterial numbers or microbial diversity. Blue-green algae are consumed in many countries as a source of nutrients and to promote health, and they are intensively studied for their pharmaceutical value. Given the importance of the gut microbiota for many host functions, the effects of blue-green algae on gut microbial ecology revealed during this study should be considered when using them as food supplements or when studying their pharmaceutical properties.

  19. Heterogeneity in leaf litter decomposition in a temporary Mediterranean stream during flow fragmentation.

    PubMed

    Abril, Meritxell; Muñoz, Isabel; Menéndez, Margarita

    2016-05-15

    In temporary Mediterranean streams, flow fragmentation during summer droughts originates an ephemeral mosaic of terrestrial and aquatic habitat types. The heterogeneity of habitat types implies a particular ecosystem functioning in temporary streams that is still poorly understood. We assessed the initial phases of leaf litter decomposition in selected habitat types: running waters, isolated pools and moist and dry streambed sediments. We used coarse-mesh litter bags containing Populus nigra leaves to examine decomposition rates, microbial biomass, macroinvertebrate abundance and dissolved organic carbon (DOC) release rates in each habitat type over an 11-day period in late summer. We detected faster decomposition rates in aquatic (running waters and isolated pools) than in terrestrial habitats (moist and dry streambed sediments). Under aquatic conditions, decomposition was characterized by intense leaching and early microbial colonization, which swiftly started to decompose litter. Microbial colonization in isolated pools was primarily dominated by bacteria, whereas in running waters fungal biomass predominated. Under terrestrial conditions, leaves were most often affected by abiotic processes that resulted in small mass losses. We found a substantial decrease in DOC release rates in both aquatic habitats within the first days of the study, whereas DOC release rates remained relatively stable in the moist and dry sediments. This suggests that leaves play different roles as a DOC source during and after flow fragmentation. Overall, our results revealed that leaf decomposition is heterogeneous during flow fragmentation, which has implications related to DOC utilization that should be considered in future regional carbon budgets. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Bacterial colonization stimulates a complex physiological response in the immature human intestinal epithelium

    PubMed Central

    Hill, David R; Huang, Sha; Nagy, Melinda S; Yadagiri, Veda K; Fields, Courtney; Mukherjee, Dishari; Bons, Brooke; Dedhia, Priya H; Chin, Alana M; Tsai, Yu-Hwai; Thodla, Shrikar; Schmidt, Thomas M; Walk, Seth

    2017-01-01

    The human gastrointestinal tract is immature at birth, yet must adapt to dramatic changes such as oral nutrition and microbial colonization. The confluence of these factors can lead to severe inflammatory disease in premature infants; however, investigating complex environment-host interactions is difficult due to limited access to immature human tissue. Here, we demonstrate that the epithelium of human pluripotent stem-cell-derived human intestinal organoids is globally similar to the immature human epithelium and we utilize HIOs to investigate complex host-microbe interactions in this naive epithelium. Our findings demonstrate that the immature epithelium is intrinsically capable of establishing a stable host-microbe symbiosis. Microbial colonization leads to complex contact and hypoxia driven responses resulting in increased antimicrobial peptide production, maturation of the mucus layer, and improved barrier function. These studies lay the groundwork for an improved mechanistic understanding of how colonization influences development of the immature human intestine. PMID:29110754

  1. Stability of Microbiota Facilitated by Host Immune Regulation: Informing Probiotic Strategies to Manage Amphibian Disease

    PubMed Central

    Küng, Denise; Bigler, Laurent; Davis, Leyla R.; Gratwicke, Brian; Griffith, Edgardo; Woodhams, Douglas C.

    2014-01-01

    Microbial communities can augment host immune responses and probiotic therapies are under development to prevent or treat diseases of humans, crops, livestock, and wildlife including an emerging fungal disease of amphibians, chytridiomycosis. However, little is known about the stability of host-associated microbiota, or how the microbiota is structured by innate immune factors including antimicrobial peptides (AMPs) abundant in the skin secretions of many amphibians. Thus, conservation medicine including therapies targeting the skin will benefit from investigations of amphibian microbial ecology that provide a model for vertebrate host-symbiont interactions on mucosal surfaces. Here, we tested whether the cutaneous microbiota of Panamanian rocket frogs, Colostethus panamansis, was resistant to colonization or altered by treatment. Under semi-natural outdoor mesocosm conditions in Panama, we exposed frogs to one of three treatments including: (1) probiotic - the potentially beneficial bacterium Lysinibacillus fusiformis, (2) transplant – skin washes from the chytridiomycosis-resistant glass frog Espadarana prosoblepon, and (3) control – sterile water. Microbial assemblages were analyzed by a culture-independent T-RFLP analysis. We found that skin microbiota of C. panamansis was resistant to colonization and did not differ among treatments, but shifted through time in the mesocosms. We describe regulation of host AMPs that may function to maintain microbial community stability. Colonization resistance was metabolically costly and microbe-treated frogs lost 7–12% of body mass. The discovery of strong colonization resistance of skin microbiota suggests a well-regulated, rather than dynamic, host-symbiont relationship, and suggests that probiotic therapies aiming to enhance host immunity may require an approach that circumvents host mechanisms maintaining equilibrium in microbial communities. PMID:24489847

  2. Evaluation of the Efficacy of Different Mixing Techniques and Disinfection on Microbial Colonization of Polyether Impression Materials: A Comparative Study.

    PubMed

    Singla, Youginder; Pachar, Renu B; Poriya, Sangeeta; Mishra, Aalok; Sharma, Rajni; Garg, Anshu

    2018-03-01

    This study aims to determine the role of mixing techniques of polyether impression materials and efficacy of disinfection on microbial colonization of these impression materials. Polyether impression material was mixed using two methods: First by hand mixing (group I) and second using an automixer (group II) with a total of 100 samples. Four microbial strains were studied, which included Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. After incubation, the bacterial colonies were counted, and then, disinfectant solution was applied. The effect of disinfection solution was evaluated for each specimen. The surface of polyether impression materials mixed with an automixer has less number of voids and overall a smoother surface as compared with the hand-mixed ones. On comparing the disinfection procedures, i.e., specimens without any disinfection and specimens after disinfection, statistically highly significant difference was seen between all the groups. We can conclude that impression mixing procedures are important in determining the surface characteristics of the impression and ultimately the colonization of bacteria and also determine the importance of disinfection on microbial colonization. This study emphasises the deleterious role of nosocomial infections and specific measures that should be taken regarding the prevention of such diseases. Dental impressions are proved to be a source of such infections and may lead to transmission of such diseases. Thus, proper measures should be taken right from the first step of impression taking to minimizing and preventing such kind of contaminations in clinical practice.

  3. The microbiota of traumatic, open fracture wounds is associated with mechanism of injury.

    PubMed

    Bartow-McKenney, Casey; Hannigan, Geoffrey D; Horwinski, Joseph; Hesketh, Patrick; Horan, Annamarie D; Mehta, Samir; Grice, Elizabeth A

    2018-05-26

    Open fractures are characterized by disruption of the skin and soft tissue, which allows for microbial contamination and colonization. Preventing infection-related complications of open fractures and other acute wounds remains an evolving challenge due to an incomplete understanding of how microbial colonization and contamination influence healing and outcomes. Culture-independent molecular methods are now widely used to study human-associated microbial communities without introducing culture biases. Using such approaches, the objectives of this study were to 1) define the long-term temporal microbial community dynamics of open fracture wounds and 2) examine microbial community dynamics with respect to clinical and demographic factors. Fifty-two subjects with traumatic open fracture wounds (32 blunt and 20 penetrating injuries) were enrolled prospectively and sampled longitudinally from presentation to the emergency department and at each subsequent inpatient or outpatient encounter. Specimens were collected from both the wound center and adjacent skin. Culture-independent sequencing of the 16S ribosomal RNA gene was employed to identify and characterize microbiota. Upon presentation to the emergency department and time points immediately following, sample collection site (wound or adjacent skin) was the most defining feature discriminating microbial profiles. Microbial composition of adjacent skin and wound center converged over time. Mechanism of injury most strongly defined the microbiota after initial convergence. Further analysis controlling for race, gender, and age revealed that mechanism of injury remained a significant discriminating feature throughout the continuum of care. We conclude that the microbial communities associated with open fracture wounds are dynamic in nature until eventual convergence with the adjacent skin community during healing, with mechanism of injury as an important feature affecting both diversity and composition of the microbiota. A more complete understanding of the factors influencing microbial contamination and/or colonization in open fractures is a critical foundation for identifying markers indicative of outcome and deciphering their respective contributions to healing and/or complication. This article is protected by copyright. All rights reserved. © 2018 by the Wound Healing Society.

  4. Development of the Nasopharyngeal Microbiota in Infants with Cystic Fibrosis.

    PubMed

    Prevaes, Sabine M P J; de Winter-de Groot, Karin M; Janssens, Hettie M; de Steenhuijsen Piters, Wouter A A; Tramper-Stranders, Gerdien A; Wyllie, Anne L; Hasrat, Raiza; Tiddens, Harm A; van Westreenen, Mireille; van der Ent, Cornelis K; Sanders, Elisabeth A M; Bogaert, Debby

    2016-03-01

    Cystic fibrosis (CF) is characterized by early structural lung disease caused by pulmonary infections. The nasopharynx of infants is a major ecological reservoir of potential respiratory pathogens. To investigate the development of nasopharyngeal microbiota profiles in infants with CF compared with those of healthy control subjects during the first 6 months of life. We conducted a prospective cohort study, from the time of diagnosis onward, in which we collected questionnaires and 324 nasopharynx samples from 20 infants with CF and 45 age-matched healthy control subjects. Microbiota profiles were characterized by 16S ribosomal RNA-based sequencing. We observed significant differences in microbial community composition (P < 0.0002 by permutational multivariate analysis of variance) and development between groups. In infants with CF, early Staphylococcus aureus and, to a lesser extent, Corynebacterium spp. and Moraxella spp. dominance were followed by a switch to Streptococcus mitis predominance after 3 months of age. In control subjects, Moraxella spp. enrichment occurred throughout the first 6 months of life. In a multivariate analysis, S. aureus, S. mitis, Corynebacterium accolens, and bacilli were significantly more abundant in infants with CF, whereas Moraxella spp., Corynebacterium pseudodiphtericum and Corynebacterium propinquum and Haemophilus influenzae were significantly more abundant in control subjects, after correction for age, antibiotic use, and respiratory symptoms. Antibiotic use was independently associated with increased colonization of gram-negative bacteria such as Burkholderia spp. and members of the Enterobacteriaceae bacteria family and reduced colonization of potential beneficial commensals. From diagnosis onward, we observed distinct patterns of nasopharyngeal microbiota development in infants with CF under 6 months of age compared with control subjects and a marked effect of antibiotic therapy leading toward a gram-negative microbial composition.

  5. The influence of Staphylococcus aureus on gut microbial ecology in an in vitro continuous culture human colonic model system.

    PubMed

    Sannasiddappa, Thippeswamy H; Costabile, Adele; Gibson, Glenn R; Clarke, Simon R

    2011-01-01

    An anaerobic three-stage continuous culture model of the human colon (gut model), which represent different anatomical areas of the large intestine, was used to study the effect of S. aureus infection of the gut on the resident faecal microbiota. Studies on the development of the microbiota in the three vessels were performed and bacteria identified by culture independent fluorescence in situ hybridization (FISH). Furthermore, short chain fatty acids (SCFA), as principal end products of gut bacterial metabolism, were measured along with a quantitative assessment of the predominant microbiota. During steady state conditions, numbers of S. aureus cells stabilised until they were washed out, but populations of indigenous bacteria were transiently altered; thus S. aureus was able to compromise colonisation resistance by the colonic microbiota. Furthermore, the concentration of butyric acid in the vessel representing the proximal colon was significantly decreased by infection. Thus infection by S. aureus appears to be able to alter the overall structure of the human colonic microbiota and the microbial metabolic profiles. This work provides an initial in vitro model to analyse interactions with pathogens.

  6. Colonization of the Cecal Mucosa by Helicobacter hepaticus Impacts the Diversity of the Indigenous Microbiota

    PubMed Central

    Kuehl, Carole J.; Wood, Heather D.; Marsh, Terence L.; Schmidt, Thomas M.; Young, Vincent B.

    2005-01-01

    Establishment of mucosal and/or luminal colonization is the first step in the pathogenesis of many gastrointestinal bacterial pathogens. The pathogen must be able to establish itself in the face of competition from the complex microbial community that is already in place. We used culture-independent methods to monitor the colonization of the cecal mucosa of Helicobacter-free mice following experimental infection with the pathogen Helicobacter hepaticus. Two days after infection, H. hepaticus comprised a minor component of the mucosa-associated microbiota, but within 14 days, it became the dominant member of the community. Colonization of the mucosa by H. hepaticus was associated with a decrease in the overall diversity of the microbial community, in large part due to changes in evenness resulting from the relative dominance of H. hepaticus as a member of the community. Our results demonstrate that invasion of the complex gastrointestinal microbial community by a pathogenic microorganism causes reproducible and significant disturbances in the community structure. The use of non-culture-based methods to monitor these changes should lead to a greater understanding of the ecological principles that govern pathogen invasion and may lead to novel methods for the prevention and control of gastrointestinal pathogens. PMID:16177375

  7. Spatial colonization of microbial cells on the rhizoplane.

    NASA Astrophysics Data System (ADS)

    Raynaud, Xavier; Eickhorst, Thilo; Nunan, Naoise; Kaiser, Christina; Woebken, Dagmar; Schmidt, Hannes

    2017-04-01

    The rhizoplane is the region where the root surface is in contact with soil and corresponds to the inner limit of the rhizosphere. At the rhizoplane level, plants exchange elements with the surrounding soil and the rhizoplane can therefore be considered as the region that drives nutrient movement and transformation in the rhizosphere. The rhizoplane differs in many respects from the bulk soil due to the far larger supply of substrates derived from the roots, with far greater microbial cell densities and reduced levels of diversity (Philippot et al., 2013). This is likely to result in completely different interaction profiles among microorganisms which may affect rhizosphere biogeochemistry. While the diversity of microorganisms associated with the rhizosphere and on the rhizoplane is getting increasing attention, knowledge on the spatial organisation of this diversity is still scarce. We therefore aimed at investigating the spatial arrangement of microbial rhizoplane colonization to increase our understanding of potential interaction dynamics within soil-microbe-plant interfaces. To study the spatial distribution of microbial cells on roots we cultivated rice plants in water-logged paddy soil. Root samples were taken three months after germination. After removing adhering rhizosphere soil the root samples were chemically fixed and prepared for CARD-FISH (Schmidt & Eickhorst, 2014). For hybridization, the oligonucleotide probes EUB I-III (Daims et al., 1999) were applied to cover the majority of bacteria colonizing the rhizoplane. Root segments were then subjected to confocal laser scanning microscopy where triplicate image stacks of 10 µm thickness (0.5 µm layer distance) were acquired per region of interest (ROI). ROIs were defined as distances from the root tip (0, 5, 10, 15 mm) and corresponded to the root tip, elongation zone, and zone of maturation. Image stacks were processed using ImageJ software to extract microbial cells spatial coordinates, as well as other features of the root (e.g. root cell walls). For all the images analysed, we found that microbial cell distributions were not distributed randomly and strongly associated to root cell walls. The spatial organization of root cell walls could be used to simulate microbial cell distribution that have similar spatial properties compared to the microscopic data. Root cell walls thus appear as a strong determinant for microbial cell colonization of the rhizoplane.

  8. The impact of date palm fruits and their component polyphenols, on gut microbial ecology, bacterial metabolites and colon cancer cell proliferation.

    PubMed

    Eid, Noura; Enani, Sumia; Walton, Gemma; Corona, Giulia; Costabile, Adele; Gibson, Glenn; Rowland, Ian; Spencer, Jeremy P E

    2014-01-01

    The fruit of the date palm (Phoenix dactylifera L.) is a rich source of dietary fibre and polyphenols. We have investigated gut bacterial changes induced by the whole date fruit extract (digested date extract; DDE) and its polyphenol-rich extract (date polyphenol extract; DPE) using faecal, pH-controlled, mixed batch cultures mimicking the distal part of the human large intestine, and utilising an array of microbial group-specific 16S rRNA oligonucleotide probes. Fluorescence microscopic enumeration indicated that there was a significant increase in the growth of bifidobacteria in response to both treatments, whilst whole dates also increased bacteroides at 24 h and the total bacterial counts at later fermentation time points when compared with DPE alone. Bacterial metabolism of whole date fruit led to the production of SCFA, with acetate significantly increasing following bacterial incubation with DDE. In addition, the production of flavonoid aglycones (myricetin, luteolin, quercetin and apigenin) and the anthocyanidin petunidin in less than 1 h was also observed. Lastly, the potential of DDE, DPE and metabolites to inhibit Caco-2 cell growth was investigated, indicating that both were capable of potentially acting as antiproliferative agents in vitro, following a 48 h exposure. This potential to inhibit growth was reduced following fermentation. Together these data suggest that consumption of date fruits may enhance colon health by increasing beneficial bacterial growth and inhibiting the proliferation of colon cancer cells. This is an early suggestion that date intake by humans may aid in the maintenance of bowel health and even the reduction of colorectal cancer development.

  9. Assembly and Succession of Iron Oxide Microbial Mat Communities in Acidic Geothermal Springs

    DOE PAGES

    Beam, Jacob P.; Bernstein, Hans C.; Jay, Zackary J.; ...

    2016-02-15

    Biomineralized ferric oxide microbial mats are ubiquitous features on Earth, are common in hot springs of Yellowstone National Park (YNP, WY, USA), and form due to direct interaction between microbial and physicochemical processes. The overall goal of this study was to determine the contribution of different community members to the assembly and succession of acidic high-temperature Fe(III)-oxide mat ecosystems. Spatial and temporal changes in Fe(III)-oxide accretion and the abundance of relevant community members were monitored over 70 days using sterile glass microscope slides incubated in the outflow channels of two acidic geothermal springs (pH = 3-3.5; temperature = 68-75°C) inmore » YNP. Hydrogenobaculum spp. were the most abundant taxon identified during early successional stages (4-40 days), and have been shown to oxidize arsenite, sulfide, and hydrogen coupled to oxygen reduction. Iron-oxidizing populations of Metallosphaera yellowstonensis were detected within 4 days, and reached steady-state levels within 14-30 days, corresponding to visible Fe(III)-oxide accretion. Heterotrophic archaea colonized near 30 days, and emerged as the dominant functional guild after 70 days and in mature Fe(III)-oxide mats (1-2 cm thick). First-order rate constants of Fe(III)-oxide accretion ranged from 0.046 to 0.05 day -1 , and in situ microelectrode measurements showed that the oxidation of Fe(II) is limited by the diffusion of O2 into the Fe(III)-oxide mat. The formation of microterracettes also implicated O2 as a major variable controlling microbial growth and subsequent mat morphology. The assembly and succession of Fe(III)-oxide mat communities follows a repeatable pattern of colonization by lithoautotrophic organisms, and the subsequent growth of diverse organoheterotrophs. The unique geochemical signatures and micromorphology of extant biomineralized Fe(III)-oxide mats are also useful for understanding other Fe(II)-oxidizing systems.« less

  10. Assembly and Succession of Iron Oxide Microbial Mat Communities in Acidic Geothermal Springs

    PubMed Central

    Beam, Jacob P.; Bernstein, Hans C.; Jay, Zackary J.; Kozubal, Mark A.; Jennings, Ryan deM.; Tringe, Susannah G.; Inskeep, William P.

    2016-01-01

    Biomineralized ferric oxide microbial mats are ubiquitous features on Earth, are common in hot springs of Yellowstone National Park (YNP, WY, USA), and form due to direct interaction between microbial and physicochemical processes. The overall goal of this study was to determine the contribution of different community members to the assembly and succession of acidic high-temperature Fe(III)-oxide mat ecosystems. Spatial and temporal changes in Fe(III)-oxide accretion and the abundance of relevant community members were monitored over 70 days using sterile glass microscope slides incubated in the outflow channels of two acidic geothermal springs (pH = 3–3.5; temperature = 68–75°C) in YNP. Hydrogenobaculum spp. were the most abundant taxon identified during early successional stages (4–40 days), and have been shown to oxidize arsenite, sulfide, and hydrogen coupled to oxygen reduction. Iron-oxidizing populations of Metallosphaera yellowstonensis were detected within 4 days, and reached steady-state levels within 14–30 days, corresponding to visible Fe(III)-oxide accretion. Heterotrophic archaea colonized near 30 days, and emerged as the dominant functional guild after 70 days and in mature Fe(III)-oxide mats (1–2 cm thick). First-order rate constants of Fe(III)-oxide accretion ranged from 0.046 to 0.05 day−1, and in situ microelectrode measurements showed that the oxidation of Fe(II) is limited by the diffusion of O2 into the Fe(III)-oxide mat. The formation of microterracettes also implicated O2 as a major variable controlling microbial growth and subsequent mat morphology. The assembly and succession of Fe(III)-oxide mat communities follows a repeatable pattern of colonization by lithoautotrophic organisms, and the subsequent growth of diverse organoheterotrophs. The unique geochemical signatures and micromorphology of extant biomineralized Fe(III)-oxide mats are also useful for understanding other Fe(II)-oxidizing systems. PMID:26913020

  11. Assembly and Succession of Iron Oxide Microbial Mat Communities in Acidic Geothermal Springs.

    PubMed

    Beam, Jacob P; Bernstein, Hans C; Jay, Zackary J; Kozubal, Mark A; Jennings, Ryan deM; Tringe, Susannah G; Inskeep, William P

    2016-01-01

    Biomineralized ferric oxide microbial mats are ubiquitous features on Earth, are common in hot springs of Yellowstone National Park (YNP, WY, USA), and form due to direct interaction between microbial and physicochemical processes. The overall goal of this study was to determine the contribution of different community members to the assembly and succession of acidic high-temperature Fe(III)-oxide mat ecosystems. Spatial and temporal changes in Fe(III)-oxide accretion and the abundance of relevant community members were monitored over 70 days using sterile glass microscope slides incubated in the outflow channels of two acidic geothermal springs (pH = 3-3.5; temperature = 68-75°C) in YNP. Hydrogenobaculum spp. were the most abundant taxon identified during early successional stages (4-40 days), and have been shown to oxidize arsenite, sulfide, and hydrogen coupled to oxygen reduction. Iron-oxidizing populations of Metallosphaera yellowstonensis were detected within 4 days, and reached steady-state levels within 14-30 days, corresponding to visible Fe(III)-oxide accretion. Heterotrophic archaea colonized near 30 days, and emerged as the dominant functional guild after 70 days and in mature Fe(III)-oxide mats (1-2 cm thick). First-order rate constants of Fe(III)-oxide accretion ranged from 0.046 to 0.05 day(-1), and in situ microelectrode measurements showed that the oxidation of Fe(II) is limited by the diffusion of O2 into the Fe(III)-oxide mat. The formation of microterracettes also implicated O2 as a major variable controlling microbial growth and subsequent mat morphology. The assembly and succession of Fe(III)-oxide mat communities follows a repeatable pattern of colonization by lithoautotrophic organisms, and the subsequent growth of diverse organoheterotrophs. The unique geochemical signatures and micromorphology of extant biomineralized Fe(III)-oxide mats are also useful for understanding other Fe(II)-oxidizing systems.

  12. Biofilm on the tracheoesophageal voice prosthesis: considerations for oral decontamination.

    PubMed

    Somogyi-Ganss, Eszter; Chambers, Mark S; Lewin, Jan S; Tarrand, Jeffrey J; Hutcheson, Katherine A

    2017-01-01

    The tracheoesophageal puncture (TEP) restores verbal communication after total laryngectomy using a one-way valved voice prosthesis (VP). Microbial colonization can shorten VP device life. Our aims were to investigate patterns of prosthetic and oral colonization, and record changes in VP device life after targeted decontamination. We conducted a retrospective review of TEP clinic patients who underwent microbial analysis of the VP between 01/2003 and 07/2013. Two subgroups were analyzed: (1) patients with microbial analysis of the VP and the mouth were analyzed to identify patterns of common contamination, and (2) patients who were prescribed targeted oral decontamination on the basis of the microbial analysis of the VP were analyzed to evaluate effects on device life. Among 42 patients, 3 patients had only fungal, 5 only bacterial, and 33 had polyspecies fungal and bacterial colonization. In the TEP-oral microflora subgroup (n = 15), 7 had common microorganisms in the mouth and on the VP. Among the decontamination subgroup (n = 23), 6 patients received broad spectrum rinse, 16 antifungal agents and 13 antibiotics, or a combination thereof. After targeted decontamination, the median device life of prostheses improved from 7.89 to 10.82 weeks (p = 0.260). The majority of patients with a suboptimal VP device life in this pilot had polyspecies bacterial and fungal colonization. VPs rarely had fungal contamination alone (3 %), and non-albicans fungal species were more common than expected. For these reasons, we are exploring the use of targeted decontamination regimens that were associated with 1.4-fold improvement in VP duration.

  13. The Role of Curcumin in Modulating Colonic Microbiota During Colitis and Colon Cancer Prevention.

    PubMed

    McFadden, Rita-Marie T; Larmonier, Claire B; Shehab, Kareem W; Midura-Kiela, Monica; Ramalingam, Rajalakshmy; Harrison, Christy A; Besselsen, David G; Chase, John H; Caporaso, J Gregory; Jobin, Christian; Ghishan, Fayez K; Kiela, Pawel R

    2015-11-01

    Intestinal microbiota influences the progression of colitis-associated colorectal cancer. With diet being a key determinant of the gut microbial ecology, dietary interventions are an attractive avenue for the prevention of colitis-associated colorectal cancer. Curcumin is the most active constituent of the ground rhizome of the Curcuma longa plant, which has been demonstrated to have anti-inflammatory, antioxidative, and antiproliferative properties. Il10 mice on 129/SvEv background were used as a model of colitis-associated colorectal cancer. Starting at 10 weeks of age, wild-type or Il10 mice received 6 weekly intraperitoneal injections of azoxymethane (AOM) or phosphate-buffered saline (PBS) and were started on either a control or a curcumin-supplemented diet. Stools were collected every 4 weeks for microbial community analysis. Mice were killed at 30 weeks of age. Curcumin-supplemented diet increased survival, decreased colon weight/length ratio, and, at 0.5%, entirely eliminated tumor burden. Although colonic histology indicated improvement with curcumin, no effects of mucosal immune responses have been observed in PBS/Il10 mice and limited effects were seen in AOM/Il10 mice. In wild-type and in Il10 mice, curcumin increased bacterial richness, prevented age-related decrease in alpha diversity, increased the relative abundance of Lactobacillales, and decreased Coriobacterales order. Taxonomic profile of AOM/Il10 mice receiving curcumin was more similar to those of wild-type mice than those fed control diet. In AOM/Il10 model, curcumin reduced or eliminated colonic tumor burden with limited effects on mucosal immune responses. The beneficial effect of curcumin on tumorigenesis was associated with the maintenance of a more diverse colonic microbial ecology.

  14. Phylogenetic Profiles of In-House Microflora in Drains at a Food Production Facility: Comparison and Biocontrol Implications of Listeria-Positive and -Negative Bacterial Populations

    PubMed Central

    Solomon, Katie; Moore, John E.; Wall, Patrick G.; Fanning, Séamus

    2014-01-01

    Listeria species experience complex interactions with other microorganisms, which may promote growth and colonization of the organism in local environments or negatively affect them. This study investigated the microbial community at a food production facility, examining interactions between Listeria and the associated microbiome. Listeria species can be transferred between zones in the production environment by individuals or equipment, and drains may act as a reservoir for the organism, reflecting the microbial flora potentially in the production environment. Drains that were colonized by Listeria species and those determined to be free of Listeria were examined. In each case, 16S rRNA gene analysis was performed using the PhyloChip platform. Some general similarities in bacterial population structure were observed when Listeria-negative and -positive drain communities were compared, with some distinct differences also noted. These included increased populations of the genera Prevotella and Janthinobacterium associated with the absence of Listeria species, whereas Enterococcus and Rhodococcus were in higher abundance in drains colonized by Listeria species. Based on these results, a selection of bacterial species were grown in coculture biofilm with a Listeria monocytogenes strain identified as having colonized a drain at the facility. Mixed-species biofilm experiments showed that Janthinobacterium inhibited attachment and subsequent biofilm formation of L. monocytogenes; however, Enterococcus gallinarum significantly increased it. The results of this study suggest the microbial community in food processing facilities can impact the colonization of Listeria species and that influencing the microbiome in favor of antilisterial species may reduce the colonization of Listeria species and limit the likelihood of product/process contamination. PMID:24657862

  15. The Role of Curcumin in Modulating Colonic Microbiota During Colitis and Colon Cancer Prevention

    PubMed Central

    McFadden, Rita-Marie T.; Larmonier, Claire B.; Shehab, Kareem W.; Midura-Kiela, Monica; Ramalingam, Rajalakshmy; Harrison, Christy A.; Besselsen, David G.; Chase, John H.; Caporaso, J. Gregory; Jobin, Christian; Ghishan, Fayez K.; Kiela, Pawel R.

    2015-01-01

    Background Intestinal microbiota influences the progression of colitis-associated colorectal cancer (CAC). With diet being a key determinant of the gut microbial ecology, dietary interventions are an attractive avenue for the prevention of CAC. Curcumin is the most active constituent of the ground rhizome of the Curcuma Longa plant, which has been demonstrated to have anti-inflammatory, anti-oxidative and anti-proliferative properties. Methods Il10−/− mice on 129/SvEv background were used as a model of CAC. Starting at 10 weeks of age, WT or Il10−/− mice received six weekly i.p. injections of azoxymethane (AOM) or saline, and were started on either a control or curcumin-supplemented diet. Stools were collected every 4 weeks for microbial community analysis. Mice were sacrificed at 30 weeks of age. Results Curcumin-supplemented diet increased survival, decreased colon weight/length ratio, and at 0.5%, entirely eliminated tumor burden. Although colonic histology indicated improvement with curcumin, no effects of mucosal immune responses have been observed in PBS/Il10−/− mice, and limited effects were seen in AOM/Il10−/− mice. In WT and in Il10−/− mice, curcumin increased bacterial richness, prevented age-related decrease in alpha diversity, increased the relative abundance of Lactobacillales, and decreased Coriobacterales order. Taxonomic profile of AOM/Il10−/− mice receiving curcumin was more similar to those of wild-type mice than those fed control diet. Conclusions In AOM/Il10−/− model, curcumin reduced or eliminated colonic tumor burden with limited effects on mucosal immune responses. The beneficial effect of curcumin on tumorigenesis was associated with the maintenance of a more diverse colonic microbial ecology. PMID:26218141

  16. Effect of Replacing Soybean Meal by Raw or Extruded Pea Seeds on Growth Performance and Selected Physiological Parameters of the Ileum and Distal Colon of Pigs

    PubMed Central

    Taciak, Marcin; Barszcz, Marcin; Święch, Ewa; Bachanek, Ilona; Skomiał, Jacek

    2017-01-01

    The use of pea seeds is limited due to the content of antinutritional factors that may affect gut physiology. Heat treatment such as extrusion may reduce heat-labile antinutritional factors and improve the nutritional value of pea seeds. This study determined the effect of partial replacement of soybean meal in pig diets by raw or extruded pea seeds on growth performance, nitrogen balance and physiology of the ileum and distal colon. The experiment was carried out in 18 castrated male piglets of initial body weight of 11 kg, divided into three groups. The animals were fed cereal-based diets with soybean meal (C), which was partly replaced by raw (PR) or extruded pea (PE) seeds. Nitrogen balance was measured at about 15 kg body weight. After 26 days of feeding, tissue samples were taken from the ileum and distal colon for histological measurements, and colonic digesta samples for analyses of microbial activity indices. The animals fed the PE diet had a significantly greater average daily gain than those fed the C diet and better apparent protein digestibility than those on the PR diet. Pigs fed the PR diet had a significantly greater butyric acid concentration and lower pH in the colon than pigs fed PE and C diets. There was no significant effect of the diet on other indices of microbial activity or morphological parameters. In conclusion, feeding a diet with extruded pea seeds improved growth performance of pigs, did not affect intestinal morphology and had a negligible effect on microbial activity in the distal colon. PMID:28060879

  17. Colonizing the embryonic zebrafish gut with anaerobic bacteria derived from the human gastrointestinal tract.

    PubMed

    Toh, Michael C; Goodyear, Mara; Daigneault, Michelle; Allen-Vercoe, Emma; Van Raay, Terence J

    2013-06-01

    The zebrafish has become increasingly popular for microbiological research. It has been used as an infection model for a variety of pathogens, and is also emerging as a tool for studying interactions between a host and its resident microbial communities. The mouse microbiota has been transplanted into the zebrafish gut, but to our knowledge, there has been no attempt to introduce a bacterial community derived from the human gut. We explored two methods for colonizing the developing gut of 5-day-old germ-free zebrafish larvae with a defined anaerobic microbial community derived from a single human fecal sample. Both environmental exposure (static immersion) and direct microinjection into the gut resulted in the establishment of two species-Lactobacillus paracasei and Eubacterium limosum-from a community of 30 strains consisting of 22 anaerobic species. Of particular interest is E. limosum, which, as a strict anaerobe, represents a group of bacteria which until now have not been shown to colonize the developing zebrafish gut. Our success here indicates that further investigation of zebrafish as a tool for studying human gut microbial communities is warranted.

  18. Effect of water flow and chemical environment on microbiota growth and composition in the human colon.

    PubMed

    Cremer, Jonas; Arnoldini, Markus; Hwa, Terence

    2017-06-20

    The human gut harbors a dynamic microbial community whose composition bears great importance for the health of the host. Here, we investigate how colonic physiology impacts bacterial growth, which ultimately dictates microbiota composition. Combining measurements of bacterial physiology with analysis of published data on human physiology into a quantitative, comprehensive modeling framework, we show how water flow in the colon, in concert with other physiological factors, determine the abundances of the major bacterial phyla. Mechanistically, our model shows that local pH values in the lumen, which differentially affect the growth of different bacteria, drive changes in microbiota composition. It identifies key factors influencing the delicate regulation of colonic pH, including epithelial water absorption, nutrient inflow, and luminal buffering capacity, and generates testable predictions on their effects. Our findings show that a predictive and mechanistic understanding of microbial ecology in the gut is possible. Such predictive understanding is needed for the rational design of intervention strategies to actively control the microbiota.

  19. Microbial colonization and degradation of polyethylene and biodegradable plastic bags in temperate fine-grained organic-rich marine sediments.

    PubMed

    Nauendorf, Alice; Krause, Stefan; Bigalke, Nikolaus K; Gorb, Elena V; Gorb, Stanislav N; Haeckel, Matthias; Wahl, Martin; Treude, Tina

    2016-02-15

    To date, the longevity of plastic litter at the sea floor is poorly constrained. The present study compares colonization and biodegradation of plastic bags by aerobic and anaerobic benthic microbes in temperate fine-grained organic-rich marine sediments. Samples of polyethylene and biodegradable plastic carrier bags were incubated in natural oxic and anoxic sediments from Eckernförde Bay (Western Baltic Sea) for 98 days. Analyses included (1) microbial colonization rates on the bags, (2) examination of the surface structure, wettability, and chemistry, and (3) mass loss of the samples during incubation. On average, biodegradable plastic bags were colonized five times higher by aerobic and eight times higher by anaerobic microbes than polyethylene bags. Both types of bags showed no sign of biodegradation during this study. Therefore, marine sediment in temperate coastal zones may represent a long-term sink for plastic litter and also supposedly compostable material. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Effect of water flow and chemical environment on microbiota growth and composition in the human colon

    PubMed Central

    Cremer, Jonas; Arnoldini, Markus; Hwa, Terence

    2017-01-01

    The human gut harbors a dynamic microbial community whose composition bears great importance for the health of the host. Here, we investigate how colonic physiology impacts bacterial growth, which ultimately dictates microbiota composition. Combining measurements of bacterial physiology with analysis of published data on human physiology into a quantitative, comprehensive modeling framework, we show how water flow in the colon, in concert with other physiological factors, determine the abundances of the major bacterial phyla. Mechanistically, our model shows that local pH values in the lumen, which differentially affect the growth of different bacteria, drive changes in microbiota composition. It identifies key factors influencing the delicate regulation of colonic pH, including epithelial water absorption, nutrient inflow, and luminal buffering capacity, and generates testable predictions on their effects. Our findings show that a predictive and mechanistic understanding of microbial ecology in the gut is possible. Such predictive understanding is needed for the rational design of intervention strategies to actively control the microbiota. PMID:28588144

  1. Exploring the Colonic Metabolism of Grape and Strawberry Anthocyanins and Their in Vitro Apoptotic Effects in HT-29 Colon Cancer Cells.

    PubMed

    López de Las Hazas, María-Carmen; Mosele, Juana I; Macià, Alba; Ludwig, Iziar A; Motilva, María-José

    2017-08-09

    Beneficial properties attributed to the intake of fruit and red wine have been associated with the presence of significant amounts of anthocyanins. However, their low absorption and consequent accumulation in the gut have generated the suspicion that colonic metabolites of anthocyanins are probably involved in these protective effects. Grape pomace and strawberry extracts, rich in malvidin- and pelargonidin-glucoside, respectively, were fermented in vitro using human feces as microbial inoculum. After 8 h of anaerobic incubation, the anthocyanins were almost completely degraded, whereas their microbial metabolite concentrations were highest at 24 h. Syringic acid and tyrosol were the main metabolites of grape and strawberry extracts, respectively. On the basis of the metabolites detected, metabolic pathways of malvidin- and pelargonidin-glucosides were proposed. Anthocyanin-rich grape and strawberry extracts and their generated metabolites such as hydroxyphenylacetic acid showed apoptotic effects in HT-29 colon cancer cells and may suggest their possible contribution as anticarcinogenic agents.

  2. Intraspecific Competition Impacts Vibrio fischeri Strain Diversity during Initial Colonization of the Squid Light Organ

    PubMed Central

    Sun, Yan; LaSota, Elijah D.; Cecere, Andrew G.; LaPenna, Kyle B.; Larios-Valencia, Jessie; Wollenberg, Michael S.

    2016-01-01

    ABSTRACT Animal development and physiology depend on beneficial interactions with microbial symbionts. In many cases, the microbial symbionts are horizontally transmitted among hosts, thereby making the acquisition of these microbes from the environment an important event within the life history of each host. The light organ symbiosis established between the Hawaiian squid Euprymna scolopes and the bioluminescent bacterium Vibrio fischeri is a model system for examining how hosts acquire horizontally transmitted microbial symbionts. Recent studies have revealed that the light organ of wild-caught E. scolopes squid contains polyclonal populations of V. fischeri bacteria; however, the function and development of such strain diversity in the symbiosis are unknown. Here, we report our phenotypic and phylogenetic characterizations of FQ-A001, which is a V. fischeri strain isolated directly from the light organ of an E. scolopes individual. Relative to the type strain ES114, FQ-A001 exhibits similar growth in rich medium but displays increased bioluminescence and decreased motility in soft agar. FQ-A001 outcompetes ES114 in colonizing the crypt spaces of the light organs. Remarkably, we find that animals cocolonized with FQ-A001 and ES114 harbor singly colonized crypts, in contrast to the cocolonized crypts observed from competition experiments involving single genotypes. The results with our two-strain system suggest that strain diversity within the squid light organ is a consequence of diversity in the single-strain colonization of individual crypt spaces. IMPORTANCE The developmental programs and overall physiologies of most animals depend on diverse microbial symbionts that are acquired from the environment. However, the basic principles underlying how microbes colonize their hosts remain poorly understood. Here, we report our findings of bacterial strain competition within the coevolved animal-microbe symbiosis composed of the Hawaiian squid and bioluminescent bacterium Vibrio fischeri. Using fluorescent proteins to differentially label two distinct V. fischeri strains, we find that the strains are unable to coexist in the same niche within the host. Our results suggest that strain competition for distinct colonization sites dictates the strain diversity associated with the host. Our study provides a platform for studying how strain diversity develops within a host. PMID:27016564

  3. Microbial biofilm formation and its consequences for the CELSS program

    NASA Technical Reports Server (NTRS)

    Mitchell, R.

    1994-01-01

    A major goal of the Controlled Ecology Life Support System (CELSS) program is to provide reliable and efficient life support systems for long-duration space flights. A principal focus of the program is on the growth of higher plants in growth chambers. These crops should be grown without the risk of damage from microbial contamination. While it is unlikely that plant pathogens will pose a risk, there are serious hazards associated with microorganisms carried in the nutrient delivery systems and in the atmosphere of the growth chamber. Our experience in surface microbiology showed that colonization of surfaces with microorganisms is extremely rapid even when the inoculum is small. After initial colonization extensive biofilms accumulate on moist surfaces. These microbial films metabolize actively and slough off continuously to the air and water. During plant growth in the CELSS program, microbial biofilms have the potential to foul sensors and to plug nutrient delivery systems. In addition both metabolic products of microbial growth and degradation products of materials being considered for use as nutrient reservoirs and for delivery are likely sources of chemicals known to adversly affect plant growth.

  4. Natural and artificial feeding management before weaning promote different rumen microbial colonization but not differences in gene expression levels at the rumen epithelium of newborn goats

    PubMed Central

    Abecia, Leticia; Jiménez, Elisabeth; Martínez-Fernandez, Gonzalo; Martín-García, A. Ignacio; Ramos-Morales, Eva; Pinloche, Eric; Denman, Stuart E.; Newbold, C. Jamie

    2017-01-01

    The aim of this work was to evaluate the effect of feeding management during the first month of life (natural with the mother, NAT, or artificial with milk replacer, ART) on the rumen microbial colonization and the host innate immune response. Thirty pregnant goats carrying two fetuses were used. At birth one kid was taken immediately away from the doe and fed milk replacer (ART) while the other remained with the mother (NAT). Kids from groups received colostrum during first 2 days of life. Groups of four kids (from ART and NAT experimental groups) were slaughtered at 1, 3, 7, 14, 21 and 28 days of life. On the sampling day, after slaughtering, the rumen content was sampled and epithelial rumen tissue was collected. Pyrosequencing analyses of the bacterial community structure on samples collected at 3, 7, 14 and 28 days showed that both systems promoted significantly different colonization patterns (P = 0.001). Diversity indices increased with age and were higher in NAT feeding system. Lower mRNA abundance was detected in TLR2, TLR8 and TLR10 in days 3 and 5 compared to the other days (7, 14, 21 and 28). Only TLR5 showed a significantly different level of expression according to the feeding system, presenting higher mRNA abundances in ART kids. PGLYRP1 showed significantly higher abundance levels in days 3, 5 and 7, and then experienced a decline independently of the feeding system. These observations confirmed a highly diverse microbial colonisation from the first day of life in the undeveloped rumen, and show that the colonization pattern substantially differs between pre-ruminants reared under natural or artificial milk feeding systems. However, the rumen epithelial immune development does not differentially respond to distinct microbial colonization patterns. PMID:28813529

  5. Natural and artificial feeding management before weaning promote different rumen microbial colonization but not differences in gene expression levels at the rumen epithelium of newborn goats.

    PubMed

    Abecia, Leticia; Jiménez, Elisabeth; Martínez-Fernandez, Gonzalo; Martín-García, A Ignacio; Ramos-Morales, Eva; Pinloche, Eric; Denman, Stuart E; Newbold, C Jamie; Yáñez-Ruiz, David R

    2017-01-01

    The aim of this work was to evaluate the effect of feeding management during the first month of life (natural with the mother, NAT, or artificial with milk replacer, ART) on the rumen microbial colonization and the host innate immune response. Thirty pregnant goats carrying two fetuses were used. At birth one kid was taken immediately away from the doe and fed milk replacer (ART) while the other remained with the mother (NAT). Kids from groups received colostrum during first 2 days of life. Groups of four kids (from ART and NAT experimental groups) were slaughtered at 1, 3, 7, 14, 21 and 28 days of life. On the sampling day, after slaughtering, the rumen content was sampled and epithelial rumen tissue was collected. Pyrosequencing analyses of the bacterial community structure on samples collected at 3, 7, 14 and 28 days showed that both systems promoted significantly different colonization patterns (P = 0.001). Diversity indices increased with age and were higher in NAT feeding system. Lower mRNA abundance was detected in TLR2, TLR8 and TLR10 in days 3 and 5 compared to the other days (7, 14, 21 and 28). Only TLR5 showed a significantly different level of expression according to the feeding system, presenting higher mRNA abundances in ART kids. PGLYRP1 showed significantly higher abundance levels in days 3, 5 and 7, and then experienced a decline independently of the feeding system. These observations confirmed a highly diverse microbial colonisation from the first day of life in the undeveloped rumen, and show that the colonization pattern substantially differs between pre-ruminants reared under natural or artificial milk feeding systems. However, the rumen epithelial immune development does not differentially respond to distinct microbial colonization patterns.

  6. Probiotics in early life: a preventative and treatment approach.

    PubMed

    Hashemi, Ashkan; Villa, Christopher R; Comelli, Elena M

    2016-04-01

    Microbial colonization of the infant gut plays a key role in immunological and metabolic pathways impacting human health. Since the maturation of the gut microbiota coincides with early life development, failure to develop a health compatible microbiota composition may result in pathology and disease in later life. Probiotics are live microorganisms that, when administered in adequate amounts, confer a health benefit on the host. Maternal transfer of microorganisms is possible during pregnancy and lactation, and the mother's diet and microbiota can influence that of her offspring. Furthermore, pre-term birth, Caesarean section birth, formula feeding, antibiotic use, and malnutrition have been linked to dysbiosis, which in turn is associated with several pathologies such as necrotizing enterocolitis, inflammatory bowel diseases, antibiotic associated diarrhea, colic, and allergies. Thus, early life should represent a preferred stage of life for probiotic interventions. In this context, they could be regarded as a means to 'program' the individual for health maintenance, in order to prevent pathologies associated with dysbiosis. In order to elucidate the mechanisms underlying the benefits of probiotic administration, pre-clinical studies have been conducted and found an array of positive results such as improved microbial composition, intestinal maturation, decreased pathogenic load and infections, and improved immune response. Moreover, specific probiotic strains administered during the perinatal period have shown promise in attenuating severity of necrotizing enterocolitis. The mechanisms elucidated suggest that probiotic interventions in early life can be envisaged for disease prevention in both healthy offspring and offspring at risk of chronic disease.

  7. Bacterial Community Composition Associated with Pyrogenic Organic Matter (Biochar) Varies with Pyrolysis Temperature and Colonization Environment

    PubMed Central

    Dai, Zhongmin; Barberán, Albert; Li, Yong; Brookes, Philip C.

    2017-01-01

    ABSTRACT Microbes that colonize pyrogenic organic matter (PyOM) (also called biochar) play an important role in PyOM mineralization and crucially affect soil biogeochemical cycling, while the microbial community composition associated with PyOM particles is poorly understood. We generated two manure-based PyOMs with different characteristics (PyOM pyrolyzed at the low temperature of 300°C [i.e., PyOM300] and at the high temperature of 700°C [i.e., PyOM700]) and added them to high-carbon (4.15%) and low-C (0.37%) soil for microbial colonization. 16S rRNA gene sequencing showed that Actinobacteria, particularly Actinomycetales, was the dominant taxon in PyOM, regardless of the PyOM pyrolysis temperature and soil type. Bacterial communities associated with PyOM particles from high-C soils were similar to those in non-PyOM-amended soils. PyOM300 had higher total microbial activity and more differential bacterial communities than PyOM700. More bacterial operational taxonomic units (OTUs) preferentially thrived on the low-pyrolysis-temperature PyOM, while some specific OTUs thrived on high-pyrolysis-temperature PyOM. In particular, Chloroflexi species tended to be more prevalent in high-pyrolysis-temperature PyOM in low-C soils. In conclusion, the differences in colonized bacterial community composition between the different PyOMs were strongly influenced by the pyrolysis temperatures of PyOM, i.e., under conditions of easily mineralizable C or fused aromatic C, and by other properties, e.g., pH, surface area, and nutrient content. IMPORTANCE Pyrogenic organic matter (PyOM) is widely distributed in soil and fluvial ecosystems and plays an important role in biogeochemical cycling. Many studies have reported changes in soil microbial communities stimulated by PyOM, but very little is known about the microbial communities associated with PyOM. The microbes that colonize PyOMs can participate in the mineralization of PyOM, so changing its structure affects the fate of PyOMs and contributes to soil biogeochemical cycling. This study identified the bacterial community composition associated with PyOMs on the basis of high-throughput sequencing and demonstrated that both PyOM pyrolysis temperature and the colonization environment determined the bacterial community composition. Our work increases our understanding of the dominant phylogenetic taxa associated with PyOMs, demonstrates mechanisms mediating microbial metabolism and growth in PyOMs, and expands a new research area for pyrogenic organic matter. This study identified the bacterial community composition associated with PyOM, which is widely distributed in the environment. Most bacterial OTUs preferentially thrived on PyOM pyrolyzed at low temperature, while some specific OTUs thrived on PyOM pyrolyzed at high temperature. PMID:28405627

  8. Bacterial Community Composition Associated with Pyrogenic Organic Matter (Biochar) Varies with Pyrolysis Temperature and Colonization Environment.

    PubMed

    Dai, Zhongmin; Barberán, Albert; Li, Yong; Brookes, Philip C; Xu, Jianming

    2017-01-01

    Microbes that colonize pyrogenic organic matter (PyOM) (also called biochar) play an important role in PyOM mineralization and crucially affect soil biogeochemical cycling, while the microbial community composition associated with PyOM particles is poorly understood. We generated two manure-based PyOMs with different characteristics (PyOM pyrolyzed at the low temperature of 300°C [i.e., PyOM300] and at the high temperature of 700°C [i.e., PyOM700]) and added them to high-carbon (4.15%) and low-C (0.37%) soil for microbial colonization. 16S rRNA gene sequencing showed that Actinobacteria , particularly Actinomycetales , was the dominant taxon in PyOM, regardless of the PyOM pyrolysis temperature and soil type. Bacterial communities associated with PyOM particles from high-C soils were similar to those in non-PyOM-amended soils. PyOM300 had higher total microbial activity and more differential bacterial communities than PyOM700. More bacterial operational taxonomic units (OTUs) preferentially thrived on the low-pyrolysis-temperature PyOM, while some specific OTUs thrived on high-pyrolysis-temperature PyOM. In particular, Chloroflexi species tended to be more prevalent in high-pyrolysis-temperature PyOM in low-C soils. In conclusion, the differences in colonized bacterial community composition between the different PyOMs were strongly influenced by the pyrolysis temperatures of PyOM, i.e., under conditions of easily mineralizable C or fused aromatic C, and by other properties, e.g., pH, surface area, and nutrient content. IMPORTANCE Pyrogenic organic matter (PyOM) is widely distributed in soil and fluvial ecosystems and plays an important role in biogeochemical cycling. Many studies have reported changes in soil microbial communities stimulated by PyOM, but very little is known about the microbial communities associated with PyOM. The microbes that colonize PyOMs can participate in the mineralization of PyOM, so changing its structure affects the fate of PyOMs and contributes to soil biogeochemical cycling. This study identified the bacterial community composition associated with PyOMs on the basis of high-throughput sequencing and demonstrated that both PyOM pyrolysis temperature and the colonization environment determined the bacterial community composition. Our work increases our understanding of the dominant phylogenetic taxa associated with PyOMs, demonstrates mechanisms mediating microbial metabolism and growth in PyOMs, and expands a new research area for pyrogenic organic matter. This study identified the bacterial community composition associated with PyOM, which is widely distributed in the environment. Most bacterial OTUs preferentially thrived on PyOM pyrolyzed at low temperature, while some specific OTUs thrived on PyOM pyrolyzed at high temperature.

  9. Colonization of overlaying water by bacteria from dry river sediments.

    PubMed

    Fazi, Stefano; Amalfitano, Stefano; Piccini, Claudia; Zoppini, Annamaria; Puddu, Alberto; Pernthaler, Jakob

    2008-10-01

    We studied the diversity, community composition and activity of the primary microbial colonizers of the water above freshly re-wetted sediments from a temporary river. Dried sediments, collected from Mulargia River (Sardinia, Italy), were covered with sterile freshwater in triplicate microcosms, and changes of the planktonic microbial assemblage were monitored over a 48 h period. During the first 9 h bacterial abundance was low (1.5 x 10(4) cells ml(-1)); it increased to 3.4 x 10(6) cells ml(-1) after 28 h and did not change thereafter. Approximately 20% of bacteria exhibited DNA de novo synthesis already after 9 h of incubation. Changes of the ratios of (3)H-leucine to (3)H-thymidine incorporation rates indicated a shift of growth patterns during the experiment. Extracellular enzyme activity showed a maximum at 48 h with aminopeptidase activity (430.8 +/- 22.6 nmol MCA l(-1) h(-1)) significantly higher than alkaline phosphatase (98.6 +/- 4.3 nmol MUF l(-1) h(-1)). The primary microbial colonizers of the overlaying water - as determined by 16S rRNA gene sequence analysis - were related to at least six different phylogenetic lineages of Bacilli and to Alphaproteobacteria (Brevundimonas spp. and Caulobacter spp.). Large bacterial cells affiliated to one clade of Bacillus sp. were rare in the dried sediments, but constituted the majority of the planktonic microbial assemblage and of cells with detectable DNA-synthesis until 28 h after re-wetting. Their community contribution decreased in parallel with a rise of flagellated and ciliated protists. Estimates based on cell production rates suggested that the rapidly enriched Bacillus sp. suffered disproportionally high loss rates from selective predation, thus favouring the establishment of a more heterogenic assemblage of microbes (consisting of Proteobacteria, Actinobacteria and Cytophaga-Flavobacteria). Our results suggest that the primary microbial colonizers of the water above dried sediments are passively released into the plankton and that their high growth potential is counteracted by the activity of bacterivorous protists.

  10. Deciphering chicken gut microbial dynamics based on high-throughput 16S rRNA metagenomics analyses.

    PubMed

    Mohd Shaufi, Mohd Asrore; Sieo, Chin Chin; Chong, Chun Wie; Gan, Han Ming; Ho, Yin Wan

    2015-01-01

    Chicken gut microbiota has paramount roles in host performance, health and immunity. Understanding the topological difference in gut microbial community composition is crucial to provide knowledge on the functions of each members of microbiota to the physiological maintenance of the host. The gut microbiota profiling of the chicken was commonly performed previously using culture-dependent and early culture-independent methods which had limited coverage and accuracy. Advances in technology based on next-generation sequencing (NGS), offers unparalleled coverage and depth in determining microbial gut dynamics. Thus, the aim of this study was to investigate the ileal and caecal microbiota development as chicken aged, which is important for future effective gut modulation. Ileal and caecal contents of broiler chicken were extracted from 7, 14, 21 and 42-day old chicken. Genomic DNA was then extracted and amplified based on V3 hyper-variable region of 16S rRNA. Bioinformatics, ecological and statistical analyses such as Principal Coordinate Analysis (PCoA) was performed in mothur software and plotted using PRIMER 6. Additional analyses for predicted metagenomes were performed through PICRUSt and STAMP software package based on Greengenes databases. A distinctive difference in bacterial communities was observed between ilea and caeca as the chicken aged (P < 0.001). The microbial communities in the caeca were more diverse in comparison to the ilea communities. The potentially pathogenic bacteria such as Clostridium were elevated as the chicken aged and the population of beneficial microbe such as Lactobacillus was low at all intervals. On the other hand, based on predicted metagenomes analysed, clear distinction in functions and roles of gut microbiota such as gene pathways related to nutrient absorption (e.g. sugar and amino acid metabolism), and bacterial proliferation and colonization (e.g. bacterial motility proteins, two-component system and bacterial secretion system) were observed between ilea and caeca, respectively (P < 0.05). The caeca microbial communities were more diverse in comparison to ilea. The main functional differences between the two sites were found to be related to nutrient absorption and bacterial colonization. Based on the composition of the microbial community, future gut modulation with beneficial bacteria such as probiotics may benefit the host.

  11. Effect of milk on the urinary excretion of microbial phenolic acids after cocoa powder consumption in humans.

    PubMed

    Urpi-Sarda, Mireia; Llorach, Rafael; Khan, Nasiruddin; Monagas, Maria; Rotches-Ribalta, Maria; Lamuela-Raventos, Rosa; Estruch, Ramon; Tinahones, Francisco J; Andres-Lacueva, Cristina

    2010-04-28

    Health effects of cocoa flavonols depend on their bioavailability, which is strongly influenced by the food matrix and the degree of flavanol polymerization. The effect of milk on the bioavailability of cocoa flavanoids considering phase II metabolites of epicatechin has been the subject of considerable debate. This work studies the effect of milk at the colonic microbial metabolism level of the nonabsorbed flavanol fraction that reaches the colon and is metabolized by the colonic microbiota into various phenolic acids. Twenty-one human volunteers followed a diet low in polyphenols for at least 48 h before taking, in a random order, 40 g of cocoa powder dissolved either in 250 mL of whole milk or in 250 mL of water. Urine samples were collected before the intake and during three different periods (0-6, 6-12, and 12-24 h). Phenolic acids were analyzed by LC-MS/MS after solid-phase extraction. Of the 15 metabolites assessed, the excretion of 9 phenolic acids was affected by the intake of milk. The urinary concentration of 3,4-dihydroxyphenylacetic, protocatechuic, 4-hydroxybenzoic, 4-hydroxyhippuric, hippuric, caffeic, and ferulic acids diminished after the intake of cocoa with milk, whereas urinary concentrations of vanillic and phenylacetic acids increased. In conclusion, milk partially affects the formation of microbial phenolic acids derived from the colonic degradation of procyanidins and other compounds present in cocoa powder.

  12. Exposure of phototrophs to 548 days in low Earth orbit: microbial selection pressures in outer space and on early earth

    PubMed Central

    Cockell, Charles S; Rettberg, Petra; Rabbow, Elke; Olsson-Francis, Karen

    2011-01-01

    An epilithic microbial community was launched into low Earth orbit, and exposed to conditions in outer space for 548 days on the European Space Agency EXPOSE-E facility outside the International Space Station. The natural phototroph biofilm was augmented with akinetes of Anabaena cylindrica and vegetative cells of Nostoc commune and Chroococcidiopsis. In space-exposed dark controls, two algae (Chlorella and Rosenvingiella spp.), a cyanobacterium (Gloeocapsa sp.) and two bacteria associated with the natural community survived. Of the augmented organisms, cells of A. cylindrica and Chroococcidiopsis survived, but no cells of N. commune. Only cells of Chroococcidiopsis were cultured from samples exposed to the unattenuated extraterrestrial ultraviolet (UV) spectrum (>110 nm or 200 nm). Raman spectroscopy and bright-field microscopy showed that under these conditions the surface cells were bleached and their carotenoids were destroyed, although cell morphology was preserved. These experiments demonstrate that outer space can act as a selection pressure on the composition of microbial communities. The results obtained from samples exposed to >200 nm UV (simulating the putative worst-case UV exposure on the early Earth) demonstrate the potential for epilithic colonization of land masses during that time, but that UV radiation on anoxic planets can act as a strong selection pressure on surface-dwelling organisms. Finally, these experiments have yielded new phototrophic organisms of potential use in biomass and oxygen production in space exploration. PMID:21593797

  13. Exposure of phototrophs to 548 days in low Earth orbit: microbial selection pressures in outer space and on early earth.

    PubMed

    Cockell, Charles S; Rettberg, Petra; Rabbow, Elke; Olsson-Francis, Karen

    2011-10-01

    An epilithic microbial community was launched into low Earth orbit, and exposed to conditions in outer space for 548 days on the European Space Agency EXPOSE-E facility outside the International Space Station. The natural phototroph biofilm was augmented with akinetes of Anabaena cylindrica and vegetative cells of Nostoc commune and Chroococcidiopsis. In space-exposed dark controls, two algae (Chlorella and Rosenvingiella spp.), a cyanobacterium (Gloeocapsa sp.) and two bacteria associated with the natural community survived. Of the augmented organisms, cells of A. cylindrica and Chroococcidiopsis survived, but no cells of N. commune. Only cells of Chroococcidiopsis were cultured from samples exposed to the unattenuated extraterrestrial ultraviolet (UV) spectrum (>110 nm or 200 nm). Raman spectroscopy and bright-field microscopy showed that under these conditions the surface cells were bleached and their carotenoids were destroyed, although cell morphology was preserved. These experiments demonstrate that outer space can act as a selection pressure on the composition of microbial communities. The results obtained from samples exposed to >200 nm UV (simulating the putative worst-case UV exposure on the early Earth) demonstrate the potential for epilithic colonization of land masses during that time, but that UV radiation on anoxic planets can act as a strong selection pressure on surface-dwelling organisms. Finally, these experiments have yielded new phototrophic organisms of potential use in biomass and oxygen production in space exploration.

  14. The secret world of endophytes in perspective

    USDA-ARS?s Scientific Manuscript database

    This work in Fungal Ecology is focused on the group of plant symbionts that have been termed collectively ‘microbial endophytes’. Broadly, microbial endophytes are commonly considered to be any of a diverse group of bacteria, cyanobacteria, or fungi that colonize internal tissues of plants. After ...

  15. Acetaldehyde production and microbial colonization in oral squamous cell carcinoma and oral lichenoid disease.

    PubMed

    Marttila, Emilia; Uittamo, Johanna; Rusanen, Peter; Lindqvist, Christian; Salaspuro, Mikko; Rautemaa, Riina

    2013-07-01

    The main aim of this prospective study was to explore the ability of the oral microbiome to produce acetaldehyde in ethanol incubation. A total of 90 patients [30 oral squamous cell carcinoma (OSCC); 30 oral lichenoid disease (OLD); 30 healthy controls (CO)] were enrolled in the study. Microbial samples were taken from the mucosa using a filter paper method. The density of microbial colonization was calculated and the spectrum analyzed. Microbial acetaldehyde production was measured by gas chromatography. The majority (68%) of cultures produced carcinogenic levels of acetaldehyde (>100 μM) when incubated with ethanol (22 mM). The mean acetaldehyde production by microbes cultured from smoker samples was significantly higher (213 μM) than from non-smoker samples (141 μM) (P=.0326). The oral microbiota from OSCC, OLD patients and healthy individuals are able to produce carcinogenic levels of acetaldehyde. The present provisional study suggests smoking may increase the production of acetaldehyde. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Assessment of the physicochemical conditions sediments in a polluted tidal flat colonized by microbial mats in Bahía Blanca Estuary (Argentina).

    PubMed

    Spetter, C V; Buzzi, N S; Fernández, E M; Cuadrado, D G; Marcovecchio, J E

    2015-02-28

    The aim of this work is to assess the physicochemical conditions of the supratidal sediments colonized by microbial mats at two sites from Rosales Harbor (Bahía Blanca Estuary, Argentina) close to sewage discharge. Both sites differed in the size grain. No differences in pH, Eh and temperature were observed. Moisture retention and chlorophyll a concentration were significantly different between sites and sediment layers. Heavy metals and organic matter content were significantly higher in SII. No statistical differences were found in porewater nutrients concentration, being higher in SI (except DSi). The presence of Escherichia coli in water and sediment (1000 CFU/100 mL - uncountable and 35-40 CFU g(-1) dw, respectively) evidenced microbial contamination in the study area. The relationships between the physicochemical parameters evaluated and the influence of the sewage discharge allow defining two different areas in the Rosales Harbor despite the proximity and the presence of microbial mats.

  17. Reproducing stone monument photosynthetic-based colonization under laboratory conditions.

    PubMed

    Miller, Ana Zélia; Laiz, Leonila; Gonzalez, Juan Miguel; Dionísio, Amélia; Macedo, Maria Filomena; Saiz-Jimenez, Cesareo

    2008-11-01

    In order to understand the biodeterioration process occurring on stone monuments, we analyzed the microbial communities involved in these processes and studied their ability to colonize stones under controlled laboratory experiments. In this study, a natural green biofilm from a limestone monument was cultivated, inoculated on stone probes of the same lithotype and incubated in a laboratory chamber. This incubation system, which exposes stone samples to intermittently sprinkling water, allowed the development of photosynthetic biofilms similar to those occurring on stone monuments. Denaturing gradient gel electrophoresis (DGGE) analysis was used to evaluate the major microbial components of the laboratory biofilms. Cyanobacteria, green microalgae, bacteria and fungi were identified by DNA-based molecular analysis targeting the 16S and 18S ribosomal RNA genes. The natural green biofilm was mainly composed by the Chlorophyta Chlorella, Stichococcus, and Trebouxia, and by Cyanobacteria belonging to the genera Leptolyngbya and Pleurocapsa. A number of bacteria belonging to Alphaproteobacteria, Bacteroidetes and Verrucomicrobia were identified, as well as fungi from the Ascomycota. The laboratory colonization experiment on stone probes showed a colonization pattern similar to that occurring on stone monuments. The methodology described in this paper allowed to reproduce a colonization equivalent to the natural biodeteriorating process.

  18. Zebrafish Axenic Larvae Colonization with Human Intestinal Microbiota.

    PubMed

    Arias-Jayo, Nerea; Alonso-Saez, Laura; Ramirez-Garcia, Andoni; Pardo, Miguel A

    2018-04-01

    The human intestine hosts a vast and complex microbial community that is vital for maintaining several functions related with host health. The processes that determine the gut microbiome composition are poorly understood, being the interaction between species, the external environment, and the relationship with the host the most feasible. Animal models offer the opportunity to understand the interactions between the host and the microbiota. There are different gnotobiotic mice or rat models colonized with the human microbiota, however, to our knowledge, there are no reports on the colonization of germ-free zebrafish with a complex human intestinal microbiota. In the present study, we have successfully colonized 5 days postfertilization germ-free zebrafish larvae with the human intestinal microbiota previously extracted from a donor and analyzed by high-throughput sequencing the composition of the transferred microbial communities that established inside the zebrafish gut. Thus, we describe for first time which human bacteria phylotypes are able to colonize the zebrafish digestive tract. Species with relevant interest because of their linkage to dysbiosis in different human diseases, such as Akkermansia muciniphila, Eubacterium rectale, Faecalibacterium prausnitzii, Prevotella spp., or Roseburia spp. have been successfully transferred inside the zebrafish digestive tract.

  19. The Effect of Therapeutic Clowning on Handwashing Technique and Microbial Colonization in Preschool Children.

    PubMed

    Arıkan, Duygu; Gürarslan Baş, Nazan; Kurudirek, Fatma; Baştopcu, Ayşe; Uslu, Hakan

    2018-05-15

    This study aimed to determine the effect of therapeutic clowning on handwashing technique and microbial colonization in preschool children. This randomized controlled trial was conducted using pre-test and post-test experimental and control groups. The study was conducted between March and June 2016 in two kindergartens in eastern Turkey. The study was completed with a total of 195 students, including 90 students in the experimental group and 105 students in the control group. A questionnaire was used for data collection. This questionnaire included sections about the subjects' descriptive characteristics and the results of the bacterial cultures of their hand swabs. For the collection of these swabs, the subjects were informed in advance, and samples were collected at predetermined times. The swabs were analyzed to determine the bacterial colonization of the subjects' hands. Clowns and video activities were used as intervention tools in the study. In the post-test, the microbial growth was ≤10 3 in 68.9% and >10 3 in 31.1% of the subjects in the experimental group. In contrast, the growth was ≤10 3 in 34.3% and >10 3 in 65.7% of the control group subjects. The difference in the post-test microbial growths of the two groups was statistically significant (p < .000). The hygienic handwashing technique taught in the therapeutic clowning and videos reduced the bacterial colonization on the preschool children's hands by 50%. Moreover, this method was effective in reducing the growth rate of coliform bacteria that indicate undesirable, poor hygiene of the hands. Considering these results, we recommend that pediatric healthcare professionals use entertaining methods such as those involving clowns to teach and guide children regarding hygienic handwashing techniques. © 2018 Sigma Theta Tau International.

  20. Effects of correcting in situ ruminal microbial colonization of feed particles on the relationship between ruminally undegraded and intestinally digested crude protein in concentrate feeds.

    PubMed

    González, Javier; Mouhbi, Rabiaa; Guevara-González, Jesús Alberto; Arroyo, José María

    2018-02-01

    In situ estimates of ruminally undegraded protein (RUP) and intestinally digested protein (IDP) of ten concentrates, uncorrected or corrected for the ruminal microbial colonization, were used to examine the effects of this correction on the relationship between IDP and RUP values. Both variables were established for three rumen and duodenum cannulated wethers using 15 N labeling-techniques and considering measured rates of ruminal particle comminution (k c ) and outflow (k p ). A covariance analysis showed that the close relationship found between both variables (IDP = -0.0132 ± 0.00679 + 0.776 ± 0.0002 RUP; n = 60; P < 0.001; r = 0.960) is not affected by correcting for microbial colonization (P = 0.682). The IDP content in concentrates and industrial by-products can be predicted from RUP values, thus avoiding the laborious and complex procedure of determining intestinal digestibility; however, a larger sample of feeds is necessary to achieve more accurate predictions. The lack of influence of the correction for microbial contamination on the prediction observed in the present study increases the data available for this prediction. However, only the use of corrected values may provide an accurate evaluation. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  1. Nectar microbes can reduce secondary metabolites in nectar and alter effects on nectar consumption by pollinators.

    PubMed

    Vannette, Rachel L; Fukami, Tadashi

    2016-06-01

    Secondary metabolites that are present in floral nectar have been hypothesized to enhance specificity in plant-pollinator mutualism by reducing larceny by non-pollinators, including microorganisms that colonize nectar. However, few studies have tested this hypothesis. Using synthetic nectar, we conducted laboratory and field experiments to examine the effects of five chemical compounds found in nectar on the growth and metabolism of nectar-colonizing yeasts and bacteria, and the interactive effects of these compounds and nectar microbes on the consumption of nectar by pollinators. In most cases, focal compounds inhibited microbial growth, but the extent of these effects depended on compound identity, concentration, and microbial species. Moreover, most compounds did not substantially decrease sugar metabolism by microbes, and microbes reduced the concentration of some compounds in nectar. Using artificial flowers in the field, we also found that the common nectar yeast Metschnikowia reukaufii altered nectar consumption by small floral visitors, but only in nectar containing catalpol. This effect was likely mediated by a mechanism independent of catalpol metabolism. Despite strong compound-specific effects on microbial growth, our results suggest that the secondary metabolites tested here are unlikely to be an effective general defense mechanism for preserving nectar sugars for pollinators. Instead, our results indicate that microbial colonization of nectar could reduce the concentration of secondary compounds in nectar and, in some cases, reduce deterrence to pollinators.

  2. Hospital microbial surface colonization revealed during monitoring of Klebsiella spp., Pseudomonas aeruginosa, and non-tuberculous mycobacteria.

    PubMed

    Geadas Farias, Pedro; Gama, Fernando; Reis, Diogo; Alarico, Susana; Empadinhas, Nuno; Martins, José Carlos; de Almeida, Ana Figueiredo; Morais, Paula Vasconcelos

    2017-07-01

    Hospital environmental conditions, human occupancy, and the characteristics of the equipment influence the survival of microbial communities and raise a concern with regard to nosocomial infections. The objective of the present work was to use the monitoring of Pseudomonas aeruginosa, Klebsiella spp. and non-tuberculous mycobacteria as a strategy to improve knowledge on microbial colonization of non-critical equipment and surfaces, in a tertiary hospital from Central Portugal. A 3-month microbiological survey was performed in a district teaching hospital. A total of 173 samples were obtained from the wards Hematology, Urology, Medicine, and Renal Transplants, and 102 presumptive strains recovered. Per sampling, Pseudomonas Isolation agar showed 42.8 to 73.3% of presumptive P. aeruginosa colonies and MacConkey agar recovered mostly Staphylococcus. Most of the colonies recovered in Middlebrook 7H10-PANTA belonged to the genus Methylobacterium. Taps and WC shower curtains carry high bacterial species diversity. The Redundancy Analysis grouped the samples in those mostly handled by patients, and those mostly handled by healthcare staff or of mixed use. This study shows that the preferential users of the space and equipment seem to be important contributors to the microbial community. The most recovered genus was Methylobacterium, known as colonizer of the water distribution system therefore, it is possible that the water points and biofilms in taps also contribute as dispersion hotspots.

  3. Does the presence of large down wood at the time of a forest fire impact soil recovery?

    DOE PAGES

    Smith, Jane E.; Kluber, Laurel A.; Jennings, Tara N.; ...

    2017-02-23

    Fire may remove or create dead wood aboveground, but it is less clear how high severity burning of soils affects belowground microbial communities and soil processes, and for how long. Here, we investigated soil fungal and bacterial communities and biogeochemical responses of severely burned red soil and less severely burned black soil from a burned forest on the eastern slope of the Cascade Range in Oregon. We examined the effects of burn severity on soil nutrients and microbial communi- ties for 14 years after wildfire. Soil nutrients were significantly reduced in red soils. Soil fungi and bac teria, assessed withmore » molecular methods, steadily colonized both burn severities and soil biodiversity increased throughout the study showing that microbial communities seem to have the capacity to quickly adjust to extreme disturbances. Although richness did not vary by soil type, the fungal and bacterial community compositions varied with burn severity. This difference was greatest in the early time points following the fire and decreased with time. But, nutrient-limited conditions of red soils were detected for four years after the wildfire and raise concern about soil productivity at these sites.« less

  4. Does the presence of large down wood at the time of a forest fire impact soil recovery?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Jane E.; Kluber, Laurel A.; Jennings, Tara N.

    Fire may remove or create dead wood aboveground, but it is less clear how high severity burning of soils affects belowground microbial communities and soil processes, and for how long. Here, we investigated soil fungal and bacterial communities and biogeochemical responses of severely burned red soil and less severely burned black soil from a burned forest on the eastern slope of the Cascade Range in Oregon. We examined the effects of burn severity on soil nutrients and microbial communi- ties for 14 years after wildfire. Soil nutrients were significantly reduced in red soils. Soil fungi and bac teria, assessed withmore » molecular methods, steadily colonized both burn severities and soil biodiversity increased throughout the study showing that microbial communities seem to have the capacity to quickly adjust to extreme disturbances. Although richness did not vary by soil type, the fungal and bacterial community compositions varied with burn severity. This difference was greatest in the early time points following the fire and decreased with time. But, nutrient-limited conditions of red soils were detected for four years after the wildfire and raise concern about soil productivity at these sites.« less

  5. Got worms? Perinatal exposure to helminths prevents persistent immune sensitization and cognitive dysfunction induced by early-life infection.

    PubMed

    Williamson, Lauren L; McKenney, Erin A; Holzknecht, Zoie E; Belliveau, Christine; Rawls, John F; Poulton, Susan; Parker, William; Bilbo, Staci D

    2016-01-01

    The incidence of autoimmune and inflammatory diseases has risen dramatically in post-industrial societies. "Biome depletion" - loss of commensal microbial and multicellular organisms such as helminths (intestinal worms) that profoundly modulate the immune system - may contribute to these increases. Hyperimmune-associated disorders also affect the brain, especially neurodevelopment, and increasing evidence links early-life infection to cognitive and neurodevelopmental disorders. We have demonstrated previously that rats infected with bacteria as newborns display life-long vulnerabilities to cognitive dysfunction, a vulnerability that is specifically linked to long-term hypersensitivity of microglial cell function, the resident immune cells of the brain. Here, we demonstrate that helminth colonization of pregnant dams attenuated the exaggerated brain cytokine response of their offspring to bacterial infection, and that combined with post-weaning colonization of offspring with helminths (consistent with their mothers treatment) completely prevented enduring microglial sensitization and cognitive dysfunction in adulthood. Importantly, helminths had no overt impact on adaptive immune cell subsets, whereas exaggerated innate inflammatory responses in splenic macrophages were prevented. Finally, helminths altered the effect of neonatal infection on the gut microbiome; neonatal infection with Escherichia coli caused a shift from genera within the Actinobacteria and Tenericutes phyla to genera in the Bacteroidetes phylum in rats not colonized with helminths, but helminths attenuated this effect. In sum, these data point toward an inter-relatedness of various components of the biome, and suggest potential mechanisms by which this helminth might exert therapeutic benefits in the treatment of neuroinflammatory and cognitive disorders. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. The plastid genome as a platform for the expression of microbial resistance genes

    USDA-ARS?s Scientific Manuscript database

    In recent years, our fundamental understanding of host-microbe interaction has developed considerably. We have begun to tease out the genetic components that influence host resistance to microbial colonization. The use of advancing molecular technologies such as microarray expression profiling and...

  7. Variation in Microbiome LPS Immunogenicity Contributes to Autoimmunity in Humans.

    PubMed

    Vatanen, Tommi; Kostic, Aleksandar D; d'Hennezel, Eva; Siljander, Heli; Franzosa, Eric A; Yassour, Moran; Kolde, Raivo; Vlamakis, Hera; Arthur, Timothy D; Hämäläinen, Anu-Maaria; Peet, Aleksandr; Tillmann, Vallo; Uibo, Raivo; Mokurov, Sergei; Dorshakova, Natalya; Ilonen, Jorma; Virtanen, Suvi M; Szabo, Susanne J; Porter, Jeffrey A; Lähdesmäki, Harri; Huttenhower, Curtis; Gevers, Dirk; Cullen, Thomas W; Knip, Mikael; Xavier, Ramnik J

    2016-05-05

    According to the hygiene hypothesis, the increasing incidence of autoimmune diseases in western countries may be explained by changes in early microbial exposure, leading to altered immune maturation. We followed gut microbiome development from birth until age three in 222 infants in Northern Europe, where early-onset autoimmune diseases are common in Finland and Estonia but are less prevalent in Russia. We found that Bacteroides species are lowly abundant in Russians but dominate in Finnish and Estonian infants. Therefore, their lipopolysaccharide (LPS) exposures arose primarily from Bacteroides rather than from Escherichia coli, which is a potent innate immune activator. We show that Bacteroides LPS is structurally distinct from E. coli LPS and inhibits innate immune signaling and endotoxin tolerance; furthermore, unlike LPS from E. coli, B. dorei LPS does not decrease incidence of autoimmune diabetes in non-obese diabetic mice. Early colonization by immunologically silencing microbiota may thus preclude aspects of immune education. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Dismicrobism in inflammatory bowel disease and colorectal cancer: Changes in response of colocytes

    PubMed Central

    Tomasello, Giovanni; Tralongo, Pietro; Damiani, Provvidenza; Sinagra, Emanuele; Di Trapani, Benedetto; Zeenny, Marie Noelle; Hajj Hussein, Inaya; Jurjus, Abdo; Leone, Angelo

    2014-01-01

    Patients with inflammatory bowel disease (IBD) have an increased risk of 10%-15% developing colorectal cancer (CRC) that is a common disease of high economic costs in developed countries. The CRC has been increasing in recent years and its mortality rates are very high. Multiple biological and biochemical factors are responsible for the onset and progression of this pathology. Moreover, it appears absolutely necessary to investigate the environmental factors favoring the onset of CRC and the promotion of colonic health. The gut microflora, or microbiota, has an extensive diversity both quantitatively and qualitatively. In utero, the intestine of the mammalian fetus is sterile. At birth, the intestinal microbiota is acquired by ingesting maternal anal or vaginal organisms, ultimately developing into a stable community, with marked variations in microbial composition between individuals. The development of IBD is often associated with qualitative and quantitative disorders of the intestinal microbial flora (dysbiosis). The healthy human gut harbours about 10 different bacterial species distributed in colony forming units which colonize the gastrointestinal tract. The intestinal microbiota plays a fundamental role in health and in the progression of diseases such as IBD and CRC. In healthy subjects, the main control of intestinal bacterial colonization occurs through gastric acidity but other factors such as endoluminal temperature, competition between different bacterial strains, peristalsis and drugs can influence the intestinal microenvironment. The microbiota exerts diverse physiological functions to include: growth inhibition of pathogenic microorganisms, synthesis of compounds useful for the trophism of colonic mucosa, regulation of intestinal lymphoid tissue and synthesis of amino acids. Furthermore, mucus seems to play an important role in protecting the intestinal mucosa and maintaining its integrity. Changes in the microbiota composition are mainly influenced by diet and age, as well as genetic factors. Increasing evidence indicates that dysbiosis favors the production of genotoxins and metabolites associated with carcinogenesis and induces dysregulation of the immune response which promotes and sustains inflammation in IBD leading to carcinogenesis. A disequilibrium in gut microflora composition leads to the specific activation of gut associated lymphoid tissue. The associated chronic inflammatory process associated increases the risk of developing CRC. Ulcerative colitis and Crohn’s disease are the two major IBDs characterized by an early onset and extraintestinal manifestations, such as rheumatoid arthritis. The pathogenesis of both diseases is complex and not yet fully known. However, it is widely accepted that an inappropriate immune response to microbial flora can play a pivotal role in IBD pathogenesis. PMID:25561781

  9. Dismicrobism in inflammatory bowel disease and colorectal cancer: changes in response of colocytes.

    PubMed

    Tomasello, Giovanni; Tralongo, Pietro; Damiani, Provvidenza; Sinagra, Emanuele; Di Trapani, Benedetto; Zeenny, Marie Noelle; Hussein, Inaya Hajj; Jurjus, Abdo; Leone, Angelo

    2014-12-28

    Patients with inflammatory bowel disease (IBD) have an increased risk of 10%-15% developing colorectal cancer (CRC) that is a common disease of high economic costs in developed countries. The CRC has been increasing in recent years and its mortality rates are very high. Multiple biological and biochemical factors are responsible for the onset and progression of this pathology. Moreover, it appears absolutely necessary to investigate the environmental factors favoring the onset of CRC and the promotion of colonic health. The gut microflora, or microbiota, has an extensive diversity both quantitatively and qualitatively. In utero, the intestine of the mammalian fetus is sterile. At birth, the intestinal microbiota is acquired by ingesting maternal anal or vaginal organisms, ultimately developing into a stable community, with marked variations in microbial composition between individuals. The development of IBD is often associated with qualitative and quantitative disorders of the intestinal microbial flora (dysbiosis). The healthy human gut harbours about 10 different bacterial species distributed in colony forming units which colonize the gastrointestinal tract. The intestinal microbiota plays a fundamental role in health and in the progression of diseases such as IBD and CRC. In healthy subjects, the main control of intestinal bacterial colonization occurs through gastric acidity but other factors such as endoluminal temperature, competition between different bacterial strains, peristalsis and drugs can influence the intestinal microenvironment. The microbiota exerts diverse physiological functions to include: growth inhibition of pathogenic microorganisms, synthesis of compounds useful for the trophism of colonic mucosa, regulation of intestinal lymphoid tissue and synthesis of amino acids. Furthermore, mucus seems to play an important role in protecting the intestinal mucosa and maintaining its integrity. Changes in the microbiota composition are mainly influenced by diet and age, as well as genetic factors. Increasing evidence indicates that dysbiosis favors the production of genotoxins and metabolites associated with carcinogenesis and induces dysregulation of the immune response which promotes and sustains inflammation in IBD leading to carcinogenesis. A disequilibrium in gut microflora composition leads to the specific activation of gut associated lymphoid tissue. The associated chronic inflammatory process associated increases the risk of developing CRC. Ulcerative colitis and Crohn's disease are the two major IBDs characterized by an early onset and extraintestinal manifestations, such as rheumatoid arthritis. The pathogenesis of both diseases is complex and not yet fully known. However, it is widely accepted that an inappropriate immune response to microbial flora can play a pivotal role in IBD pathogenesis.

  10. Fungal colonization of an Ordovician impact-induced hydrothermal system

    PubMed Central

    Ivarsson, Magnus; Broman, Curt; Sturkell, Erik; Ormö, Jens; Siljeström, Sandra; van Zuilen, Mark; Bengtson, Stefan

    2013-01-01

    Impacts are common geologic features on the terrestrial planets throughout the solar system, and on at least Earth and Mars impacts have induced hydrothermal convection. Impact-generated hydrothermal systems have been suggested to possess the same life supporting capability as hydrothermal systems associated with volcanic activity. However, evidence of fossil microbial colonization in impact-generated hydrothermal systems is scarce in the literature. Here we report of fossilized microorganisms in association with cavity-grown hydrothermal minerals from the 458 Ma Lockne impact structure, Sweden. Based on morphological characteristics the fossilized microorganisms are interpreted as fungi. We further infer the kerogenization of the microfossils, and thus the life span of the fungi, to be contemporaneous with the hydrothermal activity and migration of hydrocarbons in the system. Our results from the Lockne impact structure show that hydrothermal systems associated with impact structures can support colonization by microbial life. PMID:24336641

  11. Fungal colonization of an Ordovician impact-induced hydrothermal system

    NASA Astrophysics Data System (ADS)

    Ivarsson, Magnus; Broman, Curt; Sturkell, Erik; Ormö, Jens; Siljeström, Sandra; van Zuilen, Mark; Bengtson, Stefan

    2013-12-01

    Impacts are common geologic features on the terrestrial planets throughout the solar system, and on at least Earth and Mars impacts have induced hydrothermal convection. Impact-generated hydrothermal systems have been suggested to possess the same life supporting capability as hydrothermal systems associated with volcanic activity. However, evidence of fossil microbial colonization in impact-generated hydrothermal systems is scarce in the literature. Here we report of fossilized microorganisms in association with cavity-grown hydrothermal minerals from the 458 Ma Lockne impact structure, Sweden. Based on morphological characteristics the fossilized microorganisms are interpreted as fungi. We further infer the kerogenization of the microfossils, and thus the life span of the fungi, to be contemporaneous with the hydrothermal activity and migration of hydrocarbons in the system. Our results from the Lockne impact structure show that hydrothermal systems associated with impact structures can support colonization by microbial life.

  12. Fungal colonization of an Ordovician impact-induced hydrothermal system.

    PubMed

    Ivarsson, Magnus; Broman, Curt; Sturkell, Erik; Ormö, Jens; Siljeström, Sandra; van Zuilen, Mark; Bengtson, Stefan

    2013-12-16

    Impacts are common geologic features on the terrestrial planets throughout the solar system, and on at least Earth and Mars impacts have induced hydrothermal convection. Impact-generated hydrothermal systems have been suggested to possess the same life supporting capability as hydrothermal systems associated with volcanic activity. However, evidence of fossil microbial colonization in impact-generated hydrothermal systems is scarce in the literature. Here we report of fossilized microorganisms in association with cavity-grown hydrothermal minerals from the 458 Ma Lockne impact structure, Sweden. Based on morphological characteristics the fossilized microorganisms are interpreted as fungi. We further infer the kerogenization of the microfossils, and thus the life span of the fungi, to be contemporaneous with the hydrothermal activity and migration of hydrocarbons in the system. Our results from the Lockne impact structure show that hydrothermal systems associated with impact structures can support colonization by microbial life.

  13. The microbial colonization of some woods of small dimensions buried in soil.

    PubMed

    Sharp, R F

    1975-06-01

    Several species of wood veneer, including some in a green undried state, were buried in various soils, and at intervals the colonists were isolated and identified. In addition, veneers were deteriorated for different periods of time, sterilized, and then reburied in the same soil. Isolates were obtained before sterilization and compared with those found afterwards. In each case the colonization involved a small number of microfungi and, because similar species were repeatedly isolated, an absence of succession under laboratory conditions was indicated. Deteriorating cubes of weed were periodically assayed for their glucose content, pH of exudates, and the release of microbial cellulase and amylase. A lack of any consistent change in colonist activity, with respect to these factors, again indicated an absence of stages during decay. The colonization pattern was contrasted with successions described in previous studies and the simplest explanation was given for the differences found.

  14. Ecosystem and physiological scales of microbial responses to nutrients in a detritus-based stream: results of a 5-year continuous enrichment

    Treesearch

    Keller Suberkropp; Vladislav Gulis; Amy D. Rosemond; Jonathan Benstead

    2010-01-01

    Our study examined the response of leaf detritus–associated microorganisms (both bacteria and fungi) to a 5-yr continuous nutrient enrichment of a forested headwater stream. Leaf litter dominates detritus inputs to such streams and, on a system wide scale, serves as the key substrate for microbial colonization. We determined physiological responses as microbial biomass...

  15. Impact of drinking water conditions and copper materials on downstream biofilm microbial communities and legionella pneumophila colonization

    EPA Science Inventory

    Legionella pneumophila, the medically important species within the genus Legionella, is a concern in engineered water systems. Its ability to amplify within free-living amoebae is well documented, but its interactions/ecology within the microbial community of drinking water biofi...

  16. Microbiology of folliculitis: a histological study of 39 cases.

    PubMed

    Jahns, Anika C; Lundskog, Bertil; Berg, Johanna; Jonsson, Rebecca; McDowell, Andrew; Patrick, Sheila; Golovleva, Irina; Palmer, Ruth H; Alexeyev, Oleg A

    2014-01-01

    Folliculitis is a common inflammatory skin syndrome. Several microbial organisms have been put forward as causative agents, but few studies visualized microbes directly in inflamed hair follicles. This retrospective study investigated bacterial and fungal colonization of inflamed hair follicles in patients with clinically diagnosed non-infectious folliculitis. Skin biopsies from 39 folliculitis patients and 27 controls were screened by fluorescence in situ hybridization (FISH) using broad-range bacterial and fungal probes and by immunofluorescence microscopy using a monoclonal antibody towards Gram-positive bacteria. Specific monoclonal and polyclonal antibodies towards Staphylococcus spp. and Propionibacterium acnes were applied for further species identification. Inflamed follicles were associated with bacterial colonization in 10 samples (26%) and fungal colonization in three samples (8%). Staphylococcus spp. were observed in inflamed follicles in seven samples (18%). Two samples were positive for P. acnes, which were identified as either type II or type IB/type III. Both Staphylococcus spp. and P. acnes were seen in macrocolonies/biofilm structures. In conclusion, one-third of patients with clinically diagnosed, non-infectious folliculitis exhibited microbial colonization with predominance of Staphylococcus spp. © 2013 APMIS Published by Blackwell Publishing Ltd.

  17. Liver Transplantation and Gut Microbiota Profiling in a Child Colonized by a Multi-Drug Resistant Klebsiella pneumoniae: A New Approach to Move from Antibiotic to "Eubiotic" Control of Microbial Resistance.

    PubMed

    Del Chierico, Federica; Cardile, Sabrina; Pietrobattista, Andrea; Liccardo, Daniela; Russo, Alessandra; Candusso, Manila; Basso, Maria Sole; Grimaldi, Chiara; Pansani, Laura; Bernaschi, Paola; Torre, Giuliano; Putignani, Lorenza

    2018-04-25

    The increase of microorganisms multi-drug resistant (MDR) to antibiotics (ATBs) is becoming a global emergency, especially in frail subjects. In chronic liver disease (LD) with indications for liver transplantation (LT), MDR colonization can significantly affect the LT outcome. However, no clear guidelines for microbial management are available. A novel approach toward MDR-colonized patients undergoing LT was developed at our Center refraining from ATBs use during the transplant waiting list, and use of an intensive perioperative prophylaxis cycle. This study aimed to couple clinical evaluation with monitoring of gut microbiota in a pediatric LD patient colonized with MDR Klebsiella pneumoniae (KP) who underwent LT. No peri-transplant complications were reported, and a decontamination from the MDR bacteria occurred during follow-up. Significant changes in gut microbiota, especially during ATB treatment, were reported by microbiota profiling. Patterns of Klebsiella predominance and microbiota diversity revealed opposite temporal trends, with Klebsiella ecological microbiota niches linked to ATB-driven selection. Our infection control program appeared to control complications following LT in an MDR-KP-colonized patient. The perioperative ATB regimen, acting as LT prophylaxis, triggered MDR-KP overgrowth and gut dysbiosis, but buffered infectious processes. Mechanisms modulating the gut ecosystem should be taken into account in MDR colonization clinical management.

  18. Clostridium difficile – From Colonization to Infection

    PubMed Central

    Schäffler, Holger; Breitrück, Anne

    2018-01-01

    Clostridium difficile is the most frequent cause of nosocomial antibiotic-associated diarrhea. The incidence of C. difficile infection (CDI) has been rising worldwide with subsequent increases in morbidity, mortality, and health care costs. Asymptomatic colonization with C. difficile is common and a high prevalence has been found in specific cohorts, e.g., hospitalized patients, adults in nursing homes and in infants. However, the risk of infection with C. difficile differs significantly between these cohorts. While CDI is a clear indication for therapy, colonization with C. difficile is not believed to be a direct precursor for CDI and therefore does not require treatment. Antibiotic therapy causes alterations of the intestinal microbial composition, enabling C. difficile colonization and consecutive toxin production leading to disruption of the colonic epithelial cells. Clinical symptoms of CDI range from mild diarrhea to potentially life-threatening conditions like pseudomembranous colitis or toxic megacolon. While antibiotics are still the treatment of choice for CDI, new therapies have emerged in recent years such as antibodies against C. difficile toxin B and fecal microbial transfer (FMT). This specific therapy for CDI underscores the role of the indigenous bacterial composition in the prevention of the disease in healthy individuals and its role in the pathogenesis after alteration by antibiotic treatment. In addition to the pathogenesis of CDI, this review focuses on the colonization of C. difficile in the human gut and factors promoting CDI. PMID:29692762

  19. Effect of enhanced ultraviolet germicidal irradiation in the heating ventilation and air conditioning system on ventilator-associated pneumonia in a neonatal intensive care unit.

    PubMed

    Ryan, R M; Wilding, G E; Wynn, R J; Welliver, R C; Holm, B A; Leach, C L

    2011-09-01

    The objective of this study was to test the hypothesis that enhanced ultraviolet germicidal irradiation (eUVGI) installed in our neonatal intensive care unit (NICU) heating ventilation and air conditioning system (HVAC) would decrease HVAC and NICU environment microbes, tracheal colonization and ventilator-associated pneumonia (VAP). The study was designed as a prospective interventional pre- and post-single-center study. University-affiliated Regional Perinatal Center NICU. Intubated patients in the NICU were evaluated for colonization, and a high-risk sub-population of infants <30 weeks gestation ventilated for ≥ 14 days was studied for VAP. eUVGI was installed in the NICU's remote HVACs. The HVACs, NICU environment and intubated patients' tracheas were cultured pre- and post-eUVGI for 12 months. The high-risk patients were studied for VAP (positive bacterial tracheal culture, increased ventilator support, worsening chest radiograph and ≥ 7 days of antibiotics). Pseudomonas, Klebsiella, Serratia, Acinetobacter, Staphylococcus aureus and Coagulase-negative Staphylococcus species were cultured from all sites. eUVGI significantly decreased HVAC organisms (baseline 500,000 CFU cm(-2); P=0.015) and NICU environmental microbes (P<0.0001). Tracheal microbial loads decreased 45% (P=0.004), and fewer patients became colonized. VAP in the high-risk cohort fell from 74% (n=31) to 39% (n=18), P=0.04. VAP episodes per patient decreased (Control: 1.2 to eUVGI: 0.4; P=0.004), and antibiotic usage was 62% less (P=0.013). eUVGI decreased HVAC microbial colonization and was associated with reduced NICU environment and tracheal microbial colonization. Significant reductions in VAP and antibiotic use were also associated with eUVGI in this single-center study. Large randomized multicenter trials are needed.

  20. Bugging allergy; role of pre-, pro- and synbiotics in allergy prevention.

    PubMed

    West, Christina E; Dzidic, Majda; Prescott, Susan L; Jenmalm, Maria C

    2017-10-01

    Large-scale biodiversity loss and complex changes in social behaviors are altering human microbial ecology. This is increasingly implicated in the global rise in inflammatory diseases, most notably the "allergy epidemic" in very early life. Colonization of human ecological niches, particularly the gastrointestinal tract, is critical for normal local and systemic immune development and regulation. Disturbances in composition, diversity and timing of microbial colonization have been associated with increased allergy risk, indicating the importance of strategies to restore a dysbiotic gut microbiota in the primary prevention of allergic diseases, including the administration of probiotics, prebiotics and synbiotics. Here, we summarize and discuss findings of randomized clinical trials that have examined the effects of these microbiome-related strategies on short and long-term allergy preventative effects - including new guidelines from the World Allergy Organization which now recommend probiotics and prebiotics for allergy prevention under certain conditions. The relatively low quality evidence, limited comparative studies and large heterogeneity between studies, have collectively hampered recommendations on specific probiotic strains, specific timing and specific conditions for the most effective preventive management. At the same time the risk of using available products is low. While further research is needed before specific practice guidelines on supplement probiotics and prebiotics, it is equally important that the underlying dietary and lifestyle factors of dysbiosis are addressed at both the individual and societal levels. Copyright © 2017 Japanese Society of Allergology. Production and hosting by Elsevier B.V. All rights reserved.

  1. Conjugation of metronidazole with dextran: a potential pharmaceutical strategy to control colonic distribution of the anti-amebic drug susceptible to metabolism by colonic microbes

    PubMed Central

    Kim, Wooseong; Yang, Yejin; Kim, Dohoon; Jeong, Seongkeun; Yoo, Jin-Wook; Yoon, Jeong-Hyun; Jung, Yunjin

    2017-01-01

    Metronidazole (MTDZ), the drug of choice for the treatment of protozoal infections such as luminal amebiasis, is highly susceptible to colonic metabolism, which may hinder its conversion from a colon-specific prodrug to an effective anti-amebic agent targeting the entire large intestine. Thus, in an attempt to control the colonic distribution of the drug, a polymeric colon-specific prodrug, MTDZ conjugated to dextran via a succinate linker (Dex-SA-MTDZ), was designed. Upon treatment with dextranase for 8 h, the degree of Dex-SA-MTDZ depolymerization (%) with a degree of substitution (mg of MTDZ bound in 100 mg of Dex-SA-MTDZ) of 7, 17, and 30 was 72, 38, and 8, respectively, while that of dextran was 85. Depolymerization of Dex-SA-MTDZ was found to be necessary for the release of MTDZ, because dextranase pretreatment ensures that de-esterification occurs between MTDZ and the dextran backbone. In parallel, Dex-SA-MTDZ with a degree of substitution of 17 was found not to release MTDZ upon incubation with the contents of the small intestine and stomach of rats, but it released MTDZ when incubated with rat cecal contents (including microbial dextranases). Moreover, Dex-SA-MTDZ exhibited prolonged release of MTDZ, which contrasts with drug release by small molecular colon-specific prodrugs, MTDZ sulfate and N-nicotinoyl-2-{2-(2-methyl-5-nitroimidazol-1-yl)ethyloxy}-d,l-glycine. These prodrugs were eliminated very rapidly, and no MTDZ was detected in the cecal contents. Consistent with these in vitro results, we found that oral gavage of Dex-SA-MTDZ delivered MTDZ (as MTDZ conjugated to [depolymerized] dextran) to the distal colon. However, upon oral gavage of the small molecular prodrugs, no prodrugs were detected in the distal colon. Collectively, these data suggest that dextran conjugation is a potential pharmaceutical strategy to control the colonic distribution of drugs susceptible to colonic microbial metabolism. PMID:28243064

  2. Conjugation of metronidazole with dextran: a potential pharmaceutical strategy to control colonic distribution of the anti-amebic drug susceptible to metabolism by colonic microbes.

    PubMed

    Kim, Wooseong; Yang, Yejin; Kim, Dohoon; Jeong, Seongkeun; Yoo, Jin-Wook; Yoon, Jeong-Hyun; Jung, Yunjin

    2017-01-01

    Metronidazole (MTDZ), the drug of choice for the treatment of protozoal infections such as luminal amebiasis, is highly susceptible to colonic metabolism, which may hinder its conversion from a colon-specific prodrug to an effective anti-amebic agent targeting the entire large intestine. Thus, in an attempt to control the colonic distribution of the drug, a polymeric colon-specific prodrug, MTDZ conjugated to dextran via a succinate linker (Dex-SA-MTDZ), was designed. Upon treatment with dextranase for 8 h, the degree of Dex-SA-MTDZ depolymerization (%) with a degree of substitution (mg of MTDZ bound in 100 mg of Dex-SA-MTDZ) of 7, 17, and 30 was 72, 38, and 8, respectively, while that of dextran was 85. Depolymerization of Dex-SA-MTDZ was found to be necessary for the release of MTDZ, because dextranase pretreatment ensures that de-esterification occurs between MTDZ and the dextran backbone. In parallel, Dex-SA-MTDZ with a degree of substitution of 17 was found not to release MTDZ upon incubation with the contents of the small intestine and stomach of rats, but it released MTDZ when incubated with rat cecal contents (including microbial dextranases). Moreover, Dex-SA-MTDZ exhibited prolonged release of MTDZ, which contrasts with drug release by small molecular colon-specific prodrugs, MTDZ sulfate and N -nicotinoyl-2-{2-(2-methyl-5-nitroimidazol-1-yl)ethyloxy}-d,l-glycine. These prodrugs were eliminated very rapidly, and no MTDZ was detected in the cecal contents. Consistent with these in vitro results, we found that oral gavage of Dex-SA-MTDZ delivered MTDZ (as MTDZ conjugated to [depolymerized] dextran) to the distal colon. However, upon oral gavage of the small molecular prodrugs, no prodrugs were detected in the distal colon. Collectively, these data suggest that dextran conjugation is a potential pharmaceutical strategy to control the colonic distribution of drugs susceptible to colonic microbial metabolism.

  3. IgA Function in Relation to the Intestinal Microbiota.

    PubMed

    Macpherson, Andrew J; Yilmaz, Bahtiyar; Limenitakis, Julien P; Ganal-Vonarburg, Stephanie C

    2018-04-26

    IgA is the dominant immunoglobulin isotype produced in mammals, largely secreted across the intestinal mucosal surface. Although induction of IgA has been a hallmark feature of microbiota colonization following colonization in germ-free animals, until recently appreciation of the function of IgA in host-microbial mutualism has depended mainly on indirect evidence of alterations in microbiota composition or penetration of microbes in the absence of somatic mutations in IgA (or compensatory IgM). Highly parallel sequencing techniques that enable high-resolution analysis of either microbial consortia or IgA sequence diversity are now giving us new perspectives on selective targeting of microbial taxa and the trajectory of IgA diversification according to induction mechanisms, between different individuals and over time. The prospects are to link the range of diversified IgA clonotypes to specific antigenic functions in modulating the microbiota composition, position and metabolism to ensure host mutualism.

  4. Effect of Bioprocessing on the In Vitro Colonic Microbial Metabolism of Phenolic Acids from Rye Bran Fortified Breads.

    PubMed

    Koistinen, Ville M; Nordlund, Emilia; Katina, Kati; Mattila, Ismo; Poutanen, Kaisa; Hanhineva, Kati; Aura, Anna-Marja

    2017-03-08

    Cereal bran is an important source of dietary fiber and bioactive compounds, such as phenolic acids. We aimed to study the phenolic acid metabolism of native and bioprocessed rye bran fortified refined wheat bread and to elucidate the microbial metabolic route of phenolic acids. After incubation in an in vitro colon model, the metabolites were analyzed using two different methods applying mass spectrometry. While phenolic acids were released more extensively from the bioprocessed bran bread and ferulic acid had consistently higher concentrations in the bread type during fermentation, there were only minor differences in the appearance of microbial metabolites, including the diminished levels of certain phenylacetic acids in the bioprocessed bran. This may be due to rye matrix properties, saturation of ferulic acid metabolism, or a rapid formation of intermediary metabolites left undetected. In addition, we provide expansion to the known metabolic pathways of phenolic acids.

  5. Impact of Prematurity and Perinatal Antibiotics on the Developing Intestinal Microbiota: A Functional Inference Study.

    PubMed

    Arboleya, Silvia; Sánchez, Borja; Solís, Gonzalo; Fernández, Nuria; Suárez, Marta; Hernández-Barranco, Ana M; Milani, Christian; Margolles, Abelardo; de Los Reyes-Gavilán, Clara G; Ventura, Marco; Gueimonde, Miguel

    2016-04-29

    The microbial colonization of the neonatal gut provides a critical stimulus for normal maturation and development. This process of early microbiota establishment, known to be affected by several factors, constitutes an important determinant for later health. We studied the establishment of the microbiota in preterm and full-term infants and the impact of perinatal antibiotics upon this process in premature babies. To this end, 16S rRNA gene sequence-based microbiota assessment was performed at phylum level and functional inference analyses were conducted. Moreover, the levels of the main intestinal microbial metabolites, the short-chain fatty acids (SCFA) acetate, propionate and butyrate, were measured by Gas-Chromatography Flame ionization/Mass spectrometry detection. Prematurity affects microbiota composition at phylum level, leading to increases of Proteobacteria and reduction of other intestinal microorganisms. Perinatal antibiotic use further affected the microbiota of the preterm infant. These changes involved a concomitant alteration in the levels of intestinal SCFA. Moreover, functional inference analyses allowed for identifying metabolic pathways potentially affected by prematurity and perinatal antibiotics use. A deficiency or delay in the establishment of normal microbiota function seems to be present in preterm infants. Perinatal antibiotic use, such as intrapartum prophylaxis, affected the early life microbiota establishment in preterm newborns, which may have consequences for later health.

  6. Identical bacterial populations colonize premature infant gut, skin, and oral microbiomes and exhibit different in situ growth rates

    PubMed Central

    Olm, Matthew R.; Brown, Christopher T.; Brooks, Brandon; Firek, Brian; Baker, Robyn; Burstein, David; Soenjoyo, Karina; Thomas, Brian C.; Morowitz, Michael; Banfield, Jillian F.

    2017-01-01

    The initial microbiome impacts the health and future development of premature infants. Methodological limitations have led to gaps in our understanding of the habitat range and subpopulation complexity of founding strains, as well as how different body sites support microbial growth. Here, we used metagenomics to reconstruct genomes of strains that colonized the skin, mouth, and gut of two hospitalized premature infants during the first month of life. Seven bacterial populations, considered to be identical given whole-genome average nucleotide identity of >99.9%, colonized multiple body sites, yet none were shared between infants. Gut-associated Citrobacter koseri genomes harbored 47 polymorphic sites that we used to define 10 subpopulations, one of which appeared in the gut after 1 wk but did not spread to other body sites. Differential genome coverage was used to measure bacterial population replication rates in situ. In all cases where the same bacterial population was detected in multiple body sites, replication rates were faster in mouth and skin compared to the gut. The ability of identical strains to colonize multiple body sites underscores the habit flexibility of initial colonists, whereas differences in microbial replication rates between body sites suggest differences in host control and/or resource availability. Population genomic analyses revealed microdiversity within bacterial populations, implying initial inoculation by multiple individual cells with distinct genotypes. Overall, however, the overlap of strains across body sites implies that the premature infant microbiome can exhibit very low microbial diversity. PMID:28073918

  7. H2 metabolism is widespread and diverse among human colonic microbes

    PubMed Central

    Wolf, Patricia G.; Biswas, Ambarish; Morales, Sergio E.; Greening, Chris; Gaskins, H. Rex

    2016-01-01

    ABSTRACT Microbial molecular hydrogen (H2) cycling is central to metabolic homeostasis and microbial composition in the human gastrointestinal tract. Molecular H2 is produced as an endproduct of carbohydrate fermentation and is reoxidised primarily by sulfate-reduction, acetogenesis, and methanogenesis. However, the enzymatic basis for these processes is incompletely understood and the hydrogenases responsible have not been investigated. In this work, we surveyed the genomic and metagenomic distribution of hydrogenase-encoding genes in the human colon to infer dominant mechanisms of H2 cycling. The data demonstrate that 70% of gastrointestinal microbial species listed in the Human Microbiome Project encode the genetic capacity to metabolise H2. A wide variety of anaerobically-adapted hydrogenases were present, with [FeFe]-hydrogenases predominant. We subsequently analyzed the hydrogenase gene content of stools from 20 healthy human subjects. The hydrogenase gene content of all samples was overwhelmingly dominated by fermentative and electron-bifurcating [FeFe]-hydrogenases emerging from the Bacteroidetes and Firmicutes. This study supports that H2 metabolism in the human gut is driven by fermentative H2 production and interspecies H2 transfer. However, it suggests that electron-bifurcation rather than respiration is the dominant mechanism of H2 reoxidation in the human colon, generating reduced ferredoxin to sustain carbon-fixation (e.g. acetogenesis) and respiration (via the Rnf complex). This work provides the first comprehensive bioinformatic insight into the mechanisms of H2 metabolism in the human colon. PMID:27123663

  8. Ancient sedimentary structures in the <3.7 Ga Gillespie Lake Member, Mars, that resemble macroscopic morphology, spatial associations, and temporal succession in terrestrial microbialites.

    PubMed

    Noffke, Nora

    2015-02-01

    Sandstone beds of the <3.7 Ga Gillespie Lake Member on Mars have been interpreted as evidence of an ancient playa lake environment. On Earth, such environments have been sites of colonization by microbial mats from the early Archean to the present time. Terrestrial microbial mats in playa lake environments form microbialites known as microbially induced sedimentary structures (MISS). On Mars, three lithofacies of the Gillespie Lake Member sandstone display centimeter- to meter-scale structures similar in macroscopic morphology to terrestrial MISS that include "erosional remnants and pockets," "mat chips," "roll-ups," "desiccation cracks," and "gas domes." The microbially induced sedimentary-like structures identified in Curiosity rover mission images do not have a random distribution. Rather, they were found to be arranged in spatial associations and temporal successions that indicate they changed over time. On Earth, if such MISS occurred with this type of spatial association and temporal succession, they would be interpreted as having recorded the growth of a microbially dominated ecosystem that thrived in pools that later dried completely: erosional pockets, mat chips, and roll-ups resulted from water eroding an ancient microbial mat-covered sedimentary surface; during the course of subsequent water recess, channels would have cut deep into the microbial mats, leaving erosional remnants behind; desiccation cracks and gas domes would have occurred during a final period of subaerial exposure of the microbial mats. In this paper, the similarities of the macroscopic morphologies, spatial associations, and temporal succession of sedimentary structures on Mars to MISS preserved on Earth has led to the following hypothesis: The sedimentary structures in the <3.7 Ga Gillespie Lake Member on Mars are ancient MISS produced by interactions between microbial mats and their environment. Proposed here is a strategy for detecting, identifying, confirming, and differentiating possible MISS during current and future Mars missions.

  9. Metabolomic and high-throughput sequencing analysis-modern approach for the assessment of biodeterioration of materials from historic buildings.

    PubMed

    Gutarowska, Beata; Celikkol-Aydin, Sukriye; Bonifay, Vincent; Otlewska, Anna; Aydin, Egemen; Oldham, Athenia L; Brauer, Jonathan I; Duncan, Kathleen E; Adamiak, Justyna; Sunner, Jan A; Beech, Iwona B

    2015-01-01

    Preservation of cultural heritage is of paramount importance worldwide. Microbial colonization of construction materials, such as wood, brick, mortar, and stone in historic buildings can lead to severe deterioration. The aim of the present study was to give modern insight into the phylogenetic diversity and activated metabolic pathways of microbial communities colonized historic objects located in the former Auschwitz II-Birkenau concentration and extermination camp in Oświecim, Poland. For this purpose we combined molecular, microscopic and chemical methods. Selected specimens were examined using Field Emission Scanning Electron Microscopy (FESEM), metabolomic analysis and high-throughput Illumina sequencing. FESEM imaging revealed the presence of complex microbial communities comprising diatoms, fungi and bacteria, mainly cyanobacteria and actinobacteria, on sample surfaces. Microbial diversity of brick specimens appeared higher than that of the wood and was dominated by algae and cyanobacteria, while wood was mainly colonized by fungi. DNA sequences documented the presence of 15 bacterial phyla representing 99 genera including Halomonas, Halorhodospira, Salinisphaera, Salinibacterium, Rubrobacter, Streptomyces, Arthrobacter and nine fungal classes represented by 113 genera including Cladosporium, Acremonium, Alternaria, Engyodontium, Penicillium, Rhizopus, and Aureobasidium. Most of the identified sequences were characteristic of organisms implicated in deterioration of wood and brick. Metabolomic data indicated the activation of numerous metabolic pathways, including those regulating the production of primary and secondary metabolites, for example, metabolites associated with the production of antibiotics, organic acids and deterioration of organic compounds. The study demonstrated that a combination of electron microscopy imaging with metabolomic and genomic techniques allows to link the phylogenetic information and metabolic profiles of microbial communities and to shed new light on biodeterioration processes.

  10. Metabolomic and high-throughput sequencing analysis—modern approach for the assessment of biodeterioration of materials from historic buildings

    PubMed Central

    Gutarowska, Beata; Celikkol-Aydin, Sukriye; Bonifay, Vincent; Otlewska, Anna; Aydin, Egemen; Oldham, Athenia L.; Brauer, Jonathan I.; Duncan, Kathleen E.; Adamiak, Justyna; Sunner, Jan A.; Beech, Iwona B.

    2015-01-01

    Preservation of cultural heritage is of paramount importance worldwide. Microbial colonization of construction materials, such as wood, brick, mortar, and stone in historic buildings can lead to severe deterioration. The aim of the present study was to give modern insight into the phylogenetic diversity and activated metabolic pathways of microbial communities colonized historic objects located in the former Auschwitz II–Birkenau concentration and extermination camp in Oświecim, Poland. For this purpose we combined molecular, microscopic and chemical methods. Selected specimens were examined using Field Emission Scanning Electron Microscopy (FESEM), metabolomic analysis and high-throughput Illumina sequencing. FESEM imaging revealed the presence of complex microbial communities comprising diatoms, fungi and bacteria, mainly cyanobacteria and actinobacteria, on sample surfaces. Microbial diversity of brick specimens appeared higher than that of the wood and was dominated by algae and cyanobacteria, while wood was mainly colonized by fungi. DNA sequences documented the presence of 15 bacterial phyla representing 99 genera including Halomonas, Halorhodospira, Salinisphaera, Salinibacterium, Rubrobacter, Streptomyces, Arthrobacter and nine fungal classes represented by 113 genera including Cladosporium, Acremonium, Alternaria, Engyodontium, Penicillium, Rhizopus, and Aureobasidium. Most of the identified sequences were characteristic of organisms implicated in deterioration of wood and brick. Metabolomic data indicated the activation of numerous metabolic pathways, including those regulating the production of primary and secondary metabolites, for example, metabolites associated with the production of antibiotics, organic acids and deterioration of organic compounds. The study demonstrated that a combination of electron microscopy imaging with metabolomic and genomic techniques allows to link the phylogenetic information and metabolic profiles of microbial communities and to shed new light on biodeterioration processes. PMID:26483760

  11. Microbial Populations of Stony Meteorites: Substrate Controls on First Colonizers.

    PubMed

    Tait, Alastair W; Gagen, Emma J; Wilson, Siobhan A; Tomkins, Andrew G; Southam, Gordon

    2017-01-01

    Finding fresh, sterilized rocks provides ecologists with a clean slate to test ideas about first colonization and the evolution of soils de novo. Lava has been used previously in first colonizer studies due to the sterilizing heat required for its formation. However, fresh lava typically falls upon older volcanic successions of similar chemistry and modal mineral abundance. Given enough time, this results in the development of similar microbial communities in the newly erupted lava due to a lack of contrast between the new and old substrates. Meteorites, which are sterile when they fall to Earth, provide such contrast because their reduced and mafic chemistry commonly differs to the surfaces on which they land; thus allowing investigation of how community membership and structure respond to this new substrate over time. We conducted 16S rRNA gene analysis on meteorites and soil from the Nullarbor Plain, Australia. We found that the meteorites have low species richness and evenness compared to soil sampled from directly beneath each meteorite. Despite the meteorites being found kilometers apart, the community structure of each meteorite bore more similarity to those of other meteorites (of similar composition) than to the community structure of the soil on which it resided. Meteorites were dominated by sequences that affiliated with the Actinobacteria with the major Operational Taxonomic Unit (OTU) classified as Rubrobacter radiotolerans. Proteobacteria and Bacteroidetes were the next most abundant phyla. The soils were also dominated by Actinobacteria but to a lesser extent than the meteorites. We also found OTUs affiliated with iron/sulfur cycling organisms Geobacter spp. and Desulfovibrio spp. This is an important finding as meteorites contain abundant metal and sulfur for use as energy sources. These ecological findings demonstrate that the structure of the microbial community in these meteorites is controlled by the substrate, and will not reach homeostasis with the Nullarbor community, even after ca. 35,000 years. Our findings show that meteorites provide a unique, sterile substrate with which to test ideas relating to first-colonizers. Although meteorites are colonized by microorganisms, the microbial population is unlikely to match the community of the surrounding soil on which they fall.

  12. Microbial Populations of Stony Meteorites: Substrate Controls on First Colonizers

    PubMed Central

    Tait, Alastair W.; Gagen, Emma J.; Wilson, Siobhan A.; Tomkins, Andrew G.; Southam, Gordon

    2017-01-01

    Finding fresh, sterilized rocks provides ecologists with a clean slate to test ideas about first colonization and the evolution of soils de novo. Lava has been used previously in first colonizer studies due to the sterilizing heat required for its formation. However, fresh lava typically falls upon older volcanic successions of similar chemistry and modal mineral abundance. Given enough time, this results in the development of similar microbial communities in the newly erupted lava due to a lack of contrast between the new and old substrates. Meteorites, which are sterile when they fall to Earth, provide such contrast because their reduced and mafic chemistry commonly differs to the surfaces on which they land; thus allowing investigation of how community membership and structure respond to this new substrate over time. We conducted 16S rRNA gene analysis on meteorites and soil from the Nullarbor Plain, Australia. We found that the meteorites have low species richness and evenness compared to soil sampled from directly beneath each meteorite. Despite the meteorites being found kilometers apart, the community structure of each meteorite bore more similarity to those of other meteorites (of similar composition) than to the community structure of the soil on which it resided. Meteorites were dominated by sequences that affiliated with the Actinobacteria with the major Operational Taxonomic Unit (OTU) classified as Rubrobacter radiotolerans. Proteobacteria and Bacteroidetes were the next most abundant phyla. The soils were also dominated by Actinobacteria but to a lesser extent than the meteorites. We also found OTUs affiliated with iron/sulfur cycling organisms Geobacter spp. and Desulfovibrio spp. This is an important finding as meteorites contain abundant metal and sulfur for use as energy sources. These ecological findings demonstrate that the structure of the microbial community in these meteorites is controlled by the substrate, and will not reach homeostasis with the Nullarbor community, even after ca. 35,000 years. Our findings show that meteorites provide a unique, sterile substrate with which to test ideas relating to first-colonizers. Although meteorites are colonized by microorganisms, the microbial population is unlikely to match the community of the surrounding soil on which they fall. PMID:28713354

  13. Caprylic acid reduces enteric Campylobacter colonization in market-aged broiler chickens but does not appear to alter cecal microbial populations

    USDA-ARS?s Scientific Manuscript database

    Campylobacter is one of the leading causes of food-borne illness in the United States, and epidemiological evidence indicates poultry and poultry products to be a significant source of human Campylobacter infections. Caprylic acid, an 8-carbon medium chain fatty acid, can reduce Campylobacter colon...

  14. Analysis of early bacterial communities on volcanic deposits on the island of Miyake (Miyake-jima), Japan: a 6-year study at a fixed site.

    PubMed

    Fujimura, Reiko; Sato, Yoshinori; Nishizawa, Tomoyasu; Nanba, Kenji; Oshima, Kenshiro; Hattori, Masahira; Kamijo, Takashi; Ohta, Hiroyuki

    2012-01-01

    Microbial colonization on new terrestrial substrates represents the initiation of new soil ecosystem formation. In this study, we analyzed early bacterial communities growing on volcanic ash deposits derived from the 2000 Mount Oyama eruption on the island of Miyake (Miyake-jima), Japan. A site was established in an unvegetated area near the summit and investigated over a 6-year period from 2003 to 2009. Collected samples were acidic (pH 3.0-3.6), did not utilize any organic substrates in ECO microplate assays (Biolog), and harbored around 106 cells (g dry weight)(-1) of autotrophic Fe(II) oxidizers by most-probable-number (MPN) counts. Acidithiobacillus ferrooxidans, Acidithiobacillus ferrivorans, and the Leptospirillum groups I, II and III were found to be abundant in the deposits by clone library analysis of bacterial 16S rRNA genes. The numerical dominance of Acidithiobacillus ferrooxidans was also supported by analysis of the gene coding for the large subunit of the form I ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO). Comparing the 16S rRNA gene clone libraries from samples differing in age, shifts in Fe(II)-oxidizing populations seemed to occur with deposit aging. The detection of known 16S rRNA gene sequences from Fe(III)-reducing acidophiles promoted us to propose the acidity-driven iron cycle for the early microbial ecosystem on the deposit.

  15. Analysis of Early Bacterial Communities on Volcanic Deposits on the Island of Miyake (Miyake-jima), Japan: a 6-year Study at a Fixed Site

    PubMed Central

    Fujimura, Reiko; Sato, Yoshinori; Nishizawa, Tomoyasu; Nanba, Kenji; Oshima, Kenshiro; Hattori, Masahira; Kamijo, Takashi; Ohta, Hiroyuki

    2012-01-01

    Microbial colonization on new terrestrial substrates represents the initiation of new soil ecosystem formation. In this study, we analyzed early bacterial communities growing on volcanic ash deposits derived from the 2000 Mount Oyama eruption on the island of Miyake (Miyake-jima), Japan. A site was established in an unvegetated area near the summit and investigated over a 6-year period from 2003 to 2009. Collected samples were acidic (pH 3.0–3.6), did not utilize any organic substrates in ECO microplate assays (Biolog), and harbored around 106 cells (g dry weight)−1 of autotrophic Fe(II) oxidizers by most-probable-number (MPN) counts. Acidithiobacillus ferrooxidans, Acidithiobacillus ferrivorans, and the Leptospirillum groups I, II and III were found to be abundant in the deposits by clone library analysis of bacterial 16S rRNA genes. The numerical dominance of Acidithiobacillus ferrooxidans was also supported by analysis of the gene coding for the large subunit of the form I ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO). Comparing the 16S rRNA gene clone libraries from samples differing in age, shifts in Fe(II)-oxidizing populations seemed to occur with deposit aging. The detection of known 16S rRNA gene sequences from Fe(III)-reducing acidophiles promoted us to propose the acidity-driven iron cycle for the early microbial ecosystem on the deposit. PMID:22075623

  16. Microbial colonization of Ca-sulfate crusts in the hyperarid core of the Atacama Desert: implications for the search for life on Mars.

    PubMed

    Wierzchos, J; Cámara, B; de Los Ríos, A; Davila, A F; Sánchez Almazo, I M; Artieda, O; Wierzchos, K; Gómez-Silva, B; McKay, C; Ascaso, C

    2011-01-01

    The scarcity of liquid water in the hyperarid core of the Atacama Desert makes this region one of the most challenging environments for life on Earth. The low numbers of microbial cells in the soils suggest that within the Atacama Desert lies the dry limit for life on our planet. Here, we show that the Ca-sulfate crusts of this hyperarid core are the habitats of lithobiontic micro-organisms. This microporous, translucent substrate is colonized by epilithic lichens, as well as endolithic free-living algae, fungal hyphae, cyanobacteria and non photosynthetic bacteria. We also report a novel type of endolithic community, "hypoendoliths", colonizing the undermost layer of the crusts. The colonization of gypsum crusts within the hyperarid core appears to be controlled by the moisture regime. Our data shows that the threshold for colonization is crossed within the dry core, with abundant colonization in gypsum crusts at one study site, while crusts at a drier site are virtually devoid of life. We show that the cumulative time in 1 year of relative humidity (RH) above 60% is the best parameter to explain the difference in colonization between both sites. This is supported by controlled humidity experiments, where we show that colonies of endolithic cyanobacteria in the Ca-sulfate crust undergo imbibition process at RH >60%. Assuming that life once arose on Mars, it is conceivable that Martian micro-organisms sought refuge in similar isolated evaporite microenvironments during their last struggle for life as their planet turned arid. © 2010 Blackwell Publishing Ltd.

  17. Perturbed Mucosal Immunity and Dysbiosis Accompany Clinical Disease in a Rat Model of Spondyloarthritis

    PubMed Central

    Asquith, Mark; Stauffer, Patrick; Davin, Sean; Mitchell, Claire; Lin, Phoebe; Rosenbaum, James T.

    2017-01-01

    Objective The HLA-B27/β2 microglobulin (β2m) transgenic rat is a leading model of B27-associated spondyloarthopathy and disease is dependent on the presence of intestinal bacteria. We have shown previously that adult HLA-B27/β2m rats have an altered intestinal microbiota. In this study we sought to better define age-dependent changes to both mucosal immune function and dysbiosis in this model. Methods Intestinal contents were collected from wild type and HLA-B27/β2m+ rats post-weaning (3 and 6 weeks), at disease onset (10 wks) and after the establishment of disease (16 wks). Microbial community structure was determined by 16s sequencing and qRT-PCR. Mucosal and systemic Th1, Th17 and Treg responses were analyzed by flow cytometry, as was the frequency of IgA-coated intestinal bacteria. Intestinal expression of inflammatory cytokines and antimicrobial peptides (AMPs) was determined by qRT-PCR. Results An inflammatory cytokine signature and elevated AMP expression during the post-weaning period preceded the development of clinical bowel inflammation and dysbiosis in HLA-B27/β2m+ rats. An early and sustained expansion of the Th17 pool was specifically observed in cecal and colonic mucosa of HLA-B27/β2m rats. Strongly elevated Akkermansia mucinphilia colonization and IgA coating of intestinal bacteria was significantly associated with HLA-B27 expression and arthritis development. Conclusions and Perspectives HLA-B27/β2m expression in this rat model renders the host hyper-responsive to microbial antigens from infancy. Early activation of innate immunity and expansion of a mucosal Th17 signature are soon followed by dysbiosis in HLA-B27/β2m+ve animals. Perturbed mucosal immunity and dysbiosis strongly merit further study in both pre-diseased and diseased SpA patient populations. PMID:26992013

  18. Microbial Hub Taxa Link Host and Abiotic Factors to Plant Microbiome Variation

    PubMed Central

    Agler, Matthew T.; Ruhe, Jonas; Kroll, Samuel; Morhenn, Constanze; Kim, Sang-Tae; Weigel, Detlef; Kemen, Eric M.

    2016-01-01

    Plant-associated microorganisms have been shown to critically affect host physiology and performance, suggesting that evolution and ecology of plants and animals can only be understood in a holobiont (host and its associated organisms) context. Host-associated microbial community structures are affected by abiotic and host factors, and increased attention is given to the role of the microbiome in interactions such as pathogen inhibition. However, little is known about how these factors act on the microbial community, and especially what role microbe–microbe interaction dynamics play. We have begun to address this knowledge gap for phyllosphere microbiomes of plants by simultaneously studying three major groups of Arabidopsis thaliana symbionts (bacteria, fungi and oomycetes) using a systems biology approach. We evaluated multiple potential factors of microbial community control: we sampled various wild A. thaliana populations at different times, performed field plantings with different host genotypes, and implemented successive host colonization experiments under lab conditions where abiotic factors, host genotype, and pathogen colonization was manipulated. Our results indicate that both abiotic factors and host genotype interact to affect plant colonization by all three groups of microbes. Considering microbe–microbe interactions, however, uncovered a network of interkingdom interactions with significant contributions to community structure. As in other scale-free networks, a small number of taxa, which we call microbial “hubs,” are strongly interconnected and have a severe effect on communities. By documenting these microbe–microbe interactions, we uncover an important mechanism explaining how abiotic factors and host genotypic signatures control microbial communities. In short, they act directly on “hub” microbes, which, via microbe–microbe interactions, transmit the effects to the microbial community. We analyzed two “hub” microbes (the obligate biotrophic oomycete pathogen Albugo and the basidiomycete yeast fungus Dioszegia) more closely. Albugo had strong effects on epiphytic and endophytic bacterial colonization. Specifically, alpha diversity decreased and beta diversity stabilized in the presence of Albugo infection, whereas they otherwise varied between plants. Dioszegia, on the other hand, provided evidence for direct hub interaction with phyllosphere bacteria. The identification of microbial “hubs” and their importance in phyllosphere microbiome structuring has crucial implications for plant–pathogen and microbe–microbe research and opens new entry points for ecosystem management and future targeted biocontrol. The revelation that effects can cascade through communities via “hub” microbes is important to understand community structure perturbations in parallel fields including human microbiomes and bioprocesses. In particular, parallels to human microbiome “keystone” pathogens and microbes open new avenues of interdisciplinary research that promise to better our understanding of functions of host-associated microbiomes. PMID:26788878

  19. Microbial competition between Bacillus subtilis and Staphylococcus aureus monitored by imaging mass spectrometry

    PubMed Central

    Gonzalez, David J.; Haste, Nina M.; Hollands, Andrew; Fleming, Tinya C.; Hamby, Matthew; Pogliano, Kit; Nizet, Victor

    2011-01-01

    Microbial competition exists in the general environment, such as soil or aquatic habitats, upon or within unicellular or multicellular eukaryotic life forms. The molecular actions that govern microbial competition, leading to niche establishment and microbial monopolization, remain undetermined. The emerging technology of imaging mass spectrometry (IMS) enabled the observation that there is directionality in the metabolic output of the organism Bacillus subtilis when co-cultured with Staphylococcus aureus. The directionally released antibiotic alters S. aureus virulence factor production and colonization. Therefore, IMS provides insight into the largely hidden nature of competitive microbial encounters and niche establishment, and provides a paradigm for future antibiotic discovery. PMID:21719540

  20. Role of Microbial Immigration in the Colonization of Apple Leaves by Aureobasidium pullulans▿

    PubMed Central

    McGrath, Molly J.; Andrews, John H.

    2007-01-01

    The role of microbial immigration in the veinal colonization pattern of Aureobasidium pullulans on the adaxial surface of apple leaves was investigated in two experiments at two periods (early and late seasons) in 2004 by applying green fluorescent protein (GFP)-tagged blastospores to the foliage of orchard trees. Individual leaves were resampled by a semidestructive method immediately after inoculation (t0) and about 1 (t1), 2 (t2), and 3 (t3) weeks later. At t0, there were no significant (P ≤ 0.05) differences in densities (cells/mm2) on veinal (excluding midvein) sites and those on interveinal sites, but at all points thereafter, densities were significantly higher on veins. GFP-tagged A. pullulans cells remained primarily as singletons on interveinal regions (≥90% at all points), while ≥20% of cells over veins at t3 were in colonies of ≥4 cells. The colonies that developed from single cells placed on midveins and other veins were significantly larger than those that developed on interveinal regions of detached field and seedling leaves incubated under controlled conditions. Colonies primarily developed linearly along veins, reaching average colony sizes (72 h) of 24.4 ± 12.7 (mean ± standard deviation) cells. In contrast, colonies on interveinal regions tended to average only 2.9 ± 1.3 cells, with less linearity. To examine the potential role of A. pullulans growth-inhibiting factors associated with interveinal features, single GFP-tagged A. pullulans cells in droplets previously incubated on interveinal sites were placed on midveins and compared to midvein colonies derived from cells in a water-only suspension. No differences in colony size resulted. Our results indicate that immigration limitation and growth-inhibiting factors are not the primary factors responsible for A. pullulans veinal colonization patterns in the field. Rather, indirect evidence suggests that growth-promoting substances occur locally in the veinal areas. PMID:17142367

  1. Gut microbiota induce IGF-1 and promote bone formation and growth.

    PubMed

    Yan, Jing; Herzog, Jeremy W; Tsang, Kelly; Brennan, Caitlin A; Bower, Maureen A; Garrett, Wendy S; Sartor, Balfour R; Aliprantis, Antonios O; Charles, Julia F

    2016-11-22

    Appreciation of the role of the gut microbiome in regulating vertebrate metabolism has exploded recently. However, the effects of gut microbiota on skeletal growth and homeostasis have only recently begun to be explored. Here, we report that colonization of sexually mature germ-free (GF) mice with conventional specific pathogen-free (SPF) gut microbiota increases both bone formation and resorption, with the net effect of colonization varying with the duration of colonization. Although colonization of adult mice acutely reduces bone mass, in long-term colonized mice, an increase in bone formation and growth plate activity predominates, resulting in equalization of bone mass and increased longitudinal and radial bone growth. Serum levels of insulin-like growth factor 1 (IGF-1), a hormone with known actions on skeletal growth, are substantially increased in response to microbial colonization, with significant increases in liver and adipose tissue IGF-1 production. Antibiotic treatment of conventional mice, in contrast, decreases serum IGF-1 and inhibits bone formation. Supplementation of antibiotic-treated mice with short-chain fatty acids (SCFAs), products of microbial metabolism, restores IGF-1 and bone mass to levels seen in nonantibiotic-treated mice. Thus, SCFA production may be one mechanism by which microbiota increase serum IGF-1. Our study demonstrates that gut microbiota provide a net anabolic stimulus to the skeleton, which is likely mediated by IGF-1. Manipulation of the microbiome or its metabolites may afford opportunities to optimize bone health and growth.

  2. Gut microbiota induce IGF-1 and promote bone formation and growth

    PubMed Central

    Yan, Jing; Herzog, Jeremy W.; Tsang, Kelly; Brennan, Caitlin A.; Bower, Maureen A.; Garrett, Wendy S.; Sartor, Balfour R.; Charles, Julia F.

    2016-01-01

    Appreciation of the role of the gut microbiome in regulating vertebrate metabolism has exploded recently. However, the effects of gut microbiota on skeletal growth and homeostasis have only recently begun to be explored. Here, we report that colonization of sexually mature germ-free (GF) mice with conventional specific pathogen-free (SPF) gut microbiota increases both bone formation and resorption, with the net effect of colonization varying with the duration of colonization. Although colonization of adult mice acutely reduces bone mass, in long-term colonized mice, an increase in bone formation and growth plate activity predominates, resulting in equalization of bone mass and increased longitudinal and radial bone growth. Serum levels of insulin-like growth factor 1 (IGF-1), a hormone with known actions on skeletal growth, are substantially increased in response to microbial colonization, with significant increases in liver and adipose tissue IGF-1 production. Antibiotic treatment of conventional mice, in contrast, decreases serum IGF-1 and inhibits bone formation. Supplementation of antibiotic-treated mice with short-chain fatty acids (SCFAs), products of microbial metabolism, restores IGF-1 and bone mass to levels seen in nonantibiotic-treated mice. Thus, SCFA production may be one mechanism by which microbiota increase serum IGF-1. Our study demonstrates that gut microbiota provide a net anabolic stimulus to the skeleton, which is likely mediated by IGF-1. Manipulation of the microbiome or its metabolites may afford opportunities to optimize bone health and growth. PMID:27821775

  3. Fate of Eight Different Polymers under Uncontrolled Composting Conditions: Relationships Between Deterioration, Biofilm Formation, and the Material Surface Properties.

    PubMed

    Mercier, Anne; Gravouil, Kevin; Aucher, Willy; Brosset-Vincent, Sandra; Kadri, Linette; Colas, Jenny; Bouchon, Didier; Ferreira, Thierry

    2017-02-21

    With the ever-increasing volume of polymer wastes and their associated detrimental impacts on the environment, the plastic life cycle has drawn increasing attention. Here, eight commercial polymers selected from biodegradable to environmentally persistent materials, all formulated under a credit card format, were incubated in an outdoor compost to evaluate their fate over time and to profile the microbial communities colonizing their surfaces. After 450 days in compost, the samples were all colonized by multispecies biofilms, these latest displaying different amounts of adhered microbial biomass and significantly distinct bacterial and fungal community compositions depending on the substrate. Interestingly, colonization experiments on the eight polymers revealed a large core of shared microbial taxa, predominantly composed of microorganisms previously reported from environments contaminated with petroleum hydrocarbons or plastics debris. These observations suggest that biofilms may contribute to the alteration process of all the polymers studied. Actually, four substrates, independently of their assignment to a polymer group, displayed a significant deterioration, which might be attributed to biologically mediated mechanisms. Relevantly, the deterioration appears strongly associated with the formation of a high-cell density biofilm onto the polymer surfaces. The analysis of various surface properties revealed that roughness and hydrophilicity are likely prominent parameters for driving the biological interactions with the polymers.

  4. Marked seasonal variation in the wild mouse gut microbiota.

    PubMed

    Maurice, Corinne F; Knowles, Sarah C L; Ladau, Joshua; Pollard, Katherine S; Fenton, Andy; Pedersen, Amy B; Turnbaugh, Peter J

    2015-11-01

    Recent studies have provided an unprecedented view of the microbial communities colonizing captive mice; yet the host and environmental factors that shape the rodent gut microbiota in their natural habitat remain largely unexplored. Here, we present results from a 2-year 16 S ribosomal RNA gene sequencing-based survey of wild wood mice (Apodemus sylvaticus) in two nearby woodlands. Similar to other mammals, wild mice were colonized by 10 bacterial phyla and dominated by the Firmicutes, Bacteroidetes and Proteobacteria. Within the Firmicutes, the Lactobacillus genus was most abundant. Putative bacterial pathogens were widespread and often abundant members of the wild mouse gut microbiota. Among a suite of extrinsic (environmental) and intrinsic (host-related) factors examined, seasonal changes dominated in driving qualitative and quantitative differences in the gut microbiota. In both years examined, we observed a strong seasonal shift in gut microbial community structure, potentially due to the transition from an insect- to a seed-based diet. This involved decreased levels of Lactobacillus, and increased levels of Alistipes (Bacteroidetes phylum) and Helicobacter. We also detected more subtle but statistically significant associations between the gut microbiota and biogeography, sex, reproductive status and co-colonization with enteric nematodes. These results suggest that environmental factors have a major role in shaping temporal variations in microbial community structure within natural populations.

  5. Simultaneous purification of DNA and RNA from microbiota in a single colonic mucosal biopsy.

    PubMed

    Moen, Aina E F; Tannæs, Tone M; Vatn, Simen; Ricanek, Petr; Vatn, Morten Harald; Jahnsen, Jørgen

    2016-06-28

    Nucleic acid purification methods are of importance when performing microbiota studies and especially when analysing the intestinal microbiota as we here find a wide range of different microbes. Various considerations must be taken to lyse the microbial cell wall of each microbe. In the present article, we compare several tissue lysis steps and commercial purification kits, to achieve a joint RNA and DNA purification protocol for the purpose of investigating the microbiota and the microbiota-host interactions in a single colonic mucosal tissue sample. A further optimised tissue homogenisation and lysis protocol comprising mechanical bead beating, lysis buffer replacement and enzymatic treatment, in combination with the AllPrep DNA/RNA Mini Kit (Qiagen, Hilden, Germany) resulted in efficient and simultaneous purification of microbial and human RNA and DNA from a single mucosal colonic tissue sample. The present work provides a unique possibility to study RNA and DNA from the same mucosal biopsy sample, making a direct comparison between metabolically active microbes and total microbial DNA. The protocol also offers an opportunity to investigate other members of a microbiota such as viruses, fungi and micro-eukaryotes, and moreover the possibility to extract data on microbiota and host interactions from one single mucosal biopsy.

  6. Spatiotemporal microbiota dynamics from quantitative in vitro and in silico models of the gut

    NASA Astrophysics Data System (ADS)

    Hwa, Terence

    The human gut harbors a dynamic microbial community whose composition bears great importance for the health of the host. Here, we investigate how colonic physiology impacts bacterial growth behaviors, which ultimately dictate the gut microbiota composition. Combining measurements of bacterial growth physiology with analysis of published data on human physiology into a quantitative modeling framework, we show how hydrodynamic forces in the colon, in concert with other physiological factors, determine the abundances of the major bacterial phyla in the gut. Our model quantitatively explains the observed variation of microbiota composition among healthy adults, and predicts colonic water absorption (manifested as stool consistency) and nutrient intake to be two key factors determining this composition. The model further reveals that both factors, which have been identified in recent correlative studies, exert their effects through the same mechanism: changes in colonic pH that differentially affect the growth of different bacteria. Our findings show that a predictive and mechanistic understanding of microbial ecology in the human gut is possible, and offer the hope for the rational design of intervention strategies to actively control the microbiota. This work is supported by the Bill and Melinda Gates Foundation.

  7. Distinct composition signatures of archaeal and bacterial phylotypes in the Wanda Glacier forefield, Antarctic Peninsula.

    PubMed

    Pessi, Igor S; Osorio-Forero, César; Gálvez, Eric J C; Simões, Felipe L; Simões, Jefferson C; Junca, Howard; Macedo, Alexandre J

    2015-01-01

    Several studies have shown that microbial communities in Antarctic environments are highly diverse. However, considering that the Antarctic Peninsula is among the regions with the fastest warming rates, and that regional climate change has been linked to an increase in the mean rate of glacier retreat, the microbial diversity in Antarctic soil is still poorly understood. In this study, we analysed more than 40 000 sequences of the V5-V6 hypervariable region of the 16S rRNA gene obtained by 454 pyrosequencing from four soil samples from the Wanda Glacier forefield, King George Island, Antarctic Peninsula. Phylotype diversity and richness were surprisingly high, and taxonomic assignment of sequences revealed that communities are dominated by Proteobacteria, Bacteroidetes and Euryarchaeota, with a high frequency of archaeal and bacterial phylotypes unclassified at the genus level and without cultured representative strains, representing a distinct microbial community signature. Several phylotypes were related to marine microorganisms, indicating the importance of the marine environment as a source of colonizers for this recently deglaciated environment. Finally, dominant phylotypes were related to different microorganisms possessing a large array of metabolic strategies, indicating that early successional communities in Antarctic glacier forefield can be also functionally diverse. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Metabolism links bacterial biofilms and colon carcinogenesis

    PubMed Central

    Johnson, Caroline H.; Dejea, Christine M.; Edler, David; Hoang, Linh T.; Santidrian, Antonio F.; Felding, Brunhilde H.; Cho, Kevin; Wick, Elizabeth C.; Hechenbleikner, Elizabeth M.; Uritboonthai, Winnie; Goetz, Laura; Casero, Robert A.; Pardoll, Drew M.; White, James R.; Patti, Gary J.; Sears, Cynthia L.; Siuzdak, Gary

    2015-01-01

    SUMMARY Bacterial biofilms in the colon alter the host tissue microenvironment. A role for biofilms in colon cancer metabolism has been suggested but to date has not been evaluated. Using metabolomics, we investigated the metabolic influence that microbial biofilms have on colon tissues and the related occurrence of cancer. Patient-matched colon cancers and histologically normal tissues, with or without biofilms, were examined. We show the upregulation of polyamine metabolites in tissues from cancer hosts with significant enhancement of N1, N12-diacetylspermine in both biofilm positive cancer and normal tissues. Antibiotic treatment, which cleared biofilms, decreased N1, N12-diacetylspermine levels to those seen in biofilm negative tissues, indicating that host cancer and bacterial biofilm structures contribute to the polyamine metabolite pool. These results show that colonic mucosal biofilms alter the cancer metabolome, to produce a regulator of cellular proliferation and colon cancer growth potentially affecting cancer development and progression. PMID:25959674

  9. Metabolism links bacterial biofilms and colon carcinogenesis.

    PubMed

    Johnson, Caroline H; Dejea, Christine M; Edler, David; Hoang, Linh T; Santidrian, Antonio F; Felding, Brunhilde H; Ivanisevic, Julijana; Cho, Kevin; Wick, Elizabeth C; Hechenbleikner, Elizabeth M; Uritboonthai, Winnie; Goetz, Laura; Casero, Robert A; Pardoll, Drew M; White, James R; Patti, Gary J; Sears, Cynthia L; Siuzdak, Gary

    2015-06-02

    Bacterial biofilms in the colon alter the host tissue microenvironment. A role for biofilms in colon cancer metabolism has been suggested but to date has not been evaluated. Using metabolomics, we investigated the metabolic influence that microbial biofilms have on colon tissues and the related occurrence of cancer. Patient-matched colon cancers and histologically normal tissues, with or without biofilms, were examined. We show the upregulation of polyamine metabolites in tissues from cancer hosts with significant enhancement of N(1), N(12)-diacetylspermine in both biofilm-positive cancer and normal tissues. Antibiotic treatment, which cleared biofilms, decreased N(1), N(12)-diacetylspermine levels to those seen in biofilm-negative tissues, indicating that host cancer and bacterial biofilm structures contribute to the polyamine metabolite pool. These results show that colonic mucosal biofilms alter the cancer metabolome to produce a regulator of cellular proliferation and colon cancer growth potentially affecting cancer development and progression. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Gut microbiota, probiotics, and vitamin D: interrelated exposures influencing allergy, asthma, and obesity?

    PubMed

    Ly, Ngoc P; Litonjua, Augusto; Gold, Diane R; Celedón, Juan C

    2011-05-01

    Current evidence supports a role for gut colonization in promoting and maintaining a balanced immune response in early life. An altered or less diverse gut microbiota composition has been associated with atopic diseases, obesity, or both. Moreover, certain gut microbial strains have been shown to inhibit or attenuate immune responses associated with chronic inflammation in experimental models. However, there has been no fully adequate longitudinal study of the relation between the neonatal gut microbiota and the development of allergic diseases (eg, atopic asthma) and obesity. The emergence of promising experimental studies has led to several clinical trials of probiotics (live bacteria given orally that allow for intestinal colonization) in human subjects. Probiotic trials thus far have failed to show a consistent preventive or therapeutic effect on asthma or obesity. Previous trials of probiotics have been limited by small sample size, short duration of follow-up, or lack of state-of-the art analyses of the gut microbiota. Finally, there is emerging evidence that the vitamin D pathway might be important in gut homeostasis and in signaling between the microbiota and the host. Given the complexity of the gut micriobiota, additional research is needed before we can confidently establish whether its manipulation in early life can prevent or treat asthma, obesity, or both. Copyright © 2011 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  11. Colonic bacterial composition in Parkinson's disease.

    PubMed

    Keshavarzian, Ali; Green, Stefan J; Engen, Phillip A; Voigt, Robin M; Naqib, Ankur; Forsyth, Christopher B; Mutlu, Ece; Shannon, Kathleen M

    2015-09-01

    We showed that Parkinson's disease (PD) patients have alpha-synuclein (α-Syn) aggregation in their colon with evidence of colonic inflammation. If PD patients have altered colonic microbiota, dysbiosis might be the mechanism of neuroinflammation that leads to α-Syn misfolding and PD pathology. Sixty-six sigmoid mucosal biopsies and 65 fecal samples were collected from 38 PD patients and 34 healthy controls. Mucosal-associated and feces microbiota compositions were characterized using high-throughput ribosomal RNA gene amplicon sequencing. Data were correlated with clinical measures of PD, and a predictive assessment of microbial community functional potential was used to identify microbial functions. The mucosal and fecal microbial community of PD patients was significantly different than control subjects, with the fecal samples showing more marked differences than the sigmoid mucosa. At the taxonomic level of genus, putative, "anti-inflammatory" butyrate-producing bacteria from the genera Blautia, Coprococcus, and Roseburia were significantly more abundant in feces of controls than PD patients. Bacteria from the genus Faecalibacterium were significantly more abundant in the mucosa of controls than PD. Putative, "proinflammatory" Proteobacteria of the genus Ralstonia were significantly more abundant in mucosa of PD than controls. Predictive metagenomics indicated that a large number of genes involved in metabolism were significantly lower in the PD fecal microbiome, whereas genes involved in lipopolysaccharide biosynthesis and type III bacterial secretion systems were significantly higher in PD patients. This report provides evidence that proinflammatory dysbiosis is present in PD patients and could trigger inflammation-induced misfolding of α-Syn and development of PD pathology. © 2015 International Parkinson and Movement Disorder Society.

  12. Gut microbiota utilize immunoglobulin A for mucosal colonization.

    PubMed

    Donaldson, G P; Ladinsky, M S; Yu, K B; Sanders, J G; Yoo, B B; Chou, W-C; Conner, M E; Earl, A M; Knight, R; Bjorkman, P J; Mazmanian, S K

    2018-05-18

    The immune system responds vigorously to microbial infection while permitting lifelong colonization by the microbiome. Mechanisms that facilitate the establishment and stability of the gut microbiota remain poorly described. We found that a regulatory system in the prominent human commensal Bacteroides fragilis modulates its surface architecture to invite binding of immunoglobulin A (IgA) in mice. Specific immune recognition facilitated bacterial adherence to cultured intestinal epithelial cells and intimate association with the gut mucosal surface in vivo. The IgA response was required for B. fragilis (and other commensal species) to occupy a defined mucosal niche that mediates stable colonization of the gut through exclusion of exogenous competitors. Therefore, in addition to its role in pathogen clearance, we propose that IgA responses can be co-opted by the microbiome to engender robust host-microbial symbiosis. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  13. Airborne microbial allergens: Impact and risk assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solomon, W.R.

    1990-01-01

    Despite their evolution in more natural niches, a variety of microorganisms have also successfully colonized man-made interiors. Such adaptable agents require fairly simple carbon and nitrogen sources, in limited amounts, and find these on surfaces and in fluid collections. Available moisture is also a critical permissive factor. Survival and growth indoors are fostered by the presence of stored biogenic materials and by soiling of surfaces with organic films derived from foodstuffs, soaps, volatile hydrocarbons and organic dusts. Commonly, predators such as protozoa, mites, insects and nematodes graze on a variety of established early invaders so that complex mixed populations aremore » common. At the least, bacteria, fungi and their extracellular products regularly coexist on even marginal substrates.« less

  14. Atopic Dermatitis: A Disease of Altered Skin Barrier and Immune Dysregulation

    PubMed Central

    Boguniewicz, Mark; Leung, Donald YM

    2011-01-01

    Summary Atopic dermatitis (AD) is an important chronic or relapsing inflammatory skin disease that often precedes asthma and allergic disorders. New insights into the genetics and pathophysiology of AD point to an important role of structural abnormalities in the epidermis as well as immune dysregulation not only for this skin disease but also for the development of asthma and allergies. Patients with AD have a unique predisposition to colonization or infection by microbial organisms, most notably Staphylococcus aureus and herpes simplex virus. Measures directed at healing and protecting the skin barrier and addressing the immune dysregulation are essential in the treatment of patients with AD and early intervention may improve outcomes for both the skin disease as well as other target organs. PMID:21682749

  15. Mutualistic interaction between Salmonella enterica and Aspergillus niger and its effects on Zea mays colonization.

    PubMed

    Balbontín, Roberto; Vlamakis, Hera; Kolter, Roberto

    2014-11-01

    Salmonella Typhimurium inhabits a variety of environments and is able to infect a broad range of hosts. Throughout its life cycle, some hosts can act as intermediates in the path to the infection of others. Aspergillus niger is a ubiquitous fungus that can often be found in soil or associated to plants and microbial consortia. Recently, S. Typhimurium was shown to establish biofilms on the hyphae of A. niger. In this work, we have found that this interaction is stable for weeks without a noticeable negative effect on either organism. Indeed, bacterial growth is promoted upon the establishment of the interaction. Moreover, bacterial biofilms protect the fungus from external insults such as the effects of the anti-fungal agent cycloheximide. Thus, the Salmonella-Aspergillus interaction can be defined as mutualistic. A tripartite gnotobiotic system involving the bacterium, the fungus and a plant revealed that co-colonization has a greater negative effect on plant growth than colonization by either organism in dividually. Strikingly, co-colonization also causes a reduction in plant invasion by S. Typhimurium. This work demonstrates that S. Typhimurium and A. niger establish a mutualistic interaction that alters bacterial colonization of plants and affects plant physiology. © 2014 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  16. Purified rutin and rutin-rich asparagus attenuates disease severity and tissue damage following dextran sodium sulfate-induced colitis.

    PubMed

    Power, Krista A; Lu, Jenifer T; Monk, Jennifer M; Lepp, Dion; Wu, Wenqing; Zhang, Claire; Liu, Ronghua; Tsao, Rong; Robinson, Lindsay E; Wood, Geoffrey A; Wolyn, David J

    2016-11-01

    This study investigated the effects of cooked whole asparagus (ASP) versus its equivalent level of purified flavonoid glycoside, rutin (RUT), on dextran sodium sulfate (DSS)-induced colitis and subsequent colitis recovery in mice. C57BL/6 male mice were fed an AIN-93G basal diet (BD), or BD supplemented with 2% cooked ASP or 0.025% RUT for 2 wks prior to and during colitis induction with 2% DSS in water for 7 days, followed by 5 days colitis recovery. In colitic mice, both ASP and RUT upregulated mediators of improved barrier integrity and enhanced mucosal injury repair (e.g. Muc1, IL-22, Rho-A, Rac1, and Reg3γ), increased the proportion of mouse survival, and improved disease activity index. RUT had the greatest effect in attenuating DSS-induced colonic damage indicated by increased crypt and goblet cell restitution, reduced colonic myeloperoxidase, as well as attenuated DSS-induced microbial dysbiosis (reduced Enterobacteriaceae and Bacteroides, and increased unassigned Clostridales, Oscillospira, Lactobacillus, and Bifidobacterium). These findings demonstrate that dietary cooked ASP and its flavonoid glycoside, RUT, may be useful in attenuating colitis severity by modulating the colonic microenvironment resulting in reduced colonic inflammation, promotion of colonic mucosal injury repair, and attenuation of colitis-associated microbial dysbiosis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. In vitro Multi-Species Biofilms of Methicillin-Resistant Staphylococcus aureus and Pseudomonas aeruginosa and Their Host Interaction during In vivo Colonization of an Otitis Media Rat Model

    PubMed Central

    Yadav, Mukesh K.; Chae, Sung-Won; Go, Yoon Young; Im, Gi Jung; Song, Jae-Jun

    2017-01-01

    Staphylococcus aureus (SA) and Pseudomonas aeruginosa (PA) are known to cause biofilm-related infections. MRSA and PA have been frequently isolated from chronically infected wounds, cystic fibrosis, chronic suppurative otitis media (CSOM), and from indwelling medical devices, and these bacteria co-exist; however, their interaction with each-other or with the host is not well known. In this study, we investigated MRSA and PA multi-species biofilm communities in vitro and their interaction with the host during in vivo colonization using an OM rat-model. In-vitro biofilm formation and in-vivo colonization were studied using CV-microtiter plate assay and OM rat-model respectively. The biofilms were viewed under scanning electron microscope and bacteria were enumerated using cfu counts. The differential gene expressions of rat mucosa colonized with single or multi-species of MRSA or PA were studied using RNA-sequencing of total transcriptome. In multi-species in-vitro biofilms PA partially inhibited SA growth. However, no significant inhibition of MRSA was detected during in-vivo colonization of multi-species in rat bullae. A total of 1,797 genes were significantly (p < 0.05) differentially expressed in MRSA or PA or MRSA + PA colonized rat middle ear mucosa with respect to the control. The poly-microbial colonization of MRSA and PA induced the differential expression of a significant number of genes that are involved in immune response, inflammation, signaling, development, and defense; these were not expressed with single species colonization by either MRSA or PA. Genes involved in defense, immune response, inflammatory response, and developmental process were exclusively up-regulated, and genes that are involved in nervous system signaling, development and transmission, regulation of cell growth and development, anatomical and system development, and cell differentiation were down-regulated after multi-species inoculation. These results indicate that poly-microbial colonization induces a host response that is different from that induced by single species infection. PMID:28459043

  18. The microbial diversity, distribution, and ecology of permafrost in China: a review.

    PubMed

    Hu, Weigang; Zhang, Qi; Tian, Tian; Cheng, Guodong; An, Lizhe; Feng, Huyuan

    2015-07-01

    Permafrost in China mainly located in high-altitude areas. It represents a unique and suitable ecological niche that can be colonized by abundant microbes. Permafrost microbial community varies across geographically separated locations in China, and some lineages are novel and possible endemic. Besides, Chinese permafrost is a reservoir of functional microbial groups involved in key biogeochemical cycling processes. In future, more work is necessary to determine if these phylogenetic groups detected by DNA-based methods are part of the viable microbial community, and their functional roles and how they potentially respond to climate change. This review summaries recent studies describing microbial biodiversity found in permafrost and associated environments in China, and provides a framework for better understanding the microbial ecology of permafrost.

  19. The Effect of Diet on the Human Gut Microbiome: A Metagenomic Analysis in Humanized Gnotobiotic Mice

    PubMed Central

    Turnbaugh, Peter J.; Ridaura, Vanessa K.; Faith, Jeremiah J.; Rey, Federico E.; Knight, Rob; Gordon, Jeffrey I.

    2010-01-01

    Diet and nutritional status are among the most important, modifiable determinants of human health. The nutritional value of food is influenced in part by a person’s gut microbial community (microbiota) and its component genes (microbiome). Unraveling the interrelationships between diet, the structure and operations of the gut microbiota, and nutrient and energy harvest is confounded by variations in human environmental exposures, microbial ecology and genotype. To help overcome these problems, we created a well-defined, representative animal model of the human gut ecosystem by transplanting fresh or frozen adult human fecal microbial communities into germ-free C57BL/6J mice. Culture-independent, metagenomic analysis of the temporal, spatial and intergenerational patterns of bacterial colonization showed that these humanized mice were stably and heritably colonized, and reproduced much of the bacterial diversity of the donor’s microbiota. Switching from a low-fat, plant polysaccharide-rich diet to a high-fat/high-sugar “Western” diet shifted the structure of the microbiota within a single day, changed the representation of metabolic pathways in the microbiome, and altered microbiome gene expression. Reciprocal transplants involving various combinations of donor and recipient diets revealed that colonization history influences the initial structure of the microbial community, but that these effects can be rapidly altered by diet. Humanized mice fed the Western diet have increased adiposity; this trait is transmissible via microbiota transplantation. Humanized gnotobiotic mice will be useful for conducting proof-of-principle “clinical trials” that test the effects of environmental and genetic factors on the gut microbiota and host physiology. PMID:20368178

  20. Simultaneous UPLC-MS/MS analysis of native catechins and procyanidins and their microbial metabolites in intestinal contents and tissues of male Wistar Furth inbred rats.

    PubMed

    Goodrich, Katheryn M; Neilson, Andrew P

    2014-05-01

    Procyanidins have been extensively investigated for their potential health protective activities. However, the potential bioactivities of procyanidins are limited by their poor bioavailability. The majority of the ingested dose remains unabsorbed and reaches the colon where extensive microbial metabolism occurs. Most existing analytical methods measure either native compounds (catechins and procyanidins), or their microbial metabolites. The objectives of this study were to develop a high-throughput extraction and UPLC-MS/MS method for simultaneous measurement of both native procyanidins and their metabolites, facilitating high-throughput analysis of native and metabolite profiles in various regions of the colon. The present UPLC-MS/MS method facilitates simultaneous resolution and detection of authentic standards of 14 native catechin monomers and procyanidins, as well as 24 microbial metabolites. Detection and resolution of an additional 3 procyanidin dimers and 10 metabolites for which standards were not available was achieved. Elution and adequate resolution of both native compounds and metabolites were achieved within 10min. The intraday repeatability for native compounds was between 1.1 and 16.5%, and the interday repeatability for native compounds was between 2.2 and 25%. Intraday and interday repeatability for metabolites was between 0.6 and 24.1% and 1 and 23.9%, respectively. Observed lower limits of quantification for native compounds were ∼9-350fmol on-column, and for the microbial metabolites were ∼0.8-12,000fmol on-column. Observed lower limits of detection for native compounds were ∼4.5-190fmol on-column, and for metabolites were 0.304-6020fmol on-column. For native monomers and procyanidins, extraction recoveries ranged from 38 to 102%. Extraction recoveries for the 9 microbial metabolites tested ranged from 41 to 95%. Data from tissue analysis of rats gavaged with grape seed extract indicate fairly high accumulation of native compounds, primarily monomers and dimers, in the cecum and colon. Metabolite data indicate the progressive nature of microbial metabolism as the digesta moves through the lower GI tract. This method facilitates the high-throughput, sensitive, and simultaneous analysis of both native compounds and their microbial metabolites in biological samples and provides a more efficient means of extraction and analysis than previous methods. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. A Novel Adaptation Mechanism Underpinning Algal Colonization of a Nuclear Fuel Storage Pond.

    PubMed

    MeGraw, Victoria E; Brown, Ashley R; Boothman, Christopher; Goodacre, Royston; Morris, Katherine; Sigee, David; Anderson, Lizzie; Lloyd, Jonathan R

    2018-06-26

    Geochemical analyses alongside molecular techniques were used to characterize the microbial ecology and biogeochemistry of an outdoor spent nuclear fuel storage pond at Sellafield, United Kingdom, that is susceptible to seasonal algal blooms that cause plant downtime. 18S rRNA gene profiling of the filtered biomass samples showed the increasing dominance of a species closely related to the alga Haematococcus pluvialis , alongside 16S rRNA genes affiliated with a diversity of freshwater bacteria, including Proteobacteria and Cyanobacteria High retention of 137 Cs and 90 Sr on pond water filters coincided with high levels of microbial biomass in the pond, suggesting that microbial colonization may have an important control on radionuclide fate in the pond. To interpret the unexpected dominance of Haematococcus species during bloom events in this extreme environment, the physiological response of H. pluvialis to environmentally relevant ionizing radiation doses was assessed. Irradiated laboratory cultures produced significant quantities of the antioxidant astaxanthin, consistent with pigmentation observed in pond samples. Fourier transform infrared (FT-IR) spectroscopy suggested that radiation did not have a widespread impact on the metabolic fingerprint of H. pluvialis in laboratory experiments, despite the 80-Gy dose. This study suggests that the production of astaxanthin-rich encysted cells may be related to the preservation of the Haematococcus phenotype, potentially allowing it to survive oxidative stress arising from radiation doses associated with the spent nuclear fuel. The oligotrophic and radiologically extreme conditions in this environment do not prevent extensive colonization by microbial communities, which play a defining role in controlling the biogeochemical fate of major radioactive species present. IMPORTANCE Spent nuclear fuel is stored underwater in large ponds prior to processing and disposal. Such environments are intensively radioactive but can be colonized by microorganisms. Colonization of such inhospitable radioactive ponds is surprising, and the survival mechanisms that microbes use is of fundamental interest. It is also important to study these unusual ecosystems, as microbes growing in the pond waters may accumulate radionuclides present in the waters (for bioremediation applications), while high cell loads can hamper management of the ponds due to poor visibility. In this study, an outdoor pond at the U.K. Sellafield facility was colonized by a seasonal bloom of microorganisms, able to accumulate high levels of 137 Cs and 90 Sr and dominated by the alga Haematococcus This organism is not normally associated with deep water bodies, but it can adapt to radioactive environments via the production of the pigment astaxanthin, which protects the cells from radiation damage. Copyright © 2018 MeGraw et al.

  2. Novel long-chain anteiso-alkanes and anteiso-alkanoic acids in Antarctic rocks colonized by living and fossil cryptoendolithic microorganisms

    NASA Technical Reports Server (NTRS)

    Matsumoto, G. I.; Friedmann, E. I.; Watanuki, K.; Ocampo-Friedmann, R.

    1992-01-01

    Saponified extracts of rock samples colonized by cryptoendolithic microbial communities from the McMurdo Dry Valleys of Southern Victoria Land, Antarctica, were separated into hydrocarbon and fatty acid fractions by silica gel column chromatography. Hydrocarbons and methyl esters of fatty acids were analyzed by capillary gas chromatography-mass spectrometry. Unusually, a suite of long-chain anteiso-alkanes (a-C20 to a-C30) and anteiso-alkanoic acids (a-C20 to a-C30) were detected in many samples, together with straight-chain, branched and/or cyclic and acyclic isoprenoid compounds. These novel compounds are probably derived from unidentified heterotrophic bacteria or symbiotic processes in a unique microbial community in the Antarctic cold desert and suggest the occurrence of a special biosynthetic pathway. Long-chain anteiso-alkanes are probably formed through microbial decarboxylation of corresponding anteiso-alkanoic acids. They may serve as new biomarkers in environmental and geochemical studies.

  3. Ecological Succession in the Honey Bee Gut: Shift in Lactobacillus Strain Dominance During Early Adult Development.

    PubMed

    Anderson, Kirk E; Rodrigues, Pedro A P; Mott, Brendon M; Maes, Patrick; Corby-Harris, Vanessa

    2016-05-01

    In many vertebrates, social interactions and nutrition can affect the colonization of gut symbionts across generations. In the highly social honey bee, it is unknown to what extent the hive environment and older worker individuals contribute to the generational transmission of core gut bacteria. We used high-throughput sequencing to investigate the effect of nest materials and social contact on the colonization and succession of core hindgut microbiota in workers. With only brief exposure to hive materials following natural eclosion, gut bacterial communities at 3 and 7 days contained phylotypes typically found in the guts of mature adults regardless of treatment. Continuous exposure to nest materials or direct social interactions with mature adults did not affect the diversity or abundance of gut bacterial communities at the scale examined. Similarly, a common pollen supplement fed by beekeepers during pollen dearth had no effect. A consideration of unique OTUs revealed extensive microbial succession independent of treatment. The dominant Lactobacillus strain at 3 days was largely replaced by a different strain at day 7, revealing the colonization signature of a pioneer species. Similar but less pronounced patterns were evident in less abundant OTU's, many of which may influence community succession via alteration of the gut environment. Our results indicate that the process of bacterial community colonization in the hindgut is resilient to changes in the nutritional, hive, and social environment. Greater taxonomic resolution is needed to accurately resolve questions of ecological succession and typical proportional variation within and between core members of the gut bacterial community.

  4. Colon cancer

    MedlinePlus

    Colorectal cancer; Cancer - colon; Rectal cancer; Cancer - rectum; Adenocarcinoma - colon; Colon - adenocarcinoma; Colon carcinoma ... In the United States, colorectal cancer is one of the leading ... to cancer. Early diagnosis can often lead to a complete cure. ...

  5. Temperature and Redox Effect on Mineral Colonization in Juan de Fuca Ridge Flank Subsurface Crustal Fluids

    PubMed Central

    Baquiran, Jean-Paul M.; Ramírez, Gustavo A.; Haddad, Amanda G.; Toner, Brandy M.; Hulme, Samuel; Wheat, Charles G.; Edwards, Katrina J.; Orcutt, Beth N.

    2016-01-01

    To examine microbe-mineral interactions in subsurface oceanic crust, we evaluated microbial colonization on crustal minerals that were incubated in borehole fluids for 1 year at the seafloor wellhead of a crustal borehole observatory (IODP Hole U1301A, Juan de Fuca Ridge flank) as compared to an experiment that was not exposed to subsurface crustal fluids (at nearby IODP Hole U1301B). In comparison to previous studies at these same sites, this approach allowed assessment of the effects of temperature, fluid chemistry, and/or mineralogy on colonization patterns of different mineral substrates, and an opportunity to verify the approach of deploying colonization experiments at an observatory wellhead at the seafloor instead of within the borehole. The Hole U1301B deployment did not have biofilm growth, based on microscopy and DNA extraction, thereby confirming the integrity of the colonization design against bottom seawater intrusion. In contrast, the Hole U1301A deployment supported biofilms dominated by Epsilonproteobacteria (43.5% of 370 16S rRNA gene clone sequences) and Gammaproteobacteria (29.3%). Sequence analysis revealed overlap in microbial communities between different minerals incubated at the Hole U1301A wellhead, indicating that mineralogy did not separate biofilm structure within the 1-year colonization experiment. Differences in the Hole U1301A wellhead biofilm community composition relative to previous studies from within the borehole using similar mineral substrates suggest that temperature and the diffusion of dissolved oxygen through plastic components influenced the mineral colonization experiments positioned at the wellhead. This highlights the capacity of low abundance crustal fluid taxa to rapidly establish communities on diverse mineral substrates under changing environmental conditions such as from temperature and oxygen. PMID:27064928

  6. Impact of humic acids on the colonic microbiome in healthy volunteers.

    PubMed

    Swidsinski, Alexander; Dörffel, Yvonne; Loening-Baucke, Vera; Gille, Christoph; Reißhauer, Anne; Göktas, Onder; Krüger, Monika; Neuhaus, Jürgen; Schrödl, Wieland

    2017-02-07

    To test the effects of humic acids on innate microbial communities of the colon. We followed the effects of oral supplementation with humic acids (Activomin ® ) on concentrations and composition of colonic microbiome in 14 healthy volunteers for 45 d. 3 × 800 mg Activomin ® were taken orally for 10 d followed by 3 × 400 mg for 35 d. Colonic microbiota were investigated using multicolor fluorescence in situ hybridization (FISH) of Carnoy fixated and paraffin embedded stool cylinders. Two stool samples were collected a week prior to therapy and one stool sample on days 10, 31 and 45. Forty-one FISH probes representing different bacterial groups were used. The sum concentration of colonic microbiota increased from 20% at day 10 to 30% by day 31 and remained stable until day 45 (32%) of humic acid supplementation ( P < 0.001). The increase in the concentrations in each person was due to growth of preexisting groups. The individual microbial profile of the patients remained unchanged. Similarly, the bacterial diversity remained stable. Concentrations of 24 of the 35 substantial groups increased from 20% to 96%. Two bacterial groups detected with Bac303 ( Bacteroides ) and Myc657 (mycolic acid-containing Actinomycetes ) FISH probes decreased ( P > 0.05). The others remained unaffected. Bacterial groups with initially marginal concentrations (< 0.1 × 10 9 /mL) demonstrated no response to humic acids. The concentrations of pioneer groups of Bifidobacteriaceae , Enterobacteriaceae and Clostridium difficile increased but the observed differences were statistically not significant. Humic acids have a profound effect on healthy colonic microbiome and may be potentially interesting substances for the development of drugs that control the innate colonic microbiome.

  7. Impact of humic acids on the colonic microbiome in healthy volunteers

    PubMed Central

    Swidsinski, Alexander; Dörffel, Yvonne; Loening-Baucke, Vera; Gille, Christoph; Reißhauer, Anne; Göktas, Onder; Krüger, Monika; Neuhaus, Jürgen; Schrödl, Wieland

    2017-01-01

    AIM To test the effects of humic acids on innate microbial communities of the colon. METHODS We followed the effects of oral supplementation with humic acids (Activomin®) on concentrations and composition of colonic microbiome in 14 healthy volunteers for 45 d. 3 × 800 mg Activomin® were taken orally for 10 d followed by 3 × 400 mg for 35 d. Colonic microbiota were investigated using multicolor fluorescence in situ hybridization (FISH) of Carnoy fixated and paraffin embedded stool cylinders. Two stool samples were collected a week prior to therapy and one stool sample on days 10, 31 and 45. Forty-one FISH probes representing different bacterial groups were used. RESULTS The sum concentration of colonic microbiota increased from 20% at day 10 to 30% by day 31 and remained stable until day 45 (32%) of humic acid supplementation (P < 0.001). The increase in the concentrations in each person was due to growth of preexisting groups. The individual microbial profile of the patients remained unchanged. Similarly, the bacterial diversity remained stable. Concentrations of 24 of the 35 substantial groups increased from 20% to 96%. Two bacterial groups detected with Bac303 (Bacteroides) and Myc657 (mycolic acid-containing Actinomycetes) FISH probes decreased (P > 0.05). The others remained unaffected. Bacterial groups with initially marginal concentrations (< 0.1 × 109/mL) demonstrated no response to humic acids. The concentrations of pioneer groups of Bifidobacteriaceae, Enterobacteriaceae and Clostridium difficile increased but the observed differences were statistically not significant. CONCLUSION Humic acids have a profound effect on healthy colonic microbiome and may be potentially interesting substances for the development of drugs that control the innate colonic microbiome. PMID:28223733

  8. A horizontal gene transfer at the origin of phenylpropanoid metabolism: a key adaptation of plants to land.

    PubMed

    Emiliani, Giovanni; Fondi, Marco; Fani, Renato; Gribaldo, Simonetta

    2009-02-16

    The pioneering ancestor of land plants that conquered terrestrial habitats around 500 million years ago had to face dramatic stresses including UV radiation, desiccation, and microbial attack. This drove a number of adaptations, among which the emergence of the phenylpropanoid pathway was crucial, leading to essential compounds such as flavonoids and lignin. However, the origin of this specific land plant secondary metabolism has not been clarified. We have performed an extensive analysis of the taxonomic distribution and phylogeny of Phenylalanine Ammonia Lyase (PAL), which catalyses the first and essential step of the general phenylpropanoid pathway, leading from phenylalanine to p-Coumaric acid and p-Coumaroyl-CoA, the entry points of the flavonoids and lignin routes. We obtained robust evidence that the ancestor of land plants acquired a PAL via horizontal gene transfer (HGT) during symbioses with soil bacteria and fungi that are known to have established very early during the first steps of land colonization. This horizontally acquired PAL represented then the basis for further development of the phenylpropanoid pathway and plant radiation on terrestrial environments. Our results highlight a possible crucial role of HGT from soil bacteria in the path leading to land colonization by plants and their subsequent evolution. The few functional characterizations of sediment/soil bacterial PAL (production of secondary metabolites with powerful antimicrobial activity or production of pigments) suggest that the initial advantage of this horizontally acquired PAL in the ancestor of land plants might have been either defense against an already developed microbial community and/or protection against UV.

  9. Building a Beneficial Microbiome from Birth12

    PubMed Central

    Castanys-Muñoz, Esther; Martin, Maria J; Vazquez, Enrique

    2016-01-01

    The microbiota has recently been recognized as a driver of health that affects the immune, nervous, and metabolic systems. This influence is partially exerted through the metabolites produced, which may be relevant for optimal infant development and health. The gut microbiota begins developing early in life, and this initial colonization is remarkably important because it may influence long-term microbiota composition and activity. Considering that the microbiome may play a key role in health and disease, maintaining a protective microbiota could be critical in preventing dysbiosis-related diseases such as allergies, autoimmunity disorders, and metabolic syndrome. Breast milk and milk glycans in particular are thought to play a major role in shaping the early-life microbiota and promoting its development, thus affecting health. This review describes some of the effects the microbiota has on the host and discusses the role microbial metabolites play in shaping newborn health and development. We describe the gut microbiota structure and function during early life and the factors that determine its composition and hypothesize about the effects of human milk oligosaccharides and other prebiotic fibers on the neonatal microbiota. PMID:26980815

  10. Building a Beneficial Microbiome from Birth.

    PubMed

    Castanys-Muñoz, Esther; Martin, Maria J; Vazquez, Enrique

    2016-03-01

    The microbiota has recently been recognized as a driver of health that affects the immune, nervous, and metabolic systems. This influence is partially exerted through the metabolites produced, which may be relevant for optimal infant development and health. The gut microbiota begins developing early in life, and this initial colonization is remarkably important because it may influence long-term microbiota composition and activity. Considering that the microbiome may play a key role in health and disease, maintaining a protective microbiota could be critical in preventing dysbiosis-related diseases such as allergies, autoimmunity disorders, and metabolic syndrome. Breast milk and milk glycans in particular are thought to play a major role in shaping the early-life microbiota and promoting its development, thus affecting health. This review describes some of the effects the microbiota has on the host and discusses the role microbial metabolites play in shaping newborn health and development. We describe the gut microbiota structure and function during early life and the factors that determine its composition and hypothesize about the effects of human milk oligosaccharides and other prebiotic fibers on the neonatal microbiota. © 2016 American Society for Nutrition.

  11. Early Development of the Gut Microbiota and Immune Health

    PubMed Central

    Francino, M. Pilar

    2014-01-01

    In recent years, the increase in human microbiome research brought about by the rapidly evolving “omic” technologies has established that the balance among the microbial groups present in the human gut, and their multipronged interactions with the host, are crucial for health. On the other hand, epidemiological and experimental support has also grown for the ‘early programming hypothesis’, according to which factors that act in utero and early in life program the risks for adverse health outcomes later on. The microbiota of the gut develops during infancy, in close interaction with immune development, and with extensive variability across individuals. It follows that the specific process of gut colonization and the microbe-host interactions established in an individual during this period have the potential to represent main determinants of life-long propensity to immune disease. Although much remains to be learnt on the progression of events by which the gut microbiota becomes established and initiates its intimate relationships with the host, and on the long-term repercussions of this process, recent works have advanced significatively in this direction. PMID:25438024

  12. Host Age Affects the Development of Southern Catfish Gut Bacterial Community Divergent From That in the Food and Rearing Water.

    PubMed

    Zhang, Zhimin; Li, Dapeng; Refaey, Mohamed M; Xu, Weitong; Tang, Rong; Li, Li

    2018-01-01

    Host development influences gut microbial assemblies that may be confounded partly by dietary shifts and the changing environmental microbiota during ontogenesis. However, little is known about microbial colonization by excluding dietary effects and compositional differences in microbiota between the gut and environment at different ontogenetic stages. Herein, a developmental gut microbial experiment under controlled laboratory conditions was conducted with carnivorous southern catfish Silurus meridionalis fed on an identical prey with commensal and abundant microbiota. In this study, we provided a long-term analysis of gut microbiota associated with host age at 8, 18, 35, 65, and 125 day post-fertilization (dpf) and explored microbial relationships among host, food and water environment at 8, 35, and 125 dpf. The results showed that gut microbial diversity in southern catfish tended to increase linearly as host aged. Gut microbiota underwent significant temporal shifts despite similar microbial communities in food and rearing water during the host development and dramatically differed from the environmental microbiota. At the compositional abundance, Tenericute s and Fusobacteria were enriched in the gut and markedly varied with host age, whereas Spirochaetes and Bacteroidetes detected were persistently the most abundant phyla in food and water, respectively. In addition to alterations in individual microbial taxa, the individual differences in gut microbiota were at a lower level at the early stages than at the late stages and in which gut microbiota reached a stable status, suggesting the course of microbial successions. These results indicate that host development fundamentally shapes a key transition in microbial community structure, which is independent of dietary effects. In addition, the dominant taxa residing in the gut do not share their niche habitats with the abundant microbiota in the surrounding environment. It's inferred that complex gut microbiota could not be simple reflections of environmental microbiota. The knowledge enhances the understanding of gut microbial establishment in the developing fish and provides a useful resource for such studies of fish- or egg-associated microbiota in aquaculture.

  13. Different waves of effector genes with contrasted genomic location are expressed by Leptosphaeria maculans during cotyledon and stem colonization of oilseed rape.

    PubMed

    Gervais, Julie; Plissonneau, Clémence; Linglin, Juliette; Meyer, Michel; Labadie, Karine; Cruaud, Corinne; Fudal, Isabelle; Rouxel, Thierry; Balesdent, Marie-Hélène

    2017-10-01

    Leptosphaeria maculans, the causal agent of stem canker disease, colonizes oilseed rape (Brassica napus) in two stages: a short and early colonization stage corresponding to cotyledon or leaf colonization, and a late colonization stage during which the fungus colonizes systemically and symptomlessly the plant during several months before stem canker appears. To date, the determinants of the late colonization stage are poorly understood; L. maculans may either successfully escape plant defences, leading to stem canker development, or the plant may develop an 'adult-stage' resistance reducing canker incidence. To obtain an insight into these determinants, we performed an RNA-sequencing (RNA-seq) pilot project comparing fungal gene expression in infected cotyledons and in symptomless or necrotic stems. Despite the low fraction of fungal material in infected stems, sufficient fungal transcripts were detected and a large number of fungal genes were expressed, thus validating the feasibility of the approach. Our analysis showed that all avirulence genes previously identified are under-expressed during stem colonization compared with cotyledon colonization. A validation RNA-seq experiment was then performed to investigate the expression of candidate effector genes during systemic colonization. Three hundred and seven 'late' effector candidates, under-expressed in the early colonization stage and over-expressed in the infected stems, were identified. Finally, our analysis revealed a link between the regulation of expression of effectors and their genomic location: the 'late' effector candidates, putatively involved in systemic colonization, are located in gene-rich genomic regions, whereas the 'early' effector genes, over-expressed in the early colonization stage, are located in gene-poor regions of the genome. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  14. The usual suspects : fingerprinting microbial communities involved in decay of treated southern yellow pine

    Treesearch

    Grant T. Kirker; Susan V. Diehl; M. Lynn Prewitt

    2010-01-01

    Currrent standards for soil-block testing have long been based on the effectiveness of preservative systems against only a small number of wood decay fungi and even fewer bacteria. Culture-independent molecular methods offer simple, reproducible means to obtain a more holistic view of the microbial communities that colonize wood throughout the decay process. By using a...

  15. The relative importance of exogenous and substrate-derived nitrogen for microbial growth during leaf decomposition

    Treesearch

    B.M. Cheever; J. R. Webster; E. E. Bilger; S. A. Thomas

    2013-01-01

    Heterotrophic microbes colonizing detritus obtain nitrogen (N) for growth by assimilating N from their substrate or immobilizing exogenous inorganic N. Microbial use of these two pools has different implications for N cycling and organic matter decomposition in the face of the global increase in biologically available N. We used sugar maple leaves labeled with

  16. Validated measurements of microbial loads on environmental surfaces in intensive care units before and after disinfecting cleaning.

    PubMed

    Frickmann, H; Bachert, S; Warnke, P; Podbielski, A

    2018-03-01

    Preanalytic aspects can make results of hygiene studies difficult to compare. Efficacy of surface disinfection was assessed with an evaluated swabbing procedure. A validated microbial screening of surfaces was performed in the patients' environment and from hands of healthcare workers on two intensive care units (ICUs) prior to and after a standardized disinfection procedure. From a pure culture, the recovery rate of the swabs for Staphylococcus aureus was 35%-64% and dropped to 0%-22% from a mixed culture with 10-times more Staphylococcus epidermidis than S. aureus. Microbial surface loads 30 min before and after the cleaning procedures were indistinguishable. The quality-ensured screening procedure proved that adequate hygiene procedures are associated with a low overall colonization of surfaces and skin of healthcare workers. Unchanged microbial loads before and after surface disinfection demonstrated the low additional impact of this procedure in the endemic situation when the pathogen load prior to surface disinfection is already low. Based on a validated screening system ensuring the interpretability and reliability of the results, the study confirms the efficiency of combined hand and surface hygiene procedures to guarantee low rates of bacterial colonization. © 2017 The Society for Applied Microbiology.

  17. Effects of subsurface aeration and trinexapac-ethyl application on soil microbial communities in a creeping bentgrass putting green

    USGS Publications Warehouse

    Feng, Y.; Stoeckel, D.M.; Van Santen, E.; Walker, R.H.

    2002-01-01

    The sensitivity of creeping bentgrass (Agrostis palustris Huds.) to the extreme heat found in the southeastern United States has led to the development of new greens-management methods. The purpose of this study was to examine the effects of subsurface aeration and growth regulator applications on soil microbial communities and mycorrhizal colonization rates in a creeping bentgrass putting green. Two cultivars (Crenshaw and Penncross), a growth regulator (trinexapacethyl), and subsurface aeration were evaluated in cool and warm seasons. Total bacterial counts were higher in whole (unsieved) soils than in sieved soils, indicating a richer rhizosphere soil environment. Mycorrhizal infection rates were higher in trinexapac-ethyl (TE) treated plants. High levels of hyphal colonization and relatively low arbuscule and vesicle occurrence were observed. Principal components analysis of whole-soil fatty acid methyl ester (FAME) profiles indicated that warm-season microbial populations in whole and sieved soils had similar constituents, but the populations differed in the cool season. FAME profiles did not indicate that subsurface aeration and TE application affected soil microbial community structure. This is the first reported study investigating the influences of subsurface aeration and TE application on soil microorganisms in a turfgrass putting green soil.

  18. In Situ Analysis of a Silver Nanoparticle-Precipitating Shewanella Biofilm by Surface Enhanced Confocal Raman Microscopy

    PubMed Central

    Schkolnik, Gal; Schmidt, Matthias; Mazza, Marco G.; Harnisch, Falk; Musat, Niculina

    2015-01-01

    Shewanella oneidensis MR-1 is an electroactive bacterium, capable of reducing extracellular insoluble electron acceptors, making it important for both nutrient cycling in nature and microbial electrochemical technologies, such as microbial fuel cells and microbial electrosynthesis. When allowed to anaerobically colonize an Ag/AgCl solid interface, S. oneidensis has precipitated silver nanoparticles (AgNp), thus providing the means for a surface enhanced confocal Raman microscopy (SECRaM) investigation of its biofilm. The result is the in-situ chemical mapping of the biofilm as it developed over time, where the distribution of cytochromes, reduced and oxidized flavins, polysaccharides and phosphate in the undisturbed biofilm is monitored. Utilizing AgNp bio-produced by the bacteria colonizing the Ag/AgCl interface, we could perform SECRaM while avoiding the use of a patterned or roughened support or the introduction of noble metal salts and reducing agents. This new method will allow a spatially and temporally resolved chemical investigation not only of Shewanella biofilms at an insoluble electron acceptor, but also of other noble metal nanoparticle-precipitating bacteria in laboratory cultures or in complex microbial communities in their natural habitats. PMID:26709923

  19. Microbial mineral colonization across a subsurface redox transition zone

    DOE PAGES

    Converse, Brandon J.; McKinley, James P.; Resch, Charles T.; ...

    2015-08-28

    Here our study employed 16S rRNA gene amplicon pyrosequencing to examine the hypothesis that chemolithotrophic Fe(II)-oxidizing bacteria (FeOB) would preferentially colonize the Fe(II)-bearing mineral biotite compared to quartz sand when the minerals were incubated in situ within a subsurface redox transition zone (RTZ) at the Hanford 300 Area site in Richland, WA, USA. The work was motivated by the recently documented presence of neutral-pH chemolithotrophic FeOB capable of oxidizing structural Fe(II) in primary silicate and secondary phyllosilicate minerals in 300 Area sediments and groundwater (Benzine et al., 2013). Sterilized portions of sand+biotite or sand alone were incubated in situ formore » 5 months within a multilevel sampling (MLS) apparatus that spanned a ca. 2-m interval across the RTZ in two separate groundwater wells. Parallel MLS measurements of aqueous geochemical species were performed prior to deployment of the minerals. Contrary to expectations, the 16S rRNA gene libraries showed no significant difference in microbial communities that colonized the sand+biotite vs. sand-only deployments. Both mineral-associated and groundwater communities were dominated by heterotrophic taxa, with organisms from the Pseudomonadaceae accounting for up to 70% of all reads from the colonized minerals. These results are consistent with previous results indicating the capacity for heterotrophic metabolism (including anaerobic metabolism below the RTZ) as well as the predominance of heterotrophic taxa within 300 Area sediments and groundwater. Although heterotrophic organisms clearly dominated the colonized minerals, several putative lithotrophic (NH 4 +, H 2, Fe(II), and HS - oxidizing) taxa were detected in significant abundance above and within the RTZ. Such organisms may play a role in the coupling of anaerobic microbial metabolism to oxidative pathways with attendant impacts on elemental cycling and redox-sensitive contaminant behavior in the vicinity of the RTZ.« less

  20. Comparative Analysis of Bacterial Community Composition and Structure in Clinically Symptomatic and Asymptomatic Central Venous Catheters

    PubMed Central

    Stressmann, Franziska A.; Couve-Deacon, Elodie; Chainier, Delphine; Chauhan, Ashwini; Wessel, Aimee; Durand-Fontanier, Sylvaine; Escande, Marie-Christine; Kriegel, Irène; Francois, Bruno; Ploy, Marie-Cécile

    2017-01-01

    ABSTRACT Totally implanted venous access ports (TIVAPs) are commonly used catheters for the management of acute or chronic pathologies. Although these devices improve health care, repeated use of this type of device for venous access over long periods of time is also associated with risk of colonization and infection by pathogenic bacteria, often originating from skin. However, although the skin microbiota is composed of both pathogenic and nonpathogenic bacteria, the extent and the consequences of TIVAP colonization by nonpathogenic bacteria have rarely been studied. Here, we used culture-dependent and 16S rRNA gene-based culture-independent approaches to identify differences in bacterial colonization of TIVAPs obtained from two French hospitals. To explore the relationships between nonpathogenic organisms colonizing TIVAPs and the potential risk of infection, we analyzed the bacterial community parameters between TIVAPs suspected (symptomatic) or not (asymptomatic) of infection. Although we did not find a particular species assemblage or community marker to distinguish infection risk on an individual sample level, we identified differences in bacterial community composition, diversity, and structure between clinically symptomatic and asymptomatic TIVAPs that could be explored further. This study therefore provides a new view of bacterial communities and colonization patterns in intravascular TIVAPs and suggests that microbial ecology approaches could improve our understanding of device-associated infections and could be a prognostic tool to monitor the evolution of bacterial communities in implants and their potential susceptibility to infections. IMPORTANCE Totally implanted venous access ports (TIVAPs) are commonly used implants for the management of acute or chronic pathologies. Although their use improves the patient’s health care and quality of life, they are associated with a risk of infection and subsequent clinical complications, often leading to implant removal. While all TIVAPs appear to be colonized, only a fraction become infected, and the relationship between nonpathogenic organisms colonizing TIVAPs and the potential risk of infection is unknown. We explored bacteria present on TIVAPs implanted in patients with or without signs of TIVAP infection and identified differences in phylum composition and community structure. Our data suggest that the microbial ecology of intravascular devices could be predictive of TIVAP infection status and that ultimately a microbial ecological signature could be identified as a tool to predict TIVAP infection susceptibility and improve clinical management. PMID:28959736

  1. An In Vitro Evaluation of Antioxidant and Colonic Microbial Profile Levels following Mushroom Consumption

    PubMed Central

    Vamanu, Emanuel; Avram, Ionela; Nita, Sultana

    2013-01-01

    The biological activity of mushroom consumption is achieved by the antioxidant effect of constituent biomolecules released during digestion. In the following study, the consumption of mushroom fungi was determined to increase the number of Lactobacillus and Bifidobacterium strains within the colon. The main phenolic antioxidant compounds identified were both gentisic and homogentisic acids. Moreover, the flavonoid catechin as well as a significant amount of δ- and γ-tocopherols was determined. The amount of Lactobacillus and Bifidobacterium strains from different sections of the human colon was significantly correlated with levels of antioxidative biomolecules. The experimental data clearly demonstrate a significant impact of mushroom consumption on the fermentative function of microorganisms in the human colon, resulting in the homeostasis of normal physiological colonic functions. PMID:24027755

  2. A Seafloor Microbial Biome Hosted within Incipient Ferromanganese Crusts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Templeton, Alexis S.; Knowles, A. S.; Eldridge, D. L.

    2009-11-15

    Unsedimented volcanic rocks exposed on the seafloor at ridge systems and Seamounts host complex, abundant and diverse microbial communities that are relatively cosmopolitan in distribution (Lysnes, Thorseth et al. 2004; Mason, Stingl et al. 2007; Santelli, Orcutt et al. 2008). The most commonly held hypothesis is that the energy released by the hydration, dissolution and oxidative alteration of volcanic glasses in seawater drives the formation of an ocean crust biosphere (Thorseth, Furnes et al. 1992; Fisk, Giovannoni et al. 1998; Furnes and Staudigel 1999). The combined thermodynamically favorable weathering reactions could theoretically support anywhere from 105 to 109 cells/gram ofmore » rock depending upon the metabolisms utilized and cellular growth rates and turnover (Bach and Edwards 2003; Santelli, Orcutt et al. 2008). Yet microbially-mediated basalt alteration and energy conservation has not been directly demonstrated on the seafloor. By using synchrotron-based x-ray microprobe mapping, x-ray absorption spectroscopy and high-resolution scanning and transmission electron microscopy observations of young volcanic glasses recovered from the outer flanks of Loihi Seamount, we intended to identify the initial rates and mechanisms of microbial basalt colonization and bioalteration. Instead, here we show that microbial biofilms are intimately associated with ferromanganese crusts precipitating onto basalt surfaces from cold seawater. Thus we hypothesize that microbial communities colonizing seafloor rocks are established and sustained by external inputs of potential energy sources, such as dissolved and particulate Fe(II), Mn(II) and organic matter, rather than rock dissolution.« less

  3. Linking microbial community structure to function in representative simulated systems.

    PubMed

    Marcus, Ian M; Wilder, Hailey A; Quazi, Shanin J; Walker, Sharon L

    2013-04-01

    Pathogenic bacteria are generally studied as a single strain under ideal growing conditions, although these conditions are not the norm in the environments in which pathogens typically proliferate. In this investigation, a representative microbial community along with Escherichia coli O157:H7, a model pathogen, was studied in three environments in which such a pathogen could be found: a human colon, a septic tank, and groundwater. Each of these systems was built in the lab in order to retain the physical/chemical and microbial complexity of the environments while maintaining control of the feed into the models. The microbial community in the colon was found to have a high percentage of bacteriodetes and firmicutes, while the septic tank and groundwater systems were composed mostly of proteobacteria. The introduction of E. coli O157:H7 into the simulated systems elicited a shift in the structures and phenotypic cell characteristics of the microbial communities. The fate and transport of the microbial community with E. coli O157:H7 were found to be significantly different from those of E. coli O157:H7 studied as a single isolate, suggesting that the behavior of the organism in the environment was different from that previously conceived. The findings in this study clearly suggest that to gain insight into the fate of pathogens, cells should be grown and analyzed under conditions simulating those of the environment in which the pathogens are present.

  4. Linking Microbial Community Structure to Function in Representative Simulated Systems

    PubMed Central

    Marcus, Ian M.; Wilder, Hailey A.; Quazi, Shanin J.

    2013-01-01

    Pathogenic bacteria are generally studied as a single strain under ideal growing conditions, although these conditions are not the norm in the environments in which pathogens typically proliferate. In this investigation, a representative microbial community along with Escherichia coli O157:H7, a model pathogen, was studied in three environments in which such a pathogen could be found: a human colon, a septic tank, and groundwater. Each of these systems was built in the lab in order to retain the physical/chemical and microbial complexity of the environments while maintaining control of the feed into the models. The microbial community in the colon was found to have a high percentage of bacteriodetes and firmicutes, while the septic tank and groundwater systems were composed mostly of proteobacteria. The introduction of E. coli O157:H7 into the simulated systems elicited a shift in the structures and phenotypic cell characteristics of the microbial communities. The fate and transport of the microbial community with E. coli O157:H7 were found to be significantly different from those of E. coli O157:H7 studied as a single isolate, suggesting that the behavior of the organism in the environment was different from that previously conceived. The findings in this study clearly suggest that to gain insight into the fate of pathogens, cells should be grown and analyzed under conditions simulating those of the environment in which the pathogens are present. PMID:23396331

  5. Microbial diversity and impact on carbonate geochemistry across a changing geochemical gradient in a karst aquifer

    PubMed Central

    Gray, Cassie J; Engel, Annette S

    2013-01-01

    Although microbes are known to influence karst (carbonate) aquifer ecosystem-level processes, comparatively little information is available regarding the diversity of microbial activities that could influence water quality and geological modification. To assess microbial diversity in the context of aquifer geochemistry, we coupled 16S rRNA Sanger sequencing and 454 tag pyrosequencing to in situ microcosm experiments from wells that cross the transition from fresh to saline and sulfidic water in the Edwards Aquifer of central Texas, one of the largest karst aquifers in the United States. The distribution of microbial groups across the transition zone correlated with dissolved oxygen and sulfide concentration, and significant variations in community composition were explained by local carbonate geochemistry, specifically calcium concentration and alkalinity. The waters were supersaturated with respect to prevalent aquifer minerals, calcite and dolomite, but in situ microcosm experiments containing these minerals revealed significant mass loss from dissolution when colonized by microbes. Despite differences in cell density on the experimental surfaces, carbonate loss was greater from freshwater wells than saline, sulfidic wells. However, as cell density increased, which was correlated to and controlled by local geochemistry, dissolution rates decreased. Surface colonization by metabolically active cells promotes dissolution by creating local disequilibria between bulk aquifer fluids and mineral surfaces, but this also controls rates of karst aquifer modification. These results expand our understanding of microbial diversity in karst aquifers and emphasize the importance of evaluating active microbial processes that could affect carbonate weathering in the subsurface. PMID:23151637

  6. Microbial diversity and impact on carbonate geochemistry across a changing geochemical gradient in a karst aquifer.

    PubMed

    Gray, Cassie J; Engel, Annette S

    2013-02-01

    Although microbes are known to influence karst (carbonate) aquifer ecosystem-level processes, comparatively little information is available regarding the diversity of microbial activities that could influence water quality and geological modification. To assess microbial diversity in the context of aquifer geochemistry, we coupled 16S rRNA Sanger sequencing and 454 tag pyrosequencing to in situ microcosm experiments from wells that cross the transition from fresh to saline and sulfidic water in the Edwards Aquifer of central Texas, one of the largest karst aquifers in the United States. The distribution of microbial groups across the transition zone correlated with dissolved oxygen and sulfide concentration, and significant variations in community composition were explained by local carbonate geochemistry, specifically calcium concentration and alkalinity. The waters were supersaturated with respect to prevalent aquifer minerals, calcite and dolomite, but in situ microcosm experiments containing these minerals revealed significant mass loss from dissolution when colonized by microbes. Despite differences in cell density on the experimental surfaces, carbonate loss was greater from freshwater wells than saline, sulfidic wells. However, as cell density increased, which was correlated to and controlled by local geochemistry, dissolution rates decreased. Surface colonization by metabolically active cells promotes dissolution by creating local disequilibria between bulk aquifer fluids and mineral surfaces, but this also controls rates of karst aquifer modification. These results expand our understanding of microbial diversity in karst aquifers and emphasize the importance of evaluating active microbial processes that could affect carbonate weathering in the subsurface.

  7. Peatland Microbial Carbon Use Under Warming using Isotopic Fractionation

    NASA Astrophysics Data System (ADS)

    Gutknecht, J.

    2016-12-01

    Peatlands are a critical natural resource, especially in their role as carbon sinks. Most of the world's peatlands are located in Northern ecosystems where the climate is changing at a rapid pace, and there is great interest and concern with how climate change will influence them. Although studies regarding the response of peatlands to climate change have emerged, the microbial mediation of C cycling in these systems is still less well understood. In this study, 13CPLFA analysis was used to characterize the microbial community and it's carbon use at the Spruce and Peatland Responses Under Climatic and Environmental Change (SPRUCE) Project. The SPRUCE project is an extensive study of the response of peatlands to climatic manipulation in the Marcell Experimental Forest in northern Minnesota. Heating rods were installed in peatland plots where peat is being warmed at several levels including ambient, +2.5, +4.5, +6.75, and +9 degrees Celsius, at a depth of 3 meters, beginning July of 2014. Samples were taken June 2014, September 2014, and June 2015, throughout the depth profile. We found very high microbial, and especially fungal growth at shallow depths, owing in part to the influence of fungal-like lipids present in Sphagnum stems, and in part to dense mycorrhizal colonization in shrub and tree species. Isotopic data shows that microbial biomass has an enriched δ13C lower in the peat profile, indicating as expected that microbes at depth utilize older carbon or carbon more enriched in 13C. The increase over depth in the δ13C signature may also reflect the increased dominance of pre-industrial carbon that is more enriched in 13C. In this early period of warming we did not see clear effects of warming, either due to the highly heterogeneous microbial growth across the bog, or to the short term deep warming only. We expect that with the initiation of aboveground warming in July 2016, warming will begin to show stronger effects on microbial C cycling.

  8. Adaptation Mechanisms in the Evolution of Moss Defenses to Microbes

    PubMed Central

    Ponce de León, Inés; Montesano, Marcos

    2017-01-01

    Bryophytes, including mosses, liverworts and hornworts are early land plants that have evolved key adaptation mechanisms to cope with abiotic stresses and microorganisms. Microbial symbioses facilitated plant colonization of land by enhancing nutrient uptake leading to improved plant growth and fitness. In addition, early land plants acquired novel defense mechanisms to protect plant tissues from pre-existing microbial pathogens. Due to its evolutionary stage linking unicellular green algae to vascular plants, the non-vascular moss Physcomitrella patens is an interesting organism to explore the adaptation mechanisms developed in the evolution of plant defenses to microbes. Cellular and biochemical approaches, gene expression profiles, and functional analysis of genes by targeted gene disruption have revealed that several defense mechanisms against microbial pathogens are conserved between mosses and flowering plants. P. patens perceives pathogen associated molecular patterns by plasma membrane receptor(s) and transduces the signal through a MAP kinase (MAPK) cascade leading to the activation of cell wall associated defenses and expression of genes that encode proteins with different roles in plant resistance. After pathogen assault, P. patens also activates the production of ROS, induces a HR-like reaction and increases levels of some hormones. Furthermore, alternative metabolic pathways are present in P. patens leading to the production of a distinct metabolic scenario than flowering plants that could contribute to defense. P. patens has acquired genes by horizontal transfer from prokaryotes and fungi, and some of them could represent adaptive benefits for resistance to biotic stress. In this review, the current knowledge related to the evolution of plant defense responses against pathogens will be discussed, focusing on the latest advances made in the model plant P. patens. PMID:28360923

  9. Barcoded pyrosequencing analysis of the microbial community in a simulator of the human gastrointestinal tract showed a colon region-specific microbiota modulation for two plant-derived polysaccharide blends.

    PubMed

    Marzorati, Massimo; Maignien, Lois; Verhelst, An; Luta, Gabriela; Sinnott, Robert; Kerckhof, Frederiek Maarten; Boon, Nico; Van de Wiele, Tom; Possemiers, Sam

    2013-02-01

    The combination of a Simulator of the Human Intestinal Microbial Ecosystem with ad hoc molecular techniques (i.e. pyrosequencing, denaturing gradient gel electrophoresis and quantitative PCR) allowed an evaluation of the extent to which two plant polysaccharide supplements could modify a complex gut microbial community. The presence of Aloe vera gel powder and algae extract in product B as compared to the standard blend (product A) improved its fermentation along the entire simulated colon. The potential extended effect of product B in the simulated distal colon, as compared to product A, was confirmed by: (i) the separate clustering of the samples before and after the treatment in the phylogenetic-based dendrogram and OTU-based PCoA plot only for product B; (ii) a higher richness estimator (+33 vs. -36 % of product A); and (iii) a higher dynamic parameter (21 vs. 13 %). These data show that the combination of well designed in vitro simulators with barcoded pyrosequencing is a powerful tool for characterizing changes occurring in the gut microbiota following a treatment. However, for the quantification of low-abundance species-of interest because of their relationship to potential positive health effects (i.e. bifidobacteria or lactobacilli)-conventional molecular ecological approaches, such as PCR-DGGE and qPCR, still remain a very useful complementary tool.

  10. Diatom-driven recolonization of microbial mat-dominated siliciclastic tidal flat sediments.

    PubMed

    Pan, Jerónimo; Cuadrado, Diana G; Bournod, Constanza N

    2017-10-01

    Modern microbial mats and biofilms play a paramount role in sediment biostabilization. When sporadic storms affect tidal flats of Bahía Blanca Estuary, the underlying siliciclastic sediment is exposed by physical disruption of the mat, and in a few weeks' lapse, a microbial community re-establishes. With the objective of studying colonization patterns and the ecological succession of microorganisms at the scale of these erosional structures, these were experimentally made and their biological recolonization followed for 8 weeks, with replication in winter and spring. Motile pennate diatoms led the initial colonization following two distinct patterns: a dominance by Cylindrotheca closterium in winter and by naviculoid and nitzschioid diatoms in spring. During the first 7 days, cell numbers increased 2- to 17-fold. Cell densities further increased exhibiting sigmoidal community growth, reaching 2.9-8.9 × 106 cells cm-3 maxima around day 30; centric diatoms maintained low densities throughout. In 56 days after removal of the original mat, filamentous cyanobacteria that dominate mature mats did not establish a significant biomass, leading to the rejection of the hypothesis that cyanobacteria would drive the colonization. The observed dominance of pennate diatoms is attributed to extrinsic factors determined by tidal flooding, and intrinsic ones, e.g. motility, nutrient affinity and high growth rate. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Respiratory pathogen colonization of dental plaque, the lower airways, and endotracheal tube biofilms during mechanical ventilation.

    PubMed

    Sands, Kirsty M; Wilson, Melanie J; Lewis, Michael A O; Wise, Matt P; Palmer, Nicki; Hayes, Anthony J; Barnes, Rosemary A; Williams, David W

    2017-02-01

    In mechanically ventilated patients, the endotracheal tube is an essential interface between the patient and ventilator, but inadvertently, it also facilitates the development of ventilator-associated pneumonia (VAP) by subverting pulmonary host defenses. A number of investigations suggest that bacteria colonizing the oral cavity may be important in the etiology of VAP. The present study evaluated microbial changes that occurred in dental plaque and lower airways of 107 critically ill mechanically ventilated patients. Dental plaque and lower airways fluid was collected during the course of mechanical ventilation, with additional samples of dental plaque obtained during the entirety of patients' hospital stay. A "microbial shift" occurred in dental plaque, with colonization by potential VAP pathogens, namely, Staphylococcus aureus and Pseudomonas aeruginosa in 35 patients. Post-extubation analyses revealed that 70% and 55% of patients whose dental plaque included S aureus and P aeruginosa, respectively, reverted back to having a predominantly normal oral microbiota. Respiratory pathogens were also isolated from the lower airways and within the endotracheal tube biofilms. To the best of our knowledge, this is the largest study to date exploring oral microbial changes during both mechanical ventilation and after recovery from critical illness. Based on these findings, it was apparent that during mechanical ventilation, dental plaque represents a source of potential VAP pathogens. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Pre-post evaluation of effects of a titanium dioxide coating on environmental contamination of an intensive care unit: the TITANIC study.

    PubMed

    de Jong, B; Meeder, A M; Koekkoek, K W A C; Schouten, M A; Westers, P; van Zanten, A R H

    2018-07-01

    Among patients admitted to European hospitals or intensive care units (ICUs), 5.7% and 19.5% will encounter healthcare-associated infections (HAIs), respectively, and antimicrobial resistance is emerging. As hospital surfaces are contaminated with potentially pathogenic bacteria, environmental cleanliness is an essential aspect to reduce HAIs. To address the efficacy of a titanium dioxide coating in reducing the microbial colonization of environmental surfaces in an ICU. A prospective, controlled, single-centre pilot study was conducted to examine the effect of a titanium dioxide coating on the microbial colonization of surfaces in an ICU. During the pre- and post-intervention periods, surfaces were cultured with agar contact plates (BBL RODAC plates). Factors that were potentially influencing the bacterial colonization of surfaces were recorded. A repeated measurements analysis within a hierarchic multi-level framework was used to analyse the effect of the intervention, controlling for the explanatory variables. The mean ratio for the total number of colony-forming units (cfus) in a room between the pre- and post-intervention periods was 0.86 (standard deviation 0.57). The optimal model included the following explanatory variables: intervention (P=0.065), week (P=0.002), culture surfaces (P<0.001), ICU room (P=0.039), and interaction between intervention and week (P=0.002) and between week and culture surfaces (P=0.031). The effect of the intervention on the number of cfus from all culture plates in Week 4 between the pre- and post-intervention periods was -0.47 (95% confidence interval -0.24 to - 0.70). This study found that a titanium dioxide coating had no effect on the microbial colonization of surfaces in an ICU. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  13. Adaptation strategies of endolithic chlorophototrophs to survive the hyperarid and extreme solar radiation environment of the Atacama Desert

    PubMed Central

    Wierzchos, Jacek; DiRuggiero, Jocelyne; Vítek, Petr; Artieda, Octavio; Souza-Egipsy, Virginia; Škaloud, Pavel; Tisza, Michel; Davila, Alfonso F.; Vílchez, Carlos; Garbayo, Inés; Ascaso, Carmen

    2015-01-01

    The Atacama Desert, northern Chile, is one of the driest deserts on Earth and, as such, a natural laboratory to explore the limits of life and the strategies evolved by microorganisms to adapt to extreme environments. Here we report the exceptional adaptation strategies of chlorophototrophic and eukaryotic algae, and chlorophototrophic and prokaryotic cyanobacteria to the hyperarid and extremely high solar radiation conditions occurring in this desert. Our approach combined several microscopy techniques, spectroscopic analytical methods, and molecular analyses. We found that the major adaptation strategy was to avoid the extreme environmental conditions by colonizing cryptoendolithic, as well as, hypoendolithic habitats within gypsum deposits. The cryptoendolithic colonization occurred a few millimeters beneath the gypsum surface and showed a succession of organized horizons of algae and cyanobacteria, which has never been reported for endolithic microbial communities. The presence of cyanobacteria beneath the algal layer, in close contact with sepiolite inclusions, and their hypoendolithic colonization suggest that occasional liquid water might persist within these sub-microhabitats. We also identified the presence of abundant carotenoids in the upper cryptoendolithic algal habitat and scytonemin in the cyanobacteria hypoendolithic habitat. This study illustrates that successful lithobiontic microbial colonization at the limit for microbial life is the result of a combination of adaptive strategies to avoid excess solar irradiance and extreme evapotranspiration rates, taking advantage of the complex structural and mineralogical characteristics of gypsum deposits—conceptually called “rock's habitable architecture.” Additionally, self-protection by synthesis and accumulation of secondary metabolites likely produces a shielding effect that prevents photoinhibition and lethal photooxidative damage to the chlorophototrophs, representing another level of adaptation. PMID:26441871

  14. The microbial ecology of anaerobic cellulose degradation in municipal waste landfill sites: evidence of a role for fibrobacters.

    PubMed

    McDonald, James E; Houghton, James N I; Rooks, David J; Allison, Heather E; McCarthy, Alan J

    2012-04-01

    Cellulose is reputedly the most abundant organic polymer in the biosphere, yet despite the fundamental role of cellulolytic microorganisms in global carbon cycling and as potential sources of novel enzymes for biotechnology, their identity and ecology is not well established. Cellulose is a major component of landfill waste and its degradation is therefore a key feature of the anaerobic microbial decomposition process. Here, we targeted a number of taxa containing known cellulolytic anaerobes (members of the bacterial genus Fibrobacter, lineages of Clostridium clusters I, III, IV and XIV, and anaerobic fungi of the Neocallimastigales) in landfill leachate and colonized cellulose 'baits' via PCR and quantitative PCR (qPCR). Fibrobacter spp. and Clostridium clusters III, IV and XIV were detected in almost all leachate samples and cluster III and XIV clostridia were the most abundant (1-6% and 1-17% of total bacterial 16S rRNA gene copies respectively). Two landfill leachate microcosms were constructed to specifically assess those microbial communities that colonize and degrade cellulose substrates in situ. Scanning electron microscopy (SEM) of colonized cotton revealed extensive cellulose degradation in one microcosm, and Fibrobacter spp. and Clostridium cluster III represented 29% and 17%, respectively, of total bacterial 16S rRNA gene copies in the biofilm. Visible cellulose degradation was not observed in the second microcosm, and this correlated with negligible relative abundances of Clostridium cluster III and Fibrobacter spp. (≤ 0.1%), providing the first evidence that the novel fibrobacters recently detected in landfill sites and other non-gut environments colonize and degrade cellulose substrates in situ. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  15. Adaptation strategies of endolithic chlorophototrophs to survive the hyperarid and extreme solar radiation environment of the Atacama Desert.

    PubMed

    Wierzchos, Jacek; DiRuggiero, Jocelyne; Vítek, Petr; Artieda, Octavio; Souza-Egipsy, Virginia; Škaloud, Pavel; Tisza, Michel; Davila, Alfonso F; Vílchez, Carlos; Garbayo, Inés; Ascaso, Carmen

    2015-01-01

    The Atacama Desert, northern Chile, is one of the driest deserts on Earth and, as such, a natural laboratory to explore the limits of life and the strategies evolved by microorganisms to adapt to extreme environments. Here we report the exceptional adaptation strategies of chlorophototrophic and eukaryotic algae, and chlorophototrophic and prokaryotic cyanobacteria to the hyperarid and extremely high solar radiation conditions occurring in this desert. Our approach combined several microscopy techniques, spectroscopic analytical methods, and molecular analyses. We found that the major adaptation strategy was to avoid the extreme environmental conditions by colonizing cryptoendolithic, as well as, hypoendolithic habitats within gypsum deposits. The cryptoendolithic colonization occurred a few millimeters beneath the gypsum surface and showed a succession of organized horizons of algae and cyanobacteria, which has never been reported for endolithic microbial communities. The presence of cyanobacteria beneath the algal layer, in close contact with sepiolite inclusions, and their hypoendolithic colonization suggest that occasional liquid water might persist within these sub-microhabitats. We also identified the presence of abundant carotenoids in the upper cryptoendolithic algal habitat and scytonemin in the cyanobacteria hypoendolithic habitat. This study illustrates that successful lithobiontic microbial colonization at the limit for microbial life is the result of a combination of adaptive strategies to avoid excess solar irradiance and extreme evapotranspiration rates, taking advantage of the complex structural and mineralogical characteristics of gypsum deposits-conceptually called "rock's habitable architecture." Additionally, self-protection by synthesis and accumulation of secondary metabolites likely produces a shielding effect that prevents photoinhibition and lethal photooxidative damage to the chlorophototrophs, representing another level of adaptation.

  16. Absorption and Metabolism of Phenolics from Digests of Polyphenol-Rich Potato Extracts Using the Caco-2/HepG2 Co-Culture System

    PubMed Central

    Sadeghi Ekbatan, Shima; Iskandar, Michele M.; Sleno, Lekha; Sabally, Kebba; Khairallah, Joelle; Prakash, Satya

    2018-01-01

    The bioactivity of dietary polyphenols depends upon gastrointestinal and hepatic metabolism of secondary microbial phenolic metabolites generated via colonic microbiota-mediated biotransformation. A polyphenol-rich potato extract (PRPE) containing chlorogenic, caffeic, and ferulic acids and rutin was digested in a dynamic multi-reactor gastrointestinal simulator of the human intestinal microbial ecosystem (GI model). Simulated digestion showed extensive degradation of the parent compounds and the generation of microbial phenolic metabolites. To characterize the transport and metabolism of microbial phenolic metabolites following digestion, a co-culture of intestinal Caco-2 and hepatic HepG2 cells was exposed to the PRPE-derived digests obtained from the colonic vessels. Following a 2 h incubation of the digesta with the Caco-2/HepG2 co-cultures, approximately 10–15% of ferulic, dihydrocaffeic, and dihydroferulic acids and 3–5% of 3-hydroxybenzoic, 3-hydroxyphenylpropionic, and coumaric acids were observed in the basolateral side, whereas 3-hydroxyphenylacetic acid, phenylpropanoic acid, and cinnamic acid were not detected. Subsequent HepG2 cellular metabolism led to major increases in ferulic, dihydrocaffeic, 3-hydroxyphenylpropionic, and coumaric acids ranging from 160–370%. These findings highlight the importance of hepatic metabolism towards the generation of secondary metabolites of polyphenols despite low selective Caco-2 cellular uptake of microbial phenolic metabolites. PMID:29329242

  17. Microbial Response to High Temperature Hydrothermal Forcing: AISICS Vent (Lucky Strike, 37°N, MAR) and Prokaryote Community as Example.

    NASA Astrophysics Data System (ADS)

    Henri, P. A.; Rommevaux, C.; Chavagnac, V.; Degboe, J.; Destrigneville, C.; Boulart, C.; Lesongeur, F.; Castillo, A.; Goodfroy, A.

    2015-12-01

    To study the hydrothermal forcing on microbial colonization, and impacts on the oceanic crust alteration, an integrated study was led at the Tour Eiffel hydrothermal site (Lucky Strike hydrothermal field, 37°N, MAR). We benefited from an annual survey between 2009 and 2011 of temperatures, along with sampling of focused and diffused fluids for chemical analysis, and chimney sampling and samples from microbial colonization experiments analyzed for prokaryotic composition and rock alteration study. The chemical composition of the fluids show an important increase in the CO2 concentration at the Eiffel Tower site between 2009 and 2010 followed by a decrease between 2010 and 2011. In 2011, several fluid samples show an important depletion in Si, suggesting that some Si was removed by interaction with the stockwork before emission. Our observations, regarding the previous studies of chemical fluid affected by a magmatic event lead us to suppose that a magmatic/tectonic event occurred under the Lucky Strike hydrothermal field between 2009 and 2010. The results of the prokaryotic communities' analysis show that a shift occurred in the dominant microbial metabolisms present in the colonizer retrieved in 2010 and the one retrieved in 2011. Archaeal communities shifted from chemolithoautotropic sulfite/thiosulfate reducers-dominated in 2010 to ammonia oxidizers-dominated in 2011. The bacterial communities also undergo a shift, from a community with diversified metabolisms in 2010 to a community strongly dominated by chemolithoautotrophic sulfide or hydrogen oxidation in 2011. Moreover, in terms of ecological preferendum, the Archaeal communities shifted from thermophilic-dominated to mesophilic-dominated. The present study underline the influence of modifications in gases compositions of hydrothermal fluids subsequently to a degassing of the magma chamber and their impact on the microbial communities living in the vicinity of hydrothermal vents at the Eiffel Tower site.

  18. Effects of the dietary protein level on the microbial composition and metabolomic profile in the hindgut of the pig.

    PubMed

    Zhou, Liping; Fang, Lingdong; Sun, Yue; Su, Yong; Zhu, Weiyun

    2016-04-01

    The aim of this study was to investigate the effects of a long-term low protein diet on the microbial composition and metabolomic profile in the hindgut of the pig. Thirty-six Duroc × Landrace × Large White growing barrows (70 days of age, 23.57 ± 1.77 kg) were randomly allocated to normal protein diet (NP) and low protein diet (LP) groups using a randomized block design. At the age of 170 days, the digesta in the hindguts of the pigs were collected for microbial and metabolomic analysis. The results showed that there were no significant differences in the average daily gain, average daily feed intake, or feed:gain ratio between the NP and LP groups. The concentrations of isobutyrate, isovalerate, and branched-chain fatty acids (BCFAs)/short-chain fatty acids (SCFAs) in the cecum decreased with the reduction of dietary protein. Pyrosequencing of the V1-V3 region of the 16S rRNA genes showed that LP diet significantly decreased the relative abundance of Lactobacillus in the cecum, and Streptococcus in the colon; however, the relative abundance of Prevotella and Coprococcus in the LP group was significantly higher than in the NP group in the cecum, and Sarcina, Peptostreptococcaceae incertae sedis, Mogibacterium, Subdoligranulum, and Coprococcus was higher in the colon. The gas chromatography-mass spectrometry (GC-MS) analysis showed that the dietary protein level mainly affected phenylalanine metabolism; glycine, serine, and threonine metabolism; the citrate cycle; pyruvate metabolism; and the alanine, aspartate, and glutamate metabolism. Moreover, the correlation analysis of the combined datasets revealed some potential relationships between the colonic metabolites and certain microbial species. These results suggest that a low protein diet may modulate the microbial composition and metabolites of the hindgut, without affecting the growth performance of pigs; however, potential roles of this modulation to the health of pigs remains unknown. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Effect of Saccharomyces boulardii and Mode of Delivery on the Early Development of the Gut Microbial Community in Preterm Infants.

    PubMed

    Zeber-Lubecka, Natalia; Kulecka, Maria; Ambrozkiewicz, Filip; Paziewska, Agnieszka; Lechowicz, Milosz; Konopka, Ewa; Majewska, Urszula; Borszewska-Kornacka, Maria; Mikula, Michal; Cukrowska, Bozena; Ostrowski, Jerzy

    2016-01-01

    Recent advances in culture-independent approaches have enabled insights into the diversity, complexity, and individual variability of gut microbial communities. To examine the effect of oral administration of Saccharomyces (S.) boulardii and mode of delivery on the intestinal microbial community in preterm infants. Stool samples were collected from preterm newborns randomly divided into two groups: a probiotic-receiving group (n = 18) or a placebo group (n = 21). Samples were collected before probiotic intake (day 0), and after 2 and 6 weeks of supplementation. The composition of colonizing bacteria was assessed by 16S ribosomal RNA (rRNA) gene sequencing of fecal samples using the Ion 16S Metagenomics Kit and the Ion Torrent Personal Genome Machine platform. A total of 11932257 reads were generated, and were clustered into 459, 187, and 176 operational taxonomic units at 0 days, 2 weeks, and 6 weeks, respectively. Of the 17 identified phyla, Firmicutes Actinobacteria, Proteobacteria, and Bacteroidetes were universal. The microbial community differed at day 0 compared with at 2 weeks and 6 weeks. There was a tendency for increased bacterial diversity at 2 weeks and 6 weeks compared with day 0, and infants with a gestational age of 31 weeks or higher presented increased bacterial diversity prior to S. boulardii administration. Firmicutes and Proteobacteria remained stable during the observation period, whereas Actinobacteria and Bacteroidetes increased in abundance, the latter particularly more sharply in vaginally delivered infants. While the mode of delivery may influence the development of a microbial community, this study had not enough power to detect statistical differences between cohorts supplemented with probiotics, and in a consequence, to speculate on S. boulardii effect on gut microbiome composition in preterm newborns.

  20. Effect of Saccharomyces boulardii and Mode of Delivery on the Early Development of the Gut Microbial Community in Preterm Infants

    PubMed Central

    Zeber-Lubecka, Natalia; Kulecka, Maria; Ambrozkiewicz, Filip; Paziewska, Agnieszka; Lechowicz, Milosz; Konopka, Ewa; Majewska, Urszula; Borszewska-Kornacka, Maria; Mikula, Michal; Cukrowska, Bozena; Ostrowski, Jerzy

    2016-01-01

    Background Recent advances in culture-independent approaches have enabled insights into the diversity, complexity, and individual variability of gut microbial communities. Objectives To examine the effect of oral administration of Saccharomyces (S.) boulardii and mode of delivery on the intestinal microbial community in preterm infants. Study Design Stool samples were collected from preterm newborns randomly divided into two groups: a probiotic-receiving group (n = 18) or a placebo group (n = 21). Samples were collected before probiotic intake (day 0), and after 2 and 6 weeks of supplementation. The composition of colonizing bacteria was assessed by 16S ribosomal RNA (rRNA) gene sequencing of fecal samples using the Ion 16S Metagenomics Kit and the Ion Torrent Personal Genome Machine platform. Results A total of 11932257 reads were generated, and were clustered into 459, 187, and 176 operational taxonomic units at 0 days, 2 weeks, and 6 weeks, respectively. Of the 17 identified phyla, Firmicutes Actinobacteria, Proteobacteria, and Bacteroidetes were universal. The microbial community differed at day 0 compared with at 2 weeks and 6 weeks. There was a tendency for increased bacterial diversity at 2 weeks and 6 weeks compared with day 0, and infants with a gestational age of 31 weeks or higher presented increased bacterial diversity prior to S. boulardii administration. Firmicutes and Proteobacteria remained stable during the observation period, whereas Actinobacteria and Bacteroidetes increased in abundance, the latter particularly more sharply in vaginally delivered infants. Conclusion While the mode of delivery may influence the development of a microbial community, this study had not enough power to detect statistical differences between cohorts supplemented with probiotics, and in a consequence, to speculate on S. boulardii effect on gut microbiome composition in preterm newborns. PMID:26918330

  1. Microbial ecology of the skin in the era of metagenomics and molecular microbiology.

    PubMed

    Hannigan, Geoffrey D; Grice, Elizabeth A

    2013-12-01

    The skin is the primary physical barrier between the body and the external environment and is also a substrate for the colonization of numerous microbes. Previously, dermatological microbiology research was dominated by culture-based techniques, but significant advances in genomic technologies have enabled the development of less-biased, culture-independent approaches to characterize skin microbial communities. These molecular microbiology approaches illustrate the great diversity of microbiota colonizing the skin and highlight unique features such as site specificity, temporal dynamics, and interpersonal variation. Disruptions in skin commensal microbiota are associated with the progression of many dermatological diseases. A greater understanding of how skin microbes interact with each other and with their host, and how we can therapeutically manipulate those interactions, will provide powerful tools for treating and preventing dermatological disease.

  2. Adjuvant therapy for resected colon cancer 2017, including the IDEA analysis.

    PubMed

    Tang, Monica; Price, Timothy Jay; Shapiro, Jeremy; Gibbs, Peter; Haller, Daniel G; Arnold, Dirk; Peeters, Marc; Segelov, Eva; Roy, Amitesh; Tebbutt, Niall; Pavlakis, Nick; Karapetis, Chris; Burge, Matthew

    2018-04-01

    Oxaliplatin-based adjuvant chemotherapy has been the standard of care for resected early colon cancer for over a decade. Recent results from the IDEA meta-analysis attempt to address the question of whether 3 or 6 months of adjuvant chemotherapy is preferable in Stage III colon cancer. Areas covered: A review of the literature and recent conference presentations was undertaken on the topic of adjuvant therapy for resected early colon cancers. This article reviews the current evidence for adjuvant treatment of Stage II and III colon cancer, as well as up-to-date data regarding optimal duration of therapy. This article reviews the evidence for lifestyle modifications in the management of early colorectal cancer and other future directions for research in early colon cancer. Expert commentary: In recent years, there have been no advances in the development of novel agents for adjuvant therapy in colorectal cancer. Although the IDEA meta-analysis was negative for its primary non-inferiority endpoint, the detailed results provide valuable information that allows personalisation of treatment regimen and duration.

  3. Acid Saline Weathering of A Massive Sulfide and Gossan Formation: Implications for Development and Preservation of Biosignatures on Mars

    NASA Astrophysics Data System (ADS)

    Williams, A. J.; Sumner, D. Y.; Zierenberg, R. A.

    2010-12-01

    The surface of modern Mars is rich in S and Fe minerals. Variations in water activity and the weathering reactions of these minerals have been integral to developing Martian surface conditions during the last 2 Ga. Terrestrial gossans, especially those formed from acid-saline solutions at low water-rock ratio, provide an important analog for understanding how S and Fe minerals may have weathered on Mars. Acidophiles and chemolithotrophs have been identified in these environments on Earth, so they also comprise a model system for putative biosignature formation and preservation that is relevant to conditions on early Mars. The Iron Mountain massive sulfide deposit is capped by a gossan, parts of which were exposed at the surface prior to mining, and parts of which have been exposed for several decades. The deposit is located in seasonally dry northern CA with high late spring to early fall evaporation rates. Samples of pyrite, iron-oxide-rich, and sulfate-rich gossan were collected during the dry season in late spring 2010. Mineral species identified with SEM-EDS, XRD, and optical microscopy include: pyrite, goethite, lepitocrocite, hematite, schwartmanite, gypsum, quartz, and acanthite. As yet unidentified soluble sulfate minerals formed by evaporative concentration are also present. Distilled water added to a pyrite-sulfate sample yielded a pH of ~2.5 once the evaporites dissolved. The spatial variability of minerals and the extent of alteration provide the opportunity to study weathering gradients and solution/reprecipitation in this system. Putative microbial communities containing filaments have been observed in small patches on sample surfaces and in fractures with FEG-SEM and optical microscopy. Although present, textural features interpreted to have formed microbially are sparse. The relative paucity of microbial morphologies in this analog acid-saline system combined with their heterogeneous spatial distribution presents a challenge for remote detection by a rover. In addition, long-term preservation of organics in the oxidizing environments indicated by the presence of iron oxides is difficult. Thus, poor preservation of organic biomarkers might be expected even if microbial colonization of the Fe-rich substrate was present on Mars. However, if microbial activity influences local mineralogy or mineral morphology, this may provide evidence for microbial activity even in the absence of chemical biosignatures.

  4. Endolithic diversity of microorganisms on sandstone and implications for biogenic weathering

    NASA Astrophysics Data System (ADS)

    Hallmann, C.; Friedenberger, H.; Hoppert, M.

    2012-04-01

    Molecular methods allow a comprehensive view on uncultured microbial communities in dimension stone. In the presented study, we focus on depth profiles of microbial colonization in sandstones with different porosity and overall durability. All sandstones were taken from quarries where they were exposed to the environment for several years. Approximately 0.1 g of material from the stone surface, from 5 mm and from 30 mm depths was taken under sterile conditions and subjected to analysis of microbial DNA and culturing experiments. In particular, DNA was extracted from the material, the phylogenetic marker gene of eukaryotic organisms (18S rDNA) was amplified and used for generation of clone libraries, which were then analysed by sequencing. "Roter Wesersandstein" was just colonized at the material surface, predominantly with algal and fungal microorganisms. No environmental DNA could be isolated from depth profiles. From "Nebraer Sandstein" with high pore size (shown by thin sections), environmental DNA from depths down to 3 cm could be retrieved. Though the uppermost layer is dominated by microalgae (as concluded from the retrieved clones), the percentage of algal clones from 5 mm and 30 mm depths drop to 10 % of all clones. There, apart from filamentous fungi, moss clones clearly dominate the microbial community. At a depth of 30 mm, 70-80 % of the retrieved clones match to various mosses (Bryophyta). Though mosses do not form layers on the stone surfaces, moss rhizoids or protonemata must be abundant as endoliths inside the stone material. It is reasonable to assume that the rhizoids may contribute to an increase in pore size by active penetration of the clastic material, even though colonization of the surface by mosses is not obvious. This feature may imply stronger impact of stone decay induced by endolithic growth of bryophytes than hitherto observed.

  5. Habitability and Biosignature Preservation in Impact-Derived Materials

    NASA Astrophysics Data System (ADS)

    Sapers, H. M.; Pontefract, A.; Osinski, G. R.; Cannon, K. M.; Mustard, J. F.

    2016-05-01

    Meteorite impacts create environments conducive to microbial colonization. Biosignatures in impact-derived materials have been characterized on Earth. Impact environments comprise candidates for biosignature detection and preservation on Mars.

  6. The Infant Microbiome: Implications for Infant Health and Neurocognitive Development

    PubMed Central

    Yang, Irene; Corwin, Elizabeth J.; Brennan, Patricia A.; Jordan, Sheila; Murphy, Jordan R.; Dunlop, Anne

    2015-01-01

    Background Beginning at birth, the microbes in the gut perform essential duties related to the digestion and metabolism of food, the development and activation of the immune system, and the production of neurotransmitters that affect behavior and cognitive function. Objectives The objectives of this review are to: (a) provide a brief overview of the microbiome and the “microbiome-gut-brain axis”; (b) discuss factors known to affect the composition of the infant microbiome: mode of delivery, antibiotic exposure, and infant feeding patterns; and (c) present research priorities for nursing science, and clinical implications for infant health and neurocognitive development. Discussion The gut microbiome influences immunological, endocrine, and neural pathways and plays an important role in infant development. Several factors influence colonization of the infant gut microbiome. Different microbial colonization patterns are associated with vaginal versus surgical birth, exposure to antibiotics, and infant feeding patterns. Because of extensive physiological influence, infant microbial colonization patterns have the potential to impact physical and neurocognitive development and life course disease risk. Understanding these influences will inform newborn care and parental education. PMID:26657483

  7. Response of a salt marsh microbial community to metal contamination

    NASA Astrophysics Data System (ADS)

    Mucha, Ana P.; Teixeira, Catarina; Reis, Izabela; Magalhães, Catarina; Bordalo, Adriano A.; Almeida, C. Marisa R.

    2013-09-01

    Salt marshes are important sinks for contaminants, namely metals that tend to accumulate around plant roots and could eventually be taken up in a process known as phytoremediation. On the other hand, microbial communities display important roles in the salt marsh ecosystems, such as recycling of nutrients and/or degradation of organic contaminants. Thus, plants can benefit from the microbial activity in the phytoremediation process. Nevertheless, above certain levels, metals are known to be toxic to microorganisms, fact that can eventually compromise their ecological functions. In this vein, the aim of present study was to investigate, in the laboratory, the effect of selected metals (Cd, Cu and Pb) on the microbial communities associated to the roots of two salt marsh plants. Sediments colonized by Juncus maritimus and Phragmites australis were collected in the River Lima estuary (NW Portugal), and spiked with each of the metals at three different Effects Range-Median (ERM) concentrations (1, 10×, 50×), being ERM the sediment quality guideline that indicates the concentration above which adverse biological effects may frequently occur. Spiked sediments were incubated with a nutritive saline solution, being left in the dark under constant agitation for 7 days. The results showed that, despite the initial sediments colonized by J. maritimus and P. australis displayed significant (p < 0.05) differences in terms of microbial community structure (evaluated by ARISA), they presented similar microbial abundances (estimated by DAPI). Also, in terms of microbial abundance, both sediments showed a similar response to metal addition, with a decrease in number of cells only observed for the higher addition of Cu. Nevertheless, both Cu and Pb, at intermediate metals levels promote a shift in the microbial community structure, with possibly effect on the ecological function of these microbial communities in salt marshes. These changes may affect plants phytoremediation potential and further work on this subject is in need.

  8. Mineralogic control on abundance and diversity of surface-adherent microbial communities

    USGS Publications Warehouse

    Mauck, Brena S.; Roberts, Jennifer A.

    2007-01-01

    In this study, we investigated the role of mineral-bound P and Fe in defining microbial abundance and diversity in a carbon-rich groundwater. Field colonization experiments of initially sterile mineral surfaces were combined with community structure characterization of the attached microbial population. Silicate minerals containing varying concentrations of P (∼1000 ppm P) and Fe (∼4 wt % Fe 2 O3), goethite (FeOOH), and apatite [Ca5(PO4)3(OH)] were incubated for 14 months in three biogeochemically distinct zones within a petroleum-contaminated aquifer. Phospholipid fatty acid analysis of incubated mineral surfaces and groundwater was used as a measure of microbial community structure and biomass. Microbial biomass on minerals exhibited distinct trends as a function of mineralogy depending on the environment of incubation. In the carbon-rich, aerobic groundwater attached biomass did not correlate to the P- or Fe- content of the mineral. In the methanogenic groundwater, however, biomass was most abundant on P-containing minerals. Similarly, in the Fe-reducing groundwater a correlation between Fe-content and biomass was observed. The community structure of the mineral-adherent microbial population was compared to the native groundwater community. These two populations were significantly different regardless of mineralogy, suggesting differentiation of the planktonic community through attachment, growth, and death of colonizing cells. Biomarkers specific for dissimilatory Fe-reducing bacteria native to the aquifer were identified only on Fe-containing minerals in the Fe-reducing groundwater. These results demonstrate that the trace nutrient content of minerals affects both the abundance and diversity of surface-adherent microbial communities. This behavior may be a means to access limiting nutrients from the mineral, creating a niche for a particular microbial population. These results suggest that heterogeneity of microbial populations and their associated activities in subsurface environments extend to the microscale and cautions over-interpretation of highly sample-dependent measurements in the context of interpreting field data.

  9. Mineral stimulation of subsurface microorganisms: release of limiting nutrients from silicates

    USGS Publications Warehouse

    Roger, Jennifer Roberts; Bennett, Philip C.

    2004-01-01

    Microorganisms play an important role in the weathering of silicate minerals in many subsurface environments, but an unanswered question is whether the mineral plays an important role in the microbial ecology. Silicate minerals often contain nutrients necessary for microbial growth, but whether the microbial community benefits from their release during weathering is unclear. In this study, we used field and laboratory approaches to investigate microbial interactions with minerals and glasses containing beneficial nutrients and metals. Field experiments from a petroleum-contaminated aquifer, where silicate weathering is substantially accelerated in the contaminated zone, revealed that phosphorus (P) and iron (Fe)-bearing silicate glasses were preferentially colonized and weathered, while glasses without these elements were typically barren of colonizing microorganisms, corroborating previous studies using feldspars. In laboratory studies, we investigated microbial weathering of silicates and the release of nutrients using a model ligand-promoted pathway. A metal-chelating organic ligand 3,4 dihydroxybenzoic acid (3,4 DHBA) was used as a source of chelated ferric iron, and a carbon source, to investigate mineral weathering rate and microbial metabolism.In the investigated aquifer, we hypothesize that microbes produce organic ligands to chelate metals, particularly Fe, for metabolic processes and also form stable complexes with Al and occasionally with Si. Further, the concentration of these ligands is apparently sufficient near an attached microorganism to destroy the silicate framework while releasing the nutrient of interest. In microcosms containing silicates and glasses with trace phosphate mineral inclusions, microbial biomass increased, indicating that the microbial community can use silicate-bound phosphate inclusions. The addition of a native microbial consortium to microcosms containing silicates or glasses with iron oxide inclusions correlated to accelerated weathering and release of Si into solution as well as the accelerated degradation of the model substrate 3,4 DHBA. We propose that silicate-bound P and Fe inclusions are bioavailable, and microorganisms may use organic ligands to dissolve the silicate matrix and access these otherwise limiting nutrients.

  10. A metagenomic study of the preventive effect of Lactobacillus rhamnosus GG on intestinal polyp formation in ApcMin/+ mice.

    PubMed

    Ni, Y; Wong, V H Y; Tai, W C S; Li, J; Wong, W Y; Lee, M M L; Fong, F L Y; El-Nezami, H; Panagiotou, G

    2017-03-01

    To investigate the in vivo effects of Lactobacillus rhamnosus GG (LGG) on intestinal polyp development and the interaction between this single-organism probiotic and the gut microbiota therein. The Apc Min/+ mouse model was used to study the potential preventive effect of LGG on intestinal polyposis, while shotgun metagenomic sequencing was employed to characterize both taxonomic and functional changes within the gut microbial community. We found that the progression of intestinal polyps in the control group altered the community functional profile remarkably despite small variation in the taxonomic diversity. In comparison, the consumption of LGG helped maintain the overall functional potential and taxonomic profile in the resident microbes, thereby leading to a 25% decrease of total polyp counts. Furthermore, we found that LGG enriched those microbes or microbial activities related to short-chain fatty acid production (e.g. Roseburia and Coprococcus), as well as suppressed the ones that can lead to inflammation (e.g. Bilophila wadsworthia). Our study using shotgun metagenomics highlights how single probiotic LGG may exert its beneficial effects and decrease polyp formation in mice by maintaining gut microbial functionality. This probiotic intervention targeting microbiota may be used in conjugation with other dietary supplements or drugs as part of prevention strategies for early-stage colon cancer, after further clinical validations in human. © 2016 The Society for Applied Microbiology.

  11. The Microbiome and Metabolome of Preterm Infant Stool Are Personalized and Not Driven by Health Outcomes, Including Necrotizing Enterocolitis and Late-Onset Sepsis

    PubMed Central

    Wandro, Stephen; Osborne, Stephanie; Enriquez, Claudia; Bixby, Christine; Arrieta, Antonio

    2018-01-01

    ABSTRACT The assembly and development of the gut microbiome in infants have important consequences for immediate and long-term health. Preterm infants represent an abnormal case for bacterial colonization because of early exposure to bacteria and frequent use of antibiotics. To better understand the assembly of the gut microbiota in preterm infants, fecal samples were collected from 32 very low birth weight preterm infants over the first 6 weeks of life. Infant health outcomes included health, late-onset sepsis, and necrotizing enterocolitis (NEC). We characterized bacterial compositions by 16S rRNA gene sequencing and metabolomes by untargeted gas chromatography-mass spectrometry. Preterm infant fecal samples lacked beneficial Bifidobacterium spp. and were dominated by Enterobacteriaceae, Enterococcus, and Staphylococcus organisms due to nearly uniform antibiotic administration. Most of the variance between the microbial community compositions could be attributed to the baby from which the sample derived (permutational multivariate analysis of variance [PERMANOVA] R2 = 0.48, P < 0.001), while clinical status (health, NEC, or late-onset sepsis) and overlapping times in the neonatal intensive care unit (NICU) did not explain a significant amount of variation in bacterial composition. Fecal metabolomes were also found to be unique to the individual (PERMANOVA R2 = 0.43, P < 0.001) and weakly associated with bacterial composition (Mantel statistic r = 0.23 ± 0.05, P < 0.05). No measured metabolites were found to be associated with necrotizing enterocolitis, late-onset sepsis, or a healthy outcome. Overall, preterm infant gut microbial communities were personalized and reflected antibiotic usage. IMPORTANCE Preterm infants face health problems likely related to microbial exposures, including sepsis and necrotizing enterocolitis. However, the role of the gut microbiome in preterm infant health is poorly understood. Microbial colonization differs from that of healthy term babies because it occurs in the NICU and is often perturbed by antibiotics. We measured bacterial compositions and metabolomic profiles of 77 fecal samples from 32 preterm infants to investigate the differences between microbiomes in health and disease. Rather than finding microbial signatures of disease, we found that both the preterm infant microbiome and the metabolome were personalized and that the preterm infant gut microbiome is enriched in microbes that commonly dominate in the presence of antibiotics. These results contribute to the growing knowledge of the preterm infant microbiome and emphasize that a personalized view will be important to disentangle the health consequences of the preterm infant microbiome. PMID:29875143

  12. The Microbiome and Metabolome of Preterm Infant Stool Are Personalized and Not Driven by Health Outcomes, Including Necrotizing Enterocolitis and Late-Onset Sepsis.

    PubMed

    Wandro, Stephen; Osborne, Stephanie; Enriquez, Claudia; Bixby, Christine; Arrieta, Antonio; Whiteson, Katrine

    2018-06-27

    The assembly and development of the gut microbiome in infants have important consequences for immediate and long-term health. Preterm infants represent an abnormal case for bacterial colonization because of early exposure to bacteria and frequent use of antibiotics. To better understand the assembly of the gut microbiota in preterm infants, fecal samples were collected from 32 very low birth weight preterm infants over the first 6 weeks of life. Infant health outcomes included health, late-onset sepsis, and necrotizing enterocolitis (NEC). We characterized bacterial compositions by 16S rRNA gene sequencing and metabolomes by untargeted gas chromatography-mass spectrometry. Preterm infant fecal samples lacked beneficial Bifidobacterium spp. and were dominated by Enterobacteriaceae , Enterococcus , and Staphylococcus organisms due to nearly uniform antibiotic administration. Most of the variance between the microbial community compositions could be attributed to the baby from which the sample derived (permutational multivariate analysis of variance [PERMANOVA] R 2 = 0.48, P < 0.001), while clinical status (health, NEC, or late-onset sepsis) and overlapping times in the neonatal intensive care unit (NICU) did not explain a significant amount of variation in bacterial composition. Fecal metabolomes were also found to be unique to the individual (PERMANOVA R 2 = 0.43, P < 0.001) and weakly associated with bacterial composition (Mantel statistic r = 0.23 ± 0.05, P < 0.05). No measured metabolites were found to be associated with necrotizing enterocolitis, late-onset sepsis, or a healthy outcome. Overall, preterm infant gut microbial communities were personalized and reflected antibiotic usage. IMPORTANCE Preterm infants face health problems likely related to microbial exposures, including sepsis and necrotizing enterocolitis. However, the role of the gut microbiome in preterm infant health is poorly understood. Microbial colonization differs from that of healthy term babies because it occurs in the NICU and is often perturbed by antibiotics. We measured bacterial compositions and metabolomic profiles of 77 fecal samples from 32 preterm infants to investigate the differences between microbiomes in health and disease. Rather than finding microbial signatures of disease, we found that both the preterm infant microbiome and the metabolome were personalized and that the preterm infant gut microbiome is enriched in microbes that commonly dominate in the presence of antibiotics. These results contribute to the growing knowledge of the preterm infant microbiome and emphasize that a personalized view will be important to disentangle the health consequences of the preterm infant microbiome. Copyright © 2018 Wandro et al.

  13. Effects of Rifaximin on Transit, Permeability, Fecal Microbiome, and Organic Acid Excretion in Irritable Bowel Syndrome.

    PubMed

    Acosta, Andrés; Camilleri, Michael; Shin, Andrea; Linker Nord, Sara; O'Neill, Jessica; Gray, Amber V; Lueke, Alan J; Donato, Leslie J; Burton, Duane D; Szarka, Lawrence A; Zinsmeister, Alan R; Golden, Pamela L; Fodor, Anthony

    2016-05-26

    Rifaximin relieves irritable bowel syndrome (IBS) symptoms, bloating, abdominal pain, and loose or watery stools. Our objective was to investigate digestive functions in rifaximin-treated IBS patients. In a randomized, double-blind, placebo-controlled, parallel-group study, we compared the effects of rifaximin, 550 mg t.i.d., and placebo for 14 days in nonconstipated IBS and no evidence of small intestinal bacterial overgrowth (SIBO). All subjects completed baseline and on-treatment evaluation of colonic transit by scintigraphy, mucosal permeability by lactulose-mannitol excretion, and fecal microbiome, bile acids, and short chain fatty acids measured on random stool sample. Overall comparison of primary response measures between treatment groups was assessed using intention-to-treat analysis of covariance (ANCOVA, with baseline value as covariate). There were no significant effects of treatment on bowel symptoms, small bowel or colonic permeability, or colonic transit at 24 h. Rifaximin was associated with acceleration of ascending colon emptying (14.9±2.6 h placebo; 6.9±0.9 h rifaximin; P=0.033) and overall colonic transit at 48 h (geometric center 4.0±0.3 h placebo; 4.7±0.2 h rifaximin; P=0.046); however, rifaximin did not significantly alter total fecal bile acids per g of stool or proportion of individual bile acids or acetate, propionate, or butyrate in stool. Microbiome studies showed strong associations within subjects, modest associations with time across subjects, and a small but significant association of microbial richness with treatment arm (rifaximin vs. treatment). In nonconstipated IBS without documented SIBO, rifaximin treatment is associated with acceleration of colonic transit and changes in microbial richness; the mechanism for reported symptomatic benefit requires further investigation.

  14. Responses in colonic microbial community and gene expression of pigs to a long-term high resistant starch diet

    PubMed Central

    Sun, Yue; Zhou, Liping; Fang, Lingdong; Su, Yong; Zhu, Weiyun

    2015-01-01

    Intake of raw potato starch (RPS) has been associated with various intestinal health benefits, but knowledge of its mechanism in a long-term is limited. The aim of this study was to investigate the effects of long-term intake of RPS on microbial composition, genes expression profiles in the colon of pigs. Thirty-six Duroc × Landrace × Large White growing barrows were randomly allocated to corn starch (CS) and RPS groups with a randomized block design. Each group consisted of six replicates (pens), with three pigs per pen. Pigs in the CS group were offered a corn/soybean-based diet, while pigs in the RPS group were put on a diet in which 230 g/kg (growing period) or 280 g/kg (finishing period) purified CS was replaced with purified RPS during a 100-day trial. Real-time PCR assay showed that RPS significantly decreased the number of total bacteria in the colonic digesta. MiSeq sequencing of the V3-V4 region of the 16S rRNA genes showed that RPS significantly decreased the relative abundance of Clostridium, Treponema, Oscillospira, Phascolarctobacterium, RC9 gut group, and S24-7-related operational taxonomic units (OTUs), and increased the relative abundance of Turicibacter, Blautia, Ruminococcus, Coprococcus, Marvinbryantia, and Ruminococcus bromii-related OTUs in colonic digesta and mucosa. Analysis of the colonic transcriptome profiles revealed that the RPS diet changed the colonic expression profile of the host genes mainly involved in immune response pathways. RPS significantly increased proinflammartory cytokine IL-1β gene expression and suppressed genes involved in lysosome. Our findings suggest that long-term intake of high resistant starch (RS) diet may result in both positive and negative roles in gut health. PMID:26379652

  15. Preweaning modulation of intestinal microbiota by oligosaccharides or amoxicillin can contribute to programming of adult microbiota in rats.

    PubMed

    Morel, Fanny B; Oozeer, Raish; Piloquet, Hugues; Moyon, Thomas; Pagniez, Anthony; Knol, Jan; Darmaun, Dominique; Michel, Catherine

    2015-03-01

    Increasing evidence suggests that early nutrition has programming effects on adult health. Identifying mechanisms underlying nutritional programming would aid in the design of new disease prevention strategies. The intestinal microbiota could be a key player in this programming because it affects host metabolic homeostasis, postnatal gut colonization is sensitive to early nutrition, and initial microbial set-up is thought to shape microbiota composition for life. The aim of this study was to determine whether early manipulation of intestinal microbiota actually programs adult microbiota in rats. Suckling rats pups were supplemented with fructo-oligosaccharides, galacto-oligosaccharides/long-chain fructan mix (GOS/lcF, 9/1), acidic oligosaccharides, amoxicillin, or vehicle from the fifth to the fourteenth day of life, and weaned to standard chow at day 21. Ceco-colonic microbiota was characterized at 14 and 131 d by real-time polymerase chain reaction analysis. At day 14, all treatments affected microbiota. Amoxicillin had the most significant effect. All oligosaccharides decreased Firmicutes levels, whereas only fructo-oligosaccharides and GOS/lcF increased bifidobacteria. At day 131, most of these effects had faded away but a significant, albeit minor, adult microbiota programming was observed for rats that received GOS/lcF mix before weaning, regarding Roseburia intestinalis cluster, one subdivision of the Erysipelotrichaceae family as well as butyrate kinase gene. As revealed by a targeted quantitative polymerase chain reaction approach, programming of adult intestinal microbiota seems to vary according to the nature of the preweaning microbiotal modulator. This suggests that intestinal microbiota may, only under specific circumstances, serve as a relay of neonatal nutrition and thus potentially contribute to nutritional programming of host physiology. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Colonization in the Photic Zone and Subsequent Changes during Sinking Determine Bacterial Community Composition in Marine Snow

    PubMed Central

    Thiele, Stefan; Fuchs, Bernhard M.; Amann, Rudolf

    2014-01-01

    Due to sampling difficulties, little is known about microbial communities associated with sinking marine snow in the twilight zone. A drifting sediment trap was equipped with a viscous cryogel and deployed to collect intact marine snow from depths of 100 and 400 m off Cape Blanc (Mauritania). Marine snow aggregates were fixed and washed in situ to prevent changes in microbial community composition and to enable subsequent analysis using catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH). The attached microbial communities collected at 100 m were similar to the free-living community at the depth of the fluorescence maximum (20 m) but different from those at other depths (150, 400, 550, and 700 m). Therefore, the attached microbial community seemed to be “inherited” from that at the fluorescence maximum. The attached microbial community structure at 400 m differed from that of the attached community at 100 m and from that of any free-living community at the tested depths, except that collected near the sediment at 700 m. The differences between the particle-associated communities at 400 m and 100 m appeared to be due to internal changes in the attached microbial community rather than de novo colonization, detachment, or grazing during the sinking of marine snow. The new sampling method presented here will facilitate future investigations into the mechanisms that shape the bacterial community within sinking marine snow, leading to better understanding of the mechanisms which regulate biogeochemical cycling of settling organic matter. PMID:25527538

  17. Microbial stowaways: inimitable survivors or hopeless pioneers?

    PubMed

    Siefert, Janet L; Souza, Valeria; Eguiarte, Luis; Olmedo-Alvarez, Gabriela

    2012-07-01

    The resiliency of prokaryotic life has provided colonization across the globe and in the recesses of Earth's most extreme environments. Horizontal gene transfer provides access to a global bank of genetic resources that creates diversity and allows real-time adaptive potential to the clonal prokaryotic world. We assess the likelihood that this Earth-based strategy could provide survival and adaptive potential, in the case of microbial stowaways off Earth.

  18. PhyloChip microarray analysis reveals altered gastrointestinal microbial communities in a rat model of colonic hypersensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, T.A.; Holmes, S.; Alekseyenko, A.V.

    Irritable bowel syndrome (IBS) is a chronic, episodic gastrointestinal disorder that is prevalent in a significant fraction of western human populations; and changes in the microbiota of the large bowel have been implicated in the pathology of the disease. Using a novel comprehensive, high-density DNA microarray (PhyloChip) we performed a phylogenetic analysis of the microbial community of the large bowel in a rat model in which intracolonic acetic acid in neonates was used to induce long lasting colonic hypersensitivity and decreased stool water content and frequency, representing the equivalent of human constipation-predominant IBS. Our results revealed a significantly increased compositionalmore » difference in the microbial communities in rats with neonatal irritation as compared with controls. Even more striking was the dramatic change in the ratio of Firmicutes relative to Bacteroidetes, where neonatally irritated rats were enriched more with Bacteroidetes and also contained a different composition of species within this phylum. Our study also revealed differences at the level of bacterial families and species. The PhyloChip is a useful and convenient method to study enteric microflora. Further, this rat model system may be a useful experimental platform to study the causes and consequences of changes in microbial community composition associated with IBS.« less

  19. Rumen Bacterial Diversity of 80 to 110-Day-Old Goats Using 16S rRNA Sequencing

    PubMed Central

    Han, Xufeng; Yang, Yuxin; Yan, Hailong; Wang, Xiaolong; Qu, Lei; Chen, Yulin

    2015-01-01

    The ability of rumen microorganisms to use fibrous plant matter plays an important role in ruminant animals; however, little information about rumen colonization by microbial populations after weaning has been reported. In this study, high-throughput sequencing was used to investigate the establishment of this microbial population in 80 to 110-day-old goats. Illumina sequencing of goat rumen samples yielded 101,356,610 nucleotides that were assembled into 256,868 reads with an average read length of 394 nucleotides. Taxonomic analysis of metagenomic reads indicated that the predominant phyla were distinct at different growth stages. The phyla Firmicutes and Synergistetes were predominant in samples taken from 80 to 100-day-old goats, but Bacteroidetes and Firmicutes became the most abundant phyla in samples from 110-day-old animals. There was a remarkable variation in the microbial populations with age; Firmicutes and Synergistetes decreased after weaning, but Bacteroidetes and Proteobacteria increased from 80 to 110 day of age. These findings suggested that colonization of the rumen by microorganisms is related to their function in the rumen digestive system. These results give a better understanding of the role of rumen microbes and the establishment of the microbial population, which help to maintain the host’s health and improve animal performance. PMID:25700157

  20. Bacteria with Phosphate Solubilizing Capacity Alter Mycorrhizal Fungal Growth Both Inside and Outside the Root and in the Presence of Native Microbial Communities.

    PubMed

    Ordoñez, Yuli Marcela; Fernandez, Belen Rocio; Lara, Lidia Susana; Rodriguez, Alia; Uribe-Vélez, Daniel; Sanders, Ian R

    2016-01-01

    Arbuscular mycorrhizal fungi (AMF) and phosphate solubilizing Pseudomonas bacteria (PSB) could potentially interact synergistically because PSB solubilize phosphate into a form that AMF can absorb and transport to the plant. However, very little is known about the interactions between these two groups of microorganisms and how they influence the growth of each other. We tested whether different strains of bacteria, that have the capacity to solubilize phosphate, are able to grow along AMF hyphae and differentially influence the growth of AMF both outside the roots of carrot in in vitro conditions and inside the roots of potato in the presence of a microbial community. We found strong effects of AMF on the growth of the different bacterial strains. Different bacterial strains also had very strong effects on the growth of AMF extraradical hyphae outside the roots of carrot and on colonization of potato roots by AMF. The differential effects on colonization occurred in the presence of a microbial community. Our results show that these two important groups of rhizosphere microorganisms indeed interact with each other. Such interactions could potentially lead to synergistic effects between the two groups but this could depend on whether the bacteria truly solubilize phosphate in the rhizosphere in the presence of microbial communities.

  1. Gut Microbial Diversity in Rat Model Induced by Rhubarb

    PubMed Central

    Peng, Ying; Wu, Chunfu; Yang, Jingyu; Li, Xiaobo

    2014-01-01

    Rhubarb is often used to establish chronic diarrhea and spleen (Pi)-deficiency syndrome animal models in China. In this study, we utilized the enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) method to detect changes in bacterial diversity in feces and the bowel mucosa associated with this model. Total microbial genomic DNA from the small bowel (duodenum, jejunum, and ileum), large bowel (proximal colon, distal colon, and rectum), cecum, and feces of normal and rhubarb-exposed rats were used as templates for the ERIC-PCR analysis. We found that the fecal microbial composition did not correspond to the bowel bacteria mix. More bacterial diversity was observed in the ileum of rhubarb-exposed rats (P<0.05). Furthermore, a 380 bp product was found to be increased in rhubarb-exposed rats both in faces and the bowel mucosa. The product was cloned and sequenced and showed high similarity with regions of the Bacteroides genome. AS a result of discriminant analysis with the SPSS software, the Canonical Discriminant Function Formulae for model rats was established. PMID:25048267

  2. Copolymers enhance selective bacterial community colonization for potential root zone applications.

    PubMed

    Pham, Vy T H; Murugaraj, Pandiyan; Mathes, Falko; Tan, Boon K; Truong, Vi Khanh; Murphy, Daniel V; Mainwaring, David E

    2017-11-21

    Managing the impact of anthropogenic and climate induced stress on plant growth remains a challenge. Here we show that polymeric hydrogels, which maintain their hydrous state, can be designed to exploit functional interactions with soil microorganisms. This microbial enhancement may mitigate biotic and abiotic stresses limiting productivity. The presence of mannan chains within synthetic polyacrylic acid (PAA) enhanced the dynamics and selectivity of bacterial ingress in model microbial systems and soil microcosms. Pseudomonas fluorescens exhibiting high mannan binding adhesins showed higher ingress and localised microcolonies throughout the polymeric network. In contrast, ingress of Bacillus subtilis, lacking adhesins, was unaltered by mannan showing motility comparable to bulk liquids. Incubation within microcosms of an agricultural soil yielded hydrogel populations significantly increased from the corresponding soil. Bacterial diversity was markedly higher in mannan containing hydrogels compared to both control polymer and soil, indicating enhanced selectivity towards microbial families that contain plant beneficial species. Here we propose functional polymers applied to the potential root zone which can positively influence rhizobacteria colonization and potentially plant growth as a new approach to stress tolerance.

  3. Archaeal and bacterial diversity in two hot spring microbial mats from a geothermal region in Romania.

    PubMed

    Coman, Cristian; Drugă, Bogdan; Hegedus, Adriana; Sicora, Cosmin; Dragoş, Nicolae

    2013-05-01

    The diversity of archaea and bacteria was investigated in two slightly alkaline, mesophilic hot springs from the Western Plain of Romania. Phylogenetic analysis showed a low diversity of Archaea, only three Euryarchaeota taxa being detected: Methanomethylovorans thermophila, Methanomassiliicoccus luminyensis and Methanococcus aeolicus. Twelve major bacterial groups were identified, both springs being dominated by Cyanobacteria, Chloroflexi and Proteobacteria. While at the phylum/class-level the microbial mats share a similar biodiversity; at the species level the geothermal springs investigated seem to be colonized by specific consortia. The dominant taxa were filamentous heterocyst-containing Fischerella, at 45 °C and non-heterocyst Leptolyngbya and Geitlerinema, at 55 °C. Other bacterial taxa (Thauera sp., Methyloversatilis universalis, Pannonibacter phragmitetus, Polymorphum gilvum, Metallibacterium sp. and Spartobacteria) were observed for the first time in association with a geothermal habitat. Based on their bacterial diversity the two mats were clustered together with other similar habitats from Europe and part of Asia, most likely the water temperature playing a major role in the formation of specific microbial communities that colonize the investigated thermal springs.

  4. Impact of microbial derived secondary bile acids on colonization resistance against Clostridium difficile in the gastrointestinal tract.

    PubMed

    Winston, Jenessa A; Theriot, Casey M

    2016-10-01

    Clostridium difficile is an anaerobic, Gram positive, spore-forming bacillus that is the leading cause of nosocomial gastroenteritis. Clostridium difficile infection (CDI) is associated with increasing morbidity and mortality, consequently posing an urgent threat to public health. Recurrence of CDI after successful treatment with antibiotics is high, thus necessitating discovery of novel therapeutics against this pathogen. Susceptibility to CDI is associated with alterations in the gut microbiota composition and bile acid metabolome, specifically a loss of microbial derived secondary bile acids. This review aims to summarize in vitro, ex vivo, and in vivo studies done by our group and others that demonstrate how secondary bile acids affect the different stages of the C. difficile life cycle. Understanding the dynamic interplay of C. difficile and microbial derived secondary bile acids within the gastrointestinal tract will shed light on how bile acids play a role in colonization resistance against C. difficile. Rational manipulation of secondary bile acids may prove beneficial as a treatment for patients with CDI. Published by Elsevier Ltd.

  5. [Microbial colonization of the caviar of the sturgeon fishes].

    PubMed

    Boĭko, A V; Pogorelova, N P; Zhuravlëva, L A; Lartseva, L V

    1993-11-01

    Samples of black caviar in 47.7% of cases are contaminated by opportunistic bacteria Aeromonas, Proteus, Vibrio, V. parahaemolyticus. Standardization of these micro-organisms content in black caviar is recommended.

  6. Taking Root: Enduring Effect of Rhizosphere Bacterial Colonization in Mangroves

    PubMed Central

    Pinto, Fernando N.; Egas, Conceição; Almeida, Adelaide; Cunha, Angela; Mendonça-Hagler, Leda C. S.; Smalla, Kornelia

    2010-01-01

    Background Mangrove forests are of global ecological and economic importance, but are also one of the world's most threatened ecosystems. Here we present a case study examining the influence of the rhizosphere on the structural composition and diversity of mangrove bacterial communities and the implications for mangrove reforestation approaches using nursery-raised plants. Methodology/Principal Findings A barcoded pyrosequencing approach was used to assess bacterial diversity in the rhizosphere of plants in a nursery setting, nursery-raised transplants and native (non-transplanted) plants in the same mangrove habitat. In addition to this, we also assessed bacterial composition in the bulk sediment in order to ascertain if the roots of mangrove plants affect sediment bacterial composition. We found that mangrove roots appear to influence bacterial abundance and composition in the rhizosphere. Due to the sheer abundance of roots in mangrove habitat, such an effect can have an important impact on the maintenance of bacterial guilds involved in nutrient cycling and other key ecosystem functions. Surprisingly, we also noted a marked impact of initial nursery conditions on the rhizosphere bacterial composition of replanted mangrove trees. This result is intriguing because mangroves are periodically inundated with seawater and represent a highly dynamic environment compared to the more controlled nursery environment. Conclusions/Significance In as far as microbial diversity and composition influences plant growth and health, this study indicates that nursery conditions and early microbial colonization patterns of the replants are key factors that should be considered during reforestation projects. In addition to this, our results provide information on the role of the mangrove rhizosphere as a habitat for bacteria from estuarine sediments. PMID:21124923

  7. Gut Colonization by Methanogenic Archaea Is Associated with Organic Dairy Consumption in Children

    PubMed Central

    van de Pol, Jeroen A. A.; van Best, Niels; Mbakwa, Catherine A.; Thijs, Carel; Savelkoul, Paul H.; Arts, Ilja C. W.; Hornef, Mathias W.; Mommers, Monique; Penders, John

    2017-01-01

    The gut microbiota represents a complex and diverse ecosystem with a profound impact on human health, promoting immune maturation, and host metabolism as well as colonization resistance. Important members that have often been disregarded are the methanogenic archaea. Methanogenic archaea reduce hydrogen levels via the production of methane, thereby stimulating food fermentation by saccharolytic bacteria. On the other hand, colonization by archaea has been suggested to promote a number of gastrointestinal and metabolic diseases such as colorectal cancer, inflammatory bowel disease, and obesity. Archaea have been shown to be absent during infancy while omnipresent in school-aged children, suggesting that colonization may result from environmental exposure during childhood. The factors that determine the acquisition of methanogenic archaea, however, have remained undefined. Therefore, we aimed to explore determinants associated with the acquisition of the two main gastrointestinal archaeal species, Methanobrevibacter smithii and Methanosphaera stadtmanae, in children. Within the context of the KOALA Birth Cohort Study, fecal samples from 472 children aged 6–10 years were analyzed for the abundance of M. smithii and M. stadtmanae using qPCR. Environmental factors such as diet, lifestyle, hygiene, child rearing, and medication were recorded by repeated questionnaires. The relationship between these determinants and the presence and abundance of archaea was analyzed by logistic and linear regression respectively. Three hundred and sixty-nine out of the 472 children (78.2%) were colonized by M. smithii, and 39 out of the 472 children (8.3%) by M. stadtmanae. The consumption of organic yogurt (odds ratio: 4.25, CI95: 1.51; 11.95) and the consumption of organic milk (odds ratio: 5.58, CI95: 1.83; 17.01) were positively associated with the presence of M. smithii. We subsequently screened raw milk, processed milk, and yogurt samples for methanogens. We identified milk products as possible source for M. smithii, but not M. stadtmanae. In conclusion, M. smithii seems present in milk products and their consumption may determine archaeal gut colonization in children. For the first time, a large variety of determinants have been explored in association with gut colonization by methanogenic archaea. Although more information is needed to confirm and unravel the mechanisms in detail, it provides new insights on microbial colonization processes in early life. PMID:28344572

  8. Study to determine the aquatic biological effects on the Solid Rocket Booster (SRB). [technique for monitoring marine microbial fouling

    NASA Technical Reports Server (NTRS)

    Colwell, R. R.; Zachary, A.

    1979-01-01

    The surface of the reusable solid rocket boosters (SRB), which are jettisoned from the Shuttle Orbiter to parachute in the sea, are studied for colonization by marine life. Techniques for monitoring the marine microbial fouling of SRB materials are presented. An assessment of the nature and degree of the biofouling expected on the SRB materials in the recovery zone is reported. A determination of the degree and the effects of seasonal variation occurring on microbial fouling in the retrieval zone waters is made. The susceptibility of the SRB parachute recovery system to microbial fouling and biodeterioration is investigated. The development of scanning electron microscopy and epifluorescence microscopic observation techniques for rapid assessment of microbial fouling is discussed.

  9. Probiotics and Diverticular Disease: Evidence-based?

    PubMed

    Lahner, Edith; Annibale, Bruno

    Diverticular disease (DD) is a common gastrointestinal condition. Clinical spectrum ranges from asymptomatic diverticulosis to symptomatic uncomplicated or complicated DD. Symptoms related to uncomplicated DD are not specific and may be indistinguishable from those of irritable bowel syndrome. Low-grade inflammation, altered intestinal microbiota, visceral hypersensitivity, and abnormal colonic motility have been identified as factors potentially contributing to symptoms. Probiotics may modify the gut microbial balance leading to health benefits. Probiotics, due to their anti-inflammatory effects and ability to maintain an adequate bacterial colonization in the colon, are promising treatment options for DD. This review focuses on the available evidence on the efficacy of prebiotics in uncomplicated DD.

  10. Pesticide dissipation and microbial community changes in a biopurification system: influence of the rhizosphere.

    PubMed

    Diez, M C; Elgueta, S; Rubilar, O; Tortella, G R; Schalchli, H; Bornhardt, C; Gallardo, F

    2017-12-01

    The dissipation of atrazine, chlorpyrifos and iprodione in a biopurification system and changes in the microbial and some biological parameters influenced by the rhizosphere of Lolium perenne were studied in a column system packed with an organic biomixture. Three column depths were analyzed for residual pesticides, peroxidase, fluorescein diacetate activity and microbial communities. Fungal colonization was analyzed by confocal laser scanning microscopy to assess the extent of its proliferation in wheat straw. The L. perenne rhizosphere enhanced pesticide dissipation and negligible pesticide residues were detected at 20-30 cm column depth. Atrazine, chlorpyrifos and iprodione removal was 82, 89 and 74% respectively in the first 10 cm depth for columns with vegetal cover. The presence of L. perenne in contaminated columns stimulated peroxidase activity in all three column depth sections. Fluorescein diacetate activity decreased over time in all column sections with the highest values in biomixtures with vegetal cover. Microbial communities, analyzed by PCR-DGGE, were not affected by the pesticide mixture application, presenting high values of similarity (>65%) with and without vegetal cover. Microbial abundance of Actinobacteria varied according to treatment and no clear link was observed. However, bacterial abundance increased over time and was similar with and without vegetal cover. On the other hand, fungal abundance decreased in all sections of columns after 40 days, but an increase was observed in response to pesticide application. Fungal colonization and straw degradation during pesticide dissipation were verified by monitoring the lignin autofluorescence loss.

  11. Reduced Pms2 expression in non-neoplastic flat mucosa from patients with colon cancer correlates with reduced apoptosis competence.

    PubMed

    Bernstein, Harris; Prasad, Anil; Holubec, Hana; Bernstein, Carol; Payne, Claire M; Ramsey, Lois; Dvorakova, Katerina; Wilson, Megan; Warneke, James A; Garewal, Harinder

    2006-06-01

    Pms2 protein is a component of the DNA mismatch repair complex responsible both for post-replication correction of DNA nucleotide mispairs and for early steps in apoptosis. Germline mutations in DNA mismatch repair genes give rise to hereditary non-polyposis colon cancer, which accounts for about 4% of colon cancers. However, little is known about the expression of mismatch repair proteins in relation to sporadic colon cancer, which accounts for the great majority of colon cancers. Multiple samples were taken from the non-neoplastic flat mucosa of colon resections from patients with no colonic neoplasia, a tubulovillous adenoma, or an adenocarcinoma. Expression of Pms2 was assessed using semiquantitative immunohistochemistry. Apoptosis was assessed in polychrome-stained epoxy sections using morphologic criteria. Samples from patients without colonic neoplasia had moderate to strong staining for Pms2 in cell nuclei at the base of crypts, while samples from 2 of the 3 colons with a tubulovillous adenoma, and from 6 of the 10 colons with adenocarcinomas, showed reduced Pms2 expression. Samples from patients with an adenocarcinoma that had reduced Pms2 expression also exhibited reduced apoptosis capability in nearby tissue samples, evidenced when this paired tissue was stressed ex vivo with bile acid. Reduced Pms2 expression in the colonic mucosa may be an early step in progression to colon cancer. This reduction may cause decreased mismatch repair, increased genetic instability, and/or reduced apoptotic capability. Immunohistochemical determination of reduced Pms2 expression, upon further testing, may prove to be a promising early biomarker of risk of progression to malignancy.

  12. Multifaceted Role of IRAK-M in the Promotion of Colon Carcinogenesis via Barrier Dysfunction and STAT3 Oncoprotein Stabilization in Tumors.

    PubMed

    Jenkins, Brendan J

    2016-05-09

    Dysregulated interactions between the host immune system and gut microbiota can underpin inflammation, leading to colorectal cancer (CRC). In this issue of Cancer Cell, Kesselring et al. reveal a bimodal role of the TLR/IL-1R-signaling negative regulator, IRAK-M, in promoting tumoral microbial colonization and STAT3 oncoprotein stabilization during CRC. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Effects of dietary fibre source on microbiota composition in the large intestine of suckling piglets.

    PubMed

    Zhang, Lingli; Mu, Chunlong; He, Xiangyu; Su, Yong; Mao, Shengyong; Zhang, Jing; Smidt, Hauke; Zhu, Weiyun

    2016-07-01

    This study aimed to investigate the effects of dietary fibre sources on the gut microbiota in suckling piglets, and to test the hypothesis that a moderate increase of dietary fibre may affect the gut microbiota during the suckling period. Suckling piglets were fed different fibre-containing diets or a control diet from postnatal day 7 to 22. Digesta samples from cecum, proximal colon and distal colon were used for Pig Intestinal Tract Chip analysis. The data showed that the effects of fibre-containing diet on the gut microbiota differed in the fibre source and gut location. The alfalfa diet increased Clostridium cluster XIVb and Sporobacter termitidis in the cecum compared to the pure cellulose diet. Compared to the control diet, the alfalfa diet also increased Coprococcus eutactus in the distal colon, while the pure cellulose diet decreased Eubacterium pyruvativorans in the cecum. The pure cellulose diet increased Prevotella ruminicola compared to the wheat bran diet. Interestingly, the alfalfa group had the lowest abundance of the potential pathogen Streptococcus suis in the cecum and distal colon. These results indicated that a moderate increase in dietary fibres affected the microbial composition in suckling piglets, and that the alfalfa inclusion produced some beneficial effects on the microbial communities. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. The inside tract: The appendicular, cecal, and colonic microbiome of captive aye-ayes.

    PubMed

    Greene, Lydia K; McKenney, Erin A

    2018-04-17

    The aye-aye (Daubentonia madagascariensis) is famous for its feeding strategies that target structurally defended, but high-quality resources. Nonetheless, the influence of this digestible diet on gut microbial contributions to aye-aye metabolism and nutrition remains unexplored. When four captive aye-ayes were unexpectedly lost to persin toxicity, we opportunistically collected samples along the animals' gastrointestinal tracts. Here we describe the diversity and composition of appendicular, cecal, and colonic consortia relative to the aye-aye's unusual feeding ecology. During necropsies, we collected digestive content from the appendix, cecum, and distal colon. We determined microbiome structure at these sites via amplicon sequencing of the 16S rRNA gene and an established bioinformatics pipeline. The aye-ayes' microbiomes exhibited low richness and diversity compared to the consortia of other lemurs housed at the same facility, and were dominated by a single genus, Prevotella. Appendicular microbiomes were differentiated from more homogenized cecal and colonic consortia by lower richness and diversity, greater evenness, and a distinct taxonomic composition. The simplicity of the aye-aye's gut microbiome could be attributed to captivity-induced dysbiosis, or it may reflect this species' extreme foraging investment in a digestible diet that requires little microbial metabolism. Site-specific appendicular consortia, but more similar cecal and colonic consortia, support the theory that the appendix functions as a safe-house for beneficial bacteria, and confirm fecal communities as fairly reliable proxies for consortia along the lower gut. We encourage others to make similar use of natural or accidental losses for probing the primate gut microbiome. © 2018 Wiley Periodicals, Inc.

  15. Candida albicans Inhibits Pseudomonas aeruginosa Virulence through Suppression of Pyochelin and Pyoverdine Biosynthesis

    PubMed Central

    Lopez-Medina, Eduardo; Fan, Di; Coughlin, Laura A.; Ho, Evi X.; Lamont, Iain L.; Reimmann, Cornelia; Hooper, Lora V.; Koh, Andrew Y.

    2015-01-01

    Bacterial-fungal interactions have important physiologic and medical ramifications, but the mechanisms of these interactions are poorly understood. The gut is host to trillions of microorganisms, and bacterial-fungal interactions are likely to be important. Using a neutropenic mouse model of microbial gastrointestinal colonization and dissemination, we show that the fungus Candida albicans inhibits the virulence of the bacterium Pseudomonas aeruginosa by inhibiting P. aeruginosa pyochelin and pyoverdine gene expression, which plays a critical role in iron acquisition and virulence. Accordingly, deletion of both P. aeruginosa pyochelin and pyoverdine genes attenuates P. aeruginosa virulence. Heat-killed C. albicans has no effect on P. aeruginosa, whereas C. albicans secreted proteins directly suppress P. aeruginosa pyoverdine and pyochelin expression and inhibit P. aeruginosa virulence in mice. Interestingly, suppression or deletion of pyochelin and pyoverdine genes has no effect on P. aeruginosa’s ability to colonize the GI tract but does decrease P. aeruginosa’s cytotoxic effect on cultured colonocytes. Finally, oral iron supplementation restores P. aeruginosa virulence in P. aeruginosa and C. albicans colonized mice. Together, our findings provide insight into how a bacterial-fungal interaction can modulate bacterial virulence in the intestine. Previously described bacterial-fungal antagonistic interactions have focused on growth inhibition or colonization inhibition/modulation, yet here we describe a novel observation of fungal-inhibition of bacterial effectors critical for virulence but not important for colonization. These findings validate the use of a mammalian model system to explore the complexities of polymicrobial, polykingdom infections in order to identify new therapeutic targets for preventing microbial disease. PMID:26313907

  16. Characterization of Microbial Community in Lascaux Cave by High Throughput Sequencing

    NASA Astrophysics Data System (ADS)

    Alonso, Lise; Dubost, Audrey; Luis, Patricia; Pommier, Thomas; Moënne-Loccoz, Yvan

    2017-04-01

    The Lascaux Cave in South-Est France is an archeological landmark renowned for its Paleolithic paintings dating back c.18.000 years. Extensive touristic frequenting and repeated chemical treatments have resulted in the development of microbial stains on cave walls, which is a major issue in terms of art conservation. Therefore, it is of prime importance to better understand the microbial ecology of Lascaux Cave. Like many other caves, Lascaux is quite heterogeneous in terms of the nature and surface properties of rock walls within cave rooms, as well as the succession of rooms/galleries from the entrance to deeper areas of the cave. Lascaux Cave displays an additional levels of heterogeneity related to the presence of discontinuous stains on certain types of cave walls. We compared the microbial community (i.e. both prokaryotic and eukaryotic microbial populations) colonizing cave walls of different rooms/galleries, in and outside stains and in different cave layers, in successive years. Quantitative PCR analysis of cave wall samples gave in the order of 102 copies of 18S rRNA genes and 105 copies of 16S rRNA genes per ng of DNA, indicating significant colonization of all cave walls by micro-eukaryotes and especially bacteria. Illumina metagenomic analyses of cave wall samples was carried out based on four ribosomal DNA markers targeting bacteria, archaea, fungi, and other micro-eukaryotes. The results showed that the four microbial communities were highly diverse in and outside stains, as several hundred genera of microorganisms were identified in each. Proteobacteria were more prominent within stains whereas Bacteroidetes and Sordariomycetes were more prominent outside stains. High-throughput sequencing also showed that the nature/surface properties of cave walls were the main factor determining the structure and composition of microbial communities, ahead of the other heterogeneity factors studied i.e. location within the cave, presence of stain and sampling season. This work provides a global view of the microbial community of Lascaux Cave, which could be useful to guide conservation efforts.

  17. Effect of surface nano/micro-structuring on the early formation of microbial anodes with Geobacter sulfurreducens: Experimental and theoretical approaches.

    PubMed

    Champigneux, Pierre; Renault-Sentenac, Cyril; Bourrier, David; Rossi, Carole; Delia, Marie-Line; Bergel, Alain

    2018-06-01

    Smooth and nano-rough flat gold electrodes were manufactured with controlled Ra of 0.8 and 4.5nm, respectively. Further nano-rough surfaces (Ra 4.5nm) were patterned with arrays of micro-pillars 500μm high. All these electrodes were implemented in pure cultures of Geobacter sulfurreducens, under a constant potential of 0.1V/SCE and with a single addition of acetate 10mM to check the early formation of microbial anodes. The flat smooth electrodes produced an average current density of 0.9A·m -2 . The flat nano-rough electrodes reached 2.5A·m -2 on average, but with a large experimental deviation of ±2.0A·m -2 . This large deviation was due to the erratic colonization of the surface but, when settled on the surface, the cells displayed current density that was directly correlated to the biofilm coverage ratio. The micro-pillars considerably improved the experimental reproducibility by offering the cells a quieter environment, facilitating biofilm development. Current densities of up to 8.5A·m -2 (per projected surface area) were thus reached, in spite of rate limitation due to the mass transport of the buffering species, as demonstrated by numerical modelling. Nano-roughness combined with micro-structuring increased current density by a factor close to 10 with respect to the smooth flat surface. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. The intestinal microbiome, probiotics and prebiotics in neurogastroenterology

    PubMed Central

    Saulnier, Delphine M.; Ringel, Yehuda; Heyman, Melvin B.; Foster, Jane A.; Bercik, Premysl; Shulman, Robert J.; Versalovic, James; Verdu, Elena F.; Dinan, Ted G.; Hecht, Gail; Guarner, Francisco

    2013-01-01

    The brain-gut axis allows bidirectional communication between the central nervous system (CNS) and the enteric nervous system (ENS), linking emotional and cognitive centers of the brain with peripheral intestinal functions. Recent experimental work suggests that the gut microbiota have an impact on the brain-gut axis. A group of experts convened by the International Scientific Association for Probiotics and Prebiotics (ISAPP) discussed the role of gut bacteria on brain functions and the implications for probiotic and prebiotic science. The experts reviewed and discussed current available data on the role of gut microbiota on epithelial cell function, gastrointestinal motility, visceral sensitivity, perception and behavior. Data, mostly gathered from animal studies, suggest interactions of gut microbiota not only with the enteric nervous system but also with the central nervous system via neural, neuroendocrine, neuroimmune and humoral links. Microbial colonization impacts mammalian brain development in early life and subsequent adult behavior. These findings provide novel insights for improved understanding of the potential role of gut microbial communities on psychological disorders, most particularly in the field of psychological comorbidities associated with functional bowel disorders like irritable bowel syndrome (IBS) and should present new opportunity for interventions with pro- and prebiotics. PMID:23202796

  19. Dysbiosis of the gut microbiota in disease

    PubMed Central

    Carding, Simon; Verbeke, Kristin; Vipond, Daniel T.; Corfe, Bernard M.; Owen, Lauren J.

    2015-01-01

    There is growing evidence that dysbiosis of the gut microbiota is associated with the pathogenesis of both intestinal and extra-intestinal disorders. Intestinal disorders include inflammatory bowel disease, irritable bowel syndrome (IBS), and coeliac disease, while extra-intestinal disorders include allergy, asthma, metabolic syndrome, cardiovascular disease, and obesity. In many of these conditions, the mechanisms leading to disease development involves the pivotal mutualistic relationship between the colonic microbiota, their metabolic products, and the host immune system. The establishment of a ‘healthy’ relationship early in life appears to be critical to maintaining intestinal homeostasis. Whilst we do not yet have a clear understanding of what constitutes a ‘healthy’ colonic microbiota, a picture is emerging from many recent studies identifying particular bacterial species associated with a healthy microbiota. In particular, the bacterial species residing within the mucus layer of the colon, either through direct contact with host cells, or through indirect communication via bacterial metabolites, may influence whether host cellular homeostasis is maintained or whether inflammatory mechanisms are triggered. In addition to inflammation, there is some evidence that perturbations in the gut microbiota is involved with the development of colorectal cancer. In this case, dysbiosis may not be the most important factor, rather the products of interaction between diet and the microbiome. High-protein diets are thought to result in the production of carcinogenic metabolites from the colonic microbiota that may result in the induction of neoplasia in the colonic epithelium. Ever more sensitive metabolomics methodologies reveal a suite of small molecules produced in the microbiome which mimic or act as neurosignallers or neurotransmitters. Coupled with evidence that probiotic interventions may alter psychological endpoints in both humans and in rodent models, these data suggest that CNS-related co-morbidities frequently associated with GI disease may originate in the intestine as a result of microbial dysbiosis. This review outlines the current evidence showing the extent to which the gut microbiota contributes to the development of disease. Based on evidence to date, we can assess the potential to positively modulate the composition of the colonic microbiota and ameliorate disease activity through bacterial intervention. PMID:25651997

  20. Colorectal Cancer: The Importance of Early Detection

    MedlinePlus

    ... of this page please turn JavaScript on. Feature: Colorectal Cancer The Importance of Early Detection Past Issues / Summer ... Cancer of the colon or rectum is called colorectal cancer. The colon and the rectum are part of ...

  1. Standard Specimen Reference Set: Colon — EDRN Public Portal

    Cancer.gov

    The Early Detection Research Network, Great Lakes-New England Clinical, Epidemiological and Validation Center (GLNE CVC) announces the availability of serum, plasma and urine samples for the early detection for colon cancer and validation studies.

  2. Bardoxolone Methyl Prevents High-Fat Diet-Induced Colon Inflammation in Mice

    PubMed Central

    Dinh, Chi H. L.; Yu, Yinghua; Szabo, Alexander; Zhang, Qingsheng; Zhang, Peng; Huang, Xu-Feng

    2016-01-01

    Obesity induces chronic, low-grade inflammation, which increases the risk of colon cancer. We investigated the preventive effects of Bardoxolone methyl (BARD) on high-fat diet (HFD)-induced inflammation in a mouse colon. Male C57BL/6J mice (n=7) were fed a HFD (HFD group), HFD plus BARD (10 mg/kg) in drinking water (HFD/BARD group), or normal laboratory chow diet (LFD group) for 21 weeks. In HFD mice, BARD reduced colon thickness and decreased colon weight per length. This was associated with an increase in colon crypt depth and the number of goblet cells per crypt. BARD reduced the expression of F4/80 and CD11c but increased CD206 and IL-10, indicating an anti-inflammatory effect. BARD prevented an increase of the intracellular pro-inflammatory biomarkers (NF-қB, p NF-қB, IL-6, TNF-α) and cell proliferation markers (Cox2 and Ki67). BARD prevented fat deposition in the colon wall and prevented microbial population changes. Overall, we report the preventive effects of BARD on colon inflammation in HFD-fed mice through its regulation of macrophages, NF-қB, cytokines, Cox2 and Ki67, fat deposition and microflora. PMID:26920068

  3. Effect of dietary fiber on microbial activity and microbial gas production in various regions of the gastrointestinal tract of pigs.

    PubMed Central

    Jensen, B B; Jørgensen, H

    1994-01-01

    The microbial activity, composition of the gas phase, and gas production rates in the gastrointestinal tract of pigs fed either a low- or a high-fiber diet were investigated. Dense populations of culturable anaerobic bacteria, high ATP concentrations, and high adenylate energy charges were found for the last third of the small intestine, indicating that substantial microbial activity takes place in that portion of the gut. The highest microbial activity (highest bacterium counts, highest ATP concentration, high adenylate energy charge, and low pH) was found in the cecum and proximal colon. Greater microbial activity was found in the stomach and all segments of the hindgut in the pigs fed the high-fiber diet than in the pigs fed the low-fiber diet. Considerable amounts of O2 were found in the stomach (around 5%), while the content of O2 in gas samples taken from all other parts of the gastrointestinal tract was < 1%. The highest concentrations and highest production rates for H2 were found in the last third of the small intestine. No methane could be detected in the stomach or the small intestine. The rate of production and concentration of methane in the cecum and the proximal colon were low, followed by a steady increase in the successive segments of the hindgut. A very good correlation between in vivo and in vitro measurements of methane production was found. The amount of CH4 produced by pigs fed the low-fiber diet was 1.4 liters/day per animal. Substantially larger amounts of CH4 were produced by pigs fed the high-fiber diet (12.5 liters/day)(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8031085

  4. Investigating microbial colonization in actively forming hydrothermal deposits using thermocouple arrays

    NASA Astrophysics Data System (ADS)

    Tivey, M. K.; Reysenbach, A. L.; Hirsch, M.; Steinberg, J.; Flores, G. E.

    2010-12-01

    Investigations of microbial colonization of very young hydrothermal deposits were carried out in 2009 at hydrothermal vents in the Lau Basin (SW Pacific), and in Guaymas Basin, Gulf of California, with a test deployment at the Rainbow vent field on the Mid-Atlantic Ridge in 2008. Our method entailed razing active chimneys and placing arrays of temperature probes (8 titanium-encased probes with their tips placed within a titanium cage) over the active flow. The chimneys that grew back through each array, encasing the temperature probe tips, were recovered after 2 to 15 days, along with temperature records. Molecular phylogenetic methods are being used to reveal the members of the microbial communities that developed in each chimney of known age and thermal history. A total of 15 array deployments were made at 10 vents in 6 different vent fields. Similar morphology beehives (with porous fine-grained interiors and steep temperature gradients across the outermost more-consolidated “wall”) formed at 2 of the 3 vents in Guaymas Basin (in 2 and 5 days at one vent and 3 and 15 days at a second), and at one vent each in the Kilo Moana (in 3 days), Tahi Moana (in 2.5 days), and Tui Malila (in 3 and 8 days) vent fields in the Lau Basin. In contrast, open conduit, thin walled chimneys grew within arrays at the Mariner vent field, Lau Basin, at 3 different vents (in 3 days at one vent, in 3 and 11 days at a second vent, and in 13 days at a third vent). A lower temperature (<280C) diffuser/spire with a filamentous biofilm formed in 15 days in an array at a hydrocarbon-rich vent in the Guaymas Basin. A similar biofilm formed after 6 days within an array placed earlier at this same vent, with little mineralization. Preliminary diversity data from the 6 and 15 day Guaymas deployments show an increased diversity of bacteria with time with initial colonizers being primarily sulfur-oxidizing Epsilonproteobacteria, with members of the Aquificales and Deltaproteobacteria appearing in the 15 day deposit. In contrast, the Archaea showed very little change in diversity over time, with members of the genera Thermococcus and Methanocaldococcus present in all samples analyzed, irrespective of location and timing of sampling. This is very different from a 72-hour test array deployment done in 2008 at Rainbow vent field, where the deposited soft material was colonized only by the sulfate-reducing archaeum, Archaeoglobus. These samples (8 beehives, 4 open conduit smokers, one diffuser spire, from chimneys of known composition, plus less consolidated biofilm material) are all of known age, and fluids were collected from 7 of the 10 vents. This suite of samples will allow comparisons to data from 2003 (Page et al., 2008, Env. Micr.), study of the potential impact of fluid chemistry, mineralogy/texture, and time on microbial diversity, and testing of hypotheses about microbial colonization and succession.

  5. Hydrocarbon degradation and plant colonization of selected bacterial strains isolated from the rhizsophere and plant interior of Italian ryegrass and Birdsfoot trefoil

    NASA Astrophysics Data System (ADS)

    Sohail, Y.; Andria, V.; Reichenauer, T. G.; Sessitsch, A.

    2009-04-01

    Hydrocarbon-degrading strains were isolated from the rhizosphere, root and shoot interior of Italian ryegrass (Lolium multiflorum var. Taurus), Birdsfoot trefoil (Lotus corniculatus var. Leo) grown in a soil contaminated with petroleum oil. Strains were tested regarding their phylogeny and their degradation efficiency. The most efficient strains were tested regarding their suitability to be applied for phytoremediation of diesel oils. Sterilized and non-sterilized agricultural soil, with and with out compost, were spiked with diesel and used for planting Italian ryegrass and birdsfoot trefoil. Four selected strains with high degradation activities, derived from the rhizosphere and plant interior, were selected for individual inoculation. Plants were harvested at flowering stage and plant biomass and hydrocarbon degradation was determined. Furthermore, it was investigated to which extent the inoculant strains were able to survive and colonize plants. Microbial community structures were analysed by 16S rRNA and alkB gene analysis. Results showed efficient colonization by the inoculant strains and improved degradation by the application of compost combined with inoculation as well as on microbial community structures will be presented.

  6. Microbial colonization of halite from the hyper-arid Atacama Desert studied by Raman spectroscopy.

    PubMed

    Vítek, P; Edwards, H G M; Jehlicka, J; Ascaso, C; De los Ríos, A; Valea, S; Jorge-Villar, S E; Davila, A F; Wierzchos, J

    2010-07-13

    The hyper-arid core of the Atacama Desert (Chile) is the driest place on Earth and is considered a close analogue to the extremely arid conditions on the surface of Mars. Microbial life is very rare in soils of this hyper-arid region, and autotrophic micro-organisms are virtually absent. Instead, photosynthetic micro-organisms have successfully colonized the interior of halite crusts, which are widespread in the Atacama Desert. These endoevaporitic colonies are an example of life that has adapted to the extreme dryness by colonizing the interior of rocks that provide enhanced moisture conditions. As such, these colonies represent a novel example of potential life on Mars. Here, we present non-destructive Raman spectroscopical identification of these colonies and their organic remnants. Spectral signatures revealed the presence of UV-protective biomolecules as well as light-harvesting pigments pointing to photosynthetic activity. Compounds of biogenic origin identified within these rocks differed depending on the origins of specimens from particular areas in the desert, with differing environmental conditions. Our results also demonstrate the capability of Raman spectroscopy to identify biomarkers within rocks that have a strong astrobiological potential.

  7. Role of Vancomycin as a Component of Oral Nonabsorbable Antibiotics for Microbial Suppression in Leukemic Patients

    PubMed Central

    Bender, John F.; Schimpff, Stephen C.; Young, Viola Mae; Fortner, Clarence L.; Brouillet, Mary D.; Love, Lillian J.; Wiernik, Peter H.

    1979-01-01

    A total of 38 adult patients with acute leukemia who were undergoing remission induction chemotherapy in regular patient rooms were randomly allocated to one of two oral nonabsorbable antibiotic regimens for infection prophylaxis (gentamicin, vancomycin, and nystatin [GVN] or gentamicin and nystatin [GN]) to evaluate whether vancomycin was a necessary component. The patient population in both groups were comparable. Tolerance to GVN was less than GN but compliance was approximately equal (>85% in both groups). Patients receiving vancomycin demonstrated greater overall alimentary tract microbial suppression; however, acquisition of potential pathogens was approximately equal in both groups. The incidence of bacteremia, as well as the overall incidence of infection as related to the number of days at various granulocyte levels, was also approximately equal in both groups. Group D Streptococcus species were poorly suppressed by GN compared with GVN, although no patient developed an infection with these organisms. Colonization by newly acquired gram-negative bacilli was significantly less in the GN group (GN, 3 colonizations; GVN, 13 colonizations; P < 0.01). It is concluded that vancomycin may be safely eliminated from the GVN regimen provided microbiological data is monitored to detect resistant organisms. PMID:464573

  8. Nanocoatings for Chronic Wound Repair-Modulation of Microbial Colonization and Biofilm Formation.

    PubMed

    Mihai, Mara Mădălina; Preda, Mădălina; Lungu, Iulia; Gestal, Monica Cartelle; Popa, Mircea Ioan; Holban, Alina Maria

    2018-04-12

    Wound healing involves a complex interaction between immunity and other natural host processes, and to succeed it requires a well-defined cascade of events. Chronic wound infections can be mono- or polymicrobial but their major characteristic is their ability to develop a biofilm. A biofilm reduces the effectiveness of treatment and increases resistance. A biofilm is an ecosystem on its own, enabling the bacteria and the host to establish different social interactions, such as competition or cooperation. With an increasing incidence of chronic wounds and, implicitly, of chronic biofilm infections, there is a need for alternative therapeutic agents. Nanotechnology shows promising openings, either by the intrinsic antimicrobial properties of nanoparticles or their function as drug carriers. Nanoparticles and nanostructured coatings can be active at low concentrations toward a large variety of infectious agents; thus, they are unlikely to elicit emergence of resistance. Nanoparticles might contribute to the modulation of microbial colonization and biofilm formation in wounds. This comprehensive review comprises the pathogenesis of chronic wounds, the role of chronic wound colonization and infection in the healing process, the conventional and alternative topical therapeutic approaches designed to combat infection and stimulate healing, as well as revolutionizing therapies such as nanotechnology-based wound healing approaches.

  9. Effects of antimicrobial therapy on faecal bulking.

    PubMed Central

    Kurpad, A V; Shetty, P S

    1986-01-01

    It has recently been postulated that dietary fibre acts as a substrate for colonic flora, and that the resultant microbial growth bulks the faeces. Antimicrobial therapy was used in this study to assess the effect of reduction in colonic microbial proliferation on faecal output in human subjects on a constant dietary fibre intake. Six healthy young male subjects were maintained on constant daily diets and metronidazole (1 g/day) and ampicillin (1 g/day) were administered in divided doses for one week after an initial baseline study period of two weeks. After antimicrobial therapy, mean faecal weights rose from 176.0 +/- 27.0 g to 348.1 +/- 37.7 g/day. Faecal solids increased from 32.9 +/- 4.2 g to 46.1 +/- 5.8 g/day. Faecal neutral detergent fibre increased from 1.92 +/- 0.42 g to 15.19 +/- 2.58 g/day. The mean transit times and mean daily faecal nitrogen remained the same, both before and after treatment. Substantial breakdown of dietary fibre occurs in the human colon which may decrease faecal bulk, suggesting that water holding by dietary fibre is probably of greater importance for faecal bulking. PMID:3005139

  10. Leaf-FISH: Microscale Imaging of Bacterial Taxa on Phyllosphere

    PubMed Central

    Peredo, Elena L.; Simmons, Sheri L.

    2018-01-01

    Molecular methods for microbial community characterization have uncovered environmental and plant-associated factors shaping phyllosphere communities. Variables undetectable using bulk methods can play an important role in shaping plant-microbe interactions. Microscale analysis of bacterial dynamics in the phyllosphere requires imaging techniques specially adapted to the high autoflouresence and 3-D structure of the leaf surface. We present an easily-transferable method (Leaf-FISH) to generate high-resolution tridimensional images of leaf surfaces that allows simultaneous visualization of multiple bacterial taxa in a structurally informed context, using taxon-specific fluorescently labeled oligonucleotide probes. Using a combination of leaf pretreatments coupled with spectral imaging confocal microscopy, we demonstrate the successful imaging bacterial taxa at the genus level on cuticular and subcuticular leaf areas. Our results confirm that different bacterial species, including closely related isolates, colonize distinct microhabitats in the leaf. We demonstrate that highly related Methylobacterium species have distinct colonization patterns that could not be predicted by shared physiological traits, such as carbon source requirements or phytohormone production. High-resolution characterization of microbial colonization patterns is critical for an accurate understanding of microbe-microbe and microbe-plant interactions, and for the development of foliar bacteria as plant-protective agents. PMID:29375531

  11. Staphylococcus aureus Colonization: Modulation of Host Immune Response and Impact on Human Vaccine Design

    PubMed Central

    Brown, Aisling F.; Leech, John M.; Rogers, Thomas R.; McLoughlin, Rachel M.

    2014-01-01

    In apparent contrast to its invasive potential Staphylococcus aureus colonizes the anterior nares of 20–80% of the human population. The relationship between host and microbe appears particularly individualized and colonization status seems somehow predetermined. After decolonization, persistent carriers often become re-colonized with their prior S. aureus strain, whereas non-carriers resist experimental colonization. Efforts to identify factors facilitating colonization have thus far largely focused on the microorganism rather than on the human host. The host responds to S. aureus nasal colonization via local expression of anti-microbial peptides, lipids, and cytokines. Interplay with the co-existing microbiota also influences colonization and immune regulation. Transient or persistent S. aureus colonization induces specific systemic immune responses. Humoral responses are the most studied of these and little is known of cellular responses induced by colonization. Intriguingly, colonized patients who develop bacteremia may have a lower S. aureus-attributable mortality than their non-colonized counterparts. This could imply a staphylococcal-specific immune “priming” or immunomodulation occurring as a consequence of colonization and impacting on the outcome of infection. This has yet to be fully explored. An effective vaccine remains elusive. Anti-S. aureus vaccine strategies may need to drive both humoral and cellular immune responses to confer efficient protection. Understanding the influence of colonization on adaptive response is essential to intelligent vaccine design, and may determine the efficacy of vaccine-mediated immunity. Clinical trials should consider colonization status and the resulting impact of this on individual patient responses. We urgently need an increased appreciation of colonization and its modulation of host immunity. PMID:24409186

  12. Determinants and Duration of Impact of Early Gut Bacterial Colonization.

    PubMed

    Edwards, Christine Ann

    2017-01-01

    An increasing number of studies show low diversity of the gut microbiome in those with chronic diseases such as obesity, inflammatory bowel disease, and allergy. Manipulation of the microbiota may promote health. However, the adult microbiota is stable and may be difficult to change. Understanding the fixed and modifiable factors, which determine colonization in early life, may provide strategies for acquisition of a health-promoting microbiome. Not enough is known about the long-term effects of established determinants of gut colonization, including delivery mode, perinatal antibiotics, and infant diet. It has been suggested that weaning onto solid diet containing non-digestible carbohydrates and cessation of breastfeeding are key stages in the colonization process. In addition, the microbiome of the placenta, amniotic fluid, and breast milk, alongside vaginal and fecal bacteria, may aid the transfer of maternal bacteria to the infant. However, methodological issues such as contamination during collection and/or analysis should be considered. Key Messages: The factors determining early colonization are becoming more evident. However, longitudinal studies of microbiome maturation into late childhood and adulthood are required. The nutrition and health status of the mother before, during, and after birth may be major factors in the early colonization of the infant. © 2017 S. Karger AG, Basel.

  13. Metabolomic signatures distinguish the impact of formula carbohydrates on disease outcome in a preterm piglet model of NEC.

    PubMed

    Call, Lee; Stoll, Barbara; Oosterloo, Berthe; Ajami, Nadim; Sheikh, Fariha; Wittke, Anja; Waworuntu, Rosaline; Berg, Brian; Petrosino, Joseph; Olutoye, Oluyinka; Burrin, Douglas

    2018-06-19

    Major risk factors for necrotizing enterocolitis (NEC) include premature birth and formula feeding in the context of microbial colonization of the gastrointestinal tract. We previously showed that feeding formula composed of lactose vs. corn syrup solids protects against NEC in preterm pigs; however, the microbial and metabolic effects of these different carbohydrates used in infant formula has not been explored. Our objective was to characterize the effects of lactose- and corn syrup solid-based formulas on the metabolic and microbial profiles of preterm piglets and to determine whether unique metabolomic or microbiome signatures correlate with severity or incidence of NEC. Preterm piglets (103 days gestation) were given total parenteral nutrition (2 days) followed by gradual (5 days) advancement of enteral feeding of formulas matched in nutrient content but containing either lactose (LAC), corn syrup solids (CSS), or 1:1 mix (MIX). Gut contents and mucosal samples were collected and analyzed for microbial profiles by sequencing the V4 region of the 16S rRNA gene. Metabolomic profiles of cecal contents and plasma were analyzed by LC/GC mass spectrometry. NEC incidence was 14, 50, and 44% in the LAC, MIX, and CSS groups, respectively. The dominant classes of bacteria were Bacilli, Clostridia, and Gammaproteobacteria. The number of observed OTUs was lowest in colon contents of CSS-fed pigs. CSS-based formula was associated with higher Bacilli and lower Clostridium from clusters XIVa and XI in the colon. NEC was associated with decreased Gammaproteobacteria in the stomach and increased Clostridium sensu stricto in the ileum. Plasma from NEC piglets was enriched with metabolites of purine metabolism, aromatic amino acid metabolism, and bile acids. Markers of glycolysis, e.g., lactate, were increased in the cecal contents of CSS-fed pigs and in plasma of pigs which developed NEC. Feeding formula containing lactose is not completely protective against NEC, yet selects for greater microbial richness associated with changes in Bacilli and Clostridium and lower NEC incidence. We conclude that feeding preterm piglets a corn syrup solid vs. lactose-based formula increases the incidence of NEC and produces distinct metabolomic signatures despite modest changes in microbiome profiles.

  14. The cryptoendolithic microbial environment in the Ross Desert of Antarctica: mathematical models of the thermal regime

    NASA Technical Reports Server (NTRS)

    Nienow, J. A.; McKay, C. P.; Friedmann, E. I.

    1988-01-01

    Microbial activity in the Antarctic cryptoendolithic habitat is regulated primarily by temperature. Previous field studies have provided some information on the thermal regime in this habitat, but this type of information is limited by the remoteness of the site and the harsh climatic conditions. Therefore, a mathematical model of the endolithic thermal regime was constructed to augment the field data. This model enabled the parameters affecting the horizontal and altitudinal distribution of the community to be examined. The model predicts that colonization should be possible on surfaces with zenith angle less than 15 degrees. At greater zenith angles, colonization should be restricted to surfaces with azimuth angles less than 135 degrees or greater than 225 degrees. The upper elevational limit of the community should be less than 2,500 m. The thermal regime probably does not influence the zonation of the community within a rock.

  15. Rumen conditions that predispose cattle to pasture bloat.

    PubMed

    Majak, W; Howarth, R E; Cheng, K J; Hall, J W

    1983-08-01

    Rumen contents from the dorsal sac were examined before alfalfa ingestion to determine factors that predispose cattle to pasture bloat. Chlorophyll concentration, buoyancy of particulate matter, and rates of gas production were significantly higher in cattle that subsequently bloated than in those that did not. Higher chlorophyll in bloat cases indicated accumulation of suspended chloroplast particles in the dorsal sac, perhaps due to increased buoyancy of the particulate matter. The higher fermentation rates (in the presence of glucose) suggested that the latent capacity for gas production was due to microbial colonization of suspended feed particles. Chlorophyll 4 h after feeding was also higher in bloated as compared to unbloated animals. In short, the microbial colonization and retention of particulate matter provided active inocula for promoting rapid legume digestion. Consequently, gas production was enhanced when feeding commenced, but the fermentation gases were trapped by the buoyant, frothy ingesta, resulting in the condition of pasture bloat.

  16. Temporal Stability of the Human Skin Microbiome.

    PubMed

    Oh, Julia; Byrd, Allyson L; Park, Morgan; Kong, Heidi H; Segre, Julia A

    2016-05-05

    Biogeography and individuality shape the structural and functional composition of the human skin microbiome. To explore these factors' contribution to skin microbial community stability, we generated metagenomic sequence data from longitudinal samples collected over months and years. Analyzing these samples using a multi-kingdom, reference-based approach, we found that despite the skin's exposure to the external environment, its bacterial, fungal, and viral communities were largely stable over time. Site, individuality, and phylogeny were all determinants of stability. Foot sites exhibited the most variability; individuals differed in stability; and transience was a particular characteristic of eukaryotic viruses, which showed little site-specificity in colonization. Strain and single-nucleotide variant-level analysis showed that individuals maintain, rather than reacquire, prevalent microbes from the environment. Longitudinal stability of skin microbial communities generates hypotheses about colonization resistance and empowers clinical studies exploring alterations observed in disease states. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Hypolithic Microbial Community of Quartz Pavement in the High-Altitude Tundra of Central Tibet

    PubMed Central

    Wong, Fiona K. Y.; Lacap, Donnabella C.; Lau, Maggie C. Y.; Aitchison, J. C.; Cowan, Donald A.

    2010-01-01

    The hypolithic microbial community associated with quartz pavement at a high-altitude tundra location in central Tibet is described. A small-scale ecological survey indicated that 36% of quartz rocks were colonized. Community profiling using terminal restriction fragment length polymorphism revealed no significant difference in community structure among a number of colonized rocks. Real-time quantitative PCR and phylogenetic analysis of environmental phylotypes obtained from clone libraries were used to elucidate community structure across all domains. The hypolithon was dominated by cyanobacterial phylotypes (73%) with relatively low frequencies of other bacterial phylotypes, largely represented by the chloroflexi, actinobacteria, and bacteriodetes. Unidentified crenarchaeal phylotypes accounted for 4% of recoverable phylotypes, while algae, fungi, and mosses were indicated by a small fraction of recoverable phylotypes. Electronic supplementary material The online version of this article (doi:10.1007/s00248-010-9653-2) contains supplementary material, which is available to authorized users. PMID:20336290

  18. A highly diverse, desert-like microbial biocenosis on solar panels in a Mediterranean city.

    PubMed

    Dorado-Morales, Pedro; Vilanova, Cristina; Peretó, Juli; Codoñer, Francisco M; Ramón, Daniel; Porcar, Manuel

    2016-07-05

    Microorganisms colonize a wide range of natural and artificial environments although there are hardly any data on the microbial ecology of one the most widespread man-made extreme structures: solar panels. Here we show that solar panels in a Mediterranean city (Valencia, Spain) harbor a highly diverse microbial community with more than 500 different species per panel, most of which belong to drought-, heat- and radiation-adapted bacterial genera, and sun-irradiation adapted epiphytic fungi. The taxonomic and functional profiles of this microbial community and the characterization of selected culturable bacteria reveal the existence of a diverse mesophilic microbial community on the panels' surface. This biocenosis proved to be more similar to the ones inhabiting deserts than to any human or urban microbial ecosystem. This unique microbial community shows different day/night proteomic profiles; it is dominated by reddish pigment- and sphingolipid-producers, and is adapted to withstand circadian cycles of high temperatures, desiccation and solar radiation.

  19. A highly diverse, desert-like microbial biocenosis on solar panels in a Mediterranean city

    PubMed Central

    Dorado-Morales, Pedro; Vilanova, Cristina; Peretó, Juli; Codoñer, Francisco M.; Ramón, Daniel; Porcar, Manuel

    2016-01-01

    Microorganisms colonize a wide range of natural and artificial environments although there are hardly any data on the microbial ecology of one the most widespread man-made extreme structures: solar panels. Here we show that solar panels in a Mediterranean city (Valencia, Spain) harbor a highly diverse microbial community with more than 500 different species per panel, most of which belong to drought-, heat- and radiation-adapted bacterial genera, and sun-irradiation adapted epiphytic fungi. The taxonomic and functional profiles of this microbial community and the characterization of selected culturable bacteria reveal the existence of a diverse mesophilic microbial community on the panels’ surface. This biocenosis proved to be more similar to the ones inhabiting deserts than to any human or urban microbial ecosystem. This unique microbial community shows different day/night proteomic profiles; it is dominated by reddish pigment- and sphingolipid-producers, and is adapted to withstand circadian cycles of high temperatures, desiccation and solar radiation. PMID:27378552

  20. Structural Iron (II) of Basaltic Glass as an Energy Source for Zetaproteobacteria in an Abyssal Plain Environment, Off the Mid Atlantic Ridge

    PubMed Central

    Henri, Pauline A.; Rommevaux-Jestin, Céline; Lesongeur, Françoise; Mumford, Adam; Emerson, David; Godfroy, Anne; Ménez, Bénédicte

    2016-01-01

    To explore the capability of basaltic glass to support the growth of chemosynthetic microorganisms, complementary in situ and in vitro colonization experiments were performed. Microbial colonizers containing synthetic tholeitic basaltic glasses, either enriched in reduced or oxidized iron, were deployed off-axis from the Mid Atlantic Ridge on surface sediments of the abyssal plain (35°N; 29°W). In situ microbial colonization was assessed by sequencing of the 16S rRNA gene and basaltic glass alteration was characterized using Scanning Electron Microscopy, micro-X-ray Absorption Near Edge Structure at the Fe-K-edge and Raman microspectroscopy. The colonized surface of the reduced basaltic glass was covered by a rind of alteration made of iron-oxides trapped in a palagonite-like structure with thicknesses up to 150 μm. The relative abundance of the associated microbial community was dominated (39% of all reads) by a single operational taxonomic unit (OTU) that shared 92% identity with the iron-oxidizer Mariprofundus ferrooxydans PV-1. Conversely, the oxidized basaltic glass showed the absence of iron-oxides enriched surface deposits and correspondingly there was a lack of known iron-oxidizing bacteria in the inventoried diversity. In vitro, a similar reduced basaltic glass was incubated in artificial seawater with a pure culture of the iron-oxidizing M. ferrooxydans DIS-1 for 2 weeks, without any additional nutrients or minerals. Confocal Laser Scanning Microscopy revealed that the glass surface was covered by twisted stalks characteristic of this iron-oxidizing Zetaproteobacteria. This result supported findings of the in situ experiments indicating that the Fe(II) present in the basalt was the energy source for the growth of representatives of Zetaproteobacteria in both the abyssal plain and the in vitro experiment. In accordance, the surface alteration rind observed on the reduced basaltic glass incubated in situ could at least partly result from their activity. PMID:26834704

  1. Sustainable remediation: electrochemically assisted microbial dechlorination of tetrachloroethene-contaminated groundwater.

    PubMed

    Patil, Sayali S; Adetutu, Eric M; Rochow, Jacqueline; Mitchell, James G; Ball, Andrew S

    2014-01-01

    Microbial electric systems (MESs) hold significant promise for the sustainable remediation of chlorinated solvents such as tetrachlorethene (perchloroethylene, PCE). Although the bio-electrochemical potential of some specific bacterial species such as Dehalcoccoides and Geobacteraceae have been exploited, this ability in other undefined microorganisms has not been extensively assessed. Hence, the focus of this study was to investigate indigenous and potentially bio-electrochemically active microorganisms in PCE-contaminated groundwater. Lab-scale MESs were fed with acetate and carbon electrode/PCE as electron donors and acceptors, respectively, under biostimulation (BS) and BS-bioaugmentation (BS-BA) regimes. Molecular analysis of the indigenous groundwater community identified mainly Spirochaetes, Firmicutes, Bacteroidetes, and γ and δ-Proteobacteria. Environmental scanning electron photomicrographs of the anode surfaces showed extensive indigenous microbial colonization under both regimes. This colonization and BS resulted in 100% dechlorination in both treatments with complete dechlorination occurring 4 weeks earlier in BS-BA samples and up to 11.5 μA of current being generated. The indigenous non-Dehalococcoides community was found to contribute significantly to electron transfer with ∼61% of the current generated due to their activities. This study therefore shows the potential of the indigenous non-Dehalococcoides bacterial community in bio-electrochemically reducing PCE that could prove to be a cost-effective and sustainable bioremediation practice. © 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  2. Trehalose promotes Rhodococcus sp. strain YYL colonization in activated sludge under tetrahydrofuran (THF) stress

    PubMed Central

    He, Zhixing; Zhang, Kai; Wang, Haixia; Lv, Zhenmei

    2015-01-01

    Few studies have focused on the role of compatible solutes in changing the microbial community structure in bioaugmentation systems. In this study, we investigated the influence of trehalose as a biostimulant on the microbial community in tetrahydrofuran (THF)-treated wastewater bioaugmentation systems with Rhodococcus sp. YYL. Functional gene profile changes were used to study the variation in the microbial community. Soluble di-iron monooxygenases (SDIMO), particularly group-5 SDIMOs (i.e., tetrahydrofuran and propane monooxygenases), play a significant role in the initiation of the ring cleavage of tetrahydrofuran. Group-5 SDIMOs genes are enriched upon trehalose addition, and exogenous tetrahydrofuran monooxygenase (thmA) genes can successfully colonize bioaugmentation systems. Cytochrome P450 monooxygenases (P450s) have a significant role in catalyzing the region- and stereospecific oxidation of non-activated hydrocarbons, and THF was reported to inhibit P450s in the environment. The CYP153 family was chosen as a representative P450 to study the inhibitory effects of THF. The results demonstrated that CYP153 family genes exhibited significant changes upon THF treatment and that trehalose helped maintain a rich diversity and high abundance of CYP153 family genes. Biostimulation with trehalose could alleviate the negative effects of THF stress on microbial diversity in bioaugmentation systems. Our results indicated that trehalose as a compatible solute plays a significant role for environmental strains under extreme conditions. PMID:26029182

  3. Ursodeoxycholic acid and lithocholic acid exert anti-inflammatory actions in the colon.

    PubMed

    Ward, Joseph B J; Lajczak, Natalia K; Kelly, Orlaith B; O'Dwyer, Aoife M; Giddam, Ashwini K; Ní Gabhann, Joan; Franco, Placido; Tambuwala, Murtaza M; Jefferies, Caroline A; Keely, Simon; Roda, Aldo; Keely, Stephen J

    2017-06-01

    Ward JB, Lajczak NK, Kelly OB, O'Dwyer AM, Giddam AK, Ní Gabhann J, Franco P, Tambuwala MM, Jefferies CA, Keely S, Roda A, Keely SJ. Ursodeoxycholic acid and lithocholic acid exert anti-inflammatory actions in the colon. Am J Physiol Gastrointest Liver Physiol 312: G550-G558, 2017. First published March 30, 2017; doi:10.1152/ajpgi.00256.2016.-Inflammatory bowel diseases (IBD) comprise a group of common and debilitating chronic intestinal disorders for which currently available therapies are often unsatisfactory. The naturally occurring secondary bile acid, ursodeoxycholic acid (UDCA), has well-established anti-inflammatory and cytoprotective actions and may therefore be effective in treating IBD. We aimed to investigate regulation of colonic inflammatory responses by UDCA and to determine the potential impact of bacterial metabolism on its therapeutic actions. The anti-inflammatory efficacy of UDCA, a nonmetabolizable analog, 6α-methyl-UDCA (6-MUDCA), and its primary colonic metabolite lithocholic acid (LCA) was assessed in the murine dextran sodium sulfate (DSS) model of mucosal injury. The effects of bile acids on cytokine (TNF-α, IL-6, Il-1β, and IFN-γ) release from cultured colonic epithelial cells and mouse colonic tissue in vivo were investigated. Luminal bile acids were measured by gas chromatography-mass spectrometry. UDCA attenuated release of proinflammatory cytokines from colonic epithelial cells in vitro and was protective against the development of colonic inflammation in vivo. In contrast, although 6-MUDCA mimicked the effects of UDCA on epithelial cytokine release in vitro, it was ineffective in preventing inflammation in the DSS model. In UDCA-treated mice, LCA became the most common colonic bile acid. Finally, LCA treatment more potently inhibited epithelial cytokine release and protected against DSS-induced mucosal inflammation than did UDCA. These studies identify a new role for the primary metabolite of UDCA, LCA, in preventing colonic inflammation and suggest that microbial metabolism of UDCA is necessary for the full expression of its protective actions. NEW & NOTEWORTHY On the basis of its cytoprotective and anti-inflammatory actions, the secondary bile acid ursodeoxycholic acid (UDCA) has well-established uses in both traditional and Western medicine. We identify a new role for the primary metabolite of UDCA, lithocholic acid, as a potent inhibitor of intestinal inflammatory responses, and we present data to suggest that microbial metabolism of UDCA is necessary for the full expression of its protective effects against colonic inflammation. Copyright © 2017 the American Physiological Society.

  4. Microbial community in a precursory scenario of growing Tagetes patula in a lunar greenhouse

    NASA Astrophysics Data System (ADS)

    Kozyrovska, N. O.; Korniichuk, O. S.; Voznyuk, T. M.; Kovalchuk, M. V.; Lytvynenko, T. L.; Rogutskyy, I. S.; Mytrokhyn, O. V.; Estrella-Liopis, V. R.; Borodinova, T. I.; Mashkovska, S. P.; Foing, B. H.; Kordyum, V. A.

    A confined prototype plant-microbial system is elaborated for demonstration of growing pioneer plants in a lunar greenhouse. A precursory scenario of growing Tagetes patula L. in a substrate anorthosite which is similar mineralogically and chemically to lunar silicate rocks includes the use of a microbial community. Microorganisms served for preventive substrate colonization to avoid infection by deleterious microorganisms as well as for bioleaching and delivering of nutritional elements from anorthosite to plants. A model consortium of a siliceous bacterium, biocontrol agents, and arbuscular mycorrhizal fungi provided an acceptable growth and blossoming of Tagetes patula L. under growth limiting factors in terrestrial conditions.

  5. The Impact of Helicobacter pylori Infection on the Gastric Microbiota of the Rhesus Macaque

    PubMed Central

    Martin, Miriam E.; Bhatnagar, Srijak; George, Michael D.; Paster, Bruce J.; Canfield, Don R.; Eisen, Jonathan A.; Solnick, Jay V.

    2013-01-01

    Helicobacter pylori colonization is highly prevalent among humans and causes significant gastric disease in a subset of those infected. When present, this bacterium dominates the gastric microbiota of humans and induces antimicrobial responses in the host. Since the microbial context of H. pylori colonization influences the disease outcome in a mouse model, we sought to assess the impact of H. pylori challenge upon the pre-existing gastric microbial community members in the rhesus macaque model. Deep sequencing of the bacterial 16S rRNA gene identified a community profile of 221 phylotypes that was distinct from that of the rhesus macaque distal gut and mouth, although there were taxa in common. High proportions of both H. pylori and H. suis were observed in the post-challenge libraries, but at a given time, only one Helicobacter species was dominant. However, the relative abundance of non-Helicobacter taxa was not significantly different before and after challenge with H. pylori. These results suggest that while different gastric species may show competitive exclusion in the gastric niche, the rhesus gastric microbial community is largely stable despite immune and physiological changes due to H. pylori infection. PMID:24116104

  6. Implant-abutment gap versus microbial colonization: Clinical significance based on a literature review.

    PubMed

    Passos, Sheila Pestana; Gressler May, Liliana; Faria, Renata; Özcan, Mutlu; Bottino, Marco Antonio

    2013-10-01

    Microorganisms from the oral cavity may settle at the implant-abutment interface (IAI). As a result, tissue inflammation could occur around these structures. The databases MEDLINE/PubMed and PubMed Central were used to identify articles published from 1981 through 2012 related to the microbial colonization in the implant-abutment gap and its consequence in terms of crest bone loss and osseointegration. The following considerations could be put forward, with respect to the clinical importance of IAI: (a) the space present at the IAI seems to allow bacterial leakage to occur, in spite of the size of this space; (b) bacterial leakage seems to occur at the IAI, irrespective of the type of connection. More studies are necessary to clarify the relationship between leakage at IAI and abutment connection designs; (c) losses at the peri-implant bone crests cannot be related to the IAI size, since few studies have shown no relationship. Also, the microbial leakage at the IAI cannot be related to the bone crest loss, since there are no articles reporting this relationship; remains controversial the influence of the IAI position on the bone crest losses. Copyright © 2013 Wiley Periodicals, Inc.

  7. Gut Microbiota and Probiotics in Colon Tumorigenesis

    PubMed Central

    Zhu, Yuanmin; Luo, T. Michelle; Jobin, Christian; Young, Howard A.

    2011-01-01

    The human gastrointestinal tract harbors a complex and abundant microbial community reaching as high as 1013–1014 microorganisms in the colon. This endogenous microbiota forms a symbiotic relationship with their eukaryotic host and this close partnership helps maintain homeostasis by performing essential and non-redundant tasks (e.g. nutrition/energy and, immune system balance, pathogen exclusion). Although this relationship is essential and beneficial to the host, various events (e.g. infection, diet, stress, inflammation) may impact microbial composition, leading to the formation of a dysbiotic microbiota, further impacting on health and disease states. For example, Crohn’s disease and ulcerative colitis, collectively termed inflammatory bowel diseases (IBD), have been associated with the establishment of a dysbiotic microbiota. In addition, extra-intestinal disorders such as obesity and metabolic syndrome are also associated with the development of a dysbiotic microbiota. Consequently, there is an increasing interest in harnessing the power of the microbiome and modulating its composition as a means to alleviate intestinal pathologies/disorders and maintain health status. In this review we will discuss the emerging relationship between the microbiota and development of colorectal cancer as well as present evidence that microbial manipulation (probiotic, prebiotic) impacts disease development. PMID:21741763

  8. Spatial organization of the gastrointestinal microbiota in urban Canada geese

    USGS Publications Warehouse

    Drovetski, Sergei V.; O'Mahoney, Michael; Ransome, Emma J.; Matterson, Kenan O.; Lim, Haw Chuan; Chesser, Terry; Graves, Gary R.

    2018-01-01

    Recent reviews identified the reliance on fecal or cloacal samples as a significant limitation hindering our understanding of the avian gastrointestinal (gut) microbiota and its function. We investigated the microbiota of the esophagus, duodenum, cecum, and colon of a wild urban population of Canada goose (Branta canadensis). From a population sample of 30 individuals, we sequenced the V4 region of the 16S SSU rRNA on an Illumina MiSeq and obtained 8,628,751 sequences with a median of 76,529 per sample. These sequences were assigned to 420 bacterial OTUs and a single archaeon. Firmicutes, Proteobacteria, and Bacteroidetes accounted for 90% of all sequences. Microbiotas from the four gut regions differed significantly in their richness, composition, and variability among individuals. Microbial communities of the esophagus were the most distinctive whereas those of the colon were the least distinctive, reflecting the physical downstream mixing of regional microbiotas. The downstream mixing of regional microbiotas was also responsible for the majority of observed co-occurrence patterns among microbial families. Our results indicate that fecal and cloacal samples inadequately represent the complex patterns of richness, composition, and variability of the gut microbiota and obscure patterns of co-occurrence of microbial lineages.

  9. Characterization of microbial metabolism of Syrah grape products in an in vitro colon model using targeted and non-targeted analytical approaches.

    PubMed

    Aura, Anna-Marja; Mattila, Ismo; Hyötyläinen, Tuulia; Gopalacharyulu, Peddinti; Cheynier, Veronique; Souquet, Jean-Marc; Bes, Magali; Le Bourvellec, Carine; Guyot, Sylvain; Orešič, Matej

    2013-03-01

    Syrah red grapes are used in the production of tannin-rich red wines. Tannins are high molecular weight molecules, proanthocyanidins (PAs), and poorly absorbed in the upper intestine. In this study, gut microbial metabolism of Syrah grape phenolic compounds was investigated. Syrah grape pericarp was subjected to an enzymatic in vitro digestion model, and red wine and grape skin PA fraction were prepared. Microbial conversion was screened using an in vitro colon model with faecal microbiota, by measurement of short-chain fatty acids by gas chromatography (GC) and microbial phenolic metabolites using GC with mass detection (GC-MS). Red wine metabolites were further profiled using two-dimensional GC mass spectrometry (GCxGC-TOFMS). In addition, the effect of PA structure and dose on conversion efficiency was investigated by GC-MS. Red wine exhibited a higher degree of C1-C3 phenolic acid formation than PA fraction or grape pericarp powders. Hydroxyphenyl valeric acid (flavanols and PAs as precursors) and 3,5-dimethoxy-4-hydroxybenzoic acid (anthocyanin as a precursor) were identified from the red wine metabolite profile. In the absence of native grape pericarp or red wine matrix, the isolated PAs were found to be effective in the dose-dependent inhibition of microbial conversions and short-chain fatty acid formation. Metabolite profiling was complementary to targeted analysis. The identified metabolites had biological relevance, because the structures of the metabolites resembled fragments of their grape phenolic precursors or were in agreement with literature data.

  10. Structural and functional alterations in the colonic microbiome of the rat in a model of stress induced irritable bowel syndrome

    PubMed Central

    Fourie, Nicolaas H.; Wang, Dan; Abey, Sarah K.; Creekmore, Amy L.; Hong, Shuangsong; Martin, Christiana G.; Wiley, John W.

    2017-01-01

    ABSTRACT Stress is known to perturb the microbiome and exacerbate irritable bowel syndrome (IBS) associated symptoms. Characterizing structural and functional changes in the microbiome is necessary to understand how alterations affect the biomolecular environment of the gut in IBS. Repeated water avoidance (WA) stress was used to induce IBS-like symptoms in rats. The colon-mucosa associated microbiome was characterized in 13 stressed and control animals by 16S sequencing. In silico analysis of the functional domains of microbial communities was done by inferring metagenomic profiles from 16S data. Microbial communities and functional profiles were compared between conditions. WA animals exhibited higher α-diversity and moderate divergence in community structure (β-diversity) compared with controls. Specific clades and taxa were consistently and significantly modified in the WA animals. The WA microbiome was particularly enriched in Proteobacteria and depleted in several beneficial taxa. A decreased capacity in metabolic domains, including energy- and lipid-metabolism, and an increased capacity for fatty acid and sulfur metabolism was inferred for the WA microbiome. The stressed condition favored the proliferation of a greater diversity of microbes that appear to be functionally similar, resulting in a functionally poorer microbiome with implications for epithelial health. Taxa, with known beneficial effects, were found to be depleted, which supports their relevance as therapeutic agents to restore microbial health. Microbial sulfur metabolism may form a key component of visceral nerve sensitization pathways and is therefore of interest as a target metabolic domain in microbial ecological restoration. PMID:28059627

  11. Systems-level analysis of microbial community organization through combinatorial labeling and spectral imaging.

    PubMed

    Valm, Alex M; Mark Welch, Jessica L; Rieken, Christopher W; Hasegawa, Yuko; Sogin, Mitchell L; Oldenbourg, Rudolf; Dewhirst, Floyd E; Borisy, Gary G

    2011-03-08

    Microbes in nature frequently function as members of complex multitaxon communities, but the structural organization of these communities at the micrometer level is poorly understood because of limitations in labeling and imaging technology. We report here a combinatorial labeling strategy coupled with spectral image acquisition and analysis that greatly expands the number of fluorescent signatures distinguishable in a single image. As an imaging proof of principle, we first demonstrated visualization of Escherichia coli labeled by fluorescence in situ hybridization (FISH) with 28 different binary combinations of eight fluorophores. As a biological proof of principle, we then applied this Combinatorial Labeling and Spectral Imaging FISH (CLASI-FISH) strategy using genus- and family-specific probes to visualize simultaneously and differentiate 15 different phylotypes in an artificial mixture of laboratory-grown microbes. We then illustrated the utility of our method for the structural analysis of a natural microbial community, namely, human dental plaque, a microbial biofilm. We demonstrate that 15 taxa in the plaque community can be imaged simultaneously and analyzed and that this community was dominated by early colonizers, including species of Streptococcus, Prevotella, Actinomyces, and Veillonella. Proximity analysis was used to determine the frequency of inter- and intrataxon cell-to-cell associations which revealed statistically significant intertaxon pairings. Cells of the genera Prevotella and Actinomyces showed the most interspecies associations, suggesting a central role for these genera in establishing and maintaining biofilm complexity. The results provide an initial systems-level structural analysis of biofilm organization.

  12. Alfalfa Intervention Alters Rumen Microbial Community Development in Hu Lambs During Early Life.

    PubMed

    Yang, Bin; Le, Jiaqing; Wu, Peng; Liu, Jianxin; Guan, Le L; Wang, Jiakun

    2018-01-01

    The pre-weaning period is crucial for rumen developmental plasticity, which can have a long-term impact on animal performance. Understanding the rumen microbiota during early life is important to elucidate its potential role in rumen development. In this study, the rumen microbiota of 10-day-old Hu lambs fed either milk replacer (B-10), milk replacer and starter (STA) or milk replacer and starter supplemented with alfalfa (S-ALF) in the pre- (d17, 24, and 38) and post-weaning periods (d45 and 66) were assessed to characterize rumen microbial colonization during early life and its response to fiber intervention. In the rumens of B-10 lambs, 498 operational taxonomic units belonging to 33 predominant genera were observed, and the top six predicted functions included "Membrane transport," "carbohydrate metabolism," "amino acid metabolism," "replication and repair," "translation," and "energy metabolism." Prevotella , Succinivibrio , Bifidobacterium , and Butyrivibrio abundances were increased at d38 for both STA and S-ALF groups compared to the B-10 group, whereas fibrolytic bacteria of the taxa Lachnospiraceae and Treponema were only increased in the S-ALF group at d38. A number of saccharolytic bacteria ( Bacteroidaceae ), organic acid-producing bacteria ( Coprococcus and Actinomyces ), proteolytic and amino acid fermenters ( Fusobacterium ) and fibrolytic bacteria (unclassified Ruminococcaceae ) were significantly decreased in the STA lambs but not in the S-ALF lambs at d38. After weaning and exposed to alfalfa, the rumen microbial composition in the STA group started to appear similar to that of the S-ALF lambs. The relative abundance of unclassified Clostridiales was higher in S-ALF lambs than STA lambs after weaning. Spearman's correlation analysis showed positive relationships between unclassified Lachnospiraceae , unclassified Clostridiales , Treponema , unclassified Bacteroidales , Coprococcus and crude protein intake, neutral detergent fiber intake, and plasma β-hydroxybutyrate. The unclassified Lachnospiraceae and Treponema were also positively correlated with average daily gain. Our results revealed that alfalfa stimulated changes in rumen microbiota during the pre- and post-weaning periods and was consistent with rumen development for better feed intake and animal performance before and after weaning. The findings of this study provide clues for strategies to improve rumen function through manipulation of the rumen microbiota during early life.

  13. Alfalfa Intervention Alters Rumen Microbial Community Development in Hu Lambs During Early Life

    PubMed Central

    Yang, Bin; Le, Jiaqing; Wu, Peng; Liu, Jianxin; Guan, Le L.; Wang, Jiakun

    2018-01-01

    The pre-weaning period is crucial for rumen developmental plasticity, which can have a long-term impact on animal performance. Understanding the rumen microbiota during early life is important to elucidate its potential role in rumen development. In this study, the rumen microbiota of 10-day-old Hu lambs fed either milk replacer (B-10), milk replacer and starter (STA) or milk replacer and starter supplemented with alfalfa (S-ALF) in the pre- (d17, 24, and 38) and post-weaning periods (d45 and 66) were assessed to characterize rumen microbial colonization during early life and its response to fiber intervention. In the rumens of B-10 lambs, 498 operational taxonomic units belonging to 33 predominant genera were observed, and the top six predicted functions included “Membrane transport,” “carbohydrate metabolism,” “amino acid metabolism,” “replication and repair,” “translation,” and “energy metabolism.” Prevotella, Succinivibrio, Bifidobacterium, and Butyrivibrio abundances were increased at d38 for both STA and S-ALF groups compared to the B-10 group, whereas fibrolytic bacteria of the taxa Lachnospiraceae and Treponema were only increased in the S-ALF group at d38. A number of saccharolytic bacteria (Bacteroidaceae), organic acid-producing bacteria (Coprococcus and Actinomyces), proteolytic and amino acid fermenters (Fusobacterium) and fibrolytic bacteria (unclassified Ruminococcaceae) were significantly decreased in the STA lambs but not in the S-ALF lambs at d38. After weaning and exposed to alfalfa, the rumen microbial composition in the STA group started to appear similar to that of the S-ALF lambs. The relative abundance of unclassified Clostridiales was higher in S-ALF lambs than STA lambs after weaning. Spearman’s correlation analysis showed positive relationships between unclassified Lachnospiraceae, unclassified Clostridiales, Treponema, unclassified Bacteroidales, Coprococcus and crude protein intake, neutral detergent fiber intake, and plasma β-hydroxybutyrate. The unclassified Lachnospiraceae and Treponema were also positively correlated with average daily gain. Our results revealed that alfalfa stimulated changes in rumen microbiota during the pre- and post-weaning periods and was consistent with rumen development for better feed intake and animal performance before and after weaning. The findings of this study provide clues for strategies to improve rumen function through manipulation of the rumen microbiota during early life. PMID:29636743

  14. Geomicrobiology of subglacial meltwater samples from Store Landgletscher and Russell Glacier, West Greenland

    NASA Astrophysics Data System (ADS)

    Cameron, K. A.; Dieser, M.; Choquette, K.; Christner, B. C.; Hagedorn, B.; Harrold, Z.; Liu, L.; Sletten, R. S.; Junge, K.

    2012-12-01

    The melting of the Greenland Ice Sheet provides direct connections between atmospheric, supraglacial and subglacial environments. The intraglacial hydrological pathways that result are believed to accommodate the microbial colonization of subglacial environments; however, little is known about the abundance, diversity and activity of microorganisms within these niches. The Greenland Ice Sheet (1.7 million square kilometers) and its associated surpaglacial and subglacial ecosystems may contribute significantly to biogeochemical cycling processes. We analyzed subglacial microbial assemblages in subglacial outflows, near Thule and Kangerlussuaq, West Greenland. The investigative approach included correlating microbial diversity, inferred function, abundance, melt water chemistry, O-18 water isotope ratios, alkalinity and sediment load. Using Illumina sequencing, bacterial small subunit ribosomal RNA hypervariable regions have been targeted and amplified from both extracted DNA and reverse transcribed rRNA. Over 3 billion sequence reads have been generated to create a comprehensive diversity profile. Total abundances ranged from 2.24E+04 to 1.58E+06 cells mL-1. In comparison, the total abundance of supraglacial early season snow samples ranged from 3.35E+02 to 2.8E+04 cells mL-1. 65 % of samples incubated with cyano ditoyl tetrazolium chloride (CTC), used to identify actively respiring cells, contained CTC-positive cells. On average, these cells represented 1.9 % of the estimated total abundance (1.86E+02 to 2.19E+03 CTC positive cells mL-1; 1.39E+03 cells mL-1 standard deviation); comparative to those measured in temperate freshwater lakes. The overarching objective of our research is to provide data that indicates the role of microbial communities, associated with ice sheets, in elemental cycling and in the release of biomass and nutrients to the surrounding marine biome.

  15. Disturbed gastric emptying in the short bowel syndrome. Evidence for a 'colonic brake'.

    PubMed Central

    Nightingale, J M; Kamm, M A; van der Sijp, J R; Morris, G P; Walker, E R; Mather, S J; Britton, K E; Lennard-Jones, J E

    1993-01-01

    Gastric emptying of liquid (orange juice containing technetium-99m (99mTc) labelled antimony sulphide colloid) and solid (570 kcal pancake containing 0.5 mm resin microspheres labelled with Indium-111 (111-In)) was measured in seven patients with jejunum and no colon (jejunal lengths 30-160 cm), six patients with jejunum in continuity with the colon (jejunal length 25-75 cm), and in 12 normal subjects. In patients with no colon early emptying of liquid was rapid (median 25% emptying: 7 v 25 min, no colon v normal, p < 0.05); early gastric emptying of solid was rapid in two (each with less than 100 cm jejunum) and normal in the other five. Gastric emptying of liquid and solid for patients with jejunum in continuity with the colon was normal for the first three hours. There was increased liquid and solid retained in the stomach at six hours in both groups of patients (p < 0.01). Small bowel transit time was faster than in normal subjects for liquid in both groups of patients (p < 0.05) and for solid in those with no colon (p < 0.05). Rapid gastric emptying of liquid may contribute to the large stomal output in patients with a high jejunostomy. Preservation of the colon after a major small intestinal resection exerts a braking effect on the rate of early gastric emptying of liquid. PMID:8406148

  16. SND1, a component of RNA-induced silencing complex, is up-regulated in human colon cancers and implicated in early stage colon carcinogenesis.

    PubMed

    Tsuchiya, Naoto; Ochiai, Masako; Nakashima, Katsuhiko; Ubagai, Tsuneyuki; Sugimura, Takashi; Nakagama, Hitoshi

    2007-10-01

    Colon cancers have been shown to develop after accumulation of multiple genetic and epigenetic alterations with changes in global gene expression profiles, contributing to the establishment of widely diverse phenotypes. Transcriptional and posttranscriptional regulation of gene expression by small RNA species, such as the small interfering RNA and microRNA and the RNA-induced silencing complex (RISC), is currently drawing major interest with regard to cancer development. SND1, also called Tudor-SN and p100 and recently reported to be a component of RISC, is among the list of highly expressed genes in human colon cancers. In the present study, we showed remarkable up-regulation of SND1 mRNA in human colon cancer tissues, even in early-stage lesions, and also in colon cancer cell lines. When mouse Snd1 was stably overexpressed in IEC6 rat intestinal epithelial cells, contact inhibition was lost and cell growth was promoted, even after the cells became confluent. Intriguingly, IEC6 cells with high levels of Snd1 also showed an altered distribution of E-cadherin from the cell membrane to the cytoplasm, suggesting loss of cellular polarity. Furthermore, the adenomatous polyposis coli (Apc) protein was coincidentally down-regulated, with no significant changes in the Apc mRNA level. Immunohistochemical analysis using chemically induced colonic lesions developed in rats revealed overexpression of Snd1 not only in colon cancers but also in aberrant crypt foci, putative precancerous lesions of the colon. Up-regulation of SND1 may thus occur at a very early stage in colon carcinogenesis and contribute to the posttranscriptional regulation of key players in colon cancer development, including APC and beta-catenin.

  17. The effect of polyvinylpyrrolidone-sodium hyaluronate gel (Gelclair) on oral microbial colonization and pain control compared with other rinsing solutions in patients with oral mucositis after allogeneic stem cells transplantation

    PubMed Central

    Vokurka, Samuel; Skardova, Jana; Hruskova, Renata; Kabatova-Maxova, Klara; Svoboda, Tomas; Bystricka, Eva; Steinerova, Katerina; Koza, Vladimir

    2011-01-01

    Summary Background Gelclair is an oral lubricating gel used in the management of oral mucositis (OM). We evaluated its efficacy, tolerance and impact on oral cavity microbial colonization in patients with OM after allogeneic hematopoietic stem cells transplantation. Material/Method Gelclair was administered in a group of 22 patients with active OM. A control group of 15 patients used other rinsing solutions (chlorhexidine, benzydamine, salvia). Tests with oral cavity swabs for microbiology analysis were performed once a week. Results The characteristics of OM in both groups were comparable, and rinsing solutions had satisfactory tolerability. There was no difference in the median improvement of oral intake and OM-related pain relief, which was assessed mostly as “slight effect”. In the Gelclair group, the effect duration was longer (median 3 [0–5] vs. 1 [0–3] hours, p=0.001). There was significant increase of Enterococcus faecalis and Candida sp. colonization of the oral cavity over the course of the hospitalization and significantly reduced incidence of such colonization in patients with OM in the Gelclair group: 1/22 (5%) vs. 6/15 (40%), p=0.01. In vitro tests showed inhibited growth of Enterococcus faecalis and Candida sp. colonies within the area of the Gelclair application. Conclusions Gelclair may be individually helpful in the management of OM and pain in patients after allogeneic stem cells transplantation. Its use did not lead to worsened oral bacterial and yeast colonization and probably even helped to protect mucosa from Enterococcus and Candida sp. Further studies based on larger cohorts are needed. PMID:21959611

  18. Acetogenic and Sulfate-Reducing Bacteria Inhabiting the Rhizoplane and Deep Cortex Cells of the Sea Grass Halodule wrightii†

    PubMed Central

    Küsel, Kirsten; Pinkart, Holly C.; Drake, Harold L.; Devereux, Richard

    1999-01-01

    Recent declines in sea grass distribution underscore the importance of understanding microbial community structure-function relationships in sea grass rhizospheres that might affect the viability of these plants. Phospholipid fatty acid analyses showed that sulfate-reducing bacteria and clostridia were enriched in sediments colonized by the sea grasses Halodule wrightii and Thalassia testudinum compared to an adjacent unvegetated sediment. Most-probable-number analyses found that in contrast to butyrate-producing clostridia, acetogens and acetate-utilizing sulfate reducers were enriched by an order of magnitude in rhizosphere sediments. Although sea grass roots are oxygenated in the daytime, colorimetric root incubation studies demonstrated that acetogenic O-demethylation and sulfidogenic iron precipitation activities were tightly associated with washed, sediment-free H. wrightii roots. This suggests that the associated anaerobes are able to tolerate exposure to oxygen. To localize and quantify the anaerobic microbial colonization, root thin sections were hybridized with newly developed 33P-labeled probes that targeted (i) low-G+C-content gram-positive bacteria, (ii) cluster I species of clostridia, (iii) species of Acetobacterium, and (iv) species of Desulfovibrio. Microautoradiography revealed intercellular colonization of the roots by Acetobacterium and Desulfovibrio species. Acetogenic bacteria occurred mostly in the rhizoplane and outermost cortex cell layers, and high numbers of sulfate reducers were detected on all epidermal cells and inward, colonizing some 60% of the deepest cortex cells. Approximately 30% of epidermal cells were colonized by bacteria that hybridized with an archaeal probe, strongly suggesting the presence of methanogens. Obligate anaerobes within the roots might contribute to the vitality of sea grasses and other aquatic plants and to the biogeochemistry of the surrounding sediment. PMID:10543830

  19. The microbiota metabolite indole inhibits Salmonella virulence: Involvement of the PhoPQ two-component system.

    PubMed

    Kohli, Nandita; Crisp, Zeni; Riordan, Rebekah; Li, Michael; Alaniz, Robert C; Jayaraman, Arul

    2018-01-01

    The microbial community present in the gastrointestinal tract is an important component of the host defense against pathogen infections. We previously demonstrated that indole, a microbial metabolite of tryptophan, reduces enterohemorrhagic Escherichia coli O157:H7 attachment to intestinal epithelial cells and biofilm formation, suggesting that indole may be an effector/attenuator of colonization for a number of enteric pathogens. Here, we report that indole attenuates Salmonella Typhimurium (Salmonella) virulence and invasion as well as increases resistance to colonization in host cells. Indole-exposed Salmonella colonized mice less effectively compared to solvent-treated controls, as evident by competitive index values less than 1 in multiple organs. Indole-exposed Salmonella demonstrated 160-fold less invasion of HeLa epithelial cells and 2-fold less invasion of J774A.1 macrophages compared to solvent-treated controls. However, indole did not affect Salmonella intracellular survival in J774A.1 macrophages suggesting that indole primarily affects Salmonella invasion. The decrease in invasion was corroborated by a decrease in expression of multiple Salmonella Pathogenicity Island-1 (SPI-1) genes. We also identified that the effect of indole was mediated by both PhoPQ-dependent and independent mechanisms. Indole also synergistically enhanced the inhibitory effect of a short chain fatty acid cocktail on SPI-1 gene expression. Lastly, indole-treated HeLa cells were 70% more resistant to Salmonella invasion suggesting that indole also increases resistance of epithelial cells to colonization. Our results demonstrate that indole is an important microbiota metabolite that has direct anti-infective effects on Salmonella and host cells, revealing novel mechanisms of pathogen colonization resistance.

  20. The microbiota metabolite indole inhibits Salmonella virulence: Involvement of the PhoPQ two-component system

    PubMed Central

    Kohli, Nandita; Crisp, Zeni; Riordan, Rebekah; Li, Michael; Alaniz, Robert C.

    2018-01-01

    The microbial community present in the gastrointestinal tract is an important component of the host defense against pathogen infections. We previously demonstrated that indole, a microbial metabolite of tryptophan, reduces enterohemorrhagic Escherichia coli O157:H7 attachment to intestinal epithelial cells and biofilm formation, suggesting that indole may be an effector/attenuator of colonization for a number of enteric pathogens. Here, we report that indole attenuates Salmonella Typhimurium (Salmonella) virulence and invasion as well as increases resistance to colonization in host cells. Indole-exposed Salmonella colonized mice less effectively compared to solvent-treated controls, as evident by competitive index values less than 1 in multiple organs. Indole-exposed Salmonella demonstrated 160-fold less invasion of HeLa epithelial cells and 2-fold less invasion of J774A.1 macrophages compared to solvent-treated controls. However, indole did not affect Salmonella intracellular survival in J774A.1 macrophages suggesting that indole primarily affects Salmonella invasion. The decrease in invasion was corroborated by a decrease in expression of multiple Salmonella Pathogenicity Island-1 (SPI-1) genes. We also identified that the effect of indole was mediated by both PhoPQ-dependent and independent mechanisms. Indole also synergistically enhanced the inhibitory effect of a short chain fatty acid cocktail on SPI-1 gene expression. Lastly, indole-treated HeLa cells were 70% more resistant to Salmonella invasion suggesting that indole also increases resistance of epithelial cells to colonization. Our results demonstrate that indole is an important microbiota metabolite that has direct anti-infective effects on Salmonella and host cells, revealing novel mechanisms of pathogen colonization resistance. PMID:29342189

  1. Giardia Alters Commensal Microbial Diversity throughout the Murine Gut

    PubMed Central

    Barash, N. R.; Maloney, J. G.

    2017-01-01

    ABSTRACT Giardia lamblia is the most frequently identified protozoan cause of intestinal infection. Over 200 million people are estimated to have acute or chronic giardiasis, with infection rates approaching 90% in areas where Giardia is endemic. Despite its significance in global health, the mechanisms of pathogenesis associated with giardiasis remain unclear, as the parasite neither produces a known toxin nor induces a robust inflammatory response. Giardia colonization and proliferation in the small intestine of the host may, however, disrupt the ecological homeostasis of gastrointestinal commensal microbes and contribute to diarrheal disease associated with giardiasis. To evaluate the impact of Giardia infection on the host microbiota, we used culture-independent methods to quantify shifts in the diversity of commensal microbes throughout the gastrointestinal tract in mice infected with Giardia. We discovered that Giardia's colonization of the small intestine causes a systemic dysbiosis of aerobic and anaerobic commensal bacteria. Specifically, Giardia colonization is typified by both expansions in aerobic Proteobacteria and decreases in anaerobic Firmicutes and Melainabacteria in the murine foregut and hindgut. Based on these shifts, we created a quantitative index of murine Giardia-induced microbial dysbiosis. This index increased at all gut regions during the duration of infection, including both the proximal small intestine and the colon. Giardiasis could be an ecological disease, and the observed dysbiosis may be mediated directly via the parasite's unique anaerobic fermentative metabolism or indirectly via parasite induction of gut inflammation. This systemic alteration of murine gut commensal diversity may be the cause or the consequence of inflammatory and metabolic changes throughout the gut. Shifts in the commensal microbiota may explain observed variations in giardiasis between hosts with respect to host pathology, degree of parasite colonization, infection initiation, and eventual clearance. PMID:28396324

  2. Microbial community composition but not diversity changes along succession in arctic sand dunes.

    PubMed

    Poosakkannu, Anbu; Nissinen, Riitta; Männistö, Minna; Kytöviita, Minna-Maarit

    2017-02-01

    The generality of increasing diversity of fungi and bacteria across arctic sand dune succession was tested. Microbial communities were examined by high-throughput sequencing of 16S rRNA genes (bacteria) and internal transcribed spacer (ITS) regions (fungi). We studied four microbial compartments (inside leaf, inside root, rhizosphere and bulk soil) and characterized microbes associated with a single plant species (Deschampsia flexuosa) across two sand dune successional stages (early and late). Bacterial richness increased across succession in bulk soil and leaf endosphere. In contrast, soil fungal richness remained constant while root endosphere fungal richness increased across succession. There was, however, no significant difference in Shannon diversity indices between early and late successional stage in any compartment. There was a significant difference in the composition of microbial communities between early and late successional stage in all compartments, although the major microbial OTUs were shared between early and late successional stage. Co-occurrence network analysis revealed successional stage-specific microbial groups. There were more co-occurring modules in early successional stage than in late stage. Altogether, these results emphasize that succession strongly affects distribution of microbial species, but not microbial diversity in arctic sand dune ecosystem and that fungi and bacteria may not follow the same successional trajectories. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Effect of early measles vaccine on pneumococcal colonization: A randomized trial from Guinea-Bissau

    PubMed Central

    Byberg, Stine; Hervig Jacobsen, Lars; Bjerregaard-Andersen, Morten; Jensen, Aksel Karl Georg; Martins, Cesario; Aaby, Peter; Skov Jensen, Jørgen; Stabell Benn, Christine; Whittle, Hilton

    2017-01-01

    Background Measles vaccine (MV) may have non-specific beneficial effects for child health and particularly seems to prevent respiratory infections. Streptococcus pneumoniae is the leading cause of bacterial pneumonia among children worldwide, and nasopharyngeal colonization precedes infection. Objective We investigated whether providing early MV at 18 weeks of age reduced pneumococcal colonization and/or density up to 9 months of age. Method The study was conducted in 2013–2014 in Guinea-Bissau. Pneumococcal vaccine was not part of the vaccination program. Infants aged 18 weeks were block-randomized 2:1 to early or no early MV; at age 9 months, all children were offered MV as per current policy. Nasopharyngeal swabs were taken at baseline, age 6.5 months, and age 9 months. Pneumococcal density was determined by q-PCR. Prevalence ratios of pneumococcal colonization and recent antibiotic treatment (yes/no) by age 6.5 months (PR6.5) and age 9 months (PR9) were estimated using Poisson regression with robust variance estimates while the pneumococcal geometric mean ratio (GMR6.5 and GMR9) was obtained using OLS regression. Results Analyses included 512 children; 346 early MV-children and 166 controls. At enrolment, the pneumococcal colonization prevalence was 80% (411/512). Comparing early MV-children with controls, the PR6.5 was 1.02 (95%CI = 0.94–1.10), and the PR9 was 1.04 (0.96–1.12). The GMR6.5 was 1.02 (0.55–1.89), and the GMR9 was 0.69 (0.39–1.21). Early MV-children tended to be less frequently treated with antibiotics prior to follow up (PR6.5 0.60 (0.34–1.05) and PR9 0.87 (0.50–1.53)). Antibiotic treatment was associated with considerably lower colonization rates, PR6.5 0.85 (0.71–1.01) and PR9 0.66 (0.52–0.84), as well as lower pneumococcal density, GMR6.5 0.32 (0.12–0.86) and GMR9 0.52 (0.18–1.52). Conclusion Early MV at age 18 weeks had no measurable effect on pneumococcal colonization prevalence or density. Higher consumption of antibiotics among controls may have blurred an effect of early MV. Trial registration clinicaltrials.gov NCT01486355 PMID:28545041

  4. Prebiotic effect of fructooligosaccharide in the simulator of the human intestinal microbial ecosystem (SHIME® model).

    PubMed

    Sivieri, Katia; Morales, Martha L Villarreal; Saad, Susana M I; Adorno, Maria A Tallarico; Sakamoto, Isabel Kimiko; Rossi, Elizeu A

    2014-08-01

    Maintaining "gut health" is a goal for scientists throughout the world. Therefore, microbiota management models for testing probiotics, prebiotics, and synbiotics have been developed. The SHIME(®) model was used to study the effect of fructooligosaccharide (FOS) on the fermentation pattern of the colon microbiota. Initially, an inoculum prepared from human feces was introduced into the reactor vessels and stabilized over 2 weeks using a culture medium. This stabilization period was followed by a 2-week control period during which the microbiota was monitored. The microbiota was then subjected to a 4-week treatment period by adding 5 g/day-1 FOS to vessel one (the "stomach" compartment). Plate counts, Denaturing Gradient Gel Electrophoresis (DGGE), short-chain fatty acid (SCFA), and ammonium analyses were used to observe the influence of FOS treatment in simulated colon compartments. A significant increase (P<.01) in the Lactobacillus spp. and Bifidobacterium spp. populations was observed during the treatment period. The DGGE obtained showed the overall microbial community was changed in the ascending colon compartment of the SHIME reactor. FOS induced increase of the SCFA concentration (P<.05) during the treatment period, mainly due to significant increased levels of acetic and butyric acids. However, ammonium concentrations increased during the same period (P<.01). This study indicates the usefulness of in vitro methods that simulate the colon region as part of research towards the improvement of human health.

  5. Role of Lactobacillus reuteri in Human Health and Diseases

    PubMed Central

    Mu, Qinghui; Tavella, Vincent J.; Luo, Xin M.

    2018-01-01

    Lactobacillus reuteri (L. reuteri) is a well-studied probiotic bacterium that can colonize a large number of mammals. In humans, L. reuteri is found in different body sites, including the gastrointestinal tract, urinary tract, skin, and breast milk. The abundance of L. reuteri varies among different individuals. Several beneficial effects of L. reuteri have been noted. First, L. reuteri can produce antimicrobial molecules, such as organic acids, ethanol, and reuterin. Due to its antimicrobial activity, L. reuteri is able to inhibit the colonization of pathogenic microbes and remodel the commensal microbiota composition in the host. Second, L. reuteri can benefit the host immune system. For instance, some L. reuteri strains can reduce the production of pro-inflammatory cytokines while promoting regulatory T cell development and function. Third, bearing the ability to strengthen the intestinal barrier, the colonization of L. reuteri may decrease the microbial translocation from the gut lumen to the tissues. Microbial translocation across the intestinal epithelium has been hypothesized as an initiator of inflammation. Therefore, inflammatory diseases, including those located in the gut as well as in remote tissues, may be ameliorated by increasing the colonization of L. reuteri. Notably, the decrease in the abundance of L. reuteri in humans in the past decades is correlated with an increase in the incidences of inflammatory diseases over the same period of time. Direct supplementation or prebiotic modulation of L. reuteri may be an attractive preventive and/or therapeutic avenue against inflammatory diseases. PMID:29725324

  6. Gut bacteria are rarely shared by co-hospitalized premature infants, regardless of necrotizing enterocolitis development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raveh-Sadka, Tali; Thomas, Brian C.; Singh, Andrea

    Premature infants are highly vulnerable to aberrant gastrointestinal tract colonization, a process that may lead to diseases like necrotizing enterocolitis. Thus, spread of potential pathogens among hospitalized infants is of great concern. Here, we reconstructed hundreds of high-quality genomes of microorganisms that colonized co-hospitalized premature infants, assessed their metabolic potential, and tracked them over time to evaluate bacterial strain dispersal among infants. We compared microbial communities in infants who did and did not develop necrotizing enterocolitis. Surprisingly, while potentially pathogenic bacteria of the same species colonized many infants, our genome-resolved analysis revealed that strains colonizing each baby were typically distinct.more » In particular, no strain was common to all infants who developed necrotizing enterocolitis. The paucity of shared gut colonizers suggests the existence of significant barriers to the spread of bacteria among infants. Furthermore, we demonstrate that strain-resolved comprehensive community analysis can be accomplished on potentially medically relevant time scales.« less

  7. Gut bacteria are rarely shared by co-hospitalized premature infants, regardless of necrotizing enterocolitis development

    DOE PAGES

    Raveh-Sadka, Tali; Thomas, Brian C.; Singh, Andrea; ...

    2015-03-03

    Premature infants are highly vulnerable to aberrant gastrointestinal tract colonization, a process that may lead to diseases like necrotizing enterocolitis. Thus, spread of potential pathogens among hospitalized infants is of great concern. Here, we reconstructed hundreds of high-quality genomes of microorganisms that colonized co-hospitalized premature infants, assessed their metabolic potential, and tracked them over time to evaluate bacterial strain dispersal among infants. We compared microbial communities in infants who did and did not develop necrotizing enterocolitis. Surprisingly, while potentially pathogenic bacteria of the same species colonized many infants, our genome-resolved analysis revealed that strains colonizing each baby were typically distinct.more » In particular, no strain was common to all infants who developed necrotizing enterocolitis. The paucity of shared gut colonizers suggests the existence of significant barriers to the spread of bacteria among infants. Furthermore, we demonstrate that strain-resolved comprehensive community analysis can be accomplished on potentially medically relevant time scales.« less

  8. Ecological Interactions of Bacteria in the Human Gut

    NASA Astrophysics Data System (ADS)

    Falony, Gwen; de Vuyst, Luc

    The colon or large intestine is one of the most important organs of the human body (Macfarlane and Cummings, 1991). Moreover, its inhabitants, the colon microbiota, are the key elements of the human digestive ecosystem. The vast complexity of the human large-intestinal microbiota has inspired researchers to consider it as an organ itself, located inside the colon and acquired postnatally (Bäckhed et al., 2005; Zocco et al., 2007). From a physiologist's point of view, this image of the colon microbiota is relevant: like an organ, it is composed of different cell lineages that communicate with both one another and the host; it consumes, stores, and redistributes energy; it mediates physiologically important chemical transformations; and it is able to maintain and repair itself through self-replication (Bäckhed et al., 2005). As a microbial organ, the human colon community does not only broaden the digestive abilities of the host (Gill et al., 2006), but also influences body processes far beyond digestion (Roberfroid, 2005b; Turnbaugh et al., 2007).

  9. Transported biofilms and their influence on subsequent macrofouling colonization.

    PubMed

    Sweat, L Holly; Swain, Geoffrey W; Hunsucker, Kelli Z; Johnson, Kevin B

    2017-05-01

    Biofilm organisms such as diatoms are potential regulators of global macrofouling dispersal because they ubiquitously colonize submerged surfaces, resist antifouling efforts and frequently alter larval recruitment. Although ships continually deliver biofilms to foreign ports, it is unclear how transport shapes biofilm microbial structure and subsequent macrofouling colonization. This study demonstrates that different ship hull coatings and transport methods change diatom assemblage composition in transported coastal marine biofilms. Assemblages carried on the hull experienced significant cell losses and changes in composition through hydrodynamic stress, whereas those that underwent sheltered transport, even through freshwater, were largely unaltered. Coatings and their associated biofilms shaped distinct macrofouling communities and affected recruitment for one third of all species, while biofilms from different transport treatments had little effect on macrofouling colonization. These results demonstrate that transport conditions can shape diatom assemblages in biofilms carried by ships, but the properties of the underlying coatings are mainly responsible for subsequent macrofouling. The methods by which organisms colonize and are transferred by ships have implications for their distribution, establishment and invasion success.

  10. Gut bacteria are rarely shared by co-hospitalized premature infants, regardless of necrotizing enterocolitis development

    PubMed Central

    Raveh-Sadka, Tali; Thomas, Brian C; Singh, Andrea; Firek, Brian; Brooks, Brandon; Castelle, Cindy J; Sharon, Itai; Baker, Robyn; Good, Misty; Morowitz, Michael J; Banfield, Jillian F

    2015-01-01

    Premature infants are highly vulnerable to aberrant gastrointestinal tract colonization, a process that may lead to diseases like necrotizing enterocolitis. Thus, spread of potential pathogens among hospitalized infants is of great concern. Here, we reconstructed hundreds of high-quality genomes of microorganisms that colonized co-hospitalized premature infants, assessed their metabolic potential, and tracked them over time to evaluate bacterial strain dispersal among infants. We compared microbial communities in infants who did and did not develop necrotizing enterocolitis. Surprisingly, while potentially pathogenic bacteria of the same species colonized many infants, our genome-resolved analysis revealed that strains colonizing each baby were typically distinct. In particular, no strain was common to all infants who developed necrotizing enterocolitis. The paucity of shared gut colonizers suggests the existence of significant barriers to the spread of bacteria among infants. Importantly, we demonstrate that strain-resolved comprehensive community analysis can be accomplished on potentially medically relevant time scales. DOI: http://dx.doi.org/10.7554/eLife.05477.001 PMID:25735037

  11. Human Plasma Enhances the Expression of Staphylococcal Microbial Surface Components Recognizing Adhesive Matrix Molecules Promoting Biofilm Formation and Increases Antimicrobial Tolerance In Vitro

    DTIC Science & Technology

    2014-07-17

    infection and invasion in Staphylococcus aureus experimental endocarditis . J Exp Med 2005, 201:1627 1635. 23. Atshan SS, Shamsudin MN, Karunanidhi A, van... infections . The ability of S. aureus to colonize and establish biofilms, a surface- attached microbial community surrounded by a self- produced polymeric...human infections [2-4], and represent a major challenge to modern medicine given their recalcitrance to antimicrobials and host mechanisms of clearance

  12. Feeding preference of the South American endemic anomuran Aegla platensis (Decapoda, Anomura, Aeglidae)

    NASA Astrophysics Data System (ADS)

    Colpo, Karine Delevati; Ribeiro, Liara Colpo; Wesz, Bruna; Ribeiro, Ludmilla Oliveira

    2012-04-01

    In order to determine the feeding preference of Aegla platensis in streams and the importance of microorganisms in its detritivore diet, we carried out two experiments designed to evaluate the food preferences of A. platensis (1) among leaves with different levels of microbial colonization and (2) among insect larvae (Chironomidae, Simuliidae, Hydropsychidae) and microbially conditioned leaves. A. platensis preferred animal over plant food items; when only leaves were offered, this aeglid preferred the leaves with higher levels of microorganism conditioning.

  13. Influence of sucrose and xylitol on an early Streptococcus mutans biofilm in a dental simulator.

    PubMed

    Salli, K M; Forssten, S D; Lahtinen, S J; Ouwehand, A C

    2016-10-01

    In vitro methods to study dental biofilms are useful in finding ways to support a healthy microbial balance in the oral cavity. The effects of sucrose, xylitol, and their combination on three strains of Streptococcus mutans and one strain of Streptococcus sobrinus were studied using a dental simulator. A simulator was used to mimic the oral cavity environment. It provided a continuous-flow system using artificial saliva (AS), constant temperature, mixing, and hydroxyapatite (HA) surface in which the influence of xylitol was studied. The quantities of planktonic and adhered bacteria were measured by real-time qPCR. Compared against the untreated AS, adding 1% sucrose increased the bacterial colonization of HA (p<0.0001) whereas 2% xylitol decreased it (p<0.05), with the exception of clinical S. mutans isolate 117. The combination of xylitol and sucrose decreased the bacterial quantities within the AS and the colonization on the HA by clinical S. mutans isolate 2366 was reduced (p<0.05). Increasing the concentration (2%-5%) of xylitol caused a reduction in bacterial counts even in the presence of sucrose. The continuous-culture biofilm model showed that within a young biofilm, sucrose significantly promotes whereas xylitol reduces bacterial colonization and proliferation. The results indicate that xylitol affects the ability of certain S. mutans strains to adhere to the HA. Clinical studies have also shown that xylitol consumption decreases caries incidence and reduces the amount of plaque. This study contributes to the understanding of the mechanism behind these clinical observations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Early microbial colonization of cystic fibrosis patients identified by neonatal screening, with emphasis on Staphylococcus aureus.

    PubMed

    Souza, Helena A P H M; Nogueira, Keite S; Matos, Adriana P; Vieira, Ricardo P; Riedi, Carlos A; Rosário, Nelson A; Telles, Flávio Q; Costa, Libera M Dalla

    2006-01-01

    To assess bacterial colonization prospectively in patients with cystic fibrosis identified by neonatal screening. To assess susceptibility to antimicrobials and to perform the molecular typing of Staphylococcus aureus strains isolated from the oropharynx of patients during the study. Twenty-five cystic fibrosis patients receiving regular treatment at the Cystic Fibrosis Outpatient Clinic of Hospital de Clínicas of Universidade Federal do Paraná, Brazil, were included in the study. All patients were identified by trypsin-like immunoreactivity and their diagnosis was confirmed by two or more sweat tests. Oropharyngeal swabs were collected and cultured according to routine methods; bacterial colonies were phenotypically identified and their susceptibility to antimicrobials was tested. S. aureus isolates were submitted to molecular typing using pulsed-field gel electrophoresis. Out of 234 oropharyngeal swabs, S. aureus was the most frequently isolated strain (76% of patients, 42% of swabs), followed by Pseudomonas aeruginosa (36% of patients, 16% of swabs) and Haemophilus spp. (76% of patients; 19% of swabs). Seventy-three isolates were obtained from 19 patients colonized with S. aureus, of which 18 were oxacillin-resistant (24.6%), isolated from two patients, with the same electrophoretic profiles as that of the Brazilian clone. The remaining oxacillin-sensitive isolates were distributed into 18 electrophoretic profiles. There was higher prevalence of S. aureus, with earlier isolation than other pathogens. Multi-sensitive isolates were distributed into different clones, characterizing non-transmissibility among community-acquired strains. The isolated oxacillin-resistant S. aureus showed identical electrophoretic profiles, probably acquired in hospital. P. aeruginosa was not so frequent in the studied population.

  15. Methods for understanding microbial community structures and functions in microbial fuel cells: a review.

    PubMed

    Zhi, Wei; Ge, Zheng; He, Zhen; Zhang, Husen

    2014-11-01

    Microbial fuel cells (MFCs) employ microorganisms to recover electric energy from organic matter. However, fundamental knowledge of electrochemically active bacteria is still required to maximize MFCs power output for practical applications. This review presents microbiological and electrochemical techniques to help researchers choose the appropriate methods for the MFCs study. Pre-genomic and genomic techniques such as 16S rRNA based phylogeny and metagenomics have provided important information in the structure and genetic potential of electrode-colonizing microbial communities. Post-genomic techniques such as metatranscriptomics allow functional characterizations of electrode biofilm communities by quantifying gene expression levels. Isotope-assisted phylogenetic analysis can further link taxonomic information to microbial metabolisms. A combination of electrochemical, phylogenetic, metagenomic, and post-metagenomic techniques offers opportunities to a better understanding of the extracellular electron transfer process, which in turn can lead to process optimization for power output. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Cigarette Smoke, Bacteria, Mold, Microbial Toxins, and Chronic Lung Inflammation

    PubMed Central

    Pauly, John L.; Paszkiewicz, Geraldine

    2011-01-01

    Chronic inflammation associated with cigarette smoke fosters malignant transformation and tumor cell proliferation and promotes certain nonneoplastic pulmonary diseases. The question arises as to whether chronic inflammation and/or colonization of the airway can be attributed, at least in part, to tobacco-associated microbes (bacteria, fungi, and spores) and/or microbial toxins (endotoxins and mycotoxins) in tobacco. To address this question, a literature search of documents in various databases was performed. The databases included PubMed, Legacy Tobacco Documents Library, and US Patents. This investigation documents that tobacco companies have identified and quantified bacteria, fungi, and microbial toxins at harvest, throughout fermentation, and during storage. Also characterized was the microbial flora of diverse smoking and smokeless tobacco articles. Evidence-based health concerns expressed in investigations of microbes and microbial toxins in cigarettes, cigarette smoke, and smokeless tobacco products are reasonable; they warrant review by regulatory authorities and, if necessary, additional investigation to address scientific gaps. PMID:21772847

  17. Microbial biofilms on facial prostheses.

    PubMed

    Ariani, Nina; Vissink, Arjan; van Oort, Robert P; Kusdhany, Lindawati; Djais, Ariadna; Rahardjo, Tri Budi W; van der Mei, Henny C; Krom, Bastiaan P

    2012-01-01

    The composition of microbial biofilms on silicone rubber facial prostheses was investigated and compared with the microbial flora on healthy and prosthesis-covered skin. Scanning electron microscopy showed the presence of mixed bacterial and yeast biofilms on and deterioration of the surface of the prostheses. Microbial culturing confirmed the presence of yeasts and bacteria. Microbial colonization was significantly increased on prosthesis-covered skin compared to healthy skin. Candida spp. were exclusively isolated from prosthesis-covered skin and from prostheses. Biofilms from prostheses showed the least diverse band-profile in denaturing gradient gel electrophoresis (DGGE) whereas prosthesis-covered skin showed the most diverse band-profile. Bacterial diversity exceeded yeast diversity in all samples. It is concluded that occlusion of the skin by prostheses creates a favorable niche for opportunistic pathogens such as Candida spp. and Staphylococcus aureus. Biofilms on healthy skin, skin underneath the prosthesis and on the prosthesis had a comparable composition, but the numbers present differed according to the microorganism.

  18. Microbial precipitation of dolomite in methanogenic groundwater

    USGS Publications Warehouse

    Roberts, Jennifer A.; Bennett, Philip C.; Gonzalez, Luis A.; Macpherson, G.L.; Milliken, Kitty L.

    2004-01-01

    We report low-temperature microbial precipitation of dolomite in dilute natural waters from both field and laboratory experiments. In a freshwater aquifer, microorganisms colonize basalt and nucleate nonstoichiometric dolomite on cell walls. In the laboratory, ordered dolomite formed at near-equilibrium conditions from groundwater with molar Mg:Ca ratios of <1; dolomite was absent in sterile experiments. Geochemical and microbiological data suggest that methanogens are the dominant metabolic guild in this system and are integral to dolomite precipitation. We hypothesize that the attached microbial consortium reacts with the basalt surface, releasing Mg and Ca into solution, which drives dolomite precipitation via nucleation on the cell wall. These findings provide insight into the long-standing dolomite problem and suggest a fundamental role for microbial processes in the formation of dolomite across a wide range of environmental conditions.

  19. Carbohydrate maldigestion induces necrotizing enterocolitis in preterm pigs

    USDA-ARS?s Scientific Manuscript database

    Necrotizing enterocolitis (NEC) is a major gastrointestinal disorder in preterm infants. Key risk factors for NEC are enteral feeding and microbial colonization. Maldigestion of carbohydrate secondary to immature digestive function has been suspected to cause bacterial overgrowth and NEC. We investi...

  20. Bardoxolone Methyl Prevents High-Fat Diet-Induced Colon Inflammation in Mice.

    PubMed

    Dinh, Chi H L; Yu, Yinghua; Szabo, Alexander; Zhang, Qingsheng; Zhang, Peng; Huang, Xu-Feng

    2016-04-01

    Obesity induces chronic, low-grade inflammation, which increases the risk of colon cancer. We investigated the preventive effects of Bardoxolone methyl (BARD) on high-fat diet (HFD)-induced inflammation in a mouse colon. Male C57BL/6J mice (n=7) were fed a HFD (HFD group), HFD plus BARD (10 mg/kg) in drinking water (HFD/BARD group), or normal laboratory chow diet (LFD group) for 21 weeks. In HFD mice, BARD reduced colon thickness and decreased colon weight per length. This was associated with an increase in colon crypt depth and the number of goblet cells per crypt. BARD reduced the expression of F4/80 and CD11c but increased CD206 and IL-10, indicating an anti-inflammatory effect. BARD prevented an increase of the intracellular pro-inflammatory biomarkers (NF-қB, p NF-қB, IL-6, TNF-α) and cell proliferation markers (Cox2 and Ki67). BARD prevented fat deposition in the colon wall and prevented microbial population changes. Overall, we report the preventive effects of BARD on colon inflammation in HFD-fed mice through its regulation of macrophages, NF-қB, cytokines, Cox2 and Ki67, fat deposition and microflora. © 2016 The Histochemical Society.

  1. [Timing of bacterial colonization in severe burns: is strict isolation necessary?].

    PubMed

    Barret, Juan P

    2003-12-01

    Infection is still one of the main causes of mortality in severe burn patients. Strict isolation has been used for the prevention of infection, but the efficacy of this measure is debatable. The aim of this study was to determine the timing of bacterial colonization in these patients and to ascertain whether strict isolation is indicated. Thirty consecutive children with severe burns were studied. Patients were only barrier-nursed during dressing changes. On admission and twice weekly over the entire hospital stay, burn, sputum, gastric aspirates, feces, and blood samples were obtained for culture. All isolates were tested for specific biotypes. Results were studied with linear regression and repeated measures ANOVA to determine the timing of colonization and cross-colonization between patients. On admission, normal cutaneous flora were isolated from burn cultures of all patients. The remaining cultures were negative. After one week, gastric aspirates were found to be colonized by gram-negative bacteria and fungi. This was followed by colonization of feces, burn, and sputum cultures. Biotype identification showed unidirectional colonization from the gastrointestinal tract to burns and upper airway. There were no cross infections between patients. Microbial colonization in severe burn patients was endogenous in nature and there were no cross infections. Thus, strict isolation is not necessary in burn centers, except during outbreaks of multi-resistant microorganisms.

  2. Previously unrecognized stages of species-specific colonization in the mutualism between Xenorhabdus bacteria and Steinernema nematodes

    PubMed Central

    Chaston, John M.; Murfin, Kristen E.; Heath-Heckman, Elizabeth A.; Goodrich-Blair, Heidi

    2013-01-01

    Summary The specificity of a horizontally transmitted microbial symbiosis is often defined by molecular communication between host and microbe during initial engagement, which can occur in discrete stages. In the symbiosis between Steinernema nematodes and Xenorhabdus bacteria, previous investigations focused on bacterial colonization of the intestinal lumen (receptacle) of the nematode infective juvenile (IJ), as this was the only known persistent, intimate, and species-specific contact between the two. Here we show that bacteria colonize the anterior intestinal cells of other nematode developmental stages in a species-specific manner. Also, we describe three processes that only occur in juveniles that are destined to become IJs. First, a few bacterial cells colonize the nematode pharyngeal-intestinal valve (PIV) anterior to the intestinal epithelium. Second, the nematode intestine constricts while bacteria initially remain in the PIV. Third, anterior intestinal constriction relaxes and colonizing bacteria occupy the receptacle. At each stage, colonization requires X. nematophila symbiosis region 1 (SR1) genes and is species-specific: X. szentirmaii, which naturally lacks SR1, does not colonize unless SR1 is ectopically expressed. These findings reveal new aspects of Xenorhabdus bacteria interactions with and transmission by their Steinernema nematode hosts, and demonstrate that bacterial SR1 genes aid in colonizing nematode epithelial surfaces. PMID:23480552

  3. Molecular analysis of the microbial diversity present in the colonic wall, colonic lumen, and cecal lumen of a pig.

    PubMed

    Pryde, S E; Richardson, A J; Stewart, C S; Flint, H J

    1999-12-01

    Random clones of 16S ribosomal DNA gene sequences were isolated after PCR amplification with eubacterial primers from total genomic DNA recovered from samples of the colonic lumen, colonic wall, and cecal lumen from a pig. Sequences were also obtained for cultures isolated anaerobically from the same colonic-wall sample. Phylogenetic analysis showed that many sequences were related to those of Lactobacillus or Streptococcus spp. or fell into clusters IX, XIVa, and XI of gram-positive bacteria. In addition, 59% of randomly cloned sequences showed less than 95% similarity to database entries or sequences from cultivated organisms. Cultivation bias is also suggested by the fact that the majority of isolates (54%) recovered from the colon wall by culturing were related to Lactobacillus and Streptococcus, whereas this group accounted for only one-third of the sequence variation for the same sample from random cloning. The remaining cultured isolates were mainly Selenomonas related. A higher proportion of Lactobacillus reuteri-related sequences than of Lactobacillus acidophilus- and Lactobacillus amylovorus-related sequences were present in the colonic-wall sample. Since the majority of bacterial ribosomal sequences recovered from the colon wall are less than 95% related to known organisms, the roles of many of the predominant wall-associated bacteria remain to be defined.

  4. Molecular Analysis of the Microbial Diversity Present in the Colonic Wall, Colonic Lumen, and Cecal Lumen of a Pig

    PubMed Central

    Pryde, Susan E.; Richardson, Anthony J.; Stewart, Colin S.; Flint, Harry J.

    1999-01-01

    Random clones of 16S ribosomal DNA gene sequences were isolated after PCR amplification with eubacterial primers from total genomic DNA recovered from samples of the colonic lumen, colonic wall, and cecal lumen from a pig. Sequences were also obtained for cultures isolated anaerobically from the same colonic-wall sample. Phylogenetic analysis showed that many sequences were related to those of Lactobacillus or Streptococcus spp. or fell into clusters IX, XIVa, and XI of gram-positive bacteria. In addition, 59% of randomly cloned sequences showed less than 95% similarity to database entries or sequences from cultivated organisms. Cultivation bias is also suggested by the fact that the majority of isolates (54%) recovered from the colon wall by culturing were related to Lactobacillus and Streptococcus, whereas this group accounted for only one-third of the sequence variation for the same sample from random cloning. The remaining cultured isolates were mainly Selenomonas related. A higher proportion of Lactobacillus reuteri-related sequences than of Lactobacillus acidophilus- and Lactobacillus amylovorus-related sequences were present in the colonic-wall sample. Since the majority of bacterial ribosomal sequences recovered from the colon wall are less than 95% related to known organisms, the roles of many of the predominant wall-associated bacteria remain to be defined. PMID:10583991

  5. Removal and prevention of dental plaque with d-tagatose.

    PubMed

    Lu, Y; Levin, G V

    2002-08-01

    Dental plaque develops when early bacterial colonizers adhere to the acquired pellicle (saliva-derived proteinous coating on the tooth surface) followed by adhesion of late interspecies colonizers to form this type of biofilm (coaggregation). In developing a d-tagatose-based toothpaste, we examined 15 oral isolates, including both early colonizers (Streptococcus and Actinomyces) and late colonizers (Fusobacterium, Porphyromonas, Prevotella, Veillonella, Capnocytophaga, and Actinobacillus), and tested them for their ability to coaggregate with each other. We then tested the ability of d-tagatose to reverse any such coaggregations. Coaggregation was examined visually and scored by using a system ranging from 0, for no visible coaggregation to 4, for maximum coaggregation. d-Tagatose, at a concentration of less than 750 mm, completely reversed the coaggregation of 17 (60%) of 28 strongly coaggregating pairs (coaggregation score = 2 or higher) tested. In contrast, d-sorbitol had little reversal effect. d-Tagatose-sensitive coaggregations were d-galactose-reversible as well. d-Tagatose acted on both early and late colonizers; both groups, especially the late colonizers, were frequently involved in periodontal diseases. Thus, d-tagatose has the potential for preventing and removing plaque development and for altering the subgingival microbiota. These effective qualities offer conservative control of gingival and periodontal disease.

  6. Interplay Between Innate Immunity and the Plant Microbiota.

    PubMed

    Hacquard, Stéphane; Spaepen, Stijn; Garrido-Oter, Ruben; Schulze-Lefert, Paul

    2017-08-04

    The innate immune system of plants recognizes microbial pathogens and terminates their growth. However, recent findings suggest that at least one layer of this system is also engaged in cooperative plant-microbe interactions and influences host colonization by beneficial microbial communities. This immune layer involves sensing of microbe-associated molecular patterns (MAMPs) by pattern recognition receptors (PRRs) that initiate quantitative immune responses to control host-microbial load, whereas diversification of MAMPs and PRRs emerges as a mechanism that locally sculpts microbial assemblages in plant populations. This suggests a more complex microbial management role of the innate immune system for controlled accommodation of beneficial microbes and in pathogen elimination. The finding that similar molecular strategies are deployed by symbionts and pathogens to dampen immune responses is consistent with this hypothesis but implies different selective pressures on the immune system due to contrasting outcomes on plant fitness. The reciprocal interplay between microbiota and the immune system likely plays a critical role in shaping beneficial plant-microbiota combinations and maintaining microbial homeostasis.

  7. Microbial ecology and biogeochemistry of continental Antarctic soils.

    PubMed

    Cowan, Don A; Makhalanyane, Thulani P; Dennis, Paul G; Hopkins, David W

    2014-01-01

    The Antarctica Dry Valleys are regarded as the coldest hyperarid desert system on Earth. While a wide variety of environmental stressors including very low minimum temperatures, frequent freeze-thaw cycles and low water availability impose severe limitations to life, suitable niches for abundant microbial colonization exist. Antarctic desert soils contain much higher levels of microbial diversity than previously thought. Edaphic niches, including cryptic and refuge habitats, microbial mats and permafrost soils all harbor microbial communities which drive key biogeochemical cycling processes. For example, lithobionts (hypoliths and endoliths) possess a genetic capacity for nitrogen and carbon cycling, polymer degradation, and other system processes. Nitrogen fixation rates of hypoliths, as assessed through acetylene reduction assays, suggest that these communities are a significant input source for nitrogen into these oligotrophic soils. Here we review aspects of microbial diversity in Antarctic soils with an emphasis on functionality and capacity. We assess current knowledge regarding adaptations to Antarctic soil environments and highlight the current threats to Antarctic desert soil communities.

  8. Antibiotics and the developing infant gut microbiota and resistome.

    PubMed

    Gibson, Molly K; Crofts, Terence S; Dantas, Gautam

    2015-10-01

    The microbial communities colonizing the human gut are tremendously diverse and highly personal. The composition and function of the microbiota play important roles in human health and disease, and considerable research has focused on understanding the ecological forces shaping these communities. While it is clear that factors such as diet, genotype of the host, and environment influence the adult gut microbiota community composition, recent work has emphasized the importance of early-life assembly dynamics in both the immediate and long-term personalized nature of the gut microbiota. While the mature adult gut microbiota is believed to be relatively stable, the developing infant gut microbiota (IGM) is highly dynamic and prone to disruption by external factors, including antibiotic exposure. Studies have revealed both transient and persistent alterations to the adult gut microbiota community resulting from antibiotic treatment later in life. As antibiotics are routinely prescribed at a greater rate in the first years of life, the impact of these interventions on the developing IGM is emerging as a key research priority. In addition to understanding the impact of these disruptions on the infant gut microbial architecture and related host diseases, we need to understand the contribution of early life antibiotics to the selection of antibiotic resistance gene reservoirs in the microbiota, and their threat to successful treatment of infectious disease. Here we review the current understanding of the developmental progression of the IGM and the impact of antibiotic therapies on its composition and encoded reservoir of antibiotic resistance genes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Early Triassic environmental dynamics and microbial development during the Smithian-Spathian transition (Lower Weber Canyon, Utah, USA)

    NASA Astrophysics Data System (ADS)

    Grosjean, Anne-Sabine; Vennin, Emmanuelle; Olivier, Nicolas; Caravaca, Gwénaël; Thomazo, Christophe; Fara, Emmanuel; Escarguel, Gilles; Bylund, Kevin G.; Jenks, James F.; Stephen, Daniel A.; Brayard, Arnaud

    2018-01-01

    The Early Triassic biotic recovery following the end-Permian mass extinction is well documented in the Smithian-Spathian Thaynes Group of the western USA basin. This sedimentary succession is commonly interpreted as recording harsh conditions of various shallow marine environments where microbial structures flourished. However, recent studies questioned the relevance of the classical view of long-lasting deleterious post-crisis conditions and suggested a rapid diversification of some marine ecosystems during the Early Triassic. Using field and microfacies analyses, we investigate a well-preserved Early Triassic marine sedimentary succession in Lower Weber Canyon (Utah, USA). The identification of microbial structures and their depositional settings provide insights on factors controlling their morphologies and distribution. The Lower Weber Canyon sediments record the vertical evolution of depositional environments from a middle Smithian microbial and dolosiliciclastic peritidal system to a late Smithian-early Spathian bioclastic, muddy mid ramp. The microbial deposits are interpreted as Microbially Induced Sedimentary Structures (MISS) that developed either (1) in a subtidal mid ramp where microbial wrinkles and chips are associated with megaripples characterizing hydrodynamic conditions of lower flow regime, or (2) in protected areas of inter- to subtidal inner ramp where they formed laminae and domal structures. Integrated with other published data, our investigations highlight that the distribution of these microbial structures was influenced by the combined effects of bathymetry, hydrodynamic conditions, lithology of the substrat physico-chemical characteristics of the depositional environment and by the regional relative sea-level fluctuations. Thus, we suggest that local environmental factors and basin dynamics primarily controlled the modalities of microbial development and preservation during the Early Triassic in the western USA basin.

  10. Age-Dependent Enterocyte Invasion and Microcolony Formation by Salmonella

    PubMed Central

    Zhang, Kaiyi; Dupont, Aline; Torow, Natalia; Gohde, Fredrik; Leschner, Sara; Lienenklaus, Stefan; Weiss, Siegfried; Brinkmann, Melanie M.; Kühnel, Mark; Hensel, Michael; Fulde, Marcus; Hornef, Mathias W.

    2014-01-01

    The coordinated action of a variety of virulence factors allows Salmonella enterica to invade epithelial cells and penetrate the mucosal barrier. The influence of the age-dependent maturation of the mucosal barrier for microbial pathogenesis has not been investigated. Here, we analyzed Salmonella infection of neonate mice after oral administration. In contrast to the situation in adult animals, we observed spontaneous colonization, massive invasion of enteroabsorptive cells, intraepithelial proliferation and the formation of large intraepithelial microcolonies. Mucosal translocation was dependent on enterocyte invasion in neonates in the absence of microfold (M) cells. It further resulted in potent innate immune stimulation in the absence of pronounced neutrophil-dominated pathology. Our results identify factors of age-dependent host susceptibility and provide important insight in the early steps of Salmonella infection in vivo. We also present a new small animal model amenable to genetic manipulation of the host for the analysis of the Salmonella enterocyte interaction in vivo. PMID:25210785

  11. Cnidarian-microbe interactions and the origin of innate immunity in metazoans.

    PubMed

    Bosch, Thomas C G

    2013-01-01

    Most epithelia in animals are colonized by microbial communities. These resident microbes influence fitness and thus ecologically important traits of their hosts, ultimately forming a metaorganism consisting of a multicellular host and a community of associated microorganisms. Recent discoveries in the cnidarian Hydra show that components of the innate immune system as well as transcriptional regulators of stem cells are involved in maintaining homeostasis between animals and their resident microbiota. Here I argue that components of the innate immune system with its host-specific antimicrobial peptides and a rich repertoire of pattern recognition receptors evolved in early-branching metazoans because of the need to control the resident beneficial microbes, not because of invasive pathogens. I also propose a mutual intertwinement between the stem cell regulatory machinery of the host and the resident microbiota composition, such that disturbances in one trigger a restructuring and resetting of the other.

  12. Mineralogical controls on surface colonization by sulfur-metabolizing microbial communities

    NASA Astrophysics Data System (ADS)

    Jones, A. A.; Bennett, P.

    2012-12-01

    When characterizing microbial diversity and the microbial ecosystem of the shallow subsurface the mineral matrix is generally assumed to be homogenous and unreactive. We report here experimental evidence that microorganisms colonize rock surfaces according to the rock's chemistry and the organism's metabolic requirements and tolerances. We investigated this phenomenon using laboratory biofilm reactors with both a pure culture of sulfur-oxidizing Thiothrix unzii and a mixed environmental sulfur-metabolizing community from Lower Kane, Cave, WY, USA. Reactors contained rock and mineral chips (calcite, albite, microcline, quartz, chert, Madison Limestone (ML), Madison Dolostone (MD), and basalt) amended with one of the two inoculants. Biomass of attached microorganisms on each mineral surface was quantified. The 16S rRNA of attached microbial communities were compared using Roche FLX and Titanium 454 next generation pyrosequencing. A primary controlling factor on taxonomy of attached microorganisms in both pure and mixed culture experiments was mineral buffering capacity. In mixed culture experiments acid-buffering carbonates were preferentially colonized by neutrophilic sulfur-oxidizing microorganisms (~18% to ~27% of microorganisms), while acidophilic sulfur-oxidizing microorganisms colonized non-buffering quartz exclusively (~46% of microorganisms). The nutrient content of the rock was a controlling factor on biomass accumulation, with neutrophilic organisms selecting between carbonate surfaces of equivalent buffer capacities according to the availability of phosphate. Dry biomass on ML was 17.8 ± 2.3 mg/cm2 and MD was 20.6 ± 6.8 mg/cm2; while nutrient poor calcite accumulated 2.4 ± 0.3 mg/cm2. Biomass accumulation was minimal on non-buffering nutrient-limited surfaces. These factors are countered by the competitive exclusion of some populations. A pure culture of T. unzii preferentially colonizes carbonates while a very closely related Thiothrix spp is excluded from these same rock samples in a mixed culture. Diversity analysis reveals that ML, MD, and calcite have >98% of sequences belonging to shared OTUs. The carbonates have <3% of sequences belonging to OTUs shared with any silicate mineral surface with the exception of basalt (~85% similarity). These four surfaces were host to the least diverse microbial communities, suggesting that competitive exclusion of microorganisms not adapted to these surfaces is a controlling variable on taxonomy. Furthermore, the microorganisms on basalt reveal an unique association between Thiothrix unzii (often found in mid-ocean ridge environments) and basalt, where it excludes other sulfur oxidizers and accumulates the highest non-carbonate biomass in both pure (3.5 ± 1.0 mg/cm2) and mixed culture (5.4 ± 1.4 mg/cm2) experiments. This association suggests that adaptations to specific rocks may be retained even when the organism is displaced from an ancestral rock/mineral surface habitat. Combined, these variables (buffering capacity, nutrient availability, competitive exclusion, tolerance of surface geochemistry, and latent adaptations) affect biomass density, local diversity, and global diversity of the attached communities on mineral and rock surfaces and suggest that different populations are more tolerant of, and more competitive on, specific rock/mineral types.

  13. INTRACELLULAR COLONIZATION OF SEAGRASS ROOTS BY ACETOGENIC AND SULFIDOGENIC BACTERIA

    EPA Science Inventory

    The contribution of seagrasses to the stability and fertility of estuarine ecosystems is well established. Loss of seagrasses in recent years to disease and coastal development underscores the importance of understanding the microbial ecology of seagrasses, and the possible roles...

  14. NMR IMAGING OF HYDRODYNAMICS NEAR MICROBIALLY COLONIZED SURFACES. (R825549C027)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  15. Changes in mouse gastrointestinal microbial ecology with ingestion of kale.

    PubMed

    Uyeno, Y; Katayama, S; Nakamura, S

    2014-09-01

    Kale, a cultivar of Brassica oleracea, has attracted a great deal of attention because of its health-promoting effects, which are thought to be exerted through modulation of the intestinal microbiota. The present study was performed to investigate the effects of kale ingestion on the gastrointestinal microbial ecology of mice. 21 male C57BL/6J mice were divided into three groups and housed in a specific pathogen-free facility. The animals were fed either a control diet or experimental diets supplemented with different commercial kale products for 12 weeks. Contents of the caecum and colon of the mice were processed for the determination of active bacterial populations by a bacterial rRNA-based quantification method and short-chain fatty acids by HPLC. rRNAs of Bacteroides-Prevotella, the Clostridium coccoides-Eubacterium rectale group, and Clostridium leptum subgroup constituted the major fraction of microbiota regardless of the composition of the diet. The ratio of Firmicutes to Bacteroidetes was higher in the colon samples of one of the kale diet groups than in the control. The colonic butyrate level was also higher with the kale-supplemented diet. Overall, the ingestion of kale tended to either increase or decrease the activity of specific bacterial groups in the mouse gastrointestinal tract, however, the effect might vary depending on the nutritional composition.

  16. In vitro characterisation of the fermentation profile and prebiotic capacity of gold-fleshed kiwifruit.

    PubMed

    Blatchford, P; Bentley-Hewitt, K L; Stoklosinski, H; McGhie, T; Gearry, R; Gibson, G; Ansell, J

    2015-01-01

    A new Actinidia chinensis gold-fleshed kiwifruit cultivar 'Zesy002' was tested to investigate whether it could positively modulate the composition of the human colonic microbiota. Digested Zesy002 kiwifruit was added to in vitro pH-controlled anaerobic batch fermenters that were inoculated with representative human faecal microbiota. Alterations to the gut microbial ecology were determined by 16S rRNA gene sequencing and metabolic end products were measured using gas chromatography and liquid chromatography - mass spectrometry. Results indicated a substantial shift in the composition of bacteria within the gut models caused by kiwifruit supplementation. Zesy002 supplemented microbiota had a significantly higher abundance of Bacteroides spp., Parabacteroides spp. and Bifidobacterium spp. after 48 h of fermentation compared with the start of the fermentation. Organic acids from kiwifruit were able to endure simulated gastrointestinal digestion and were detectable in the first 10 h of fermentation. The fermentable carbohydrates were converted to beneficial organic acids with a particular predilection for propionate production, corresponding with the rise in Bacteroides spp. and Parabacteroides spp. These results support the claim that Zesy002 kiwifruit non-digestible fractions can effect favourable changes to the human colonic microbial community and primary metabolites, and demonstrate a hitherto unknown effect of Zesy002 on colonic microbiota under in vitro conditions.

  17. Influence of gastrointestinal tract on metabolism of bisphenol A as determined by in vitro simulated system.

    PubMed

    Wang, Yonghua; Rui, Min; Nie, Yang; Lu, Guanghua

    2018-05-07

    Oral exposure is a major route of human bisphenol A (BPA) exposure. However, influence of gastrointestinal tract on BPA metabolism is unavailable. In this study, in vitro simulator of the human intestinal microbial ecosystem (SHIME) was applied to investigate the changes in bioaccessibility and metabolism of BPA in different parts of gastrointestinal tract (stomach, small intestine and colon). Then the human hepatoma cell line HepG2 was employed to compare toxic effects of BPA itself and effluents of SHIME system on hepatic gene expression profiles. Results showed that level of bioaccessible BPA decreased with the process of gastrointestinal digestion. But the gastrointestinal digestion could not completely degrade BPA. Then, BPA exposure significantly changed microbial community in colons and increased the percentage of microbes shared in ascending, transverse and descending colons. Abundances of BPA-degradable bacteria, such as Microbacterium and Alcaligenes, were up-regulated. Further, SHIME effluents significantly up-regulated expressions of genes related to estrogenic effect and oxidative stress compared to BPA itself, but reduced or had little change on the risk of cell apoptosis and fatty deposits. This study sheds new lights on influence of gastrointestinal digestion on bioaccessibility and toxic effects of BPA. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Identification of oral bacteria on titanium implant surfaces by 16S rDNA sequencing.

    PubMed

    de Melo, Fabiana; do Nascimento, Cássio; Souza, Diogo Onofre; de Albuquerque, Rubens F

    2017-06-01

    To characterize the profile of microbial communities colonizing titanium implants with different surface treatments after exposure to the oral environment at the genus or higher taxonomic level. Sixteen titanium disks, machined or sandblasted large-grit and acid-etched (SLA), were mounted on removable intraoral splints worn by four patients. After 24 h of intraoral exposure, biofilm samples were collected from disks and supra/subgingival teeth areas. The 16S rDNA genes from each sample were amplified, sequenced with the Miseq Illumina instrument and analyzed. A total of 29 genera and seven more inclusive taxa, representing the phyla Firmicutes, Proteobacteria, Fusobacteria, Bacteroidetes, Actinobacteria and candidate division TM7 were identified in both titanium surfaces and teeth. No differences were found in relation to the operational taxonomic units (OTUs) and microbial diversity, assessed by Chao 1 and Shannon indices, when comparing SLA and machined titanium surfaces. Machined and SLA surfaces are colonized by similar numbers of prokaryotic OTUs after 24 h of exposure to the oral environment. Higher complexity of the titanium surface topography in the initial phase of biofilm maturation does not seem to significantly influence the colonizing microbiota. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Colonic fermentation of polyphenolics from Sea buckthorn (Hippophae rhamnoides) berries: Assessment of effects on microbial diversity by Principal Component Analysis.

    PubMed

    Attri, Sampan; Sharma, Kavita; Raigond, Pinky; Goel, Gunjan

    2018-03-01

    The present study investigates the stability of polyphenolic in Sea buckthorn berries juice (SBJ) during different phases of digestion and its effect on colonic microbial diversity. At each stage, the Total polyphenolic content (TPC), Total antioxidant activity (TAA) and polyphenolic profile was determined. A 1.64 and 2.20 folds increase in TPC with 4.88 and 9.61 folds increase in TAA were observed during gastric and small intestine digestion (p<0.05) with the release of quercetin from food matrix. The digestion resulted in deformation of intact crystalline structure as indicated by scanning electron micrographs. The colonic fermentation resulted in an increase in quercetin, caffeic acid with decrease in rutin and chlorogenic acid after 36h of fermentation (p<0.05). The Shannon diversity index (H) of beneficial groups including Lactic acid bacteria (LAB), Bacteroides/Prevotella and Bifidobacteria was increased by 35%, 71% and 17%, respectively (p<0.05). The PCA analysis indicated that the presence and digestion of polyphenolics promote the proliferation of Bacteroides/Prevotella group as well as Lactic acid bacteria and Bifidobacteria. The results suggest that SBJ is good source of prebiotic substrate in terms of the proliferation of beneficial gut microbiota. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Purple spot damage dynamics investigated by an integrated approach on a 1244 A.D. parchment roll from the Secret Vatican Archive.

    PubMed

    Migliore, Luciana; Thaller, Maria Cristina; Vendittozzi, Giulia; Mejia, Astrid Yazmine; Mercuri, Fulvio; Orlanducci, Silvia; Rubechini, Alessandro

    2017-09-07

    Ancient parchments are commonly attacked by microbes, producing purple spots and detachment of the superficial layer. Neither standard cultivation nor molecular methods (DGGE) solved the issue: causative agents and colonization model are still unknown. To identify the putative causal agents, we describe the 16 S rRNA gene analysis (454-pyrosequencing) of the microbial communities colonizing a damaged parchment roll dated 1244 A.D. (A.A. Arm. I-XVIII 3328, Vatican Secret Archives). The taxa in damaged or undamaged areas of the same document were different. In the purple spots, marine halotolerant Gammaproteobacteria, mainly Vibrio, were found; these microorganisms are rare or absent in the undamaged areas. Ubiquitous and environmental microorganisms were observed in samples from both damaged and undamaged areas. Pseudonocardiales were the most common, representing the main colonizers of undamaged areas. We hypothesize a successional model of biodeterioration, based on metagenomic data and spectroscopic analysis of pigments, which help to relate the damage to a microbial agent. Furthermore, a new method (Light Transmitted Analysis) was utilized to evaluate the kind and entity of the damage to native collagen. These data give a significant advance to the knowledge in the field and open new perspectives to remediation activity on a huge amount of ancient document.

  1. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine.

    PubMed

    Louis, Petra; Flint, Harry J

    2009-05-01

    Butyrate-producing bacteria play a key role in colonic health in humans. This review provides an overview of the current knowledge of the diversity, metabolism and microbial ecology of this functionally important group of bacteria. Human colonic butyrate producers are Gram-positive firmicutes, but are phylogenetically diverse, with the two most abundant groups related to Eubacterium rectale/Roseburia spp. and to Faecalibacterium prausnitzii. Five different arrangements have been identified for the genes of the central pathway involved in butyrate synthesis, while in most cases butyryl-CoA : acetate CoA-transferase, rather than butyrate kinase, appears to perform the final step in butyrate synthesis. Mechanisms have been proposed recently in non-gut Clostridium spp. whereby butyrate synthesis can result in energy generation via both substrate-level phosphorylation and proton gradients. Here we suggest that these mechanisms also apply to the majority of butyrate producers from the human colon. The roles of these bacteria in the gut community and their influence on health are now being uncovered, taking advantage of the availability of cultured isolates and molecular methodologies. Populations of F. prausnitzii are reported to be decreased in Crohn's disease, for example, while populations of Roseburia relatives appear to be particularly sensitive to the diet composition in human volunteer studies.

  2. Assessing the influence of reactor system design criteria on the performance of model colon fermentation units.

    PubMed

    Moorthy, Arun S; Eberl, Hermann J

    2014-04-01

    Fermentation reactor systems are a key platform in studying intestinal microflora, specifically with respect to questions surrounding the effects of diet. In this study, we develop computational representations of colon fermentation reactor systems as a way to assess the influence of three design elements (number of reactors, emptying mechanism, and inclusion of microbial immobilization) on three performance measures (total biomass density, biomass composition, and fibre digestion efficiency) using a fractional-factorial experimental design. It was determined that the choice of emptying mechanism showed no effect on any of the performance measures. Additionally, it was determined that none of the design criteria had any measurable effect on reactor performance with respect to biomass composition. It is recommended that model fermentation systems used in the experimenting of dietary effects on intestinal biomass composition be streamlined to only include necessary system design complexities, as the measured performance is not benefited by the addition of microbial immobilization mechanisms or semi-continuous emptying scheme. Additionally, the added complexities significantly increase computational time during simulation experiments. It was also noted that the same factorial experiment could be directly adapted using in vitro colon fermentation systems. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Site-specific programming of the host epithelial transcriptome by the gut microbiota.

    PubMed

    Sommer, Felix; Nookaew, Intawat; Sommer, Nina; Fogelstrand, Per; Bäckhed, Fredrik

    2015-03-28

    The intestinal epithelium separates us from the microbiota but also interacts with it and thus affects host immune status and physiology. Previous studies investigated microbiota-induced responses in the gut using intact tissues or unfractionated epithelial cells, thereby limiting conclusions about regional differences in the epithelium. Here, we sought to investigate microbiota-induced transcriptional responses in specific fractions of intestinal epithelial cells. To this end, we used microarray analysis of laser capture microdissection (LCM)-harvested ileal and colonic tip and crypt epithelial fractions from germ-free and conventionally raised mice and from mice during the time course of colonization. We found that about 10% of the host's transcriptome was microbially regulated, mainly including genes annotated with functions in immunity, cell proliferation, and metabolism. The microbial impact on host gene expression was highly site specific, as epithelial responses to the microbiota differed between cell fractions. Specific transcriptional regulators were enriched in each fraction. In general, the gut microbiota induced a more rapid response in the colon than in the ileum. Our study indicates that the microbiota engage different regulatory networks to alter host gene expression in a particular niche. Understanding host-microbiota interactions on a cellular level may facilitate signaling pathways that contribute to health and disease and thus provide new therapeutic strategies.

  4. Native arbuscular mycorrhizal symbiosis alters foliar bacterial community composition.

    PubMed

    Poosakkannu, Anbu; Nissinen, Riitta; Kytöviita, Minna-Maarit

    2017-11-01

    The effects of arbuscular mycorrhizal (AM) fungi on plant-associated microbes are poorly known. We tested the hypothesis that colonization by an AM fungus affects microbial species richness and microbial community composition of host plant tissues. We grew the grass, Deschampsia flexuosa in a greenhouse with or without the native AM fungus, Claroideoglomus etunicatum. We divided clonally produced tillers into two parts: one inoculated with AM fungus spores and one without AM fungus inoculation (non-mycorrhizal, NM). We characterized bacterial (16S rRNA gene) and fungal communities (internal transcribed spacer region) in surface-sterilized leaf and root plant compartments. AM fungus inoculation did not affect microbial species richness or diversity indices in leaves or roots, but the AM fungus inoculation significantly affected bacterial community composition in leaves. A total of three OTUs in leaves belonging to the phylum Firmicutes positively responded to the presence of the AM fungus in roots. Another six OTUs belonging to the Proteobacteria (Alpha, Beta, and Gamma) and Bacteroidetes were significantly more abundant in NM plants when compared to AM fungus-inoculated plants. Further, there was a significant correlation between plant dry weight and leaf microbial community compositional shift. Also, there was a significant correlation between leaf bacterial community compositional shift and foliar nitrogen content changes due to AM fungus inoculation. The results suggest that AM fungus colonization in roots has a profound effect on plant physiology that is reflected in leaf bacterial community composition.

  5. Remarkable recovery and colonization behaviour of methane oxidizing bacteria in soil after disturbance is controlled by methane source only.

    PubMed

    Pan, Yao; Abell, Guy C J; Bodelier, Paul L E; Meima-Franke, Marion; Sessitsch, Angela; Bodrossy, Levente

    2014-08-01

    Little is understood about the relationship between microbial assemblage history, the composition and function of specific functional guilds and the ecosystem functions they provide. To learn more about this relationship we used methane oxidizing bacteria (MOB) as model organisms and performed soil microcosm experiments comprised of identical soil substrates, hosting distinct overall microbial diversities(i.e., full, reduced and zero total microbial and MOB diversities). After inoculation with undisturbed soil, the recovery of MOB activity, MOB diversity and total bacterial diversity were followed over 3 months by methane oxidation potential measurements and analyses targeting pmoA and 16S rRNA genes. Measurement of methane oxidation potential demonstrated different recovery rates across the different treatments. Despite different starting microbial diversities, the recovery and succession of the MOB communities followed a similar pattern across the different treatment microcosms. In this study we found that edaphic parameters were the dominant factor shaping microbial communities over time and that the starting microbial community played only a minor role in shaping MOB microbial community.

  6. The early effect of dextran sodium sulfate administration on carbachol-induced short-circuit current in distal and proximal colon during colitis development.

    PubMed

    Hock, M; Soták, M; Kment, M; Pácha, J

    2011-01-01

    Increased colonic Cl(-) secretion was supposed to be a causative factor of diarrhea in inflammatory bowel diseases. Surprisingly, hyporesponsiveness to Cl(-) secretagogues was later described in inflamed colon. Our aim was to evaluate changes in secretory responses to cholinergic agonist carbachol in distal and proximal colon during colitis development, regarding secretory activity of enteric nervous system (ENS) and prostaglandins. Increased responsiveness to carbachol was observed in both distal and proximal colon after 3 days of 2 % dextran sodium sulfate (DSS) administration. It was measured in the presence of mucosal Ba(2+) to emphasize Cl(-) secretion. The described increase was abolished by combined inhibitory effect of tetrodotoxin (TTX) and indomethacin. Indomethacin also significantly reduced TTX-sensitive current. On the 7th day of colitis development responsiveness to carbachol decreased in distal colon (compared to untreated mice), but did not change in proximal colon. TTX-sensitive current did not change during colitis development, but indomethacin-sensitive current was significantly increased the 7th day. Decreased and deformed current responses to serosal Ba(2+) were observed during colitis induction, but only in proximal colon. We conclude that besides inhibitory effect of DSS on distal colon responsiveness, there is an early stimulatory effect that manifests in both distal and proximal colon.

  7. Digestive enzyme activities in the guts of bonnethead sharks (Sphyrna tiburo) provide insight into their digestive strategy and evidence for microbial digestion in their hindguts.

    PubMed

    Jhaveri, Parth; Papastamatiou, Yannis P; German, Donovan P

    2015-11-01

    Few investigations have studied digestive enzyme activities in the alimentary tracts of sharks to gain insight into how these organisms digest their meals. In this study, we examined the activity levels of proteases, carbohydrases, and lipase in the pancreas, and along the anterior intestine, spiral intestine, and colon of the bonnethead shark, Sphyrna tiburo. We then interpreted our data in the context of a rate-yield continuum to discern this shark's digestive strategy. Our data show anticipated decreasing patterns in the activities of pancreatic enzymes moving posteriorly along the gut, but also show mid spiral intestine peaks in aminopeptidase and lipase activities, which support the spiral intestine as the main site of absorption in bonnetheads. Interestingly, we observed spikes in the activity levels of N-acetyl-β-D-glucosaminidase and β-glucosidase in the bonnethead colon, and these chitin- and cellulose-degrading enzymes, respectively, are likely of microbial origin in this distal gut region. Taken in the context of intake and relatively long transit times of food through the gut, the colonic spikes in N-acetyl-β-D-glucosaminidase and β-glucosidase activities suggest that bonnetheads take a yield-maximizing strategy to the digestive process, with some reliance on microbial digestion in their hindguts. This is one of the first studies to examine digestive enzyme activities along the gut of any shark, and importantly, the data match with previous observations that sharks take an extended time to digest their meals (consistent with a yield-maximizing digestive strategy) and that the spiral intestine is the primary site of absorption in sharks. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Metagenomic characterization of biofilter microbial communities in a full-scale drinking water treatment plant.

    PubMed

    Oh, Seungdae; Hammes, Frederik; Liu, Wen-Tso

    2018-01-01

    Microorganisms inhabiting filtration media of a drinking water treatment plant can be beneficial, because they metabolize biodegradable organic matter from source waters and those formed during disinfection processes, leading to the production of biologically stable drinking water. However, which microbial consortia colonize filters and what metabolic capacity they possess remain to be investigated. To gain insights into these issues, we performed metagenome sequencing and analysis of microbial communities in three different filters of a full-scale drinking water treatment plant (DWTP). Filter communities were sampled from a rapid sand filter (RSF), granular activated carbon filter (GAC), and slow sand filter (SSF), and from the Schmutzdecke (SCM, a biologically active scum layer accumulated on top of SSF), respectively. Analysis of community phylogenetic structure revealed that the filter bacterial communities significantly differed from those in the source water and final effluent communities, respectively. Network analysis identified a filter-specific colonization pattern of bacterial groups. Bradyrhizobiaceae were abundant in GAC, whereas Nitrospira were enriched in the sand-associated filters (RSF, SCM, and SSF). The GAC community was enriched with functions associated with aromatics degradation, many of which were encoded by Rhizobiales (∼30% of the total GAC community). Predicting minimum generation time (MGT) of prokaryotic communities suggested that the GAC community potentially select fast-growers (<15 h of MGT) among the four filter communities, consistent with the highest dissolved organic matter removal rate by GAC. Our findings provide new insights into the community phylogenetic structure, colonization pattern, and metabolic capacity that potentially contributes to organic matter removal achieved in the biofiltration stages of the full-scale DWTP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. A liquid chromatography - tandem mass spectrometry method to measure a selected panel of uremic retention solutes derived from endogenous and colonic microbial metabolism.

    PubMed

    de Loor, Henriette; Poesen, Ruben; De Leger, Wout; Dehaen, Wim; Augustijns, Patrick; Evenepoel, Pieter; Meijers, Björn

    2016-09-14

    Chronic kidney disease (CKD) is associated with an increased risk of mortality and cardiovascular disease, which is, at least partly, mediated by the accumulation of so-called uremic retention solutes. Although there has been an increasing interest in the behavior of these solutes, derived from both the endogenous and colonic microbial metabolism, methods to simultaneously and accurately measure a broad panel of relevant uremic retention solutes remain scarce. We developed a highly sensitive ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method. A high throughput sample preparation was used with extraction of analytes from 50 μl serum using Ostro plate technology. For most solutes, stable isotopes labelled metabolites were used as internal standards. Chromatography was achieved using an Acquity UPLC CSH Fluoro Phenyl column. The total run time was 8 min, the mobile phase was a gradient of 0.1% formic acid in Milli-Q water and pure methanol at a flow rate of 0.5 ml min(-1). Detection was performed using a tandem mass spectrometer with alternated positive and negative electrospray ionization. Calibration curves were linear for all solutes. Precision was assessed according to the NCCLS EP5-T guideline, being below 15% for all metabolites. Mean recoveries were between 83 and 104% for all metabolites. The validated method was successfully applied in a cohort of 488 patients with CKD. We developed and validated a sensitive and robust UPLC-MS/MS method for quantification of 15 uremic retention solutes derived from endogenous and colonic microbial metabolism. This method allows for studying the behavior and relevance of these solutes in patients with CKD. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. The potential of gut microbiota and fecal volatile organic compounds analysis as early diagnostic biomarker for necrotizing enterocolitis and sepsis in preterm infants.

    PubMed

    Berkhout, Daniel Johannes Cornelis; Niemarkt, Hendrik Johannes; de Boer, Nanne Klaas Hendrik; Benninga, Marc Alexander; de Meij, Timotheüs Gualtherus Jacob

    2018-05-01

    Although the exact pathophysiological mechanisms of both necrotizing enterocolitis (NEC) and late-onset sepsis (LOS) in preterm infants are yet to be elucidated, evidence is emerging that the gut microbiota plays a key role in their pathophysiology. Areas covered: In this review, initial microbial colonization and factors influencing microbiota composition are discussed. For both NEC and LOS, an overview of studies investigating preclinical alterations in gut microbiota composition and fecal volatile organic compounds (VOCs) is provided. Fecal VOCs are considered to reflect not only gut microbiota composition, but also their metabolic activity and concurrent interaction with the host. Expert review: Heterogeneity in study protocols and applied analytical techniques hampers reliable comparison between outcomes of different microbiota studies, limiting the ability to draw firm conclusions. This dilemma is illustrated by the finding that study results often cannot be reproduced, or even contradict each other. A NEC- and sepsis specific microbial or metabolic signature has not yet been discovered. Identification of 'disease-specific' VOCs and microbiota composition may increase understanding on pathophysiological mechanisms and may allow for development of an accurate screening tool, opening avenues towards timely identification and initiation of targeted treatment for preterm infants at increased risk for NEC and sepsis.

  11. Presence of Selected Methanogens, Fibrolytic Bacteria, and Proteobacteria in the Gastrointestinal Tract of Neonatal Dairy Calves from Birth to 72 Hours

    PubMed Central

    Guzman, Cesar E.; Bereza-Malcolm, Lara T.; De Groef, Bert; Franks, Ashley E.

    2015-01-01

    The microbial communities in the gastrointestinal tract of a young calf are essential for the anatomical and physiological development that permits a transition from milk to solid feed. Selected methanogens, fibrolytic bacteria, and proteobacteria were quantified in the rumen fluid and tissue, abomasum fluid, cecum fluid and tissue, and feces of Holstein bull calves on day 0 (0–20 mins after birth), day 1 (24 ± 1 h after birth), day 2 (48 ± 1 h after birth), and day 3 (72 ± 1 h after birth). Methanogens, fibrolytic bacteria, and Geobacter spp. were found to be already present from birth, indicating that microbial colonization of the gastrointestinal tract occurred before or during delivery. The abundance of methanogens and Geobacter spp. differed between the days tested and between compartments of the digestive tract and feces, but such difference was not observed for fibrolytic bacteria. Our findings suggests that methanogens might have an alternative hydrogen provider such as Geobacter spp. during these early stages of postnatal development. In addition, fibrolytic bacteria were present in the rumen well before the availability of fibrous substrates, suggesting that they might use nutrients other than cellulose and hemicellose. PMID:26186002

  12. CoMiniGut-a small volume in vitro colon model for the screening of gut microbial fermentation processes.

    PubMed

    Wiese, Maria; Khakimov, Bekzod; Nielsen, Sebastian; Sørensen, Helena; van den Berg, Frans; Nielsen, Dennis Sandris

    2018-01-01

    Driven by the growing recognition of the influence of the gut microbiota (GM) on human health and disease, there is a rapidly increasing interest in understanding how dietary components, pharmaceuticals and pre- and probiotics influence GM. In vitro colon models represent an attractive tool for this purpose. With the dual objective of facilitating the investigation of rare and expensive compounds, as well as an increased throughput, we have developed a prototype in vitro parallel gut microbial fermentation screening tool with a working volume of only 5 ml consisting of five parallel reactor units that can be expanded with multiples of five to increase throughput. This allows e.g., the investigation of interpersonal variations in gut microbial dynamics and the acquisition of larger data sets with enhanced statistical inference. The functionality of the in vitro colon model, Copenhagen MiniGut (CoMiniGut) was first demonstrated in experiments with two common prebiotics using the oligosaccharide inulin and the disaccharide lactulose at 1% (w/v). We then investigated fermentation of the scarce and expensive human milk oligosaccharides (HMOs) 3-Fucosyllactose, 3-Sialyllactose, 6-Sialyllactose and the more common Fructooligosaccharide in fermentations with infant gut microbial communities. Investigations of microbial community composition dynamics in the CoMiniGut reactors by MiSeq-based 16S rRNA gene amplicon high throughput sequencing showed excellent experimental reproducibility and allowed us to extract significant differences in gut microbial composition after 24 h of fermentation for all investigated substrates and fecal donors. Furthermore, short chain fatty acids (SCFAs) were quantified for all treatments and donors. Fermentations with inulin and lactulose showed that inulin leads to a microbiota dominated by obligate anaerobes, with high relative abundance of Bacteroidetes, while the more easily fermented lactulose leads to higher relative abundance of Proteobacteria. The subsequent study on the influence of HMOs on two infant GM communities, revealed the strongest bifidogenic effect for 3'SL for both infants. Inter-individual differences of infant GM, especially with regards to the occurrence of Bacteroidetes and differences in bifidobacterial species composition, correlated with varying degrees of HMO utilization foremost of 6'SL and 3'FL, indicating species and strain related differences in HMO utilization which was also reflected in SCFAs concentrations, with 3'SL and 6'SL resulting in significantly higher butyrate production compared to 3'FL. In conclusion, the increased throughput of CoMiniGut strengthens experimental conclusions through elimination of statistical interferences originating from low number of repetitions. Its small working volume moreover allows the investigation of rare and expensive bioactives.

  13. The pathogenesis of ventilator-associated pneumonia: its relevance to developing effective strategies for prevention.

    PubMed

    Safdar, Nasia; Crnich, Christopher J; Maki, Dennis G

    2005-06-01

    Ventilator-associated pneumonia (VAP) is the most common nosocomial infection in the intensive care unit and is associated with major morbidity and attributable mortality. Strategies to prevent VAP are likely to be successful only if based upon a sound understanding of pathogenesis and epidemiology. The major route for acquiring endemic VAP is oropharyngeal colonization by the endogenous flora or by pathogens acquired exogenously from the intensive care unit environment, especially the hands or apparel of health-care workers, contaminated respiratory equipment, hospital water, or air. The stomach represents a potential site of secondary colonization and reservoir of nosocomial Gram-negative bacilli. Endotracheal-tube biofilm formation may play a contributory role in sustaining tracheal colonization and also have an important role in late-onset VAP caused by resistant organisms. Aspiration of microbe-laden oropharyngeal, gastric, or tracheal secretions around the cuffed endotracheal tube into the normally sterile lower respiratory tract results in most cases of endemic VAP. In contrast, epidemic VAP is most often caused by contamination of respiratory therapy equipment, bronchoscopes, medical aerosols, water (eg, Legionella) or air (eg, Aspergillus or the severe acute respiratory syndrome virus). Strategies to eradicate oropharyngeal and/or intestinal microbial colonization, such as with chlorhexidine oral care, prophylactic aerosolization of antimicrobials, selective aerodigestive mucosal antimicrobial decontamination, or the use of sucralfate rather than H(2) antagonists for stress ulcer prophylaxis, and measures to prevent aspiration, such as semirecumbent positioning or continuous subglottic suctioning, have all been shown to reduce the risk of VAP. Measures to prevent epidemic VAP include rigorous disinfection of respiratory equipment and bronchoscopes, and infection-control measures to prevent contamination of medical aerosols. Hospital water should be Legionella-free, and high-risk patients, especially those with prolonged granulocytopenia or organ transplants, should be cared for in hospital units with high-efficiency-particulate-arrestor (HEPA) filtered air. Routine surveillance of VAP, to track endemic VAPs and facilitate early detection of outbreaks, is mandatory.

  14. The Mineralosphere Concept: Mineralogical Control of the Distribution and Function of Mineral-associated Bacterial Communities.

    PubMed

    Uroz, Stephane; Kelly, Laura Catherine; Turpault, Marie-Pierre; Lepleux, Cendrella; Frey-Klett, Pascale

    2015-12-01

    Soil is composed of a mosaic of different rocks and minerals, usually considered as an inert substrata for microbial colonization. However, recent findings suggest that minerals, in soils and elsewhere, favour the development of specific microbial communities according to their mineralogy, nutritive content, and weatherability. Based upon recent studies, we highlight how bacterial communities are distributed on the surface of, and in close proximity to, minerals. We also consider the potential role of the mineral-associated bacterial communities in mineral weathering and nutrient cycling in soils, with a specific focus on nutrient-poor and acidic forest ecosystems. We propose to define this microbial habitat as the mineralosphere, where key drivers of the microbial communities are the physicochemical properties of the minerals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Ecological consequences of antibiotic exposure to periphyton in naturally colonizing stream mesocosms

    EPA Science Inventory

    Tetracycline and its derivatives are extensively used human and animal antibiotics, and enter stream ecosystems via point and non-point sources. Laboratory studies indicate that microbial organisms are more sensitive to antibiotics than invertebrates or fish, and may indicate t...

  16. Steam explosion enhances digestibility and fermentation of corn stover by facilitating ruminal microbial colonization.

    PubMed

    Zhao, Shengguo; Li, Guodong; Zheng, Nan; Wang, Jiaqi; Yu, Zhongtang

    2018-04-01

    The purpose of this study was to evaluate steam explosion as a pretreatment to enhance degradation of corn stover by ruminal microbiome. The steam explosion conditions were first optimized, and then the efficacy of steam explosion was evaluated both in vitro and in vivo. Steam explosion altered the physical and chemical structure of corn stover as revealed by scanning electron microscopy (SEM) and Fourier-transform infrared (FTIR) spectroscopy, respectively, and increased its cellulose content while decreasing hemicellulose content. Steam-exploded corn stover also increased release of reducing sugars, rate of fermentation, and production of volatile fatty acids (VFAs) in vitro. The steam explosion treatment increased microbial colonization and in situ degradation of cellulose and hemicellulose of corn stover in the rumen of dairy cows. Steam explosion may be a useful pretreatment of corn stover to improve its nutritional value as forage for cattle, or as feedstock for biofuel production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. IL-1 receptor antagonist ameliorates inflammasome-dependent inflammation in murine and human cystic fibrosis

    PubMed Central

    Iannitti, Rossana G.; Napolioni, Valerio; Oikonomou, Vasilis; De Luca, Antonella; Galosi, Claudia; Pariano, Marilena; Massi-Benedetti, Cristina; Borghi, Monica; Puccetti, Matteo; Lucidi, Vincenzina; Colombo, Carla; Fiscarelli, Ersilia; Lass-Flörl, Cornelia; Majo, Fabio; Cariani, Lisa; Russo, Maria; Porcaro, Luigi; Ricciotti, Gabriella; Ellemunter, Helmut; Ratclif, Luigi; De Benedictis, Fernando Maria; Talesa, Vincenzo Nicola; Dinarello, Charles A.; van de Veerdonk, Frank L.; Romani, Luigina

    2016-01-01

    Dysregulated inflammasome activation contributes to respiratory infections and pathologic airway inflammation. Through basic and translational approaches involving murine models and human genetic epidemiology, we show here the importance of the different inflammasomes in regulating inflammatory responses in mice and humans with cystic fibrosis (CF), a life-threatening disorder of the lungs and digestive system. While both contributing to pathogen clearance, NLRP3 more than NLRC4 contributes to deleterious inflammatory responses in CF and correlates with defective NLRC4-dependent IL-1Ra production. Disease susceptibility in mice and microbial colonization in humans occurrs in conditions of genetic deficiency of NLRC4 or IL-1Ra and can be rescued by administration of the recombinant IL-1Ra, anakinra. These results indicate that pathogenic NLRP3 activity in CF could be negatively regulated by IL-1Ra and provide a proof-of-concept evidence that inflammasomes are potential targets to limit the pathological consequences of microbial colonization in CF. PMID:26972847

  18. Subsurface Biodegradation in a Fractured Basement Reservoir, Shropshire, UK

    NASA Astrophysics Data System (ADS)

    Parnell, John; Baba, Mas'ud; Bowden, Stephen; Muirhead, David

    2017-04-01

    Subsurface Biodegradation in a Fractured Basement Reservoir, Shropshire, UK. John Parnell, Mas'ud Baba, Stephen Bowden, David Muirhead Subsurface biodegradation in current oil reservoirs is well established, but there are few examples of fossil subsurface degradation. Biomarker compositions of viscous and solid oil residues ('bitumen') in fractured Precambrian and other basement rocks below the Carboniferous cover in Shropshire, UK, show that they are variably biodegraded. High levels of 25-norhopanes imply that degradation occurred in the subsurface. Lower levels of 25-norhopanes occur in active seepages. Liquid oil trapped in fluid inclusions in mineral veins in the fractured basement confirm that the oil was emplaced fresh before subsurface degradation. A Triassic age for the veins implies a 200 million year history of hydrocarbon migration in the basement rocks. The data record microbial colonization of a fractured basement reservoir, and add to evidence in modern basement aquifers for microbial activity in deep fracture systems. Buried basement highs may be especially favourable to colonization, through channelling fluid flow to shallow depths and relatively low temperatures

  19. Quantitative Imaging of Gut Microbiota Spatial Organization

    PubMed Central

    Earle, Kristen A.; Billings, Gabriel; Sigal, Michael; Lichtman, Joshua S.; Hansson, Gunnar C.; Elias, Joshua E.; Amieva, Manuel R.; Huang, Kerwyn Casey; Sonnenburg, Justin L.

    2015-01-01

    Summary Genomic technologies have significantly advanced our understanding of the composition and diversity of host-associated microbial populations. However, their spatial organization and functional interactions relative to the host have been more challenging to study. Here we present a pipeline for the assessment of intestinal microbiota localization within immunofluorescence images of fixed gut cross-sections that includes a flexible software package, BacSpace, for high-throughput quantification of microbial organization. Applying this pipeline to gnotobiotic and human microbiota-colonized mice, we demonstrate that elimination of microbiota accessible carbohydrates (MACs) from the diet results in thinner mucus in the distal colon, increased proximity of microbes to the epithelium, and heightened expression of the inflammatory marker REG3β. Measurements of microbe-microbe proximity reveal that a MAC-deficient diet alters monophyletic spatial clustering. Furthermore, we quantify the invasion of Helicobacter pylori into the glands of the mouse stomach relative to host mitotic progenitor cells, illustrating the generalizability of this approach. PMID:26439864

  20. IL-1 receptor antagonist ameliorates inflammasome-dependent inflammation in murine and human cystic fibrosis.

    PubMed

    Iannitti, Rossana G; Napolioni, Valerio; Oikonomou, Vasilis; De Luca, Antonella; Galosi, Claudia; Pariano, Marilena; Massi-Benedetti, Cristina; Borghi, Monica; Puccetti, Matteo; Lucidi, Vincenzina; Colombo, Carla; Fiscarelli, Ersilia; Lass-Flörl, Cornelia; Majo, Fabio; Cariani, Lisa; Russo, Maria; Porcaro, Luigi; Ricciotti, Gabriella; Ellemunter, Helmut; Ratclif, Luigi; De Benedictis, Fernando Maria; Talesa, Vincenzo Nicola; Dinarello, Charles A; van de Veerdonk, Frank L; Romani, Luigina

    2016-03-14

    Dysregulated inflammasome activation contributes to respiratory infections and pathologic airway inflammation. Through basic and translational approaches involving murine models and human genetic epidemiology, we show here the importance of the different inflammasomes in regulating inflammatory responses in mice and humans with cystic fibrosis (CF), a life-threatening disorder of the lungs and digestive system. While both contributing to pathogen clearance, NLRP3 more than NLRC4 contributes to deleterious inflammatory responses in CF and correlates with defective NLRC4-dependent IL-1Ra production. Disease susceptibility in mice and microbial colonization in humans occurs in conditions of genetic deficiency of NLRC4 or IL-1Ra and can be rescued by administration of the recombinant IL-1Ra, anakinra. These results indicate that pathogenic NLRP3 activity in CF could be negatively regulated by IL-1Ra and provide a proof-of-concept evidence that inflammasomes are potential targets to limit the pathological consequences of microbial colonization in CF.

  1. Prior Dietary Practices and Connections to a Human Gut Microbial Metacommunity Alter Responses to Diet Interventions.

    PubMed

    Griffin, Nicholas W; Ahern, Philip P; Cheng, Jiye; Heath, Andrew C; Ilkayeva, Olga; Newgard, Christopher B; Fontana, Luigi; Gordon, Jeffrey I

    2017-01-11

    Ensuring that gut microbiota respond consistently to prescribed dietary interventions, irrespective of prior dietary practices (DPs), is critical for effective nutritional therapy. To address this, we identified DP-associated gut bacterial taxa in individuals either practicing chronic calorie restriction with adequate nutrition (CRON) or without dietary restrictions (AMER). When transplanted into gnotobiotic mice, AMER and CRON microbiota responded predictably to CRON and AMER diets but with variable response strengths. An individual's microbiota is connected to other individuals' communities ("metacommunity") by microbial exchange. Sequentially cohousing AMER-colonized mice with two different groups of CRON-colonized mice simulated metacommunity effects, resulting in enhanced responses to a CRON diet intervention and changes in several metabolic features in AMER animals. This response was driven by an influx of CRON DP-associated taxa. Certain DPs may impair responses to dietary interventions, necessitating the introduction of diet-responsive bacterial lineages present in other individuals and identified using the strategies described. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Highly specialized microbial diversity in hyper-arid polar desert

    PubMed Central

    Pointing, Stephen B.; Chan, Yuki; Lacap, Donnabella C.; Lau, Maggie C. Y.; Jurgens, Joel A.; Farrell, Roberta L.

    2009-01-01

    The McMurdo Dry Valleys in Antarctica are a cold hyperarid polar desert that present extreme challenges to life. Here, we report a culture-independent survey of multidomain microbial biodiversity in McKelvey Valley, a pristine example of the coldest desert on Earth. We demonstrate that life has adapted to form highly-specialized communities in distinct lithic niches occurring concomitantly within this terrain. Endoliths and chasmoliths in sandstone displayed greatest diversity, whereas soil was relatively depauperate and lacked a significant photoautotrophic component, apart from isolated islands of hypolithic cyanobacterial colonization on quartz rocks in soil contact. Communities supported previously unreported polar bacteria and fungi, but archaea were absent from all niches. Lithic community structure did not vary significantly on a landscape scale and stochastic moisture input due to snowmelt resulted in increases in colonization frequency without significantly affecting diversity. The findings show that biodiversity near the cold-arid limit for life is more complex than previously appreciated, but communities lack variability probably due to the high selective pressures of this extreme environment. PMID:19850879

  3. Prevention of microbial biofilms - the contribution of micro and nanostructured materials.

    PubMed

    Grumezescu, Alexandru Mihai; Chifiriuc, Carmen Mariana

    2014-01-01

    Microbial biofilms are associated with drastically enhanced resistance to most of the antimicrobial agents and with frequent treatment failures, generating the search for novel strategies which can eradicate infections by preventing the persistent colonization of the hospital environment, medical devices or human tissues. Some of the current approaches for fighting biofilms are represented by the development of novel biomaterials with increased resistance to microbial colonization and by the improvement of the current therapeutic solutions with the aid of nano (bio)technology. This special issues includes papers describing the applications of nanotechnology and biomaterials science for the development of improved drug delivery systems and nanostructured surfaces for the prevention and treatment of medical biofilms. Nanomaterials display unique and well-defined physical and chemical properties making them useful for biomedical applications, such as: very high surface area to volume ratio, biocompatibility, biodegradation, safety for human ingestion, capacity to support surface modification and therefore, to be combined with other bioactive molecules or substrata and more importantly being seemingly not attracting antimicrobial resistance. The use of biomaterials is significantly contributing to the reduction of the excessive use of antibiotics, and consequently to the decrease of the emergence rate of resistant microorganisms, as well as of the associated toxic effects. Various biomaterials with intrinsic antimicrobial activity (inorganic nanoparticles, polymers, composites), medical devices for drug delivery, as well as factors influencing their antimicrobial properties are presented. One of the presented papers reviews the recent literature on the use of magnetic nanoparticles (MNP)-based nanomaterials in antimicrobial applications for biomedicine, focusing on the growth inhibition and killing of bacteria and fungi, and, on viral inactivation. The anti-pathogenic activity of the most common types of metallic/metal oxide nanoparticles, as well as the photocontrolled targeted drug-delivery system and the development of traditional Chinese herbs nanoparticles are some of the highlights of another paper of this issue. The applications of synthetic, biodegradable polymers for the improvement of antiinfective therapeutic and prophylactic agents (i.e., antimicrobial and anti-inflammatory agents and vaccines) activity, as well as for the design of biomaterials with increased biocompatibility and resistance to microbial colonization are also discussed, as well as one of the most recent paradigms of the pharmaceutical field and nanobiotechnology, represented by the design of smart multifunctional polymeric nanocarriers for controlled drug delivery. These systems are responding to physico-chemical changes and as a result, they can release the active substances in a controlled and targeted manner. The advantages and limitations of the main routes of polymerization by which these nanovehicles are obtained, as well as the practical appllications in the field of drug nanocarriers are presented. The authors describe the therapeutic applications of dendrimers, which are unimolecular, monodisperse nanocarriers with unique branched tree-like globular structure. The applications of nanotechnology for the stabilization and improved release of anti-pathogenic natural or synthetic compounds, which do not interfere with the microbial growth, but inhibit different features of microbial pathogenicity are also highlighted. We expect this special issue would offer a comprehensive update and give new directions for the design of micro/nano engineered materials to inhibit microbial colonization on the surfaces or to potentiate the efficiency of the current/ novel/alternative antimicrobial agents by improving their bioavailability and pharmacokinetic features.

  4. Gut microbial diversity is reduced and is associated with colonic inflammation in a piglet model of short bowel syndrome

    PubMed Central

    Lapthorne, Susan; Pereira-Fantini, Prue M.; Fouhy, Fiona; Wilson, Guineva; Thomas, Sarah L.; Dellios, Nicole L.; Scurr, Michelle; O’Sullivan, Orla; Ross, R. Paul; Stanton, Catherine; Fitzgerald, Gerald F.; Cotter, Paul D.; Bines, Julie E.

    2013-01-01

    Background and objectives Following small bowel resection (SBR), the luminal environment is altered, which contributes to clinical manifestations of short bowel syndrome (SBS) including malabsorption, mucosal inflammation and bacterial overgrowth. However, the impact of SBR on the colon has not been well-defined. The aims of this study were to characterize the colonic microbiota following SBR and to assess the impact of SBR on mucosal inflammation in the colon. Results Analysis of the colonic microbiota demonstrated that there was a significant level of dysbiosis both two and six weeks post-SBR, particularly in the phylum Firmicutes, coupled with a decrease in overall bacterial diversity in the colon. This decrease in diversity was associated with an increase in colonic inflammation six weeks post-surgery. Methods Female (4-week old) piglets (5−6/group) received a 75% SBR, a transection (sham) or no surgery. Compositional analysis of the colonic microbiota was performed by high-throughput sequencing, two- and six-weeks post-surgery. The gene expression of the pro-inflammatory cytokines interleukin (IL)-1β, IL-6, IL-8, IL-18 and tumor necrosis factor (TNF)-α in the colonic mucosa was assessed by qRT-PCR and the number of macrophages and percentage inducible nitric oxide synthase (iNOS) staining in the colonic epithelium were quantified by immunohistochemistry. Conclusions SBR significantly decreased the diversity of the colonic microbiota and this was associated with an increase in colonic mucosal inflammation. This study supports the hypothesis that SBR has a significant impact on the colon and that this may play an important role in defining clinical outcome. PMID:23549027

  5. Malrotation with transverse colon volvulus in early pregnancy: a rare cause for acute intestinal obstruction

    PubMed Central

    Sharma, Digvijoy; Parameshwaran, Rajesh; Dani, Tushar; Shetty, Prashanth

    2013-01-01

    Colonic volvulus is a relatively uncommon cause of large bowel obstruction, accounting for 10% of colonic obstructions. Volvulus of the transverse colon is quite rare, accounting for only 4–11% of all reported cases. We report an unusual case of documented volvulus of the transverse colon in a pregnant woman with intestinal malrotation and concomitant acute intestinal obstruction by congenital bands and adhesions. PMID:23964051

  6. Mutual reinforcement of pathophysiological host-microbe interactions in intestinal stasis models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Touw, Ketrija; Ringus, Daina L.; Hubert, Nathaniel

    Chronic diseases arise when there is mutual reinforcement of pathophysiological processes that cause an aberrant steady state. Such a sequence of events may underlie chronic constipation, which has been associated with dysbiosis of the gut. In this study we hypothesized that assemblage of microbial communities, directed by slow gastrointestinal transit, affects host function in a way that reinforces constipation and further maintains selection on microbial communities. In our study, we used two models – an opioid-induced consti- pation model in mice, and a humanized mouse model where germ-free mice were colonized with stool from a patient with constipation-predominant irritable bowelmore » syndrome (IBS-C) in humans. We examined the impact of pharmacologically (loperamide)-induced constipation (PIC) and IBS-C on the structural and functional profile of the gut microbiota. Germ-free (GF) mice were colonized with microbiota from PIC donor mice and IBS-C patients to determine how the microbiota affects the host. PIC and IBS-C promoted changes in the gut microbiota, characterized by increased relative abundance of Bacteroides ovatus and Parabacteroides distasonis in both models. PIC mice exhibited decreased luminal concentrations of butyrate in the cecum and altered metabolic profiles of the gut microbiota. Colonization of GF mice with PIC-associated mice cecal or human IBS-C fecal microbiota significantly increased GI transit time when compared to control microbiota recipients. IBS-C-associated gut microbiota also impacted colonic contractile properties. Lastly, our findings support the concept that constipation is characterized by dis- ease-associated steady states caused by reinforcement of pathophysiological factors in host-microbe interactions.« less

  7. Mutual reinforcement of pathophysiological host-microbe interactions in intestinal stasis models

    DOE PAGES

    Touw, Ketrija; Ringus, Daina L.; Hubert, Nathaniel; ...

    2017-03-20

    Chronic diseases arise when there is mutual reinforcement of pathophysiological processes that cause an aberrant steady state. Such a sequence of events may underlie chronic constipation, which has been associated with dysbiosis of the gut. In this study we hypothesized that assemblage of microbial communities, directed by slow gastrointestinal transit, affects host function in a way that reinforces constipation and further maintains selection on microbial communities. In our study, we used two models – an opioid-induced consti- pation model in mice, and a humanized mouse model where germ-free mice were colonized with stool from a patient with constipation-predominant irritable bowelmore » syndrome (IBS-C) in humans. We examined the impact of pharmacologically (loperamide)-induced constipation (PIC) and IBS-C on the structural and functional profile of the gut microbiota. Germ-free (GF) mice were colonized with microbiota from PIC donor mice and IBS-C patients to determine how the microbiota affects the host. PIC and IBS-C promoted changes in the gut microbiota, characterized by increased relative abundance of Bacteroides ovatus and Parabacteroides distasonis in both models. PIC mice exhibited decreased luminal concentrations of butyrate in the cecum and altered metabolic profiles of the gut microbiota. Colonization of GF mice with PIC-associated mice cecal or human IBS-C fecal microbiota significantly increased GI transit time when compared to control microbiota recipients. IBS-C-associated gut microbiota also impacted colonic contractile properties. Lastly, our findings support the concept that constipation is characterized by dis- ease-associated steady states caused by reinforcement of pathophysiological factors in host-microbe interactions.« less

  8. Clinical outcome of using gastric remnant or jejunum or colon conduit in surgery for esophageal carcinoma with previous gastrectomy.

    PubMed

    Jun, Wang; Wei, Wen; Weibing, Wu; Jing, Xu; Fuxi, Zhen; Xiaoxiang, Xi; Bihong, Lu; Tong, Zhou; Liang, Chen; Jinhua, Luo

    2017-05-01

    For esophageal carcinoma patients with early gastrectomy, individualized surgical plans-including selection of replacement conduit and operation route based on patient's new lesion and surgical history-can achieve the desired therapeutic effect and improve postoperative life quality. We investigated the outcomes at our institution. The clinical data of 42 esophageal carcinoma patients with early gastrectomy were analyzed retrospectively. Esophagectomy was performed combining replacement with remnant stomach in 16 patients, jejunum in 17, and colon in 9. Esophagectomy combining replacement with gastric remnant got advantages of shorter operation time and less bleeding over that of replacement with jejunum or colon. Gastric remnant group scored higher on the QLQ-C30 questionnaire than jejunum or colon group with respect to overall quality of life, physical function, and social relationships. In QLQ-OES18 questionnaire, the scores of appetite recovery and reflux mitigation were more favorable in remnant stomach group than those in jejunum or colon group. Survival analysis showed no significant difference in survival rate among the patients undergoing replacement with gastric remnant, jejunum, or colon. For esophageal carcinoma patients with early gastrectomy, esophagus-gastric remnant anastomosis possesses advantages of shorter operation time, less surgical trauma, and greater life quality after surgery. © 2017 Wiley Periodicals, Inc.

  9. HIV DNA-Adenovirus Multiclade Envelope Vaccine Induces gp41 Antibody Immunodominance in Rhesus Macaques

    PubMed Central

    Williams, Wilton B.; Saunders, Kevin O.; Seaton, Kelly E.; Wiehe, Kevin J.; Vandergrift, Nathan; Von Holle, Tarra A.; Trama, Ashley M.; Parks, Robert J.; Luo, Kan; Gurley, Thaddeus C.; Kepler, Thomas B.; Marshall, Dawn J.; Montefiori, David C.; Sutherland, Laura L.; Alam, Munir S.; Whitesides, John F.; Bowman, Cindy M.; Permar, Sallie R.; Graham, Barney S.; Mascola, John R.; Seed, Patrick C.; Van Rompay, Koen K. A.; Tomaras, Georgia D.; Moody, M. Anthony

    2017-01-01

    ABSTRACT Dominant antibody responses in vaccinees who received the HIV-1 multiclade (A, B, and C) envelope (Env) DNA/recombinant adenovirus virus type 5 (rAd5) vaccine studied in HIV-1 Vaccine Trials Network (HVTN) efficacy trial 505 (HVTN 505) targeted Env gp41 and cross-reacted with microbial antigens. In this study, we asked if the DNA/rAd5 vaccine induced a similar antibody response in rhesus macaques (RMs), which are commonly used as an animal model for human HIV-1 infections and for testing candidate HIV-1 vaccines. We also asked if gp41 immunodominance could be avoided by immunization of neonatal RMs during the early stages of microbial colonization. We found that the DNA/rAd5 vaccine elicited a higher frequency of gp41-reactive memory B cells than gp120-memory B cells in adult and neonatal RMs. Analysis of the vaccine-induced Env-reactive B cell repertoire revealed that the majority of HIV-1 Env-reactive antibodies in both adult and neonatal RMs were targeted to gp41. Interestingly, a subset of gp41-reactive antibodies isolated from RMs cross-reacted with host antigens, including autologous intestinal microbiota. Thus, gp41-containing DNA/rAd5 vaccine induced dominant gp41-microbiota cross-reactive antibodies derived from blood memory B cells in RMs as observed in the HVTN 505 vaccine efficacy trial. These data demonstrated that RMs can be used to investigate gp41 immunodominance in candidate HIV-1 vaccines. Moreover, colonization of neonatal RMs occurred within the first week of life, and immunization of neonatal RMs during this time also induced a dominant gp41-reactive antibody response. IMPORTANCE Our results are critical to current work in the HIV-1 vaccine field evaluating the phenomenon of gp41 immunodominance induced by HIV-1 Env gp140 in RMs and humans. Our data demonstrate that RMs are an appropriate animal model to study this phenomenon and to determine the immunogenicity in new HIV-1 Env trimer vaccine designs. The demonstration of gp41 immunodominance in memory B cells of both adult and neonatal RMs indicated that early vaccination could not overcome gp41 dominant responses. PMID:28794027

  10. Disturbance opens recruitment sites for bacterial colonization in activated sludge.

    PubMed

    Vuono, David C; Munakata-Marr, Junko; Spear, John R; Drewes, Jörg E

    2016-01-01

    Little is known about the role of immigration in shaping bacterial communities or the factors that may dictate success or failure of colonization by bacteria from regional species pools. To address these knowledge gaps, the influence of bacterial colonization into an ecosystem (activated sludge bioreactor) was measured through a disturbance gradient (successive decreases in the parameter solids retention time) relative to stable operational conditions. Through a DNA sequencing approach, we show that the most abundant bacteria within the immigrant community have a greater probability of colonizing the receiving ecosystem, but mostly as low abundance community members. Only during the disturbance do some of these bacterial populations significantly increase in abundance beyond background levels and in few cases become dominant community members post-disturbance. Two mechanisms facilitate the enhanced enrichment of immigrant populations during disturbance: (i) the availability of resources left unconsumed by established species and (ii) the increased availability of niche space for colonizers to establish and displace resident populations. Thus, as a disturbance decreases local diversity, recruitment sites become available to promote colonization. This work advances our understanding of microbial resource management and diversity maintenance in complex ecosystems. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  11. Plant colonization by pink-pigmented facultative methylotrophic bacteria (PPFMs).

    PubMed

    Omer, Zahra S; Tombolini, Riccardo; Gerhardson, Berndt

    2004-03-01

    Bacteria belonging to the genus Methylobacterium are characterized by being able to rely on methanol as a sole carbon and energy source and by presenting a more or less intense pink reddish pigmentation. These bacteria, also referred to as pink-pigmented methylotrophic bacteria (PPFMs), are common inhabitants of the phyllosphere and are found in many other environmental samples. Since they grow slowly they are often overlooked and their impact on phyllosphere microbial communities and on the plants harboring them is not well studied nor has their ecology been elucidated. In a survey of PPFM colonization in three different agricultural sites, PPFM populations were identified on both red clover and winter wheat, but red clover was more consistently colonized. Isolations from collected leaves showed PPFM populations to decrease from spring towards summer, but they increased again towards the end of the cropping season. Isolates from red clover readily colonized winter wheat leaves and vice versa in greenhouse experiments, but population sizes were dependent on the application procedure. Tested isolates had also good potential to colonize the rhizosphere, especially after seed inoculations. Confocal scanning laser microscopy showed gfp-tagged isolates to colonize the surface of clover leaves by forming large aggregates.

  12. Pseudomonas aeruginosa in children with cystic fibrosis diagnosed through newborn screening: assessment of clinic exposures and microbial genotypes.

    PubMed

    Hayes, Don; West, Susan E; Rock, Michael J; Li, Zhanhai; Splaingard, Mark L; Farrell, Philip M

    2010-07-01

    Chronic pulmonary infection with Pseudomonas aeruginosa (PA) is responsible for significant morbidity and mortality in cystic fibrosis (CF). Because of the limited studies evaluating early exposure and the progression of genetic variability of PA, our goal was to assess PA in young children with CF followed in two clinic types. A total of 39 infants with CF diagnosed through newborn screening were randomly assigned to either a segregated (PA-free) or mixed (PA-positive) clinic at two different CF centers, one of which replaced an older, mixed clinic where nosocomial acquisition was suspected. Oropharyngeal (OP) swab cultures were examined with subsequent genotyping to characterize the strains of PA isolated. We found that 13/21 segregated clinic patients and 14/18 mixed clinic patients showed positive PA, with median acquisition ages of 3.3 and 2.2 years, respectively (P = 0.57). The median time to PA acquisition, however, was significantly longer in the new clinic with proper hygiene precautions compared to an old site (5.0 years vs. 1.7 years, P < 0.001). The majority of subjects isolated a single genotype of PA or AP-PCR types during the study period with eight subjects clearing the isolate after only one positive culture. The development of chronic colonization yielded the predominance of a single major genotype or AP-PCR type. Segregation of infants and young children with CF in PA-negative or PA-positive clinics did not alter the time to first PA isolation in this randomized assessment of facilities with hygienic precautions. During the early infection period where PA is first isolated in young children with CF, patients cleared different PA strains until a predominant strain established permanent colonization.

  13. Connectivity and seasonality cause rapid taxonomic and functional trait succession within an invertebrate community after stream restoration

    PubMed Central

    van der Geest, Harm G.; van Loon, E. Emiel; Verdonschot, Piet F. M.

    2018-01-01

    General colonization concepts consent that a slow process of microhabitat formation and subsequent niche realization occurs during early stages after new habitat is released. Subsequently, only few species are able to colonize new habitat in the early onset of succession, while species richness increases steadily over time. Although most colonization studies have been performed in terrestrial ecosystems, running water ecosystems are equally or even more prone to colonization after disturbance due to their dynamic nature. We question how invertebrate succession patterns reconcile with general colonization concepts. With this study we provide insight into the colonization process in newly created lowland stream trajectories and answer how within-stream bio- and functional diversity develops over time. Our results show a rapid influx of species, with a wide range of functional traits, during the first season after water flow commenced. During more than two years of regular monitoring, immigration rates were highest in autumn, marking the effects of seasonality on invertebrate dispersal. Biodiversity increased while abundance peaks of species alternated between seasons. Moreover, also days since start of the experiment explains a considerable part of the variability for taxa as well as traits. However, the relative trait composition remained similar throughout the entire monitoring period and only few specific traits had significantly higher proportions during specific seasons. This indicates that first phase colonization in freshwater streams can be a very rapid process that results in a high biodiversity and a large variety of species functional characteristics from the early onset of succession, contradicting general terrestrial colonization theory. PMID:29795599

  14. The role of the commensal microbiota in adaptive and maladaptive stressor-induced immunomodulation

    PubMed Central

    Mackos, Amy R.; Maltz, Ross; Bailey, Michael T.

    2016-01-01

    Over the past decade, it has become increasingly evident that there are extensive bidirectional interactions between the body and its microbiota. These interactions are evident during stressful periods, where it is recognized that commensal microbiota community structure is significantly changed. Many different stressors, ranging from early life stressors to stressors administered during adulthood, lead to significant, community-wide differences in the microbiota. The mechanisms through which this occurs are not yet known, but it is known that commensal microbes can recognize, and respond to, mammalian hormones and neurotransmitters, including those that are involved with the physiological response to stressful stimuli. In addition, the physiological stress response also changes many aspects of gastrointestinal physiology that can impact microbial community composition. Thus, there are many routes through which microbial community composition might be disrupted during stressful periods. The implications of these disruptions in commensal microbial communities for host health are still not well understood, but the commensal microbiota have been linked to stressor-induced immunopotentiation. The role of the microbiota in stressor-induced immunopotentiation can be adaptive, such as when these microbes stimulate innate defenses against bacterial infection. However, the commensal microbiota can also lead to maladaptive immune responses during stressor-exposure. This is evident in animal models of colonic inflammation where stressor exposure increases the inflammation through mechanisms involving the microbiota. It is likely that during stressor exposure, immune cell functioning is regulated by combined effects of both neurotransmitters/hormones and commensal microbes. Defining this regulation should be a focus of future studies. PMID:27760302

  15. Exploring the bovine rumen bacterial community from birth to adulthood.

    PubMed

    Jami, Elie; Israel, Adi; Kotser, Assaf; Mizrahi, Itzhak

    2013-06-01

    The mammalian gut microbiota is essential in shaping many of its host's functional attributes. One such microbiota resides in the bovine digestive tract in a compartment termed as the rumen. The rumen microbiota is necessary for the proper physiological development of the rumen and for the animal's ability to digest and convert plant mass into food products, making it highly significant to humans. The establishment of this microbial population and the changes occurring with the host's age are important for understanding this key microbial community. Despite its importance, little information about colonization of the microbial populations in newborn animals, and the gradual changes occurring thereafter, exists. Here, we characterized the overall bovine ruminal bacterial populations of five age groups, from 1-day-old calves to 2-year-old cows. We describe the changes occurring in the rumen ecosystem after birth, reflected by a decline in aerobic and facultative anaerobic taxa and an increase in anaerobic ones. Some rumen bacteria that are essential for mature rumen function could be detected as early as 1 day after birth, long before the rumen is active or even before ingestion of plant material occurs. The diversity and within-group similarity increased with age, suggesting a more diverse but homogeneous and specific mature community, compared with the more heterogeneous and less diverse primary community. In addition, a convergence toward a mature bacterial arrangement with age was observed. These findings have also been reported for human gut microbiota, suggesting that similar forces drive the establishment of gut microbiotas in these two distinct mammalian digestive systems.

  16. Exploring the bovine rumen bacterial community from birth to adulthood

    PubMed Central

    Jami, Elie; Israel, Adi; Kotser, Assaf; Mizrahi, Itzhak

    2013-01-01

    The mammalian gut microbiota is essential in shaping many of its host's functional attributes. One such microbiota resides in the bovine digestive tract in a compartment termed as the rumen. The rumen microbiota is necessary for the proper physiological development of the rumen and for the animal's ability to digest and convert plant mass into food products, making it highly significant to humans. The establishment of this microbial population and the changes occurring with the host's age are important for understanding this key microbial community. Despite its importance, little information about colonization of the microbial populations in newborn animals, and the gradual changes occurring thereafter, exists. Here, we characterized the overall bovine ruminal bacterial populations of five age groups, from 1-day-old calves to 2-year-old cows. We describe the changes occurring in the rumen ecosystem after birth, reflected by a decline in aerobic and facultative anaerobic taxa and an increase in anaerobic ones. Some rumen bacteria that are essential for mature rumen function could be detected as early as 1 day after birth, long before the rumen is active or even before ingestion of plant material occurs. The diversity and within-group similarity increased with age, suggesting a more diverse but homogeneous and specific mature community, compared with the more heterogeneous and less diverse primary community. In addition, a convergence toward a mature bacterial arrangement with age was observed. These findings have also been reported for human gut microbiota, suggesting that similar forces drive the establishment of gut microbiotas in these two distinct mammalian digestive systems. PMID:23426008

  17. The role of the commensal microbiota in adaptive and maladaptive stressor-induced immunomodulation.

    PubMed

    Mackos, Amy R; Maltz, Ross; Bailey, Michael T

    2017-02-01

    Over the past decade, it has become increasingly evident that there are extensive bidirectional interactions between the body and its microbiota. These interactions are evident during stressful periods, where it is recognized that commensal microbiota community structure is significantly changed. Many different stressors, ranging from early life stressors to stressors administered during adulthood, lead to significant, community-wide differences in the microbiota. The mechanisms through which this occurs are not yet known, but it is known that commensal microbes can recognize, and respond to, mammalian hormones and neurotransmitters, including those that are involved with the physiological response to stressful stimuli. In addition, the physiological stress response also changes many aspects of gastrointestinal physiology that can impact microbial community composition. Thus, there are many routes through which microbial community composition might be disrupted during stressful periods. The implications of these disruptions in commensal microbial communities for host health are still not well understood, but the commensal microbiota have been linked to stressor-induced immunopotentiation. The role of the microbiota in stressor-induced immunopotentiation can be adaptive, such as when these microbes stimulate innate defenses against bacterial infection. However, the commensal microbiota can also lead to maladaptive immune responses during stressor-exposure. This is evident in animal models of colonic inflammation where stressor exposure increases the inflammation through mechanisms involving the microbiota. It is likely that during stressor exposure, immune cell functioning is regulated by combined effects of both neurotransmitters/hormones and commensal microbes. Defining this regulation should be a focus of future studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. The relationship between substrate morphology and biological performances of nano-silver-loaded dopamine coatings on titanium surfaces

    PubMed Central

    Zhang, Weibo; Wang, Shuang; Ge, Shaohua; Ji, Ping

    2018-01-01

    Biomedical device-associated infection (BAI) and lack of osseointegration are the main causes of implant failure. Therefore, it is imperative for implants not only to depress microbial activity and biofilm colonization but also to prompt osteoblast functions and osseointegration. As part of the coating development for implants, the interest of in vitro studies on the interaction between implant substrate morphology and the coating's biological performances is growing. In this study, by harnessing the adhesion and reactivity of bioinspired polydopamine, nano-silver was successfully anchored onto micro/nanoporous as well as smooth titanium surfaces to analyse the effect of substrate morphology on biological performances of the coatings. Compared with the smooth surface, a small size of nano-silver and high silver content was found on the micro/nanoporous surface. More mineralization happened on the coating on the micro/nanoporous structure than on the smooth surface, which led to a more rapid decrease of silver release from the micro/nanoporous surface. Antimicrobial tests indicated that both surfaces with resulting coating inhibit microbial colonization on them and growth around them, indicating that the coating eliminates the shortcoming of the porous structure which render the implant extremely susceptible to BAI. Besides, the multiple osteoblast responses of nano-silver-loaded dopamine coatings on both surfaces, i.e. attachment, proliferation and differentiation, have deteriorated, however the mineralized surfaces of these coatings stimulated osteoblast proliferation and differentiation, especially for the micro/nanoporous surface. Therefore, nano-silver-loaded dopamine coatings on micro/nanoporous substratum may not only reduce the risk of infection but also facilitate mineralization during the early post-operative period and then promote osseointegration owing to the good osteoblast-biocompatibility of the mineralized surface. These results clearly highlight the influence of the substrate morphology on the biological performances of implant coating. PMID:29765680

  19. Influence of different litter materials on cecal microbiota colonization in broiler chickens.

    PubMed

    Torok, V A; Hughes, R J; Ophel-Keller, K; Ali, M; Macalpine, R

    2009-12-01

    A chicken growth study was conducted to determine if litter type influenced gut microbiota and performance in broilers. Seven bedding materials were investigated and included soft and hardwood sawdust, softwood shavings, shredded paper, chopped straw, rice hulls, and reused softwood shavings. Microbial profiling was done to investigate changes in cecal bacterial communities associated with litter material and age. Cecal microbiota were investigated at 14 and 28 d of age (n = 12 birds/litter material). At both ages, the cecal microbiota of chickens raised on reused litter was significantly (P < 0.05) different from that of chickens raised on any of the other litter materials, except softwood shavings at d 28. Cecal microbiota was also significantly different between birds raised on shredded paper and rice hulls at both ages. Age had a significant influence on cecal microbiota composition regardless of litter material. Similarity in cecal microbial communities among birds raised on the same litter treatment was greater at 28 d of age (29 to 40%) than at 14 d of age (25 to 32%). Bird performance on the different litter materials was measured by feed conversion ratio, live weight, and feed intake. Significant (P < 0.05) differences were detected in live weight at 14 d of age and feed intake at 14 and 28 d of age among birds (n = 160/treatment) raised on some of the different litter materials. However, no significant (P > 0.05) differences were observed in feed conversion ratio among birds raised on any of the 7 different litter materials at either 14 or 28 d of age. The type of litter material can influence colonization and development of cecal microbiota in chickens. Litter-induced changes in the gut microbiota may be partially responsible for some of the significant differences observed in early rates of growth; therefore, litter choice may have an important role in poultry gut health particularly in the absence of in-feed antibiotics.

  20. Searching for Synbiotics to increase Colonic Butyrate Concentration

    USDA-ARS?s Scientific Manuscript database

    Butyrate is produced by microbial fermentation of plant fiber in the gut and a preferred substrate for gut epithelial cells. In ruminants, butyrate contributes to 70% of energy metabolism. In monogastric species, butyrate also plays an important role in energy metabolism in the hindgut. Moreover, bu...

  1. Genomic and fluxomic analysis of carbohydrate metabolism in Bifidobacterium spp: human symbiotic bacteria

    USDA-ARS?s Scientific Manuscript database

    Bifidobacteria are gram-positive microorganisms widely applied in fermented dairy products due to their health-promoting effects. Bifidobacterium ssp. may also represent up to 91% of microbial gut population in the infant colon, but considerably less in adults. Fructose-6 phosphate phosphoketolase...

  2. Development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium.

    PubMed

    Teixeira, Catarina; Almeida, C Marisa R; Nunes da Silva, Marta; Bordalo, Adriano A; Mucha, Ana P

    2014-09-15

    Microbial assisted phytoremediation is a promising, though yet poorly explored, new remediation technique. The aim of this study was to develop autochthonous microbial consortia resistant to cadmium that could enhance phytoremediation of salt-marsh sediments contaminated with this metal. The microbial consortia were selectively enriched from rhizosediments colonized by Juncus maritimus and Phragmites australis. The obtained consortia presented similar microbial abundance but a fairly different community structure, showing that the microbial community was a function of the sediment from which the consortia were enriched. The effect of the bioaugmentation with the developed consortia on cadmium uptake, and the microbial community structure associated to the different sediments were assessed using a microcosm experiment. Our results showed that the addition of the cadmium resistant microbial consortia increased J. maritimus metal phytostabilization capacity. On the other hand, in P. australis, microbial consortia amendment promoted metal phytoextraction. The addition of the consortia did not alter the bacterial structure present in the sediments at the end of the experiments. This study provides new evidences that the development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium might be a simple, efficient, and environmental friendly remediation procedure. Development of autochthonous microbial consortia resistant to cadmium that enhanced phytoremediation by salt-marsh plants, without a long term effect on sediment bacterial diversity. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Microbial community in a full-scale drinking water biosand filter.

    PubMed

    Feng, Shuo; Chen, Chao; Wang, Qingfeng; Yang, Zhiyu; Zhang, Xiaojian; Xie, Shuguang

    2013-04-01

    To remove turbidity and minimize microbiological risks, rapid sand filtration is one of main drinking water treatment processes in the world. However, after a long-term operation, sand particles will be colonized by microorganisms which can remove biodegradable organic matters and nitrogen compounds. In this study, 16S rRNA gene clone library analysis was applied to characterize the microbial community in a full-scale biosand filter used for drinking water treatment. The results indicate that phylum Nitrospirae and class Alphaproteobacteria were the dominant bacterial groups in the biosand sample collected from the upper filter layer. The dominance of Sphingomonas species might pose a microbiological risk. This work could provide some new insights into microbial community in drinking water biofilter.

  4. Environmental controls on chemoautotrophic primary producers at deep-sea vents

    NASA Astrophysics Data System (ADS)

    Le Bris, Nadine; Mullineaux, Lauren; Sievert, Stefan

    2014-05-01

    High biomasses and fast growth rates of dominant chemosynthetic species characterize hydrothermal ecosystems, raising the issue of their contribution to energy transfer and carbon cycling in the deep-sea. Addressing this issue, however, needs to account for the temporal instability of hydrothermal systems, both, in terms of biological colonization and habitat conditions. Volcanic eruptions on mid-ocean ridges offer the opportunity to investigate the environmental conditions favoring the successive modes of chemoautotrophic primary production (i.e. free living microbes and symbiotic invertebrates). In that perspective, habitat-scale approaches distinguish from vent field-scale approaches based on fluid composition and provide relevant information on environmental constraints exerted at different stages of colonization focusing on parameters linked with physiological limits and available energy. Investigation of habitat physicochemical properties along a typical successional sequence of recolonization at 9°50'N EPR diffuse-flow vents, between 2006 and 2014, was performed in order to examine potential changes in environmental features associated with chemoautotrophic primary producers, from early microbial colonizers to symbiotic invertebrates. Combined in situ measurements of temperature, pH and hydrogen sulfide were used and their variability documented over a series of assemblages characterizing recolonization stages. The distributions of mature assemblages of dominant invertebrate species associate with substantial differences in habitat conditions, pointing to a strong influence of habitat properties on potential productivity. Among the differences observed, however, the amplitude and rate of environmental fluctuation appear more important than average conditions in the succession, highlighting the role of spatial heterogeneity and temporal dynamics as a control on primary producers. Invertebrate species acting as engineer species are expected to play a primary role in the rate of organic carbon formed over the lifetime of a vent and potentially transferred to adjacent ecosystems.

  5. [The significance of the contamination of dental care articles. The results of a field study].

    PubMed

    Hingst, V

    1989-04-01

    Permissible conclusions both from recent available literature and our own field-study results concerning the problematic nature of microbial contamination of dental hygiene articles and the resulting possible health hazard for the consumer can be summarized as follows: Manufacturing practices as are given in the basic instructions for production sites of the cosmetic industry, render a possible degree of microbial contamination. This largely rules out the danger of infection of the consumer upon acquisition of the dental hygiene product. Secondary contamination of these products, as inevitably is the case during use of dental hygiene articles, leads to microbial colonization especially of toothbrush bristles. The extent of this colonization depends at least partially upon the utilization age of the toothbrush. Also for this reason a toothbrush should be replaced by a new one after period of three months, six months at the latest and in all cases of inflammatory changes of the mouth and throat region. The contamination of both the glass or plastic container used for rinsing the teeth after brushing or for gargling can be held within certain limits by dry storage. Only in exceptional cases do mouthwashes show a small degree of contamination. Provided they contain antimicrobial substances, no therapeutically serviceable possibilities worth mentioning follow for the reduction of oropharyngeal flora. Microbial colonization of toothpastes as a result of secondary contamination following use is observed only in exceptional cases due to their preservative content. Significant germination of stagnated residual water in waterpicks often occurs, achieving germ counts up to more than 10(7) cfu per ml. Moreover, waterpicks can represent a biotope for Pseudomonas aeruginosa, and should be used neither by patients with open wounds or mucous membrane lesions in the oropharyngeal area, nor by patients with reduced immune resistance. Manufacturers of waterpicks are urged to impede or prevent the stagnation of residual water more effectively by introducing constructive improvements. Denture and retainer cleansing agents presently on the market display a sufficient antimicrobial effect within the frame of their application, however do not meet the standards set for disinfectants. Dental hygiene products are without relevance for the epidemiology of Legionnaires' disease.

  6. Microbial colonization of the hands of residents.

    PubMed

    Baker, Kris; Katz, Ben Z

    2006-05-01

    To determine whether carriage of resistant Gram-positive organisms by residents increases over time, the dominant hand of pediatric residents was cultured. Among first-year residents, 53 Gram-positive organisms were isolated; 12 were resistant to oxacillin, 13 to clindamycin. Six residents had organisms resistant to both; 14 carried at least one resistant to either. Among third-year residents, 46 Gram-positive organisms were cultured; 9 were resistant to oxacillin, 6 to clindamycin. Three residents carried organisms resistant to both; 10 carried at least one resistant to either. Colonization with resistant Gram-positive organisms did not increase with length of training.

  7. MetaSort untangles metagenome assembly by reducing microbial community complexity

    PubMed Central

    Ji, Peifeng; Zhang, Yanming; Wang, Jinfeng; Zhao, Fangqing

    2017-01-01

    Most current approaches to analyse metagenomic data rely on reference genomes. Novel microbial communities extend far beyond the coverage of reference databases and de novo metagenome assembly from complex microbial communities remains a great challenge. Here we present a novel experimental and bioinformatic framework, metaSort, for effective construction of bacterial genomes from metagenomic samples. MetaSort provides a sorted mini-metagenome approach based on flow cytometry and single-cell sequencing methodologies, and employs new computational algorithms to efficiently recover high-quality genomes from the sorted mini-metagenome by the complementary of the original metagenome. Through extensive evaluations, we demonstrated that metaSort has an excellent and unbiased performance on genome recovery and assembly. Furthermore, we applied metaSort to an unexplored microflora colonized on the surface of marine kelp and successfully recovered 75 high-quality genomes at one time. This approach will greatly improve access to microbial genomes from complex or novel communities. PMID:28112173

  8. Influence of Salmonella enterica Serovar Typhimurium ssrB on Colonization of Eastern Oysters (Crassostrea virginica) as Revealed by a Promoter Probe Screen

    PubMed Central

    Cox, Clayton E.; Wright, Anita C.; McClelland, Michael

    2015-01-01

    Although Salmonella has been isolated from 7.4 to 8.6% of domestic raw oysters, representing a significant risk for food-borne illness, little is known about the factors that influence their initial colonization by Salmonella. This study tested the hypothesis that specific regulatory changes enable a portion of the invading Salmonella population to colonize oysters. An in vivo promoter probe library screen identified 19 unique regions as regulated during colonization. The mutants in the nearest corresponding downstream genes were tested for colonization defects in oysters. Only one mutation, in ssrB, resulted in a significantly reduced ability to colonize oysters compared to that of wild-type Salmonella. Because ssrB regulates Salmonella pathogenicity island 2 (SPI-2)-dependent infections in vertebrate macrophages, the possibility that ssrB mediated colonization of oyster hemocytes in a similar manner was examined. However, no difference in hemocyte colonization was observed. The complementary hypothesis that signal exchange between Salmonella and the oyster's native microbial community aids colonization was also tested. Signals that triggered responses in quorum sensing (QS) reporters were shown to be produced by oyster-associated bacteria and present in oyster tissue. However, no evidence for signal exchange was observed in vivo. The sdiA reporter responded to salinity, suggesting that SdiA may also have a role in environmental sensing. Overall, this study suggests the initial colonization of live oysters by Salmonella is controlled by a limited number of regulators, including ssrB. PMID:26497459

  9. Temporal and spatial constraints on community assembly during microbial colonization of wood in seawater.

    PubMed

    Kalenitchenko, Dimitri; Fagervold, Sonja K; Pruski, Audrey M; Vétion, Gilles; Yücel, Mustafa; Le Bris, Nadine; Galand, Pierre E

    2015-12-01

    Wood falls on the ocean floor form chemosynthetic ecosystems that remain poorly studied compared with features such as hydrothermal vents or whale falls. In particular, the microbes forming the base of this unique ecosystem are not well characterized and the ecology of communities is not known. Here we use wood as a model to study microorganisms that establish and maintain a chemosynthetic ecosystem. We conducted both aquaria and in situ deep-sea experiments to test how different environmental constraints structure the assembly of bacterial, archaeal and fungal communities. We also measured changes in wood lipid concentrations and monitored sulfide production as a way to detect potential microbial activity. We show that wood falls are dynamic ecosystems with high spatial and temporal community turnover, and that the patterns of microbial colonization change depending on the scale of observation. The most illustrative example was the difference observed between pine and oak wood community dynamics. In pine, communities changed spatially, with strong differences in community composition between wood microhabitats, whereas in oak, communities changed more significantly with time of incubation. Changes in community assembly were reflected by changes in phylogenetic diversity that could be interpreted as shifts between assemblies ruled by species sorting to assemblies structured by competitive exclusion. These ecological interactions followed the dynamics of the potential microbial metabolisms accompanying wood degradation in the sea. Our work showed that wood is a good model for creating and manipulating chemosynthetic ecosystems in the laboratory, and attracting not only typical chemosynthetic microbes but also emblematic macrofaunal species.

  10. Microbiota and Dose Response: Evolving Paradigm of Health Triangle.

    PubMed

    Coleman, Margaret; Elkins, Christopher; Gutting, Bradford; Mongodin, Emmanuel; Solano-Aguilar, Gloria; Walls, Isabel

    2018-06-13

    SRA Dose-Response and Microbial Risk Analysis Specialty Groups jointly sponsored symposia that addressed the intersections between the "microbiome revolution" and dose response. Invited speakers presented on innovations and advances in gut and nasal microbiota (normal microbial communities) in the first decade after the Human Microbiome Project began. The microbiota and their metabolites are now known to influence health and disease directly and indirectly, through modulation of innate and adaptive immune systems and barrier function. Disruption of healthy microbiota is often associated with changes in abundance and diversity of core microbial species (dysbiosis), caused by stressors including antibiotics, chemotherapy, and disease. Nucleic-acid-based metagenomic methods demonstrated that the dysbiotic host microbiota no longer provide normal colonization resistance to pathogens, a critical component of innate immunity of the superorganism. Diverse pathogens, probiotics, and prebiotics were considered in human and animal models (in vivo and in vitro). Discussion included approaches for design of future microbial dose-response studies to account for the presence of the indigenous microbiota that provide normal colonization resistance, and the absence of the protective microbiota in dysbiosis. As NextGen risk analysis methodology advances with the "microbiome revolution," a proposed new framework, the Health Triangle, may replace the old paradigm based on the Disease Triangle (focused on host, pathogen, and environment) and germophobia. Collaborative experimental designs are needed for testing hypotheses about causality in dose-response relationships for pathogens present in our environments that clearly compete in complex ecosystems with thousands of bacterial species dominating the healthy superorganism. © 2018 Society for Risk Analysis.

  11. Altering host resistance to infections through microbial transplantation.

    PubMed

    Willing, Benjamin P; Vacharaksa, Anjalee; Croxen, Matthew; Thanachayanont, Teerawat; Finlay, B Brett

    2011-01-01

    Host resistance to bacterial infections is thought to be dictated by host genetic factors. Infections by the natural murine enteric pathogen Citrobacter rodentium (used as a model of human enteropathogenic and enterohaemorrhagic E. coli infections) vary between mice strains, from mild self-resolving colonization in NIH Swiss mice to lethality in C3H/HeJ mice. However, no clear genetic component had been shown to be responsible for the differences observed with C. rodentium infections. Because the intestinal microbiota is important in regulating resistance to infection, and microbial composition is dependent on host genotype, it was tested whether variations in microbial composition between mouse strains contributed to differences in "host" susceptibility by transferring the microbiota of resistant mice to lethally susceptible mice prior to infection. Successful transfer of the microbiota from resistant to susceptible mice resulted in delayed pathogen colonization and mortality. Delayed mortality was associated with increased IL-22 mediated innate defense including antimicrobial peptides Reg3γ and Reg3β, and immunono-neutralization of IL-22 abrogated the beneficial effect of microbiota transfer. Conversely, depletion of the native microbiota in resistant mice by antibiotics and transfer of the susceptible mouse microbiota resulted in reduced innate defenses and greater pathology upon infection. This work demonstrates the importance of the microbiota and how it regulates mucosal immunity, providing an important factor in susceptibility to enteric infection. Transfer of resistance through microbial transplantation (bacteriotherapy) provides additional mechanisms to alter "host" resistance, and a novel means to alter enteric infection and to study host-pathogen interactions.

  12. Differences between right- and left-sided colon cancer in patient characteristics, cancer morphology and histology.

    PubMed

    Nawa, Toru; Kato, Jun; Kawamoto, Hirofumi; Okada, Hiroyuki; Yamamoto, Hiroshi; Kohno, Hiroyuki; Endo, Hisayuki; Shiratori, Yasushi

    2008-03-01

    Recently, the clinical and biological differences between right- and left-sided colon cancers have been widely debated. However, close analyses of these clinical differences, based on large-scale studies, have been scarcely reported. A total of 3552 consecutive Japanese colorectal cancer cases were examined and the clinical differences between right- and left-sided colon cancer cases were investigated. The proportion of right-sided colon cancer was relatively high in patients aged less than 40 years (33%) and more than 80 years (43%). The proportion of right-sided colon cancer in patients aged 40-59 years was relatively low (male 22% and female 29%). In male patients the proportion increased in the 70-79 years age group (30%), while in female patients the proportion increased in the 60-69 years age group (39%). Right-sided colon cancer was more likely to be detected at an advanced stage (T1 stage; left 22%, right 15%) (P < 0.01) with severe symptoms. Polypoid-type early cancer was dominant in the left colon (left 59%; right 40%) (P < 0.01), while the proportion of flat-type early cancer in the right colon was significantly higher than that in the left colon (left 25%; right 44%) (P < 0.01). Specific age distribution of right-sided colon cancer was observed and the difference between male and female patients was highlighted. Other clinical features also differed between right- and left-sided colon cancer, suggesting that different mechanisms may be at work during right and left colon carcinogenesis.

  13. Invertebrate and microbial associates

    Treesearch

    Fred M. Stephen; C. Wayne Berisford; D.L. Dahlsten; John C. Moser

    1988-01-01

    Coincident with and immediately subsequent to bark penetration, colonization and establishment of bark beetle and pathogen populations in the host, a myriad of associated organisms that are intimately associated with the bark beetles arrives at and finds access to the subcortical environment of infested trees. Although many of these associated species have been...

  14. Pathogen re-colonization of in-house composted and non-composted broiler litter

    USDA-ARS?s Scientific Manuscript database

    “In-house” litter composting has been reintroduced to the industry and shown to reduce bacteria by as much as two orders of magnitude. Other industries have demonstrated that pathogens can recolonize a waste-residual when microbial competition has been reduced or inhibited following composting. Po...

  15. COMPARISON OF MICROBIAL TRANSFORMATION RATE COEFFICIENTS OF XENOBIOTIC CHEMICALS BETWEEN FIELD-COLLECTED AND LABORATORY MICROCOSM MICROBIOTA

    EPA Science Inventory

    Two second-order transformation rate coefficients--kb, based on total plate counts, and kA, based on periphyton-colonized surface areas--were used to compare xenobiotic chemical transformation by laboratory-developed (microcosm) and by field-collected microbiota. Similarity of tr...

  16. Laboratory colonization stabilizes the naturally dynamic microbiome composition of field collected dermacentor andersoni ticks

    USDA-ARS?s Scientific Manuscript database

    Nearly a quarter of emerging infectious diseases in the last century were transmitted by arthropods. Although ticks and insects can carry pathogenic microorganisms, non-pathogenic microbes make up the majority of the microbial community. Currently, the majority of tick microbiome research has had a ...

  17. Assessment of biological colonization of historic buildings in the former Auschwitz II-Birkenau concentration camp.

    PubMed

    Rajkowska, Katarzyna; Otlewska, Anna; Koziróg, Anna; Piotrowska, Małgorzata; Nowicka-Krawczyk, Paulina; Hachułka, Mariusz; Wolski, Grzegorz J; Kunicka-Styczyńska, Alina; Gutarowska, Beata; Zydzik-Białek, Agnieszka

    2014-01-01

    The objective of this study was to assess biological colonization of wooden and brick buildings in the former Auschwitz II-Birkenau concentration camp, and to identify the organisms colonizing the examined buildings. Microbiological analysis did not reveal increased microbial activity, and the total microbial count of the barrack surfaces did not exceed 10 3  CFU/100 cm 2 . However, certain symptoms of biodegradation of the buildings were observed. The predominant microflora consisted of bacteria of the genera Bacillus , Sporosarcina , Pseudomonas , Micrococcus , Streptomyces , and Staphylococcus , as well as fungi of the genera Acremonium , Cladosporium , Alternaria , Humicola , Penicillium , and Chaetomium . The microflora patterns varied both in wooden and brick buildings. The structural elements of wooden and brick barracks, and especially of the floors and lower parts of bathroom walls, were infected by cyanobacteria and algae, with the most numerous being cyanobacteria of the genera Scytonema , Chroococcus , Gloeothece , Leptolyngbya , diatoms of the genus Diadesmis , and chlorophytes of the genera Chlorella and Apatococcus . The outer surfaces of the examined buildings were primarily colonized by lichens and bryophytes, with nearly 30 species identified. The dominant species of lichens belonged to the genera Candelariella , Caloplaca , Lecanora , Lecidea , Lepraria , Physcia , and Protoparmeliopsis , and those of bryophytes to the genera Bryum , Ceratodon , Marchantia , and Tortula . The quantity and species diversity of lichens and mosses were much lower in wooden barracks than in brick ones. The external surfaces of those barracks were only affected by Lecanora conizaeoides , Lecanora symmicta , Lepraria cf. incana , and Strangospora pinicola . The study results revealed vast biodiversity among the species colonizing historic buildings. The presence of these groups of organisms, resulting from their natural expansion in the environment, is undesirable, as their excessive growth and spread may lead to progressive biodegradation of buildings. Our assessment of biological contamination will enable the development of a disinfection and conservation plan for the examined buildings.

  18. The role of pH in determining the species composition of the human colonic microbiota.

    PubMed

    Duncan, Sylvia H; Louis, Petra; Thomson, John M; Flint, Harry J

    2009-08-01

    The pH of the colonic lumen varies with anatomical site and microbial fermentation of dietary residue. We have investigated the impact of mildly acidic pH, which occurs in the proximal colon, on the growth of different species of human colonic bacteria in pure culture and in the complete microbial community. Growth was determined for 33 representative human colonic bacteria at three initial pH values (approximately 5.5, 6.2 and 6.7) in anaerobic YCFA medium, which includes a mixture of short-chain fatty acids (SCFA) with 0.2% glucose as energy source. Representatives of all eight Bacteroides species tested grew poorly at pH 5.5, as did Escherichia coli, whereas 19 of the 23 gram-positive anaerobes tested gave growth rates at pH 5.5 that were at least 50% of those at pH 6.7. Growth inhibition of B. thetaiotaomicron at pH 5.5 was increased by the presence of the SCFA mix (33 mM acetate, 9 mM propionate and 1 mM each of iso-valerate, valerate and iso-butyrate). Analysis of amplified 16S rRNA sequences demonstrated a major pH-driven shift within a human faecal bacterial community in a continuous flow fermentor. Bacteroides spp. accounted for 27% of 16S rRNA sequences detected at pH 5.5, but 86% of sequences at pH 6.7. Conversely, butyrate-producing gram-positive bacteria related to Eubacterium rectale represented 50% of all 16S rRNA sequences at pH 5.5, but were not detected at pH 6.7. Inhibition of the growth of a major group of gram-negative bacteria at mildly acidic pH apparently creates niches that can be exploited by more low pH-tolerant microorganisms.

  19. Changes in the colon microbiota and intestinal cytokine gene expression following minimal intestinal surgery

    PubMed Central

    Lapthorne, Susan; Bines, Julie E; Fouhy, Fiona; Dellios, Nicole L; Wilson, Guineva; Thomas, Sarah L; Scurr, Michelle; Stanton, Catherine; Cotter, Paul D; Pereira-Fantini, Prue M

    2015-01-01

    AIM: To investigate the impact of minor abdominal surgery on the caecal microbial population and on markers of gut inflammation. METHODS: Four week old piglets were randomly allocated to a no-surgery “control” group (n = 6) or a “transection surgery” group (n = 5). During the transection surgery procedure, a conventional midline incision of the lower abdominal wall was made and the small intestine was transected at a site 225 cm proximal to the ileocaecal valve, a 2 cm segment was removed and the intestine was re-anastomosed. Piglets received a polymeric infant formula diet throughout the study period and were sacrificed at two weeks post-surgery. Clinical outcomes including weight, stool consistency and presence of stool fat globules were monitored. High throughput DNA sequencing of colonic content was used to detect surgery-related disturbances in microbial composition at phylum, family and genus level. Diversity and richness estimates were calculated for the control and minor surgery groups. As disturbances in the gut microbial community are linked to inflammation we compared the gene expression of key inflammatory cytokines (TNF, IL1B, IL18, IL12, IL8, IL6 and IL10) in ileum, terminal ileum and colon mucosal extracts obtained from control and abdominal surgery groups at two weeks post-surgery. RESULTS: Changes in the relative abundance of bacterial species at family and genus level were confined to bacterial members of the Proteobacteria and Bacteroidetes phyla. Family level compositional shifts included a reduction in the relative abundance of Enterobacteriaceae (22.95 ± 5.27 vs 2.07 ± 0.72, P < 0.01), Bacteroidaceae (2.54 ± 0.56 vs 0.86 ± 0.43, P < 0.05) and Rhodospirillaceae (0.40 ± 0.14 vs 0.00 ± 0.00, P < 0.05) following transection surgery. Similarly, at the genus level, changes associated with transection surgery were restricted to members of the Proteobacteria and Bacteroidetes phyla and included decreased relative abundance of Enterobacteriaceae (29.20 ± 6.74 vs 2.88 ± 1.08, P < 0.01), Alistipes (4.82 ± 1.73 vs 0.18 ± 0.13, P < 0.05) and Thalassospira (0.53 ± 0.19 vs 0.00 ± 0.00, P < 0.05). Surgery-associated microbial dysbiosis was accompanied by increased gene expression of markers of inflammation. Within the ileum IL6 expression was decreased (4.46 ± 1.60 vs 0.24 ± 0.06, P < 0.05) following transection surgery. In the terminal ileum, gene expression of TNF was decreased (1.51 ± 0.13 vs 0.80 ± 0.16, P < 0.01) and IL18 (1.21 ± 0.18 vs 2.13 ± 0.24, P < 0.01), IL12 (1.04 ± 0.16 vs 1.82 ± 0.32, P < 0.05) and IL10 (1.04 ± 0.06 vs 1.43 ± 0.09, P < 0.01) gene expression increased following transection surgery. Within the colon, IL12 (0.72 ± 0.13 vs 1.78 ± 0.28, P < 0.01) and IL10 (0.98 ± 0.02 vs 1.95 ± 0.14, P < 0.01) gene expression were increased following transection surgery. CONCLUSION: This study suggests that minor abdominal surgery in infants, results in long-term alteration of the colonic microbial composition and persistent gastrointestinal inflammation. PMID:25892864

  20. Changes in the colon microbiota and intestinal cytokine gene expression following minimal intestinal surgery.

    PubMed

    Lapthorne, Susan; Bines, Julie E; Fouhy, Fiona; Dellios, Nicole L; Wilson, Guineva; Thomas, Sarah L; Scurr, Michelle; Stanton, Catherine; Cotter, Paul D; Pereira-Fantini, Prue M

    2015-04-14

    To investigate the impact of minor abdominal surgery on the caecal microbial population and on markers of gut inflammation. Four week old piglets were randomly allocated to a no-surgery "control" group (n = 6) or a "transection surgery" group (n = 5). During the transection surgery procedure, a conventional midline incision of the lower abdominal wall was made and the small intestine was transected at a site 225 cm proximal to the ileocaecal valve, a 2 cm segment was removed and the intestine was re-anastomosed. Piglets received a polymeric infant formula diet throughout the study period and were sacrificed at two weeks post-surgery. Clinical outcomes including weight, stool consistency and presence of stool fat globules were monitored. High throughput DNA sequencing of colonic content was used to detect surgery-related disturbances in microbial composition at phylum, family and genus level. Diversity and richness estimates were calculated for the control and minor surgery groups. As disturbances in the gut microbial community are linked to inflammation we compared the gene expression of key inflammatory cytokines (TNF, IL1B, IL18, IL12, IL8, IL6 and IL10) in ileum, terminal ileum and colon mucosal extracts obtained from control and abdominal surgery groups at two weeks post-surgery. Changes in the relative abundance of bacterial species at family and genus level were confined to bacterial members of the Proteobacteria and Bacteroidetes phyla. Family level compositional shifts included a reduction in the relative abundance of Enterobacteriaceae (22.95 ± 5.27 vs 2.07 ± 0.72, P < 0.01), Bacteroidaceae (2.54 ± 0.56 vs 0.86 ± 0.43, P < 0.05) and Rhodospirillaceae (0.40 ± 0.14 vs 0.00 ± 0.00, P < 0.05) following transection surgery. Similarly, at the genus level, changes associated with transection surgery were restricted to members of the Proteobacteria and Bacteroidetes phyla and included decreased relative abundance of Enterobacteriaceae (29.20 ± 6.74 vs 2.88 ± 1.08, P < 0.01), Alistipes (4.82 ± 1.73 vs 0.18 ± 0.13, P < 0.05) and Thalassospira (0.53 ± 0.19 vs 0.00 ± 0.00, P < 0.05). Surgery-associated microbial dysbiosis was accompanied by increased gene expression of markers of inflammation. Within the ileum IL6 expression was decreased (4.46 ± 1.60 vs 0.24 ± 0.06, P < 0.05) following transection surgery. In the terminal ileum, gene expression of TNF was decreased (1.51 ± 0.13 vs 0.80 ± 0.16, P < 0.01) and IL18 (1.21 ± 0.18 vs 2.13 ± 0.24, P < 0.01), IL12 (1.04 ± 0.16 vs 1.82 ± 0.32, P < 0.05) and IL10 (1.04 ± 0.06 vs 1.43 ± 0.09, P < 0.01) gene expression increased following transection surgery. Within the colon, IL12 (0.72 ± 0.13 vs 1.78 ± 0.28, P < 0.01) and IL10 (0.98 ± 0.02 vs 1.95 ± 0.14, P < 0.01) gene expression were increased following transection surgery. This study suggests that minor abdominal surgery in infants, results in long-term alteration of the colonic microbial composition and persistent gastrointestinal inflammation.

Top