Sample records for early miocene sediments

  1. Miocene mass-transport sediments, Troodos Massif, Cyprus

    USGS Publications Warehouse

    Lord, A.R.; Harrison, R.W.; BouDagher-Fadel, M.; Stone, B.D.; Varol, O.

    2009-01-01

    Sediment mass-transport layers of submarine origin on the northern and southern flanks of the Troodos ophiolitic massif are dated biostratigraphically as early Miocene and late Miocene, respectively and therefore represent different seismogenic events in the uplift and erosional history of the Troodos terrane. Analysis of such events has potential for documenting Miocene seismic and uplift events regionally in the context of changing stress field directions and plate vectors through time. ?? 2009 The Geologists' Association.

  2. Subduction, erosion and the sediment record: Insights from Miocene sediments, Hengchun Peninsula, Taiwan

    NASA Astrophysics Data System (ADS)

    Kirstein, Linda; Carter, Andrew; Chen, Yue-Gau

    2010-05-01

    Detrital sedimentary records include vast archives of material that have been removed from developing tectonically active regions. These archives have been used to investigate challenging questions on continental deformation, exhumation and palaeodrainage using a variety of different techniques including heavy minerals, fission-track dating and palaeocurrent reconstructions. The Hengchun Peninsula of southern Taiwan and offshore Hengchun Ridge form a present day accretionary prism, with accretionary wedge growth occurring both by frontal accretion, with sediments from the continental margin scraped up into the accretionary wedge and by underplating. Miocene sediments in Hengchun include foreland basin deposits, deep marine turbidites and forearc basin deposits. As a result the detrital sediments record details of accretionary prism growth associated with continued Luzon arc-continent collision. Diametrically opposite palaeocurrents are preserved in the Miocene sandstones of the Hengchun Peninsula, southern Taiwan. Controversial explanations include an exotic source terrane to the south and/or 180 ° rotation of a depositional basin. We document the tecto-thermal evolution of the Miocene sediment source(s) using a double dating approach. U-Pb grain ages range from Miocene to Archaean, while zircon fission-tracks record thermal cooling primarily in the Cretaceous with minor peaks in the Miocene, Triassic, Jurassic and Permian. The primary source of the Miocene sediments at the centre of the controversy was similar. Palaeocurrent data are influenced by local basin geometry and submarine topography and suggest that sediment deposition in the Miocene was strongly controlled by incipient subduction, associated structural trends and submarine topography. A similar control on deposition in the modern Taiwan collision zone is apparent in the offshore region today.

  3. Early Miocene sequence development across the New Jersey margin

    USGS Publications Warehouse

    Monteverde, D.H.; Mountain, Gregory S.; Miller, K.G.

    2008-01-01

    Sequence stratigraphy provides an understanding of the interplay between eustasy, sediment supply and accommodation in the sedimentary construction of passive margins. We used this approach to follow the early to middle Miocene growth of the New Jersey margin and analyse the connection between relative changes of sea level and variable sediment supply. Eleven candidate sequence boundaries were traced in high-resolution multi-channel seismic profiles across the inner margin and matched to geophysical log signatures and lithologic changes in ODP Leg 150X onshore coreholes. Chronologies at these drill sites were then used to assign ages to the intervening seismic sequences. We conclude that the regional and global correlation of early Miocene sequences suggests a dominant role of global sea-level change but margin progradation was controlled by localized sediment contribution and that local conditions played a large role in sequence formation and preservation. Lowstand deposits were regionally restricted and their locations point to both single and multiple sediment sources. The distribution of highstand deposits, by contrast, documents redistribution by along shelf currents. We find no evidence that sea level fell below the elevation of the clinoform rollover, and the existence of extensive lowstand deposits seaward of this inflection point indicates efficient cross-shelf sediment transport mechanisms despite the apparent lack of well-developed fluvial drainage. ?? 2008 The Authors. Journal compilation ?? 2008 Blackwell Publishing.

  4. The late early Miocene Sabine River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manning, E.

    Work on a new late early Miocene vertebrate fossil site, in a paleochannel deposit of the upper Carnahan Bayou Member of the lower Fleming Formation, has revealed unexpected data on the course and nature of the Sabine River of that time. Screen washing for smaller vertebrate remains at the site, just west of the Sabine River in Newton County, central eastern Texas, has resulted in the recovery of early Permian, Early Cretaceous, Late Cretaceous (Maestrichtian), Paleocene/Eocene, late Eocene, and Oligocene/Miocene fossils, in addition to the main early Miocene fauna. The reworked fossils, as well as distinctive mineral grains, show thatmore » the late early Miocene Sabine River was connected to the Texas/Oklahoma/Arkansas boundary section of the Red River, as well as to rivers draining the southern Ouachita Mountains. These rivers must have joined the Texas/Louisiana boundary section of the Sabine River somewhere in northwest Louisiana at that time. This suggests that the Louisiana section of the present Red River pirated the Texas/Oklahoma/Arkansas boundary section of the river some time after the early Miocene. The preservation of recognizable fossils transported hundreds of miles in a large river itself requires explanation. It is speculated here that the late early Miocene Sabine River incorporated a large amount of the then recently deposited volcanic ash from the Trans-Pecos Volcanic Field. Montmorillonite clay from the altered volcanic ash would have made the river very turbid, which could have allowed coarse sand-sized particles to be carried in the suspended load of the river, rather than in its bed load (where they would have been destroyed by the rolling chert gravel). Additional evidence for such long-distance fossil transport in the late early Miocene rivers of the western Gulf Coastal Plain comes from the abundant Cretaceous fossils of the upper Oakville Formation of southeast Texas and the Siphonina davisi zone of the southeast Texas subsurface.« less

  5. Foraminiferal biostratigraphy, paleoenvironmental history, and rates of sedimentation within subsurface Miocene of southern Alabama and adjoining state and Federal Waters Areas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, C.C.

    1989-03-01

    Miocene sedimentary rocks of the study area consist of a predominantly regressive sequence of clay and quartzose sand deposited on a carbonate platform which dips toward the southwest at 50-100 ft/mi. This clastic wedge ranges in thickness from 1000 ft in central Mobile and Baldwin Counties to a maximum of about 5800 ft in the northeastern portion of the Main Pass area. Analysis of planktonic and benthic foraminifera has resulted in a refined biostratigraphic zonation of these rocks, which indicates that basal Miocene transgressive shale assignable to the Amphistegina B interval zone immediately overlies the upper Oligocene regional carbonate platform.more » Thus, both lower and lower middle Miocene sedimentary rocks are absent throughout the area of investigation. Biostratigraphic analysis of the middle and upper Miocene rocks has resulted in a series of cross sections illustrating the dramatic thickening southwestward into the federal offshore continental shelf and showing the relationships of producing intervals in the Cibicides carstensi and Discorbis ''12'' interval zones. Paleoenvironmental interpretations are illustrated on a series of maps constructed for selected regional biostratigraphic zones. These maps have outlined previously unrecognized late middle and early late Miocene deltaic sedimentation in the southeastern Mobile County and Chandeleur-Viosca Knoll (north) areas. Study of sedimentation rates, which range from less than 25 up to 1370 ft/m.y., further aids in understanding the deltaic and coastal shelf sedimentation of the Miocene within Alabama and adjoining state and federal waters areas.« less

  6. A new age model for the early-middle Miocene in the North Alpine Foreland Basin

    NASA Astrophysics Data System (ADS)

    Reichenbacher, Bettina; Krijgsman, Wout; Pippèrr, Martina; Sant, Karin; Kirscher, Uwe

    2016-04-01

    The establishment of high-resolution age models for sedimentary successions is crucial for numerous research questions in the geosciences and related disciplines. Such models provide an absolute chronology that permits precise dating of depositional episodes and related processes such as mountain uplift or climate change. Recently, our work in the Miocene sediments of the North Alpine Foreland Basin (NAFB) has revealed a significantly younger age (16.6 Myr) for sediments that were thought to have been deposited 18 Myr ago. This implies that a fundamentally revised new age model is needed for the entire suite of lower-middle Miocene sedimentary rocks in the NAFB (20 to 15-Myr). Our new data also indicate that previously published reconstructions of early-middle Miocene palaeogeography, sedimentation dynamics, mountain uplift and climate change in the NAFB all require a critical review and revision. Further, the time-span addressed is of special interest, since it encompasses the onset of a global warming phase. However, it appears that a fundamentally revised new age model for the entire suite of lower-middle Miocene sedimentary rocks in the NAFB can only be achieved based on a 500 m deep drilling in the NAFB for which we currently seek collaboration partners to develop a grant application to the International Continental Deep Drilling Program (ICDP). Reference: Reichenbacher, B., W. Krijgsman, Y. Lataster, M. Pippèrr, C. G. C. Van Baak, L. Chang, D. Kälin, J. Jost, G. Doppler, D. Jung, J. Prieto, H. Abdul Aziz, M. Böhme, J. Garnish, U. Kirscher, and V. Bachtadse. 2013. A new magnetostratigraphic framework for the Lower Miocene (Burdigalian/Ottnangian, Karpatian) in the North Alpine Foreland Basin. Swiss Journal of Geosciences 106:309-334.

  7. Paleo-environment in the upper amazon basin during early to middle Miocene times

    NASA Astrophysics Data System (ADS)

    van Soelen, Els; Hoorn, Carina; Santos, Roberto V.; Dantas, Elton L.; Sinninghe Damsté, Jaap S.; Kim, Jung-Hyun

    2014-05-01

    The Amazon River has the largest catchment in the world and is responsible for the largest water discharge from land to the ocean. The river system that flows from the Andes to the Atlantic Equatorial Margin exists since the late Miocene, and results from Andean uplift which strongly affected erosion/deposition and major flow patterns in northern South-America. Two outcrop sites from the Solimões basin, Mariñame (17.7-16.1 Ma) and Los Chorros (14.2-12.7 Ma), may shed light on the inland paleo-environmental conditions during a period of active Andean uplift in the early to middle Miocene. Earlier works revealed the Mariñame outcrops to represent a river born in Amazonia. Instead the Los Chorros outcrops are relics of the Amazon River system, characterized by extensive wetlands consisting of swamps, shallow lakes, crevasse splays channels and crevasse-delta lakes (e.g. Hoorn et al., 2010). The freshwater ecosystems alternate with some intervals that are rich in marine palynomorphs (such as dinocysts), mangrove pollen, brackish tolerant molluscs and ostracods, which indicate brackish conditions and a marine influence. It is thought that these marine incursion are related to phases of global sea-level rise and rapid subsidence in the Andean foreland (Marshall & Lundberg, 1996). Still, much remains unknown about the Miocene river systems, like the extent and diversity of the wetland system and the nature of the marine incursions. To get a better understanding of the sources of the (in)organic material, geochemical methods were used. Strontium (Sr) and Neodymium (Nd) isotopes were analyzed on bulk sediments, and used for a paleo-provenance study. The Sr and Nd isotopic signature in the older section (Mariñame) is in general more radiogenic compared to the Los Chorros section. The most radiogenic values are comparable to those found nowadays in the the Precambrian Guyana shield. A Guyana sediment source would suggest a distinctly different flow direction of the major

  8. Orbital forcing in the early Miocene alluvial sediments of the western Ebro Basin, Northeast Spain

    NASA Astrophysics Data System (ADS)

    Garces, M.; Larrasoaña, J. C.; Muñoz, A.; Margalef, O.; Murelaga, X.

    2009-04-01

    time interval of about 500 kyr centered around chron C6r, although inferred absolute ages diverge depending on the assumed calibration of geomagnetic reversals with the astronomical time scale (Billups et al., 2004, Lourens et al., 2004). The section was sampled with a portable drill at regular intervals of about 30 cms, representing a time resolution of near 1 kyr. Spectral analysis of different measured parameters (lithology code, color, magnetic susceptibility and other rock magnetic parameters) revealed significant power at 20.4 m, 9.6 m and 4.2 m, which correspond to a ratio of 1:2.1:4.9 similar to that given by the Milankovitch cycles of eccentricity, obliquity and precession. Maximum power in the spetrum is focused in the eccentricity and obliquity bands while signal corresponding to precession is weakly expressed. The existing uncertainties in the astronomical tuning of the Early Miocene geomagnetic polarity time scale prevents us from using magnetostratigraphy to anchor the Peñarroya record with the astronomical solutions (Laskar et al., 2004). Instead, we have tried the expression of the eccentricity cycle to tune the Peñarroya section. We correlated the thick red clayed (dry phase) intervals with eccentricity minima, a phase relationship which is in agreement with that derived from earlier studies in marine and continental records from the Miocene of the Iberian plate (Abels et al., 2008, Sierro et al., 2000). The resulting tuning of the Peñarroya section yields an age for the base of geomagnetic chron C6r which fits with earlier work of Billups et al., (2004), while the top of C6r gives a significantly younger age. References Abels, H., Abdul Aziz, A., Calvo, J.P. and Tuenter, E., 2008. Shallow lacustrine carbonate microfacies document orbitally paced lake-level history in the Miocene Teruel Basin (North-East Spain), Sedimentology doi: 10.1111/j.1365-3091.2008.00976.x. Billups, K., Pälike, H., Channell, J.E.T., Zachos, J. and Shackleton, N.J., 2004

  9. Miocene deepwater oceanography

    NASA Astrophysics Data System (ADS)

    Woodruff, Fay; Savin, Samuel M.

    1989-02-01

    A global synthesis of Miocene benthic foraminiferal carbon and oxygen isotopic and faunal abundance data indicates that Miocene thermohaline circulation evolved through three regimes corresponding approximately to early, middle, and late Miocene times. There is evidence for major qualitative differences between the circulation of the modern ocean and the Miocene ocean prior to 11 Ma. The 13C/12C ratios of the benthic foraminifera Cibicidoides are interpreted in terms of water mass aging, i.e., the progressive depletion of dissolved O2 and lowering of δ13C values as the result of oxidation of organic matter as water flows further from its sources at the surface of the oceans. Both isotopic and faunal data indicate that the early Miocene regime, from 22 to 15 Ma, was the most different from today's. During that interval intermediate and deep waters of both the Atlantic and the Pacific oceans aged in a northward direction, and the intermediate waters of the Indian, the South Atlantic and the South Pacific oceans were consistently the youngest in the global ocean. We speculate that early Miocene global thermohaline circulation may have been strongly influenced by the influx of warm saline water, Tethyan Indian Saline Water, from the Tethys into the northern Indian Ocean. The isotopic and faunal data suggest that flow from the Tethyan region into the Indian Ocean diminished or terminated at about 14 Ma. Isotopic and faunal data give no evidence for North Atlantic Deep Water (NADW) formation prior to about 14.5 Ma (with the exception of a brief episode in the early Miocene). From 14.5 to 11 Ma NADW formation was weak, and circumpolar and Antarctic water flooded the deep South Atlantic and South Pacific as the Antarctic ice cap grew. From about 10 Ma to the end of the Miocene, thermohaline circulation resembled the modern circulation in many ways. In latest Miocene time (6 to 5 Ma) circulation patterns were very similar to today's except that NADW formation was greatly

  10. Miocene climate variations in the Moesian Platform sediments based on sedimentology and biomarkers

    NASA Astrophysics Data System (ADS)

    Butiseaca, Geanina; Vasiliev, Iuliana; Rabagia, Traian; Dinu, Corneliu; Mulch, Andreas

    2017-04-01

    During the Miocene the Moesian Platform (southern Romania and northern Bulgaria) had a complicated flexural behavior due to the mobility of the nearby orogens. The different behavior induced varying sediment charges, sediment distribution and sediment types. The northern part of the study area (on which the Dacian Basin is overlaid) is characterized by siliciclastic units with dominantly deep facieses, while the southern part is characterized by carbonate production in shallower basin waters. Since the Miocene, the Dacian and Black Sea basins have been highly sensitive to fluctuations in the hydrological cycle. To establish the dynamic evolution of the basin and the climate variations during the Miocene, we have sampled both northern and southern margins of the basin. To discriminate between the tectonic imprint and the eustatic influence over the sedimentation rate we have chosen a multidisciplinary approach including sedimentology, tectonics and organic geochemistry based reconstructions. The sedimentary succession is interrupted by few unconformities correspondent with the main phases of orogeny (in the Carpathian Foredeep) while the southern part seems to have been exposed more often expressed in the geological record by a higher number of unconformities and paleo-soils levels. The n-alkanes distribution recovered from the lipids extracted from the sedimentary rocks indicates a mixture of terrestrial and marine input in the northern, Romanian, closer to Carpathians, part of the Dacian Basin. Surprisingly, the southern, Bulgarian side, showed a more predominant terrestrial input (with higher contribution of the long chain n-alkanes) at least for the Sarmatian (arround 10 Ma). The estimated paleotemperatures based on branched GDGT's indicate much warmer conditions than present day, up to a value of 20 C mean annual temperatures. We will further investigate the paleoenvironmental changes during the latest Miocene of the Dacian basin, using the biomarker approach

  11. Molluscan evidence for early middle Miocene marine glaciation in southern Alaska

    USGS Publications Warehouse

    Marincovich, L.

    1990-01-01

    Profound cooling of Miocene marine climates in southern Alaska culminated in early middle Miocene coastal marine glaciation in the northeastern Gulf of Alaska. This climatic change resulted from interaction of the Yakutat terrane with southern Alaska beginning in late Oligocene time. The ensuing extreme uplift of the coastal Chugach and St. Elias Mountains resulted in progressive regional cooling that culminated in coastal marine glaciation beginning in the early middle Miocene (15-16 Ma) and continuing to the present. The counterclockwise flow of surface water from the frigid northeastern Gulf of Alaska resulted in a cold-temperate shallow-marine environment in the western Gulf of Alaska, as it does today. Ironically, dating of Gulf of Alaska marine glaciation as early middle Miocene is strongly reinforced by the presence of a few tropical and subtropical mollusks in western Gulf of Alaska faunas. Shallow-marine waters throughout the Gulf of Alaska were cold-temperate to cold in the early middle Miocene, when the world ocean was undergoing peak Neogene warming. -Author

  12. Astrochronology of a Late Oligocene to Early Miocene Magnetostratigraphy from the Northwest Atlantic

    NASA Astrophysics Data System (ADS)

    van Peer, T. E.; Xuan, C.; Liebrand, D.; Lippert, P. C.; Wilson, P. A.

    2016-12-01

    The Oligocene-Miocene Boundary is defined by the geomagnetic polarity reversal C6Cn.2n/C6Cn.2r with an astronomically tuned age of 23 Ma. For late Oligocene to early Miocene reversals, only a few records (mainly from the equatorial Pacific and South Atlantic) integrate magneto- and cyclo-stratigraphy with astronomical tuning. Reversal ages acquired from these records show differences up to 100 kyr. We report new astronomically tuned ages for reversals between 21-26.5 Ma, based on integrated palaeomagnetic and X-Ray Fluorescence (XRF) data from rapidly accumulated drift sediments (mean sedimentation rate of 2.5 cm/kyr) at Integrated Ocean Drilling Program (IODP) Site U1406 (northwest Atlantic). The natural remanence preserved in the sediments is relatively weak (especially at high demagnetisation steps) and prone to influence from measurement noise. We introduce an optimisation protocol to improve the estimation of component directions used to define the reversals. For each 1-cm interval measurement, the protocol searches for the combination of a fixed number of steps of demagnetisation data that minimises the maximum angular deviation, statistically excluding the noisy measurement steps. For the tuning, we use the logarithm of the calcium over potassium ratio ln(Ca/K) from XRF core scanning data, a proxy of carbonate content in the sediment. Spectral and wavelet analyses of the 140-m long ln(Ca/K) record highlight dominant obliquity (including the 178 and 1200 kyr modulation) and additional eccentricity forcing. Supported by preliminary stable isotope analysis on benthic foraminifera, we tuned ln(Ca/K) minima to obliquity minima and eccentricity maxima. The resulting age model yield new independent ages for all reversals between C6Ar/C6AAn to C8r/C9n. Our results are generally consistent (within an obliquity cycle) with the Ocean Drilling Program (ODP) Site 1090 age model [Billups et al., 2004], but deviate up to 80 kyr relative to ODP Site 1218 [Pälike et al

  13. The early to mid-Miocene environment of Antarctica

    NASA Astrophysics Data System (ADS)

    Ashworth, A. C.; Lewis, A.

    2012-12-01

    Paleoecological studies in the Transantarctic Mountains of the McMurdo region provide evidence that the climate was both warmer and wetter in the early to mid-Miocene than it was during the late Miocene. The climate change was accompanied by a shift from wet- to cold-based glaciation in the TAM and the probable growth of the polar ice sheet. Terrestrial and freshwater aquatic fossil assemblages from the Friis Hills (77°S) and the Olympus Range (77°S), with endpoint 40Ar/39Ar ages on tephras of 19.76 Ma and 14.07 Ma, respectively, indicate climatic cooling during the interval. At c.14 Ma, the temperature dropped below the threshold required to support the plants and insects of a tundra biome, and they became extinct. This interpretation is supported by pollen studies from Ross Sea cores. The extinction of the tundra biota on the continent appears to have been time-transgressive, occurring at 12.8 Ma on the Antarctic Peninsula. Evidence of climatic cooling from early to mid-Miocene is based on a decrease in biodiversity. During interglacial phases of the early Miocene, the poorly drained valley of the Friis Hills supported a sexually-reproducing moss community dominated by Campylium cf. polygamum, which today grows on the margins of lakes and in soil between boulders. Wood and leaves of Nothofagus (Southern Beech), and the seeds of at least five other angiosperm species are preserved as fossils. In addition, there are abundant megaspores and spiny, curved leaves of the aquatic lycopod Isoetes (Quillwort), as well as chitinous remains of curculionid beetles and Chironomidae (midges). During glacial phases, the only fossils found are Nothofagus leaves of a species which appears to be different than that associated with the interglacial phases. Pollen supports the interpretation that there was more than one species of Nothofagus in the vegetation. The types and numbers of species indicate that the vegetation was a shrub tundra. The closest modern analog for the fossil

  14. A major reorganization of Asian climate by the early Miocene

    NASA Astrophysics Data System (ADS)

    Guo, Z. T.; Sun, B.; Zhang, Z. S.; Peng, S. Z.; Xiao, G. Q.; Ge, J. Y.; Hao, Q. Z.; Qiao, Y. S.; Liang, M. Y.; Liu, J. F.; Yin, Q. Z.; Wei, J. J.

    2008-08-01

    The global climate system experienced a series of drastic changes during the Cenozoic. In Asia, these include the climate transformation from a zonal pattern to a monsoon-dominated pattern, the disappearance of typical subtropical aridity, and the onset of inland deserts. Despite major advances in the last two decades in characterizing and understanding these climate phenomena, disagreements persist relative to the timing, behaviors and underlying causes. This paper addresses these issues mainly based on two lines of evidence. First, we compiled newly collected data from geological indicators of the Cenozoic environment in China as paleoenvironmental maps of ten intervals. In confirming the earlier observation that a zonal climate pattern was transformed into a monsoonal one, the maps within the Miocene indicate that this change was achieved by the early Miocene, roughly consistent with the onset of loess deposition in China. Although a monsoon-like regime would have existed in the Eocene, it was restricted to tropical-subtropical regions. The latitudinal oscillations of the climate zones during the Paleogene are likely attributable to the imbalance in evolution of polar ice-sheets between the two hemispheres. Secondly, we examine the relevant depositional and soil forming processes of the Miocene loess-soil sequences to determine the circulation characteristics with emphasis on the early Miocene. Continuous eolian deposition in the middle reaches of the Yellow River since the early Miocene firmly indicates the formation of inland deserts, which have been constantly maintained during the past 22 Ma. Grain-size gradients between loess sections indicate northerly dust-carrying winds from northern sources, a clear indication of an Asian winter monsoon system. Meanwhile, well-developed Luvisols show evidence that moisture from the oceans reached northern China. This evidence shows the coexistence of two kinds of circulations, one from the ocean carrying moisture and

  15. Late Oligocene and Early Miocene Muroidea of the Zinda Pir Dome.

    PubMed

    Lindsay, Everett H; Flynn, Lawrence J

    2016-02-17

    A series of Oligocene through Early Miocene terrestrial deposits preserved in the foothills of the Zinda Pir Dome of western Pakistan produce multiple, superposed fossil mammal localities. These include small mammal assemblages that shed light on the evolution of rodent lineages, especially Muroidea, in South Asia. Nine small mammal localities span approximately 28-19 Ma, an interval encompassing the Oligocene-Miocene boundary. The Early Miocene rodent fossil assemblages are dominated by muroid rodents, but muroids are uncommon and archaic in earlier Oligocene horizons. The Zinda Pir sequence includes the evolutionary transition to modern Muroidea at about the Oligocene-Miocene boundary. We review the muroid record for the Zinda Pir Dome, which includes the early radiation of primitive bamboo rats (Rhizomyinae) and early members of the modern muroid radiation, which lie near crown Cricetidae and Muridae. The Zinda Pir record dates diversification of modern muroids in the Indian Subcontintent and establishment by 19 Ma of muroid assemblages characteristic of the later Siwaliks.

  16. Salt-dome-related diagenesis of Miocene sediment, Black Bayou field, Cameron Parish, Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leger, W.R.

    1988-09-01

    The Black Bayou field is associated with a salt dome that pierces Miocene sediment and rises to within 900 ft (275 m) of the surface. The Louisiana Gulf Coast regional geothermal gradient is locally affected by the salt dome. The gradient increases to values greater than the regional gradient, 1.26/degrees/F/100 ft (23/degrees/C/km), near the dome. Local effects of the salt dome on clastic diagenesis have been determined by studying sandstone samples adjacent to and away from the salt dome within Miocene sediment. Sample depths range from 4155 to 6145 ft (1266 to 1873 m). Distances of samples from the edgemore » of the dome range from 82 to 820 ft (25 to 250 m).« less

  17. Revised Late Oligocene to Early Miocene magnetic stratigraphy recorded by drift sediments at Sites U1405 and U1406, IODP Expedition 342 (Newfoundland, NW Atlantic)

    NASA Astrophysics Data System (ADS)

    van Peer, Tim; Xuan, Chuang; Wilson, Paul; Liebrand, Diederik; Lippert, Peter

    2015-04-01

    The nannofossil oozes drilled at IODP Expedition 342 (Paleogene Newfoundland Sediment Drifts) Sites U1405 and U1406 provide an exceptional sedimentary archive of the Late Oligocene to Early Miocene due to high sedimentation rates (2-6 cm/kyr at U1406 and up to 20 cm/kyr at U1405) and their ideal location below the Deep Western Boundary Current. These drift sediment sequences provide a unique opportunity to study the Oligocene-Miocene Transition (OMT) and Mi1-event (a transient 1‰ positive oxygen isotope excursion) at an unprecedented resolution from a Northern Hemisphere perspective. The exact timing of the OMT and its rate of change require a reliable and high-resolution magnetic stratigraphic age control, as Chron C6Cn with its three subchrons roughly spans the Mi1 event and the reversal C6Cn.2n/C6Cn.2r defines the Oligocene-Miocene boundary. Natural Remanent Magnetisation (NRM) was measured on 140 m of u-channel samples at U1405 and 190 m at U1406. The u-channel sample based magnetostratigraphy is in good agreement with that based on the shipboard data and reveal distinctive well-defined patterns of normal and reversed polarities, which can be correlated to the Geomagnetic Polarity Time Scale between C6Bn.2n and C9n (ca. 22.2 to 27 Ma) at U1406 and between C6Bn.2n and C6Cr (ca. 22.2 to 23.5 Ma) at U1405. Furthermore, putative cryptochrons in Chron C6Br and C7Ar, previously reported at Site U1334 (IODP Expedition 320), are observed in the u-channel magnetic stratigraphy for Sites U1405 and U1406. Anhysteretic Remanent Magnetisation (ARM) intensity variations are combined with X-Ray Fluorescence (XRF) generated elemental measurements to refine the shipboard splice of both U1405 and U1406. Latest Oligocene to earliest Miocene splice refinements are complicated by the presence of large-scale stratigraphic gaps (up to 25 m at U1405) unrelated to drilling disturbances. The depth and estimated age of these stratigraphic gaps vary from hole to hole, and do not appear

  18. Magneto- and litho-stratigraphic records of the Oligocene-Early Miocene climatic changes from deep drilling in the Linxia Basin, Northeast Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Wu, Fuli; Fang, Xiaomin; Meng, Qingquan; Zhao, Yan; Tang, Fenjun; Zhang, Tao; Zhang, Weilin; Zan, Jinbo

    2017-11-01

    The East Asian monsoon is generally regarded to have initiated at the transition from the Late Oligocene to the Early Miocene. However, little is known about this process because of a lack of continuous strata across the boundary between the Late Oligocene and the Early Miocene in Asia. Based on previous drilling (core HZ-1) in the Miocene sediments in the southern Linxia Basin in NW China, we drilled a new 620 m core (HZ-2) into the Late Oligocene strata and obtained 206 m of continuous new core. The detailed paleomagnetism of the new core reveals eleven pairs of normal and reversed polarity zones that can be readily correlated with chrons 6Bn-9n of the geomagnetic polarity time scale (GPTS), define an age interval of 21.6-26.5 Ma and indicate continuity from the Late Oligocene to Early Miocene. The core is characterized by the remarkable occurrence of brownish-red paleosols of luvic cambisols (brown to luvic drab soils) above reddish-brown floodplain siltstones and mudstones, which suggest that the East Asian monsoon likely began by 26.5 Ma. In contrast to the siltstone and mudstone of the Late Oligocene strata, the Miocene strata begin with a thick fine sandstone bed, which marks sudden increases in erosion and loading that most likely reflect a response to tectonic uplift. The hematite content and redness index records of the core further demonstrate that the monsoonal climate in the Late Oligocene to Early Miocene in this area was mainly controlled by global temperature trends and events.

  19. Antarctic ice sheet sensitivity to atmospheric CO2 variations in the early to mid-Miocene

    NASA Astrophysics Data System (ADS)

    Levy, Richard; Harwood, David; Florindo, Fabio; Sangiorgi, Francesca; Tripati, Robert; von Eynatten, Hilmar; Gasson, Edward; Kuhn, Gerhard; Tripati, Aradhna; DeConto, Robert; Fielding, Christopher; Field, Brad; Golledge, Nicholas; McKay, Robert; Naish, Timothy; Olney, Matthew; Pollard, David; Schouten, Stefan; Talarico, Franco; Warny, Sophie; Willmott, Veronica; Acton, Gary; Panter, Kurt; Paulsen, Timothy; Taviani, Marco; SMS Science Team; Acton, Gary; Askin, Rosemary; Atkins, Clifford; Bassett, Kari; Beu, Alan; Blackstone, Brian; Browne, Gregory; Ceregato, Alessandro; Cody, Rosemary; Cornamusini, Gianluca; Corrado, Sveva; DeConto, Robert; Del Carlo, Paola; Di Vincenzo, Gianfranco; Dunbar, Gavin; Falk, Candice; Field, Brad; Fielding, Christopher; Florindo, Fabio; Frank, Tracy; Giorgetti, Giovanna; Grelle, Thomas; Gui, Zi; Handwerger, David; Hannah, Michael; Harwood, David M.; Hauptvogel, Dan; Hayden, Travis; Henrys, Stuart; Hoffmann, Stefan; Iacoviello, Francesco; Ishman, Scott; Jarrard, Richard; Johnson, Katherine; Jovane, Luigi; Judge, Shelley; Kominz, Michelle; Konfirst, Matthew; Krissek, Lawrence; Kuhn, Gerhard; Lacy, Laura; Levy, Richard; Maffioli, Paola; Magens, Diana; Marcano, Maria C.; Millan, Cristina; Mohr, Barbara; Montone, Paola; Mukasa, Samuel; Naish, Timothy; Niessen, Frank; Ohneiser, Christian; Olney, Mathew; Panter, Kurt; Passchier, Sandra; Patterson, Molly; Paulsen, Timothy; Pekar, Stephen; Pierdominici, Simona; Pollard, David; Raine, Ian; Reed, Joshua; Reichelt, Lucia; Riesselman, Christina; Rocchi, Sergio; Sagnotti, Leonardo; Sandroni, Sonia; Sangiorgi, Francesca; Schmitt, Douglas; Speece, Marvin; Storey, Bryan; Strada, Eleonora; Talarico, Franco; Taviani, Marco; Tuzzi, Eva; Verosub, Kenneth; von Eynatten, Hilmar; Warny, Sophie; Wilson, Gary; Wilson, Terry; Wonik, Thomas; Zattin, Massimiliano

    2016-03-01

    Geological records from the Antarctic margin offer direct evidence of environmental variability at high southern latitudes and provide insight regarding ice sheet sensitivity to past climate change. The early to mid-Miocene (23-14 Mya) is a compelling interval to study as global temperatures and atmospheric CO2 concentrations were similar to those projected for coming centuries. Importantly, this time interval includes the Miocene Climatic Optimum, a period of global warmth during which average surface temperatures were 3-4 °C higher than today. Miocene sediments in the ANDRILL-2A drill core from the Western Ross Sea, Antarctica, indicate that the Antarctic ice sheet (AIS) was highly variable through this key time interval. A multiproxy dataset derived from the core identifies four distinct environmental motifs based on changes in sedimentary facies, fossil assemblages, geochemistry, and paleotemperature. Four major disconformities in the drill core coincide with regional seismic discontinuities and reflect transient expansion of grounded ice across the Ross Sea. They correlate with major positive shifts in benthic oxygen isotope records and generally coincide with intervals when atmospheric CO2 concentrations were at or below preindustrial levels (˜280 ppm). Five intervals reflect ice sheet minima and air temperatures warm enough for substantial ice mass loss during episodes of high (˜500 ppm) atmospheric CO2. These new drill core data and associated ice sheet modeling experiments indicate that polar climate and the AIS were highly sensitive to relatively small changes in atmospheric CO2 during the early to mid-Miocene.

  20. Antarctic ice sheet sensitivity to atmospheric CO2 variations in the early to mid-Miocene

    PubMed Central

    Levy, Richard; Harwood, David; Florindo, Fabio; Sangiorgi, Francesca; Tripati, Robert; von Eynatten, Hilmar; Tripati, Aradhna; DeConto, Robert; Fielding, Christopher; Field, Brad; Golledge, Nicholas; McKay, Robert; Naish, Timothy; Olney, Matthew; Pollard, David; Schouten, Stefan; Talarico, Franco; Warny, Sophie; Willmott, Veronica; Acton, Gary; Panter, Kurt; Paulsen, Timothy; Taviani, Marco

    2016-01-01

    Geological records from the Antarctic margin offer direct evidence of environmental variability at high southern latitudes and provide insight regarding ice sheet sensitivity to past climate change. The early to mid-Miocene (23–14 Mya) is a compelling interval to study as global temperatures and atmospheric CO2 concentrations were similar to those projected for coming centuries. Importantly, this time interval includes the Miocene Climatic Optimum, a period of global warmth during which average surface temperatures were 3–4 °C higher than today. Miocene sediments in the ANDRILL-2A drill core from the Western Ross Sea, Antarctica, indicate that the Antarctic ice sheet (AIS) was highly variable through this key time interval. A multiproxy dataset derived from the core identifies four distinct environmental motifs based on changes in sedimentary facies, fossil assemblages, geochemistry, and paleotemperature. Four major disconformities in the drill core coincide with regional seismic discontinuities and reflect transient expansion of grounded ice across the Ross Sea. They correlate with major positive shifts in benthic oxygen isotope records and generally coincide with intervals when atmospheric CO2 concentrations were at or below preindustrial levels (∼280 ppm). Five intervals reflect ice sheet minima and air temperatures warm enough for substantial ice mass loss during episodes of high (∼500 ppm) atmospheric CO2. These new drill core data and associated ice sheet modeling experiments indicate that polar climate and the AIS were highly sensitive to relatively small changes in atmospheric CO2 during the early to mid-Miocene. PMID:26903644

  1. Antarctic ice sheet sensitivity to atmospheric CO2 variations in the early to mid-Miocene.

    PubMed

    Levy, Richard; Harwood, David; Florindo, Fabio; Sangiorgi, Francesca; Tripati, Robert; von Eynatten, Hilmar; Gasson, Edward; Kuhn, Gerhard; Tripati, Aradhna; DeConto, Robert; Fielding, Christopher; Field, Brad; Golledge, Nicholas; McKay, Robert; Naish, Timothy; Olney, Matthew; Pollard, David; Schouten, Stefan; Talarico, Franco; Warny, Sophie; Willmott, Veronica; Acton, Gary; Panter, Kurt; Paulsen, Timothy; Taviani, Marco

    2016-03-29

    Geological records from the Antarctic margin offer direct evidence of environmental variability at high southern latitudes and provide insight regarding ice sheet sensitivity to past climate change. The early to mid-Miocene (23-14 Mya) is a compelling interval to study as global temperatures and atmospheric CO2 concentrations were similar to those projected for coming centuries. Importantly, this time interval includes the Miocene Climatic Optimum, a period of global warmth during which average surface temperatures were 3-4 °C higher than today. Miocene sediments in the ANDRILL-2A drill core from the Western Ross Sea, Antarctica, indicate that the Antarctic ice sheet (AIS) was highly variable through this key time interval. A multiproxy dataset derived from the core identifies four distinct environmental motifs based on changes in sedimentary facies, fossil assemblages, geochemistry, and paleotemperature. Four major disconformities in the drill core coincide with regional seismic discontinuities and reflect transient expansion of grounded ice across the Ross Sea. They correlate with major positive shifts in benthic oxygen isotope records and generally coincide with intervals when atmospheric CO2 concentrations were at or below preindustrial levels (∼280 ppm). Five intervals reflect ice sheet minima and air temperatures warm enough for substantial ice mass loss during episodes of high (∼500 ppm) atmospheric CO2 These new drill core data and associated ice sheet modeling experiments indicate that polar climate and the AIS were highly sensitive to relatively small changes in atmospheric CO2 during the early to mid-Miocene.

  2. Miocene seismic stratigraphy and structural evolution of the North and South Padre Island and OCS areas, offshore south Texas

    NASA Astrophysics Data System (ADS)

    Al-Ghamdi, Ali Mohammed

    A seismic stratigraphy and structural study was undertaken to explain the Miocene tectonic and sedimentary evolution of the North and South Padre Island and OCS areas (offshore south Texas). Three linear, elongated growth-fault systems, trending northeast-southwest, occurred in this area: Clemente-Tomas, Corsair, and Wanda. The Clemente-Tomas and the Corsair systems were controlled by late Oligocene-early Miocene overpressured shale uplifted by an influx of clastic sediments. Salt withdrawal helped expand the Corsair fault during the late Oligocene-early Miocene, whereas salt withdrawal formed the Wanda fault system. Nine salt structures (eight diapirs and one sheet), active throughout the Miocene, occurred beneath the present-day shelf edge and in the South Padre Island East Addition. Two types of overpressured shale (overpressured shale ridges and overpressured stratified shale) are present. Seven major depocenters: four controlled by fault expansion and sediment influx, and three by sediment influx and salt withdrawal. The depocenters caused by fault expansion propagate to the northeast, whereas those related to salt withdrawal remain in the same location. Sedimentation in the depocenters was active during the early to middle Miocene. Three sediment fairways, entering the study area from the southwest, west, and northwest, appear to connect the sediment depocenters controlled by salt withdrawal and fault expansion. All sediment fairways propagated first to depocenters associated with salt withdrawal and then to upper slope areas. Lower Miocene time-structure maps of the area show ragged structural relief caused by sedimentation and shale and salt uplifts. Using well-log, seismic reflection, and paleontologic data to support the seismic stratigraphy, five cross-sections were constructed. Large-scale sedimentation occurred at the regressive sea level during the Oligocene beneath the present-day shoreline, forcing the uplift of predeposited marine sediments (shale

  3. Correlation of Miocene strata on the submarine St. Croix Ridge and onland St. Croix, US Virgin Islands

    NASA Astrophysics Data System (ADS)

    von Salis, Katharina; Speed, Robert

    1995-03-01

    The nannofossils of an hydraulic piston core from the steep scarp between the St. Croix Ridge and Virgin Islands Basin were restudied. Formerly thought to represent a Pliocene debris flow, we interpret it as an early Miocene (NN1/2) hemipelagic deposit. We correlate the seismic unit sampled by piston core with the Kingshill-Jealousy Formation present on St. Croix. These sediments likely belong to an extensive, thick, deep marine cover of the St. Croix Ridge, deposited on a metamorphic—igneous basement between early Eocene and early Miocene time. Faulting did not evidently affect this sediment cover until the late Neogene.

  4. Miocene flooding events of western Amazonia

    PubMed Central

    Jaramillo, Carlos; Romero, Ingrid; D’Apolito, Carlos; Bayona, German; Duarte, Edward; Louwye, Stephen; Escobar, Jaime; Luque, Javier; Carrillo-Briceño, Jorge D.; Zapata, Vladimir; Mora, Alejandro; Schouten, Stefan; Zavada, Michael; Harrington, Guy; Ortiz, John; Wesselingh, Frank P.

    2017-01-01

    There is a considerable controversy about whether western Amazonia was ever covered by marine waters during the Miocene [23 to 5 Ma (million years ago)]. We investigated the possible occurrence of Miocene marine incursions in the Llanos and Amazonas/Solimões basins, using sedimentological and palynological data from two sediment cores taken in eastern Colombia and northwestern Brazil together with seismic information. We observed two distinct marine intervals in the Llanos Basin, an early Miocene that lasted ~0.9 My (million years) (18.1 to 17.2 Ma) and a middle Miocene that lasted ~3.7 My (16.1 to 12.4 Ma). These two marine intervals are also seen in Amazonas/Solimões Basin (northwestern Amazonia) but were much shorter in duration, ~0.2 My (18.0 to 17.8 Ma) and ~0.4 My (14.1 to 13.7 Ma), respectively. Our results indicate that shallow marine waters covered the region at least twice during the Miocene, but the events were short-lived, rather than a continuous full-marine occupancy of Amazonian landscape over millions of years. PMID:28508052

  5. Miocene flooding events of western Amazonia.

    PubMed

    Jaramillo, Carlos; Romero, Ingrid; D'Apolito, Carlos; Bayona, German; Duarte, Edward; Louwye, Stephen; Escobar, Jaime; Luque, Javier; Carrillo-Briceño, Jorge D; Zapata, Vladimir; Mora, Alejandro; Schouten, Stefan; Zavada, Michael; Harrington, Guy; Ortiz, John; Wesselingh, Frank P

    2017-05-01

    There is a considerable controversy about whether western Amazonia was ever covered by marine waters during the Miocene [23 to 5 Ma (million years ago)]. We investigated the possible occurrence of Miocene marine incursions in the Llanos and Amazonas/Solimões basins, using sedimentological and palynological data from two sediment cores taken in eastern Colombia and northwestern Brazil together with seismic information. We observed two distinct marine intervals in the Llanos Basin, an early Miocene that lasted ~0.9 My (million years) (18.1 to 17.2 Ma) and a middle Miocene that lasted ~3.7 My (16.1 to 12.4 Ma). These two marine intervals are also seen in Amazonas/Solimões Basin (northwestern Amazonia) but were much shorter in duration, ~0.2 My (18.0 to 17.8 Ma) and ~0.4 My (14.1 to 13.7 Ma), respectively. Our results indicate that shallow marine waters covered the region at least twice during the Miocene, but the events were short-lived, rather than a continuous full-marine occupancy of Amazonian landscape over millions of years.

  6. Temporal Geochemical Variations in Glass and Minerals from Early Oligocene to Miocene Volcanic Sediments, DSDP Site 296, Kyushu Palau Ridge: Is There a Geochemical Signal for Arc Rifting?

    NASA Astrophysics Data System (ADS)

    Hickey-Vargas, R.; Samajpati, E.

    2015-12-01

    Volcaniclastic sediments and sedimentary rocks from DSDP Site 296, located within a basin at the crest of the northern Kyushu Palau ridge (KPR), record the latter part of the first stage of Izu Bonin Mariana (IBM) arc evolution, up to the cessation of volcanism caused by arc rifting and opening of the Shikoku basin. The lower section consists of early to late Oligocene coarse volcaniclastic sedimentary rocks, and is overlain by late Oligocene to Pleistocene nannofossil chalks and oozes with volcanic sand and ash-rich layers. We have studied the chemical composition of pyroxene, feldspar and glass grains separated from the coarse volcaniclastic rocks at depths from 435 to 1082 meters below sea floor, and of glass shards in layers in the overlying sediments of late Oligocene to early Miocene age. Overall, pyroxene and feldspar compositions show little systematic variation with depth in the core, although for pyroxene, highest En and highest Al2O3 contents are found in the interval from 600-900 meters bsf. An contents in feldspars show a bimodal distribution throughout the core, with most values > 90 or in the range 60-70, with more abundant intermediate compositions in the 600-900 meter interval. Compositions of glass shards vary widely, from basalt to rhyolite, and from low K, light rare earth (LREE)-depleted to high K, strongly LREE-enriched character, without systematic variation with depth in the core. However, all cores sampled from early Oligocene to early Miocene contain relatively low K basalt and basaltic andesite glass. Like the pyroxenes, a wider range of compositions is found in glass from the 600 to 900 mbsf interval. The Site 296 sequence overlaps in age with the uppermost sedimentary section of recently drilled IODP Site 1438, located 230 km to the southwest in the Amami Sankaku basin, thus the two sites may contain volcanic debris shed from contemporaneous sections of the KPR.

  7. Early Miocene reef- and mudflat-associated gastropods from Makran (SE-Iran).

    PubMed

    Harzhauser, Mathias; Reuter, Markus; Mohtat, Tayebeh; Piller, Werner E

    2017-01-01

    A new gastropod fauna of Burdigalian (early Miocene) age is described from the Iranian part of Makran. The fauna comprises 19 species and represents three distinct assemblages from turbid water coral reef, shallow subtidal soft-bottom and mangrove-fringed mudflat environments in the northern Indian Ocean. Especially the reef-associated assemblage comprises largely new species. This is explained by the rare occurrence of reefs along the northern margin of the Miocene Indian Ocean and the low number of scientific studies dealing with the region. In terms of paleobiogeography, the fauna corresponds well to coeval faunas from the Pakistani Balochistan and Sindh provinces and the Indian Kathiawar, Kutch and Kerala provinces. During the early Miocene, these constituted a discrete biogeographic unit, the Western Indian Province, which documents the near complete biogeographic isolation from the Proto-Mediterranean Sea. Some mudflat taxa might represent examples of vicariance following the Tethys closure. The fauna also displays little connection with coeval faunas from Indonesia, documenting a strong provincialism within the Indo-West Pacific Region during early Miocene times. Neritopsis gedrosiana sp. nov., Calliostoma irerense sp. nov., Calliostoma mohtatae sp. nov. and Trivellona makranica sp. nov. are described as new species.

  8. First diatomyid rodent from the Early Miocene of Arabia

    NASA Astrophysics Data System (ADS)

    López-Antoñanzas, Raquel

    2011-02-01

    The Asian family Diatomyidae is known from the Early Oligocene to the present. Among living rodents, this group comprises only the recently discovered Laonastes aenigmamus from Laos. Fossil diatomyids are known from only a few sites, in which they are often rare. The discovery of Pierremus explorator gen. nov. sp. nov. in the Lower Miocene of As-Sarrar (Saudi Arabia) raises to ten the number of extinct diatomyid species recognized. Pierremus explorator is the first record of a diatomyid from the Afro-Arabian plate. This discovery provides evidence that, together with other rodents (ctenodactylids, zapodids…), the diatomyids took advantage of the corridor that was established between Afro-Arabia and Eurasia in Early Miocene times.

  9. Quantification of the effects of eustasy, subsidence, and sediment supply on Miocene sequences, mid-Atlantic margin of the United States

    USGS Publications Warehouse

    Browning, J.V.; Miller, K.G.; McLaughlin, P.P.; Kominz, M.A.; Sugarman, P.J.; Monteverde, D.; Feigenson, M.D.; Hernandez, J.C.

    2006-01-01

    We use backstripping to quantify the roles of variations in global sea level (eustasy), subsidence, and sediment supply on the development of the Miocene stratigraphic record of the mid-Atlantic continental margin of the United States (New Jersey, Delaware, and Maryland). Eustasy is a primary influence on sequence patterns, determining the global template of sequences (i.e., times when sequences can be preserved) and explaining similarities in Miocene sequence architecture on margins throughout the world. Sequences can be correlated throughout the mid-Atlantic region with Sr-isotopic chronology (??0.6 m.y. to ??1.2 m.y.). Eight Miocene sequences correlate regionally and can be correlated to global ??18O increases, indicating glacioeustatic control. This margin is dominated by passive subsidence with little evidence for active tectonic overprints, except possibly in Maryland during the early Miocene. However, early Miocene sequences in New Jersey and Delaware display a patchwork distribution that is attributable to minor (tens of meters) intervals of excess subsidence. Backstripping quantifies that excess subsidence began in Delaware at ca. 21 Ma and continued until 12 Ma, with maximum rates from ca. 21-16 Ma. We attribute this enhanced subsidence to local flexural response to the progradation of thick sequences offshore and adjacent to this area. Removing this excess subsidence in Delaware yields a record that is remarkably similar to New Jersey eustatic estimates. We conclude that sea-level rise and fall is a first-order control on accommodation providing similar timing on all margins to the sequence record. Tectonic changes due to movement of the crust can overprint the record, resulting in large gaps in the stratigraphic record. Smaller differences in sequences can be attributed to local flexural loading effects, particularly in regions experiencing large-scale progradation. ?? 2006 Geological Society of America.

  10. Slowing extrusion tectonics: Lowered estimate of post-Early Miocene slip rate for the Altyn Tagh fault

    USGS Publications Warehouse

    Yue, Y.; Ritts, B.D.; Graham, S.A.; Wooden, J.L.; Gehrels, G.E.; Zhang, Z.

    2004-01-01

    Determination of long-term slip rate for the Altyn Tagh fault is essential for testing whether Asian tectonics is dominated by lateral extrusion or distributed crustal shortening. Previous slip-history studies focused on either Quaternary slip-rate measurements or pre-Early Miocene total-offset estimates and do not allow a clear distinction between rates based on the two. The magmatic and metamorphic history revealed by SHRIMP zircon dating of clasts from Miocene conglomerate in the Xorkol basin north of the Altyn Tagh fault strikingly matches that of basement in the southern Qilian Shan and northern Qaidam regions south of the fault. This match requires that the post-Early Miocene long-term slip rate along the Altyn Tagh fault cannot exceed 10 mm/year, supporting the hypothesis of distributed crustal thickening for post-Early Miocene times. This low long-term slip rate and recently documented large pre-Early Miocene cumulative offset across the fault support a two-stage evolution, wherein Asian tectonics was dominated by lateral extrusion before the end of Early Miocene, and since then has been dominated by distributed crustal thickening and rapid plateau uplift. ?? 2003 Elsevier B.V. All rights reserved.

  11. Australian shelf sediments reveal shifts in Miocene Southern Hemisphere westerlies

    PubMed Central

    Groeneveld, Jeroen; Henderiks, Jorijntje; Renema, Willem; McHugh, Cecilia M.; De Vleeschouwer, David; Christensen, Beth A.; Fulthorpe, Craig S.; Reuning, Lars; Gallagher, Stephen J.; Bogus, Kara; Auer, Gerald; Ishiwa, Takeshige

    2017-01-01

    Global climate underwent a major reorganization when the Antarctic ice sheet expanded ~14 million years ago (Ma) (1). This event affected global atmospheric circulation, including the strength and position of the westerlies and the Intertropical Convergence Zone (ITCZ), and, therefore, precipitation patterns (2–5). We present new shallow-marine sediment records from the continental shelf of Australia (International Ocean Discovery Program Sites U1459 and U1464) providing the first empirical evidence linking high-latitude cooling around Antarctica to climate change in the (sub)tropics during the Miocene. We show that Western Australia was arid during most of the Middle Miocene. Southwest Australia became wetter during the Late Miocene, creating a climate gradient with the arid interior, whereas northwest Australia remained arid throughout. Precipitation and river runoff in southwest Australia gradually increased from 12 to 8 Ma, which we relate to a northward migration or intensification of the westerlies possibly due to increased sea ice in the Southern Ocean (5). Abrupt aridification indicates that the westerlies shifted back to a position south of Australia after 8 Ma. Our midlatitude Southern Hemisphere data are consistent with the inference that expansion of sea ice around Antarctica resulted in a northward movement of the westerlies. In turn, this may have pushed tropical atmospheric circulation and the ITCZ northward, shifting the main precipitation belt over large parts of Southeast Asia (4). PMID:28508066

  12. Miocene tectono-stratigraphic history of La Mision basin, northwestern Baja California: implications for early tectonic development of southern California continental borderland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashby, J.R.; Minch, J.

    1988-03-01

    The middle Miocene La Mision basin in northwestern Baja California, Mexico, provides a rare opportunity to study an onshore portion of the southern California continental borderland. Stratigraphy, geometry of dispersal, and a variety of lithotypes within the volcanic and volcaniclastic sediments of the Rosarito Beach Formation provide clues to the nature of early tectonic evolution of this area during the Miocene. The elongated, trough-shaped La Mision basin formed in response to peninsular basement uplifts and the formation of volcanic highlands west of the present coastline. Lithologies and depositional environments represented within the basin sediments include: subaerial basalt flows and airfallmore » tuffs, submarine muddy- and sandy-matrix mudflow breccias, lapilli tuffs, crystal tuffs, tuffaceous sandstones,d diatomites, and conglomerates. The environments of deposition range from fluvatile to intertidal to shallow marine. Early basin infilling is characterized by sediments and basalts, with a western source terrane, that were deposited against the faulted seacliffs. progressive infilling against the seacliff resulted in the formation of an extensive eastward-sloping basaltic platform extending eastward to the foothill coastal belt of the Peninsular Ranges. Marine transgression and subsequent regression are recorded by diverse marine volcaniclastic lithologies. Abundant fossils, K-Ar dates, and paleomagnetic data obtained from the La Mision basin allow precise correlation with other areas in the continental borderland and provide conclusive evidence that this block of the borderland was formed and in its present position by 16-14 Ma.« less

  13. Equatorial Pacific Productivity Events and Intervals in the Middle and late Miocene through XRF-Scanned Bulk Sediment Composition Data

    NASA Astrophysics Data System (ADS)

    Lyle, M. W.; Stepanova, A.; Wilson, J. K.; Marcantonio, F.

    2014-12-01

    The equatorial Pacific is the largest open ocean productivity center, responsible for nearly half of global marine new production and about 40% of CaCO3 burial. Understanding how the equatorial Pacific upwelling system has evolved over the Neogene is critical to understand the evolution of the global carbon cycle. We know from reconnaissance studies that productivity in equatorial Pacific surface waters as well as dissolution driven by deep waters have strongly affected the sediment record. We have used calibrated XRF scanning to capture anomalies in equatorial Pacific upwelling and productivity at Milankovitch-resolving resolution since the early Miocene. The 8 elements calibrated in the XRF scans can be used to distinguish intervals of high carbonate dissolution from those of high productivity. Carbonate dissolution intervals are recorded by a drop of CaCO3 relative to Aeolian clays, with little change in the ratio between estimated opal and clay (estimated by TiO2). In contrast, high production intervals have high opal/TiO2 and low CaCO3. Low CaCO3 contents are caused partly by dilution, since high production skews tropical particulate rain to be more opal-rich relative to carbonate, and additional C-org rain can help to increase CaCO3 dissolution within near-surface sediments. We observe long-lived high production anomalies modulated by orbitally-driven climate variability. Prominent intervals are found at the end of the Miocene climate optimum (~ 14 Ma), interspersed with dissolution intervals in the Carbonate Crash interval (~9-11 Ma), and in the Biogenic Bloom interval (8-4.5 Ma). Using relationships among biogenic fluxes in modern equatorial sediment trap studies, especially the positive correlations between biogenic Ba , C-org, and CaCO3 fluxes, we find that the highest production intervals have much higher opal/C-org in the particulate rain, implying an inefficient carbon pump to the deep ocean. If confirmed, productivity was not as strong a feedback to

  14. Extracting a Detailed Magnetostratigraphy From Weakly Magnetized, Oligocene to Early Miocene Sediment Drifts Recovered at IODP Site U1406 (Newfoundland Margin, Northwest Atlantic Ocean)

    NASA Astrophysics Data System (ADS)

    van Peer, Tim E.; Xuan, Chuang; Lippert, Peter C.; Liebrand, Diederik; Agnini, Claudia; Wilson, Paul A.

    2017-11-01

    Fine-grained magnetic particles in deep-sea sediments often statistically align with the ambient magnetic field during (and shortly after) deposition and can therefore record geomagnetic reversals. Correlation of these reversals to a geomagnetic polarity time scale is an important geochronological tool that facilitates precise stratigraphic correlation and dating of geological records globally. Sediments often carry a remanence strong enough for confident identification of polarity reversals, but in some cases a low signal-to-noise ratio prevents the construction of a reliable and robust magnetostratigraphy. Here we implement a data-filtering protocol, which can be integrated with the UPmag software package, to automatically reduce the maximum angular deviation and statistically mask noisy data and outliers deemed unsuitable for magnetostratigraphic interpretation. This protocol thus extracts a clearer signal from weakly magnetized sediments recovered at Integrated Ocean Drilling Program (IODP) Expedition 342 Site U1406 (Newfoundland margin, northwest Atlantic Ocean). The resulting magnetostratigraphy, in combination with shipboard and shore-based biostratigraphy, provides an age model for the study interval from IODP Site U1406 between Chrons C6Ar and C9n (˜21-27 Ma). We identify rarely observed geomagnetic directional changes within Chrons C6Br, C7r, and C7Ar, and perhaps within Subchron C8n.1n. Our magnetostratigraphy dates three intervals of unusual stratigraphic behavior within the sediment drifts at IODP Site U1406 on the Newfoundland margin. These lithostratigraphic changes are broadly concurrent with the coldest climatic phases of the middle Oligocene to early Miocene and we hypothesize that they reflect changes in bottom water circulation.

  15. Miocene-Recent sediment flux in the south-central Alaskan fore-arc basin governed by flat-slab subduction

    NASA Astrophysics Data System (ADS)

    Finzel, Emily S.; Enkelmann, Eva

    2017-04-01

    The Cook Inlet in south-central Alaska contains the early Oligocene to Recent stratigraphic record of a fore-arc basin adjacent to a shallowly subducting oceanic plateau. Our new measured stratigraphic sections and detrital zircon U-Pb geochronology and Hf isotopes from Neogene strata and modern rivers illustrate the effects of flat-slab subduction on the depositional environments, provenance, and subsidence in fore-arc sedimentary systems. During the middle Miocene, fluvial systems emerged from the eastern, western, and northern margins of the basin. The axis of maximum subsidence was near the center of the basin, suggesting equal contributions from subsidence drivers on both margins. By the late Miocene, the axis of maximum subsidence had shifted westward and fluvial systems originating on the eastern margin of the basin above the flat-slab traversed the entire width of the basin. These mud-dominated systems reflect increased sediment flux from recycling of accretionary prism strata. Fluvial systems with headwaters above the flat-slab region continued to cross the basin during Pliocene time, but a change to sandstone-dominated strata with abundant volcanogenic grains signals a reactivation of the volcanic arc. The axis of maximum basin subsidence during late Miocene to Pliocene time is parallel to the strike of the subducting slab. Our data suggest that the character and strike-orientation of the down-going slab may provide a fundamental control on the nature of depositional systems, location of dominant provenance regions, and areas of maximum subsidence in fore-arc basins.

  16. Late Miocene to Pleistocene Mineralogy of ODP Site 1146

    NASA Astrophysics Data System (ADS)

    Arnold, E. M.

    2001-12-01

    ODP Site 1146 (19° 27.40'N, 116° 16.37'E, 2092 m depth) was drilled on the continental slope of the South China Sea. A composite section, comprised of three stratigraphic units, extends down to 640 mcd. Unit 1 is late Pliocene to Pleistocene nannofossil clay (0 - 243 mcd); Unit 2, middle Miocene to Late Pliocene foraminifera - nannofossil - clay mixed sediment (243 - 553 mcd); Unit 3, early to middle Miocene nannofossil clay (553 - 642 mcd). This study reports the < 2 μ m mineralogy from the late Miocene through early Pleistocene. Samples were analyzed at approximately 1.5 m intervals from 150 to 225 mcd, and 1 m intervals from 225 to 440 mcd, with an age resolution of ~25 ka and ~35 ka, respectively. Illite, chlorite, quartz and plagioclase concentrations decrease with increasing depth through Unit 1. Kaolinite and calcite concentrations increase with depth, while smectite values are constant in this unit. Illite, quartz and plagioclase show high variability in Unit 1 compared with the underlying Unit 2. Unit 2 has more uniform sediment composition, with constant illite, chlorite, and quartz concentrations. Kaolinite concentration increases with depth, following a drop in concentration across the Unit 1/2 boundary. Plagioclase concentration shows a small, steady decrease throughout this unit. Smectite concentration does not change across the Unit 1/2 boundary, decreases to a steady low value from 310 - 400 mcd, and increases again towards the bottom. The mineralogy of sediments recovered at Site 1146 suggest a classic pattern of source region aridification from the middle Pliocene through the Pleistocene, indicated in Unit 1 mineralogy as a decrease in kaolinite with decreasing depth, concomitant with an increase in quartz, plagioclase, illite and chlorite. The mineral variability in this interval suggests glacial - interglacial control of the terrigenous sedimentation. The sediment sources and source area weathering regimes were relatively constant throughout

  17. Late Miocene-Early Pliocene reactivation of the Main Boundary Thrust: Evidence from the seismites in southeastern Kumaun Himalaya, India

    NASA Astrophysics Data System (ADS)

    Mishra, Anurag; Srivastava, Deepak C.; Shah, Jyoti

    2013-05-01

    Tectonic history of the Himalaya is punctuated by successive development of the faults that run along the boundaries between different lithotectonic terrains. The Main Boundary Fault, defining the southern limit of the Lesser Himalayan terrain, is tectonically most active. A review of published literature reveals that the nature and age of reactivation events on the Main Boundary Fault is one of the poorly understood aspects of the Himalayan orogen. By systematic outcrop mapping of the seismites, this study identifies a Late Miocene-Early Pliocene reactivation on the Main Boundary Thrust in southeast Kumaun Himalaya. Relatively friable and cohesionless Neogene sedimentary sequences host abundant soft-sediment deformation structures in the vicinity of the Main Boundary Thrust. Among a large variety of structures, deformed cross-beds, liquefaction pockets, slump folds, convolute laminations, sand dykes, mushroom structures, fluid escape structures, flame and load structures and synsedimentary faults are common. The morphological attributes, the structural association and the distribution pattern of the soft-sediment deformation structures with respect to the Main Boundary Fault strongly suggest their development by seismically triggered liquefaction and fluidization. Available magnetostratigraphic age data imply that the seismites were developed during a Late Miocene-Early Pliocene slip on the Main Boundary Thrust. The hypocenter of the main seismic event may lie on the Main Boundary Thrust or to the north of the study area on an unknown fault or the Basal Detachment Thrust.

  18. Miocene shale tectonics in the Moroccan margin (Alboran Sea)

    NASA Astrophysics Data System (ADS)

    Do Couto, D.; El Abbassi, M.; Ammar, A.; Gorini, C.; Estrada, F.; Letouzey, J.; Smit, J.; Jolivet, L.; Jabour, H.

    2011-12-01

    The Betic (Southern Spain) and Rif (Morocco) mountains form an arcuate belt that represents the westernmost termination of the peri-mediterranean Alpine mountain chain. The Miocene Alboran Basin and its subbasins is located in the hinterland of the Betic-Rif belt. It is considered to be a back-arc basin that developed during the coeval westward motion of the Alboran domain and the extensional collapse of previously thickened crust of the Betic-Rif belt. The Western Alboran Basin (WAB) is the major sedimentary depocenter with a sediment thickness in excess of 10 km, it is bordered by the Gibraltar arc, the volcanic Djibouti mounts and the Alboran ridge. Part of the WAB is affected by shale tectonics and associated mud volcanism. High-quality 2D seismic profiles acquired on the Moroccan margin of the Alboran Basin during the last decade reveal the multiple history of the basin. This study deals with the analysis of a number of these seismic profiles that are located along and orthogonal to the Moroccan margin. Seismic stratigraphy is calibrated from industrial wells. We focus on the interactions between the gravity-driven tectonic processes and the sedimentation in the basin. Our seismic interpretation confirms that the formation of the WAB began in the Early Miocene (Aquitanian - Burdigalian). The fast subsidence of the basin floor coeval to massive sedimentation induced the undercompaction of early miocene shales during their deposition. Downslope migration of these fine-grained sediments initiated during the deposition of the Langhian siliciclastics. This gravity-driven system was accompanied by continuous basement subsidence and induced disharmonic deformation in Mid Miocene units (i.e. not related to basement deformation). The development of shale-cored anticlines and thrusts in the deep basin is the result of compressive deformation at the front of the gravity-driven system and lasted for ca. 15 Ma. The compressive front has been re-activated by strong

  19. Simulating a Dynamic Antarctic Ice Sheet in the Early to Middle Miocene

    NASA Astrophysics Data System (ADS)

    Gasson, E.; DeConto, R.; Pollard, D.; Levy, R. H.

    2015-12-01

    There are a variety of sources of geological data that suggest major variations in the volume and extent of the Antarctic ice sheet during the early to middle Miocene. Simulating such variability using coupled climate-ice sheet models is problematic due to a strong hysteresis effect caused by height-mass balance feedback and albedo feedback. This results in limited retreat of the ice sheet once it has reached the continental size, as likely occurred prior to the Miocene. Proxy records suggest a relatively narrow range of atmospheric CO2 during the early to middle Miocene, which exacerbates this problem. We use a new climate forcing which accounts for ice sheet-climate feedbacks through an asynchronous GCM-RCM coupling, which is able to better resolve the narrow Antarctic ablation zone in warm climate simulations. When combined with recently suggested mechanisms for retreat into subglacial basins due to ice shelf hydrofracture and ice cliff failure, we are able to simulate large-scale variability of the Antarctic ice sheet in the Miocene. This variability is equivalent to a seawater oxygen isotope signal of ~0.5 ‰, or a sea level equivalent change of ~35 m, for a range of atmospheric CO2 between 280 - 500 ppm.

  20. Oligocene and Early Miocene coral faunas from Iran: palaeoecology and palaeobiogeography

    NASA Astrophysics Data System (ADS)

    Schuster, F.; Wielandt, U.

    Oligocene and Early Miocene coral assemblages from three sections of central Iran are investigated with respect to their palaeoecological and palaeobiogeographic implications. These corals are compared with faunas from the Mediterranean Tethys and the Indopacific. Associated larger foraminifers are used for biostratigraphy and to support the palaeoecological interpretation. The studied sections are situated in the foreland basins of the Iranian Plate which is structured into a fore-arc and a back-arc basin separated by a volcanic arc. The coral assemblages from Abadeh indicate a shallowing-upward trend. Infrequently distributed solitary corals at the base of the section indicate a turbid environment. Above, a distinct horizon characterised by a Leptoseris-Stylophora assemblage associated with lepidocyclinids and planktonic foraminifers is interpreted as maximum flooding surface. Small patch reefs with a Porites-Faviidae assemblage are a common feature of Late Oligocene to Early Miocene coral occurrences and indicate water depths of less than 20m. The diversity of the coral faunas shows marked differences. Oligocene corals from the Esfahan-Sirjan fore-arc basin comprise more than 45 species of 32 genera and occur in a wide range of environments. Early Miocene corals from the Qom back-arc basin are less frequent, show a lower diversity (13 genera with 15 species) and occur in single horizons or small patch reefs.

  1. Regional biostratigraphy and paleoenvironmental history of Miocene of onshore and offshore Alabama

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, C.C.

    1989-09-01

    Subsurface Miocene sediments of coastal Alabama and the adjoining state and federal waters consist of a clastic wedge varying in thickness from less than 1,000 ft in southern Alabama to a maximum of about 6,000 ft in the northeastern portion of the Main Pass area. Relatively deep-water and open-marine transgressive basal Miocene clays and shales unconformably overlie a gently southwestward-dipping late Oligocene-earliest Miocene carbonate platform. Middle and late Miocene sediments consist of a regressive offlapping sequence of sand and shale deposited in varying neritic paleoenvironments. Analysis of planktonic and benthonic foraminifera has resulted in a refined biostratigraphic zonation of thesemore » sediments, permitting the recognition of several regional time-equivalent datum levels, or biohorizons. These biohorizons are shown on a series of subsurface cross sections that show the dramatic southwestward thickening of middle and late Miocene sediments as well as illustrate the relationships of the producing intervals within the Cibicides carstensi and Discorbis 12 interval zones. The paleoenvironmental history of the Miocene has been reconstructed on a series of paleobathymetric maps drawn for selected regional biohorizons. Among other features, these maps have proven the existence and outlined the margins of previously unrecognized shallow-meritic deltaic sediments in southeastern Mobile County and in the Chandeleur and Viosca Knoll (north) areas. Analysis of sedimentation rates, which range from less than 25 to 1,370 ft/m.y., further aids in understanding the coastal shelf, deltaic, and open-marine depositional history of the Miocene of Alabama and the adjoining state and federal waters.« less

  2. The Late Oligocene to Early Miocene early evolution of rifting in the southwestern part of the Roer Valley Graben

    NASA Astrophysics Data System (ADS)

    Deckers, Jef

    2016-06-01

    The Roer Valley Graben is a Mesozoic continental rift basin that was reactivated during the Late Oligocene. The study area is located in the graben area of the southwestern part of the Roer Valley Graben. Rifting initiated in the study area with the development of a large number of faults in the prerift strata. Some of these faults were rooted in preexisting zones of weakness in the Mesozoic strata. Early in the Late Oligocene, several faults died out in the study area as strain became focused upon others, some of which were able to link into several-kilometer-long systems. Within the Late Oligocene to Early Miocene northwestward prograding shallow marine syn-rift deposits, the number of active faults further decreased with time. A relatively strong decrease was observed around the Oligocene/Miocene boundary and represents a further focus of strain onto the long fault systems. Miocene extensional strain was not accommodated by further growth, but predominantly by displacements along the long fault systems. Since the Oligocene/Miocene boundary coincides with a radical change in the European intraplate stress field, the latter might have contributed significantly to the simultaneous change of fault kinematics in the study area.

  3. Stratigraphy and paleoenvironment of Miocene phosphatic rocks in the East San Francisco Bay region, California

    USGS Publications Warehouse

    Hill, James M.

    1979-01-01

    A stratigraphic study of the Monterey Group in the East San Francisco Bay Region, California, indicates that a depositional basin began to subside in early to middle Miocene time. The Miocene sea transgressed from the west or southwest, and the area subsided to a possible water depth of 500 to 2,500 m. The Monterey Group within the study area is a time-transgressive sequence of six sandstone and shale formations. Stratigraphic cycles of interbedded sandstone and shale formations are related to the amount of terrigenous sediment input into the basin as well as the depositional environment. During periods of low terrigenous sedimentation, biogenetic sedimentation in the form of diatomite layers were interbedded with hemipelagic muds and thin turbidite sands. These diatom-rich sediments were probably deposited within the upper bathyal zone (180 to 500 m) and, during lithification, diagenetically altered to form siliceous shales and cherts. As terrigenous sedimentation increased, probably due to periodic uplift east of the study area, biogenetic sedimentation was masked until finer grained sediment at a lower rate of deposition reoccurred. As the basin filled and a higher energy environment prevailed; coarse-grained sediment was again deposited until a lower energy environment resumed. Three types of inorganic phosphate are present within the study area: nodular, Pelletal, and pebbles of sandy phosphatic mudstone. The nodular phosphate is associated with the siliceous shale formations and formed within diatomite layers before compaction and lithification. The other two types of phosphate are found within the sandstone formations and probably originated in a shallower, higher energy environment than the siliceous shales. Faulting was active during middle to late Miocene time. The change in stratigraphic thickness across the Mission fault is 350 m which may approximate the vertical (?) displacement along this fault. This displacement took place in middle to upper Miocene

  4. Integrated diagenetic and sequence stratigraphy of a late Oligocene-early Miocene, mixed-sediment platform (Austral Basin, southern Patagonia): Resolving base-level and paleoceanographic changes, and paleoaquifer characteristics

    NASA Astrophysics Data System (ADS)

    Dix, George R.; Parras, Ana

    2014-06-01

    A condensed (~ 20-m-thick) marine transgressive-highstand succession comprises the upper San Julián Formation (upper Oligocene-lower Miocene) of the northern retroarc Austral Basin, southern Patagonia. Mixed-sediment facies identify a shelf-interior setting, part of an overall warm-temperate regional platform of moderate energy. Giant oyster-dominated skeletal-hiatal accumulations along the maximum flooding surface and forming high-energy event beds in the highstand succession preserve relict micrite in protected shelter porosity, and identify periods of reduced sediment accumulation. The stratigraphic distribution of marine-derived glaucony and diagenetic carbonates is spatially related to sequence development. Depositional siderite coincides with prominent marine transgression, defining transient mixing of marine and meteoric waters across coastal-plain deposits. Chemically evolved autochthonous glaucony coincides with periods of extended seafloor exposure and transgressions that bracket the marine succession, and within the oyster-dominated skeletal accumulations. Seafloor cement, likely once magnesian calcite, formed in association with an encrusting/boring biota along the maximum flooding surface in concert with incursion of cool (11-13 °C) water. The cement is present locally in skeletal event beds in the highstand succession suggesting a possible association with high-order base-level change and cooler water. As the highstand succession coincides with elevated global sea level in the late Oligocene-early Miocene, the locally marine-cemented glauconitic skeletal event beds in the highstand succession may identify higher order glacio-eustatic control. Local stratal condensation, however, is best explained by regional differences in basement subsidence. In the burial realm, carbonate diagenesis produced layers of phreatic calcrete coincident with skeletal-rich deposits. Zeolite (clinoptilolite-K) cement is restricted to the lowermost marine transgressive

  5. Formation of early-middle Miocene red beds in the South China Sea: element geochemistry and mineralogy analysis

    NASA Astrophysics Data System (ADS)

    Lyu, X.; Liu, Z.

    2017-12-01

    The formation of oceanic red beds that usually present oxic and oligotrophic conditions with low sedimentation rate has been used to trace depositional paleoenvironment and paleoclimate change. Red beds overlying oceanic basalts were drilled at two adjacent Sites U1433 and U1434 of IODP Expedition 349 in the Southwest Subbasin of the South China Sea. The occurrence of early-middle Miocene red beds may indicate that at that time there was oxic and quiet marine environment in the deep South China Sea. To understand their formation of red-color, local depositional condition, and potential paleoceanographic significance, major elements (XRF), trace and rare earth elements (ICP-MS), Fe chemical speciation (modified sequential iron extraction procedure), and Fe oxic minerals (CBD and DRS) were analyzed. Geochemical and mineralogical data reveal that hematite and goethite are responsible for the reddish color and red beds were deposited under highly oxic, oligotrophic conditions with a little later hydrothermal influence in the South China Sea. Our results indicate that: (1) after treatment using the CBD procedure, the red samples presented a change in color to greenish, showing the iron oxides being responsible for the sediment color; (2) enriched Mn, depleted U, S enrichment factors, and negative Ce anomaly show that the water mass was pre-oxidized before transported to the study location; (3) low primary productivity was inferred from the lower P, Ba enrichment factors in red beds compared to non-red beds; (4) the excess Mo influx at the bottom may come from the later hydrothermal input; (5) the diverse Ca enrichment factors and correlations between Fe and Al suggest different allogenic sources for red beds at our two sites. We conclude that the red beds at Sites U1433 and U1434 despite their diverse sources both developed in externally oxidized water mass and low primary productivity conditions, and partially altered by hydrothermal fluids after their pelagic

  6. The early Miocene balaenid Morenocetus parvus from Patagonia (Argentina) and the evolution of right whales

    PubMed Central

    Cozzuol, Mario A.; Fitzgerald, Erich M.G.

    2017-01-01

    Balaenidae (right and bowhead whales) are a key group in understanding baleen whale evolution, because they are the oldest surviving lineage of crown Mysticeti, with a fossil record that dates back ∼20 million years. However, this record is mostly Pliocene and younger, with most of the Miocene history of the clade remaining practically unknown. The earliest recognized balaenid is the early Miocene Morenocetus parvus Cabrera, 1926 from Argentina. M. parvus was originally briefly described from two incomplete crania, a mandible and some cervical vertebrae collected from the lower Miocene Gaiman Formation of Patagonia. Since then it has not been revised, thus remaining a frequently cited yet enigmatic fossil cetacean with great potential for shedding light on the early history of crown Mysticeti. Here we provide a detailed morphological description of this taxon and revisit its phylogenetic position. The phylogenetic analysis recovered the middle Miocene Peripolocetus as the earliest diverging balaenid, and Morenocetus as the sister taxon of all other balaenids. The analysis of cranial and periotic morphology of Morenocetus suggest that some of the specialized morphological traits of modern balaenids were acquired by the early Miocene and have remained essentially unchanged up to the present. Throughout balaenid evolution, morphological changes in skull arching and ventral displacement of the orbits appear to be coupled and functionally linked to mitigating a reduction of the field of vision. The body length of Morenocetus and other extinct balaenids was estimated and the evolution of body size in Balaenidae was reconstructed. Optimization of body length on our phylogeny of Balaenidae suggests that the primitive condition was a relatively small body length represented by Morenocetus, and that gigantism has been acquired independently at least twice (in Balaena mysticetus and Eubalaena spp.), with the earliest occurrence of this trait in the late Miocene–early

  7. Dynamic Antarctic ice sheet during the early to mid-Miocene

    PubMed Central

    DeConto, Robert M.; Pollard, David; Levy, Richard H.

    2016-01-01

    Geological data indicate that there were major variations in Antarctic ice sheet volume and extent during the early to mid-Miocene. Simulating such large-scale changes is problematic because of a strong hysteresis effect, which results in stability once the ice sheets have reached continental size. A relatively narrow range of atmospheric CO2 concentrations indicated by proxy records exacerbates this problem. Here, we are able to simulate large-scale variability of the early to mid-Miocene Antarctic ice sheet because of three developments in our modeling approach. (i) We use a climate–ice sheet coupling method utilizing a high-resolution atmospheric component to account for ice sheet–climate feedbacks. (ii) The ice sheet model includes recently proposed mechanisms for retreat into deep subglacial basins caused by ice-cliff failure and ice-shelf hydrofracture. (iii) We account for changes in the oxygen isotopic composition of the ice sheet by using isotope-enabled climate and ice sheet models. We compare our modeling results with ice-proximal records emerging from a sedimentological drill core from the Ross Sea (Andrill-2A) that is presented in a companion article. The variability in Antarctic ice volume that we simulate is equivalent to a seawater oxygen isotope signal of 0.52–0.66‰, or a sea level equivalent change of 30–36 m, for a range of atmospheric CO2 between 280 and 500 ppm and a changing astronomical configuration. This result represents a substantial advance in resolving the long-standing model data conflict of Miocene Antarctic ice sheet and sea level variability. PMID:26903645

  8. Miocene reef corals: A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frost, S.H.

    1988-01-01

    Tectonic blockage in the Middle East of westward-flowing Tethys surface circulation during the latest Oligocene led to creation in the earliest Miocene of endemic Mediterranean, Western Atlantic-Caribbean, and Indo-Pacific realms. A great reduction in reef coral diversity from 60-80 Oligocene species to 25-35 early Miocene species occurred in the Western Atlantic-Caribbean and Mediterranean areas accompanied by a decrease in reef growth. A slower and less drastic change apparently occurred in the Indo-Pacific area. Early Miocene reef corals of the Western Atlantic-Caribbean comprise a transition between the cosmopolitan Oligocene fauna and its endemic mid-Miocene to modern counterpart. Although early Miocene reefsmore » were dominated by a Porites-Montastrea assemblage, eastward flow of Pacific circulation brought with it ''exotic'' corals such as Coscinaraea and Pseudocolumnastrea. Also, many cosmopolitan genera persisted from the Oligocene. During the middle to late Miocene, most of the species still living on Holocene reefs evolved. As the Mediterranean basin became more restricted, there was a slow decline in reef corals from 20 - 25 species in the Aquitainian to less than five species in the Messinian. Eustatic lowstand led to the extinction of reef-building corals in the late Messinian. In the Indo-Pacific, Neogene evolution of reef corals was conservative. Excluding the Acroporidae and Seriatoporidae, most Holocene framework species had evolved by the middle Miocene. Interplay between regional tectonics and eustatic sea level changes led to extensive development of middle to late Miocene pinnacle reefs over the southwestern Pacific.« less

  9. A Miocene wave-dominated estuarine system in the Paraíba Basin, northeastern Brazil

    NASA Astrophysics Data System (ADS)

    Gandini, Rosana; Rossetti, Dilce de Fátima; Netto, Renata Guimarães; Góes, Ana Maria

    2017-11-01

    A number of publications have documented the effect of the Miocene transgression on several coasts of the world. However, this event is incompletely documented along the Brazilian margin, despite the existence of an impressive record of Miocene deposits exposed mostly as several coastal cliffs along more than 5000 km of distance. The transgressive nature of Miocene deposits, so far recognized only in a few localities of northeastern Brazil, needs to be amplified in order to better characterize the impact of the Miocene transgression in eastern South America. In this work, we provide facies analysis of early/middle Miocene strata exposed in the Paraíba Basin, northeastern Brazil, aiming reconstruct the depositional paleoenvironments and analyze their evolution within the context of relative sea-level fluctuations data. The results revealed deposits characterized by several features that were related to the action of tidal currents, such as alternating thicker/thinner forest packages, abundant reactivation surfaces, mud drapes and oppositely-dipping (herringbone) cross sets. These sedimentary structures were associated with an ichnological assemblage indicative of marine-influenced and brackish water, best represented by Ophiomorpha, Planolites-Palaeophycus-Thalassinoides and Thallassinoides-Planolites-Palaeophycus ichnofabrics. Sedimentation occurred in environments consisting of estuarine channel, estuarine central basin, tidal inlet/tidal channel, tidal delta/washover, tidal flat/shoal and foreshore, which were related to an estuarine setting, at least in part of a wave-dominated type. Analysis of facies stratal patterns led to suggest that the estuarine deposits of the Paraíba Basin reflect a rise in relative sea level probably during the transgressive and/or highstand stage of a depositional sequence formed directly overlying Cretaceous rocks. This rise can be correlated with the worldwide early/mid Miocene marine transgression. However, while the eustatic sea

  10. Early Miocene Tectonic Activity in the western Ross Sea (Antarctica)

    NASA Astrophysics Data System (ADS)

    Sauli, C.; Sorlien, C. C.; Busetti, M.; Geletti, R.; De Santis, L.

    2012-12-01

    In the framework of the Rossmap Italian PNRA work objectives to compile extended and revised digital maps of the main unconformities in Ross Sea, Antarctica, much additional seismic reflection data, that were not available to previous ANTOSTRAT compilation, were incorporated into a new ROSSMAP interpretation. The correlation across almost all of Ross Sea, from DSDP Site 270 and Site 272 in Eastern Basin to northern Victoria Land Basin, of additional early Miocene and late Oligocene horizons that were not part of ANTOSTRAT allows interpretations to be made of fault activity and glacial erosion or deposition at a finer time resolution. New conclusions include that extensional or transtensional fault activity within the zone between Victoria Land Basin and Northern Basin, initiated by 23 Ma or earlier, and continued after 18 Ma. Steep parallel-striking faults in southern Victoria Land Basin display both reverse and normal separation of 17.5 Ma (from Cape Roberts Program-core 1) and post-16 Ma horizons, suggesting an important strike-slip component. This result may be compared with published papers that proposed post-17 Ma extension in southern Victoria Land Basin, 16-17 Ma extension in the AdareTrough, north of the Ross Sea continental shelf, but no Miocene extension affecting the Northern Basin (Granot et al., 2010). Thus, our evidence for extension through the early Miocene is significant to post-spreading tectonic models. Reference Granot R., Cande S. C., Stock J. M., Davey F. J. and Clayton R. W. (2010) Postspreading rifting in the Adare Basin, Antarctica: Regional tectonic consequences. Geochem. Geophys. Geosyst., 8, Q08005, doi:10.1029/2010GC003105.

  11. Provenance evolution in the northern South China Sea and its implication of paleo-drainage systems from Eocene to Miocene

    NASA Astrophysics Data System (ADS)

    Cui, Y.; Shao, L.; Qiao, P.

    2017-12-01

    Geochemistry analysis and detrital zircon U-Pb geochronology aim to fully investigate the "source to sink" patterns of northern South China Sea (SCS) from Eocene to Miocene. Evolutional history of the surrounding drainage system has been highly focused on, in comparison to sedimentary characteristics of the SCS basins. Rapid local provenances were prevailed while large-scale fluvial transport remained to evolve during Eocene. Since early Oligocene, sediments from the South China were more abundantly delivered to the northeastern Pearl River Mouth Basin in addition to Dongsha volcanism supplement. Aside from intrabasinal provenances, long-distance transport started to play significant role in Zhu1 Depression, possibly reaching western and southern Baiyun Sag, partially. Western Qiongdongnan Basin might accept sediments from central Vietnam with its eastern area more affected from Hainan Island and Southern Uplift. In the late Oligocene, due to drastic sea-level changes and rapid exhumation, mafic to altramafic sediments were transported in abundance to Central Depression from Kontum Massif, while multiple provenances casted integrated influence on eastern sedimentary sequences. Southern Baiyun Sag was also affected by an increased supplement from the west Shenhu Uplift or even central Vietnam. Overall pattern did not change greatly since early Miocene, but long-distance transport has become dominant in the northern SCS. Under controlled by regional tectonic cycles, Pearl River gradually evolved into the present scale and exerted its influence on basinal provenances by several stages. Zhu1 Depression was partially delivered sediments from its tributaries in early Oligocene while northern Zhu2 Depression has not been provided abundant materials until late Oligocene. Meanwhile, although detailed transportation routine remains uncertain and controversial, an impressive paleo-channel spanning the whole Qiongdongnan Basin was presumed to supply huge amount of mafic to

  12. Magnetostratigraphy of the Miocene sediments at Háj u Duchcova and Sokolov (West Bohemia)

    NASA Astrophysics Data System (ADS)

    Schnabl, Petr; Man, Otakar; Matys Grygar, Tomáš; Mach, Karel; Kdýr, Šimon; Čížková, Kristýna; Pruner, Petr; Martínek, Karel; Rojík, Petr

    2017-04-01

    normal polarity (69 - 80 m) was found. Above that, after a small gap of magnetically disturbed sediments, there are 60 meters of sediments with reverse polarity (62 - 2 m) with short normal excursion at the upper half (24 - 17 m). According to the detailed analysis of drill core HK591 (Matys Grygar et al. 2014), we suppose, that the succession begins in C5En (only JP-585-10), then C5Dr. Validity of subzone C5Dr.1n in the drills JP-585-10 and DP-333-09 is still under discussion. The zone C5Cr could be found only in the HD-50 core. In comparison of the interpreted polarities with ATNTS2012 the time span in the studied cores is approximately 17.5 to 17.9 Ma for DP-333-09, 17.8 to 18.1 for JP-585-[2]10 and 17.1 to 17.7 Ma for HD-50. Additional investigation should be done. The research was supported by Czech Science Foundation GAČR, project n. 16-00800S. Matys Grygar, T., Mach, K., Pruner, P., Schnabl, P., Laurin, J., Martinez, M., 2014. A lacustrine record of the early stage of the Miocene Climatic Optimum in Central Europe from the Most Basin, Ohře (Eger) Graben, Czech Republic, Geol. Mag. 151 (6), 1013-1033.

  13. Detrital Zircon Provenance response to slip transfer from the San Gabriel Fault to the San Andreas Fault in Late Miocene-Early Pliocene Ridge Basin, southern California

    NASA Astrophysics Data System (ADS)

    Zhao, V.; Cohen, H.; Cecil, R.; Heermance, R. V., III

    2016-12-01

    the early Pliocene caused a major drainage reorganization that opened up the HVF to sediment input from the Mojave region to the north. While the Ridge Basin was likely adjacent to the SBM during the Miocene, the DZ data suggest that the SBM were low lying and did not contribute sediment to HVF. This study constrains the paleogeography and potential sources for Ridge Basin strata.

  14. Ferroan dolomites in Miocene sediments of the Xisha Islands and their genetic model

    NASA Astrophysics Data System (ADS)

    Xu, Hong; Zhang, Weiwei; Wei, Kai; He, Qingkun; Jiang, Yunshui; Xu, Tingting; Jiang, Xuejun; Yan, Guijing; Song, Hongying; Wang, Jianghai

    2018-01-01

    Carbonate rocks are important reservoirs for global petroleum exploration. The largest oilfield in the South China Sea, Liuhua 11-1, is distributed in the massive carbonate reef area of the Zhujiang (Pearl) River Mouth Basin. Previous studies showed that one 802.17-m-long core from well Xichen-1 in the South China Sea mainly consisted of white and light gray-white organic reefs. Recently, a Miocene whole core (161.9 m long) of well Xiyong-2, near well Xichen-1, was found to contain six layers of yellowish brown, light yellowish gray, iron black, or light yellowish gray-white organic reefs. Scanning electron microscope images of these layers reveal a typical ferroan dolomite rich in Fe (up to 29%), with the high concentrations of Mn, Cu, W, Zn, Cr, Ni, and Co. Systematic X-ray powder diffraction analysis yields a 1.9-6.1 match in phase ratio with ankerite, 5.4-26.9 with dolomite, and zero with calcite, which indicate that the samples can be classified as ferroan dolomite. The iron and heavy metals are inferred to be originated from multiple volcanic eruptions of Gaojianshi Island in the Dongdao Atoll during the middle-late Miocene. These elements were dissolved in seawater, likely as a sol, and carried to Yongxing Island in the Xuande Atoll by sea currents and tides enhanced by prevailing winds, and deposited as a part of the sedimentation process in the study area. The ferroan dolomite has Sr content of (125-285)×10-6, which is lower than the accepted Sr boundary value of dolomite. This finding suggests that dolomitization occurred during large-scale global glacial regression in the late Miocene. The isolated Xisha carbonate platform, exposed to air, underwent freshwater leaching and dolomitization induced by mixed water, and caused the extensive Fe-Mg exchange along the organic reef profile to form ankerite and ferroan dolomite. These results may help to understand paleoceanographic environmental changes in the South China Sea during the Miocene.

  15. The palaeoecologic and biostratigraphic evaluation of Middle Miocene freshwater sediments and microfossils near Denkendorf (Bavaria)

    NASA Astrophysics Data System (ADS)

    Pirkenseer, C.; Reichenbacher, B.

    2009-04-01

    foreland basin. Furthermore the ostracod assemblage is related to taxa recorded from the Miocene infill of the (isolated) Steinheim meteorite crater (e.g., Pseudocandona steinheimensis). According to the evaluation of the micromammal molars (Megacricetodon cf. M. minor and M. cf. M. bavaricus) the sediments of Denkendorf are attributed to the lower MN5 mammal zone (latest Karpatian to early Badenian) and are thus considered to be younger than the associations found near Hitzhofen and Heitensheim.

  16. Late Cretaceous to Miocene phosphatic sediments in the Georges Bank Basin, U.S. North Atlantic outer continental shelf

    USGS Publications Warehouse

    Poppe, L.J.; Manheim, F. T.; Popenoe, P.

    1992-01-01

    Phosphorite and phosphatic sediments are present in the Georges Bank Basin in marine, Late Cretaceous to Miocene strata equivalent to the Dawson Canyon Formation and Banquereau Formation of offshore Nova Scotia. The Late Cretaceous to Paleocene phosphorite occurs predominantely as sand- and gravel-sized pellets and as cement in conglomeratic aggregates. The Eocene and Miocene phosphate occurs mainly as fine-very fine sand-size spheroidal-avoidal pellets in unconsolidated clayey silts. The older phosphorites form intraformational conglomerates that are the result of a winnowed finer-grained matrix, leaving lag deposits of phosphorite. We present evidence that most of the Eocene and Miocene phosphate is primary and formed during marine trangressions. Our observations extend the geographic and temporal limits of the major phosphogenic system of the Western North Atlantic northward and through time. However, compared to the well-known phosphorite deposits along the southeastern margin of the U.S.A., these northern deposits are not of commercial scale due to a high terrigenous input and the lack of a mechanism capable of driving persistant upwelling. ?? 1992.

  17. Miocene vegetation shift and climate change: Evidence from the Siwalik of Nepal

    NASA Astrophysics Data System (ADS)

    Srivastava, Gaurav; Paudayal, Khum N.; Utescher, Torsten; Mehrotra, R. C.

    2018-02-01

    We reconstruct climate and vegetation applying the Coexistence Approach (CA) methodology on two palaeofloras recovered from the Lower (middle Miocene; 13-11 Ma) and Middle Siwalik (late Miocene; 9.5-6.8 Ma) sediments of Surai Khola section, Nepal. The reconstructed mean annual temperature (MAT) and cold month mean temperature (CMT) show an increasing trend, while warm month mean temperature (WMT) remains nearly the same during the period. The reconstructed precipitation data indicates that the summer monsoon precipitation was nearly the same during the middle and late Miocene, while the winter season precipitation significantly decreased in the late Miocene. The overall precipitation infers increased rainfall seasonality during the late Miocene. The vegetation during the middle Miocene was dominated by wet evergreen taxa, whereas deciduous ones increased significantly during the late Miocene. The reconstructed climate data indicates that high temperature and significantly low precipitation during the winter season (dry season) in the late Miocene might have enhanced forest fire which favoured the expansion of C4 plants over C3 plants during the period. This idea gets further support not only from a recent forest fire in northern India that was caused by the weakening of winter precipitation, but also from the burnt wood recovered from the late Miocene Siwalik sediments of northern India.

  18. Solar Cycle Driven Environmental Changes on Decadal to Centennial Scale of Late Miocene Lake Sediments (tortonian, Lake Pannon, Central Europe)

    NASA Astrophysics Data System (ADS)

    Piller, W. E.; Kern, A. K.; Harzhauser, M.; Soliman, A.; Mandic, O.

    2012-12-01

    High time resolution is a key issue in reconstructing past climate systems. This is of particular importance when searching for model predictions of future climate change, such as the warm Late Miocene. For this study we selected Lake Pannon, a paleo-ancient, alkaline, brackish lake in Europe during the Tortonian (early Late Miocene). On a continuous sediment core including the interval from ca. 10.5 - 10.4 Ma we show the power of high resolution multiproxy analyses for reconstructing paleoclimatology on a decadal scale over several millennia of Late Miocene time. To demonstrate this high-resolution interpretation we selected a core from the western margin of Lake Pannon and studied it in respect to 2 different time resolutions. A continuous 6-m-core clearly displays regular fluctuations and modulations within three different environmental proxies (natural gamma radiation, magnetic susceptibility, total abundance of ostracods). Lomb-Scargle and REDFIT periodograms next to wavelet spectra of all data sets reveal distinct frequencies. Only few of these are deciphered in all proxy data sets at the same power, while some occur only in two or one proxies. A higher resolution study was conducted on a 1.5-m-long core interval based on pollen and dinoflagellate cysts, ostracod abundance, carbon and sulfur contents as well as magnetic susceptibility and natural gamma radiation. Based on an already established age model the study covers about two millennia of Late Miocene time with a resolution of ~13.7 years per sample. No major ecological turnovers are expected in respect to this very short interval. Thus, the pollen record suggests rather stable wetland vegetation with a forested hinterland. Shifts in the spectra can be mainly attributed to variations in transport mechanism, represented by few phases of fluvial input but mainly by changes in wind intensity and probably also wind direction. Even within this short time span, dinoflagellates document rapid changes between

  19. Soft-sediment deformation structures in the late Miocene Şelmo Formation around Adıyaman area, Southeastern Turkey

    NASA Astrophysics Data System (ADS)

    Koç Taşgın, Calibe; Orhan, Hükmü; Türkmen, İbrahim; Aksoy, Ercan

    2011-04-01

    The Şelmo Formation was deposited in the basins associated with the Southeastern Anatolian Thrust Belt and East Anatolian Fault Zone in SE Turkey. These structures developed as a result of compressional stresses created by the movement of the Arabian plate to the north and the Eurasian plate to the west from early Miocene to late Pliocene. The outcrops of the Şelmo Formation in the Adýyaman area (SE Turkey) comprise braided river deposits (lower alluvial unit) at the base, lacustrine and deltaic deposits in the middle (lacustrine unit) and low sinuousity river and alluvial deposits at the top (upper alluvial unit). Soft-sediment deformation structures were developed in sandstone, siltstone and marl of the deltaic and lacustrine unit of the Şelmo Formation. These are slumps, recumbent folds, load casts, ball-and-pillow structures, flame structures, neptunian dykes, chaotically associated structures and synsedimentary faults. The tectonic setting of the basin, the lateral extent of the soft-sediment deformation structures over tens of kilometers, their similarities to deformation structures interpreted as being induced seismically in other regions worldwide or in a laboratory setting, and being confined by undeformed layers suggest that the main trigger system was related to seismic activity in the area.

  20. Late Oligocene to early Miocene geochronology and paleoceanography from the subantarctic South Atlantic

    NASA Astrophysics Data System (ADS)

    Billups, K.; Channell, J. E. T.; Zachos, J.

    2002-01-01

    At Ocean Drilling Program (ODP) Site 1090 on the Agulhas Ridge (subantarctic South Atlantic) benthic foraminiferal stable isotope records span the late Oligocene through the early Miocene (25-16 Ma) at a temporal resolution of ~10 kyr. In the same time interval a magnetic polarity stratigraphy can be unequivocally correlated to the geomagnetic polarity timescale (GPTS), thereby providing secure correlation of the isotope record to the GPTS. On the basis of the isotope-magnetostratigraphic correlation we provide refined age calibration of established oxygen isotope events Mi1 through Mi2 as well as several other distinctive isotope events. Our data suggest that the δ18O maximum commonly associated with the Oligocene/Miocene (O/M) boundary falls within C6Cn.2r (23.86 Ma). The δ13C maximum coincides, within the temporal resolution of our record, with C6Cn.2n/r boundary and hence to the O/M boundary. Comparison of the stable isotope record from ODP Site 1090 to the orbitally tuned stable isotope record from ODP Site 929 across the O/M boundary shows that variability in the two records is very similar and can be correlated at and below the O/M boundary. Site 1090 stable isotope records also provide the first deep Southern Ocean end-member for reconstructions of circulation patterns and late Oligocene to early Miocene climate change. Comparison to previously published records suggests that basin to basin carbon isotope gradients were small or nonexistent and are inconclusive with respect to the direction of deep water flow. Oxygen isotope gradients between sites suggest that the deep Southern Ocean was cold in comparison to the North Atlantic, Indian, and the Pacific Oceans. Dominance of cold Southern Component Deep Water at Site 1090, at least until 17 Ma, suggests that relatively cold circumpolar climatic conditions prevailed during the late Oligocene and early Miocene. We believe that a relatively cold Southern Ocean reflects unrestricted circumpolar flow through

  1. Early Miocene hippopotamids (Cetartiodactyla) constrain the phylogenetic and spatiotemporal settings of hippopotamid origin

    PubMed Central

    Orliac, Maeva; Boisserie, Jean-Renaud; MacLatchy, Laura; Lihoreau, Fabrice

    2010-01-01

    The affinities of the Hippopotamidae are at the core of the phylogeny of Cetartiodactyla (even-toed mammals: cetaceans, ruminants, camels, suoids, and hippos). Molecular phylogenies support Cetacea as sister group of the Hippopotamidae, implying a long ghost lineage between the earliest cetaceans (∼53 Ma) and the earliest hippopotamids (∼16 Ma). Morphological studies have proposed two different sister taxa for hippopotamids: suoids (notably palaeochoerids) or anthracotheriids. Evaluating these phylogenetic hypotheses requires substantiating the poorly known early history of the Hippopotamidae. Here, we undertake an original morphological phylogenetic analysis including several “suiform” families and previously unexamined early Miocene taxa to test previous conflicting hypotheses. According to our results, Morotochoerus ugandensis and Kulutherium rusingensis, until now regarded as the sole African palaeochoerid and the sole African bunodont anthracotheriid, respectively, are unambiguously included within the Hippopotamidae. They are the earliest known hippopotamids and set the family fossil record back to the early Miocene (∼21 Ma). The analysis reveals that hippopotamids displayed an unsuspected taxonomic and body size diversity and remained restricted to Africa during most of their history, until the latest Miocene. Our results also confirm the deep nesting of Hippopotamidae within the paraphyletic Anthracotheriidae; this finding allows us to reconstruct the sequence of dental innovations that links advanced selenodont anthracotheriids to hippopotamids, previously a source of major disagreements on hippopotamid origins. The analysis demonstrates a close relationship between Eocene choeropotamids and anthracotheriids, a relationship that potentially fills the evolutionary gap between earliest hippopotamids and cetaceans implied by molecular analyses. PMID:20547829

  2. Palynology of latest Neogene (Middle Miocene to late Pliocene) strata in the Delmarva Peninsula of Maryland and Virginia

    USGS Publications Warehouse

    Sirkin, L.; Owens, J.P.

    1998-01-01

    Palynology of Miocene and Pliocene formations in the Delmarva Peninsula of Maryland and Virginia reveals a significant representation of exotic pollen interspersed in pollen assemblages that are otherwise comparable to those from the modern vegetation of the Mid-Alantic coastal plain region. The late Tertiary arboreal pollen (AP) assemblages are dominated by oak, hickory, pine, birch and alder with minor amounts of mid- and southern coastal tree taxa, as well as minor spruce and hemlock and a trace of fir. Nonarboreal pollen (NAP) include grass, sedge, composite and aquatic taxa. Exotic pollen in these assemblages represent plants now foreign to this region. They may be placed in three categories. First, there are extinct forms, such as Labrapollis, Plicatopollis, and Multiporopollenites, that can be traced from the Cretaceous or Early Tertiary into the Late Tertiary. The second group includes forms, such as Podocarpus, Engelhardtia, Pterocarya, Ephedra, Eucommia, Ulmus-Zelkova, Glyptostrobus, Palmae, and Cyathea, that are not found in this region today and not found in early Pleistocene sediments in the eastern United States. Many of these taxa are subtropical or greatly restricted in geographic range. A third group of exotics, mainly Cyrilla, Planera, Gordonia, Jussiaea, and Sapotacaea, including Minusops, are generally found south of the study area or have their northern limit here at this time. The lack of the extinct or distant exotics in early to mid-Pleistocene sediments in the mid-Atlantic coastal plain and the last appearance of Pterocarya, as the last exotic taxon in the early Pleistocene of western Europe, support the stratigraphic assignment of the Pliocene units. The number of exotic taxa diminish markedly between the Miocene pollen assemblages and those of the Late Pliocene. Climatic fluctuations characterize the Late Tertiary environments. The Miocene, for example, incorporates a warming trend between the upper, middle Miocene and the Manokin beds

  3. The Brahmaputra tale of tectonics and erosion: Early Miocene river capture in the Eastern Himalaya

    NASA Astrophysics Data System (ADS)

    Bracciali, Laura; Najman, Yani; Parrish, Randall R.; Akhter, Syed H.; Millar, Ian

    2015-04-01

    The Himalayan orogen provides a type example on which a number of models of the causes and consequences of crustal deformation are based and it has been suggested that it is the site of a variety of feedbacks between tectonics and erosion. Within the broader orogen, fluvial drainages partly reflect surface uplift, different climatic zones and a response to crustal deformation. In the eastern Himalaya, the unusual drainage configuration of the Yarlung Tsangpo-Brahmaputra River has been interpreted either as antecedent drainage distorted by the India-Asia collision (and as such applied as a passive strain marker of lateral extrusion), latest Neogene tectonically-induced river capture, or glacial damming-induced river diversion events. Here we apply a multi-technique approach to the Neogene paleo-Brahmaputra deposits of the Surma Basin (Bengal Basin, Bangladesh) to test the long-debated occurrence and timing of river capture of the Yarlung Tsangpo by the Brahmaputra River. We provide U-Pb detrital zircon and rutile, isotopic (Sr-Nd and Hf) and petrographic evidence consistent with river capture of the Yarlung Tsangpo by the Brahmaputra River in the Early Miocene. We document influx of Cretaceous-Paleogene zircons in Early Miocene sediments of the paleo-Brahmaputra River that we interpret as first influx of material from the Asian plate (Transhimalayan arc) indicative of Yarlung Tsangpo contribution. Prior to capture, the predominantly Precambrian-Paleozoic zircons indicate that only the Indian plate was drained. Contemporaneous with Transhimalayan influx reflecting the river capture, we record arrival of detrital material affected by Cenozoic metamorphism, as indicated by rutiles and zircons with Cenozoic U-Pb ages and an increase in metamorphic grade of detritus as recorded by petrography. We interpret this as due to a progressively increasing contribution from the erosion of the metamorphosed core of the orogen. Whole rock Sr-Nd isotopic data from the same samples

  4. Identification of novel sulfur-containing steroids in sediments and petroleum: probable incorporation of sulfur into δ 5,7-sterols during early diagenesis

    NASA Astrophysics Data System (ADS)

    Sinninghe Damsté, Jaap S.; Schouten, Stefan; de Leeuw, Jan W.; van Duin, Adri C. T.; Geenevasen, Jan A. J.

    1999-01-01

    A novel sulfur-containing sterane, 4α,7α-epithio-5β-cholestane, has been identified in a sediment extract from the Miocene Northern Apennines marl (Italy) after its isolation by column chromatography and high pressure liquid chromatography. The compound has been characterised by GC-MS and mild Nickel boride desulfurisation and one and two-dimensional 1H NMR techniques. C 27-C 29 homologs have been detected in sediment extracts of three different formations and in one petroleum sample. These sulfur-containing steroids are probably formed by an intramolecular reaction of inorganic sulfides with early diagenetic products of Δ 5,7-sterols.

  5. On Prophoca and Leptophoca (Pinnipedia, Phocidae) from the Miocene of the North Atlantic realm: redescription, phylogenetic affinities and paleobiogeographic implications

    PubMed Central

    Louwye, Stephen

    2017-01-01

    Background Prophoca and Leptophoca represent the oldest known genera of phocine seals, dating from the latest early to middle Miocene. Originally, Prophoca rousseaui and Prophoca proxima were described based on fragmentary remains from the Miocene of Belgium. However, several researchers contested the union of Prophoca rousseaui and Prophoca proxima into one genus, without providing evidence. The stratigraphic context of Prophoca remained poorly constrained due to the lack of precise data associated with the original specimens collected in the area of Antwerp (north of Belgium). Methods Prophoca and Leptophoca are redescribed and their phylogenetic position among Phocidae is reassessed using PAUP. Dinoflagellate biostratigraphy has been carried out on sediment samples associated with specimens from Prophoca and Leptophoca to elucidate their approximate ages. Results Whereas the species Prophoca rousseaui is redescribed, Prophoca proxima is considered synonymous to Leptophoca lenis, with the proposal of a new combination Leptophoca proxima (Van Beneden, 1877). Sediment samples from specimens of both taxa have been dated to the late Langhian–early Serravallian (middle Miocene). Following a reinvestigation of Leptophoca amphiatlantica, characters from the original diagnosis are questioned and the specimens of Leptophoca amphiatlantica are considered Leptophoca cf. L. proxima. In a phylogenetic analysis, Prophoca rousseaui and Leptophoca proxima constitute early branching stem-phocines. Discussion Leptophoca proxima from the North Sea Basin is younger than the oldest known find of Leptophoca proxima from North America, which does not contradict the hypothesis that Phocinae originated along the east coast of North America during the late early Miocene, followed by dispersal to Europe shortly after. Morphological features of the appendicular skeleton indicate that Prophoca rousseaui and Leptophoca proxima have archaic locomotory modes, retaining a more prominent use of

  6. Miocene depositional history, sequences and chronostratigraphy of the ANDRILL AND-2A drillcore, Victoria Land Basin, Antarctica

    NASA Astrophysics Data System (ADS)

    Harwood, D. M.; Florindo, F.; Levy, R. H.; Talarico, F. M.; Acton, G.; Browne, G.; Field, B.; Fielding, C. R.; Krissek, L. A.; Panter, K. S.; Passchier, S.; Pekar, S. F.

    2009-12-01

    ANDRILL’s Southern McMurdo Sound Project (SMS) completed the AND-2A drillhole (77°45.488 S; 165°16.613 E) from a floating sea-ice platform (~8.5 meters thick), over ~380 meters of water, reaching a total depth of 1138.54 mbsf, and obtaining an excellent quality core with 98% recovery through the cored interval. This sedimentary archive comprises an expanded early and middle Miocene section deposited in a high-accommodation continental margin location, proximal to glacial ice influence from the West Antarctic Ice Sheet, East Antarctic Ice Sheet, and local ice in the Transantarctic Mountains. Stratigraphic sequences and facies interpretations reveal a cyclical history of environmental variation influenced by climate, glacial advance/retreat cycles, and water depth variation. A well-developed chronostratigraphic framework developed through integrated diatom biostratigraphy, magneto-stratigraphy, Sr isotope geochemistry, and radiometric dating of volcanic materials, allows for the comparison of events recognized in this drillcore with events identified in distal proxy records from deep-sea stable isotope studies, and in sea-level reconstructions based on continental shelf sequence stratigraphy. The AND-2A drillcore recovered a 600 m-thick stratigraphic interval documenting the Antarctic coastal environment during the warm middle Miocene climatic optimum (17.5 to 14.5 Ma). A disconformity separating the middle and upper Miocene intervals in the AND-2A drillcore represents a substantial climate step into cold, glacial conditions of the late Miocene. Lower and middle Miocene shallow marine sediments were deposited in the subsiding Victoria Land Basin, during a period of relatively steady thermal subsidence, on the coastal plain and continental shelf seaward of the rising Transantarctic Mountains. More than 60 sequences recognized in the AND-2A drillcore represent repeating lithological changes in glacimarine, terrigenous, volcanic and biogenic sediments, deposited

  7. Chronology of Eocene-Miocene sequences on the New Jersey shallow shelf: implications for regional, interregional, and global correlations

    USGS Publications Warehouse

    Browning, James V.; Miller, Kenneth G.; Sugarman, Peter J.; Barron, John; McCarthy, Francine M.G.; Kulhanek, Denise K.; Katz, Miriam E.; Feigenson, Mark D.

    2013-01-01

    Integrated Ocean Drilling Program Expedition 313 continuously cored and logged latest Eocene to early-middle Miocene sequences at three sites (M27, M28, and M29) on the inner-middle continental shelf offshore New Jersey, providing an opportunity to evaluate the ages, global correlations, and significance of sequence boundaries. We provide a chronology for these sequences using integrated strontium isotopic stratigraphy and biostratigraphy (primarily calcareous nannoplankton, diatoms, and dinocysts [dinoflagellate cysts]). Despite challenges posed by shallow-water sediments, age resolution is typically ±0.5 m.y. and in many sequences is as good as ±0.25 m.y. Three Oligocene sequences were sampled at Site M27 on sequence bottomsets. Fifteen early to early-middle Miocene sequences were dated at Sites M27, M28, and M29 across clinothems in topsets, foresets (where the sequences are thickest), and bottomsets. A few sequences have coarse (∼1 m.y.) or little age constraint due to barren zones; we constrain the age estimates of these less well dated sequences by applying the principle of superposition, i.e., sediments above sequence boundaries in any site are younger than the sediments below the sequence boundaries at other sites. Our age control provides constraints on the timing of deposition in the clinothem; sequences on the topsets are generally the youngest in the clinothem, whereas the bottomsets generally are the oldest. The greatest amount of time is represented on foresets, although we have no evidence for a correlative conformity. Our chronology provides a baseline for regional and interregional correlations and sea-level reconstructions: (1) we correlate a major increase in sedimentation rate precisely with the timing of the middle Miocene climate changes associated with the development of a permanent East Antarctic Ice Sheet; and (2) the timing of sequence boundaries matches the deep-sea oxygen isotopic record, implicating glacioeustasy as a major driver

  8. Two fossil species of Metrosideros (Myrtaceae) from the Oligo-Miocene Golden Fleece locality in Tasmania, Australia.

    PubMed

    Tarran, Myall; Wilson, Peter G; Macphail, Michael K; Jordan, Greg J; Hill, Robert S

    2017-06-01

    The capsular-fruited genus Metrosideros (Myrtaceae) is one of the most widely distributed flowering plant genera in the Pacific but is extinct in Australia today. The center of geographic origin for the genus and the reason for and timing of its extinction in Australia remain uncertain. We identify fossil Metrosideros fruits from the newly discovered Golden Fleece fossil flora in the Oligo-Miocene of Tasmania, Australia, shedding further light on these problems. Standard paleopalynological techniques were used to date the fossil-bearing sediments. Scanning electron microscopy and an auto-montage camera system were used to take high-resolution images of fossil and extant fruits taken from herbarium specimens. Fossils are identified using a nearest-living-relative approach. The fossil-bearing sediments are palynostratigraphically dated as being Proteacidites tuberculatus Zone Equivalent (ca. 33-16 Ma) in age and provide a confident Oligo-Miocene age for the macrofossils. Two new fossil species of Metrosideros are described and are here named Metrosideros dawsonii sp. nov. and Metrosideros wrightii sp. nov. These newly described fossil species of Metrosideros provide a second record of the genus in the Cenozoic of Australia, placing them in the late Early Oligocene to late Early Miocene. It is now apparent not only that Metrosideros was present in Australia, where the genus is now extinct, but that at least several Metrosideros species were present during the Cenozoic. These fossils further strengthen the case for an Australian origin of the genus. © 2017 Botanical Society of America.

  9. Paleoclimatic and paleoecological reconstruction of early Miocene terrestrial equatorial deposits, Rusinga and Mfangano Islands, Lake Victoria, Kenya

    NASA Astrophysics Data System (ADS)

    Michel, L. A.; Peppe, D. J.; McNulty, K. P.; Driese, S. G.; Lutz, J.; Nightingale, S.; Maxbauer, D. P.; Horner, W. H.; DiPietro, L. M.; Lehmann, T.; Dunsworth, H. M.; Harcourt-Smith, W. E.; Ogondo, J.

    2012-12-01

    Biological responses to climatic shifts are often studied to inform us on future anthropogenic-driven climate change. However, few of these climatic shifts occur over time scales appropriate to modern change and few occur with biota similar to modern. The Miocene Climatic Optimum is an ideal interval to study because of its rapid duration and because it occurred during the rise and proliferation of apes. The sediments on Rusinga and Mfangano Islands, Lake Victoria, Kenya were deposited between 18 and 20 Ma and record a changing equatorial climate just prior to the Miocene Climate Optimum. This location also offers an opportunity to use multiple proxies to constrain climate and landscape, including paleosol geochemistry, paleobotany and paleontology. Additionally, due to the rich fossil preservation on the islands, climatic shifts are framed within the context of early caterrhine evolution. Here, we report a climate shift recorded through three time slices spanning two formations over ~2 myr. The oldest unit, the Wayando Formation, records an arid, probably open ecosystem with pedogenic calcite rhizoliths, a high groundwater table, poorly-formed paleosols and permineralized sedges. The middle time slice, the Grit Member-Fossil Bed Member contact of the Hiwegi Formation, shows evidence of a local saline lake, with desiccation features, satin-spar after gypsum deposits and salt hoppers. Paleobotanical and sedimentological data from roughly contemporaneous strata indicate a warm, highly seasonal environment that supported a mixture of woodland and forested elements across the landscape. The youngest unit, which is within the Kibanga Member of the Hiwegi Formation, displays demonstrable evidence for a closed-canopy multistoried forest with the presence of tree-stump casts and permineralized root systems within a red-brown paleosol. Within the same paleosol horizon, the dental remains of the catarrhines Proconsul and Dendropithecus have been discovered in situ. This

  10. An initial examination of carbonate variability in the western equatorial Pacific: XRF results from the lower to middle Miocene of IODP Site U1490

    NASA Astrophysics Data System (ADS)

    Valerio, D. A.; Kulhanek, D. K.; Rosenthal, Y.; Holbourn, A. E.

    2017-12-01

    International Ocean Discovery Program (IODP) Expedition 363 sought to determine the nature of and driving forces behind climate variability in the Western Pacific Warm Pool (WPWP) region throughout the Neogene on millennial, orbital, and geologic timescales. Our research focuses on the Miocene (19-9 Ma) sediment record from IODP Site U1490 to examine changes in carbonate production and burial in the WPWP as a record of variations in the regional/global carbon cycle. This interval is of particular interest because it spans the Middle Miocene Climatic Optimum, the Middle Miocene Climate Transition, and the late Miocene carbonate crash. Site U1490 is located on the northern edge of Eauripik Rise at 05°58.95'N, 142°39.27'E in the northern part of the WPWP. At 2341 m water depth, today the site is bathed in Upper Circumpolar Deepwater. Miocene sediment at Site U1490 primarily consists of clay-bearing to clay-rich foraminifer-rich nannofossil ooze, although biogenic silica (primarily radiolaria) is a significant component in the lowermost part of the record. The sedimentation rate in the early to middle Miocene was very low (<1 cm/kyr), increasing to 1.6 cm/kyr in the late Miocene. Initial shipboard results show an average calcium carbonate content of 87 wt% throughout the site, with the most significant variations in the lower to middle Miocene, where contents range from 20 to 85 wt%. We collected X-ray fluorescence (XRF) data at 1 cm resolution along the composite stratigraphic section over the 19-9 Ma interval to obtain a qualitative measure of the bulk chemistry of the sediment. We will use the weight percent calcium carbonate of discrete samples to calibrate the XRF data to generate a high-resolution carbonate record. We observe cyclical variations in the Ca/Ba, which may reflect variations in productivity and/or dissolution through this interval, although additional work is needed to fully interpret these data. Ultimately our research will allow for comparison

  11. Listriodon guptai Pilgrim, 1926 (Mammalia, Suidae) from the early Miocene of the Bugti Hills, Balochistan, Pakistan: new insights into early Listriodontinae evolution and biogeography

    NASA Astrophysics Data System (ADS)

    Orliac, Maeva Judith; Antoine, Pierre-Olivier; Métais, Grégoire; Marivaux, Laurent; Crochet, Jean-Yves; Welcomme, Jean-Loup; Baqri, Syed Rafiqul Hassan; Roohi, Ghazala

    2009-08-01

    New dental remains of listriodont suids are described from the lower member of the early to middle Miocene Vihowa Formation of the Bugti Hills, Pakistan. The material is homogeneous in terms of morphology and dimensions and referred as a whole to Listriodon guptai Pilgrim, 1926. This species is also mentioned in coeval deposits of the Zinda Pir Dome, Pakistan, dating back to ca. 19 Ma. The early occurrence of an advanced listriodont in Pakistan constrains the age of acquisition of several characters correlated to lophodonty within Listriodontini, and raises major questions about the early history of the Old World Listriodontinae. Strong morphological similarity between Listriodon guptai and the African species Listriodon akatikubas found in the late early Miocene of Maboko (Kenya, ca. 16.5 Ma) suggests that this latter is most probably a migrant originating from Asia.

  12. Listriodon guptai Pilgrim, 1926 (Mammalia, Suidae) from the early Miocene of the Bugti Hills, Balochistan, Pakistan: new insights into early Listriodontinae evolution and biogeography.

    PubMed

    Orliac, Maeva Judith; Antoine, Pierre-Olivier; Métais, Grégoire; Marivaux, Laurent; Crochet, Jean-Yves; Welcomme, Jean-Loup; Baqri, Syed Rafiqul Hassan; Roohi, Ghazala

    2009-08-01

    New dental remains of listriodont suids are described from the lower member of the early to middle Miocene Vihowa Formation of the Bugti Hills, Pakistan. The material is homogeneous in terms of morphology and dimensions and referred as a whole to Listriodon guptai Pilgrim, 1926. This species is also mentioned in coeval deposits of the Zinda Pir Dome, Pakistan, dating back to ca. 19 Ma. The early occurrence of an advanced listriodont in Pakistan constrains the age of acquisition of several characters correlated to lophodonty within Listriodontini, and raises major questions about the early history of the Old World Listriodontinae. Strong morphological similarity between Listriodon guptai and the African species Listriodon akatikubas found in the late early Miocene of Maboko (Kenya, ca. 16.5 Ma) suggests that this latter is most probably a migrant originating from Asia.

  13. An Early Miocene bumble bee from northern Bohemia (Hymenoptera, Apidae).

    PubMed

    Prokop, Jakub; Dehon, Manuel; Michez, Denis; Engel, Michael S

    2017-01-01

    A new species of fossil bumble bee (Apinae: Bombini) is described and figured from Early Miocene (Burdigalian) deposits of the Most Basin at the Bílina Mine, Czech Republic. Bombus trophonius sp. n. , is placed within the subgenus Cullumanobombus Vogt and distinguished from the several species groups therein. The species is apparently most similar to the Nearctic B. (Cullumanobombus) rufocinctus Cresson, the earliest-diverging species within the clade and the two may be related only by symplesiomorphies. The age of the fossil is in rough accordance with divergence estimations for Cullumanobombus .

  14. Early to middle Miocene climate evolution: benthic oxygen and carbon isotope records from Walvis Ridge Site 1264.

    NASA Astrophysics Data System (ADS)

    Lourens, L. J.; Beddow, H.; Liebrand, D.; Schrader, C.; Hilgen, F. J.

    2016-12-01

    Across the early to middle Miocene, high-resolution records from the Pacific Ocean indicate a dynamic climate system, encompassing a 2 Myr global warming event from 17 Ma to 14.7 Ma, followed by a major Cenozoic cooling step at 14.2 Ma -13.8 Ma. Currently, no high-resolution benthic record from the Atlantic Ocean exists covering both events, limiting global coverage of this intriguing period in Cenozoic climate evolution. Here, we present the first early to middle Miocene high-resolution from the Atlantic basin. These records, from Site 1264 on the Walvis Ridge, span a 5.5 Myr long interval (13.24-18.90 ma) in high temporal resolution ( 4 kyr) and are tuned to eccentricity. The d18O record shows a sudden (high-latitude) warming/deglaciation on Antarctica at 17.1 Ma, a rapid cooling/glaciation of Antarctica at 13.8 Ma, and high-amplitude ( 1‰) variability on astronomical time-scales throughout this interval. Together with other records from this time interval located in the Pacific, which show similar features, the data strongly suggests a highly dynamic global climate system. We find cooling steps in d18O at 14.7, 14.2 and 13.8 Ma, suggesting concurrent cooling in the Pacific and Atlantic deep waters during the MMCT. The benthic foraminiferal stable isotope records reveal that the dominant astronomical frequencies present at ODP Site 1264 during the early to middle Miocene interval are the 405 kyr and 110 kyr eccentricity periodicities. This is a contrast to other early to middle Miocene records from drill-sites in the Pacific and South China Sea, which show a strong expression of obliquity in particular between 14.2 and 14.7 Ma.

  15. The Early Miocene Critical Zone at Karungu, Western Kenya: An Equatorial, Open Habitat with Few Primate Remains

    NASA Astrophysics Data System (ADS)

    Lukens, William E.; Lehmann, Thomas; Peppe, Daniel J.; Fox, David L.; Driese, Steven G.; McNulty, Kieran P.

    2017-10-01

    Early Miocene outcrops near Karungu, Western Kenya, preserve a range of fluvio-lacustrine, lowland landscapes that contain abundant fossils of terrestrial and aquatic vertebrates. Primates are notably rare among these remains, although nearby early Miocene strata on Rusinga Island contain a rich assemblage of fossilized catarrhines and strepsirrhines. To explore possible environmental controls on the occurrence of early Miocene primates, we performed a deep-time Critical Zone (DTCZ) reconstruction focused on floodplain paleosols at the Ngira locality in Karungu. We specifically focused on a single stratigraphic unit (NG15), which preserves moderately developed paleosols that contain a microvertebrate fossil assemblage. Although similarities between deposits at Karungu and Rusinga Island are commonly assumed, physical sedimentary processes, vegetative cover, soil hydrology, and some aspects of climate state are notably different between the two areas. Estimates of paleoclimate parameters using paleosol B horizon elemental chemistry and morphologic properties are consistent with seasonal, dry subhumid conditions, occasional waterlogging, and herbaceous vegetation. The reconstructed small mammal community indicates periodic waterlogging and open-canopy conditions. Based on the presence of herbaceous root traces, abundant microcharcoal, and pedogenic carbonates with high stable carbon isotope ratios, we interpret NG15 to have formed under a warm, seasonally dry, open riparian woodland to wooded grassland, in which at least a subset of the vegetation was likely C4 biomass. Our results, coupled with previous paleoenvironmental interpretations for deposits on Rusinga Island, demonstrate that there was considerable environmental heterogeneity ranging from open to closed habitats in the early Miocene. We hypothesize that the relative paucity of primates at Karungu was driven by their environmental preference for locally abundant closed canopy vegetation, which was likely

  16. First North American fossil monkey and early Miocene tropical biotic interchange.

    PubMed

    Bloch, Jonathan I; Woodruff, Emily D; Wood, Aaron R; Rincon, Aldo F; Harrington, Arianna R; Morgan, Gary S; Foster, David A; Montes, Camilo; Jaramillo, Carlos A; Jud, Nathan A; Jones, Douglas S; MacFadden, Bruce J

    2016-05-12

    New World monkeys (platyrrhines) are a diverse part of modern tropical ecosystems in North and South America, yet their early evolutionary history in the tropics is largely unknown. Molecular divergence estimates suggest that primates arrived in tropical Central America, the southern-most extent of the North American landmass, with several dispersals from South America starting with the emergence of the Isthmus of Panama 3-4 million years ago (Ma). The complete absence of primate fossils from Central America has, however, limited our understanding of their history in the New World. Here we present the first description of a fossil monkey recovered from the North American landmass, the oldest known crown platyrrhine, from a precisely dated 20.9-Ma layer in the Las Cascadas Formation in the Panama Canal Basin, Panama. This discovery suggests that family-level diversification of extant New World monkeys occurred in the tropics, with new divergence estimates for Cebidae between 22 and 25 Ma, and provides the oldest fossil evidence for mammalian interchange between South and North America. The timing is consistent with recent tectonic reconstructions of a relatively narrow Central American Seaway in the early Miocene epoch, coincident with over-water dispersals inferred for many other groups of animals and plants. Discovery of an early Miocene primate in Panama provides evidence for a circum-Caribbean tropical distribution of New World monkeys by this time, with ocean barriers not wholly restricting their northward movements, requiring a complex set of ecological factors to explain their absence in well-sampled similarly aged localities at higher latitudes of North America.

  17. First North American fossil monkey and early Miocene tropical biotic interchange

    NASA Astrophysics Data System (ADS)

    Bloch, Jonathan I.; Woodruff, Emily D.; Wood, Aaron R.; Rincon, Aldo F.; Harrington, Arianna R.; Morgan, Gary S.; Foster, David A.; Montes, Camilo; Jaramillo, Carlos A.; Jud, Nathan A.; Jones, Douglas S.; MacFadden, Bruce J.

    2016-05-01

    New World monkeys (platyrrhines) are a diverse part of modern tropical ecosystems in North and South America, yet their early evolutionary history in the tropics is largely unknown. Molecular divergence estimates suggest that primates arrived in tropical Central America, the southern-most extent of the North American landmass, with several dispersals from South America starting with the emergence of the Isthmus of Panama 3-4 million years ago (Ma). The complete absence of primate fossils from Central America has, however, limited our understanding of their history in the New World. Here we present the first description of a fossil monkey recovered from the North American landmass, the oldest known crown platyrrhine, from a precisely dated 20.9-Ma layer in the Las Cascadas Formation in the Panama Canal Basin, Panama. This discovery suggests that family-level diversification of extant New World monkeys occurred in the tropics, with new divergence estimates for Cebidae between 22 and 25 Ma, and provides the oldest fossil evidence for mammalian interchange between South and North America. The timing is consistent with recent tectonic reconstructions of a relatively narrow Central American Seaway in the early Miocene epoch, coincident with over-water dispersals inferred for many other groups of animals and plants. Discovery of an early Miocene primate in Panama provides evidence for a circum-Caribbean tropical distribution of New World monkeys by this time, with ocean barriers not wholly restricting their northward movements, requiring a complex set of ecological factors to explain their absence in well-sampled similarly aged localities at higher latitudes of North America.

  18. The Late Miocene paleogeography of the Amazon Basin and the evolution of the Amazon River system

    NASA Astrophysics Data System (ADS)

    Latrubesse, Edgardo M.; Cozzuol, Mario; da Silva-Caminha, Silane A. F.; Rigsby, Catherine A.; Absy, Maria Lucia; Jaramillo, Carlos

    2010-05-01

    On the basis of paleontological content (vertebrates and palynology) and facies analysis from river banks, road cuts, and three wells, we have assigned the uppermost levels of the Solimões Formation in western Amazonia, Brazil, to the Late Miocene. The vertebrate fossil record from outcropping sediments is assigned to the Huayquerian-Mesopotamian mammalian biozones, spanning 9-6.5 Ma. Additionally, we present results that demonstrate that deposits in Peruvian Amazonia attributed to Miocene tidal environments are actually fluvial sediments that have been misinterpreted (both environmentally and chronologically) by several authors. The entire Late Miocene sequence was deposited in a continental environment within a subsiding basin. The facies analysis, fossil fauna content, and palynological record indicate that the environment of deposition was dominated by avulsive rivers associated with megafan systems, and avulsive rivers in flood basins (swamps, lakes, internal deltas, and splays). Soils developed on the flatter, drier areas, which were dominated by grasslands and gallery forest in a tropical to subtropical climate. These Late Miocene sediments were deposited from westward of the Purus arch up to the border of Brazil with Peru (Divisor Ranges) and Bolivia (Pando block). Eastward of the Iquitos structural high, however, more detailed studies, including vertebrate paleontology, need to be performed to calibrate with more precision the ages of the uppermost levels of the Solimões Formation. The evolution of the basin during the late Miocene is mainly related to the tectonic behavior of the Central Andes (˜ 3°-15°S). At approximately 5 Ma, a segment of low angle of subduction was well developed in the Nazca Plate, and the deformation in the Subandean foreland produced the inland reactivation of the Divisor/Contamana Ranges and tectonic arrangements in the Eastern Andes. During the Pliocene southwestern Brazilian Amazonia ceased to be an effective sedimentary

  19. Biostratigraphic sequence analysis of two Lower Miocene to Pliocene sections, Eastern Falcon, Northwestern Venezuela

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz De Gamero, M.L.; Giffuni, G.; Castro Mora, M.

    1993-02-01

    The eastern region of the Falcon Basin in northwestern Venezuela comprises a thick sedimentary sequence deposited from a deep marine bathyal to neritic environment, ranging in age from the Middle Eocene to the Pliocene. A detailed biostratigraphic study (foraminifera and calcareous nannoplankton) was carried out in two sedimentary sequences outcropping in Cumarebo and Piritu, adjacent areas of eastern Falcon, representing: platform, slope and basinal settings. The Cumarebo section is continuous in the studied interval, from the Middle Miocene to the Pliocene. The Piritu section is continuous from the Lower to the lower Upper Miocene, terminating unconformably beneath a thin intervalmore » of middle Pliocene platform sediments, indicating tectonism during the latest Miocene. The sequence stratigraphical interpretation was based on the biostratigraphic analysis of the benthic and planktonic fossils, facies distribution and sedimentological data. Systems tracts, sequence boundaries and maximum flooding surfaces from cycles TB2.4 to TB3.5 of the cycle chart were identified. In the Cumarebo section, the upper Middle and Upper Miocene is mostly composed of shales, with some turbiditic sands belonging to a LSW system tract. The upper most Miocene contains a thick carbonate buildup (HST), and it is overlain by a Pliocene section that shallows upward from upper slope to outer shelf depositional environments. In the basinal (Piritu) section, most of the sediments are deep-water shales belonging to a LSW system tract, with some turbiditic sands in the upper Lower Miocene. TST and HST sediments, with scattered carbonate buildups in the upper Middle Miocene were also identified.« less

  20. Tertiary evolution of the Shimanto belt (Japan): A large-scale collision in Early Miocene

    NASA Astrophysics Data System (ADS)

    Raimbourg, Hugues; Famin, Vincent; Palazzin, Giulia; Yamaguchi, Asuka; Augier, Romain

    2017-07-01

    To decipher the Miocene evolution of the Shimanto belt of southwestern Japan, structural and paleothermal studies were carried out in the western area of Shikoku Island. All units constituting the belt, both in its Cretaceous and Tertiary domains, are in average strongly dipping to the NW or SE, while shortening directions deduced from fault kinematics are consistently orientated NNW-SSE. Peak paleotemperatures estimated with Raman spectra of organic matter increase strongly across the southern, Tertiary portion of the belt, in tandem with the development of a steeply dipping metamorphic cleavage. Near the southern tip of Ashizuri Peninsula, the unconformity between accreted strata and fore-arc basin, present along the whole belt, corresponds to a large paleotemperature gap, supporting the occurrence of a major collision in Early Miocene. This tectonic event occurred before the magmatic event that affected the whole belt at 15 Ma. The associated shortening was accommodated in two opposite modes, either localized on regional-scale faults such as the Nobeoka Tectonic Line in Kyushu or distributed through the whole belt as in Shikoku. The reappraisal of this collision leads to reinterpret large-scale seismic refraction profiles of the margins, where the unit underlying the modern accretionary prism is now attributed to an older package of deformed and accreted sedimentary units belonging to the Shimanto belt. When integrated into reconstructions of Philippine Sea Plate motion, the collision corresponds to the oblique collision of a paleo Izu-Bonin-Mariana Arc with Japan in Early Miocene.

  1. Early to mid-Miocene palaeoclimate of Antarctica based on terrestrial records

    NASA Astrophysics Data System (ADS)

    Ashworth, Allan; Lewis, Adam

    2017-04-01

    Paleontological and stratigraphic studies of sites in the Transantarctic Mountains (TAM) are advancing knowledge of the landscape, vegetation and climate that existed immediately before the growth of the modern East Antarctic Ice Sheet. The sites are located in the Friis Hills and the western Olympus Range in the McMurdo Dry Valleys. In both localities, parts of ancient landscapes are preserved on upland surfaces high above modern valley floors. The early to mid-Miocene interval is bracketed by 40Ar/39Ar ages on volcanic ashes of 19.76 ± 0.11 Ma to 13.85 ± 0.03 Ma. Like all glacial records it is discontinuous but even so several trends can be detected. The record is one of an evolving glacial system during which ice caps coalesced to form an ice sheet. Initially, small alpine glaciers flowed southwestward toward the continental interior eroding shallow troughs into granitic bedrock. By the close of the interval, large glaciers flowed eastward from the continental interior to the Ross Sea. The interval was marked by numerous glacial advances and retreats. Tills are matrix-rich, and outwash sands and gravels ripple-laminated and cross-bedded, typical of those associated with wet-based glaciation. The vegetation during the interval was in a dynamic flux retreating downslope during glacial advances and recolonizing valleys after retreats. Fossils accumulated in peat beds and organic silts representing lacustrine, fluvial and paludal environments. Fossils include diatoms, fungal ascomycetes, pollen and spores, lycopod megaspores, mosses, wood and leaves of Nothofagus (southern beech), fruits of vascular plants, and insect skeletal parts of Diptera (flies) and Coleoptera (beetles). The vegetation was a tundra, initially shrub- and later moss-dominated. During the interval there was a marked decline in biodiversity. Initially, there were 4 species of Nothofagus represented by different leaf types and at least 9 species of vascular plants by their seeds. At the close of

  2. An overview of Miocene reefs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, C.F. Jr.; Colgan, M.W.; Frost, S.H.

    1990-05-01

    Miocene reefs lived approximately within the latitudes of 27{degree}S to 48{degree}N compared with 25{degree}S and 32{degree}N for Holocene reefs. This expansion of reef-growing environments was the result of warm Miocene climates, aided by a eustatic sea level rise and tectonic styles that provided numerous foundations for reef development. The majority of Miocene reefs are found in three main areas: (1) Southeast Asia and the western Pacific, (2) the Mediterranean-Middle East, and (3) Middle America and the Caribbean. These regions, with their distinctive suites of coral and foramineral species, formed three biological provinces; respectively, they are the Indo-Pacific, Tethyan, and Westernmore » Atlantic provinces. Miocene reefs in Southeast Asia occur in several foreland basins as patch reef complexes on paleohighs and as barrier reefs in back-arc basins. Those reefs in the Mediterranean occur as fringing reefs, middle-shelf patch reefs, or as barrier reefs on the edges of tectonic blocks associated with Alpine thrust belts. Most reefs in the Caribbean grew on isolated open-ocean highs of volcanic origin. Miocene reefs display a diversity of framework types: (1) coral-encrusting, red algal boundstones with diverse coral faunas, (2) branching coral-encrusting, red algal boundstones with a limited Poritid fauna, (3) encrusting red algal boundstones. Barrier reef systems are especially rich in encrusting red algae and robust corals; grainstones are common as interbedded sediment. Patch reef complexes, however, display muddy carbonate textures, may have less diverse coral faunas, and commonly have larger foraminifera. The global distribution of Miocene reefs is important because (1) it provides insight into a paleoclimatic view of the earth during a major greenhouse stage and (2) Miocene buildups, such as the Arun (EUR of 14 tcf) and Bima fields (EUR of about 100 MMBO), are exploration targets.« less

  3. Regional stratigraphy, sedimentology, and tectonic significance of Oligocene-Miocene sedimentary and volcanic rocks, northern Baja California, Mexico

    NASA Astrophysics Data System (ADS)

    Dorsey, Rebecca J.; Burns, Beverly

    1994-01-01

    Upper Oligocene (?) to middle Miocene sedimentary and volcanic rocks in northern Baja California were deposited along the western margin of North America during subduction of the Guadalupe plate and southward migration of the Rivera Triple Junction. Regional mapping and compilation of stratigraphic data reveal a sequence of three regionally traceable stratigraphic units. (1) Oligocene (?) to lower Miocene Mesa Formation: basal quartz-rich fluvial sandstone, grus, conglomerate, and accessory facies, whose detrital compositions reflect the composition of local pre-Tertiary basement rock. (2) Lower to middle Miocene Comondú Formation: laterally variable sequence of volcaniclastic conglomerate, breccia, sandstone, tuff and minor volcanic flow units. (3) Widespread mesa-capping rhyolite tuff, typically welded and crystal-rich, probably upper Miocene in age. The Mesa Formation overlies a highly irregular and deeply dissected erosional surface developed on pre-Tertiary basement rock. The shift from pre-Mesa erosion to widespread (though localized) deposition and valley-filling records the final phase of late Cretaceous to middle Tertiary regional subsidence and eastward transgression that resulted from slow cooling and thermal contraction of Cretaceous arc crust during a temporal gap in magmatic activity along the western Cordilleran margin. Nonmarine sediments of the Mesa Formation were deposited in small, steep-walled paleovalleys and basins that gradually filled and evolved to form through-going, low-energy ephemeral stream systems. The gradational upward transition from the Mesa to Comondú Formation records the early to middle Miocene onset of subduction-related arc magmatism in eastern Baja California and related westward progradation of alluvial volcaniclastic aprons shed from high-standing eruptive volcanic centers. Pre-existing streams were choked with the new influx of volcanic detritus, causing the onset of rapid sediment deposition by stream flows and dilute

  4. Application of carbon isotope stratigraphy to late miocene shallow marine sediments, new zealand.

    PubMed

    Loutit, T S; Kennett, J P

    1979-06-15

    A distinct (0.5 per mil) carbon-13/carbon-12 isotopic shift in the light direction has been identified in a shallow marine sedimentary sequence of Late Miocene age at Blind River, New Zealand, and correlated with a similar shift in Late Miocene Deep Sea Drilling Project sequences throughout the Indo-Pacific. A dated piston core provides an age for the shift of 6.2 +/- 0.1 million years. Correlations based on the carbon isotopic change require a revision of the previously established magnetostratigraphy at Blind River. The carbon shift at Blind River occurs between 6.2 and 6.3 +/- 0.1 million years before present. A new chronology provides an age for the evolutionary first appearance datum of Globorotalia conomiozea at 6.1 +/- 0.1 million years, the beginning of a distinct latest Miocene cooling event associated with the Kapitean stage at 6.2 +/- 0.1 million years, and the beginning of a distinct shallowing of water depths at 6.1 +/- 0.1 million years. The Miocene-Pliocene boundary as recognized in New Zealand is now dated at 5.3 +/- 0.1 million years. Extension of carbon isotope stratigraphy to other shallow Late Miocene sequences should provide an important datum for international correlation of Late Miocene shallow and deep marine sequences.

  5. Early Miocene shortening in the lower Comondú Group in Baja California Sur (México)

    NASA Astrophysics Data System (ADS)

    Bonini, Marco; Cerca, Mariano; Moratti, Giovanna; López-Martínez, Margarita; Corti, Giacomo; Gracia-Marroquín, Diego

    2017-11-01

    The Late Oligocene-Early Miocene volcaniclastic deposits of Baja California Sur form most of the exposed western margin of the Gulf of California rift. In some places these deposits, collectively referred to as Comondú Group, show complex deformation patterns given by the coexistence of tectonic and gravitational features. The area north of La Paz is characterized by the occurrence of several slump bodies, which are displaced by normal faults connected with the rift opening. In some places we have identified 100's m scale thrust-related folds and reverse faults that we have interpreted as shortening features. The latter displace the slump layers and are offset by the normal faults. If confirmed, this would represent the first report of a shortening event in the Early Miocene volcaniclastic deposits of Baja California Sur. The observed shortening has modest magnitude (ca 3-5% bulk shortening), and has been detected in a sector extending over 100 km north from La Paz. New 40Ar-39*Ar ages, integrated with existing radiometric age datasets, constrain the timing of this shortening episode. The rocks affected by shortening have ages between 24 and 21 Ma, and are capped by undeformed volcanic rocks with ages spanning between 19.4 and 17.2 Ma. These relationships define an intra-Early Miocene unconformity, which we interpret to be related to the shortening deformation. The available timing constraints allow us to infer that a main ENE-to-ESE-trending shortening was short-lived, possibly ca. 19.4-21 Ma. The account of this shortening event may shed some light on the complex subduction and microplate processes that preceded the continental rifting of the Gulf of California.

  6. Evaporitic sedimentation in the Southeastern Anatolian Foreland Basin: New insights on the Neotethys closure

    NASA Astrophysics Data System (ADS)

    Yeşilova, Çetin; Helvacı, Cahit; Carrillo, Emilio

    2018-07-01

    We integrate stratigraphic, petrographic and geochemical analysis of subsurface data (wells) together with field surveys to study the sedimentation of a marginal Miocene sub-basin of the Southeastern Anatolian Foreland Basin (SEAFB; SE Turkey). This sub-basin, located in the Batman-Siirt region, is characterized by the existence of evaporites (carbonates, sulphates and chlorides) and alluvial detritus which were divided in the following five lithostratigraphic members, from older to younger: Lower and Upper Yapılar; and Lower, Middle and Upper Sulha. These members deposited in an epicontinental mudflat during the Early Miocene. Both the bromine content and the sulphur and oxygen isotope composition (δ34SV-CDT and δ18OV-SMOW) of halite and sulphates samples, respectively, also suggest a marine origin of the precipitation brines. However, influence of geothermal fluids and dissolution-and-re-precipitation of evaporites from uplifted areas in these brines, such as the Early Miocene members and/or Triassic units, is interpreted. Comparing and integrating our results with data documented in previous works, it is here recognized that the depositional model of the studied sub-basin differs from that which explain the coeval sedimentation of units situated in the western part of the SEAFB. Moreover, our model shows some depositional and paleoenvironmental similarities with Miocene evaporites located in the Mesopotamian Foreland Basin. This work provides valuable insights on the Middle Miocene Salinity Crisis which is related to the evolution of the Neotethys closure.

  7. Evidence for ice-free summers in the late Miocene central Arctic Ocean

    PubMed Central

    Stein, Ruediger; Fahl, Kirsten; Schreck, Michael; Knorr, Gregor; Niessen, Frank; Forwick, Matthias; Gebhardt, Catalina; Jensen, Laura; Kaminski, Michael; Kopf, Achim; Matthiessen, Jens; Jokat, Wilfried; Lohmann, Gerrit

    2016-01-01

    Although the permanently to seasonally ice-covered Arctic Ocean is a unique and sensitive component in the Earth's climate system, the knowledge of its long-term climate history remains very limited due to the restricted number of pre-Quaternary sedimentary records. During Polarstern Expedition PS87/2014, we discovered multiple submarine landslides along Lomonosov Ridge. Removal of younger sediments from steep headwalls has led to exhumation of Miocene sediments close to the seafloor. Here we document the presence of IP25 as a proxy for spring sea-ice cover and alkenone-based summer sea-surface temperatures >4 °C that support a seasonal sea-ice cover with an ice-free summer season being predominant during the late Miocene in the central Arctic Ocean. A comparison of our proxy data with Miocene climate simulations seems to favour either relatively high late Miocene atmospheric CO2 concentrations and/or a weak sensitivity of the model to simulate the magnitude of high-latitude warming in a warmer than modern climate. PMID:27041737

  8. Miocene denudation history of Himalaya deduced from IODP Exp. 354 Bengal Fan

    NASA Astrophysics Data System (ADS)

    Kohki, Y.; Cruz, J. W.; Osaki, A.; Manoj, M. C.; Hatano, N.; France-Lanord, C.; Spiess, V.; Klaus, A.

    2017-12-01

    The submarine Bengal Fan is the largest submarine fan on Earth and covers the whole Bay of Bengal. The sediments are fed by the Ganges and Brahmaputra rivers reflecting India-Asia plate collision. The sediments recovered from IODP Expedition 354 Bengal Fan record the uplift history of the Himalayan orogenic system. We examined the chemical composition of detrital garnets in the Miocene deposits from Site U1451, where drilling reached to basal horizon of the fan deposits, in order to reveal the detailed denudation history of Himalayan metamorphic rocks. For this purpose, the comparison of chemical composition between detrital garnet in the Bengal Fan deposits and metamorphic garnet in Himalayan metamorphic rocks was carried out. The chemical composition of the metamorphic garnet from Higher Himalayan Crystalline (HHC) in Karnali and Kaligandaki areas, western Nepal, was examined for chemical reference to detrital garnets in Bengal Fan. The metamorphic garnets in "Formation I (Le Fort, 1975)" in HHC are characterized by almandine-rich garnet with high pyrope content. Also, the garnets in "Formation II" are remarked by two types of garnets, i.e., almandine-rich and grandite-rich garnets. Meanwhile, the composition of garnets in "Formation III" is almandine-rich garnet with low pyrope content. In the Bengal Fan deposits, the characteristic garnets, which show the similarity to the metamorphic garnet in HHC, is not found from the Lower Miocene (Burdigalian) deposits. In the Middle and Upper Miocene deposits, the almandine-rich garnets characteristic in Formation I, are normally included. At the basal part of the Middle Miocene (Langhian), almandine-rich garnets with low pyrope content, suggesting the derivation from Formation III, are remarkable. The grandite-rich garnets from Formation II are sporadically found In the Upper Miocene deposits (Tortonian-Messinian). Above chemical comparison between the detrital garnets in Bengal Fan and metamorphic garnets from HHC

  9. Remnants of an ancient forest provide ecological context for Early Miocene fossil apes.

    PubMed

    Michel, Lauren A; Peppe, Daniel J; Lutz, James A; Driese, Steven G; Dunsworth, Holly M; Harcourt-Smith, William E H; Horner, William H; Lehmann, Thomas; Nightingale, Sheila; McNulty, Kieran P

    2014-01-01

    The lineage of apes and humans (Hominoidea) evolved and radiated across Afro-Arabia in the early Neogene during a time of global climatic changes and ongoing tectonic processes that formed the East African Rift. These changes probably created highly variable environments and introduced selective pressures influencing the diversification of early apes. However, interpreting the connection between environmental dynamics and adaptive evolution is hampered by difficulties in locating taxa within specific ecological contexts: time-averaged or reworked deposits may not faithfully represent individual palaeohabitats. Here we present multiproxy evidence from Early Miocene deposits on Rusinga Island, Kenya, which directly ties the early ape Proconsul to a widespread, dense, multistoried, closed-canopy tropical seasonal forest set in a warm and relatively wet, local climate. These results underscore the importance of forested environments in the evolution of early apes.

  10. El Nino-like events during Miocene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casey, R.E.; Nelson, C.O.; Weinheimer, A.L.

    El Nino-like events have been recorded from the Miocene laminated siliceous facies of the Monterey Formation. These El Nino-like Miocene events are compared to El Nino events recorded from Holocene varved sediments deposited within the anoxic Santa Barbara basin. Strong El Nino events can be recognized from Holocene Santa Barbara basin sediments by increases in radiolarian flux to the sea floor during those events. For the last 100-plus years, frequency of strong El Ninos has been on the order of one extremely strong event about every 100 years, and one easily recognizable event about every 18 years. Frequencies in themore » laminated (varved) Miocene range from about every 4-5 years to over 20 years. The higher frequencies occur within generally warm intervals and the lower frequencies within generally cold intervals. Perhaps the frequencies of these events may, in fact, be an important indicator in determining whether the intervals were cold or warm. Reconstructions of the paleo-California Current system during El Nino-like periods have been made for the west coast from the Gulf of California to northern California. Strong El Nino-like events occurred 5.5 and 8 Ma, and a strong anti-El Nino-like event occurred at about 6.5 Ma. Evidence from the 5.5 and 8 Ma events combined with other evidence suggests that modern El Ninos, similar to today's, were initiated at 5.5 Ma or earlier.« less

  11. A new large squalodelphinid (Cetacea, Odontoceti) from Peru sheds light on the Early Miocene platanistoid disparity and ecology

    NASA Astrophysics Data System (ADS)

    Bianucci, Giovanni; Bosio, Giulia; Malinverno, Elisa; de Muizon, Christian; Villa, Igor M.; Urbina, Mario; Lambert, Olivier

    2018-04-01

    The South Asian river dolphin (Platanista gangetica) is the only extant survivor of the large clade Platanistoidea, having a well-diversified fossil record from the Late Oligocene to the Middle Miocene. Based on a partial skeleton collected from the Chilcatay Formation (Chilcatay Fm; southern coast of Peru), we report here a new squalodelphinid genus and species, Macrosqualodelphis ukupachai. A volcanic ash layer, sampled near the fossil, yielded the 40Ar/39Ar age of 18.78 ± 0.08 Ma (Burdigalian, Early Miocene). The phylogenetic analysis places Macrosqualodelphis as the earliest branching squalodelphinid. Combined with several cranial and dental features, the large body size (estimated body length of 3.5 m) of this odontocete suggests that it consumed larger prey than the other members of its family. Together with Huaridelphis raimondii and Notocetus vanbenedeni, both also found in the Chilcatay Fm, this new squalodelphinid further demonstrates the peculiar local diversity of the family along the southeastern Pacific coast, possibly related to their partition into different dietary niches. At a wider geographical scale, the morphological and ecological diversity of squalodelphinids confirms the major role played by platanistoids during the Early Miocene radiation of crown odontocetes.

  12. A new large squalodelphinid (Cetacea, Odontoceti) from Peru sheds light on the Early Miocene platanistoid disparity and ecology.

    PubMed

    Bianucci, Giovanni; Bosio, Giulia; Malinverno, Elisa; de Muizon, Christian; Villa, Igor M; Urbina, Mario; Lambert, Olivier

    2018-04-01

    The South Asian river dolphin ( Platanista gangetica ) is the only extant survivor of the large clade Platanistoidea, having a well-diversified fossil record from the Late Oligocene to the Middle Miocene. Based on a partial skeleton collected from the Chilcatay Formation (Chilcatay Fm; southern coast of Peru), we report here a new squalodelphinid genus and species, Macrosqualodelphis ukupachai . A volcanic ash layer, sampled near the fossil, yielded the 40 Ar/ 39 Ar age of 18.78 ± 0.08 Ma (Burdigalian, Early Miocene). The phylogenetic analysis places Macrosqualodelphis as the earliest branching squalodelphinid. Combined with several cranial and dental features, the large body size (estimated body length of 3.5 m) of this odontocete suggests that it consumed larger prey than the other members of its family. Together with Huaridelphis raimondii and Notocetus vanbenedeni , both also found in the Chilcatay Fm, this new squalodelphinid further demonstrates the peculiar local diversity of the family along the southeastern Pacific coast, possibly related to their partition into different dietary niches. At a wider geographical scale, the morphological and ecological diversity of squalodelphinids confirms the major role played by platanistoids during the Early Miocene radiation of crown odontocetes.

  13. Sediments and fossiliferous rocks from the eastern side of the Tongue of the Ocean, Bahamas

    USGS Publications Warehouse

    Gibson, T.G.; Schlee, J.

    1967-01-01

    In August 1966, two dives were made with the deep-diving submersible Alvin along the eastern side of the Tongue of the Ocean to sample the rock and sediment. Physiographically, the area is marked by steep slopes of silty carbonate sediment and precipitous rock cliffs dusted by carbonate debris. Three rocks, obtained from the lower and middle side of the canyon (914-1676 m depth), are late Miocene-early Pliocene to late Pleistocene-Recent in age; all are deep-water pelagic limestones. They show (i) that the Tongue of the Ocean has been a deep-water area at least back into the Miocene, and (ii) that much shallow-water detritus has been swept off neighbouring banks to be incorporated with the deep-water fauna in the sediment. ?? 1967 Pergamon Press Ltd.

  14. Late oligocene and miocene faulting and sedimentation, and evolution of the southern Rio Grande rift, New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Mack, Greg H.; Seager, William R.; Kieling, John

    1994-08-01

    The distribution of nonmarine lithofacies, paleocurrents, and provenance data are used to define the evolution of late Oligocene and Miocene basins and complementary uplifts in the southern Rio Grande rift in the vicinity of Hatch, New Mexico, USA. The late Oligocene-middle Miocene Hayner Ranch Formation, which consists of a maximum of 1000 m of alluvial-fan, alluvial-flat, and lacustrine-carbonate lithofacies, was deposited in a narrow (12 km), northwest-trending, northeast-tilted half graben, whose footwall was the Caballo Mountains block. Stratigraphic separation on the border faults of the Caballo Mountains block was approximately 1615 m. An additional 854 m of stratigraphic separation along the Caballo Mountains border faults occurred during deposition of the middle-late Miocene Rincon Valley Formation, which is composed of up to 610 m of alluvial-fan, alluvial-flat, braided-fluvial, and gypsiferous playa lithofacies. Two new, north-trending fault blocks (Sierra de las Uvas and Dona Ana Mountains) and complementary west-northwest-tilted half graben also developed during Rincon Valley time, with approximately 549 m of stratigraphic separation along the border fault of the Sierra de las Uvas block. In latest Miocene and early Pliocene time, following deposition of the Rincon Valley Formation, movement continued along the border faults of the Caballo Mountains, Dona Ana Mountains, and Sierra de las Uvas blocks, and large parts of the Hayner Ranch and Rincon Valley basins were segmented into smaller fault blocks and basins by movement along new, largely north-trending faults. Analysis of the Hayner Ranch and Rincon Valley Formations, along with previous studies of the early Oligocene Bell Top Formation and late Pliocene-early Pleistocene Camp Rice Formation, indicate that the traditional two-stage model for development of the southern Rio Grande rift should be abandoned in favor of at least four episodes of block faulting beginning 35 Ma ago. With the exception of

  15. Miocene biochronology and paleoceanography of the North Pacific

    USGS Publications Warehouse

    Keller, G.

    1981-01-01

    Biostratigraphic correlation based on microfossil datum levels, directly or indirectly tied to the paleomagnetic time scale, provides a high resolution time control for the Miocene in the equatorial and middle latitude North Pacific. Faunal changes and abundance fluctuations of planktic foraminiferal species combined with the oxygen Pacific. Faunal changes and abundance fluctuations of planktic foraminiferal species combined with the oxygen isotope record of foraminifers, reveal the paleoclimatic and paleoceanographic history. The planktic foraminiferal assemblage change in the early Miocene, extinction of Oligocene fauna and rise of a highly diverse Neogene fauna, appears to be related to increased water mass stratification in the world oceans presumably resulting from the establishment of circum-Antarctic circulation. An increase in the siliceous productivity in the eastern equatorial Pacific region between 20 and 18 Ma suggests that the vertical and horizontal circulation was intensified at that time. Climates cooled rapidly during the middle Miocene between 14 and 13 Ma suggesting the growth of a major east Antarctic ice sheet. Paleoclimatic conditions remained generally cool, although oscillating, during the late Miocene. In the late early to middle Miocene faunal provincialism developed between low and middle latitudes, and by late Miocene time a distinct provincialism similar to the present was established. ?? 1981.

  16. Provenance Analysis of Lower Miocene Sediments in the Lower Austrian Molasse Basin

    NASA Astrophysics Data System (ADS)

    Knierzinger, Wolfgang; Palzer, Markus; Wagreich, Michael

    2015-04-01

    In the Early Miocene (Late Ottnangian) a global drop of the sea level and the continuous rise of the Alps caused a regression of the Paratethys. During this time interval the Traisen Formation (formerly Oncophora beds) was deposited in the Lower Austrian Molasse Basin. These yellowish-brownish to greyish mica-rich and carbonate-free sands and silts with clayish interlayers were originally named after a brackish water bivalve ("Oncophora"- now Rzehakia). The southeastern part of the TF partly interfingers with finer sands of the Dietersdorf Formation (DF). The Pixendorf Group combines the TF and the DF [coarse sands, conglomerates, blocks] of the Upper Ottnangian lithostratigraphic units in Lower Austria. West to the Waschberg Zone a deeper-water environment (so called Oncophora beds in former literature, herein [informally] renamed to Wildendürnbach Member) with sediment gravity flows (turbidites, muddy/sandy slumps) is inferred from OMV well data. Examinations of these fine sandstones, silts and laminated pelites have been carried out on the basis of the Wildendürnbach-4 OMV drilling core. Analyses of the TF revealed rather homogenous heavy mineral assemblages, dominated by high amounts of garnet (~65%) and relatively high amounts of epidote/zoisite (~10%) and amphiboles (~10%). Conducted surveys point towards a primary influence of metamorphic (metapelitic) source rocks of Austroalpine Crystalline Complexes of the rising Eastern Alps. Heavy mineral analysis of the WDK-4 drilling core showed even higher amounts of garnet (~80%) combined with minor amounts of rutile, staurolite, apatite, epidote/zoisite, tourmalines, zircon and amphiboles. Consistent heavy mineral assemblages and chemical data (EMPA) suggest a stratigraphical correlation with the Křepice Formation and the Ždánice-Hustopeče Formation in the Czech Republic and sedimentary influence from the Western Carpathian Flysch Belt.

  17. Antarctic hydrology during mid-Miocene warmth

    NASA Astrophysics Data System (ADS)

    Feakins, S. J.; Warny, S.; Lee, J.

    2011-12-01

    The Middle Miocene Climatic Optimum (MMCO) represents a period of global warmth 17-15 million years ago which resulted in the regrowth of vegetation on regions of Antarctica that were ice-covered since the Oligocene. A recent drilling campaign on the Antarctic ice shelf (ANDRILL SMS program) recovered middle Miocene sediments provided a first glimpse of a vegetated Antarctica at this time (Warny et al., 2009). However the hydrological regimes of Middle Miocene climate that enabled this vegetation expansion are not yet precisely known. Here we report leaf wax hydrogen isotope values of -170 to -120% indicate dD values for precipitation of -80 to -20% during the Middle Miocene. These values are significantly less negative than modern precipitation and together with microfossil evidence for warm, sea ice-free conditions, suggest an enhanced moisture flux. Experiments with isotopic tracers in idealized models under warm, ice free conditions indicate physical and dynamical support for 'heavy' polar precipitation isotopes reconstructed here. Pollen and biomarker abundances indicate peak conditions at 16.4 and 15.7Ma coeval with global anomalies of the MMCO (Zachos et al., 2001). Our results indicate increased moisture delivery to the Antarctic continent and an invigoration of meridional circulation and poleward latent heat flux during global warmth.

  18. Genesis of Miocene litho-stratigraphic trap and hydrocarbon accumulation in the Qiongdongnan Basin, northern South China Sea

    NASA Astrophysics Data System (ADS)

    Fan, Caiwei; Jiang, Tao; Liu, Kun; Tan, Jiancai; Li, Hu; Li, Anqi

    2018-12-01

    In recent years, several large gas fields have been discovered in western Qiongdongnan Basin. It is important and necessary to illustrate their sedimentary characteristics and hydrocarbon migration so that more gas fields could be discovered in the future. Previous regional tectonic-sedimentary researchers show that large-scale source rock of the Yacheng Formation developed in the Ledong and Lingshui sags due to the Red River Fault pull-apart strike slip in early Oligocene. The main targets for hydrocarbon exploration in this area are the Miocene deep water reservoirs. In late Miocene, the Huangliu Formation reservoirs are composed of the early channels which were sourced by river systems in Hainan uplift and the consequent channels were sourced by Qiupen River in Kunsong uplift. Both axial channels exhibit unique spatial distribution patterns and geometries. The other kind of reservoir developed in the middle Miocene Meishan Formation, which compose of slope break-controlled submarine fan. They can be further classified into three types—slope channelized fan, basin floor fan, and bottom current reworked fan. The various fans have different reservoir quality. These two kinds of reservoirs contribute to four types of litho-stratigraphic traps under the actions of sedimentation and subsidence. The overpressure caused by hydrocarbon generation can fracture deeper strata and result in regional fractured network for hydrocarbon migration. Therefore, free gas driven by overpressure and buoyancy force can be migrated into Miocene litho-stratigraphic traps to accumulate. The revealed genesis of Miocene lithologic trap and hydrocarbon accumulation in the Qiongdongnan Basin would greatly contribute to the further hydrocarbon exploration in northern South China Sea and can be helpful for other deep water areas around the world.

  19. Study of fossil wood from the Middle-Late Miocene sediments of Dhemaji and Lakhimpur districts of Assam, India and its palaeoecological and palaeophytogeographical implications

    NASA Astrophysics Data System (ADS)

    Mehrotra, R. C.; Bera, S. K.; Basumatary, S. K.; Srivastava, G.

    2011-08-01

    In order to reconstruct the palaeoclimate, a number of fossil wood pieces were collected and investigated from two new fossil localities situated in the Dhemaji and Lakhimpur districts of Assam. They belong to the Tipam Group considered to be of Middle-Late Miocene in age and show affinities with Gluta (Anacardiaceae), Bischofia (Euphorbiaceae), Bauhinia, Cynometra, Copaifera-Detarium-Sindora, Millettia-Pongamia, and Afzelia-Intsia (Fabaceae). The flora also records a new species of Bauhinia named Bauhinia miocenica sp. nov. The assemblage indicates a warm and humid climate in the region during the deposition of the sediments. The occurrence of some southeast Asian elements in the fossil flora indicates that an exchange of floral elements took place between India and southeast Asia during the Miocene.

  20. C4 expansion in the central Inner Mongolia during the latest Miocene and early Pliocene

    NASA Astrophysics Data System (ADS)

    Zhang, Chunfu; Wang, Yang; Deng, Tao; Wang, Xiaoming; Biasatti, Dana; Xu, Yingfeng; Li, Qiang

    2009-10-01

    The emergence of C4 photosynthesis in plants as a significant component of terrestrial ecosystems is thought to be an adaptive response to changes in atmospheric CO 2 concentration and/or climate during Neogene times and has had a profound effect on the global terrestrial biosphere. Although expansion of C4 grasses in the latest Miocene and Pliocene has been widely documented around the world, the spatial and temporal variations in the C4 expansion are still not well understood and its driving mechanisms remain a contentious issue. Here we present the results of carbon and oxygen isotope analyses of fossil and modern mammalian tooth enamel samples from the central Inner Mongolia. Our samples represent a diverse group of herbivorous mammals including deer, elephants, rhinos, horses and giraffes, ranging in age from the late Oligocene to modern. The δ13C values of 91 tooth enamel samples of early late-Miocene age or older, with the exception of two 13 Ma rhino samples (- 7.8 and - 7.6‰) and one 8.5 Ma suspected rhino sample (- 7.6‰), were all less than - 8.0‰ (VPDB), indicating that there were no C4 grasses present in their diets and thus probably few or no C4 grasses in the ecosystems of the central Inner Mongolia prior to ~ 8 Ma. However, 12 out of 26 tooth enamel samples of younger ages (~ 7.5 Ma to ~ 3.9 Ma) have δ13C values higher than - 8.0‰ (up to - 2.4‰), indicating that herbivores in the area had variable diets ranging from pure C3 to mixed C3-C4 vegetation during that time interval. The presence of C4 grasses in herbivores' diets (up to ~ 76% C4) suggests that C4 grasses were a significant component of the local ecosystems in the latest Miocene and early Pliocene, consistent with the hypothesis of a global factor as the driving mechanism of the late Miocene C4 expansion. Today, C3 grasses dominate grasslands in the central Inner Mongolia area. The retreat of C4 grasses from this area after the early Pliocene may have been driven by regional

  1. Sediment Volume Record of Paleogene-Neogene Transantarctic Mountains Erosion and Landscape Modification, McMurdo Sound Region, Antarctica

    NASA Astrophysics Data System (ADS)

    Hall, T.; Wilson, T. J.; Henrys, S.; Speece, M. A.

    2016-12-01

    The interplay of tectonics and climate is recorded in the sedimentary strata within Victoria Land Basin, McMurdo Sound, Antarctica. Patterns of Cenozoic sedimentation are documented from interpretation of seismic reflection profiles calibrated by drillhole data in McMurdo Sound, and these patterns provide enhanced constraints on the evolution of the coupled Transantarctic Mountains-West Antarctic Rift System and on ice sheet advance/retreat through multiple climate cycles. The research focuses on shifts from warm based to cold based ice sheets through the variable climate and ice sheet conditions that characterized the early to middle Miocene. The study seeks to test the view that cold based ice sheets in arid, polar deserts minimally erode the landscape by calculating sediment volumes for critical climatic intervals. Revised seismic mapping through McMurdo Sound has been completed, utilizing the seismic stratigraphic framework first established by Fielding et al. (2006) and new reflectors marking unconformities identified from the AND-2A core (Levy et al., 2016). Reflector age constraints are derived by tying surfaces to the Cape Roberts Project, CIROS-1, and AND-2A drillholes. Seismic facies coupled with AND-2A core provenance information provides insight into depositional mechanisms and ice sheet behavior. Seismic facies transitions occur across the major unconformity surfaces in the AND-2A core. Sediment volume calculations for subareas within McMurdo Sound where reflectors are most continuous indicate substantial decreases in preserved sediment volume between the Oligocene and Early Miocene sequences, and between the early and mid-Miocene sequences. Sediment volumes, used in combination with an ice sheet model in a backstacking procedure, provide constraints on landscape modification and further understanding of how landscapes erode under warm and cold based ice sheet regimes.

  2. Site 765: Sediment Lithostratigraphy

    USGS Publications Warehouse

    ,

    1990-01-01

    A 935-m-thick succession of Quaternary through Lower Cretaceous sediments was recovered at Site 765 (Fig. 10). A single core of Quaternary sediment was obtained from Hole 765A; drilling terminated and a new hole was drilled in an attempt to establish the mud line. Quaternary through middle Miocene sediments were cored in Hole 765B down to a depth of 395.6 mbsf. Middle Miocene through Lower Cretaceous sediments were cored in Hole 765C, after washing the interval between 0 and 350.2 mbsf. Exact lithologic correlation of the basal cores from Hole 765B with the upper cores from Hole 765C is not possible because of poor recovery; hence, correlation is based solely on matching sub-bottom depths.

  3. A new large squalodelphinid (Cetacea, Odontoceti) from Peru sheds light on the Early Miocene platanistoid disparity and ecology

    PubMed Central

    Bosio, Giulia; Malinverno, Elisa; Villa, Igor M.; Urbina, Mario

    2018-01-01

    The South Asian river dolphin (Platanista gangetica) is the only extant survivor of the large clade Platanistoidea, having a well-diversified fossil record from the Late Oligocene to the Middle Miocene. Based on a partial skeleton collected from the Chilcatay Formation (Chilcatay Fm; southern coast of Peru), we report here a new squalodelphinid genus and species, Macrosqualodelphis ukupachai. A volcanic ash layer, sampled near the fossil, yielded the 40Ar/39Ar age of 18.78 ± 0.08 Ma (Burdigalian, Early Miocene). The phylogenetic analysis places Macrosqualodelphis as the earliest branching squalodelphinid. Combined with several cranial and dental features, the large body size (estimated body length of 3.5 m) of this odontocete suggests that it consumed larger prey than the other members of its family. Together with Huaridelphis raimondii and Notocetus vanbenedeni, both also found in the Chilcatay Fm, this new squalodelphinid further demonstrates the peculiar local diversity of the family along the southeastern Pacific coast, possibly related to their partition into different dietary niches. At a wider geographical scale, the morphological and ecological diversity of squalodelphinids confirms the major role played by platanistoids during the Early Miocene radiation of crown odontocetes. PMID:29765678

  4. Equatorial Precession Drove Mid-Latitude Changes in ENSO-Scale Variation in the Earliest Miocene

    NASA Astrophysics Data System (ADS)

    Fox, B.; D'Andrea, W. J.; Lee, D. E.; Wilson, G. S.

    2014-12-01

    Foulden Maar is an annually laminated lacustrine diatomite deposit from the South Island of New Zealand. The deposit was laid down over ~100 kyr of the latest Oligocene and earliest Miocene, during the peak and deglaciation phase of the Mi-1 Antarctic glaciation event. At this time, New Zealand was located at approximately the same latitude as today (~45°S). Evidence from organic geochemical proxies (δD, δ13C) and physical properties (density, colour) indicates the presence of an 11-kyr cycle at the site. Although it is known that 11-kyr insolation (half-precession) cycles occur between the Tropics, this cycle is rarely seen in sedimentary archives deposited outside the immediate vicinity of the Equator. Records from Foulden Maar correlate well with the amplitude and phase of the modelled equatorial half-precession cycle for the earliest Miocene. High-resolution (50 µm) colour intensity measurements and lamina thickness measurements both indicate the presence of significant ENSO-like (2-8 year) variation in the Foulden Maar sediments. Early results from targeted lamina thickness measurements suggest that ENSO-band variation is modulated by the 11-kyr cycle, with power in the ENSO band increasing during periods of increased insolation at the Equator. This implies that equatorial half-precession had a significant effect on ENSO-like variation in the early Miocene, and that this effect was felt as far afield as the mid-latitudes of the Southern Hemisphere.

  5. Late Miocene fossils from shallow marine sediments in Brunei Darussalam: systematics, palaeoenvironment and ecology.

    NASA Astrophysics Data System (ADS)

    Roslim, Amajida; Briguglio, Antonino; Kocsis, László; Ćorić, Stjepan; Razak, Hazirah

    2016-04-01

    The geology of Brunei Darussalam is fascinating but difficult to approach: rainforests and heavy precipitation tend to erode and smoothen the landscape limiting rocks exposure, whereas abundant constructions sites and active quarries allow the creation of short time available outcrop, which have to be immediately sampled. The stratigraphy of Brunei Darussalam comprises mainly Neogene sediments deposited in a wave to tide dominated shallow marine environment in a pure siliciclastic system. Thick and heavily bioturbated sandstone layers alternate to claystone beds which occasionally yield an extraordinary abundance and diversity of fossils. The sandstones, when not bioturbated, are commonly characterized by a large variety of sedimentary structures (e.g., ripple marks, planar laminations and cross beddings). In this study, we investigate the sediments and the fossil assemblages to record the palaeoenvironmental evolution of the shallow marine environment during the late Miocene, in terms of sea level change, chemostratigraphy and sedimentation rate. The study area is one of the best in terms of accessibility, extension, abundance and preservation of fossils; it is located in the region -'Bukit Ambug' (Ambug Hill), Tutong District. The fossils fauna collected encompasses mollusks, decapods, otoliths, shark and ray teeth, amber, foraminifera and coccolithophorids. In this investigation, sediment samples were taken along a section which measures 62.5 meters. A thick clay layer of 9 meters was sampled each 30 cm to investigate microfossils occurrences. Each sample was treated in peroxide and then sieved trough 63 μm, 150μm, 250μm, 450μm, 600μm, 1mm and 2mm sieves. Results point on the changes in biodiversity of foraminifera along the different horizons collected reflecting sea level changes and sediment production. The most abundant taxa identified are Pseoudorotalia schroeteriana, Ampistegina lessonii, Elphidium advenum, Quinqueloculina sp., Bolivina sp

  6. First discovery of colobine fossils from the Late Miocene/Early Pliocene in central Myanmar.

    PubMed

    Takai, Masanaru; Thaung-Htike; Zin-Maung-Maung-Thein; Soe, Aung Naing; Maung, Maung; Tsubamoto, Takehisa; Egi, Naoko; Nishimura, Takeshi D; Nishioka, Yuichiro

    2015-07-01

    Here we report two kinds of colobine fossils discovered from the latest Miocene/Early Pliocene Irrawaddy sediments of the Chaingzauk area, central Myanmar. A left mandibular corpus fragment preserving M1-3 is named as a new genus and species, Myanmarcolobus yawensis. Isolated upper (M(1)?) and lower (M2) molars are tentatively identified as Colobinae gen. et sp. indet. Although both forms are medium-sized colobines, they are quite different from each other in M2 morphology. The isolated teeth of the latter show typical colobine-type features, so it is difficult to identify their taxonomic position, whereas lower molars of Myanmarcolobus have unique features, such as a trapezoid-shaped long median lingual notch, a deeply concave median buccal cleft, a strongly developed mesiobuccal notch, and rather obliquely running transverse lophids. Compared with fossil and living Eurasian colobine genera, Myanmarcolobus is most similar in lower molar morphology to the Pliocene Dolichopithecus of Europe rather than to any Asian forms. In Dolichopithecus, however, the tooth size is much larger and the median lingual notch is mesiodistally much shorter than that of Myanmarcolobus. The discovery of Myanmarcolobus in central Myanmar is the oldest fossil record in Southeast Asia not only of colobine but also of cercopithecid monkeys and raises many questions regarding the evolutionary history of Asian colobine monkeys. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. K/Ar Dating of Fine Grained Sediments Near Prydz Bay, Antarctica: East Antarctic Ice Sheet Behavior During the Middle-Miocene Climate Transition

    NASA Astrophysics Data System (ADS)

    Duchesne, A. E.; Pierce, E. L.; Williams, T.; Hemming, S. R.; Johnson, D. L.; May, T.; Gombiner, J.; Torfstein, A.

    2012-12-01

    ¶ The Middle Miocene Climate Transition (MMCT) (~14 Ma) represents a time of major East Antarctic Ice-Sheet (EAIS) expansion, with research suggesting major global sea level fall on the order of ~60 meters (John et al., 2011, EPSL). Ocean Drilling Program (ODP) core data from Site 1165B near Prydz Bay shows an influx of cobbles deposited ~13.8-13.5 Ma, representing a sudden burst of ice-rafted detritus (IRD) during the MMCT. Based on 40Ar/39Ar dating of hornblendes and/or biotite grains, 5 of 6 dated pebbles from a companion study show Wilkes Land origins, indicating transport from over 1500 kilometers away. However, samples throughout this time interval have an anomalously low abundance of sand, thus we seek to understand the sedimentary processes that led to the deposition of these isolated dropstones in a fine matrix through provenance studies of the core's terrigenous fine fraction. Geochemical provenance studies of the terrigenous fraction of marine sediments can aid in identifying past dynamic EAIS behavior; the few outcrops available on the continent provide specific rock characterizations and age constraints from which cored marine sediments can then be matched to using established radiogenic isotope techniques. Here we apply the K/Ar dating method as a provenance tool for identifying the source area(s) of fine-grained terrigenous sediments (<63 μm) deposited during the MMCT. ¶ After source area characterization, we find that the fine-grained sediments from the mid-Miocene show a mixture of both local Prydz Bay sourcing (~400 Ma signature) and Wilkes Land provenance (~900 Ma signature). While locally-derived Prydz Bay sediments are likely to have been delivered via meltwater from ice and deposited as hemipelagic sediments (with some possible bottom current modification, as this is a drift site), sediments sourced from Wilkes Land required transport via large icebergs. Future work will involve further provenance determination on both the fine

  8. Provenance of the lower Miocene of the Gulf of Mexico from detrital zircon double dating

    NASA Astrophysics Data System (ADS)

    xu, J.

    2013-12-01

    The lower Miocene interval of the Gulf of Mexico (GOM) has recently gained increasing attention from oil and gas industry due to its hydrocarbon potential below the salt canopy. However, it has been less well studied than both the underlying Oligocene and overlying middle Miocene strata. The lower Miocene worldwide is a transitional period of tectonic, climatic, and oceanographic change. In particular, it is a period of major tectonic reorganization in the western interior of North America (Rocky Mountains), involving a shift from the Oligocene thermal phase, with abundant volcanic activity recorded in the thick Frio/Vicksburg succession of the GOM, to the Miocene Basin-Range extensional phase. Climatic conditions also changed from a relatively arid Oligocene to wetter Miocene, resulting in increased sediment yields from exhumed tectonic structures. Previous provenance studies used proportions of quartz, feldspar and lithic fragments and consideration of likely river courses through known paleogeomorphological elements. Only limited detrital zircon (DZ) U-Pb studies on Paleocene strata have been undertaken and there has been no previous U-Pb and (U-Th)/He double dating in the GOM. In this study we apply the latest analytical approaches, such as DZ U-Pb dating to gain robust source terranes ages and more fully elucidate the complex sediment provenance and dispersal history of GOM. We also employ DZ (U-Th)/He (ZHe) dating, combined with DZ U-Pb, to not only define sedimentary provenance but also the exhumation histories of detrital source regions. Samples of lower Miocene outcrop exposures in Texas and Louisiana have been collected to discriminate the varied tectonic and drainage system changes across the basin in lateral. In addition, samples from the Eocene, Oligocene and middle Miocene have been obtained to reveal vertical shift of source terranes contributions. Our initial age data show detrital zircons of lower Miocene sediments come from a wide range of source

  9. Antarctic Miocene Climate

    NASA Astrophysics Data System (ADS)

    Ashworth, A. C.; Lewis, A. R.

    2013-12-01

    Fossils from Antarctic Miocene terrestrial deposits, coupled with stratigraphic, geochemical and paleontological data from marine boreholes, provide new insights into the climatic history of the continent. During the Miocene, ice caps coalesced to form ice sheets and vegetated surfaces gave way to barren expanses. The cryospheric changes especially have global climatic implications. The fossil data consists of diatoms, pollen and spores, and macroscopic remains of plants, ostracods, insects, molluscs and a fish. Plant fossils include wood and leaves of Nothofagus (southern beech), seeds of several vascular plants, including Ranunculus (buttercup), Hippuris (mare's-tail) and Myriophyllum (watermilfoil), megaspores of Isoetes (quillwort), and moss species. The insect chitin consists of larval head capsules of Chironomidae (midges) and exoskeletal parts of Coleoptera (beetles). The molluscs include freshwater gastropods and bivalves. The majority of these taxa are likely descendants of taxa that had survived on the continent from the Paleogene or earlier. Even though early Miocene glaciations may have been large, the climate was never cold enough to cause the extinction of the biota, which probably survived in coastal refugia. Early Miocene (c. 20 Ma) macrofossils from the McMurdo Dry Valleys (77°S) support palynological interpretations from the Cape Roberts and ANDRILL marine records that the upland vegetation was a shrub tundra. Mean summer temperature (MST) in the uplands was c. 6°C and possibly higher at the coast. The climate was wet, supporting mires and lakes. By the mid-Miocene, even though the climate continued to be wet. MST was c. 4°C which was too cold to support Nothofagus and most vascular plant species. Stratigraphic evidence indicates that the time between the Early and Mid-Miocene was a time of repeated ice advances and retreats of small glaciers originating from ice caps. At c. 14 Ma there appears to have been a modal shift in climate to

  10. Mineralogy and Geochemical Evidence of the Late Early Miocene Aridification Intensification in Xining Basin Caused By the Northeastern Tibetan Plateau Uplift

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Xiao, G.; Wu, H.; Hao, Q.; Guo, Z.

    2014-12-01

    A typical inland aridification is present in Central Asia, global cooling, the retreat of Para-Tethys Sea and Tibetan Plateau uplift have been thought to be the main driving forces of the climate change in interior Asia during Cenozoic. However, only few terrestrial climate records from the Asian inland were extended to the late Oligocene-early Miocene, it is still unclear the evolution of aridification before the middle Miocene and which of these driving forces plays the key role. Here, a sedimentary, mineralogy and geochemical proxies record of the early Miocene sedimentary sequence (ca. 22.1 to 16.7 Ma) from Xining Basin was present in this paper, which locates in the northeastern side of Tibetan Plateau. Mineralogical and geochemical parameters show obvious two stages climate change. During ~ 22.1-19 Ma (Unit I), the enrichment of I/S (irregular mixed-layers of illite and smectite) content, high values of a*/L* and much stronger chemical weathering degree reveal a warm and humid climate condition. During 19-16.7 Ma (Unit II), the increase of chlorite and dolomite contents, the upward decrease of a*/L* and much weaker chemical weathering than Unit I suggest evidently increased aridity since ca. 19 Ma. Comprehensive comparisons among records from the central western China demonstrate that the aridification since ca. 19 Ma is widespread in northeastern of Tibetan Plateau. The early Miocene episodic uplift of the north and northeastern Tibetan Plateau, especially, the uplift of Laji Shan at ~22 Ma, possibly have played a key role in the aridification of the Xining Basin.

  11. Confirmation of a late Oligocene-early Miocene age of the Deseadan Salla Beds of Bolivia.

    USGS Publications Warehouse

    Naeser, C.W.; McKee, E.H.; Johnson, N.M.; Macfadden, B.J.

    1987-01-01

    Three new fission-track (zircon) and four new K-Ar (biotite) dates corroborate a late Oligocene-early Miocene age (22-28 Ma) for the Salla Beds of Bolivia. These ages contrast markedly with the previously accepted age of about 35 Ma for these strata and their contained faunas, and recasts of order and chronology of interchange between New World and Old World mammals. -Authors

  12. A study of uranium favorability of Cenozoic sedimentary rocks, Basin and Range Province, Arizona: Part I, General geology and chronology of pre-late Miocene Cenozoic sedimentary rocks

    USGS Publications Warehouse

    Scarborough, Robert Bryan; Wilt, Jan Carol

    1979-01-01

    This study focuses attention on Cenozoic sedimentary rocks in the Basin and Range Province of Arizona. The known occurrences of uranium and anomalous radioactivity in these rocks are associated with sediments that accumulated in a low energy environment characterized by fine-grained clastics, including important tuffaceous materials, and carbonate rocks. Most uranium occurrences, in these rocks appear to be stratabound. Emphasis was placed on those sedimentary materials that pre-date the late Cenozoic Basin and Range disturbance. They are deformed and crop out on pedimented range blocks and along the province interface with the Transition Zone. Three tentative age groups are recognized: Group I - Oligocene, pre-22 m.y., Group II - early Miocene - 22 m.y. - 16 m.y., and Group III - middle Miocene - 16 m.y. to 13--10 m.y. Regionally, these three groups contain both coarse to fine-grained red clastics and low energy lighter colored 'lacustrine' phases. Each of the three groups has been the object of uranium exploration. Group II, the early Miocene strata, embraces the Anderson Mine - Artillery region host rocks and also the New River - Cave Creek early Miocene beds-along the boundary with the Transition Zone. These three groups of rocks have been tectonically deformed to the extent that original basins of deposition cannot yet be reconstructed. However, they were considerably more extensive in size than the late Cenozoic basins the origin of which deformed the former. Group II rocks are judged to be of prime interest because of: (1) the development and preservation of organic matter in varying lithologies, (2) apparent contemporaneity with silicic volcanic centers, (3) influence of Precambrian crystalline rocks, and (4) relative outcrop continuity near the stable Transition Zone. The Transition Zone, especially along its boundary with the Basin and Range Province, needs additional geologic investigation, especially as regards the depositional continuity of Group II

  13. Oligocene stratigraphy across the Eocene and Miocene boundaries in the Valley of Lakes (Mongolia).

    PubMed

    Daxner-Höck, Gudrun; Badamgarav, Demchig; Barsbold, Rinchen; Bayarmaa, Baatarjav; Erbajeva, Margarita; Göhlich, Ursula Bettina; Harzhauser, Mathias; Höck, Eva; Höck, Volker; Ichinnorov, Niiden; Khand, Yondon; López-Guerrero, Paloma; Maridet, Olivier; Neubauer, Thomas; Oliver, Adriana; Piller, Werner; Tsogtbaatar, Khishigjav; Ziegler, Reinhard

    2017-01-01

    Cenozoic sediments of the Taatsiin Gol and TaatsiinTsagaan Nuur area are rich in fossils that provide unique evidence of mammal evolution in Mongolia. The strata are intercalated with basalt flows. 40 Ar/ 39 Ar data of the basalts frame the time of sediment deposition and mammal evolution and enable a composite age chronology for the studied area. We investigated 20 geological sections and 6 fossil localities of Oligocene and early Miocene deposits from this region. Seventy fossil beds yielded more than 19,000 mammal fossils. This huge collection encompasses 175 mammal species: 50% Rodentia, 13% Eulipotyphla and Didelphomorphia, and 12% Lagomorpha. The remaining 25% of species are distributed among herbivorous and carnivorous large mammals. The representation of lower vertebrates and gastropods is comparatively poor. Several hundred SEM images illustrate the diversity of Marsupialia, Eulipotyphla, and Rodentia dentition and give insight into small mammal evolution in Mongolia during the Oligocene and early Miocene. This dataset, the radiometric ages of basalt I (∼31.5 Ma) and basalt II (∼27 Ma), and the magnetostratigraphic data provide ages of mammal assemblages and time ranges of the Mongolian biozones: letter zone A ranges from ∼33 to ∼31.5 Ma, letter zone B from ∼31.5 to ∼28 Ma, letter zone C from ∼28 to 25.6 Ma, letter zone C1 from 25.6 to 24 Ma, letter zone C1-D from 24 to ∼23 Ma, and letter zone D from ∼23 to ∼21 Ma.

  14. Early Miocene rapid exhumation in southern Tibet: Insights from P-T-t-D-magmatism path of Yardoi dome

    NASA Astrophysics Data System (ADS)

    Wang, Jia-Min; Wu, Fu-Yuan; Rubatto, Daniela; Liu, Kai; Zhang, Jin-Jiang; Liu, Xiao-Chi

    2018-04-01

    Reconstructing the evolution of Gneiss domes within orogenic belts poses challenges because domes can form in a variety of geodynamic settings and by multiple doming mechanisms. For the North Himalayan gneiss domes (NHGD), it is debated whether they formed during shortening, extension or collapse of the plateau, and what is the spatial and temporal relationship of magmatism, metamorphism and deformation. This study investigates the Yardoi dome in southern Tibet using field mapping, petrography, phase equilibria modelling and new monazite ages. The resulting P-T-time-deformation-magmatism path for the first time reveals the spatial and temporal relationship of metamorphism, deformation and magmatism in the Yardoi dome: a) the dome mantle recorded prograde loading to kyanite-grade Barrovian metamorphic conditions of 650 ± 30 °C and 9 ± 1 kbar (M2) in the Early Miocene (18-17 Ma); b) the main top-to-the-north deformation fabric (D2) formed syn- to post-peak-metamorphism; c) the emplacement of leucorgranites related to doming is syn-metamorphism at 19-17 Ma. The link between the detachment shear zone in the Yardoi dome and the South Tibetan detachment system (STDS) is confirmed. By comparing with orogen-scale tectonic processes in the Himalaya, we suggest that north-south extension in a convergent geodynamic setting during Early Miocene accounts for formation of the Yardoi dome. In a wider tectonic context, the Early Miocene rapid exhumation of deep crustal rocks was contemporaneous with the rapid uplift of southern Tibet and the Himalayan orogen.

  15. Ice-free summers predominant in the late Miocene central Arctic Ocean - New insights from a proxy-modeling approach

    NASA Astrophysics Data System (ADS)

    Stein, Ruediger; Fahl, Kirsten; Schreck, Michael; Knorr, Gregor; Forwick, Matthias; Lohmann, Gerrit; Niessen, Frank

    2016-04-01

    During Polarstern Expedition PS87/2014, we discovered multiple submarine landslides over a distance of >350 km along Lomonosov Ridge between about 81°N and 84°N (Stein, 2015). The load and erosional behaviour of an extended ice sheet/shelf that probably occurred during major Quaternary glaciations, may have caused physical conditions that triggered these landslides and major down-slope transport of sediments at this part of Lomonosov Ridge (Stein et al., 2016 and further references therein). The removal of younger sediments from steep headwalls has led to exhumation of Miocene to early Quaternary sediments close to the seafloor, allowing the retrieval of such old sediments by gravity coring and multi-proxy studies of theses sediments. Within one of these studies (Stein et al., 2016), we used for the first time the sea-ice biomarker IP25 (for background of approach see Belt et al., 2007; Müller et al., 2009, 2011) together with alkenone-based sea-surface temperatures (SST) to reconstruct upper Miocene Arctic Ocean sea-ice and SST conditions. The presence of IP25 as proxy for spring sea-ice cover and alkenone-based relatively warm summer SST of >4 °C support a seasonal sea-ice cover with an ice-free summer season being dominant during (most of) the late Miocene central Arctic Ocean. A comparison of our proxy data with Miocene climate simulations seems to favour either relatively high late Miocene atmospheric CO2 concentrations and/or an overly weak sensitivity of the model to simulate the magnitude of high-latitude warming in a warmer than modern climate. References: Belt, S.T., Massé, G., Rowland, S.J., Poulin, M., Michel, and C., LeBlanc, B., 2007. A novel chemical fossil of palaeo sea ice: IP25, Organic Geochemistry 38, 16-27. Müller, J., Massé, G., Stein, R., and Belt, S., 2009. Extreme variations in sea ice cover for Fram Strait during the past 30 ka. Nature Geoscience, DOI: 10.1038/NGEO665. Müller, J., Wagner, A., Fahl, K., Stein, R., Prange, M., and

  16. The significance of marine microfossils for paleoenvironmental reconstruction of the Solimões Formation (Miocene), western Amazonia, Brazil

    NASA Astrophysics Data System (ADS)

    Linhares, Ana Paula; Gaia, Valber do Carmo de Souza; Ramos, Maria Inês Feijó

    2017-11-01

    Micropalaeontological studies of borehole cores 1AS-7D-AM and 1AS-8-AM, from Atalaia do Norte, Amazonas state, Brazil, support previous evidence for Miocene marine ingressions in Western Amazonia. Three marine incursion events are recorded: the first in the Early/early Middle Miocene (in both cores), the second in the late Middle/early Late Miocene (1AS-8-AM), and the third in the Late Miocene (1AS-7D-AM). The first event is characterized by exclusively mangrove taxa, and the last two present a mixture of marine, fresh, and brackish water taxa. However, at the end of the third event an increase of fluvial influence is demonstrated by the predominance of freshwater taxa. These marine incursions reached the study area through narrow and geographically limited connections, controlled by the tectonic setting, at a time between the Early/early Middle Miocene and late Middle/Late Miocene. Thereafter, fluvial conditions were reestablished before Pliocene times.

  17. Miocene vertebrates and North Florida shorelines

    USGS Publications Warehouse

    Olsen, S.J.

    1968-01-01

    Vertebrate fossils from ten localities, spread across northern Florida, give evidence of shorelines and deltas that have previously been established on geologic evidence or invertebrates alone. Terrestrial mammal remains, in association with shallow-water forms, indicate a deltaic assemblage and in several instances specific animals suggest restricted water depths at the time of sediment deposition. Fortunately diagnostic fragments of Miocene horses, Merychippus and Parahippus, are present in these beds, allowing for a rather close age evaluation of these sediments. Adequate fossil material has been collected from these localities to suggest the past environment and ecological conditions for the forms represented. By utilizing a suggested course of experiments with stream table apparatus it is possible to use the orientation of the fossil vertebrate remains as aids in determining past conditions of sediment accumulation. ?? 1968.

  18. Fruits and wood of Parinari from the early Miocene of Panama and the fossil record of Chrysobalanaceae.

    PubMed

    Jud, Nathan A; Nelson, Chris W; Herrera, Fabiany

    2016-02-01

    Chrysobalanaceae are woody plants with over 500 species in 20 genera. They are among the most common trees in tropical forests, but a sparse fossil record has limited our ability to test evolutionary and biogeographic hypotheses, and several previous reports of Chrysobalanaceae megafossils are doubtful. We prepared fossil endocarps and wood collected from the lower Miocene beds along the Panama Canal using the cellulose acetate peel technique and examined them using light microscopy. We compared the fossil endocarps with previously published fossils and with fruits from herbarium specimens. We compared the fossil wood with photographs and descriptions of extant species. Parinari endocarps can be distinguished from other genera within Chrysobalanaceae by a suite of features, i.e., thick wall, a secondary septum, seminal cavities lined with dense, woolly trichomes, and two ovate to lingulate basal germination plugs. Fossil endocarps from the Cucaracha, Culebra, and La Boca Formations confirm that Parinari was present in the neotropics by the early Miocene. The earliest unequivocal evidence of crown-group Chrysobalanaceae is late Oligocene-early Miocene, and the genus Parinari was distinct by at least 19 million years ago. Parinari and other Chrysobalanaceae likely reached the neotropics via long-distance dispersal rather than vicariance. The presence of Parinari in the Cucaracha flora supports the interpretation of a riparian, moist tropical forest environment. Parinari was probably a canopy-dominant tree in the Cucaracha forest and took advantage of the local megafauna for seed dispersal. © 2016 Botanical Society of America.

  19. Global Miocene tectonics and the modern world

    NASA Astrophysics Data System (ADS)

    Potter, Paul Edwin; Szatmari, Peter

    2009-11-01

    An amazing congruence of seemingly unrelated, diverse global events began in the Middle and Upper Miocene and established our modern world. Two global orogenic belts were active, mostly in the Middle and Upper Miocene, while backarc basins formed along the eastern margin of Asia. Coincident with these events global temperatures cooled in both the ocean and atmosphere, desertification occurred from Central Asia into and across most of northern Africa and also in Australia, and in southern South America. Coincident with the expansion of the Antarctic ice cap at 14 Ma, there was initial widespread deep sea erosion and changes in patterns of deep sea sedimentation. Muddy pelagic sedimentation increased six-fold in the North and Central Atlantic and Pacific Oceans and global changes in circulation lead to more diatomites in the Pacific and fewer in the Atlantic. By the end of the Miocene most of the Mediterranean Sea had evaporated. Broadly coincident with these events, many old, large river systems were destroyed and new ones formed as much of the world's landscape changed. Collectively, these global on-shore tectonic and ocean-atmospheric events provide the foundation for our modern world—a mixture of new and rejuvenated orogenic belts and their far-field effects (distant epiorogenic uplift, rain-shadow deserts, large alluvial aprons, and distant deltas) as inherited Gondwanan landscapes persisted remote from plate boundaries. Thus at the end of the Miocene much of the world's landscape, except for that changed by Pleistocene continental glaciation, would be recognizable to us today. We argue that all of these events had the same ultimate common cause-an internal Earth engine-that drove plate motions in two broad ways: first, the opening and closing of seven key gateways to deep-water oceanic currents radically altered global heat transfer and changed a lingering Greenhouse to an Icehouse world; secondly, these events were in part coincident with renewed heat flow

  20. Late Oligocene-Early Miocene compressional tectosedimentary episode and associated land-mammal faunas in the Andes of central Chile and adjacent Argentina (32 37°s)

    NASA Astrophysics Data System (ADS)

    Semper, Thierry; Marshall, Larry G.; Rivano, Sergio; Godoy, Estanislao

    1994-01-01

    A reassessment of the geologic and land-mammal fossil evidence used in attribution of a tectosedimentary episode in the Andes between 32 and 37°S to the Middle Eocene "Incaic tectonic phase" of Peru indicates that the episode occurred during Late Oligocene-Early Miocene times(~ 27-20 Ma). From west to east, three structural domains are recognized for this time span in the study area: a volcanic arc (Chile); a thin-skinned, E-verging fold-thrust belt (Cordillera Principal, Chile-Argentina border strip); and a foreland basin (Argentina). Initiation of thrusting in the Cordillera Principal fold-thrust belt produced the coeval initiation of sedimentation in the foreland basin of adjacent Argentina. This onset of foreland deposition postdates strata bearing a Divisaderan Land Mammal Age fauna (i.e. ~ 35-30 Ma) and is marked at ~ 36°30'S by the base of the "Rodados Lustrosos" conglomerates, which are conformably overlain by sedimentary rocks containing a Deseadan Land Mammal Age fauna (i.e. ~ 29-21 Ma). Geologic relationships between the thick volcanic Abanico (Coya-Machalí) and Farellones formations also demonstrate that this tectosedimentary episode practically ended at ~ 20 Ma at least in the volcanic arc, and was therefore roughly coeval with the major tectonic crisis (~ 27-19 Ma) known in northwestern Andean Bolivia some 1500 km to the north. This strongly suggests that a long, outstanding tectonic upheaval affected at least an extended 12-37°S segment of the Andean margin of South America during Late Oligocene and Early Miocene times.

  1. Climate variations in the late Miocene - early Pliocene in the Black Sea region (Taman peninsula) inferred from palynological analyses.

    NASA Astrophysics Data System (ADS)

    Grundan, Ekaterina; Kürschner, Wolfram; Krijgsman, Wout

    2017-04-01

    A palynological study of Neogene sediments from the cape "Zhelezny Rog" (Taman peninsula, the Black Sea area) was carried out as part of integrated micropaleontological, lithological and paleomagnetic research. The Neogene section of the cape "Zhelezny Rog" (the Zhelezny Rog section) is one of the most representative Upper Miocene to Lower Pliocene succession of Eastern Paratethys. The section covers the Sarmatian, Maeotian, Pontian (upper Miocene) and Kimmerian (lower Pliocene) local stages. One hundred and eighteen samples were selected from the Zhelezny rog section for quantitative palynological analysis. Using PCA analysis and additional proxy such as "steppe index", art/chen and poa/ast ratios the regional climate history was reconstructed. The Early Maeotian is characterized by a warm, warm-temperate climate on the background of relatively high humidity. During the Late Maeotian it became colder and dryer. The coldest and driest conditions during the Maeotian correspond to the middle part of the Late Maeotian. There were a high number of steppe elements (as Artemisia) and low amount of thermophilous ones. Climate of the end of the Maeotian was characterized by warmer and wetter conditions. In the beginning of the Pontian there was a cooling trend, as evidenced by the decreasing thermophilous elements and the increasing high-latitude trees. Most significant changes were found within the Pontian-Kimmerian boundary beds. This level is characterized by decreasing of thermophilous elements, increasing of cool-temperate pollen and Sphagnum spores that are considered as an evidence of a temperature decrease in the background of high humidity conditions. The results will be discussed and correlated to Neogene global climate trends.

  2. Origin, evolution and sedimentary processes associated with a late Miocene submarine landslide, southeast Spain

    NASA Astrophysics Data System (ADS)

    Sola, F.; Puga-Bernabéu, Á.; Aguirre, J.; Braga, J. C.

    2018-02-01

    A submarine landslide, the Alhama de Almería Slide, influenced late Tortonian and early Messinian (late Miocene) sedimentary processes in the vicinity of Alhama de Almería in southeast Spain. Its 220-m-high headscarp and deposits are now subaerially exposed. The landslide occurred at the northern slope of the antecedent relief of the present-day Sierra de Gádor mountain range. This is a large antiform trending east-west to east-northeast-west-southwest, which has been uplifting since the late Miocene due to convergence of the African and Eurasian plates. During the Tortonian, this relief was an island separated from the Iberian Peninsula mainland by the Alpujarra corridor, a small and narrow intermontane basin of the Betic Cordillera in the western Mediterranean Sea. The materials involved in the slope failure were Triassic dolostones and phyllites from the metamorphic Alpujárride Complex and Tortonian marine conglomerates, sandstones, and marls that formed an initial sedimentary cover on the basement rocks. Coherent large masses of metamorphic rocks and Miocene deposits at the base of the headscarp distally change to chaotic deposits of blocks of different lithologies embedded in upper Tortonian marine marls, and high-strength cohesive debrites. During downslope sliding, coherent carbonate blocks brecciated due to their greater strength. Phyllites disintegrated, forming a cohesive matrix that engulfed and/or sustained the carbonate blocks. Resedimented, channelized breccias were formed by continuing clast collision, bed fragmentation, and disaggregation of the failed mass. The conditions leading to rock/sediment failure were favoured by steep slopes and weak planes at the contact between the basement carbonates and phyllites. Displacement of collapsed rocks created a canyon-like depression at the southeast edge of the landslide. This depression funnelled sediment gravity flows that were generated upslope, promoting local thick accumulations of sediments during

  3. Neogene stratigraphy, foraminifera, diatoms, and depositional history of Maria Madre Island, Mexico: Evidence of early Neogene marine conditions in the southern Gulf of California

    USGS Publications Warehouse

    McCloy, C.; Ingle, J.C.; Barron, J.A.

    1988-01-01

    Foraminifera and diatoms have been analyzed from an upper Miocene through Pleistocene(?) sequence of marine sediments exposed on Maria Madre Island, largest of the Tre??s Marias Islands off the Pacific coast of Mexico. The Neogene stratigraphic sequence exposed on Maria Madre Island includes a mid-Miocene(?) non-marine and/or shallow marine sandstone unconformably overlain by a lower upper Miocene to uppermost Miocene upper to middle bathyal laminated and massive diatomite, mudstone, and siltstone unit. This unit is unconformably overlain by lower Pliocene middle to lower bathyal sandstones and siltstones which, in turn, are unconformably overlain by upper Pliocene through Pleistocene(?) upper bathyal to upper middle bathyal foraminiferal limestones and siltstones. These beds are unconformably capped by Pleistocene terrace deposits. Basement rocks on the island include Cretaceous granite and granodiorite, and Tertiary(?) andesites and rhyolites. The upper Miocene diatomaceous unit contains a low diversity foraminiferal fauna dominated by species of Bolivina indicating low oxygen conditions in the proto-Gulf Maria Madre basin. The diatomaceous unit grades into a mudstone that contains a latest Miocene upper to middle bathyal biofacies characterized by Baggina californica and Uvigerina hootsi along with displaced neritic taxa. An angular unconformity separates the upper Miocene middle bathyal sediments from overlying lower Pliocene siltstones and mudstones that contain a middle to lower bathyal biofacies and abundant planktonic species including Neogloboquadrina acostaensis and Pulleniatina primalis indicating an early Pliocene age. Significantly, this Pliocene unit contains common occurrences of benthic species restricted to Miocene sediments in California including Bulimina uvigerinaformis. Pliocene to Pleistocene(?) foraminiferal limestones and siltstones characterize submarine bank accumulations formed during uplift of the Tre??s Marias Island area, and include

  4. Early glaciation already during the Early Miocene in the Amundsen Sea, Southern Pacific: Indications from the distribution of sedimentary sequences

    NASA Astrophysics Data System (ADS)

    Uenzelmann-Neben, Gabriele; Gohl, Karsten

    2014-09-01

    The distribution and internal architecture of seismostratigraphic sequences observed on the Antarctic continental slope and rise are results of sediment transport and deposition by bottom currents and ice sheets. Analysis of seismic reflection data allows to reconstruct sediment input and sediment transport patterns and to infer past changes in climate and oceanography. We observe four seismostratigraphic units which show distinct differences in location and shape of their depocentres and which accumulated at variable sedimentation rates. We used an age-depth model based on DSDP Leg 35 Site 324 for the Plio/Pleistocene and a correlation with seismic reflection characteristics from the Ross and Bellingshausen Seas, which unfortunately has large uncertainties. For the period before 21 Ma, we interpret low energy input of detritus via a palaeo-delta originating in an area of the Amundsen Sea shelf, where a palaeo-ice stream trough (Pine Island Trough East, PITE) is located today, and deposition of this material on the continental rise under sea ice coverage. For the period 21-14.1 Ma we postulate glacial erosion for the hinterland of this part of West Antarctica, which resulted in a larger depocentre and an increase in mass transport deposits. Warming during the Mid Miocene Climatic Optimum resulted in a polythermal ice sheet and led to a higher sediment supply along a broad front but with a focus via two palaeo-ice stream troughs, PITE and Abbot Trough (AT). Most of the glaciogenic debris was transported onto the eastern Amundsen Sea rise where it was shaped into levee-drifts by a re-circulating bottom current. A reduced sediment accumulation in the deep-sea subsequent to the onset of climatic cooling after 14 Ma indicates a reduced sediment supply probably in response to a colder and drier ice sheet. A dynamic ice sheet since 4 Ma delivered material offshore mainly via AT and Pine Island Trough West (PITW). Interaction of this glaciogenic detritus with a west

  5. Displaced/re-worked rhodolith deposits infilling parts of a complex Miocene multistorey submarine channel: A case history from the Sassari area (Sardinia, Italy)

    NASA Astrophysics Data System (ADS)

    Murru, Marco; Bassi, Davide; Simone, Lucia

    2015-08-01

    In the Sassari area (north-western Sardinia, Italy), the Miocene Porto Torres sub-basin sequences represent the complex multistorey mixed carbonate-siliciclastic submarine feature called the Sassari Channel. During the late Burdigalian-early Serravallian, repeated terrigenous supplies from uplifted Paleozoic crystalline substrata fed the Sassari Channel system by means of turbidity and locally hyper-concentrated turbidity flows. Shelfal areas were the source of terrigenous clasts, but open shelf rhodalgal/foramol carbonate areas were very productive and largely also contributed to the channel infilling. Re-worked sands and skeletal debris were discontinuously re-sedimented offshore as pure terrigenous, mixed and/or carbonate deposits. Major sediment supply was introduced between the latest Burdigalian and the start of the middle Langhian, during which a large amount of carbonate, mixed and siliciclastic sediments reached the Porto Torres Basin (Sassari Channel I). Contributions from shallow proximal source areas typify the lower intervals (Unit A) in marginal sectors of the channel. Upward, these evolve into autochthonous rhodolith deposits, winnowed by strong currents in relatively shallow well lit settings within a complex network of narrow tidally-controlled channels (Unit D) locally bearing coral assemblages. Conversely, re-sedimented rhodoliths from the Units B and C accumulated under conditions of higher turbidity. In deeper parts of the channel taxonomically diversified rhodoliths point to the mixing of re-deposited skeletal components from different relatively deep bathmetric settings. In the latest early Langhian, major re-sedimentation episodes, resulting in large prograding bodies (Unit D), triggered by repeated regression pulses in a frame of persistent still stand. During these episodes photophile assemblages dwelled in the elevated margin sectors of the channel. A significant latest early Langhian drop in relative sea-level resulted in impressive mass

  6. Early Miocene benthic foraminifera and biostratigraphy of the Qom Formation, Deh Namak, Central Iran

    NASA Astrophysics Data System (ADS)

    Daneshian, Jahanbakhsh; Dana, Leila Ramezani

    2007-03-01

    A total of 165 samples were collected from the Qom Formation investigated in a stratigraphic section north of Deh Namak, in Central Iran. From these, 35 genera and 47 species of benthic foraminifera were identified. The age of the studied section is Early Miocene (Aquitanian to Early Burdigalian) based on the occurrence of Borelis melo curdica, Meandropsina anahensis, Meandropsina iranica, Elphidium sp. 14, Peneroplis farsensis, and Triloculina tricarinata. The thickness of the Qom Formation is 401 m of which 161.2 m is early Burdigalian in age. Foraminiferal assemblages in the Deh Namak section are referable to the Borelis melo group- Meandropsina iranica Assemblage Zone and Miogypsinoides- Archaias-Valvulinid Assemblage Zone of [Adams, T.D., Bourgeois, F., 1967. Asmari biostratigraphy. Iranian Oil Operating Companies, Geological and Exploration Division, Report1074 (unpublished) 1-37.] described originally from the Asmari Formation.

  7. δ18O and Marion Plateau backstripping: Combining two approaches to constrain late middle Miocene eustatic amplitude

    NASA Astrophysics Data System (ADS)

    John, Cédric M.; Karner, Garry D.; Mutti, Maria

    2004-09-01

    δ18Obenthic values from Leg 194 Ocean Drilling Program Sites 1192 and 1195 (drilled on the Marion Plateau) were combined with deep-sea values to reconstruct the magnitude range of the late middle Miocene sea-level fall (13.6 11.4 Ma). In parallel, an estimate for the late middle Miocene sea-level fall was calculated from the stratigraphic relationship identified during Leg 194 and the structural relief of carbonate platforms that form the Marion Plateau. Corrections for thermal subsidence induced by Late Cretaceous rifting, flexural sediment loading, and sediment compaction were taken into account. The response of the lithosphere to sediment loading was considered for a range of effective elastic thicknesses (10 < Te < 40 km). By overlapping the sea-level range of both the deep-sea isotopes and the results from the backstripping analysis, we demonstrate that the amplitude of the late middle Miocene sea-level fall was 45 68 m (56.5 ± 11.5 m). Including an estimate for sea-level variation using the δ18Obenthic results from the subtropical Marion Plateau, the range of sea-level fall is tightly constrained between 45 and 55 m (50.0 ± 5.0 m). This result is the first precise quantitative estimate for the amplitude of the late middle Miocene eustatic fall that sidesteps the errors inherent in using benthic foraminifera assemblages to predict paleo water depth. The estimate also includes an error analysis for the flexural response of the lithosphere to both water and sediment loads. Our result implies that the extent of ice buildup in the Miocene was larger than previously estimated, and conversely that the amount of cooling associated with this event was less important.

  8. Correlation and zonation of miocene strata along the atlantic margin of North America using diatoms and silicoflagellates

    USGS Publications Warehouse

    Abbott, W.H.

    1978-01-01

    Six Atlantic Miocene siliceous microfossil zones are proposed based on onshore and offshore samples from the United States Atlantic Margin. Diatoms and silicoflagellates are used to establish the zones. These zones are from oldest to youngest: 1. Zone I Actinoptychus heliopelta Concurrent Range Zone - Early Miocene 2. Zone II Delphineis ovata Partial Range Zone - late Early to early Middle Miocene 3. Zone III Delphineis ovata/Delphineis penelliptica Concurrent Range Zone - early Middle Miocene 4. Zone IV Delphineis penelliptica Partial Range Zone - Middle Miocene 5. Zone V Delphineis penelliptica/Coscinodiscus plicatus Concurrent Range Zone - Middle Miocene 6. Zone VI Coscinodiscus plicatus Partial Range Zone - Middle Miocene. The six zones are easily traced along the Southern and Middle Atlantic Seaboard, but the older three are found for the most part between Cape Hatteras and New Jersey. There is some suggestion of sea-level change during Zone IV. Using rare planktonic diatoms that are index species from other regions and the zonal markers established in this study, correlation can be made with the Standard Foraminiferal Zones, the North Pacific Diatom Zones and with DSDP core 391A in the Blake-Bahama Basin. ?? 1978.

  9. A molecular stable carbon isotope study of organic matter in immature Miocene Monterey sediments, Pismo basin

    NASA Astrophysics Data System (ADS)

    Schouten, Stefan; Schoell, Martin; Rijpstra, W. Irene C.; Sinninghe Damsté, Jaap S.; de Leeuw, Jan W.

    1997-05-01

    The 300 m section of the Miocene Monterey Formation outcropping at Shell Beach (Pismo basin; ca. 15-11 Ma) is composed of calcareous phosphatic (15.1-14.5 Ma) and siliceous facies (14.5-11.0 Ma). An objective of this paper is to document lateral paleoenvironmental changes in the Miocene Moneterey Formation by comparing the Shell Beach (SB) profile with the Naples Beach (NB) section in the Santa Barbara-Ventura basin (Schouten et al., 1997) which is ˜80 km to the south. Eight samples (one sample representing, on average, a time period of ca. 2000 y) from this section were analyzed for variations of extractable biomarkers and their carbon isotopic signatures as indicators for paleoenvironmental change during the Miocene. Saturated hydrocarbons present include 28,30-dinorhopane, phytane, n-alkanes (C 17sbnd C 31), lycopane, and 17β,21β(H)-homohopane. The biomarkers released after desulfurization of the polar fractions predominantly consist of phytane, 2,6,10,14-tetramethyl-7-(3-methylpentyl)pentadecane, C 17sbnd C 31n-alkanes, regular 5α- and 5β-steranes, dinosteranes, and (22R)-17β,21β(H)-pentakishomohopane. Steranes have similar carbon isotopic compositions (-25 to -27‰) throughout the section and are isotopically similar at both sites, indicating laterally similar and vertically stable environmental conditions for algae living in the upper part of the photic zone. Free and S-bound n-alkanes at SB mainly originate from marine organisms and not from terrestrial sources as in the NB section. S-bound pentakishomohopane is ca. 1-4‰ depleted compared to the steranes and is thought to be derived from the deeper water dwelling cyanobacteria. These findings are consistent with stable carbon isotopic data obtained for these compounds from Middle Miocene Monterey sediments at Naples Beach and indicates similar environmental conditions in the depositional environments of the Santa Barbara-Ventura and the Pismo basin. S-bound highly branched isoprenoids have, at both

  10. Evidence for deep-water evaporite deposition in the Miocene Kareem Formation, Gemsa basin, eastern Egypt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, J.A.; Stonecipher, S.A.; Steinmetz, J.C.

    1991-03-01

    The correct interpretation of intercalated Miocene siliciclastics and evaporites of Gemsa basin is crucial for understanding early rift tectonics of the Gulf of Suez, pinpointing the timing of isolation of the Gulf from the Mediterranean, and developing exploration plays. Evaporites of the Kareem Formation comprise celestites and massive, 'chicken-wire,' and laminated anhydrites. Although previously interpreted as sabkha deposits; sedimentologic, petrographic, and paleontologic analyses indicate these evaporites more likely formed in a submarine setting. Marls that encase the evaporites contain a diverse and abundant assemblage of nannoplankton, planktonic foraminifera, diatoms, pteropods, and fish scales indicative of basinal deposition. Associated turbidites alsomore » denote deep-water sedimentation. The paucity of benthic diatoms and foraminifera, plus the presence of unburrowed shales, phosphate nodules, early ferroan carbonate cements, and authigenic pyrite, suggest periodic anoxic, or at least disaerobic, bottom waters. These sequences probably represent partial isolation of the Gulf of Suez by middle Miocene, producing periodic basin restriction and evaporative drawdown. Episodes of increasing salinity likely caused the progressive decreases in foram abundance and diversity in marls beneath the anhydrites, culminating in subaqueous evaporite formation. Diverse, indigenous nannoplankton assemblages from shale seams within the anhydrites suggest Gemsa basin was stratified; shallow open-marine conditions coexisted with anhydrite crystallization from deeper hypersaline waters.« less

  11. A Transitional Gundi (Rodentia: Ctenodactylidae) from the Miocene of Israel

    PubMed Central

    López-Antoñanzas, Raquel; Gutkin, Vitaly; Rabinovich, Rivka; Calvo, Ran; Grossman, Aryeh

    2016-01-01

    We describe a new species of gundi (Rodentia: Ctenodactylidae: Ctenodactylinae), Sayimys negevensis, on the basis of cheek teeth from the Early Miocene of the Rotem Basin, southern Israel. The Rotem ctenodactylid differs from all known ctenodactylid species, including Sayimys intermedius, which was first described from the Middle Miocene of Saudi Arabia. Instead, it most resembles Sayimys baskini from the Early Miocene of Pakistan in characters of the m1-2 (e.g., the mesoflexid shorter than the metaflexid, the obliquely orientated hypolophid, and the presence of a strong posterolabial ledge) and the upper molars (e.g., the paraflexus that is longer than the metaflexus). However, morphological (e.g., presence of a well-developed paraflexus on unworn upper molars) and dimensional (regarding, in particular, the DP4 and M1 or M2) differences between the Rotem gundi and Sayimys baskini distinguish them and testify to the novelty and endemicity of the former. In its dental morphology, Sayimys negevensis sp. nov. shows a combination of both the ultimate apparition of key-characters and incipient features that would be maintained and strengthened in latter ctenodactylines. Thus, it is a pivotal species that bridges the gap between an array of primitive ctenodactylines and the most derived, Early Miocene and later, gundis. PMID:27049960

  12. Global Cooling Drive Tectonic Scale Aridification of Asian Interior since Miocene

    NASA Astrophysics Data System (ADS)

    Jiang, F.; Zhu, X.

    2017-12-01

    Global cooling and the uplift of Tibetan Plateau are two potential mechanisms for tectonic scale aridification of Asian interior since Miocene. However, their relative importance is still controversial due to lack of continuous paleoclimate record. Here, using a 164 m long sediment core from Site U1438 in the Amami Sankaku Basin (ASB) in the NW Pacific, we show that the tectonic scale aridification of Asian interior is linked to global cooling rather than the uplift of the Tibetan Plateau. We analyzed the characteristics and variations of clastic mineral (e.g. quartz), clay minerals, radiogenic strontium (Sr) and neodymium (Nd) isotopes of the fine pelagic mud intervals from the sediment core. These new evidences indicate a continuous input of Asian dust from Asian interior to ASB since Miocene. We found that Asian dust in the ASB overall increased starting from ca.15.0 Myr (mid-Miocene), and ca. 3.5 Myr (Late Pliocene). The variations of Asian dust transport and accumulation closely responds to known times of enhanced Asian aridification and prevailing westerlies. The overall and gradual increase of Asian dust since mid-Miocene and Late Pliocene are in agreement with the formation and development of the polar ice caps, and are coupled with the gradual decrease of the global temperature recorded by the δ18O ratio of forams, but lag behind the tectonic uplift of the Tibetan Plateau. We argue that global cooling drove the aridification of the Asian interior and resulted in the increase of Asian dust deposition in the ASB.

  13. Chronology of Miocene-Pliocene deposits at Split Mountain Gorge, Southern California: A record of regional tectonics and Colorado River evolution

    USGS Publications Warehouse

    Dorsey, R.J.; Fluette, A.; McDougall, K.; Housen, B.A.; Janecke, S.U.; Axen, G.J.; Shirvell, C.R.

    2007-01-01

    Late Miocene to early Pliocene deposit at Split Mountain Gorge, California, preserve a record of basinal response to changes in regional tectonics, paleogeography, and evolution of the Colorado River. The base of the Elephant Trees Formation, magnetostratigraphically dated as 8.1 ?? 0.4 Ma, provides the earliest well-dated record of extension in the southwestern Salton Trough. The oldest marine sediments are ca. 6.3 Ma. The nearly synchronous timing of marine incursion in the Salton Trough and northern Gulf of California region supports a model for localization of Pacific-North America plate motion in the Gulf ca. 6 Ma. The first appearance of Colorado River sand at the Miocene-Pliocene boundary (5.33 Ma) suggests rapid propagation of the river to the Salton Trough, and supports a lake-spillover hypothesis for initiation of the lower Colorado River. ?? 2007 Geological Society of America.

  14. A new genus and species of tettigarctid cicada from the early Miocene of New Zealand: Paratettigarctazealandica (Hemiptera, Auchenorrhyncha, Tettigarctidae).

    PubMed

    Kaulfuss, Uwe; Moulds, Max

    2015-01-01

    A new genus and species of primitive cicada (Hemiptera: Tettigarctidae) is described from the early Miocene of southern New Zealand. Paratettigarctazealandica gen. et sp. n. is the first cicada (Cicadoidea) fossil from New Zealand and exhibits wing venation patterns typical for the subfamily Tettigarctinae. It differs from other fossil taxa and the extant genus Tettigarcta in the early divergence of CuA2 from the nodal line in the forewing, its parallel-sided subcostal cell, the early bifurcation of vein M and long apical cells of the hindwing, and in wing pigmentation patterns.

  15. High richness of insect herbivory from the early Miocene Hindon Maar crater, Otago, New Zealand

    PubMed Central

    Lee, Daphne E.; Wappler, Torsten

    2017-01-01

    Plants and insects are key components of terrestrial ecosystems and insect herbivory is the most important type of interaction in these ecosystems. This study presents the first analysis of associations between plants and insects for the early Miocene Hindon Maar fossil lagerstätte, Otago, New Zealand. A total of 584 fossil angiosperm leaves representing 24 morphotypes were examined to determine the presence or absence of insect damage types. Of these leaves, 73% show signs of insect damage; they comprise 821 occurrences of damage from 87 damage types representing all eight functional feeding groups. In comparison to other fossil localities, the Hindon leaves display a high abundance of insect damage and a high diversity of damage types. Leaves of Nothofagus(southern beech), the dominant angiosperm in the fossil assemblage, exhibit a similar leaf damage pattern to leaves from the nearby mid to late Miocene Dunedin Volcano Group sites but display a more diverse spectrum and much higher percentage of herbivory damage than a comparable dataset of leaves from Palaeocene and Eocene sites in the Antarctic Peninsula. PMID:28224051

  16. Unlocking the Ice House: Oligocene-Miocene oxygen isotopes, eustasy, and margin erosion

    NASA Astrophysics Data System (ADS)

    Miller, Kenneth G.; Wright, James D.; Fairbanks, Richard G.

    1991-04-01

    Oxygen isotope records and glaciomarine sediments indicate at least an intermittent presence of large continental ice sheets on Antarctica since the earliest Oligocene (circa 35 Ma). The growth and decay of ice sheets during the Oligocene to modern "ice house world" caused glacioeustatic sea level changes. The early Eocene was an ice-free "greenhouse world," but it is not clear if ice sheets existed during the middle to late Eocene "doubt house world." Benthic foraminiferal δ18O records place limits on the history of glaciation, suggesting the presence of ice sheets at least intermittently since the earliest Oligocene. The best indicator of ice growth is a coeval increase in global benthic and western equatorial planktonic δ18O records. Although planktonic isotope records from the western equatorial regions are limited, subtropical planktonic foraminifera may also record such ice volume changes. It is difficult to apply these established principles to the Cenozoic δ18O record because of the lack of adequate data and problems in stratigraphic correlations that obscure isotope events. We improved Oligocene to Miocene correlations of δ18O records and erected eight oxygen isotope zones (Oi1-Oi2, Mi1-Mi6). Benthic foraminiferal δ18O increases which are associated with the bases of Zones Oil (circa 35.8 Ma), Oi2 (circa 32.5 Ma), and Mil (circa 23.5 Ma) can be linked with δ18O increases in subtropical planktonic foraminifera and with intervals of glacial sedimentation on or near Antarctica. Our new correlations of middle Miocene benthic and western equatorial planktonic δ18O records show remarkable agreement in timing and amplitude. We interpret benthic-planktonic covariance to reflect substantial ice volume increases near the bases of Zones Mi2 (circa 16.1 Ma), Mi3 (circa 13.6 Ma), and possibly Mi5 (circa 11.3 Ma). Possible glacioeustatic lowerings are associated with the δ18O increases which culminated with the bases of Zone Mi4 (circa 12.6 Ma) and Mi6 (circa 9

  17. Facies associations, depositional environments and stratigraphic framework of the Early Miocene-Pleistocene successions of the Mukah-Balingian Area, Sarawak, Malaysia

    NASA Astrophysics Data System (ADS)

    Murtaza, Muhammad; Rahman, Abdul Hadi Abdul; Sum, Chow Weng; Konjing, Zainey

    2018-02-01

    Thirty-five stratigraphic section exposed along the Mukah-Selangau road in the Mukah-Balingian area have been studied. Sedimentological and palynological data have been integrated to gain a better insight into the depositional architecture of the area. Broadly, the Mukah-Balingian area is dominated by fluvial, floodplain and estuarine related coal-bearing deposits. The Balingian, Begrih and Liang formations have been described and interpreted in terms of seven facies association. These are: FA1 - Fluvial-dominated channel facies association; FA2 - Tide-influenced channel facies association; FA3 - Tide-dominated channel facies association; FA4 - Floodplain facies association; FA5 - Estuarine central basin-mud flats facies association; FA6 - Tidal flat facies association and FA7 - Coastal swamps and marshes facies association. The Balingian Formation is characterised by the transgressive phase in the base, followed by a regressive phase in the upper part. On the basis of the occurrence of Florscheutzia trilobata with Florscheutzia levipoli, the Early to Middle Miocene age has been assigned to the Balingian Formation. The distinct facies pattern and foraminifera species found from the samples taken from the Begrih outcrop imply deposition in the intertidal flats having pronounced fluvio-tidal interactions along the paleo-margin. Foraminiferal data combined with the pronounced occurrence of Stenochlaena laurifolia suggest at least the Late Miocene age for the Begrih Formation. The internal stratigraphic architecture of the Liang Formation is a function of a combination of sea level, stable tectonic and autogenic control. Based on stratigraphic position, the Middle Pliocene to Pleistocene age for the Liang Formation is probable. The Balingian, Begrih and Liang formations display deposits of multiple regressive-transgressive cycles while the sediments were derived from the uplifted Penian high and Rajang group.

  18. Miocene transgression in the central and eastern parts of the Sivas Basin (Central Anatolia, Turkey) and the Cenozoic palaeogeographical evolution

    NASA Astrophysics Data System (ADS)

    Poisson, André; Vrielynck, Bruno; Wernli, Roland; Negri, Alessandra; Bassetti, Maria-Angela; Büyükmeriç, Yesim; Özer, Sacit; Guillou, Hervé; Kavak, Kaan S.; Temiz, Haluk; Orszag-Sperber, Fabienne

    2016-01-01

    We present here a reappraisal of the tectonic setting, stratigraphy and palaeogeography of the central part of the Sivas Basin from Palaeocene to late Miocene. The Sivas Basin is located in the collision zone between the Pontides (southern Eurasia) and Anatolia (a continental block rifted from Gondwana). The basin overlies ophiolites that were obducted onto Anatolia from Tethys to the north. The Central Anatolian Crystalline Complex (CACC) experienced similar ophiolite obduction during Campanian time, followed by exhumation and thrusting onto previously emplaced units during Maastrichtian time. To the east, crustal extension related to exhumation of the CACC created grabens during the early Tertiary, including the Sivas Basin. The Sivas Basin underwent several tectonic events during Paleogene-Neogene. The basin fill varies, with several sub-basins, each being characterised by a distinctive sequence, especially during Oligocene and Miocene. Evaporite deposition in the central part of the basin during early Oligocene was followed by mid-late Oligocene fluvio-lacustrine deposition. The weight of overlying fluvial sediments triggered salt tectonics and salt diapir formation. Lacustrine layers that are interbedded within the fluviatile sediments have locally yielded charophytes of late Oligocene age. Emergent areas including the pre-existing Sivas Basin and neighbouring areas were then flooded from the east by a shallow sea, giving rise to a range of open-marine sub-basins, coralgal reef barriers and subsiding, restricted-marine sub-basins. Utilising new data from foraminifera, molluscs, corals and nannoplankton, the age of the marine transgression is reassessed as Aquitanian. Specifically, age-diagnostic nannoplankton assemblages of classical type occur at the base of the transgressive sequence. However, classical stratigraphic markers have not been found within the planktic foraminiferal assemblages, even in the open-marine settings. In the restricted-marine sediments

  19. Miocene and Pliocene lacustrine and fluvial sequences, Upper Ramparts and Canyon village, Porcupine river, east-central Alaska

    USGS Publications Warehouse

    Fouch, T.D.; Carter, L.D.; Kunk, Michael J.; Smith, C.A.S.; White, J.M.

    1994-01-01

    Cenozoic strata exposed along the Porcupine River between the Upper Ramparts and Canyon Village, Alaska, can be divided into five unconformity-bounded units (sequences) which are: lower and middle Miocene unit A, the white sandy fluvial sequence with peat beds; middle Miocene unit B, the basalt sequence-part B1 is basalt, and part B2 is organic-rich sedimentary beds; upper Miocene unit C, mudrock-dominated lake sequence; late Miocene or Pliocene to Pleistocene unit D, terrace gravels, detrital organic matter and associated sediments, and Holocene unit E, mixed sand and gravel-rich sediment and other sedimentary material including peat and eolian silt. The sequence (unit A) of lower and middle Miocene fluvial deposits formed in streams and on flood plains, just before the inception of local volanism. Fossil pollen from unit A suggests conifer-dominated regional forests and cool temperate climates. Peat beds and lake deposits from unit B contain pollen that indicates a warmer temperate climate coinciding with the middle Miocene thermal maximum. The lake deposits (unit C) downstream from the basalts accumulated in a small basin which resulted from a hydrologic system that was dammed in the late Miocene but breached soon thereafter. The lower part of the terrace gravels (unit D) expresses breaching of the dammed hydrologic system (of unit C). The Porcupine River became a major tributary of the Yukon River in late Pleistocene time when Laurentide ice blocked drainage from the Yukon interior basins causing meltwater to spill over the low divide separating it from the Porcupine River drainage initiating erosion and capture of the Yukon interior basins. ?? 1994.

  20. Lower Miocene stratigraphy of the Gebel Shabrawet area, north Eastern desert Egypt

    NASA Astrophysics Data System (ADS)

    Abdelghany, Osman

    2002-05-01

    The Lower Miocene carbonate/siliciclastic sequence of the Shabrawet area, comprises a complex alternation of autochthonous and allogenic sediments. The sequence can be subdivided into two lithostratigraphic units. The lower unit (unit I) is equivalent to the Gharra Formation. It is mainly clastic and composed of sandstones, siltstones and shales with minor limestone intercalations. These sediments are rich in Clypeaster spp., Scutella spp., Miogypsina intermedia, Operculina complanata, and smaller foraminifera. The upper unit (unit II) was considered by previous workers as being equivalent to the Marmarica Formation. It consists mainly of non-clastic rocks, dominated by sandy and chalky limestones rich in larger foraminifera (miogypsinids and nummulitids). This unit is topped by a highly fossiliferous ( Heterostegina, Operculina and Planostegina) sandy limestone. The present study places both units in the Gharra Formation and reports for the first time M. intermedia from the Miocene sequence of the Shabrawet area.

  1. The Early Miocene Climatic Optimum (18-16 Ma): Stable Isotope and Mg/Ca Records from ODP Leg 189 Site 1168.

    NASA Astrophysics Data System (ADS)

    Syed, S.; Pekar, S.

    2008-12-01

    Ice volume estimates for the late early Miocene (~18-16 Ma) were derived from paired oxygen isotope records and Mg/Ca ratios from ODP Site 1168, which is located on the southwest slope of Tasmania. These records indicate the presence of a dynamic ice sheet in Antarctica, with ice-volume estimates up to present day levels occurring with relatively warm bottom water temperatures during isotope events Mi1b (17.9-17.6 Ma) and Mi2 (16.2 Ma). These records also indicate ice-volume decreased significantly during the Early Miocene Climatic Optimum ~17.2 to 16.4 Ma suggesting a near complete collapse of the East Antarctic Ice Sheet, based on an approximately 1‰ decrease in oxygen isotope value of seawater. Bottom water temperatures (BWT) derived from Mg/Ca ratios indicate temperature varied from ~8°C to 3°C, during the early Miocene, with the warmest BWT's occurring during glacial maxima and lowest occurring during glacial minima. Mg/Ca records from other records also indicate ice-volume increases coinciding with deep sea warming. These records suggest Antarctic glaciation may have been influenced by the moisture input by warm saline deep waters (WSDW) originating from the Indian Ocean/Tethys Sea. These WSDW would become entrained and ultimately upwell near Antarctica, resulting in delivering increased moisture/snowfall and therefore increased ice volume on the Antarctic continent. However, an alternative interpretation of the records could be that temperature estimates derived from Mg/Ca ratios may be over estimating the magnitude of temperature changes, thus resulting in an overestimation of ice-volume changes.

  2. Uplift-driven sediment redness decrease at ~16.5 Ma in the Yumen Basin along the northeastern Tibetan Plateau

    PubMed Central

    Wang, Weitao; Zhang, Peizhen; Zheng, Wenjun; Zheng, Dewen; Liu, Caicai; Xu, Hongyan; Zhang, Huiping; Yu, Jingxing; Pang, Jianzhang

    2016-01-01

    Significant climate shifts in the northeastern Tibetan Plateau have taken place during the Cenozoic, but the reasons behind them remain unclear. In order to unravel the mechanisms driving these climate changes, proxy data with accurate age constraint are needed. Here we present magnetostratigraphy, sediment color (redness a*, and lightness L*) and grain-size analysis from an early to middle Miocene (~20–15.3 Ma) sediment sequence preserved in the Yumen Basin on the northeastern Tibetan Plateau. In this basin, remarkable increase in lightness, decreases in redness and in ratio of hematite (Hm) to goethite (Gt) took place at ~16.5 Ma. We suggest that these changes result from shorter duration of weathering, climatic wetting, and cooling associated with rapid uplift of the Qilian Shan at the middle Miocene. PMID:27411593

  3. On the Miocene Cyprideis species flock (Ostracoda; Crustacea) of Western Amazonia (Solimões Formation): Refining taxonomy on species level

    PubMed Central

    Gross, Martin; Ramos, Maria Ines F.; Piller, Werner E.

    2016-01-01

    The Miocene mega-wetland of western Amazonia holds a diverse, largely endemic ostracod fauna. Among them, especially the genus Cyprideis experienced a remarkable radiation. Micropalaeontologic investigations of a 400 m long sediment core (~62 km SW Benjamin Constant, Amazonia, Brazil) permitted a taxonomic revision of about two-thirds of hitherto described Cyprideis species. We evaluate the diagnostic value of shell characters and provide an extensive illustration of the intraspecific variability of species. Based on comparative morphology, the 20 recorded Cyprideis species are arranged in groups and subgroups. The “smooth” group comprises C. amazonica, C. kotzianae, C. kroemmelbeini, C. machadoi, C. multiradiata, C. olivencai, C. paralela and C. simplex; the “ornate” group C. curucae nom. nov., C. cyrtoma, C. aff. graciosa, C. inversa, C. ituiae n. sp., C. matorae n. sp., C. minipunctata, C. munoztorresi nom. nov., C. pebasae, C. reticulopunctata, C. schedogymnos and C. sulcosigmoidalis. Five species have been revalidated, two renamed, two synonymised and two are new descriptions. Along with 10 further formally established species, for which a review is pending, Cyprideis keeps at least 30 endemic species in that region during Miocene times. Up to 12 Cyprideis species have been found to occur sympatrically, representing >90 % of the entire ostracod fauna. Ostracod index species enable a biostratigraphic allocation of the well succession to the Cyprideis minipunctata to Cyprideis cyrtoma biozones, corresponding to a late Middle to early Late Miocene age (late Serravallian–early Tortonian). PMID:25543674

  4. On the Miocene Cyprideis species flock (Ostracoda; Crustacea) of Western Amazonia (Solimões Formation): Refining taxonomy on species level.

    PubMed

    Gross, Martin; Ramos, Maria Ines F; Piller, Werner E

    2014-12-18

    The Miocene mega-wetland of western Amazonia holds a diverse, largely endemic ostracod fauna. Among them, especially the genus Cyprideis experienced a remarkable radiation. Micropalaeontologic investigations of a 400 m long sediment core (~62 km SW Benjamin Constant, Amazonia, Brazil) permitted a taxonomic revision of about two-thirds of hitherto described Cyprideis species. We evaluate the diagnostic value of shell characters and provide an extensive illustration of the intraspecific variability of species. Based on comparative morphology, the 20 recorded Cyprideis species are arranged in groups and subgroups. The "smooth" group comprises C. amazonica, C. kotzianae, C. kroemmelbeini, C. machadoi, C. multiradiata, C. olivencai, C. paralela and C. simplex; the "ornate" group C. curucae nom. nov., C. cyrtoma, C. aff. graciosa, C. inversa, C. ituiae n. sp., C. matorae n. sp., C. minipunctata, C. munoztorresi nom. nov., C. pebasae, C. reticulopunctata, C. schedogymnos and C. sulcosigmoidalis. Five species have been revalidated, two renamed, two synonymised and two are new descriptions. Along with 10 further formally established species, for which a review is pending, Cyprideis keeps at least 30 endemic species in that region during Miocene times. Up to 12 Cyprideis species have been found to occur sympatrically, representing >90% of the entire ostracod fauna. Ostracod index species enable a biostratigraphic allocation of the well succession to the Cyprideis minipunctata to Cyprideis cyrtoma biozones, corresponding to a late Middle to early Late Miocene age (late Serravallian-early Tortonian).

  5. Oligo-Miocene Alpine Sediment Routing from Integrated Analysis of Seismic-Reflection Data and Detrital Zircon U-Pb Geochronology

    NASA Astrophysics Data System (ADS)

    Hubbard, S. M.; Sharman, G.; Covault, J. A.

    2014-12-01

    We integrate detrital zircon geochronology and 3D seismic-reflection data to reconstruct Oligo-Miocene paleogeography and sediment routing from the Alpine hinterland to Austrian Molasse foreland basin. Three-dimensional seismic-reflection data image a network of deepwater tributaries and a long-lived (>8 Ma) foredeep-axial channel belt through which predominantly southerly and westerly turbidity currents are interpreted to have transported Alpine detritus >100 km. We analyzed 793 detrital zircon grains from ten sandstone samples collected from the seismically mapped network of channel fill. Grain age populations correspond with major Alpine orogenic cycles: the Cadomian (750-530 Ma), the Caledonian (500-400 Ma), and the Variscan orogenies (350-250 Ma). Additional age populations correspond with Eocene-Oligocene Periadriatic magmatism (40-30 Ma) and pre-Alpine, Precambrian sources >750 Ma. The abundances of these age populations vary between samples. Sediment that entered the foredeep-axial channel belt from the west (freshwater Molasse) and southwest (Inntal fault zone) is characterized by statistically indistinguishable, well-distributed detrital zircon ages. Sandstone from a shallow marine unit that was deposited proximal to the northern basin margin consists of >75% Variscan (350-300 Ma) zircon, which is believed to have originated from the Bohemian Massif to the north. Mixing calculations based on the Kolmogorov-Smirnoff statistic suggest that the Alpine fold-thrust belt was an important source of detritus to the deepwater Molasse basin. We document east-to-west provenance dilution within the axial channel belt via one or more southern tributaries. Our results have important implications for sediment dispersal patterns within continental-scale orogens, including the relative role of longitudinal versus transverse sediment delivery in peripheral foreland basins.

  6. Miocene volcanism in the Oaş-Gutâi Volcanic Zone, Eastern Carpathians, Romania: Relationship to geodynamic processes in the Transcarpathian Basin

    NASA Astrophysics Data System (ADS)

    Kovacs, Marinel; Seghedi, Ioan; Yamamoto, Masatsugu; Fülöp, Alexandrina; Pécskay, Zoltán; Jurje, Maria

    2017-12-01

    We present the first comprehensive study of Miocene volcanic rocks of the Oaş-Gutâi Volcanic Zone (OGVZ), Romania, which are exposed in the eastern Transcarpathian Basin (TB), within the Eastern Alpine-Western Carpathian-Northern Pannonian (ALCAPA) block. Collision between the ALCAPA block and Europe at 18-16 Ma produced the Carpathian fold-and-thrust belt. This was followed by clockwise rotation and an extensional regime forming core complexes of the separated TB fragment. Based on petrographic and geochemical data, including Srsbnd Nd isotopic compositions and Ksbnd Ar ages, we distinguish three types of volcanic activity in the OGVZ: (1) early Miocene felsic volcanism that produced caldera-related ignimbrites in the Gutâi Mountains (15.4-14.8 Ma); (2) widespread middle-late Miocene intermediate/andesitic volcanism (13.4-7.0 Ma); and (3) minor late Miocene andesitic/rhyolitic volcanism comprising the Oraşu Nou rhyolitic volcano and several andesitic-dacitic domes in the Oaş Mountains (11.3-9.5 Ma). We show that magma evolution in the OGVZ was controlled by assimilation-fractional crystallization and magma-mixing processes within an interconnected multi-level crustal magmatic reservoir. The evolution of volcanic activity within the OGVZ was controlled by the geodynamics of the Transcarpathian Basin. The early felsic and late intermediate Miocene magmas were emplaced in a post-collisional setting and were derived from a mantle source region that was modified by subduction components (dominantly sediment melts) and lower crust. The style of volcanism within the eastern TB system exhibits spatial variations, with andesitic composite volcanoes (Gutâi Mountains) observed at the margins, and isolated andesitic-rhyolitic monogenetic volcanoes (Oaş Mountains) in the center of the basin.

  7. Erosional history of the Appalachians as recordeed in detrital zircon fission-track ages and lithic detritus in Atlantic Coastal Plain sediments

    USGS Publications Warehouse

    Naeser, C.W.; Naeser, N.D.; Edwards, Lucy E.; Weems, Robert E.; Southworth, C. Scott; Newell, Wayne L.

    2016-01-01

    and Maryland, sands of Early Cretaceous through late early Oligocene age do not yield any old zircons comparable in age to the old zircons found in bedrock in the western Appalachians. Very old zircons yielding FT ages >800 Ma are only encountered in Coastal Plain sands of middle early Miocene and younger age.Miocene and younger fluvial-deltaic deposits associated with the major mid-Atlantic Coastal Plain rivers that now head in the western Appalachians (the Hudson, Delaware, Susquehanna, Potomac, James, and Roanoke) contain abundant clasts of fossiliferous chert and quartzite and other distinctive rock types derived from Paleozoic rocks of the western Appalachians. These distinctive clasts have not been reported in older Coastal Plain sediments.The ZFT and lithic detritus data indicate that the drainage divide for one or more east-flowing mid-Atlantic rivers migrated west into the western Appalachians, and the river(s) began transporting western Appalachian detritus to the Atlantic Coastal Plain, sometime between the late early Oligocene and middle early Miocene. By no later than late middle Miocene most if not all of the major rivers that now head west of the Blue Ridge were transporting western Appalachian detritus to the Coastal Plain. Prior to the drainage divide migrating into the western Appalachians, the ZFT data are consistent with the dominant source of Atlantic Coastal Plain sediments being detritus from the Piedmont and main part of the Blue Ridge, with possible input from distant volcanic sources.The ZFT data suggest that the rapid increase in the rate of siliciclastic sediment accumulation in middle Atlantic margin offshore basins that peaked in the middle Miocene and produced almost 30 percent of the total volume of post-rift siliciclastic sediments in the offshore basins began in the early Miocene when Atlantic river(s) gained access to the relatively easily eroded Paleozoic sedimentary rocks of the western Appalachians.

  8. Refinement of late-Early and Middle Miocene diatom biostratigraphy for the east coast of the United States

    USGS Publications Warehouse

    Barron, John A.; Browning, James; Sugarman, Peter; Miller, Kenneth G.

    2013-01-01

    Integrated Ocean Drilling Program (IODP) Expedition 313 continuously cored Lower to Middle Miocene sequences at three continental shelf sites off New Jersey, USA. The most seaward of these, Site M29, contains a well-preserved Early and Middle Miocene succession of planktonic diatoms that have been independently correlated with the geomagnetic polarity time scale derived in studies from the equatorial and North Pacific. Shallow water diatoms (species of Delphineis, Rhaphoneis, and Sceptroneis) dominate in onshore sequences in Maryland and Virginia, forming the basis for the East Coast Diatom Zones (ECDZ). Integrated study of both planktonic and shallow water diatoms in Hole M29A as well as in onshore sequences in Maryland (the Baltimore Gas and Electric Company well) and Delaware (the Ocean Drilling Program Bethany Beach corehole) allows the refinement of ECDZ zones into a high-resolution biochronology that can be successfully applied in both onshore and offshore regions of the East Coast of the United States. Strontium isotope stratigraphy supports the diatom biochronology, although for much of the Middle Miocene it suggests ages that are on average 0.4 m.y. older. The ECDZ zonal definitions are updated to include evolutionary events of Delphineis species, and regional occurrences of important planktonic diatom marker taxa are included. Updated taxonomy, reference to published figures, and photographic images are provided that will aid in the application of this diatom biostratigraphy.

  9. Tropical sea surface temperature variability near the Oligocene - Miocene boundary

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Pagani, M.

    2010-12-01

    The Oligocene/Miocene (O-M) boundary is characterized by a period of rapid and intense glaciation labeled Mi-1 at ~ 23.1 Ma. An abrupt 1.5‰ increase in the benthic foraminifera oxygen isotope composition that characterizes Mi-1 may indicate a (1) significant deep-water temperature decrease; (2) major ice-sheet expansion, or the combination of both. Current coarse Mg/Ca-based temperature estimations for the early Miocene suggests that deep-ocean temperatures were ~2°C warmer than Today [1, 2]. However, Mg/Ca based temperatures can also be influenced by changes in the carbonate ion concentration, vital effects, and diagenesis. In particular, recent evidence from mid-ocean ridge flank carbonate veins shows dramatic seawater Mg/Ca ratio changes during the Neogene (Mg/Ca from ~2.2 to 5.3, [3]), which further challenges the application of Mg/Ca thermometry. Owing to poor temperature constraints, current ice volume estimations for the late Oligocene/early Miocene range from 125% of the present-day East Antarctic Ice Sheet (EAIS) to a nearly complete collapse of the Antarctic glaciers [4]. Here we present tropical sea surface temperatures (SSTs) records based on TEX86 and alkenone UK37 near the O-M boundary. Sediment samples from Ocean Drilling Program (ODP) Site 926 in the Ceara Rise (tropical Atlantic) and Site 1148 in the South China Sea (tropical Pacific) were subject to lipid extraction, separation, gas chromatography, and liquid chromatography-mass spectrometry analysis. TEX86-based SST indicates that the tropics were ~3-4°C warmer than today and relatively stable during Mi-1. This suggests that ice-sheet dynamics, rather than temperature, might be responsible for the observed oxygen isotope changes during the O-M boundary. Further, O-M boundary averaged temperatures recorded at site 926 is ~ 0.5°C higher relative to the late Eocene from site 925 (a nearby site [5]). Given late Oligocene benthic δ18O that suggests at least 1‰ enrichment relative to the late

  10. Late Oligocene-early Miocene birth of the Taklimakan Desert.

    PubMed

    Zheng, Hongbo; Wei, Xiaochun; Tada, Ryuji; Clift, Peter D; Wang, Bin; Jourdan, Fred; Wang, Ping; He, Mengying

    2015-06-23

    As the world's second largest sand sea and one of the most important dust sources to the global aerosol system, the formation of the Taklimakan Desert marks a major environmental event in central Asia during the Cenozoic. Determining when and how the desert formed holds the key to better understanding the tectonic-climatic linkage in this critical region. However, the age of the Taklimakan remains controversial, with the dominant view being from ∼ 3.4 Ma to ∼ 7 Ma based on magnetostratigraphy of sedimentary sequences within and along the margins of the desert. In this study, we applied radioisotopic methods to precisely date a volcanic tuff preserved in the stratigraphy. We constrained the initial desertification to be late Oligocene to early Miocene, between ∼ 26.7 Ma and 22.6 Ma. We suggest that the Taklimakan Desert was formed as a response to a combination of widespread regional aridification and increased erosion in the surrounding mountain fronts, both of which are closely linked to the tectonic uplift of the Tibetan-Pamir Plateau and Tian Shan, which had reached a climatically sensitive threshold at this time.

  11. Lake Chad sedimentation and environments during the late Miocene and Pliocene: New evidence from mineralogy and chemistry of the Bol core sediments

    NASA Astrophysics Data System (ADS)

    Moussa, Abderamane; Novello, Alice; Lebatard, Anne-Elisabeth; Decarreau, Alain; Fontaine, Claude; Barboni, Doris; Sylvestre, Florence; Bourlès, Didier L.; Paillès, Christine; Buchet, Guillaume; Duringer, Philippe; Ghienne, Jean-François; Maley, Jean; Mazur, Jean-Charles; Roquin, Claude; Schuster, Mathieu; Vignaud, Patrick; Brunet, Michel

    2016-06-01

    This study presents mineralogical and geochemical data from a borehole drilled near the locality of Bol (13°27‧N, 14°44‧E), in the eastern archipelago of the modern Lake Chad (Chad). Samples were taken from a ∼200 m long core section forming a unique sub-continuous record for Central Africa. Among these samples, 25 are dated between 6.4 and 2.4 Ma. Dominant minerals are clays (66% average) mixed with varying amounts of silt and diatomite. The clay fraction consists of Fe-beidellite (87% average), kaolinite, and traces of illite. Clay minerals originate from the erosion of the vertisols that surrounded the paleolake Chad. Sedimentological data indicate that a permanent lake (or recurrent lakes) existed from 6.7 until 2.4 Ma in the vicinity of Bol. By comparison with modern latitudinal distribution of vertisols in Africa the climate was Sudanian-like. Changes in the sedimentation rate suggest a succession of wetter and dryer periods during at least six million years in the region during the critical time period covering the Miocene-Pliocene transition.

  12. Mid Miocene Terrestrial Ecosystems: Information from Mammalian Herbivore Communities.

    NASA Astrophysics Data System (ADS)

    Janis, C. M.; Damuth, J.; Theodor, J. M.

    2001-05-01

    In present day ecosystems the numbers and proportions of different kinds of ecologically distinct ungulates (hoofed mammals) provide an indicator of the nature of the vegetation in the habitat. Different vegetation types (such as forest, savanna, or grassland) are characteristically associated with different arrays of ungulates, with species exhibiting differences in diet, body size, and type of digestive fermentation system. These biological attributes can also be inferred for fossil ungulate species, the first two from quantitative assessment of skull and dental anatomy, and the last from phylogenetic affinity. Thus fossil ungulate communities may be used as indicators of the vegetation types of the habitats in which they lived. Vegetation types, in turn, are determined largely by a number of physical environmental factors. Typical ungulate communities of the late early to early middle Miocene (17 - 15 Ma) from the Great Plains of North America contained a diversity of browsing (leaf-eating) and grazing (grass-eating) species, with proportions of dietary types and a diversity of body sizes indicative of a woodland savanna habitat. Paleobotanical evidence also indicates a woodland savanna type of vegetation. However, these communities included a much larger number of ungulate species than can be found in any present-day community. The "excess" ungulate species were primarily browsers. Throughout the rest of the middle Miocene both species numbers and the proportion of browsers in ungulate communities appear to have declined steadily. During this decline in browser species the numbers of grazer species remained relatively constant. Within-community species numbers comparable to the present day were attained by the late Miocene. We suggest that the early Miocene browser-rich communities, and their subsequent decline, carry an important paleoenvironmental signal. In particular, communities "over rich" in browsers may reflect higher levels of primary productivity in

  13. Palynology, paleoclimatology and correlation of middle Miocene beds from Porcupine River (locality 90-1), Alaska

    USGS Publications Warehouse

    White, J.M.; Ager, T.A.

    1994-01-01

    Beds in the Upper Ramparts Canyon of the Porcupine River, Alaska (67?? 20' N, 141?? 20' W), yielded a flora rich in pollen of hardwood genera now found in the temperate climates of North America and Asia. The beds are overlain or enclosed by two basalt flows which were dated to 15.2 ?? 0.1 Ma by the 40Ar 39Ar method, fixing the period of the greatest abundance of warm-loving genera to the early part of the middle Miocene. The assemblage is the most northern middle Miocene flora known in Alaska. Organic bed 1 underlies the basalt and is older than 15.2 Ma, but is of early to middle Miocene age. The pollen assemblage from organic bed 1 is dominated by conifer pollen from the pine and redwood-cypress-yew families with rare occurrences of temperate hardwoods. Organic bed 2 is a forest floor containing redwood trees in life position, engulfed by the lowest basalt flow. A pine log has growth rings up to 1 cm thick. Organic beds 3 and 4 comprise lacustrine sediment and peat between the two basalt flows. Their palynoflora contain conifers and hardwood genera, of which about 40% have modern temperate climatic affinities. Hickory, katsura, walnut, sweet gum, wingnut, basswood and elm pollen are consistently present, and beech and oak alone make up about 20% of the pollen assemblage. A warm high latitude climate is indicated for all of the organic beds, but organic bed 3 was deposited under a time of peak warmth. Climate data derived by comparison with modern east Asian vegetation suggest that, at the time of deposition of organic bed 3, the Mean Annual Temperature (MAT) was ca. 9??C, the Warm Month Mean Temperature (WMMT) was ??? 20??C and the Cold Month Mean Temperature (CMMT) was ca. -2??C. In contrast, the modern MAT for the region is -8.6??C, WMMT is 12.6??C and CMMT is -28??C. Organic beds 3 and 4 correlate to rocks of the middle Miocene-late Seldovian Stage of Cook Inlet and also probably correlate to, and more precisely date, the lower third of the Suntrana Formation

  14. Seasonal ocean upwelling recorded by the late Miocene Pisco Formation diatomites of Peru

    NASA Astrophysics Data System (ADS)

    Gariboldi, Karen; Pike, Jennifer; Di Celma, Claudio; Malinverno, Elisa; Gioncada, Anna; Bianucci, Giovanni

    2017-04-01

    A 25-cm-thick sample of diatomaceous mudstone was collected in the whale fossil-bearing late Miocene Pisco Formation at Cerro Los Quesos in Peru. This macroscopically-laminated sample was divided into blocks and embedded in epoxy resin for light and scanning electron microscope (SEM) analysis. In only a few cases are laminae well preserved and, hence, useful for paleoenvironmental studies. In these few cases, a terrigenous lamina - Coscinodiscus ooze lamina - mixed lamina (Chaetoceros resting spores, Thalassionema, terrigenous material) sequence is observed. By comparison with Holocene sediment laminations from the Gulf of California, the late Miocene Peruvian triplet laminations are interpreted as an annual depositional cycle. The terrigenous lamina was deposited in the wet season (summer). Coscinodiscus ooze was the product of: (1) initial high summer primary production which took place at the thermocline during water column stratification; and (2) a subsequent 'Fall dump', or sedimentation, of the diatoms due to autumn storm-related mixing of the water column. Finally, the mixed lamina was deposited during/following the spring bloom. The frequent disruption or homogenisation of laminae observed in the slides was attributed to bioturbation by microbenthic organisms. This bioturbation was accompanied by a general absence of macrobenthos in the late Miocene diatomites of the Pisco Formation; such conditions are commonly interpreted as the consequence of a suboxic sea floor environment. In this presentation we will demonstrate the seasonal nature of the Late Miocene Pisco Formation diatomites and show novel SEM microelemental maps that help interpreting the paleonvironmental conditions at the sea floor at the time of diatomites deposition.

  15. A new genus and species of tettigarctid cicada from the early Miocene of New Zealand: Paratettigarcta zealandica (Hemiptera, Auchenorrhyncha, Tettigarctidae)

    PubMed Central

    Kaulfuss, Uwe; Moulds, Max

    2015-01-01

    Abstract A new genus and species of primitive cicada (Hemiptera: Tettigarctidae) is described from the early Miocene of southern New Zealand. Paratettigarcta zealandica gen. et sp. n. is the first cicada (Cicadoidea) fossil from New Zealand and exhibits wing venation patterns typical for the subfamily Tettigarctinae. It differs from other fossil taxa and the extant genus Tettigarcta in the early divergence of CuA2 from the nodal line in the forewing, its parallel-sided subcostal cell, the early bifurcation of vein M and long apical cells of the hindwing, and in wing pigmentation patterns. PMID:25829843

  16. Palaeoenvironments during a terminal Oligocene or early Miocene transgression in a fluvial system at the southwestern tip of Africa

    NASA Astrophysics Data System (ADS)

    Roberts, D. L.; Neumann, F. H.; Cawthra, H. C.; Carr, A. S.; Scott, L.; Durugbo, E. U.; Humphries, M. S.; Cowling, R. M.; Bamford, M. K.; Musekiwa, C.; MacHutchon, M.

    2017-03-01

    A multi-proxy study of an offshore core in Saldanha Bay (South Africa) provides new insights into fluvial deposition, ecosystems, phytogeography and sea-level history during the late Paleogene-early Neogene. Offshore seismic data reveal bedrock topography, and provide evidence of relative sea levels as low as - 100 m during the Oligocene. 3D landscape reconstruction reveals hills, plains and an anastomosing river system. A Chattian or early Miocene age for the sediments is inferred from dinoflagellate taxa Distatodinium craterum, Chiropteridium lobospinosum, Homotryblium plectilum and Impagidinium paradoxum. The subtropical forest revealed by palynology includes lianas and vines, evergreen trees, palms and ferns, implying higher water availability than today, probably reduced seasonal drought and stronger summer rainfall. From topography, sedimentology and palynology we reconstruct Podocarpaceae-dominated forests, Proto-Fynbos, and swamp/riparian forests with palms and other angiosperms. Rhizophoraceae present the first South African evidence of Palaeogene/Neogene mangroves. Subtropical woodland-thicket with Combretaceae and Brachystegia (Peregrinipollis nigericus) probably developed on coastal plains. Some of the last remaining Gondwana elements on the sub-continent, e.g., Araucariaceae, are recorded. Charred particles signal fires prior to the onset of summer dry climate at the Cape. Marine and terrestrial palynomorphs, together with organic and inorganic geochemical proxy data, suggest a gradual glacio-eustatic transgression. The data shed light on Southern Hemisphere biogeography and regional climatic conditions at the Palaeogene-Neogene transition. The proliferation of the vegetation is partly ascribed to changes in South Atlantic oceanographic circulation, linked to the closure of the Central American Seaway and the onset of the Benguela Current 14 Ma.

  17. Late Miocene remagnetization within the internal sector of the Northern Apennines, Italy

    USGS Publications Warehouse

    Aiello, I.W.; Hagstrum, J.T.; Principi, G.

    2004-01-01

    Paleomagnetic and geologic evidence indicates that Upper Jurassic radiolarian cherts of both the Tuscan Cherts Formation (continental margin, Tuscan Units) and the Monte Alpe Cherts Formation (oceanic crust, Ligurian Units) were remagnetized during Miocene orogenesis of the Northern Apennines of Italy. Characteristic overprint magnetizations with reversed polarities have been found over a large area within the internal sector of the Northern Apennines, including eastern Liguria, Elba Island and the Thyrrenian margin, and west of the Middle Tuscan Ridge. The reversed-polarity overprint (average direction: D=177??, I=-52??, ??95=15??) was most likely acquired during Late Miocene uplift and denudation of the orogenic chain, and thermochemical remagnetization was a probable consequence of increased circulation of orogenic fluids. Similarly, mostly reversed-polarity directions of magnetization have been found by other workers in overlying post-orogenic Messinian sediments (D=177??, I=-57??, ??95=3??), which show little counterclockwise (CCW) vertical-axis rotation with respect to stable Europe (-8??5??). The Monte Alpe Cherts sampled at sites in the external sector of the Northern Apennines, close to major tectonic features, have normal- polarity overprint directions with in situ W-SW declinations. Since the overlying post-orogenic Messinian sediments have not been substantially rotated about vertical axes, the evidence points to an earlier,pre-Late Miocene remagnetization in the external parts of the orogenic chain. ?? 2004 Elsevier B.V. All rights reserved.

  18. Late Miocene to Early Pleistocene Paleo-Erosion Rates and Provenance Change in the NE Argentinian Andes: Apparent Coupling of Sediment Fluxes with 400-kyr Eccentricity Cycles

    NASA Astrophysics Data System (ADS)

    Burch Fisher, G.; Amidon, William H.; Burbank, Douglas W.; Luna, Lisa V.

    2016-04-01

    Proposed linkages among climate, erosion, and tectonics provide an appealing framework for interpretation of the interplay among tectonic forcing, topographic form, climatic inputs, and rates of erosion. More rapid deformation is hypothesized to create higher and steeper topography that focuses precipitation, drives faster erosion, and enhances slip rates. But, a determination of cause and effect or synchrony in any proposed tectonic-climate-erosion coupling is commonly difficult to extract. Typically constraints on age and provenance are too loose, or records are too short, irregular, or sparse to permit nuanced interpretations. In fact, clear records in active orogens that reveal a persistent climatic imprint on erosion rates (such as ones scaled by Milankovich-type cyclicity) are rare, especially for pre-Quaternary intervals. Here, along the Rio Iruya on the eastern flank of the NE Argentinian Andes, we exploit a unique field setting in which a 100-m-deep canyon has been cut during the past century through a 6-km-thick tilted sequence of upper Cenozoic synorogenic strata. Sample ages in the Iruya gorge are provided by a high-quality magnetostratigraphy (~100-kyr resolution) that is calibrated with U-Pb zircon ages of interbedded tephra. Detrital zircon ages and quartz trace elements provide a provenance record for the sampled section. Here, we report 49 new detrital 10Be cosmogenic paleo-erosion rates spanning from the Late Miocene to Early Pleistocene (~5.8 to 1.8 Ma). Paired with each 10Be sample that is younger than ~3.3 Ma, 23 26Al samples provide a second proxy for paleo-erosion rates. 20th-century canyon cutting obviates the typical uncertainties associated with unconstrained Late Quaternary cosmogenic production due to exhumation prior to sampling. Three different erosion-rate regimes are apparent: from 1.8 to 2.3 Ma, rates are high with few oscillations; from 2.3 to 4.0 Ma, rates oscillate by a factor of 5 on a ~400-kyr timescale; and from 5.8 to 4.0 Ma

  19. Miocene-Oligocene sequence stratigraphy of the Malay Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovell, R.; Elias, M.R.; Hill, R.E.

    1994-07-01

    The Malay Basin has experienced extension of the Eocene ( ) through Oligocene, sag in the early Miocene, and compression in the middle Miocene through Pliocene-Pleistocene. The interaction of structurally induced and glacial-eustatic accommodation changes has resulted in complex, interrelated play elements, including multiple reservoirs, diverse nonmarine sources, discontinuous migration pathways, and thin seals. Extensional subbasins were filled with braided streams, associated coastal plain, lacustrine deltas, and thick lake shales (groups M-K). This initial rift fill comprises an overall second order progradational cycle punctuated by 3rd-order cycles. These 3rd-order cycles are capped by thick, source-rich, lacustrine shale packages. The lowermore » Miocene section (groups I and J) consists of progradational to aggradational fluvial to tidally-dominated estuarine sands. Hydrocarbons are generated from interbedded coals and other coal-related lithologies.« less

  20. Early pleistocene sediments at Great Blakenham, Suffolk, England

    NASA Astrophysics Data System (ADS)

    Gibbard, P. L.; Allen, P.; Field, M. H.; Hallam, D. F.

    Detailed investigation of a fine sediment sequence, the College Farm Silty Clay Member, that overlies the Creeting Sands (Early Pleistocene) in Suffolk, is presented. The sedimentary sequence is thought to represent a freshwater pool accumulation in a small coastal embayment. Palaeobotanical investigation of the sediment indicates that it accumulated during the late temperate substage of a temperate (interglacial) event. The occurrence of Tsuga pollen, associated with abundant remains of the water fern Azolla tegeliensis indicate that the deposits are of Early Pleistocene age and are correlated with a later part of the Antian-Bramertonian Stage. Correlation with Tiglian TO substage in The Netherlands' sequence is most likely. The sediments' normal palaeomagnetic polarity reinforces the biostratigraphical correlation.

  1. Diagenetic history of late Oligocene-early Miocene carbonates in East Sabah, Malaysia

    NASA Astrophysics Data System (ADS)

    Zainal Abidin, N. S.; Raymond, R. R.; Bashah, N. S. I.

    2017-10-01

    Limestones are particularly susceptible to drastic early diagenesis modifications, mainly cementation and dissolution. During the early Miocene, a major tectonic deformation has caused a widespread of uplift in Sabah. This has resulted change in depositional environment from deep to shallow marine, which favours the deposition of Gomantong Limestone. This study aims to investigate the diagenetic history of Gomantong Limestone in East Sabah. Thorough understanding of the diagenetic processes may provide data to unravel the tectonic activities which affected the reservoir quality of the carbonates. Combining the data from comprehensive petrographic analysis, and Scanning Electron Microscopy (SEM) of 30 samples, two main cements type were identified. These are microcrystalline cement and Mg-calcite cement of granular and blocky mosaics which are dominantly seen in all samples. The sequence of diagenesis events are determined as (1) micritization; (2) grain scale compaction; (3) cementation (pore-filling); (4) mechanical compaction and cementation infilling fractures and (5) chemical compaction. These diagenetic events are interpreted as reflection of changes in diagenetic environment from shallow marine to deep burial. The massive cementation in the Gomantong Limestone has resulted into a poor reservoir quality.

  2. Early Miocene origin and cryptic diversification of South American salamanders

    PubMed Central

    2013-01-01

    Background The currently recognized species richness of South American salamanders is surprisingly low compared to North and Central America. In part, this low richness may be due to the salamanders being a recent arrival to South America. Additionally, the number of South American salamander species may be underestimated because of cryptic diversity. The aims of our present study were to infer evolutionary relationships, lineage diversity, and timing of divergence of the South American Bolitoglossa using mitochondrial and nuclear sequence data from specimens primarily from localities in the Andes and upper Amazon Basin. We also estimated time of colonization of South America to test whether it is consistent with arrival via the Panamanian Isthmus, or land bridge connection, at its traditionally assumed age of 3 million years. Results Divergence time estimates suggest that Bolitoglossa arrived in South America from Central America by at least the Early Miocene, ca. 23.6 MYA (95% HPD 15.9-30.3 MYA), and subsequently diversified. South American salamanders of the genus Bolitoglossa show strong phylogeographic structure at fine geographic scales and deep divergences at the mitochondrial gene cytochrome b (Cytb) and high diversity at the nuclear recombination activating gene-1 (Rag1). Species often contain multiple genetically divergent lineages that are occasionally geographically overlapping. Single specimens from two southeastern localities in Ecuador are sister to the equatoriana-peruviana clade and genetically distinct from all other species investigated to date. Another single exemplar from the Andes of northwestern Ecuador is highly divergent from all other specimens and is sister to all newly studied samples. Nevertheless, all sampled species of South American Bolitoglossa are members of a single clade that is one of several constituting the subgenus Eladinea, one of seven subgenera in this large genus. Conclusions The ancestors of South American salamanders

  3. Correlation of offshore seismic profiles with onshore New Jersey Miocene sediments

    USGS Publications Warehouse

    Monteverde, D.H.; Miller, K.G.; Mountain, Gregory S.

    2000-01-01

    The New Jersey passive continental margin records the interaction of sequences and sea-level, although previous studies linking seismically defined sequences, borehole control, and global ??18O records were hindered by a seismic data gap on the inner-shelf. We describe new seismic data from the innermost New Jersey shelf that tie offshore seismic stratigraphy directly to onshore boreholes. These data link the onshore boreholes to existing seismic grids across the outer margin and to boreholes on the continental slope. Surfaces defined by age; facies, and log signature in the onshore boreholes at the base of sequences Kw2b, Kw2a, Kw1c, and Kw0 are now tied to seismic sequence boundaries m5s, m5.2s, m5.4s, and m6s, respectively, defined beneath the inner shelf. Sequence boundaries recognized in onshore boreholes and inner shelf seismic profiles apparently correlate with reflections m5, m5.2, m5.4, and m6, respectively, that were dated at slope boreholes during ODP Leg 150. We now recognize an additional sequence boundary beneath the shelf that we name m5.5s and correlate to the base of the onshore sequence Kw1b. The new seismic data image prograding Oligocene clinoforms beneath the inner shelf, consistent with the results from onshore boreholes. A land-based seismic profile crossing the Island Beach borehole reveals reflector geometries that we tie to Lower Miocene litho- and bio-facies in this borehole. These land-based seismic profiles image well-defined sequence boundaries, onlap and downlap truncations that correlate to Transgressive Systems Tracts (TST) and Highstand Systems Tracts (HST) identified in boreholes. Preliminary analysis of CH0698 data continues these system tract delineations across the inner shelf The CH0698 seismic profiles tie seismically defined sequence boundaries with sequences identified by lithiologic and paleontologic criteria. Both can now be related to global ??18O increases and attendant glacioeustatic lowerings. This integration of core

  4. Paleoenvironmental reconstruction of the Oligocene-Miocene deposits of the Tethyan Seaway, Qom Formation, Central Iran

    NASA Astrophysics Data System (ADS)

    Dabaghi Sadr, Fatemeh; Schmiedl, Gerhard

    2017-04-01

    The Cenozoic climate transition from greenhouse to icehouse conditions was associated with major paleogeographic changes in the Tethyan realm. The closure of the Tethyan Seaway and its Iranian gateways during the terminal Paleogene and early Neogene, between approximately 28 and 18 million years, influenced the latitudinal exchange of water masses and energy and is documented in sediment successions of the Qom formation in central Iran. Little is known on the spatial expression and the exact depositional histories of the Qom Formation on orbital time-scales, including a lack of quantitative sea-level reconstructions and studies on the impact of climatic and tectonic changes on marine ecosystems and sedimentation processes. The PhD project focuses on the investigation of lithostratigraphy, biostratigraphy, paleoecology and paleoenvironmental evolution of the Iranian gateways based on late Oligocene to early Miocene foraminiferal faunas and carbonate facies from selected sediment sections of the Qom Basin. The Qom Formation was deposited in the Central Iranian back-arc basin during the Oligocene-Miocene. In this study foraminiferal faunas and carbonate microfacies were studied based on total 191 samples of two section of Qom Formation. One of them is Molkabad section, which is located northwest of Molkabad mountains, southeast of Garmsar. The section mainly consists of limestones, calcareous marls, marls, and gypsum-bearing marls with a total thickness of 760 meters. The Qom Formation at Molkabad section overlies Eocene rocks with an unconformity and consists of the following lithostratigraphic units (from the lower to upper part): Lithothamnium Limestone, Lower Marl Limestone, Bryozoa Limestone, and Upper Marl Group. The Molkabad fault separates the Qom Formation from the overlying Upper Red Formation. The other section is located at Navab anticline in Qom Formation .The section mainly consist of limestone, marl, and gypsum with a total thickness of 318 meters Navab

  5. New Evidence For A Late Miocene Onset Of The Amazon River Following Andean Tectonics And Quaternary Climate Change

    NASA Astrophysics Data System (ADS)

    Hoorn, M. C.; Bogota-Angel, G.; Romero-Baez, M.; Lammertsma, E.; Flantua, S. G. A.; Dantas, E. L.; Dino, R.; do Carmo, D.; Chemale, F., Jr.

    2017-12-01

    The Amazon River influenced biotic evolution on land and at sea, but its onset and development are still debated. Terrestrial sedimentary records are sparse, far apart, and do not present a continuous stratigraphy and thus greatly complicate the reconstruction of the history of this river system. At sea the stratigraphic record is better known thanks to hydrocarbon exploration efforts, but these data are not in the public domain. Renewed exploration in the Amazon submarine fan (Brazilian Equatorial Margin) has provided novel data and materials from wells drilled along the slope of the Amazon submarine fan, that are now partially available for scientific research. Here we report on the results of a geochemical and palynological study of `Well 2' based on which we determined the age and provenance of early Miocene to Pleistocene sediments. The palynological data were also used to reconstruct past biomes on land, which ranged from mangrove and lowland forest to alpine vegetation. A distinct change in provenance was observed between 9.4 Ma and 9 Ma, which represented a change from Amazonian to Andean sediment source. This signal is replicated in the palynological record, which shows a shift from lowland to high-mountain taxa. Furthermore, we observed a very large increase of grass pollen from the Pliocene onwards with a further rise in the Pleistocene. These changes coincide with a rise in sedimentation rates. We interpret these results as following: a) the arrival of Andean sediments is related to the onset of the transcontinental river, b) the two-step rise of grass pollen and manifold increase in sediment discharge are related to Quaternary climatic change. These results agree with earlier and recent findings on the Ceara Rise and firmly place the birth of this river in the late Miocene. This study exemplifies the continental scale of tectonic changes on fluvial environments and biota across a W-E transect of South America. The study of this well is continued and we

  6. Correlating Mediterranean shallow water deposits with global Oligocene-Miocene stratigraphy and oceanic events.

    PubMed

    Reuter, Markus; Piller, Werner E; Brandano, Marco; Harzhauser, Mathias

    2013-12-01

    Shallow-marine sediment records have the strong potential to display sensitive environmental changes in sedimentary geometries and skeletal content. However, the time resolution of most neritic carbonate records is not high enough to be compared with climatic events as recorded in the deep-sea sediment archives. In order to resolve the paleoceanographic and paleoclimatic changes during the Oligocene-Miocene transition in the Mediterranean shallow water carbonate systems with the best possible time resolution, we re-evaluated the Decontra section on the Maiella Platform (central Apennines, Italy), which acts as a reference for the correlation of Oligocene-Miocene shallow water deposits in the Mediterranean region. The 120-m-thick late Oligocene-late Miocene carbonate succession is composed of larger foraminiferal, bryozoan and corallinacean limestones interlayered with distinct planktonic foraminiferal carbonates representing a mostly outer neritic setting. Integrated multi-proxy and facies analyses indicate that CaCO 3 and total organic carbon contents as well as gamma-ray display only local to regional processes on the carbonate platform and are not suited for stratigraphic correlation on a wider scale. In contrast, new biostratigraphic data correlate the Decontra stable carbon isotope record to the global deep-sea carbon isotope record. This links relative sea level fluctuations, which are reflected by facies and magnetic susceptibility changes, to third-order eustatic cycles. The new integrated bio-, chemo-, and sequence stratigraphic framework enables a more precise timing of environmental changes within the studied time interval and identifies Decontra as an important locality for correlating not only shallow and deep water sediments of the Mediterranean region but also on a global scale.

  7. Correlating Mediterranean shallow water deposits with global Oligocene–Miocene stratigraphy and oceanic events☆

    PubMed Central

    Reuter, Markus; Piller, Werner E.; Brandano, Marco; Harzhauser, Mathias

    2013-01-01

    Shallow-marine sediment records have the strong potential to display sensitive environmental changes in sedimentary geometries and skeletal content. However, the time resolution of most neritic carbonate records is not high enough to be compared with climatic events as recorded in the deep-sea sediment archives. In order to resolve the paleoceanographic and paleoclimatic changes during the Oligocene–Miocene transition in the Mediterranean shallow water carbonate systems with the best possible time resolution, we re-evaluated the Decontra section on the Maiella Platform (central Apennines, Italy), which acts as a reference for the correlation of Oligocene–Miocene shallow water deposits in the Mediterranean region. The 120-m-thick late Oligocene–late Miocene carbonate succession is composed of larger foraminiferal, bryozoan and corallinacean limestones interlayered with distinct planktonic foraminiferal carbonates representing a mostly outer neritic setting. Integrated multi-proxy and facies analyses indicate that CaCO3 and total organic carbon contents as well as gamma-ray display only local to regional processes on the carbonate platform and are not suited for stratigraphic correlation on a wider scale. In contrast, new biostratigraphic data correlate the Decontra stable carbon isotope record to the global deep-sea carbon isotope record. This links relative sea level fluctuations, which are reflected by facies and magnetic susceptibility changes, to third-order eustatic cycles. The new integrated bio-, chemo-, and sequence stratigraphic framework enables a more precise timing of environmental changes within the studied time interval and identifies Decontra as an important locality for correlating not only shallow and deep water sediments of the Mediterranean region but also on a global scale. PMID:25844021

  8. The late Miocene 'paradox' of the CO2 climate sensitivity (Invited)

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Pagani, M.

    2013-12-01

    Ancient climates provide opportunities for studying the impact of CO2 change on global temperatures. While advances in CO2-reconstruction techniques are yielding a clearer picture of the Cenozoic history of CO2 (Beerling and Royer, 2011), the late Miocene (~12-5 Ma) remains enigmatic. For example, recent sea-surface temperature reconstructions from 12-5 Ma have shown that mid-latitude and equatorial regions of the Pacific cooled 6°C (LaRiviere et al., 2012) and 2°C (Zhang et al., 2013), respectively. This cooling trend was probably initiated at the mid-Miocene climate transition (14 Ma), and continued into the Plio-Pleistocene. However, existing compilation of late Miocene - Pliocene CO2 records show little variability, with some indicating a rise in CO2 concurrent with global cooling. Here we present four continuous alkenone-based CO2 records using Pacific sediment samples (ODP Sites 769, 806, 850 and 1143), from late Miocene to Pliocene. Compound-specific carbon isotope measurements show a broad decrease in alkenone δ13C values in all four sites, suggesting increasing pCO2 levels in the late Miocene. Decreasing ocean temperature and increasing pCO2 in the late Miocene appears to challenge a leading climatic role for CO2 during this time. Alternatively, alkenone-CO2 estimates are flawed in the late Miocene because factors other than CO2, such as algal growth rate, cell geometry, and carbon-fixation pathways, can influence carbon isotopic fractionation during algae growth. We explore the uncertainty of the alkenone-CO2 methodology and assess the potential influence that non-CO2 variables have in producing spurious CO2 estimates and trends. Beerling, D.J., Royer, D.L., 2011. Convergent Cenozoic CO2 history. Nat. Geosci. 4, 418-420. LaRiviere, J.P., Ravelo, A.C., Crimmins, A., Dekens, P.S., Ford, H.L., Lyle, M., Wara, M.W., 2012. Late Miocene decoupling of oceanic warmth and atmospheric carbon dioxide forcing. Nature 486, 97-100. Zhang, Y.G., Pagani, M., Liu, Z

  9. Miocene stratigraphy and structure of Sabine Pass, West Cameron, and East Cameron outer continental shelf areas, Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, S.Y.; Watkins, J.S.

    Mapping of Miocene stratigraphy and structure of the Sabine Pass, West Cameron, and East Cameron areas of the western Louisiana outer continental shelf - based on over 1300 mi of seismic data on a 4-mi grid, paleotops from 60 wells, and logs from 35 wells - resulted in time-structure and isochron maps at six intervals from the upper Pliocene to lower Miocene. The most pronounced structural features are the fault systems, which trend east-northeast to east along the Miocene stratigraphic trend. Isolated normal faults with small displacements characterize the inner inner shelf, whereas interconnected faults with greater displacements characterize themore » outer inner shelf. The inner inner shelf faults exhibit little growth, but expansion across the interconnected outer inner shelf fault ranges up to 1 sec two-way traveltime. The interconnected faults belong to two structurally independent fault families. The innermost shelf faults appear to root in the sediment column. A third set of faults located in the Sabine Pass area trends north-south. This fault set is thought to be related to basement movement and/or basement structure. Very little salt is evident in the area. A single diapir is located in West Cameron Block 110 and vicinity. There is little evidence of deep salt. Overall sediment thickness probably exceeds 20,000 ft, with the middle Miocene accounting for 8000 ft.« less

  10. Style and age of late Oligocene-early Miocene deformation in the southern Stillwater Range, west central Nevada: Paleomagnetism, geochronology, and field relations

    USGS Publications Warehouse

    Hudson, Mark R.; John, David A.; Conrad, James E.; McKee, Edwin H.

    2000-01-01

    Paleomagnetic and geochronologic data combined with geologic mapping tightly restrict the timing and character of a late Oligocene to early Miocene episode of large magnitude extension in the southern Stillwater Range and adjacent regions of west central Nevada. The southern Stillwater Range was the site of an Oligocene to early Miocene volcanic center comprising (1) 28.3 to 24.3 Ma intracaldera ash flow tuffs, lava flows, and subjacent plutons associated with three calderas, (2) 24.8 to 20.7 Ma postcaldera silicic dikes and domes, and (3) unconformably overlying 15.3 to 13.0 Ma dacite to basalt lava flows, plugs, and dikes. The caldera-related tuffs, lava flows, and plutons were tilted 60°-70° either west or east during the initial period of Cenozoic deformation that accommodated over 100% extension. Directions of remanent magnetization obtained from these extrusive and intrusive, caldera-related rocks are strongly deflected from an expected Miocene direction in senses appropriate for their tilt. A mean direction for these rocks after tilt correction, however, suggests that they were also affected by a moderate (33.4° ± 11.8°) component of counterclockwise vertical axis rotation. Paleomagnetic data indicate that the episode of large tilting occurred during emplacement of 24.8 to 20.7 Ma postcaldera dikes and domes. In detail, an apparent decrease in rotation with decreasing age of individual, isotopically dated bodies of the postcaldera group indicates that most tilting occurred between 24.4 and 24.2 Ma. The onset of tilting immediately following after the final caldera eruptions suggests that the magmatism and deformation were linked. Deformation was not driven by magma buoyancy, however, because tilting equally affected the caldera systems of different ages, including their plutonic roots. It is more likely that regional extension was focused in the southern Stillwater Range due to magmatic warming and reduction of tensile strength of the brittle crust

  11. Calcareous nannofossil biostratigraphy and geochronology of Neogene trench-slope cover sediments in the south Boso Peninsula, central Japan: Implications for the development of a shallow accretionary complex

    NASA Astrophysics Data System (ADS)

    Chiyonobu, Shun; Yamamoto, Yuzuru; Saito, Saneatsu

    2017-07-01

    The geological structure and calcareous nannofossil biostratigraphy of the Middle to Late Miocene trench-slope succession in the southern Boso Peninsula, central Japan, were examined to obtain chronological constraints on the accretion and formation of the trench-slope architecture. As a result, trench-slope cover sediments (Kinone and Amatsu Formations) are clearly distinguishable from the Early Miocene Hota accretionary complex (Hota Group). The Hota accretionary complex was deposited below the carbonate compensation depth (CCD) and was affected by intense shearing, forming an east-west trending and south-verging fold and thrust belt. In contrast, the trench-slope cover sediments basically have a homoclinal dip, except at the northern rim where they are bounded by fault contact. They contain many species of calcareous nannofossils and foraminifers, which are indicative of their depositional environment above the CCD, and they show shallowing-upward sedimentary structures. Biostratigraphy revealed that the depositional age of the trench-slope sediments is ca. 15-5.5 Ma, suggesting that there is an approximately 2 myr hiatus beween the Miura Group and the underlying accretionary prism. Based on these results, the age of accretion of the Hota Group is inferred to be between ca. 17-15 Ma, and the group is covered by trench-slope sediments overlain on it after ca. 15 Ma. The timing of accretion and the age of the trench-slope basin tend to be younger southward of the Boso Peninsula. The accretionary system of the Boso Peninsula apparently developed in two stages, in the Middle Miocene and in the Late Miocene to Pliocene.

  12. Plate tectonic model for the oligo-miocene evolution of the western Mediterranean

    NASA Astrophysics Data System (ADS)

    Cohen, Curtis R.

    1980-10-01

    This paper outlines a plate tectonic model for the Oligo-Miocene evolution of the western Mediterranean which incorporates recent data from several tectonic domains (Corsica, Sardinia, the Kabylies, Balearic promontory, Iberia, Algero-Provençal Basin and Tunisian Atlas). Following late Mesozoic anticlockwise rotation of the Iberian peninsula (including the Balearic promontory and Sardinia), late Eocene collision occurred between the Kabylies and Balearic promontory forming a NE-trending suture with NW-tectonic polarity. As a result of continued convergence between the African and European plates, a polarity flip occurred and a southward-facing trench formed south of the Kabylie—Balearic promontory suture. During late Oligocene time an E-W-trending arc and marginal basin developed behind the southward-facing trench in the area of the present-day Gulf of Lion. Opening of this basin moved the Corsica—Sardinia—Calabria—Petit Kabylie—Menorca plate southward, relative to the African plate. Early Miocene back-arc spreading in the area between the Balearic promontory and Grand Kabylie emplaced the latter in northern Algeria and formed the South Balearic Basin. Coeval with early Miocene back-arc basin development, the N-S-extension in the Gulf of Lion marginal basin changed to a more NW-SE direction causing short-lived extension in the area of the present-day Valencia trough and a 30° anticlockwise rotation of the Corsica-Sardinia-Calabria—Petit Kabylie plate away from the European plate. Early—middle Miocene deformation along the western Italian and northeastern African continental margins resulted from this rotation. During the early late Miocene (Tortonian), spreading within a sphenochasm to the southwest of Sardinia resulted in the emplacement of Petit Kabylie in northeastern Algeria.

  13. Oligocene-miocene mammalian fossils from Hongyazi Basin and its bearing on tectonics of Danghe Nanshan in northern Tibetan plateau.

    PubMed

    Li, Qiang; Wang, Xiaoming; Xie, Guangpu; Yin, An

    2013-01-01

    A shortage of Cenozoic vertebrate fossils in the Tibetan Plateau has been an obstacle in our understanding of biological evolution in response to changes in tectonism, topography, and environment. This is especially true for Paleogene records, so far known by only two sites along the northern rim of the Plateau. We report a Hongyazi Basin in northern Tibetan Plateau that produces at least three mammalian faunas that span Oligocene through late Miocene. Located at the foothills of the Danghe Nanshan and presently connected to the northern margin of the Suganhu Basin through the Greater Haltang River, the intermountain basin is controlled by the tectonics of the Danghe Nanshan to the north and Chahan'ebotu Mountain to the south, making the basin sediments well suited for inferring the evolutionary history of these two mountain ranges. At the bottom of the local section, the Oligocene Haltang Fauna is best compared to the early Oligocene Desmatolagus-Karakoromys decessus assemblage in the Dingdanggou Fauna in Tabenbuluk Basin. The Middle Miocene Ebotu Fauna from the middle Hongyazi section shares many taxa with the late Middle Miocene Tunggur mammal assemblage in Inner Mongolia, such as Heterosminthus orientalis, Megacricetodon sinensis, Democricetodon lindsayi, and Alloptox gobiensis. Toward the top of the section, the Hongyazi Fauna includes late Miocene elements typical of Hipparion faunas of North China. All three faunas are of typical North China-Central Asian characteristics, suggesting a lack of geographic barriers for faunal differentiation through the late Miocene. Sedimentary packages producing these faunas are arrayed from north to south in progressively younger strata, consistent with a compressive regime to accommodate shortening between Danghe Nanshan and Chahan'ebotu Mountain by thrust faults and folds. With additional constraints from vertebrate fossils along the northern flanks of the Danghe Nanshan, an eastward propagation of the Danghe Nanshan is

  14. Oligocene-Miocene Mammalian Fossils from Hongyazi Basin and Its Bearing on Tectonics of Danghe Nanshan in Northern Tibetan Plateau

    PubMed Central

    Li, Qiang; Wang, Xiaoming; Xie, Guangpu; Yin, An

    2013-01-01

    A shortage of Cenozoic vertebrate fossils in the Tibetan Plateau has been an obstacle in our understanding of biological evolution in response to changes in tectonism, topography, and environment. This is especially true for Paleogene records, so far known by only two sites along the northern rim of the Plateau. We report a Hongyazi Basin in northern Tibetan Plateau that produces at least three mammalian faunas that span Oligocene through late Miocene. Located at the foothills of the Danghe Nanshan and presently connected to the northern margin of the Suganhu Basin through the Greater Haltang River, the intermountain basin is controlled by the tectonics of the Danghe Nanshan to the north and Chahan’ebotu Mountain to the south, making the basin sediments well suited for inferring the evolutionary history of these two mountain ranges. At the bottom of the local section, the Oligocene Haltang Fauna is best compared to the early Oligocene Desmatolagus-Karakoromys decessus assemblage in the Dingdanggou Fauna in Tabenbuluk Basin. The Middle Miocene Ebotu Fauna from the middle Hongyazi section shares many taxa with the late Middle Miocene Tunggur mammal assemblage in Inner Mongolia, such as Heterosminthus orientalis, Megacricetodon sinensis, Democricetodon lindsayi, and Alloptox gobiensis. Toward the top of the section, the Hongyazi Fauna includes late Miocene elements typical of Hipparion faunas of North China. All three faunas are of typical North China-Central Asian characteristics, suggesting a lack of geographic barriers for faunal differentiation through the late Miocene. Sedimentary packages producing these faunas are arrayed from north to south in progressively younger strata, consistent with a compressive regime to accommodate shortening between Danghe Nanshan and Chahan’ebotu Mountain by thrust faults and folds. With additional constraints from vertebrate fossils along the northern flanks of the Danghe Nanshan, an eastward propagation of the Danghe Nanshan

  15. Diversity and distribution patterns of the Oligocene and Miocene decapod crustaceans (Crustacea: Malacostraca) of the Western and Central Paratethys.

    PubMed

    Hyžný, Matúš

    2016-10-01

    Decapod associations have been significant components of marine habitats throughout the Cenozoic when the major diversification of the group occurred. In this respect, the circum-Mediterranean area is of particular interest due to its complex palaeogeographic history. During the Oligo-Miocene, it was divided in two major areas, Mediterranean and Paratethys. Decapod crustaceans from the Paratethys Sea have been reported in the literature since the 19 th century, but only recent research advances allow evaluation of the diversity and distribution patterns of the group. Altogether 176 species-level taxa have been identified from the Oligocene and Miocene of the Western and Central Paratethys. Using the three-dimensional NMDS analysis, the composition of decapod crustacean faunas of the Paratethys shows significant differences through time. The Ottnangian and Karpatian decapod associations were similar to each other both taxonomically and in the mode of preservation, and they differed taxonomically from the Badenian ones. The Early Badenian assemblages also differed taxonomically from the Late Badenian ones. The time factor, including speciation, immigration from other provinces and/or (local or global) extinction, can explain temporal differences among assemblages within the same environment. High decapod diversity during the Badenian was correlated with the presence of reefal settings. The Badenian was the time with the highest decapod diversity, which can, however, be a consequence of undersampling of other time slices. Whereas the Ottnangian and Karpatian decapod assemblages are preserved virtually exclusively in the siliciclastic "Schlier"-type facies that originated in non-reefal offshore environments, carbonate sedimentation and the presence of reefal environments during the Badenian in the Central Paratethys promoted thriving of more diverse reef-associated assemblages. In general, Paratethyan decapods exhibited homogeneous distribution during the Oligo-Miocene

  16. Diversity and distribution patterns of the Oligocene and Miocene decapod crustaceans (Crustacea: Malacostraca) of the Western and Central Paratethys

    PubMed Central

    Hyžný, Matúš

    2017-01-01

    Decapod associations have been significant components of marine habitats throughout the Cenozoic when the major diversification of the group occurred. In this respect, the circum-Mediterranean area is of particular interest due to its complex palaeogeographic history. During the Oligo-Miocene, it was divided in two major areas, Mediterranean and Paratethys. Decapod crustaceans from the Paratethys Sea have been reported in the literature since the 19th century, but only recent research advances allow evaluation of the diversity and distribution patterns of the group. Altogether 176 species-level taxa have been identified from the Oligocene and Miocene of the Western and Central Paratethys. Using the three-dimensional NMDS analysis, the composition of decapod crustacean faunas of the Paratethys shows significant differences through time. The Ottnangian and Karpatian decapod associations were similar to each other both taxonomically and in the mode of preservation, and they differed taxonomically from the Badenian ones. The Early Badenian assemblages also differed taxonomically from the Late Badenian ones. The time factor, including speciation, immigration from other provinces and/or (local or global) extinction, can explain temporal differences among assemblages within the same environment. High decapod diversity during the Badenian was correlated with the presence of reefal settings. The Badenian was the time with the highest decapod diversity, which can, however, be a consequence of undersampling of other time slices. Whereas the Ottnangian and Karpatian decapod assemblages are preserved virtually exclusively in the siliciclastic “Schlier”-type facies that originated in non-reefal offshore environments, carbonate sedimentation and the presence of reefal environments during the Badenian in the Central Paratethys promoted thriving of more diverse reef-associated assemblages. In general, Paratethyan decapods exhibited homogeneous distribution during the Oligo-Miocene

  17. Diversity and distribution patterns of the Oligocene and Miocene decapod crustaceans (Crustacea: Malacostraca) of the Western and Central Paratethys

    NASA Astrophysics Data System (ADS)

    Hyžný, Matúš

    2016-10-01

    Decapod associations have been significant components of marine habitats throughout the Cenozoic when the major diversification of the group occurred. In this respect, the circum-Mediterranean area is of particular interest due to its complex palaeogeographic history. During the Oligo-Miocene, it was divided in two major areas, Mediterranean and Paratethys. Decapod crustaceans from the Paratethys Sea have been reported in the literature since the 19th century, but only recent research advances allow evaluation of the diversity and distribution patterns of the group. Altogether 176 species-level taxa have been identified from the Oligocene and Miocene of the Western and Central Paratethys. Using the three-dimensional NMDS analysis, the composition of decapod crustacean faunas of the Paratethys shows significant differences through time. The Ottnangian and Karpatian decapod associations were similar to each other both taxonomically and in the mode of preservation, and they differed taxonomically from the Badenian ones. The Early Badenian assemblages also differed taxonomically from the Late Badenian ones. The time factor, including speciation, immigration from other provinces and/or (local or global) extinction, can explain temporal differences among assemblages within the same environment. High decapod diversity during the Badenian was correlated with the presence of reefal settings. The Badenian was the time with the highest decapod diversity, which can, however, be a consequence of undersampling of other time slices. Whereas the Ottnangian and Karpatian decapod assemblages are preserved virtually exclusively in the siliciclastic "Schlier"-type facies that originated in non-reefal offshore environments, carbonate sedimentation and the presence of reefal environments during the Badenian in the Central Paratethys promoted thriving of more diverse reef-associated assemblages. In general, Paratethyan decapods exhibited homogeneous distribution during the Oligo-Miocene

  18. Undergraduate Collaborative Research: Distribution of Plant Wax Biomarkers in Miocene-age Sediments from the Bengal Fan (IODP Exp 354)

    NASA Astrophysics Data System (ADS)

    Cho, P. G.; Vidal, E.; Paek, J. H.; Borsook, A.; Lee, W.; Wu, M. S.; Ponton, C.; Galy, V.; Feakins, S. J.

    2017-12-01

    Our research aims to understand past climatic variability in the monsoon-influenced Ganges-Brahmaputra catchment as recorded by plant wax molecules exported and sequestered in the sediments of the Bengal Fan. Samples from the late Miocene were selected from cores retrieved by the IODP (International Ocean Discovery Program) Expedition 354 that recently drilled the central Bengal Fan along a transect at 8°N. Fan sedimentation includes sand, silt, and clay mostly derived from the Himalayan range via turbiditic transport within the Bengal fan. Sedimentation is highly episodic in the fan, but a transect of drilled sites provides a record of terrigenous sediment exported and buried over the last 20 million years. A team of researchers at the University of Southern California worked to collectively process 468 samples for compound specific biomarker identification and quantification. The samples derive from Site U1451 and U1455 ranging from 0 to 1097m depth (CSF-A). Total organic carbon ranges from 0.04-0.84%. To date, 300 samples have been solvent-extracted and prepared for plant wax analyses. Long chain n-alkanoic acids and n-alkanes were identified and quantified using GC-MS and GC-FID, respectively. In the samples quantified so far, we find ΣC24-34 n-alkanoic acid concentrations from 0.07-14.16 μg/g of dry sediment and ΣC25-35 n-alkanes from 0.04-4.61 μg/g. Concentrations of C30 n-alkanoic acid range from 0.01-1.92 μg/g of dry sediment and of C33 n-alkane from <0.01-0.65 μg/g. The molecular abundance distributions of both compound-classes were found to be diagnostic of a terrestrial higher plant source. Additionally, the molecular composition of the total lipid extract was analyzed at the Woods Hole Oceanographic Institution using a GC-TOF-MS. Overall, these extracts are dominated by plant-wax compounds and other diagnostic terrestrial molecules (e.g. plant terpenoids and sterols). The results from this effort contribute to a larger mission to reconstruct

  19. Early miocene bimodal volcanism, Northern Wilson Creek Range, Lincoln County, Nevada

    USGS Publications Warehouse

    Willis, J.B.; Willis, G.C.

    1996-01-01

    Early Miocene volcanism in the northern Wilson Creek Range, Lincoln County, Nevada, produced an interfingered sequence of high-silica rhyolite (greater than 74% SiO2) ash-flow tuffs, lava flows and dikes, and mafic lava flows. Three new potassium-argon ages range from 23.9 ?? 1.0 Ma to 22.6 ?? 1.2 Ma. The rocks are similar in composition, stratigraphic character, and age to the Blawn Formation, which is found in ranges to the east and southeast in Utah, and, therefore, are herein established as a western extension of the Blawn Formation. Miocene volcanism in the northern Wilson Creek Range began with the eruption of two geochemically similar, weakly evolved ash-flow tuff cooling units. The lower unit consists of crystal-poor, loosely welded, lapilli ash-flow tuffs, herein called the tuff member of Atlanta Summit. The upper unit consists of homogeneous, crystal-rich, moderately to densely welded ash-flow tuffs, herein called the tuff member of Rosencrans Peak. This unit is as much as 300 m thick and has a minimum eruptive volume of 6.5 km3, which is unusually voluminous for tuffs in the Blawn Formation. Thick, conspicuously flow-layered rhyolite lava flows were erupted penecontemporaneously with the tuffs. The rhyolite lava flows have a range of incompatible trace element concentrations, and some of them show an unusual mixing of aphyric and porphyritic magma. Small volumes of alkaline, vesicular, mafic flows containing 50 weight percent SiO2 and 2.3 weight percent K2O were extruded near the end of the rhyolite volcanic activity. The Blawn Formation records a shift in eruptive style and magmatic composition in the northern Wilson Creek Range. The Blawn was preceded by voluminous Oligocene eruptions of dominantly calc-alkaline orogenic magmas. The Blawn and younger volcanic rocks in the area are low-volume, bimodal suites of high-silica rhyolite tuffs and lava flows and mafic lava flows.

  20. Friis Hills glacial history: an international collaboration to examine Miocene climate in Antarctica

    NASA Astrophysics Data System (ADS)

    Halberstadt, A. R. W.; Kowalewski, D. E.

    2016-12-01

    The Friis Hills, Antarctica (western McMurdo Dry Valleys) contain unique, well-preserved records of Miocene climate. These terrestrial deposits hold geomorphic clues for deciphering the glacial history in a region directly adjacent to the East Antarctic Ice Sheet. Stacked till sheets, interbedded with lake sediments and non-glacial deposits, reveal a complex history of ice flow and erosion throughout multiple glacial-interglacial cycles (Lewis and Ashworth, 2015). Fossiliferous beds containing Nothofagus, diatoms, algal cells, pollen, insects, and mosses provide past climatological constraints. The Friis Hills sustained multiple alpine glaciations as well as full ice-sheet development, recording glacial drainage reorganization and evidence of previous ice configurations that possibly overrode the Transantarctic Mountains (Lewis and Ashworth, 2015) exposing only scattered nunataks (i.e. a portion of Friis Hills). Lack of chronological control has previously hindered efforts to link the Friis Hills glacial history with regional context; a tephra deposit at the base of the glacial drifts currently provides a single age constraint within the drift deposits. To build upon previous studies, an international collaboration between the USAP, Antarctic New Zealand, and the Italian Antarctic community proposes to core a paleo-lake in the center of the Friis Hills in November 2016, thereby acquiring one of the oldest continuous sedimentological records within the McMurdo Dry Valleys. Here we report discoveries from this year's fieldwork, and reconstruct paleoenvironment at the periphery of the East Antarctic Ice Sheet for the mid-early Miocene, a critical time when marine isotopic records indicate dramatic ice fluctuations. Ash within the sediment core stratigraphy will provide a more robust chronology for the region, and will also suggest possible outcrop locations of corresponding ash deposits to pursue while in the field. We anticipate that the Friis Hills stratigraphy will

  1. Chad Basin: Paleoenvironments of the Sahara since the Late Miocene

    NASA Astrophysics Data System (ADS)

    Schuster, Mathieu; Duringer, Philippe; Ghienne, Jean-François; Roquin, Claude; Sepulchre, Pierre; Moussa, Abderamane; Lebatard, Anne-Elisabeth; Mackaye, Hassan Taisso; Likius, Andossa; Vignaud, Patrick; Brunet, Michel

    2009-08-01

    Since the mid 1990s, the Mission paléoanthropologique francotchadienne (MPFT) conducts yearly paleontological field investigations of the Miocene-Pliocene of the Chad Basin. This article synthesizes some of the results of the MPFT, with focus on the Chad Basin development during the Neogene. We propose an overview of the depositional paleoenvironments of this part of Africa at different scales of time and space, based on a multidisciplinary approach (sedimentary geology, geomorphology, geophysic, numerical simulations and geochronology). The Miocene-Pliocene paleoenvironments are examined through the sedimentary archives of the early hominids levels and the Holocene Lake Mega-Chad episode illustrates the last major paleoenvironmental change in this area. The sedimentary record of the Chad Basin since the Late Miocene can be schematized as the result of recurrent interactions from lake to desert environments.

  2. Middle Miocene vertebrates from the Amazonian Madre de Dios Subandean Zone, Perú

    NASA Astrophysics Data System (ADS)

    Antoine, Pierre-Olivier; Roddaz, Martin; Brichau, Stéphanie; Tejada-Lara, Julia; Salas-Gismondi, Rodolfo; Altamirano, Ali; Louterbach, Mélanie; Lambs, Luc; Otto, Thierry; Brusset, Stéphane

    2013-03-01

    A new middle Miocene vertebrate fauna from Peruvian Amazonia is described. It yields the marsupials Sipalocyon sp. (Hathliacynidae) and Marmosa (Micoureus) cf. laventica (Didelphidae), as well as an unidentified glyptodontine xenarthran and the rodents Guiomys sp. (Caviidae), “Scleromys” sp., cf. quadrangulatus-schurmanni-colombianus (Dinomyidae), an unidentified acaremyid, and cf. Microsteiromys sp. (Erethizontidae). Apatite Fission Track provides a detrital age (17.1 ± 2.4 Ma) for the locality, slightly older than its inferred biochronological age (Colloncuran-early Laventan South American Land Mammal Ages: ˜15.6-13.0 Ma). Put together, both the mammalian assemblage and lithology of the fossil-bearing level point to a mixture of tropical rainforest environment and more open habitats under a monsoonal-like tropical climate. The fully fluvial origin of the concerned sedimentary sequence suggests that the Amazonian Madre de Dios Subandean Zone was not part of the Pebas mega-wetland System by middle Miocene times. This new assemblage seems to reveal a previously undocumented “spatiotemporal transition” between the late early Miocene assemblages from high latitudes (Patagonia and Southern Chile) and the late middle Miocene faunas of low latitudes (Colombia, Perú, Venezuela, and ?Brazil).

  3. The identification of Oligo-Miocene mammalian palaeocommunities from the Riversleigh World Heritage Area, Australia and an appraisal of palaeoecological techniques

    PubMed Central

    Black, Karen H.; Archer, Michael; Hand, Suzanne J.

    2017-01-01

    Fourteen of the best sampled Oligo-Miocene local faunas from the Riversleigh World Heritage Area, north-western Queensland, Australia are analysed using classification and ordination techniques to identify potential mammalian palaeocommunities and palaeocommunity types. Abundance data for these faunas are used, for the first time, in conjunction with presence/absence data. An early Miocene Faunal Zone B and two middle Miocene Faunal Zone C palaeocommunities are recognised, as well as one palaeocommunity type. Change in palaeocommunity structure, between the early Miocene and middle Miocene, may be the result of significant climate change during the Miocene Carbon Isotope Excursion. The complexes of local faunas identified will allow researchers to use novel palaeocommunities in future analyses of Riversleigh’s fossil faunas. The utility of some palaeoecological multivariate indices and techniques is examined. The Dice index is found to outperform other binary similarity/distance coefficients, while the UPGMA algorithm is more useful than neighbour joining. Evidence is equivocal for the usefulness of presence/absence data compared to abundance. PMID:28674663

  4. Geological Development of the Izu-Bonin Forearc Since the Eocene Based on Biostratigraphic, Rock Magnetic, and Sediment Provenance Observations from IODP Expedition 352 Drill Cores

    NASA Astrophysics Data System (ADS)

    Petronotis, K. E.; Robertson, A.; Kutterolf, S.; Avery, A.; Baxter, A.; Schindlbeck, J. C.; Wang, K. L.; Acton, G.

    2016-12-01

    International Ocean Discovery Program (IODP) Expedition 352 recovered early Oligocene to recent sediments above Eocene igneous basement at 4 sites in the Izu-Bonin Forearc. The sites were selected to investigate the forearc region since subduction initiation in the Eocene, with Sites U1439 and U1442 being cored into the upper trench slope and Sites U1440 and U1441 into the lower trench slope. Postcruise studies of biostratigraphy, sediment chemistry, tephra composition and chronology and magnetic properties, along with observations from prior coring help constrain the regional geological development. Volcanic activity in the area, as inferred from its influence on sediment composition, has varied between long periods of activity and quiescence. Combined whole-rock sediment chemistry and tephra compositions suggest that during the Oligocene to earliest Miocene ( 30-22 Ma) tuffaceous input of predominantly dacitic composition was mainly derived from the intra-oceanic Izu-Bonin Arc. The early Miocene interval ( 22-15 Ma) lacks tuffaceous input, as supported by rock magnetic data. During this period, the forearc subsided beneath the carbonate compensation depth (CCD), as evidenced by radiolarian-bearing mud and metal-rich silty clay. This was followed by input of tephra with bimodal felsic and mafic compositions from the Izu-Bonin Arc from 15 to 5 Ma. Middle Miocene to Quaternary time was characterized by increased carbonate preservation, coupled with abundant, predominantly felsic tephra input, which is chemically indicative of a Japan continental arc source (Honshu), with additional chemically distinctive input from the Izu-Bonin Arc. Extending back to 32 Ma, tephra layers can be correlated between the upper-slope sites, extrapolated to the less well-dated lower-slope sites, and further correlated with onland Japanese tephra (Kutterolf et al., 2016; Goldschmidt Conference). Overall, the new results provide an improved understanding of the regional tectonic evolution.

  5. The Rajang Unconformity: Major provenance change between the Eocene and Miocene sequences in NW Borneo

    NASA Astrophysics Data System (ADS)

    Breitfeld, H. T.; Hennig, J.; BouDagher-Fadel, M.; Hall, R.

    2017-12-01

    age population in the Nyalau Formation indicates either major input from the Malay Peninsula (Malay-Thai Tin belt) or Indochina (SE Vietnam). It also suggests that Borneo supplied little or no sediment to Sarawak in the Oligocene to Early Miocene.

  6. Ar-Ar dating and petrogenesis of the Early Miocene Taşkapı-Mecitli (Erciş-Van) granitoid, Eastern Anatolia Collisional Zone, Turkey

    NASA Astrophysics Data System (ADS)

    Oyan, Vural

    2018-06-01

    The Early Miocene Taşkapı-Mecitli granitoid that is located in the northern section of the Eastern Anatolia Collision Zone has typical I-type, metaluminous and calk-alkaline characteristics. It also contains mafic microgranular / magmatic enclaves (MMEs). New Ar-Ar dating results show that the age of the Taşkapı-Mecitli granitoid is ∼23 Ma and it crystallised in the Early Miocene, in contrast to its previously known Cretaceous age. Identical crystallisation ages (∼23 Ma), similar mineral assemblages and geochemical compositions, and indistinguishable isotopic compositions of MMEs and host rocks imply that the MMEs are most consistent with a cumulate origin formed at earlier stages of the same magmatic system that produced the Taşkapı-Mecitli granitoid. MELTS modelling suggests that magma of the Taşkapı-Mecitli granitoid was the result of fractionation under a crustal pressure of 4 kbar, with a H2O content of 1.5%. EC-AFC model calculation reveals that the Taşkapı-Mecitli granitoid includes from 0.5% to 2% crustal assimilation rates. These rates indicate that crustal contamination can be negligible when compared to fractional crystallisation in the evolution of the magma beneath the Taşkapı-Mecitli granitoid. The partial melting model calculations and MORB-normalised trace element concentrations of the least evolved samples of the Taşkapı-Mecitli granitoid are consistent with those of mafic melts obtained from partial melting of interacting mantle- lower crust with a melting degree of 18%. The age (23 Ma) of the post- or syn-collisional Taşkapı-Mecitli granitoid suggests that the collision between Arabian and Eurasian plates could be before/around ∼23 Ma (Late Oligocene to Early Miocene).

  7. Neogene weathering and terrestrial sedimentation in southern New Caledonia; inference on post-obduction tectonics and climate change

    NASA Astrophysics Data System (ADS)

    Folcher, Nicolas; Ricordel-Prognon, Caroline; Sevin, Brice; Maurizot, Pierre; Cluzel, Dominique; Quesnel, Florence

    2014-05-01

    Iron-rich sediments that fill up karst-like depressions and paleo-valleys in southern New Caledonia are mainly composed of re-sedimented laterite and saprolite. These fluvial sediments come from the erosion of an older regolith that developed upon peridotites and gabbros of the Peridotite Nappe during Late Oligocene times. At the bottom, conglomeratic facies fill incised valleys and contain some metre-size cobbles of ferricrete that record dissection of pre-existing weathering profiles and were deposited in alluvial fan environment. The basal conglomerate is overlain by sand, then dominantly silty fluvial sediments 40 to 50 m thick, with a few thin conglomerate channels. Brutal grain size reduction suggests that erosion was short-lived and followed by quiescence. Multiple interbedded ferruginous duricrusts and rhizocretions made of goethite (and secondary hematite) and liesegang rings reveal iron mobility and several iron oxi-hydroxides concretion/ cementation episodes alternating with sedimentation, probably as a consequence of water table variations. The top of the succession is overlain by a weathering profile and capped by a nodular lateritic ferricrete. Finally, reactivated erosion profoundly incised the fluvial succession and locally reached the bedrock which today crops out upstream along the main river beds. In southern New Caledonia some ferricretes and ferruginous duricrusts have been dated at -25 Ma and -20 to -10 Ma by paleomagnetic method (in progress). They could be correlated to some warming events of the Late Oligocene and Early Miocene or to the Middle Miocene Climatic Optimum. Erosion that predates the accumulation of terrestrial sediments may be tentatively correlated to the uplift that accompanied the emplacement of the Saint-Louis and Koum plutons, and some internal dissection episodes could be related to the Lower Miocene post-obduction slab break off. The final erosion is most probably related to the southward tilt of New Caledonia due to

  8. X-ray fluorescence results from IODP Expedition 355 sediments in Laxmi Basin, eastern Arabian Sea: Insights into late Miocene and Pleistocene carbonate production and burial and possible variations in monsoon intensit

    NASA Astrophysics Data System (ADS)

    Bowen, M. G.; Kulhanek, D. K.; Lyle, M. W.; Hahn, A.

    2017-12-01

    Variations in CaCO3 accumulation on the seafloor depend on a number of factors, including productivity of carbonate-producing organisms in the overlying water column, input of siliciclastic material from nearby continents, and changes in ocean chemistry. These factors are affected by variations in tectonics and climate. Here we use X-ray fluorescence (XRF) core scanning data to develop high-resolution chemical profiles calibrated with discrete samples to examine changes in carbonate production and burial in the eastern Arabian Sea. International Ocean Discovery Program (IODP) Expedition 355 cored two sites in the Indus Fan in Laxmi Basin. We scanned the Pleistocene composite sections from both sites at 2 cm resolution ( 150-300 year sampling resolution) using the Avaatech XRF core scanner at the IODP Gulf Coast Repository. In addition, we scanned a hemipelagic interval dated to the late Miocene ( 8 to 6 Ma) that spans the late Miocene climate transition to drier conditions globally, as documented by an expansion in C4 plants. The 2 cm scanning resolution represents 500 years between samples for the upper Miocene section. We used carbonate measurements on discrete samples to calibrate the XRF data, supplemented by analysis using a quantitative benchtop XRF at the University of Bremen. We find large variability in carbonate content in the Pleistocene and upper Miocene, varying from 15-80 wt%, with higher carbonate content correlating with lighter colored sediment. The aluminosilicate composition varies in part because of carbonate dilution but also because of changes in the source of clays and turbidites through the section. We also explore the use of chemical ratios to better understand the variations through the section. Changes in Ca/Fe (biogenic/terrestrial component) and Rb/Zr (fine/coarse grained) match well with visual observation of sediment composition in the cores. We can combine these with the oxygen isotope-derived age model for the Pleistocene section to

  9. Drastic shift of lava geochemistry between pre- and post- Japan Sea opening in NE Japan subduction zone: constraints on source composition and slab surface melting processes

    NASA Astrophysics Data System (ADS)

    Okamura, S.; Inaba, M.; Igarashi, S.; Aizawa, M.; Shinjo, R.

    2017-12-01

    Isotopic and trace element data imply a temporal change in magma sources and thermal conditions beneath the northern Fossa Magna, NE Japan arc from the Oligocene to the Pleistocene. Less radiogenic 176Hf/177Hf and 143Nd/144Nd, and high Zr/Hf characterize the Oligocene - Early Miocene volcanism in the northern Fossa Magna region. The mantle wedge in the Oligocene - Early Miocene consisted of enriched mantle source. We propose that during the onset of subduction, influx of hot asthenospheric mantle provided sufficient heat to partially melt newly subducting sediment. Geochemical modeling results suggest breakdown of zircon in the slab surface sediments for the Oligocene - Early Miocene lavas in the northern Fossa Magna region. In the Middle Miocene, the injection of hot and depleted asthenospheric material replaced the mantle beneath the northern Fossa Magna region of NE Japan. The Middle Miocene lavas characterized by most radiogenic Hf and Nd isotope ratios, have high Zr/Hf. An appropriate working petrogenetic model is that the Middle Miocene lavas were derived from asthenospheric depleted mantle, slightly (<1%) contaminated by slab melt accompanied by full dissolution of zircon. All the Late Miocene - Pleistocene samples are characterized by distinctly more radiogenic 176Hf/177Hf and 143Nd/144Nd, and are displaced toward lower Zr/Hf, which requires mixing between depleted mantle and a partial melt of subducted metasediment saturated with trace quantity of zircon. The Oligocene - Early Miocene volcanism in the northern Fossa Magna region may represent the early stage of continental margin magmatism associated with a back-arc rift. Here volcanism is dominated by sediment melts. Perhaps asthenospheric injection, triggering Japan Sea opening, allowed higher temperatures and more melting at the slab-mantle interface. The mantle wedge was gradually cooled during the Middle Miocene to the Pleistocene with back-arc opening ending in the Late Miocene. Slab surface

  10. Declining Atmospheric pCO2 During the Late Miocene and Early Pliocene: New Insights from Paired Alkenone and Coccolith Stable Isotope Barometry

    NASA Astrophysics Data System (ADS)

    Phelps, S. R.; Polissar, P. J.; deMenocal, P. B.; Swann, J. P.; Guo, M. Y.; Stoll, H. M.

    2015-12-01

    806 combined with previous published measurements suggests atmospheric CO2 values declined across the late Miocene and early Pliocene. This decline is coincident with decreasing ocean temperatures suggesting the fundamental relationship between atmospheric CO2 and climate can qualitatively explain late Miocene warmth.

  11. A long-living species of the hydrophiloid beetles: Helophorus sibiricus from the early Miocene deposits of Kartashevo (Siberia, Russia)

    PubMed Central

    Fikáček, Martin; Prokin, Alexander; Angus, Robert B.

    2011-01-01

    Abstract The recent hydrophiloid species Helophorus (Gephelophorus) sibiricus (Motschulsky, 1860) is recorded from the early Miocene deposits of Kartashevo assigned to the Ombinsk Formation. A detailed comparison with recent specimens allowed a confident identification of the fossil specimen, which is therefore the oldest record of a recent species for the Hydrophiloidea. The paleodistribution as well as recent distribution of the species is summarized, and the relevance of the fossil is discussed. In addition, the complex geological settings of the Kartashevo area are briefly summarized. PMID:22259280

  12. Anthracothere dental anatomy reveals a late Miocene Chado-Libyan bioprovince

    PubMed Central

    Lihoreau, Fabrice; Boisserie, Jean-Renaud; Viriot, Laurent; Coppens, Yves; Likius, Andossa; Mackaye, Hassane Taisso; Tafforeau, Paul; Vignaud, Patrick; Brunet, Michel

    2006-01-01

    Recent discovery of an abundant and diverse late Miocene fauna at Toros-Ménalla (Chad, central Africa) by the Mission Paléoanthropologique Franco-Tchadienne provides a unique opportunity to examine African faunal and hominid evolution relative to the early phases of the Saharan arid belt. This study presents evidence from an African Miocene anthracotheriid Libycosaurus, particularly well documented at Toros-Ménalla. Its remains reveal a large semiaquatic mammal that evolved an autapomorphic upper fifth premolar (extremely rare in Cenozoic mammals). The extra tooth appeared ≈12 million years ago, probably in a small northern African population isolated by climate-driven fragmentation and alteration of the environments inhabited by these anthracotheriids [Flower, B. P. & Kennett, J. P. (1994) Palaeogeogr. Palaeoclimatol. Palaeoecol. 108, 537–555 and Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. (2001) Science 292, 686–693]. The semiaquatic niche of Libycosaurus, combined with the distribution and relationships of its late Miocene species, indicates that by the end of the Miocene, wet environments connected the Lake Chad Basin to the Libyan Sirt Basin, across what is now the Sahara desert. PMID:16723392

  13. New constrains on the thermal history of the Miocene Jarando basin (Southern Serbia)

    NASA Astrophysics Data System (ADS)

    Andrić, Nevena; Životić, Dragana; Fügenschuh, Bernhard; Cvetković, Vladica

    2013-04-01

    The Jarando basin, located in the internal Dinarides, formed in the course of the Miocene extension affecting the whole Alpine-Carpathian-Dinaride system (Schmid et al., 2008). In the study area Miocene extension led to the formation of a core-complex in the Kopaonik area (Schefer et al., 2011) with the Jarando basin located in the hanging wall of the detachment fault. The Jarando basin is characterized by the presence of bituminous coals, whereas in the other intramontane basins in Serbia coalification did not exceed the subbituminous stage within the same stratigraphic level. Furthermore, the basin hosts boron mineralizations (borates and howlite) and a magnesite deposit, which again implies elevated temperatures. This thermal overprint is possibly due to post-magmatic activity related to the emplacement of Oligocene I-type Kopaonik and Miocene S-type Polumir granitoid (Schefer et al., 2011.). This research project is aimed at providing new information about the thermal history of the Jarando basin. Fifteen core samples from three boreholes and 10 samples from the surrounding outcrops were processed for apatite fission-track analysis. Additionally, vitrinite reflectance was measured for 11 core samples of shales from one borehole and 5 samples of coal from an underground mine. VR data of Early to Middle Miocene sediments reveal a strong post-depositional overprint. Values increase with the depth from 0.66-0.79% to 0.83-0.90%. Thus organic matter reached the bituminous stage and experienced temperatures of around 110-120˚C (Barker and Pawlewicz, 1994). FT single grain ages for apatite scatter between 45 Ma to 10 Ma with a general trend towards younger ages with depth. Both, the spread in single grain ages together with the bimodal track lengths distribution clearly point to partial annealing of the detrital apatites. With the temperature given from the VR values the partial annealing points to a rather short-lived thermal event. This is assisted by thermal

  14. Miocene non-marine diatoms from the western Cordillera basins of northern Peru

    USGS Publications Warehouse

    Fourtanier, E.; Gasse, F.; Bellier, O.; Bonhomme, M.G.; Robles, I.

    1993-01-01

    Diatom assemblages are documented from diatomite layers of two Miocene fluvio-lacustrine units from the basins of the western Cordillera of northern Peru: the Namora Formation and the Cajabamba Formation. Emphasis is given to taxa of particular stratigraphic interest. The diatom assemblages indicate for the Namora Formation the occurrence of swampy conditions with very dilute, low alkalinity water. The diatom assemblages of the Cajabamba Formation reflect the occurrence of fresh, slightly alkaline, eutrophic lakes with deep water in some samples, and swampy conditions with relatively high salt content in other samples. The Namora formation is late Miocene in age based on the diatom assemblages and radiometric analyses. The diatom layers of the Cajabamba Formation are dated as late middle to early late Miocene. -from Authors

  15. Analysis of soft-sediment deformation structures in Neogene fluvio-lacustrine deposits of Çaybağı Formation, Eastern Turkey

    NASA Astrophysics Data System (ADS)

    Koç Taşgin, Calibe; Türkmen, İbrahim

    2009-06-01

    During the Neogene, both strike-slip and extensional regimes coexisted in eastern Turkey and, a number of fault-bounded basins associated with the East Anatolian Fault System developed. The Çaybağı Formation (Late Miocene-Early Pliocene) deposited in one of these basins consists of fluvio-lacustrine deposits. Numerous soft-sediment deformation structures are encountered in this formation, particularly in conglomerates, medium- to coarse-grained tuffaceous sandstones and claystones: folded structures (slumps, convolute laminations, and simple recumbent folds), water-escape structures (intruded sands, internal cusps, interpenetrative cusps and sand volcanoes), and load structures (load casts, pseudonodules, flame structures, and pillow structures). These structures are produced by liquefaction and/or fluidization of the unconsolidated sediments during a seismic shock. Consequently, the existence of seismically-induced deformation structures in the Çaybağı Formation and the association with a Neogene intraformational unconformity, growth faults, and reverse faults in the Çaybağı basin attest to the tectonic activity in this area during the Late Miocene and Early Pliocene. The East Anatolian Fault System, in particular the Uluova fault zone, is the most probable seismogenic source. Earthquakes with a magnitude of over 5 in the Richter scale can be postulated.

  16. Evaluating climatic response to external radiative forcing during the late Miocene to early Pliocene: New perspectives from eastern equatorial Pacific (IODP U1338) and North Atlantic (ODP 982) locations

    NASA Astrophysics Data System (ADS)

    Drury, Anna Joy; John, Cédric M.; Shevenell, Amelia E.

    2016-01-01

    Orbital-scale climate variability during the latest Miocene-early Pliocene is poorly understood due to a lack of high-resolution records spanning 8.0-3.5 Ma, which resolve all orbital cycles. Assessing this variability improves understanding of how Earth's system sensitivity to insolation evolves and provides insight into the factors driving the Messinian Salinity Crisis (MSC) and the Late Miocene Carbon Isotope Shift (LMCIS). New high-resolution benthic foraminiferal Cibicidoides mundulus δ18O and δ13C records from equatorial Pacific International Ocean Drilling Program Site U1338 are correlated to North Atlantic Ocean Drilling Program Site 982 to obtain a global perspective. Four long-term benthic δ18O variations are identified: the Tortonian-Messinian, Miocene-Pliocene, and Early-Pliocene Oxygen Isotope Lows (8-7, 5.9-4.9, and 4.8-3.5 Ma) and the Messinian Oxygen Isotope High (MOH; 7-5.9 Ma). Obliquity-paced variability dominates throughout, except during the MOH. Eleven new orbital-scale isotopic stages are identified between 7.4 and 7.1 Ma. Cryosphere and carbon cycle sensitivities, estimated from δ18O and δ13C variability, suggest a weak cryosphere-carbon cycle coupling. The MSC termination coincided with moderate cryosphere sensitivity and reduced global ice sheets. The LMCIS coincided with reduced carbon cycle sensitivity, suggesting a driving force independent of insolation changes. The response of the cryosphere and carbon cycle to obliquity forcing is established, defined as Earth System Response (ESR). Observations reveal that two late Miocene-early Pliocene climate states existed. The first is a prevailing dynamic state with moderate ESR and obliquity-driven Antarctic ice variations, associated with reduced global ice volumes. The second is a stable state, which occurred during the MOH, with reduced ESR and lower obliquity-driven variability, associated with expanded global ice volumes.

  17. Late Miocene sedimentary environments in south-western Amazonia (Solimões Formation; Brazil).

    PubMed

    Gross, Martin; Piller, Werner E; Ramos, Maria Ines; Douglas da Silva Paz, Jackson

    2011-08-01

    In Miocene times a vast wetland existed in Western Amazonia. Whereas the general development of this amazing ecosystem is well established, many questions remain open on sedimentary environments, stratigraphical correlations as well as its palaeogeographical configuration. Several outcrops located in a barely studied region around Eirunepé (SW Amazonas state, Brazil) were investigated to obtain basic sedimentological data. The observed deposits belong to the upper part of the Solimões Formation and are biostratigraphically dated to the Late Miocene. Vertically as well as laterally highly variable fine-grained clastic successions were recorded. Based on the lithofacies assemblages, these sediments represent fluvial deposits, possibly of an anastomosing river system. Sand bodies formed within active channels and dominant overbank fines are described (levees, crevasse splays/channels/deltas, abandoned channels, backswamps, floodplain paleosols). Lacustrine environments are restricted to local floodplain ponds/lakes. The mollusc and ostracod content as well as very light δ 18 O and δ 13 C values, measured on ostracod valves, refer to exclusively freshwater conditions. Based on palaeontological and geological results the existence of a long-lived lake ("Lake Pebas") or any influx of marine waters can be excluded for that region during the Late Miocene.

  18. Large mammal burrows in late Miocene calcic paleosols from central Argentina: paleoenvironment, taphonomy and producers.

    PubMed

    Cardonatto, María Cristina; Melchor, Ricardo Néstor

    2018-01-01

    Large cylindrical sediment-filled structures interpreted as mammal burrows occur within the loess-paleosol sequence of the late Miocene Cerro Azul Formation of central Argentina. A total of 115 burrow fills from three localities were measured. They are typically shallowly dipping, subcylindrical, unbranched structures with rounded ends and lacking enlargements. The horizontal diameter of the burrows range between 0.15 and 1.50 m, with most of the burrows in the interval of 0.39 to 0.98 m. Geometric morphometric analysis of transverse cross-sections support their distinct subcircular and elliptical (horizontally flattened) shapes. Burrow fills are typically laminated in the lower part and massive in the upper part. The laminated intervals reflect pulses of flowing water entering the abandoned burrow during moderate rains, whereas massive intervals reflect mass flow input of dense sediment-water mixtures during heavy rains that produced sheet floods. Approximately 1% of the burrows contained fragmentary, disarticulated and weathered mammal bones that were introduced in the open burrow by currents along with other sedimentary particles. Analysis of the tetrapod burrow fossil record suggests that Miocene burrows, including those studied herein, reflect a remarkable increase in the average size of the fossorial fauna. We conclude that large late Miocene mammals dug burrows essentially as a shelter against environmental extremes and to escape predation. The simple architecture of the burrows suggests that the producers essentially foraged aboveground. Several mammal groups acquired fossorial habits in response to cold and seasonally dry climatic conditions that prevailed during the late Miocene in southern South America. The considerable range of horizontal diameters of the studied burrows can be attributed to a variety of producers, including dasypodids, the notoungulate Paedotherium minor , Glyptodontidae and Proscelidodon sp.

  19. Late Oligocene-Early Miocene larger benthic foraminifera from the mixed siliciclastic-carbonate and reefal strata of Kharabeh Sanji stratigraphic section, NW Iran

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, R.

    2012-04-01

    The marine Oligo-Miocene sediments of the Qom Formation at Kharabeh Sanji section west Uromieh consisting of mixed siliciclastic-carbonates changing to reefal strata were studied in detail to establish a high resolution biostratigraphic zonal scheme. Contineous distribution of larger benthic foraminifera (mainly miogypsinids) allowed us to correlate the identified taxa with the shallow benthic zonation (SBZ) already introduced for European sequences and to ascribe detailed age to the study section based on the determined biozones. The identified fauna include the genera Miogypsinodes, Miogypsina, Neorotalia, Nephrolepidina, Eulepidina and Spiroclypeus. The foraminifereal assemblage resemble to the fauna described from European basins characterizing the SBZ 23 to SBZ 25 zones representing a time interval from the Late Chattian to Burdigalian.

  20. Oligocene to Miocene terrestrial climate change and the demise of forests on Wilkes Land, East Antarctica

    NASA Astrophysics Data System (ADS)

    Salzmann, Ulrich; Strother, Stephanie; Sangiorgi, Francesca; Bijl, Peter; Pross, Joerg; Woodward, John; Escutia, Carlota; Brinkhuis, Henk

    2016-04-01

    The question whether Cenozoic climate was warm enough to support a substantial vegetation cover on the Antarctic continent is of great significance to the ongoing controversial debate on the dynamic behaviour of Antarctic land ice during the transition from a greenhouse to an icehouse world. Here we present palynological results from an Oligocene to Miocene sediment record provided by the Integrated Ocean Drilling Program Expedition 318 to the Wilkes Land margin (East Antarctica). The Oligocene assemblages (33.9-23 Ma) are dominated by pollen and spores from temperate forest and sub-Antarctic shrub vegetation inhabiting different altitudinal zones. These include a lowland cold temperate forest with Dacrydium and Lagarostrobos (both common in southern forests of New Zealand and Tasmania today) and a high altitude tundra shrubland comprising Microcachrys, Nothofagus (southern beech) and Podocarpaceae conifers. A decline in pollen percentages of Dacrydium and Lagarostrobos and absence of Proteaceae indicate climate cooling during the late Oligocene (~25-23 Ma). However, the continuous presence of Lagarostrobos suggests that the full transition to a tundra environment had not yet occurred and climate on Wilkes Land during the late Oligocene was still warm enough to support forest vegetation in sheltered areas. Temperature reconstructions derived from the fossil pollen assemblages using the Coexistence Approach suggest mean annual temperatures (MATs) between 6.7-13.7°C during the early Oligocene and a drop of minimum MATs to 5.8°C in the late Oligocene. Pollen of "unambiguous" forest indicators, such as Lagarostrobos, are absent in the Miocene sediment record (16.2 -12.5 Ma) but temperatures were still high enough (minimum MATs > 5°C) to sustain a woody sub-Antarctic vegetation under partially ice-free conditions. Wilkes Land provides a unique record of Antarctic vegetation change from a subtropical, highly diverse Eocene rainforest to an Oligocene cold temperate

  1. Age and stratigraphic context of Pliopithecus and associated fauna from Miocene sedimentary strata at Damiao, Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Kaakinen, Anu; Abdul Aziz, Hayfaa; Passey, Benjamin H.; Zhang, Zhaoqun; Liu, Liping; Salminen, Johanna; Wang, Lihua; Krijgsman, Wout; Fortelius, Mikael

    2015-03-01

    Since the discovery of mammalian fossils in Central Inner Mongolia in the beginning of the 20th century, this area has produced a rich and diverse record of Miocene faunas. Nevertheless, the stratigraphy has remained poorly constrained owing to scattered faunal horizons and lack of continuous vertical exposures. Consequently, most age estimates of these Miocene sites are based on paleontological evidence alone, with very few sites having been dated independently. Our field investigations in Damiao, in Siziwang Qi, Inner Mongolia have yielded more than 30 new fossiliferous localities from three horizons, including a pliopithecid fauna. This study presents the litho-, bio- and magnetostratigraphy of the Damiao area and provides age estimates for the three fossil-bearing horizons. The sedimentary sequence is interpreted as the remains of a fluvial system comprising channels, subaerially exposed floodplains and floodbasin environments. The two local stratigraphic sections measured and sampled for paleomagnetic analysis coincide with species-rich vertebrate fossil localities. The paleomagnetic results and faunal evidence suggest a correlation of lowermost fossil horizon (DM16) producing relatively rich small mammal assemblage to the early Miocene chron C6Ar or C6An.1r, roughly in 20-21 Ma age range. The pliopithecid locality level (DM01) represents latest middle Miocene and has an age estimate of about 12.1 Ma while the youngest localities (DM02) with cervoids and abundant and diverse small mammal fauna represents the earliest late Miocene with an age estimate of about 11.6 Ma. Our magnetostratigraphic results confirm that the Damiao strata constitute one of the best sequences in Inner Mongolia with early, middle and late Miocene mammalian faunas in stratigraphic superposition. The results also provide constraints on the paleoenvironmental evolution and bioevents of the area. The occurrence of pliopithecid primates in the middle Miocene of Inner Mongolia suggests humid

  2. Sediment dispersal pattern in the Bay of Bengal - evidence for commencement of Bengal Fan sedimentation

    NASA Astrophysics Data System (ADS)

    Krishna, K. S.; Ismaiel, M.; Karlapati, S.; Gopala Rao, D.; Mishra, J.; D, S.

    2015-12-01

    The sediment succession in the Bay of Bengal records signatures corresponding to India-Asia collision, regional climate, and erosional processes of the Himalayan orogeny and the Indian subcontinent. The Bengal Fan - world's largest submarine fan - has been long studied to understand the link between the Himalayan tectonics and Asian monsoon climate, but early phase information of the Himalaya erosion is not retrieved from the Indian Ocean due to lack of deep-core samples. Therefore, the missing corresponding signals hampered the understanding of coupled processes between tectonics, climate and erosion. Seismic reflection profiles and industrial drill wells from the western Bay of Bengal show two different modes of sediment deposition: initially Indian peninsular rivers discharged sediments to the ocean at a rate ~20 m/m.y. until Oligocene-Miocene time (~23 Ma) with the exception of two fairly-enhanced sediment pulses from 65 to 54 and again from 34 to 23 Ma; since 23 Ma the Ganges and Brahmaputra rivers added huge volumes of sediments to the bay with variable rates range from 40 to >1000 m/m.y. Using seismic stratigraphic technique we found a distinct increase in sediment discharge (~140 m/m.y.) at 23 Ma is an important age marker for the onset of Bengal Fan sedimentation as a coupled connection between the Himalayan tectonics and Asian climate. Further rise in sedimentation rate during the period 6.8 - 0.8 Ma is surprisingly not in agreement with the decrease in sediment rate reported at ODP Leg 116 sites in the distal Bengal Fan, but coincident with the change in monsoon intensity. Here we provide well constrained ages for the growth of the Bengal Fan, which can serve as benchmark for interactions between the Himalayan exhumation and Asian climate.

  3. The Oligo-/Miocene Qom Formation (Iran): evidence for an early Burdigalian restriction of the Tethyan Seaway and closure of its Iranian gateways

    NASA Astrophysics Data System (ADS)

    Reuter, M.; Piller, W. E.; Harzhauser, M.; Mandic, O.; Berning, B.; Rögl, F.; Kroh, A.; Aubry, M.-P.; Wielandt-Schuster, U.; Hamedani, A.

    2009-04-01

    In the central Iranian Esfahan-Sirjan and Qom basins sedimentation of the Oligo-/Miocene Qom Formation took place on extensive mixed carbonate-siliciclastic ramps. During this time, both basins were positioned at the Eurasian margin of the Tethyan Seaway, which connected the western and eastern regions of the Tethys Ocean at least until the late Burdigalian. During the so-called Terminal Tethyan Event the Tethyan Seaway was then closed due to the collision of the African/Arabian and Iranian/Eurasian plates. Facies analysis of the sedimentary record of both basins indicates paleoenvironments ranging from terrestrial to open marine settings, including mangrove, restricted inner shelf lagoon, seagrass meadow, reefal, and deeper offshore environments. Recognition of eight depositional sequences and elaboration of an integrated biostratigraphic framework (calcareous nannoplankton, planktic and larger benthic foraminifers, gastropods, and pectinids) allow us to construct a basin-spanning stratigraphy. The assignment of the recognized sea-level lowstands to the Ru 3 to Bur 3 lowstands of the global sea-level curve enables a comparison with time-equivalent sections from the Zagros Basin, which was part of the African/Arabian Plate on the opposing southern margin of the Tethyan Seaway. The so calibrated sections display restrictions of the Tethyan Seaway and interruption of the south Iranian gateways between the Qom Basin and the Proto-Indopacific in relation to ongoing plate collision during the early Burdigalian.

  4. New method to estimate paleoprecipitation using fossil amphibians and reptiles and the middle and late Miocene precipitation gradients in Europe

    NASA Astrophysics Data System (ADS)

    Böhme, M.; Ilg, A.; Ossig, A.; Küchenhoff, H.

    2006-06-01

    Existing methods for determining paleoprecipitation are subject to large errors (±350 400 mm or more using mammalian proxies), or are restricted to wet climate systems due to their strong facies dependence (paleobotanical proxies). Here we describe a new paleoprecipitation tool based on an indexing of ecophysiological groups within herpetological communities. In recent communities these indices show a highly significant correlation to annual precipitation (r2 = 0.88), and yield paleoprecipitation estimates with average errors of ±250 280 mm. The approach was validated by comparison with published paleoprecipitation estimates from other methods. The method expands the application of paleoprecipitation tools to dry climate systems and in this way contributes to the establishment of a more comprehensive paleoprecipitation database. This method is applied to two high-resolution time intervals from the European Neogene: the early middle Miocene (early Langhian) and the early late Miocene (early Tortonian). The results indicate that both periods show significant meridional precipitation gradients in Europe, these being stronger in the early Langhian (threefold decrease toward the south) than in the early Tortonian (twofold decrease toward the south). This pattern indicates a strengthening of climatic belts during the middle Miocene climatic optimum due to Southern Hemisphere cooling and an increased contribution of Arctic low-pressure cells to the precipitation from the late Miocene onward due to Northern Hemisphere cooling.

  5. Miocene Soil Database: Global paleosol and climate maps of the Middle Miocene Thermal Maximum

    NASA Astrophysics Data System (ADS)

    Metzger, C. A.

    2013-12-01

    Paleosols, which record past climatic, biologic, and atmospheric conditions, can be used as a proxy to understand ancient terrestrial landscapes, paleoclimate, and paleoenvironment. In addition, the middle Miocene thermal maximum (~16 Ma) provides an ancient analog for understanding the effects of current and future climate change on soil and ecosystem regimes, as it contains records of shifts similar in magnitude to expected global climate change. The Miocene Soil Database (MSDB) combines new paleosol data from Australia and Argentina with existing and previously uncollated paleosol data from the literature and the Paleobiology Database. These data (n = 507) were then used to derive a paleogeographic map of climatically significant soil types zones during the Middle Miocene. The location of each diagnostic paleosol type (Aridisol, Alfisol, Mollisol, Histosol, Oxisol, and Ultisol) was plotted and compared with the extent of these soil types in the modern environment. The middle Miocene soil map highlights the extension of tropical soils (Oxisols, Ultisols), accompanied by thermophilic flora and fauna, into northern and southern mid-latitudes. Peats, lignites, and Histosols of wetlands were also more abundant at higher latitudes, especially in the northern hemisphere, during the middle Miocene. The paleosol changes reflect that the Middle Miocene was a peak of global soil productivity and carbon sequestration, with replacement of unproductive Aridisols and Gelisols with more productive Oxisols, Alfisols, Mollisols and Histosols. With expansion to include additional data such as soil texture, moisture, or vegetation type, the MSDB has the potential to provide an important dataset for computer models of Miocene climate shifts as well as future land use considerations of soils in times of global change.

  6. Punctuated Sediment Discharge during Early Pliocene Birth of the Colorado River: Evidence from Regional Stratigraphy, Sedimentology, and Paleontology

    NASA Astrophysics Data System (ADS)

    Dorsey, Rebecca J.; O'Connell, Brennan; McDougall, Kristin; Homan, Mindy B.

    2018-01-01

    discharge are assessed by comparing the depositional chronology to the record of global sea-level change. The lower Colorado River Valley and Salton Trough experienced marine transgression during a gradual fall in global sea level between 6.3 and 5.5 Ma, implicating tectonic subsidence as the main driver of latest Miocene relative sea-level rise. A major fall of global sea level at 5.3 Ma outpaced subsidence and drove regional delta progradation, earliest flushing of Colorado River sand into the northern Gulf of California, and erosion of Bouse basal carbonate and siliciclastic members. The lower Colorado River valley was re-flooded by shallow marine waters during smaller changes in global sea level 5.1-4.8 Ma, after the river first ran through it, which requires a mechanism to stop delivery of sand to the lower river valley. We propose that tectonically controlled subsidence along the lower Colorado River, upstream of the southern Bouse study area, temporarily trapped sediment and stopped delivery of sand to the lower river valley and northern Gulf of California for 200-300 kyr. Massive progradation of the fluvial-deltaic system back down the river valley into the Salton Trough starting 4.8-4.5 Ma apparently was driven by a huge increase in sediment discharge that overwhelmed the sediment-storage capacity of sub-basins along the lower river corridor and established the fully integrated river channel network. Accompanies Dorsey et al. "Punctuated sediment discharge during early Pliocene birth of the Colorado River: Evidence from regional stratigraphy, sedimentology, and paleontology". Accompanies Dorsey et al. "Punctuated sediment discharge during early Pliocene birth of the Colorado River: Evidence from regional stratigraphy, sedimentology, and paleontology". Accompanies Dorsey et al. "Punctuated sediment discharge during early Pliocene birth of the Colorado River: Evidence from regional stratigraphy, sedimentology, and paleontology".

  7. Sequoia maguanensis, a new Miocene relative of the coast redwood, Sequoia sempervirens, from China: implications for paleogeography and paleoclimate.

    PubMed

    Zhang, Jian-Wei; D'Rozario, Ashalata; Adams, Jonathan M; Li, Ya; Liang, Xiao-Qing; Jacques, Frédéric M; Su, Tao; Zhou, Zhe-Kun

    2015-01-01

    • The paleogeographical origin of the relict North American Sequoia sempervirens is controversial. Fossil records indicate a Neogene origin for its foliage characteristics. Although several fossils from the Miocene sediments in eastern Asia have been considered to have close affinities with the modern S. sempervirens, they lack the typical features of a leafy twig bearing linear as well as scale leaves, and the fertile shoots terminating by a cone. The taxonomic status of these fossils has remained unclear.• New better-preserved fossils from the upper Miocene of China indicate a new species of Sequoia. This finding not only confirms the former presence of this genus in eastern Asia, but it also confirms the affinity of this Asian form to the modern relict S. sempervirens.• The principal foliage characteristics of S. sempervirens had already originated by the late Miocene. The eastern Asian records probably imply a Beringian biogeographic track of the ancestor of S. sempervirens in the early Neogene, at a time when the land bridge was not too cool for this thermophilic conifer to spread between Asia and North America.• The climatic context of the new fossil Sequoia in Southeast Yunnan, based on other floristic elements of the fossil assemblage in which it is found, is presumed to be warm and humid. Following the uplift of the Qinghai-Tibet Plateau, this warm, humid climate was replaced by the present monsoonal climate with dry winter and spring. This change may have led to the disappearance of this hygrophilous conifer from eastern Asia. © 2015 Botanical Society of America, Inc.

  8. Mastritherium (Artiodactyla, Anthracotheriidae) from Wadi Sabya, southwestern Saudi Arabia; an earliest Miocene age for continental rift-valley volcanic deposits of the Red Sea margin

    USGS Publications Warehouse

    Madden, Gary T.; Schmidt, Dwight Lyman; Whitmore, Frank C.

    1983-01-01

    A lower jaw fragment with its last molar (M/3) from the Baid formation in Wadi Sabya, southwestern Saudi Arabia, represents the first recorded occurrence in the Arabian Peninsula of an anthracotheriid artiodactyl (hippo-like, even-toed ungulate). This fossil is identified as a primitive species of Masritherium, a North and East African genus restricted, previously to the later early Miocene. This identification indicates that the age of the Baid formation, long problematical, is early Miocene and, moreover, shows that the age of the fossil site is earliest Miocene (from 25 to 21Ma). The Wadi Sabya anthracothere is the first species of fossil mammal recorded from western Saudi Arabia, and more important, it indicates an early Miocene age for the volcanic deposits of a continental rift-valley that preceded the initial sea-floor spreading of the Red Sea.

  9. Microfossil biostratigraphy of prograding Neogene platform-margin carbonates, Bahamas: Age constraints and alternatives

    USGS Publications Warehouse

    Lidz, B.H.; Bralower, T.J.

    1994-01-01

    Benthic and planktic foraminifera and calcareous nannofossils were recovered in shallow-water carbonate rock cores from two continuous boreholes drilled 7.5 km apart on the west platform margin of the Great Bahama Bank. The microfossils define six biostratigraphic units in each hole. One unit in each hole represents a correlative condensed section. Seven foraminiferal biozones are recognized in 11 of the units between the holes: middle Miocene Globorotalia fohsi robusta Zone N12, late Miocene G. acostaensis Zone N16 and G. humerosa Zone N17, early Pliocene G. margaritae evoluta Subzone N19, late Pliocene G. exilis Subzone N21 and, tentatively, G. tosaensis tosaensis Zone N21, and early Pleistocene G. crassaformis viola Subzone N22. The twelfth unit is inferred to be of G. crassaformis viola Subzone N22 age. The oldest unit is onshore, the youngest is offshore. As presently interpreted, the nannofossil and foraminiferal zonations are partially correlative. Although the microfossils unequivocally constrain the series ages of the sediments, the incompleteness of the fossil record allows for alternative biozonal age models within the series. The Miocene and Pliocene biozones are common to both holes, but the greatest similarities between the holes are the significant mixing of middle and late Miocene, and late Miocene-early Pliocene faunas, the greatly condensed intervals at the Miocene/Pliocene boundary, and the early Pliocene influx of deep-water benthic and pelagic foraminifera. Of particular importance is the tentative recognition of late Pliocene G. tosaensis tosaensis Zone N21 in one borehole. Subsequent data not available to this phase of the study indicate that much of the zone is likely missing. Its absence will lend support to speculations of a regional unconformity in the Bahamas. The microfossils indicate that (1) several transgressions occurred from the middle Miocene to at least the earliest Pleistocene (> 11.5-> 0.46 Ma), during which banktop

  10. Late Miocene sedimentary environments in south-western Amazonia (Solimões Formation; Brazil)

    PubMed Central

    Gross, Martin; Piller, Werner E.; Ramos, Maria Ines; Douglas da Silva Paz, Jackson

    2011-01-01

    In Miocene times a vast wetland existed in Western Amazonia. Whereas the general development of this amazing ecosystem is well established, many questions remain open on sedimentary environments, stratigraphical correlations as well as its palaeogeographical configuration. Several outcrops located in a barely studied region around Eirunepé (SW Amazonas state, Brazil) were investigated to obtain basic sedimentological data. The observed deposits belong to the upper part of the Solimões Formation and are biostratigraphically dated to the Late Miocene. Vertically as well as laterally highly variable fine-grained clastic successions were recorded. Based on the lithofacies assemblages, these sediments represent fluvial deposits, possibly of an anastomosing river system. Sand bodies formed within active channels and dominant overbank fines are described (levees, crevasse splays/channels/deltas, abandoned channels, backswamps, floodplain paleosols). Lacustrine environments are restricted to local floodplain ponds/lakes. The mollusc and ostracod content as well as very light δ18O and δ13C values, measured on ostracod valves, refer to exclusively freshwater conditions. Based on palaeontological and geological results the existence of a long-lived lake (“Lake Pebas”) or any influx of marine waters can be excluded for that region during the Late Miocene. PMID:26523089

  11. Temperature profile around a basaltic sill intruded into wet sediments

    USGS Publications Warehouse

    Baker, Leslie; Bernard, Andrew; Rember, William C.; Milazzo, Moses; Dundas, Colin M.; Abramov, Oleg; Kestay, Laszlo P.

    2015-01-01

    The transfer of heat into wet sediments from magmatic intrusions or lava flows is not well constrained from field data. Such field constraints on numerical models of heat transfer could significantly improve our understanding of water–lava interactions. We use experimentally calibrated pollen darkening to measure the temperature profile around a basaltic sill emplaced into wet lakebed sediments. It is well known that, upon heating, initially transparent palynomorphs darken progressively through golden, brown, and black shades before being destroyed; however, this approach to measuring temperature has not been applied to volcanological questions. We collected sediment samples from established Miocene fossil localities at Clarkia, Idaho. Fossils in the sediments include pollen from numerous tree and shrub species. We experimentally calibrated changes in the color of Clarkia sediment pollen and used this calibration to determine sediment temperatures around a Miocene basaltic sill emplaced in the sediments. Results indicated a flat temperature profile above and below the sill, with T > 325 °C within 1 cm of the basalt-sediment contact, near 300 °C at 1–2 cm from the contact, and ~ 250 °C at 1 m from the sill contact. This profile suggests that heat transport in the sediments was hydrothermally rather than conductively controlled. This information will be used to test numerical models of heat transfer in wet sediments on Earth and Mars.

  12. Major variation of paleo-maximum temperature and consolidation state within post Miocene forearc basin, central Japan

    NASA Astrophysics Data System (ADS)

    Kamiya, N.; Yamamoto, Y.; Takemura, T.

    2015-12-01

    Since forearc-basin evolve associated with development of the accretionary prisms, their geologic structures have clues to understanding the tectonic processes associated with plate subduction. We found a major difference in paleo-geothermal structure and consolidation states between the unconformity in the forearc basin in the Boso Peninsula, central Japan. The geology of the Boso Peninsula, central Japan is divided into three parts; Early Miocene and Late Miocene accretionary prisms in the southern part, the Hayama-Mineoka tectonic belt mainly composed of ophiolite in the middle part, and post-Middle Miocene forearc basin in the northern part. Sediments in the forearc basin are composed of 15-3Ma Miura Group and 3-0.6Ma Kazusa Group. Boundary of the two groups is the Kurotaki Unconformity formed about 3Ma, when convergent direction of the Philippine Sea Plate has been changed (Takahashi, 2006). Vitrinite reflectance (Ro) analyses were conducted and revealed that major variation of paleo-maximum temperature between the Miura and Kazusa groups. The maximum paleo-temperature in the Miura Group is estimated as 70-95˚C, whereas in the lower part of the Kazusa Group is less than 10-35˚C. Given 20˚C/km (Sakai et al, 2011) paleo-geothermal gradient, approximately 2000 m uplifting/erosion of the Miura Group is expected when the unconformity formed. To verify the amount of this uplifting/erosion, we are performing consolidation test of mudstone. [Reference] Takahashi, M., 2006, Tectonic Development of the Japanese Islands Controlled by Philippine Sea Plate Motion, Journal of Geography, 115, 116-123. Sakai R., Munakata M., Kimura H., Ichikawa Y., and Nakamura M., 2011, Study on Validation Method of Regional Groundwater Flow Model : Case Study for Boso Peninsula, JAEA-research 2010(66), 1-20, 1-2.

  13. Vegetation and climate development on the Atlantic Coastal Plain during the late Mid-Miocene Climatic Optimum (IODP Expedition 313)

    NASA Astrophysics Data System (ADS)

    Prader, Sabine; Kotthoff, Ulrich; McCarthy, Francine; Greenwood, David

    2015-04-01

    The major aims of IODP Expedition 313 are estimating amplitudes, rates and mechanisms of sea-level change and the evaluation of sequence stratigraphic facies models that predict depositional environments, sediment compositions, and stratal geometries in response to sea-level change. Cores from three Sites (313-M0027, M0028, and M0029) from the New Jersey shallow shelf (water depth approximately 35 m) were retrieved during May to July 2009, using an ECORD "mission-specific" jack-up platform. We have investigated the palynology of sediment cores from Site M0027, 45 km off the present-day coast of New Jersey. For this study, we have focused on pollen studies for the second half of the Mid-Miocene Climatic Optimum (MMCO) and the subsequent transition to cooler conditions (ca. 15 to 13 million years before present). Transport-caused bias of the pollen assemblages was identified via the analysis of the terrestrial/marine palynomorph ratio and these results were considered when interpreting palaeo-vegetation from the pollen data. Pollen preservation in the interval analyzed herein was generally very good. Pollen grains were analyzed via both light and scanning electron microscopy. For most samples, the pollen assemblages were not highly diverse. The most abundant taxa through all samples were Quercus (oak) and Carya (hickory). Typical wetland elements like Cyperaceae, Taxodium (cypress), Nyssa (tupelo tree) and taxa today growing in the tropics and subtropics like Sapotaceae, Symplocaceae, Arecaceae (palm trees) and Alangium, which indicate particularly warm climate conditions, were only sporadically found, but indicate warmer phases during the second half of the MMCO. Herbal pollen was generally rare, but members of the Asteraceae, Apiaceae, and Ericaceae families, together with infrequent occurences of Poaceae pollen indicate the presence of areas with open vegetation. The Mid-Miocene pollen assemblages reflect a vegetation in the hinterland of the New Jersey shelf

  14. The Randeck Maar: Facies development and habitat differentiation of a Miocene lacustrine system

    NASA Astrophysics Data System (ADS)

    Rasser, Michael W.; Kern, Andrea K.

    2015-04-01

    The Randeck Maar in S Germany is a well-known fossil lagerstätte (Early/Middle Miocene, MN5) with exceptionally preserved fossils. Although it is a locally restricted succession of lake sediments with a diameter of only 1200 m and less than 60 m of preserved sediments, it appears to comprise a complex structure with a high scientific potential on a global scale, because the lake sediments and their fossils can provide evidence for the impact of the Mid-Miocene Climatic Optimum (MMCO) on the environment and its organisms as well as the ecological interactions between animals and/or plants during that interval. No other European locality provides such a rich insight into an ecosystem that existed during the MMCO. Excavations of Staatliches Museum für Naturkunde Stuttgart provided new insights into the facies types of this maar lake. They showed that a high variety of facies types existed beside the traditional separation into a basal tuffitic development, followed by calcareous and bituminous ('dysodil') laminates, and terminal massive freshwater limestones. Palaeoenvironmental reconstructions are based on the mentioned excavations and re-evaluations of collection material. They show that the Randeck Maar was a typical maar lake with a rich flora and fauna. Based on all plant remains, the IPR vegetational analysis points towards subhumid sclerophyllous forests, suggesting seasonal drought. 380 taxa in all are known thus far, which are dominated by plants (168) and insects (79). The taxonomic re-evaluation combined with palaeoecological considerations allows for the reconstruction of a palaeoenvironmental model. In brief, three main sections can be differentiated for the habitats of the Randeck Maar lake system: (1) Deep- and open-water lake habitats with local and short-termed mass occurrences of insect larvae, amphibians, and/or gastropods, while fish are particularly scarce. The interpretation of the water chemistry is problematic because palaeoenvironmental

  15. Eocene and miocene rocks off the northeastern coast of the United States

    USGS Publications Warehouse

    Gibson, T.G.

    1965-01-01

    A grab sample from a depth of 1675 m at a point south of Cape Cod contains early Eocene planktonic Foraminifera and is correlated with the Globorotalia rex zone of Trinidad. The assemblage indicates a depth comparable to that existing today. Regional relations suggest that the Cretaceous and Eocene deposits deepen to the west toward New Jersey. Two mollusk-bearing blocks dredged from the northern side of Georges Bank are correlative with the Miocene Yorktown Formation. Rocks from two other stations are probably Miocene. Benthonic Foraminifera in one sample indicate deposition in cool temperate waters of less than 60 m depth. ?? 1965.

  16. Provenance of Cretaceous-Pliocene Clastic Sediments in the Tachira Saddle, Western Venezuela, and Implications for Sediment Dispersal Patterns in the Northern Andes

    NASA Astrophysics Data System (ADS)

    Gomez, Ali Ricardo

    Northwestern South America is highly deformed due to the transpressive plate boundary associated with complex interactions between the Caribbean plate, the South American plate, the Nazca plate and the Panama arc. Previous studies suggest that the Cenozoic uplift of the Merida Andes and Eastern Cordillera of Colombia affected sediment dispersal patterns in the region, shifting from a Paleocene foreland basin configuration to the modern isolated basins. Well-exposed Cretaceous to Pliocene strata in the Tachira Saddle provides a unique opportunity to test proposed sediment dispersal patterns in the region. U-Pb detrital zircon geochronology and supplementary XRD heavy mineral data are used together to document the provenance of the Tachira Saddle sediments and refine the sediment dispersal patterns in the region. Results from the U-Pb detrital zircon geochronology show that there are six age groups recorded in these samples. Two groups are related to the Precambrian Guyana shield terranes and Putumayo basement in the Eastern Cordillera, and four groups are related to different magmatic episodes occurring during the Andean orogenic process. The transition between the Cretaceous passive margin and the Paleocene foreland basin and the initial uplift of the Eastern Cordillera and the uplift of the Merida Andes by the Early Miocene were also recorded in the Tachira saddle detrital zircon signature.

  17. Evolution of a Miocene sag basin in the Alboran Sea

    NASA Astrophysics Data System (ADS)

    Do Couto, D.; Gorini, C.; Jolivet, L.; Letouzey, J.; Smit, J.; d'Acremont, E.; Auxietre, J. L.; Le Pourhiet, L.; Estrada, F.; Elabassi, M.; Ammar, A.; Jabour, H.; Vendeville, B.

    2012-04-01

    The Alboran domain represents the westernmost termination of the peri-Mediterranean Alpine orogen. Its arcuate shape, delimited to the North by the Betic range and to the South by the Rif range, is the result of subduction, collision and slab migration processes. During the Neogene, several sedimentary basins formed on the Betics metamorphic basement, mainly due to the extensional collapse of the previously thickened crust of the Betic-Rif belt. The major sedimentary depocentre, the Western Alboran Basin (WAB), is surrounded by the Gibraltar arc, the volcanic Djibouti mounts and the Alboran ridge, and is partly affected by shale tectonics and associated mud volcanism. High-quality 2-D seismic profiles acquired along the Moroccan margin during the last decade reveal a complete history of the basin. Our study deals with the analysis of seismic profiles oriented parallel and orthogonal to the Mediterranean Moroccan margin. The stratigraphy was calibrated using well data from offshore Spain and Morocco. Our study focuses particularly on the tectono-stratigraphic reconstruction of the basin. The formation of the WAB began in the Early Miocene (Aquitanian - Burdigalian). A massive unit of Early Miocene to Lower Langhian shales and olistostromes forms a thick mobile décollement layer that controls and accommodates deformation of the basin fill. From the Upper Langhian to the Upper Tortonian, the basin is filled by a thick sequence of siliciclastic deposits. Stratigraphic geometries identified on seismic data clearly indicate that deformation of the basin fill started during deposition of Upper Langhian to the Upper Tortonian clastics. Shale tectonic deformation was re-activated recently, during the Messinian desiccation of the Mediterranean Sea (and the following catastrophic Pliocene reflooding) or during the Quaternary contourite deposition The sedimentary layers gently dip towards the basin centre and "onlaps" onto the basin margin, especially onto the basement high

  18. Early guenon from the late Miocene Baynunah Formation, Abu Dhabi, with implications for cercopithecoid biogeography and evolution.

    PubMed

    Gilbert, Christopher C; Bibi, Faysal; Hill, Andrew; Beech, Mark J

    2014-07-15

    A newly discovered fossil monkey (AUH 1321) from the Baynunah Formation, Emirate of Abu Dhabi, United Arab Emirates, is important in a number of distinct ways. At ∼ 6.5-8.0 Ma, it represents the earliest known member of the primate subfamily Cercopithecinae found outside of Africa, and it may also be the earliest cercopithecine in the fossil record. In addition, the fossil appears to represent the earliest member of the cercopithecine tribe Cercopithecini (guenons) to be found anywhere, adding between 2 and 3.5 million y (∼ 50-70%) to the previous first-appearance datum of the crown guenon clade. It is the only guenon--fossil or extant--known outside the continent of Africa, and it is only the second fossil monkey specimen so far found in the whole of Arabia. This discovery suggests that identifiable crown guenons extend back into the Miocene epoch, thereby refuting hypotheses that they are a recent radiation first appearing in the Pliocene or Pleistocene. Finally, the new monkey is a member of a unique fauna that had dispersed from Africa and southern Asia into Arabia by this time, suggesting that the Arabian Peninsula was a potential filter for cross-continental faunal exchange. Thus, the presence of early cercopithecines on the Arabian Peninsula during the late Miocene reinforces the probability of a cercopithecoid dispersal route out of Africa through southwest Asia before Messinian dispersal routes over the Mediterranean Basin or Straits of Gibraltar.

  19. Early guenon from the late Miocene Baynunah Formation, Abu Dhabi, with implications for cercopithecoid biogeography and evolution

    PubMed Central

    Gilbert, Christopher C.; Bibi, Faysal; Hill, Andrew; Beech, Mark J.

    2014-01-01

    A newly discovered fossil monkey (AUH 1321) from the Baynunah Formation, Emirate of Abu Dhabi, United Arab Emirates, is important in a number of distinct ways. At ∼6.5–8.0 Ma, it represents the earliest known member of the primate subfamily Cercopithecinae found outside of Africa, and it may also be the earliest cercopithecine in the fossil record. In addition, the fossil appears to represent the earliest member of the cercopithecine tribe Cercopithecini (guenons) to be found anywhere, adding between 2 and 3.5 million y (∼50–70%) to the previous first-appearance datum of the crown guenon clade. It is the only guenon—fossil or extant—known outside the continent of Africa, and it is only the second fossil monkey specimen so far found in the whole of Arabia. This discovery suggests that identifiable crown guenons extend back into the Miocene epoch, thereby refuting hypotheses that they are a recent radiation first appearing in the Pliocene or Pleistocene. Finally, the new monkey is a member of a unique fauna that had dispersed from Africa and southern Asia into Arabia by this time, suggesting that the Arabian Peninsula was a potential filter for cross-continental faunal exchange. Thus, the presence of early cercopithecines on the Arabian Peninsula during the late Miocene reinforces the probability of a cercopithecoid dispersal route out of Africa through southwest Asia before Messinian dispersal routes over the Mediterranean Basin or Straits of Gibraltar. PMID:24982136

  20. A major Early Miocene thermal pulse due to subduction segmentation and rollback in the western Mediterranean region

    NASA Astrophysics Data System (ADS)

    Spakman, W.; Van Hinsbergen, D. J.; Vissers, R.

    2012-12-01

    Geological studies have shown that Eo-Oligocene subduction related high-pressure, low-temperature metasediments and peridotites of the Alboran region (Spain, Morocco) and the Kabylides (Algeria) experienced a major Early Miocene (~21 Ma) thermal pulse requiring asthenospheric temperatures at ~60 km depth. Despite earlier propositions, the cause of this thermal pulse is still controversial while also the paleogeographic origin of the Alboran and Kabylides units is debated. Here, we relate the thermal pulse to segmentation of the West Alpine-Tethyan slab under the SE Iberian margin (Baleares-Sardinia). We restore the Alboran rocks farther east than previously assumed, to close to the Balearic Islands, adjacent to Sardinia. We identify three major lithosphere faults, the NW-SE trending North Balearic Transform Zone (NBTZ) and the ~W-E trending Emile Baudot and North African transforms that accommodated the Miocene subduction evolution of slab segmentation, rollback, and migration of Alboran and Kabylides rocks to their current positions. The heat pulse occurred S-SE of the Baleares where slab segmentation along the NBTZ triggered radially outgrowing S-SW rollback opening a slab window that facilitated local ascent of asthenosphere below the rapidly extending Alboran-Kabylides accretionary prism. Subsequent slab rollback carried the Kabylides and Alboran domains to their present positions. Our new reconstruction is in line with tomographically imaged mantle structure and focuses attention on the crucial role of evolving subduction segmentation driving HT-metamorphism and subsequent extension, fragmentation, and dispersion of geological terrains.

  1. The Messinian erosional surface and early Pliocene reflooding in the Alboran Sea: New insights from the Boudinar basin, Morocco

    NASA Astrophysics Data System (ADS)

    Cornée, Jean-Jacques; Münch, Philippe; Achalhi, Mohammed; Merzeraud, Gilles; Azdimousa, Ali; Quillévéré, Frédéric; Melinte-Dobrinescu, Mihaela; Chaix, Christian; Moussa, Abdelkhalak Ben; Lofi, Johanna; Séranne, Michel; Moissette, Pierre

    2016-03-01

    New investigations in the Neogene Boudinar basin (Morocco) provide new information about the Messinian Salinity Crisis (MSC) and Zanclean reflooding in the southern part of the Alboran realm (westernmost Mediterranean). Based on a new field, sedimentological and palaeontological analyses, the age and the geometry of both the Messinian erosional surface (MES) and the overlying deposits have been determined. The MES is of late Messinian age and was emplaced in subaerial settings. In the Boudinar basin, a maximum of 200 m of Miocene sediments was eroded, including late Messinian gypsum blocks. The original geometry of the MES is preserved only when it is overlain by late Messinian continental deposits, conglomeratic alluvial fans or lacustrine marly sediments. These sediments are interpreted as indicators of the sea-level fall during the MSC. Elsewhere in the basin, the contact between late Messinian and early Pliocene deposits is a low-angle dipping, smooth surface that corresponds to the early Pliocene transgression surface that subsequently re-shaped the regressive MES. The early Pliocene deposits are characterized by: (i) their onlap onto either the basement of the Rif chain or the late Miocene deposits; (ii) lagoonal deposits at the base to offshore marls and sands at the top (earliest Pliocene; 5.33-5.04 Ma interval; foraminifer zone PL1); (iii) marine recovery occurring in the 5.32-5.26 Ma interval; and (iv) the change from lagoonal to offshore environments occurring within deposits tens of metres thick. This information indicates that at least the end of the reflooding period was progressive, not catastrophic as previously thought.

  2. Pleistocene to Miocene Calcareous Nannofossil Biostratigraphy from IODP Expedition 334 Hole U1381A and Expedition 352 Hole U1439A

    NASA Astrophysics Data System (ADS)

    Power, M.; Scientists, I. E.; Avery, A. J.

    2015-12-01

    Samples for this study were collected from drill cores taken during the Integrated Ocean Drilling Program (IODP) Expeditions 334 and 352 at Sites U1381 and U1439, respectively. Both of these expeditions were focused around subduction zones and, therefore, had priorities to determine time frames for the initiation of subduction. There are two main objectives for this study, the first being to age-date Pleistocene to Miocene sediments from the western offshore continental margin of Costa Rica (IODP Expedition 334) via calcareous nannofossils. The second objective is to age-date the Miocene sediments from the fore-arc of the Izu-Bonin-Mariana system, east of Japan (IODP Expedition 352), using calcareous nannofossils. Shore-based analysis allows for high-resolution study to determine exact biostratigraphic zonations. These zonations reflect specific time frames based on the occurrence or non-occurrence of certain nannofossil species. Once these zonations are determined, scientists can use the data to identify the initiation of seismic processes that often occur in these regions. Calcareous nannofossil biostratigraphy has now provided zonations for the samples taken from IODP Expedition 334 cores. Samples from core 6R are assigned to the Pleistocene nannofossil Zone NN19 due to the presence ofPseudoemiliania lacunosa and the absence of Emiliania huxleyi. Using the zonal scheme by de Kaenel (1999), this can further be broken down into Event 18 due to the presence of Gephyrocapsa oceanica larger than 4 μm but less than 5 μm, the presence of Calcidiscus macintyrei smaller than 11 μm, and the absence ofGephyrocapsa caribbeanica larger than 4 μm. De Kaenel (1999) has assigned this event datum an age of 1.718 Ma using orbital time scales and oxygen isotope data. Below these samples, an extensive hiatus ranges from the Pleistocene to the early Miocene. Samples from cores 7R through 10R are assigned to nannofossil zone NN5; however, it is impossible to constrain the top of

  3. Petrologic evolution of Miocene-Pliocene mafic volcanism in the Kangal and Gürün basins (Sivas-Malatya), central east Anatolia: Evidence for Miocene anorogenic magmas contaminated by continental crust

    NASA Astrophysics Data System (ADS)

    Kocaarslan, Ayça; Ersoy, E. Yalçın

    2018-06-01

    This study discusses the geochemical features of the Early-Middle Miocene and Pliocene basaltic (SiO2 = 46-52; MgO = 6-10 wt%) to andesitic (SiO2 = 59; MgO = 4 wt%) rocks exposed in the Gürün and Kangal basins (Sivas, eastern part of central Anatolia), respectively. The basaltic rocks are characterized by alkaline to tholeiitic affinities, while the more evolved andesitic samples show calc-alkaline affinity. Trace element variations reveal that they can be evaluated in three sub-groups, each represented by different contents of trace elements for given Nb contents. Primary magmas of each groups were likely produced by different degrees of partial melting ( 1-2, 2-3, 7-10% respectively) from a common mantle source, subsequently underwent different degrees of fractionation and crustal contamination. Derivation from a common mantle source of the primitive magmas of each group is supported by similar Sr, Nd and Pb isotopic ratios. Increasing degrees of partial melting seem to be responsible for the alkaline to tholeiitic variation among the basaltic samples, while higher degrees of crustal contamination (AFC) resulted in calc-alkaline affinity of the more evolved samples. Most primitive Pliocene samples show intra-plate (anorogenic) geochemical features, while the more evolved Miocene calc-alkaline samples resemble geochemically subduction-related (orogenic) magmatic rocks. However, on the basis of detailed geochemical models, we propose that the calc-alkaline affinity among the Miocene samples can also be gained by crustal contamination of their primary magmas which were also anorogenic in character. If this is true, overall, the Miocene and Pliocene basaltic to andesitic rocks in the Gürün and Kangal basins appear to may have formed by variable degrees of partial melting of a common anorogenic mantle that had not been subject to subduction-related metasomatism. This is an alternative approach to the general view assuming the Early-Middle Miocene magmatic activity

  4. Palynology of the Heath Formation (Miocene) from the Progreso Basin, Peru

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engelhardt, D.W.; Wood, G.D.

    1993-02-01

    A diverse and well preserved assemblage of pollen, spores, dinoflagellates, and acritarchs were recovered from outcrop samples of the Heath Formation, exposed along Bocapan Creek near Tumbes, Peru. The pollen and spores include representatives of Arecipites, Bombacacidites, Caryapollenites, Cicatricosisporites, Couperipollis, Cyathidites, Diporisporites, Distaverrusporites, Dyadosporites, Echiperiporites, Faramea, Foveodiporites, Foveotriletes, Fusiformisporites, Gothanipollis, Granitricolpites, Hymenophyllum, Hexpollenties, Involutisporites, Laevigatosporites, Lygodiumsporites, Magniperiporites, Malvacearumpollis, Monocolpopollenites, Perissyncolporites, Peritheciumites, Phragmothyrites, Polyadadporites, Polypodiaceisporites, Polypodiisporites, Retibrevitricolpites, Striadisporites, Tetracolporites, Tricolporopollenties, and Verrucosisporites. Plankton are assignable to Lejeunecysta, Operculodinium, Pterospermella, Selenopemphix, Spiniferites, Sumatradinium, Tythodiscus, and Tuberculodinium. The palynomorph assemblage can be placed in the Early Miocene based on the co-occurrence of Cicatricosisporitesmore » dorogensis, Couperipollis rarispinosus, Echiperiporites estelae, Magniperiporites echinatus, Perisyncolporites porkornii, Polypodiaceoisporites minor, P. potoniei, Reticolporites guianesnsis, R. irregularis, Scabriporites asymetricus, Selenopemphix nephroides and Tuberculodinium vancampoae. This is an agreement with foraminiferal evidence which positions the Heath Formation in the Early Miocene Catapsydrax dissimilis, Catapsydrax stainforthi and oldest portion of the Globigerinatella insueta zones.« less

  5. A Middle Miocene (13.5-12 Ma) deformational event constrained by volcanism along the Puna-Eastern Cordillera border, NW Argentina

    NASA Astrophysics Data System (ADS)

    Aramayo, Alejandro; Guzmán, Silvina; Hongn, Fernando; del Papa, Cecilia; Montero-López, Carolina; Sudo, Masafumi

    2017-04-01

    The features of Middle Miocene deposits in the Puna-Eastern Cordillera transition (Valles Calchaquíes) indicate that Cenozoic deformation, sedimentation and volcanism follow a complex spatiotemporal relationship. The intense volcanic activity recorded in the eastern Puna border between 14 and 11.5 Ma coincides with the occurrence of one of the most important deformation events of the Neogene tectonic evolution in the region. Studies performed across the Puna-Eastern Cordillera transition show different relationships between volcanic deposits of ca. 13.5-12.1 Ma and the Oligocene-Miocene Angastaco Formation. In this paper we describe the ash-flow tuff deposits which are the first of this type found concordant in the sedimentary fill of Valles Calchaquíes. Several analyses performed on these pyroclastic deposits allow a correlation to be made with the Alto de Las Lagunas Ignimbrite (ca. 13.5 Ma) of the Pucarilla-Cerro Tipillas Volcanic Complex located in the Puna. Outcrops of the ca. 13.5 Ma pyroclastic deposits are recognised within the Puna and the Valle Calchaquí. However, in the southern prolongation of the Valle de Hualfín (Tiopampa-Pucarilla depression) that separates the Puna from the Valle Calchaquí at these latitudes, these deposits are partially eroded and buried, and thus their occurrence is recorded only by abundant volcanic clasts included in conglomerates of the Angastaco Formation. The sedimentation of the Angastaco Formation was aborted at ca. 12 Ma in the Tiopampa-Pucarilla depression by the Pucarilla Ignimbrite, which unconformably covers the synorogenic units. On the contrary, in the Valle Calchaquí the sedimentation of the Angastaco Formation continued until the Late Miocene. The different relationships between the Miocene Angastaco Formation and the ignimbrites with ages of ca. 13.5 and ca. 12 Ma reveal that in this short period ( 1.5 m.y.) a significant deformation event took place and resulted in marked palaeogeographic changes, as

  6. Sandy contourite drift in the late Miocene Rifian Corridor (Morocco): Reconstruction of depositional environments in a foreland-basin seaway

    NASA Astrophysics Data System (ADS)

    Capella, W.; Hernández-Molina, F. J.; Flecker, R.; Hilgen, F. J.; Hssain, M.; Kouwenhoven, T. J.; van Oorschot, M.; Sierro, F. J.; Stow, D. A. V.; Trabucho-Alexandre, J.; Tulbure, M. A.; de Weger, W.; Yousfi, M. Z.; Krijgsman, W.

    2017-06-01

    The Rifian Corridor was a seaway between the Atlantic Ocean and the Mediterranean Sea during the late Miocene. The seaway progressively closed, leading to the Messinian Salinity Crisis in the Mediterranean Sea. Despite the key palaeogeographic importance of the Rifian Corridor, patterns of sediment transport within the seaway have not been thoroughly studied. In this study, we investigated the upper Miocene sedimentation and bottom current pathways in the South Rifian Corridor. The planktic and benthic foraminifera of the upper Tortonian and lower Messinian successions allow us to constrain the age and palaeo-environment of deposition. Encased in silty marls deposited at 150-300 m depth, there are (i) 5 to 50 m thick, mainly clastic sandstone bodies with unidirectional cross-bedding; and (ii) 50 cm thick, mainly clastic, tabular sandstone beds with bioturbation, mottled silt, lack of clear base or top, and bi-gradational sequences. Furthermore, seismic facies representing elongated mounded drifts and associated moat are present at the western mouth of the seaway. We interpret these facies as contourites: the products of a westward sedimentary drift in the South Rifian Corridor. The contourites are found only on the northern margin of the seaway, thus suggesting a geostrophic current flowing westward along slope and then northward. This geostrophic current may have been modulated by tides. By comparing these fossil examples with the modern Gulf of Cadiz, we interpret these current-dominated deposits as evidence of late Miocene Mediterranean overflow into the Atlantic Ocean, through the Rifian Corridor. This overflow may have affected late Miocene ocean circulation and climate, and the overflow deposits may represent one of the first examples of mainly clastic contourites exposed on land.

  7. Early Miocene amber inclusions from Mexico reveal antiquity of mangrove-associated copepods.

    PubMed

    Huys, Rony; Suárez-Morales, Eduardo; Serrano-Sánchez, María de Lourdes; Centeno-García, Elena; Vega, Francisco J

    2016-10-12

    Copepods are aquatic microcrustaceans and represent the most abundant metazoans on Earth, outnumbering insects and nematode worms. Their position of numerical world predominance can be attributed to three principal radiation events, i.e. their major habitat shift into the marine plankton, the colonization of freshwater and semiterrestrial environments, and the evolution of parasitism. Their variety of life strategies has generated an incredible morphological plasticity and disparity in body form and shape that are arguably unrivalled among the Crustacea. Although their chitinous exoskeleton is largely resistant to chemical degradation copepods are exceedingly scarce in the geological record with limited body fossil evidence being available for only three of the eight currently recognized orders. The preservation of aquatic arthropods in amber is unusual but offers a unique insight into ancient subtropical and tropical ecosystems. Here we report the first discovery of amber-preserved harpacticoid copepods, represented by ten putative species belonging to five families, based on Early Miocene (22.8 million years ago) samples from Chiapas, southeast Mexico. Their close resemblance to Recent mangrove-associated copepods highlights the antiquity of the specialized harpacticoid fauna living in this habitat. With the taxa reported herein, the Mexican amber holds the greatest diversity of fossil copepods worldwide.

  8. Early Miocene amber inclusions from Mexico reveal antiquity of mangrove-associated copepods

    PubMed Central

    Huys, Rony; Suárez-Morales, Eduardo; Serrano-Sánchez, María de Lourdes; Centeno-García, Elena; Vega, Francisco J.

    2016-01-01

    Copepods are aquatic microcrustaceans and represent the most abundant metazoans on Earth, outnumbering insects and nematode worms. Their position of numerical world predominance can be attributed to three principal radiation events, i.e. their major habitat shift into the marine plankton, the colonization of freshwater and semiterrestrial environments, and the evolution of parasitism. Their variety of life strategies has generated an incredible morphological plasticity and disparity in body form and shape that are arguably unrivalled among the Crustacea. Although their chitinous exoskeleton is largely resistant to chemical degradation copepods are exceedingly scarce in the geological record with limited body fossil evidence being available for only three of the eight currently recognized orders. The preservation of aquatic arthropods in amber is unusual but offers a unique insight into ancient subtropical and tropical ecosystems. Here we report the first discovery of amber-preserved harpacticoid copepods, represented by ten putative species belonging to five families, based on Early Miocene (22.8 million years ago) samples from Chiapas, southeast Mexico. Their close resemblance to Recent mangrove-associated copepods highlights the antiquity of the specialized harpacticoid fauna living in this habitat. With the taxa reported herein, the Mexican amber holds the greatest diversity of fossil copepods worldwide. PMID:27731321

  9. The extinct river shark Glyphis pagoda from the Miocene of Myanmar and a review of the fossil record of the genus Glyphis (Carcharhiniformes: Carcharhinidae).

    PubMed

    Shimada, Kenshu; Egi, Naoko; Tsubamoto, Takehisa; Maung-Maung, Maung-Maung; Thaung-Htike, Thaung-Htike; Zin-Maung-Maung-Thein, Zin-Maung-Maung-Thein; Nishioka, Yuichiro; Sonoda, Teppei; Takai, Masanaru

    2016-09-05

    We redescribe an extinct river shark, Glyphis pagoda (Noetling), on the basis of 20 teeth newly collected from three different Miocene localities in Myanmar. One locality is a nearshore marine deposit (Obogon Formation) whereas the other two localities represent terrestrial freshwater deposits (Irrawaddy sediments), suggesting that G. pagoda from the Irrawaddy sediments was capable of tolerating low salinity like the extant Glyphis. Glyphis pagoda likely reached up to at least 185 cm in total body length and was probably piscivorous. The fossil species occurs in rocks of Myanmar and eastern and western India and stratigraphically ranges at least from the Lower Miocene (Aquitanian) to the lower Upper Miocene (mid-Tortonian). It has been classified under at least eight other genera to date, along with numerous taxonomic synonyms largely stemming from the lack of understanding of the heterodonty in extant Glyphis in the original description. Our literature review suggests that known Miocene shark faunas, particularly those in India, are manifested with unreliable taxonomic identifications and outdated classifications that warrant the need for a comprehensive taxonomic review in order to evaluate the evolutionary history and diversity pattern of Miocene shark faunas. The genus Glyphis has a roughly 23-million-year-long history, and its success may be related to the evolution of its low salinity tolerance. While extant Glyphis spp. are considered to be particularly vulnerable to habitat degradation and overfishing, the fossil record of G. pagoda provides renewed perspective on the natural history of the genus that can be taken into further consideration for conservation biology of the extant forms.

  10. Sensitivity of climate and Atlantic overturning circulation to uncertain ocean gateway configurations for the late Miocene

    NASA Astrophysics Data System (ADS)

    Bradshaw, C.; Lunt, D. J.; Flecker, R.; Martinez-Mendez, G.

    2013-12-01

    The palaeorecord documents late Miocene (11.6-5.3 Ma) climate to be much warmer and wetter than today yet CO2 reconstructions are similar to modern levels. Given the apparent decoupling between CO2 and warmth for this period we investigate here the role of the oceans. The late Miocene experienced significant tectonic change including the restriction of some of the last ocean gateways to close (Panama Gateway and Indonesian Seaway) and open (Bering Strait and Barents/Kara Sea). However, the timing and configuration of these tectonic changes is uncertain. The final closure of the Panama Gateway is dated to the Pliocene, but continental mammal exchange suggests the existence of a Central American archipelago from the mid-late Miocene. The Bering Strait is typically assumed to have opened at the very end of the late Miocene/early Pliocene based on diatom exchange, but other marine and terrestrial evidence points to a much earlier, perhaps intermittent, opening. The timing of the restriction of the Indonesian Seaway is very poorly constrained at middle Miocene to Pliocene. The Barents Sea and Kara Sea shelves are documented as having being subject to extensive glacial erosion and post-glacial uplift since the Pliocene and throughout the Quaternary but records of uplift and erosion during the earlier Cenozoic are limited. However, the presence of significant preglacial sediments suggests that this region underwent tectonic uplift, volcanism and subsequent erosion during the Eocene-Miocene period although the age assignment of the data remains controversial. The Panama Gateway has been suggested to influence North Atlantic Deep Water (NADW) production through numerous modelling studies, the Bering Strait has been suggested to greatly impact NADW during the Quaternary, and the strength of Indonesian Throughflow is hypothesised to influence Agulhas Leakage, which, in turn, has been speculated to influence Atlantic meridional overturning and thus NADW production. Here, we

  11. Comments to Middle Miocene closure of the Central American Seaway

    USGS Publications Warehouse

    Coates, A.G.; Stallard, Robert F.

    2016-01-01

    In a recent paper proposing an early (mid-Miocene) closure of the Central American Seaway (CAS), Montes et al. 2015 (1) disregard existing paleogeographic data that invalidate Panama as a source for zircons, and inappropriately ignore the evidence for trans-isthmian marine connections until 4-3 Ma. They also fail to cite previous work (2, 3), that had reconstructed the Central American arc already docked with South America by 12 Ma. Montes et al. 2015 (1) (Fig. 1) disregard the Atrato-San Juan sedimentary basin (3), a shallowing Oligocene to Pliocene, Pacific to Caribbean seaway (3, 4, 5). This deep graben (6) is filled with thousands of meters of Pre-Pliocene marine sediments (3, 5, 6) that now occupy a lowland between the Baudo uplift to the west and the Western Cordillera to the east. The Mande Batholith and numerous Eocene and younger volcanic rocks (4), the most proximal source of the zircons, are situated to the east of this seaway and would have shed zircons eastward towards the Cordillera Central. There is no evidence for any rivers crossing the seaway (3, 5), and thus no Panamanian source of zircons. Instead this seaway is evidence of a significant marine connection between the Pacific and Atlantic oceans into the Pliocene. The authors assume that the middle Miocene closure of the CAS effectively creates a continuous land bridge connecting North and South America and separating the Atlantic from the Pacific. They acknowledge, but then discount, marine connections across the Isthmus until 4-3 Ma even though these satisfactorily explain (Coates and Stallard, 2014 (6)) the oceanographic, molecular and Great American Biological Interchange events ignore unexplained by Montes et al. 2015. Only by conspicuously ignoring these events can they imply that the Isthmus was formed at 15-13 Ma. References 1. C. Montes et al., Middle Miocene closure of the Central American Seaway. Science 348, 226-229 (2015). 2. A. G. Coates, R. F. Stallard, How old is the Isthmus of

  12. Palinspastic reconstruction of southeastern California and southwestern Arizona for the middle Miocene

    NASA Technical Reports Server (NTRS)

    Richard, Stephen M.

    1992-01-01

    A paleogeographic reconstruction of southeastern California and southwestern Arizona at 10 Ma was made based on available geologic and geophysical data. Clockwise rotation of 39 deg was reconstructed in the eastern Transverse Ranges, consistent with paleomagnetic data from late Miocene volcanic rocks, and with slip estimates for left-lateral faults within the eastern Transverse Ranges and NW-trending right lateral faults in the Mojave Desert. This domain of rotated rocks is bounded by the Pinto Mountain fault on the north. In the absence of evidence for rotation of the San Bernardino Mountains or for significant right slip faults within the San Bernardino Mountains, the model requires that the late Miocene Pinto Mountain fault become a thrust fault gaining displacement to the west. The Squaw Peak thrust system of Meisling and Weldon may be a western continuation of this fault system. The Sheep Hole fault bounds the rotating domain on the east. East of this fault an array of NW-trending right slip faults and south-trending extensional transfer zones has produced a basin and range physiography while accumulating up to 14 km of right slip. This maximum is significantly less than the 37.5 km of right slip required in this region by a recent reconstruction of the central Mojave Desert. Geologic relations along the southern boundary of the rotating domain are poorly known, but this boundary is interpreted to involve a series of curved strike slip faults and non-coaxial extension, bounded on the southeast by the Mammoth Wash and related faults in the eastern Chocolate Mountains. Available constraints on timing suggest that Quaternary movement on the Pinto Mountain and nearby faults is unrelated to the rotation of the eastern Transverse Ranges, and was preceded by a hiatus during part of Pliocene time which followed the deformation producing the rotation. The reconstructed Clemens Well fault in the Orocopia Mountains, proposed as a major early Miocene strand of the San

  13. The Middle Miocene of the Fore-Carpathian Basin (Poland, Ukraine and Moldova)

    NASA Astrophysics Data System (ADS)

    Wysocka, Anna; Radwański, Andrzej; Górka, Marcin; Bąbel, Maciej; Radwańska, Urszula; Złotnik, Michał

    2016-09-01

    Studies of Miocene sediments in the Fore-Carpathian Basin, conducted by geologists from the University of Warsaw have provided new insights on the distribution of the facies infilling the basin, particularly in the forebulge and back-bulge zones. The origin of the large-scale sand bodies, evaporitic deposits and large-scale organic buildups is discussed, described and verified. These deposits originated in variable, shallow marine settings, differing in their water chemistry and the dynamics of sedimentary processes, and are unique with regard to the fossil assemblages they yield. Many years of taxonomic, biostratigraphic, palaeoecologic and ecotaphonomic investigations have resulted in the identification of the fossil assemblages of these sediments, their age, sedimentary settings and post-mortem conditions. Detailed studies were focused on corals, polychaetes, most classes of molluscs, crustaceans, echinoderms, and fishes.

  14. Biogenic opal production changes in the Gulf of Alaska (IODP Expedition 341 Site U1417) during the Pliocene to Miocene

    NASA Astrophysics Data System (ADS)

    Khim, B. K.; Kim, S.; Asahi, H.

    2016-12-01

    IODP Expedition 341 Site U1417 (56o57.59'N, 147o6.59'W, 4200 m) is located in the distal Surveyor Fan in the Gulf of Alaska, Northeast Pacific. In this study, we documented biogenic opal content and its mass accumulation rate using a total of 445 sediments from Hole U1417D (below core 43X, 275 CSF-A m) and from Hole U1417E (below core 14R, 465 CSF-A m) which were assigned to Pliocene-Miocene epoch on the basis of shipboard age model. Biogenic opal content and MAR were generally low (<10% and 0.5 g/cm2/kyr, respectively) throughout the core. A significant offset of biogenic opal contents between Site U1417 and Site 887 (54o21.9'N, 148o26.8'W, 3633 m) is observed; much lower at Site U1417. However, biogenic opal content was distinctively high (20 to 40%) at 23 Ma, 15 Ma, 12 Ma, and 8 Ma, which correspond to the lithologic unit changes. These intervals are also characterized by low NGR, MS, and linear sedimentation rate (LSR), indicating the sediment deposition under warm climate/less glacier influence. Thus, the intervals seem to correspond to climatic optimums during the Miocene. Based on terrigenous MAR at Site 887, terrigenous materials supplied by glacial denudation increased greatly since the Northern Hemisphere Glaciation (NHG; 3.5-2.5 Ma). However, Site U1417 shows that high MS representing the terrestrial input occurred far earlier since 8 Ma. It may imply that the formation of glacier in the Gulf of Alaska began earlier or that terrestrial material input was enhanced by sea-ice or turbidite. Intermittent peaks of biogenic opal content and MAR after 8 Ma coincided with the occurrence of cold water/littoral and neritic diatoms and deep cold water radiolarian species, which is likely related to gradual glaciation. Biogenic opal productivity was high during the early Pliocene (5-3.5 Ma), and then it decreased during the NHG.

  15. Sequence stratigraphy of the ANDRILL Southern McMurdo Sound (SMS) project drillcore, Antarctica: an expanded, near-field record of Antarctic Early to Middle Miocene climate and relative sea-level change

    NASA Astrophysics Data System (ADS)

    Fielding, C. R.; Browne, G. H.; Field, B.; Florindo, F.; Harwood, D. M.; Krissek, L. A.; Levy, R. H.; Panter, K.; Passchier, S.; Pekar, S. F.; SMS Science Team

    2008-12-01

    Present understanding of Antarctic climate change during the Early to Middle Miocene, including definition of major cycles of glacial expansion and contraction, relies in large part on stable isotope proxy records from Ocean Drilling Program cores. Here, we present a sequence stratigraphic analysis of the Southern McMurdo Sound drillcore (AND-2A), which was acquired during the Austral Spring of 2007. This core offers a hitherto unavailable ice-proximal stratigraphic archive of the Early to Middle Miocene from a high-accommodation Antarctic continental margin setting, and provides clear evidence of repeated fluctuations in climate, ice expansion/contraction and attendant sea-level change over the period 20-14 Ma, with a more fragmentary record of the post-14 Ma period. A succession of seventy sequences is recognized, each bounded by a significant facies dislocation (sequence boundary), composed internally of deposits of glacimarine to open shallow marine environments, and each typically dominated by the transgressive systems tract. From changes in facies abundances and sequence character, a series of long-term (m.y.) changes in climate and relative sea-level is identified. The lithostratigraphy can be correlated confidently to glacial events Mi1b and Mi2, to the Miocene Climatic Optimum, and to the global eustatic sea-level curve. SMS provides a detailed, direct, ice-proximal reference point from which to evaluate stable isotope proxy records for Neogene Antarctic paleoclimate.

  16. A Miocene termite nest from southern Argentina and its paleoclimatological implications

    USGS Publications Warehouse

    Bown, Thomas M.; Laza, José H.

    1990-01-01

    A Miocene termitarium attributable to the extant termite Syntermes (Isoptera: Termitidae, Nasutitermitinae) is the first fossil termite nest reported from South America and possibly the oldest record of the Isoptera from that continent. The fossil remains consist of most of the periphery of the subterranean portion of a single Syntermes nest, including chambers and both major and minor systems of anastomosed galleries. The nest occurs in the upper part of a mature paleosol near the base of the pyroclastic and eolian Miocene Pinturas Formation.A new ichnogenus and ichnospecies, Syntermesichnus fon‐tanae, is proposed for this distinctive trace fossil. It differs from nests constructed by other members of the Nasutitermitinae in its architectural organization and its large size. The type locality is situated 20° south of the southernmost dispersion of extant Syntermes.The modern distribution of this termite is wholly neotropical, suggesting that at least part of southern Patagonia experienced a tropical to subtropical climate as late as the late‐early Miocene.

  17. Dispersals of Hyoscyameae and Mandragoreae (Solanaceae) from the New World to Eurasia in the early Miocene and their biogeographic diversification within Eurasia.

    PubMed

    Tu, Tieyao; Volis, Sergei; Dillon, Michael O; Sun, Hang; Wen, Jun

    2010-12-01

    The cosmopolitan Solanaceae contains 21 tribes and has the greatest diversity in South America. Hyoscyameae and Mandragoreae are the only tribes of this family distributed exclusively in Eurasia with two centers of diversity: the Mediterranean-Turanian (MT) region and the Tibetan Plateau (TP). In this study, we examined the origins and biogeographical diversifications of the two tribes based on the phylogenetic framework and chronogram inferred from a combined data set of six plastid DNA regions (the atpB gene, the ndhF gene, the rps16-trnK intergenic spacer, the rbcL gene, the trnC-psbM region and the psbA-trnH intergenic spacer) with two fossil calibration points. Our data suggest that Hyoscyameae and Mandragoreae each forms a monophyletic group independently derived from different New World lineages in the early Miocene. Phylogenetic relationships within both tribes are generally well resolved. All genera of Hyoscyameae are found to be monophyletic and they diversified in middle to late Miocene. At nearly the same time, Mandragoreae split into two clades, corresponding to the MT region and the TP region, respectively. Both the phylogenetic relationships and the estimated ages of Hyoscyameae and Mandragoreae support two independent dispersal events of their ancestors from the New World into Eurasia. After their arrivals in Eurasia, the two tribes diversified primarily in the MT region and in the TP region via multiple biogeographic processes including vicariance, dispersal, recolonization or being preserved as relicts, from the mid Miocene to the late Quaternary. Published by Elsevier Inc.

  18. Palynology of carcinolites and limestones from the Baunilha Grande Ecofacies of the Pirabas Formation (Miocene of Pará state, northeastern Brazil)

    NASA Astrophysics Data System (ADS)

    Antonioli, Luzia; de Araújo Távora, Vladimir; Dino, Rodolfo

    2015-10-01

    The Pirabas Formation records important transgressive/regressive marine events in northern Brazil during the Miocene. Here, we present the results of a palynological analysis of four samples from finely stratified gray limestone and associated carbonate concretions bearing decapod crustacean remains. These sampled strata are representatives of the Baunilha Grande Ecofacies, and our analysis enhances the knowledge of local biostratigraphy and paleoecology. The palynoflora is dominated by taxa typical of Neogene tropical areas, such as Zonocostites ramonae (the most common species), together with Retitricolpites and Retitricolporites genera. Commonly represented are the smooth and apiculate trilete/monolete spores (Polypodiisporites, Verrucosisporites, Magnastriatites, and Deltoidospora), in conjunction with some freshwater algae (Ovoidites and Botryococcus). Gymnosperm pollen grains were absent. Marine microplankton (dinoflagellate cysts, acritarchs and foraminiferal test linings) are scarce, although present in all samples. The presence of the index species, Malvacipolloides maristellae and Pachydermites diederixii, co-occurring with Zonocostites ramonae and Lanagiopollis crassa, suggests that these sediments and concretions belong to the "T-13 Malvacipolloides maristellae" palynozone (Jaramillo et al., 2011), considered as late-Early Miocene in age. Palynological and sedimentological evidence further points to a predominantly continental depositional environment with a weak marine influence, as indicated by the persistent presence of sparse dinoflagellate cysts, acritarchs and foraminiferal test linings, typical of a mangrove environment.

  19. ENSO in a warming world: interannual climate variability in the early Miocene Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Fox, Bethany; Wilson, Gary; Lee, Daphne

    2016-04-01

    The El Niño - Southern Oscillation (ENSO) is the dominant source of interannual variability in the modern-day climate system. ENSO is a quasi-periodic cycle with a recurrence interval of 2-8 years. A major question in modern climatology is how ENSO will respond to increased climatic warmth. ENSO-like (2-8 year) cycles have been detected in many palaeoclimate records for the Holocene. However, the temporal resolution of pre-Quaternary palaeoclimate archives is generally too coarse to investigate ENSO-scale variability. We present a 100-kyr record of ENSO-like variability during the second half of the Oligocene/Miocene Mi-1 event, a period of increasing global temperatures and Antarctic deglaciation (~23.032-2.93 Ma). This record is drawn from an annually laminated lacustrine diatomite from southern New Zealand, a region strongly affected by ENSO in the present day. The diatomite consists of seasonal alternations of light (diatom bloom) and dark (low diatom productivity) layers. Each light-dark couplet represents one year's sedimentation. Light-dark couplet thickness is characterised by ENSO-scale variability. We use high-resolution (sub-annual) measurements of colour spectra to detect couplet thickness variability. Wavelet analysis indicates that absolute values are modulated by orbital cycles. However, when orbital effects are taken into account, ENSO-like variability occurs throughout the entire depositional period, with no clear increase or reduction in relation to Antarctic deglaciation and increasing global warmth.

  20. Neogene volcanism associated with back-arc basin tectonics at the northern Fossa Magna, NE Japan

    NASA Astrophysics Data System (ADS)

    Okamura, S.; Inaba, M.; Shinjo, R.; Adachi, Y.

    2016-12-01

    New isotopic and trace element data presented here imply a temporal change in magma sources and thermal conditions beneath the northern Fossa Magna of NE Japan from the Miocene to the Pliocene. Rocks from more sediment melt-rich Early Miocene volcanoes have less radiogenic 176Hf/177Hf and 143Nd/144Nd, high Zr/Hf, and little or no Hf anomaly (Hf/Hf*; ˜1.0). The mantle wedge in the Early Miocene consisted of enriched mantle source. We propose that during the onset of subduction, influx of hot asthenospheric mantle provided sufficient heat to partially melt newly subducting sediment. Geochemical modeling results suggest breakdown of zircon in the slab surface sediments for the Early Miocene lavas in the northern Fossa Magna region. In the Middle Miocene, the injection of hot and depleted asthenospheric material replaced the mantle beneath the northern Fossa Magna region of NE Japan. This caused the isotopic signature of the rocks to change from enriched to depleted. The Middle Miocene lavas characterized by most radiogenic Hf and Nd isotope ratios, have high Zr/Hf, low Lu/Hf, and little or no Hf anomaly. An appropriate working petrogenetic model is that the Middle Miocene lavas were derived from asthenospheric depleted mantle, slightly ( < 1%) contaminated by slab melt accompanied by full dissolution of zircon. All the Late Miocene and Pliocene samples are characterized by distinctly more radiogenic 176Hf/177Hf and 143Nd/144Nd, and more negative Hf anomalies (greater Hf/Hf* variability; ˜0.3). The Pliocene samples are displaced toward lower Hf/Hf* and Zr/Hf, and higher Lu/Hf relative to the Middle Miocene samples, which requires mixing between depleted mantle and a partial melt of subducted metasediment saturated with trace quantity of zircon.

  1. Glacial Extent During the Late Early Miocene (18-16 Ma): Results from the ANDRILL AND-2A Drillcore, Southern McMurdo Sound Project, Antarctica

    NASA Astrophysics Data System (ADS)

    Pekar, Stephen; Koss, Howard; Passchier, Sandra

    2010-05-01

    equivocal, suggesting a smaller advance than for the one at the Mi1b event. Between these two ice advances, the lithofacies indicates generally more distal ice environments and therefore less ice volume and correlates to the early Miocene Climatic Optimum (17.2-16.4 Ma).

  2. The Antiquity of the Rhine River: Stratigraphic Coverage of the Dinotheriensande (Eppelsheim Formation) of the Mainz Basin (Germany)

    PubMed Central

    Böhme, Madelaine; Aiglstorfer, Manuela; Uhl, Dieter; Kullmer, Ottmar

    2012-01-01

    Background Mammalian fossils from the Eppelsheim Formation (Dinotheriensande) have been a benchmark for Neogene vertebrate palaeontology since 200 years. Worldwide famous sites like Eppelsheim serve as key localities for biochronologic, palaeobiologic, environmental, and mammal community studies. So far the formation is considered to be of early Late Miocene age (∼9.5 Ma, Vallesian), representing the oldest sediments of the Rhine River. The stratigraphic unity of the formation and of its fossil content was disputed at times, but persists unresolved. Principal Findings Here we investigate a new fossil sample from Sprendlingen, composed by over 300 mammalian specimens and silicified wood. The mammals comprise entirely Middle Miocene species, like cervids Dicrocerus elegans, Paradicrocerus elegantulus, and deinotheres Deinotherium bavaricum and D. levius. A stratigraphic evaluation of Miocene Central European deer and deinothere species proof the stratigraphic inhomogenity of the sample, and suggest late Middle Miocene (∼12.5 Ma) reworking of early Middle Miocene (∼15 Ma) sediments. This results agree with taxonomic and palaeoclimatic analysis of plant fossils from above and within the mammalian assemblage. Based on the new fossil sample and published data three biochronologic levels within the Dinotheriensand fauna can be differentiated, corresponding to early Middle Miocene (late Orleanian to early Astaracian), late Middle Miocene (late Astaracian), and early Late Miocene (Vallesian) ages. Conclusions/Significance This study documents complex faunal mixing of classical Dinotheriensand fauna, covering at least six million years, during a time of low subsidence in the Mainz Basin and shifts back the origination of the Rhine River by some five million years. Our results have severe implications for biostratigraphy and palaeobiology of the Middle to Late Miocene. They suggest that turnover events may be obliterated and challenge the proposed

  3. Constraints on the Miocene landscape evolution of the Eastern Alps from the Kalkspitze region, Niedere Tauern (Austria)

    NASA Astrophysics Data System (ADS)

    Dertnig, Florian; Stüwe, Kurt; Woodhead, Jon; Stuart, Finlay M.; Spötl, Christoph

    2017-12-01

    In order to unravel aspects of the Miocene landscape evolution of the eastern European Alps, we present geomorphic and isotopic data from the western Niedere Tauern region (Austria). The region is critical for such interpretations, because it is one of the few regions along the topographic axis of the Eastern Alps where the highest peaks (up to 2500 m a.s.l.) are dominated by limestone. As such, the region contains a record of Miocene landscape-forming events that survived the Pleistocene glaciations, not preserved elsewhere in the central Eastern Alps. This record includes karst caves, karstified planation surfaces and crystalline fluvial pebbles (Augenstein Formation) preserved on planation surfaces and in karst caves. Caves in the region occur in three distinct levels that correlate with well-known cave levels in the Northern Calcareous Alps, although they are somewhat higher in the Niedere Tauern. In part, these cave elevations also correlate with three planation surfaces and knickpoints of major streams draining the region, testifying their pre-glacial origin. We report details of a karst cave (Durchgangshöhle) from the highest cave level located at 2340 m a.s.l. In this cave, allochthonous fluvial gravels are present, overgrown by speleothems. One speleothem yielded an early middle Pleistocene U-Pb age (682 ± 17 ka). We regard this as a minimum age for the erosion of the fluvial cave deposits during Marine Isotope Stages 17 or 16. Carbon and oxygen isotope data of these speleothems imply a climate that is consistent with this interpretation. Cosmogenic 21Ne data of fluvial quartz clasts collected from the surface on plateaus of the Northern Calcareous Alps suggest minimum exposure durations of 115 and 262 ka. They probably reflect successive exposure since removal of the sediment cover of the Oligocene Augenstein Formation during the Pleistocene. While our geochronological data fail to record aspects of the earlier Miocene uplift history, they are

  4. Provenance of Miocene Hinterland Basins in Ecuador: Implications for the Growth of Topographic Barriers in the Northern Andes

    NASA Astrophysics Data System (ADS)

    George, S. W. M.; Horton, B. K.; Vallejo, C.; Nogales, V.

    2017-12-01

    Establishment of the Eastern Cordillera of Ecuador as an Andean topographic barrier caused significant drainage reorganization, perhaps even as dramatic as the reversal of the Amazon River. Cenozoic growth of this barrier coincided with substantial increases in speciation rates in Andean and Amazonian environments. Situated in the Interandean Depression between the Eastern Cordillera and Western Cordillera of Ecuador, a series of well-preserved Miocene intermontane basins offer a unique opportunity to constrain the along-strike development of the flanking north-trending cordilleras as drainage divides in the Northern Andes. Here were provide detrital zircon U-Pb geochronological results for 17 samples from Ecuadorian hinterland basins (Cuenca, Giron-Santa Isabel, Nabón, Loja, and Vilcabamba), supplemented with measured sections in the Cuenca Basin, to provide insights on orogenic development of the cordilleras of Ecuador during the Miocene. In addition, we characterize the age distributions of basement units to more precisely determine sediment routing patterns through time. Detrital zircon geochronological data yields regional upsection trends throughout Miocene stratigraphic sections marked by: (1) middle Miocene deposits containing a strong syndepositional age peak, with a complementary Eocene-Oligocene peak in varying abundances, and subsidiary low-intensity Paleozoic-Proterozoic age peaks; and (2a) upper Miocene deposits maintaining similar trends to that of the middle Miocene, or (2b) upper Miocene deposits showing a dramatic shutoff of most Cenozoic populations and a switch to Paleozoic-Proterozoic sources, as seen in the Nabón and Loja basins. Syndepositional signatures reflect derivation from the magmatic arc, while varying inputs of Eocene-Oligocene zircons were derived from the Eocene-Oligocene volcanic rocks that comprise the effective basement of much of the Interandean Depression. The late Miocene shift to Paleozoic-Proterozoic sources observed in

  5. Miocene Antarctic Terrestrial Realm

    NASA Astrophysics Data System (ADS)

    Ashworth, A. C.; Lewis, A.; Marchant, D. R.

    2009-12-01

    The discovery of several locations in the Transantarctic Mountains that contain macrofossils and pollen is transforming our understanding of late Cenozoic Antarctica. The most southerly location is on the Beardmore Glacier (85.1°S) about 500 km from the South Pole. The environment was an active glacial margin in which plants, insects and freshwater mollusks inhabited the sand and gravel bars and small lakes on an outwash plain. In addition to leaves and wood of dwarf Nothofagus (Southern Beech) shrubs, achenes of Ranunculus (Buttercup), in situ cushion growth forms of mosses and a vascular plant, the assemblages contains various exoskeletal parts of carabid and curculionid beetles and a cyclorrhaphan fly, the shells of freshwater bivalve and gastropod species and a fish tooth. Initially the deposits were assigned a Pliocene age (3.5 Ma) but a mid- to early Miocene age is more probable (c. 14 - 25 Ma) based on correlation of fossil pollen from the deposits with 39Ar/40Ar dated pollen assemblages from the McMurdo Dry Valleys locations. The oldest location within the Dry Valleys also involved an active ice margin but was part of a valley system that was completely deglaciated for intervals long enough for thick paleosols to develop. The Friis Hills fossil deposits of the Taylor Valley region (77.8°S) are at least 19.76 Ma based on the 39Ar/40Ar age of a volcanic ash bed. The valley floor during the non-glacial phases had poorly-drained soils and the extensive development of mossy mires. Wood and leaves of Nothofagus are abundant in lacustrine deposits. The silts of shallow fluvial channels contain abundant megaspores and spiky leaves of the aquatic lycopod Isoetes (Quillwort). Fossils of beetles are also present in these deposits. During the glacial phases, proglacial lakes were surrounded by dwarfed, deciduous Nothofagus shrubs. The youngest fossils recovered from the Dry Valleys are from the Olympus Range (77.5°S) with an age of 14.07 Ma. The environment was an

  6. Late Eocene to middle Miocene (33 to 13 million years ago) vegetation and climate development on the North American Atlantic Coastal Plain (IODP Expedition 313, Site M0027)

    NASA Astrophysics Data System (ADS)

    Kotthoff, U.; Greenwood, D. R.; McCarthy, F. M. G.; Müller-Navarra, K.; Prader, S.; Hesselbo, S. P.

    2014-08-01

    We investigated the palynology of sediment cores from Site M0027 of IODP (Integrated Ocean Drilling Program) Expedition 313 on the New Jersey shallow shelf to examine vegetation and climate dynamics on the east coast of North America between 33 and 13 million years ago and to assess the impact of over-regional climate events on the region. Palynological results are complemented with pollen-based quantitative climate reconstructions. Our results indicate that the hinterland vegetation of the New Jersey shelf was characterized by oak-hickory forests in the lowlands and conifer-dominated vegetation in the highlands from the early Oligocene to the middle Miocene. The Oligocene witnessed several expansions of conifer forest, probably related to cooling events. The pollen-based climate data imply an increase in annual temperatures from ∼11.5 °C to more than 16 °C during the Oligocene. The Mi-1 cooling event at the onset of the Miocene is reflected by an expansion of conifers and mean annual temperature decrease of ∼4 °C, from ∼16 °C to ∼12 °C around 23 million years before present. Relatively low annual temperatures are also recorded for several samples during an interval around ∼20 million years before present, which may reflect the Mi-1a and the Mi-1aa cooling events. Generally, the Miocene ecosystem and climate conditions were very similar to those of the Oligocene. Miocene grasslands, as known from other areas in the USA during that time period, are not evident for the hinterland of the New Jersey shelf, possibly reflecting moisture from the proto-Gulf Stream. The palaeovegetation data reveal stable conditions during the mid-Miocene climatic optimum at ∼15 million years before present, with only a minor increase in deciduous-evergreen mixed forest taxa and a decrease in swamp forest taxa. Pollen-based annual temperature reconstructions show average annual temperatures of ∼14 °C during the mid-Miocene climatic optimum, ∼2

  7. Sandstone detrital modes in the Makran accretionary wedge, southwest Pakistan: implications for tectonic setting and long-distance turbidite transportation

    NASA Astrophysics Data System (ADS)

    Critelli, Salvatore; De Rosa, Rosanna; Platt, John Paul

    1990-10-01

    Detrital modes of Early Miocene to Early Pliocene sandstones from the Makran accretionary wedge in southwest Pakistan show a mainly quartzolithic composition with an evolution from the transitional recycled to quartzose recycled. The lithic types, however, indicate two distinct petrofacies. Accreted abyssal plain turbidites have Qp 11Lvm 27Lsm 62 and Lm 39Lv 27Ls 34, showing a predominant supply from sedimentary and metasedimentary source terranes whereas slope and shelf facies sediments deposited on the accretionary wedge have Qp 7Lvm 47Lsm 47 and Lm 22Lv 48Ls 30 due to an increase of volcanic detritus. The detrital modes of the abyssal plain sediments suggest a recycled orogenic source, probably the Himalayan collision zone. The facies and longitudinal dispersal pattern suggest deposition in an Oligo-Miocene analogue of the present Indus fan. The sediment must have been transported across strike, parallel to the transform structure linking the Makran wedge to the Himalayas (Chaman-Ornach Nal fault system), and fed into the fan at the western end of the subduction zone. The detrital modes also show an increase in volcanic detritus with time (Lv/L = 0.27 for the Early Miocene abyssal plain sediments to 0.47 for the slope sequences). This may have been derived from Late Mesozoic volcanic terrains in northern Baluchistan or the Ladakh Himalayas, or more probably from the Early to middle Miocene andesitic volcanic centre in the northern Makran.

  8. Variations in the Nd isotope composition of Late Miocene to Early Pliocene glacially derived sediments in Prydz Bay, East Antarctica

    NASA Astrophysics Data System (ADS)

    Mabson, M.; Pierce, E. L.; Dale, C. L.; Williams, T.; Hemming, S. R.; van de Flierdt, T.; Cook, C.; Goldstein, S. L.

    2010-12-01

    Michelle Mabson (Howard University), Elizabeth Pierce (Lamont-Doherty Earth Observatory, Columbia University), Cathleen Doherty (Lamont-Doherty Earth Observatory, Columbia University), Trevor Williams (Lamont-Doherty Earth Observatory), Sidney Hemming (Lamont-Doherty Earth Observatory), Tina van de Flierdt (Imperial College London), Carys Cook (Imperial College London), Steve Goldstein (Lamont-Doherty Earth Observatory) Since initiation of major ice sheets on Antarctica at about 34 Ma, Antarctica has been a major player in global climate change. Understanding the response of the East Antarctic Ice Sheet to major climate changes through the Cenozoic has fundamental importance to both Earth Sciences and Society. Previous study of Nd isotope composition of sediments at Ocean Drilling Program (ODP) Site 1166 within Prydz Bay found evidence for variations of the Nd isotope composition between -15 to -30 epsilon units through this pre-glacial to glacial record (van de Flierdt et al., 2008, GRL). The Nd isotope composition of sediments provides an estimate for the average continental crust formation age of the sources. The sources around Prydz Bay have a wide range of formation ages, from Archean to Phanerozoic, so the areas which were being preferentially eroded can be inferred. This study seeks to contribute evidence for the local variations in provenance of sediments by extending the record of Nd isotope variations to ODP Site 739 in Prydz Bay. ODP Site 1165 has an unconformity that spans ~30-3 Ma. This part of the record is much more complete in ODP site 739, located about 200 km from the coast of Prydz Bay, probably more protected from ice stream erosion in the Prydz Channel. Because of its location we can conclude that the sediment deposited into this area is derived from the Lambert Glacier, and thus the variations in epsilon Nd will allow testing whether changes in the extent of this ice stream could lead to variations in the provenance of sediment carried by this

  9. Cenozoic North American Drainage Basin Evolution, Sediment Yield, and Accumulation in the Gulf of Mexico Basin

    NASA Astrophysics Data System (ADS)

    Galloway, W.; Ganey-Curry, P. E.

    2010-12-01

    The Cenozoic fill of the Gulf of Mexico basin contains a continuous record of sediment supply from the North American continental interior for the past 65 million years. Regional mapping of unit thickness and paleogeography for 18 depositional episodes defines patterns of shifting entry points of continental fluvial systems and quantifies the total volume of sediment supplied during each episode. Eight fluvio-deltaic depocenters, named for geographic similarities to entry points and drainage basins of modern rivers, are present. From southwest to northeast, they are the Rio Bravo, Rio Grande, Guadalupe, Colorado, Houston-Brazos, Red, Mississippi, and Tennessee axes. Sediment volume was calculated from hand-contoured unit thickness maps compiled from basin-wide well and seismic control. Using a GIS algorithm to sum volumes within polygons bounding interpreted North American river contribution, the total extant volume was then calculated. General compaction factors were used to convert modern volume to quantitative approximations of total grain volume. Grain volume rate of supply for each depositional episode was then calculated. Values vary by more than an order of magnitude. Supply rate has commonly varied by two-fold or more between successive depositional episodes. Sediment supply is a significant, independent variable in development of stratigraphic sequences within the Gulf basin. Paleogeographic maps of the continental interior for eleven Cenozoic time intervals display the evolving and complex interplay of intracontinental tectonism, climate change, and drainage basin evolution. Five tectono-climatic eras are differentiated: Paleocene late Laramide era; early to middle Eocene terminal Laramide era; middle Cenozoic (Late Eocene—Early Miocene) dry, volcanogenic era; middle Neogene (Middle—Late Miocene) arid, extensional era; and late Neogene (Plio—Pleistocene) monsoonal, epeirogenic uplift era. Sediment supply to the GOM reflects the interplay of (1

  10. Insights into the diagenetic environment of fossil marine vertebrates of the Pisco Formation (late Miocene, Peru) from mineralogical and Sr-isotope data

    NASA Astrophysics Data System (ADS)

    Gioncada, A.; Petrini, R.; Bosio, G.; Gariboldi, K.; Collareta, A.; Malinverno, E.; Bonaccorsi, E.; Di Celma, C.; Pasero, M.; Urbina, M.; Bianucci, G.

    2018-01-01

    The late Miocene Pisco Formation of Peru is an outstanding example of richness and high-quality preservation of fossil marine vertebrates. In order to reconstruct the fossilization path, we present new textural, mineralogical and Sr-isotope data of diagenetic minerals formed in correspondence of fossil specimens such as marine vertebrates and mollusks. These fossil specimens were found at Cerro los Quesos, in the Ica Desert, within the diatomaceous strata of the Pisco Formation. Dolomite, gypsum, anhydrite and Mn minerals are the main phases found, while the calcium carbonate originally forming the mollusk valves is replaced by gypsum. An early formation of dolomite and of Mn minerals, triggered by the modifications of the geochemical environment due to organic matter degradation, is suggested by the textural relationships and is confirmed by the Sr isotopic ratio of dolomite, which agrees with that of seawater at the time of sedimentation. Instead, gypsum Sr isotopic ratios indicate a pre-Miocene seawater-derived brine circulating within the sedimentary sequence as a source for Sr. Oxidation of diagenetic sulfide causing a lowering of the pH of porewater is proposed as an explanation for Ca-carbonate dissolution. The diagenetic chemical environment was, nevertheless, favorable to bone preservation.

  11. Integrated sequence stratigraphy of the postimpact sediments from the Eyreville core holes, Chesapeake Bay impact structure inner basin

    USGS Publications Warehouse

    Browning, J.V.; Miller, K.G.; McLaughlin, P.P.; Edwards, L.E.; Kulpecz, A.A.; Powars, D.S.; Wade, B.S.; Feigenson, M.D.; Wright, J.D.

    2009-01-01

    The Eyreville core holes provide the first continuously cored record of postimpact sequences from within the deepest part of the central Chesapeake Bay impact crater. We analyzed the upper Eocene to Pliocene postimpact sediments from the Eyreville A and C core holes for lithology (semiquantitative measurements of grain size and composition), sequence stratigraphy, and chronostratigraphy. Age is based primarily on Sr isotope stratigraphy supplemented by biostratigraphy (dinocysts, nannofossils, and planktonic foraminifers); age resolution is approximately ??0.5 Ma for early Miocene sequences and approximately ??1.0 Ma for younger and older sequences. Eocene-lower Miocene sequences are subtle, upper middle to lower upper Miocene sequences are more clearly distinguished, and upper Miocene- Pliocene sequences display a distinct facies pattern within sequences. We recognize two upper Eocene, two Oligocene, nine Miocene, three Pliocene, and one Pleistocene sequence and correlate them with those in New Jersey and Delaware. The upper Eocene through Pleistocene strata at Eyreville record changes from: (1) rapidly deposited, extremely fi ne-grained Eocene strata that probably represent two sequences deposited in a deep (>200 m) basin; to (2) highly dissected Oligocene (two very thin sequences) to lower Miocene (three thin sequences) with a long hiatus; to (3) a thick, rapidly deposited (43-73 m/Ma), very fi ne-grained, biosiliceous middle Miocene (16.5-14 Ma) section divided into three sequences (V5-V3) deposited in middle neritic paleoenvironments; to (4) a 4.5-Ma-long hiatus (12.8-8.3 Ma); to (5) sandy, shelly upper Miocene to Pliocene strata (8.3-2.0 Ma) divided into six sequences deposited in shelf and shoreface environments; and, last, to (6) a sandy middle Pleistocene paralic sequence (~400 ka). The Eyreville cores thus record the fi lling of a deep impact-generated basin where the timing of sequence boundaries is heavily infl uenced by eustasy. ?? 2009 The Geological

  12. Miocene oceanographic changes of the western equatorial Atlantic (Ceara Rise) based on calcareous dinoflagellate cysts

    NASA Astrophysics Data System (ADS)

    Heinrich, S.; Zonneveld, K. A. F.; Willems, H.

    2010-09-01

    The middle- and upper Miocene represent a time-interval of major changes in palaeoceanography that favoured the cooling of the climate and culminated in the Northern Hemisphere Glaciation (NHG). The basis for the development of the modern deepwater circulation pattern, e.g. thermohaline circulation, was hereby established. Tectonic events played a key role in the progressing Miocene oceanography, such as the narrowing of the Panama gateway (e.g. Duque-Caro 1990) and the possible linked changes in North Atlantic Deep Water formation (Lear et al. 2003). However, the complex interaction between the closing of the Panama Gateway, the development of NADW, and thus the oceanographic progression towards our present day circulation is far from being fully understood. We want to improve the understanding of these processes by establishing a detailed palaeoceanographic reconstruction of the western equatorial Atlantic Ocean on the basis of calcareous dinoflagellate cyst (dinocyst) associations. Within this study, we investigated sediment samples from ODP Site 926A by defining the calcareous dinocyst assemblage. Site 926A is located at the southwestern flank of the Ceara Rise, an area of highest sensitivity to global deep water circulation changes. At about 12 Ma, when NADW production increased (e.g. Wright et al. 1992), we see a distinct increase in the absolute abundances of the calcareous dinocysts. This might be related to enhanced productivity or to better carbonate preservation. At 11.3 Ma, Leonella granifera, a species known to be strongly related to terrestrial input occurs. This could be a signal for the initiation of the Amazon River as a transcontinental river with the development of the Amazon fan (11.8 - 11.3 Ma; Figueiredo et al. 2009) in relation to Andean tectonism. References: Duque-Caro, H. (1990): Neogene stratigraphy, paleoceanography and palebiology in Northwest South America and the evolution of the Panama Seaway. Palaeogeography, Palaeoclimatology

  13. Miocene Fossils Reveal Ancient Roots for New Zealand's Endemic Mystacina (Chiroptera) and Its Rainforest Habitat.

    PubMed

    Hand, Suzanne J; Lee, Daphne E; Worthy, Trevor H; Archer, Michael; Worthy, Jennifer P; Tennyson, Alan J D; Salisbury, Steven W; Scofield, R Paul; Mildenhall, Dallas C; Kennedy, Elizabeth M; Lindqvist, Jon K

    2015-01-01

    The New Zealand endemic bat family Mystacinidae comprises just two Recent species referred to a single genus, Mystacina. The family was once more diverse and widespread, with an additional six extinct taxa recorded from Australia and New Zealand. Here, a new mystacinid is described from the early Miocene (19-16 Ma) St Bathans Fauna of Central Otago, South Island, New Zealand. It is the first pre-Pleistocene record of the modern genus and it extends the evolutionary history of Mystacina back at least 16 million years. Extant Mystacina species occupy old-growth rainforest and are semi-terrestrial with an exceptionally broad omnivorous diet. The majority of the plants inhabited, pollinated, dispersed or eaten by modern Mystacina were well-established in southern New Zealand in the early Miocene, based on the fossil record from sites at or near where the bat fossils are found. Similarly, many of the arthropod prey of living Mystacina are recorded as fossils in the same area. Although none of the Miocene plant and arthropod species is extant, most are closely related to modern taxa, demonstrating potentially long-standing ecological associations with Mystacina.

  14. A new South American Miocene species of 'one-holed' sand dollar (Echinoidea: Clypeasteroida: Monophorasteridae).

    PubMed

    Mooi, Rich; Martínez, Sergio A; Río, Claudia J Del

    2016-10-02

    A new species of monophorasterid sand dollar, Monophoraster telfordi n. sp., is described from the Early Miocene basal horizons of the Chenque Formation of Patagonia, Santa Cruz Province, in southern Argentina. The new taxon raises the number of known species in the family to six, and represents first unequivocal record of the genus for the Early Miocene of South America. It is therefore also the oldest member of the genus. M. telfordi is characterized by its test width to length ratio, which is much higher than for the other two described species in the genus, but less than that known for the extremely wide members of the sister taxon, Amplaster. M. telfordi is also unusual among monophorasterids in lacking broad continuity between basicoronal and post-basicoronal plates in the oral interambulacra. A key is provided to all the known species of Monophorasteridae.

  15. Evolution of the Northern Nicaragua Rise during the Oligocene Miocene: Drowning by environmental factors

    NASA Astrophysics Data System (ADS)

    Mutti, Maria; Droxler, André W.; Cunningham, Andrew D.

    2005-04-01

    Possible causes to explain platform drowning have been hotly debated by carbonate sedimentologists for more than a decade now. In this paper, we present multiple evidence to explain the drowning of a carbonate megabank that covered most of the modern Northern Nicaragua Rise (NNR) during an interval spanning from late Oligocene to early Miocene by the interaction of several environmental factors. The recovery during ODP Leg 165 of late Oligocene to middle Miocene sedimentary sequences in the sub-seafloor of the modern channels and basin, Pedro Channel and Walton Basin, respectively, that dissect the NNR (Site 1000) and south of the rise in the Colombian Basin (Site 999), combined with information from dredged rock samples, allows us to explore in more detail the timing and possible mechanisms responsible for the drowning of the megabank and its relationship to Miocene climate change. The modern system of isolated banks and shelves dissected by a series of intervening seaways and basins on the NNR has evolved from a continuous, shallow-water carbonate “megabank” that extended from the Honduras/Nicaraguan mainland to the modern island of Jamaica. Available information suggests that this megabank broke apart and partially drowned in the late part of the late Oligocene at around 27 Ma and finally foundered during the late early Miocene around 20 Ma, resulting in limited neritic coral growth in the areas where the modern isolated carbonate banks and shelves are occurring today. Available information also suggests that the southern and central parts of Pedro Channel were already a deep-water area before the major episode of platform drowning, and its formation predates the initiation of the Caribbean Current. However, after the partial drowning of the megabank, the channel has become a major pathway for the Caribbean Current. Stratigraphic units identified in deep-water carbonates sampled at ODP Sites 999 and 1000 help to constrain the environmental setting leading to

  16. Friis Hills Drilling Project - Coring an Early to mid-Miocene terrestrial sequence in the Transantarctic Mountains to examine climate gradients and ice sheet variability along an inland-to-offshore transect

    NASA Astrophysics Data System (ADS)

    Lewis, A. R.; Levy, R. H.; Naish, T.; Gorman, A. R.; Golledge, N.; Dickinson, W. W.; Kraus, C.; Florindo, F.; Ashworth, A. C.; Pyne, A.; Kingan, T.

    2015-12-01

    The Early to mid-Miocene is a compelling interval to study Antarctic ice sheet (AIS) sensitivity. Circulation patterns in the southern hemisphere were broadly similar to present and reconstructed atmospheric CO2 concentrations were analogous to those projected for the next several decades. Geologic records from locations proximal to the AIS are required to examine ice sheet response to climate variability during this time. Coastal and offshore drill core records recovered by ANDRILL and IODP provide information regarding ice sheet variability along and beyond the coastal margin but they cannot constrain the extent of inland retreat. Additional environmental data from the continental interior is required to constrain the magnitude of ice sheet variability and inform numerical ice sheet models. The only well-dated terrestrial deposits that register early to mid-Miocene interior ice extent and climate are in the Friis Hills, 80 km inland. The deposits record multiple glacial-interglacial cycles and fossiliferous non-glacial beds show that interglacial climate was warm enough for a diverse biota. Drifts are preserved in a shallow valley with the oldest beds exposed along the edges where they terminate at sharp erosional margins. These margins reveal drifts in short stratigraphic sections but none is more than 13 m thick. A 34 m-thick composite stratigraphic sequence has been produced from exposed drift sequences but correlating beds in scattered exposures is problematic. Moreover, much of the sequence is buried and inaccessible in the basin center. New seismic data collected during 2014 reveal a sequence of sediments at least 50 m thick. This stratigraphic package likely preserves a detailed and more complete sedimentary sequence for the Friis Hills that can be used to refine and augment the outcrop-based composite stratigraphy. We aim to drill through this sequence using a helicopter-transportable diamond coring system. These new cores will allow us to obtain

  17. Evolution of the Tethyan Seaway during the Oligocene and Miocene: Constraints from foraminiferal faunas of the Qom Formation, Iran

    NASA Astrophysics Data System (ADS)

    Dabaghi sadr, Fatemeh; Schmiedl, Gerhard

    2016-04-01

    The Qom Formation was deposited in the central Iranian back-arc basin during the Oligocene-Miocene and documents the closure of the Tethyan Seaway. Based on sedimentological data, various depositional models have been presented for the Oligocene-Miocene successions of central Iran, Sanandaj-Sirjan and Urumieh Dokhtar magmatic arc provinces in Iran. In this study, foraminiferal faunas were studied based on a total of 146 samples from the Molkabad section, located northwest of Molkabad Mountains, and from the Navab Anticline section, located south of Kashan area. Changes in the composition of the benthic foraminiferal fauna were used to reconstruct the paleoenvironmental evolution during deposition of the Qom Formation .The Molkabad section mainly consists of limestones, calcareous marls, marls, and gypsum-bearing marls with a total thickness of 760 meters and the Navab anticline section consists of sandstone, red shale, gypsy marl and conglomerate. The Qom Formation at both sections overlies Eocene rocks with an unconformity. The studied sediments contain a variety of red algae, bryozoans and benthic and planktonic foraminifers. The distribution of index larger benthic foraminifers in Molkabad section suggests a late Oligocene (Chattian) to early Miocene (Aquitanian-Burdigalian) age, comprising the Miolepidociyclina-Miogypsinoides and Borelis melo curdica-Meandropsina iranica-schlumbergerina assemblage zones .The small benthic faunas of the Molkabad section represent typical inner-neritic depositional environments supported by the predominance of marls and algal and bryozoan limestones in this section. The preliminary bathymetric reconstruction suggests deposition of the succession in water depths commonly shallower than 50 m. The estimated values of water depth range between 36 and 94 m but the strong predominance of the genera Ammonia and Elphidium points to an even lower water depth in some intervals. For Navab anticline section the distribution of the index

  18. The North Patagonian orogenic front and related foreland evolution during the Miocene, analyzed from synorogenic sedimentation and U/Pb dating (˜42°S)

    NASA Astrophysics Data System (ADS)

    Ramos, Miguel E.; Tobal, Jonathan E.; Sagripanti, Lucía; Folguera, Andrés; Orts, Darío L.; Giménez, Mario; Ramos, Victor A.

    2015-12-01

    Miocene sedimentary successions of the Ñirihuau and Collón Cura formations east of the El Maitén Belt constitute a partial record of the Andean exhumation, defining a synorogenic infill of the Ñirihuau Basin in the foothills of the North Patagonian fold and thrust belt. Gravimetric and seismic data allow recognizing the internal arrangement and geometry of these depocenters that host both units, separating a synextensional section previous to the Andean development at these latitudes, from a series of syncontractional units above. A series of progressive unconformities in the upper terms shows the synorogenic character of these units corresponding to the different pulses of deformation that occurred during the middle Miocene. New U-Pb ages constrain these pulses to the ˜13.5-12.9 Ma interval and allow reconstructing the tectonic history of this region based on the detrital zircon source populations. The U-Pb maximum ages of sedimentation give to the Ñirihuau Formation in particular a younger age than previously assumed. Additionally, synsedimentary deformation in strata of the upper exposures of the Collón Cura Formation associated with contractional structures and U-Pb ages allow identifying a younger paleoseismogenic pulse in ˜11.3 Ma. Thus, based on these data and a compilation of previous datasets, a tectonic evolution is proposed characterized by a contractional episode that migrated eastwardly since ˜19 to 15 Ma producing the Gastre broken foreland and then retracted to the eastern North Patagonian Precordillera, where out-of-sequence thrusts cannibalized the wedge top zone in the El Maitén belt at ˜13.5-11.3 Ma.

  19. Cyclicity and reservoir properties of Lower-Middle Miocene sediments of South Kirinsk oil and gas field

    NASA Astrophysics Data System (ADS)

    Kurdina, Nadezhda

    2017-04-01

    Exploration and additional exploration of oil and gas fields, connected with lithological traps, include the spreading forecast of sedimentary bodies with reservoir and seal properties. Genetic identification and forecast of geological bodies are possible in case of large-scale studies, based on the study of cyclicity, structural and textural features of rocks, their composition, lithofacies and depositional environments. Porosity and permeability evaluation of different reservoir groups is also an important part. Such studies have been successfully completed for productive terrigenous Dagi sediments (Lower-Middle Miocene) of the north-eastern shelf of Sakhalin. In order to identify distribution of Dagi reservoirs with different properties in section, core material of the one well of South Kirinsk field has been studied (depth interval from 2902,4 to 2810,5 m). Productive Dagi deposits are represented by gray-colored sandstones with subordinate siltstones and claystones (total thickness 90,5 m). Analysis of cyclicity is based on the concepts of Vassoevich (1977), who considered cycles as geological body, which is the physical result of processes that took place during the sedimentation cycle. Well section was divided into I-X units with different composition and set of genetic features due to layered core description and elementary cyclites identification. According to description of thin sections and results of cylindrical samples porosity and permeability studies five groups of reservoirs were determined. There are coarse-grained and fine-coarse-grained sandstones, fine-grained sandstones, fine-grained silty sandstones, sandy siltstones and siltstones. It was found, in Dagi section there is interval of fine-coarse-grained and coarse-grained sandstones with high petrophysical properties: permeability 3000 mD, porosity more than 25%, but rocks with such properties spread locally and their total thickness is 6 meters only. This interval was described in the IV unit

  20. Fish Productivity in Open-Ocean Gyre Systems in the Late Oligocene and Miocene

    NASA Astrophysics Data System (ADS)

    Cuevas, J. M.; Sibert, E. C.; Norris, R. D.

    2015-12-01

    Understanding how marine ecosystems respond to climate change is very important as we continue to warm the climate. Fish represent a critical protein source for a significant portion of the global population, and as such, an understanding of fish production and its interactions with climate change may help better prepare for the future. Ichthyoliths, fossil fish teeth and shark scales, are a novel fossil group which can be used as an indicator for fish productivity. Several important climate events occurred during the Miocene (7 to 23 Ma), including the Middle Miocene Climatic Optimum. Here we reconstruct fish production from across the Miocene from Pacific and Atlantic Ocean gyres. South Atlantic samples, from Deep Sea Drilling Program (DSDP) Site 522 spanning from 30 to 20 Ma, show fairly variable numbers in the Oligocene (ranging from 100 to 800 ich/cm2/yr), but stabilization in the Early Miocene (around 400 ich/cm2/yr), suggesting that the beginning of the Miocene brought consistent conditions for fish production. In the North Pacific, our record from Ocean Drilling Program (ODP) Site 886 shows a distinct crash in fish productivity at 11 Ma, from 3500 ich/cm2/yr to a steady decline around 100 ich/cm2/yr for the next million years. This crash is followed by a marked increase in the presence of diatoms and biogenous opal. This is somewhat surprising, since in modern oceanic systems, an increase in diatoms and other large-celled phytoplankton is associated with shorter, more efficient food chains and higher levels of fish. It is also interesting to note that denticles remain consistently low at both sites, indicating consistently low shark populations through this time period. Together, these results suggest that the Late Oligocene and Miocene was a time of variable fish production and provide a window into understanding of dynamic ecosystem changes through the Miocene in open-ocean gyre ecosystems.

  1. Reevaluation of the Crooked Ridge River- Early Pleistocene (ca. 2 Ma) age and origin of the White Mesa Alluvium, northeastern Arizona

    USGS Publications Warehouse

    Hereford, Richard; Beard, Sue; Dickinson, William R.; Karlstrom, Karl E.; Heizler, Matthew T.; Crossey, Laura J.; Amoroso, Lee; House, P. Kyle; Pecha, Mark

    2016-01-01

    Essential features of the previously named and described Miocene Crooked Ridge River in northeastern Arizona (USA) are reexamined using new geologic and geochronologic data. Previously it was proposed that Cenozoic alluvium at Crooked Ridge and southern White Mesa was pre–early Miocene, the product of a large, vigorous late Paleogene river draining the 35–23 Ma San Juan Mountains volcanic field of southwestern Colorado. The paleoriver probably breeched the Kaibab uplift and was considered important in the early evolution of the Colorado River and Grand Canyon. In this paper, we reexamine the character and age of these Cenozoic deposits. The alluvial record originally used to propose the hypothetical paleoriver is best exposed on White Mesa, providing the informal name White Mesa alluvium. The alluvium is 20–50 m thick and is in the bedrock-bound White Mesa paleovalley system, which comprises 5 tributary paleochannels. Gravel composition, detrital zircon data, and paleochannel orientation indicate that sediment originated mainly from local Cretaceous bedrock north, northeast, and south of White Mesa. Sedimentologic and fossil evidence imply alluviation in a low-energy suspended sediment fluvial system with abundant fine-grained overbank deposits, indicating a local channel system rather than a vigorous braided river with distant headwaters. The alluvium contains exotic gravel clasts of Proterozoic basement and rare Oligocene volcanic clasts as well as Oligocene–Miocene detrital sanidine related to multiple caldera eruptions of the San Juan Mountains and elsewhere. These exotic clasts and sanidine likely came from ancient rivers draining the San Juan Mountains. However, in this paper we show that the White Mesa alluvium is early Pleistocene (ca. 2 Ma) rather than pre–early Miocene. Combined 40Ar/39Ar dating of an interbedded tuff and detrital sanidine ages show that the basal White Mesa alluvium was deposited at 1.993 ± 0.002 Ma, consistent with a detrital

  2. Evidence for Water-Mass Changes on the Tasmanian Slope during the Early Miocene (19-16.5 Ma): Stable Isotope and Mg/Ca Records from ODP Leg 189 Site 1168

    NASA Astrophysics Data System (ADS)

    Pekar, S. F.; Marchitto, T. M.; Lynch-Steiglitz, J.

    2002-12-01

    High-resolution stable isotope (4-10 k.y. resolution) and moderately low-resolution Mg/Ca ratio records were constructed for the late early Miocene (19-16.5 Ma) from ODP Leg 189 Site 1168, located on the southwest slope of Tasmania. These records evaluated paleoceanographic changes that took place during isotopic excursions Mi1b (18.2-17.8 Ma) and Mi2 (16.5 Ma), and the First Climatic Optimum (17.7-16.7 Ma), a time of increased global warmth. Evidence exists that supports the idea for the development of warm saline deep waters (WSDW) originating from the eastern end of the Tethys Sea during the early Miocene. However, questions remain regarding the extent and strength of the WSDW and the possible role it played in the warming that took place during the First Climatic Optimum. Site 1168 is ideally located on the lower slope (estimates place it in lower bathyal waters during the early Miocene) to evaluate the potential penetration of WSDW and into the Southern Ocean. Large fluctuations in the isotope and Mg/Ca ratio records from Site 1168 suggest changes in the water masses that bathed the Tasmanian slope during the early Miocene. Temperature estimates based on Mg/Ca ratios contain a surprisingly high range, from 4° to 10° C. Low temperatures (4°-6° C) are associated with high carbon isotope values (>1.4‰ ) and are interpreted represent Southern Component Waters (SCW). The high carbon isotope values also suggest a proximal source for SCW. High water temperatures (7°-10° C) indicate a warm-water mass and are interpreted to be due to the penetration of WSDW into this area, replacing SCW at various times. Large high-frequency isotopic excursions (low oxygen and carbon isotope values) occurred between 18.7 and 18.4 Ma and were originally thought to be due to either localized effects (e.g., disassociation of hydrates) or possible diagensis. However, a recently published high-resolution isotopic record from the Southern Ocean (Site 1090) also contains large

  3. Eocene to post-Miocene kinematic evolution of the central Cyclades (Greece)

    NASA Astrophysics Data System (ADS)

    Draganits, E.; Huet, B.; Grasemann, B.; Schneider, D.; Ertl, A.

    2012-04-01

    Due to the extraordinary geotectonic location of the Aegean above an active subduction zone and an exceptional high seismicity, this area and especially the Cyclades have been in the focus of structural investigations for several decades. The present deformation is the result of ongoing plate tectonic movements in this area since at least the Miocene. The ductile structures of the Miocene extension and related metamorphic core type deformation are quite well studied and understood. Equally well investigated are the active tectonic deformation and associated brittle structures through several decades of seismic records. However, due to the difficulties of dating brittle faults, the kinematic evolution from the early to middle Miocene ductile structures, to later Miocene brittle-ductile and brittle faults is much less understood. For these reasons detailed structural fieldwork, combined with Ar-Ar geochronology and P-T studies, have been carried out on the uninhabited island of Despotiko, SW of Antiparos, which is situated virtually in the center of the Cycladic islands. This island has been selected because the existence of metamorphic rocks penetrated by Messinian rhyolite pipes and Pleistocene eolianites provide exceptional age constraints for Eocene to post-Miocene deformation structures. Despotiko is part of lower structural levels of the polymetamorphic Blueschist Unit of the Attic-Cycladic Metamorphic Belt and correlated lithologically with the Parikia gneisses and Marathi unit of Paros. Foliation is shallowly dipping towards the SSW. The main lithologies of the island, from the footwall to the hanging wall, consist of dark to pale grey, strongly foliated, mylonitic granite gneiss with abundant pegmatite dikes. The gneiss is overlain by prominent white, strongly foliated, mylonitic gneiss. Above are medium-grained, white calcite marble followed by greenish-white, mylonitic gneiss and an alternation of mica schist, greenschist, thin marble layers and some small

  4. Miocene Fossils Reveal Ancient Roots for New Zealand’s Endemic Mystacina (Chiroptera) and Its Rainforest Habitat

    PubMed Central

    Hand, Suzanne J.; Lee, Daphne E.; Worthy, Trevor H.; Archer, Michael; Worthy, Jennifer P.; Tennyson, Alan J. D.; Salisbury, Steven W.; Scofield, R. Paul; Mildenhall, Dallas C.; Kennedy, Elizabeth M.; Lindqvist, Jon K.

    2015-01-01

    The New Zealand endemic bat family Mystacinidae comprises just two Recent species referred to a single genus, Mystacina. The family was once more diverse and widespread, with an additional six extinct taxa recorded from Australia and New Zealand. Here, a new mystacinid is described from the early Miocene (19–16 Ma) St Bathans Fauna of Central Otago, South Island, New Zealand. It is the first pre-Pleistocene record of the modern genus and it extends the evolutionary history of Mystacina back at least 16 million years. Extant Mystacina species occupy old-growth rainforest and are semi-terrestrial with an exceptionally broad omnivorous diet. The majority of the plants inhabited, pollinated, dispersed or eaten by modern Mystacina were well-established in southern New Zealand in the early Miocene, based on the fossil record from sites at or near where the bat fossils are found. Similarly, many of the arthropod prey of living Mystacina are recorded as fossils in the same area. Although none of the Miocene plant and arthropod species is extant, most are closely related to modern taxa, demonstrating potentially long-standing ecological associations with Mystacina. PMID:26083758

  5. Proterotheriidae (Mammalia, Litopterna) from the Cerro Azul Formation (late Miocene), La Pampa Province, Argentina

    NASA Astrophysics Data System (ADS)

    Schmidt, G. I.; Montalvo, C. I.; Sostillo, R.; Cerdeño, E.

    2018-04-01

    Remains of Proterotheriidae (Litopterna) recovered from different localities in La Pampa Province, Argentina, are described. The fossiliferous levels in these localities correspond to the Cerro Azul Formation (late Miocene), where Chasicoan and Huayquerian faunal associations are known. The specimens of Proterotheriidae herein studied are assigned to Diplasiotherium pampa, Eoauchenia primitiva, cf. Brachytherium cuspidatum, Neobrachytherium sp. and Proterotheriidae indet. Although the holotype of D. pampa (left mandibular fragment with p3-m2) was defined in a previous paper, it is figured and fully described here, and its m3 is now known among the new collected specimens. Eoauchenia, Brachytherium and Neobrachytherium are registered in La Pampa Province for the first time, and the record of E. primitiva extends back to late Miocene its temporal distribution. Proterotheriids from the Cerro Azul Formation gather exclusive elements and others related to taxa represented in different Argentinean geological units corresponding to late Miocene-early Pliocene period.

  6. Criteria for successful exploration for Miocene reef production in the Philippines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Downey, M.W.

    1990-06-01

    An abundance of modern geologic, geophysical, and geochemical data has been provided to interested members of the petroleum industry by the Philippine government, in cooperation with the World Bank. These data have been analyzed to assess whether more, and larger, Miocene reef fields should be expected in the Philippines. In the past decade, exploration by Cities Service (OXY), Amoco, Alcorn, and others has resulted in the discovery of several small Miocene reef and Miocene sandstone oil fields in offshore Palawan. Phillips/Shell also made a significant gas discovery of about 750 bcf in a Palawan Miocene reef that is currently uneconomicmore » to develop given the water depth (1,090 ft) and distance from users. Miocene reefs are commonly buried within Miocene clastics, and, where these impinging clastics are porous, they allow pathways for hydrocarbons to leak from the Miocene reefs. Drape closure is an important positive factor in assessing seal risk for Philippine Miocene reefs. Source rocks to charge middle and upper Miocene reefs are typically restricted to lower Miocene horizons. Geothermal gradients are modest in much of the Philippine offshore, and only select areas provide sufficient burial to mature and expel significant hydrocarbons. It is predicted by the author that additional, larger, and highly profitable Miocene reef fields will be found by future explorers in areas where Miocene reefs have drape closure top seals and are adjacent to deeply buried Miocene source rocks.« less

  7. Origin of dolomite in Miocene Monterey Shale and related formations in the Temblor Range, California

    USGS Publications Warehouse

    Friedman, I.; Murata, K.J.

    1979-01-01

    Dolomites in thick sections of Miocene Monterey Shale and related formations in the Temblor Range of California acquired their isotopic compositions as they formed at shallow depth in the original sediment rich in organic matter, and retained the composition against the vicissitudes of burial diagenesis. The oxygen isotopes of dolomites of successive beds record changes in temperature of bottom water while the carbon isotopes of the same samples indicate changes in the kind of microbial activity (sulfate reduction vs carbohydrate fermentation) that prevailed at shallow depths in the sediment. In an auxiliary study, two samples of dolomite from sediments of Cariaco Basin off Venezuela (DSDP site 147) were found to have ??5C13 of -14.1 and -9.8 per ml PDB, although they occur in a heavy-carbon zone containing bicarbonate as heavy as +8.4 per ml. These dolomites probably originated at shallow depth in the light-carbon zone of microbial sulfate reducers and were buried under later sediments down into the heavy-carbon zone of microbial fermenters of carbohydrates without losing their original light-carbon composition. ?? 1979.

  8. Miocene to recent history of the western Altiplano in northern Chile revealed by lacustrine sediments of the Lauca basin (18°15' 18°40' S/69°30' 69°05'W)

    NASA Astrophysics Data System (ADS)

    Kött, A.; Gaupp, R.; Wörner, G.

    1995-12-01

    The intramontane Lauca Basin at the western margin of the northern Chilean Altiplano lies to the west of and is topographically isolated from the well-known Plio-Pleistocene lake system of fluvio-lacustrine origin that covers the Bolivian Altiplano from Lake Titicaca to the north for more than 800 km to the Salar de Uyuni in the south. The Lauca Basin is filled by a sequence of some 120 m of mainly upper Miocene to Pliocene elastic and volcaniclastic sediments of lacustrine and alluvial origin. Volcanic rocks, partly pyroelastic, provide useful marker horizons. In the first period (6 4 Ma) of its evolution, the ‘Lago Lauca’ was a shallow ephemeral lake. Evaporites indicate temporarily closed conditions. After 4 Ma the lake changed to a perennial water body surrounded by alluvial plains. In the late Pleistocene and Holocene (2-0 Ma) there was only marginal deposition of alluvial and glacial sediments. The basin formed as a half-graben or by pull-apart between 10 and 15 Ma (tectonic displacement of the basal ignimbrite sequence during the ‘Quechua Phase’) and 6.2 Ma (maximum K/Ar ages of biotites of tuff horizons in the deepest part of the basin). Apart from this early basin formation, there has been surprisingly little displacement during the past 6 Ma close to the Western Cordillera of the Altiplano. Also, climate indicators (pollen, evaporites, sedimentary facies) suggest that an arid climate has existed for the past 6 Ma on the Altiplano. Together, these pieces of evidence indicate the absence of large scale block-faulting, tilt and major uplift during the past 5 6 Ma in this area.

  9. Miocene to Recent history of the western Altiplano in northern Chile revealed by lacustrine sediments of the Lauca Basin (18°15'-18°40'S/69°30'-69°05'W)

    NASA Astrophysics Data System (ADS)

    Kött, A.; Gaupp, R.; Wörner, G.

    The intramontane Lauca Basin at the western margin of the northern Chilean Altiplano lies to the west of and is topographically isolated from the well-known Plio-Pleistocene lake system of fluvio-lacustrine origin that covers the Bolivian Altiplano from Lake Titicaca to the north for more than 800km to the Salar de Uyuni in the south. The Lauca Basin is filled by a sequence of some 120m of mainly upper Miocene to Pliocene clastic and volcaniclastic sediments of lacustrine and alluvial origin. Volcanic rocks, partly pyroclastic, provide useful marker horizons. In the first period (6-4Ma) of its evolution, the 'Lago Lauca' was a shallow ephemeral lake. Evaporites indicate temporarily closed conditions. After 4Ma the lake changed to a perennial water body surrounded by alluvial plains. In the late Pleistocene and Holocene (2-0Ma) there was only marginal deposition of alluvial and glacial sediments. The basin formed as a half-graben or by pull-apart between 10 and 15Ma (tectonic displacement of the basal ignimbrite sequence during the 'Quechua Phase') and 6.2Ma (maximum K/Ar ages of biotites of tuff horizons in the deepest part of the basin). Apart from this early basin formation, there has been surprisingly little displacement during the past 6Ma close to the Western Cordillera of the Altiplano. Also, climate indicators (pollen, evaporites, sedimentary facies) suggest that an arid climate has existed for the past 6Ma on the Altiplano. Together, these pieces of evidence indicate the absence of large scale block-faulting, tilt and major uplift during the past 5-6Ma in this area.

  10. Enhanced Continental Weathering on Antarctica During the Mid Miocene Climatic Optima Based on Pb Isotopes

    NASA Astrophysics Data System (ADS)

    Martin, E. E.; Fenn, C.; Basak, C.

    2012-12-01

    Feedbacks between climate and continental weathering can be monitored over geologic time scales using Pb isotopes preserved in marine sediments. During chemical weathering, radiogenic Pb is preferentially released to the dissolved phase, producing weathering solutions with more radiogenic isotopic values than the parent rock. The offset between the composition of the solution and rock tend to increase with the intensity of incongruent weathering (von Blanckenburg and Nägler, 2001; Harlavan and Erel, 2002). The seawater isotopic signal extracted from Fe-Mn oxides on bulk marine sediments is interpreted to represent the composition of local dissolved weathering inputs. For example, increasing seawater Pb isotopes observed during the most recent deglaciation are believed to reflect enhanced weathering of newly exposed glacial rock flour under warm conditions (Foster and Vance, 2006; Kurzweil et al., 2010). For this study we evaluated Nd and Pb isotopes from both the seawater fraction (extracted from Fe-Mn oxides) and parent rock (the detrital fraction of marine sediment) during the Mid-Miocene Climatic Optimum (MMCO) and subsequent cooling and East Antarctic Ice Sheet (EAIS) expansion (18 to 8 Ma) from Ocean Drilling Program site 744 on Kerguelen Plateau (2300 m; Indian sector) and sites 689 and 690 on Maud Rise (2080 m and 2914 m; Atlantic sector). The absolute value of seawater 206Pb/204Pb and separation between values for seawater and detrital fractions increased during the MMCO, suggesting enhanced weathering in proglacial and deglaciated areas exposed by ice sheet meltback during the warm interval. During the ensuing cooling, seawater values and the offset between the two archives decreased. Similar trends are displayed by 207Pb/204Pb and 208Pb/204Pb, although 207Pb/204Pb detrital values tend to be higher than seawater values. Reconstructions of atmospheric pCO2 in the Miocene have suggested both 1) decoupling between pCO2 and climate with consistently low

  11. Middle Miocene Displacement Along the Rand Detachment Fault, Rand Mountains

    NASA Astrophysics Data System (ADS)

    Shulaker, D. Z.; Grove, M. J.

    2015-12-01

    Laramide flat-slab subduction extinguished Sierra Nevada pluton emplacement in southern California by ca. 85 Ma as trench-derived sediments were underthrust and accreted beneath arc basement. These relationships are well illustrated in the Rand Mountains, situated just south of the Garlock fault in the northwestern Mojave Desert. Here, accreted rocks within the Rand Mountains are referred to as Rand Schist. The Rand Detachment fault juxtaposes Rand Schist beneath 87 Ma Sierran granitoids. New zircon (U-Th)/He age results from schist and basement juxtaposed across the Rand Detachment fault are 15 ± 3 Ma and 30 ± 5 Ma, respectively. When considered within the context of previously reported thermochronology from the Rand Mountains, our data shows that the Rand Detachment fault in the Rand Mountains is a middle Miocene fault that facilitated extension of the northwest Mojave Desert. This timing is in temporal and spatial agreement with regional extension throughout the Mojave triggered by northern migration of the slab window after collision of the Mendocino Triple Junction with the southern California margin. Further evidence of slab-window-related magmatism in the easternmost Rand Mountains is provided by the 19 Ma Yellow Aster pluton and 19 Ma rhyolite porphyry. It is possible that Miocene extension re-activated an older structure within the Rand Mountains. For example, a similar low-angle fault juxtaposing schist and basement present in the San Emigdio Mountains is believed to have accommodated large scale Late Cretaceous displacement, exhuming Rand Schist and overlying deepest Sierran basement to shallow crustal levels by 77 Ma [1]. However, 68-72 Ma phengite cooling ages and other thermochronology from the Rand Mountains indicates that any pre-Miocene extension in this area must postdate that in the San Emigdio Mountains. [1] Chapman et al., 2012. Geosphere, 8, 314-341.

  12. Timing and magnitude of Miocene eustasy derived from the mixed siliciclastic-carbonate stratigraphic record of the northeastern Australian margin

    NASA Astrophysics Data System (ADS)

    John, Cédric M.; Karner, Garry D.; Browning, Emily; Leckie, R. Mark; Mateo, Zenon; Carson, Brooke; Lowery, Chris

    2011-04-01

    Eustasy is a key parameter to understand sedimentary sequences on continental margins and to reconstruct continental ice volume in the Cenozoic, but timing and magnitude of global sea level changes remain controversial, especially for the Miocene Epoch. We analyzed sediment cores recovered from the Marion Plateau, offshore northeastern Australia, during Ocean Drilling Program (ODP) Leg 194 to define the mechanisms and timing of sequence formation on mixed carbonate-siliciclastic margins, and to estimate the amplitude of Miocene eustatic adjustments. We identified sequence boundaries on seismic reflection lines, significantly revised the existing biostratigraphic age models, and investigated the sedimentary response to sea-level changes across the Marion Plateau. We subdivided the Miocene sediments into three sequence sets comprising a set of prograding clinoforms, a muddy prograding carbonate ramp evolving into an aggrading platform, and a lowstand ramp evolving into a backstepping ramp. We recognized eight individual sequences dated at 18.0 Ma, 17.2 Ma, 16.5 Ma, 15.4 Ma, 14.7 Ma, 13.9 Ma, 13.0 Ma, and 11.9 Ma. We demonstrate that sequences on the Marion Plateau are controlled by glacio-eustasy since sequence boundaries are marked by increases in δ 18O (deep-sea Miocene isotope events Mi1b, Mbi-3, Mi2, Mi2a, Mi3a, Mi3, Mi4, and Mi5, respectively), which reflects increased ice volume primarily on Antarctica. Our backstripping estimates suggest that sea-level fell by 26-28 m at 16.5 Ma, 26-29 m at 15.4 Ma, 29-38 m at 14.7 Ma, and 53-81 m at 13.9 Ma. Combining backstripping with δ 18O estimates yields sea-level fall amplitudes of 27 ± 1 m at 16.5 Ma, 27 ± 1 m at 15.4 Ma, 33 ± 3 m at 14.7 Ma, and 59 ± 6 m at 13.9 Ma. We use a similar approach to estimate eustatic rises of 19 ± 1 m between 16.5 and 15.4 Ma, 23 ± 3 m between 15.4 and 14.7 Ma, and 33 ± 3 m between 14.7 and 13.9 Ma. These estimates can be combined into a eustatic curve that suggests that sea

  13. High-resolution seismic sequence stratigraphy and history of relative sea level changes since the Late Miocene, northern continental margin, South China Sea

    NASA Astrophysics Data System (ADS)

    Zhong, G.; Wang, L.

    2013-12-01

    The northern South China Sea (SCS) margin is suggested as one of the ideal sites for documenting the late Cenozoic sea level changes for its characteristics of rapid sedimentation and relatively stable structural subsidence since the Late Miocene. In this study, high-resolution seismic profiles acquired by the Guangzhou Marine Geological Survey, calibrated by well control from the ODP sites 1146 and 1148, were utilized to construct a time-significant sequence stratigraphic framework, from which the history of relative sea level changes since the Late Miocene on the northern SCS margin was derived. Our study area is situated in the middle segment of the margin, between the Hainan Island to the west and the Dongsha Islands to the east. This region is to a certain degree far away from the active structural zones and is suggested as the most stable region in the margin. Totally 4000 km seismic profiles were used, which controls an area of about 6×104 km2. The seismic data have a vertical resolution of 5 to 15 m for the Upper Miocene to Quaternary interval. Three regional seismic sequence boundaries were identified. They subdivide the Late Miocene to Quaternary into three mega-sequences, which correspond to the Quaternary, Pliocene and Late Miocene, respectively by tying to well control. The Late Miocene mega-sequence, including 13 component sequences, is characterized with a basal incised canyon-developed interval overlain by three sets of progradational sequences formed in deep-water slope environments. The Pliocene mega-sequence consists of four sets of progradational sequences. Each sequence set contains one to three component sequences. At least 7 component sequences can be identified. The Quaternary mega-sequence consists of five sets of progradational sequences, in which the lower two constitute a retrogressive sequence set and the upper three a progradational sequence set. At least 9 component sequences can be recognized. Most of the component sequences within

  14. Geomorphology and Sediment Stability of a Segment of the U.S. Continental Slope off New Jersey.

    PubMed

    Robb, J M; Hampson, J C; Twichell, D C

    1981-02-27

    The morphology of complex deposits of Pleistocene sediments covering the upper continental slope between Lindenkohl Canyon and South Toms Canyon results from both depositional and erosional processes. Small slump or slide features were detected primarily on the flanks of canyons or valleys and were observed to occur only within Pleistocene-aged sediments. Eocene to Miocene sediments are exposed over much of the mid- and lower slope in this area.

  15. Some chemical aspects of diagenetic carbonates from the Miocene of Sitakund, Bangladesh

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akhter, S.H.; Chowdhury, S.Q.; Kandaker, N.I.

    1990-05-01

    A preliminary chemical and petrological study was done of the Miocene limestone and its comparison with surrounding and overlying marine shales. The material for these studies was obtained from the Miocene Surma sediments exposed in Sitakund region, Cluttagong, Bangladesh. These limestones occur in a predominantly marine shale sequence and show an apparent angular structural relationship with respect to the host marine shales. Three types of carbonates are recognized: banded limestone, dark laminated limestone, and argillaceous limestone. These are devoid of any skeletal remains and often show recrystallization phenomena. Carbonate mineral phases included calcite, aragonite, dolomite, and more rarely magnesite andmore » ankerite. Noncarbonate fraction shows quartz, although very fine grained, is intricately intergrown, indicating that it is at least recrystallized, if not authigenic. Petrographic study of these carbonates show a great variability in terms of texture and composition and suggest a complex multistep and presumably continuous diagenesis. Relatively high REE (rare earth elements) abundances in these carbonates are most likely due to diagenesis and incorporation of mobile REE from local detrital phases into diagenetic carbonates. The anomalously low abundances of cerium in all the carbonates indicates a predominantly marine source for the REE. Recrystallization of carbonate resulted in the extensive exchange of Sr and O between carbonate and diagenetic fluid, the latter being low in REE/Ca ratios. Associated marine shales have quite dissimilar trace-element signatures. This may reflect uncommon crustal sources of REE for the carbonates and clastics. The enrichment of Ni and Zn in marine shales are related to the proximality of local bedrock source areas and clay minerals in the marine sediments.« less

  16. Source-To-Sink Perspectives On The Mississippi River System, Miocene To Present, Mountain To Abyss

    NASA Astrophysics Data System (ADS)

    Bentley, S. J.; Blum, M. D.

    2013-12-01

    . The objective of this study is to present a synthesis of the Mississippi River source-to-sink system, from montane source to abyssal sink, to elucidate specific geomorphic components and boundaries in the system, controls on mass transfer, and resultant geomorphic and statigraphic development. The Mississippi River source-to-sink system constitutes one of the largest sources, conduits, and depocenters of sediment on Earth, extending from elevations of 3.7 km in the Rocky Mountains to the Gulf of Mexico abyssal plain. Despite being one of the most intensely studied fluvial-marine systems in the world, comprehensive understanding and management of the system's resources remain a challenge. The system is valuable in many ways: it provides navigation and water to the heart of North America, and sustains extensive marine fisheries. The river has built a delta that is home to millions of people and yet is subsiding rapidly. Ancestral Mississippi fluvial-marine deposits continue to yield high-value petroleum resources to exploration. To address the range of temporal and spatial scales over which the system has developed and continues to evolve, we will focus on three geological time spans that display contrasting geologic forcing and response: Miocene, Pleistocene, and late Holocene. The present configuration of source, conduit, and sink were established during the Miocene epoch, when tectonics (via the uplifting southern Rockies, and later the rejuvenated Appalachians) and climate (wet in the east and dry in the west) provided abundant water and sediment to prograde the shelf margin and initiate deep-sea fan growth. Pleistocene continental glaciation, eustasy, and catastrophic drainage events further sculpted the alluvial valley, and extended the shelf margin, and fan. Studies of Modern processes and Holocene delta development have provided keys to both the delta's past and future evolution, in terms of cyclic autogenic lobe-switching, mass-transport events, storm

  17. Subcellular preservation in giant ostracod sperm from an early Miocene cave deposit in Australia

    PubMed Central

    Matzke-Karasz, Renate; Neil, John V.; Smith, Robin J.; Symonová, Radka; Mořkovský, Libor; Archer, Michael; Hand, Suzanne J.; Cloetens, Peter; Tafforeau, Paul

    2014-01-01

    Cypridoidean ostracods are one of a number of animal taxa that reproduce with giant sperm, up to 10 000 µm in length, but they are the only group to have aflagellate, filamentous giant sperm. The evolution and function of this highly unusual feature of reproduction with giant sperm are currently unknown. The hypothesis of long-term evolutionary persistence of this kind of reproduction has never been tested. We here report giant sperm discovered by propagation phase contrast X-ray synchrotron micro- and nanotomography, preserved in five Miocene ostracod specimens from Queensland, Australia. The specimens belong to the species Heterocypris collaris Matzke-Karasz et al. 2013 (one male and three females) and Newnhamia mckenziana Matzke-Karasz et al. 2013 (one female). The sperm are not only the oldest petrified gametes on record, but include three-dimensional subcellular preservation. We provide direct evidence that giant sperm have been a feature of this taxon for at least 16 Myr and provide an additional criterion (i.e. longevity) to test hypotheses relating to origin and function of giant sperm in the animal kingdom. We further argue that the highly resistant, most probably chitinous coats of giant ostracod sperm may play a role in delaying decay processes, favouring early mineralization of soft tissue. PMID:24827442

  18. Funalichnus bhubani isp. nov. from Bhuban Formation, Surma Group (Lower -Middle Miocene) of Aizawl, Mizoram, India

    PubMed Central

    Tiwari, Raghavendra Prasad; Rajkonwar, Chinmoy; Patel, Satish Jaychandbhai

    2013-01-01

    A new ichnospecies of the ichnogenus Funalichnus Pokorný is described from the Middle Bhuban Unit, Bhuban Formation, Surma Group (Lower - Middle Miocene) of Aizawl, Mizoram, India. Funalichnus bhubani isp. Nov. Is a large burrow displaying cylindrical segments that are oriented nearly perpendicular to the bedding plane. The new ichnospecies can be identified on the basis of general form, size, unlined passive filling and twisted rod-like structure. The association of Funalichnus bhubani isp. Nov. With Arenicolites, Diplocraterion, Ophiomorpha Psilonichnus Skolithos and Thalassinoides points to its bathymetric restriction. The deep extension of the burrow in clastic sediments provides a favourable condition for preservation in the shoreface environment and occurrence in fine- to medium-grained clastic sediments may be a preservational preference. PMID:24204992

  19. Early Eocene to Late Miocene Variations in the South Atlantic CCD: Constraints from the Walvis Ridge Depth-Transect (ODP Leg 208)

    NASA Astrophysics Data System (ADS)

    Lindsey, M. M.; Schellenberg, S. A.

    2006-12-01

    Carbonate saturation profiles are complex and dynamic products of processes operating on spatiotemporal scales from the "short-term local" (e.g. carbonate export production, carbonate ion concentration) to the "long- term global" (e.g. carbonate-silicate weathering, shelf:basin carbonate partitioning). Thus, a refined history of carbonate saturation may provide insight on global carbon-cycle dynamics. An established, if crude, proxy for reconstructing carbonate saturation is the wt% carbonate content of pelagic sediments, where <20 wt% is ascribed to deposition below the carbonate compensation depth (CCD). A number of now classic works (e.g. Berger and Roth, 1975; van Andel, 1977) established first-order and presumably global Cenozoic CCD fluctuations. The Walvis Ridge depth-transect of ODP Leg 208 represents an excellent opportunity to refine our understanding of the South Atlantic Cenozoic CCD. Wt% carbonate determinations (n = 299) through the Early Eocene to Late Miocene section at Site 1267 are significantly correlated with associated natural gamma ray values (r2 = 0.92). This relationship was used to produce a cm-scale synthetic wt% carbonate record ordinated in the time-domain via the ship-board age-model and in the paleodepth-domain via Sclater and Parsons (1977) crustal age-depth relationship. The Site 1267 record shows good general agreement with previous low-resolution (>10^{5-6} yr) CCD reconstructions and correlates relatively well with estimates of eustatic sea level fluctuations. Ongoing research expands this general approach to shallower and deeper ODP Leg 208 sites to provide greater constraints on the history of the South Atlantic CCD. These data, combined with other proxies (e.g. planktonic foraminifer fragmentation, stable isotopes) and placed within evolving Leg 208 age-models, will provide valuable constraints on cyclic and secular fluctuations in the South Atlantic carbonate saturation profile and their relation to various components of the

  20. Structural and sedimentary evolution of the Malay Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ismail, M.T.; Rudolph, K.W.; Abdullah, S.A.

    1994-07-01

    The Malay Basin is a back-arc basin that formed via Eocene ( ) through Oligocene extension. This early extensional episode is characterized by large east-west and northwest-southeast-trending normal fault systems with associated block rotation. Extensional subbasins are filled with a thick succession of alluvial and fluvial sediments that show increasing lacustrine influence toward the central basin dep. In the early Miocene, the basin entered a passive sag phase in which depositional relief decreased, and there is the first evidence of widespread marine influence. Lower Miocene sediments consist of cyclic offshore marine, tidal-estuarine, and coastal plain fluvial sediments with very widemore » facies tracts. The middle Miocene is dominated by increasing compressional inversion, in which preexisting extensional lows were folded into east-west anticlines. This compression continues well into the Pliocene-Pleistocene, especially in the northwest portion of the basin and is accompanied by an increase in basin-wide subsidence. There is significant thinning over the crest of the growing anticlines and an angular unconformity near the top of the middle Miocene in the southeast portion of the basin. Middle Miocene sedimentary facies are similar to those seen in the lower Miocene, but are influenced by the contemporaneous compressional folding and normal faulting. Based on this study, there is no evidence of through-going wrench-fault deformation in the Malay Basin. Instead, localized strike-slip faulting is a subsidiary phenomenon associated with the extensional and compressional tectonic episodes.« less

  1. Primitive helium isotopic compositions associated with Miocene lavas from Northwest Iceland

    NASA Astrophysics Data System (ADS)

    Jackson, M. G.; Reinhard, A.; Blichert-Toft, J.; Price, A. A.; Kurz, M. D.; Halldorsson, S. A.

    2016-12-01

    Elevated 3He/4He ratios identified in hotspots globally are associated with an early-formed, less degassed mantle reservoir that resides in the deep mantle, but the origin and mechanism for the long-term preservation of this mantle domain are not well understood. The highest known terrestrial mantle-derived 3He/4He ratios (49.5 Ra) have been measured in 62 million year old lavas from Baffin Island and West Greenland, associated with the proto-Iceland plume [1]. Mid-Miocene lavas from northwest Iceland have 3He/4He ratios of up to 37 Ra [2]. Thus, the Iceland plume has tapped a high-3He/4He mantle source over much of the Cenozoic. This is important, as 182W [3] and 129Xe [4] data indicate that the high 3He/4He domain sampled by the Iceland plume formed in the early Hadean. We report new 3He/4He measurements on magmatic olivine in mid-Miocene lavas from Northwest Iceland. Fusion experiments indicate that the new, high 3He/4He ratios do not have a cosmogenic 3He contribution. New Sr, Nd, Hf, and Pb isotopic data place important constraints on the isotopic composition of the highest 3He/4He mantle domain sampled by mid-Miocene Iceland lavas. An important question is whether the highest 3He/4He lavas from Iceland have Sr-Nd-Hf-Pb isotopic compositions that overlap with those found in the high-3He/4He lavas from Baffin Island. If not, it will be important to understand the mechanism responsible for the offset in Sr-Nd-Hf-Pb isotopic compositions, and whether this also explains the lower maximum 3He/4He in mid-Miocene Icelandic lavas relative to their counterparts in Baffin Island. The new data will have implications for the preservation of primitive reservoirs in the deep mantle. [1] Stuart et al., Nature, v. 424, 2003. [2] Hilton et al., Earth Planet Sci. Lett., v. 173, 1999. [3] Rizo et al., Science, v. 352, 2016. [4] Mukhopadhyay, Nature, v. 486, 2012.

  2. Geologic columns for the ICDP-USGS Eyreville A and C cores, Chesapeake Bay impact structure: Postimpact sediments, 444 to 0 m depth

    USGS Publications Warehouse

    Edwards, L.E.; Powars, D.S.; Browning, J.V.; McLaughlin, P.P.; Miller, K.G.; ,; Kulpecz, A.A.; Elbra, T.

    2009-01-01

    A 443.9-m-thick, virtually undisturbed section of postimpact deposits in the Chesapeake Bay impact structure was recovered in the Eyreville A and C cores, Northampton County, Virginia, within the "moat" of the structure's central crater. Recovered sediments are mainly fine-grained marine siliciclastics, with the exception of Pleistocene sand, clay, and gravel. The lowest postimpact unit is the upper Eocene Chickahominy Formation (443.9-350.1 m). At 93.8 m, this is the maximum thickness yet recovered for deposits that represent the return to "normal marine" sedimentation. The Drummonds Corner beds (informal) and the Old Church Formation are thin Oligocene units present between 350.1 and 344.7 m. Above the Oligocene, there is a more typical Virginia coastal plain succession. The Calvert Formation (344.7-225.4 m) includes a thin lower Miocene part overlain by a much thicker middle Miocene part. From 225.4 to 206.0 m, sediments of the middle Miocene Choptank Formation, rarely reported in the Virginia coastal plain, are present. The thick upper Miocene St. Marys and Eastover Formations (206.0-57.8 m) appear to represent a more complete succession than in the type localities. Correlation with the nearby Kiptopeke core indicates that two Pliocene units are present: Yorktown (57.8-32.2 m) and Chowan River Formations (32.2-18.3 m). Sediments at the top of the section represent an upper Pleistocene channel-fill and are assigned to the Butlers Bluff and Occohannock Members of the Nassawadox Formation (18.3-0.6 m). ?? 2009 The Geological Society of America.

  3. Mid-Miocene C4 expansion on the Chinese Loess Plateau under an enhanced Asian summer monsoon

    NASA Astrophysics Data System (ADS)

    Dong, Jibao; Liu, Zhonghui; An, Zhisheng; Liu, Weiguo; Zhou, Weijian; Qiang, Xiaoke; Lu, Fengyan

    2018-06-01

    Atmospheric CO2 starvation, aridity, fire and warm season precipitation have all been proposed as major contributors to C4 plant expansion during the Late Miocene. However, the driving factors responsible for the distribution of C4 plants in the early and mid-Miocene still remain enigmatic. Here we report pedogenic carbon and oxygen isotope data (δ13Cpedo, δ18Opedo), along with magnetic susceptibility (MS) results, from the Zhuang Lang drilling core on the Chinese Loess Plateau (CLP). Elevated δ13Cpedo values (>-5‰) signal a prominent C4 expansion and substantially increased δ18Opedo and MS values indicate enhanced Asian summer monsoon (ASM) precipitation. Both of these conditions are observed during the Mid-Miocene Climatic Optimum (MMCO), 14.5-17 million years ago. The marked increase in C4 plants, associated with warm temperatures and increased precipitation, strongly suggests the control of an enhanced ASM on C4 expansion on the CLP during the MMCO. This finding contrasts with the late-Miocene C4 expansion associated with cooling and drying conditions observed in low latitudes and argues for regionally specific control of C4 plant distribution/expansion.

  4. Late Miocene - Pliocene Evolution of the Pacific Warm Pool and Cold Tongue: Implications for El Niño

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Pagani, M.

    2011-12-01

    The Western Pacific Warm Pool of the tropical Pacific Ocean retains the largest and warmest sea surface water body on Earth, while the eastern equatorial Pacific is characterized by strong upwelling of cold, nutrient-rich deep waters, termed the Pacific cold tongue. Evolution of the Pacific warm pool and cold tongue are important because they control the circum-Pacific climate and impact the globe via El Niño - Southern Oscillation (ENSO) teleconnections. Sea surface temperature (SST) reconstructions using a single site from the warm pool (ODP 806) and two sites from the cold tongue (ODP 846, 847) suggest that the temperature of the warm pool was "stable" throughout the Plio-Pleistocene, whereas the cold tongue was much warmer in the Pliocene and subsequently cooled. The absence of an east-west Pacific temperature gradient during the early Pliocene is the basis for the "permanent El Niño" hypothesis. However, annually-resolved fossil coral and evaporite records found 3-7 years climate variability during the Pliocene warm period and late Miocene, challenging a "permanent" or invariant climate state. Here we present a multi-proxy (TEX86, UK37, Mg/Ca), multi-site reconstruction of the late Miocene - Pliocene (ca. 12 Ma - 3 Ma) SST in the Pacific warm pool (ODP 806, ODP 769 in the Sulu Sea, ODP 1143 in the South China Sea) and the cold tongue (ODP 850, 849, 846). Our results show that the cold tongue was even warmer in the late Miocene than the Pliocene, and that the warm pool cooled 2-3°C from the late Miocene into the Pliocene - in contrast to the invariant character previously assumed. Temperature comparison between different sites suggests that the warm pool may have expanded in size in the late Miocene. Although eastern and western ends of the tropical Pacific were warmer, a persistent, but low east-west temperature gradient (~3°C) is apparent. This agrees with recent studies which have shown ENSO-related frequency of climate change in the late Miocene and

  5. Understanding the Miocene-Pliocene - The Mediterranean Point of View

    NASA Astrophysics Data System (ADS)

    Simon, D.; Marzocchi, A.; Lunt, D. J.; Flecker, R.; Hilgen, F. J.; Meijer, P. T.

    2015-12-01

    During the Miocene-Pliocene the Mediterranean region experienced major changes in paleogeography. Today, its only connection to the global ocean is the Strait of Gibraltar. This restricted nature causes the Mediterranean basin to react more sensitive to climatic and tectonic related phenomena than the global ocean: Not just eustatic sea-level and regional river run-off, but also gateway tectonics and connectivity between sub-basins are leaving an enhanced fingerprint in its geological record. To understand its evolution, it is crucial to understand how these different effects are coupled. The Miocene-Pliocene sedimentary record of the Mediterranean alternates in composition and colour. Around the Miocene-Pliocene Boundary the most extreme changes occur in the Mediterranean Sea: About 6% of the salt in the global ocean got deposited in the Mediterranean Region, forming an approximately 2km thick salt layer, which is still present today. This extreme event is named the Messinian Salinity Crisis (MSC, 5.97-5.33Ma). Before (and also after) the MSC, the sedimentary record demonstrates "marl dominated" alternations with variations in organic content (e.g. higher organic content = sapropel). During the MSC these change to mainly "evaporite (e.g. gypsum or halite) dominated" alternations, but also to brackish Black Sea-type of deposits towards the end of the crisis. Due to its relative short geological time span, the period before, during and after the MSC is ideal to study these extreme changes in sedimentation. We are investigating these couplings and evolutions in a box/budget model. With such a model we can study the responses to basin water exchange dynamics under the effect of different regional and global climatic and tectonic forcings, to predict the evolution of basin properties (e.g. salinity). By doing so we can isolate certain climatic and tectonic effects, to better understand their individual contribution, their interaction, but also the consequences due to

  6. Numerical analysis of palynological data from Neogene fluvial sediments as evidence for rainforest dynamics in western Amazonia

    NASA Astrophysics Data System (ADS)

    Salamanca, Sonia; van Manen, Milan; Hoorn, Carina

    2014-05-01

    Deep-time records that give an insight into the composition and dynamics of the ancestral Amazon rain forest are rare. Yet to understand the modern biodiversity patterns it is important to untangle the long-term evolution of this forest. Sampling Neogene strata requires drilling operations or complex fieldwork along the rivers where outcrops generally are small. In the nineties an exceptionally good exposure of fluvial sediments of early Miocene age (17.7-16.1 Ma) was documented near the island of Mariñame (Caquetá River, Colombian Amazonia) (Hoorn, 1994). This 60 m sediment succession consists of quartz-rich sands with a circa 10 m black, sandy clay intercalation. Palynomorphs are well preserved in these organic-rich clays and palynological analysis indicated high pollen diversity and changes in composition following changes in the sedimentary environment and water composition (see van Soelen et al., this session). A numerical analysis in R (2013) of the existing data, using a number of multivariate and other statistical techniques now shows a gradient of change in the composition of the Miocene palynological assemblages. Non-metric-multidimensional scaling using distance matrixes (Oksanen, 2012) and their visualizations in correlograms (Friendly, 2002) indicate that the regional (palm) swamp forests of Mauritiides franciscoi (Mauritia), frequently found together with other palms such as Psilamonocolpites amazonicus (Euterpe?) and Psilamonocolpites rinconii, were affected by a marine incursion. The latter is suggested by the change of composition and the presence of estuarine elements such as Zonocostites ramonae (Rhizophora), foraminifer linings and dinoflagellate cysts, which became common during the marine event. In the older part of the section, and at the top, Rhoipites guianensis (Sterculiaceae/Tiliaceae) is quite abundant, in contrast with the relatively low abundance of M. franciscoi. The numerical analysis allowed us to: a) group the pollen data into 3

  7. Modeling geologically abrupt climate changes in the Miocene

    NASA Astrophysics Data System (ADS)

    Haupt, B. J.; Seidov, D.

    2010-12-01

    The gradual cooling of the Cenozoic, including the Miocene epoch, was punctuated by many geologically abrupt warming and cooling episodes - strong deviations from the cooling trend with time span of ten to hundred thousands of years. Our working hypothesis is that some of those warming episodes at least partially might have been caused by dynamics of the emerging Antarctic Ice Sheet, which, in turn, might have caused strong changes of sea surface salinity in the Miocene Southern Ocean. Feasibility of this hypothesis is explored in a series of coupled ocean-atmosphere computer experiments. The results suggest that relatively small and geologically short-lived changes in freshwater balance in the Southern Ocean could have significantly contributed to at least two prominent warming episodes in the Miocene. Importantly, the experiments also suggest that the Southern Ocean was more sensitive to the salinity changes in the Miocene than today, which can attributed to the opening of the Central American Isthmus as a major difference between the Miocene and the present-day ocean-sea geometry.

  8. Smilax (Smilacaceae) from the Miocene of western Eurasia with Caribbean biogeographic affinities.

    PubMed

    Denk, Thomas; Velitzelos, Dimitrios; Güner, H Tuncay; Ferrufino-Acosta, Lilian

    2015-03-01

    • Recent molecular studies provide a phylogenetic framework and some dated nodes for the monocot genus Smilax. The Caribbean Havanensis group of Smilax is part of a well-supported "New World clade" with a few disjunct taxa in the Old World. Although the fossil record of the genus is rich, it has been difficult to assign fossil taxa to extant groups based on their preserved morphological characters.• Leaf fossils from Europe and Asia Minor were studied comparatively and put into a phylogenetic and biogeographic context using a molecular phylogeny of the genus.• Fossils from the early Miocene of Anatolia represent a new species of Smilax with systematic affinities with the Havanensis group. The leaf type encountered in the fossil species is exclusively found in species of the Havanensis group among all modern Smilax. Scattered fossils of this type from the Miocene of Greece and Austria, previously referred to Quercus (Fagaceae), Ilex (Aquifoliaceae), and Mahonia (Berberidaceae) also belong to the new species.• The new Smilax provides first fossil evidence of the Havanensis group and proves that this group had a western Eurasian distribution during the Miocene. The age of the fossils is in good agreement with the (molecular-based) purported split between the Havanensis and Hispida groups within Smilax. The Miocene Smilax provides evidence that all four subclades within the "New World clade" had a disjunct intercontinental distribution during parts of the Neogene involving trans-Atlantic crossings (via floating islands or the North Atlantic land bridge) and the Beringia land bridge. © 2015 Botanical Society of America, Inc.

  9. Neogene sequence stratigraphy, Nam Con Son Basin, offshore Vietnam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMillen, K.J.; Do Van Luu; Lee, E.K.

    1996-12-31

    An integrated well log, biostratigraphic, and seismic stratigraphic study of Miocene to Recent deltaic sediments deposited in the Nam Con Son Basin offshore from southern Vietnam shows the influence of eustacy and tectonics on sequence development. Sediments consist of Oligocene non-marine rift-basin fill (Cau Formation), early to middle Miocene tide-dominated delta plain to delta front sediments (TB 1.5 to TB 2.5, Due and Thong Formations), and late Miocene to Recent marine shelf sediments (TB. 2.6 to TB 3.1 0, Mang Cau, Nam Con Son, and Bien Dong Formations). Eustacy controlled the timing of key surfaces and sand distribution in themore » tectonically-quiet early Miocene. Tectonic effects on middle to late Miocene sequence development consist of thick transgressive systems tracts due to basin-wide subsidence and transgression, sand distribution in the basin center, and carbonate sedimentation on isolated fault blocks within the basin. Third-order sequence boundaries (SB) are identified by spore peaks, sand stacking patterns, and channel incision. In the basin center, widespread shale beds with coal occur above sequence boundaries followed by transgressive sandstone units. These TST sandstones merge toward the basin margin where they lie on older HST sandstones. Maximum flooding surfaces (MFS) have abundant marine microfossils and mangrove pollen, a change in sand stacking pattern, and often a strong seismic reflection with downlap. Fourth-order genetic-type sequences are also interpreted. The MFS is the easiest marker to identify and correlate on well logs. Fourth-order SB occur within these genetic units but are harder to identify and correlate.« less

  10. Neogene sequence stratigraphy, Nam Con Son Basin, offshore Vietnam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMillen, K.J.; Do Van Luu; Lee, E.K.

    1996-01-01

    An integrated well log, biostratigraphic, and seismic stratigraphic study of Miocene to Recent deltaic sediments deposited in the Nam Con Son Basin offshore from southern Vietnam shows the influence of eustacy and tectonics on sequence development. Sediments consist of Oligocene non-marine rift-basin fill (Cau Formation), early to middle Miocene tide-dominated delta plain to delta front sediments (TB 1.5 to TB 2.5, Due and Thong Formations), and late Miocene to Recent marine shelf sediments (TB. 2.6 to TB 3.1 0, Mang Cau, Nam Con Son, and Bien Dong Formations). Eustacy controlled the timing of key surfaces and sand distribution in themore » tectonically-quiet early Miocene. Tectonic effects on middle to late Miocene sequence development consist of thick transgressive systems tracts due to basin-wide subsidence and transgression, sand distribution in the basin center, and carbonate sedimentation on isolated fault blocks within the basin. Third-order sequence boundaries (SB) are identified by spore peaks, sand stacking patterns, and channel incision. In the basin center, widespread shale beds with coal occur above sequence boundaries followed by transgressive sandstone units. These TST sandstones merge toward the basin margin where they lie on older HST sandstones. Maximum flooding surfaces (MFS) have abundant marine microfossils and mangrove pollen, a change in sand stacking pattern, and often a strong seismic reflection with downlap. Fourth-order genetic-type sequences are also interpreted. The MFS is the easiest marker to identify and correlate on well logs. Fourth-order SB occur within these genetic units but are harder to identify and correlate.« less

  11. Geologic Reconnaissance of the Antelope-Ashwood Area, North-Central Oregon: With Emphasis on the John Day Formation of Late Oligocene and Early Miocene Age

    USGS Publications Warehouse

    Peck, Dallas L.

    1964-01-01

    This report briefly describes the geology of an area of about 750 square miles in Jefferson, Wasco, Crook, and Wheeler Counties, Oregon. About 16,000 feet of strata that range in age from pre-Tertiary to Quaternary are exposed. These include the following units: pre-Tertiary slate, graywacke, conglomerate, and meta-andesite; Clarno Formation of Eocene age - lava flows, volcanic breccia, tuff, and tuffaceous mudstone, chiefly of andesitic composition; John Day Formation of late Oligocene and early Miocene age - pyroclastic rocks, flows, and domes, chiefly of rhyolitic composition; Columbia River Basalt of middle Miocene age - thick, columnar jointed flows of very fine grained dense dark-gray basalt; Dalles Formation of Pliocene age - bedded tuffaceous sandstone, siltstone, and conglomerate; basalt of Pliocene or Pleistocene age - lava flows of porous-textured olivine basalt; and Quaternary loess, landslide debris, and alluvium. Unconformities separate pre-Tertiary rocks and Clarno Formation, Clarno and John Day Formations, John Day Formation and Columbia River Basalt, and Columbia River Basalt and Dalles Formation. The John Day Formation, the only unit studied in detail, consists of about 4,000 feet of tuff, lapilli tuff, strongly to weakly welded rhyolite ash flows, and less abundant trachyandesite flows and rhyolite flows and domes. The formation was divided into nine mappable members in part of the area, primarily on the basis of distinctive ledge-forming welded ash-flow sheets. Most of the sheets are composed of stony rhyolite containing abundant lithophysae and sparse phenocrysts. One sheet contains 10 to 20 percent phenocrysts, mostly cryptoperthitic soda sanidine, but including less abundant quartz, myrmekitic intergrowths of quartz and sanidine, and oligoclase. The rhyolitic ash flows and lava flows were extruded from nearby vents, in contrast to some of the interbedded air-fall tuff and lapilli tuff of dacitic and andesitic composition that may have been

  12. Bacteria in deep coastal plain sediments of Maryland: A possible source of CO2 to groundwater

    NASA Astrophysics Data System (ADS)

    Chapelle, Francis H.; Zelibor, Joseph L., Jr.; Grimes, D. Jay; Knobel, Leroy L.

    1987-08-01

    Nineteen cores of unconsolidated Coastal Plain sediments obtained from depths of 14 to 182 m below land surface near Waldorf, Maryland, were collected and examined for metabolically active bacteria. The age of the sediments cored range from Miocene to Early Cretaceous. Acridine orange direct counts of total (viable and nonviable) bacteria in core subsamples ranged from 108 to 104 bacteria/g of dry sediment. Direct counts of viable bacteria ranged from 106 to 103 bacteria/g of dry sediment. Three cores contained viable methanogenic bacteria, and seven cores contained viable sulfate-reducing bacteria. The observed presence of bacteria in these sediments suggest that heterotrophic bacterial metabolism, with lignitic organic material as the primary substrate, is a plausible source of CO2 to groundwater. However, the possibility that abiotic processes also produce CO2 cannot be ruled out. Estimated rates of CO2 production in the noncalcareous Magothy/Upper Patapsco and Lower Patapsco aquifers based on mass balance of dissolved inorganic carbon, groundwater flow rates, and flow path segment lengths are in the range 10-3 to 10-5 mmol L-1 yr-1. Isotope balance calculations suggest that aquifer-generated CO2 is much heavier isotopically (˜—10 to + 5 per mil) than lignite (˜-24 per mil) present in these sediments. This may reflect isotopic fractionation during methanogenesis and possibly other bacterially mediated processes.

  13. Enhanced provenance interpretation using combined U-Pb and (U-Th)/He double dating of detrital zircon grains from lower Miocene strata, proximal Gulf of Mexico Basin, North America

    NASA Astrophysics Data System (ADS)

    Xu, Jie; Stockli, Daniel F.; Snedden, John W.

    2017-10-01

    Detrital zircon U-Pb analysis is an effective approach for investigating sediment provenance by relating crystallization age to potential crystalline source terranes. Studies of large passive margin basins, such as the Gulf of Mexico Basin, that have received sediment from multiple terranes with non-unique crystallization ages or sedimentary strata, benefit from additional constraints to better elucidate provenance interpretation. In this study, U-Pb and (U-Th)/He double dating analyses on single zircons from the lower Miocene sandstones in the northern Gulf of Mexico Basin reveal a detailed history of sediment source evolution. U-Pb age data indicate that most zircon originated from five major crystalline provinces, including the Western Cordillera Arc (<250 Ma), the Appalachian-Ouachita orogen (500-260 Ma), the Grenville (1300-950 Ma) orogen, the Mid-Continent Granite-Rhyolite (1500-1300 Ma), and the Yavapai-Mazatzal (1800-1600 Ma) terranes as well as sparse Pan-African (700-500 Ma) and Canadian Shield (>1800 Ma) terranes. Zircon (U-Th)/He ages record tectonic cooling and exhumation in the U.S. since the Mesoproterozoic related to the Grenville to Laramide Orogenies. The combined crystallization and cooling information from single zircon double dating can differentiate volcanic and plutonic zircons. Importantly, the U-Pb-He double dating approach allows for the differentiation between multiple possible crystallization-age sources on the basis of their subsequent tectonic evolution. In particular, for Grenville zircons that are present in all of lower Miocene samples, four distinct zircon U-Pb-He age combinations are recognizable that can be traced back to four different possible sources. The integrated U-Pb and (U-Th)/He data eliminate some ambiguities and improves the provenance interpretation for the lower Miocene strata in the northern Gulf of Mexico Basin and illustrate the applicability of this approach for other large-scale basins to reconstruct sediment

  14. Forearc sedimentation in Terraba Trough, Costa Rica, Central America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, P.B.; Lowe, D.R.

    1987-05-01

    Sedimentary rocks of Terraba Trough, Costa Rica, were deposited in a forearc basin developed at an ocean-ocean convergent boundary. The basin developed in the middle to late Eocene when the Farallon plate began its subduction beneath the Caribbean plate. Shallow-water carbonates of the Brito Formation were deposited on shoals of basement blocks. These were surrounded by deeper marine areas in which volcaniclastics and carbonate debris accumulated. The Brito Formation consists of algal-foraminiferal packstone to grainstone, rudstone, and rare wackestone formed in fore-slope, carbonate buildup, and open platform environments in a warm, tropical sea. The Eocene Brito Formation is overlain bymore » rocks of the upper Oligocene Rio Claro Member of the Terraba Formation. It is composed of rhodolite and bioclastic grainstone deposited in shallow water. A combination of little subsidence, mild volcanism, and possible erosion at about 30 Ma during a global drop of sea level may be responsible for the absence of lower Oligocene rocks in the study area. After the deposition of the Rio Claro Member, the area subsided rapidly to become a trough possibly deeper than 2000 m. Sedimentation took place in deep water from sediment gravity flows. In the early to early middle Miocene, coarser sediments and thicker sand units containing coal fragments became more abundant, suggesting that the basin was gradually filled. This study indicates that the timing and degree of subsidence of the fore-arc basin and the vertical variation in lithology are closely related to the variation in convergence rate between lithospheric plates in this part of Central America and the eastern Pacific.« less

  15. Seastacks buried beneath newly reported Lower Miocene sandstone, northern Santa Barbara County, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fritsche, A.E.; Hanna, F.M.

    1985-04-01

    Three large, isolated exposures of a light-gray, coarse-grained, thick-bedded sandstone unit occur in the northern San Rafael Mountains of Santa Barbara County, California. These rocks are moderately fossiliferous and contain Vertipecten bowersi, Amussiopecten vanvlecki, Aequipecten andersoni, Otrea howelli, shark teeth, whale bones, and regular echinoid spines. The fossils indicate that the sandstone unit, although previously reported as upper(.) Miocene, correlates best with the lower Miocene Vaqueros Formation. This unit was deposited in angular unconformity on a Cretaceous, greenish-gray turbidite sequence of interbedded sandstone and shale, and onlaps the unconformity erosion surface from west to east, the unit being thicker inmore » the west and older at its base. The underlying Cretaceous sandstone beds are well indurated, and during the eastward transgression of the early Miocene sea, they resisted wave erosion and stood as seastacks offshore of the advancing coastline, thus creating a very irregular topographic surface upon which the Vaqueros Formation was deposited. Some seastacks were as much as 4 m tall, as indicated by inliers of Cretaceous rock surrounded by 4-m thick sections of the Vaqueros Formation.« less

  16. Miocene climate as recorded on slope carbonates : examples from Malta (Central Mediterranean) and Northeastern Australia (Marion Plateau, ODP LEG 194)

    NASA Astrophysics Data System (ADS)

    John, Cédric Michaël

    2003-08-01

    This study investigated the slope carbonates of two Miocene carbonate systems: the Maltese Islands (in the Central Mediterranean) and the Marion Plateau (Northeastern Australia, drilled during ODP Leg 194). The aim of the study was to trace the impact of the Miocene cooling steps (events Mi1-Mi6) in these carbonate systems, especially the Mi3 event, which took place around 13.6 Ma and deeply impacted the marine oxygen isotope record. This event also profoundly impacted oceanographic and climatic patterns, eventually leading to the establishment of the modern ice-house world. In particular, East Antarctica became ice covered at that period. The rational behind the present study was to investigate the impact that this event had on shallow water systems in order to complement the deep-sea record and hence acquire a more global perspective on Miocene climate change. The Maltese Islands were investigated for trends in bulk-rock carbon and oxygen isotopes, as well as bulk-rock mineralogy, clay minerals analysis and organic geochemisty. Results showed that the mid Miocene cooling event deeply impacted sedimentation at that location by changing sedimentation from carbonate to clay-rich sediments. Moreover, it was discovered that each phase of Antarctic glaciation, not just the major mid Miocene event, resulted in higher terrigenous input on Malta. Mass accumulation rates revealed that this was linked to increased runoff during periods when Antarctica was glaciated, and thus that the carbonate sediments were “diluted” by clay-rich sediments. The model subsequently developed to explain this implies feedback from Antarctic glaciations creating cold, dense air masses that push the ITCZ Northward, thus increasing precipitation on the North African subcontinent. Increased precipitation (or stronger African monsoon) accelerated continental weathering and runoff, thus bringing more terrigenous sediment to the paleo-location of the slope sediments of Malta. Spectral

  17. A new Middle Miocene selachian assemblage (Chondrichthyes, Elasmobranchii) from the Central Paratethys (Nyirád, Hungary): implications for temporal turnover and biogeography

    NASA Astrophysics Data System (ADS)

    Szabó, Márton; Kocsis, László

    2016-12-01

    A new Middle Miocene (Langhian - early Serravallian) assemblage with shark and ray teeth from Nyirád (Hungary, Transdanubia, Veszprém County) consists of nine families, with 15 different species. The assemblage shares many common genera with other Middle Miocene assemblages in the Paratethys (Notorynchus, Carcharias, Otodus, Cosmopolitodus, Hemipristis, Galeocerdo, Carcharhinus, and Aetobatus), and reflects a subtropical climate and a close connection with the Mediterranean Sea. However, a detailed faunal compilation of Miocene selachians reveals that several taxa that were still present in the Mediterranean or lived in the Paratethys during the Lower Miocene disappeared or became very rare by the Middle Miocene in the Central Paratethys (e.g., Isistius, Centrophorus, Mitsukurina, Carcharoides, Parotodus, Alopias). The taxa that went locally extinct in the Paratethys are mainly represented by deep-water or pelagic forms. Their disappearance is most probably related to the gradual separation of the Paratethys from the Mediterranean. The common presence of some large, rather pelagic sharks (e.g., Otodus, Cosmopolitodus) in the Central Paratethys during the Middle Miocene is explained here by the widespread occurrence of their potential prey represented by marine mammals (e.g., whales and dolphins).

  18. Dental remains of cebid platyrrhines from the earliest late Miocene of Western Amazonia, Peru: Macroevolutionary implications on the extant capuchin and marmoset lineages.

    PubMed

    Marivaux, Laurent; Adnet, Sylvain; Altamirano-Sierra, Ali J; Pujos, François; Ramdarshan, Anusha; Salas-Gismondi, Rodolfo; Tejada-Lara, Julia V; Antoine, Pierre-Olivier

    2016-11-01

    Undoubted fossil Cebidae have so far been primarily documented from the late middle Miocene of Colombia, the late Miocene of Brazilian Amazonia, the early Miocene of Peruvian Amazonia, and very recently from the earliest Miocene of Panama. The evolutionary history of cebids is far from being well-documented, with notably a complete blank in the record of callitrichine stem lineages until and after the late middle Miocene (Laventan SALMA). Further documenting their evolutionary history is therefore of primary importance. Recent field efforts in Peruvian Amazonia (Contamana area, Loreto Department) have allowed for the discovery of an early late Miocene (ca. 11 Ma; Mayoan SALMA) fossil primate-bearing locality (CTA-43; Pebas Formation). In this study, we analyze the primate material, which consists of five isolated teeth documenting two distinct Cebidae: Cebus sp., a medium-sized capuchin (Cebinae), and Cebuella sp., a tiny marmoset (Callitrichinae). Although limited, this new fossil material of platyrrhines contributes to documenting the post-Laventan evolutionary history of cebids, and besides testifies to the earliest occurrences of the modern Cebuella and Cebus/Sapajus lineages in the Neotropics. Regarding the evolutionary history of callitrichine marmosets, the discovery of an 11 Ma-old fossil representative of the modern Cebuella pushes back by at least 6 Ma the age of the Mico/Cebuella divergence currently proposed by molecular biologists (i.e., ca. 4.5 Ma). This also extends back to > 11 Ma BP the divergence between Callithrix and the common ancestor (CA) of Mico/Cebuella, as well as the divergence between the CA of marmosets and Callimico (Goeldi's callitrichine). This discovery from Peruvian Amazonia implies a deep evolutionary root of the Cebuella lineage in the northwestern part of South America (the modern western Amazon basin), slightly before the recession of the Pebas mega-wetland system (PMWS), ca. 10.5 Ma, and well-before the subsequent

  19. Updated chronology for the Miocene hominoid radiation in Western Eurasia

    PubMed Central

    Casanovas-Vilar, Isaac; Alba, David M.; Garcés, Miguel; Robles, Josep M.; Moyà-Solà, Salvador

    2011-01-01

    Extant apes (Primates: Hominoidea) are the relics of a group that was much more diverse in the past. They originated in Africa around the Oligocene/Miocene boundary, but by the beginning of the Middle Miocene they expanded their range into Eurasia, where they experienced a far-reaching evolutionary radiation. A Eurasian origin of the great ape and human clade (Hominidae) has been favored by several authors, but the assessment of this hypothesis has been hampered by the lack of accurate datings for many Western Eurasian hominoids. Here we provide an updated chronology that incorporates recently discovered Iberian taxa and further reevaluates the age of many previously known sites on the basis of local biostratigraphic scales and magnetostratigraphic data. Our results show that identifiable Eurasian kenyapithecins (Griphopithecus and Kenyapithecus) are much younger than previously thought (ca. 14 Ma instead of 16 Ma), which casts serious doubts on the attribution of the hominoid tooth from Engelswies (16.3–16.5 Ma) to cf. Griphopithecus. This evidence is further consistent with an alternative scenario, according to which the Eurasian pongines and African hominines might have independently evolved in their respective continents from similar kenyapithecin ancestors, resulting from an early Middle Miocene intercontinental range extension followed by vicariance. This hypothesis, which would imply an independent origin of orthogrady in pongines and hominines, deserves further testing by accurately inferring the phylogenetic position of European dryopithecins, which might be stem pongines rather than stem hominines. PMID:21436034

  20. Connectivity controls on the late Miocene eastern Mediterranean fish fauna

    NASA Astrophysics Data System (ADS)

    Agiadi, Konstantina; Antonarakou, Assimina; Kontakiotis, George; Kafousia, Nefeli; Moissette, Pierre; Cornée, Jean-Jacques; Manoutsoglou, Emmanouil; Karakitsios, Vasileios

    2017-04-01

    Environmental change significantly affects the production of fish resources and their dependent societies. The paleontological record offers unique insight into the effects of long-term paleoenvironmental variability on the fish species' distributions and abundances. In the present study, we investigate the late Miocene (7.5-6.5 Ma) fish assemblages of the Potamida section in western Crete (eastern Mediterranean). The determined fish taxa are examined in a paleobiogeographic context, with regard to their geographic and stratigraphic distribution from the early Miocene ( 13 Ma) through today. In addition, present-day ecological data are used to reconstruct the paleoenvironmental conditions in the study area. Planktonic foraminifer biostratigraphy significantly improves the earlier dating of the studied sequence. The late Miocene fish fauna of Potamida includes 35 taxa (seven in open nomenclature) from 13 teleost families. The eastern Mediterranean biostratigraphic and geographic distribution of 32 taxa is significantly expanded into the Tortonian, whereas 13 species are recorded for the first time from the Messinian. Four stages are distinguished in the area's paleoenvironmental evolution. (1) The Potamida area was an open marine environment with depths exceeding 150 m between 7.5-7.45 Ma. (2) Between 7.45-7.36 Ma, the results suggest depths between 300-400 m. (3) The depositional depth increases between 7.36-7.28 Ma to 400-550 m. (4) Later on, approximately between 6.8-6.6 Ma, the depth is again estimated around 100-150 m.

  1. Mineralogy, early marine diagenesis, and the chemistry of shallow-water carbonate sediments

    NASA Astrophysics Data System (ADS)

    Higgins, J. A.; Blättler, C. L.; Lundstrom, E. A.; Santiago-Ramos, D. P.; Akhtar, A. A.; Crüger Ahm, A.-S.; Bialik, O.; Holmden, C.; Bradbury, H.; Murray, S. T.; Swart, P. K.

    2018-01-01

    Shallow-water carbonate sediments constitute the bulk of sedimentary carbonates in the geologic record and are widely used archives of Earth's chemical and climatic history. One of the main limitations in interpreting the geochemistry of ancient carbonate sediments is the potential for post-depositional diagenetic alteration. In this study, we use paired measurements of calcium (44Ca/40Ca or δ44Ca) and magnesium (26Mg/24Mg or δ26Mg) isotope ratios in sedimentary carbonates and associated pore-fluids as a tool to understand the mineralogical and diagenetic history of Neogene shallow-water carbonate sediments from the Bahamas and southwest Australia. We find that the Ca and Mg isotopic composition of bulk carbonate sediments at these sites exhibits systematic stratigraphic variability that is related to both mineralogy and early marine diagenesis. The observed variability in bulk sediment Ca isotopes is best explained by changes in the extent and style of early marine diagenesis from one where the composition of the diagenetic carbonate mineral is determined by the chemistry of the fluid (fluid-buffered) to one where the composition of the diagenetic carbonate mineral is determined by the chemistry of the precursor sediment (sediment-buffered). Our results indicate that this process, together with variations in carbonate mineralogy (aragonite, calcite, and dolomite), plays a fundamental and underappreciated role in determining the regional and global stratigraphic expressions of geochemical tracers (δ13C, δ18O, major, minor, and trace elements) in shallow-water carbonate sediments in the geologic record. Our results also provide evidence that a large shallow-water carbonate sink that is enriched in 44Ca can explain the mismatch between the δ44/40Ca value of rivers and deep-sea carbonate sediments and call into question the hypothesis that the δ44/40Ca value of seawater depends on the mineralogy of primary carbonate precipitations (e.g. 'aragonite seas' and

  2. The cosmic native iron in Upper Jurassic to Miocene deep-sea deposits of the western North Atlantic

    NASA Astrophysics Data System (ADS)

    Murdmaa, Ivar; Pechersky, Diamar; Nurgaliev, Danis; Gilmanova, Di; Sloistov, Sergey

    2014-05-01

    Thermomagnetic analysis of 335 rock samples from DSDP sites 386, 387 (Leg 43) and 391 A, C (Leg 44) drilled in the western North Atlantic revealed distribution patterns of native Fe particles in Upper Jurassic to Miocene deep-sea deposits. Native iron occurs in deep-sea rocks as individual particles from tens of nm to 100 µm in size. The native Fe is identified throughout the sections recovered. Its concentration ranges from nx10-6% to 5x10-3%, but zero values persist to occur in each lithostratigraphic unit studied. The bimodal distribution of the native iron concentration with a zero mode is typical for the cosmic dust in sedimentary rocks, because of its slow flux to the Earth surface, as compared to sedimentation fluxes. Ni admixture in native Fe also demonstrates bimodal distribution with the zero mode (pure Fe) and a mode 5 - 6% that corresponds to average Ni content in the cosmic dust and meteorites. Concentration of native Fe does not depend on rock types and geological age. Relatively high mean native Fe concentrations (less zero values) occur in Lower Cretaceous laminated limestones (sites 387, 391) interpreted as contourites and in Oligocene volcaniclastic turbidites of the Bermuda Rise foot (Site 386), whereas minimum values are measured in Miocene mass flow deposits (Site 391). We suggest that concentration of native Fe increases in deposits of pulsating sedimentation (turbidites, laminated contourites) due to numerous short hiatuses and slow sedimentation events in between instantaneous turbidite or contourite deposition pulses. Extreme values possibly indicate cosmic dust flux anomalies. The study was partially supported by RFBR, research project No. 14-05-00744a.

  3. Miocene honey bees from the Randeck Maar of southwestern Germany (Hymenoptera, Apidae)

    PubMed Central

    Kotthoff, Ulrich; Wappler, Torsten; Engel, Michael S.

    2011-01-01

    Abstract The Miocene Randeck Maar (southwestern Germany) is one of the only sites with abundant material of fossil honey bees. The fauna has been the focus of much scrutiny by early authors who recognized multiple species or subspecies within the fauna. The history of work on the Randeck Maar is briefly reviewed and these fossils placed into context with other Tertiary and living species of the genus Apis Linnaeus (Apinae: Apini). Previously unrecorded specimens from Randeck Maar were compared with earlier series in an attempt to evaluate the observed variation. A morphometric analysis of forewing venation angles across representative Recent and Tertiary species of Apis as well as various non-Apini controls was undertaken to evaluate the distribution of variation in fossil honey bees. The resulting dendrogram shows considerable variation concerning the wing venation of Miocene Apini, but intergradation of other morphological characters reveals no clear pattern of separate species. This suggests that a single, highly variable species was present in Europe during the Miocene. The pattern also supports the notion that the multiple species and subspecies proposed by earlier authors for the Randeck Maar honey bee fauna are not valid, and all are accordingly recognized as Apis armbrusteri Zeuner. PMID:21594072

  4. Stepwise onset of the Icehouse world and its impact on Oligo-Miocene Central Asian mammals.

    PubMed

    Harzhauser, Mathias; Daxner-Höck, Gudrun; López-Guerrero, Paloma; Maridet, Olivier; Oliver, Adriana; Piller, Werner E; Richoz, Sylvain; Erbajeva, Margarita A; Neubauer, Thomas A; Göhlich, Ursula B

    2016-11-29

    Central Asia is a key area to study the impact of Cenozoic climate cooling on continental ecosystems. One of the best places to search for rather continuous paleontological records is the Valley of Lakes in Mongolia with its outstandingly fossil-rich Oligocene and Miocene terrestrial sediments. Here, we investigate the response by mammal communities during the early stage of Earth's icehouse climate in Central Asia. Based on statistical analyses of occurrence and abundance data of 18608 specimens representing 175 mammal species and geochemical (carbon isotopes) and geophysical (magnetic susceptibility) data we link shifts in diversities with major climatic variations. Our data document for the first time that the post-Eocene aridification of Central Asia happened in several steps, was interrupted by short episodes of increased precipitation, and was not a gradual process. We show that the timing of the major turnovers in Oligocene mammal communities is tightly linked with global climate events rather than slow tectonics processes. The most severe decline of up 48% of total diversity is related to aridification during the maximum of the Late Oligocene Warming at 25 Ma. Its magnitude was distinctly larger than the community turnover linked to the mid-Oligocene Glacial Maximum.

  5. Steps in the intensification of Benguela upwelling over the Walvis Ridge during Miocene and Pliocene

    NASA Astrophysics Data System (ADS)

    Hoetzel, Sebastian; Dupont, Lydie M.; Marret, Fabienne; Jung, Gerlinde; Wefer, Gerold

    2017-01-01

    Upwelling is a significant part of the ocean circulation controlling largely the transport of nutrient-rich cold waters to the surface and therefore influencing ocean productivity and global climate. The Benguela upwelling system (BUS) is one of the major upwelling areas in the world. Previous reconstructions of the BUS mainly focused on the onset and intensification in southern and central parts, but changes of the northern part have been rarely investigated in detail. Using the Late Miocene to Pliocene organic-walled dinoflagellate cyst record of ODP Site 1081, we reconstruct and discuss the early upwelling history over the Walvis Ridge with a special focus on the movement of the Angola-Benguela Front (ABF). We suggest that during the Late Miocene the Angola Current flowed southwards over the Walvis Ridge more frequently than today because the ABF was probably located further south as a result of a weaker meridional temperature gradient. A possible strengthening of the meridional gradient during the latest Miocene to early Pliocene in combination with uplift of south-western Africa intensified the upwelling along the coast and increased the upwelling's filaments over the Walvis Ridge. An intermediate period from 6.2 to 5.5 Ma is shown by the dominance of Habibacysta tectata, cysts of a cool-tolerant dinoflagellate known from the northern Atlantic, indicating changing oceanic conditions contemporaneous with the Messinian Salinity Crisis. From 4.3 Ma on, the upwelling signal got stronger again and waters were well-mixed and nutrient-rich. Our results indicate a northward migration of the ABF as early as 7 Ma and the initial stepwise intensification of the BUS.

  6. Testing lagoonal sediments with early life stages of the copepod Acartia tonsa (Dana): An approach to assess sediment toxicity in the Venice Lagoon.

    PubMed

    Picone, Marco; Bergamin, Martina; Delaney, Eugenia; Ghirardini, Annamaria Volpi; Kusk, Kresten Ole

    2018-01-01

    The early-life stages of development of the calanoid copepod Acartia tonsa from egg to copepodite I is proposed as an endpoint for assessing sediment toxicity by exposing newly released eggs directly onto the sediment-water interface. A preliminary study of 5 sediment samples collected in the lagoon of Venice highlighted that the larval development rate (LDR) and the early-life stages (ELS) mortality endpoints with A. tonsa are more sensitive than the standard amphipod mortality test; moreover LDR resulted in a more reliable endpoint than ELS mortality, due to the interference of the sediment with the recovery of unhatched eggs and dead larvae. The LDR data collected in a definitive study of 48 sediment samples from the Venice Lagoon has been analysed together with the preliminary data to evaluate the statistical performances of the bioassay (among replicate variance and minimum significant difference between samples and control) and to investigate the possible correlation with sediment chemistry and physical properties. The results showed that statistical performances of the LDR test with A. tonsa correspond with the outcomes of other tests applied to the sediment-water interface (Strongylocentrotus purpuratus embryotoxicity test), sediments (Neanthes arenaceodentata survival and growth test) and porewater (S. purpuratus); the LDR endpoint did, however, show a slightly higher variance as compared with other tests used in the Lagoon of Venice, such as 10-d amphipod lethality test and larval development with sea urchin and bivalves embryos. Sediment toxicity data highlighted the high sensitivity and the clear ability of the larval development to discriminate among sediments characterized by different levels of contamination. The data of the definitive study evidenced that inhibition of the larval development was not affected by grain-size and the organic carbon content of the sediment; in contrast, a strong correlation between inhibition of the larval development

  7. Depositional environment and sedimentary of the basinal sediments in the Eibiswalder Bucht (Radl Formation and Lower Eibiswald Beds), Miocene Western Styrian Basin, Austria

    NASA Astrophysics Data System (ADS)

    Stingl, K.

    1994-12-01

    The Eibiswald Bucht is a small subbasin of the Western Styrian Basin exposing sediments of Lower Miocene age. In the past the entire sequence exposed in the Eibiswalder Bucht has been interpreted as being of fluvial/lacustrine origin; here, results are presented of detailed sedimentological investigations that lead to a revision of this concept. The lowermost siliciclastic sedimentary unit of the Eibiswalder Bucht sequence is the Radl Formation. It is overlain by the Eibiswald Beds, which are subdivided into the Lower, Middle and Upper Eibiswald Beds. The Radl Formation and the Lower Eibiswald Beds are interpreted as a fan delta complex deposited along NNW-SSE striking faults. Based on the sedimentary facies this fan delta can be subdivided into a subaerial alluvial fan facies group, a proximal delta facies group and a distal delta/prodelta facies group. The Radl Formation comprises the alluvial fan and proximal delta facies groups, the Lower Eibiswald Beds the distal delta/prodelta facies group. The alluvial fan and the proximal delta consist of diverse deposits of gravelly flows. The distal delta/prodelta consists of wave-reworked, bioturbated, low density turbidites intercalated with minor gravelly mass flows. The prodelta can be regarded as as the basin facies of the small and shallow Eibiswalder Bucht, where marine conditions prevailed. The basin was probably in part connected with the Eastern Styrian Basin, the contemporary depositional environment of the Styrian Schlier (mainly turbiditic marine offshore sediments in the Eastern Styrian Basin). Analysis of the clast composition, in conjunction with the paleotransport direction of the coarse delta mass flows of the Radl Formation, shows that the source rocks were exclusively crystalline rocks ranging from greenschists to eclogites.

  8. A mid-Permian chert event: widespread deposition of biogenic siliceous sediments in coastal, island arc and oceanic basins

    USGS Publications Warehouse

    Murchey, B.L.; Jones, D.L.

    1992-01-01

    Radiolarian and conodont of Permian siliceous rocks from twenty-three areas in teh the circum-Pacific and Mediterranean regions reveal a widespread Permian Chert Event during the middle Leonardian to Wordian. Radiolarian- and (or) sponge spicule-rich siliceous sediments accumulated beneath high productivity zones in coastal, island arc and oceanic basins. Most of these deposits now crop out in fault-bounded accreted terranes. Biogenic siliceous sediments did not accumulate in terranes lying beneath infertile waters including the marine sequences in terranes of northern and central Alaska. The Permian Chert Event is coeval with major phosphorite deposition along the western margin of Pangea (Phosphoria Formation and related deposits). A well-known analogue for this event is middle Miocene deposition of biogenic siliceous sediments beneath high productivity zones in many parts of the Pacific and concurrent deposition of phosphatic as well as siliceous sediments in basins along the coast of California. Interrelated factors associated with both the Miocene and Permian depositional events include plate reorientations, small sea-level rises and cool polar waters. ?? 1992.

  9. Characterizing a complex aquifer system using geophysics, hydrodynamics and geochemistry: A new distribution of Miocene aquifers in the Zéramdine and Mahdia-Jébéniana blocks (east-central Tunisia)

    NASA Astrophysics Data System (ADS)

    Lachaal, Fethi; Bédir, Mourad; Tarhouni, Jamila; Gacha, Ayadi Ben; Leduc, Christian

    2011-06-01

    The Zéramdine and Mahdia-Jébéniana blocks are located in the Sahel region in east-central Tunisia. Active tectonics have divided the region into numerous sub-units, as result of multiple phases of distension and compression. The Miocene fluvio-deltaic sediment sandy layers have aquiferous capacities but their hydraulic properties are still unknown, due to the lack of investigation wells. This study proposes a new description of the regional hydrogeology of Miocene deposits. Seismic-reflection and wireline logging of petroleum and water wells were used to understand the structure and the geometry of the Miocene reservoirs. The groundwater flow and its relationship to the sedimentary and tectonic context were then identified by studying piezometry and hydrochemistry. Two Miocene deep aquifer systems were identified: (1) Zéramdine-Béni Hassen to the north and (2) Jébéniana-Ksour Essef to the south. These aquifers are separated by the Mahdia graben. Other major tectonic structures, such as the Zéramdine fault corridor, the Moknine graben, and the El-Jem half-graben represent lateral boundaries for these aquifers. Other deeper sandy and clayey-sandy reservoirs were also identified in the area. Their repartition, thickness and depth vary from one block to other. Hydrodynamics of the deep aquifers seems to be controlled by geological structures. Two independent compartments were identified: in the northern block groundwater flows from West to East and from Northwest to Southeast, while in the southern block it flows from Northwest to Southeast. Geochemical facies are of two types: Na-Ca-Cl-SO 4 for the Zéramdine-Béni Hassen deep aquifer and Na-Cl for the Jébéniana-Ksour Essef deep aquifer. The hydrodynamic and geochemical results confirm the sharing of the Miocene sediments into two aquifers.

  10. Badenian (Middle Miocene) echinoids and starfish from western Ukraine, and their biogeographic and stratigraphic significance

    NASA Astrophysics Data System (ADS)

    Radwański, Andrzej; Górka, Marcin; Wysocka, Anna

    2014-06-01

    Echinoderms from the Badenian (Middle Miocene) of the Fore-Carpathian Basin of western Ukraine are facies restricted. The Mykolaiv Beds, stratigraphically older, yielded the starfish Astropecten forbesi (complete skeletons), two genera of sand dollars (Parascutella, Parmulechinus), and numerous other echinoids of the genera Psammechinus , Echinocyamus, Spatangus, Hemipatagus, Echinocardium, Clypeaster, Echinolampas, and Conolampas. The stratigraphically younger, calcareous Ternopil Beds yielded Eucidaris (complete coronae, isolated spines), Arbacina , Brissus, and Rhabdobrissus. Sixteen species of echinoids are distinguished and/or commented. A new brissid, Rhabdobrissus tarnopolensis sp. nov., is established. A mass occurrence of some species (Psammechinus dubius and Hemipatagus ocellatus) contrasts with that of mass aggregations (sand dollars and Echinocardium leopolitanum) by dynamic events in selected layers of proximal tempestites. Of special note is the occurrence of very small specimens, interpreted as juveniles (`babies') having been swept out of their restricted biotopes (`nurseries'). Some species hitherto regarded as of Early Miocene age, and the problem of their persistence beyond the Fore-Carpathian Basin and/or migration into that basin during the Middle Miocene transgression are discussed.

  11. Evidence for a dynamic East Antarctic ice sheet during the mid-Miocene climate transition

    NASA Astrophysics Data System (ADS)

    Pierce, Elizabeth L.; van de Flierdt, Tina; Williams, Trevor; Hemming, Sidney R.; Cook, Carys P.; Passchier, Sandra

    2017-11-01

    The East Antarctic ice sheet underwent a major expansion during the Mid-Miocene Climate Transition, around 14 Ma, lowering sea level by ∼60 m. However, direct or indirect evidence of where changes in the ice sheet occurred is limited. Here we present new insights on timing and locations of ice sheet change from two drill sites offshore East Antarctica. IODP Site U1356, Wilkes Land, and ODP Site 1165, Prydz Bay are located adjacent to two major ice drainage areas, the Wilkes Subglacial Basin and the Lambert Graben. Ice-rafted detritus (IRD), including dropstones, was deposited in concentrations far exceeding those known in the rest of the Miocene succession at both sites between 14.1 and 13.8 Ma, indicating that large amounts of IRD-bearing icebergs were calved from independent drainage basins during this relatively short interval. At Site U1356, the IRD was delivered in distinct pulses, suggesting that the overall ice advance was punctuated by short periods of ice retreat in the Wilkes Subglacial Basin. Provenance analysis of the mid-Miocene IRD and fine-grained sediments provides additional insights on the movement of the ice margin and subglacial geology. At Site U1356, the dominant 40Ar/39Ar thermochronological age of the ice-rafted hornblende grains is 1400-1550 Ma, differing from the majority of recent IRD in the area, from which we infer an inland source area of this thermochronological age extending along the eastern part of the Adélie Craton, which forms the western side of the Wilkes Subglacial Basin. Neodymium isotopic compositions from the terrigenous fine fraction at Site U1356 imply that the ice margin periodically expanded from high ground well into the Wilkes Subglacial Basin during periods of MMCT ice growth. At Site 1165, MMCT pebble-sized IRD are sourced from both the local Lambert Graben and the distant Aurora Subglacial Basin drainage area. Together, the occurrence and provenance of the IRD and glacially-eroded sediment at these two marine

  12. Rapid middle Miocene extension and unroofing of the southern Ruby Mountains, Nevada

    USGS Publications Warehouse

    Colgan, Joseph P.; Howard, Keith A.; Fleck, Robert J.; Wooden, Joseph L.

    2010-01-01

    Paleozoic rocks in the northern Ruby Mountains were metamorphosed during Mesozoic crustal shortening and Cenozoic magmatism, but equivalent strata in the southern Ruby Mountains were never buried deeper than stratigraphic depths prior to exhumation in the footwall of a west dipping brittle normal fault. In the southern Ruby Mountains, Miocene sedimentary rocks in the hanging wall of this fault date from 15.2 to 11.6 Ma and contain abundant detritus from the Paleozoic section. Apatite fission track and (U-Th)/He samples of the Eocene Harrison Pass pluton record rapid cooling that peaked ca. 17–15 Ma, while apatite fission track data from Jurassic plutons east and west of the southern Ruby Mountains indicate near-surface temperatures (<60°C) since the Cretaceous. We interpret these data to record rapid unroofing of the southern Ruby Mountains during slip on the west dipping brittle detachment between 17–16 and 10–12 Ma, followed by minor high-angle faulting. We interpret published Oligocene to early Miocene K-Ar biotite and zircon fission track dates from the Harrison Pass pluton to be partially reset rather than to directly record fault slip. Our new data, together with published data on the distribution and composition of Miocene basin fill, suggest that rapid middle Miocene slip took place on the west dipping brittle detachment that bounds the Ruby Mountains and East Humboldt Range for 150 km along strike. This fault was thus active during a period of rapid extension (ca. 17–15 to 12–10 Ma) documented widely across the northern Basin and Range Province.

  13. Remarkable preservation of terpenoids and record of volatile signalling in plant-animal interactions from Miocene amber.

    PubMed

    Dutta, Suryendu; Mehrotra, Rakesh C; Paul, Swagata; Tiwari, R P; Bhattacharya, Sharmila; Srivastava, Gaurav; Ralte, V Z; Zoramthara, C

    2017-09-08

    Plants produce and release a large array of volatile organic compounds that play many ecological functions. These volatile plant metabolites serve as pollinator attractants, herbivore and pathogen repellents and protect plants from abiotic stresses. To date, the geological evolution of these organic compounds remains unknown. The preservation potential of these metabolites in the fossil record is very poor due to their low boiling points. Here we report a series of volatile sesquiterpenoids, including δ-elemene, α-copaene, β-elemene, β-caryophyllene, α-humulene, germacrene D, δ-cadiene and spathunenol, from early Miocene (~17 million year) amber from eastern India. The survival of these unaltered bioterpenoids can be attributed to the existence of extraordinary taphonomic conditions conducive to the preservation of volatile biomolecules through deep time. Furthermore, the occurrence of these volatiles in the early Miocene amber suggests that the plants from this period had evolved metabolic pathways to synthesize these organic molecules to play an active role in forest ecology, especially in plant-animal interactions.

  14. The Miocene Nullarbor Limestone, southern Australia; deposition on a vast subtropical epeiric platform

    NASA Astrophysics Data System (ADS)

    O'Connell, Laura G.; James, Noel P.; Bone, Yvonne

    2012-05-01

    The early to middle Miocene Nullarbor Limestone forms the vast, karsted Nullarbor Plain in southern Australia, and may be the most extensive Miocene carbonate deposit described to date. These carbonates were deposited at southern paleolatitudes of ~ 40°S and are interpreted to be subtropical to warm-temperate in character because of the presence of certain genera of tropical coralline algae (rhodoliths and articulated types), large benthic foraminifera, tropical molluscs, zooxanthellate corals, and micrite envelopes. Facies are dominated by skeletal grainstones and floatstones that accumulated in three interpreted paleoenvironments: (1) seagrass banks (upper photic zone), (2) rhodolith pavements (lower photic zone), and (3) open seafloors (lower photic to subphotic zone). A decrease of tropical components from west to east across the platform implies that warm oceanic currents (possibly related to a proto-Leeuwin Current), as well as a period of warm climate (Miocene Climatic Optimum), resulted in subtropical deposition at southern latitudes. The Southern Ocean extended inboard ~ 450 km from the shelf edge during Nullarbor Limestone deposition, but interpreted paleodepths did not extend much below the base of the photic zone. A small slope angle (~ 0.02°) over a wide shelf (~ 300,000 km2) implies deposition on an epeiric platform or epeiric ramp. A Miocene barrier reef was likely coeval with Nullarbor Limestone deposition. Therefore, the inboard portion of the Nullarbor Limestone can be considered part of an extensive back-reef lagoon system on a rimmed epeiric platform, perhaps attaining a size similar to the modern Great Barrier Reef system.

  15. Rapid middle Miocene collapse of the Mesozoic orogenic plateau in north-central Nevada

    USGS Publications Warehouse

    Colgan, Joseph P.; Henry, Christopher D.

    2009-01-01

    The modern Sierra Nevada and Great Basin were likely the site of a high-elevation orogenic plateau well into Cenozoic time, supported by crust thickened during Mesozoic shortening. Although crustal thickening at this scale can lead to extension, the relationship between Mesozoic shortening and subsequent formation of the Basin and Range is difficult to unravel because it is unclear which of the many documented or interpreted extensional episodes was the most significant for net widening and crustal thinning. To address this problem, we integrate geologic and geochronologic data that bear on the timing and magnitude of Cenozoic extension along an ???200km east-west transect south of Winnemucca, Battle Mountain, and Elko, Nevada. Pre-Cenozoic rocks in this region record east-west Palaeozoic and Mesozoic compression that continued into the Cretaceous. Little to no tectonism and no deposition followed until intense magmatism began in the Eocene. Eocene and Oligocene ash-flow tuffs flowed as much as 200km down palaeovalleys cut as deeply as 1.5km into underlying Palaeozoic and Mesozoic rocks in a low-relief landscape. Eocene sedimentation was otherwise limited to shallow lacustrine basins in the Elko area; extensive, thick clastic deposits are absent. Minor surface extension related to magmatism locally accompanied intense Eocene magmatism, but external drainage and little or no surface deformation apparently persisted regionally until about 16-17Ma. Major upper crustal extension began across the region ca. 16-17Ma, as determined by cross-cutting relationships, low-temperature thermochronology, and widespread deposition of clastic basin fill. Middle Miocene extension was partitioned into high-strain (50-100%) domains separated by largely unextended crustal blocks, and ended by 10-12Ma. Bimodal volcanic rocks that erupted during middle Miocene extension are present across most of the study area, but are volumetrically minor outside the northern Nevada rift. The modern

  16. Miocene reef carbonates of Mariana Islands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siegrist, H.G. Jr.

    1988-01-01

    Miocene carbonates in the southern Mariana Islands are impressive for their lithologic diversity, thicknesses (over 250 m), and geographic extend (>20% combined outcrop coverage over four major high islands: Guam, Rota, Tinian and Saipan). Sections are dominated either by lagoonal algal-foraminiferal wackestones and mudstones with locally abundant high-energy shelly-skeletal facies, or by rubbly to muddy, fore-reef-to-bank deposits of packstones and grainstones with highly diverse and variable biogenic clasts. Fresh to deeply weathered volcaniclastic material may comprise at least 80% of some high-energy fore-reef facies, whereas lagoonal and bank deposits usually contain less than 0.5% terrigenous material. Surprisingly, the Miocene inmore » the Marianas lacks almost completely any reef-core facies. Several poorly developed coral-rich mounds on Saipan and localized laminated red algal buildups on Guam appear to constitute the extant reef-wall facies in the Miocene. The lack of buildups may be a matter of differential survival; it may result from headland erosion and benching associated with emergency of narrow reef tracts as has been postulated by others for south Guam. Radiometric age dating of these reef carbonates has proven unsuccessful because pervasive diagenesis has transformed the entire Miocene section into low-magnesium calcite with minor and occasional dolomite. Freshwater phreatic diagenesis accounts for the principal porosity variation and trace element distribution.« less

  17. Tectono-sedimentary constraints to the Oligocene-to-Miocene evolution of the Peloritani thrust belt (NE Sicily)

    NASA Astrophysics Data System (ADS)

    Giunta, G.; Nigro, F.

    1999-12-01

    The Peloritani thrust belt belongs to the southern sector of the Calabrian Arc and is formed by a set of south-verging tectonic units, including crystalline basement and sedimentary cover (from the top: Aspromonte U.; Mela U.; Mandanici U.; Fondachelli U.; Longi-Taormina U.), piled up starting from Late Oligocene. At least two main terrigenous clastic formations lie with complicated relationships on top of the previous units: the Frazzanò Fm (Oligocene) and the Stilo-Capo d'Orlando Fm (Late Oligocene?-Early Miocene), as syn-to-post-tectonic deposits. These clastic deposits have different characteristics, in space and time, representing or flysch-like sequences involved in several thrust events (Frazzanò Fm) or molassic-like sequences (Stilo-Capo d'Orlando Fm), which unconformably overlie the tectonic units. In the present paper we describe a kinematic model of the progressive foreland migration of the Peloritani thrust belt, starting from Oligocene, carrying piggy-back basins and incorporating foredeep deposits, recognised in the Frazzanò-Stilo-Capo d'Orlando terrigenous successions. In general, the facies and structural observations on the overall Oligo-Miocene clastic sequences, outcropping in the Western Peloritani Mts, indicate: (a) the distal character of the Frazzanò Fm; (b) a complex group of terrigenous facies of the Stilo-Capo d'Orlando Fm, with lateral-to-vertical organisation, characterised by a distal-to-proximal-to-distal facies trend; (c) facies analogies of the basal portions of the Stilo-Capo d'Orlando Fm with the Frazzanò Fm; (d) the involvement of the Frazzanò Fm in lowermost and more external thrusting, and of the basal (Late Oligocene?) distal Stilo-Capo d'Orlando facies in the higher and inner thrusting during the early stages of deformation; (e) the involvement of the proximal Stilo-Capo d'Orlando facies in the tectonic edifice during the Early Miocene deformation; (f) the generally unconformable stratigraphical contacts of the higher

  18. Tectonic/climatic control on sediment provenance in the Cape Roberts Project core record (southern Victoria Land, Antarctica): A pulsing late Oligocene/early Miocene signal from south revealed by detrital thermochronology

    NASA Astrophysics Data System (ADS)

    Olivetti, V.; Balestrieri, M. L.; Rossetti, F.; Talarico, F. M.

    2012-04-01

    , three peaks are detected reflecting different bedrock provenance areas. Two peaks older than 40 Ma (P2 and P3) are compatible with thermochronological data from TAM bedrock that underwent a stepwise denudation in Cretaceous times. A Peak younger than 40 Ma (P1) has been detected occasionally, recording the signal of a source area exhumed during late Oligocene /early Miocene with a constant denudation rate of 0.4 mm/yr (constant lag-time up-section), but absent in the onshore portion of the proximal TAM. Indeed, when compared with AFT data from ANDRILL cores, the relatively young P1 ages, suggest that part of sediments in the Cape Robert Rift basin have a provenance from source regions probably located far away in the south (i.e. Skelton-Byrd glaciers region) where bedrock experienced compatible thermal histories. This provenance would imply glacial systems with main flow patterns from south to the north, therefore orthogonal to the orientation of present-day drainage. We thus infer that the post-Eocene glacial and erosional history of the TAM front was significantly controlled by the N-S-trending transtensional regime that affected the western Ross Sea margin during transition from orthogonal to oblique rifting in the region. The appearance and disappearance of P1 along the drill-cored stratigraphic succession seems to be linked to the oscillation in the extent of the ice sheet.

  19. Mineralogy, chemistry and biological contingents of an early-middle Miocene Antarctic paleosol and its relevance as a Martian analogue

    NASA Astrophysics Data System (ADS)

    Mahaney, William C.; Dohm, James M.; Schwartz, Stephane; Findling, Nathaniel; Hart, Kris M.; Conway, Susan J.; Allen, Christopher C. R.; Miyamoto, Hideaki; Fairén, Alberto G.

    2014-12-01

    Fossil mesofauna and bacteria recovered from a paleosol in a moraine situated adjacent to the inland ice, Antarctica, and dating to the earliest glacial event in the Antarctic Dry Valleys opens several questions. The most important relates to understanding of the mineralogy and chemistry of the weathered substrate habitat in which Coleoptera apparently thrived at some point in the Early/Middle Miocene and perhaps earlier. Here, Coleoptera remains are only located in one of six horizons in a paleosol formed in moraine deposited during the alpine glacial event (>15 Ma). A tendency for quartz to decrease upward in the section may be a detrital effect or a product of dissolution in the early stage of profile morphogenesis when climate was presumably milder and the depositing glacier of temperate type. Discontinuous distributions of smectite, laumontite, and hexahydrite may have provided nutrients and water to mesofauna and bacteria during the early stage of biotic colonization of the profile. Because the mesofauna were members of burrowing Coleoptera species, future work should assess the degree to which the organisms occupied other sites in the Dry Valleys in the past. Whereas there is no reasonable expectations of finding Coleoptera/insect remains on Mars, the chemistry and mineralogy of the paleosol is within a life expectancy window for the presence of microorganisms, principally bacteria and fungi. Thus, parameters discussed here within this Antarctic paleosol could provide an analogue to identifying similar fossil or life-bearing weathered regolith on Mars.

  20. Paleontology, paleoclimatology and paleoecology of the late middle miocene Musselshell Creek flora, Clearwater County Idaho. A preliminary study of a new fossil flora

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baghai, N.L.; Jorstad, R.B.

    The Musselshell Creek flora (12.0-10.5 Ma) of northern Idaho is used to reconstruct paleoclimatic and paleoecologic parameters of the Pacific Northwest during the late Middle Miocene. Other megafossil and microfossil floral records spanning 12.0-6.4 Ma are unknown from this region. The Musselshell Creek fossil flora, previously undescribed, is preserved in lacustrine clays and sediments that accumulated in a narrow valley surrounded by rugged terrain. Dominant taxa include dicotyledons and conifers. Most of the leaves are preserved as impressions or compressions. Some fossil leaves retained their original pigmentation, cellular anatomy, and organic constituents. Other fossils include excellent remains of pollen andmore » spores, dispersed leaf cuticle, pyritized wood, and disarticulated fish bones. A destructive statistical analysis of one block of sediment, approximately 30 cm x 45 cm (1.5 sq. ft) recovered 14 orders, 23 families, and 34 genera of spermatophyte plant fossils. These floral elements are compared with two other earlier Miocene floras which were similarly sampled. Common megafossil genera include Quercus, Zizy-phoides, Taxodium, Alnus, Castanea, Magnolia, Acer, Ex-bucklandia, Sequoia, Populus, and Betula. The rare occurrence of Ginkgo leaves is a first record of this taxon in the Idaho Miocene. Additional plant taxa, are represented by palynomorphs. Common pollen taxa are Pinus, Abies, Carya, Quercus, and Tilia. Most of the megafossil and microfossil flora assemblage is characteristic of a streambank to floodplain environment that existed in a warm to cool temperate climate similar to the modern Mid-Atlantic coast of the United States. 47 refs., 5 figs., 4 tabs.« less

  1. Middle and upper Miocene natural gas sands in onshore and offshore Alabama

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mink, R.M.; Mancini, E.A.; Bearden, B.L.

    1988-09-01

    Thirty Miocene natural gas fields have been established in onshore and offshore Alabama since the discovery of Miocene gas in this area in 1979. These fields have produced over 16 bcf of natural gas from the middle Miocene Amos sand (24 fields) and upper Miocene Luce (3 fields), Escambia (1 field), and Meyer (3 fields) sands. Production from the Amos transgressive sands represents over 92% of the cumulative shallow Miocene natural gas produced in onshore and offshore Alabama. In addition, over 127 bcf of natural gas has been produced from upper Miocene sands in the Chandeleur area. The productive Miocenemore » section in onshore and coastal Alabama is interpreted to present transgressive marine shelf and regressive shoreface sands. The middle Miocene Amos sand bars are the most productive reservoirs of natural gas in onshore and coastal Alabama, principally due to the porous and permeable nature of these transgressive sands and their stratigraphic relationship to the underlying basinal clays in this area. In offshore Alabama the upper Miocene sands become thicker and are generally more porous and permeable than their onshore equivalents. Because of their deeper burial depth in offshore Alabama, these upper Miocene sands are associated with marine clays that are thermally more mature. The combination of reservoir grade lithologies associated with moderately mature petroleum source rocks enhances the natural gas potential of the upper Miocene sands in offshore Alabama.« less

  2. Identification of two new species of Meliolinites associated with Lauraceae leaves from the middle Miocene of Fujian, China.

    PubMed

    Wang, Zixi; Sun, Bainian; Sun, Fankai; Wang, Jidong; Dong, Junling; Sun, Mingxuan; Du, Baoxia

    2017-01-01

    Several studies have investigated both the paleoclimate and the well-preserved fossil remains from the middle Miocene found in China's Fujian Province. This study describes two new species of Meliolinites, including their fungal hyphae, reproductive structures, and spores. The distribution of modern Meliolaceae indicates that they live in warm, humid, subtropical to tropical climates. Moreover, the fossil leaves and the epiphyllous fungal remains, indicate the prevalence of a warm, humid, subtropical to tropical climate in this area during the middle Miocene. In addition, it was observed that the surrounding cells of the fungi found on the uninfected host leaves were normal, whereas the infected host leaves themselves were abnormally dim. These features are a reflection of self-protection, and it can, therefore, be inferred that the host leaves were alive when they were infected. The present study used fossil angiosperm leaves with cuticles obtained from the Fotan sediments from Fujian to investigate not only the taxonomy of the fossils but also to interpret the paleoclimate and paleoecology.

  3. The development of miocene extensional and short-lived basin in the Andean broken foreland: The Conglomerado Los Patos, Northwestern Argentina

    NASA Astrophysics Data System (ADS)

    del Papa, Cecilia E.; Petrinovic, Ivan A.

    2017-01-01

    The Conglomerado Los Patos is a coarse-grained clastic unit that crops out irregularly in the San Antonio de los Cobres Valley in the Puna, Northwestern Argentina. It covers different units of the Cretaceous-Paleogene Salta Group by means of an angular unconformity and, in turn, is overlaid in angular unconformity by the Viscachayoc Ignimbrite (13 ± 0.3 Ma) or by late Miocene tuffs. Three lithofacies have been identified in the Corte Blanco locality; 1) Bouldery matrix-supported conglomerate (Gmm); 2) Clast-supported conglomerate (Gch) and 3) Imbricated clast-supported conglomerate (Gci). The stratigraphic pattern displays a general fining upward trend. The sedimentary facies association suggests gravitational flow processes and sedimentation in alluvial fan settings, from proximal to medial fan positions, together with a slope decrease upsection. Provenance studies reveal sediments sourced from Precambrian to Ordovician units located to the southwest, except for volcanic clasts in the Gmm facies that shows U/Pb age of 14.5 ± 0.5 Ma. This new age represents the maximum depositional age for the Conglomerado Los Patos, and it documents that deposition took place simultaneously during a period of increased tectonic and volcanic activity in the area. The structural analysis of the San Antonio de los Cobres Valley and the available thermochronological ages, indicate active N-S main thrusts and NW-SE transpressive and locally normal faults during the middle Miocene. In this context, we interpret the Conglomerado Los Patos to represent sedimentation in a small, extensional and short-lived basin associated with the compressional Andean setting.

  4. Oligo-Miocene foraminiferal record (Miogypsinidae, Lepidocyclinidae and Nummulitidae) from the Western Taurides (SW Turkey): Biometry and implications for the regional geology

    NASA Astrophysics Data System (ADS)

    Özcan, Ercan; Less, György; Báldi-Beke, Mária; Kollányi, Katalin; Acar, Ferhat

    2009-05-01

    The marine Oligo-Miocene units of western Taurides, deposited under different tectonic regimes (in Bey Dağları platform in foreland and coeval sequences in hinterland), were studied to establish a high-resolution biostratigraphic framework. Biometric study of the full spectrum of larger foraminifera in a regional scale allowed us correlating them with the shallow benthic zonation (SBZ) system introduced by [Cahuzac, B., Poignant, A., 1997. Essai de biozonation de l'Oligo-Miocène dans les bassins européens à l'aide des grands foraminifères néritiques. Bulletin de la Société géologique de France 168, 155-169], and to determine the ages of these sites on zonal precision for the first time. In correlating these assemblages to standard shallow benthic zones, planktonic data were also used whenever possible. Taxa, classified under the genera Nummulites, Miogypsina, Miolepidocyclina, Nephrolepidina, Eulepidina, Heterostegina, Operculina and Cycloclypeus (?) and their assemblages, closely resemble to the fauna described from European basins. These groups characterize the SBZ 22B to 25 zones referring to a time interval from early Chattian to Burdigalian. However, a main gap in late Chattian (SBZ 23) and in early part of the Aquitanian (SBZ 24) is also recorded in the platform succession. In the meantime, rare Eulepidina in the Burdigalian levels suggest a clear Indo-Pacific influence. Based on the discovery of early Chattian (SBZ 22B) deposits (previously mapped under Eocene/Miocene units), the Oligo-Miocene stratigraphy of the Bey Dağları platform is also revised. A more precise chronology for regional Miocene transgression is presented based on the miogypsinid evolutionary scale.

  5. Stratigraphic calibration of Oligocene-Miocene organic-walled dinoflagellate cysts from offshore Wilkes Land, East Antarctica, and a zonation proposal

    NASA Astrophysics Data System (ADS)

    Bijl, Peter K.; Houben, Alexander J. P.; Bruls, Anja; Pross, Jörg; Sangiorgi, Francesca

    2018-01-01

    There is growing interest in the scientific community in reconstructing the paleoceanography of the Southern Ocean during the Oligocene-Miocene because these time intervals experienced atmospheric CO2 concentrations with relevance to our future. However, it has remained notoriously difficult to put the sedimentary archives used in these efforts into a temporal framework. This is at least partially due to the fact that the bio-events recorded in organic-walled dinoflagellate cysts (dinocysts), which often represent the only microfossil group preserved, have not yet been calibrated to the international timescale. Here we present dinocyst ranges from Oligocene-Miocene sediments drilled offshore the Wilkes Land continental margin, East Antarctica (Integrated Ocean Drilling Program (IODP) Hole U1356A). In addition, we apply statistical means to test a priori assumptions about whether the recorded taxa were deposited in situ or were reworked from older strata. Moreover, we describe two new dinocyst species, Selenopemphix brinkhuisii sp. nov. and Lejeunecysta adeliensis sp. nov., which are identified as important markers for regional stratigraphic analysis. Finally, we calibrate all identified dinocyst events to the international timescale using independent age control from calcareous nanoplankton and magnetostratigraphy from IODP Hole U1356A, and we propose a provisional dinoflagellate cyst zonation scheme for the Oligocene-Miocene of the Southern Ocean.

  6. Gratkorn - A new late Middle Miocene vertebrate fauna from Styria (Late Sarmatian, Austria)

    NASA Astrophysics Data System (ADS)

    Gross, M.; Böhme, M.; Prieto, J.

    2009-04-01

    Integrated stratigraphic approaches provide precise correlations of global standard stages with regional Paratethys stages. Nevertheless, higher resolution stratigraphic matching of terrestrial deposits remains challenging due to the lack of a practical continental biostratigraphy. The mostly used tool for biostratigraphic correlation of non-marine deposits in the Old World is still the concept of Neogene Mammal-zones (MN-zones). However, at higher biostratigraphic resolution (<1 million years) this concept looses its practicability and has to be replaced by a taxon-range-zonation. To solve this problem a higher number of independently dated small-mammal localities are needed. This is especially crucial for the late Middle to earliest Late Miocene, for which vertebrate faunas in the (Central-)Paratethyan area rare. Recently, a new vertebrate fauna was discovered at the locality Gratkorn (clay pit St. Stefan) just beyond the northwestern margin of the Styrian Basin (Gratkorn Basin; 10 km NW Graz; 15°20'55"E/47°08'15"N). The fauna originates from a c. 0.5 m thick hydromorphic paleosol, underlain by fluvial sands and gravels and topped by c. 15 m thick limnic pelites (Gross, 2008). Sedimentological data as well as the gastropod (Harzhauser et al., 2008) and vertebrate faunas point to a highly structured, more or less vegetated alluvial fan/braided river landscape. Active and abandoned fluvial channels, moist floodplain-soils and ephemeral ponds but also nearby dryer open areas and limestone screes of the up-lifting Palaeozoic basement offered a wide range of habitats. The occurrence of xero- and thermophile terrestrial gastropods and ectothermic vertebrates correspond well with the late Middle/early Late Miocene dry-spell in Central Europe (Böhme et al., 2008). Furthermore, an overall semiarid climate is supported by the development of a calcrete horizon c. 0.6 m below the fossiliferous horizon. The vertebrate remains are irregularly distributed throughout the

  7. Mechanisms for creating accommodation space during early Tertiary sedimentation in Tibet.

    NASA Astrophysics Data System (ADS)

    Studnicki-Gizbert, C.; Burchfiel, B. C.

    2003-12-01

    The Tibetan plateau is for the most part underlain by rocks of pre-Cenozoic age, a fact that has hindered the identification of Cenozoic shortening structures that can be unequivocally related to the effects of India-Asia collision. Notably, however, the Qiangtang block contains a number of small, short wavelength basins filled with terrestrial sediments of early Tertiary age. Where these basins have been well studied, sedimentation is recognized as having occurred coevally with compressional deformation. The classic treatment of compressional basins appeals to accommodation space created by the flexure of an elastic plate in response to loads created by adjacent thrust fault bound ranges. It is unlikely that the Tertiary basins of the Qiangtang block formed in this manner. The wavelength of a classically modelled flexural basin is a basically a function of the thickness of the elastic plate and the density difference between sedimentary fill and ductile material underlying the plate. Assuming a model of elastic flexure, the very small wavelengths (5 - 30km) characteristic of Qiangtang basins would then imply extremely thin (~ 1-5 km) effective elastic plate thicknesses. These very low values are difficult to reconcile with any reasonable characterization of crustal rheology. Instead, these relatively small basins likely record the creation of accommodation space created by differential uplift across the strike of folds and faults. Stratal geometries and sedimentation rates reflect the kinematics and geometries of local compressional structures and the mechanical basis for the creation of accommodation space remains uncertain. Finally, the origin of these basins makes it unlikely that early Tertiary sedimentation represents a significant fraction of the upper crust of Tibetan plateau.

  8. Reconstructing the rise of recent coastal anoxia; molybdenum in Chesapeake Bay sediments

    USGS Publications Warehouse

    Adelson, J.M.; Helz, G.R.; Miller, C.V.

    2001-01-01

    Sporadic, direct observations over a 50 yr period inadequately characterize the history of seasonal hypoxia and anoxia in Chesapeake Bay, alarge estuary threatened by eutrophication. Here, we undertake a reconstruction of 20th century oxygen depletion in this estuary using Mo concentrations in 210Pb-dated sediments; Cu concentrations are used to control for anthropogenic influences. Cores from the central channel display mild Mo enrichments above crustal backgrounds (up to 5 ??g/g) and strong Cu enrichments (up to 35 ??g/g). Temporally, Cu enrichment (mostly anthropogenic) began earlier and stabilized in the last two thirds of the 20th century. In contrast, Mo enrichment has grown during the last two thirds of the century. Molybdenum enrichment is mostly hydrogenic, except in a section of the channel that receives additional Mo from erosion of Early Miocene shore deposits. Two geochemical mechanisms promote Mo enrichment: Manganese refluxing concentrates dissolved MoO24- at the sediment-water interface and sulfide substitution into MoO24- produces thiomolybdates, which can be fixed by particles. The Mo enrichment mechanisms operate primarily during periods when bottom waters are anoxic and thiomolybdate formation can occur near the sediment-water interface. This implies a temporal coupling between water-column anoxia and Mo fixation even though fixation occurs only within sediments. The Mo enrichment profiles suggest that Chesapeake Bay has experienced growing O2 depletion since the first half of the 20th century, but especially after 1960. Copyright ?? 2001 Elsevier Science Ltd.

  9. Long-term evolution of an Oligocene/Miocene maar lake from Otago, New Zealand

    NASA Astrophysics Data System (ADS)

    Fox, B. R. S.; Wartho, J.; Wilson, G. S.; Lee, D. E.; Nelson, F. E.; Kaulfuss, U.

    2015-01-01

    Foulden Maar is a highly resolved maar lake deposit from the South Island of New Zealand comprising laminated diatomite punctuated by numerous diatomaceous turbidites. Basaltic clasts found in debris flow deposits near the base of the cored sedimentary sequence yielded two new 40Ar/39Ar dates of 24.51 ± 0.24 and 23.38 ± 0.24 Ma (2σ). The younger date agrees within error with a previously published 40Ar/39Ar date of 23.17 ± 0.19 Ma from a basaltic dyke adjacent to the maar crater. The diatomite is inferred to have been deposited over several tens of thousands of years in the latest Oligocene/earliest Miocene, and may have been coeval with the period of rapid glaciation and subsequent deglaciation of Antarctica known as the Mi-1 event. Sediment magnetic properties and SEM measurements indicate that the magnetic signal is dominated by pseudo-single domain pyrrhotite. The most likely source of detrital pyrrhotite is schist country rock fragments from the inferred tephra ring created by the phreatomagmatic eruption that formed the maar. Variations in magnetic mineral concentration indicate a decrease in erosional input throughout the depositional period, suggesting long-term (tens of thousands of years) environmental change in New Zealand in the latest Oligocene/earliest Miocene.

  10. Basin evolution during Cretaceous-Oligocene changes in sediment routing in the Eastern Precordillera, Argentina

    NASA Astrophysics Data System (ADS)

    Reat, Ellen J.; Fosdick, Julie C.

    2018-07-01

    The response of sedimentary basins to earliest onset of Andean contraction and lithospheric flexure in the southern Central Andes is debated and not well-resolved. The Upper Cretaceous to Oligocene strata of the Cuesta de Huaco anticline in the Argentine Precordillera record sedimentation, regional deformation, and climate patterns prior to the highly studied Oligocene-Miocene foreland basin phase. These deposits have recently been recognized as Cretaceous and Paleogene in age, prompting a re-evaluation of this depocenter as part of the early Andean system, prior to deposition of the aeolian foredeep sediments of the Oligocene Vallecito Formation. This work presents new data from the Argentine Precordillera fold-and-thrust belt at 30°S that sheds light on new reinterpretations of the timing of sedimentation for an important interval in Andean retroarc foreland basin history. We report the first Paleocene detrital radiometric ages from the Cuesta de Huaco 'red strata' of the pre-Oligocene Bermejo Basin. Detailed sedimentology and provenance data from the Cenomanian-Turonian Ciénaga del Río Huaco and Danian-Priabonian Puesto La Flecha formations reveal a Cenomanian-Turonian braided stream system that transitioned into a shallow freshwater lacustrine depocenter in Paleocene-Eocene time. During Late Cretaceous time, sediment in the braided river system was derived primarily from northeastern cratonic sources; during the Paleocene-Eocene, uplift and unroofing of the Andean arc and Frontal Cordillera resulted in an influx of western-derived sediment. We therefore suggest a revised timing of sedimentation for the transition to Andean retroarc foreland basin deposition.

  11. Miocene reef carbonates of Mariana Islands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siegrist, H.G. Jr.

    1988-02-01

    Miocene carbonates in the southern Mariana Islands are impressive for their lithologic diversity, thicknesses (over 250 m), and geographic extent (> 20% combined outcrop coverage over four major high islands: Guam, Rota, Tinian and Saipan). Sections are dominated either by lagoonal algal-foraminiferal wackestones and mudstones with locally abundant high-energy shelly-skeletal facies, or by rubbly to muddy, fore-reef-to-bank deposits of packstones and grainstones with highly diverse and variable biogenic clasts. Fresh to deeply weathered volcaniclastic material may comprise at least 80% of some high-energy fore-reef facies, whereas lagoonal and bank deposits usually contain less than 0.5% terrigenous material. Surprisingly, the Miocenemore » in the Marianas lacks almost completely any reef-core facies. Several poorly developed coral-rich mounds on Saipan and localized laminated red algal buildups on Guam appear to constitute the extant reef-wall facies in the Miocene. The lack of buildups may be a matter of differential survival; it may result from headland erosion and benching associated with emergence of narrow reef tracts as has been postulated by others for south Guam. Alternatively, the authors are proposing that Miocene bathymetry and the volume of terrigenous influx militated against significant reef core formation. Radiometric age dating of these reef carbonates has proven unsuccessful because pervasive diagenesis has transformed the entire Miocene section into low-magnesium calcite with minor and occasional dolomite. Freshwater phreatic diagenesis accounts for the principal porosity variation and trace element distribution.« less

  12. Development of Miocene-Pliocene reef trend, St. Croix, U. S. Virgin Islands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gill, I.; Eby, D.E.; Hubbard, D.K.

    1988-01-01

    The Miocene-Pliocene reef trend on St. Croix, U.S. Virgin Islands, rims the present southern western coasts of the island and includes accompanying lagoonal and forereef facies. The reef trend was established on a foram-algal bank facies that represents basinal shallowing from the deep-water pelagic and hemipelagic facies of the Miocene Kingshill Limestone. Information on facies distribution and thickness is derived from rock exposures and 22 test wells drilled to a maximum depth of 91 m. The greatest thickness of the reef facies exists in a subsidiary graben on the south coast of St. Croix. The thickness of the reef sectionmore » in this locality is due to preservation of the section in a downdropped block. Reef faunas include extant corals, as well as several extinct genera. Extant corals (e.g. Montastrea annularis, Diploria sp., and Porites porites) and extinct corals (e.g., Stylophora affinis, Antillea bilobata, and Thysanus sp.) are the main reef frame-builders. Coralline algea and large benthic foraminifera are significant contributors to the sediments both prior to and during scleractinian reef growth. Dolomitization and calcite cementation occur prominantly in an area corresponding to a Holocene lagoon. The spatial distribution of the dolomite suggests that the lagoon is a Tertiary feature directly related to the dolomitization process. Stable isotopic values suggest dolomitization of fluids of elevated salinity.« less

  13. Miocene to Recent geological evolution of the Lazufre segment in the Andean volcanic arc

    NASA Astrophysics Data System (ADS)

    Naranjo, J. A.; Villa, V.; Ramírez, C.; Pérez de Arce, C.

    2014-12-01

    The volcano-tectonic setting in which the InSAR-detected Lazufre deformation is developing is particularly relevant in the evolution of this Andean volcanic arc segment (25-26°S). Through regional mapping techniques, a comprehensive field control in addition to geochronological sampling, various volcanic units comprising stratovolcanoes, volcanic complexes, ignimbrites and caldera structures are distinguished. The Lazufre intumescence is located above the overlying block of the NE trending Middle Miocene, Pedernales-Arizaro overthrust. This area comprises an Upper Miocene (8-4 Ma) basal unit of andesitic-dacitic volcanoes and lava fields, upon which nine volcanic complexes of similar composition, including Caletones de Cori Ignimbrite and Escorial Volcano, Lastarria, Cordón del Azufre and Bayo volcanic complexes, were emplaced in several pulses between 3.5 Ma and Holocene times. Coalescing Lazufre structure, immediately to the SE, we have discovered the Miocene (9.8 Ma) Los Colorados caldera. This caldera is 30 km in diameter and sourced the homonymous dacitic ignimbrite of about 500 km3. The caldera scarp was formed in Paleozoic rocks, Miocene dacitic-rhyolitic ignimbrites and ~16 and 10 Ma volcanoes. A 6.9-6.8 Ma andesitic-dacitic volcano ridge formed by Abra Grande, Río Grande and Aguas Calientes stratovolcanoes, from NE to SW, is nested on the caldera floor. Lavas of early stages of Cordón del Azufre and Bayo complexes were shed into the NW part of the caldera. The coalescing structure formed by the Lazufre intumescence and Los Colorados caldera is conjugate at about 30° to the Pedernales-Arizaro overthrust, and has a NW-SE orientation, parallel to the Archibarca lineament. A SE to NW migration of volcanism is observed along this structure at least since the Middle Miocene. We proposed that, since Miocene, tectonic spaces with no surficial fault displacements and conjugated to the main compressive structures within the upper crust, have been created as a

  14. Global Sea Surface Temperature and Ecosystem Change Across the Mid-Miocene Climatic Optimum

    NASA Astrophysics Data System (ADS)

    Veenstra, T. J. T.; Bakker, V. B.; Sangiorgi, F.; Peterse, F.; Schouten, S.; Sluijs, A.

    2016-12-01

    Even though the term Mid-Miocene Climatic Optimum (MMCO; ca. 17 to 14 Ma) has been widely used in the literature since the early 1990's, almost no early-middle Miocene sea surface temperature (SST) proxy records have been published that support climate warming across its onset. Benthic (and diagenetically altered planktic) foram δ18O records show a decrease, suggesting (deep) ocean warming and/or Antarctic ice sheet melting. However, reliable absolute SST proxy records are absent from the tropics and very scarce in temperate and polar regions. This leaves the question if the warmth of the MMCO was truly global and how its onset relates to the widely recorded positive (Monterey) carbon isotope excursion and volcanism. Finally, it remains uncertain how marine ecosystems responded to this hypothesized warming. We present organic biomarker SST proxy records (Uk'37 and TEX86) spanning the MMCO for several locations in the Atlantic and Pacific Ocean along a pole-to-pole transect, including Ocean Drilling Program Site 959 in the eastern Tropical Atlantic, ODP Site 643 in the Norwegian Sea, ODP Site 1007 on the Great Bahama Bank and Integrated Ocean Drilling Program Site U1352 off New Zealand. Additionally, we use marine palynology (mostly dinoflagellate cysts) to assess ecosystem change at these locations. The resulting spatial reconstruction of SST change shows that Middle Miocene warming was global. Nevertheless, the records also show distinct regional variability, including relatively large warming in the Norwegian Sea and a damped signal in the southern hemisphere, suggesting pronounced changes in ocean circulation. The onset of the MMCO was marked by prominent changes in ecological and depositional setting at the studied sites, likely also related to ocean circulation changes.

  15. Punctuated sediment discharge during early Pliocene birth of the Colorado River: Evidence from regional stratigraphy, sedimentology, and paleontology

    USGS Publications Warehouse

    Dorsey, Rebecca J.; O’Connell, Brennan; McDougall-Reid, Kristin; Homan, Mindy B.

    2018-01-01

    The Colorado River in the southwestern U.S. provides an excellent natural laboratory for studying the origins of a continent-scale river system, because deposits that formed prior to and during river initiation are well exposed in the lower river valley and nearby basinal sink. This paper presents a synthesis of regional stratigraphy, sedimentology, and micropaleontology from the southern Bouse Formation and similar-age deposits in the western Salton Trough, which we use to interpret processes that controlled the birth and early evolution of the Colorado River. The southern Bouse Formation is divided into three laterally persistent members: basal carbonate, siliciclastic, and upper bioclastic members. Basal carbonate accumulated in a tide-dominated marine embayment during a rise of relative sea level between ~ 6.3 and 5.4 Ma, prior to arrival of the Colorado River. The transition to green claystone records initial rapid influx of river water and its distal clay wash load into the subtidal marine embayment at ~ 5.4–5.3 Ma. This was followed by rapid southward progradation of the Colorado River delta, establishment of the earliest through-flowing river, and deposition of river-derived turbidites in the western Salton Trough (Wind Caves paleocanyon) between ~ 5.3 and 5.1 Ma. Early delta progradation was followed by regional shut-down of river sand output between ~ 5.1 and 4.8 Ma that resulted in deposition of marine clay in the Salton Trough, retreat of the delta, and re-flooding of the lower river valley by shallow marine water that deposited the Bouse upper bioclastic member. Resumption of sediment discharge at ~ 4.8 Ma drove massive progradation of fluvial-deltaic deposits back down the river valley into the northern Gulf and Salton Trough.These results provide evidence for a discontinuous, start-stop-start history of sand output during initiation of the Colorado River that is not predicted by existing models for this system. The underlying controls on

  16. Sub-decadal resolution in sediments of Late Miocene Lake Pannon reveals speciation of Cyprideis (Crustacea, Ostracoda).

    PubMed

    Gitter, Frank; Gross, Martin; Piller, Werner E

    2015-01-01

    Late Miocene "Lake Pannon" (~11.3 Ma) was a remnant of the Central Paratethyan Sea. Successive freshening and constantly changing environmental conditions, like oxygenation, nutrition and substrate led to a well-documented radiation in molluscs and ostracods. Among ostracods (small crustaceans), Cyprideis is one of the most common genera in "Lake Pannon", as well as in several other ancient lakes, showing numerous adaptations and speciations. Here, we present high-resolution data from an early transgression of "Lake Pannon" in the Eastern Styrian Basin (SE Austria). Mataschen clay pit is in the focus of geologic and paleontologic research since 20 years and its geologic and paleoecologic evolution is well-documented. We drilled five cores covering a ~2.3 m long section and completely sampled it in 5-mm thick intervals to reconstruct minute changes in the ostracod fauna over a transgression of a brackish water body. The dominant genus, Cyprideis, is represented by three species C. mataschensis, C. kapfensteinensis and C. ex gr. pannonica. Through morphometric analyses we highlight the variance of each taxon and suggest that there is no direct ecologic control on size or shape. Furthermore, we found a second, co-occurring morphotype of C. kapfensteinensis which is directly related to an elevation of salinities above 13 psu. The presence of two intermediate specimens between the two morphotypes in the sample directly below the first appearance of C. kapfensteinensis B leads us to the conclusion that we are facing a speciation event leading to four sympatric species of Cyprideis.

  17. Sub-Decadal Resolution in Sediments of Late Miocene Lake Pannon Reveals Speciation of Cyprideis (Crustacea, Ostracoda)

    PubMed Central

    Gross, Martin; Piller, Werner E.

    2015-01-01

    Late Miocene "Lake Pannon" (~11.3 Ma) was a remnant of the Central Paratethyan Sea. Successive freshening and constantly changing environmental conditions, like oxygenation, nutrition and substrate led to a well-documented radiation in molluscs and ostracods. Among ostracods (small crustaceans), Cyprideis is one of the most common genera in "Lake Pannon", as well as in several other ancient lakes, showing numerous adaptations and speciations. Here, we present high-resolution data from an early transgression of "Lake Pannon" in the Eastern Styrian Basin (SE Austria). Mataschen clay pit is in the focus of geologic and paleontologic research since 20 years and its geologic and paleoecologic evolution is well-documented. We drilled five cores covering a ~2.3 m long section and completely sampled it in 5-mm thick intervals to reconstruct minute changes in the ostracod fauna over a transgression of a brackish water body. The dominant genus, Cyprideis, is represented by three species C. mataschensis, C. kapfensteinensis and C. ex gr. pannonica. Through morphometric analyses we highlight the variance of each taxon and suggest that there is no direct ecologic control on size or shape. Furthermore, we found a second, co-occurring morphotype of C. kapfensteinensis which is directly related to an elevation of salinities above 13 psu. The presence of two intermediate specimens between the two morphotypes in the sample directly below the first appearance of C. kapfensteinensis B leads us to the conclusion that we are facing a speciation event leading to four sympatric species of Cyprideis. PMID:25902063

  18. Postimpact deposition in the Chesapeake Bay impact structure: Variations in eustasy, compaction, sediment supply, and passive-aggressive tectonism

    USGS Publications Warehouse

    Kulpecz, A.A.; Miller, K.G.; Browning, J.V.; Edwards, L.E.; Powars, D.S.; McLaughlin, P.P.; Harris, A.D.; Feigenson, M.D.

    2009-01-01

    The Eyreville and Exmore, Virginia, core holes were drilled in the inner basin and annular trough, respectively, of the Chesapeake Bay impact structure, and they allow us to evaluate sequence deposition in an impact crater. We provide new high-resolution geochronologic (<1 Ma) and sequence-stratigraphic interpretations of the Exmore core, identify 12 definite (and four possible) postimpact depositional sequences, and present comparisons with similar results from Eyreville and other mid- Atlantic core holes. The concurrence of increases in ??18O with Chesapeake Bay impact structure sequence boundaries indicates a primary glacioeustatic control on deposition. However, regional comparisons show the differential preservation of sequences across the mid-Atlantic margin. We explain this distribution by the compaction of impactites, regional sediment-supply changes, and the differential movement of basement structures. Upper Eocene strata are thin or missing updip and around the crater, but they thicken into the inner basin (and offshore to the southeast) due to rapid crater infilling and concurrent impactite compaction. Oligocene sequences are generally thin and highly dissected throughout the mid-Atlantic region due to sediment starvation and tectonism, except in southeastern New Jersey. Regional tectonic uplift of the Norfolk Arch coupled with a southward decrease in sediment supply resulted in: (1) largely absent Lower Miocene sections around the Chesapeake Bay impact structure compared to thick sections in New Jersey and Delaware; (2) thick Middle Miocene sequences across the Delmarva Peninsula that thin south of the Chesapeake Bay impact structure; and (3) upper Middle Miocene sections that pinch out just north of the Chesapeake Bay impact structure. Conversely, the Upper Miocene-Pliocene section is thick across Virginia, but it is poorly represented in New Jersey because of regional variations in relative subsidence. ?? 2009 The Geological Society of America.

  19. Changes in coral-reef structure through the Miocene in the Mediterranean province: Adaptive versus environmental influence

    NASA Astrophysics Data System (ADS)

    Pomar, Luis; Hallock, Pamela

    2007-10-01

    Well-documented Mediterranean examples of Miocene carbonate platforms, with complete exposures from shallow-water to basinal facies, provide evidence for temporal changes in reef-building capacity of zooxanthellate corals. In pre-late Tortonian platforms, small coralgal patches and mounds occur from platform top to the toe of slope, but they did not build to sea level. In contrast, barrier reefs with unequivocal reef-crest structures that reached sea level are documented in late Tortonian-early Messinian platforms. We suggest that a change in both calcification rates and bathymetric zonation was the result of coevolution of corals and Symbiodinium zooxanthellae, coeval to global cooling and, at least at a regional scale, a geochemical change that supported widespread aragonite precipitation through the late Miocene.

  20. A new giraffid (Mammalia, Ruminantia, Pecora) from the late Miocene of Spain, and the evolution of the sivathere-samothere lineage

    PubMed Central

    Morales, Jorge

    2017-01-01

    Giraffids include the only living giraffomorph ruminants and are diagnosed by the presence of bi-lobed canines and a special type of epiphyseal cranial appendages called ossicones. The family Giraffidae ranges from the latest early Miocene until today. However they are currently extant relics with only two living representatives, the African genera Okapia and Giraffa. Giraffids were much more diverse and widespread in the past, with more than 30 fossil species described. For the past decades a number of studies intended to resolve the phylogenetic relationships of the family, but due to the lack of really good cranial material no clear consensus was reached regarding the phylogenetic relationships amongst the different members of the group. The exceptionally complete remains of a new large giraffid from the late Miocene of Spain, Decennatherium rex sp. nov., allows us to improve and reassess giraffid systematics, offering a lot of new data, both anatomic and phylogenetic, on the large late Miocene giraffids of Eurasia. The results of our cladistic analysis show Decennatherium as a basal offshoot of a clade containing the gigantic samotheres and sivatheres, characterized by the presence of a Sivatherium-like ossicone-plan among other features. Decennatherium thus offers the most ancient evidence of this Sivatherium-plan and firmly establishes the early morphological patterns of evolution of a sivathere / samothere-clade that is defined as the less inclusive clade that contains Decennatherium and Sivatherium. Finally, this large group of four-ossiconed giraffids evolutionarily links Miocene Europe and Africa indicating vicariance / migration processes among the giraffid genetic pools separated by the Mediterranean Sea. PMID:29091914

  1. Major Mid-Miocene Climate Change In The Transantarctic Mountains

    NASA Astrophysics Data System (ADS)

    Ashworth, A. C.; Lewis, A. R.; Marchant, D. R.

    2007-12-01

    Independent lines of evidence from paleoecology, glacial geology and marine isotopes indicate major climate change in the Dry Valley sector of the Transantarctic Mountains (TAM) at c.14 Ma. A fossil assemblage of pollen and spores, freshwater diatoms, ostracods, mosses, and insect remains has been recovered from lacustrine sediments preserved in a small morainic lake basin in the western Olympus Range. The diatom assemblage indicates that the lake existed for >103yr and was ice-free during summers. Based on the moss and insect fossils the minimum mean summer temperature (MST- Dec-Feb) was 2°C but could have been as high as 5°C. Today at the site the MST is c. -15°C. The lake-marginal vegetation was a sparse tundra dominated by mosses and liverworts. Based on pollen, Nothofagus (southern beech) was part of the lowland regional vegetation and individual dwarfed shrubs may have grown on the slopes surrounding the lake basin. The age of the deposits is well-constrained by an 40Ar/39Ar age of 14.11 ± 0.11 Ma from an in situ volcanic ash within related lacustrine sediments. Based on an independent study of the glacial stratigraphy of the western Wright and McKelvey valleys, diamictites of a wet-based glacial regime had been replaced by those of cold-based regime by 13.85 ± 0.03 Ma. The drop in temperatures and the cessation of meltwater at c. 14 Ma would have caused the regional extinction of all plant and insect life with the exception of the hardiest of soil-dwelling organisms. Paleobotanical evidence indicates that Antarctica had likely been vegetated throughout the Cenozoic, with forests replaced by tundra during the early Oligocene. The mid-Miocene extinction marks the end of tundra in the interior of Antarctica and its replacement by the polar desert biota which exists today. Changes in δ18O and Mg/Ca ratios from different sectors of the Southern Ocean indicate sea surface temperature cooling and ice sheet growth between 13.8 - 14.2 Ma. The close correlation

  2. Stepwise onset of the Icehouse world and its impact on Oligo-Miocene Central Asian mammals

    NASA Astrophysics Data System (ADS)

    Harzhauser, Mathias; Daxner-Höck, Gudrun; López-Guerrero, Paloma; Maridet, Olivier; Oliver, Adriana; Piller, Werner E.; Richoz, Sylvain; Erbajeva, Margarita A.; Neubauer, Thomas A.; Göhlich, Ursula B.

    2016-11-01

    Central Asia is a key area to study the impact of Cenozoic climate cooling on continental ecosystems. One of the best places to search for rather continuous paleontological records is the Valley of Lakes in Mongolia with its outstandingly fossil-rich Oligocene and Miocene terrestrial sediments. Here, we investigate the response by mammal communities during the early stage of Earth’s icehouse climate in Central Asia. Based on statistical analyses of occurrence and abundance data of 18608 specimens representing 175 mammal species and geochemical (carbon isotopes) and geophysical (magnetic susceptibility) data we link shifts in diversities with major climatic variations. Our data document for the first time that the post-Eocene aridification of Central Asia happened in several steps, was interrupted by short episodes of increased precipitation, and was not a gradual process. We show that the timing of the major turnovers in Oligocene mammal communities is tightly linked with global climate events rather than slow tectonics processes. The most severe decline of up 48% of total diversity is related to aridification during the maximum of the Late Oligocene Warming at 25 Ma. Its magnitude was distinctly larger than the community turnover linked to the mid-Oligocene Glacial Maximum.

  3. Stepwise onset of the Icehouse world and its impact on Oligo-Miocene Central Asian mammals

    PubMed Central

    Harzhauser, Mathias; Daxner-Höck, Gudrun; López-Guerrero, Paloma; Maridet, Olivier; Oliver, Adriana; Piller, Werner E.; Richoz, Sylvain; Erbajeva, Margarita A.; Neubauer, Thomas A.; Göhlich, Ursula B.

    2016-01-01

    Central Asia is a key area to study the impact of Cenozoic climate cooling on continental ecosystems. One of the best places to search for rather continuous paleontological records is the Valley of Lakes in Mongolia with its outstandingly fossil-rich Oligocene and Miocene terrestrial sediments. Here, we investigate the response by mammal communities during the early stage of Earth’s icehouse climate in Central Asia. Based on statistical analyses of occurrence and abundance data of 18608 specimens representing 175 mammal species and geochemical (carbon isotopes) and geophysical (magnetic susceptibility) data we link shifts in diversities with major climatic variations. Our data document for the first time that the post-Eocene aridification of Central Asia happened in several steps, was interrupted by short episodes of increased precipitation, and was not a gradual process. We show that the timing of the major turnovers in Oligocene mammal communities is tightly linked with global climate events rather than slow tectonics processes. The most severe decline of up 48% of total diversity is related to aridification during the maximum of the Late Oligocene Warming at 25 Ma. Its magnitude was distinctly larger than the community turnover linked to the mid-Oligocene Glacial Maximum. PMID:27897168

  4. Tidal dynamics and mangrove carbon sequestration during the Oligo–Miocene in the South China Sea

    PubMed Central

    Collins, Daniel S.; Avdis, Alexandros; Allison, Peter A.; Johnson, Howard D.; Hill, Jon; Piggott, Matthew D.; Hassan, Meor H. Amir; Damit, Abdul Razak

    2017-01-01

    Modern mangroves are among the most carbon-rich biomes on Earth, but their long-term (≥106 years) impact on the global carbon cycle is unknown. The extent, productivity and preservation of mangroves are controlled by the interplay of tectonics, global sea level and sedimentation, including tide, wave and fluvial processes. The impact of these processes on mangrove-bearing successions in the Oligo–Miocene of the South China Sea (SCS) is evaluated herein. Palaeogeographic reconstructions, palaeotidal modelling and facies analysis suggest that elevated tidal range and bed shear stress optimized mangrove development along tide-influenced tropical coastlines. Preservation of mangrove organic carbon (OC) was promoted by high tectonic subsidence and fluvial sediment supply. Lithospheric storage of OC in peripheral SCS basins potentially exceeded 4,000 Gt (equivalent to 2,000 p.p.m. of atmospheric CO2). These results highlight the crucial impact of tectonic and oceanographic processes on mangrove OC sequestration within the global carbon cycle on geological timescales. PMID:28643789

  5. Constant Chinese Loess Plateau dust source since the Late Miocene

    NASA Astrophysics Data System (ADS)

    Bird, Anna; Millar, Ian; Stevens, Thomas; Rodenburg, Tanja; Rittner, Martin; Vermeesch, Pieter; Lu, Huayu

    2017-04-01

    The dramatic deepening of northern hemisphere glaciation at the Pliocene-Pleistocene boundary is accompanied by major changes in global climate. The role of the global atmospheric dust cycle in this event is not clear; in particular, whether, changes in the dust cycle influenced climates change, or resulted from it. Miocene and Quaternary wind-blown Chinese loess records past dust-cycle history, influences of aridification and monsoon circulation. Previous work on the vast Chinese Loess Plateau is in conflict over whether changes in dust source occur at the Pliocene-Pleistocene boundary (2.59 Ma), or at 1.2 Ma, despite these intervals marking major shifts in monsoon dynamics (Sun 2005; Nie et al. 2014a). Here we present Sr, Nd and Hf isotopic data from multiple sites and show that the dust source remains the same across these boundaries. The use of isotope tracers from multiple sites allows us to demonstrate that shifts in sediment geochemistry can be explained by grain-size and weathering changes. Nd and Hf isotopes show that the dust was dominantly sourced from the Tibetan Plateau, with some input from bedrock underlying the Badain Jaran/Tengger deserts. This shows that a major established and constant dust source on the northern Tibetan Plateau has been active and unchanged since the late Miocene, despite dramatically changing climate conditions. Changes in loess accumulation are therefore a function of climate change in the Tibetan Plateau source regions rather than due to expanding source areas controlled by aridification over a widening area over the Pliocene and Quaternary.

  6. Early-diagenetic processes in marine mangrove sediments from Guadeloupe, French West Indies

    NASA Astrophysics Data System (ADS)

    Crémière, Antoine; Sebilo, Mathieu; Strauss, Harald; Gros, Olivier; Laverman, Anniet M.

    2014-05-01

    Sediment and pore-water geochemistry were investigated in two short sediment cores from the Manche-à-eau lagoon (Guadeloupe, French Caribbean island) surrounded by mangroves trees. These sediments present high total organic carbon content, ranging between 10 to 18 % wt, mainly originating from mangrove litter fall. Oxygen is depleted in the first few millimetres of the sediment indicating active organic carbon degradation. Seawater sulphate is entirely consumed within the first 20 cm of the sediments and total organic carbon content decreases with depth pointing out that early-diagenetic degradation of organic matter occurs with sulphate reduction. Sulphide produced as the results of sulphate reduction partly reacts with detrital iron-bearing minerals and precipitates as pyrite which is consistent with high amounts of sulphur in the sediments (4-5 % wt). The sulphur isotopic composition (δ34S) of both dissolved sulphate and sulphide in pore-water increases with depth displaying a large apparent isotopic fractionation (Δ34S) between both species of 65-80o as a result of bacterial sulphate reduction. Scanning electron microscopy investigation reveals that a part of the carbonate alkalinity produced either by organic matter oxidation or anaerobic methane oxidation leads to authigenic carbonates precipitation. These results provide straightforward evidence that carbon and sulphur biogeochemical cycles are intimately governed by sedimentary microbial activity.

  7. Cosmogenic Nuclides 10Be-21Ne Burial Dating of Middle Miocene Sedimentary Formation of the Hongliu Valley in Southern Ningxia Basin: A Case of Isotopic Geochronology Study for the Cenozoic Sedimentary Strata

    NASA Astrophysics Data System (ADS)

    Ma, Y.; Zhang, H.; Wang, W.; Wu, Y.; Pang, J.; Zheng, D.; Li, D.

    2015-12-01

    Chronology studies for the Cenozoic sedimentary strata based on the magnetostratigraphy cannot afford the unique chronological sequences in the absence of absolute ages from biostratigraphy or volcanic ash chronology. In situ-produced cosmogenic nuclides provide a powerful tool for the sediment dating based on the time-dependent concentration ratio of two nuclides, which are produced in the same mineral but with different half-lives. Thereinto, 10Be-26Al is the most widely used nuclide pairs, of which the available dating range spans the Plio-Pleistocene. But the coupling of 10Be with the stable nuclide 21Ne would significantly improve the burial dating range up to the middle Miocene, which is promising in revolutionizing the chronology study for the Late Cenozoic terrestrial sedimentary sequences. We have applied 10Be-21Ne pair for dating the middle Miocene sediments of the Hongliu Valley in southern Ningxia basin. Two major features of the sediments are involved in our study: (1) sediments originated from the steady erosion of the source area, and (2) the burial depth of our sample after deposition is time dependent due to the gradual accumulation of sediments into basin. The post-burial nuclide production is estimated to be less than 3%, including the contribution by muon interactions, of the total nuclide concentrations measured in our sample. Our 10Be-21Ne analysis demonstrates the age of the burial sample is 12.4(+0.6/-0.4) Ma, and the erosion rate at the source area is 0.26±0.01 cm ka-1. The sample's burial age is consistent with the age constraint set by the Hongliugou Formation (16.7-5.4 Ma) which we collected the sample in. Vertebrate fossils of Platybelodon tongxinensis with an age between 12 and 15 Ma exhumated along with our sample further verifies the reliability of our dating results for the middle Miocene sediments.This study has shown the improved age range of cosmogenic-nuclide burial dating method by incorporating the stable nuclide 21Ne, and

  8. The impact of deep-tier burrow systems in sediment mixing and ecosystem engineering in early Cambrian carbonate settings

    PubMed Central

    Zhang, Li-Jun; Qi, Yong-An; Buatois, Luis A.; Mángano, M. Gabriela; Meng, Yao; Li, Da

    2017-01-01

    Bioturbation plays a substantial role in sediment oxygen concentration, chemical cycling, regeneration of nutrients, microbial activity, and the rate of organic matter decomposition in modern oceans. In addition, bioturbators are ecosystem engineers which promote the presence of some organisms, while precluding others. However, the impact of bioturbation in deep time remains controversial and limited sediment mixing has been indicated for early Paleozoic seas. Our understanding of the actual impact of bioturbation early in the Phanerozoic has been hampered by the lack of detailed analysis of the functional significance of specific burrow architectures. Integration of ichnologic and sedimentologic evidence from North China shows that deep-tier Thalassinoides mazes occur in lower Cambrian nearshore carbonate sediments, leading to intense disruption of the primary fabric. Comparison with modern studies suggest that some of the effects of this style of Cambrian bioturbation may have included promotion of nitrogen and ammonium fluxes across the sediment-water interface, average deepening of the redox discontinuity surface, expansion of aerobic bacteria, and increase in the rate of organic matter decomposition and the regeneration of nutrients. Our study suggests that early Cambrian sediment mixing in carbonate settings may have been more significant than assumed in previous models. PMID:28374857

  9. Oligocene and Miocene larger foraminiferida from Australia and New Zealand

    NASA Astrophysics Data System (ADS)

    Chaproniere, G. C. H.

    The lithostratigraphy, biostratigraphy and the systematics of larger foraminiferids at several Late Oligocene to Middle Miocene localities in Australia are described. In particular, sediments of this interval in the North West Cape area of the Carnarvon Basin, Western Australia, yielded diverse faunas of larger and planktic foraminiferids. Areas in New Zealand were also sampled and studied. Forty species and subspecies, representing 25 genera or subgenera of larger foraminiferids, were recorded. Wherever possible, biometric methods have been used to discriminate between taxa. Such studies suggest that the rates of evolution of some groups of larger foraminiferids in New Zealand were different from those in the Australian region. Among the taxa that are illustrated and described in detail are two subspecies of Lepidocyclina (Nephrolepidina) proposed as new: Lepidocyclina (Nephrolepidina) howchini praehowchini and Lepidocyclina (Nephrolepidina) orakeiensis waikukuensis. Topotypes of L. (N.) orakeiensis hornibrooki and L. (N.) howchini howchini are discussed and figured.

  10. Fragilariopsis diatom evolution in Pliocene and Pleistocene Antarctic shelf sediments

    USGS Publications Warehouse

    Sjunneskog, Charlotte; Riesselman, Christina; Winter, Diane; Scherer, Reed

    2012-01-01

    The late Pliocene – early Pleistocene sediment record in the AND-1B core from the McMurdo Sound, Ross Sea, Antarctica, displays a rich diversity and high abundance of diatoms, including several new morphologies within the genus Fragilariopsis. These new morphologies exhibit similarities to the extinct late Miocene/early Pliocene species Fragilariopsis aurica Gersonde and Fragilariopsis praecurta Gersonde, as well as to the modern sea ice-associated species Fragilariopsis ritscheri Hustedt and Fragilariopsis obliquecostata van Heurck. From the diverse morphologies present, we use light microscopy and scanning electron microscopy to identify and describe the characteristics of three new taxa, Fragilariopsis laqueata Riesselman, Fragilariopsis bohatyi Sjunneskog et Riesselman, and Fragilariopsis robusta Sjunneskog, which are common in the diatom-bearing intervals from ~3.2 to 1.95 Ma. Comparisons with extant and extinct species are made to assess possible environmental affinities, evolutionary relationships, and potential for future biostratigraphic utility. This complex of newmorphologies diversified as conditions cooled during the Pliocene, then went into decline as heavy sea ice conditions of the Pleistocene were established. Only the lineage of F. robusta appears to continue into the late Pleistocene, where it is interpreted to have evolved into F. obliquecostata.

  11. Basin analysis of tertiary strata in the Pattani Basin, Gulf of Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chonchawalit, A.; Bustin, R.M.

    The stratigraphic and structural evolution of the Pattani basin, the most prolific petroleum basin in Thailand, reflects the extensional tectonics of continental southeast Asia. East-west extension, a product of the northward collision of India with Eurasia since the early Tertiary resulted in the formation of a series of north-south-trending sedimentary basins including the Pattani basin. Subsidence and thermal histories of the basin can generally be accounted for by nonuniform lithospheric stretching. The validity of nonuniform lithospheric stretching as a mechanic for the formation of the Pattani basin is confirmed by a reasonably good agreement between modeled and observed vitrinite reflectancemore » at various depths and locations. The amount of stretching and surface heat flow generally increases from the basin margin to the basin center. Crustal stretching factor ([beta]) ranges from 1.3 at the basin margin to 2.8 in the center. Subcrustal stretching factor ([sigma]) ranges from 1.3 at the margin to more than 3.0 in the center. The stretching of the lithosphere may have extended basement rocks as much as 45 to 90 km and may have caused the upwelling of asthenosphere, resulting in high heat flow. The sedimentary succession in the Pattani basin is divisible into synrift and postrift sequences. The synrift sequences comprise (1) late Eocene ( ) to early Oligocene alluvial fan, braided river, and flood-plain deposits; (2) late Oligocene to early Miocene floodplain and channel deposits; and (3) an early Miocene regressive package of marine to nonmarine sediments. Deposition of synrift sequences corresponded to rifting and extension, which included episodic block faulting and rapid subsidence. Postrift succession comprises (1) an early to middle Miocene regressive package of shallow marine to nonmarine sediments, (2) a late early Miocene transgressive package; and (3) a late Miocene to Pleistocene transgression succession.« less

  12. Paleomagnetic record of a geomagnetic field reversal from late miocene mafic intrusions, southern nevada.

    PubMed

    Ratcliff, C D; Geissman, J W; Perry, F V; Crowe, B M; Zeitler, P K

    1994-10-21

    Late Miocene (about 8.65 million years ago) mafic intrusions and lava flows along with remagnetized host rocks from Paiute Ridge, southern Nevada, provide a high-quality paleomagnetic record of a geomagnetic field reversal. These rocks yield thermoremanent magnetizations with declinations of 227 degrees to 310 degrees and inclinations of -7 degrees to 49 degrees , defining a reasonably continuous virtual geomagnetic pole path over west-central Pacific longitudes. Conductive cooling estimates for the intrusions suggest that this field transition, and mafic magmatism, lasted only a few hundred years. Because this record comes principally from intrusive rocks, rather than sediments or lavas, it is important in demonstrating the longitudinal confinement of the geomagnetic field during a reversal.

  13. The first fossil brown lacewing from the Miocene of the Tibetan Plateau (Neuroptera, Hemerobiidae).

    PubMed

    Yang, Qiang; Shi, Chaofan; Li, Xiangchuan; Pang, Hong; Ren, Dong

    2018-01-01

    A new species of Hemerobiidae, Wesmaelius makarkini Yang, Pang & Ren, sp. n. is described from the Lower Miocene, Garang Formation of Zeku County, Qinghai Province (northeastern Tibetan Plateau), China. The species is assigned to the widely distributed extant genus Wesmaelius Krüger (Hemerobiinae). The species represents the first named fossil of this family from China, which sheds light on the historical distribution of Wesmaelius and early divergences within Hemerobiinae.

  14. Unconventional maar diatreme and associated intrusions in the soft sediment-hosted Mardoux structure (Gergovie, France)

    NASA Astrophysics Data System (ADS)

    Valentine, Greg A.; van Wyk de Vries, Benjamin

    2014-03-01

    A Miocene age volcanic-hypabyssal structure comprising volcaniclastic deposits and mafic intrusions is exposed with vertical relief of ˜110 m on the side of Gergovie Plateau (Auvergne, France). Three main volcaniclastic facies are: (1) Fluidal tuff breccia composed of juvenile basalt and sediment clasts with dominantly fluidal shapes, with several combinations of basalt and sediment within individual clasts. (2) Thickly bedded lapilli tuff composed of varying proportions of fine-grained sediment derived from Oligocene-Miocene lacustrine marls and mudstones and basaltic lapilli, blocks, and bombs. (3) Planar-bedded tuff forming thin beds of fine to coarse ash-size sedimentary material and basalt clasts. Intrusive bodies in the thickly bedded lapilli tuff range from irregularly shaped and anastomosing dikes and sills of meters to tens of meters in length, to a main feeder dike that is up to ˜20 m wide, and that flares into a spoon-shaped sill at ˜100 m in diameter and 10-20 m thick in the eastern part of the structure. Volcaniclastic deposits and structural features suggest that ascending magma entrained soft, saturated sediment host material into the feeder dike and erupted fluidal magma and wet sediment via weak, Strombolian-like explosions. Host sediment and erupted material subsided to replace the extracted sediments, producing the growth subsidence structure that is similar to upper diatreme facies in typical maar diatremes but lacks evidence for explosive disruption of diatreme fill. Irregularly shaped small intrusions extended from the main feeder dike into the diatreme, and many were disaggregated due to shifting and subsidence of diatreme fill and recycled via eruption. The Mardoux structure is an "unconventional" maar diatreme in that it was produced mainly by weak explosive activity rather than by violent phreatomagmatic explosions and is an example of complex coupling between soft sediment and ascending magma.

  15. Changes in the Circum-Alpine Climate as a Function of the Alpine Upliftment: Constraints from Isotopic Compositions of Fossils, Sediments, and Vein Quartz

    NASA Astrophysics Data System (ADS)

    Vennemann, T. W.; Tutken, T.; Kocsis, L.; Mullis, J.

    2005-12-01

    The Tertiary circum-Alpine Molasse sediments were deposited during major periods of Alpine tectonism but also at a time of large global climatic change. They are well suited to study the effects of tectonic forcing on climate, because the sediments were deposited in marginal basins, partly to completely isolated from other major oceanic basins. Hence, a comparison of the past climatic and oceanographic evolution indicated by the sediments to those on a global scale, does allow for a qualitative evaluation of the relationship between tectonism and regional climate. Much is known about the geological-geochronological framework of alpine tectonism, including associated erosional rates and sediment volumes. Estimates of changes in paleoelevation and its direct influence on climate have, however, been less well constrained. Three independent lines of evidence indicate significant altitudes of the Alps during the Miocene: 1) H isotope compositions of clay minerals, formed as weathering products and subsequently deposited as part of the Alpine Molasse, have δD reaching values as low as -97‰. 2) O isotope compositions of retrograde metamorphic vein and fissure quartz and H isotope composition of its included fluids have δ18O values as low as -3.5‰ and δD values of -140‰, respectively. 3) ``Exotic" shark teeth from Swiss Upper Marine Molasse sediments that have δ18O values (VSMOW) around 11‰ (n=2), values unlike those from other teeth of the same locality (20.7 to 21.8‰; n=6), but for which the REE patterns support the same diagenetic history, hence supporting a freshwater formation of the low δ18O teeth (also supported by distinct Sr isotope compositions). Using these three approaches as a basis for estimating the isotopic composition of past precipitation and applying the present-day altitude effects on the compositions, it can be concluded that the Miocene Alps had mean altitudes of about 1500 to 2000 m, that is elevations similar to those of today

  16. Benthic hypoxia and early diagenesis in the Black Sea shelf sediments

    NASA Astrophysics Data System (ADS)

    Plante, Audrey; Roevros, Nathalie; Capet, Arthur; Grégoire, Marilaure; Fagel, Nathalie; Chou, Lei

    2017-04-01

    Marine waters of semi-enclosed seas are affected by a major environmental issue which is oxygen depletion in bottom waters. Deoxygenation is one of the most widespread man-induced consequences which can be catastrophic for living species. Between 1970 and 1990, the benthic compartment of the Black Sea underwent modifications due to the occurrence and increase of hypoxia. Indeed, these changes might cause a deterioration of the structure and functioning of the ecosystems. Nowadays, some regions, such as the north-western shelf, are still affected seasonally by this phenomenon. Within the framework of the BENTHOX project, a biogeochemical study focusing on the early diagenesis is conducted in the Black Sea. It aims (1) to obtain a better understanding of the impact of benthic hypoxia on the diagenetic pathways, (2) to contribute to a new dataset of biogeochemical measurements in the sediments including porewaters. During a cruise (Emblas II - May 2016), on board the RV Mare Nigrum, sediment cores were taken at 4 stations on the Ukrainian shelf. Porewaters were extracted on board the ship using Rhizon technique under N2 atmosphere and will be analyzed for dissolved nutrients and major ions. In addition, sediments were sliced and will be determined for major solid phases and trace element contents. A multi-proxies (biological, sedimentological, mineralogical and geochemical) approach will be used to identify the hypoxic events and to reconstruct the history of bottom hypoxia. The results obtained will be presented and discussed with emphasis on the first outcomes and the major biogeochemical processes involved in the early diagenesis.

  17. Fast rates of subduction erosion along the Costa Rica Pacific margin: Implications for nonsteady rates of crustal recycling at subduction zones

    USGS Publications Warehouse

    Vannucchi, P.; Ranero, C.R.; Galeotti, S.; Straub, S.M.; Scholl, D. W.; McDougall-Ried, K.

    2003-01-01

    At least since the middle Miocene (???16 Ma), subduction erosion has been the dominant process controlling the tectonic evolution of the Pacific margin of Costa Rica. Ocean Drilling Program Site 1042 recovered 16.5 Ma nearshore sediment at ???3.9 km depth, ???7 km landward of the trench axis. The overlying Miocene to Quaternary sediment contains benthic foraminifera documenting margin subsidence from upper bathyal (???200 m) to abyssal (???2000 m) depth. The rate of subsidence was low during the early to middle Miocene but increased sharply in the late Miocene-early Pliocene (5-6.5 Ma) and at the Pliocene-Pleistocene boundary (2.4 Ma). Foraminifera data, bedding dip, and the geometry of slope sediment indicate that tilting of the forearc occurred coincident with the onset of rapid late Miocene subsidence. Seismic images show that normal faulting is widespread across the continental slope; however, extension by faulting only accounts for a minor amount of the post-6.5 Ma subsidence. Basal tectonic erosion is invoked to explain the subsidence. The short-term rate of removal of rock from the forearc is about 107-123 km3 Myr-1 km-1. Mass removal is a nonsteady state process affecting the chemical balance of the arc: the ocean sediment input, with the short-term erosion rate, is a factor of 10 smaller than the eroded mass input. The low 10Be concentration in the volcanic arc of Costa Rica could be explained by dilution with eroded material. The late Miocene onset of rapid subsidence is coeval with the arrival of the Cocos Ridge at the subduction zone. The underthrusting of thick and thermally younger ocean crust decreased the subduction angle of the slab along a large segment of the margin and changed the dynamic equilibrium of the margin taper. This process may have induced the increase in the rate of subduction erosion and thus the recycling of crustal material to the mantle. Copyright 2003 by the American Geophysical Union.

  18. The Evolution of Indian and Pacific Ocean Denitrification and Nitrogen Dynamcs since the Miocene

    NASA Astrophysics Data System (ADS)

    Ravelo, A. C.; Carney, C.; Rosenthal, Y.; Holbourn, A.; Kulhanek, D. K.

    2017-12-01

    The feedbacks between geochemical cycles and physical climate change are poorly understood; however, there has been tremendous progress in developing coupled models to help predict the direction and strength of these feedbacks. As such, there is a need for more data to validate and test these models. To this end, the nitrogen (N) cycle, and its links to the biological pump and to climate, is an active area of paleoceanographic research. Using N isotope records, Robinson et al. (2014) showed that pelagic denitrification in the Indian and Pacific Oceans intensified as climate cooled and subsurface ventilation decreased since the Pliocene. They pointed out that a more ventilated warm Pliocene contrasts with glacial-interglacial patterns wherein more ventilation occurs during cold phases, indicating that different mechanisms may occur at different timescales. Our objective is to better understand the nature of the feedbacks between the oceanic N cycle and climate by focusing on the large dynamic range of conditions that occurred during and since the Miocene. We used new cores drilled during IODP Expedition 363 to generate bulk sediment N isotope records at three western tropical Pacific sites (U1486, U1488, U1490) and one southeastern tropical Indian Ocean site (U1482). We find that the N isotope trends since the Pliocene are in agreement with previous studies showing increasing denitrification as climate cooled. In the Miocene, the Indian Ocean record shows no long-term N isotope trend whereas the Pacific Ocean records show a trend that is roughly coupled to changes in global climate suggesting that pelagic denitrification in the Pacific was strongly influenced by greater ventilation during global warmth. However, there are notable deviations from this coupling during several intervals in the Miocene, and there are site-to-site differences in trends. These deviations and differences can be explained by changes in tropical productivity (e.g., late Miocene biogenic

  19. Late Oligocene to Late Miocene Antarctic Climate Reconstructions Using Molecular and Isotopic Biomarker Proxies

    NASA Astrophysics Data System (ADS)

    Duncan, B.; Mckay, R. M.; Bendle, J. A.; Naish, T.; Levy, R. H.; Ventura, G. T.; Moossen, H. M.; Krishnan, S.; Pagani, M.

    2015-12-01

    Major climate and environmental changes occurred during late Oligocene to the late Miocene when atmospheric CO2 ranged between 500 and 300ppm, indicating threshold response of Antarctic ice sheets and climate to relatively modest CO2 variations. This implies that the southern high latitudes are highly sensitive to feedbacks associated with changes in global ice sheet and sea-ice extent, as well as terrestrial and marine ecosystems. This study focuses on two key intervals during the evolution of the Antarctic Ice Sheet: (1) The Late Oligocene and the Oligocene/Miocene boundary, when the East Antarctic Ice Sheet expanded close to present day volume following an extended period of inferred warmth. (2) The Mid-Miocene Climate Optimum (MMCO ~17-15 Ma), a period of global warmth and moderately elevated CO2 (350->500 ppm) which was subsequently followed by rapid cooling at 14-13.5 Ma. Reconstructions of climate and ice sheet variability, and thus an understanding of the various feedbacks that occurred during these intervals, are hampered by a lack of temperature and hydroclimate proxy data from the southern high latitudes. We present proxy climate reconstructions using terrestrial and marine organic biomarkers that provide new insights into Antarctica's climate evolution, using Antarctic drill cores and outcrop samples from a range of depositional settings. Bacterial ether-lipids have been analysed to determine terrestrial mean annual temperatures and soil pH (via the methylation and cyclisation indexes of branched tetraethers - MBT and CBT, respectively). Tetraether-lipids of crenarchaeota found in marine sediments sampled from continental shelves around Antarctica have been used to derive sea surface temperatures using the TEX86 index. Compound specific stable isotopes on n-alkanes sourced from terrestrial plants have been analysed to investigate changes in the hydrological and carbon cycles.

  20. Reconnaissance geochronology of tuffs in the Miocene Barstow Formation: implications for basin evolution and tectonics in the central Mojave Desert

    USGS Publications Warehouse

    Miller, David M.; Leslie, Shannon R.; Hillhouse, John W.; Wooden, Joseph L.; Vazquez, Jorge A.; Reynolds, R.E.

    2010-01-01

    Early to middle Miocene lacustrine strata of the Barstow Formation are well dated in just a few places, limiting our ability to infer basin evolution and regional tectonics. At the type section in the Mud Hills, previous studies have shown that the lacustrine interval of the Barstow Formation is between ~16.3 Ma and ~13.4 Ma. Elsewhere, lake beds of the Barstow Formation have yielded vertebrate fossils showing the Hemingfordian/Barstovian transition at ~16 Ma but are otherwise poorly dated. In an attempt to clarify the age and depositional environments of the lake deposits, we are mapping the Barstow Formation and dating zircons from interbedded tuffs, as well as testing ash-flow tuffs for the distinctive remanent magnetization direction of the widespread Peach Spring Tuff. Thus far, our new U-Pb zircon ages indicate that the Barstow lake beds contain tuff beds as old as 19.1 Ma and as young as 15.3 Ma. At Harvard Hill, Barstow lake beds contain a thick tuff dated at 18.7 Ma. On the basis of zircon ages, mineralogy, zircon chemistry, and paleomagnetic results, we consider the thick tuff to be a lacustrine facies of the Peach Spring Tuff. We have identified the Peach Spring Tuff by similar methods at eight localities over a broad area, providing a timeline for several fluvial and lacustrine sections. The new dates indicate that long-lived lacustrine systems originated before 19 Ma and persisted to at least 15 Ma. The onset of lacustrine conditions predates the Peach Spring Tuff in most Barstow Formation sections and may be older than 19.5 Ma in some places. The new data indicate that the central Mojave Desert contained narrow to broad lake basins during and after extension, and that Barstow lacustrine deposits did not exclusively postdate extensional tectonics. At present, it is unclear whether several separate, small lake basins coexisted during the early to middle Miocene, or if instead several small early Miocene basins gradually coalesced over about 6 million

  1. Reconnaissance geochronology of tuffs in the Miocene Barstow Formation: implications for basin evolution and tectonics in the central Mojave Desert

    USGS Publications Warehouse

    Miller, D.M.; Leslie, S.R.; Hillhouse, J.W.; Wooden, J.L.; Vazquez, J.A.; Reynolds, R.E.

    2010-01-01

    Early to middle Miocene lacustrine strata of the Barstow Formation are well dated in just a few places, limiting our ability to infer basin evolution and regional tectonics. At the type section in the Mud Hills, previous studies have shown that the lacustrine interval of the Barstow Formation is between ~16.3 Ma and ~13.4 Ma. Elsewhere, lake beds of the Barstow Formation have yielded vertebrate fossils showing the Hemingfordian/Bartovian transition at ~16 Ma but are otherwise poorly dated. In an attempt to clarify the age and depositional environments of the lake deposits, we are mapping the Barstow Formation and dating zircons from interbedded tuffs, as well as testing ash-flow tuffs for the distinctive remanent magnetization direction of the widespread Peach Spring Tuff. Thus far, our new U-Pb zircon ages inficate that the Barstow lake beds contain tuff beds as old as 19.1 Ma and as young as 15.3 Ma. At Harvard Hill, Barstow lake beds contain a thick tuff dated at 18.7 Ma. On the basis of zircon ages, mineralogy, zircon chemistry, and paleomagnetic results, we consider the thick tuff to be a lacustrine facies of the Peach Spring Tuff. We have identified the Peach Spring Tuff by similar methods at eight localities over a broad area, providing a timeline for several fluvial and lacustrine sections. The new dates indicate that long-lived lacustrine systems originated before 19 Ma and persisted to at least 15 Ma. The onset of lacustrine conditions predates the Peach Spring Tuff in most Barstow Formation sections and may be older than 19.5 Ma in some places. The new data indicate that the central Mojave Desert contained narrow to broad lake basins during and after extension, and that Barstow lacustrine deposits did not exclusively postdate extensional tectonics. At present, it is unclear whether several separate, small lake basins coexisted during the early to middle Miocene, or if instead several small early Miocene basins gradually coalesced over about 6 millions

  2. Glacial reduction of AMOC strength and long-term transition in weathering inputs into the Southern Ocean since the mid-Miocene: Evidence from radiogenic Nd and Hf isotopes

    NASA Astrophysics Data System (ADS)

    Dausmann, Veit; Frank, Martin; Gutjahr, Marcus; Rickli, Jörg

    2017-03-01

    Combined seawater radiogenic hafnium (Hf) and neodymium (Nd) isotope compositions were extracted from bulk sediment leachates and foraminifera of Site 1088, Ocean Drilling Program Leg 177, 2082 m water depth on the Agulhas Ridge. The new data provide a continuous reconstruction of long- and short-term changes in ocean circulation and continental weathering inputs since the mid-Miocene. Due to its intermediate water depth, the sediments of this core sensitively recorded changes in admixture of North Atlantic Deep Water to the Antarctic Circumpolar Current as a function of the strength of the Atlantic Meridional Overturning Circulation (AMOC). Nd isotope compositions (ɛNd) range from -7 to -11 with glacial values generally 1 to 3 units more radiogenic than during the interglacials of the Quaternary. The data reveal episodes of significantly increased AMOC strength during late Miocene and Pliocene warm periods, whereas peak radiogenic ɛNd values mark a strongly diminished AMOC during the major intensification of Northern Hemisphere Glaciation near 2.8 Ma and in the Pleistocene after 1.5 Ma. In contrast, the Hf isotope compositions (ɛHf) show an essentially continuous evolution from highly radiogenic values of up to +11 during the Miocene to less radiogenic present-day values (+2 to +4) during the late Quaternary. The data document a long-term transition in dominant weathering inputs, where inputs from South America are replaced by those from Southern Africa. Moreover, radiogenic peaks provide evidence for the supply of radiogenic Hf originating from Patagonian rocks to the Atlantic sector of the Southern Ocean via dust inputs.

  3. Eocene and Miocene extension, meteoric fluid infiltration, and core complex formation in the Great Basin (Raft River Mountains, Utah)

    USGS Publications Warehouse

    Methner, Katharina; Mulch, Andreas; Teyssier, Christian; Wells, Michael L.; Cosca, Michael A.; Gottardi, Raphael; Gebelin, Aude; Chamberlain, C. Page

    2015-01-01

    Metamorphic core complexes (MCCs) in the North American Cordillera reflect the effects of lithospheric extension and contribute to crustal adjustments both during and after a protracted subduction history along the Pacific plate margin. While the Miocene-to-recent history of most MCCs in the Great Basin, including the Raft River-Albion-Grouse Creek MCC, is well documented, early Cenozoic tectonic fabrics are commonly severely overprinted. We present stable isotope, geochronological (40Ar/39Ar), and microstructural data from the Raft River detachment shear zone. Hydrogen isotope ratios of syntectonic white mica (δ2Hms) from mylonitic quartzite within the shear zone are very low (−90‰ to −154‰, Vienna SMOW) and result from multiphase synkinematic interaction with surface-derived fluids. 40Ar/39Ar geochronology reveals Eocene (re)crystallization of white mica with δ2Hms ≥ −154‰ in quartzite mylonite of the western segment of the detachment system. These δ2Hms values are distinctively lower than in localities farther east (δ2Hms ≥ −125‰), where 40Ar/39Ar geochronological data indicate Miocene (18–15 Ma) extensional shearing and mylonitic fabric formation. These data indicate that very low δ2H surface-derived fluids penetrated the brittle-ductile transition as early as the mid-Eocene during a first phase of exhumation along a detachment rooted to the east. In the eastern part of the core complex, prominent top-to-the-east ductile shearing, mid-Miocene 40Ar/39Ar ages, and higher δ2H values of recrystallized white mica, indicate Miocene structural and isotopic overprinting of Eocene fabrics.

  4. Early to middle Miocene climate evolution: New insights from IODP Sites U1335, U1337 and U1338 (eastern equatorial Pacific Ocean)

    NASA Astrophysics Data System (ADS)

    Kochhann, Karlos G. D.; Holbourn, Ann; Kuhnt, Wolfgang; Lyle, Mitch; Raffi, Isabella; Channell, James E.; Andersen, Nils

    2015-04-01

    The lower to middle Miocene (~20 to 13 Ma) carbonate-rich sedimentary successions recovered at Integrated Ocean Drilling Program (IODP) Sites U1335, U1337 and U1338 allow unsurpassed resolution over the Climatic Optimum (16.9-14.7 Ma) and the transition into a colder climate mode after 13.9 Ma with re-establishment of permanent Antarctic ice sheets. High-resolution (1-10 kyr) stable carbon (δ13C) and oxygen (δ18O) isotopes of well-preserved epibenthic foraminifera (Cibicidoides mundulus and Planulina wuellerstorfi) from these three sites show that the Climatic Optimum was characterized by high-amplitude climate variations and intense perturbations of the carbon cycle. Episodes of peak warmth coincided with transient shoaling of the carbonate compensation depth and enhanced carbonate dissolution in the deep ocean. The U1335 and U1337 records additionally reveal that the rapid global warming and/or polar ice melting event, marking the onset of the Climatic Optimum at ~16.9 Ma, was coupled to a massive increase in carbonate dissolution, indicated by sharp drops in carbonate percentages and accumulation rates and by the fragmentation or complete dissolution of planktonic foraminifers. After ~14.7 Ma, stepwise global cooling, culminating with extensive ice growth over Antarctica at ~13.8 Ma, coincide with enhanced opal and benthic foraminiferal accumulation rates, suggesting that increased siliceous productivity and organic carbon burial may have contributed to CO2 drawdown. Integration of age models derived from orbitally-tuned, high-resolution isotopes, biostratigraphic data and magnetic reversals allows further constraints on the temporal sequence of events and helps unravel the drivers of early to middle Miocene climate variations.

  5. Reconstructing paleoceanographic conditions during the Oligocene/Miocene Boundary using walled dinoflagellate cysts and TEX86: IODP Expedition 318, Wilkes Land, Antarctic margin

    NASA Astrophysics Data System (ADS)

    Bijl, Peter; Bruls, Anja; Hartman, Julian D.; Sangiorgi, Francesca; Peterse, Francien

    2017-04-01

    Wilkes land is potentially a sensitive sector of the East Antarctic Ice Sheet (EAIS), because Wilkes subglacial basin is largely below sea level. In light of this, understanding changes in ice volume in this sector of Antarctica during past episodes of warmth may help constrain future ice sheet melt in the region. Integrated Ocean Drilling Program Expedition 318 was intended to drill and recover from the Wilkes Land continental Margin to reconstruct the history of the East Antarctic ice sheet (EAIS). The integrated bio-magnetostratigraphic age model for IODP Site U1356 is quite robust for the entire stratigraphic record, but in the Oligocene-Miocene boundary interval, the details of the age model are somewhat elusive. Notably it is uncertain whether sediments dating back to the Mi-1 glaciation event, at the Oligocene-Miocene boundary, are represented in the record. This research presents a revised age model for the interval around the OMT and gives a paleoceanographic interpretation of Site U1356 based on dinocyst ecology and TEX86 biomarker proxy. The finding of the dinocyst species Edwardsiella sexispinosa provides for an additional dinocyst event, and revised the location of the OMT. Core 45R likely represents the base of the Miocene and Core 46R and Core 47R represents the late Oligocene between 23.23 to 25.1 Ma. The dinocyst ecology indicated varying intervals of mostly Protoperidinioid genera to mostly Gonyaulacoid genera, that represent high productivity conditions and oligotrophic conditions respectively. These changing ecological conditions have been related to the a changing upwelling regime along the Wilkes Land margin, which is connected to the polar wind field and positively correlated to the extent of the Antarctic ice sheets. Sea ice conditions are absent along the Wilkes Land margin throughout this part of the record, therefore deep-water formation would also have been reduced. The SST record provided by TEX86 biomarker proxy indicates a decreasing

  6. The first fossil brown lacewing from the Miocene of the Tibetan Plateau (Neuroptera, Hemerobiidae)

    PubMed Central

    Yang, Qiang; Shi, Chaofan; Li, Xiangchuan; Pang, Hong; Ren, Dong

    2018-01-01

    Abstract A new species of Hemerobiidae, Wesmaelius makarkini Yang, Pang & Ren, sp. n. is described from the Lower Miocene, Garang Formation of Zeku County, Qinghai Province (northeastern Tibetan Plateau), China. The species is assigned to the widely distributed extant genus Wesmaelius Krüger (Hemerobiinae). The species represents the first named fossil of this family from China, which sheds light on the historical distribution of Wesmaelius and early divergences within Hemerobiinae. PMID:29430206

  7. Geochemical constraints on the provenance and depositional environment of the Messinian sediments, onshore Nile Delta, Egypt: Implications for the late Miocene paleogeography of the Mediterranean

    NASA Astrophysics Data System (ADS)

    Leila, Mahmoud; Moscariello, Andrea; Šegvić, Branimir

    2018-07-01

    setting and their source rocks were originated in a continental collision tectonic setting that lasted from Late Cretaceous to Oligo-Miocene time. This is confirmed by the Nb/Ta, Zr/Sm ratios coupled with the pronounced Nb, Ta, P, Ti anomalies and enrichments in Pb and U relative to primitive mantle typical of subduction zone environment. The petrographical and geochemical results suggest the MSC Abu Madi sediments to have been eroded and recycled from the older pre-MSC Qawasim sediments by gravity-flow processes and fluvial channels prior to redeposition as incised-valley-fills during the late stage of the MSC. The geochemical paleoenvironmental indicators such as C-value, Sr/Cu and Sr/Ba confirm arid-dry climatic conditions during the onset of the MSC consistent with the Mediterranean desiccation. These indicators also depict a transition from freshwater to relatively normal salinity conditions during the late stage of the MSC. Geochemical results presented in this study support the retrogradational depositional infill of the Messinian incised valleys in the Nile Delta, thus confirming an incipient rise in the Mediterranean Sea level prior to the major Zanclean flooding.

  8. Changing seasonality patterns in Central Europe from Miocene Climate Optimum to Miocene Climate Transition deduced from the Crassostrea isotope archive

    NASA Astrophysics Data System (ADS)

    Harzhauser, Mathias; Piller, Werner E.; Müllegger, Stefan; Grunert, Patrick; Micheels, Arne

    2011-03-01

    The Western Tethyan estuarine oyster Crassostrea gryphoides is an excellent climate archive due to its large size and rapid growth. It is geologically long lived and allows a stable isotope-based insight into climatic trends during the Miocene. Herein we utilised the climate archive of 5 oyster shells from the Miocene Climate Optimum (MCO) and the subsequent Miocene Climate Transition (MCT) to evaluate changes of seasonality patterns. MCO shells exhibit highly regular seasonal rhythms of warm-wet and dry-cool seasons. Optimal conditions resulted in extraordinary growth rates of the oysters. δ 13C profiles are in phase with δ 18O although phytoplankton blooms may cause a slight offset. Estuarine waters during the MCO in Central Europe display a seasonal temperature range of c. 9-10 °C. Absolute water temperatures have ranged from 17 to 19 °C during cool seasons and up to 28 °C in warm seasons. Already during the early phase of the MCO, the growth rates are distinctly declining, although gigantic and extremely old shells have been formed at that time. Still, a very regular and well expressed seasonality is dominating the isotope profiles, but episodically occurring extreme climate events influence the environments. The seasonal temperature range is still c. 9 °C but the cool season temperature seems to be slightly lower (16 °C) and the warm season water temperature does not exceed c. 25 °C. In the later MCT at c. 12.5-12.0 Ma the seasonality pattern is breaking down and is replaced by successions of dry years with irregular precipitation events. No correlation between δ 18O and δ 13C is documented maybe due to a suboptimal nutrition level which would explain the low growth rates and small sizes. The amplitude of seasonal temperature range is decreasing to 5-8 °C. No clear cooling trend can be postulated for that time as the winter season water temperatures range from 15 to 20 °C. This may point to unstable precipitation rhythms on a multi-annual to

  9. Evidence for Extending Anomalous Miocene Volcanism at the Edge of the East Antarctic Craton

    NASA Astrophysics Data System (ADS)

    Licht, K. J.; Groth, T.; Townsend, J. P.; Hennessy, A. J.; Hemming, S. R.; Flood, T. P.; Studinger, M.

    2018-04-01

    Using field observations followed by petrological, geochemical, geochronological, and geophysical data, we infer the presence of a previously unknown Miocene subglacial volcanic center 230 km from the South Pole. Evidence of volcanism is from boulders of olivine-bearing amygdaloidal/vesicular basalt and hyaloclastite deposited in a moraine in the southern Transantarctic Mountains. 40Ar/39Ar ages from five specimens plus U-Pb ages of detrital zircon from glacial till indicate igneous activity 25-17 Ma. The likely source of the volcanism is a circular -735 nT magnetic anomaly 60 km upflow from the sampling site. Subaqueous textures of the volcanics indicate eruption beneath ice or into water at the margin of an ice mass during the early Miocene. These rocks record the southernmost Cenozoic volcanism in Antarctica and expand the known extent of the oldest lavas associated with West Antarctic Rift system. They may be an expression of lithospheric foundering beneath the southern Transantarctic Mountains.

  10. Understanding the murky history of the Coral Triangle: Miocene corals and reef habitats in East Kalimantan (Indonesia)

    NASA Astrophysics Data System (ADS)

    Santodomingo, Nadiezhda; Renema, Willem; Johnson, Kenneth G.

    2016-09-01

    Studies on ancient coral communities living in marginal conditions, including low light, high turbidity, extreme temperatures, or high nutrients, are important to understand the current structure of reefs and how they could potentially respond to global changes. The main goal of this study was to document the rich and well-preserved fossil coral fauna preserved in Miocene exposures of the Kutai Basin in East Kalimantan, Indonesia. Our collections include almost forty thousand specimens collected from 47 outcrops. Seventy-nine genera and 234 species have been identified. Three different coral assemblages were found corresponding to small patch reefs that developed under the influence of high siliciclastic inputs from the Mahakam Delta. Coral assemblages vary in richness, structure, and composition. Platy coral assemblages were common until the Serravallian (Middle Miocene), while branching coral assemblages became dominant in the Tortonian (Late Miocene). By the late Tortonian massive coral assemblages dominated, similar to modern-style coral framework. Our results suggest that challenging habitats, such as the Miocene turbid habitats of East Kalimantan, might have played an important role during the early diversification of the Coral Triangle by hosting a pool of resilient species more likely to survive the environmental changes that have affected this region since the Cenozoic. Further research that integrates fossil and recent turbid habitats may provide a glimpse into the dynamics and future of coral reefs as "typical" clear-water reefs continue to decline in most regions.

  11. Comment on "Geochemistry of the Early Miocene volcanic succession of Northland, New Zealand, and implications for the evolution of subduction in the Southwest Pacific" by M.A. Booden, I.E.M. Smith, P.M. Black and J.L. Mauk

    NASA Astrophysics Data System (ADS)

    Schellart, W. P.

    2012-01-01

    In a recent paper Booden et al. (2011) present new geochemical and petrological data of Early Miocene volcanics from the Northland region (Northland volcanic belt) in New Zealand, and interpret these data to support a particular regional tectonic model. This tectonic model involves Early Miocene westward subduction of Cretaceous Pacific oceanic lithosphere below the Northland volcanic belt and the authors interpret the volcanic belt as a continental magmatic arc. Although the new data are not in disagreement with such a tectonic model, they provide more support for an alternative interpretation that involves a northeast-dipping subduction zone. Furthermore, geometric and plate kinematic data show that the west-dipping subduction model is unviable, geological and geophysical data contradict the model, while geodynamic arguments indicate that the model is implausible. Here it will be shown that a subduction model, involving a northeast-dipping southwestward retreating slab (made of the Late Cretaceous-Paleocene South Loyalty backarc basin lithosphere) that subsequently detaches, is in agreement with the local geology, geophysics and geochemistry, is geometrically, kinematically and geodynamically viable, and fits within the regional Southwest Pacific tectonic framework.

  12. Mineralogy and source rock evaluation of the marine Oligo-Miocene sediments in some wells in the Nile Delta and North Sinai, Egypt

    NASA Astrophysics Data System (ADS)

    El sheikh, Hassan; Faris, Mahmoud; Shaker, Fatma; Kumral, Mustafa

    2016-06-01

    This paper aims to study the mineralogical composition and determine the petroleum potential of source rocks of the Oligocene-Miocene sequence in the Nile Delta and North Sinai districts. The studied interval in the five wells can be divided into five rock units arranged from the top to base; Qawasim, Sidi Salem, Kareem, Rudeis, and Qantara formations. The bulk rock mineralogy of the samples was investigated using X-Ray Diffraction technique (XRD). The results showed that the sediments of the Nile Delta area are characterized by the abundance of quartz and kaolinite with subordinate amounts of feldspars, calcite, gypsum, dolomite, and muscovite. On the other hand, the data of the bulk rock analysis at the North Sinai wells showed that kaolinite, quartz, feldspar and calcite are the main constituents associated with minor amounts of dolomite, gypsum, mica, zeolite, and ankerite. Based on the organic geochemical investigations (TOC and Rock-Eval pyrolysis analyses), all studied formations in both areas are thermally immature but in the Nile delta area, Qawasim, Sidi Salem and Qantara formations (El-Temsah-2 Well) are organically-rich and have a good petroleum potential (kerogen Type II-oil-prone), while Rudeis Formation is a poor petroleum potential source rock (kerogen Type III-gas-prone). In the North Sinai area, Qantara Formation has a poor petroleum potential (kerogen Type III-gas-prone) and Sidi Salem Formation (Bardawil-1 Well) is a good petroleum potential source rock (kerogen Type II-oil-prone).

  13. Miocene block uplift and basin formation in the Patagonian foreland: The Gastre Basin, Argentina

    NASA Astrophysics Data System (ADS)

    Bilmes, A.; D'Elia, L.; Franzese, J. R.; Veiga, G. D.; Hernández, M.

    2013-08-01

    The intraplate fault-block mountains and intermontane deposits of the Gastre Basin, which are recorded more than 550 km east of the Andean trench in central Patagonia, Argentina, are analyzed. The Gastre Basin is one of the largest Patagonian intermontane basins, limited by uplifted blocks strongly oblique to the Andean chain. It was originated by reverse faulting and inversion of pre-existing normal faults associated with a Mesozoic rift basin and defined by older crustal heterogeneities. The deformational event occurred during the middle Miocene, related to a short contractional episode (16.1-14.86 Ma), probably in response to an eastward migration of the Andean fold and thrust belt. During Pliocene to Quaternary times, neither younger fault-block uplifts nor reconfigurations of the basin occurred. Similarities between the study area and other parts of the Patagonian foreland - such as the presence of Miocene reverse or inversion tectonics, as well as the accommodation of the Miocene sedimentary successions - suggest that the Gastre Basin is part of a major late early to middle Miocene broken foreland system (i.e. the Patagonian broken foreland) that exhumed discrete fault-block mountains and generated contemporary basins along more than 950 km parallel to the Andean trench (i.e. between 40°00' and 48°00' south latitude). Based on recent studies on the southern Andean Margin, this continental-scale contractional episode may be the result of a flat-slab subduction segment. Nevertheless, such a hypothesis is very difficult to support when analyzing such a large flat subduction segment along the entire Patagonian trench. This suggests the need to consider alternative flat-slab trigger mechanisms or other factors in the generation of broken foreland systems.

  14. Boundary conditions for the Middle Miocene Climate Transition (MMCT v1.0)

    NASA Astrophysics Data System (ADS)

    Frigola, Amanda; Prange, Matthias; Schulz, Michael

    2018-04-01

    The Middle Miocene Climate Transition was characterized by major Antarctic ice sheet expansion and global cooling during the interval ˜ 15-13 Ma. Here we present two sets of boundary conditions for global general circulation models characterizing the periods before (Middle Miocene Climatic Optimum; MMCO) and after (Middle Miocene Glaciation; MMG) the transition. These boundary conditions include Middle Miocene global topography, bathymetry, and vegetation. Additionally, Antarctic ice volume and geometry, sea level, and atmospheric CO2 concentration estimates for the MMCO and the MMG are reviewed. The MMCO and MMG boundary conditions have been successfully applied to the Community Climate System Model version 3 (CCSM3) to provide evidence of their suitability for global climate modeling. The boundary-condition files are available for use as input in a wide variety of global climate models and constitute a valuable tool for modeling studies with a focus on the Middle Miocene.

  15. dSED: A database tool for modeling sediment early diagenesis

    NASA Astrophysics Data System (ADS)

    Katsev, S.; Rancourt, D. G.; L'Heureux, I.

    2003-04-01

    Sediment early diagenesis reaction transport models (RTMs) are becoming powerful tools in providing kinetic descriptions of the metal and nutrient diagenetic cycling in marine, lacustrine, estuarine, and other aquatic sediments, as well as of exchanges with the water column. Whereas there exist several good database/program combinations for thermodynamic equilibrium calculations in aqueous systems, at present there exist no database tools for classification and analysis of the kinetic data essential to RTM development. We present a database tool that is intended to serve as an online resource for information about chemical reactions, solid phase and solute reactants, sorption reactions, transport mechanisms, and kinetic and equilibrium parameters that are relevant to sediment diagenesis processes. The list of reactive substances includes but is not limited to organic matter, Fe and Mn oxides and oxyhydroxides, sulfides and sulfates, calcium, iron, and manganese carbonates, phosphorus-bearing minerals, and silicates. Aqueous phases include dissolved carbon dioxide, oxygen, methane, hydrogen sulfide, sulfate, nitrate, phosphate, some organic compounds, and dissolved metal species. A number of filters allow extracting information according to user-specified criteria, e.g., about a class of substances contributing to the cycling of iron. The database also includes bibliographic information about published diagenetic models and the reactions and processes that they consider. At the time of preparing this abstract, dSED contained 128 reactions and 12 pre-defined filters. dSED is maintained by the Lake Sediment Structure and Evolution (LSSE) group at the University of Ottawa (www.science.uottawa.ca/LSSE/dSED) and we invite input from the geochemical community.

  16. Evolution of the early Antarctic ice ages

    NASA Astrophysics Data System (ADS)

    Liebrand, Diederik; de Bakker, Anouk T. M.; Beddow, Helen M.; Wilson, Paul A.; Bohaty, Steven M.; Ruessink, Gerben; Pälike, Heiko; Batenburg, Sietske J.; Hilgen, Frederik J.; Hodell, David A.; Huck, Claire E.; Kroon, Dick; Raffi, Isabella; Saes, Mischa J. M.; van Dijk, Arnold E.; Lourens, Lucas J.

    2017-04-01

    Understanding the stability of the early Antarctic ice cap in the geological past is of societal interest because present-day atmospheric CO2 concentrations have reached values comparable to those estimated for the Oligocene and the Early Miocene epochs. Here we analyze a new high-resolution deep-sea oxygen isotope (δ18O) record from the South Atlantic Ocean spanning an interval between 30.1 My and 17.1 My ago. The record displays major oscillations in deep-sea temperature and Antarctic ice volume in response to the ˜110-ky eccentricity modulation of precession. Conservative minimum ice volume estimates show that waxing and waning of at least ˜85 to 110% of the volume of the present East Antarctic Ice Sheet is required to explain many of the ˜110-ky cycles. Antarctic ice sheets were typically largest during repeated glacial cycles of the mid-Oligocene (˜28.0 My to ˜26.3 My ago) and across the Oligocene-Miocene Transition (˜23.0 My ago). However, the high-amplitude glacial-interglacial cycles of the mid-Oligocene are highly symmetrical, indicating a more direct response to eccentricity modulation of precession than their Early Miocene counterparts, which are distinctly asymmetrical—indicative of prolonged ice buildup and delayed, but rapid, glacial terminations. We hypothesize that the long-term transition to a warmer climate state with sawtooth-shaped glacial cycles in the Early Miocene was brought about by subsidence and glacial erosion in West Antarctica during the Late Oligocene and/or a change in the variability of atmospheric CO2 levels on astronomical time scales that is not yet captured in existing proxy reconstructions.

  17. Evolution of the early Antarctic ice ages

    PubMed Central

    de Bakker, Anouk T. M.; Beddow, Helen M.; Wilson, Paul A.; Bohaty, Steven M.; Pälike, Heiko; Batenburg, Sietske J.; Hilgen, Frederik J.; Hodell, David A.; Huck, Claire E.; Kroon, Dick; Raffi, Isabella; Saes, Mischa J. M.; van Dijk, Arnold E.; Lourens, Lucas J.

    2017-01-01

    Understanding the stability of the early Antarctic ice cap in the geological past is of societal interest because present-day atmospheric CO2 concentrations have reached values comparable to those estimated for the Oligocene and the Early Miocene epochs. Here we analyze a new high-resolution deep-sea oxygen isotope (δ18O) record from the South Atlantic Ocean spanning an interval between 30.1 My and 17.1 My ago. The record displays major oscillations in deep-sea temperature and Antarctic ice volume in response to the ∼110-ky eccentricity modulation of precession. Conservative minimum ice volume estimates show that waxing and waning of at least ∼85 to 110% of the volume of the present East Antarctic Ice Sheet is required to explain many of the ∼110-ky cycles. Antarctic ice sheets were typically largest during repeated glacial cycles of the mid-Oligocene (∼28.0 My to ∼26.3 My ago) and across the Oligocene−Miocene Transition (∼23.0 My ago). However, the high-amplitude glacial−interglacial cycles of the mid-Oligocene are highly symmetrical, indicating a more direct response to eccentricity modulation of precession than their Early Miocene counterparts, which are distinctly asymmetrical—indicative of prolonged ice buildup and delayed, but rapid, glacial terminations. We hypothesize that the long-term transition to a warmer climate state with sawtooth-shaped glacial cycles in the Early Miocene was brought about by subsidence and glacial erosion in West Antarctica during the Late Oligocene and/or a change in the variability of atmospheric CO2 levels on astronomical time scales that is not yet captured in existing proxy reconstructions. PMID:28348211

  18. Late Miocene (Proto-Gulf) Extension and Magmatism on the Sonoran Margin

    NASA Astrophysics Data System (ADS)

    Gans, P.; MacMillan, I.; Roldan-Quintana, J.

    2003-12-01

    Constraints on the magnitude and character of late Miocene (Proto-Gulf) deformation on the Sonoran margin of the Gulf of California extensional province are key to understanding how and when Baja California was captured by the Pacific plate and how strain was partitioned during the early stages of this transtensional rift system. Our new geologic mapping in southwestern Sonora and 40Ar/39Ar dating of pre-, syn-, and post-tectonic volcanic units indicate that late Miocene deformation and volcanic activity were largely restricted to a NW-trending, 100-120 km wide belt adjacent to the coast. Inboard of this belt, NW-SE extension is mainly older (>15 Ma) and occurred in an intra-arc or back-arc setting. Proto-Gulf deformation within the coastal belt was profoundly transtensional, with NW-striking, dextral strike slip faults operating in concert with N-S and NNE-striking normal and oblique slip faults to produce an inferred NW or NNW tectonic transport direction. The total amount of late Miocene NW directed dextral shear within the coastal belt is still poorly constrained, but may exceed 100 km. The locus of deformation and volcanic activity migrated westward or northwestward within the Sonoran coastal belt. in the eastern portion (Sierra Libre and Sierra El Bacatete) major volcanic activity commenced at ˜13.0 Ma and peaked at 12.0 Ma, and major faulting and tilting is bracketed between 12.0 and 10.6 Ma. Further west in the Sierra El Aguaje/San Carlos region, major volcanic activity commenced at 11.5 Ma and peaked at 10.5 Ma, and most faulting and tilting is bracketed between 10.7 and 9.3 Ma. On the coastal mountains northwest of San Carlos, rift related faulting and tilting continued after 8.5 Ma. Voluminous late Miocene (13-8 Ma) volcanic rocks within the Sonoran coastal belt were erupted from numerous centers (e.g. Sierra Libre, Guaymas, Sierra El Aguaje). These thick volcanic sections are compositionally diverse (basalt to rhyolite, with abundant dacite and

  19. Glacial Extent in the Western Ross Sea During the Early Miocene Climatic Optimum (18-16 Ma): Results From The ANDRILL AND-2A Drillcore, Southern McMurdo Sound Project, Antarctica

    NASA Astrophysics Data System (ADS)

    Pekar, S. F.; Hauptvogel, D.; Florindo, F.

    2012-12-01

    event. In contrast, between 400 and 645 mbsf, little evidence exists for subglacial grounding over the site, with sequence boundary formation generally controlled by local sea-level changes, with glacial processes being subdominant. This interval correlates to the early Miocene Climatic Optimum (17.3-16.3 Ma).

  20. Hopane Biomarkers Traced from Bedrock to Recent Sediments and Ice at the Haughton Impact Structure, Devon Island: Implications for the Search for Biomarkers on Mars

    NASA Technical Reports Server (NTRS)

    Parnell, J.; Osinski, G. R.; Lee, P.; Cockell, C. C.; Taylor, C. W.

    2004-01-01

    Hopanoid biomarkers have been successsfully traced from Palaeozoic target bedrock to Miocene impact-processed rocks, post-impact sediments, and Qu aternary ice at the Haughton impact Structure, Devon Island, High Arctic, suggesting that similar biomarkers and techniques to detect them might provide a promising strategy in the search for biomarkers in rocks, sediments and ice on Mars.

  1. Miocene burial and exhumation of the India-Asia collision zone in southern Tibet: response to slab dynamics and erosion

    USGS Publications Warehouse

    Carrapa, Barbara; Orme, D.A.; DeCelles, Peter G.; Kapp, Paul; Cosca, Michael A.; Waldrip, R.

    2014-01-01

    The India-Asia collision zone in southern Tibet preserves a record of geodynamic and erosional processes following intercontinental collision. Apatite fission-track and zircon and apatite (U-Th)/He data from the Oligocene–Miocene Kailas Formation, within the India-Asia collision zone, show a synchronous cooling signal at 17 ± 1 Ma, which is younger than the ca. 26–21 Ma depositional age of the Kailas Formation, constrained by U-Pb and 40Ar/39Ar geochronology, and requires heating (burial) after ca. 21 Ma and subsequent rapid exhumation. Data from the Gangdese batholith underlying the Kailas Formation also indicate Miocene exhumation. The thermal history of the Kailas Formation is consistent with rapid subsidence during a short-lived phase of early Miocene extension followed by uplift and exhumation driven by rollback and northward underthrusting of the Indian plate, respectively. Significant removal of material from the India-Asia collision zone was likely facilitated by efficient incision of the paleo–Indus River and paleo–Yarlung River in response to drainage reorganization and/or intensification of the Asian monsoon.

  2. Apatite fission track evidence for Miocene denudation history in the Gangdese conglomerate belt and Yarlung Tsangpo River: Implications for the evolution of Southern Tibet

    NASA Astrophysics Data System (ADS)

    Song, Shiyu; Cao, Daiyong; Zhang, QingChao; Wang, Anming; Peng, Yangwen

    2018-07-01

    Low-temperature thermochronology is used widely in the Tibet plateau uplift. Some researches, however, have defined the time of rapid denudation as simply rock uplift and have neglected the fact that the rock denudation recorded by fission track (FT) data was controlled by both surface incision and rock uplift. The incision of the Yarlung Zangbo River had a significant influence on uplift history inversion in Southern Tibet. This paper simulated the bedrock denudation and river incision histories using apatite fission track (AFT) data sampled from the Gangdese conglomerate belt, which is located in the middle of Southern Tibet, and analyzed the geological meaning of the AFT age of each sample. The results showed the following: (1) In the early Miocene (22-16 Ma), both the value of the denudation rate and the incision rate were high (0.56 mm/yr and 0.24 mm/yr). (2) In the middle-late Miocene, the incision rate (0.12 mm/yr) was similar to the denudation rate (0.09-0.11 mm/yr). (3) The historical model between river incision and bedrock denudation revealed a significant difference in the denudation rate during the period ca. 8-6 Ma. Combining these data with previously published thermochronological ages and synthesizing these ages with regional geological, we arrived at the following conclusions: (1) In the early Miocene, the denudation event probably was caused by a combined result of Indian plate rollback and the incision of the Yarlung Zangbo River. (2) In the middle-late Miocene, the denudation rate was consistent with the incision rate, which suggested that the denudation episode was caused by climate change associated with Asian monsoon intensification. (3) After 8 Ma, the stable and slow incision rate indicated that regional drastic uplift had ceased. The paleo-elevation of the research area had approached, and even exceeded, the present-day elevation in the late Miocene.

  3. Correlating carbon and oxygen isotope events in early to middle Miocene shallow marine carbonates in the Mediterranean region using orbitally tuned chemostratigraphy and lithostratigraphy

    PubMed Central

    Piller, Werner E.; Reuter, Markus; Harzhauser, Mathias

    2015-01-01

    Abstract During the Miocene prominent oxygen isotope events (Mi‐events) reflect major changes in glaciation, while carbonate isotope maxima (CM‐events) reflect changes in organic carbon burial, particularly during the Monterey carbon isotope excursion. However, despite their importance to the global climate history they have never been recorded in shallow marine carbonate successions. The Decontra section on the Maiella Platform (central Apennines, Italy), however, allows to resolve them for the first time in such a setting during the early to middle Miocene. The present study improves the stratigraphic resolution of parts of the Decontra section via orbital tuning of high‐resolution gamma ray (GR) and magnetic susceptibility data to the 405 kyr eccentricity metronome. The tuning allows, within the established biostratigraphic, sequence stratigraphic, and isotope stratigraphic frameworks, a precise correlation of the Decontra section with pelagic records of the Mediterranean region, as well as the global paleoclimatic record and the global sea level curve. Spectral series analyses of GR data further indicate that the 405 kyr orbital cycle is particularly well preserved during the Monterey Event. Since GR is a direct proxy for authigenic uranium precipitation during increased burial of organic carbon in the Decontra section, it follows the same long‐term orbital pacing as observed in the carbon isotope records. The 405 kyr GR beat is thus correlated with the carbon isotope maxima observed during the Monterey Event. Finally, the Mi‐events can now be recognized in the δ18O record and coincide with plankton‐rich, siliceous, or phosphatic horizons in the lithology of the section. PMID:27546980

  4. Correlating carbon and oxygen isotope events in early to middle Miocene shallow marine carbonates in the Mediterranean region using orbitally tuned chemostratigraphy and lithostratigraphy

    NASA Astrophysics Data System (ADS)

    Auer, Gerald; Piller, Werner E.; Reuter, Markus; Harzhauser, Mathias

    2015-04-01

    During the Miocene prominent oxygen isotope events (Mi-events) reflect major changes in glaciation, while carbonate isotope maxima (CM-events) reflect changes in organic carbon burial, particularly during the Monterey carbon isotope excursion. However, despite their importance to the global climate history they have never been recorded in shallow marine carbonate successions. The Decontra section on the Maiella Platform (central Apennines, Italy), however, allows to resolve them for the first time in such a setting during the early to middle Miocene. The present study improves the stratigraphic resolution of parts of the Decontra section via orbital tuning of high-resolution gamma ray (GR) and magnetic susceptibility data to the 405 kyr eccentricity metronome. The tuning allows, within the established biostratigraphic, sequence stratigraphic, and isotope stratigraphic frameworks, a precise correlation of the Decontra section with pelagic records of the Mediterranean region, as well as the global paleoclimatic record and the global sea level curve. Spectral series analyses of GR data further indicate that the 405 kyr orbital cycle is particularly well preserved during the Monterey Event. Since GR is a direct proxy for authigenic uranium precipitation during increased burial of organic carbon in the Decontra section, it follows the same long-term orbital pacing as observed in the carbon isotope records. The 405 kyr GR beat is thus correlated with the carbon isotope maxima observed during the Monterey Event. Finally, the Mi-events can now be recognized in the δ18O record and coincide with plankton-rich, siliceous, or phosphatic horizons in the lithology of the section.

  5. New magnetochronology of Late Miocene mammal fauna, NE Tibetan Plateau, China: Mammal migration and paleoenvironments

    NASA Astrophysics Data System (ADS)

    Ao, Hong; Zhang, Peng; Dekkers, Mark J.; Roberts, Andrew P.; An, Zhisheng; Li, Yongxiang; Lu, Fengyan; Lin, Shan; Li, Xingwen

    2016-01-01

    Lanzhou Basin lies on the northeastern margin of the Tibetan Plateau in western China and is a rich source of Oligocene-Miocene mammalian fossils. Obtaining precise age determinations for these fossils is important to address key questions concerning mammalian and environmental evolution in Asia associated with stepwise Tibetan Plateau uplift. Here we report a new magnetostratigraphic record for the Xingjiawan fluvio-lacustrine section from the northwestern margin of Lanzhou Basin that can be correlated to the geomagnetic polarity timescale with two options. The Late Miocene Xingjiawan Fauna is located either at the boundary between reversed polarity chron C4r.1r and normal polarity chron C4n.2n or at the boundary between subchrons C5r.1r and C5n.2n, with an estimated age of at least ∼8 Ma or perhaps as early as ∼11 Ma. Both age estimations imply that the fossil Stegodon in the Lanzhou Basin is the oldest known record of Stegodon worldwide; it predates the formerly oldest Stegodon find from Africa by at least one million years and perhaps by as many as four million years. This provides new evidence for an Asian origin of Stegodon. Together with other faunal components, a mixed woodland/grassland setting existed in the Lanzhou Basin during the Late Miocene, in contrast to its modern arid environment.

  6. Miocene fossil plants from Bukpyeong Formation of Bukpyeong Basin in Donghae City, Gangwon-do Province, Korea and their palaeoenvironmental implications

    NASA Astrophysics Data System (ADS)

    Jeong, Eun Kyoung; Kim, Hyun Joo; Uemura, Kazuhiko; Kim, Kyungsik

    2016-04-01

    The Tertiary sedimentary basins are distributed along the eastern coast of Korean Peninsula. The northernmost Bukpyeong Basin is located in Donghae City, Gangwon-do Province, Korea. The Bukpyeong Basin consists of Bukpyeong Formation and Dogyeongri Conglomerate in ascending order. The geologic age of Bukpyeong Formation has been suggested as from Early Miocene to Pliocene, In particular, Lee & Jacobs (2010) suggested the age of the Bukpyeong Formation as late Early Miocene to early Middle Miocene based on the fossils of rodent teeth. Sedimentary environment has been thought as mainly fresh water lake and/or swamp partly influenced by marine water. Lately, new outcrops of Bukpyeong Formation were exposed during the road construction and abundant fossil plants were yielded from the newly exposed outcrops. As a result of palaeobotanical studies 47 genera of 23 families have been found. This fossil plant assemblage is composed of gymnosperms and dicotyledons. Gymnosperms were Pinaceae (e.g., Pinus, Tsuga), Sciadopityaceae (e.g., Sciadopitys) and Cupressaceae with well-preserved Metasequoia cones. Dicotyledons were deciduous trees such as Betulaceae (e.g., Alnus, Carpinus) and Sapindaceae (e.g., Acer, Aesculus, Sapindus), and evergreen trees such as evergreen Fagaceae (e.g., Castanopsis, Cyclobalanopsis, Pasania) and Lauraceae (e.g., Cinnamomum, Machilus). In addition, fresh water plants such as Hemitrapa (Lytraceae) and Ceratophyllum (Ceratophyllaceae) were also found. The fossil plant assemblage of the Bukpyeong Formation supported the freshwater environment implied by previous studies. It can be suggested that the palaeoflora of Bukpyeong Formation was oak-laurel forest with broad-leaved evergreen and deciduous trees accompanying commonly by conifers of Pinaceae and Cupressaceae under warm-temperate climate.

  7. A minute ostracod (Crustacea: Cytheromatidae) from the Miocene Solimões Formation (western Amazonia, Brazil): evidence for marine incursions?

    PubMed Central

    Gross, Martin; Ramos, Maria Ines F.; Piller, Werner E.

    2016-01-01

    A huge wetland (the ‘Pebas system’) covered western Amazonia during the Miocene, hosting a highly diverse and endemic aquatic fauna. One of the most contentious issues concerns the existence, potential pathways and effects of marine incursions on this ecosystem. Palaeontological evidences (body fossils) are rare. The finding of a new, presumably marine ostracod species (Pellucistoma curupira sp. nov.) in the upper middle Miocene Solimões Formation initiated a taxonomic, ecological and biogeographical review of the genus Pellucistoma. We demonstrate that this marine (sublittoral, euhaline), subtropical–tropical taxon is biogeographically confined to the Americas. The biogeographical distribution of Pellucistoma largely depends on geographical, thermal and osmotic barriers (e.g. land bridges, deep and/or cold waters, sea currents, salinity). We assume an Oligocene/early Miocene, Caribbean origin for Pellucistoma and outline the dispersal of hitherto known species up to the Holocene. Pellucistoma curupira sp. nov. is dwarfed in comparison to all other species of this genus and extremely thin-shelled. This is probably related to poorly oxygenated waters and, in particular, to strongly reduced salinity. The associated ostracod fauna (dominated by the eurypotent Cyprideis and a few, also stunted ostracods of possibly marine ancestry) supports this claim. Geochemical analyses (δ18O, δ13C) on co-occurring ostracod valves (Cyprideis spp.) yielded very light values, indicative of a freshwater setting. These observations point to a successful adaptation of P. curupira sp. nov. to freshwater conditions and therefore do not signify the presence of marine water. Pellucistoma curupira sp. nov. shows closest affinities to Caribbean species. We hypothesize that Pellucistoma reached northern South America (Llanos Basin) during marine incursions in the early Miocene. While larger animals of marine origin (e.g. fishes, dolphins, manatees) migrated actively into the Pebas

  8. A minute ostracod (Crustacea: Cytheromatidae) from the Miocene Solimões Formation (western Amazonia, Brazil): evidence for marine incursions?

    PubMed

    Gross, Martin; Ramos, Maria Ines F; Piller, Werner E

    2016-07-02

    A huge wetland (the 'Pebas system') covered western Amazonia during the Miocene, hosting a highly diverse and endemic aquatic fauna. One of the most contentious issues concerns the existence, potential pathways and effects of marine incursions on this ecosystem. Palaeontological evidences (body fossils) are rare. The finding of a new, presumably marine ostracod species ( Pellucistoma curupira sp. nov.) in the upper middle Miocene Solimões Formation initiated a taxonomic, ecological and biogeographical review of the genus Pellucistoma . We demonstrate that this marine (sublittoral, euhaline), subtropical-tropical taxon is biogeographically confined to the Americas. The biogeographical distribution of Pellucistoma largely depends on geographical, thermal and osmotic barriers (e.g. land bridges, deep and/or cold waters, sea currents, salinity). We assume an Oligocene/early Miocene, Caribbean origin for Pellucistoma and outline the dispersal of hitherto known species up to the Holocene. Pellucistoma curupira sp. nov. is dwarfed in comparison to all other species of this genus and extremely thin-shelled. This is probably related to poorly oxygenated waters and, in particular, to strongly reduced salinity. The associated ostracod fauna (dominated by the eurypotent Cyprideis and a few, also stunted ostracods of possibly marine ancestry) supports this claim. Geochemical analyses (δ 18 O, δ 13 C) on co-occurring ostracod valves ( Cyprideis spp.) yielded very light values, indicative of a freshwater setting. These observations point to a successful adaptation of P. curupira sp. nov. to freshwater conditions and therefore do not signify the presence of marine water. Pellucistoma curupira sp. nov. shows closest affinities to Caribbean species. We hypothesize that Pellucistoma reached northern South America (Llanos Basin) during marine incursions in the early Miocene. While larger animals of marine origin (e.g. fishes, dolphins, manatees) migrated actively into the Pebas

  9. Early Mesozoic rift basin architecture and sediment routing system in the Moroccan High Atlas

    NASA Astrophysics Data System (ADS)

    Perez, N.; Teixell, A.; Gomez, D.

    2016-12-01

    Late Permian to Triassic extensional systems associated with Pangea breakup governed the structural framework and rift basin architecture that was inherited by Cenozoic High Atlas Mountains in Morocco. U-Pb detrital zircon geochronologic and mapping results from Permo-Triassic deposits now incorporated into the High Atlas Mountains provide new constraints on the geometry and interconnectivity among synextensional depocenters. U-Pb detrital zircon data provide provenance constraints of Permo-Triassic deposits, highlighting temporal changes in sediment sources and revealing the spatial pattern of sediment routing along the rift. We also characterize the U-Pb detrital zircon geochronologic signature of distinctive interfingering fluvial, tidal, and aeolian facies that are preferentially preserved near the controlling normal faults. These results highlight complex local sediment mixing patterns potentially linked to the interplay between fault motion, eustatic, and erosion/transport processes. We compare our U-Pb geochronologic results with existing studies of Gondwanan and Laurentian cratonic blocks to investigate continent scale sediment routing pathways, and with analogous early Mesozoic extensional systems situated in South America (Mitu basin, Peru) and North America (Newark Basin) to assess sediment mixing patterns in rift basins.

  10. Geohydrology and simulated effects of withdrawals on the Miocene aquifer system in the Mississippi Gulf Coast area

    USGS Publications Warehouse

    Sumner, D.M.; Wasson, B.E.; Kalkhoff, S.J.

    1987-01-01

    Intense development of the Miocene aquifer system for water supplies along the Mississippi Gulf Coast has resulted in large water level declines that have altered the groundwater flow pattern in the area. Water levels in some Miocene aquifers have declined about 2 ft/year since 1940; declines exceed 100 ft (80 ft sea level) in large areas along the coast. Water levels in the surficial aquifer system, generally less than 20 ft below land surface, have not declined. The Miocene and younger interbedded and lenticular sands and clays crop out in southern Mississippi and dip to the south and southwest. These sediments have large vertical variations in head and locally respond to stresses as separate aquifers. Freshwater recharge to the Miocene aquifer system primarily is from rainfall on the surficial aquifers. The water generally moves to the south and southeast along the bedding planes toward the Mississippi Gulf Coast where the water is either withdrawn by wells, discharges to the ocean, or gradually percolates upward into overlying aquifers. Drawdowns caused by large groundwater withdrawals along the coast probably have resulted in the gradual movement of the saltwater toward the pumping centers. In parts of the Miocene aquifer system commonly used for water supplies, the water generally is a sodium bicarbonate type. Increasing chloride concentrations in a few wells indicate that saline water is migrating into parts of all layers in the Pascagoula area. A quasi three-dimensional numerical model of the groundwater flow system was constructed and calibrated on the basis of the both pre- and post-development conditions. The effects of an expected 1.5% annual increase in groundwater withdrawals during the period 1985-2005 were evaluated by the flow model. Additional water level declines expected by the year 2005 in response to estimated pumpage are as follows: Gulfport, 135 ft in layer 4; Biloxi-Gulfport area, 100 ft in layer 5 and 50 ft in layer 3; Pascagoula area, 40

  11. Biostratigraphy and paleoecology of the Burdigalian-Serravallian sediments in Wadi Sudr (Gulf of Suez, Egypt): comparison with the Central Paratethys evolution

    NASA Astrophysics Data System (ADS)

    Ied, Ibrahim M.; Holcová, Katarína; Abd-Elshafy, Ezzat

    2011-06-01

    Two main Miocene facies were recorded in the Gulf of Suez area: a deep marine and a coastal facies. The analysed sections in the Wadi Sudr area belong to the marine facies. The Lower Miocene (Burdigalian) is represented by coastal, shallow marine sediments, rich in coral, algae, gastropods and large pectinids followed by Langhian open marine sediments and Serravallian lagoonal carbonates. The open marine sediments contain well preserved planktonic and benthic foraminifers and abundant ostracods. The parts of the sections containing foraminifers have been correlated with three planktonic foraminiferal zones (Praeorbulina glomerosa Zone, Orbulina Zone and Globorotalia praemenardii-Globorotalia peripheroronda Zone). Two benthic ecozones were defined (Heterolepa dutemplei-Laevidentalina elegans Zone and Bolivina compressa-Elphidium spp. Zone). Two cycles of sea-level changes can be distinguished and correlated with global sea-level cycles Bur5/Lan1 and Ser1. The first (Langhian) cycle culminated in open marine sublittoral to upper bathyal well aerated sediments. The second (Serravallian) cycle was shallower, littoral suboxic sediments were overlaid by euryhaline carbonates. The studied foraminifera-bearing sediments can be correlated with the lower and Middle Badenian of the Central Paratethys. Though the area of the Gulf of Suez and the Central Paratethys were situated in different climatic zones, and influenced by different tectonic events, the main paleoenvironmental events (sea-level changes, oxygen decrease, salinity changes) are comparable. This correspondence shows that the decisive factors triggering these events were global climatic events.

  12. Paleogeomorphology of the early Colorado River inferred from relationships in Mohave and Cottonwood Valleys, Arizona, California and Nevada

    USGS Publications Warehouse

    Pearthree, Philip; House, P. Kyle

    2014-01-01

    Geologic investigations of late Miocene–early Pliocene deposits in Mohave and Cottonwood valleys provide important insights into the early evolution of the lower Colorado River system. In the latest Miocene these valleys were separate depocenters; the floor of Cottonwood Valley was ∼200 m higher than the floor of Mohave Valley. When Colorado River water arrived from the north after 5.6 Ma, a shallow lake in Cottonwood Valley spilled into Mohave Valley, and the river then filled both valleys to ∼560 m above sea level (asl) and overtopped the bedrock divide at the southern end of Mohave Valley. Sediment-starved water spilling to the south gradually eroded the outlet as siliciclastic Bouse deposits filled the lake upstream. When sediment accumulation reached the elevation of the lowering outlet, continued erosion of the outlet resulted in recycling of stored lacustrine sediment into downstream basins; depth of erosion of the outlet and upstream basins was limited by the water levels in downstream basins. The water level in the southern Bouse basin was ∼300 m asl (modern elevation) at 4.8 Ma. It must have drained and been eroded to a level <150 m asl soon after that to allow for deep erosion of bedrock divides and basins upstream, leading to removal of large volumes of Bouse sediment prior to massive early Pliocene Colorado River aggradation. Abrupt lowering of regional base level due to spilling of a southern Bouse lake to the Gulf of California could have driven observed upstream river incision without uplift. Rapid uplift of the entire region immediately after 4.8 Ma would have been required to drive upstream incision if the southern Bouse was an estuary.

  13. Miocene actinommid Radiolaria from the equatorial Pacific

    USGS Publications Warehouse

    Blueford, J.R.

    1982-01-01

    Actinommids (spumellarian Radiolaria) are a group of microfossils in which taxonomy and phylogeny hitherto have been based on features of morphology that change with the growth of individuals. To make Miocene actinommids from the equatorial Pacific useful in biostratigraphy, paleocenography, and paleoecology, ontogenetically invariant morphological features can be analyzed by methods of numerical taxonomy to group the specimens into genera, which are further subdivided into species by visual comparison. According to these criteria, 31 species, 18 of which are new, are recognized in the Late Miocene section of DSDP Sites 77 and 289, and an informal revision of actinommid higher taxa is tentatively proposed.

  14. Shelf gradients of echinoid assemblages from the Miocene of Sardinia

    NASA Astrophysics Data System (ADS)

    Nebelsick, James; Andrea, Mancosu

    2017-04-01

    Well exposed Miocene echinoid assemblages from Sardinia representing various environmental settings including both siliciclastics and carbonates have been studied with respect to reconstructing palaeoenvironmental conditions along a shelf gradient. The basis of this study includes 1) detailed logging of sedimentary facies in the field, 2) interpreting their behavior and life habits of the preserved echinoids by applying functional morphological reconstructions of the echinoid skeletons and comparing them to related Recent echinoid taxa, 3) quantifying taphonomic features of test preservation including predation, abrasion, fragmentation, encrustation and bioerosion, and finally 4) analyzing accompanying fauna and flora as well as trace fossils. The assemblages included clypeasteroid dominated assemblages in shallow water settings where often mass accumulations of sand dollars are present. Spatangoid dominated assemblages are found in more offshore settings where diversity is determined by varying burrowing depths, feeding strategies and resource partitioning accompanied by varying rates of bioturbation and episodes of sediment deposition by storms. Mixed assemblages also occur ranging from shallow to deeper water with varying substrates including sea grass, as well as coarser and finer sediments. Finally, deeper water monotypic assemblages are present in storm-dominated siliciclastic shelf environments including both regular and irregular echinoids. In general, echinoid presence is determined by the ecological preferences of the taxa involved, their propensities for gregarious behavior, the differential preservation potentials of the varied skeletal architectures present as well as sedimentary environment in which they occur.

  15. Influence of early diagenesis on the vertical distribution of metal forms in sediments of Bohai Bay, China.

    PubMed

    Lu, Xueqiang; Zhang, Yan; Liu, Honglei; Xing, Meinan; Shao, Xiaolong; Zhao, Feng; Li, Xiaojuan; Liu, Qiongqiong; Yu, Dan; Yuan, Xuezhu; Yuan, Min

    2014-11-15

    The influence of early diagenesis on the vertical distribution of metal forms in the sediments of Bohai Bay was discussed in this paper. The results showed that the concentrations were: Al > Fe ≈ Ca > Mn > Cr > Zn > Cu > Pb > Cd. In vertical distribution, the forms of Cr and Pb were stable from the top to the bottom. However, the exchangeable forms and acid-extracted forms of Cd, Cu and Zn presented an obvious declining trend. The metals would be transformed to more stable forms during the early-diagenesis process. Further analysis found that early diagenesis can change the sedimentary environment, affecting pH, oxidation-reduction potential (ORP), total dissolved solid (TDS) and the structure of organic matter (OM), all main factors influencing metal forms in the sediments of Bohai Bay. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Neogene sedimentation and erosion in the Amirante Passage, western Indian Ocean

    NASA Astrophysics Data System (ADS)

    Johnson, D. A.; Ledbetter, M. T.; Damuth, J. E.

    1983-02-01

    Twenty piston cores from the northern Mascarene Basin and Amirante Passage reflect the effects of the Deep Western Boundary Current (DWBC) upon the lithologic and stratigraphic record of the late Cenozoic. The cores span a depth interval of 3350 to 5200 m, representing the transition zone between modern North Atlantic Deep Water (NADW)-Circumpolar Water (CPW) and the underlying Antarctic Bottom Water (AABW). During the late Cretaceous and for much of the Paleogene, pelagic sedimentation occurred in the absence of significant bottom current activity. The formation of the global psychrosphere near the Eocene-Oligocene boundary initiated the DWBC, part of which could enter the Madagascar Basin via deep fractures in the Southwest Indian Ridge. The DWBC was well developed before the early Miocene, transporting course detrital sands northward into the passage from turbidite deposits along the continental margin of Madagascar. The DWBC was confined to depths below ˜ 4 km until the middle Miocene, when the flow strengthened and shoaled to depths <3300 m. Strong DWBC flow continued intermittently until the latest Pleistocene, producing extensive erosional surfaces. Today the flow of the DWBC is relatively weak, with strong only below ˜ 3850 m in the western channels. Pleistocene and late Tertiary erosion at intermediate depths (3 to 4 km) in the Indian Ocean contrasts with depositional continuity at the same depths farther 'upstream' in NADW. Fluctuations in the intensity of circumpolar flow rather than in the rate of production of NADW may have been the major controlling factor in the late Tertiary erosional history of the Amirante Passage.

  17. Organic and clay mineral diagenesis in Neogene sediments of western Taiwan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsueh, C.M.

    1985-01-01

    Three deep wells (two in the northern region and one in the southern region) with completion depths of over 5000m have been selected and the rock samples thoroughly examined. The TOC data of most samples studied are less than 1%, which is the TOC of an average shale. The low TOC is unfavorable for the Neogene sediments in western Taiwan as good source rocks. The data of C,H elemental analysis and Rock-Eval pyrolysis imply that the quality of kerogen in the northern region inclines to type II wet-gas prone, and in the southern region inclines to type III dry-gas prone.more » The maturity parameters of bitumen ratio, vitrinite reflectance, Tmax of Rock-Eval pyrolysis, and TTI of Lopatin's method show that the threshold of the oil-generative zone (about 0.6% Ro) in the northern region is in middle Miocene (about 3000m) and in the southern region is in lower Pliocene (about 4500m). The result of clay mineral analysis reveals that the transformation of smectitic clays to ordered mixed-layered smectite-illite can be identified and correlated with 0.6% Ro vitrinite reflectance. The illite crystallinity values are in the range of incipient to weak metamorphism and decrease with burial depth implying that the source area of low-grade metamorphic rocks has been uplifted rapidly so that the erosion from the exposed source area where the metamorphic grade became higher and higher was sufficiently fast to prevent weathering of illite. The Neogene sediments studied would not be expected to generate substantial amounts of oil. However, it can be expected that the pre-Miocene sediments in the northern region and the pre-Pliocene sediments in the southern region should have generated substantial amounts of gas at deeper depths.« less

  18. Distribution history and climatic controls of the Late Miocene Pikermian chronofauna.

    PubMed

    Eronen, Jussi T; Ataabadi, Majid Mirzaie; Micheels, Arne; Karme, Aleksis; Bernor, Raymond L; Fortelius, Mikael

    2009-07-21

    The Late Miocene development of faunas and environments in western Eurasia is well known, but the climatic and environmental processes that controlled its details are incompletely understood. Here we map the rise and fall of the classic Pikermian fossil mammal chronofauna between 12 and 4.2 Ma, using genus-level faunal similarity between localities. To directly relate land mammal community evolution to environmental change, we use the hypsodonty paleoprecipitation proxy and paleoclimate modeling. The geographic distribution of faunal similarity and paleoprecipitation in successive timeslices shows the development of the open biome that favored the evolution and spread of the open-habitat adapted large mammal lineages. In the climate model run, this corresponds to a decrease in precipitation over its core area south of the Paratethys Sea. The process began in the latest Middle Miocene and climaxed in the medial Late Miocene, about 7-8 million years ago. The geographic range of the Pikermian chronofauna contracted in the latest Miocene, a time of increasing summer drought and regional differentiation of habitats in Eastern Europe and Southwestern Asia. Its demise at the Miocene-Pliocene boundary coincides with an environmental reversal toward increased humidity and forestation, changes inevitably detrimental to open-adapted, wide-ranging large mammals.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nyagah, K.; Cloeter, J.J.; Maende, A.

    The Lamu basin occupies the coastal onshore and offshore areas of south-east Kenya. This fault bounded basin formed as a result of the Paleozoic-early Mesozoic phase of rifting that developed at the onset of Gondwana dismemberment. The resultant graben was filled by Karroo (Permian-Early Jurassic) continental siliciclastic sediments. Carbonate deposits associated with the Tethyan sea invasion, dominate the Middle to Late Jurassic basin fill. Cessation of the relative motion between Madagascar and Africa in the Early Cretaceous, heralded passive margin development and deltaic sediment progradation until the Paleogene. Shallow seas transgressed the basin in the Miocene when another carbonate regimemore » prevailed. The basin depositional history is characterized by pulses of transgressive and regressive cycles, bounded by tectonically enhanced unconformities dividing the total sedimentary succession into discrete megasequences. Source rock strata occur within Megasequence III (Paleogene) depositional cycle and were lowered into the oil window in Miocene time, when the coastal parts of the basin experienced the greatest amount of subsidence. The tectono-eustatic pulses of the Tertiary brought about source and reservoir strata into a spatial relationship in which hydrocarbons could be entrapped. A basement high on the continental shelf has potential for Karroo sandstone and Jurassic limestone reservoirs. Halokinesis of Middle Jurassic salt in Miocene time provides additional prospects in the offshore area. Paleogene deltaic sands occur in rotated listric fault blacks. A Miocene reef Play coincides with an Eocene source rock kitchen.« less

  20. Mozambique upper fan: origin of depositional units

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Droz, L.; Mougenot, D.

    1987-11-01

    The upper Mozambique Fan includes a stable down-stream region, with a north-south channel flanked by thick (1.5 sec two-way traveltime) asymmetric levees, and a migrating upstream region where at least two main feeding paths have been successively dominant. From the Oligocene to early Miocene, the north-south Serpa Pinto Valley acted as the main conduit for the north Mozambique terrigenous sediments. From the middle Miocene, the west-east Zambezi Valley became the dominant path and supplied the fan with sediments transported by the Zambezi River from the central part of Mozanbique. The transfer from one sediment-feeding system to the other is relatedmore » to the abandonment of the Serpa Pinto Valley because of graben formation along the Davie Ridge, which trapped the sediments, and the increase of the Zambezi River sediment supply because of the creation and erosion of the East African Rift. 13 figures.« less

  1. Paleocene to Middle Miocene planktic foraminifera of the southwestern Salisbury Embayment, Virginia and Maryland: biostratigraphy, allostratigraphy, and sequence stratigraphy

    USGS Publications Warehouse

    Poag, C.W.; Commeau, J.A.

    1995-01-01

    The Paleocene to Middle Miocene sedimentary fill of the southwestern Salisbury Embayment contains a fragmental depositional record, interrupted by numerous local diastems and regional unconformities. Using planktic foraminiferal biostratigraphy, 15 unconformity-bounded depositional units have been identified, assigned to six formations and seven alloformations previously recognized in the embayment. The units correlate with second- and third-order sequences of the Exxon sequence stratigraphy model, and include transgressive and highstand systems tracts. Alloformation, formation, and sequence boundaries are marked by abrupt, scoured, burrowed, erosional surfaces, which display lag deposits, biostratigraphic gaps, and intense reworking of microfossils above and below the boundaries.Paleocene deposits represent the upper parts of upper Pleocene Biochronozones P4 and P5, and rest uncomformably  on Cretaceous sedimentary beds of various ages (Maastrichtian to Albian). Lower Eocene deposits represent parts of Biochronozones P6 and P9. Middle Eocene strata represent mainly parts of Biochronozones P11, P12, and P14. Upper Eocene sediments include parts of Biochronozones P15, P16, and P17. Oligocene deposits encompass parts of Biochronozones. N4b to N7 undifferentiated, P21a, and, perhaps, N4a. Lower Miocene deposits encompass parts of Biochronozones N4b to N7 undifferentiated. Middle Miocene strata represent mainly parts of Biochronorones N8, N9, and N10.Nine plates of scanning electron micrographs illustrate the principal planktic foraminifera used to establish the biostratigraphic framework. Two new informal formine of Praeterenuitella praegemma Li, 1987, are introduced.

  2. Sedimentation in a Submarine Seamount Apron at Site U1431, International Ocean Discovery Program Expedition 349, South China Sea

    NASA Astrophysics Data System (ADS)

    Dadd, K. A.; Clift, P. D.; Hyun, S.; Jiang, T.; Liu, Z.

    2014-12-01

    International Ocean Discovery Program (IODP) Expedition 349 Site U1431 is located near the relict spreading ridge in the East Subbasin of the South China Sea. Holes at this site were drilled close to seamounts and intersected the volcaniclastic apron. Volcaniclastic breccia and sandstone at Site U1431 are dated as late middle Miocene to early late Miocene (~8-13 Ma), suggesting a 5 m.y. duration of seamount volcanism. The apron is approximately 200 m thick and is sandwiched between non-volcaniclastic units that represent the background sedimentation. These comprise dark greenish gray clay, silt, and nannofossil ooze interpreted as turbidite and hemipelagic deposits that accumulated at abyssal water depths. At its base, the seamount sequence begins with dark greenish gray sandstone, siltstone, and claystone in upward fining sequences interpreted as turbidites intercalated with minor intervals of volcaniclastic breccia. Upsection the number and thickness of breccia layers increases with some beds up to 4.8 m and possibly 14.5 m thick. The breccia is typically massive, ungraded, and poorly sorted with angular to subangular basaltic clasts, as well as minor reworked subrounded calcareous mudstone, mudstone, and sandstone clasts. Basaltic clasts include nonvesicular aphyric basalt, sparsely vesicular aphyric basalt, highly vesicular aphyric basalt, and nonvesicular glassy basalt. Mudstone clasts are clay rich and contain foraminifer fossils. The matrix comprises up to 40% of the breccia beds and is a mix of clay, finer grained altered basalt clasts, and mafic vitroclasts with rare foraminifer fossils. Some layers have calcite cement between clasts. Volcaniclastic sandstone and claystone cycles interbedded with the breccia layers have current ripples and parallel laminations indicative of high-energy flow conditions during sedimentation. The breccia beds were most likely deposited as a series of debris flows or grain flows. This interpretation is supported by their

  3. Lake Sediment Particle Size Analysis for Holocene Paleoenvironmental Study of Steens Mountain, Eastern Oregon

    NASA Astrophysics Data System (ADS)

    Morris, J.; Stoner, J. S.; Reilly, B. T.; Hatfield, R. G.; Konyndyk, D.; Abbott, M. B.; Finkenbinder, M. S.; Hillman, A. L.

    2016-12-01

    In order to better understand climate trends in the late Pleistocene and Holocene in southeast Oregon, we present a sedimentological analysis of Fish Lake, Harney County, Oregon. Fish Lake (42° 44' 15" N, 118° 38' 57" W, 2,246.7 m) sits on the west slope of Steens Mountain, a fault-block mountain of Miocene basalt, adjacent to a glacial moraine. The present environment is high desert with sub alpine steppe vegetation, receiving approximately 12" of precipitation annually. The lake was cored in August 2013 with a series of overlapping drives, correlated by six distinct tephra and magnetic susceptibility. The composite section provides a 7.5 m continuous record of at least the last 13 ka, constrained by an age model built with 13 terrestrial macrofossil 14C dates. The recovered sediments, consisting of fine terrigenous and biogenous material in varying proportions, were analyzed with computed tomography (CT) scans, x-ray fluorescence (XRF) scans, magnetic measurements, loss on ignition (LOI), and sediment grain-size. CT and LOI data reveal a low density, high organic interval in the early Holocene ( 8.5-11 ka) with relatively coarse and well-sorted grain-size, suggesting an extended period of low lake level and low precipitation. Sediment grain-sizes are variable through the middle and late Holocene with high amplitude longer period features from 3 ka to the present. We investigate these grain-size fluctuations in the context of regional Holocene records.

  4. ACEX: A First Look at Arctic Ocean Cenozoic History

    NASA Astrophysics Data System (ADS)

    Moran, K.; Backman, J.

    2004-12-01

    The first Integrated Ocean Drilling Program mission specificplatform expedition (ACEX - Arctic Coring Expedition) drilled and recovered core from five holes at four sites through Cenozoic sediments draping the crest of the Lomonosov Ridge in the central Arctic Ocean. Coring continued into the underlying Cretaceous sedimentary bedrock. Sites are located only a few nautical miles apart along a single seismic line (AWI-91090), showing an identical and coherent Cenozoic seismostratigraphy. Preliminary results from shipboard investigations of core-catcher-based bio- and lithostratigraphy, pore water analyses and core logger data describe a thick (~160 m) middle Miocene through Pleistocene sequence that shows large amplitude, cyclic variability in the density, magnetic susceptibility and acoustic velocity of the sediments. Sediments are largely carbonate free. Pleistocene sedimentation rates are close to 3 cm/ka, whereas Pliocene sediments are by-and-large missing. A sharp change in physical properties at ~200 m defines the transition into a 200+ m thick Paleogene sequence that is initially dominated by large numbers of dinoflagellate cysts. The early Miocene, Oligocene and late Eocene appear to be largely missing in a hiatus. However, a 32 m thick interval separates the overlying middle Miocene from the underlying middle Eocene and presumably preserves some of the early Neogene and late Paleogene sections. Dinoflagellate cysts, diatoms, ebridians and silicoflagellates are common to abundant in the middle Eocene section, which bottoms in a spectacular layer showing massive occurrences of glochidia and massulae (megaspores) of the freshwater hydropterid fern Azolla (duckweed) at the early/middle Eocene boundary (~306 m), suggesting strongly reduced surface water salinity or perhaps even a brief episode of fresh water conditions at the surface. Biosilica is not present prior to the late early Eocene (~320 m). The (sub-) tropical dinoflagellate species Apectodinium augustum

  5. Lower Miocene plant assemblage with coastal-marsh herbaceous monocots from the Vienna Basin (Slovakia)

    NASA Astrophysics Data System (ADS)

    Kvaček, Zlatko; Teodoridis, Vasilis; Kováčová, Marianna; Schlögl, Ján; Sitár, Viliam

    2014-06-01

    A new plant assemblage of Cerová-Lieskové from Lower Miocene (Karpatian) deposits in the Vienna Basin (western Slovakia) is preserved in a relatively deep, upper-slope marine environment. Depositional conditions with high sedimentation rates allowed exceptional preservation of plant remains. The plant assemblage consists of (1) conifers represented by foliage of Pinus hepios and Tetraclinis salicornioides, a seed cone of Pinus cf. ornata, and by pollen of the Cupressaceae, Pinaceae, Pinus sp. and Cathaya sp., and (2) angiosperms represented by Cinnamomum polymorphum, Platanus neptuni, Potamogeton sp. and lauroid foliage, by pollen of Liquidambar sp., Engelhardia sp. and Craigia sp., and in particular by infructescences (so far interpreted as belonging to cereal ears). We validate genus and species assignments of the infructescences: they belong to Palaeotriticum Sitár, including P. mockii Sitár and P. carpaticum Sitár, and probably represent herbaceous monocots that inhabited coastal marshes, similar to the living grass Spartina. Similar infructescences occur in the Lower and Middle Miocene deposits of the Carpathian Foredeep (Slup in Moravia), Tunjice Hills (Žale in Slovenia), and probably also in the Swiss Molasse (Lausanne). This plant assemblage demonstrates that the paleovegetation was represented by evergreen woodland with pines and grasses in undergrowth, similar to vegetation inhabiting coastal brackish marshes today. It also indicates subtropical climatic conditions in the Vienna Basin (central Paratethys), similar to those implied by other coeval plant assemblages from Central Europe

  6. Migration of sharks into freshwater systems during the Miocene and implications for Alpine paleoelevation

    NASA Astrophysics Data System (ADS)

    Kocsis, László; Vennemann, Torsten W.; Fontignie, Denis

    2007-05-01

    Trace-element and isotopic compositions of fossilized shark teeth sampled from Miocene marine sediments of the north Alpine Molasse Basin, the Vienna Basin, and the Pannonian Basin generally show evidence of formation in a marine environment under conditions geochemically equivalent to the open ocean. In contrast, two of eight shark teeth from the Swiss Upper Marine Molasse locality of La Molière have extremely low δ18O values (10.3‰ and 11.3‰) and low 87Sr/86Sr ratios (0.707840 and 0.707812) compared to other teeth from this locality (21.1‰ 22.4‰ and 0.708421 0.708630). The rare earth element (REE) abundances and patterns from La Molière not only differ between dentine and enameloid of the same tooth, but also between different teeth, supporting variable conditions of diagenesis at this site. However, the REE patterns of enameloid from the “exotic” teeth analyzed for O and Sr isotopic compositions are similar to those of teeth that have O and Sr isotopic compositions typical of a marine setting at this site. Collectively, this suggests that the two “exotic” teeth were formed while the sharks frequented a freshwater environment with very low 18O-content and Sr isotopic composition controlled by Mesozoic calcareous rocks. This is consistent with a paleogeography of high-elevation (˜2300 m) Miocene Alps adjacent to a marginal sea.

  7. Reduction in Surface Ocean Carbon Storage across the Middle Miocene

    NASA Astrophysics Data System (ADS)

    Babila, T. L.; Sosdian, S. M.; Foster, G. L.; Lear, C. H.

    2017-12-01

    During the Middle Miocene, Earth underwent a profound climate shift from the warmth of the Miocene Climatic Optimum (MCO; 14-17 Ma) to the stable icehouse of today during the Middle Miocene Climate transition (MMCT). Elevated atmospheric carbon dioxide concentrations (pCO2) revealed by boron isotope records (δ11B) link massive volcanic outputs of Columbia River Flood Basalts to the general warmth of MCO. Superimposed on the long-term cooling trend (MMCT) is a gradual pCO2 decline and numerous positive carbon isotope (δ13C) excursions that indicate dynamic variations in the global carbon cycle. Enhanced organic carbon burial via marine productivity, increased silicate weathering and volcanic emission cessation are each invoked to explain the drawdown of pCO2. To better constrain the oceanic role in carbon sequestration over the Middle Miocene detailed records of carbonate chemistry are needed. We present high resolution Boron/Calcium (B/Ca) and δ13C records in planktonic foraminifer T.trilobus spanning 12-17 Ma at ODP 761 (tropical eastern Indian Ocean) to document changes in surface ocean carbonate chemistry. An overall 30% increase in B/Ca ratios is expressed as two stepwise phases occurring at 14.7 and 13 Ma. Cyclic B/Ca variations are coherent with complimentary δ13C records suggesting a tight coupling between ocean carbonate chemistry parameters. Lower resolution B/Ca data at DSDP 588 (Pacific) and ODP 926 (Atlantic) corroborate the trends observed at ODP 761. We employ a paired approach that combines B/Ca (this study) to δ11B (Foster et al., 2012) and an ad hoc calibration to estimate changes in surface ocean dissolved inorganic carbon (DIC). We estimate a substantial decrease in surface ocean DIC spanning the Middle Miocene that culminates with modern day like values. This gradual decline in surface ocean DIC is coeval with existing deep-ocean records which together suggests a whole ocean reduction in carbon storage. We speculate that enhanced weathering

  8. Constraining pathways of microbial mediation for carbonate concretions of the Miocene Monterey Formation using carbonate-associated sulfate

    NASA Astrophysics Data System (ADS)

    Loyd, Sean J.; Berelson, William M.; Lyons, Timothy W.; Hammond, Douglas E.; Corsetti, Frank A.

    2012-02-01

    Carbonate concretions can form as a result of organic matter degradation within sediments. However, the ability to determine specific processes and timing relationships to particular concretions has remained elusive. Previously employed proxies (e.g., carbon and oxygen isotopes) cannot uniquely distinguish among diagenetic alkalinity sources generated by microbial oxidation of organic matter using oxygen, nitrate, metal oxides, and sulfate as electron acceptors, in addition to degradation by thermal decarboxylation. Here, we employ concentrations of carbonate-associated sulfate (CAS) and δ 34S CAS (along with more traditional approaches) to determine the specific nature of concretion authigenesis within the Miocene Monterey Formation. Integrated geochemical analyses reveal that at least three specific organo-diagenetic reaction pathways can be tied to concretion formation and that these reactions are largely sample-site specific. One calcitic concretion from the Phosphatic Shale Member at Naples Beach yields δ 34S CAS values near Miocene seawater sulfate (˜+22‰ VCDT), abundant CAS (ca. 1000 ppm), depleted δ 13C carb (˜-11‰ VPDB), and very low concentrations of Fe (ca. 700 ppm) and Mn (ca. 15 ppm)—characteristics most consistent with shallow formation in association with organic matter degradation by nitrate, iron-oxides and/or minor sulfate reduction. Cemented concretionary layers of the Phosphatic Shale Member at Shell Beach display elevated δ 34S CAS (up to ˜+37‰), CAS concentrations of ˜600 ppm, mildly depleted δ 13C carb (˜-6‰), moderate amounts of Mn (ca. 250 ppm), and relatively low Fe (ca. 1700 ppm), indicative of formation in sediments dominated by sulfate reduction. Finally, concretions within a siliceous host at Montaña de Oro and Naples Beach show minimal CAS concentrations, positive δ 13C values, and the highest concentrations of Fe (ca. 11,300 ppm) and Mn (ca. 440 ppm), consistent with formation in sediments experiencing

  9. Quantifying the Mediterranean freshwater budget throughout the late Miocene: New implications for sapropel formation and the Messinian Salinity Crisis

    NASA Astrophysics Data System (ADS)

    Simon, Dirk; Marzocchi, Alice; Flecker, Rachel; Lunt, Daniel J.; Hilgen, Frits J.; Meijer, Paul Th.

    2017-08-01

    The cyclic sedimentary record of the late Miocene Mediterranean shows a clear transition from open marine to restricted conditions and finally to evaporitic environments associated with the Messinian Salinity Crisis. This evolution has been attributed to changes in Mediterranean-Atlantic connectivity and regional climate, which has a strong precessional pulse. 31 Coupled climate simulations with different orbital configurations have been combined in a regression model that estimates the evolution of the freshwater budget of the Mediterranean throughout the late Miocene. The study suggests that wetter conditions occur at precession minima and are enhanced at eccentricity maxima. We use the wetter peaks to predict synthetic sapropel records. Using these to retune two Mediterranean sediment successions indicates that the overall net freshwater budget is the most likely mechanism driving sapropel formation in the late Miocene. Our sapropel timing is offset from precession minima and boreal summer insolation maxima during low eccentricity if the present-day drainage configuration across North Africa is used. This phase offset is removed if at least 50% more water drained into the Mediterranean during the late Miocene, capturing additional North African monsoon precipitation, for example via the Chad-Eosahabi catchment in Libya. In contrast with the clear expression of precession and eccentricity in the model results, obliquity, which is visible in the sapropel record during minimum eccentricity, does not have a strong signal in our model. By exploring the freshwater evolution curve in a box model that also includes Mediterranean-Atlantic exchange, we are able, for the first time, to estimate the Mediterranean's salinity evolution, which is quantitatively consistent with precessional control. Additionally, we separate and quantify the distinct contributions regional climate and tectonic restriction make to the lithological changes associated with the Messinian Salinity

  10. Late Cenozoic sedimentation and volcanism during transtensional deformation in Wingate Wash and the Owlshead Mountains, Death Valley

    USGS Publications Warehouse

    Luckow, H.G.; Pavlis, T.L.; Serpa, L.F.; Guest, B.; Wagner, D.L.; Snee, L.; Hensley, T.M.; Korjenkov, A.

    2005-01-01

    New 1:24,000 scale mapping, geochemical analyses of volcanic rocks, and Ar/Ar and tephrochronology analyses of the Wingate Wash, northern Owlshead Mountain and Southern Panamint Mountain region document a complex structural history constrained by syntectonic volcanism and sedimentation. In this study, the region is divided into five structural domains with distinct, but related, histories: (1) The southern Panamint domain is a structurally intact, gently south-tilted block dominated by a middle Miocene volcanic center recognized as localized hypabyssal intrusives surrounded by proximal facies pyroclastic rocks. This Miocene volcanic sequence is an unusual alkaline volcanic assemblage ranging from trachybasalt to rhyolite, but dominated by trachyandesite. The volcanic rocks are overlain in the southwestern Panamint Mountains by a younger (Late Miocene?) fanglomerate sequence. (2) An upper Wingate Wash domain is characterized by large areas of Quaternary cover and complex overprinting of older structure by Quaternary deformation. Quaternary structures record ???N-S shortening concurrent with ???E-W extension accommodated by systems of strike-slip and thrust faults. (3) A central Wingate Wash domain contains a complex structural history that is closely tied to the stratigraphic evolution. In this domain, a middle Miocene volcanic package contains two distinct assemblages; a lower sequence dominated by alkaline pyroclastic rocks similar to the southern Panamint sequence and an upper basaltic sequence of alkaline basalt and basanites. This volcanic sequence is in turn overlain by a coarse clastic sedimentary sequence that records the unroofing of adjacent ranges and development of ???N-S trending, west-tilted fault blocks. We refer to this sedimentary sequence as the Lost Lake assemblage. (4) The lower Wingate Wash/northern Owlshead domain is characterized by a gently north-dipping stratigraphic sequence with an irregular unconformity at the base developed on granitic

  11. Microbial Nitrogen Cycling Associated with the Early Diagenesis of Organic Matter in Subseafloor Sediments

    NASA Astrophysics Data System (ADS)

    Zhao, R.

    2015-12-01

    The early diagenesis of organic matter is the major energy source of marine sedimentary biosphere and thus controls its population size; however, the vertical distribution of any functional groups along with the diagenesis of organic matter is remained unclear, especially for those microbes involved in nitrogen transformation which serve as a major control on the nitrogen flux between reservoirs. Here we investigated the vertical distributions of various functional groups in five sediment cores retrieved from Arctic Mid-Ocean Ridge (AMOR), with emphasis on the nitrifiers, denitrifiers and anaerobic ammonium oxidizing bacteria (anammox). We observed the clear geochemical zonation associated with organic matter diagenesis in the sediments based on the pore water profiles of oxygen, nitrate, ammonium, manganese and sulfate, with distinct geochemical transition zones at the boundaries of geochemical zones, including oxic-anoxic transition zone (OATZ) and nitrate-manganese reduction zone (NMTZ). Nitrate was produced in surface oxygenated sediments and nitrate consumption mainly took place at the NMTZ, splitted between re-oxidation of ammonium and manganese (II). Abundances of ammonia oxidizers, nitrite oxidizers, and denitrifiers, estimated through quantitative PCR targeting their respective functional genes, generally decrease with depth, but constantly elevated around the OATZ, NMTZ, and manganese-reduction zone as well. Anammox bacteria were only detected around the NMTZ where both nitrate/nitrite and ammonium are available. These depth profiles of functional groups were also confirmed by the community structure profiling by prokaryotic 16S rRNA gene tag pyrosequencing. Cell-specific rates of nitrification and denitrification, calculated from the bulk net reaction rates divided by functional group abundances, were similar to those values from oligotrophic sediments like North Pond and thus suggested that nitrifiers and denitirifiers populations were in maintenance

  12. Origin of secondary potash deposits; a case from Miocene evaporites of NW Central Iran

    NASA Astrophysics Data System (ADS)

    Rahimpour-Bonab, H.; Kalantarzadeh, Z.

    2005-04-01

    In early Miocene times, an extensive carbonate shelf developed in Central Iran and during several cycles of sea-level fluctuations, evaporite-bearing carbonate sequences of the Qom Formation were deposited. However, in the early-middle Miocene, development of restricted marine conditions led to a facies change from shelf carbonates of the Qom Formation to the evaporite series of the M 1 member of the overlying Lower Red Formation. This member is a facies mosaic of lagoonal and salina evaporites (mainly halite beds) admixed with wadi siliciclastics. The purpose of this study, which focuses on two salt mines in the northwestern portion of Central Iran in the Zanjan province, was to reveal the origin, sedimentary environment, and diagenesis of these potash-bearing evaporite sequences. Petrographic examination revealed the following mineral assemblage: halite, gypsum, anhydrite and carnallite as primary precipitates, and langbeinite and aphthitalite as secondary metamorphic potash salts. In the Iljaq mine, distorted halite beds are dominated by burial and deformational textures and a great deal of secondary potash salts. In the Qarah-Aghaje mine, however, the bedded halite shows pristine primary textures and is devoid of the secondary potash salts. High bromine content of most evaporite minerals suggests their marine origin, and confirms the absence of the extensive meteoric alterations and subsequent bromine depletions. Potash salts are mainly secondary, and resulted from diagenetic replacements of distorted halite beds during thermal and dynamic metamorphism in a burial setting.

  13. Palaeoenvironmental Shifts Drove the Adaptive Radiation of a Noctuid Stemborer Tribe (Lepidoptera, Noctuidae, Apameini) in the Miocene

    PubMed Central

    Toussaint, Emmanuel F. A.; Condamine, Fabien L.; Kergoat, Gael J.; Capdevielle-Dulac, Claire; Barbut, Jérôme; Silvain, Jean-François; Le Ru, Bruno P.

    2012-01-01

    Between the late Oligocene and the early Miocene, climatic changes have shattered the faunal and floral communities and drove the apparition of new ecological niches. Grassland biomes began to supplant forestlands, thus favouring a large-scale ecosystem turnover. The independent adaptive radiations of several mammal lineages through the evolution of key innovations are classic examples of these changes. However, little is known concerning the evolutionary history of other herbivorous groups in relation with this modified environment. It is especially the case in phytophagous insect communities, which have been rarely studied in this context despite their ecological importance. Here, we investigate the phylogenetic and evolutionary patterns of grass-specialist moths from the species-rich tribe Apameini (Lepidoptera, Noctuidae). The molecular dating analyses carried out over the corresponding phylogenetic framework reveal an origin around 29 million years ago for the Apameini. Ancestral state reconstructions indicate (i) a potential Palaearctic origin of the tribe Apameini associated with a major dispersal event in Afrotropics for the subtribe Sesamiina; (ii) a recent colonization from Palaearctic of the New World and Oriental regions by several independent lineages; and (iii) an ancestral association of the tribe Apameini over grasses (Poaceae). Diversification analyses indicate that diversification rates have not remained constant during the evolution of the group, as underlined by a significant shift in diversification rates during the early Miocene. Interestingly, this age estimate is congruent with the development of grasslands at this time. Rather than clade ages, variations in diversification rates among genera better explain the current differences in species diversity. Our results underpin a potential adaptive radiation of these phytophagous moths with the family Poaceae in relation with the major environmental shifts that have occurred in the Miocene. PMID

  14. Himalayan uplift shaped biomes in Miocene temperate Asia: evidence from leguminous Caragana.

    PubMed

    Zhang, Ming-Li; Xiang, Xiao-Guo; Xue, Juan-Juan; Sanderson, Stewart C; Fritsch, Peter W

    2016-11-09

    Caragana, with distinctive variation in leaf and rachis characters, exhibits three centers of geographic distribution, i.e., Central Asia, the Qinghai-Tibetan Plateau (QTP), and East Asia, corresponding to distinct biomes. Because Caragana species are often ecologically dominant components of the vegetation in these regions, it is regarded as a key taxon for the study of floristic evolution in the dry regions of temperate Asia. Based on an expanded data set of taxa and gene regions from those previously generated, we employed molecular clock and biogeographical analyses to infer the evolutionary history of Caragana and link it to floristic patterns, paleovegetation, and paleoclimate. Results indicate that Caragana is of arid origin from the Junggar steppe. Diversification of crown group Caragana, dated to the early Miocene ca. 18 Ma and onwards, can be linked to the Himalayan Motion stage of QTP uplift. Diversification of the major clades in the genus corresponding to taxonomic sections and morphological variation is inferred to have been driven by the uplift, as well as Asian interior aridification and East Asian monsoon formation, in the middle to late Miocene ca. 12~6 Ma. These findings demonstrate a synchronous evolution among floristics, vegetation and climate change in arid Central Asia, cold arid alpine QTP, and mesophytic East Asia.

  15. 100 Myr record of sequences, sedimentary facies and sea level change from Ocean Drilling Program onshore coreholes, US Mid-Atlantic coastal plain

    USGS Publications Warehouse

    Browning, J.V.; Miller, K.G.; Sugarman, P.J.; Kominz, M.A.; McLaughlin, P.P.; Kulpecz, A.A.; Feigenson, M.D.

    2008-01-01

    We analyzed the latest Early Cretaceous to Miocene sections (???110-7Ma) in 11 New Jersey and Delaware onshore coreholes (Ocean Drilling Program Legs 150X and 174AX). Fifteen to seventeen Late Cretaceous and 39-40 Cenozoic sequence boundaries were identified on the basis of physical and temporal breaks. Within-sequence changes follow predictable patterns with thin transgressive and thick regressive highstand systems tracts. The few lowstands encountered provide critical constraints on the range of sea-level fall. We estimated paleowater depths by integrating lithofacies and biofacies analyses and determined ages using integrated biostratigraphy and strontium isotopic stratigraphy. These datasets were backstripped to provide a sea-level estimate for the past ???100 Myr. Large river systems affected New Jersey during the Cretaceous and latest Oligocene-Miocene. Facies evolved through eight depositional phases controlled by changes in accommodation, long-term sea level, and sediment supply: (1) the Barremian-earliest Cenomanian consisted of anastomosing riverine environments associated with warm climates, high sediment supply, and high accommodation; (2) the Cenomanian-early Turonian was dominated by marine sediments with minor deltaic influence associated with long-term (107 year) sea-level rise; (3) the late Turonian through Coniacian was dominated by alluvial and delta plain systems associated with long-term sea-level fall; (4) the Santonian-Campanian consisted of marine deposition under the influence of a wave-dominated delta associated with a long-term sea-level rise and increased sediment supply; (5) Maastrichtian-Eocene deposition consisted primarily of starved siliciclastic, carbonate ramp shelf environments associated with very high long-term sea level and low sediment supply; (6) the late Eocene-Oligocene was a starved siliciclastic shelf associated with moderately high sea-level and low sediment supply; (7) late early-middle Miocene consisted of a

  16. Palaeoenvironmental evolution of Lake Gacko (Southern Bosnia and Herzegovina): Impact of the Middle Miocene Climatic Optimum on the Dinaride Lake System

    PubMed Central

    Mandic, Oleg; de Leeuw, Arjan; Vuković, Boško; Krijgsman, Wout; Harzhauser, Mathias; Kuiper, Klaudia F.

    2011-01-01

    In the Early to Middle Miocene, a series of lakes, collectively termed the Dinaride Lake System (DLS), spread out across the north-western part of the Dinaride–Anatolian continental block. Its deposits, preserved in numerous intra-montane basins, allow a glimpse into the palaeoenvironmental, palaeobiogeographic and geodynamic evolution of the region. Lake Gacko, situated in southern Bosnia and Herzegovina, is one of the constituent lakes of the DLS, and its deposits are excellently exposed in the Gračanica open-cast coal-mine. A detailed study of the sedimentary succession that addresses facies, sediment petrography, geophysical properties, and fossil mollusc palaeoecology reveals repetitive changes in lake level. These are interpreted to reflect changes in the regional water budget. First-order chronologic constraints arise from the integration of radio-isotopic and palaeomagnetic data. 40Ar/39Ar measurements on feldspar crystals from a tephra bed in the upper part of the sedimentary succession indicate a 15.31 ± 0.16 Ma age for this level. The reversed magnetic polarity signal that characterises the larger part of the investigated section correlates to chron C5Br of the Astronomically Tuned Neogene Timescale. Guided by these chronologic data and a detailed cyclostratigraphic analysis, the observed variations in lake-level, evident as two ~ 40-m and seven ~ 10-m scale transgression–regression cycles, are tuned to ~ 400-kyr and ~ 100-kyr eccentricity cycles. From the tuning, it can be inferred that the sediments in the Gacko Basin accumulated between ~ 15.8 and ~ 15.2 Ma. The economically valuable lignite accumulations in the lower part of the succession are interpreted to indicate the development of swamp forests in conjunction with lake-level falls corresponding to ~ 100-kyr eccentricity minima. Pedogenesis, rhizoliths and palustrine carbonate breccias in the upper part of the section reveal long-term aridity coinciding with a ~ 400-kyr

  17. Magnetostratigraphy and stable isotope geochemistry of upper Paleogene-Neogene basin sediments as tools for reconstructing the paleotopography and paleoenvironment of the Anatolian Plateau

    NASA Astrophysics Data System (ADS)

    Meijers, M. J.; Mulch, A.; Mikes, T.; Kaymakci, N.; Brocard, G. Y.; Ozkaptan, M.; Lefebvre, C.; Keller, N.; Whitney, D. L.

    2013-12-01

    Ongoing Eurasia-Africa convergence in the eastern Mediterranean realm has led to the westward escape of the Anatolian microplate and the formation of the Anatolian plateau. The CD-CAT (Continental Dynamics-Central Anatolian Tectonics) project aims at understanding the surface-to-mantle coupling during the transition from collision to escape tectonics and ultimately plateau formation in Anatolia. Within the CAT framework, this study aims to determine the paleoenvironmental conditions and the age of plateau uplift by integrating magnetostratigraphy and stable isotope geochemistry from basin deposits. Recently published stable isotope data from Anatolian lake sediments (Lüdecke et al., in press) show no evidence for the presence of significant orographic barriers in the Oligocene-lower Miocene. Studies by Schildgen et al. (2012a,b) presenting new and reinterpreted biostratigraphic data from marine sediments limit the start of surface uplift at the southern plateau margin (central Taurides) to < 8-7 Ma (Tortonian-Messinian). In this study, we sampled lake sediments that were assigned Oligocene-Pliocene ages on the basis of biostratigraphy in the central Taurides (in the Ecemis corridor and the Ulukisla basin). Preliminary data from three sections of Oligocene-middle Miocene and upper Miocene-Pliocene age yield normal and reversed polarities and counterclockwise rotations. These paleomagnetic data will be supported by additional age constraints from low temperature thermochronology, biostratigraphy and 40Ar/39Ar dating of ash layers. One of the Oligocene-middle Miocene sections in the Ulukisla basin sampled within an alternation of red and gray siltstones, claystones, limestones and marls was partially remagnetized after tilting which makes a correlation to the GPTS challenging. Remagnetization is however confined to the gray horizons that have a chemically different composition as revealed by x-ray fluorescence data (pXRF). Further east two more sections in the

  18. An Integrated Age Model for the Cocos Plate using IODP CRISP Drilling Data

    NASA Astrophysics Data System (ADS)

    Baxter, A. T.; Kutterolf, S.; Schindlbeck, J. C.; Sandoval, M. I.; Barckhausen, U.; Li, Y. X.; Petronotis, K. E.

    2017-12-01

    We present an integrated age model for the incoming Cocos Plate sediments offshore Costa Rica. The data, collected over two IODP Expeditions (334 and 344), provides a medium- to high-resolution record from the initial formation of the ocean crust in the Miocene to the present day. This study provides >50 age control points for the CRISP sediments from Sites U1381 and U1414. Although the two sites are just 10 km apart, there are distinct differences in the sediment and tephra record. Most notable is the presence of a hiatus at Site U1381. The hiatus, which is seen at other sites on the Cocos Plate, but not at Site U1414, may be related to erosion due to bottom water currents, mass wasting from Cocos Ridge subduction or may be related to the closure of the Central American Seaway (CAS). Sediment accumulation rates in the Miocene are comparable to modern abyssal plain rates. However, an increase is observed in the Pleistocene, when detritus from the forearc basin appears at Site U1414 2 Ma, shortly after the initiation of Cocos Ridge subduction. A tectonic model is presented that reconstructs the Cocos Plate, from its formation at 23 Ma to the present day. Eastern Equatorial Pacific (EEP) paleoceanographic events, such as the Miocene `carbonate crash' and the Late Miocene-Early Pliocene `biogenic bloom' observed at Site U1414, are also discussed.

  19. Metasomatized mantle as the source of Mid-Miocene-Quaternary volcanism in NW-Iranian Azerbaijan: Geochronological and geochemical evidence

    NASA Astrophysics Data System (ADS)

    Lechmann, Anna; Burg, Jean-Pierre; Ulmer, Peter; Guillong, Marcel; Faridi, Mohammad

    2018-04-01

    Middle Miocene to Quaternary volcanic rocks cover large areas of the Azerbaijan Province in NW Iran. This study reports two separate age clusters out of 23 new LA-ICP-MS U-Pb zircon ages: (1) Middle Miocene (16.2-10.6 Ma) and (2) Latest Miocene-Late Pleistocene (5.5-0.4 Ma). Major and trace element bulk rock geochemistry and initial Sr, Nd, Pb radiogenic isotope data on the dated rocks provide new constraints on the Mid-Miocene to Quaternary volcanism in this region. The analyses are distributed over a large compositional range from low-K to high-K calc-alkaline andesites and dacites/rhyolites to more alkaline trachybasalts and dacites with shoshonitic affinities. Chondrite-normalized REE patterns are steep with significant enrichment in LREE and low abundances of HREE indicating a garnet control. Plots of primitive mantle-normalized trace elements show negative Ti and Nb-Ta anomalies indicative of an arc signature. The wide compositional range and the ubiquitous presence of an arc signature reveal that the source mantle is heterogeneous and metasomatically altered. Sr, Nd and Pb radiogenic isotope data further point towards an enriched mantle source and/or crustal contamination. Crustal contamination is best recognized by inherited zircon cores, which yield Late Neoproterozoic to Early Cambrian ages typical for the Iranian basement. The occurrence of adakite-like compositions with elevated magnesium numbers, Cr and Ni concentrations argue against a fractionation-driven process but point to a subcrustal origin. Overall, the analyzed lavas show no spatial and temporal relation to a potential subduction zone, confirming the dated volcanics to be post-collisional and not related to singular processes such as slab retreat or delamination of a continuous lower crustal sliver. We propose three hypotheses to explain the reported disparity in distribution, age and composition and favour small-scale sublithospheric convection or incorporation of crustal material into the

  20. A macroecological glance at the structure of late Miocene rodent assemblages from Southwest Europe

    PubMed Central

    Cano, Ana Rosa Gómez; Cantalapiedra, Juan L.; Álvarez-Sierra, M. Ángeles; Fernández, Manuel Hernández

    2014-01-01

    Deep-time perspectives in macroecology are essential with regard to understanding the impact of climate forcing on faunal communities. Using late Miocene rodent faunas (12 to 5 Ma) from two different biogeographical provinces from southwestern Europe, we asked whether the waxing and waning of faunas with dissimilar ecological affinities tracked climate in different ways. The latest middle Miocene featured a fauna dominated by dormice with forest and mixed-habitat affinities. This group declined towards the Upper Miocene. Rodent taxa with the highest values of richness at the beginning of the Upper Miocene are generalists in the southern province and specialists of forested habitats in the northern province. Finally, we identified a third, increasingly significant group of rodents linked to open landscapes towards the end of the Miocene. These three broad ecological groups showed differential responses to a complex set of interconnected circumstances, including the biogeographic structure of the study area and climatic changes throughout time. PMID:25297009

  1. A macroecological glance at the structure of late Miocene rodent assemblages from Southwest Europe.

    PubMed

    Gómez Cano, Ana Rosa; Cantalapiedra, Juan L; Álvarez-Sierra, M Ángeles; Hernández Fernández, Manuel

    2014-10-09

    Deep-time perspectives in macroecology are essential with regard to understanding the impact of climate forcing on faunal communities. Using late Miocene rodent faunas (12 to 5 Ma) from two different biogeographical provinces from southwestern Europe, we asked whether the waxing and waning of faunas with dissimilar ecological affinities tracked climate in different ways. The latest middle Miocene featured a fauna dominated by dormice with forest and mixed-habitat affinities. This group declined towards the Upper Miocene. Rodent taxa with the highest values of richness at the beginning of the Upper Miocene are generalists in the southern province and specialists of forested habitats in the northern province. Finally, we identified a third, increasingly significant group of rodents linked to open landscapes towards the end of the Miocene. These three broad ecological groups showed differential responses to a complex set of interconnected circumstances, including the biogeographic structure of the study area and climatic changes throughout time.

  2. A macroecological glance at the structure of late Miocene rodent assemblages from Southwest Europe

    NASA Astrophysics Data System (ADS)

    Cano, Ana Rosa Gómez; Cantalapiedra, Juan L.; Álvarez-Sierra, M. Ángeles; Fernández, Manuel Hernández

    2014-10-01

    Deep-time perspectives in macroecology are essential with regard to understanding the impact of climate forcing on faunal communities. Using late Miocene rodent faunas (12 to 5 Ma) from two different biogeographical provinces from southwestern Europe, we asked whether the waxing and waning of faunas with dissimilar ecological affinities tracked climate in different ways. The latest middle Miocene featured a fauna dominated by dormice with forest and mixed-habitat affinities. This group declined towards the Upper Miocene. Rodent taxa with the highest values of richness at the beginning of the Upper Miocene are generalists in the southern province and specialists of forested habitats in the northern province. Finally, we identified a third, increasingly significant group of rodents linked to open landscapes towards the end of the Miocene. These three broad ecological groups showed differential responses to a complex set of interconnected circumstances, including the biogeographic structure of the study area and climatic changes throughout time.

  3. Cenozoic ice sheet history from East Antarctic Wilkes Land continental margin sediments

    USGS Publications Warehouse

    Escutia, C.; De Santis, L.; Donda, F.; Dunbar, R.B.; Cooper, A. K.; Brancolini, Giuliano; Eittreim, S.L.

    2005-01-01

    The long-term history of glaciation along the East Antarctic Wilkes Land margin, from the time of the first arrival of the ice sheet to the margin, through the significant periods of Cenozoic climate change is inferred using an integrated geophysical and geological approach. We postulate that the first arrival of the ice sheet to the Wilkes Land margin resulted in the development of a large unconformity (WL-U3) between 33.42 and 30 Ma during the early Oligocene cooling climate trend. Above WL-U3, substantial margin progradation takes place with early glacial strata (e.g., outwash deposits) deposited as low-angle prograding foresets by temperate glaciers. The change in geometry of the prograding wedge across unconformity WL-U8 is interpreted to represent the transition, at the end of the middle Miocene "climatic optimum" (14-10 Ma), from a subpolar regime with dynamic ice sheets (i.e., ice sheets come and go) to a regime with persistent but oscillatory ice sheets. The steep foresets above WL-U8 likely consist of ice proximal sediments (i.e., water-lain till and debris flows) deposited when grounded ice-sheets extended into the shelf. On the continental rise, shelf progradation above WL-U3 results in an up-section increase in the energy of the depositional environment (i.e., seismic facies indicative of more proximal turbidite and of bottom contour current deposition from the deposition of the lower WL-S5 sequence to WL-S7). Maximum rates of sediment delivery to the rise occur during the development of sequences WL-S6 and WL-S7, which we infer to be of middle Miocene age. During deposition of the two uppermost sequences, WL-S8 and WL-S9, there is a marked decrease in the sediment supply to the lower continental rise and a shift in the depocenters to more proximal areas of the margin. We believe WL-S8 records sedimentation during the final transition from a dynamic to a persistent but oscillatory ice sheet in this margin (14-10 Ma). Sequence WL-S9 forms under a polar

  4. Sedimentary paleoenvironments of fossil platyrrhine localities, Miocene Pinturas Formation, Santa Cruz Province, Argentina

    USGS Publications Warehouse

    Bown, T.M.

    1990-01-01

    The Pinturas Formation is a pyroclastic and epiclastic aeolian deposit of Miocene age lying discordantly upon Jurassic rocks in the elevated Andean precordillera of northwest Santa Cruz Province, Argentina. The history of development of the Pinturas Formation was significantly affected by the gradual, though sporadic, draping of this aeolian sediment across a profound, slowly filling paleotopography. The Pinturas depositional cycle consisted of: (1) minor aeolian deposition followed by soil formation, and (2) major aeolian deposition followed by intervals of regional erosion. Fluvial action seems to have been almost wholly confined to intraformational erosion, and two significant intraformational erosional unconformities divide the Pinturas Formation into three sequences. The lower sequence is dominated by pyroclastic mudrocks upon which were formed very mature, probably mollic, paleosols; the middle sequence is composed largely of epiclastic sand occurring as barchanoid paleodunes; and the upper sequence consists of massive, poorly bedded pyroclastic mudrocks. Many Pinturas lacunae were reconstructed on the basis of locally preserved strata, and a novel method of holostrome reconstruction using relative paleosol maturities places Pinturas sedimentation in a more accurate temporal light. It also indicates: (1) that the Pinturas sediment accumulation rate increased with time; (2) that regional erosive intervals are correlated directly with major influxes of pyroclastic material; and (3) that the introduction of the Pinturas platyrrhine primates occurred in the sequence:Carlocebus carmenensis, C. intermedius andSoriacebus ameghinorum. Soriacebus adrianae. Pinturas paleosols appear to have formed under moist conditions, and both mature and immature varieties yield a host of ichnofossils. These include the burrows and nests of bees, scarabeid beetles, termites, and at least two different kinds of colonial rodents, in addition to rhizoliths and the calcified boles and

  5. Mid-Late Miocene deformation of the northern Kuqa fold-and-thrust belt (southern Chinese Tian Shan): An apatite (U-Th-Sm)/He study

    NASA Astrophysics Data System (ADS)

    Chang, Jian; Tian, Yuntao; Qiu, Nansheng

    2017-01-01

    The Kuqa fold-and-thrust belt developed in response to Cenozoic southward shortening between the Chinese Tian Shan and the Tarim Basin. This study aims to constrain the timing of the Late Cenozoic deformation by determining the onset time of enhanced rock cooling using apatite (U-Th-Sm)/He thermochronometry. Eight sedimentary samples were collected from Triassic to Cretaceous strata exposed along a 17 km N-S transect, cross-cutting the northern Kuqa fold-and-thrust belt. Single-grain AHe ages from these samples mostly cluster around 8-16 Ma and are younger than their depositional ages. Older AHe ages show a positive relationship with [eU], a proxy for radiation damage. Modelling of the observed age-eU relationships suggest a phase of enhanced cooling and erosion initiated at Mid-Late Miocene time (10-20 Ma) in the northern Kuqa fold-and-thrust belt. This result is consistent with a coeval abrupt increase of sedimentation rate in the foreland Kuqa depression, south of the study area, indicating a Mid-Late Miocene phase of shortening in the northern Kuqa fold-and-thrust belt.

  6. Is Ice-Rafted Sediment in a North Pole Marine Record Evidence for Perennial Sea-ice Cover?

    NASA Technical Reports Server (NTRS)

    Tremblay, L.B.; Schmidt, G.A.; Pfirman, S.; Newton, R.; DeRepentigny, P.

    2015-01-01

    Ice-rafted sediments of Eurasian and North American origin are found consistently in the upper part (13 Ma BP to present) of the Arctic Coring Expedition (ACEX) ocean core from the Lomonosov Ridge, near the North Pole (approximately 88 degrees N). Based on modern sea-ice drift trajectories and speeds, this has been taken as evidence of the presence of a perennial sea-ice cover in the Arctic Ocean from the middle Miocene onwards. However, other high latitude land and marine records indicate a long-term trend towards cooling broken by periods of extensive warming suggestive of a seasonally ice-free Arctic between the Miocene and the present. We use a coupled sea-ice slab-ocean model including sediment transport tracers to map the spatial distribution of ice-rafted deposits in the Arctic Ocean. We use 6 hourly wind forcing and surface heat fluxes for two different climates: one with a perennial sea-ice cover similar to that of the present day and one with seasonally ice-free conditions, similar to that simulated in future projections. Model results confirm that in the present-day climate, sea ice takes more than 1 year to transport sediment from all its peripheral seas to the North Pole. However, in a warmer climate, sea-ice speeds are significantly faster (for the same wind forcing) and can deposit sediments of Laptev, East Siberian and perhaps also Beaufort Sea origin at the North Pole. This is primarily because of the fact that sea-ice interactions are much weaker with a thinner ice cover and there is less resistance to drift. We conclude that the presence of ice-rafted sediment of Eurasian and North American origin at the North Pole does not imply a perennial sea-ice cover in the Arctic Ocean, reconciling the ACEX ocean core data with other land and marine records.

  7. Miocene whale-fall from California demonstrates that cetacean size did not determine the evolution of modern whale-fall communities.

    PubMed

    Pyenson, Nicholas D; Haasl, David M

    2007-12-22

    Whale-fall communities support a deep-sea invertebrate assemblage that subsists entirely on the decaying carcasses of large cetaceans. The oldest whale-falls are Late Eocene in age, but these early whale-falls differ in faunal content and host cetacean size from Neogene and Recent whale-falls. Vesicomyid bivalves, for example, are major components of the sulphophilic stage in Miocene and Recent whale-fall communities, but they are absent from Palaeogene fossil whale-falls. The differences between Palaeogene and Neogene communities led to the hypothesis that the origin of modern whale-fall communities was linked with the evolution of extremely large mysticetes, which provided sufficient biomass and oil to sustain the modern complement of whale-fall invertebrates. Here, we describe a fossil whale-fall community from the Miocene of California, showing vesicomyid bivalves in direct association with a host mysticete smaller than the adult individuals of any living mysticete species. This association, which is the youngest yet reported from the Neogene of North America, demonstrates that body size is not a necessary factor for the formation of modern whale-fall communities. Instead, we suggest that high skeletal oil content may have been a more important factor, which, based on the age of the fossil whale-fall, evolved at least by the Late Miocene.

  8. Mixing of biogenic siliceous and terrigenous clastic sediments: South Belridge field and Beta field, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, D.E.

    1990-05-01

    The intermixing and interbedding of biogenically derived siliceous sediment with terrigenous clastic sediment in reservoirs of upper Miocene age provides both reservoir rock and seal and influences productivity by affecting porosity and permeability. Miocene reservoirs commonly contain either biogenic-dominated cyclic diatomite, porcelanite, or chert (classic Monterey Formation) or clastic-dominated submarine fan sequences with interbedded or intermixed siliceous members of biogenic origin. Biogenic-clastic cycles, 30-180 ft thick, at South Belridge field were formed by episodic influx of clastic sediment from distant submarine fans mixing with slowly accumulating diatomaceous ooze. The cycles consist of basal silt and pelletized massive diatomaceous mudstone, overlainmore » by burrowed, faintly bedded clayey diatomite and topped by laminated diatomite. Cycle tops have higher porosity and permeability, lower grain density, and higher oil saturation than clay and silt-rich portions of the cycles. Submarine fan sediments forming reservoirs at the Beta field are comprised of interbedded sands and silts deposited in a channelized middle fan to outer fan setting. Individual turbidites display fining-upward sequences, with oil-bearing sands capped by wet micaceous silts. Average sands are moderately to poorly sorted, fine- to medium-grained arkosic arenites. Sands contain pore-filling carbonate and porcelaneous cements. Porcelaneous cement consists of a mixture of opal-A, opal-CT, and chert with montmorillonite and minor zeolite. This cement is an authigenic material precipitated in intergranular pore space. The origin of the opal is biogenic, with recrystallization of diatom frustules (opal-A) into opal-CT lepispheres and quartz crystals. Porcelaneous cement comprises 4-21% of the bulk volume of the rock. Seventy percent of the bulk volume of the cement is micropore space.« less

  9. Direct dating of Late Miocene-Early Pliocene compression on Elba Island: Is a new paradigm necessary for the opening of the Northern Tyrrhenian Sea?

    NASA Astrophysics Data System (ADS)

    Viola, Giulio; Torgersen, Espen; Mazzarini, Francesco; Musumeci, Giovanni; Garofalo, Paolo Stefano; van der Lelij, Roelant

    2017-04-01

    medium-grade hornfels rocks of the contact aureole at c. 6.2 Ma. K-Ar ages were produced from synkinematic illite separated from multiple grain sizes, with the goal to discriminate the role of clay synkinematic authigenesis and thus date the last increment of deformation. The age of the dated finest fraction constrains the age of the Calanchiole shear zone to 6.14±0.64 Ma (<0.1 µm fraction) and of the Capo Norsi thrust to 4.9±0.27 Ma (<0.4 µm fraction). Our results are fully consistent with the existing data and importantly provide the first direct dating of brittle deformation in the Apennines. In combination with field, kinematic and regional considerations, they undoubtedly constrain a Late Miocene-Early Pliocene regional compressive stress state, with the brittle ZF likely being its latest expression. This followed an earlier phase of upper crustal extension, presumably active since ˜16 Ma and was in turn followed by renewed extension. Compression at that time requires a re-evaluation of the geodynamic models of the evolution of the northern Apennines orogenic prism.

  10. Controls on the quality of Miocene reservoirs, southern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Gutiérrez Paredes, Hilda Clarisa; Catuneanu, Octavian; Hernández Romano, Ulises

    2018-01-01

    An investigation was conducted to determine the main controls on the reservoir quality of the middle and upper Miocene sandstones in the southern Gulf of Mexico based on core descriptions, thin section petrography and petrophysical data; as well as to explore the possible link between the sequence stratigraphic framework, depositional facies and diagenetic alterations. The Miocene deep marine sandstones are attributed to the falling-stage, lowstand, and transgressive systems tracts. The middle Miocene falling-stage systems tract includes medium-to very fine-grained, and structureless sandstones deposited in channels and frontal splays, and muddy sandstones, deposited in lobes of debrites. The lowstand and transgressive systems tracts consist of medium-to very fine-grained massive and normally graded sandstones deposited in channel systems within frontal splay complexes. The upper Miocene falling-stage systems tract includes medium-to coarse-grained, structureless sandstones deposited in channel systems and frontal splay, as well as lobes of debrites formed by grain flows and hybrid-flow deposits. The lowstand and transgressive systems tracts include fine-grained sandstones deposited in overbank deposits. The results reveal that the depositional elements with the best reservoir quality are the frontal splays deposited during the falling-stage system tracts. The reservoir quality of the Miocene sandstones was controlled by a combination of depositional facies, sand composition and diagenetic factors (mainly compaction and calcite cementation). Sandstone texture, controlled primarily by depositional facies appears more important than sandstone composition in determining reservoir quality; and compaction was more important than cementation in porosity destruction. Compaction was stopped, when complete calcite cementation occurred.

  11. Late Cenozoic sea-level changes and the onset of glaciation: impact on continental slope progradation off eastern Canada

    USGS Publications Warehouse

    Piper, D.J.W.; Normark, W.R.

    1989-01-01

    Late Cenozoic sedimentation from four varied sites on the continental slopes off southeastern Canada has been analysed using high-resolution airgun multichannel seismic profiles, supplemented with some single channel data. Biostratigraphic ties are available to exploratory wells at three of the sites. Uniform, slow accumulation of hemipelagic sediments was locally terminated by the late Miocene sea-level lowering, which is also reflected in changes in foraminiferan faunas on the continental shelf. Data are very limited for the early Pliocene but suggest a return to slow hemipelagic sedimentation. At the beginning of the late Pliocene, there was a change in sedimentation style marked by a several-fold increase in accumulation rates and cutting of slope valleys. This late Pliocene cutting of slope valleys corresponds to the onset of late Cenozoic growth of the Laurentian Fan and the initiation of turbidite sedimentation on the Sohm Abyssal Plain. Although it corresponds to a time of sea-level lowering, the contrast with the late Miocene lowstand indicates that there must also have been a change in sediment delivery to the coastline, perhaps as a result of increased rainfall or development of valley glaciers. High sedimentation rates continued into the early Pleistocene, but the extent of slope dissection by gullies increased. Gully-cutting episodes alternated with sediment-draping episodes. Throughout the southeastern Canadian continental margin, there was a change in sedimentation style in the middle Pleistocene that resulted from extensive ice sheets crossing the continental shelf and delivering coarse sediment directly to the continental slope. ?? 1989.

  12. The age of volcanic tuffs from the Upper Freshwater Molasse (North Alpine Foreland Basin) and their possible use for tephrostratigraphic correlations across Europe for the Middle Miocene

    NASA Astrophysics Data System (ADS)

    Rocholl, Alexander; Schaltegger, Urs; Gilg, H. Albert; Wijbrans, Jan; Böhme, Madelaine

    2018-03-01

    The Middle Miocene Upper Freshwater Molasse sediments represent the last cycle of clastic sedimentation during the evolution of the North Alpine Foreland Basin. They are characterized by small-scale lateral and temporal facies changes that make intra-basin stratigraphic correlations at regional scale difficult. This study provides new U-Pb zircon ages as well as revised 40Ar/39Ar data of volcanic ash horizons in the Upper Freshwater Molasse sediments from southern Germany and Switzerland. In a first and preliminary attempt, we propose their possible correlation to other European tephra deposits. The U-Pb zircon data of one Swiss (Bischofszell) and seven southern German (Zahling, Hachelstuhl, Laimering, Unterneul, Krumbad, Ponholz) tuff horizons indicate eruption ages between roughly 13.0 and 15.5 Ma. The stratigraphic position of the Unterneul and Laimering tuffs, bracketing the ejecta of the Ries impact (Brockhorizon), suggests that the Ries impact occurred between 14.93 and 15.00 Ma, thus assigning the event to the reversed chron C5Bn1r (15.032-14.870 Ma) which is in accordance with paleomagnetic evidence. We combine our data with published ages of tuff horizons from Italy, Switzerland, Bavaria, Styria, Hungary, and Romania to derive a preliminary tephrochronological scheme for the Middle Miocene in Central Europe in the age window from 13.2 to 15.5 Ma. The scheme is based on the current state of knowledge that the Carpathian-Pannonian volcanic field was the only area in the region producing explosive calc-alkaline felsic volcanism. This preliminary scheme will require verification by more high-quality ages complemented by isotopic, geochemical and paleomagnetic data.

  13. Depositional environments and paleogeography of the Upper Miocene Wassuk Group, west-central Nevada

    USGS Publications Warehouse

    Golia, R.T.; Stewart, John H.

    1984-01-01

    Fluvial and lacustrine deposits of the Miocene Wassuk Group, exposed in Coal Valley, west-central Nevada, are divided into five lithofacies: (1) diatomite, claystone, siltstone, and carbonaceous siltstone deposited in a lake with paludal conditions at the margin; (2) upward-coarsening sequences of sandstone deposited on a delta and fan-delta; (3) channel-form sandstone deposited on a distal braided alluvial plain; (4) clast-supported conglomerate deposited on a proxial braided alluvial plain or distal alluvial fan; and (5) matrix-supported conglomerate deposited on a distal to middle alluvial fan. Petrographic analysis records an upsection change from a predominantly andesitic to a predominantly plutonic provenance. This change, combined with the overall upward-coarsening of the Wassuk Group and the great thickness (2400 m) of the sequence, suggests active uplift and rapid subsidence during deposition of the group. Facies relationships and paleocurrent directions indicate source areas to the south, southeast and west of Coal Valley. The Miocene Wassuk Group was deposited in an intra-arc basin with penecontemporaneous volcanism and tectonic activity. Syndepositional faulting at the southern margin of Coal Valley between 13 and 11 m.y. ago suggests an early episode of northeast-southwest extension prior to the onset of east-west basin and range extension. ?? 1984.

  14. Discordant Early Miocene palaeomagnetic directions at the vicinity of the North Aegean Trough: tectonic or palaeofield feature?

    NASA Astrophysics Data System (ADS)

    Kontopoulou, D.; Valet, J. P.; Zananiri, I.; Voidomatis, P.

    2017-12-01

    The North Aegean Trough (N.A.T) is a major tectonic feature of North Aegean Sea. This is a large NE-SW transcurrent lineament that is interpreted as the continuation of the North Anatolian Fault, with a prominent dextral strike-slip motion. IAn intense igneous activity has developed along the N.A.T to its north through the presence of abundant plutonism and volcanism from Early Oligocene to Pliocene. A considerable amount of palaeomagnetic data display a systematic pattern of clockwise rotations with angles varying between 20°-40° since the Early Oligocene. In order to document the impact of the N.A.T to regional rotations, early Miocene lava flows have been extensively sampled in the islands of Samothrace and Lemnos located to the north and south of N.A.T, respectively. Two sets of directions have been defined from the palaeomagnetic studies. The first one corresponds to the expected North-East declinations with positive inclinations or to reversed South-West declinations with negative inclinations that were previously interpreted as a dextral rotations of this area. The second set, exhibits discordant and apparently erratic directions despite quite acceptable demagnetization behaviour and magnetic characteristics. In order to constrain further these directions we performed new samplings. The new measurements which include Thellier absolute palaeointensity experiments reveal that the intermediate directions are associated with low field values for Samothrace with a transitional field recorded between 21 and 17 Ma. The presence of single magnetization component and the variability of the lavas do not favor the possibility of self-reversal mechanisms. The consistency of the directions within each flow but also between lava flows of comparable ages in the two islands and the presence of normal and reverse polarities point to records of transitional directions. In both islands, the intermediate virtual geomagnetic poles exhibit a preference for equatorial latitudes

  15. Geological evolution of the Iraqi Mesopotamia Foredeep, inner platform and near surroundings of the Arabian Plate

    NASA Astrophysics Data System (ADS)

    Sissakian, Varoujan K.

    2013-08-01

    source and reservoir rocks in the central and southern parts of Iraq. The Cenozoic sequence consists of Paleogene open marine carbonates, which grades upwards into Neogene lagoonal marine; of Early Miocene and evaporitic rocks; of Middle Miocene age, followed by thick molasses of continental clastics that attain 3500 m in thickness; starting from Late Miocene. The Quaternary sediments are very well developed in the Mesopotamia Plain and they thicken southwards to reach about 180 m near Basra city; in the extreme southeastern part of Iraq. The Iraqi Inner Platform (stable shelf) is a part of the Arabian Plate, being less affected by tectonic disturbances; it covers the area due to south and west of the Euphrates River. The main tectonic feature in this zone that had affected on the geology of the area is the Rutbah Uplift; with less extent is the Ga'ara High. The oldest exposed rocks within the Inner Platform belong to Ga'ara Formation of Permian age; it is exposed only in the Ga'ara Depression. The Permian rocks are overlain by Late Triassic rocks; represented by Mulussa and Zor Hauran formations, both of marine carbonates with marl intercalations. The whole Triassic rocks are absent west, north and east of Ga'ara Depression. Jurassic rocks, represented by five sedimentary cycles, overlie the Triassic rocks. Each cycle consists of clastic rocks overlain by carbonates, being all of marine sediments; whereas the last one (Late Jurassic) consists of marine carbonates only. All the five formations are separated from each other by unconformable contacts. Cretaceous rocks, represented by seven sedimentary cycles, overlie the Jurassic rocks. Marine clastics overlain by marine carbonates. Followed upwards (Late Cretaceous) by continental clastics overlain by marine carbonates; then followed by marine carbonates with marl intercalations, and finally by marine clastics overlain by carbonates; representing the last three cycles, respectively. The Paleocene rocks form narrow belt

  16. Palynological and palaeobotanical investigations in the Miocene of the Yatağan basin, Turkey: High-resolution taxonomy and biostratigraphy

    NASA Astrophysics Data System (ADS)

    Bouchal, Johannes Martin; Güner, Tuncay H.; Denk, Thomas

    2015-04-01

    The subject of this study is the palynology (biostratigraphic and taxonomic) and the plant remains of the lignite strip mines of Eskihisar, Salihpasalar, and Tinaz (Muğla province, western Turkey). In the Yatağan basin two Miocene to Pliocene formations are present, the Eskihisar Formation (early to middle Miocene) and the Yatağan Formation (late Miocene to early Pliocene). Both formations represent river and lake deposits consisting mainly of conglomerate, sandstone, claystone, limestone, tuffite, and intercalated lignite; the thickest, actively mined lignite seams occur in the Sekköy member of the Eskihisar Formation. Previous palynological studies of the palynoflora of the Yatağan basin mainly focussed on its biostratigraphic and palaeoclimatic significance, using conventional morphological nomenclature and light microscopy (LM). In this study the "single grain method" is applied. Using this method, the same individual pollen grains are investigated by using both LM and scanning electron microscopy (SEM). The resulting high-resolution pictographs enable a much higher taxonomic resolution. The studied palynoflora is very rich and taxonomically diverse. Cryptogams are represented by more than ten spore morphotypes of at least three families (Osmundaceae, Pteridaceae, Polypodiaceae). Gymnosperm pollen is dominated by Cupressaceae, Gnetales (Ephedra), and Pinaceae (Cathaya, Keteleeria, Pinus). Angiosperm pollen can be assigned to 57 different genera belonging to Poaceae, Typhaceae, Altingiaceae, Amaranthaceae (Chenopodieae), Anacardiaceae, Apiaceae (three types), Asteraceae (Asteroideae, Cichoriodeae), Betulaceae (Alnus, Betula, Carpinus, Ostrya) Buxaceae, Campanulaceae, Caprifoliaceae (Lonicera), Caryophyllaceae, Dipsacaceae, Eucommiaceae, Euphorbiaceae, Fabaceae, Fagaceae (Fagus, Quercus, Trigonobalanopsis) Geraniaceae, Juglandaceae, Linaceae, Malvaceae (Tilia), Myricaceae, Oleaceae (four different types), Plumbaginaceae, Polygonaceae (Rumex), Rosaceae

  17. Mineralogy of Sediments on a Cold and Icy Early Mars

    NASA Astrophysics Data System (ADS)

    Rampe, E. B.; Horgan, B. H. N.; Smith, R.; Scudder, N.; Rutledge, A. M.; Bamber, E.; Morris, R. V.

    2017-12-01

    The water-related minerals discovered in ancient martian terrains suggest liquid water was abundant on the surface and/or near subsurface during Mars' early history. The debate remains, however, whether these minerals are indicative of a warm and wet or cold and icy climate. To characterize mineral assemblages of cold and icy mafic terrains, we analyzed pro- and supraglacial rocks and sediments from the Collier and Diller glacial valleys in Three Sisters, Oregon. We identified primary and secondary phases using X-ray diffraction (XRD), scanning and transmission electron microscopies with energy dispersive spectroscopy (SEM, TEM, EDS), and visible/short-wave-infrared (VSWIR) and thermal-infrared (TIR) spectroscopies. Samples from both glacial valleys are dominated by primary igneous minerals (i.e., plagioclase and pyroxene). Sediments in the Collier glacial valley contain minor to trace amounts of phyllosilicates and zeolites, but these phases are likely detrital and sourced from hydrothermally altered units on North Sister. We find that the authigenic phases in cold and icy mafic terrains are poorly crystalline and/or amorphous. TEM-EDS analyses of the <2 um size fraction of glacial flour shows the presence of many different nanophase materials, including iron oxides, devitrified volcanic glass, and Fe-Si-Al (e.g., proto-clay) phases. A variety of primary and secondary amorphous materials (e.g., volcanic glass, leached glass, allophane) have been suggested from orbital IR data from Mars, and the CheMin XRD on the Curiosity rover has identified X-ray amorphous materials in all rocks and soils measured to date. The compositions of the Gale Crater amorphous components cannot be explained by primary volcanic glass alone and likely include secondary silicates, iron oxides, and sulfates. We suggest that the prevalence of amorphous materials on the martian surface and the variety of amorphous components may be a signature of a cold and icy climate on Early Mars.

  18. Controls of structural inheritance on orogenic curvature and foreland basin sedimentation: Insights from the Przemyśl area, Western Carpathians

    NASA Astrophysics Data System (ADS)

    Szaniawski, Rafał; Mazzoli, Stefano; Jankowski, Leszek

    2017-10-01

    Orogenic curvatures can have various origins and are widely debated worldwide. In the Poland-Ukraine border area, the Outer Western Carpathians are characterized by a marked curvature. The origin of this curvature was analysed by integrating stratigraphic information with structural constraints and anisotropy of the magnetic susceptibility (AMS) data. Hangingwall frontal ramp domains are characterized by a relatively simple deformation dominated by layer-parallel shortening and folding around a regional NW-SE trending axis, recorded by an AMS lineation with a similar trend. On the other hand, the N-S trending hangingwall oblique ramp domain is characterized by maximum AMS axes recording transpressional strain either dominated by simple shear (sub-horizontal AMS lineation) or pure shear (steeply plunging AMS lineation) components. Early Miocene basin inversion with two distinct depocentres created a number of different detachment surfaces and thickness variations for the sedimentary successions involved in thrusting. The main depocentre of the Lower-Middle Miocene foredeep was originally located in the recess area of the curved Carpathian front. On the other hand, the occurrence of a salient to the west resulted in the axial zone of the foreland flexure being filled with allochthonous units, thereby dramatically reducing the accommodation space for foredeep sediments in this area. Our results suggest that thrust-belt geometry was controlled by the inherited Mesozoic extensional basin architecture.

  19. Coral distribution patterns in Miocene Reefs of Anguilla, Leeward Islands, West Indies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foster, A.B.; Johnson, K.G.

    1988-01-01

    Anguilla, a 27 by 5 km island at 18/sup 0/13'N, 63/sup 0/05'W, parallels the northwest edge of the Anguilla bank (St. Martin plateau) in the outer lesser Angilles volcanic arc, which was active from the Eocene to Oligocene. Except for scattered exposures of tuff or basalt, the island is composed predominantly of reefal limestones and marls of the 70-m thick, middle Miocene Anguilla Formation, deposited on a shallow inner shelf platform extending from volcanoes near St. Martin. The reef framework consists of branched and platy corals interspersed with calcareous sand lenses. Although the limestones have been uplifted and subjected tomore » minor faulting, little evidence supports extensive transport across a slope. Coral distribution patterns have been quantified across the reefal units by point-counting species occurrences at 0.16-m intervals within 1-m/sup 2/ quadrants placed haphazardly across vertical exposures. Eight coral species (of possibly 18 total) were recorded. Cluster analysis delineated four facies: (1) a low-diversity facies dominated by branched Porites, (2) an intermediate diversity facies dominated by branched Porites, (3) a high-diversity facies dominated by massive Montastraea, Siderastrea, and Porites, and (4) an intermediate diversity facies dominated by platy Porites. These facies consists of lenses, no more than 100 m long and 2 m high, arranged in no apparent regular sequence. Thus, they do not represent zones across a depth gradient. Comparisons with living Caribbean reefs suggests that the Anguilla Miocene reefs were similar to small, modern, backreef fringing and patch reefs near the San Blas Islands of Panama, reefs whose variable composition and patchy distribution depend largely on sedimentation and current patterns.« less

  20. Unlocking the ice house: Oligocene-Miocene oxygen isotopes, eustasy, and margin erosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, K.G.; Wright, J.D.; Fairbanks, R.G.

    1991-04-10

    Benthic foraminiferal {delta}{sup 18}O records place limits on the history of glaciation, suggesting the presence of ice sheets at least intermittently since the earliest Oligocene. The best indicator of ice growth is a coeval increase in global benthic and western equatorial planktonic {delta}{sup 18}O records. Although planktonic isotope records from the western equatorial regions are limited, subtropical planktonic foraminifera may also record such ice volume changes. It is difficult to apply these established principles to the Cenozoic {delta}{sup 18}O record because of the lack of adequate data and problems in stratigraphic correlations that obscure isotope events. The authors improved Oligocenemore » to Miocene correlations of {delta}{sup 18}O records and erected eight oxygen isotope zones (Oi1-Oi2, Mi1-Mi6). Benthic foraminiferal {delta}{sup 18}O increases which can be linked with {delta}{sup 18}O increases in subtropical planktonic foraminifera and with intervals of glacial sedimentation on or near Antarctica. These new correlations of middle Miocene benthic and western equatorial planktonic {delta}{sup 18}O records show remarkable agreement in timing and amplitude. They interpret benthic-planktonic covariance to reflect substantial ice volume increases near the bases of Zones Mi2 (circa 16.1 Ma), Mi3 (circa 13.6 Ma), and possibly Mi5 (circa 11.3 Ma). Possible glacioeustatic lowerings are associated with the {delta}{sup 18}O increases which culminated with the bases of Zone Mi4 (circa 12.6 Ma) and Mi6 (circa 9.6 Ma), although low-latitude planktonic {delta}{sup 18}O records are required to test this. These inferred glacioeustatic lowerings can be linked to seismic and rock disconformities.« less

  1. Widespread Miocene deep-sea hiatuses: coincidence with periods of global cooling.

    USGS Publications Warehouse

    Barron, J.A.; Keller, G.

    1982-01-01

    High-resolution biostratigraphic analyses of Miocene deep-sea cores reveal eight intervals of widespread hiatuses in the world ocean. In complete sections these hiatuses correspond to intervals of cool faunal and floral assemblages, rapid enrichment of delta 18O, and sea-level regressions. These factors suggest that Miocene deep-sea hiatuses result from an increased intensity of circulation and corrosiveness of bottom currents during periods of increased polar refrigeration.-Authors

  2. Changes in sea-surface conditions in the Equatorial Pacific during the middle Miocene-Pliocene (IODP Site 1338)

    NASA Astrophysics Data System (ADS)

    Rousselle, Gabrielle; Beltran, Catherine; Sicre, Marie-Alexandrine; Raffi, Isabella; De Rafélis, Marc

    2013-04-01

    The modern Equatorial Pacific setting is progressively developed during the Miocene and the Pliocene, with a gradual closure of the Central American Seaway (CAS) and the gradual constriction of the Indonesian seaway. In parallel, the Earth experienced a climatic transition from the mid-Miocene warm period to the modern "ice-house" climate with the growth of the Antarctic Ice-sheet (~ 13.9 Ma) and the appearance of large Northern Hemisphere Glaciations (NHG) (~ 3 Ma). In order to study the evolution of the Eastern equatorial Pacific (EEP) during the last 14 Myrs, we present here the Mio-Pliocene alkenone-derived curve, combined with the oxygen stable isotopes record of bulk carbonate (δ18Obulk) and calcareous nannofossils dominated fractions (δ18ONoelaerhabdaceae), from IODP Site 1338. The originality of this work lies in that the calcareous nannofossils species that are concentrated in the fine fractions belong to the same family to the alkenone producers. We are then able to compare an organic and an inorganic record from the same producer. Our data and those available from other sites of the same area show the extension of a cold tongue during the Early Pliocene (4.4-3.6 Ma). Indeed, our data suggest a shallowing of the thermocline in the EEP, between 6.8 and 6 Ma, and its shoaling between 4.8 and 4.0 Ma accompanying a sea surface cooling. Then, the timing of the thermocline shoaling does not agree with the idea that NHG initiated the Pliocene climate transition. SST and δ18ONoelaerhabdaceae time-series indicate periods of significant salinity variations. Then, comparison with the δ18OBenthic curve from sediment cores of the Equatorial Pacific Ocean allow us to distinguish between global changes and local salinity variations in the EEP, with a freshening between 11.5 and 10 Ma, and between 6.8 and 6 Ma. A pCO2 reconstruction based on δ13C of alkenone at site 1338 is currently measured and will eventually be presented, as well as TEX86 measurements in order

  3. Generation and migration of hydrocarbons in offshore South Texas Gulf Coast sediments

    NASA Astrophysics Data System (ADS)

    Huc, A. Y.; Hunt, J. M.

    1980-08-01

    The hydrocarbon content of two thick Tertiary sequences from the offshore Gulf Coast (South Padre Island and Mustang Island) was studied using a headspace technique, thermal distillation, pyrolysis and solvent extraction. The threshold of oil generation was determined to occur in the range of 3050 m (10,000 ft; 120°C) in Miocene sediments. In the South Padre Island well, the distribution of the different classes of hydrocarbons along the sedimentary column suggests some updip migration processes are occurring.

  4. A Pan African age for the HP-HT granulite gneisses of Zabargad island: implications for the early stages of the Red Sea rifting

    NASA Astrophysics Data System (ADS)

    Lancelot, Joël R.; Bosch, Delphine

    1991-12-01

    Up to now the age of granulite gneisses intruded by the Zabargad mantle diapir has been an unsolved problem. These gneisses may represent either a part of the adjacent continental crust primarily differentiated during the Pan African orogeny, or new crust composed of Miocene clastic sediments deposited in a developing rift, crosscut by a diabase dike swarm and gabbroic intrusions, and finally metamorphosed and deformed by the mantle diapir. Previous geochronological results obtained on Zabargad island and Al Lith and Tihama-Asir complexes (Saudi Arabia) suggest an Early Miocene age of emplacement for the Zabargad mantle diapir during the early opening of the Red Sea rift. In contrast, Sm sbnd Nd and Rb sbnd Sr internal isochrons yield Pan African dates for felsic and basic granulites collected 500-600 m from the contact zone with the peridotites. Devoid of evidence for retrograde metamorphic, minerals from a felsic granulite provide well-defined Rb sbnd Sr and Sm sbnd Nd dates of 655 ± 8 and 699 ± 34 Ma for the HP-HT metamorphic event (10 kbar, 850°C). The thermal event related to the diapir emplacement is not recorded in the Sm sbnd Nd and Rb sbnd Sr systems of the studied gneisses; in contrast, the development of a retrograde amphibolite metamorphic paragenesis strongly disturbed the Rb sbnd Sr isotopic system of the mafic granulite. The initial 143Nd/ 144Nd ratio of the felsic granulite is higher than the contemporaneous value for CHUR and is in agreement with other Nd isotopic data for samples of upper crust from the Arabian shield. This result suggests that source rocks of the felsic granulite were derived at 1.0 to 1.2 Ga from either an average MORB-type mantle or a local 2.2 Ga LREE-depleted mantle. Zabargad gneisses represent a part of the disrupted lower continental crust of the Pan African Afro-Arabian shield. During early stages of the Red Sea rifting in the Miocene, these Precambrian granulites were intruded and dragged upwards by a rising peridotite

  5. Miocene marine incursions and marine/freshwater transitions: Evidence from Neotropical fishes

    NASA Astrophysics Data System (ADS)

    Lovejoy, Nathan R.; Albert, James S.; Crampton, William G. R.

    2006-03-01

    Amazonian rivers contain a remarkable fauna of endemic species derived from taxa that generally occur in oceans and seas. Several hypotheses have been proposed to explain the origin of marine-derived lineages, including opportunistic invasions via estuaries, vicariance related to uplift of the Andes, and vicariance related to Miocene marine incursions and connections. Here, we examine available data for marine-derived lineages of four groups: stingrays (Myliobatiformes), drums (Sciaenidae), anchovies (Engraulididae), and needlefish (Belonidae). Geographic distributions, age estimates (determined using fossils, biogeography, and molecular data sets), and phylogenies for these taxa are most compatible with origination during the Miocene from marine sister groups distributed along the northern coast of South America. We speculate that unique ecological and biogeographic aspects of the Miocene upper Amazonian wetland system, most notably long-term connections with marine systems, facilitated the evolutionary transition from marine to freshwater habitats.

  6. Miocene oceanographic changes of the western equatorial Atlantic (Ceara Rise) based on calcareous dinoflagellate cysts

    NASA Astrophysics Data System (ADS)

    Heinrich, Sonja; Zonneveld, Karin A. F.; Willems, Helmut

    2010-05-01

    The middle- and upper Miocene represent a time-interval of major changes in palaeoclimate leading to global cooling forming the precursor of the onset of Northern Hemisphere Glaciations (NHG). These climate changes are thought to be strongly controlled by oceanographic modifications although the nature of the relationship between ocean and climate change is far from clear. It has for instance been observed that in this time interval the modern deepwater circulation system; the thermohaline circulation was established. It is thought that tectonic events, such as the narrowing of the Panama gateway, played a key role in the progressing of these Miocene oceanographic changes (e.g. Duque-Caro 1990; Lear et al. 2003). However, the complex interaction between the closing of the Panama Gateway, the development of NADW, and thus the oceanographic progression towards our present day circulation is far from being fully understood. A key region to study these interactions is the Caribbean region, notably the Ceara Rise since it is an area of highest sensitivity to global deep water circulation changes. Here we intent to improve the understanding of these processes by establishing a detailed palaeoceanographic reconstruction of the western equatorial Atlantic Ocean on the basis of calcareous dinoflagellate cyst (dinocyst) associations. For this, we investigated sediment samples from ODP Site 926A by defining the calcareous dinocyst assemblage. Site 926A is located at the southwestern flank of the Ceara Rise, an area of highest sensitivity to global deep water circulation changes. At about 11 Ma, we see a distinct increase in the absolute abundances of the calcareous dinocysts suggesting enhanced productivity and better carbonate preservation that can be related to the intensification of NADW formation (Woodruff & Savin 1989). At 11.3 Ma, Leonella granifera, a species known to be strongly related to terrestrial input increases. This could be a signal for the initiation of the

  7. Latest Miocene transtensional rifting of northeast Isla Tiburón, eastern margin of the Gulf of California

    NASA Astrophysics Data System (ADS)

    Bennett, Scott E. K.; Oskin, Michael E.; Iriondo, Alexander

    2017-11-01

    Details about the timing and kinematics of rifting are crucial to understand the conditions that led to strain localization, continental rupture, and formation of the Gulf of California ocean basin. We integrate detailed geologic and structural mapping, basin analysis, and geochronology to characterize transtensional rifting on northeastern Isla Tiburón, a proximal onshore exposure of the rifted North America margin, adjacent to the axis of the Gulf of California. Slip on the Kunkaak normal fault tilted its hanging wall down-to-the-east 70° and formed the non-marine Tecomate basin, deposited across a 20° angular unconformity. From 7.1-6.4 Ma, the hanging wall tilted at 35 ± 5°/Myr, while non-marine sandstone and conglomerate accumulated at 1.4 ± 0.2 mm/yr. At least 1.8 ± 0.1 km of sediments and pyroclastic deposits accumulated in the Tecomate basin concurrent with clockwise vertical-axis block rotation and 2.8 km of total dip-slip motion on the Kunkaak fault. Linear extrapolation of tilting and sedimentation rates suggests that faulting and basin deposition initiated 7.6-7.4 Ma, but an older history involving initially slower rates is permissible. The Kunkaak fault and Tecomate basin are truncated by NW-striking, dextral-oblique structures, including the Yawassag fault, which accrued > 8 km of post-6.4 Ma dextral displacement. The Coastal Sonora fault zone on mainland Sonora, which accrued several tens of kilometers of late Miocene dextral offset, continues to the northwest, across northeastern Isla Tiburón and offshore into the Gulf of California. The establishment of rapid, latest Miocene transtension in the Coastal Sonora fault zone was synchronous with the 8-7 Ma onset of transform faulting and basin formation along the nascent Pacific-North America plate boundary throughout northwestern Mexico and southern California. Plate boundary strain localized into this Gulf of California shear zone, a narrow transtensional belt that subsequently hosted the

  8. Trace fossils and substrates of the terminal Proterozoic–Cambrian transition: Implications for the record of early bilaterians and sediment mixing

    PubMed Central

    Droser, Mary L.; Jensen, Sören; Gehling, James G.

    2002-01-01

    The trace fossil record is important in determining the timing of the appearance of bilaterian animals. A conservative estimate puts this time at ≈555 million years ago. The preservational potential of traces made close to the sediment–water interface is crucial to detecting early benthic activity. Our studies on earliest Cambrian sediments suggest that shallow tiers were preserved to a greater extent than typical for most of the Phanerozoic, which can be attributed both directly and indirectly to the low levels of sediment mixing. The low levels of sediment mixing meant that thin event beds were preserved. The shallow depth of sediment mixing also meant that muddy sediments were firm close to the sediment–water interface, increasing the likelihood of recording shallow-tier trace fossils in muddy sediments. Overall, trace fossils can provide a sound record of the onset of bilaterian benthic activity. PMID:12271130

  9. Refined depositional history and dating of the Tongaporutuan reference section, north Taranaki, New Zealand: new volcanic ash U-Pb zircon ages, biostratigraphy and sedimentation rates

    USGS Publications Warehouse

    Maier, K.L.; Crundwell, Martin P.; Coble, Matthew A.; Kingsley-Smith, Peter R.; Graham, Stephan A.

    2016-01-01

    This study presents new radiometric ages from volcanic ash beds within a c. 1900 m thick, progradational, deep-water clastic slope succession of late Miocene age exposed along the north Taranaki coast of the North Island, New Zealand. The ash beds yield U–Pb zircon ages ranging from 10.63 ± 0.65 Ma to 8.97 ± 0.22 Ma. The new ages are compatible with and provide corroboration of New Zealand Tongaporutuan Stage planktic foraminiferal and bolboformid biostratigraphic events identified in the same section. The close accord between these two age datasets provides a stratigraphically consistent and coherent basis for examining margin evolution. The arrival of a prograding clastic wedge and ensuing upward shoaling is recorded by sedimentation rates c. 2000 m/Ma–1 that are an order of magnitude higher than sedimentation rates on the precursor deep basin floor. This outcrop study provides new constraints for interpreting analogous subsurface deposits in Taranaki Basin and complements the regional late Miocene biostratigraphic dating framework.

  10. Oligocene-Miocene magnetic stratigraphy carried by biogenic magnetite at sites U1334 and U1335 (equatorial Pacific Ocean)

    NASA Astrophysics Data System (ADS)

    Channell, J. E. T.; Ohneiser, C.; Yamamoto, Y.; Kesler, M. S.

    2013-02-01

    Abstract<span class="hlt">Sediments</span> from the equatorial Pacific Ocean, at the Integrated Ocean Drilling Program sites U1334 and U1335, record reliable magnetic polarity stratigraphies back to ~26.5 Ma (late Oligocene) at <span class="hlt">sedimentation</span> rates usually in the 5-20 m/Myr range. Putative polarity subchrons that do not appear in current polarity timescales occur within Chrons C5ACr, C5ADn, and C5Bn.1r at Site U1335; and within Chrons C6AAr.2r, C6Br, C7Ar, and C8n.1n at Site U1334. Subchron C5Dr.1n (~17.5 Ma) is recorded at both sites, supporting its apparent recording in the South Atlantic Ocean, and has an estimated duration of ~40 kyr. The Oligocene-<span class="hlt">Miocene</span> calcareous oozes have magnetizations carried by submicron magnetite, as indicated by thermal demagnetization of magnetic remanences, the anhysteretic remanence to susceptibility ratio, and magnetic hysteresis parameters. Transmission electron microscopy of magnetic separates indicates the presence of low-titanium iron oxide (magnetite) grains with size (50-100 nm) and shape similar to modern and fossil bacterial magnetite, supporting other evidence that biogenic submicron magnetite is the principal remanence carrier in these <span class="hlt">sediments</span>. In the equatorial Pacific Ocean, low organic-carbon burial arrests microbial pore-water sulfate reduction, thereby aiding preservation of bacterial magnetite.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GCarp..66...37A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GCarp..66...37A"><span>The thermal history of the <span class="hlt">Miocene</span> Ibar Basin (Southern Serbia): new constraints from apatite and zircon fission track and vitrinite reflectance data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Andrić, Nevena; Fügenschuh, Bernhard; Životić, Dragana; Cvetković, Vladica</p> <p>2015-02-01</p> <p>The Ibar Basin was formed during <span class="hlt">Miocene</span> large scale extension in the NE Dinaride segment of the Alpine- Carpathian-Dinaride system. The <span class="hlt">Miocene</span> extension led to exhumation of deep seated core-complexes (e.g. Studenica and Kopaonik core-complex) as well as to the formation of extensional basins in the hanging wall (Ibar Basin). <span class="hlt">Sediments</span> of the Ibar Basin were studied by apatite and zircon fission track and vitrinite reflectance in order to define thermal events during basin evolution. Vitrinite reflectance (VR) data (0.63-0.90 %Rr) indicate a bituminous stage for the organic matter that experienced maximal temperatures of around 120-130 °C. Zircon fission track (ZFT) ages indicate provenance ages. The apatite fission track (AFT) single grain ages (45-6.7 Ma) and bimodal track lengths distribution indicate partial annealing of the detrital apatites. Both vitrinite reflectance and apatite fission track data of the studied <span class="hlt">sediments</span> imply post-depositional thermal overprint in the Ibar Basin. Thermal history models of the detritial apatites reveal a heating episode prior to cooling that began at around 10 Ma. The heating episode started around 17 Ma and lasted 10-8 Ma reaching the maximum temperatures between 100-130 °C. We correlate this event with the domal uplift of the Studenica and Kopaonik cores where heat was transferred from the rising warm footwall to the adjacent colder hanging wall. The cooling episode is related to basin inversion and erosion. The apatite fission track data indicate local thermal perturbations, detected in the SE part of the Ibar basin (Piskanja deposit) with the time frame ~7.1 Ma, which may correspond to the youngest volcanic phase in the region.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000GeCoA..64.1425K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000GeCoA..64.1425K"><span><span class="hlt">Early</span> steroid sulfurization in surface <span class="hlt">sediments</span> of a permanently stratified lake (Ace Lake, Antarctica)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kok, Marika D.; Rijpstra, W. Irene C.; Robertson, Lisette; Volkman, John K.; Sinninghe Damstéé, Jaap S.</p> <p>2000-04-01</p> <p>Surface <span class="hlt">sediments</span> (0-25 cm) from Ace Lake (eastern Antarctica), a saline euxinic lake, were analyzed to study the <span class="hlt">early</span> incorporation of reduced inorganic sulfur species into organic matter. The apolar fractions were shown to consist predominantly of dimeric (poly)sulfide linked C 27-C 29 steroids. These steroid moieties were identified by GC-MS analysis of the apolar fractions after cleavage of polysulfide linkages using MeLi and MeI and after desulfurisation. The polar fractions contained the oligomeric analogues. The S-bound steroids are most likely formed by sulfur incorporation into steroidal ketones formed from Δ 5 sterols by biohydrogenation by anaerobic bacteria. The concentrations of these sulfurised steroids increased with depth in the <span class="hlt">sediment</span>. The sulfurisation reaction is completed in 1000-3000 years. Despite a wide range of functionalised lipids present in these <span class="hlt">sediments</span> that are potentially available for sulfurisation, there is a very strong preference for the incorporation of sulfur into steroidal compounds. A predominance of sulfurised C 27 steroids contrasted with the distribution of free sterols, which showed a strong predominance of C 29 sterols. This indicates that the incorporation of sulfur is biased towards C 27 sterols. The results demonstrate that intermolecular sulfurisation of organic matter can occur in surface <span class="hlt">sediments</span> at low temperatures and in the absence of light.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SedG..367...69G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SedG..367...69G"><span>Petrography and stable isotope geochemistry of Oligocene-<span class="hlt">Miocene</span> continental carbonates in south Texas: Implications for paleoclimate and paleoenvironment near sea-level</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Godfrey, Conan; Fan, Majie; Jesmok, Greg; Upadhyay, Deepshikha; Tripati, Aradhna</p> <p>2018-05-01</p> <p>Cenozoic sedimentary rocks in the southern Texas Gulf Coastal Plains contain abundant continental carbonates that are useful for reconstructing terrestrial paleoclimate and paleoenvironment in a region near sea-level. Our field observations and thin section characterizations of the Oligocene and <span class="hlt">Miocene</span> continental carbonates in south Texas identified three types of pedogenic carbonates, including rhizoliths, carbonate nodules, and platy horizons, and two types of groundwater carbonates, including carbonate-cemented beds and carbonate concretions, with distinctive macromorphologic and micromorphologic features. Based on preservations of authigenic microfabrics and variations of carbon and oxygen isotopic compositions, we suggest these carbonates experienced minimal diagenesis, and their stable isotopic compositions reflect paleoclimate and paleoenvironment in south Texas. Our Oligocene and <span class="hlt">Miocene</span> carbonate clumped isotope temperatures (T(Δ47)) are 23-28 °C, slightly less than or comparable to the range of modern mean annual and mean warm season air temperature (21-27 °C) in the study area. These T(Δ47) values do not show any dependency on carbonate-type, or trends through time suggesting that groundwater carbonates were formed at shallow depths. These data could indicate that air temperature in south Texas was relatively stable since the <span class="hlt">early</span> Oligocene. The reconstructed paleo-surface water δ18O values are similar to modern surface water which could indicate that meteoric water δ18O values also remained stable since the <span class="hlt">early</span> Oligocene. Mean pedogenic carbonate δ13C values increased - 4.6‰ during the late <span class="hlt">Miocene</span>, most likely reflecting an expansion of C4 grassland in south Texas. This study provides the first mid- and late Cenozoic continental records of paleoclimate and paleoecology in a low-latitude, near sea-level region.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1815473V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1815473V"><span>Evolution of the Middle Bengal Fan at 8°N in the Oligocene to Pliocene - Preliminary Results from IODP Expedition 354</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Volkhard, Spiess; Tilmann, Schwenk; Fenna, Bergmann; Christian, France-Lanord; Adam, Klaus</p> <p>2016-04-01</p> <p>Three deep penetration and additional four shallow sites were drilled during IODP Expedition 354 in the Bay of Bengal at 8°N in February-March 2015 across a 320 km-long transect to study Neogene Bengal fan deposition. The three deeper sites located on top of the elevated crustal features of the Ninetyeast Ridge (Site U1451) and 85°Ridge (Site U1455/DSDP Site 218) as well as central between them (Site U1450) shall provide the stratigraphic framework for the Oligocene to Pliocene reconstruction of fan deposition and sedimentary fluxes driven by monsoon evolution and Himalayan erosion and weathering. Based on shipboard biostratigraphy, drilled material reach back in geologic time to the late <span class="hlt">Miocene</span> (Site U1450), middle <span class="hlt">Miocene</span> (Site U1455) and Oligocene (Site U1451). While core recovery was generally severely reduced due to the presence of unconsolidated sand and silt units, half-length APC coring technology provided valuable sand samples/recovery down to ~800 meters below seafloor. Increased compaction/diagenesis of units indicating the temporary absence of fan deposition due to major depocenter shifts, comprising of calcarous clay units of mostly pelagic origin, required a change to rotary coring between 600 and 800 mbsf, and thus the presence of sand is mostly uncertain for those deeper sections. However, derived from penetration rates, a high proportion of sand is anticipated back to <span class="hlt">early</span> <span class="hlt">Miocene</span> or Oligocene times. The calcareous clay units serve as stratigraphic marker horizons, which turned out to be suitable for seismic correlation across the drilling transect. This in turn allows to determine sedimentary budgets and overall fan growth for numerous time slices. Recovered <span class="hlt">sediments</span> have Himalayan mineralogical and geochemical signatures suitable to analyze time series of erosion, weathering and changes in source regions as well as impacts on the global carbon cycle. <span class="hlt">Miocene</span> shifts in terrestrial vegetation, in <span class="hlt">sediment</span> budget and in style of <span class="hlt">sediment</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.V31F2591W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.V31F2591W"><span>Two-stage growth of the Late <span class="hlt">Miocene</span> Minna Bluff Volcanic Complex, Ross Embayment, Antarctica: implications for ice-sheet and volcanic histories</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wilch, T. I.; McIntosh, W. C.; Panter, K. S.; Dunbar, N. W.; Smellie, J.; Fargo, A. J.; Ross, J. I.; Antibus, J. V.; Scanlan, M. K.</p> <p>2011-12-01</p> <p>Minna Bluff, a 45km long, 5km wide Late <span class="hlt">Miocene</span> alkaline volcanic peninsula that extends SE into the Ross Ice Shelf, is a major obstruction to ice flow from the south into the McMurdo Sound region. Interpretations of the abundant paleoclimate and glacial history archives, including the ANDRILL records, need to account for the effects of paleogeography on past ice-flow configurations and <span class="hlt">sediment</span> transport. Mapping and 40Ar/39Ar dating of volcanic sequences indicate that Minna Bluff was constructed between 12 and 4 Ma. The volcanic complex first emerged as an isolated island in the Ross Sea at about 12 Ma. The edifice, here named Minna Hook Island, was constructed between 12 and 8 Ma. During this first stage of growth, regional ice was able to flow through a ~40 km gap between the island and mainland. The second stage of volcanism built the main arm of Minna Bluff, now called McIntosh Cliffs, between 8 and 4 Ma. The second stage resulted in the eruption of exclusively subaerial cinder cones and lava flows. By approximately 5 Ma the peninsula had fully emerged above sea level, fully obstructing ice flow. Evidence for volcano-ice interaction is common in Minna Hook stratigraphic sequences. Well exposed cliff sections exhibit alternations between rocks erupted in subaerial and subaqueous conditions; these sequences are interpreted to represent syneruptive interactions between lava flows and glacial ice and provide evidence for periodic glaciations between 12 and 8 Ma. The lack of coherent horizontal passage zones between subglacial and subaerial lithofacies and the alternating nature of the deposits suggest that the eruptions did not occur in a large stable ice sheet but instead occurred in a more ephemeral local ice cap or rapidly drained ice sheet. At least two widespread, undulating glacial unconformities mantled by glacial and fluvial <span class="hlt">sediments</span> are exposed near the base of the Minna Hook sequences. These unconformities record broad scale Antarctic Ice Sheet events</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://ngmdb.usgs.gov/Prodesc/proddesc_81146.htm','USGSPUBS'); return false;" href="http://ngmdb.usgs.gov/Prodesc/proddesc_81146.htm"><span>The Virginia Coastal Plain Hydrogeologic Framework</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>McFarland, Randolph E.; Scott, Bruce T.</p> <p>2006-01-01</p> <p> and Exmore matrix confining units, and the Chickahominy confining unit. Piney Point aquifer <span class="hlt">sediments</span> of <span class="hlt">early</span> Eocene to middle <span class="hlt">Miocene</span> age overlie most of the Chesapeake Bay impact crater and beyond, but are a locally significant ground-water supply resource only outside of the crater across the middle reaches of the Northern Neck, Middle, and York-James Peninsulas. <span class="hlt">Sediments</span> of middle <span class="hlt">Miocene</span> to late <span class="hlt">Miocene</span> age that compose the Calvert confining unit and overlying Saint Marys confining unit effectively separate the underlying Piney Point aquifer and deeper aquifers from overlying shallow aquifers. Saint Marys aquifer <span class="hlt">sediments</span> of late <span class="hlt">Miocene</span> age separate the Calvert and Saint Marys confining units across two limited areas only. <span class="hlt">Sediments</span> of the Yorktown-Eastover aquifer of late <span class="hlt">Miocene</span> to late Pliocene age form the second most heavily used ground-water supply resource. The Yorktown confining zone approximates a transition to the overlying late Pliocene to Holocene <span class="hlt">sediments</span> of the surficial aquifer, which extends across the entire land surface in the Virginia Coastal Plain and is a moderately used supply. The Yorktown-Eastover aquifer and the eastern part of the surficial aquifer are closely associated across complex and extensive hydraulic connections and jointly compose a shallow, generally semiconfined ground-water system that is hydraulically separated from the deeper system. Vertical faults extend from the basement upward through most of the hydrogeologic units but may be more widespread and ubiquitous than recognized herein, because areas of sparse boreholes do not provide adequate spatial control. Hydraulic conductivity probably is decreased locally by disruption of depositional intergranular structure by fault movement in the generally incompetent <span class="hlt">sediments</span>. Localized fluid flow in open fractures may be unique in the Chickahominy confining unit. Some hydrogeologic units are partly to wholly truncated where displacements are large rela</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1912589B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1912589B"><span>Late <span class="hlt">Miocene</span> extensional systems in northern Tunisia and their relation with SE directed delamination of the African subcontinental mantle lithosphere</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Booth-Rea, Guillermo; Gaidi, Seif; Melki, Fetheddine; Pérez-Peña, Vicente; Marzougui, Wissem; Azañón, Jose Miguel; Galve, Jorge Pedro</p> <p>2017-04-01</p> <p>Recent work has proposed the delamination of the subcontinental mantle lithosphere under northern Tunisia during the late <span class="hlt">Miocene</span>. This process is required to explain the present location of the Tunisian segment of the African slab, imaged by seismic tomography, hanging under the Gulf of Gabes to the south of Tunisia. Thus, having retreated towards the SE several hundred km from its original position under the Tellian-Atlas nappe contact that crops out along the north of Tunisia. However, no tectonic structures have been described which could be related to this mechanism of lithospheric mantle peeling. Here we describe for the first time extensional fault systems in northern Tunisia that strongly thinned the Tellian nappes, exhuming rocks from the Tunisian Atlas in the core of folded extensional detachments. Two normal fault systems with sub-orthogonal extensional transport occur. These were active during the late <span class="hlt">Miocene</span> associated to the extrusion of 13 Ma granodiorite and 9 Ma rhyodacite in the footwall of the Nefza detachment. We have differentiated an extensional system formed by low-angle normal faults with NE- and SW-directed transport cutting through the <span class="hlt">Early</span> to Middle <span class="hlt">Miocene</span> Tellian nappen stack and a later system of low and high-angle normal faults that cuts down into the underlying Tunisian Atlas units with SE-directed transport, which root in the Nefza detachment. Both normal fault systems have been later folded and cut by thrusts during Plio-Quaternary NW-SE directed compression. These findings change the interpretation of the tectonic evolution of Tunisia that has always been framed in a transpressive to compressive setting, manifesting the extensional effects of Late <span class="hlt">Miocene</span> lithospheric mantle delamination under northern Tunisia.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/425735-strike-slip-structural-styles-petroleum-system-evolution-northeast-sakhalin-island','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/425735-strike-slip-structural-styles-petroleum-system-evolution-northeast-sakhalin-island"><span>Strike-slip structural styles and petroleum system evolution, northeast Sakhalin Island</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Meisling, K.E.; Wagner, J.B.</p> <p>1996-12-31</p> <p>The primary petroleum system of northeast Sakhalin Island and adjacent shelfal areas is comprised of a system of Late <span class="hlt">Miocene</span> to Quaternary faulted transpressional anticlines that trap oil and gas in <span class="hlt">Early</span> <span class="hlt">Miocene</span> to Pliocene deltaic reservoirs sourced from Late Oligocene to <span class="hlt">Early</span> <span class="hlt">Miocene</span> diatomaceous shales. Existing production has been limited to onshore anticlines, and offshore structural trends remain undeveloped, despite several discoveries. The regional tectonic evolution of Sakhalin Island can be divided into five major phases: (1) Late Cretaceous to <span class="hlt">Early</span> Eocene subduction, (2) Middle-Eocene collision and uplift, (3) Late Eocene to <span class="hlt">Early</span> Oligocene oblique rifting, (4) Late Oligocenemore » to Middle <span class="hlt">Miocene</span> thermal subsidence, and (5) Late <span class="hlt">Miocene</span> to Quaternary transpression and inversion. Oil-prone source rocks were deposited during rapid post-rift thermal subsidence of transtensional rift basins and adjacent highs, which provided an ideal <span class="hlt">sediment</span>-starved setting for source rock accumulation. Reservoir facies were supplied by prograding post-rift <span class="hlt">Miocene</span> deltaics of the paleo-Amur river, which built a shelf across the thermally subsiding basin and intrabasin highs. Traps were formed when the basin was later inverted during Late <span class="hlt">Miocene</span> to Pleistocene transpression, which reactivated both Paleogene normal faults and structural trends of the Mesozoic accretionary prism to create a broad zone of distributed shear. Strike-slip structural styles are evidenced by linear, en echelon alignments of doubly-plunging anticlines characterized by numerous small-displacement, transverse normal faults. Strike slip on individual structures is relatively small, however, based on a lack of thorough going faults. Strike-slip structures on Sakhalin Island are considered active, in light of the earthquake of May 27, 1995 (M=7.6) and uplift of Pleistocene marine terraces.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/6587770-strike-slip-structural-styles-petroleum-system-evolution-northeast-sakhalin-island','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6587770-strike-slip-structural-styles-petroleum-system-evolution-northeast-sakhalin-island"><span>Strike-slip structural styles and petroleum system evolution, northeast Sakhalin Island</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Meisling, K.E.; Wagner, J.B.</p> <p>1996-01-01</p> <p>The primary petroleum system of northeast Sakhalin Island and adjacent shelfal areas is comprised of a system of Late <span class="hlt">Miocene</span> to Quaternary faulted transpressional anticlines that trap oil and gas in <span class="hlt">Early</span> <span class="hlt">Miocene</span> to Pliocene deltaic reservoirs sourced from Late Oligocene to <span class="hlt">Early</span> <span class="hlt">Miocene</span> diatomaceous shales. Existing production has been limited to onshore anticlines, and offshore structural trends remain undeveloped, despite several discoveries. The regional tectonic evolution of Sakhalin Island can be divided into five major phases: (1) Late Cretaceous to <span class="hlt">Early</span> Eocene subduction, (2) Middle-Eocene collision and uplift, (3) Late Eocene to <span class="hlt">Early</span> Oligocene oblique rifting, (4) Late Oligocenemore » to Middle <span class="hlt">Miocene</span> thermal subsidence, and (5) Late <span class="hlt">Miocene</span> to Quaternary transpression and inversion. Oil-prone source rocks were deposited during rapid post-rift thermal subsidence of transtensional rift basins and adjacent highs, which provided an ideal <span class="hlt">sediment</span>-starved setting for source rock accumulation. Reservoir facies were supplied by prograding post-rift <span class="hlt">Miocene</span> deltaics of the paleo-Amur river, which built a shelf across the thermally subsiding basin and intrabasin highs. Traps were formed when the basin was later inverted during Late <span class="hlt">Miocene</span> to Pleistocene transpression, which reactivated both Paleogene normal faults and structural trends of the Mesozoic accretionary prism to create a broad zone of distributed shear. Strike-slip structural styles are evidenced by linear, en echelon alignments of doubly-plunging anticlines characterized by numerous small-displacement, transverse normal faults. Strike slip on individual structures is relatively small, however, based on a lack of thorough going faults. Strike-slip structures on Sakhalin Island are considered active, in light of the earthquake of May 27, 1995 (M=7.6) and uplift of Pleistocene marine terraces.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012PalOc..27.2204P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012PalOc..27.2204P"><span>Biogenic <span class="hlt">sedimentation</span> in the equatorial Pacific: Carbon cycling and paleoproduction, 12-24 Ma</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Piela, Christine; Lyle, Mitchell; Marcantonio, Franco; Baldauf, Jack; Olivarez Lyle, Annette</p> <p>2012-06-01</p> <p>The equatorial Pacific is an important part of the global carbon cycle and has been affected by climate change through the Cenozoic (65 Ma to present). We present a <span class="hlt">Miocene</span> (12-24 Ma) biogenic <span class="hlt">sediment</span> record from Deep Sea Drilling Project (DSDP) Site 574 and show that a CaCO3 minimum at 17 Ma was caused by elevated CaCO3 dissolution. When Pacific Plate motion carried Site 574 under the equator at about 16.2 Ma, there is a minor increase in biogenic deposition associated with passing under the equatorial upwelling zone. The burial rates of the primary productivity proxies biogenic silica (bio-SiO2) and biogenic barium (bio-Ba) increase, but biogenic CaCO3 decreases. The carbonate minimum is at ˜17 Ma coincident with the beginning of the <span class="hlt">Miocene</span> climate optimum; the transient lasts from 18 to 15 Ma. Bio-SiO2 and bio-Ba are positively correlated and increase as the equator was approached. Corg is poorly preserved, and is strongly affected by changing carbonate burial. Terrestrial 232Th deposition, a proxy for aeolian dust, increases only after the Site 574 equator crossing. Since surface production of bio-SiO2, bio-Ba, and CaCO3 correlate in the modern equatorial Pacific, the decreased CaCO3 burial rate during the Site 574 equator crossing is driven by elevated CaCO3 dissolution, representing elevated ocean carbon storage and elevated atmospheric CO2. The length of the 17 Ma CaCO3 dissolution transient requires interaction with a `slow' part of the carbon cycle, perhaps elevated mantle degassing associated with the <span class="hlt">early</span> stages of Columbia River Basalt emplacement.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/31600','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/31600"><span>Woods from the <span class="hlt">Miocene</span> Bakate Formation, Ethiopia : anatomical characteristics, estimates of original specific gravity and ecological inferences</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>E.A. Wheeler; M.C. Wiemann; J.G. Fleagle</p> <p>2007-01-01</p> <p>An assemblage of permineralized woods from the <span class="hlt">Miocene</span> Bakate Formation, Fejej Plain, Ethiopia, is described. This assemblage of twelve wood types differs from other <span class="hlt">Miocene</span> wood assemblages known from Ethiopia. Cell wall percentages of the woods were determined to estimate the original specific gravities of the woods in order to better understand the <span class="hlt">Miocene</span>...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..1212748V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..1212748V"><span>The palaeoclimatic significance of Eurasian Giant Salamanders (Cryptobranchidae: Zaissanurus, Andrias) - indications for elevated humidity in Central Asia during global warm periods (Eocene, late Oligocene warming, <span class="hlt">Miocene</span> Climate Optimum)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vasilyan, Davit; Böhme, Madelaine; Winklhofer, Michael</p> <p>2010-05-01</p> <p>Cryptobranchids represent a group of large sized (up to 1.8 m) tailed amphibians known since the Middle Jurassic (Gao & Shubin 2003). Two species are living today in eastern Eurasia: Andrias davidianus (China) and A. japonicus (Japan). Cenozoic Eurasian fossil giant salamanders are known with two genera and two or three species from over 30 localities, ranging from the Late Eocene to the <span class="hlt">Early</span> Pliocene (Böhme & Ilg 2003). The Late Eocene species Zaissanurus beliajevae is restricted to the Central Asian Zaissan Basin (SE-Kazakhstan, 50°N, 85°E), whereas the Late Oligocene to <span class="hlt">Early</span> Pliocene species Andrias scheuchzeri is distributed from Central Europe to the Zaissan Basin. In the latter basin the species occur during two periods; the latest Oligocene and the late <span class="hlt">Early</span> to <span class="hlt">early</span> Middle <span class="hlt">Miocene</span> (Chkhikvadse 1982). Andrias scheuchzeri is osteological indistinguishable from both recent species, indicating a similar ecology (Westfahl 1958). To investigate the palaeoclimatic significance of giant salamanders we analyzed the climate within the present-day distribution area and at selected fossil localities with independent palaeoclimate record. Our results indicate that fossil and recent Andrias species occur in humid areas where the mean annual precipitation reach over 900 mm (900 - 1.300 mm). As a working hypothesis (assuming a similar ecology of Andrias and Zaissanurus) we interpret occurrences of both fossil Eurasian giant salamanders as indicative for humid palaeoclimatic conditions. Based on this assumption the Late Eocene, the latest Oligocene (late Oligocene warming) and the late <span class="hlt">Early</span> to <span class="hlt">early</span> Middle <span class="hlt">Miocene</span> (<span class="hlt">Miocene</span> Climatic Optimum) of Central Asia (Zaissan Basin) are periods of elevated humidity, suggesting a direct (positive) relationship between global climate and Central Asian humidity evolution. Böhme M., Ilg A. 2003: fosFARbase, www.wahre-staerke.com/ Chkhikvadze V.M. 1982. On the finding of fossil Cryptobranchidae in the USSR and Mongolia. Vertebrata</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014Tectp.626..105K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014Tectp.626..105K"><span>Impact and implications of the Afro-Eurasian collision south of Cyprus from reflection seismic data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Klimke, Jennifer; Ehrhardt, Axel</p> <p>2014-06-01</p> <p>The Cyprus Arc in the Eastern Mediterranean represents the active collision front between the African and Eurasian (Anatolian) Plates. Along the Cyprus Arc, the Eratosthenes Seamount is believed to have been blocking the northward motion of the African Plate since the Late Pliocene-<span class="hlt">Early</span> Pleistocene. Based on a dense grid of 2D reflection seismic profiles covering the Eratosthenes Seamount and western Levant Basin offshore Cyprus, new observations regarding the Cyprus Arc collision front at the triple transition zone Eratosthenes Seamount-Levant Basin-Hecataeus Rise are presented. The data show that the Levant Basin is filled with ~ 10 km of <span class="hlt">sediments</span> of <span class="hlt">Early</span> Mesozoic (probably Jurassic) to Plio-Quaternary age with only a localized deformation affecting the <span class="hlt">Miocene</span>-Oligocene rock units. The <span class="hlt">sediments</span> onlap directly against the steep eastern flank of the Eratosthenes Seamount to the west and the southern flank of the Hecataeus Rise to the north. The <span class="hlt">sediments</span> show no deformation that could be associated with collision and are undeformed even very close to the two prominent structures. Pinching out of the Base <span class="hlt">Miocene</span> reflector in the Levant Basin due to onlapping of the Middle <span class="hlt">Miocene</span> reflector indicates uplift of the Eratosthenes Seamount and the Hecataeus Rise. In contrast to the Messinian Evaporites north of the Eratosthenes Seamount, the salt in the Levant Basin, even close to the Hecataeus Rise, is tectonically undeformed. It is proposed that the Eratosthenes Seamount, the western Levant Basin and the Hecataeus Rise act as one tectonic unit. This implies that the collision front is located north of this unit and that the Hecataeus Rise shields the <span class="hlt">sediments</span> south of it from deformation associated with collision of the African and Anatolian Plates.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12..262F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12..262F"><span>Compositional variations and differential diagenesis in <span class="hlt">Miocene</span> turbidites from the western coast of Mallorca (Balearic Islands, Spain)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Felder, Sonja; Westphal, Hildegard; Munnecke, Axel; Mateu Vicens, Guillem</p> <p>2010-05-01</p> <p>Compositional variations and differential diagenesis in <span class="hlt">Miocene</span> turbidites from the western coast of Mallorca (Balearic Islands, Spain) Sonja Felder (1), Hildegard Westphal (1), Axel Munnecke (2), Guillem Mateu Vicens (1,3) (1) MARUM and Department of Geosciences, Universität Bremen, Leobener Straße, 28359 Bremen, Germany (2) GeoZentrum Nordbayern, Universität Erlangen-Nürnberg, Loewenichstr. 28, 91054 Erlangen, Germany (3) Dipartimento di Scienze della Terra, Università di Roma "La Sapienza", Ple Aldo 7 Moro, 5. I-00185 Roma, Italy Cyclic alternations of limestone and marl beds crop out along the western coast of the Island of Mallorca. This <span class="hlt">Miocene</span> succession is traditionally interpreted to represent more weathering-resistant turbidites interlayered by softer hemipelagic background <span class="hlt">sediment</span>. However, the cementation patterns that dominate the appearance of the outcrop do not always consistently follow sedimentary layering; locally the cemented beds are systematically oblique to the sedimentary layers. Compositional studies demonstrate that differences in non-carbonate fraction, carbonate concentration and fossil content (e.g. foraminiferal assemblages) trace sedimentary bedding, regardless the diagenetic style. Limestone versus marl lithology, in contrast, is defined by the diagenetic style, tight cementation by calcite cements in the limestones versus low porosity and compaction in the marls. The reason for this striking pattern of diagenetic bedding cross-cutting sedimentary layers is assumed to be related to tectonic fracturing, opening pathways for diagenetic fluids. This example cautions the straight-forward interpretation of limestone-marl alternations as direct witnesses of environmental or climatic variations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010SedG..225...50C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010SedG..225...50C"><span>Re-deposited rhodoliths in the Middle <span class="hlt">Miocene</span> hemipelagic deposits of Vitulano (Southern Apennines, Italy): Coralline assemblage characterization and related trace fossils</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Checconi, Alessio; Bassi, Davide; Carannante, Gabriele; Monaco, Paolo</p> <p>2010-03-01</p> <p>An integrated analysis of rhodolith assemblages and associated trace fossils (borings) found in hemipelagic Middle <span class="hlt">Miocene</span> Orbulina marls (Vitulano area, Taburno-Camposauro area, Southern Apennines, Italy) has revealed that both the biodiversity of the constituent components and taphonomic signatures represent important aspects which allow a detailed palaeoecological and palaeoenvironmental interpretation. On the basis of shape, inner arrangement, growth forms and taxonomic coralline algal composition, two rhodolith growth stages were distinguished: (1) nucleation and growth of the rhodoliths, and (2) a final growth stage before burial. Nucleation is characterized by melobesioids and subordinately mastophoroids, with rare sporolithaceans and lithophylloids. The rhodolith growth (main increase in size) is represented by abundant melobesioids and rare to common mastophoroids; very rare sporolithaceans are also present. The final growth stage is dominated by melobesioids with rare mastophoroids and very rare sporolithaceans. Each rhodolith growth stage is characterized by a distinct suite of inner arrangement and growth form successions. Well diversified ichnocoenoeses ( Gastrochaenolites, Trypanites, Meandropolydora and/or Caulostrepsis, Entobia, Uniglobites, micro-borings) related to bivalves, sponges, polychaetes, barnacles, algae, fungi, and bacteria are distinguished in the inner/intermediate rhodolith growth stage, while mainly algal, fungal and bacterial micro-borings are present in the outer final growth stage. Rhodolith growth stages and associated ichnocoenoeses indicate significant change in the depositional setting during the rhodolith growth. In the Vitulano area, the Middle <span class="hlt">Miocene</span> rhodolith assemblages formed in a shallow-water open-shelf carbonate platform, were susceptible to exportation from their production area and then to <span class="hlt">sedimentation</span> down to deeper-water hemipelagic settings, where the rhodoliths shortly kept growth and were finally buried. Such</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25156983','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25156983"><span><span class="hlt">Miocene</span> leaves of Elaeagnus (Elaeagnaceae) from the Qinghai-Tibet Plateau, its modern center of diversity and endemism.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Su, Tao; Wilf, Peter; Xu, He; Zhou, Zhe-Kun</p> <p>2014-08-01</p> <p>• The Qinghai-Tibet Plateau is a major center of plant diversity and endemism, but little is known about how this developed due to the region's very scarce paleobotanical record. The silverberry genus Elaeagnus (Elaeagnaceae) reaches its greatest diversity (54 species) and endemism (36 species) in this area. Fossil Elaeagnaceae could provide significant evidence for the phylogeny and biogeography of the family and contribute primary data regarding the evolution of the unique Qinghai-Tibet Plateau flora in its dramatic setting of tectonic and climatic change.• We describe four fossil leaves with diagnostic features of Elaeagnus from the late <span class="hlt">Miocene</span> of eastern Tibet, modern altitude of 3910 m a.s.l.. We also review prior fossil records of Elaeagnaceae.• The well-preserved, densely packed, stellate scales on fossil leaf surfaces are diagnostic of Elaeagnaceae. We assign these fossil leaves to Elaeagnus tibetensis T. Su et Z.K. Zhou sp. nov., comprising the first confirmed fossil Elaeagnus leaves worldwide.• Elaeagnus was present in eastern Tibet by the late <span class="hlt">Miocene</span>. Together with previous fossil records, the new species supports a Holarctic history of the family. The diversification of Elaeagnus in the Qinghai-Tibet Plateau and adjacent areas might have been driven by continuous uplift at least since the late <span class="hlt">Miocene</span>, causing formation of complex topography and climate with high rainfall seasonality. The characteristic scales on leaf surfaces are likely to be an important functional adaptation to seasonal droughts during <span class="hlt">early</span> spring. © 2014 Botanical Society of America, Inc.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70022608','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70022608"><span>Osmium isotopes demonstrate distal transport of contaminated <span class="hlt">sediments</span> in Chesapeake Bay</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Helz, G.R.; Adelson, J.M.; Miller, C.V.; Cornwell, J.C.; Hill, J.M.; Horan, M.; Walker, R.J.</p> <p>2000-01-01</p> <p>Because the isotopic composition of anthropogenic Os is normally distinctive in comparison to continental crust and is precisely measurable, this platinum-group element is attractive as a tracer of transport pathways for contaminated <span class="hlt">sediments</span> in estuaries. Evidence herein and elsewhere suggest that biomedical research institutions are the chief source of anthropogenic Os. In the Chesapeake Bay region, uncontaminated <span class="hlt">sediments</span> bear a crustal 187Os/188Os signature of 0.73 ?? 0.10. Slightly higher 187Os/188Os ratios occur in Re-rich Coastal Plain deposits due to post- <span class="hlt">Miocene</span> 187Re decay. The upper Susquehanna Basin yields <span class="hlt">sediments</span> also with higher 187Os/188Os. Beginning in the late 1970s, this signal was overprinted by a low 187Os/188Os (anthropogenic) source in the lower Susquehanna Basin. In the vicinity of Baltimore, which is a major center of heavy industry as well as biomedical research, anthropogenic Os has been found only in <span class="hlt">sediments</span> impacted by the principal wastewater treatment plant. Surprisingly, a mid-Bay site distant from anthropogenic sources contains the strongest anthropogenic Os signal in the data set, having received anthropogenic Os sporadically since the mid-20th Century. Transport of particles to this site overrode the northward flowing bottom currents. Finding anthropogenic Os at this site cautions that other particle-borne substances, including hazardous ones, could be dispersed broadly in this estuary.Because the isotopic composition of anthropogenic Os is normally distinctive in comparison to continental crust and is precisely measurable, this platinum-group element is attractive as a tracer of transport pathways for contaminated <span class="hlt">sediments</span> in estuaries. Evidence herein and elsewhere suggest that biomedical research institutions are the chief source of anthropogenic Os. In the Chesapeake Bay region, uncontaminated <span class="hlt">sediments</span> bear a crustal 187Os/188Os signature of 0.73 ?? 0.10. Slightly higher 187Os/188Os ratios occur in Re-rich Coastal</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009JAESc..34..557D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009JAESc..34..557D"><span><span class="hlt">Miocene</span> diagenetic and epigenetic strontium mineralization in calcareous series from Cyprus and the Arabian Gulf: Metallogenic perspective on sub- and suprasalt redox-controlled base metal deposits</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dill, Harald G.; Henjes-Kunst, Friedhelm; Berner, Zsolt; Stüben, Doris</p> <p>2009-04-01</p> <p>During the Neogene, celestite deposits evolved in the Neo-Tethys basins, in what is today called the Mediterranean Sea and the Arabian Gulf. Two evaporite deposits, in Cyprus and in Qatar have been investigated from the sedimentological and mineralogical point of view with emphasis placed on Sr, S and Ca isotopes of carbonate, gypsum and celestite. During the <span class="hlt">early</span> <span class="hlt">Miocene</span> shallow marine environments occurred in the Gulf region and in Cyprus both of which are abundant in syndiagenetic sulphate minerals. The calcareous environments had a strong impact on the fluid migration leading to the Sr mineralization. In the Gulf region algal biostromes favored the lateral migration of fluids but had a sealing effect so that any epigenetic mineralization based on vertical fluid flow was hampered. In contrast, the Cypriot depocentre overlying the Troodos ophiolite is dominated by patch and knoll reefs (bioherms) which provide enough porosity and permeability to be favorable for the circulation of fluids with a strong vertical component. Owing to these changes in the calcareous host series, epigenetic sulphate mineralization evolved in Cyprus during the late <span class="hlt">Miocene</span>. This occurred as the Mediterranean Sea gradually became isolated from the open ocean and, as a precursor to the "Messinian salinity crisis" evaporitic brines circulated deep into the Meso-Cenozoic platform <span class="hlt">sediments</span> and the underlying Troodos ophiolite where these fluids leached some base metals and sulphur for the celestite mineralization. The Red Sea Rifting was at full swing during the Late <span class="hlt">Miocene</span> and its northern propagation into the Mediterranean Sea is assumed to have had a structural control on the positioning of the Sr deposits in Cyprus. In the Gulf area, the final closure of the Neo-Tethys and Zagros folding terminated deposition of marine calcareous rocks and alluvial-fluvial siliciclastic rocks were deposited across an unconformity. Missing circulation of highly saline brines was responsible for the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008Tectp.451...40H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008Tectp.451...40H"><span>Stratigraphy and geochemical characterization of the Oligocene <span class="hlt">Miocene</span> Maikop series: Implications for the paleogeography of Eastern Azerbaijan</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hudson, Samuel M.; Johnson, Cari L.; Efendiyeva, Malakhat A.; Rowe, Harold D.; Feyzullayev, Akper A.; Aliyev, Chingiz S.</p> <p>2008-04-01</p> <p>The Oligocene-<span class="hlt">Miocene</span> Maikop Series is a world-class source rock responsible for much of the oil and gas found in the South Caspian Basin. It is composed of up to 3 km of marine mudstone, and contains a nearly continuous record of deposition during progressive tectonic closure of the basin as the Arabian Peninsula converged northward into Eurasia. Historically, the stratigraphy of this interval has been difficult to define due to the homogenous nature of the fine-grained, clay-dominated strata. Outcrop exposures in eastern Azerbaijan allow direct observation and detailed sampling of the interval, yielding a more comprehensive stratigraphic context and a more advanced understanding of syndepositional conditions in the eastern Paratethys Sea. Specifically, the present investigation reveals that coupling field-based stratigraphic characterization with geochemical analyses (e.g., bulk elemental geochemistry, Rock-Eval pyrolysis, bulk stable isotope geochemistry) yields a more robust understanding of internal variations within the Maikop Series. Samples from seven sections located within the Shemakha-Gobustan oil province reveal consistent stratigraphic and spatial geochemical trends. It is proposed that the Maikop Series be divided into three members based on these data along with lithostratigraphic and biostratigraphic data reported herein. When comparing Rupelian (<span class="hlt">Early</span> Oligocene) and Chattian (Late Oligocene) strata, the Rupelian-age strata commonly possess higher TOC values, more negative δ 15N tot values, more positive δ 13C org values, and higher radioactivity relative to Chattian-age rocks. The trace metals Mo and V (normalized to Al) are positively correlated with TOC, with maximum values occurring at the Rupelian-Chattian boundary and overall higher average values in the Rupelian. Across the Oligocene-<span class="hlt">Miocene</span> boundary, a slight drop in V/Al, Mo/Al ratios is observed, along with drops in %S and TOC. These results indicate that geochemical signatures of the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.4395G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.4395G"><span>Structure and Evolution of the Central Andes of Peru</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gonzalez, L.; Pfiffner, O. A.</p> <p>2009-04-01</p> <p>Three major units make up the Andes in Peru: (1) The Western Cordillera consists of the Cretaceous Coastal Batholith intruding Jurassic to Cretaceous volcaniclastics (Casma group) in the west, and a fold-and-thrust belt of Mesozoic <span class="hlt">sediments</span> in the east. Eocene and <span class="hlt">Miocene</span> volcanics (Calipuy group and equivalents) overly all of these rock types. (2) The Central Highland contains a folded Paleozoic-Mesozoic sedimentary sequence overlain by thick Quaternary deposits. A major fault puts Neoproterozoic basement rocks of the Eastern Cordillera next to these units. (3) In the Eastern Cordillera, Late Paleozoic clastic successions unconformably overly folded <span class="hlt">Early</span> Paleozoic <span class="hlt">sediments</span> and a Neoproterozoic basement in the east. Permian (locally Triassic) granitoids intruded these units and were affected by folding and thrusting. In the core of the Eastern Cordillera, <span class="hlt">Early</span> Cretaceous overly <span class="hlt">Early</span> or Late Paleozoic strata. To the west, a thrust belt of Paleozoic to Cenozoic strata forms the transition to the foreland of the Brasilian shield. The most external part of this thrust belt involves Pliocene <span class="hlt">sediments</span> and is referred to as Subandine zone. The Coastal Batholith is internally undeformed. The adjacent fold-and-thrust belt to the east is characterized by tight, nearly isoclinal upright folds with amplitudes of up to 1000 m. At the surface only Cretaceous rocks are observed. Using balancing techniques, a detachment horizon at the base of the Lowermost Cretaceous (Goyallarisquizga group - Oyon Formation) can be proposed. Further east, folds are more open, asymmetric and east verging, Jurassic <span class="hlt">sediments</span> appear in the cores of the anticlines. The abrupt change in style from upright tight folding in the west to more open folding in the east is explained by a primary difference in the depositional sequence, most probably associated with synsedimentary faulting. The overlying volcanics of the Calipuy group and equivalents are, in turn, only slightly folded. In the Northern</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.T33F..04P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.T33F..04P"><span>Provenance of <span class="hlt">Miocene</span> submarine fans in the Shikoku Basin: Results from NanTroSEIZE and implications for stratigraphic correlation of subduction inputs</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pickering, K. T.; Underwood, M.; Moore, G. F.</p> <p>2013-12-01</p> <p>Seismo-stratigraphy, coring and LWD during IODP Expeditions 319, 322, and 333 (Sites C0011 / C0012) show three <span class="hlt">Miocene</span> submarine fans in the NE Shikoku Basin, with broadly coeval deposits at ODP Site 1177 and DSDP Site 297, NW Shikoku Basin. Pickering et al. (2013) have shown that the <span class="hlt">sediment</span> dispersal patterns for these fans have major implications for paleogeographies at that time. The oldest, Middle <span class="hlt">Miocene</span> Kyushu Fan is the finest grained, has a sheet-like geometry, and was fed by quartz-rich <span class="hlt">sediment</span> gravity-flows derived mostly from an ancestral landmass in the East China Sea. This likely <span class="hlt">sediment</span> provenance is further supported by U-Pb zircon and fission track analysis of both zircons and apatites from <span class="hlt">sediments</span> taken from the forearc and trench of the Nankai Trough, together with rivers from southwest Japan, that point to the influence of the Yangtze River in supplying into the Shikoku Basin prior to rifting of the Okinawa Trough at 10 to 6 Ma (Clift et al. 2013). During prolonged hemipelagic mud deposition at C0011-C0012 (12.2 to 9.1 Ma), sand supply continued at Sites 1177 and 297. Sand delivery to much of the Shikoku Basin, however, probably halted during a phase of sinistral strike-slip and oblique plate motion, after which the Daiichi Zenisu Fan (9.1 to 8.0 Ma) was fed by submarine channels. The youngest fan (Daini Zenisu; 8.0 to 7.6 Ma) has sheet-like geometry with thick-bedded, coarse-grained pumiceous sandstones. The pumice fragments were fed from a mixed provenance that included the collision zone of the Izu-Bonin and Honshu arcs. The shift from channelized to sheet-like flows was probably favored by renewal of relatively rapid northward subduction, which accentuated the trench as a bathymetric depression. Understanding the stratigraphic position and 3-D geometry of the sandbodies has important implications for stratigraphic correlation throughout the northern Shikoku Basin, together with subduction-related processes, including the potential for</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26PSL.472..229M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26PSL.472..229M"><span>Milankovitch cycles in an equatorial delta from the <span class="hlt">Miocene</span> of Borneo</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marshall, Nathan; Zeeden, Christian; Hilgen, Frederik; Krijgsman, Wout</p> <p>2017-08-01</p> <p>The factors controlling sedimentary cyclicity in deltaic systems are a subject of intense debate, and more research, in different deltaic environments and time periods, is needed to better understand the possible mechanisms. Offshore and Pleistocene case studies are more common than proximal and more ancient, greenhouse-climate examples. Furthermore, many studies lack a (statistical) cyclostratigraphic element. The paleo-Mahakam delta of Eastern Kalimantan, Borneo developed during the globally warm middle <span class="hlt">Miocene</span>, in an equatorial setting, making it of interest to comprehend cyclic <span class="hlt">sedimentation</span> in a period of warmer yet rapidly changing climate. In this study, statistical analysis of lithological changes shows that regular sandstone/shale alternations occur in a distinct pattern of cycles with thicknesses of ∼90, ∼30, and ∼17 m. Using independent dating, these thicknesses translate into periods of about 100, 40, and 20 kyr, matching the known periods of Earth's orbital eccentricity, obliquity and precession. The obliquity dominance in the middle interval is markedly similar to that observed in the global marine isotope (benthic δ18O) and other cyclic proxy records for this time interval. Despite a mismatch in the number of 40 kyr cycles compared to the global record that can be plausibly linked to the major sea-level drop at ∼13.8 Ma and facies shifts, it appears that the proximal setting of the paleo-Mahakam's <span class="hlt">sedimentation</span> was dominantly controlled by allogenic orbital forcing, probably as a consequence of glacioeustasy. In particular, the observed obliquity dominance at paleo-equatorial latitudes, as seen in other records, highlights the dominance of orbital forcing, and potentially glacioeustatic sea level change, during this crucial period of warmer climate.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMPP43A2060S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMPP43A2060S"><span>Collapse of the sea surface stability during the <span class="hlt">Miocene</span> to Quartenary in the Western Pacific Ocean, indicated by Discoaster abundance and Coccolith size change</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sato, T.; Pratiwi, S. D.; Farida, M.</p> <p>2013-12-01</p> <p>We describe in detail the middle <span class="hlt">Miocene</span> to Pleistocene paleoceanography of the Western Pacific Ocean based on calcareous nannofossils. Abundantly occurrence of discoasters, which indicates the stable sea surface stratification and the development of thermo- and nutri-cline, are found in the interval from NN2 to NN4 zones of the <span class="hlt">early</span> <span class="hlt">Miocene</span>. The relative abundance of discoaster is decreased in the NN4-5 zone and it changed to very rare above NN10 (B in Fig.1). These characteristics are found in both Sites 805 and 782. Focusing to the mean size of Reticulofenestra species, it decreased at NN4-5 zone (A in Fig 2), and lower part of NN11 (B in Fig. 2). The presence of larger size Reticulofenestra species also show the oligotrophic conditions of sea surface with thermocline. On the basis of these results, the collapse of the stability of the sea surface stratification in the Western Pacific Ocean progressed throughout the <span class="hlt">Miocene</span> to Quaternary. As the results, nutrient conditions of sea surface in these area were changed in steps from oligotrophic to eutrophic conditions at NN4-5 and lower part of NN11 (A and B in Fig. 2). These datum related to collapse of sea surface conditions, is cleary correlated to the timing of the end of Mid-<span class="hlt">Miocene</span> Climatic Optimum (A) and the intensify of the Asian Monsoon (B; Fig. 2).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22552874','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22552874"><span>The thumb of <span class="hlt">Miocene</span> apes: new insights from Castell de Barberà (Catalonia, Spain).</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Almécija, Sergio; Alba, David M; Moyà-Solà, Salvador</p> <p>2012-07-01</p> <p>Primate hands display a major selective compromise between locomotion and manipulation. The thumb may or may not participate in locomotion, but it plays a central role in most manipulative activities. Understanding whether or not the last common ancestor of humans and Pan displayed extant-ape-like hand proportions (i.e., relatively long fingers and a short thumb) can be clarified by the analysis of <span class="hlt">Miocene</span> ape hand remains. Here we describe new pollical remains-a complete proximal phalanx and a partial distal phalanx-from the middle/late <span class="hlt">Miocene</span> site of Castell de Barberà (ca., 11.2-10.5 Ma, Vallès-Penedès Basin), and provide morphometric and qualitative comparisons with other available <span class="hlt">Miocene</span> specimens as well as extant catarrhines (including humans). Our results show that all available <span class="hlt">Miocene</span> taxa (Proconsul, Nacholapithecus, Afropithecus, Sivapithecus, Hispanopithecus, Oreopithecus, and the hominoid from Castell de Barberà) share a similar phalangeal thumb morphology: the phalanges are relatively long, and the proximal phalanges have a high degree of curvature, marked insertions for the flexor muscles, a palmarly bent trochlea and a low basal height. All these features suggest that these <span class="hlt">Miocene</span> apes used their thumb with an emphasis on flexion, most of them to powerfully assist the fingers during above-branch, grasping arboreal locomotion. Moreover, in terms of relative proximal phalangeal length, the thumb of <span class="hlt">Miocene</span> taxa is intermediate between the long-thumbed humans and the short-thumbed extant apes. Together with previous evidence, this suggests that a moderate-length hand with relatively long thumb-involved in locomotion-is the original hand morphotype for the Hominidae. Copyright © 2012 Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22658333','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22658333"><span>Multi-proxy approach detects heterogeneous habitats for primates during the <span class="hlt">Miocene</span> climatic optimum in Central Europe.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Merceron, Gildas; Costeur, Loïc; Maridet, Olivier; Ramdarshan, Anusha; Göhlich, Ursula B</p> <p>2012-07-01</p> <p>The present study attempts to characterize the environmental conditions that prevailed along the western shores of the Central Paratethys and its hinterland during the <span class="hlt">early</span> middle <span class="hlt">Miocene</span> at the same time t primates reached their peak in species diversity in Central Europe. Based on faunal structure (using cenograms), paleotemperature reconstruction (using cricetid diversity), and dietary reconstruction of ruminants (using molar micro-wear analyses), four faunal assemblages are used to characterize the regional environmental context. The cenograms for Göriach and Devínska Novà Ves Zapfe's fissure site support the presence of mosaic environments with open areas under rather humid conditions. This is also supported by the dental micro-wear analyses of ruminants. The species of Palaeomerycidae were most probably the only predominant browsers. Surprisingly, the three cervids, Dicrocerus, Heteroprox, and Euprox, were highly involved in grazing. Pseudoeotragus seegrabensis was likely a generalist and the two specimens assigned to the second bovid, Eotragus clavatus, were browsers. The two species of tragulids plot between fruit browsers and generalists. Moreover, paleotemperatures based on cricetid diversity estimate mean annual temperature at about 18 °C with potential high seasonal variations. These data support the predominance of mosaic landscapes along the western shores of the Central Paratethys and its hinterland during the <span class="hlt">Miocene</span> Climatic Optimum as primates reach a peak in species diversity. This result lends credence to the hypothesis that environmental heterogeneity favours radiation among mammals, and that the specific environmental context of the Central Paratethys western border might explain the high diversity of the middle <span class="hlt">Miocene</span> primates. Copyright © 2012 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.4523I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.4523I"><span>Petrographic and geochemical analyisis for determination of provenance of the Slovenj Gradec <span class="hlt">Miocene</span> Basin fill (Western Central Paratethys)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ivančič, Kristina; Trajanova, Mirka; Skaberne, Dragomir; Šmuc, Andrej</p> <p>2017-04-01</p> <p>The Slovenj Gradec Basin (SGB) is located in northern Slovenia between eastern margin of the Northern Karavanke and the western Pohorje Mts. Structurally, it belongs to Eastern Alps. It is filled with <span class="hlt">Miocene</span> clastic <span class="hlt">sediments</span>. Modal composition of sandstones was determined on thin sections by point-counter and presented with the QFL and QmFLt diagrams. Their geochemical composition was determined by classical method and by Inductively Coupled Plasma-Mass Spectrometry. Based on petrography, sedimentary fill of the SGB consists mostly of lithic grains and quartz, derived from metamorphic and carbonate rocks. Locally, fragments of granitoids occur. Binder consists of carbonate, subordinately quartz cement, and carbonate matrix. Recycled orogen (lithic and transitional recycled) provenance of the grains was determined. Geochemical composition shows that: - Sandstones from the SGB belong to the fields of shale, wacke, litharenite, arkose and subarkose (Pettijohn, 1972). - In the ternary diagram of weathering trends (cf. Nesbitt & Young 1984), the samples group near the CaO+Na2OAl2O3 conjunctive. Calculated minimum CIA (Fedo et al., 1995) is 40.06, indicating that the source rocks were not subjected to considerable weathering. - According to discriminant function (cf. Roser & Korsch, 1988) all samples from SGB originate from quartzose sedimentary rocks. - For determination of tectonic setting of source rocks (Verma & Armstrong-Altrin, 2013) the studied samples plot in the field of collision zone. - In the multidimensional discriminant function diagram for the discrimination of active and passive margin after Verma and Armstrong (2016), the samples plot into the field of passive margin. The data indicate that source rocks of the SGB sedimentary fill were derived from Eastern Alps and Southern Alps. It is suggested that SGB was detached from the Styrian and Mura-Zala Basins in the course of the Pohorje Mts. oblique transpressive uplift during the late <span class="hlt">Miocene</span> to Pliocene</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MinDe..52.1157D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MinDe..52.1157D"><span>Post-collisional magmatism and ore-forming systems in the Menderes massif: new constraints from the <span class="hlt">Miocene</span> porphyry Mo-Cu Pınarbaşı system, Gediz-Kütahya, western Turkey</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Delibaş, Okan; Moritz, Robert; Chiaradia, Massimo; Selby, David; Ulianov, Alexey; Revan, Mustafa Kemal</p> <p>2017-12-01</p> <p>The Pınarbaşı Mo-Cu prospect is hosted within the Pınarbaşı intrusion, which is exposed together with the NW-SE-trending Koyunoba, Eğrigöz, and Baklan plutons along the northeastern border of the Menderes massif. The Pınarbaşı intrusion predominantly comprises monzonite, porphyritic granite, and monzodiorite. All units of the Pınarbaşı intrusion have sharp intrusive contacts with each other. The principal mineralization style at the Pınarbaşı prospect is a porphyry-type Mo-Cu mineralization hosted predominantly by monzonite and porphyritic granite. The porphyry type Mo-Cu mineralization consists mostly of stockwork and NE- and EW-striking sub-vertical quartz veins. Stockwork-type quartz veins hosted by the upper parts of the porphyritic granite within the monzonite, are typically enriched in chalcopyrite, molybdenite, pyrite, and limonite. The late NE- and EW-striking normal faults cut the stockwork vein system and control the quartz-molybdenite-chalcopyrite-sphalerite-fahlore-galena veins, as well as molybdenite-hematite-bearing silicified zones. Lithogeochemical and whole-rock radiogenic isotope data (Sr, Nd and Pb) of the host rocks, together with Re-Os molybdenite ages (18.3 ± 0.1 Ma - 18.2 ± 0.1 Ma) reveal that the monzonitic and granitic rocks of the Pınarbaşı intrusion were derived from an enriched lithospheric mantle-lower crust during Oligo-<span class="hlt">Miocene</span> post-collisional magmatism. The lithospheric mantle was metasomatised by fluids and subducted <span class="hlt">sediments</span>, and the mantle-derived melts interacted with lower crust at 35-40 km depth. This mechanism explains the Mo and Cu enrichments of the Pınarbaşı intrusion during back-arc magmatism. We conclude that the melt of the Pınarbaşı intrusion could have rapidly ascended to mid-crustal levels, with only limited crustal assimilation along major trans-lithospheric faults as a result of thinning of the middle to upper crust during regional extension, and resulted in the development of porphyry</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70157101','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70157101"><span>Mid-Cenozoic tectonic and paleoenvironmental setting of the central Arctic Ocean</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>O'Regan, M.; Moran, K.; Backman, J.; Jakobsson, M.; Sangiorgi, F.; Brinkhuis, Henk; Pockalny, Rob; Skelton, Alasdair; Stickley, Catherine E.; Koc, N.; Brumsack, Hans-Juergen; Willard, Debra A.</p> <p>2008-01-01</p> <p>Drilling results from the Integrated Ocean Drilling Program's Arctic Coring Expedition (ACEX) to the Lomonosov Ridge (LR) document a 26 million year hiatus that separates freshwater-influenced biosilica-rich deposits of the middle Eocene from fossil-poor glaciomarine silty clays of the <span class="hlt">early</span> <span class="hlt">Miocene</span>. Detailed micropaleontological and sedimentological data from <span class="hlt">sediments</span> surrounding this mid-Cenozoic hiatus describe a shallow water setting for the LR, a finding that conflicts with predrilling seismic predictions and an initial postcruise assessment of its subsidence history that assumed smooth thermally controlled subsidence following rifting. A review of Cenozoic tectonic processes affecting the geodynamic evolution of the central Arctic Ocean highlights a prolonged phase of basin-wide compression that ended in the <span class="hlt">early</span> <span class="hlt">Miocene</span>. The coincidence in timing between the end of compression and the start of rapid <span class="hlt">early</span> <span class="hlt">Miocene</span> subsidence provides a compelling link between these observations and similarly accounts for the shallow water setting that persisted more than 30 million years after rifting ended. However, for much of the late Paleogene and <span class="hlt">early</span> Neogene, tectonic reconstructions of the Arctic Ocean describe a landlocked basin, adding additional uncertainty to reconstructions of paleodepth estimates as the magnitude of regional sea level variations remains unknown.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.5097T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.5097T"><span>Diffusion-reaction modelling of <span class="hlt">early</span> diagenesis of <span class="hlt">sediments</span> affected by acid mine drainage.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Torres, E.; Ayora, C.; Arias, J. L.; Garcia Robledo, E.; Papaspyrou, S.; Corzo, A.</p> <p>2012-04-01</p> <p>The Sancho Reservoir (SW Spain) is a monomictic water reservoir affected by acid mine drainage. It has a pH of ~4, with high sulfate (200 ppm) and heavy metal concentrations in the water column. The reservoir develops reducing conditions at the bottom during the stratification period. A laboratory experiment was carried out to study the effect of this oxygen variation on the <span class="hlt">early</span> diagenesis processes and the cycling of metals. <span class="hlt">Sediment</span> cores and bottom water were collected during the stratification period and brought to the laboratory. The cores were maintained in an aquarium bubbled with nitrogen gas to maintain hypoxic conditions (~10 µmol O2 L-1) for 1 day. Then, oxic conditions were induced by bubbling with air and maintained for 50 days. Finally, hypoxia was re-established for 10 days. Triplicate cores were sliced in a anaerobic glove box at each stage. Pore water was extracted by centrifugation and: Eh, pH, DO, DOC, sulfate, Fe and trace metals were analyzed. The <span class="hlt">sediment</span> was freeze-dried and a sequential extraction protocol was applied to determine the exchangeable, AVS, Fe-(oxy)hydroxides, Fe-oxides, organic matter, pyrite sulfur and residual phase iron fractions. Organic carbon and total C, N, H and S were also analyzed in the <span class="hlt">sediment</span>. A reactive diffusion model has been used to obtain the rates of biogeochemical reactions by fitting to the experimental data. During hypoxic conditions sulfate and Fe-(oxy)hydroxides are reduced, due to the anaerobic oxidation of organic matter, at the very first few cm, releasing sulfide and Fe(II) which precipitate as iron sulfide. When oxygen diffuses in the <span class="hlt">sediment</span>, sulfate-reduction and the sulfide peaks are displaced deeper into the <span class="hlt">sediment</span>. Oxygen penetration depth and its consumption rates in the <span class="hlt">sediment</span> increase quickly, resulting in the reoxidation of the iron sulfides that had precipitated during hypoxic conditions. Sulfide and Fe(II) are released and are again oxidized to Fe(III) and sulfate respectively</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA....10375K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA....10375K"><span>The Sedimentary History of Southern Central Crete: Implications for Neogene Uplift</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kröger, K.; Brachert, T. C.; Reuter, M.</p> <p>2003-04-01</p> <p>The tectonic setting of Crete was largely extensional since Lower <span class="hlt">Miocene</span> uplift and exhumation of HP/LT rocks. Erosion of uplifted areas resulted in the deposition of terrestrial to marine <span class="hlt">sediments</span> in the Messara and Iraclion Basins. There are several concurring models that discuss Late Neogene uplift of the basinal margins. Neogene near shore <span class="hlt">sediments</span> in the south of the Messara Basin record fault movements contemporaneous to <span class="hlt">sedimentation</span> and sedimentary input from the hinterland. Therefore they provide information on the paleogeographic situation and the resulting amount of subsidence and uplift of mountain areas since the Upper <span class="hlt">Miocene</span>. The studied <span class="hlt">sediments</span> consist of terrestrial to shallow marine, floodplain related <span class="hlt">sediments</span> of the Upper <span class="hlt">Miocene</span> Ambelouzos Formation that are overlain by platform limestones of the Upper <span class="hlt">Miocene</span> Varvara Formation. In the Messara Basin these units are overlain by the Pliocene Kourtes Formation. The stratigraphic architecture of these deposits indicates fragmentation of the basinal margin. Proximal boulder conglomerates and reworked blocks of the Ambelouzos formation indicate fault activity during the deposition of the Varvara Formation. Contents of terrigenous clastics, provided by rivers and distributed by longshore currents, are high in the Ambelouzos and the lower Varvara Formations but decrease rapidly upsection within the Varvara Formation. This indicates drowning of the fault bounded blocks and little topography of the hinterland (Asteroussia Mountains) at that time. The Pliocene marls at the southern margin of the Messara Basin contain lithoclasts of the Upper <span class="hlt">Miocene</span> limestones and thus indicate uplift of the carbonate platform. The modern topographic elevation of formerly drowned fault bounded blocks requires a minimum uplift of 400m. Main uplift occurred at approximately orthogonal NW-SE and SW-NE striking normal to oblique faults. The present elevation of the Asteroussia Mountains indicates net uplift of at least</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AGUFM.T11D1282W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AGUFM.T11D1282W"><span>Investigating the Relationship Between Dynamic Topography and <span class="hlt">Sediment</span> Flux in Africa</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Walford, H. L.; White, N. J.</p> <p>2002-12-01</p> <p> African drainage at the start of the Neogene. The <span class="hlt">Miocene</span> saw the establishment of the Eonile, enhanced progradation of the Niger Delta, major deposition along the West African margin following an Oligocene hiatus and renewed <span class="hlt">sedimentation</span> in the Zambezi Delta. It has been proposed that Africa came to rest with respect to the mantle in the Oligocene, at ~30 Ma. The <span class="hlt">Early</span> Neogene increase in <span class="hlt">sediment</span> flux seen around Africa is consistent with the development of dynamic topography at this time. Earlier and later increases in <span class="hlt">sediment</span> flux suggest that dynamic topography has waxed and waned over a longer time scale.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.7125Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.7125Y"><span>Nature and tectonic implications of uneven sedimentary filling of the South China Sea oceanic basin</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yin, Shaoru; Li, Jiabiao; Ding, Weiwei; Fang, Yinxia</p> <p>2017-04-01</p> <p>The IODP Expedition 349 in 2014, for the first time, illustrated significant differences of <span class="hlt">sediment</span> rate and lithology in the central South China Sea (SCS) oceanic basin. Based on seismic reflection profiles tied to IODP349 drilling data, we investigated characteristics of sedimentary filling of the whole SCS oceanic basin, and examined their implications for tectonics. Results show that <span class="hlt">sediments</span> fill the SCS oceanic basin mainly in three depositional patterns. Firstly, during the Oligocene to middle <span class="hlt">Miocene</span>, <span class="hlt">sediments</span> amassed almost solely and then connected like a band parallel to the continent in a low average <span class="hlt">sediment</span> rate (<10 m/Myr) in the northern oceanic basin. These <span class="hlt">sediments</span> were deposited mainly in the form of submarine fans and mass transport deposits. <span class="hlt">Sediments</span> were predominately supplied by the Red and Pearl Rivers and the Dongsha Islands. The sedimentary characteristics likely reflect the latest <span class="hlt">early</span> <span class="hlt">Miocene</span> end of seafloor spreading of the SCS and the first-phase rapid uplift of the Tibetan Plateau. Secondly, during the late <span class="hlt">Miocene</span>, deposition mainly occurred in the Northwest Sub-basin and extended southeastward with a middle average <span class="hlt">sediment</span> rate ( 30 m/Myr). <span class="hlt">Sediments</span> were mostly transported by the Red River and Xisha Trough and deposited in the form of submarine fans. The abnormal increase of <span class="hlt">sediment</span> rate in the Northwest Sub-basin reflects late <span class="hlt">Miocene</span> slip reversal of the Red River Fault. Finally, since the Pliocene, <span class="hlt">sediments</span> gradually propagated northeastward in the Southwestern Sub-basin, and accumulated rapidly in the southeastern and northeastern basin, especially in the northern Manila Trench during the Quaternary, in an average <span class="hlt">sediment</span> rate about 60-80 m/Myr. These <span class="hlt">sediments</span> were transported mainly by submarine canyons and settled in the form of submarine fans and canyon-overbank deposition. <span class="hlt">Sediments</span> came from four major sources, including Taiwan, Dongsha Islands, Mekong River, and northern Palawan. The Pliocene to Quaternary</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28281658','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28281658"><span>Cumulative effects of suspended <span class="hlt">sediments</span>, organic nutrients and temperature stress on <span class="hlt">early</span> life history stages of the coral Acropora tenuis.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Humanes, Adriana; Ricardo, Gerard F; Willis, Bette L; Fabricius, Katharina E; Negri, Andrew P</p> <p>2017-03-10</p> <p>Coral reproduction is vulnerable to both declining water quality and warming temperatures, with simultaneous exposures likely compounding the negative impact of each stressor. We investigated how <span class="hlt">early</span> life processes of the coral Acropora tenuis respond to increasing levels of suspended <span class="hlt">sediments</span> in combination with temperature or organic nutrients. Fertilization success and embryo development were more sensitive to suspended <span class="hlt">sediments</span> than to high temperatures or nutrient enrichment, while larval development (after acquisition of cilia) and settlement success were predominantly affected by thermal stress. Fertilization success was reduced 80% by suspended <span class="hlt">sediments</span>, and up to 24% by temperature, while the addition of nutrients to suspended <span class="hlt">sediments</span> had no further impact. Larval survivorship was unaffected by any of these treatments. However, settlement success of larvae developing from treatment-exposed embryos was negatively affected by all three stressors (e.g. up to 55% by suspended <span class="hlt">sediments</span>), while exposure only during later larval stages predominantly responded to temperature stress. Environmentally relevant levels of suspended <span class="hlt">sediments</span> and temperature had the greatest impacts, affecting more processes than the combined impacts of <span class="hlt">sediments</span> and nutrients. These results suggest that management strategies to maintain suspended <span class="hlt">sediments</span> at low concentrations during coral spawning events will benefit coral recruitment, especially with warming climate.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatSR...744101H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatSR...744101H"><span>Cumulative effects of suspended <span class="hlt">sediments</span>, organic nutrients and temperature stress on <span class="hlt">early</span> life history stages of the coral Acropora tenuis</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Humanes, Adriana; Ricardo, Gerard F.; Willis, Bette L.; Fabricius, Katharina E.; Negri, Andrew P.</p> <p>2017-03-01</p> <p>Coral reproduction is vulnerable to both declining water quality and warming temperatures, with simultaneous exposures likely compounding the negative impact of each stressor. We investigated how <span class="hlt">early</span> life processes of the coral Acropora tenuis respond to increasing levels of suspended <span class="hlt">sediments</span> in combination with temperature or organic nutrients. Fertilization success and embryo development were more sensitive to suspended <span class="hlt">sediments</span> than to high temperatures or nutrient enrichment, while larval development (after acquisition of cilia) and settlement success were predominantly affected by thermal stress. Fertilization success was reduced 80% by suspended <span class="hlt">sediments</span>, and up to 24% by temperature, while the addition of nutrients to suspended <span class="hlt">sediments</span> had no further impact. Larval survivorship was unaffected by any of these treatments. However, settlement success of larvae developing from treatment-exposed embryos was negatively affected by all three stressors (e.g. up to 55% by suspended <span class="hlt">sediments</span>), while exposure only during later larval stages predominantly responded to temperature stress. Environmentally relevant levels of suspended <span class="hlt">sediments</span> and temperature had the greatest impacts, affecting more processes than the combined impacts of <span class="hlt">sediments</span> and nutrients. These results suggest that management strategies to maintain suspended <span class="hlt">sediments</span> at low concentrations during coral spawning events will benefit coral recruitment, especially with warming climate.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JAfES.129..117H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JAfES.129..117H"><span>Organic geochemical characteristics and paleoclimate conditions of the <span class="hlt">Miocene</span> coals at the Çan-Durali (Çanakkale)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hoş-Çebi, Fatma</p> <p>2017-05-01</p> <p>In this study, n-alkane and isoprenoid, saturated and aromatic biomarker distributions of <span class="hlt">Miocene</span> coals in the Çan (Çanakkale) region, were studied to investigate organic geochemical characteristics, depositional environment, and hydrocarbon potential of these coals. Çan formation (Middle <span class="hlt">Miocene</span>) unconformably overlies the basement Çan volcanites (Upper Oligocene-Lower <span class="hlt">Miocene</span>). This formation is composed of lignite, clayey lignite, and ligniferous clayey levels of various thicknesses interlayering with clay and tuffite. The formation represents <span class="hlt">sediments</span> of small lacustrine basins that are isolated by faults that are formed contemporaneously with <span class="hlt">Early</span>-Middle Eocene volcanism. Coaliferous units are overlain by lower agglomerate levels. The Rock Eval analyses show that the average TOC (Total Organic Carbon) content of the coal is 53.71% and the average HI (Hydrogen Index) value is 180.5 mgHC/gTOC. OI (Oxygen Index) values (avg. 22.33 mgCO2/gTOC) show that the depositional environment of peat deposits is suboxic. According to HI-Tmax, S2-TOC classification diagrams and Pr/n-C17vs. Ph/n-C18 diagram, the organic matter is composed of Type II and Type III kerogen mixing and represents a transitional environment. In gas chromatograms, n-alkanes with high, mostly odd-numbered carbons are dominant and they are associated with a slight algal contribution. CPI22-30 (Carbon Preference Index) and TARHC (Terrigenous/Aquatic Ratio) values indicate a dominance of high-carbon numbered n-alkanes, indicating the presence of terrestrial organic matter. Paq (aquatic plant n-alkane proxy) values (0.2; 0.3) indicate a climate with relatively wet conditions or low precipitation, the presence of emergent macrophyteses, and the scarcity of hydrophilic plants. Pwax (vascular plant n-alkane proxy) ratio (0.8; 0.7) shows moderately wet conditions and a relatively low water level. The TOC, ACL (n-alkane average chain length), Qwood/grass, Qwood/plant, and Qgrass/plant values indicate the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012E%26PSL.341..243F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012E%26PSL.341..243F"><span>The evolution of pCO2, ice volume and climate during the middle <span class="hlt">Miocene</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Foster, Gavin L.; Lear, Caroline H.; Rae, James W. B.</p> <p>2012-08-01</p> <p>The middle <span class="hlt">Miocene</span> Climatic Optimum (17-15 Ma; MCO) is a period of global warmth and relatively high CO2 and is thought to be associated with a significant retreat of the Antarctic Ice Sheet (AIS). We present here a new planktic foraminiferal δ11B record from 16.6 to 11.8 Ma from two deep ocean sites currently in equilibrium with the atmosphere with respect to CO2. These new data demonstrate that the evolution of global climate during the middle <span class="hlt">Miocene</span> (as reflected by changes in the cyrosphere) was well correlated to variations in the concentration of atmospheric CO2. What is more, within our sampling resolution (∼1 sample per 300 kyr) there is no evidence of hysteresis in the response of ice volume to CO2 forcing during the middle <span class="hlt">Miocene</span>, contrary to what is understood about the Antarctic Ice Sheet from ice sheet modelling studies. In agreement with previous data, we show that absolute levels of CO2 during the MCO were relatively modest (350-400 ppm) and levels either side of the MCO are similar or lower than the pre-industrial (200-260 ppm). These new data imply the presence of either a very dynamic AIS at relatively low CO2 during the middle <span class="hlt">Miocene</span> or the advance and retreat of significant northern hemisphere ice. Recent drilling on the Antarctic margin and shore based studies indicate significant retreat and advance beyond the modern limits of the AIS did occur during the middle <span class="hlt">Miocene</span>, but the complete loss of the AIS was unlikely. Consequently, it seems that ice volume and climate variations during the middle <span class="hlt">Miocene</span> probably involved a more dynamic AIS than the modern but also some component of land-based ice in the northern hemisphere.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMEP53A0773L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMEP53A0773L"><span>The effect of tectonic evolution on lacustrine syn-rift <span class="hlt">sediment</span> patters in Qikou Sag, Bohaiwan Basin, eastern China</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liao, Y.; Wang, H.; Xu, W.</p> <p>2013-12-01</p> <p>Normal fault arrays and associated relay ramps between two overlapping en-echelon normal faults are well known to control the deposition and distribution of <span class="hlt">sediments</span> in alluvial, fluvial and deltaic systems in rift settings. The influence of transfer zones or relay ramps on <span class="hlt">sediment</span> routes and dispersal patterns in subaqueous (deeper marine/lacustrine), however, is barely studied and hence less clear. Previous experimental studies indicate that subaqueous relay ramps may act as <span class="hlt">sediment</span> transportation pathways if certain conditions are available. In this study, we integrate detailed structural and stratigraphic analysis with three-dimensional seismic data and limited well log data from the Qikou Sag to examine the tectonic evolution and the syn-rift <span class="hlt">sediment</span> patterns response to fault growth and linkage in an active rift setting. Qikou Sag is located at the center of Huanghua Depression, Bohaiwan Basin of eastern China. Structurally, it is a typical continental rift basin characterized by a linked system of two NEE-SWW-striking half-grabens and one E-W-striking graben. Qikou sag is filled with Eocene-Oligocene syn-rift <span class="hlt">sediments</span> and <span class="hlt">Miocene</span> to Quaternary post-rift <span class="hlt">sediments</span>. The Eocene-Oligocene rifting stage can be divided into <span class="hlt">early</span> rifting period (43-36.5 Ma, the third member and second member of Shahejie Formation, Es3 and Es2), stable rifting period (36.5-29Ma, the first member of Shaehejie Formation, Es1) and fault-depressed diversionary period (29-24.6Ma, the Dongying Formation, Ed). This study focus on the <span class="hlt">early</span> syn-rift, the third and second member of Shehejie Formation, which is mostly dark-grey mudstone interbedded with fine to coarse-grained sandstone deposited by large-scale turbidity currents in deep-lake. In particular, we use a combination of thickness variability and facies distributions, onlap patterns within a high-resolution sequence stratigraphic framework, integrated with structural geometry, fault activity and subsidence history analysis to</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeCoA.203..175K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeCoA.203..175K"><span><span class="hlt">Early</span> diagenesis and trace element accumulation in North American Arctic margin <span class="hlt">sediments</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kuzyk, Zou Zou A.; Gobeil, Charles; Goñi, Miguel A.; Macdonald, Robie W.</p> <p>2017-04-01</p> <p>Concentrations of redox-sensitive elements (S, Mn, Mo, U, Cd, Re) were analyzed in a set of 27 <span class="hlt">sediment</span> cores collected along the North American Arctic margin (NAAM) from the North Bering Sea to Davis Strait via the Canadian Archipelago. Sedimentary distributions and accumulation rates of the elements were used to evaluate <span class="hlt">early</span> diagenesis in <span class="hlt">sediments</span> along this section and to estimate the importance of this margin as a sink for key elements in the polar and global oceans. Distributions of Mn, total S and reduced inorganic S demonstrated that diagenetic conditions and thus sedimentary carbon turnover in the NAAM is organized regionally: undetectable or very thin layers (<0.5 cm) of surface Mn enrichment occurred in the Bering-Chukchi shelves; thin layers (1-5 cm) of surface Mn enrichment occurred in Barrow Canyon and Lancaster Sound; and thick layers (5-20 cm) of surface Mn enrichment occurred in the Beaufort Shelf, Canadian Archipelago, and Davis Strait. Inventories of authigenic S below the Mn-rich layer decreased about fivefold from Bering-Chukchi shelf and Barrow Canyon to Lancaster Sound and more than ten-fold from Bering-Chukchi shelf to Beaufort Shelf, Canadian Archipelago and Davis Strait. The Mn, total S and reduced inorganic S distributions imply strong organic carbon (OC) flux and metabolism in the Bering-Chukchi shelves, lower aerobic OC metabolism in Barrow Canyon and Lancaster Sound, and deep O2 penetration and much lower OC metabolism in the Beaufort Shelf, Canadian Archipelago, and Davis Strait. Accumulation rates of authigenic S, Mo, Cd, Re, and U displayed marked spatial variability along the NAAM reflecting the range in sedimentary redox conditions. Strong relationships between the accumulation rates and vertical carbon flux, estimated from regional primary production values and water depth at the coring sites, indicate that the primary driver in the regional patterns is the supply of labile carbon to the seabed. Thus, high primary production</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.5078S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.5078S"><span>Oceanographic changes in the Southern Ocean and Antarctic cryosphere dynamics during the Oligocene and <span class="hlt">Miocene</span>: a view from offshore Wilkes Land</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sangiorgi, Francesca; Bijl, Peter K.; Hartman, Julian D.; Schouten, Stefan; Brinkhuis, Henk</p> <p>2016-04-01</p> <p>With the ongoing increase in atmospheric CO2 and global temperatures, a fundamental scientific and societal question arises concerning the stability of the Antarctic cryosphere. Modern observational data indicate the Southern Ocean has experienced significant warming, with oceanic fronts being pushed several tenth of km closer to the continent. Moreover, basal melt of ice shelves from warming oceans is causing accelerated grounding line retreat of the Antarctic ice sheets and shelves. However, monitoring data are available for the last few decades only, which prevents the evaluation of long-term changes in ice mass balance. Studying intervals in Earth's past history, which represent the best possible analogues of (near) future conditions, becomes thus essential. The Oligocene and <span class="hlt">Miocene</span> Epochs encompass periods with CO2 concentrations between today's and those expected for the (near) future. It has also become clear that ice-proximal oceanographic regime is a critical factor for the stability and mass balance of ice sheets. Integrated Ocean Drilling Program (IODP) Expedition 318 offshore Wilkes Land (East Antarctica) Site U1356 satisfies both requirements of being ice-proximal and having a relative complete, stratigraphically well-resolved Oligocene-<span class="hlt">Miocene</span> sequence (albeit with a possible 5-Myrs gap between Late Oligocene and <span class="hlt">Early</span> <span class="hlt">Miocene</span>). This allows for the first time studying oceanographic changes and cryosphere dynamics in the interval ~34-13 Myrs. Thus far, ice-proximal reconstructions were hindered by the paucity of suitable sedimentary archives around Antarctica and/or poor stratigraphic constraints. We reconstructed changes in surface oceanography and seawater temperatures by means of dinoflagellate cyst assemblages and TEX86 paleothermometry. The dinocyst data suggest (summer) sea-ice occurrence at Site U1356 only for the first 1.5 Ma following the onset of full Antarctic glaciation and after the Mid-<span class="hlt">Miocene</span> Climatic Optimum. In between, both dinocysts</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.1226D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.1226D"><span>Late <span class="hlt">Miocene</span> Coral faunas of Iran (Zagros, Aghar, Firuz abad, Fars) palaeoecology and palaeobiogeography</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dehbozorgi, M.; Yazdi, M.; Torabi, H.</p> <p>2009-04-01</p> <p>Late <span class="hlt">Miocene</span> Corals assemblage from Zagros Iran are investigated with respect to their palaeoecology and palaeobiogeography implications. This Corals are compared with fauna from Mediterranean Tethys and the Indopacific. Small foraminifers are used for biogeography and to support paleoecology interpretation. The studied section situated in the Zagros Mishan F.m is last depositions sea. A distinct horizon characterized by Porites- Antiguastrea assemblage associated Milliolid and Rotalia is interpreted a shallow bioclastic shoal. Patch reef with a porites and faviidae assemblage are a common feature of Oligocene and <span class="hlt">Miocene</span> coral occurrence and indicate water depth of less than 20m. The diversity of corals in this area are low and all corals are hematypic. <span class="hlt">Miocene</span> Corals from Mishan F.m Comprise 7 genera and occur in the single horizon or patch reef. This Corals and patch reefs are compared with corals and patch reefs in Qom F.m Central Iran. This corals report from this section: Antiguastrea sp., Monastrea sp., Favites sp., Porites sp., Dichocoenia sp., Asterohelia sp., Leptoria sp. Keywords: <span class="hlt">Miocene</span>- Iran- Mishan-Zagros- Formation- Tethys seaway- Corals- Palaeoecology- palaeobiogeography.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4581040','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4581040"><span>Snežna jama (Slovenia): Interdisciplinary dating of cave <span class="hlt">sediments</span> and implication for landscape evolution</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Häuselmann, Philipp; Mihevc, Andrej; Pruner, Petr; Horáček, Ivan; Čermák, Stanislav; Hercman, Helena; Sahy, Diana; Fiebig, Markus; Hajna, Nadja Zupan; Bosák, Pavel</p> <p>2015-01-01</p> <p>Caves are important markers of surface evolution, since they are, as a general rule, linked with ancient valley bottoms by their springs. However, caves can only be dated indirectly by means of the <span class="hlt">sediments</span> they contain. If the <span class="hlt">sediment</span> is older than common dating methods, one has to use multiple dating approaches in order to get meaningful results. U/Th dating, palaeomagnetic analysis of flowstone and <span class="hlt">sediment</span> profiles, cosmogenic dating of quartz pebbles, and mammalian dating allowed a robust estimate of speleogenesis, <span class="hlt">sediment</span> deposition, climatic change at the surface, and uplift history on the Periadriatic fault line during the Plio-Pleistocene. Our dates indicate that Snežna jama was formed in the (Upper) <span class="hlt">Miocene</span>, received its sedimentary deposits during the Pliocene in a rather low-lying, hilly landscape, and became inactive due to uplift along the Periadriatic and Sava faults and climatic changes at the beginning of the Quaternary. Although it is only a single cave, the information contained within it makes it an important site of the Southern Alps. PMID:26516294</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26516294','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26516294"><span>Snežna jama (Slovenia): Interdisciplinary dating of cave <span class="hlt">sediments</span> and implication for landscape evolution.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Häuselmann, Philipp; Mihevc, Andrej; Pruner, Petr; Horáček, Ivan; Čermák, Stanislav; Hercman, Helena; Sahy, Diana; Fiebig, Markus; Hajna, Nadja Zupan; Bosák, Pavel</p> <p>2015-10-15</p> <p>Caves are important markers of surface evolution, since they are, as a general rule, linked with ancient valley bottoms by their springs. However, caves can only be dated indirectly by means of the <span class="hlt">sediments</span> they contain. If the <span class="hlt">sediment</span> is older than common dating methods, one has to use multiple dating approaches in order to get meaningful results. U/Th dating, palaeomagnetic analysis of flowstone and <span class="hlt">sediment</span> profiles, cosmogenic dating of quartz pebbles, and mammalian dating allowed a robust estimate of speleogenesis, <span class="hlt">sediment</span> deposition, climatic change at the surface, and uplift history on the Periadriatic fault line during the Plio-Pleistocene. Our dates indicate that Snežna jama was formed in the (Upper) <span class="hlt">Miocene</span>, received its sedimentary deposits during the Pliocene in a rather low-lying, hilly landscape, and became inactive due to uplift along the Periadriatic and Sava faults and climatic changes at the beginning of the Quaternary. Although it is only a single cave, the information contained within it makes it an important site of the Southern Alps.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GPC...146...38C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GPC...146...38C"><span><span class="hlt">Miocene</span> Antarctic ice dynamics in the Ross Embayment (Western Ross Sea, Antarctica): Insights from provenance analyses of sedimentary clasts in the AND-2A drill core</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cornamusini, Gianluca; Talarico, Franco M.</p> <p>2016-11-01</p> <p>A detailed study of gravel-size sedimentary clasts in the ANDRILL-2A (AND-2A) drill core reveals distinct changes in provenance and allows reconstructions to be produced of the paleo ice flow in the McMurdo Sound region (Ross Sea) from the <span class="hlt">Early</span> <span class="hlt">Miocene</span> to the Holocene. The sedimentary clasts in AND-2A are divided into seven distinct petrofacies. A comparison of these with potential source rocks from the Transantarctic Mountains and the coastal Southern Victoria Land suggests that the majority of the sedimentary clasts were derived from formations within the Devonian-Triassic Beacon Supergroup. The siliciclastic-carbonate petrofacies are similar to the fossiliferous erratics found in the Quaternary Moraine in the southern McMurdo Sound and were probably sourced from Eocene strata that are currently hidden beneath the Ross Ice Shelf. Intraformational clasts were almost certainly reworked from diamictite and mudstone sequences that were originally deposited proximal to the drill site. The distribution of sedimentary gravel clasts in AND-2A suggests that sedimentary sequences in the drill core were deposited under two main glacial scenarios: 1) a highly dynamic ice sheet that did not extend beyond the coastal margin and produced abundant debris-rich icebergs from outlet glaciers in the central Transantarctic Mountains and South Victoria Land; 2) and an ice sheet that extended well beyond the coastal margin and periodically advanced across the Ross Embayment. Glacial scenario 1 dominated the <span class="hlt">early</span> to mid-<span class="hlt">Miocene</span> (between ca. 1000 and 225 mbsf in AND-2A) and scenario 2 the <span class="hlt">early</span> <span class="hlt">Miocene</span> (between ca. 1138 and 1000 mbsf) and late Neogene to Holocene (above ca. 225 mbsf). This study augments previous research on the clast provenance and highlights the added value that sedimentary clasts offer in terms of reconstructing past glacial conditions from Antarctic drill core records.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MarGR.tmp...30C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MarGR.tmp...30C"><span>Upper <span class="hlt">Miocene</span>-Pliocene provenance evolution of the Central Canyon in northwestern South China Sea</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cui, Yuchi; Shao, Lei; Qiao, Peijun; Pei, Jianxiang; Zhang, Daojun; Tran, Huyen</p> <p>2018-06-01</p> <p>Provenance studies of the Central Canyon, Qiongdongnan Basin has provided significant insights into paleographic and sedimentology research of the South China Sea (SCS). A suite of geochemical approaches mainly including rare earth elemental (REE) analysis and detrital zircon U-Pb dating has been systematically applied to the "source-to-sink" system involving our upper <span class="hlt">Miocene</span>-Pliocene Central Canyon <span class="hlt">sediments</span> and surrounding potential source areas. Based on samples tracing the entire course of the Central Canyon, REE distribution patterns indicate that the western channel was generally characterized by positive Eu anomalies in larger proportion, in contrast to the dominance of negative values of its eastern side during late <span class="hlt">Miocene</span>-Pliocene. Additionally, for the whole canyon and farther regions of Qiongdongnan Basin, the number of samples bearing negative Eu anomalies tended to increase within younger geological strata. On the other hand, U-Pb geochronology results suggest a wide Proterozoic to Mesozoic age range with peak complexity in Yanshanian, Indosinian, Caledonian and Jinningian periods. However in detail, age combination of most western samples displayed older-age signatures than the eastern. To make it more evidently, western boreholes of the Central Canyon are mainly characterized with confined Indosinian and Caledonian clusters which show great comparability with mafic-to-ultramafic source of Kontum Massif of Central Vietnam, while eastern samples largely bear with distinguishable Yanshanian and Indosinian peaks which more resemble with Hainan Island. Based on geochemistry and geochronology analyses, two significant suppliers and sedimentary infilling processes are generated: (1) the Indosinian collision orogenic belt in central-northern Vietnam, Indochina has ever played significant role in Central Canyon sedimentary evolution, (2) Hainan Island once as a typical provenance restricted within eastern Central Canyon, has been enlarging its influence</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JGeo...65..308Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JGeo...65..308Y"><span>An intramontane pull-apart basin in tectonic escape deformation: Elbistan Basin, Eastern Taurides, Turkey</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yusufoğlu, H.</p> <p>2013-04-01</p> <p>The Elbistan Basin in the east-Central Anatolia is an intramontane structural depression in the interior part of the Anatolide-Tauride Platform. The Neogene fill in and around Elbistan Basin develops above the Upper Devonian to lower Tertiary basement and comprises two units separated by an angular unconformity: (1) intensely folded and faulted <span class="hlt">Miocene</span> shallow marine to terrestrial and lacustrine <span class="hlt">sediments</span> and (2) nearly flat-lying lignite-bearing lacustrine (lower unit) and fluvial (upper unit) deposits of Plio-Quaternary Ahmetçik Formation. The former is composed of Lower-Middle <span class="hlt">Miocene</span> Salyan, Middle-upper Middle <span class="hlt">Miocene</span> Gövdelidağ and Upper <span class="hlt">Miocene</span> Karamağara formations whereas the latter one is the infill of the basin itself in the present configuration of the Elbistan Basin. The basin is bound by normal faults with a minor strike-slip component. It commenced as an intramontane pull-apart basin and developed as a natural response to <span class="hlt">Early</span> Pliocene tectonic escape-related strike-slip faulting subsequent to post-collisional intracontinental compressional tectonics during which <span class="hlt">Miocene</span> <span class="hlt">sediments</span> were intensely deformed. The <span class="hlt">Early</span> Pliocene time therefore marks a dramatic changeover in tectonic regime and is interpreted as the beginning of the ongoing last tectonic evolution and deformation style in the region unlike to previous views that it commenced before that time. Consequently, the Elbistan Basin is a unique structural depression that equates the extensional strike-slip regime in east-Central Anatolia throughout the context of the neotectonical framework of Turkey across progressive collision of Arabia with Eurasia. Its Pliocene and younger history differs from and contrasts with that of the surrounding pre-Pliocene basins such as Karamağara Basin, on which it has been structurally superimposed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70032037','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70032037"><span>Late Cretaceous to <span class="hlt">Miocene</span> sea-level estimates from the New Jersey and Delaware coastal plain coreholes: An error analysis</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kominz, M.A.; Browning, J.V.; Miller, K.G.; Sugarman, P.J.; Mizintseva, S.; Scotese, C.R.</p> <p>2008-01-01</p> <p>Sea level has been estimated for the last 108 million years through backstripping of corehole data from the New Jersey and Delaware Coastal Plains. Inherent errors due to this method of calculating sea level are discussed, including uncertainties in ages, depth of deposition and the model used for tectonic subsidence. Problems arising from the two-dimensional aspects of subsidence and response to <span class="hlt">sediment</span> loads are also addressed. The rates and magnitudes of sea-level change are consistent with at least ephemeral ice sheets throughout the studied interval. Million-year sea-level cycles are, for the most part, consistent within the study area suggesting that they may be eustatic in origin. This conclusion is corroborated by correlation between sequence boundaries and unconformities in New Zealand. The resulting long-term curve suggests that sea level ranged from about 75-110 m in the Late Cretaceous, reached a maximum of about 150 m in the <span class="hlt">Early</span> Eocene and fell to zero in the <span class="hlt">Miocene</span>. The Late Cretaceous long-term (107 years) magnitude is about 100-150 m less than sea level predicted from ocean volume. This discrepancy can be reconciled by assuming that dynamic topography in New Jersey was driven by North America overriding the subducted Farallon plate. However, geodynamic models of this effect do not resolve the problem in that they require Eocene sea level to be significantly higher in the New Jersey region than the global average. ?? 2008 The Authors. Journal compilation ?? 2008 Blackwell Publishing.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19860021692','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19860021692"><span>Geometry of <span class="hlt">miocene</span> extensional deformation, lower Colorado River Region, Southeastern California and Southwestern Arizona: Evidence for the presence of a regional low-angle normal fault</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tosdal, R. M.; Sherrod, D. R.</p> <p>1985-01-01</p> <p>The geometry of <span class="hlt">Miocene</span> extensional deformation, which changes along a 120 km-long, northeast-trending transect from the southestern Chocolate Mountains, southeastern California, to the Trigo and southern Dome Rock Mountains, southwestern Arizona is discussed. Based upon regional differences in the structural response to extension and estimated extensional strain, the transet can be divided into three northwesterly-trending structural domains. From southwest to northeast, these domains are: (1) southestern Chocolate-southernmost Trigo Mountains; (2) central to northern Trigo Mountains; and (3) Trigo Peaks-southern Dome Rock Mountains. All structures formed during the deformation are brittle in style; fault rocks are composed of gouge, cohesive gouge, and local microbreccia. In each structural domain, exposed lithologic units are composed of Mesozoic crystalline rocks unconformably overlain by Oligocene to <span class="hlt">Early</span> <span class="hlt">Miocene</span> volcanic and minor interbedded sedimentary rocks. Breccia, conglomerate, and sandstone deposited synchronously with regional extension locally overlie the volcanic rocks. Extensional deformation largely postdated the main phase of volcanic activity, but rare rhyolitic tuff and flows interbedded with the syndeformational clastic rocks suggest that deformation began during the waning stages of valcanism. K-Ar isotopic ages indicate that deformation occurred in <span class="hlt">Miocene</span> time, between about 22 and m.y. ago.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA199416','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA199416"><span>Geothermal Resource Evaluation at Naval Air Station Fallon, Nevada</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1987-08-01</p> <p>20 4. Mainside Topographic Map Showing Warm Wells and Thermal Gradient H oles... Oligocene and <span class="hlt">early</span> <span class="hlt">Miocene</span> periods. These troughs were sites of intense hyohtic to andesitic volcanism and coeval faulting. The orientation and age...volcanic sequence, (2) intervolcanic <span class="hlt">sediments</span> in the volcanic sequence. (3) a fractured reservoir within uwderlying Mio- Oligocene acid tuffs and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JESS..126...37Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JESS..126...37Z"><span>Fault zone architecture within <span class="hlt">Miocene</span>-Pliocene syn-rift <span class="hlt">sediments</span>, Northwestern Red Sea, Egypt</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zaky, Khairy S.</p> <p>2017-04-01</p> <p>The present study focusses on field description of small normal fault zones in Upper <span class="hlt">Miocene</span>-Pliocene sedimentary rocks on the northwestern side of the Red Sea, Egypt. The trend of these fault zones is mainly NW-SE. Paleostress analysis of 17 fault planes and slickenlines indicate that the tension direction is NE-SW. The minimum ( σ3) and intermediate ( σ2) paleostress axes are generally sub-horizontal and the maximum paleostress axis ( σ1) is sub-vertical. The fault zones are composed of damage zones and fault core. The damage zone is characterized by subsidiary faults and fractures that are asymmetrically developed on the hanging wall and footwall of the main fault. The width of the damage zone varies for each fault depending on the lithology, amount of displacement and irregularity of the fault trace. The average ratio between the hanging wall and the footwall damage zones width is about 3:1. The fault core consists of fault gouge and breccia. It is generally concentrated in a narrow zone of ˜0.5 to ˜8 cm width. The overall pattern of the fault core indicates that the width increases with increasing displacement. The faults with displacement < 1 m have fault cores ranging from 0.5 to 4.0 cm, while the faults with displacements of > 2 m have fault cores ranging from 4.0 to 8.0 cm. The fault zones are associated with sliver fault blocks, clay smear, segmented faults and fault lenses' structural features. These features are mechanically related to the growth and linkage of the fault arrays. The structural features may represent a neotectonic and indicate that the architecture of the fault zones is developed as several tectonic phases.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/5797433-upper-miocene-reef-complex-mallorca-balearic-islands-spain','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5797433-upper-miocene-reef-complex-mallorca-balearic-islands-spain"><span>Upper <span class="hlt">Miocene</span> reef complex of Mallorca, Balearic Islands, Spain</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Pomar, L.</p> <p>1988-02-01</p> <p>The late Tortonian-Messinian coral reef platform of south Mallorca onlaps a folded middle late <span class="hlt">Miocene</span> carbonate platform on which progradation of up to 20 km occurs. Vertical sea cliffs (up to 100 m high) superbly show the last 5 km of this progradation and complement the numerous water-well cores from the island interior. The Mallorca reef presents the most complete facies zonation of the <span class="hlt">Miocene</span> reefs of the western Mediterranean. The reef wall framework is up to 20 m thick and shows (1) erosional reef flat with reef breccia and small corals; (2) spur-and-grove zone with large, massive corals; (3)more » deep buttresses and pinnacles with terraces of branching corals; and (4) deep reef wall with flat, laminar coral colonies, branching red algae, and Halimeda sands.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <footer><a id="backToTop" href="#top"> </a><nav><a id="backToTop" href="#top"> </a><ul class="links"><a id="backToTop" href="#top"> </a><li><a id="backToTop" href="#top"></a><a href="/sitemap.html">Site Map</a></li> <li><a href="/members/index.html">Members Only</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://doe.responsibledisclosure.com/hc/en-us" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> <div class="small">Science.gov is maintained by the U.S. Department of Energy's <a href="https://www.osti.gov/" target="_blank">Office of Scientific and Technical Information</a>, in partnership with <a href="https://www.cendi.gov/" target="_blank">CENDI</a>.</div> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>