Viholainen, Helena; Ahonen, Timo; Lyytinen, Paula; Cantell, Marja; Tolvanen, Asko; Lyytinen, Heikki
2006-05-01
Relationships between early motor development and language and reading skills were studied in 154 children, of whom 75 had familial risk of dyslexia (37 females, 38 males; at-risk group) and 79 constituted a control group (32 females, 47 males). Motor development was assessed by a structured parental questionnaire during the child's first year of life. Vocabulary and inflectional morphology skills were used as early indicators of language skills at 3 years 6 months and 5 years or 5 years 6 months of age, and reading speed was used as a later indicator of reading skills at 7 years of age. The same subgroups as in our earlier study (in which the cluster analysis was described) were used in this study. The three subgroups of the control group were 'fast motor development', 'slow fine motor development', and 'slow gross motor development', and the two subgroups of the at-risk group were 'slow motor development' and 'fast motor development'. A significant difference was found between the development of expressive language skills. Children with familial risk of dyslexia and slow motor development had a smaller vocabulary with poorer inflectional skills than the other children. They were also slower in their reading speed at the end of the first grade at the age of 7 years. Two different associations are discussed, namely the connection between early motor development and language development, and the connection between early motor development and reading speed.
Motor Development Programming in Trisomic-21 Babies
ERIC Educational Resources Information Center
Sanz, Teresa; Menendez, Javier; Rosique, Teresa
2011-01-01
The present study contributes to the understanding of gross motor development in babies with Down's syndrome. Also, it facilitates the comprehension of the efficiency of the early motor stimulation as well as of beginning it as early as possible. We worked with two groups of babies with Down's syndrome, beginning the early motor training in each…
Relation between early motor delay and later communication delay in infants at risk for autism.
Bhat, A N; Galloway, J C; Landa, R J
2012-12-01
Motor delays have been reported in retrospective studies of young infants who later develop Autism Spectrum Disorders (ASDs). In this study, we prospectively compared the gross motor development of a cohort at risk for ASDs; infant siblings of children with ASDs (AU sibs) to low risk typically developing (LR) infants. 24 AU sibs and 24 LR infants were observed at 3 and 6 months using a standardized motor measure, the Alberta Infant Motor Scale (AIMS). In addition, as part of a larger study, the AU sibs also received a follow-up assessment to determine motor and communication performance at 18 months using the Mullen Scales of Early Learning. Significantly more AU sibs showed motor delays at 3 and 6 months than LR infants. The majority of the AU sibs showed both early motor delays and later communication delays. Small sample size and limited follow-up. Early motor delays are more common in AU sibs than LR infants. Communication delays later emerged in 67-73% of the AU sibs who had presented with early motor delays. Overall, early motor delays may be predictive of future communication delays in children at risk for autism. Copyright © 2012 Elsevier Inc. All rights reserved.
Relationship between early motor delay and later communication delay in infants at risk for autism
Bhat, A. N.; Galloway, J. C.; Landa, R. J.
2012-01-01
Background Motor delays have been reported in retrospective studies of young infants who later develop Autism Spectrum Disorders (ASDs). Objective In this study, we prospectively compared the gross motor development of a cohort at risk for ASDs; infant siblings of children with ASDs (AU sibs) to low risk typically developing (LR) infants. Methods 24 AU sibs and 24 LR infants were observed at 3 and 6 months using a standardized motor measure, the Alberta Infant Motor Scale (AIMS). In addition, as part of a larger study, the AU sibs also received a follow-up assessment to determine motor and communication performance at 18 months using the Mullen Scales of Early Learning. Results Significantly more AU sibs showed motor delays at 3 and 6 months than LR infants. The majority of the AU sibs showed both early motor delays and later communication delays. Limitations Small sample size and limited follow-up. Conclusions Early motor delays are more common in infant AU sibs than LR infants. Communication delays later emerged in 67–73% of the AU sibs who had presented with early motor delays. Overall, early motor delays may be predictive of future communication delays in children at risk for autism. PMID:22982285
Pitchford, Nicola J.; Papini, Chiara; Outhwaite, Laura A.; Gulliford, Anthea
2016-01-01
Fine motor skills have long been recognized as an important foundation for development in other domains. However, more precise insights into the role of fine motor skills, and their relationships to other skills in mediating early educational achievements, are needed to support the development of optimal educational interventions. We explored concurrent relationships between two components of fine motor skills, Fine Motor Precision and Fine Motor Integration, and early reading and maths development in two studies with primary school children of low-to-mid socio-economic status in the UK. Two key findings were revealed. First, despite being in the first 2 years of primary school education, significantly better performance was found in reading compared to maths across both studies. This may reflect the protective effects of recent national-level interventions to promote early literacy skills in young children in the UK that have not been similarly promoted for maths. Second, fine motor skills were a better predictor of early maths ability than they were of early reading ability. Hierarchical multiple regression revealed that fine motor skills did not significantly predict reading ability when verbal short-term memory was taken into account. In contrast, Fine Motor Integration remained a significant predictor of maths ability, even after the influence of non-verbal IQ had been accounted for. These results suggest that fine motor skills should have a pivotal role in educational interventions designed to support the development of early mathematical skills. PMID:27303342
Pitchford, Nicola J; Papini, Chiara; Outhwaite, Laura A; Gulliford, Anthea
2016-01-01
Fine motor skills have long been recognized as an important foundation for development in other domains. However, more precise insights into the role of fine motor skills, and their relationships to other skills in mediating early educational achievements, are needed to support the development of optimal educational interventions. We explored concurrent relationships between two components of fine motor skills, Fine Motor Precision and Fine Motor Integration, and early reading and maths development in two studies with primary school children of low-to-mid socio-economic status in the UK. Two key findings were revealed. First, despite being in the first 2 years of primary school education, significantly better performance was found in reading compared to maths across both studies. This may reflect the protective effects of recent national-level interventions to promote early literacy skills in young children in the UK that have not been similarly promoted for maths. Second, fine motor skills were a better predictor of early maths ability than they were of early reading ability. Hierarchical multiple regression revealed that fine motor skills did not significantly predict reading ability when verbal short-term memory was taken into account. In contrast, Fine Motor Integration remained a significant predictor of maths ability, even after the influence of non-verbal IQ had been accounted for. These results suggest that fine motor skills should have a pivotal role in educational interventions designed to support the development of early mathematical skills.
McCleery, Joseph P.; Elliott, Natasha A.; Sampanis, Dimitrios S.; Stefanidou, Chrysi A.
2013-01-01
Research suggests that a sub-set of children with autism experience notable difficulties and delays in motor skills development, and that a large percentage of children with autism experience deficits in motor resonance. These motor-related deficiencies, which evidence suggests are present from a very early age, are likely to negatively affect social-communicative and language development in this population. Here, we review evidence for delayed, impaired, and atypical motor development in infants and children with autism. We then carefully review and examine the current language and communication-based intervention research that is relevant to motor and motor resonance (i.e., neural “mirroring” mechanisms activated when we observe the actions of others) deficits in children with autism. Finally, we describe research needs and future directions and developments for early interventions aimed at addressing the speech/language and social-communication development difficulties in autism from a motor-related perspective. PMID:23630476
Gross Motor Development of Malaysian Hearing Impaired Male Pre- and Early School Children
ERIC Educational Resources Information Center
Zawi, Khairi; Lian, Denise Koh Choon; Abdullah, Rozlina Tan
2014-01-01
Acquisition of gross motor skill is a natural developmental process for children. This aspect of human development increases with one's chronological age, irrespective of any developmental conditions. The purpose of this study was to assess the level of gross motor skill development among pre- and early school-aged children with motor disability.…
Early motor skill competence as a mediator of child and adult physical activity
Loprinzi, Paul D.; Davis, Robert E.; Fu, Yang-Chieh
2015-01-01
Objective: In order to effectively promote physical activity (PA) during childhood, and across the lifespan, a better understanding of the role of early motor skill development on child and adult PA is needed. Methods: Here, we propose a conceptual model delineating the hypothesized influence of motor skill development on child and adult PA, while providing an overview of the current empirical research related to this model. Results: There is consistent and emerging evidence showing that adequate motor skill competence, particularly locomotor and gross motor skills, is associated with increased PA levels during the preschool, child, and adolescent years, with early motor skill development also influencing enjoyment of PA as well as long-term PA and motor skill performance. The physical education setting appears to be a well-suited environment for motor skill development. Conclusion: Employing appropriate strategies to target motor skill development across the childhood years is of paramount interest in helping shape children's PA behavior, their experiences related to PA, as well as maintain their PA. PMID:26844157
Poole, Kristie L; Schmidt, Louis A; Ferro, Mark A; Missiuna, Cheryl; Saigal, Saroj; Boyle, Michael H; Van Lieshout, Ryan J
2018-02-01
While the trajectory of self-esteem from adolescence to adulthood varies from person to person, little research has examined how differences in early developmental processes might affect these pathways. This study examined how early motor skill development interacted with preterm birth status to predict self-esteem from adolescence through the early 30s. We addressed this using the oldest known, prospectively followed cohort of extremely low birth weight (<1000 g) survivors (N = 179) and normal birth weight controls (N = 145) in the world, born between 1977 and 1982. Motor skills were measured using a performance-based assessment at age 8 and a retrospective self-report, and self-esteem was reported during three follow-up periods (age 12-16, age 22-26, and age 29-36). We found that birth weight status moderated the association between early motor skills and self-esteem. Stable over three decades, the self-esteem of normal birth weight participants was sensitive to early motor skills such that those with poorer motor functioning manifested lower self-esteem, while those with better motor skills manifested higher self-esteem. Conversely, differences in motor skill development did not affect the self-esteem from adolescence to adulthood in individuals born at extremely low birth weight. Early motor skill development may exert differential effects on self-esteem, depending on whether one is born at term or prematurely.
Early life events and motor development in childhood and adolescence: a longitudinal study.
Grace, Tegan; Bulsara, Max; Robinson, Monique; Hands, Beth
2016-05-01
Few studies have reported on early life risk factors for motor development outcomes past childhood. Antenatal, perinatal and neonatal factors affecting motor development from late childhood to adolescence were explored. As sex differences in motor development have been previously reported, males and females were examined separately. Participants (n = 2868) were from the Western Australian Pregnancy Cohort Study. Obstetric and neonatal data were examined to determine factors related to motor development at 10 (n = 1622), 14 (n = 1584) and 17 (n = 1221) years. The Neuromuscular Development Index (NDI) of the McCarron Assessment of Motor Development determined offspring motor proficiency. Linear mixed models were developed to allow for changes in motor development over time. Maternal pre-eclampsia, Caesarean section and low income were negatively related to male and female motor outcomes. Lower percentage of optimal birthweight was related to a lower male NDI. Younger maternal age, smoking during early pregnancy and stress during later pregnancy were related to lower female NDIs. Events experienced during pregnancy were related to motor development into late adolescence. Males and females were influenced differently by antenatal and perinatal risk factors; this may be due to sex-specific developmental pathways. ©2015 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.
ERIC Educational Resources Information Center
Whittingham, Koa; Fahey, Michael; Rawicki, Barry; Boyd, Roslyn
2010-01-01
Aim: To investigate the relationship between motor ability and early social development in a cohort of preschool children with cerebral palsy (CP). Design: Population-based cohort study. Methods: Participants were 122 children with CP assessed at 18, 24 and 30 months, corrected age (ca). Motor ability was measured by the Gross Motor Function…
Stevenson, Jennifer L; Lindley, Caitlin E; Murlo, Nicole
2017-08-01
Autistic individuals often struggle developmentally, even in areas that are not explicit diagnostic criteria, such as motor skills. This study explored the relation between early motor skills, assessed retrospectively, and current pragmatic language skills. Caregivers of neurotypical and autistic children, matched on gender and age, completed assessments of their child's early motor development and current language abilities. Early motor skills were correlated with later pragmatic language skills, and autistic children exhibited fewer motor skills than neurotypical children. In fact, motor skills were a better predictor of an autism spectrum diagnosis than were scores on a measure of current pragmatic language. These results highlight the important role of motor skills in autism spectrum disorders.
Motor skills development in children with inattentive versus combined subtypes of ADHD.
Vasserman, Marsha; Bender, H Allison; Macallister, William S
2014-01-01
The relations between attention-deficit hyperactivity disorder (ADHD) and motor skills are well documented, with research indicating both early and lifelong motor deficits in children with this disorder. Despite neuroanatomical and neurodevelopmental differences, which may predict differential rates of motor impairment between ADHD subtypes, evaluation of motor skill deficits in children with different presentations are limited in scope and equivocal in findings. The present investigation evaluated early motor development history and objectively measured motor skills in children with ADHD-Inattentive subtype (ADHD-I) and ADHD-Combined subtype (ADHD-C). One hundred and one children with ADHD-I (n = 53) and ADHD-C (n = 48) were included. Variables included Full-Scale IQ (FSIQ), history of motor delays, and utilization of early intervention services, as well as objectively measured motor impairment as assessed via tasks of fine-motor coordination. No between-group differences were found for FSIQ, but differences in age emerged, with the ADHD-I group being older. No differences in early motor delays were observed, though a considerably higher percentage of children with ADHD-C demonstrated early difficulties. Surprisingly, although children and adolescents with ADHD-C reported more frequent utilization of early intervention services, those with ADHD-I exhibited greater levels of current motor impairment on objective tasks. Given the over-representation of older children in the ADHD-I group, data were reanalyzed after excluding participants older than 10 years of age. Although the between-group differences were no longer significant, more than twice the number of parents of children with ADHD-C reported early motor delays, as compared with the ADHD-I group. Overall, children with ADHD-I were more likely to exhibit current objectively measured motor impairment, possibly due to later identification, less intervention, and/or different neurodevelopmental substrates underlying this disorder subtype.
Infant and child motor development.
Edwards, Sara L; Sarwark, John F
2005-05-01
Identifying infant and child developmental delay is a skill important for orthopaedic surgeons to master because they often are asked to distinguish between normal and abnormal movement. An emphasis has been placed on early detection and referral for intervention, which has been shown to enhance the lives of the infant or child and his or her family. Appropriate recognition of delay is necessary for referral to early intervention services, which serve to help these children overcome or improve motor dysfunction and to help families grow more confident in caring for children with special needs. We define early intervention, discuss normal and abnormal motor development, and provide useful examination tools to assess motor development.
Early Speech Motor Development: Cognitive and Linguistic Considerations
ERIC Educational Resources Information Center
Nip, Ignatius S. B.; Green, Jordan R.; Marx, David B.
2009-01-01
This longitudinal investigation examines developmental changes in orofacial movements occurring during the early stages of communication development. The goals were to identify developmental trends in early speech motor performance and to determine how these trends differ across orofacial behaviors thought to vary in cognitive and linguistic…
Perceptual and Motor Development in Infants and Children. Second Edition.
ERIC Educational Resources Information Center
Cratty, Bryant J.
Motor behavior, motor performance, and motor learning are discussed at length within the context of infant and child development. Individual chapters focus on the following: the sensory-motor behavior of infants; analysis of selected perceptual-motor programs; beginnings of movement in infants; gross motor attributes in early childhood; visual…
[Breastfeeding, gross motor development and obesity, is there any causal association?
Weisstaub N, Gerardo; Schonhaut B, Luisa; Salazar R, Gabriela
2017-01-01
Childhood obesity is the main nutritional and public health problem in Chile, being the principal causes, the increase in energy dense foods and the decline of physical activity. Interventions to prevent obesity at infancy are focused mainly in improving quality and quantity of dietary intake, without taking into account physical activity, which is expressed under two years of age, mainly by motor development. Some studies have proven that motor development at early age, may influence the ability to perform physical activity. Thus, infants scoring a lower motor development may have a greater risk of becoming obese. It isnt know if childhood obesity causes lower motor development (given that children may have greater difficulty to move), or on the contrary, it is the lower ability to move, which increases the obesity risk. The objective of this manuscriptis analize the evidence regards the relation between breastfeeding, motor development and obesity in the childhood.To be able to understand this asocation and casual mecanism, it is important to develop stategys focused in early infancy to promote breastfeeding, healthy eating and early stimulation, starting in pediatric office.
Huang, Lianyan; Yang, Guang
2014-01-01
Background Recent studies in rodents suggest that repeated and prolonged anesthetic exposure at early stages of development leads to cognitive and behavioral impairments later in life. However, the underlying mechanism remains unknown. In this study, we tested whether exposure to general anesthesia during early development will disrupt the maturation of synaptic circuits and compromise learning-related synaptic plasticity later in life. Methods Mice received ketamine/xylazine (20/3 mg/kg) anesthesia for one or three times, starting at either early [postnatal day 14 (P14)] or late (P21) stages of development (n=105). Control mice received saline injections (n=34). At P30, mice were subjected to rotarod motor training and fear conditioning. Motor learning-induced synaptic remodeling was examined in vivo by repeatedly imaging fluorescently-labeled postsynaptic dendritic spines in the primary motor cortex before and after training using two-photon microscopy. Results Three exposures to ketamine/xylazine anesthesia between P14–18 impair the animals’ motor learning and learning-dependent dendritic spine plasticity [new spine formation, 8.4 ± 1.3% (mean ± SD) versus 13.4 ± 1.8%, P = 0.002] without affecting fear memory and cell apoptosis. One exposure at P14 or three exposures between P21–25 has no effects on the animals’ motor learning or spine plasticity. Finally, enriched motor experience ameliorates anesthesia-induced motor learning impairment and synaptic deficits. Conclusion Our study demonstrates that repeated exposures to ketamine/xylazine during early development impair motor learning and learning-dependent dendritic spine plasticity later in life. The reduction in synaptic structural plasticity may underlie anesthesia-induced behavioral impairment. PMID:25575163
Gross Motor Development, Movement Abnormalities, and Early Identification of Autism
Young, Gregory S.; Goldring, Stacy; Greiss-Hess, Laura; Herrera, Adriana M.; Steele, Joel; Macari, Suzanne; Hepburn, Susan; Rogers, Sally J.
2015-01-01
Gross motor development (supine, prone, rolling, sitting, crawling, walking) and movement abnormalities were examined in the home videos of infants later diagnosed with autism (regression and no regression subgroups), developmental delays (DD), or typical development. Group differences in maturity were found for walking, prone, and supine, with the DD and Autism-No Regression groups both showing later developing motor maturity than typical children. The only statistically significant differences in movement abnormalities were in the DD group; the two autism groups did not differ from the typical group in rates of movement abnormalities or lack of protective responses. These findings do not replicate previous investigations suggesting that early motor abnormalities seen on home video can assist in early identification of autism. PMID:17805956
Wang, M V; Lekhal, R; Aarø, L E; Schjølberg, S
2014-01-01
Communicative and motor development is frequently found to be associated. In the current study we investigate to what extent communication and motor skills at 1½ years predict skills in the same domains at 3 years of age. This study is based on the Norwegian Mother and Child Cohort Study (MoBa) conducted by the Norwegian Institute of Public Heath. Data stem from 62,944 children and their mothers. Mothers completed questionnaires on their child's communication and motor skills at ages 1½ and 3. Associations between communication and motor skills were estimated in a cross-lagged model with latent variables. Early communication skills were correlated with early motor skills (0.72). Stability was high (0.81) across time points for motor skills and somewhat lower (0.40) for communication skills. Early motor skills predicted later communication skills (0.38) whereas early communication skills negatively predicted later motor skills (-0.14). Our findings provide support for the hypothesis that these two difficulties are not symptoms of separate disorders, but might rather be different manifestations of a common underlying neurodevelopmental weakness. However, there also seem to be specific developmental pathways for each domain. Besides theoretical interest, more knowledge about the relationship between these early skills might shed light upon early intervention strategies and preventive efforts commonly used with children with problems in these areas. Our findings suggest that the relationship between language and motor skills is not likely to be simple and directional but rather to be complex and multifaceted. © 2012 John Wiley & Sons Ltd.
Hitzert, Marrit M; Roze, Elise; Van Braeckel, Koenraad N J A; Bos, Arend F
2014-09-01
To determine whether motor development at 3 months of age is associated with cognitive, motor, and behavioural outcomes in healthy children at early school age. In this cohort study, we included 74 term-born, healthy children (44 males, 30 females; median gestational age 40.1 wks, range 38.0-42.6 wks). From video recordings (median 12.9 wks, range 9.3-18.6 wks), we assessed the quality of fidgety movements, and calculated a motor optimality score. At school age (median 5 y 11 mo, range 5 y 8 mo-7 y 6 mo), we performed detailed cognitive, motor, and behavioural assessments. We examined whether aspects of motor development were associated with functional outcomes. An age-adequate motor repertoire, in particular the presence of antigravity, midline leg, and manipulation movements, was related to poorer cognition, whereas variable finger postures was related to better cognition. Children with a monotonous concurrent motor repertoire had better ball skills but experienced more behavioural problems. The presence of antigravity movements tended to be associated with abnormal recognition (odds ratio [OR] 4.4, 95% confidence interval [CI], 0.9-21; R(2) =0.17; p=0.070), where the absence of variable finger postures was associated with borderline and abnormal visual-spatial perception (OR 20, 95% CI, 1.7-238; R(2) =0.39; p=0.018). Detailed aspects of motor development at 3 months of age are associated with cognition and behaviour, but not with motor outcome, in healthy children at early school age. Our findings suggest that early motor development may be the basis for later cognitive and behavioural performance. Since the associations were only moderate, possible environmental influences should be acknowledged. © 2014 Mac Keith Press.
Borgonovo, Janina; Allende-Castro, Camilo; Laliena, Almudena; Guerrero, Néstor; Silva, Hernán; Concha, Miguel L
2017-02-01
Although Parkinson's Disease (PD) is mostly considered a motor disorder, it can present at early stages as a non-motor pathology. Among the non-motor clinical manifestations, depression shows a high prevalence and can be one of the first clinical signs to appear, even a decade before the onset of motor symptoms. Here, we review the evidence of early dysfunction in neural circuitry associated with depression in the context of PD, focusing on pre-clinical, pre-motor and early motor phases of the disease. In the pre-clinical phase, structural and functional changes in the substantia nigra, basal ganglia and limbic structures are already observed. Some of these changes are linked to motor compensation mechanisms while others correspond to pathological processes common to PD and depression and thus could underlie the appearance of depressive symptoms during the pre-motor phase. Studies of the early motor phase (less than five years post diagnosis) reveal an association between the extent of damage in different monoaminergic systems and the appearance of emotional disorders. We propose that the limbic loop of the basal ganglia and the lateral habenula play key roles in the early genesis of depression in PD. Alterations in the neural circuitry linked with emotional control might be sensitive markers of the ongoing neurodegenerative process and thus may serve to facilitate an early diagnosis of this disease. To take advantage of this, we need to improve the clinical criteria and develop biomarkers to identify depression, which could be used to determine individuals at risk to develop PD. Copyright © 2016 Elsevier Ltd. All rights reserved.
Does infant negative emotionality moderate the effect of maternal depression on motor development?
Sacchi, C; De Carli, P; Vieno, A; Piallini, G; Zoia, S; Simonelli, A
2018-04-01
Maternal depression represents an important social/environmental factor in early childhood; however, its effect on children's motor development may vary depending on the role of infants' dispositional variables. The objective of this study is to investigate the effect of the interaction between maternal depressive symptoms in the first two years of a child's life and the child's temperamental negative emotionality on motor development during this time. Using a cross-sectional study, we assessed 272 infants aged 0 to 24 months old and their mothers. We measured the following variables: maternal depression, infant's negative emotionality, and motor development. A three-way interaction effect highlights that negative emotionality in infants and maternal depression together affect children's overall motor growth trajectory. Infants with low negative emotionality display no effect of maternal depression on motor development. Conversely, infants with high negative emotionality seem to be more susceptible to the effect of maternal depression. Specifically, high maternal depression tends to foster the negative effect of infant's negativity on motor development across time, albeit not significantly. Finally, the absence of maternal depression significantly buffers negative temperament in infants. Findings highlighted the importance of integrating different perspectives when describing early motor growth. In fact, only when considering the interdependence of potential predictors their effect on the motor growth significantly emerges. Screening for early temperamental vulnerability might help in tailoring interventions to prevent maternal depression from affecting infants' motor development. Copyright © 2018 Elsevier B.V. All rights reserved.
Development of Early Handwriting: Visual-Motor Control during Letter Copying
ERIC Educational Resources Information Center
Maldarelli, Jennifer E.; Kahrs, Björn A.; Hunt, Sarah C.; Lockman, Jeffrey J.
2015-01-01
Despite the importance of handwriting for school readiness and early academic progress, prior research on the development of handwriting has focused primarily on the product rather than the process by which young children write letters. In contrast, in the present work, early handwriting is viewed as involving a suite of perceptual, motor, and…
Laboratory Activities for Life Span Motor Development.
ERIC Educational Resources Information Center
Haywood, Kathleen M.
This manual describes motor development laboratory activities to help future physical education teachers observe, assess, measure, and test students' motor skills. A total of 20 laboratory activities are described under five sections geared toward: (1) physical growth and maturation; (2) assessing early motor development; (3) assessing basic motor…
ERIC Educational Resources Information Center
Orton, Jane; Spittle, Alicia; Doyle, Lex; Anderson, Peter; Boyd, Roslyn
2009-01-01
Aim: The aim of this study was to review the effects of early developmental intervention after discharge from hospital on motor and cognitive development in preterm infants. Method: Randomized controlled trials (RCTs) or quasi-RCTs of early developmental intervention programmes for preterm infants in which motor or cognitive outcomes were reported…
Interlimb Coordination: An Important Facet of Gross-Motor Ability
ERIC Educational Resources Information Center
Bobbio, Tatiana; Gabbard, Carl; Cacola, Priscila
2009-01-01
Motor development attains landmark significance during early childhood. Although early childhood educators may be familiar with the gross-motor skill category, the subcategory of interlimb coordination needs greater attention than it typically receives from teachers of young children. Interlimb coordination primarily involves movements requiring…
Williams, Preston T. J. A.; Kim, Sangsoo
2014-01-01
The red nucleus (RN) and rubrospinal tract (RST) are important for forelimb motor control. Although the RST is present postnatally in cats, nothing is known about when rubrospinal projections could support motor functions or the relation between the development of the motor functions of the rubrospinal system and the corticospinal system, the other major system for limb control. Our hypothesis is that the RN motor map is present earlier in development than the motor cortex (M1) map, to support early forelimb control. We investigated RN motor map maturation with microstimulation and RST cervical enlargement projections using anterograde tracers between postnatal week 3 (PW3) and PW16. Microstimulation and tracer injection sites were verified histologically to be located within the RN. Microstimulation at PW4 evoked contralateral wrist, elbow, and shoulder movements. The number of sites producing limb movement increased and response thresholds decreased progressively through PW16. From the outset, all forelimb joints were represented. At PW3, RST projections were present within the cervical intermediate zone, with a mature density of putative synapses. In contrast, beginning at PW5 there was delayed and age-dependent development of forelimb motor pool projections and putative rubromotoneuronal synapses. The RN has a more complete forelimb map early in development than previous studies showed for M1, supporting our hypothesis of preferential rubrospinal rather than corticospinal control for early movements. Remarkably, development of the motor pool, not intermediate zone, RST projections paralleled RN motor map development. The RST may be critical for establishing the rudiments of motor skills that subsequently become refined with further CST development. PMID:24647962
Gennaro, Mariangela; Mattiello, Alessandro; Mazziotti, Raffaele; Antonelli, Camilla; Gherardini, Lisa; Guzzetta, Andrea; Berardi, Nicoletta; Cioni, Giovanni; Pizzorusso, Tommaso
2017-01-01
Motor system development is characterized by an activity-dependent competition between ipsilateral and contralateral corticospinal tracts (CST). Clinical evidence suggests that age is crucial for developmental stroke outcome, with early lesions inducing a “maladaptive” strengthening of ipsilateral projections from the healthy hemisphere and worse motor impairment. Here, we investigated in developing rats the relation between lesion timing, motor outcome and CST remodeling pattern. We induced a focal ischemia into forelimb motor cortex (fM1) at two distinct pre-weaning ages: P14 and P21. We compared long-term motor outcome with changes in axonal sprouting of contralesional CST at red nucleus and spinal cord level using anterograde tracing. We found that P14 stroke caused a more severe long-term motor impairment than at P21, and induced a strong and aberrant contralesional CST sprouting onto denervated spinal cord and red nucleus. The mistargeted sprouting of CST, and the worse motor outcome of the P14 stroke rats were reversed by an early skilled motor training, underscoring the potential of early activity-dependent plasticity in modulating lesion outcome. Thus, changes in the mechanisms controlling CST plasticity occurring during the third postnatal week are associated with age-dependent regulation of the motor outcome after stroke. PMID:28706475
Gennaro, Mariangela; Mattiello, Alessandro; Mazziotti, Raffaele; Antonelli, Camilla; Gherardini, Lisa; Guzzetta, Andrea; Berardi, Nicoletta; Cioni, Giovanni; Pizzorusso, Tommaso
2017-01-01
Motor system development is characterized by an activity-dependent competition between ipsilateral and contralateral corticospinal tracts (CST). Clinical evidence suggests that age is crucial for developmental stroke outcome, with early lesions inducing a "maladaptive" strengthening of ipsilateral projections from the healthy hemisphere and worse motor impairment. Here, we investigated in developing rats the relation between lesion timing, motor outcome and CST remodeling pattern. We induced a focal ischemia into forelimb motor cortex (fM1) at two distinct pre-weaning ages: P14 and P21. We compared long-term motor outcome with changes in axonal sprouting of contralesional CST at red nucleus and spinal cord level using anterograde tracing. We found that P14 stroke caused a more severe long-term motor impairment than at P21, and induced a strong and aberrant contralesional CST sprouting onto denervated spinal cord and red nucleus. The mistargeted sprouting of CST, and the worse motor outcome of the P14 stroke rats were reversed by an early skilled motor training, underscoring the potential of early activity-dependent plasticity in modulating lesion outcome. Thus, changes in the mechanisms controlling CST plasticity occurring during the third postnatal week are associated with age-dependent regulation of the motor outcome after stroke.
Chen, Chao-Ying; Lo, Warren D; Heathcock, Jill C
2013-03-01
Upper extremity movements, midline behaviors, fine, and gross motor skills are frequently impaired in hemiparesis and cerebral palsy. We investigated midline toy exploration and fine and gross motor skills in infants at risk for hemiplegic cerebral palsy. Eight infants with neonatal stroke (NS) and thirteen infants with typical development (TD) were assessed from 2 to 7 months of age. The following variables were analyzed: percentage of time in midline and fine and gross motor scores on the Bayley Scales of Infant Development (BSID-III). Infants with neonatal stroke demonstrated poor performance in midline behaviors and fine and gross motor scores on the BSID-III. These results suggest that infants with NS have poor midline behaviors and motor skill development early in infancy. Copyright © 2012 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Beers, Carol; And Others
The perceptual motor development module, the eleventh in a series developed for the Early Childhood-Special Education Teacher Preparation Program at the University of Virginia, provides the student with basic information on the physiological development of young children. A number of learning and measurement activities related to children's…
Friel, KM; Chakrabarty, S; H-C, Kuo; Martin, JH
2012-01-01
This study investigated requirements for restoring motor function after corticospinal (CS) system damage during early postnatal development. Activity-dependent competition between the CS tracts (CST) of the two hemispheres is imperative for normal development. Blocking primary motor cortex (M1) activity unilaterally during a critical period (postnatal weeks-PW-5–7) produces permanent contralateral motor skill impairments, loss of M1 motor map, aberrant CS terminations, and decreases in CST presynaptic sites and spinal cholinergic interneuron numbers. To repair these motor systems impairments and restore function, we manipulated motor experience in three groups of cats after this CST injury produced by inactivation. One group wore a jacket restraining the limb ipsilateral to inactivation, forcing use of the contralateral, impaired, limb, for the month following M1 inactivation (PW8–13; “Restraint Alone”). A second group wore the restraint during PW8–13, and was also trained for 1 h/day in a reaching task with the contralateral forelimb (“Early Training”). To test the efficacy of intervention during adolescence, a third group wore the restraint and received reach training during PW20–24 (“Delayed Training”). Early training restored CST connections and the M1 motor map; increased cholinergic spinal interneurons numbers on the contralateral, relative to ipsilateral, side; and abrogated limb control impairments. Delayed training restored CST connectivity and the M1 motor map, but not contralateral spinal cholinergic cell counts or motor performance. Restraint alone only restored CST connectivity. Our findings stress the need to reestablish the integrated functions of the CS system at multiple hierarchical levels in restoring skilled motor function after developmental injury. PMID:22764234
Virtual Reality As a Training Tool to Treat Physical Inactivity in Children.
Kiefer, Adam W; Pincus, David; Richardson, Michael J; Myer, Gregory D
2017-01-01
Lack of adequate physical activity in children is an epidemic that can result in obesity and other poor health outcomes across the lifespan. Physical activity interventions focused on motor skill competence continue to be developed, but some interventions, such as neuromuscular training (NMT), may be limited in how early they can be implemented due to dependence on the child's level of cognitive and perceptual-motor development. Early implementation of motor-rich activities that support motor skill development in children is critical for the development of healthy levels of physical activity that carry through into adulthood. Virtual reality (VR) training may be beneficial in this regard. VR training, when grounded in an information-based theory of perceptual-motor behavior that modifies the visual information in the virtual world, can promote early development of motor skills in youth akin to more natural, real-world development as opposed to strictly formalized training. This approach can be tailored to the individual child and training scenarios can increase in complexity as the child develops. Ultimately, training in VR may help serve as a precursor to "real-world" NMT, and once the child reaches the appropriate training age can also augment more complex NMT regimens performed outside of the virtual environment.
Virtual Reality As a Training Tool to Treat Physical Inactivity in Children
Kiefer, Adam W.; Pincus, David; Richardson, Michael J.; Myer, Gregory D.
2017-01-01
Lack of adequate physical activity in children is an epidemic that can result in obesity and other poor health outcomes across the lifespan. Physical activity interventions focused on motor skill competence continue to be developed, but some interventions, such as neuromuscular training (NMT), may be limited in how early they can be implemented due to dependence on the child’s level of cognitive and perceptual-motor development. Early implementation of motor-rich activities that support motor skill development in children is critical for the development of healthy levels of physical activity that carry through into adulthood. Virtual reality (VR) training may be beneficial in this regard. VR training, when grounded in an information-based theory of perceptual-motor behavior that modifies the visual information in the virtual world, can promote early development of motor skills in youth akin to more natural, real-world development as opposed to strictly formalized training. This approach can be tailored to the individual child and training scenarios can increase in complexity as the child develops. Ultimately, training in VR may help serve as a precursor to “real-world” NMT, and once the child reaches the appropriate training age can also augment more complex NMT regimens performed outside of the virtual environment. PMID:29376045
Do Fine Motor Skills Contribute to Early Reading Development?
ERIC Educational Resources Information Center
Suggate, Sebastian; Pufke, Eva; Stoeger, Heidrun
2018-01-01
Background: Little is known about how fine motor skills (FMS) relate to early literacy skills, especially over and above cognitive variables. Moreover, a lack of distinction between FMS, grapho-motor and writing skills may have hampered previous work. Method: In Germany, kindergartners (n = 144, aged 6;1) were recruited before beginning formal…
ERIC Educational Resources Information Center
Draper, Catherine E.; Achmat, Masturah; Forbes, Jared; Lambert, Estelle V.
2012-01-01
The aims of the studies were to assess the impact of the Little Champs programme for motor development on (1) the gross motor skills, and (2) cognitive function of children in the programme. In study 1, 118 children from one Early Childhood Development Centre (ECDC) were tested using the Test of Gross Motor Development-2, and in study 2, 83…
Gross motor development is delayed following early cardiac surgery.
Long, Suzanne H; Harris, Susan R; Eldridge, Beverley J; Galea, Mary P
2012-10-01
To describe the gross motor development of infants who had undergone cardiac surgery in the neonatal or early infant period. Gross motor performance was assessed when infants were 4, 8, 12, and 16 months of age with the Alberta Infant Motor Scale. This scale is a discriminative gross motor outcome measure that may be used to assess infants from birth to independent walking. Infants were videotaped during the assessment and were later evaluated by a senior paediatric physiotherapist who was blinded to each infant's medical history, including previous clinical assessments. Demographic, diagnostic, surgical, critical care, and medical variables were considered with respect to gross motor outcomes. A total of 50 infants who underwent elective or emergency cardiac surgery at less than or up to 8 weeks of age, between July 2006 and January 2008, were recruited to this study and were assessed at 4 months of age. Approximately, 92%, 84%, and 94% of study participants returned for assessment at 8, 12, and 16 months of age, respectively. Study participants had delayed gross motor development across all study time points; 62% of study participants did not have typical gross motor development during the first year of life. Hospital length of stay was associated with gross motor outcome across infancy. Active gross motor surveillance of all infants undergoing early cardiac surgery is recommended. Further studies of larger congenital heart disease samples are required, as are longitudinal studies that determine the significance of these findings at school age and beyond.
Lipscombe, Belinda; Boyd, Roslyn N; Coleman, Andrea; Fahey, Michael; Rawicki, Barry; Whittingham, Koa
2016-01-01
Children diagnosed with neurodevelopmental conditions such as cerebral palsy (CP) are at risk of experiencing restrictions in social activities negatively impacting their subsequent social functioning. Research has identified motor and communication ability as being unique determinants of social function capabilities in children with CP, to date, no research has investigated whether communication is a mediator of the relationship between motor ability and social functioning. To investigate whether early communication ability at 24 months corrected age (ca.) mediates the relationship between early motor ability at 24 months ca. and later social development at 60 months ca. in a cohort of children diagnosed with cerebral palsy (CP). A cohort of 71 children (43 male) diagnosed with CP (GMFCS I=24, 33.8%, II=9, 12.7%, III=12, 16.9%, IV=10, 14.1%, V=16, 22.5%) were assessed at 24 and 60 months ca. Assessments included the Gross Motor Function Measure (GMFM), the Communication and Symbolic Behaviour Scales-Developmental Profile (CSBS-DP) Infant-Toddler Checklist and the Paediatric Evaluation of Disability Inventory (PEDI). A mediation model was examined using bootstrapping. Early communication skills mediated the relationship between early motor abilities and later social functioning, b=0.24 (95% CI=0.08-0.43 and the mediation model was significant, F (2, 68)=32.77, p<0.001, R(2)=0.49. Early communication ability partially mediates the relationship between early motor ability and later social function in children with CP. This demonstrates the important role of early communication in ongoing social development. Early identification of communication delay and enriched language exposure is crucial in this population. Copyright © 2016 Elsevier Ltd. All rights reserved.
Øglund, Guro Pauck; Hildebrand, Maria; Ekelund, Ulf
2015-11-01
The purpose of this systematic review was to explore whether birth weight, early growth and motor development act as determinants of physical activity in children and youth. We performed a systematic literature search on the possible early life determinants. A meta-analysis was performed on the association between birthweight and objectively measured physical activity. We identified 9 studies examining birth weight, in which none of the studies with objectively measured physical activity observed an association between birth weight and physical activity. The meta-analysis confirmed this result (b=-3.08, 95% CI -10.20, 4.04). The 3 studies examining early growth and physical activity in youth differ in methodology and the results are inconsistent. Two studies suggest an association between earlier motor development and physical activity and sport participation in youth. This was not confirmed in a third study. Our meta-analysis suggests that birth weight is not an important determinant of physical activity in youth. Available data does not allow firm conclusions whether early growth and motor development act as determinants of physical activity in youth.
Chaibal, Supattra; Bennett, Surussawadi; Rattanathanthong, Korrawan; Siritaratiwat, Wantana
2016-10-01
Early gross motor development is a major indicator of global milestones in the first year of life, affecting the walking ability of a child. There has been limited research reporting on early motor development and the age of independent walking of orphaned infants compared to typical home-raised infants. The purpose of this study was to compare the mean scores of early gross motor movement at 4, 6 and 8months of age and at the age of walking attainment of typically raised infants and orphaned infants. In addition, we looked to compare the walking age between these same infants. This cross-sectional study recruited 59 typical home-raised infants and 62 orphans. Their gross motor development was assessed using the Alberta Infant Motor Scale (AIMS). The age of walking attainment was also prospectively monitored and ascertained. The Student's independent t-test was used to analyse the differences of the AIMS scores at 4, 6 and 8months of age and at the age of independent walking between the two groups. The orphans showed significantly lower AIMS scores at 4, 6 and 8months of age and the age of independent walking (P-value<0.05). The orphan group had a 5-month older mean age of walking attainment (15.0±4.2months) compared with typical home-raised infants (9.9±1.4months). Orphans have delays in early gross motor development and walk independently at an older age, compared with home-raised infants. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Breastfeeding and motor development: A longitudinal cohort study.
Grace, Tegan; Oddy, Wendy; Bulsara, Max; Hands, Beth
2017-01-01
While there is a large body of work supporting the importance of early feeding practices on cognitive, immunity, behavioural and mental outcomes, few longitudinal studies have focused on motor development. The relationship between duration of breast feeding and motor development outcomes at 10, 14, and 17years were examined. Data were obtained from the Western Australian Pregnancy (Raine) Study. There were 2868 live births recorded and children were examined for motor proficiency at 10 (M=10.54, SD=2.27), 14 (M=14.02, SD=2.33) and 17 (M=16.99, SD=2.97) years using the McCarron Assessment of Neuromuscular Development (MAND). Using linear mixed models, adjusted for covariates known to affect motor development, the influence of predominant breast feeding for <6months and ⩾6months on motor development outcomes was examined. Breast feeding for ⩾6months was positively associated with improved motor development outcomes at 10, 14 and 17yearsof age (p=0.019, β 1.38) when adjusted for child's sex, maternal age, alcohol intake, family income, hypertensive status, gestational stress and mode of delivery. Early life feeding practices have an influence on motor development outcomes into late childhood and adolescence independent of sociodemographic factors. Copyright © 2016 Elsevier B.V. All rights reserved.
The Infant Motor Profile: A Standardized and Qualitative Method to Assess Motor Behaviour in Infancy
ERIC Educational Resources Information Center
Heineman, Kirsten R.; Bos, Arend F.; Hadders-Algra, Mijna
2008-01-01
A reliable and valid instrument to assess neuromotor condition in infancy is a prerequisite for early detection of developmental motor disorders. We developed a video-based assessment of motor behaviour, the Infant Motor Profile (IMP), to evaluate motor abilities, movement variability, ability to select motor strategies, movement symmetry, and…
ERIC Educational Resources Information Center
University City School District, MO.
The development and content of the Early Education Screening Test Battery are described elsewhere (TM 000 184). This report provides norms for the Gross Motor Test (GMO), Visual-Motor Integration (VMI), four scales of the Illinois Test of Psycholinguistic Abilities (ITPA), Peabody Picture Vocabulary Test (PPVT), and the Behavior Rating Scale…
ERIC Educational Resources Information Center
Rodrigues, Luis Paulo; Saraiva, Linda; Gabbard, Carl
2005-01-01
A contemporary view of early childhood motor development considers environmental influences as critical factors in optimal growth and behavior, with the home being the primary agent. However, there has been minimal research examining the relationship between motor development and the home. The present study addresses this gap with the goal of…
Helping Preschoolers Prepare for Writing: Developing Fine Motor Skills
ERIC Educational Resources Information Center
Huffman, J. Michelle; Fortenberry, Callie
2011-01-01
Early childhood is the most intensive period for the development of physical skills. Writing progress depends largely on the development of fine motor skills involving small muscle movements of the hand. Young children need to participate in a variety of developmentally appropriate activities intentionally designed to promote fine motor control.…
Kanazawa, H; Kawai, M; Niwa, F; Hasegawa, T; Iwanaga, K; Ohata, K; Tamaki, A; Heike, T
2014-06-01
Physical growth in neurologically healthy preterm infants affects motor development. This study investigated the separate relationships between muscle and fat in infancy and later motor development and physical growth. Muscle thickness and subcutaneous fat thickness of the anterior thigh were measured using ultrasound images obtained from neurologically healthy preterm infants at birth, 3, 6, 12 and 18 months' corrected age. We also obtained the Pediatric Evaluation of Disability Inventory and Alberta Infant Motor Scale scores at 18 months' corrected age to assess motor ability and motor delay. Thirty preterm infants completed the study protocol. There was a significant positive correlation between motor ability and increments in subcutaneous fat thickness during the first 3 and 6 months' corrected age (r = 0.48 and 0.40, p < 0.05, respectively), but not between motor ability and muscle thickness growth in any of the periods. A secondary, logistic regression analysis showed that increments in subcutaneous fat thickness during the first 3 months were a protective factor for motor delay. Subcutaneous fat accumulation in early infancy is more strongly associated with motor development and delay than muscle growth. ©2014 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.
Mandibular Motor Control during the Early Development of Speech and Nonspeech Behaviors
ERIC Educational Resources Information Center
Steeve, Roger W.; Moore, Christopher A.
2009-01-01
Purpose: The mandible is often portrayed as a primary structure of early babble production, but empiricists still need to specify (a) how mandibular motor control and kinematics vary among different types of multisyllabic babble, (b) whether chewing or jaw oscillation relies on a coordinative infrastructure that can be exploited for early types of…
Pin, Tamis W; Darrer, Tanya; Eldridge, Bev; Galea, Mary P
2009-09-01
Clinically, preterm infants show motor delay and atypical postures compared with their peers born at term. A longitudinal cohort study was designed to describe the motor development of very preterm infants from 4 to 18 months corrected age (CA). The study was also designed to investigate how the atypical postures observed in early infancy in the preterm infants might be related to their later motor development. Here we report the findings in early motor skills from 4 to 8 months CA. Early motor skills were assessed in 62 preterm infants (32 males, 30 females, mean gestation 26.94wks, SD 1.11) and 53 term infants (32 males, 21 females, mean gestation 39.55wks, SD 1.17) using the Alberta Infant Motor Scale (AIMS). The preterm infants demonstrated different motor behaviours from their term peers, with an uneven progression of motor skills in different positions from 4 to 8 months CA. At 8 months CA, 90%of the term infants were able to sit without arm support, but only 56%of the preterm infants could maintain sitting very briefly without arm support. This uneven progression may have been due to an imbalance between the active flexor and extensor strength and hence inadequate postural control in these positions. The AIMS has also been shown to be a valid assessment tool to demonstrate unique characteristics in movement quality in the preterm population.
ERIC Educational Resources Information Center
Gabbard, Carl; Cacola, Priscila; Rodrigues, Luis Paulo
2008-01-01
A contemporary view of motor development considers environmental influences as critical factors in optimal growth and behavior, with the home being the primary agent. The intent of this communication is to introduce the "Affordances in the Home Environment for Motor Development Self-Report" ("AHEMD-SR") to early childhood practitioners. The…
Kishore, Asha; James, Praveen; Krishnan, Syam; Yahia-Cherif, Lydia; Meunier, Sabine; Popa, Traian
2017-02-01
Motor cortex plasticity is reported to be decreased in Parkinson's disease in studies which pooled patients in various stages of the disease. Whether the early decrease in plasticity is related to the motor signs or is linked to the future development of motor complications of treatment is unclear. The aim of the study was to test if motor cortex plasticity and its cerebellar modulation are impaired in treatment-naïve Parkinson's disease, are related to the motor signs of the disease and predict occurrence of motor complications of treatment. Twenty-nine denovo patients with Parkinson's disease were longitudinally assessed for motor complications for four years. Using transcranial magnetic stimulation, the plasticity of the motor cortex and its cerebellar modulation were measured (response to paired-associative stimulation alone or preceded by 2 active cerebellar stimulation protocols), both in the untreated state and after a single dose of L-DOPA. Twenty-six matched, healthy volunteers were tested, only without L-DOPA. Patients and healthy controls had similar proportions of responders and non-responders to plasticity induction. In the untreated state, the more efficient was the cerebellar modulation of motor cortex plasticity, the lower were the bradykinesia and rigidity scores. The extent of the individual plastic response to paired associative stimulation could indicate a vulnerability to develop early motor fluctuation but not dyskinesia. Measuring motor cortex plasticity in denovo Parkinson's disease could be a neurophysiological parameter that may help identify patients with greater propensity for early motor fluctuations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Psychometric Properties of the Teacher-Reported Motor Skills Rating Scale
ERIC Educational Resources Information Center
Kim, Helyn; Murrah, William M.; Cameron, Claire E.; Brock, Laura L.; Cottone, Elizabeth A.; Grissmer, David
2015-01-01
Children's early motor competence is associated with social development and academic achievement. However, few studies have examined teacher reports of children's motor skills. This study evaluated the psychometric properties of the Motor Skills Rating Scale (MSRS), a 19-item measure of children's teacher-reported motor skills in the classroom.…
Growing up with Down syndrome: Development from 6 months to 10.7 years.
Marchal, Jan Pieter; Maurice-Stam, Heleen; Houtzager, Bregje A; Rutgers van Rozenburg-Marres, Susanne L; Oostrom, Kim J; Grootenhuis, Martha A; van Trotsenburg, A S Paul
2016-12-01
We analysed developmental outcomes from a clinical trial early in life and its follow-up at 10.7 years in 123 children with Down syndrome. To determine 1) strengths and weaknesses in adaptive functioning and motor skills at 10.7 years, and 2) prognostic value of early-life characteristics (early developmental outcomes, parental and child characteristics, and comorbidity) for later intelligence, adaptive functioning and motor skills. We used standardized assessments of mental and motor development at ages 6, 12 and 24 months, and of intelligence, adaptive functioning and motor skills at 10.7 years. We compared strengths and weaknesses in adaptive functioning and motor skills by repeated-measures ANOVAs in the total group and in children scoring above-average versus below-average. The prognostic value of demographics, comorbidity and developmental outcomes was analysed by two-step regression. Socialisation was a stronger adaptive skill than Communication followed by Daily Living. Aiming and catching was a stronger motor skill than Manual dexterity, followed by Balance. Above-average and below-average scoring children showed different profiles of strengths and weaknesses. Gender, (the absence or presence of) infantile spasms and particularly 24-month mental functioning predicted later intelligence and adaptive functioning. Motor skills, however, appeared to be less well predicted by early life characteristics. These findings provide a reference for expected developmental levels and strengths and weaknesses in Down syndrome. Copyright © 2016 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Giagazoglou, Paraskevi; Kabitsis, Nikolaos; Kokaridas, Dimitrios; Zaragas, Charilaos; Katartzi, Ermioni; Kabitsis, Chris
2011-01-01
Early identification of possible risk factors that could impair the motor development is crucial, since poor motor performance may have long-term negative consequences for a child's overall development. The aim of the current study was the examination of disorders in motor coordination in Greek pre-school aged children and the detection of…
Early motor development and cognitive abilities among Mexican preschoolers.
Osorio-Valencia, Erika; Torres-Sánchez, Luisa; López-Carrillo, Lizbeth; Rothenberg, Stephen J; Schnaas, Lourdes
2017-07-18
Psychomotricity plays a very important role in children's development, especially for learning involving reading-writing and mathematical calculations. Evaluate motor development in children 3 years old and its relationship with their cognitive abilities at the age of 5 years. Based on a cohort study, we analyzed the information about motor performance evaluated at 3 years old by Peabody Motor Scale and cognitive abilities at 5 years old. The association was estimated using linear regression models adjusted by mother's intelligence quotient, sex, Bayley mental development index at 18 months, and quality of the environment at home (HOME scale). 148 children whose motor performance was determined at age 3 and was evaluated later at age 5 to determine their cognitive abilities. Cognitive abilities (verbal, quantitative, and memory) measured by McCarthy Scales. Significant positive associations were observed between stationary balance at age 3 with verbal abilities (β = 0.67, p = .04) and memory (β = 0.81, p = .02) at 5 years. Grasping and visual-motor integration were significant and positively associated with quantitative abilities (β = 0.74, p = .005; β = 0.61, p = .01) and memory (β = 2.11, p = .001; β = 1.74, p = .004). The results suggest that early motor performance contributes to the establishment of cognitive abilities at 5 years. Evaluation and early motor stimulation before the child is faced with formal learning likely helps to create neuronal networks that facilitate the acquisition of academic knowledge.
Ikeda, Chikako; Yokota, Osamu; Nagao, Shigeto; Ishizu, Hideki; Morisada, Yumi; Terada, Seishi; Nakashima, Yoshihiko; Akiyama, Haruhiko; Uchitomi, Yosuke
2014-09-01
Clinical presentations of pathologically confirmed corticobasal degeneration (CBD) vary, and the heterogeneity makes its clinical diagnosis difficult, especially when a patient lacks any motor disturbance in the early stage. We compared clinical and pathological features of four pathologically confirmed CBD cases that initially developed non-motor symptoms, including behavioural and psychiatric symptoms but without motor disturbance (CBD-NM), and five CBD cases that initially developed parkinsonism and/or falls (CBD-M). The age range at death for the CBD-NM and CBD-M subjects (58-85 years vs 45-67 years) and the range of disease duration (2-18 years vs 2-6 years) did not significantly differ between the groups. Prominent symptoms in the early stage of CBD-NM cases included self-centred behaviours such as frontotemporal dementia (n = 1), apathy with and without auditory hallucination (n = 2), and aggressive behaviours with delusion and visual hallucination (n = 1). Among the four CBD-NM cases, only one developed asymmetric motor disturbance, and two could walk without support throughout the course. Final clinical diagnoses of the CBD-NM cases were frontotemporal dementia (n = 2), senile psychosis with delirium (n = 1), and schizophrenia (n = 1). Neuronal loss was significantly less severe in the subthalamic nucleus and substantia nigra in the CBD-NM cases than in the CBD-M cases. The severity of tau pathology in all regions examined was comparable in the two groups. CBD cases that initially develop psychiatric and behavioural changes without motor symptoms may have less severe degenerative changes in the subthalamic nucleus and substantia nigra, and some CBD cases can lack motor disturbance not only in the early stage but also in the last stage of the course. © 2014 The Authors. Psychogeriatrics © 2014 Japanese Psychogeriatric Society.
Zeng, Nan; Ayyub, Mohammad; Sun, Haichun; Wen, Xu; Xiang, Ping; Gao, Zan
2017-01-01
This study synthesized literature concerning casual evidence of effects of various physical activity programs on motor skills and cognitive development in typically developed preschool children. Electronic databases were searched through July 2017. Peer-reviewed randomized controlled trials (RCTs) examining the effectiveness of physical activity on motor skills and cognitive development in healthy young children (4-6 years) were screened. A total of 15 RCTs were included. Of the 10 studies assessing the effects of physical activity on motor skills, eight (80%) reported significant improvements in motor performance and one observed mixed findings, but one failed to promote any beneficial outcomes. Of the five studies investigating the influence of physical activity on cognitive development, four (80%) showed significant and positive changes in language learning, academic achievement, attention, and working memory. Notably, one indicated no significant improvements were observed after the intervention. Findings support causal evidence of effects of physical activity on both motor skills and cognitive development in preschool children. Given the shortage of available studies, future research with large representative samples is warranted to explore the relationships between physical activity and cognitive domains as well as strengthen and confirm the dose-response evidence in early childhood.
Deliberate Laterality Practice Facilitates Sensory-Motor Processing in Developing Children
ERIC Educational Resources Information Center
Pedersen, Scott J.
2014-01-01
Background: The innate ability for typically developing children to attain developmental motor milestones early in life has been a thoroughly researched area of inquiry. Nonetheless, as children grow and are required to perform more complex motor skills in order to experience success in physical activity and sport pursuits, the range of…
Giagazoglou, Paraskevi; Kabitsis, Nikolaos; Kokaridas, Dimitrios; Zaragas, Charilaos; Katartzi, Ermioni; Kabitsis, Chris
2011-01-01
Early identification of possible risk factors that could impair the motor development is crucial, since poor motor performance may have long-term negative consequences for a child's overall development. The aim of the current study was the examination of disorders in motor coordination in Greek pre-school aged children and the detection of differences in motor performance with regards to age, gender, participation in sports and order of birth in the family. Performance profiles on the movement ABC were used to classify 412 Greek children aged 4-6 years old. It appears from the results that the occurrence rate of probable developmental coordination disorders (DCD) was 5.4%. Significant differences were observed in all independent variables except the order of birth in the family. The findings reinforce the need for the evaluation of motor performance in preschool-aged children, in order specific individual motor profiles to be established for optimizing and adapting early intervention programs. Copyright © 2011 Elsevier Ltd. All rights reserved.
Sit to Talk: Relation between Motor Skills and Language Development in Infancy
Libertus, Klaus; Violi, Dominic A.
2016-01-01
Relations between walking skills and language development have been reported in 10- to 14-month-old infants. However, whether earlier emerging motor milestones also affect language skills remains unknown. The current research fills this gap by examining the relation between reaching and sitting skills and later language development, respectively. Reaching and sitting were assessed eight times, starting when infants (N = 29) were around 3 months of age. All assessments were completed and recorded remotely via videoconference using Skype or FaceTime. Subsequently, infants’ language and motor skills were assessed via parent questionnaires (Communicative Development Inventories and Early Motor Questionnaire) at 10 and 14 months of age. Results revealed a significant correlation between the emergence of sitting skills and receptive vocabulary size at 10 and 14 months of age. Regression analyses further confirmed this pattern and revealed that the emergence of sitting is a significant predictor of subsequent language development above and beyond influences of concurrent motor skills. These findings suggest that the onset of independent sitting may initiate a developmental cascade that results in increased language learning opportunities. Further, this study also demonstrates how infants’ early motor skills can be assessed remotely using videoconference. PMID:27065934
Sit to Talk: Relation between Motor Skills and Language Development in Infancy.
Libertus, Klaus; Violi, Dominic A
2016-01-01
Relations between walking skills and language development have been reported in 10- to 14-month-old infants. However, whether earlier emerging motor milestones also affect language skills remains unknown. The current research fills this gap by examining the relation between reaching and sitting skills and later language development, respectively. Reaching and sitting were assessed eight times, starting when infants (N = 29) were around 3 months of age. All assessments were completed and recorded remotely via videoconference using Skype or FaceTime. Subsequently, infants' language and motor skills were assessed via parent questionnaires (Communicative Development Inventories and Early Motor Questionnaire) at 10 and 14 months of age. Results revealed a significant correlation between the emergence of sitting skills and receptive vocabulary size at 10 and 14 months of age. Regression analyses further confirmed this pattern and revealed that the emergence of sitting is a significant predictor of subsequent language development above and beyond influences of concurrent motor skills. These findings suggest that the onset of independent sitting may initiate a developmental cascade that results in increased language learning opportunities. Further, this study also demonstrates how infants' early motor skills can be assessed remotely using videoconference.
Early communicative behaviors and their relationship to motor skills in extremely preterm infants.
Benassi, Erika; Savini, Silvia; Iverson, Jana M; Guarini, Annalisa; Caselli, Maria Cristina; Alessandroni, Rosina; Faldella, Giacomo; Sansavini, Alessandra
2016-01-01
Despite the predictive value of early spontaneous communication for identifying risk for later language concerns, very little research has focused on these behaviors in extremely low-gestational-age infants (ELGA<28 weeks) or on their relationship with motor development. In this study, communicative behaviors (gestures, vocal utterances and their coordination) were evaluated during mother-infant play interactions in 20 ELGA infants and 20 full-term infants (FT) at 12 months (corrected age for ELGA infants). Relationships between gestures and motor skills, evaluated using the Bayley-III Scales were also examined. ELGA infants, compared with FT infants, showed less advanced communicative, motor, and cognitive skills. Giving and representational gestures were produced at a lower rate by ELGA infants. In addition, pointing gestures and words were produced by a lower percentage of ELGA infants. Significant positive correlations between gestures (pointing and representational gestures) and fine motor skills were found in the ELGA group. We discuss the relevance of examining spontaneous communicative behaviors and motor skills as potential indices of early development that may be useful for clinical assessment and intervention with ELGA infants. Copyright © 2015 Elsevier Ltd. All rights reserved.
Isl1 Is required for multiple aspects of motor neuron development
Liang, Xingqun; Song, Mi-Ryoung; Xu, ZengGuang; Lanuza, Guillermo M.; Liu, Yali; Zhuang, Tao; Chen, Yihan; Pfaff, Samuel L.; Evans, Sylvia M.; Sun, Yunfu
2011-01-01
The LIM homeodomain transcription factor Islet1 (Isl1) is expressed in multiple organs and plays essential roles during embryogenesis. Isl1 is required for the survival and specification of spinal cord motor neurons. Due to early embryonic lethality and loss of motor neurons, the role of Isl1 in other aspects of motor neuron development remains unclear. In this study, we generated Isl1 mutant mouse lines expressing graded doses of Isl1. Our study has revealed essential roles of Isl1 in multiple aspects of motor neuron development, including motor neuron cell body localization, motor column formation and axon growth. In addition, Isl1 is required for survival of cranial ganglia neurons. PMID:21569850
ERIC Educational Resources Information Center
Bauer, Sara M.; Jones, Emily A.
2014-01-01
Impairment in exploratory motor (EM) behavior is part of the Down syndrome behavioral phenotype. Exploratory motor behavior may be a pivotal skill for early intervention with infants with Down syndrome. Exploratory motor impairments are often attributed to general delays in motor development in infants with Down syndrome. A behavior analytic…
Perceptual-Motor Programs Do Not Facilitate Development: Why Not Play?
ERIC Educational Resources Information Center
Corrie, Loraine; Barratt-Pugh, Caroline
1997-01-01
Early childhood perceptual-motor programs as preventive and remedial measures present three concerns: (1) they have minimal positive effects; (2) funds could be used to investigate more effective educational strategies; and (3) the rationale for these programs does not fit with the Australian Early Childhood Association's Code of Ethics. Play is…
Speech motor planning and execution deficits in early childhood stuttering.
Walsh, Bridget; Mettel, Kathleen Marie; Smith, Anne
2015-01-01
Five to eight percent of preschool children develop stuttering, a speech disorder with clearly observable, hallmark symptoms: sound repetitions, prolongations, and blocks. While the speech motor processes underlying stuttering have been widely documented in adults, few studies to date have assessed the speech motor dynamics of stuttering near its onset. We assessed fundamental characteristics of speech movements in preschool children who stutter and their fluent peers to determine if atypical speech motor characteristics described for adults are early features of the disorder or arise later in the development of chronic stuttering. Orofacial movement data were recorded from 58 children who stutter and 43 children who do not stutter aged 4;0 to 5;11 (years; months) in a sentence production task. For single speech movements and multiple speech movement sequences, we computed displacement amplitude, velocity, and duration. For the phrase level movement sequence, we computed an index of articulation coordination consistency for repeated productions of the sentence. Boys who stutter, but not girls, produced speech with reduced amplitudes and velocities of articulatory movement. All children produced speech with similar durations. Boys, particularly the boys who stuttered, had more variable patterns of articulatory coordination compared to girls. This study is the first to demonstrate sex-specific differences in speech motor control processes between preschool boys and girls who are stuttering. The sex-specific lag in speech motor development in many boys who stutter likely has significant implications for the dramatically different recovery rates between male and female preschoolers who stutter. Further, our findings document that atypical speech motor development is an early feature of stuttering.
Tran, Thach D; Tran, Tuan; Simpson, Julie A; Tran, Ha T; Nguyen, Trang T; Hanieh, Sarah; Dwyer, Terence; Biggs, Beverley-Ann; Fisher, Jane
2014-01-08
Antenatal anaemia, iron deficiency and common mental disorders (CMD) are prevalent in low- and middle-income countries. The aim of this study was to examine the direct and indirect effects of antenatal exposures to these risks and infant motor development. A cohort of women who were pregnant with a single foetus and between 12 and 20 weeks pregnant in 50 randomly-selected rural communes in Ha Nam province was recruited. Participants provided data twice during pregnancy (early and late gestation) and twice after giving birth (8 weeks and 6 months postpartum). The Edinburgh Postnatal Depression Scale was used at all four data collection waves to detect CMD (score ≥ 4). Maternal anaemia (Hb < 11 g/dL) and iron deficiency (ferritin < 15 ng/mL) were evaluated at early and late gestation. Infants' motor development was assessed by the Bayley of Infant and Toddler Development Motor Scales (BSID-M) at the age of six months. Direct and indirect effects of the exposures on the outcome were examined with Path analysis. In total, 497 of 523 (97%) eligible pregnant women were recruited and 418 mother-infant pairs provided complete data and were included in the analyses. The prevalence of anaemia was 21.5% in early pregnancy and 24.4% in late pregnancy. There was 4.1% iron deficiency at early pregnancy and 48.2% at late pregnancy. Clinically significant symptoms of CMD were apparent among 40% women in early pregnancy and 28% in late pregnancy. There were direct adverse effects on infant BSID-M scores at 6 months of age due to antenatal anaemia in late pregnancy (an estimated mean reduction of 2.61 points, 95% Confidence Interval, CI, 0.57 to 4.65) and CMD in early pregnancy (7.13 points, 95% CI 3.13 to 11.13). Iron deficiency and anaemia in early pregnancy were indirectly related to the outcome via anaemia during late pregnancy. Antenatal anaemia, iron deficiency, and CMD have a negative impact on subsequent infant motor development. These findings highlight the need to improve the quality of antenatal care when developing interventions for pregnant women that aim to optimise early childhood development in low- and middle-income countries.
Jones, Rachel A; Okely, Anthony D; Hinkley, Trina; Batterham, Marijka; Burke, Claire
2016-09-01
Educator-led programs for physical activity and motor skill development show potential but few have been implemented and evaluated using a randomized controlled design. Furthermore, few educator-led programs have evaluated both gross motor skills and physical activity. Therefore, the aim of this study was to evaluate a gross motor skill and physical activity program for preschool children which was facilitated solely by childcare educators. A six-month 2-arm randomized controlled trial was implemented between April and September 2012 in four early childhood centers in Tasmania, Australia. Educators participated in ongoing professional development sessions and children participated in structured physical activity lessons and unstructured physical activity sessions. In total, 150 children were recruited from four centers which were randomized to intervention or wait-list control group. Six early childhood educators from the intervention centers were trained to deliver the intervention. Gross motor skills were assessed using the Test of Gross Motor Development (2nd edition) and physical activity was measured objectively using GT3X+ Actigraph accelerometers. No statistically significant differences were identified. However, small to medium effect sizes, in favor of the intervention group, were evident for four of the five gross motor skills and the total gross motor skill score and small to medium effect sizes were reported for all physical activity outcomes. This study highlights the potential of educator-led physical activity interventions and supports the need for further translational trials within the early childhood sector. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Haseba, Sumihito; Sakakima, Harutoshi; Nakao, Syuhei; Ohira, Misaki; Yanagi, Shigefumi; Imoto, Yutaka; Yoshida, Akira; Shimodozono, Megumi
2018-07-01
We analysed the gross motor recovery of infants and toddlers with cyanotic and acyanotic congenital heart disease (CHD) who received early postoperative physical therapy to see whether there was any difference in the duration to recovery. This study retrospectively evaluated the influence of early physical therapy on postoperative gross motor outcomes of patients with CHD. The gross motor ability of patients with cyanotic (n = 25, average age: 376.4 days) and acyanotic (n = 26, average age: 164.5 days) CHD was evaluated using our newly developed nine-grade mobility assessment scale. Physical therapy was started at an average of five days after surgery, during which each patient's gross motor ability was significantly decreased compared with the preoperative level. Patients (who received early postoperative physical therapy) with cyanotic (88.0%) and acyanotic CHD (96.2%) showed improved preoperative mobility grades by the time of hospital discharge. However, patients with cyanotic CHD had a significantly prolonged recovery period compared to those with acyanotic CHD (p < .01). The postoperative recovery period to preoperative mobility grade was significantly correlated with pre-, intra-, and postoperative factors. Our findings suggested that infants with cyanotic CHD are likely at a greater risk of gross motor delays, the recovery of which might differ between infants with cyanotic and acyanotic CHD after cardiac surgery. Early postoperative physical therapy promotes gross motor recovery. Implications of Rehabilitation Infants and toddlers with cyanotic congenital heart disease are likely at greater risk of gross motor delays and have a prolonged recovery period of gross motor ability compared to those with acyanotic congenital heart disease. Early postoperative physical therapy for patients with congenital heart disease after cardiac surgery promoted gross motor recovery. The postoperative recovery period to preoperative mobility grade was affected by pre-, intra-, and postoperative factors. Rehabilitation experts should consider the risk of gross motor delays of patients with congenital heart disease after cardiac surgery and the early postoperative physical therapy to promote their gross motor recovery.
Wen, Xu; Xiang, Ping
2017-01-01
Objective This study synthesized literature concerning casual evidence of effects of various physical activity programs on motor skills and cognitive development in typically developed preschool children. Methods Electronic databases were searched through July 2017. Peer-reviewed randomized controlled trials (RCTs) examining the effectiveness of physical activity on motor skills and cognitive development in healthy young children (4–6 years) were screened. Results A total of 15 RCTs were included. Of the 10 studies assessing the effects of physical activity on motor skills, eight (80%) reported significant improvements in motor performance and one observed mixed findings, but one failed to promote any beneficial outcomes. Of the five studies investigating the influence of physical activity on cognitive development, four (80%) showed significant and positive changes in language learning, academic achievement, attention, and working memory. Notably, one indicated no significant improvements were observed after the intervention. Conclusions Findings support causal evidence of effects of physical activity on both motor skills and cognitive development in preschool children. Given the shortage of available studies, future research with large representative samples is warranted to explore the relationships between physical activity and cognitive domains as well as strengthen and confirm the dose-response evidence in early childhood. PMID:29387718
Water: The Ideal Early Learning Environment
ERIC Educational Resources Information Center
Grosse, Susan J.
2008-01-01
Bathtubs and swimming pools provide the ideal learning environment for people with special needs. For young preschool children, the activities that take place through water can help them develop physical fitness, facilitate motor development, reinforce perceptual-motor ability, encourage social development, and enhance self-esteem and confidence.…
Autism as a developmental disorder in intentional movement and affective engagement
Trevarthen, Colwyn; Delafield-Butt, Jonathan T.
2013-01-01
We review evidence that autistic spectrum disorders have their origin in early prenatal failure of development in systems that program timing, serial coordination and prospective control of movements, and that regulate affective evaluations of experiences. There are effects in early infancy, before medical diagnosis, especially in motor sequencing, selective or exploratory attention, affective expression and intersubjective engagement with parents. These are followed by retardation of cognitive development and language learning in the second or third year, which lead to a diagnosis of ASD. The early signs relate to abnormalities that have been found in brain stem systems and cerebellum in the embryo or early fetal stage, before the cerebral neocortex is functional, and they have clear consequences in infancy when neocortical systems are intensively elaborated. We propose, with evidence of the disturbances of posture, locomotion and prospective motor control in children with autism, as well as of their facial expression of interest and affect, and attention to other persons' expressions, that examination of the psychobiology of motor affective disorders, rather than later developing cognitive or linguistic ones, may facilitate early diagnosis. Research in this area may also explain how intense interaction, imitation or “expressive art” therapies, which respond intimately with motor activities, are effective at later stages. Exceptional talents of some autistic people may be acquired compensations for basic problems with expectant self-regulations of movement, attention and emotion. PMID:23882192
Association between sleep position and early motor development.
Majnemer, Annette; Barr, Ronald G
2006-11-01
To compare motor performance in infants sleeping in prone versus supine positions. Healthy 4-month-olds (supine: n = 71, prone: n = 12) and 6-month olds (supine: n = 50, prone: n = 22) were evaluated with the Alberta Infant Motor Scale (AIMS) and Peabody Developmental Motor Scale (PDMS), and parents completed a positioning diary. Infants were reassessed at 15 months. At 4 months, motor scores were lower in the supine group and were less likely to achieve prone extension (P < .05). At 6 months, there were wide discrepancies on the AIMS (supine: 44.5 +/- 21.6, prone: 60.0 +/- 18.8, P = .005) and the gross motor PDMS (supine: 85.7 +/- 7.6, prone: 90.2 +/- 9.5, P = .03). Motor delays were documented in 22% of babies sleeping supine. Prone sleep-positioned infants were more likely to sit and roll. Daily exposure to awake prone positioning was predictive of motor performance in infants sleeping supine. At 15 months, sleep position continued to predict motor performance. Infants sleeping supine may exhibit early motor lags, associated with less time in prone while awake. This has implications for accurate interpretation of assessment of infants at risk and prevention of inappropriate referrals. Rate of infant motor development appears influenced by extrinsic factors such as positioning practices.
George, Joanne M; Boyd, Roslyn N; Colditz, Paul B; Rose, Stephen E; Pannek, Kerstin; Fripp, Jurgen; Lingwood, Barbara E; Lai, Melissa M; Kong, Annice H T; Ware, Robert S; Coulthard, Alan; Finn, Christine M; Bandaranayake, Sasaka E
2015-09-16
More than 50 percent of all infants born very preterm will experience significant motor and cognitive impairment. Provision of early intervention is dependent upon accurate, early identification of infants at risk of adverse outcomes. Magnetic resonance imaging at term equivalent age combined with General Movements assessment at 12 weeks corrected age is currently the most accurate method for early prediction of cerebral palsy at 12 months corrected age. To date no studies have compared the use of earlier magnetic resonance imaging combined with neuromotor and neurobehavioural assessments (at 30 weeks postmenstrual age) to predict later motor and neurodevelopmental outcomes including cerebral palsy (at 12-24 months corrected age). This study aims to investigate i) the relationship between earlier brain imaging and neuromotor/neurobehavioural assessments at 30 and 40 weeks postmenstrual age, and ii) their ability to predict motor and neurodevelopmental outcomes at 3 and 12 months corrected age. This prospective cohort study will recruit 80 preterm infants born ≤ 30 week's gestation and a reference group of 20 healthy term born infants from the Royal Brisbane & Women's Hospital in Brisbane, Australia. Infants will undergo brain magnetic resonance imaging at approximately 30 and 40 weeks postmenstrual age to develop our understanding of very early brain structure at 30 weeks and maturation that occurs between 30 and 40 weeks postmenstrual age. A combination of neurological (Hammersmith Neonatal Neurologic Examination), neuromotor (General Movements, Test of Infant Motor Performance), neurobehavioural (NICU Network Neurobehavioural Scale, Premie-Neuro) and visual assessments will be performed at 30 and 40 weeks postmenstrual age to improve our understanding of the relationship between brain structure and function. These data will be compared to motor assessments at 12 weeks corrected age and motor and neurodevelopmental outcomes at 12 months corrected age (neurological assessment by paediatrician, Bayley scales of Infant and Toddler Development, Alberta Infant Motor Scale, Neurosensory Motor Developmental Assessment) to differentiate atypical development (including cerebral palsy and/or motor delay). Earlier identification of those very preterm infants at risk of adverse neurodevelopmental and motor outcomes provides an additional period for intervention to optimise outcomes. Australian New Zealand Clinical Trials Registry ACTRN12613000280707. Registered 8 March 2013.
Li, Wen; Li, Zhenshu; Li, Shou; Wang, Xinyan; Wilson, John X.; Huang, Guowei
2018-01-01
Periconceptional maternal folate levels may alter DNA methylation patterns and health outcomes in offspring. We hypothesized that maternal folic acid supplementation alters fetal neural development through DNA methylation in the fetal brain. Twenty-eight rats were randomly assigned to four groups: three groups of the female rats were fed folate-normal, folate-deficient or folate-supplemented diets from seven days before mating to delivery. In another group, folic acid supplementation diet short-period group was fed a folate-normal diet, except for 10 days (begin mating) when this group was fed a folate-supplemented diet. After delivery, the diets were changed to folate-normal diet for all four groups. The cliff avoidance and forelimb grip tests were used to assess sensory motor function of rat offspring. The results indicate that maternal folic acid supplementation improved the early development of sensory-motor function in offspring. Maternal folic acid supplementation increased the methylation potential, global DNA methylation (5-mC) and DNA methyltransferase expression and activity in the brains of the offspring. In conclusion, maternal folic acid supplementation increases DNA methylation pattern in offspring brain and improves the early development of sensory-motor function. PMID:29494536
Challenges and Limitations in Early Intervention
ERIC Educational Resources Information Center
Hadders-Algra, Mijna
2011-01-01
Research over the past three decades has shown that early intervention in infants biologically at risk of developmental disorders, irrespective of the presence of a brain lesion, is associated with improved cognitive development in early childhood without affecting motor development. However, at present it is unknown whether early intervention is…
Sabel, K-G; Strandvik, B; Petzold, M; Lundqvist-Persson, C
2012-04-01
The objective of this study was to investigate any association between infants' early development and PUFA concentrations in early breast milk and infants' plasma phospholipids at 44 weeks gestational age. Fifty-one premature infants were included. The quality of general movement was assessed at 3 months, and motor, mental and behavioral development at 3, 6, 10 and 18 months corrected age using Bayley's Scales of Infant Development (BSID-II). Linoleic acid, the major n-6/n-3 FA ratios, Mead acid and the EFA deficiency index in early breast milk were negatively associated with development up to 18 months of age. DHA and AA, respectively, in infants' plasma phospholipids was positively, but the AA/DHA ratio negatively, associated with development from 6 to 18 months of age. Our data suggest that the commonly found high n-6 concentration in breast milk is associated with less favorable motor, mental and behavioral development up to 18 months of age. Copyright © 2012. Published by Elsevier Ltd.
Isl1 is required for multiple aspects of motor neuron development.
Liang, Xingqun; Song, Mi-Ryoung; Xu, ZengGuang; Lanuza, Guillermo M; Liu, Yali; Zhuang, Tao; Chen, Yihan; Pfaff, Samuel L; Evans, Sylvia M; Sun, Yunfu
2011-07-01
The LIM homeodomain transcription factor Islet1 (Isl1) is expressed in multiple organs and plays essential roles during embryogenesis. Isl1 is required for the survival and specification of spinal cord motor neurons. Due to early embryonic lethality and loss of motor neurons, the role of Isl1 in other aspects of motor neuron development remains unclear. In this study, we generated Isl1 mutant mouse lines expressing graded doses of Isl1. Our study has revealed essential roles of Isl1 in multiple aspects of motor neuron development, including motor neuron cell body localization, motor column formation and axon growth. In addition, Isl1 is required for survival of cranial ganglia neurons. Copyright © 2011 Elsevier Inc. All rights reserved.
Limited fine motor and grasping skills in 6-month-old infants at high risk for autism.
Libertus, Klaus; Sheperd, Kelly A; Ross, Samuel W; Landa, Rebecca J
2014-01-01
Atypical motor behaviors are common among children with autism spectrum disorders (ASD). However, little is known about onset and functional implications of differences in early motor development among infants later diagnosed with ASD. Two prospective experiments were conducted to investigate motor skills among 6-month-olds at increased risk (high risk) for ASD (N1 = 129; N2 = 46). Infants were assessed using the Mullen Scales of Early Learning (MSEL) and during toy play. Across both experiments, high-risk infants exhibited less mature object manipulation in a highly structured (MSEL) context and reduced grasping activity in an unstructured (free-play) context than infants with no family history of ASD. Longitudinal assessments suggest that between 6 and 10 months, grasping activity increases in high-risk infants. © 2014 The Authors. Child Development © 2014 Society for Research in Child Development, Inc.
Ramanathan, Dhakshin S.; Conner, James M.; Anilkumar, Arjun A.
2014-01-01
Previous studies reported that early postnatal cholinergic lesions severely perturb early cortical development, impairing neuronal cortical migration and the formation of cortical dendrites and synapses. These severe effects of early postnatal cholinergic lesions preclude our ability to understand the contribution of cholinergic systems to the later-stage maturation of topographic cortical representations. To study cholinergic mechanisms contributing to the later maturation of motor cortical circuits, we first characterized the temporal course of cortical motor map development and maturation in rats. In this study, we focused our attention on the maturation of cortical motor representations after postnatal day 25 (PND 25), a time after neuronal migration has been accomplished and cortical volume has reached adult size. We found significant maturation of cortical motor representations after this time, including both an expansion of forelimb representations in motor cortex and a shift from proximal to distal forelimb representations to an extent unexplainable by simple volume enlargement of the neocortex. Specific cholinergic lesions placed at PND 24 impaired enlargement of distal forelimb representations in particular and markedly reduced the ability to learn skilled motor tasks as adults. These results identify a novel and essential role for cholinergic systems in the late refinement and maturation of cortical circuits. Dysfunctions in this system may constitute a mechanism of late-onset neurodevelopmental disorders such as Rett syndrome and schizophrenia. PMID:25505106
Experience-dependent development of spinal motor neurons
NASA Technical Reports Server (NTRS)
Inglis, F. M.; Zuckerman, K. E.; Kalb, R. G.; Walton, K. D. (Principal Investigator)
2000-01-01
Locomotor activity in many species undergoes pronounced alterations in early postnatal life, and environmental cues may be responsible for modifying this process. To determine how these events are reflected in the nervous system, we studied rats reared under two different conditions-the presence or absence of gravity-in which the performance of motor operations differed. We found a significant effect of rearing environment on the size and complexity of dendritic architecture of spinal motor neurons, particularly those that are likely to participate in postural control. These results provide evidence that neurons subserving motor function undergo activity-dependent maturation in early postnatal life in a manner analogous to sensory systems.
ERIC Educational Resources Information Center
Chen, Chao-Ying; Lo, Warren D.; Heathcock, Jill C.
2013-01-01
Upper extremity movements, midline behaviors, fine, and gross motor skills are frequently impaired in hemiparesis and cerebral palsy. We investigated midline toy exploration and fine and gross motor skills in infants at risk for hemiplegic cerebral palsy. Eight infants with neonatal stroke (NS) and thirteen infants with typical development (TD)…
Motor development skills of 1- to 4-year-old Iranian children with early treated phenylketonuria.
Nazi, Sepideh; Rohani, Farzaneh; Sajedi, Firoozeh; Biglarian, Akbar; Setoodeh, Arya
2014-01-01
Objective : To gauge the gross and fine motor development of early treated phenylketonuria (ETPKU) in children in the age range of 1-4 years. Methods : A cross-sectional analytic study was conducted in PKU clinics (reference clinics for PKU follow-up), Tehran, Iran. Seventy children with ETPKU were selected as the case group for the study. ETPKU children were those with early and continuous treatment with a phenylalanine-restricted diet (the mean of blood phenylalanine level during the recent 6 months was 2-6 mg/dL or 120-360 μmol/L). Also, 100 healthy and normal children matched with the ETPKU group for age were randomly selected from 4 kindergartens in four parts of Tehran as a control group. The measurements consisted of a demographic questionnaire, Peabody Developmental Motor Scale-2 (PDMS-2), and pediatrician assessment. Motor quotients were determined by PDMS-2 and then compared in both groups by two independent samples t-test. Results : The mean ages in case and control group were 28.5 (± 11.6) and 29.7 (± 11.3) months, respectively. Comparison of the mean fine, gross, and total developmental motor quotients (DMQs) showed statistically significant differences between the two groups (p < 0.05). The fine and total DMQs of ETPKU children were also correlated with age. In addition, there was a negative correlation between the phenylalanine level and fine (p < 0.001) and total (p = 0.001) DMQs. Conclusion : It seems that ETPKU Iranian children, regardless of following a phenylalanine-restricted diet or not, have lower motor development. It is recommended to plan programs for early detection and intervention of developmental delays in these children.
Retention of primitive reflexes and delayed motor development in very low birth weight infants.
Marquis, P J; Ruiz, N A; Lundy, M S; Dillard, R G
1984-06-01
Primitive reflexes and motor development were evaluated in 127 very low birth weight (VLBW) infants (birth weight less than 1501 grams) at four months corrected age. The asymmetrical tonic neck reflex, tonic labyrinth reflex, and Moro reflex were assessed for each child. The ability of each child to reach (obtain a red ring) and roll were observed. The child's performance on the gross motor scale of the Denver Development Screening Test was recorded. Thirty-seven term infants were administered identical evaluations at four months of age. The VLBW infants retained stronger primitive reflexes and exhibited a significantly higher incidence of motor delays than term infants. Significant correlations existed between the strength of the primitive reflexes and early motor development for VLBW infants. This study confirms a high incidence of motor delays among VLBW infants and demonstrates a clear association between retained primitive reflexes and delayed motor development in VLBW infants.
Development of motor speed and associated movements from 5 to 18 years.
Gasser, Theo; Rousson, Valentin; Caflisch, Jon; Jenni, Oskar G
2010-03-01
To study the development of motor speed and associated movements in participants aged 5 to 18 years for age, sex, and laterality. Ten motor tasks of the Zurich Neuromotor Assessment (repetitive and alternating movements of hands and feet, repetitive and sequential finger movements, the pegboard, static and dynamic balance, diadochokinesis) were administered to 593 right-handed participants (286 males, 307 females). A strong improvement with age was observed in motor speed from age 5 to 10, followed by a levelling-off between 12 and 18 years. Simple tasks and the pegboard matured early and complex tasks later. Simple tasks showed no associated movements beyond early childhood; in complex tasks associated movements persisted until early adulthood. The two sexes differed only marginally in speed, but markedly in associated movements. A significant laterality (p<0.001) in speed was found for all tasks except for static balance; the pegboard was most lateralized, and sequential finger movements least. Associated movements were lateralized only for a few complex tasks. We also noted a substantial interindividual variability. Motor speed and associated movements improve strongly in childhood, weakly in adolescence, and are both of developmental relevance. Because they correlate weakly, they provide complementary information.
Early development in males with Fragile X syndrome: a review of the literature.
Kau, Alice S M; Meyer, Walter A; Kaufmann, Walter E
2002-05-01
This article reviews the current bibliographic knowledge on early neurobehavioral development and milestones in Fragile X syndrome (FraX), with emphasis on males affected by the condition. Three broad areas of early development were examined: (1) gross and fine motor, (2) speech and language, and (3) social. The result of the current review indicates very limited information on the developmental milestones in all three areas. The scarce literature on motor development shows that in FraX there is an early developmental delay. Research on speech and language demonstrates pervasive deficits in conversational skills and severe developmental delay, with increasing discrepancy between language level and chronological age in young males with FraX. Finally, deficits in social development in FraX include abnormal gaze, approach and avoidance conflict, and high incidence of autistic spectrum disorders. Copyright 2002 Wiley-Liss, Inc.
Motor skills of toddlers with autism spectrum disorders.
Lloyd, Meghann; MacDonald, Megan; Lord, Catherine
2013-03-01
With increased interest in the early diagnosis and treatment of children with autism spectrum disorders (ASD), more attention has been called to the motor skills of very young children with ASD. This study describes the gross and fine motor skills of a cross-sectional group of 162 children with ASD between the ages of 12 and 36 months, as well as a subset of 58 children followed longitudinally. Gross motor and fine motor age equivalent scores were obtained for all children. A 'motor difference' variable was calculated for each child's gross and fine motor skills by taking the absolute difference of the children's age equivalent motor score and their respective chronological age. In Study 1 (the cross-sectional analysis), ANCOVA (co-varied for nonverbal problem solving) revealed significant group differences in the gross motor and fine motor age difference variables. Post-hoc analysis revealed that gross motor and fine motor differences became significantly greater with each 6-month period of chronological age. In Study 2, 58 children were measured twice, an average of 12 months apart. Results indicate that the gross motor and fine motor difference scores significantly increased between the first and second measurements. The importance of addressing motor development in early intervention treatments is discussed.
Pickles, Andrew; Lord, Catherine
2015-01-01
Background: Motor milestones such as the onset of walking are important developmental markers, not only for later motor skills but also for more widespread social‐cognitive development. The aim of the current study was to test whether gross motor abilities, specifically the onset of walking, predicted the subsequent rate of language development in a large cohort of children with autism spectrum disorder (ASD). Methods: We ran growth curve models for expressive and receptive language measured at 2, 3, 5 and 9 years in 209 autistic children. Measures of gross motor, visual reception and autism symptoms were collected at the 2 year visit. In Model 1, walking onset was included as a predictor of the slope of language development. Model 2 included a measure of non‐verbal IQ and autism symptom severity as covariates. The final model, Model 3, additionally covaried for gross motor ability. Results: In the first model, parent‐reported age of walking onset significantly predicted the subsequent rate of language development although the relationship became non‐significant when gross motor skill, non‐verbal ability and autism severity scores were included (Models 2 & 3). Gross motor score, however, did remain a significant predictor of both expressive and receptive language development. Conclusions: Taken together, the model results provide some evidence that early motor abilities in young children with ASD can have longitudinal cross‐domain influences, potentially contributing, in part, to the linguistic difficulties that characterise ASD. Autism Res 2016, 9: 993–1001. © 2015 The Authors Autism Research published by Wiley Periodicals, Inc. on behalf of International Society for Autism Research PMID:26692550
Bedford, Rachael; Pickles, Andrew; Lord, Catherine
2016-09-01
Motor milestones such as the onset of walking are important developmental markers, not only for later motor skills but also for more widespread social-cognitive development. The aim of the current study was to test whether gross motor abilities, specifically the onset of walking, predicted the subsequent rate of language development in a large cohort of children with autism spectrum disorder (ASD). We ran growth curve models for expressive and receptive language measured at 2, 3, 5 and 9 years in 209 autistic children. Measures of gross motor, visual reception and autism symptoms were collected at the 2 year visit. In Model 1, walking onset was included as a predictor of the slope of language development. Model 2 included a measure of non-verbal IQ and autism symptom severity as covariates. The final model, Model 3, additionally covaried for gross motor ability. In the first model, parent-reported age of walking onset significantly predicted the subsequent rate of language development although the relationship became non-significant when gross motor skill, non-verbal ability and autism severity scores were included (Models 2 & 3). Gross motor score, however, did remain a significant predictor of both expressive and receptive language development. Taken together, the model results provide some evidence that early motor abilities in young children with ASD can have longitudinal cross-domain influences, potentially contributing, in part, to the linguistic difficulties that characterise ASD. Autism Res 2016, 9: 993-1001. © 2015 The Authors Autism Research published by Wiley Periodicals, Inc. on behalf of International Society for Autism Research. © 2015 The Authors Autism Research published by Wiley Periodicals, Inc. on behalf of International Society for Autism Research.
Frank, K; Esbensen, A J
2015-08-01
Developmental milestone markers for fine motor and self-care skills among children with Down syndrome (DS) are either minimal, anecdotal or out-of date. Our goal was to produce normative expectations for the development of fine motor and self-care milestones specific to children with DS. A cross-sectional retrospective chart review was completed on 274 children with DS seen at a specialty clinic that ranged in age from 4 months to 18 years. Specific skills were assessed at occupational therapy assessments as either present or absent, including fine motor, handwriting, scissor usage, self-feeding and clothing management. Fine motor milestones describing when 10-30% ('early achievers') and 75-95% ('representative achievement') of children with DS had mastered each skill were developed based upon descriptive review. As the fine motor and self-care skills advanced in complexity, the range of ages for documented skill acquisition was observed to increase. Age ranges for the mastery of fine motor developmental milestones for early and representative achievement were developed based upon descriptive analysis of cross-sectional retrospective clinical chart reviews. That the age range for mastering fine motor and self-care skills broadens as children with DS get older is in agreement with what is identified in the DS behavioural phenotype with regard to variable motor skills overall. These fine motor and self-care developmental milestone markers contribute to the field by informing parents, caregivers and healthcare providers of potential fine motor and self-care outcomes and describing normative development for children with DS. © 2014 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.
Cognitive Development in Infantile-Onset Pompe Disease Under Very Early Enzyme Replacement Therapy.
Lai, Chih-Jou; Hsu, Ting-Rong; Yang, Chia-Feng; Chen, Shyi-Jou; Chuang, Ya-Chin; Niu, Dau-Ming
2016-12-01
Most patients with infantile-onset Pompe disease die in early infancy before beginning enzyme replacement therapy, which has made it difficult to evaluate the impact of Pompe disease on cognitive development. Patients with infantile-onset Pompe disease can survive with enzyme replacement therapy, and physicians can evaluate cognitive development in these patients. We established an effective newborn screening program with quick clinical diagnostic criteria. Cognitive and motor development were evaluated using the Bayley Scales of Infant and Toddler Development-Third Edition at 6, 12, and 24 months of age. The patients who were treated very early demonstrate normal cognitive development with no significant change in cognition during this period (P = .18 > .05). The cognitive development was positively correlated with motor development (r = 0.533, P = .011). The results indicated that very early enzyme replacement therapy could protect cognitive development in patients with infantile-onset Pompe disease up to 24 months of age. © The Author(s) 2016.
Early postnatal motor experience shapes the motor properties of C57BL/6J adult mice.
Serradj, Nadjet; Picquet, Florence; Jamon, Marc
2013-11-01
This study aimed to evaluate the long-term consequences of early motor training on the muscle phenotype and motor output of middle-aged C57BL/6J mice. Neonatal mice were subjected to a variety of motor training procedures, for 3 weeks during the period of acquisition of locomotion. These procedures are widely used for motor training in adults; they include enriched environment, forced treadmill, chronic centrifugation, and hindlimb suspension. At 9 months, the mice reared in the enriched environment showed a slower type of fibre in slow muscles and a faster type in fast muscles, improved performance in motor tests, and a modified gait and body posture while walking. The proportion of fibres in the postural muscles of centrifuged mice did not change, but these mice showed improved resistance to fatigue. The suspended mice showed increased persistence of immature hybrid fibres in the tibialis, with a slower shift in the load-bearing soleus, without any behavioural changes. The forced treadmill was very stressful for the mice, but had limited effects on motor output, although a slower profile was observed in the tibialis. These results support the hypothesis that motor experience during a critical period of motor development shapes muscle phenotype and motor output. The different impacts of the various training procedures suggest that motor performance in adults can be optimized by appropriate training during a defined period of motor development. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Computer keyboard interaction as an indicator of early Parkinson’s disease
Giancardo, L.; Sánchez-Ferro, A.; Arroyo-Gallego, T.; Butterworth, I.; Mendoza, C. S.; Montero, P.; Matarazzo, M.; Obeso, J. A.; Gray, M. L.; Estépar, R. San José
2016-01-01
Parkinson’s disease (PD) is a slowly progressing neurodegenerative disease with early manifestation of motor signs. Objective measurements of motor signs are of vital importance for diagnosing, monitoring and developing disease modifying therapies, particularly for the early stages of the disease when putative neuroprotective treatments could stop neurodegeneration. Current medical practice has limited tools to routinely monitor PD motor signs with enough frequency and without undue burden for patients and the healthcare system. In this paper, we present data indicating that the routine interaction with computer keyboards can be used to detect motor signs in the early stages of PD. We explore a solution that measures the key hold times (the time required to press and release a key) during the normal use of a computer without any change in hardware and converts it to a PD motor index. This is achieved by the automatic discovery of patterns in the time series of key hold times using an ensemble regression algorithm. This new approach discriminated early PD groups from controls with an AUC = 0.81 (n = 42/43; mean age = 59.0/60.1; women = 43%/60%;PD/controls). The performance was comparable or better than two other quantitative motor performance tests used clinically: alternating finger tapping (AUC = 0.75) and single key tapping (AUC = 0.61). PMID:27703257
Computer keyboard interaction as an indicator of early Parkinson’s disease
NASA Astrophysics Data System (ADS)
Giancardo, L.; Sánchez-Ferro, A.; Arroyo-Gallego, T.; Butterworth, I.; Mendoza, C. S.; Montero, P.; Matarazzo, M.; Obeso, J. A.; Gray, M. L.; Estépar, R. San José
2016-10-01
Parkinson’s disease (PD) is a slowly progressing neurodegenerative disease with early manifestation of motor signs. Objective measurements of motor signs are of vital importance for diagnosing, monitoring and developing disease modifying therapies, particularly for the early stages of the disease when putative neuroprotective treatments could stop neurodegeneration. Current medical practice has limited tools to routinely monitor PD motor signs with enough frequency and without undue burden for patients and the healthcare system. In this paper, we present data indicating that the routine interaction with computer keyboards can be used to detect motor signs in the early stages of PD. We explore a solution that measures the key hold times (the time required to press and release a key) during the normal use of a computer without any change in hardware and converts it to a PD motor index. This is achieved by the automatic discovery of patterns in the time series of key hold times using an ensemble regression algorithm. This new approach discriminated early PD groups from controls with an AUC = 0.81 (n = 42/43 mean age = 59.0/60.1 women = 43%/60%PD/controls). The performance was comparable or better than two other quantitative motor performance tests used clinically: alternating finger tapping (AUC = 0.75) and single key tapping (AUC = 0.61).
Computer keyboard interaction as an indicator of early Parkinson's disease.
Giancardo, L; Sánchez-Ferro, A; Arroyo-Gallego, T; Butterworth, I; Mendoza, C S; Montero, P; Matarazzo, M; Obeso, J A; Gray, M L; Estépar, R San José
2016-10-05
Parkinson's disease (PD) is a slowly progressing neurodegenerative disease with early manifestation of motor signs. Objective measurements of motor signs are of vital importance for diagnosing, monitoring and developing disease modifying therapies, particularly for the early stages of the disease when putative neuroprotective treatments could stop neurodegeneration. Current medical practice has limited tools to routinely monitor PD motor signs with enough frequency and without undue burden for patients and the healthcare system. In this paper, we present data indicating that the routine interaction with computer keyboards can be used to detect motor signs in the early stages of PD. We explore a solution that measures the key hold times (the time required to press and release a key) during the normal use of a computer without any change in hardware and converts it to a PD motor index. This is achieved by the automatic discovery of patterns in the time series of key hold times using an ensemble regression algorithm. This new approach discriminated early PD groups from controls with an AUC = 0.81 (n = 42/43; mean age = 59.0/60.1; women = 43%/60%;PD/controls). The performance was comparable or better than two other quantitative motor performance tests used clinically: alternating finger tapping (AUC = 0.75) and single key tapping (AUC = 0.61).
Siembab, Valerie C.; Gomez-Perez, Laura; Rotterman, Travis M.; Shneider, Neil A.; Alvarez, Francisco J.
2015-01-01
Motor function in mammalian species depends on the maturation of spinal circuits formed by a large variety of interneurons that regulate motoneuron firing and motor output. Interneuron activity is in turn modulated by the organization of their synaptic inputs, but the principles governing the development of specific synaptic architectures unique to each premotor interneuron are unknown. For example, Renshaw cells receive, at least in the neonate, convergent inputs from sensory afferents (likely Ia) and motor axons raising the question of whether they interact during Renshaw cell development. In other well-studied neurons, like Purkinje cells, heterosynaptic competition between inputs from different sources shapes synaptic organization. To examine the possibility that sensory afferents modulate synaptic maturation on developing Renshaw cells, we used three animal models in which afferent inputs in the ventral horn are dramatically reduced (Er81(−/−) knockout), weakened (Egr3(−/−) knockout) or strengthened (mlcNT3(+/−) transgenic). We demonstrate that increasing the strength of sensory inputs on Renshaw cells prevents their de-selection and reduces motor axon synaptic density and, in contrast, absent or diminished sensory afferent inputs correlate with increased densities of motor axons synapses. No effects were observed on other glutamatergic inputs. We conclude that the early strength of Ia synapses influences their maintenance or weakening during later development and that heterosynaptic influences from sensory synapses during early development regulates the density and organization of motor inputs on mature Renshaw cells. PMID:26660356
Fang, Ying; Zhang, Ying
2017-01-01
Visual motor integration (VMI) is a vital ability in childhood development, which is associated with the performance of many functional skills. By using the Beery Developmental Test Package and Executive Function Tasks, the present study explored the VMI development and its factors (visual perception, motor coordination, and executive function) among 151 Chinese preschoolers from 4 to 6 years. Results indicated that the VMI skills of children increased quickly at 4 years and peaked at 5 years and decreased at around 5 to 6 years. Motor coordination and cognitive flexibility were related to the VMI development of children from 4 to 6 years. Visual perception was associated with the VMI development at early 4 years and inhibitory control was also associated with it among 4-year-old and the beginning of 5-year-old children. Working memory had no impact on the VMI. In conclusion, the development of VMI skills among children in preschool was not stable but changed dynamically in this study. Meanwhile the factors of the VMI worked in different age range for preschoolers. These findings may give some guidance to researchers or health professionals on improving children's VMI skills in their early childhood. PMID:29457030
Measuring Motor Skill Learning--A Practical Application
ERIC Educational Resources Information Center
Kovacs, Christopher R.
2008-01-01
The assessment of fundamental motor skills in early learners is critical to the overall well-being and physical development of the students within the physical education setting. Olrich (2002) has suggested that any physical education program must be designed to assess both measures of physical fitness and fundamental motor skills in all students.…
Landa, Rebecca J.; Haworth, Joshua L.; Nebel, Mary Beth
2016-01-01
Children with autism spectrum disorder (ASD) demonstrate a host of motor impairments that may share a common developmental basis with ASD core symptoms. School-age children with ASD exhibit particular difficulty with hand-eye coordination and appear to be less sensitive to visual feedback during motor learning. Sensorimotor deficits are observable as early as 6 months of age in children who later develop ASD; yet the interplay of early motor, visual and social skill development in ASD is not well understood. Integration of visual input with motor output is vital for the formation of internal models of action. Such integration is necessary not only to master a wide range of motor skills, but also to imitate and interpret the actions of others. Thus, closer examination of the early development of visual-motor deficits is of critical importance to ASD. In the present study of infants at high risk (HR) and low risk (LR) for ASD, we examined visual-motor coupling, or action anticipation, during a dynamic, interactive ball-rolling activity. We hypothesized that, compared to LR infants, HR infants would display decreased anticipatory response (perception-guided predictive action) to the approaching ball. We also examined visual attention before and during ball rolling to determine whether attention engagement contributed to differences in anticipation. Results showed that LR and HR infants demonstrated context appropriate looking behavior, both before and during the ball’s trajectory toward them. However, HR infants were less likely to exhibit context appropriate anticipatory motor response to the approaching ball (moving their arm/hand to intercept the ball) than LR infants. This finding did not appear to be driven by differences in motor skill between risk groups at 6 months of age and was extended to show an atypical predictive relationship between anticipatory behavior at 6 months and preference for looking at faces compared to objects at age 14 months in the HR group. PMID:27252667
Ohman, Anna; Nilsson, Staffan; Lagerkvist, Anna-Lena; Beckung, Eva
2009-07-01
Recently it has been claimed that infants with congenital muscular torticollis (CMT) are at risk of a delay in early motor milestones. The aim of the present study was to investigate whether infants with CMT are indeed at risk in comparison with a control group of healthy infants. A second aim was to investigate whether the time spent in a prone position and plagiocephaly had any influence on motor development. Eighty-two infants with CMT (35 females and 47 males) were compared with 40 healthy infants (18 females and 22 males). Motor development was assessed with the Alberta Infant Motor scale (AIMS). Multiple regression showed that infants in the CMT group had a significantly lower AIMS score than the control group at 2 months (p=0.03) and 6 months of age (p=0.05). Infants who spent at least three occasions daily in a prone position when awake had significantly higher AIMS scores than infants who spent less time prone at 2 months (p=0.001), 6 months (p<0.001), and 10 months of age (p<0.001). The CMT group achieved early motor milestones significantly later than the control group until the age of 10 months, but the risk of delay seems to be more strongly associated with little or no time prone when awake than with CMT.
Dadgar, Hooshang; Alaghband Rad, Javad; Soleymani, Zahra; Khorammi, Anahita; McCleery, Joe; Maroufizadeh, Saman
2017-10-01
Objective: Development of early social skills in children is a complex process. To understand this process, it is important to assess how strengths or weaknesses in other developmental domains may be affected by these skills. The present study aimed at investigating the association of motor skills and imitation ability with early social communication skills in children with autism spectrum disorder (ASD). Method: In this study, 20 children with ASD aged 3 to 5 years (M = 4.05, SD = 0.55) participated. All children were diagnosed as ASD based on the DSM-V criteria by an independent child psychiatrist. Additionally, Autism Diagnostic interview-Revised was used for subsequent diagnostic confirmation. Children were tested with Test of Gross Motor Development (TGMD-2), the Motor Imitation Scale (MIS), and the Early Social Communication Scales (ESCS). All examinations were videotaped for subsequent scoring. The relationship between these skills was estimated by Pearson correlation coefficient. Results: A significant and strong correlation was obtained between TGMD total score and imitation total score (r =.776; p <0.001). However, the relationship between MIS subscales and TGMD-2 locomotor subtest scores was not significant (P>0.05). A significant correlation was found between MIS and TGMD total scores with Initiating Joint Attention and Responding to Joint Attention (p≤0/025) as ESCS subscales. But MIS and TGMD total scores were not correlated with social interaction and responding to behavioral requests subscales. Conclusion: The results of the present study showed that indicated both imitation ability and motor function have an association with each other and with early social communication skills.
Dadgar, Hooshang; Alaghband Rad, Javad; Soleymani, Zahra; Khorammi, Anahita; McCleery, Joe; Maroufizadeh, Saman
2017-01-01
Objective: Development of early social skills in children is a complex process. To understand this process, it is important to assess how strengths or weaknesses in other developmental domains may be affected by these skills. The present study aimed at investigating the association of motor skills and imitation ability with early social communication skills in children with autism spectrum disorder (ASD). Method: In this study, 20 children with ASD aged 3 to 5 years (M = 4.05, SD = 0.55) participated. All children were diagnosed as ASD based on the DSM-V criteria by an independent child psychiatrist. Additionally, Autism Diagnostic interview-Revised was used for subsequent diagnostic confirmation. Children were tested with Test of Gross Motor Development (TGMD-2), the Motor Imitation Scale (MIS), and the Early Social Communication Scales (ESCS). All examinations were videotaped for subsequent scoring. The relationship between these skills was estimated by Pearson correlation coefficient. Results: A significant and strong correlation was obtained between TGMD total score and imitation total score (r =.776; p <0.001). However, the relationship between MIS subscales and TGMD-2 locomotor subtest scores was not significant (P>0.05). A significant correlation was found between MIS and TGMD total scores with Initiating Joint Attention and Responding to Joint Attention (p≤0/025) as ESCS subscales. But MIS and TGMD total scores were not correlated with social interaction and responding to behavioral requests subscales. Conclusion: The results of the present study showed that indicated both imitation ability and motor function have an association with each other and with early social communication skills. PMID:29472949
ERIC Educational Resources Information Center
Peters, Donald L.; Willis, Sherry L.
This book summarizes theory and discusses major issues pertaining to child development in the early childhood years. Chapter I provides an introduction to the conceptual framework and major theories of child development. Chapter II deals with motor, sensory, and perceptual development. Chapter III focuses on the cognitive-developmental theory of…
Howe, Tsu-Hsin; Chen, Hao-Ling; Lee, Candy Chieh; Chen, Ying-Dar; Wang, Tien-Ni
2017-10-01
Visual perceptual motor skills have been proposed as underlying courses of handwriting difficulties. However, there is no evaluation tool currently available to assess these skills comprehensively and to serve as a sensitive measure. The purpose of this study was to validate the Computerized Perceptual Motor Skills Assessment (CPMSA), a newly developed evaluation tool for children in early elementary grades. Its test-retest reliability, concurrent validity, discriminant validity, and responsiveness were examined in 43 typically developing children and 26 children with handwriting difficulty. The CPMSA demonstrated excellent reliability across all subtests with intra-class correlation coefficients (ICCs)≥0.80. Significant moderate correlations between the domains of the CPMSA and corresponding gold standards including Beery VMI, the TVPS-3, and the eye-hand coordination subtest of the DTVP-2 demonstrated good concurrent validity. In addition, the CPMSA showed evidence of discriminant validity in samples of children with and without handwriting difficulty. This article provides evidence in support of the CPMSA. The CPMSA is a reliable, valid, and promising measure of visual perceptual motor skills for children in early elementary grades. Directions for future study and improvements to the assessment are discussed. Copyright © 2017. Published by Elsevier Ltd.
Effects of fat mass on motor development during the first two years of life
USDA-ARS?s Scientific Manuscript database
Objective: This study characterized total body fat mass and motor development during the first two years of life in healthy infants. Design: Participants (N=469) from the Beginnings’ cohort, a prospective, longitudinal study of early infant feeding, were assessed at 3, 6, 9, 12 and 24 months of age...
Associations Between Gross Motor and Communicative Development in At-Risk Infants
LeBarton, Eve Sauer; Iverson, Jana M.
2016-01-01
Infants' advances in locomotion relate to advances in communicative development. However, little is known about these relations in infants at risk for delays in these domains and whether they may extend to earlier achievements in gross motor development in infancy. We examined whether advances in sitting and prone locomotion are related to communicative development in infants who have an older sibling with autism spectrum disorder (ASD) and are at risk for motor and communication delays (heightened-risk; HR). We conducted a longitudinal study with 37 HR infants who did not receive an ASD diagnosis at 36 months. Infants were observed monthly between the ages of 5 and 14 months. We assessed gross motor development using the Alberta Infant Motor Scales (AIMS) and recorded ages of onset of verbal and nonverbal communicative behaviors. Results indicated increased presence of early gross motor delay from 5 to 10 months. In addition, there were positive relations between sitting and gesture and babble onset and between prone development and gesture onset. Thus, links between gross motor development and communication extend to at-risk development and provide a starting point for future research on potential cascading consequences of motor advances on communication development. PMID:27314943
Van Hus, Janeline W P; Jeukens-Visser, Martine; Koldewijn, Karen; Van Sonderen, Loekie; Kok, Joke H; Nollet, Frans; Van Wassenaer-Leemhuis, Aleid G
2013-11-01
Infants with very low birth weight (VLBW) are at increased risk for motor deficits, which may be reduced by early intervention programs. For detection of motor deficits and to monitor intervention, different assessment tools are available. It is important to choose tools that are sensitive to evaluate the efficacy of intervention on motor outcome. The purpose of this study was to compare the Alberta Infant Motor Scale (AIMS) and the Psychomotor Developmental Index (PDI) of the Bayley Scales of Infant Development-Dutch Second Edition (BSID-II-NL) in their ability to evaluate effects of an early intervention, provided by pediatric physical therapists, on motor development in infants with VLBW at 12 months corrected age (CA). This was a secondary study in which data collected from a randomized controlled trial (RCT) were used. At 12 months CA, 116 of 176 infants with VLBW participating in an RCT on the effect of the Infant Behavioral Assessment and Intervention Program were assessed with both the AIMS and the PDI. Intervention effects on the AIMS and PDI were compared. Corrected for baseline differences, significant intervention effects were found for AIMS and PDI scores. The highest effect size was for the AIMS subscale sit. A significant reduction of abnormal motor development in the intervention group was found only with the AIMS. No Dutch norms are available for the AIMS. The responsiveness of the AIMS to detect intervention effects was better than that of the PDI. Therefore, caution is recommended in monitoring infants with VLBW only with the PDI, and the use of both the AIMS and the Bayley Scales of Infant Development is advised when evaluating intervention effects on motor development at 12 months CA.
Ketcheson, Leah; Hauck, Janet; Ulrich, Dale
2017-05-01
Despite evidence suggesting one of the earliest indicators of an eventual autism spectrum disorder diagnoses is an early motor delay, there remain very few interventions targeting motor behavior as the primary outcome for young children with autism spectrum disorder. The aim of this pilot study was to measure the efficacy of an intensive motor skill intervention on motor skills (Test of Gross Motor Development-2), physical activity (accelerometers), and socialization (Playground Observation of Peer Engagement) in young children with autism spectrum disorder. A total of 20 children with autism spectrum disorder aged 4-6 years participated. The experimental group ( n = 11) participated in an 8-week intervention consisting of motor skill instruction for 4 h/day, 5 days/week. The control group ( n = 9) did not receive the intervention. A repeated-measures analysis of covariance revealed statistically significant differences between groups in all three motor outcomes, locomotor ( F(1, 14) = 10.07, p < 0.001, partial η 2 = 0.42), object control ( F(1, 14) = 12.90, p < 0.001, partial η 2 = 0.48), and gross quotient ( F(1, 14) = 15.61, p < 0.01, partial η 2 = 0.53). Findings shed light on the importance of including motor programming as part of the early intervention services delivered to young children with autism spectrum disorder.
The role of older siblings in infant motor development.
Leonard, Hayley C; Hill, Elisabeth L
2016-12-01
Previous research has suggested that infant motor skills may be affected by older siblings but has not considered whether this is due to specific characteristics of the older sibling or of the quality of the sibling relationship. The current study used a longitudinal diary method to record infant motor milestones from 23 infants with older siblings along with parent reports and standardized assessments of motor skills. Parent reports of the older siblings' motor skills and the sibling relationship were also collected until the infants were 18months old. The motor skills, age, and sex of the older siblings were not significantly related to any measure of infant motor development. A significant correlation was revealed between perceived agonism between siblings and infant fine motor skills at 18months, suggesting the importance of considering reciprocal effects of motor development on sibling relationships. Overall, the suggestion that older siblings may provide a good model of motor skills for infants is not supported by the current data. In the future, it will be important to assess the dynamic interactions between different factors in predicting infant motor development, allowing early identification of motor difficulties, which could affect other areas of cognitive development and health. Copyright © 2016 Elsevier Inc. All rights reserved.
Development of early handwriting: Visual-motor control during letter copying.
Maldarelli, Jennifer E; Kahrs, Björn A; Hunt, Sarah C; Lockman, Jeffrey J
2015-07-01
Despite the importance of handwriting for school readiness and early academic progress, prior research on the development of handwriting has focused primarily on the product rather than the process by which young children write letters. In contrast, in the present work, early handwriting is viewed as involving a suite of perceptual, motor, and cognitive abilities, which must work in unison if children are to write letters efficiently. To study such coordination, head-mounted eye-tracking technology was used to investigate the process of visual-motor coordination while kindergarten children (N = 23) and adults (N = 11) copied individual letters and strings of letters that differed in terms of their phonemic properties. Results indicated that kindergarten children were able to copy single letters efficiently, as did adults. When the cognitive demands of the task increased and children were presented with strings of letters, however, their ability to copy letters efficiently was compromised: Children frequently interrupted their writing midletter, whereas they did not do so on single letter trials. Yet, with increasing age, children became more efficient in copying letter strings, in part by using vision more prospectively when writing. Taken together, the results illustrate how the coordination of perceptual, motor, and cognitive processes contributes to advances in the development of letter writing skill. (c) 2015 APA, all rights reserved).
Development of Early Handwriting: Visual-Motor Control During Letter Copying
Maldarelli, Jennifer E.; Kahrs, Björn A.; Hunt, Sarah C.; Lockman, Jeffrey J.
2015-01-01
Despite the importance of handwriting for school readiness and early academic progress, prior research on the development of handwriting has focused primarily on the product rather than the process by which young children write letters. In contrast, in the present work, early handwriting is viewed as involving a suite of perceptual, motor and cognitive abilities, which must work in unison if children are to write letters efficiently. To study such coordination, head-mounted eye-tracking technology was used to investigate the process of visual-motor coordination while kindergarten children (N=23) and adults (N=11) copied individual letters and strings of letters that differed in terms of their phonemic properties. Results indicated that kindergarten children were able to copy single letters efficiently, as did adults. When the cognitive demands of the task increased and children were presented with strings of letters, however, their ability to copy letters efficiently was compromised: children frequently interrupted their writing mid-letter, whereas they did not do so on single letter trials. Yet, with increasing age, children became more efficient in copying letter strings, in part by using vision more prospectively when writing. Taken together, the results illustrate how the coordination of perceptual, motor and cognitive processes contributes to advances in the development of letter writing skill. PMID:26029821
Harbourne, Regina T; Dusing, Stacey C; Lobo, Michele A; Westcott-McCoy, Sarah; Bovaird, James; Sheridan, Susan; Galloway, James C; Chang, Hui-Ju; Hsu, Lin-Ya; Koziol, Natalie; Marcinowski, Emily C; Babik, Iryna
2018-06-01
There is limited research examining the efficacy of early physical therapy on infants with neuromotor dysfunction. In addition, most early motor interventions have not been directly linked to learning, despite the clear association between motor activity and cognition during infancy. The aim of this project is to evaluate the efficacy of Sitting Together And Reaching To Play (START-Play), an intervention designed to target sitting, reaching, and motor-based problem solving to advance global development in infants with motor delays or neuromotor dysfunction. This study is a longitudinal multisite randomized controlled trial. Infants in the START-Play group are compared to infants receiving usual care in early intervention (EI). The research takes place in homes in Pennsylvania, Delaware, Washington, and Virginia. There will be 140 infants with neuromotor dysfunction participating, beginning between 7 to 16 months of age. Infants will have motor delays and emerging sitting skill. START-Play provides individualized twice-weekly home intervention for 12 weeks with families to enhance cognition through sitting, reaching, and problem-solving activities for infants. Ten interventionists provide the intervention, with each child assigned 1 therapist. The primary outcome measure is the Bayley III Scales of Infant Development. Secondary measures include change in the Early Problem Solving Indicator, change in the Gross Motor Function Measure, and change in the type and duration of toy contacts during reaching. Additional measures include sitting posture control and parent-child interaction. Limitations include variability in usual EI care and the lack of blinding for interventionists and families. This study describes usual care in EI across 4 US regions and compares outcomes of the START-Play intervention to usual care.
Naylor, Patti-Jean
2017-01-01
As children transition from early to middle childhood, the relationship between motor skill proficiency and perceptions of physical competence should strengthen as skills improve and inflated early childhood perceptions decrease. This study examined change in motor skills and perceptions of physical competence and the relationship between those variables from kindergarten to grade 2. Participants were 250 boys and girls (Mean age = 5 years 8 months in kindergarten). Motor skills were assessed using the Test of Gross Motor Development-2 and perceptions were assessed using a pictorial scale of perceived competence. Mixed-design analyses of variance revealed there was a significant increase in object-control skills and perceptions from kindergarten to grade 2, but no change in locomotor skills. In kindergarten, linear regression showed that locomotor skills and object-control skills explained 10% and 9% of the variance, respectively, in perceived competence for girls, and 7% and 11%, respectively, for boys. In grade 2, locomotor skills predicted 11% and object-control skills predicted 19% of the variance in perceptions of physical competence, but only among the boys. Furthermore, the relationship between motor skills and perceptions of physical competence strengthened for boys only from early to middle childhood. However, it seems that forces other than motor skill proficiency influenced girls’ perceptions of their abilities in grade 2.
... were born early. How to Adjust Your Baby's Age If your baby was born early, she has 2 important days to mark on ... Development Milestones Matter: 10 to Watch for by Age 5 Motor Delays: Early Identification and Evaluation (AAP Clinical Report) Article Body ...
Pinheiro, Karen Amaral Tavares; Pinheiro, Ricardo Tavares; Coelho, Fábio Monteiro da Cunha; da Silva, Ricardo Azevedo; Quevedo, Luciana Ávila; Schwanz, Cristina Carvalhal; Wiener, Carolina David; Manfro, Gisele Gus; Giovenardi, Márcia; Lucion, Aldo Bolten; de Souza, Diogo Onofre; Portela, Luis Valmor; Oses, Jean Pierre
2014-01-01
Background Early adverse experiences are associated with increased risk of developing psychiatric disorders, although little is known about the neurobiological mediators involved. The mechanisms by which early environmental influences may mediate vulnerability in the development of offspring await further investigation. The present study correlated the NGF, BDNF, IL-6 and cortisol levels of mothers with postpartum affective disorders (PPAD) with infant development. Methods A longitudinal study was performed with 152 pregnant women and their infants. Between 60 and 120 days after delivery, women were interviewed and provided biological samples for biochemical analysis, and the infants were examined for neurobiological-motor development. Results Overall, the mothers' history of affective disorders, PPAD and anxiety disorder were associated with infant motor development. Using an adjusted linear regression analysis, PPAD (p = 0.049), maternal anxiety disorder (p = 0.043), NGF level (p = 0.034) and infant cortisol level (p = 0.013) were associated with infant motor development. Using a factorial analysis of primary components, two components were retained. The psychological factor was characterized by a positive loading of a history of affective disorder, PPAD and anxiety disorder. For the biological factor, infant cortisol adhered negatively with infant motor development, but NGF was positively associated. The psychological factor had a negative association, but the biological factor had a positive association with infant motor development. Conclusions There are few studies that have focused on the relationship of biomarkers and infant neurodevelopment. Our study points that psychological and biological factors are associated with infant motor development, however the causal relationship between these factors is still to be defined. PMID:24733087
Pinheiro, Karen Amaral Tavares; Pinheiro, Ricardo Tavares; Coelho, Fábio Monteiro da Cunha; da Silva, Ricardo Azevedo; Quevedo, Luciana Ávila; Schwanz, Cristina Carvalhal; Wiener, Carolina David; Manfro, Gisele Gus; Giovenardi, Márcia; Lucion, Aldo Bolten; de Souza, Diogo Onofre; Portela, Luis Valmor; Oses, Jean Pierre
2014-01-01
Early adverse experiences are associated with increased risk of developing psychiatric disorders, although little is known about the neurobiological mediators involved. The mechanisms by which early environmental influences may mediate vulnerability in the development of offspring await further investigation. The present study correlated the NGF, BDNF, IL-6 and cortisol levels of mothers with postpartum affective disorders (PPAD) with infant development. A longitudinal study was performed with 152 pregnant women and their infants. Between 60 and 120 days after delivery, women were interviewed and provided biological samples for biochemical analysis, and the infants were examined for neurobiological-motor development. Overall, the mothers' history of affective disorders, PPAD and anxiety disorder were associated with infant motor development. Using an adjusted linear regression analysis, PPAD (p = 0.049), maternal anxiety disorder (p = 0.043), NGF level (p = 0.034) and infant cortisol level (p = 0.013) were associated with infant motor development. Using a factorial analysis of primary components, two components were retained. The psychological factor was characterized by a positive loading of a history of affective disorder, PPAD and anxiety disorder. For the biological factor, infant cortisol adhered negatively with infant motor development, but NGF was positively associated. The psychological factor had a negative association, but the biological factor had a positive association with infant motor development. There are few studies that have focused on the relationship of biomarkers and infant neurodevelopment. Our study points that psychological and biological factors are associated with infant motor development, however the causal relationship between these factors is still to be defined.
Global motion perception is associated with motor function in 2-year-old children.
Thompson, Benjamin; McKinlay, Christopher J D; Chakraborty, Arijit; Anstice, Nicola S; Jacobs, Robert J; Paudel, Nabin; Yu, Tzu-Ying; Ansell, Judith M; Wouldes, Trecia A; Harding, Jane E
2017-09-29
The dorsal visual processing stream that includes V1, motion sensitive area V5 and the posterior parietal lobe, supports visually guided motor function. Two recent studies have reported associations between global motion perception, a behavioural measure of processing in V5, and motor function in pre-school and school aged children. This indicates a relationship between visual and motor development and also supports the use of global motion perception to assess overall dorsal stream function in studies of human neurodevelopment. We investigated whether associations between vision and motor function were present at 2 years of age, a substantially earlier stage of development. The Bayley III test of Infant and Toddler Development and measures of vision including visual acuity (Cardiff Acuity Cards), stereopsis (Lang stereotest) and global motion perception were attempted in 404 2-year-old children (±4 weeks). Global motion perception (quantified as a motion coherence threshold) was assessed by observing optokinetic nystagmus in response to random dot kinematograms of varying coherence. Linear regression revealed that global motion perception was modestly, but statistically significantly associated with Bayley III composite motor (r 2 =0.06, P<0.001, n=375) and gross motor scores (r 2 =0.06, p<0.001, n=375). The associations remained significant when language score was included in the regression model. In addition, when language score was included in the model, stereopsis was significantly associated with composite motor and fine motor scores, but unaided visual acuity was not statistically significantly associated with any of the motor scores. These results demonstrate that global motion perception and binocular vision are associated with motor function at an early stage of development. Global motion perception can be used as a partial measure of dorsal stream function from early childhood. Copyright © 2017 Elsevier B.V. All rights reserved.
Berghuis, Sietske A; Soechitram, Shalini D; Hitzert, Marrit M; Sauer, Pieter J J; Bos, Arend F
2013-09-01
Polychlorinated biphenyls (PCBs) are ubiquitous environmental pollutants that are potentially toxic to the developing brain. Hydroxylated metabolites of PCBs (OH-PCBs) are suggested to be even more toxic. Little is known about their short-term effects on human health. To determine whether prenatal background exposure to PCBs and OH-PCBs was associated with the motor development of three-month-old infants. Ninety-seven mother-infant pairs participated in this Dutch, observational cohort study. We determined the concentrations of PCBs and OH-PCBs in cord blood samples. When the infants were three months old we evaluated their motor development by assessing the presence and performance of spontaneous movement patterns from video recordings. We calculated a Motor Optimality Score (MOS). The score could range from low (5) to high (28) optimality. We explored the correlations between PCB and OH-PCB levels and MOS. Subsequently, we tested whether the levels differed between infants with a low (<26) or high (≥26) MOS and whether the levels associated with detailed aspects of their motor repertoires. We found several associations between PCB and OH-PCB levels and MOS, including detailed aspects of the early motor development. High 4-OH-PCB-107 levels were associated with a low MOS (P=.013). High PCB-187 levels were associated with reduced midline arm and leg movements (P=.047 and P=.043, respectively). High 4'-OH-PCB-172 levels were associated with more manipulation (P=.033). Prenatal exposure to high background levels of most PCBs and 4-OH-PCB-107 seems to impair early motor development, whereas only 4'-OH-PCB-172 showed the opposite. Copyright © 2013 Elsevier Inc. All rights reserved.
Solomons, H C
1978-11-01
Tests with the Bayley Motor Scale were given to 288 infants, equally divided by sex, in Yucatan, Mexico. These were 2 to 54 weeks in age and came from three sociocultural levels. In comparison to USA infants, early acceleration of motor development was followed by a marked downward trend. This phenomenon, if observed in a single child, may indicate progressive neurologic disease. Child-rearing practices would appear to account for the difference in pattern of test performance.
ERIC Educational Resources Information Center
Schady, Norbert
2006-01-01
There is considerable evidence that young children in many developing countries suffer from profound deficits in nutrition, health, fine and gross motor skills, cognitive development, and socio-emotional development. Early childhood development (ECD) outcomes are important markers of the welfare of children. In addition, the deleterious effects of…
[Sensory oral motor and global motor development of preterm infants].
de Castro, Adriana Guerra; Lima, Marilia de Carvalho; de Aquino, Rebeca Raposo; Eickmann, Sophie Helena
2007-01-01
development assessment of preterm infants. to evaluate the association between the gestational ages (GA) of premature infants with the global motor development as well as with early signs of sensory oral motor development delay, and to verify a possible association between them. an exploratory study that assessed the development of 55 infants with corrected chronological ages between four to five months, born preterm at the Instituto Materno Infantil Professor Fernando Figueira (IMIP) and who were followed at the Kangaroo Mother Program Clinic between March and August of 2004. The assessment of the sensory oral motor development was performed through pre-selected indicators and of the global motor development through the Alberta Infant Motor Scale (AIMS). infants with lower GA (29 to 34 weeks) presented a higher median of risk signs in the sensory oral motor development assessment when compared to those with higher GA (35 to 36 weeks). Regarding the global motor development, infants born with lower GA presented a higher number of scores in the AIMS below percentile 10 (26%) when compared to those with a higher GA (4%) (p=0.009). The median index of the risk signs for the sensory oral motor development were significantly higher among infants with total AIMS scores below percentile 25 when compared to those with scores equal to or above percentile 25. the gestational age of infants at birth influenced the sensory oral motor and global motor development - infants with lower gestational ages presented worse performances. These findings suggest a possible association between both aspects of infant development.
The role of early fine and gross motor development on later motor and cognitive ability.
Piek, Jan P; Dawson, Lisa; Smith, Leigh M; Gasson, Natalie
2008-10-01
The aim of this study was to determine whether information obtained from measures of motor performance taken from birth to 4 years of age predicted motor and cognitive performance of children once they reached school age. Participants included 33 children aged from 6 years to 11 years and 6 months who had been assessed at ages 4 months to 4 years using the ages and stages questionnaires (ASQ: [Squires, J. K., Potter, L., & Bricker, D. (1995). The ages and stages questionnaire users guide. Baltimore: Brookes]). These scores were used to obtain trajectory information consisting of the age of asymptote, maximum or minimum score, and the variance of ASQ scores. At school age, both motor and cognitive ability were assessed using the McCarron Assessment of Neuromuscular Development (MAND: [McCarron, L. (1997). McCarron assessment of neuromuscular development: Fine and gross motor abilities (revised ed.). Dallas, TX: Common Market Press.]), and the Wechsler Intelligence Scale for Children-Version IV (WISC-IV: [Wechsler, D. (2004). WISC-IV integrated technical and interpretive manual. San Antonio, Texas: Harcourt Assessment]). In contrast to previous research, results demonstrated that, although socio-economic status (SES) predicted fine motor performance and three of four cognitive domains at school age, gestational age was not a significant predictor of later development. This may have been due to the low-risk nature of the sample. After controlling for SES, fine motor trajectory information did not account for a significant proportion of the variance in school aged fine motor performance or cognitive performance. The ASQ gross motor trajectory set of predictors accounted for a significant proportion of the variance for cognitive performance once SES was controlled for. Further analysis showed a significant predictive relationship for gross motor trajectory information and the subtests of working memory and processing speed. These results provide evidence for detecting children at risk of developmental delays or disorders with a parent report questionnaire prior to school age. The findings also add to recent investigations into the relationship between early motor development and later cognitive function, and support the need for ongoing research into a potential etiological relationship.
Early gross motor development of preterm infants according to the Alberta Infant Motor Scale.
van Haastert, I C; de Vries, L S; Helders, P J M; Jongmans, M J
2006-11-01
To systematically examine gross motor development in the first 18 months of life of preterm infants. A total of 800 preterm infants (356 boys), ages between 1 and 18 months and corrected for degree of prematurity, were assessed with the use of the Alberta Infant Motor Scale. Comparison of the mean Alberta Infant Motor Scale scores of the preterm infants with the norm-referenced values derived from term infants revealed that as a group, the preterm infants scored significantly lower at all age levels, even with full correction for degree of prematurity. In general, preterm infants exhibit different gross motor developmental trajectories compared with term infants in the first 18 months of life. The gross motor developmental profile of preterm infants may reflect a variant of typical gross motor development, which seems most likely to be specific for this population. As a consequence, adjusted norms should be used for proper evaluation and clinical decision-making in relation to preterm infants.
Fuentefria, Rubia do N; Silveira, Rita C; Procianoy, Renato S
Premature newborns are considered at risk for motor development deficits, leading to the need for monitoring in early life. The aim of this study was to systematically review the literature about gross motor development of preterm infants, assessed by the Alberta Infant Motor Scale (AIMS) to identify the main outcomes in development. Systematic review of studies published from 2006 to 2015, indexed in Pubmed, Scielo, Lilacs, and Medline databases in English and Portuguese. The search strategy included the keywords: Alberta Infant Motor Scale, prematurity, preterm, motor development, postural control, and follow-up. A total of 101 articles were identified and 23 were selected, according to the inclusion criteria. The ages of the children assessed in the studies varied, including the first 6 months up to 15 or 18 months of corrected age. The percentage variation in motor delay was identified in the motor outcome descriptions of ten studies, ranging from 4% to 53%, depending on the age when the infant was assessed. The studies show significant differences in the motor development of preterm and full-term infants, with a description of lower gross scores in the AIMS results of preterm infants. It is essential that the follow-up services of at-risk infants have assessment strategies and monitoring of gross motor development of preterm infants; AIMS is an assessment tool indicated to identify atypical motor development in this population. Copyright © 2017. Published by Elsevier Editora Ltda.
Narcolepsy (with and without cataplexy) and commercial motor vehicle driver safety.
DOT National Transportation Integrated Search
2009-10-01
The purpose of this evidence report is to address several questions posed by FMCSA regarding the topic of narcolepsy and commercial motor vehicle (CMV) driver safety. In the early scope development work conducted by the Agency and the Medical Review ...
Plasticity during Early Brain Development Is Determined by Ontogenetic Potential.
Krägeloh-Mann, Ingeborg; Lidzba, Karen; Pavlova, Marina A; Wilke, Marko; Staudt, Martin
2017-04-01
Two competing hypotheses address neuroplasticity during early brain development: the "Kennard principle" describes the compensatory capacities of the immature developing CNS as superior to those of the adult brain, whereas the "Hebb principle" argues that the young brain is especially sensitive to insults. We provide evidence that these principles are not mutually exclusive. Following early brain lesions that are unilateral, the brain can refer to homotopic areas of the healthy hemisphere. This potential for reorganization is unique to the young brain but available only when, during ontogenesis of brain development, these areas have been used for the functions addressed. With respect to motor function, ipsilateral motor tracts can be recruited, which are only available during early brain development. Language can be reorganized to the right after early left hemispheric lesions, as the representation of the language network is initially bilateral. However, even in these situations, compensatory capacities of the developing brain are found to have limitations, probably defined by early determinants. Thus, plasticity and adaptivity are seen only within ontogenetic potential; that is, axonal or cortical structures cannot be recruited beyond early developmental possibilities. The young brain is probably more sensitive and vulnerable to lesions when these are bilateral. This is shown here for bilateral periventricular white matter lesions that clearly have an impact on cortical architecture and function, thus probably interfering with early network building. Georg Thieme Verlag KG Stuttgart · New York.
2004-04-15
In addition to Dr. Robert Goddard's pioneering work, American experimentation in rocketry prior to World War II grew, primarily in technical societies. This is an early rocket motor designed and developed by the American Rocket Society in 1932.
Developing a Wearable Ankle Rehabilitation Robotic Device for in-Bed Acute Stroke Rehabilitation.
Ren, Yupeng; Wu, Yi-Ning; Yang, Chung-Yong; Xu, Tao; Harvey, Richard L; Zhang, Li-Qun
2017-06-01
Ankle movement training is important in motor recovery post stroke and early intervention is critical to stroke rehabilitation. However, acute stroke survivors receive motor rehabilitation in only a small fraction of time, partly due to the lack of effective devices and protocols suitable for early in-bed rehabilitation. Considering the first few months post stroke is critical in stroke recovery, there is a strong need to start motor rehabilitation early, mobilize the ankle, and conduct movement therapy. This study seeks to address the need and deliver intensive passive and active movement training in acute stroke using a wearable ankle robotic device. Isometric torque generation mode under real-time feedback is used to guide patients in motor relearning. In the passive stretching mode, the wearable robotic device stretches the ankle throughout its range of motion to the extreme dorsiflexion forcefully and safely. In the active movement training mode, a patient is guided and motivated to actively participate in movement training through game playing. Clinical testing of the wearable robotic device on 10 acute stroke survivors over 12 sessions of feedback-facilitated isometric torque generation, and passive and active movement training indicated that the early in-bed rehabilitation could have facilitated neuroplasticity and helped improve motor control ability.
Associations between gross motor and communicative development in at-risk infants.
LeBarton, Eve Sauer; Iverson, Jana M
2016-08-01
Infants' advances in locomotion relate to advances in communicative development. However, little is known about these relations in infants at risk for delays in these domains and whether they may extend to earlier achievements in gross motor development in infancy. We examined whether advances in sitting and prone locomotion are related to communicative development in infants who have an older sibling with autism spectrum disorder (ASD) and are at risk for motor and communication delays (heightened-risk; HR). We conducted a longitudinal study with 37 HR infants who did not receive an ASD diagnosis at 36 months. Infants were observed monthly between the ages of 5 and 14 months. We assessed gross motor development using the Alberta Infant Motor Scales (AIMS) and recorded ages of onset of verbal and nonverbal communicative behaviors. Results indicated increased presence of early gross motor delay from 5 to 10 months. In addition, there were positive relations between sitting and gesture and babble onset and between prone development and gesture onset. Thus, links between gross motor development and communication extend to at-risk development and provide a starting point for future research on potential cascading consequences of motor advances on communication development. Copyright © 2016 Elsevier Inc. All rights reserved.
Hsu, Ao-Lin; Feng, Zhaoyang; Hsieh, Meng-Yin; Xu, X. Z. Shawn
2009-01-01
One challenge in aging research concerns identifying physiological parameters or biomarkers that can reflect the physical health of an animal and predict its lifespan. In C. elegans, a model organism widely used in aging research, motor deficits develop in old worms. Here we employed machine vision to quantify worm locomotion behavior throughout lifespan. We confirm that aging worms undergo a progressive decline in motor activity, beginning in early life. Importantly, the rate of motor activity decline rather than the absolute motor activity in the early-to-mid life of individual worms in an isogenic population inversely correlates with their lifespan, and thus may serve as a lifespan predictor. Long-lived mutant strains with deficits in insulin/IGF-1 signaling or food intake display a reduction in the rate of motor activity decline, suggesting that this parameter might also be used for across-strain comparison of healthspan. Our work identifies an endogenous physiological parameter for lifespan prediction and healthspan comparison. PMID:18255194
Hsu, Ao-Lin; Feng, Zhaoyang; Hsieh, Meng-Yin; Xu, X Z Shawn
2009-09-01
One challenge in aging research concerns identifying physiological parameters or biomarkers that can reflect the physical health of an animal and predict its lifespan. In C. elegans, a model organism widely used in aging research, motor deficits develop in old worms. Here we employed machine vision to quantify worm locomotion behavior throughout lifespan. We confirm that aging worms undergo a progressive decline in motor activity, beginning in early life. Importantly, the rate of motor activity decline rather than the absolute motor activity in the early-to-mid life of individual worms in an isogenic population inversely correlates with their lifespan, and thus may serve as a lifespan predictor. Long-lived mutant strains with deficits in insulin/IGF-1 signaling or food intake display a reduction in the rate of motor activity decline, suggesting that this parameter might also be used for across-strain comparison of healthspan. Our work identifies an endogenous physiological parameter for lifespan prediction and healthspan comparison.
Limited Fine Motor and Grasping Skills in Six-month-old Infants at High Risk for Autism
Libertus, Klaus; Sheperd, Kelly A.; Ross, Samuel W.; Landa, Rebecca J.
2014-01-01
Atypical motor behaviors are common among children with Autism Spectrum Disorders (ASD). However, little is known about onset and functional implications of differences in early motor development among infants later diagnosed with ASD. Two prospective experiments were conducted to investigate motor skills among six-month-olds at increased risk (high-risk) for ASD (N1 = 129; N2 = 46). Infants were assessed using the Mullen Scales of Early Learning (MSEL) and during toy play. Across both experiments, high-risk infants exhibited less mature object manipulation in a highly structured (MSEL) context and reduced grasping activity in an unstructured (free play) context than infants with no family history of ASD. Longitudinal assessments suggest that between six and ten months, grasping activity increases in high-risk infants. PMID:24978128
Gupta, Arti; Kalaivani, Mani; Gupta, Sanjeev Kumar; Rai, Sanjay K.; Nongkynrih, Baridalyne
2016-01-01
Background: Nearly 14% of children worldwide do not reach their developmental potential in early childhood. The early identification of delays in achieving milestones is critical. The World Health Organization (WHO) has developed normal age ranges for the achievement of motor milestones by healthy children. This study aimed to assess the gross motor developmental achievements and associated factors among children in rural India. Materials and Methods: A cross-sectional study was conducted with rural children in North India. A pretested questionnaire was used to collect the data. The median age at the time of the highest observed milestone was calculated and compared with the WHO windows of achievement. Results: Overall, 221 children aged 4–18 months were included in the study. The median age of motor development exhibited a 0.1–2.1-month delay compared to the WHO median age of motor milestone achievement. The prevalence of the gross motor milestone achievements for each of the six milestones ranged from 91.6% to 98.4%. Developmental delay was observed in 6.3% of the children. After adjusting for different variables, children with birth order of second or more were found to be significantly associated with the timely achievement of gross motor milestones. Conclusion: The apparently healthy children of the rural area of Haryana achieved gross motor milestones with some delay with respect to the WHO windows of achievement. Although the median value of this delay was low, awareness campaigns should be implemented to promote timely identification of children with development delays. PMID:27843845
Marchal, Jan Pieter; Maurice-Stam, Heleen; Ikelaar, Nadine A; Klouwer, Femke C C; Verhorstert, Kim W J; Witteveen, M Emma; Houtzager, Bregje A; Grootenhuis, Martha A; van Trotsenburg, A S Paul
2014-12-01
In 2-year-old children with Down's syndrome (DS), early T4 treatment was found to result in slightly better motor development and growth. This study sought to determine long-term effects of early T4 treatment on development and growth in children with DS with either an elevated or normal neonatal TSH concentration. Patients received a single follow-up visit 8.7 years after a randomized placebo-controlled trial (RCT) comparing T4 and placebo treatment during the first 2 years of life. Dutch Academic Hospital. All children who completed the RCT (N = 181, of 196 randomly assigned children) were invited for the follow-up study. A total of 123 participants enrolled, at a mean age of 10.7 years. T4 or placebo treatment from the neonatal period until 2 years. Primary: mental and motor development. Secondary: communication skills, fine-motor coordination, height, weight, and head circumference (HC). Outcomes were compared between T4- and placebo-treated children, and between treatment groups with either a normal (<5 mIU/L), or elevated (≥ 5 mIU/L) TSH concentration at original trial entry. Mental or motor development, communication skills, or fine-motor coordination did not differ between T4- (N = 64) and placebo-treated children (N = 59). T4-treated children had a larger HC (50.4 vs 49.8 cm, P = .04) and tended to be taller (133.2 vs 131.1 cm, P = .06). These differences were somewhat greater in children with TSH ≥ 5 mIU/L (HC: T4, 50.5 vs placebo, 49.7 cm; P = .01; height: T4, 133.8 vs placebo, 130.8 cm; P = .02), but were not found in children with TSH <5 mIU/L (HC: T4, 50.1 vs placebo, 50.0 cm; P = .75; height: T4, 132.1 vs placebo, 131.6 cm; P = .22). Early T4 treatment of children with DS does not seem to benefit mental or motor development later in life. However, the positive effect on growth is still measurable, especially in children with an elevated plasma TSH concentration in the neonatal period.
FUNdamental Movement in Early Childhood.
ERIC Educational Resources Information Center
Campbell, Linley
2001-01-01
Noting that the development of fundamental movement skills is basic to children's motor development, this booklet provides a guide for early childhood educators in planning movement experiences for children between 4 and 8 years. The booklet introduces a wide variety of appropriate practices to promote movement skill acquisition and increased…
Fundament, Tomasz; Eldridge, Paul R; Green, Alexander L; Whone, Alan L; Taylor, Rod S; Williams, Adrian C; Schuepbach, W M Michael
2016-01-01
Parkinson's disease (PD) is a debilitating illness associated with considerable impairment of quality of life and substantial costs to health care systems. Deep brain stimulation (DBS) is an established surgical treatment option for some patients with advanced PD. The EARLYSTIM trial has recently demonstrated its clinical benefit also in patients with early motor complications. We sought to evaluate the cost-effectiveness of DBS, compared to best medical therapy (BMT), among PD patients with early onset of motor complications, from a United Kingdom (UK) payer perspective. We developed a Markov model to represent the progression of PD as rated using the Unified Parkinson's Disease Rating Scale (UPDRS) over time in patients with early PD. Evidence sources were a systematic review of clinical evidence; data from the EARLYSTIM study; and a UK Clinical Practice Research Datalink (CPRD) dataset including DBS patients. A mapping algorithm was developed to generate utility values based on UPDRS data for each intervention. The cost-effectiveness was expressed as the incremental cost per quality-adjusted life-year (QALY). One-way and probabilistic sensitivity analyses were undertaken to explore the effect of parameter uncertainty. Over a 15-year time horizon, DBS was predicted to lead to additional mean cost per patient of £26,799 compared with BMT (£73,077/patient versus £46,278/patient) and an additional mean 1.35 QALYs (6.69 QALYs versus 5.35 QALYs), resulting in an incremental cost-effectiveness ratio of £19,887 per QALY gained with a 99% probability of DBS being cost-effective at a threshold of £30,000/QALY. One-way sensitivity analyses suggested that the results were not significantly impacted by plausible changes in the input parameter values. These results indicate that DBS is a cost-effective intervention in PD patients with early motor complications when compared with existing interventions, offering additional health benefits at acceptable incremental cost. This supports the extended use of DBS among patients with early onset of motor complications.
Hadders-Algra, Mijna
2001-01-01
The Neuronal Group Selection Theory (NGST) could offer new insights into the mechanisms directing motor disorders, such as cerebral palsy and developmental coordination disorder. According to NGST, normal motor development is characterized by two phases of variability. Variation is not at random but determined by criteria set by genetic information. Development starts with the phase of primary variability,during which variation in motor behavior is not geared to external conditions. At function-specific ages secondary variability starts, during which motor performance can be adapted to specific situations. In both forms, of variability, selection on the basis of afferent information plays a significant role. From the NGST point of view, children with pre- or perinatally acquired brain damage, such as children with cerebral palsy and part of the children with developmental coordination disorder, suffer from stereotyped motor behavior, produced by a limited repertoire or primary (sub)cortical neuronal networks. These children also have roblems in selecting the most efficient neuronal activity, due to deficits in the processing of sensory information. Therefore, NGST suggests that intervention in these children at early age should aim at an enlargement of the primary neuronal networks. With increasing age, the emphasis of intervention could shift to the provision of ample opportunities for active practice, which might form a compensation for the impaired selection. PMID:11530887
How to treat Parkinson's disease in 2013.
Worth, Paul F
2013-02-01
Parkinson's disease is a common, progressive, debilitating disease with substantial physical, psychological and social implications. Pharmacological management is complex and should be individualised according to the needs of the patient. In early disease, treatment is generally highly effective, but medication becomes increasingly inadequate in controlling motor fluctuations and dyskinesias as the disease progresses. Non-motor symptoms, especially depression and dementia, require a holistic, multidisciplinary approach to maximise quality of life for patients and their carers. For the future, the ideal solution remains neuroprotection and restoration. Progress has been hampered by the lack of animal models that reflect the widespread brain pathology presumed to cause both motor and non-motor symptoms of PD in humans. Currently, agents are undergoing clinical trials in early, mildly affected patients, such as the plant-derived substance PYM50028 (Cogane), which promotes expression of endogenous neural growth factors and has shown promise in vitro and in animal models. Gene-therapy trials in progress rely on the viral vectors used to deliver the enzymatic machinery required for dopamine synthesis to the striatum. As PD progresses, adequate control of motor symptoms depends increasingly on continuous drug delivery, and greater physiological stimulation of dopamine receptors may help to prevent the development of LIDs and motor fluctuations. Efforts thus are afoot to develop better delivery systems for levodopa, and a new sustained-release formulation is in development.
Variation in Vocal-Motor Development in Infant Siblings of Children with Autism
ERIC Educational Resources Information Center
Iverson, Jana M.; Wozniak, Robert H.
2007-01-01
In this study we examined early motor, vocal, and communicative development in a group of younger siblings of children diagnosed with autism (Infant Siblings). Infant Siblings and no-risk comparison later-born infants were videotaped at home with a primary caregiver each month from 5 to 14 months, with follow-up at 18 months. As a group, Infant…
ERIC Educational Resources Information Center
Oudgenoeg-Paz, Ora; Leseman, Paul P. M.; Volman, M. J. M.
2015-01-01
The embodied-cognition approach views cognition and language as grounded in daily sensorimotor child-environment interactions. Therefore, the attainment of motor milestones is expected to play a role in cognitive-linguistic development. Early attainment of unsupported sitting and independent walking indeed predict better spatial cognition and…
Recovery of motor deficit accompanying sciatica--subgroup analysis of a randomized controlled trial.
Overdevest, Gijsbert M; Vleggeert-Lankamp, Carmen L A M; Jacobs, Wilco C H; Brand, Ronald; Koes, Bart W; Peul, Wilco C
2014-09-01
In patients with sciatica due to a lumbar disc herniation, it is generally recommended to reserve surgical treatment for those who suffer from intolerable pain or those who demonstrate persistent symptoms after conservative management. Controversy exists about the necessity of early surgical intervention for those patients that have an additional motor deficit. The aim of this study was to compare the recovery of motor deficit among patients receiving early surgery to those receiving prolonged conservative treatment. Subgroup analysis of a randomized controlled trial. This subgroup analysis focuses on 150 (53%) of 283 patients with sciatica due to a lumbar disc herniation and whose symptoms at baseline (before randomization) were accompanied by a motor deficit. Motor deficit was assessed through manual muscle testing and graded according to the Medical Research Council (MRC) scale. In total, 150 patients with 6 to 12 weeks of sciatica due to a lumbar disc herniation and whose symptoms were accompanied by a moderate (MRC Grade 4) or severe (MRC Grade 3) motor deficit were randomly allocated to early surgery or prolonged conservative treatment. Repeated standardized neurologic examinations were performed at baseline and at 8, 26, and 52 weeks after randomization. This study was supported by a grant from the Netherlands Organization for Health Research and Development (ZonMW) and the Hoelen Foundation The Hague. Sciatica recovered among seven (10%) of the 70 patients assigned to early surgery before surgery could be performed, and of the 80 patients assigned to conservative treatment, 32 patients (40%) were treated surgically because of intolerable pain. Baseline severity of motor deficit was graded moderate in 84% of patients and severe in 16% of patients. Motor deficit recovered significantly faster among patients allocated to early surgery (p=.01), but the difference was no longer significant at 26 (p=.21) or 52 weeks (p=.92). At 1 year, complete recovery of motor deficit was found in 81% of patients allocated to early surgery and in 80% of patients allocated to prolonged conservative treatment. Perceived overall recovery of sciatica was directly related to the presence of an accompanying motor deficit. Severe motor deficit at baseline (odds ratio, 5.4; confidence interval, 1.7-17.4) and a lumbar disc herniation encompassing ≥25% of the cross-sectional area of the spinal canal (odds ratio, 6.4; confidence interval, 1.3-31.8) were the most important risk factors for persistent deficit at 1 year. Early surgery resulted in a faster recovery of motor deficit accompanying sciatica compared with prolonged conservative treatment but the difference was no longer significant during the final follow-up examination at 1 year. Copyright © 2014 Elsevier Inc. All rights reserved.
Motor Skill Learning in Children.
ERIC Educational Resources Information Center
Gabbard, Carl P.
The purpose of this article is to briefly describe schema theory and indicate its relevance to early childhood development, with specific reference to children's acquisition of motor skills. Schema theory proposes an explanation of how individuals learn and perform a seemingly endless variety of movements. According to Schmidt (1975), goal…
Bath, Kevin G; Pimentel, Tiare
2017-05-01
Valproate has been used for over 30years as a first-line treatment for epilepsy. In recent years, prenatal exposure to valproate has been associated with teratogenic effects, limiting its use in women that are pregnant or of childbearing age. However, despite its potential detrimental effects on development, valproate continues to be prescribed at high rates in pediatric populations in some countries. Animal models allow us to test hypotheses regarding the potential effects of postnatal valproate exposure on neurobehavioral development, as well as identify potential mechanisms mediating observed effects. Here, we tested the effect of early postnatal (P4-P11) valproate exposure (100mg/kg and 200mg/kg) on motor and affective development in two strains of mice, SVE129 and C57Bl/6N. We also assessed the effect of early valproate exposure on regional BDNF protein levels, a potential target of valproate, and mediator of neurodevelopmental outcomes. We found that early life valproate exposure led to significant motor impairments in both SVE129 and C57Bl/6N mice. Both lines of mice showed significant delays in weight gain, as well as impairments in the righting reflex (P7-8), wire hang (P17), open field (P12 and P21), and rotarod (P25 and P45) tasks. Interestingly, some of the early locomotor effects were strain- and dose-dependent. We observed no effects of valproate on early markers of anxiety-like behavior. Importantly, early life valproate exposure had significant effects on regional BDNF expression, leading to a near 50% decrease in BDNF levels in the cerebellum of both strains of mice, while not impacting hippocampal BDNF protein levels. These observations indicate that postnatal exposure to valproate may have significant, and region-specific effects, on neural and behavioral development, with specific consequences for cerebellar development and motor function. Copyright © 2017 Elsevier Inc. All rights reserved.
Sedlak, Petr; Pařízková, Jana; Daniš, Robert; Dvořáková, Hana; Vignerová, Jana
2015-01-01
Secular trends of adiposity and motor development in preschool children since the fifties of the last century up to the beginning of this millennium were analyzed so as to reveal possible changes due to continuously differentiating lifestyle. In preschool children (n = 3678) height, weight, skinfold thickness over triceps, subscapular, and suprailiac were measured by Harpenden caliper in 1957, 1977, 1980, 1985, 1990, and 2012. Simultaneously, motor performance was tested by evaluating the achievements in broad jump and throwing a ball, as a marker of adaptation to changing level of physical activity, free games, and exercise. Along the period of five decades the values of skinfold thickness increased significantly until 2012, mainly on the trunk. Simultaneously, the level of motor performance significantly decreased. Modifications of the way of life during the mentioned five decades characterized by sedentarism and inadequate food intake as related to energy output influenced negatively both adiposity and motor performance already in preschool children. Mostly increased deposition of fat on the trunk which is considered as a marker of possible development of metabolic syndrome was apparent already in preschool age, indicating the importance of early intervention concerning also physical activity and availability for exercise since early life. PMID:26380296
Psychomotor development and psychopathology in childhood.
de Raeymaecker, Dirk M J
2006-01-01
The sensorimotor developmental phase, leading to a gradual acquisition of skilled actions, is of crucial importance for the young child and its growing sense of competence. Three vital steps in motor development are mentioned: first, the smooth and spontaneous movements of the "graceful and elegant" baby, expression of his well-being and vitality, with their profound effect on the mother-infant relationship; second, the emergence of intentional and goal-oriented acts leading to Funktionslust and playful repetitions; and finally, the development of symbolic acts and increasing technical capacity to use playthings in imaginative play. The psychodynamic significance of the most important motor milestones for the child's ego development is set out. Motility is one of the most important avenues for exercising such functions as mastery, integration, reality testing (self-preservation), and control of impulses. One may consider this early childhood period of rapid motor development as the motor phase of ego and libido development. Hence, many forms of developmental psychopathology are attended with motor impairment or insufficient motor mastery and integration. From that clinical perspective pass in review: perinatal complications and motor disturbance, attention deficit/hyperactivity disorder, dissociated motor development, low birth weight children and their developmental difficulties, developmental coordination disorder, aspects of pervasive developmental disorder, and stereotypic movement disorder.
Superconducting homopolar motor and conductor development
NASA Astrophysics Data System (ADS)
Gubser, Donald U.
1996-10-01
The U.S. Navy has been developing superconducting homopolar motors for ship applications since 1969; a successful at-sea demonstration of the first motor, using NbTi wire for the magnet, was achieved in the early 1980s. Recently, this same motor was used as a test bed to demonstrate progress in high-critical-temperature superconducting magnet technology using bismuth-strontium- calcium-copper-oxide (BSCCO) compounds. In the fall of 1995, this motor achieved a performance of 124 kW operating at a temperature of 4.2 K and 91 kW while operating at 28 K. Future tests are scheduled using new magnets with conductors of both the 2223 and the 2212 BSCCO phases. This article describes the advantages of superconducting propulsion and recent progress in the development of BSCCO conductors for use in Navy power systems.
Fine motor skill predicts expressive language in infant siblings of children with autism.
LeBarton, Eve Sauer; Iverson, Jana M
2013-11-01
We investigated whether fine motor and expressive language skills are related in the later-born siblings of children with autism (heightened-risk, HR infants) who are at increased risk for language delays. We observed 34 HR infants longitudinally from 12 to 36 months. We used parent report and standardized observation measures to assess fine motor skill from 12 to 24 months in HR infants (Study 1) and its relation to later expressive vocabulary at 36 months in HR infants (Study 2). In Study 1, we also included 25 infants without a family history of autism to serve as a normative comparison group for a parent-report fine motor measure. We found that HR infants exhibited fine motor delays between 12 and 24 months and expressive vocabulary delays at 36 months. Further, fine motor skill significantly predicted expressive language at 36 months. Fine motor and expressive language skills are related early in development in HR infants, who, as a group, exhibit risk for delays in both. Our findings highlight the importance of considering fine motor skill in children at risk for language impairments and may have implications for early identification of expressive language difficulties. © 2013 John Wiley & Sons Ltd.
Podgorac, Jelena; Pešić, Vesna; Pavković, Željko; Martać, Ljiljana; Kanazir, Selma; Filipović, Ljupka; Sekulić, Slobodan
2016-09-15
Clinical research has identified developmental delay and physical malformations in children prenatally exposed to the antiepileptic drug (AED) valproic acid (VPA). However, the early signs of neurodevelopmental deficits, their evolution during postnatal development and growth, and the dose effects of VPA are not well understood. The present study aimed to examine the influence of maternal exposure to a wide dose range (50, 100, 200 and 400mg/kg/day) of VPA during breeding and gestation on early physical and neuromotor development in mice offspring. Body weight gain, eye opening, the surface righting reflex (SRR) and tail suspension test (TST) were examined in the offspring at postnatal days 5, 10 and 15. We observed that: (1) all tested doses of VPA reduced the body weight of the offspring and the timing of eye opening; (2) offspring exposed to VPA displayed immature forms of righting and required more time to complete the SRR; (3) latency for the first immobilization in the TST is shorter in offspring exposed to higher doses of VPA; however, mice in all groups exposed to VPA exhibited atypical changes in this parameter during the examined period of maturation; (4) irregularities in swinging and curling activities were observed in animals exposed to higher doses of VPA. This study points to delayed somatic development and postponed maturation of the motor system in all of the offspring prenatally exposed to VPA, with stronger effects observed at higher doses. The results implicate that the strategy of continuous monitoring of general health and achievements in motor milestones during the early postnatal development in prenatally VPA-exposed offspring, irrespectively of the dose applied, could help to recognize early developmental irregularities. Copyright © 2016 Elsevier B.V. All rights reserved.
The role of motor and nutritional individuality in childhood obesity.
Parízková, J
2012-03-01
Nutritional and motor individuality vary significantly among human subjects, and their mutal relationship is decisive for a desirable energy balance and turnover with regard to body composition, physical fitness level and health. Early establishment of optimal individualities, with regard to genetic, epigenetic and other factors which influence the organism early in life is desirable for a positive life-long health prognosis and life expectancy. Approaches for the evaluation of both nutritional and motor individualities have been elaborated as an important starting point for their positive development and eventual modification. This should aim to achieve not only prevention of diseases, but also to improve health prevention and achieving the status of "positive health".
ERIC Educational Resources Information Center
Brown, Judy; And Others
1981-01-01
Two approaches to facilitating perceptual-motor development in children ages 4-6 were investigated. Fifteen children (the experimental group) received integrated physical education/music instruction based on Kodaly and Dalcroze (Eurhythmics) concepts. The control group received movement exploration and self-testing instruction. Significant…
Preliminary Validation of the Motor Skills Rating Scale
ERIC Educational Resources Information Center
Cameron, Claire E.; Chen, Wei-Bing; Blodgett, Julia; Cottone, Elizabeth A.; Mashburn, Andrew J.; Brock, Laura L.; Grissmer, David
2012-01-01
This study examined psychometric properties of the Motor Skills Rating Scale (MSRS), a questionnaire designed for classroom teachers of children in early elementary school. Items were developed with the guidance of two occupational therapists, and factor structure was examined with an exploratory factor analysis (EFA). The resulting model showed…
Robot Competence Development by Constructive Learning
NASA Astrophysics Data System (ADS)
Meng, Q.; Lee, M. H.; Hinde, C. J.
This paper presents a constructive learning approach for developing sensor-motor mapping in autonomous systems. The system’s adaptation to environment changes is discussed and three methods are proposed to deal with long term and short term changes. The proposed constructive learning allows autonomous systems to develop network topology and adjust network parameters. The approach is supported by findings from psychology and neuroscience especially during infants cognitive development at early stages. A growing radial basis function network is introduced as a computational substrate for sensory-motor mapping learning. Experiments are conducted on a robot eye/hand coordination testbed and results show the incremental development of sensory-motor mapping and its adaptation to changes such as in tool-use.
Robot Competence Development by Constructive Learning
NASA Astrophysics Data System (ADS)
Meng, Q.; Lee, M. H.; Hinde, C. J.
This paper presents a constructive learning approach for developing sensor-motor mapping in autonomous systems. The system's adaptation to environment changes is discussed and three methods are proposed to deal with long term and short term changes. The proposed constructive learning allows autonomous systems to develop network topology and adjust network parameters. The approach is supported by findings from psychology and neuroscience especially during infants cognitive development at early stages. A growing radial basis function network is introduced as a computational substrate for sensory-motor mapping learning. Experiments are conducted on a robot eye/hand coordination testbed and results show the incremental development of sensory-motor mapping and its adaptation to changes such as in tool-use.
Choi, Boin; Leech, Kathryn A; Tager-Flusberg, Helen; Nelson, Charles A
2018-04-12
A growing body of research suggests that fine motor abilities are associated with skills in a variety of domains in both typical and atypical development. In this study, we investigated developmental trajectories of fine motor skills between 6 and 24 months in relation to expressive language outcomes at 36 months in infants at high and low familial risk for autism spectrum disorder (ASD). Participants included 71 high-risk infants without ASD diagnoses, 30 high-risk infants later diagnosed with ASD, and 69 low-risk infants without ASD diagnoses. As part of a prospective, longitudinal study, fine motor skills were assessed at 6, 12, 18, and 24 months of age and expressive language outcomes at 36 months using the Mullen Scales of Early Learning. Diagnosis of ASD was determined at the infant's last visit to the lab (18, 24, or 36 months) using the Autism Diagnostic Observation Schedule. Hierarchical linear modeling revealed that high-risk infants who later developed ASD showed significantly slower growth in fine motor skills between 6 and 24 months, compared to their typically developing peers. In contrast to group differences in growth from age 6 months, cross-sectional group differences emerged only in the second year of life. Also, fine motor skills at 6 months predicted expressive language outcomes at 3 years of age. These results highlight the importance of utilizing longitudinal approaches in measuring early fine motor skills to reveal subtle group differences in infancy between ASD high-risk and low-risk infant populations and to predict their subsequent language outcomes.
Juenger, Hendrik; Koerte, Inga K; Muehlmann, Marc; Mayinger, Michael; Mall, Volker; Krägeloh-Mann, Ingeborg; Shenton, Martha E; Berweck, Steffen; Staudt, Martin; Heinen, Florian
2014-11-01
Early unilateral brain lesions can lead to different types of corticospinal (re-)organization of motor networks. In one group of patients, the contralesional hemisphere exerts motor control not only over the contralateral non-paretic hand but also over the (ipsilateral) paretic hand, as the primary motor cortex is (re-)organized in the contralesional hemisphere. Another group of patients with early unilateral lesions shows "normal" contralateral motor projections starting in the lesioned hemisphere. We investigated how these different patterns of cortical (re-)organization affect interhemispheric transcallosal connectivity in patients with congenital hemiparesis. Eight patients with ipsilateral motor projections (group IPSI) versus 7 patients with contralateral motor projections (group CONTRA) underwent magnetic resonance diffusion tensor imaging (DTI). The corpus callosum (CC) was subdivided in 5 areas (I-V) in the mid-sagittal slice and volumetric information. The following diffusion parameters were calculated: fractional anisotropy (FA), trace, radial diffusivity (RD), and axial diffusivity (AD). DTI revealed significantly lower FA, increased trace and RD for group IPSI compared to group CONTRA in area III of the corpus callosum, where transcallosal motor fibers cross the CC. In the directly neighboring area IV, where transcallosal somatosensory fibers cross the CC, no differences were found for these DTI parameters between IPSI and CONTRA. Volume of callosal subsections showed significant differences for area II (connecting premotor cortices) and III, where group IPSI had lower volume. The results of this study demonstrate that the callosal microstructure in patients with congenital hemiparesis reflects the type of cortical (re-)organization. Early lesions disrupting corticospinal motor projections to the paretic hand consecutively affect the development or maintenance of transcallosal motor fibers. Copyright © 2014 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.
Counting on fine motor skills: links between preschool finger dexterity and numerical skills.
Fischer, Ursula; Suggate, Sebastian P; Schmirl, Judith; Stoeger, Heidrun
2017-10-26
Finger counting is widely considered an important step in children's early mathematical development. Presumably, children's ability to move their fingers during early counting experiences to aid number representation depends in part on their early fine motor skills (FMS). Specifically, FMS should link to children's procedural counting skills through consistent repetition of finger-counting procedures. Accordingly, we hypothesized that (a) FMS are linked to early counting skills, and (b) greater FMS relate to conceptual counting knowledge (e.g., cardinality, abstraction, order irrelevance) via procedural counting skills (i.e., one-one correspondence and correctness of verbal counting). Preschool children (N = 177) were administered measures of procedural counting skills, conceptual counting knowledge, FMS, and general cognitive skills along with parent questionnaires on home mathematics and fine motor environment. FMS correlated with procedural counting skills and conceptual counting knowledge after controlling for cognitive skills, chronological age, home mathematics and FMS environments. Moreover, the relationship between FMS and conceptual counting knowledge was mediated by procedural counting skills. Findings suggest that FMS play a role in early counting and therewith conceptual counting knowledge. © 2017 John Wiley & Sons Ltd.
Montgomery, Erwin B; Koller, William C; LaMantia, Theodora J K; Newman, Mary C; Swanson-Hyland, Elizabeth; Kaszniak, Alfred W; Lyons, Kelly
2000-05-01
We developed a test battery as an inexpensive and objective aid for the early diagnosis of idiopathic Parkinson's disease (iPD) and its differential diagnoses. The test battery incorporates tests of motor function, olfaction, and mood. In the motor task, a wrist flexion-and-extension task to different targets, movement velocities were recorded. Olfaction was tested with the University of Pennsylvania Smell Identification Test. Mood was assessed with the Beck Depression Inventory. An initial regression model was developed from the results of 19 normal control subjects and 18 patients with early, mild, probable iPD. Prospective application to an independent validation set of 122 normal control subjects and 103 patients resulted in an 88% specificity rate and 69% sensitivity rate, with an area under the Receiver Operator Characteristic curve of 0.87. Copyright © 2000 Movement Disorder Society.
Development in children with achondroplasia: a prospective clinical cohort study.
Ireland, Penelope J; Donaghey, Samantha; McGill, James; Zankl, Andreas; Ware, Robert S; Pacey, Verity; Ault, Jenny; Savarirayan, Ravi; Sillence, David; Thompson, Elizabeth; Townshend, Sharron; Johnston, Leanne M
2012-06-01
Achondroplasia is characterized by delays in the development of communication and motor skills. While previously reported developmental profiles exist across gross motor, fine motor, feeding, and communication skills, there has been no prospective study of development across multiple areas simultaneously. This Australasian population-based study utilized a prospective questionnaire to quantify developmental data for skills in children born from 2000 to 2009. Forty-eight families from Australia and New Zealand were asked to report every 3 months on their child's attainment of 41 milestones. Results include reference to previously available prospective information. Information from questionnaires was used to develop an achondroplasia-specific developmental recording form. The 25th, 50th, 75th, and 90th centiles were plotted to offer clear guidelines for development across gross motor, fine motor, feeding, and communication skills in children with achondroplasia. Consistent with results from previous research, children with achondroplasia are delayed in development of gross motor and ambulatory skills. Young children with achondroplasia demonstrate a number of unique movement strategies that appear compensatory for the biomechanical changes. While delays were seen in development of later communication items, there were fewer delays seen across development of early communication, fine motor, and feeding skills. © The Authors. Developmental Medicine & Child Neurology © 2012 Mac Keith Press.
Casnar, Christy L; Janke, Kelly M; van der Fluit, Faye; Brei, Natalie G; Klein-Tasman, Bonita P
2014-01-01
Neurofibromatosis type 1 (NF1) is one of the most common genetic disorders presenting in approximately 1 in 3,500 live births. NF1 is a highly variable condition with a large number of complications. A common complication is neuropsychological problems, including developmental delays and learning difficulties that affect as many as 60% of patients. Research has suggested that school-aged children with NF1 often have poorer fine motor skills and are at greater risk for attention difficulties than the general population. Thirty-eight children with NF1 and 23 unaffected children between the ages of 4 and 6 years, who are enrolled in a study of early development in NF1, were included in the present study. Varying levels of fine motor functioning were examined (simple to complex fine motor tasks). For children with NF1, significant difficulties were demonstrated on lab-based mid-level and complex fine motor tasks, even after controlling for nonverbal reasoning abilities, but not on simple fine motor tasks. Parental report also indicated difficulties in everyday adaptive fine motor functioning. No significant correlations were found between complex fine motor ability and attention difficulties. This study provides much needed descriptive data on the early emergence of fine motor difficulties and attention difficulties in young children with NF1.
ERIC Educational Resources Information Center
Gupta, Sarita
1990-01-01
Protein-energy malnutrition in early childhood, as seen in many developing countries, influences subsequent behavior and intellectual performance. These impairments are associated with further reduction in fine motor skills and academic performance. (Author)
Guidelines for Making a Video Presentation on Early Development.
ERIC Educational Resources Information Center
Cooper, Carolyn S.; And Others
This paper discusses the production of videotape recordings illustrating developmental milestones of early childhood to serve as a reference point in working with parents or staff caring for young children who have disabilities. Procedures for making a video presentation include the following steps: select a topic (such as motor development,…
Jackson, Barbara J; Needelman, Howard; Roberts, Holly; Willet, Sandy; McMorris, Carol
2012-01-01
To identify the efficacy of the Bayley Scales of Infant and Toddler Development, Third Edition (BSID-III), Screening Test-Gross Motor Subtest (GMS) in identifying infants who are accepted for early intervention services. This retrospective study included 93 infants with a neonatal intensive care experience who participated in a 6-month developmental assessment follow-up visit. All infants were examined using the BSID-III Screening Test-GMS and the Alberta Infant Motor Scale. A binary logical regression analysis was used to determine the best predictors of acceptance status in this sample. The BSID-III Screening Test-GMS accounted for a significant portion of the variance in acceptance status. The results suggest that the BSID-III Screening Test-GMS has great applicability for transdisciplinary/interdisciplinary teams as it effectively identified children who were eligible for early intervention.
Wu, Ying-Chin; Hsieh, Wu-Shiun; Hsu, Chyong-Hsin; Chiu, Nan-Chang; Chou, Hung-Chieh; Chen, Chien-Yi; Peng, Shinn-Forng; Hung, Han-Yang; Chang, Jui-Hsing; Chen, Wei J; Jeng, Suh-Fang
2013-05-01
The objective of this study was to examine the relationships of Doppler cerebral blood flow velocity (CBFV) asymmetry measures with developmental outcomes in term infants. Doppler CBFV parameters (peak systolic velocity [PSV] and mean velocity [MV]) of the bilateral middle cerebral arteries of 52 healthy term infants were prospectively examined on postnatal days 1-5, and then their motor, cognitive and language development was evaluated with the Bayley Scales of Infant and Toddler Development, Third Edition, at 6, 12, 18 and 24 months of age. The left CBFV asymmetry measure (PSV or MV) was calculated by subtracting the right-side value from the left-side value. Left CBFV asymmetry measures were significantly positively related to motor scores at 6 (r = 0.3-0.32, p < 0.05) and 12 (r = 0.35, p < 0.05) months of age, but were not related to cognitive or language outcome. Thus, the leftward hemodynamic status of the middle cerebral arteries, as measured by cranial Doppler ultrasound in the neonatal period, predicts early motor outcome in term infants. Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Myer, Gregory D; Jayanthi, Neeru; DiFiori, John P; Faigenbaum, Avery D; Kiefer, Adam W; Logerstedt, David; Micheli, Lyle J
2016-01-01
Many coaches, parents, and children believe that the best way to develop elite athletes is for them to participate in only 1 sport from an early age and to play it year-round. However, emerging evidence to the contrary indicates that efforts to specialize in 1 sport may reduce opportunities for all children to participate in a diverse year-round sports season and can lead to lost development of lifetime sports skills. Early sports specialization may also reduce motor skill development and ongoing participation in games and sports as a lifestyle choice. The purpose of this review is to employ the current literature to provide evidence-based alternative strategies that may help to optimize opportunities for all aspiring young athletes to maximize their health, fitness, and sports performance. Nonsystematic review with critical appraisal of existing literature. Clinical review. Level 4. Based on the current evidence, parents and educators should help provide opportunities for free unstructured play to improve motor skill development and youth should be encouraged to participate in a variety of sports during their growing years to influence the development of diverse motor skills. For those children who do choose to specialize in a single sport, periods of intense training and specialized sport activities should be closely monitored for indicators of burnout, overuse injury, or potential decrements in performance due to overtraining. Last, the evidence indicates that all youth should be involved in periodized strength and conditioning (eg, integrative neuromuscular training) to help them prepare for the demands of competitive sport participation, and youth who specialize in a single sport should plan periods of isolated and focused integrative neuromuscular training to enhance diverse motor skill development and reduce injury risk factors. B. © 2015 The Author(s).
Latent Class Analysis of Early Developmental Trajectory in Baby Siblings of Children with Autism
Landa, Rebecca J.; Gross, Alden L.; Stuart, Elizabeth A.; Bauman, Margaret
2012-01-01
Background Siblings of children with autism (sibs-A) are at increased genetic risk for autism spectrum disorders (ASD) and milder impairments. To elucidate diversity and contour of early developmental trajectories exhibited by sibs-A, regardless of diagnostic classification, latent class modeling was used. Methods Sibs-A (n=204) were assessed with the Mullen Scales of Early Learning from age 6–36 months. Mullen T scores served as dependent variables. Outcome classifications at age 36 months included: ASD (n=52); non-ASD social/communication delay (broader autism phenotype; BAP) (n=31); and unaffected (n=121). Child-specific patterns of performance were studied using latent class growth analysis. Latent class membership was then related to diagnostic outcome through estimation of within-class proportions of children assigned to each diagnostic classification. Results A 4-class model was favored. Class 1 represented accelerated development and consisted of 25.7% of the sample, primarily unaffected children. Class 2 (40.0% of the sample), was characterized by normative development with above-average nonverbal cognitive outcome. Class 3 (22.3% of the sample) was characterized by receptive language, and gross and fine motor delay. Class 4 (12.0% of the sample), was characterized by widespread delayed skill acquisition, reflected by declining trajectories. Children with an outcome diagnosis of ASD were spread across Classes 2, 3, and 4. Conclusions Results support a category of ASD that involves slowing in early non-social development. Receptive language and motor development is vulnerable to early delay in sibs-A with and without ASD outcomes. Non-ASD sibs-A are largely distributed across classes depicting average or accelerated development. Developmental trajectories of motor, language, and cognition appear independent of communication and social delays in non-ASD sibs-A. PMID:22574686
Brown, J; Sherrill, C; Gench, B
1981-08-01
Two approaches to facilitating perceptual-motor development in children, ages 4 to 6 yr., were investigated. The experimental group (n = 15) received 24 sessions of integrated physical education/music instruction based upon concepts of Kodaly and Dalcroze. The control group (n = 15) received 24 sessions of movement exploration and self-testing instruction. Analysis of covariance indicated that significant improvement occurred only in the experimental group, with discharges changes in the motor, auditory, and language aspects of perceptual-motor performance as well as total score.
The historical development of neuroscience in physical rehabilitation.
Cohen, H; Reed, K L
1996-01-01
Neuroscience and occupational therapy in physical rehabilitation have developed along parallel tracks. As physicians began to study the neural bases of motor control, they also began to reconsider the sequelae of "hopeless" diagnoses as conditions that they could influence. This change in some physicians' understanding of the neural mechanisms of motor control influenced other clinicians' ideas about patient care. Early work on treatment of patients with cerebral palsy and polio led to improvements in treatment approaches used to facilitate motor skill and functional motor ability in patients with upper motor neuron disorders. From the 1950s to the present, therapists have refined their treatment techniques as knowledge from neuroscience has become available. A few therapists, who are gradually increasing in number, have turned to the laboratory to study basic neuroscience problems that affect clinical treatment. This article describes the development of neuroscience research and neurorehabilitation theories and indicates common themes.
MacDonald, Megan; Ross, Samantha; McIntyre, Laura Lee; Tepfer, Amanda
2017-04-01
Young children with developmental disabilities experience known deficits in salient child behaviors, such as social behaviors, communication, and aspects of daily living, behaviors that generally improve with chronological age. The purpose of this study was to examine the mediating effects of motor skills on relations of age and salient child behaviors in a group of young children with developmental disabilities, thus tapping into the potential influences of motor skills in the development of salient child behaviors. One hundred thirteen young children with developmental disabilities participated in this study. Independent mediation analysis, with gender as a moderator between the mediating and outcome variable, indicated that motor skills meditated relations between age and socialization, communication, and daily living skills in young male children with developmental disabilities, but not female participants. Findings suggest motor skill content needs to be considered in combination with other child behaviors commonly focused on in early intervention.
Variation in vocal-motor development in infant siblings of children with autism.
Iverson, Jana M; Wozniak, Robert H
2007-01-01
In this study we examined early motor, vocal, and communicative development in a group of younger siblings of children diagnosed with autism (Infant Siblings). Infant Siblings and no-risk comparison later-born infants were videotaped at home with a primary caregiver each month from 5 to 14 months, with follow-up at 18 months. As a group, Infant Siblings were delayed in the onset of early developmental milestones and spent significantly less time in a greater number of postures, suggestive of relative postural instability. In addition, they demonstrated attenuated patterns of change in rhythmic arm activity around the time of reduplicated babble onset; and they were highly likely to exhibit delayed language development at 18 months.
Performance of motor imitation in children with and without dyspraxia.
Ruttanathantong, Korrawan; Siritaratiwat, Wantana; Sriphetcharawut, Sarinya; Emasithi, Alongkot; Saengsuwan, Jiamjit; Saengsuwan, Jittima
2013-07-01
Motor imitation is truly essential for young children to learn new motor skills, social behavior and skilled acts or praxis. The present study aimed to investigate motor imitation ability between typically-developing children and dyspraxic children and to examine the development trends in both children groups. The comparison ofmotor imitation was studied in 55 typically-developing children and 59 dyspraxic children aged 5 to 8 years. The Motor Imitation subtest consisted of two sections, imitation of postures and imitation of verbal instructions. Typically-developing children and dyspraxic children were examined for developmental trends. The independent samples t-test was used to analyze the differences between both groups. Two-way analysis of variance (ANOVA) was used to analyze inter-age differences for each age group. The results revealed significant differences between dyspraxic and typically-developing children. Both typically-developing and dyspraxic children demonstrated age trends. The older children scored higher than younger children. Imitation is a primary learning strategy of young children. It is essential that children with dyspraxia receive early detection and need effective intervention. Typically-developing children and dyspraxic children showed higher mean score on the Imitation of Posture section than the Verbal Instructions section. Motor imitation competency, therefore, changes and improves with age.
Boyd, Roslyn N; Jordan, Rachel; Pareezer, Laura; Moodie, Anne; Finn, Christine; Luther, Belinda; Arnfield, Evyn; Pym, Aaron; Craven, Alex; Beall, Paula; Weir, Kelly; Kentish, Megan; Wynter, Meredith; Ware, Robert; Fahey, Michael; Rawicki, Barry; McKinlay, Lynne; Guzzetta, Andrea
2013-06-11
Cerebral palsy (CP) results from a static brain lesion during pregnancy or early life and remains the most common cause of physical disability in children (1 in 500). While the brain lesion is static, the physical manifestations and medical issues may progress resulting in altered motor patterns. To date, there are no prospective longitudinal studies of CP that follow a birth cohort to track early gross and fine motor development and use Magnetic Resonance Imaging (MRI) to determine the anatomical pattern and likely timing of the brain lesion. Existing studies do not consider treatment costs and outcomes. This study aims to determine the pathway(s) to motor outcome from diagnosis at 18 months corrected age (c.a.) to outcome at 5 years in relation to the nature of the brain lesion (using structural MRI). This prospective cohort study aims to recruit a total of 240 children diagnosed with CP born in Victoria (birth years 2004 and 2005) and Queensland (birth years 2006-2009). Children can enter the study at any time between 18 months to 5 years of age and will be assessed at 18, 24, 30, 36, 48 and 60 months c.a. Outcomes include gross motor function (GMFM-66 & GMFM-88), Gross Motor Function Classification System (GMFCS); musculoskeletal development (hip displacement, spasticity, muscle contracture), upper limb function (Manual Ability Classification System), communication difficulties using Communication and Symbolic Behaviour Scales-Developmental Profile (CSBS-DP), participation using the Paediatric Evaluation of Disability Inventory (PEDI), parent reported quality of life and classification of medical and allied health resource use and determination of the aetiology of CP using clinical evaluation combined with MRI. The relationship between the pathways to motor outcome and the nature of the brain lesion will be analysed using multiple methods including non-linear modelling, multilevel mixed-effects models and generalised estimating equations. This protocol describes a large population-based study of early motor development and brain structure in a representative sample of preschool aged children with CP, using direct clinical assessment. The results of this study will be published in peer reviewed journals and presented at relevant international conferences. Australia and New Zealand Clinical Trials Register (ACTRN1261200169820).
2013-01-01
Background Cerebral palsy (CP) results from a static brain lesion during pregnancy or early life and remains the most common cause of physical disability in children (1 in 500). While the brain lesion is static, the physical manifestations and medical issues may progress resulting in altered motor patterns. To date, there are no prospective longitudinal studies of CP that follow a birth cohort to track early gross and fine motor development and use Magnetic Resonance Imaging (MRI) to determine the anatomical pattern and likely timing of the brain lesion. Existing studies do not consider treatment costs and outcomes. This study aims to determine the pathway(s) to motor outcome from diagnosis at 18 months corrected age (c.a.) to outcome at 5 years in relation to the nature of the brain lesion (using structural MRI). Methods This prospective cohort study aims to recruit a total of 240 children diagnosed with CP born in Victoria (birth years 2004 and 2005) and Queensland (birth years 2006–2009). Children can enter the study at any time between 18 months to 5 years of age and will be assessed at 18, 24, 30, 36, 48 and 60 months c.a. Outcomes include gross motor function (GMFM-66 & GMFM-88), Gross Motor Function Classification System (GMFCS); musculoskeletal development (hip displacement, spasticity, muscle contracture), upper limb function (Manual Ability Classification System), communication difficulties using Communication and Symbolic Behaviour Scales-Developmental Profile (CSBS-DP), participation using the Paediatric Evaluation of Disability Inventory (PEDI), parent reported quality of life and classification of medical and allied health resource use and determination of the aetiology of CP using clinical evaluation combined with MRI. The relationship between the pathways to motor outcome and the nature of the brain lesion will be analysed using multiple methods including non-linear modelling, multilevel mixed-effects models and generalised estimating equations. Discussion This protocol describes a large population-based study of early motor development and brain structure in a representative sample of preschool aged children with CP, using direct clinical assessment. The results of this study will be published in peer reviewed journals and presented at relevant international conferences. Trial registration Australia and New Zealand Clinical Trials Register (ACTRN1261200169820) PMID:23758951
Houwen, Suzanne; Visser, Linda; van der Putten, Annette; Vlaskamp, Carla
2016-01-01
It is generally agreed that cognitive and language development are dependent on the emergence of motor skills. As the literature on this issue concerning children with developmental disabilities is scarce, we examined the interrelationships between motor, cognitive, and language development in children with intellectual and developmental disabilities (IDD) and compared them to those in children without IDD. In addition, we investigated whether these relationships differ between children with different levels of cognitive delay. Seventy-seven children with IDD (calendar age between 1;0 and 9;10 years; mean developmental age: 1;8 years) and 130 typically developing children (calendar age between 0;3 and 3;6 years; mean developmental age: 1;10 years) were tested with the Dutch Bayley Scales of Infant and Toddler Development, Third Edition, which assesses development across three domains using five subscales: fine motor development, gross motor development (motor), cognition (cognitive), receptive communication, and expressive communication (language). Results showed that correlations between the motor, cognitive, and language domains were strong, namely .61 to .94 in children with IDD and weak to strong, namely .24 to .56 in children without IDD. Furthermore, the correlations showed a tendency to increase with the severity of IDD. It can be concluded that both fine and gross motor development are more strongly associated with cognition, and consequently language, in children with IDD than in children without IDD. The findings of this study emphasize the importance of early interventions that boost both motor and cognitive development, and suggest that such interventions will also enhance language development. Copyright © 2016 Elsevier Ltd. All rights reserved.
Early Learning in Psychomotor Training of Down's Syndrome.
ERIC Educational Resources Information Center
Sanz Aparicio, Maria Teresa; Menendez Balana, Javier
2003-01-01
Compared effectiveness of modeling from a clinician to that of written instructions to train parents to use a motor stimulation program with their infants with Down syndrome. Obtained motor development quotients prior to the program and at 6, 12, 18, and 24 months. Found that infants of parents trained by modeling obtained higher motor…
The Motor Core of Speech: A Comparison of Serial Organization Patterns in Infants and Languages.
ERIC Educational Resources Information Center
MacNeilage, Peter F.; Davis, Barbara L.; Kinney, Ashlynn; Matyear, Christine L.
2000-01-01
Presents evidence for four major design features of serial organization of speech arising from comparison of babbling and early speech with patterns in ten languages. Maintains that no explanation for the design features is available from Universal Grammar; except for intercyclical consonant repetition development, perceptual-motor learning seems…
ORNL Lightweighting Research Featured on MotorWeek
None
2018-06-06
PBS MotorWeek, television's longest running automotive series, featured ORNL lightweighting research for vehicle applications in an episode that aired in early April 2014. The crew captured footage of research including development of new metal alloys, additive manufacturing, carbon fiber production, advanced batteries, power electronics components, and neutron imaging applications for materials evaluation.
Early-Stage Research & Development | Transportation Research | NREL
thermal conductivity of packed copper wire used in electric-drive vehicle motor applications provides a research on thermal management in copper-wound electric motors is helping to improve the performance and reliability of electric-drive vehicles. Photo by Kevin Bennion, NREL. Anisotropic Thermal Measurement Study
Oerbeck, Beate; Sundet, Kjetil; Kase, Bengt F; Heyerdahl, Sonja
2003-10-01
To describe intellectual, motor, and school-associated outcome in young adults with early treated congenital hypothyroidism (CH) and to study the association between long-term outcome and CH variables acting at different points in time during early development (CH severity and early L-thyroxine treatment levels [0-6 years]). Neuropsychological tests were administered to all 49 subjects with CH identified during the first 3 years of the Norwegian neonatal screening program (1979-1981) at a mean age of 20 years and to 41 sibling control subjects (mean age: 21 years). The CH group attained significantly lower scores than control subjects on intellectual, motor, and school-associated tests (total IQ: 102.4 [standard deviation: 13] vs 111.4 [standard deviation: 13]). Twelve (24%) of the 49 CH subjects had not completed senior high school, in contrast to 6% of the control subjects. CH severity (pretreatment serum thyroxine [T4]) correlated primarily with motor tests, whereas early L-thyroxine treatment levels were related to verbal IQ and school-associated tests. In multiple regression analysis, initial L-thyroxine dose (beta = 0.32) and mean serum T4 level during the second year (beta = 0.48) predicted Verbal IQ, whereas mean serum T4 level during the second year (beta = 0.44) predicted Arithmetic. Long-term outcome revealed enduring cognitive and motor deficits in young adults with CH relative to control subjects. Verbal functions and Arithmetic were associated with L-thyroxine treatment variables, suggesting that more optimal treatment might be possible. Motor outcome was associated with CH severity, indicating a prenatal effect.
Roebers, Claudia M; Röthlisberger, Marianne; Neuenschwander, Regula; Cimeli, Patrizia; Michel, Eva; Jäger, Katja
2014-02-01
Both theoretically and empirically there is a continuous interest in understanding the specific relation between cognitive and motor development in childhood. In the present longitudinal study including three measurement points, this relation was targeted. At the beginning of the study, the participating children were 5-6-year-olds. By assessing participants' fine motor skills, their executive functioning, and their non-verbal intelligence, their cross-sectional and cross-lagged interrelations were examined. Additionally, performance in these three areas was used to predict early school achievement (in terms of mathematics, reading, and spelling) at the end of participants' first grade. Correlational analyses and structural equation modeling revealed that fine motor skills, non-verbal intelligence and executive functioning were significantly interrelated. Both fine motor skills and intelligence had significant links to later school achievement. However, when executive functioning was additionally included into the prediction of early academic achievement, fine motor skills and non-verbal intelligence were no longer significantly associated with later school performance suggesting that executive functioning plays an important role for the motor-cognitive performance link. Copyright © 2013 Elsevier B.V. All rights reserved.
Mentis, George Z.; Blivis, Dvir; Liu, Wenfang; Drobac, Estelle; Crowder, Melissa E.; Kong, Lingling; Alvarez, Francisco J.; Sumner, Charlotte J.; O'Donovan, Michael J.
2011-01-01
SUMMARY To define alterations of neuronal connectivity that occur during motor neuron degeneration, we characterized the function and structure of spinal circuitry in spinal muscular atrophy (SMA) model mice. SMA motor neurons show reduced proprioceptive reflexes that correlate with decreased number and function of synapses on motor neuron somata and proximal dendrites. These abnormalities occur at an early stage of disease in motor neurons innervating proximal hindlimb muscles and medial motor neurons innervating axial muscles, but only at end-stage disease in motor neurons innervating distal hindlimb muscles. Motor neuron loss follows afferent synapse loss with the same temporal and topographical pattern. Trichostatin A, which improves motor behavior and survival of SMA mice, partially restores spinal reflexes illustrating the reversibility of these synaptic defects. De-afferentation of motor neurons is an early event in SMA and may be a primary cause of motor dysfunction that is amenable to therapeutic intervention. PMID:21315257
Wolf, R C; Sambataro, F; Vasic, N; Depping, M S; Thomann, P A; Landwehrmeyer, G B; Süssmuth, S D; Orth, M
2014-11-01
Functional magnetic resonance imaging (fMRI) of multiple neural networks during the brain's 'resting state' could facilitate biomarker development in patients with Huntington's disease (HD) and may provide new insights into the relationship between neural dysfunction and clinical symptoms. To date, however, very few studies have examined the functional integrity of multiple resting state networks (RSNs) in manifest HD, and even less is known about whether concomitant brain atrophy affects neural activity in patients. Using MRI, we investigated brain structure and RSN function in patients with early HD (n = 20) and healthy controls (n = 20). For resting-state fMRI data a group-independent component analysis identified spatiotemporally distinct patterns of motor and prefrontal RSNs of interest. We used voxel-based morphometry to assess regional brain atrophy, and 'biological parametric mapping' analyses to investigate the impact of atrophy on neural activity. Compared with controls, patients showed connectivity changes within distinct neural systems including lateral prefrontal, supplementary motor, thalamic, cingulate, temporal and parietal regions. In patients, supplementary motor area and cingulate cortex connectivity indices were associated with measures of motor function, whereas lateral prefrontal connectivity was associated with cognition. This study provides evidence for aberrant connectivity of RSNs associated with motor function and cognition in early manifest HD when controlling for brain atrophy. This suggests clinically relevant changes of RSN activity in the presence of HD-associated cortical and subcortical structural abnormalities.
Fransen, Job; Pion, Johan; Vandendriessche, Joric; Vandorpe, Barbara; Vaeyens, Roel; Lenoir, Matthieu; Philippaerts, Renaat M
2012-01-01
The Developmental Model of Sports Participation proposes two pathways towards expertise in sports between 6 and 12 years of age: early specialization and early diversification. This study investigated the effect of sampling various sports and of spending many or few hours in sports on fitness and gross motor coordination. Altogether, 735 boys in three age groups (6-8, 8-10, and 10-12 years) were profiled using a fitness test battery. A computerized physical activity questionnaire was used to obtain data on sports participation. In the eldest group, (M)ANCOVA showed a positive effect of sampling various sports on strength, speed, endurance, and gross motor coordination (P < 0.05). A positive effect of many hours per week spent in sports was apparent in every age group. These data suggest an acute positive effect of many hours in sports and a latent positive effect of early sampling on fitness and gross motor coordination. Multiple comparisons revealed that boys aged 10-12 years, who spent many hours in various sports, performed better on standing broad jump (P < 0.05) and gross motor coordination (P < 0.05) than boys specializing in a single sport. Therefore, our results highlight the importance of spending many hours in sports and sampling various sports in the development of fitness and gross motor coordination.
Lyons, Kelly E; Pahwa, Rajesh
2013-08-01
Rotigotine transdermal system is a nonergot, 24-hour dopamine agonist approved for the treatment of early and advanced Parkinson's disease (PD). Recent studies have demonstrated significant improvements with rotigotine in motor function in early PD and significant improvements in daily off-time and motor function in advanced PD. In addition to motor improvements, nonmotor symptoms have been shown to be improved with rotigotine in both early and advanced PD. Rotigotine has been shown in large, controlled studies to be safe and efficacious for the treatment of motor and some nonmotor symptoms of early and advanced PD. Copyright © 2013 Elsevier Inc. All rights reserved.
Hauser, Jonas; Knapman, Alana; Zürcher, Nicole R; Pilloud, Sonia; Maier, Claudia; Diaz-Heijtz, Rochellys; Forssberg, Hans; Dettling, Andrea; Feldon, Joram; Pryce, Christopher R
2008-12-01
Synthetic glucocorticoids such as dexamethasone (DEX) are commonly used to prevent respiratory distress syndrome in preterm infants, but there is emerging evidence of subsequent neurobehavioral abnormalities (e.g. problems with inattention/hyperactivity). In the present study, we exposed pregnant common marmosets (Callithrix jacchus, primates) to daily repeated DEX (5 mg/kg by mouth) during either early (d 42-48) or late (d 90-96) pregnancy (gestation period of 144 days). Relative to control, and with a longitudinal design, we investigated DEX effects in offspring in terms of physical growth, plasma ACTH and cortisol titers, social and maintenance behaviors, skilled motor reaching, motivation for palatable reward, and learning between infancy and adolescence. Early DEX resulted in reduced sociability in infants and increased motivation for palatable reward in adolescents. Late DEX resulted in a mild transient increase in knee-heel length in infants and enhanced reversal learning of stimulus-reward association in adolescents. There was no effect of either early or late DEX on basal plasma ACTH or cortisol titers. Both treatments resulted in impaired skilled motor reaching in juveniles, which attenuated in early DEX but persisted in late DEX across test sessions. The increased palatable-reward motivation and decreased social motivation observed in early DEX subjects provide experimental support for the clinical reports that prenatal glucocorticoid treatment impairs social development and predisposes to metabolic syndrome. These novel primate findings indicate that fetal glucocorticoid overexposure can lead to abnormal development of motor, affective, and cognitive behaviors. Importantly, the outcome is highly dependent upon the timing of glucocorticoid overexposure.
Monitoring others' errors: The role of the motor system in early childhood and adulthood.
Meyer, Marlene; Braukmann, Ricarda; Stapel, Janny C; Bekkering, Harold; Hunnius, Sabine
2016-03-01
Previous research demonstrates that from early in life, our cortical sensorimotor areas are activated both when performing and when observing actions (mirroring). Recent findings suggest that the adult motor system is also involved in detecting others' rule violations. Yet, how this translates to everyday action errors (e.g., accidentally dropping something) and how error-sensitive motor activity for others' actions emerges are still unknown. In this study, we examined the role of the motor system in error monitoring. Participants observed successful and unsuccessful pincer grasp actions while their electroencephalography was registered. We tested infants (8- and 14-month-olds) at different stages of learning the pincer grasp and adults as advanced graspers. Power in Alpha- and Beta-frequencies was analysed to assess motor and visual processing. Adults showed enhanced motor activity when observing erroneous actions. However, neither 8- nor 14-month-olds displayed this error sensitivity, despite showing motor activity for both actions. All groups did show similar visual activity, that is more Alpha-suppression, when observing correct actions. Thus, while correct and erroneous actions were processed as visually distinct in all age groups, only the adults' motor system was sensitive to action correctness. Functionality of different brain oscillations in the development of error monitoring and mirroring is discussed. © 2015 The British Psychological Society.
ERIC Educational Resources Information Center
Callcott, Deborah; Hammond, Lorraine; Hill, Susan
2015-01-01
While movement is critical to young children's development, there is an ongoing debate about the time devoted to teaching movement in early childhood classrooms. Nevertheless, research has established a link between specific precursor motor skills and early literacy development. This study investigated the synergistic effect of practising specific…
Promoting an "Active Start" for Young Children: Developing Competent and Confident Early Movers
ERIC Educational Resources Information Center
Goodway, Jacqueline D.; Wall, Sarah; Getchell, Nancy
2009-01-01
With childhood obesity and physical inactivity at an all-time high, parents and physical educators alike must look to the early years to promote competent and confident young movers. Popular opinion believes that children are naturally active and motor skill development progresses as a normal function of getting older. However, if one looks at…
Fundament, Tomasz; Eldridge, Paul R.; Green, Alexander L.; Whone, Alan L.; Taylor, Rod S.; Williams, Adrian C.; Schuepbach, W. M. Michael
2016-01-01
Background Parkinson’s disease (PD) is a debilitating illness associated with considerable impairment of quality of life and substantial costs to health care systems. Deep brain stimulation (DBS) is an established surgical treatment option for some patients with advanced PD. The EARLYSTIM trial has recently demonstrated its clinical benefit also in patients with early motor complications. We sought to evaluate the cost-effectiveness of DBS, compared to best medical therapy (BMT), among PD patients with early onset of motor complications, from a United Kingdom (UK) payer perspective. Methods We developed a Markov model to represent the progression of PD as rated using the Unified Parkinson's Disease Rating Scale (UPDRS) over time in patients with early PD. Evidence sources were a systematic review of clinical evidence; data from the EARLYSTIM study; and a UK Clinical Practice Research Datalink (CPRD) dataset including DBS patients. A mapping algorithm was developed to generate utility values based on UPDRS data for each intervention. The cost-effectiveness was expressed as the incremental cost per quality-adjusted life-year (QALY). One-way and probabilistic sensitivity analyses were undertaken to explore the effect of parameter uncertainty. Results Over a 15-year time horizon, DBS was predicted to lead to additional mean cost per patient of £26,799 compared with BMT (£73,077/patient versus £46,278/patient) and an additional mean 1.35 QALYs (6.69 QALYs versus 5.35 QALYs), resulting in an incremental cost-effectiveness ratio of £19,887 per QALY gained with a 99% probability of DBS being cost-effective at a threshold of £30,000/QALY. One-way sensitivity analyses suggested that the results were not significantly impacted by plausible changes in the input parameter values. Conclusion These results indicate that DBS is a cost-effective intervention in PD patients with early motor complications when compared with existing interventions, offering additional health benefits at acceptable incremental cost. This supports the extended use of DBS among patients with early onset of motor complications. PMID:27441637
Kashala-Abotnes, Espérance; Sombo, Marie-Thérèse; Okitundu, Daniel L; Kunyu, Marcel; Bumoko Makila-Mabe, Guy; Tylleskär, Thorkild; Sikorskii, Alla; Banea, Jean-Pierre; Mumba Ngoyi, Dieudonné; Tshala-Katumbay, Désiré; Boivin, Michael J
2018-01-01
Dietary cyanogen exposure from ingesting bitter (toxic) cassava as a main source of food in sub-Saharan Africa is related to neurological impairments in sub-Saharan Africa. We explored possible association with early child neurodevelopmental outcomes. We undertook a cross-sectional neurodevelopmental assessment of 12-48 month-old children using the Mullen Scale of Early Learning (MSEL) and the Gensini Gavito Scale (GGS). We used the Hopkins Symptoms Checklist-10 (HSCL-10) and Goldberg Depression Anxiety Scale (GDAS) to screen for symptoms of maternal depression-anxiety. We used the cyanogen content in household cassava flour and urinary thiocyanate (SCN) as biomarkers of dietary cyanogen exposure. We employed multivariable generalized linear models (GLM) with Gamma link function to determine predictors of early child neurodevelopmental outcomes. The mean (SD) and median (IQR) of cyanogen content of cassava household flour were above the WHO cut-off points of 10 ppm (52.18 [32·79]) and 50 (30-50) ppm, respectively. Mean (SD) urinary levels of thiocyanate and median (IQR) were respectively 817·81 (474·59) and 688 (344-1032) μmole/l in mothers, and 617·49 (449·48) and 688 (344-688) μmole/l in children reflecting individual high levels as well as a community-wide cyanogenic exposure. The concentration of cyanide in cassava flour was significantly associated with early child neurodevelopment, motor development and cognitive ability as indicated by univariable linear regression (p < 0.05). After adjusting for biological and socioeconomic predictors at multivariable analyses, fine motor proficiency and child neurodevelopment remained the main predictors associated with the concentration of cyanide in cassava flour: coefficients of -0·08 to -.15 (p < 0·01). We also found a significant association between child linear growth, early child neurodevelopment, cognitive ability and motor development at both univariable and multivariable linear regression analyses coefficients of 1.44 to 7.31 (p < 0·01). Dietary cyanogen exposure is associated with early child neurodevelopment, cognitive abilities and motor development, even in the absence of clinically evident paralysis. There is a need for community-wide interventions for better cassava processing practices for detoxification, improved nutrition, and neuro-rehabilitation, all of which are essential for optimal development in exposed children.
Zysset, Annina E; Kakebeeke, Tanja H; Messerli-Bürgy, Nadine; Meyer, Andrea H; Stülb, Kerstin; Leeger-Aschmann, Claudia S; Schmutz, Einat A; Arhab, Amar; Ferrazzini, Valentina; Kriemler, Susi; Munsch, Simone; Puder, Jardena J; Jenni, Oskar G
2018-05-01
Motor skills are interrelated with essential domains of childhood such as cognitive and social development. Thus, the evaluation of motor skills and the identification of atypical or delayed motor development is crucial in pediatric practice (e.g., during well-child visits). Parental reports on motor skills may serve as possible indicators to decide whether further assessment of a child is necessary or not. We compared parental reports on fundamental motor skills performance level (e.g., hopping, throwing), based on questions frequently asked in pediatric practice, with a standardized motor test in 389 children (46.5% girls/53.5% boys, M age = 3.8 years, SD = 0.5, range 3.0-5.0 years) from the Swiss Preschoolers' Health Study (SPLASHY). Motor skills were examined using the Zurich Neuromotor Assessment 3-5 (ZNA3-5), and parents filled in an online questionnaire on fundamental motor skills performance level. The results showed that the answers from the parental report correlated only weakly with the objectively assessed motor skills (r = .225, p < .001). Although a parental screening instrument for motor skills would be desirable, the parent's report used in this study was not a valid indicator for children's fundamental motor skills. Thus, we may recommend to objectively examine motor skills in clinical practice and not to exclusively rely on parental report. What is Known: • Early assessment of motor skills in preschool children is important because motor skills are essential for the engagement in social activities and the development of cognitive abilities. Atypical or delayed motor development can be an indicator for different developmental needs or disorders. • Pediatricians frequently ask parents about the motor competences of their child during well-child visits. What is New: • The parental report on fundamental motor skills performance level used in this study was not a reliable indicator for describing motor development in the preschool age. • Standardized examinations of motor skills are required to validly assess motor development in preschoolers.
Early focus development effort, ultrasonic inspection of fixed housing metal-to-adhesive bondline
NASA Technical Reports Server (NTRS)
Hartmann, John K.; Hoskins, Brad R.; Karner, Paul
1991-01-01
An ultrasonic technique was developed for the fixed housing metal-to-adhesive bondline that will support the Flight 15 time frame and subsequent motors. The technique has the capability to detect a 1.0 inch diameter unbond with a 90 percent probability of detection (POD) at a 95 percent confidence level. The technique and support equipment will perform within the working envelope dictated by a stacked motor configuration.
Du, Juan; Yang, Fang; Zhang, Zhiqiang; Hu, Jingze; Xu, Qiang; Hu, Jianping; Zeng, Fanyong; Lu, Guangming; Liu, Xinfeng
2018-05-15
An accurate prediction of long term outcome after stroke is urgently required to provide early individualized neurorehabilitation. This study aimed to examine the added value of early neuroimaging measures and identify the best approaches for predicting motor outcome after stroke. This prospective study involved 34 first-ever ischemic stroke patients (time since stroke: 1-14 days) with upper limb impairment. All patients underwent baseline multimodal assessments that included clinical (age, motor impairment), neurophysiological (motor-evoked potentials, MEP) and neuroimaging (diffusion tensor imaging and motor task-based fMRI) measures, and also underwent reassessment 3 months after stroke. Bivariate analysis and multivariate linear regression models were used to predict the motor scores (Fugl-Meyer assessment, FMA) at 3 months post-stroke. With bivariate analysis, better motor outcome significantly correlated with (1) less initial motor impairment and disability, (2) less corticospinal tract injury, (3) the initial presence of MEPs, (4) stronger baseline motor fMRI activations. In multivariate analysis, incorporating neuroimaging data improved the predictive accuracy relative to only clinical and neurophysiological assessments. Baseline fMRI activation in SMA was an independent predictor of motor outcome after stroke. A multimodal model incorporating fMRI and clinical measures best predicted the motor outcome following stroke. fMRI measures obtained early after stroke provided independent prediction of long-term motor outcome.
Handwriting in Early Childhood Education: Current Research and Future Implications
ERIC Educational Resources Information Center
Dinehart, Laura H.
2015-01-01
Early fine motor writing skills are quickly becoming recognized as an important school readiness skill associated with later academic success (Dinehart and Manfra, 2013; Grissmer et al., 2010; Son and Meisels, 2006). Yet, little is known about the development of handwriting, the extent to which it is of value in the early childhood classroom and…
Spittle, Alicia J; McGinley, Jennifer L; Thompson, Deanne; Clark, Ross; FitzGerald, Tara L; Mentiplay, Benjamin F; Lee, Katherine J; Olsen, Joy E; Burnett, Alice; Treyvaud, Karli; Josev, Elisha; Alexander, Bonnie; Kelly, Claire E; Doyle, Lex W; Anderson, Peter J; Cheong, Jeanie Ly
2016-10-01
Motor impairments are one of the most frequently reported adverse neurodevelopmental consequences in children born < 30 weeks' gestation. Up to 15% of children born at < 30 weeks have cerebral palsy and an additional 50% have mild to severe motor impairment at school age. The first 5 years of life are critical for the development of fundamental motor skills. These skills form the basis for more complex skills that are required to competently and confidently participate in schooling, sporting and recreational activities. In children born at < 30 weeks' gestation, the trajectory of motor development from birth to 5 years is not fully understood. The neural alterations that underpin motor impairments in these children are also unclear. It is essential to determine if early clinical evaluations and neuroimaging biomarkers can predict later motor impairment and associated functional problems at 5 years of age. This will help to identify children who will benefit the most from early intervention and improve functional outcomes at school age. The primary aim of this study is to compare the prevalence of motor impairment from birth to 5 years of age between children born at < 30 weeks and term-born controls, and to determine whether persistent abnormal motor assessments in the newborn period in those born at < 30 weeks predict abnormal motor functioning at 5 years of age. Secondary aims for children born at < 30 weeks and term-born children are: 1) to determine whether novel early magnetic resonance imaging-based structural or functional biomarkers that can predict motor impairments at 5 years are detectable in the neonatal period; 2) to investigate the association between motor impairments and concurrent deficits in body structure and function at 5 years of age; and 3) to explore how motor impairments at 5 years (including abnormalities of gait, postural control and strength) are associated with concurrent functional outcomes, including physical activity, cognitive ability, learning ability, and behavioural and emotional problems. Prospective longitudinal cohort study. 150 preterm children (born at < 30 weeks' gestation) and 151 term-born children (born at > 36 completed weeks' gestation and weighing > 2499g) admitted to the Royal Women's Hospital, Melbourne, were recruited at birth and will be invited to participate in a 5-year follow-up study. This study will examine previously collected data (from birth to 2 years) that comprise detailed motor assessments, and structural and functional brain MRI images. At 5 years, preterm and term, children will be examined using comprehensive motor assessments, including: the Movement Assessment Battery for Children (2nd edition) and measures of gait function through spatiotemporal (assessed with the GAITRite® Walkway) and dynamic postural control (assessed with Microsoft Kinect) variables; and hand grip strength (assessed with a dynamometer); and measures of physical activity (assessed using accelerometry), cognitive development (assessed with Wechsler Preschool and Primary Scale of Intelligence), and emotional and behavioural status (assessed with the Strengths and Difficulties Questionnaire and the Developmental and Wellbeing Assessment). At the 5-year assessment, parents/caregivers will be asked to complete questionnaires on demographics, physical activity, activities of daily living, behaviour, additional therapy (eg, physiotherapy and occupational therapy), and motor function (assessed with Pediatric Evaluation of Disability Inventory, Pediatric Quality of Life Questionnaire, the Little Developmental Co-ordination Questionnaire and an activity diary). For the primary aim, the prevalence of motor impairment from birth to 5 years will be compared between children born at < 30 weeks and at term, using the proportion of children classified as abnormal at each of the time points (term age, 1, 2 and 5 years). Persistent motor impairments during the neonatal period will be assessed as a predictor of severity of motor impairment at 5 years of age in children born < 30 weeks using linear regression. Models will be fitted using generalised estimating equations to allow for the clustering of multiple births. Analysis will be repeated with adjustment for predictors of motor outcome, including additional therapy, sex, brain injury and chronic lung disease. Understanding the developmental precursors of motor impairment in children born before 30 weeks is essential for limiting disruption to skill development, and potential secondary impacts on physical activity, participation, academic achievement, self-esteem and associated outcomes (such as obesity, poor physical fitness and social isolation). An improved understanding of motor skill development will enable targeting of interventions and streamlining of services to children at highest risk of motor impairments. Copyright © 2016 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.
Promoting Early Child Development With Interventions in Health and Nutrition: A Systematic Review.
Vaivada, Tyler; Gaffey, Michelle F; Bhutta, Zulfiqar A
2017-08-01
Although effective health and nutrition interventions for reducing child mortality and morbidity exist, direct evidence of effects on cognitive, motor, and psychosocial development is lacking. To review existing evidence for health and nutrition interventions affecting direct measures of (and pathways to) early child development. Reviews and recent overviews of interventions across the continuum of care and component studies. We selected systematic reviews detailing the effectiveness of health or nutrition interventions that have plausible links to child development and/or contain direct measures of cognitive, motor, and psychosocial development. A team of reviewers independently extracted data and assessed their quality. Sixty systematic reviews contained the outcomes of interest. Various interventions reduced morbidity and improved child growth, but few had direct measures of child development. Of particular benefit were food and micronutrient supplementation for mothers to reduce the risk of small for gestational age and iodine deficiency, strategies to reduce iron deficiency anemia in infancy, and early neonatal care (appropriate resuscitation, delayed cord clamping, and Kangaroo Mother Care). Neuroprotective interventions for imminent preterm birth showed the largest effect sizes (antenatal corticosteroids for developmental delay: risk ratio 0.49, 95% confidence interval 0.24 to 1.00; magnesium sulfate for gross motor dysfunction: risk ratio 0.61, 95% confidence interval 0.44 to 0.85). Given the focus on high-quality studies captured in leading systematic reviews, only effects reported within studies included in systematic reviews were captured. These findings should guide the prioritization and scale-up of interventions within critical periods of early infancy and childhood, and encourage research into their implementation at scale. Copyright © 2017 by the American Academy of Pediatrics.
Sumner, Emma; Leonard, Hayley C; Hill, Elisabeth L
2016-08-01
Motor and social difficulties are often found in children with an autism spectrum disorder (ASD) and with developmental coordination disorder (DCD), to varying degrees. This study investigated the extent of overlap of these problems in children aged 7-10 years who had a diagnosis of either ASD or DCD, compared to typically-developing controls. Children completed motor and face processing assessments. Parents completed questionnaires concerning their child's early motor and current motor and social skills. There was considerable overlap between the ASD and DCD groups on the motor and social assessments, with both groups more impaired than controls. Furthermore, motor skill predicted social functioning for both groups. Future research should consider the relationships between core symptoms and their consequences in other domains.
Abrams, Michael S; Duncan, Candace L; McMurtrey, Ryan
2011-04-01
To document the development of motor fusion when patients with a history of strabismic amblyopia are treated part-time with Bangerter foils. This was a prospective interventional outcome study of consecutive patients with a history of strabismic amblyopia, horizontal strabismus (only) ≤20(∆), visual acuity of 20/60 or better in the nonfixating eye, and no motor fusion (as indicated by the absence of prism vergence) for 1 year before entry into the study. Subjects wore a 0.1 density Bangerter foil for 3-4 hours daily. Data on visual acuity, alignment, and motor fusion status were collected for a minimum of 2 years. Patients with motor fusion were then followed for a minimum of 18 months to assess the stability of their motor fusion status after the Bangerter foil was discontinued. Of the 46 patients meeting entry criteria (mean age, 5.3 ± 1.7 years) who completed follow-up, 28 (61%) developed motor fusion. Motor fusion was retained in all 17 patients who were followed after their foils were discontinued for a mean of 13.3 months. A child's motor fusion status is generally believed to be established during an early formative period of visual development. The development of motor fusion in many of our patients during the course of part-time Bangerter foil treatment suggests that improvements in motor fusion status can occur at a later age than previously believed. Copyright © 2011 American Association for Pediatric Ophthalmology and Strabismus. Published by Mosby, Inc. All rights reserved.
Volumetric Effects of Motor Cortex Injury on Recovery of Ipsilesional Dexterous Movements
Darling, Warren G.; Pizzimenti, Marc A.; Hynes, Stephanie M.; Rotella, Diane L.; Headley, Grant; Ge, Jizhi; Stilwell-Morecraft, Kimberly S.; McNeal, David W.; Solon-Cline, Kathryn M.; Morecraft, Robert J.
2011-01-01
Damage to the motor cortex of one hemisphere has classically been associated with contralateral upper limb paresis, but recent patient studies have identified deficits in both upper limbs. In non-human primates, we tested the hypothesis that the severity of ipsilesional upper limb motor impairment in the early post-injury phase depends on the volume of gray and white matter damage of the motor areas of the frontal lobe. We also postulated that substantial recovery would accompany minimal task practice and that ipsilesional limb recovery would be correlated with recovery of the contralesional limb. Gross (reaching) and fine hand motor functions were assessed for 3-12 months post-injury using two motor tests. Volumes of white and gray matter lesions were assessed using quantitative histology. Early changes in post-lesion motor performance were inversely correlated with white matter lesion volume indicating that larger lesions produced greater decreases in ipsilesional hand movement control. All monkeys showed improvements in ipsilesional hand motor skill during the post-lesion period, with reaching skill improvements being positively correlated with total lesion volume indicating larger lesions were associate with greater ipsilesional motor skill recovery. We suggest that reduced trans-callosal inhibition from the lesioned hemisphere may play a role in the observed skill improvements. Our findings show that significant ipsilesional hand motor recovery is likely to accompany injury limited to frontal motor areas. In humans, more pronounced ipsilesional motor deficits that invariably develop after stroke may, in part, be a consequence of more extensive subcortical white and gray matter damage. PMID:21703261
Ehn, Maria; Hansson, Pär; Sjölinder, Marie; Boman, Inga-Lill; Folke, Mia; Sommerfeld, Disa; Borg, Jörgen; Palmcrantz, Susanne
2015-01-01
The aim of this work has been to develop a technical support enabling home-based motor training after stroke. The basis for the work plan has been to develop an interactive technical solution supporting three different groups of stroke patients: (1) patients with stroke discharged from hospital with support from neuro team; (2) patients with stroke whose support from neuro team will be phased out and (3) patients living with impaired motor functions long-term. The technology has been developed in close collaboration with end-users using a method earlier evaluated and described [12]. This paper describes the main functions of the developed technology. Further, results from early user-tests with end-users, performed to identify needs for improvements to be carried out during further technical development. The developed technology will be tested further in a pilot study of the safety and, usefulness of the technology when applied as a support for motor training in three different phases of the post-stroke rehabilitation process.
Barnes, Marcia A; Stubbs, Allison; Raghubar, Kimberly P; Agostino, Alba; Taylor, Heather; Landry, Susan; Fletcher, Jack M; Smith-Chant, Brenda
2011-05-01
Preschoolers with spina bifida (SB) were compared to typically developing (TD) children on tasks tapping mathematical knowledge at 36 months (n = 102) and 60 months of age (n = 98). The group with SB had difficulty compared to TD peers on all mathematical tasks except for transformation on quantities in the subitizable range. At 36 months, vocabulary knowledge, visual-spatial, and fine motor abilities predicted achievement on a measure of informal math knowledge in both groups. At 60 months of age, phonological awareness, visual-spatial ability, and fine motor skill were uniquely and differentially related to counting knowledge, oral counting, object-based arithmetic skills, and quantitative concepts. Importantly, the patterns of association between these predictors and mathematical performance were similar across the groups. A novel finding is that fine motor skill uniquely predicted object-based arithmetic abilities in both groups, suggesting developmental continuity in the neurocognitive correlates of early object-based and later symbolic arithmetic problem solving. Models combining 36-month mathematical ability and these language-based, visual-spatial, and fine motor abilities at 60 months accounted for considerable variance on 60-month informal mathematical outcomes. Results are discussed with reference to models of mathematical development and early identification of risk in preschoolers with neurodevelopmental disorder.
Barnes, Marcia A.; Stubbs, Allison; Raghubar, Kimberly P.; Agostino, Alba; Taylor, Heather; Landry, Susan; Fletcher, Jack M.; Smith-Chant, Brenda
2011-01-01
Preschoolers with spina bifida (SB) were compared to typically developing (TD) children on tasks tapping mathematical knowledge at 36 months (n = 102) and 60 months of age (n = 98). The group with SB had difficulty compared to TD peers on all mathematical tasks except for transformation on quantities in the subitizable range. At 36 months, vocabulary knowledge, visual–spatial, and fine motor abilities predicted achievement on a measure of informal math knowledge in both groups. At 60 months of age, phonological awareness, visual–spatial ability, and fine motor skill were uniquely and differentially related to counting knowledge, oral counting, object-based arithmetic skills, and quantitative concepts. Importantly, the patterns of association between these predictors and mathematical performance were similar across the groups. A novel finding is that fine motor skill uniquely predicted object-based arithmetic abilities in both groups, suggesting developmental continuity in the neurocognitive correlates of early object-based and later symbolic arithmetic problem solving. Models combining 36-month mathematical ability and these language-based, visual–spatial, and fine motor abilities at 60 months accounted for considerable variance on 60-month informal mathematical outcomes. Results are discussed with reference to models of mathematical development and early identification of risk in preschoolers with neurodevelopmental disorder. PMID:21418718
ERIC Educational Resources Information Center
Clarkson, Tessa; LeBlanc, Jocelyn; DeGregorio, Geneva; Vogel-Farley, Vanessa; Barnes, Katherine; Kaufmann, Walter E.; Nelson, Charles A.
2017-01-01
Rett Syndrome (RTT) is characterized by severe impairment in fine motor (FM) and expressive language (EL) function, making accurate evaluations of development difficult with standardized assessments. In this study, the administration and scoring of the Mullen Scales of Early Learning (MSEL) were adapted to eliminate the confounding effects of FM…
Impairments in prehension produced by early postnatal sensory motor cortex activity blockade.
Martin, J H; Donarummo, L; Hacking, A
2000-02-01
This study examined the effects of blocking neural activity in sensory motor cortex during early postnatal development on prehension. We infused muscimol, either unilaterally or bilaterally, into the sensory motor cortex of cats to block activity continuously between postnatal weeks 3-7. After stopping infusion, we trained animals to reach and grasp a cube of meat and tested behavior thereafter. Animals that had not received muscimol infusion (unilateral saline infusion; age-matched) reached for the meat accurately with small end-point errors. They grasped the meat using coordinated digit flexion followed by forearm supination on 82.7% of trials. Performance using either limb did not differ significantly. In animals receiving unilateral muscimol infusion, reaching and grasping using the limb ipsilateral to the infusion were similar to controls. The limb contralateral to infusion showed significant increases in systematic and variable reaching end-point errors, often requiring subsequent corrective movements to contact the meat. Grasping occurred on only 14.8% of trials, replaced on most trials by raking without distal movements. Compensatory adjustments in reach length and angle, to maintain end-point accuracy as movements were started from a more lateral position, were less effective using the contralateral limb than ipsilateral limb. With bilateral inactivations, the form of reaching and grasping impairments was identical to that produced by unilateral inactivation, but the magnitude of the reaching impairments was less. We discuss these results in terms of the differential effects of unilateral and bilateral inactivation on corticospinal tract development. We also investigated the degree to which these prehension impairments after unilateral blockade reflect control by each hemisphere. In animals that had received unilateral blockade between postnatal weeks (PWs) 3 and 7, we silenced on-going activity (after PW 11) during task performance using continuous muscimol infusion. We inactivated the right (previously active) and then the left (previously silenced) sensory motor cortex. Inactivation of the ipsilateral (right) sensory motor cortex produced a further increase in systematic error and less frequent normal grasping. Reinactivation of the contralateral (left) cortex produced larger increases in reaching and grasping impairments than those produced by ipsilateral inactivation. This suggests that the impaired limb receives bilateral sensory motor cortex control but that control by the contralateral (initially silenced) cortex predominates. Our data are consistent with the hypothesis that the normal development of skilled motor behavior requires activity in sensory motor cortex during early postnatal life.
Barbosa, Vanessa M; Campbell, Suzann K; Sheftel, David; Singh, Jaidep; Beligere, Nagamani
2003-01-01
Understanding the natural history of development in children with cerebral palsy (CP) is important for studying the consequences of early intervention. The purpose of this paper is to present results on the Test of Infant Motor Performance (TIMP) from 0-4 months of age and on the Alberta Infant Motor Scale (AIMS) from 3 to 12 months of age in a group of infants later diagnosed as having CP. Ages at which infants with CP were first recognized as having delayed motor performance on each instrument and the stability of performance over time are presented. Clinical implications for using both instruments are discussed.
Spann, Marisa N; Bansal, Ravi; Rosen, Tove S; Peterson, Bradley S
2014-09-01
Knowledge of the role of brain maturation in the development of cognitive abilities derives primarily from studies of school-age children to adults. Little is known about the morphological features of the neonatal brain that support the subsequent development of abilities in early childhood, when maturation of the brain and these abilities are the most dynamic. The goal of our study was to determine whether brain morphology during the neonatal period supports early cognitive development through 2 years of age. We correlated morphological features of the cerebral surface assessed using deformation-based measures (surface distances) of high-resolution MRI scans for 33 healthy neonates, scanned between the first to sixth week of postmenstrual life, with subsequent measures of their motor, language, and cognitive abilities at ages 6, 12, 18, and 24 months. We found that morphological features of the cerebral surface of the frontal, mesial prefrontal, temporal, and occipital regions correlated with subsequent motor scores, posterior parietal regions correlated with subsequent language scores, and temporal and occipital regions correlated with subsequent cognitive scores. Measures of the anterior and middle portions of the cingulate gyrus correlated with scores across all three domains of ability. Most of the significant findings were inverse correlations located bilaterally in the brain. The inverse correlations may suggest either that a more protracted morphological maturation or smaller local volumes of neonatal brain tissue supports better performance on measures of subsequent motor, language, and cognitive abilities throughout the first 2 years of postnatal life. The correlations of morphological measures of the cingulate with measures of performance across all domains of ability suggest that the cingulate supports a broad range of skills in infancy and early childhood, similar to its functions in older children and adults. Copyright © 2014 Wiley Periodicals, Inc.
Beyond Early Intervention: Providing Support to Public School Personnel
ERIC Educational Resources Information Center
Wilson, Kathryn
2006-01-01
At age 3, children with hearing loss transition from Part C early intervention to Part B public school services. These children represent a heterogeneous population when considering factors such as communication approaches; speech, language, auditory and cognitive skills; social-emotional and motor development; parental involvement; hearing…
Pilot study on infant swimming classes and early motor development.
Dias, Jorge A B de S; Manoel, Edison de J; Dias, Roberta B de M; Okazaki, Victor H A
2013-12-01
Alberta Infant Motor Scale (AIMS) scores were examined before and after four months of swimming classes in 12 babies (ages 7 to 9 mo.) assigned to Experimental (n = 6) and Control (n = 6) groups matched on age and developmental status. Infants from both groups improved their developmental status from pre- to post-test; the Experimental group improved on mean percentile rank. The sample size and the discriminative power of the AIMS do not allow conclusive judgments on these group differences, hence on the effect of infant swimming classes. Nevertheless, a number of recommendations are made for future studies on the effect of swimming classes on infant motor development.
Fall prevention modulates decisional saccadic behavior in aging.
Coubard, Olivier A
2012-01-01
As society ages and frequency of falls increases in older adults, counteracting motor decline is a challenging issue for developed countries. Physical activity based on aerobic and strength training as well as motor activity based on skill learning both help benefit balance and reduce the risk of falls, as assessed by clinical or laboratory measures. However, how such programs influence motor control is a neglected issue. This study examined the effects of fall prevention (FP) training on saccadic control in older adults. Saccades were recorded in 12 participants aged 64-91 years before and after 2.5 months training in FP. Traditional analysis of saccade timing and dynamics was performed together with a quantitative analysis using the LATER model, enabling us to examine the underlying motor control processes. Results indicated that FP reduced the rate of anticipatory and express saccades in inappropriate directions and enhanced that of express saccades in the appropriate direction, resulting in decreased latency and higher left-right symmetry of motor responses. FP reduced within-participant variability of saccade duration, amplitude, and peak velocity. LATER analysis suggested that FP modulates decisional thresholds, extending our knowledge of motor training influence on central motor control. We introduce the Threshold Interval Modulation with Early Release-Rate of rIse Deviation with Early Release (TIMER-RIDER) model to account for the results.
Fine motor skills and early comprehension of the world: two new school readiness indicators.
Grissmer, David; Grimm, Kevin J; Aiyer, Sophie M; Murrah, William M; Steele, Joel S
2010-09-01
Duncan et al. (2007) presented a new methodology for identifying kindergarten readiness factors and quantifying their importance by determining which of children's developing skills measured around kindergarten entrance would predict later reading and math achievement. This article extends Duncan et al.'s work to identify kindergarten readiness factors with 6 longitudinal data sets. Their results identified kindergarten math and reading readiness and attention as the primary long-term predictors but found no effects from social skills or internalizing and externalizing behavior. We incorporated motor skills measures from 3 of the data sets and found that fine motor skills are an additional strong predictor of later achievement. Using one of the data sets, we also predicted later science scores and incorporated an additional early test of general knowledge of the social and physical world as a predictor. We found that the test of general knowledge was by far the strongest predictor of science and reading and also contributed significantly to predicting later math, making the content of this test another important kindergarten readiness indicator. Together, attention, fine motor skills, and general knowledge are much stronger overall predictors of later math, reading, and science scores than early math and reading scores alone.
Gu, Zirong; Serradj, Najet; Ueno, Masaki; Liang, Mishi; Li, Jie; Baccei, Mark L.; Martin, John H.; Yoshida, Yutaka
2017-01-01
Early postnatal mammals, including human babies, can perform only basic motor tasks. The acquisition of skilled behaviors occurs later, requiring anatomical changes in neural circuitry to support the development of coordinated activation or suppression of functionally related muscle groups. How this circuit reorganization occurs during postnatal development remains poorly understood. Here we explore the connectivity between corticospinal (CS) neurons in the motor cortex and muscles in mice. Using trans-synaptic viral and electrophysiological assays, we identify the early postnatal reorganization of CS circuitry for antagonistic muscle pairs. We further show that this synaptic rearrangement requires the activity-dependent, non-apoptotic Bax/Bak-caspase signaling cascade. Adult Bax/Bak mutant mice exhibit aberrant co-activation of antagonistic muscle pairs and skilled grasping deficits but normal reaching and retrieval behaviors. Our findings reveal key cellular and molecular mechanisms driving postnatal motor circuit reorganization and the resulting impacts on muscle activation patterns and the execution of skilled movements. PMID:28472660
Hameed, Mohajer A; Lingam, Raghu; Zammit, Stanley; Salvi, Giovanni; Sullivan, Sarah; Lewis, Andrew J
2017-01-01
Objective: The aim of this study was to use prospective data from the Avon Longitudinal Study of Parents and Children (ALSPAC) to examine association between trajectories of early childhood developmental skills and psychotic experiences (PEs) in early adolescence. Method: This study examined data from n = 6790 children from the ALSPAC cohort who participated in a semi-structured interview to assess PEs at age 12. Child development was measured using parental report at 6, 18, 30, and 42 months of age using a questionnaire of items adapted from the Denver Developmental Screening Test - II. Latent class growth analysis was used to generate trajectories over time for measures of fine and gross motor development, social, and communication skills. Logistic regression was used to investigate associations between developmental trajectories in each of these early developmental domains and PEs at age 12. Results: The results provided evidence that decline rather than enduringly poor social (adjusted OR = 1.28, 95% CI = 1.10-1.92, p = 0.044) and communication skills (adjusted OR 1.12, 95% CI = 1.03-1.22, p = 0.010) is predictive of suspected or definite PEs in early adolescence, than those with stable and/or improving skills. Motor skills did not display the same pattern of association; although gender specific effects provided evidence that only declining pattern of fine motor skills was associated with suspected and definite PEs in males compared to females (interaction OR = 1.47, 95% CI = 1.09-1.97, p = 0.012). Conclusion: Findings suggest that decline rather than persistent impairment in social and communication skills were most predictive of PEs in early adolescence. Findings are discussed in terms of study's strengths, limitations, and clinical implications.
Hameed, Mohajer A.; Lingam, Raghu; Zammit, Stanley; Salvi, Giovanni; Sullivan, Sarah; Lewis, Andrew J.
2018-01-01
Objective: The aim of this study was to use prospective data from the Avon Longitudinal Study of Parents and Children (ALSPAC) to examine association between trajectories of early childhood developmental skills and psychotic experiences (PEs) in early adolescence. Method: This study examined data from n = 6790 children from the ALSPAC cohort who participated in a semi-structured interview to assess PEs at age 12. Child development was measured using parental report at 6, 18, 30, and 42 months of age using a questionnaire of items adapted from the Denver Developmental Screening Test – II. Latent class growth analysis was used to generate trajectories over time for measures of fine and gross motor development, social, and communication skills. Logistic regression was used to investigate associations between developmental trajectories in each of these early developmental domains and PEs at age 12. Results: The results provided evidence that decline rather than enduringly poor social (adjusted OR = 1.28, 95% CI = 1.10–1.92, p = 0.044) and communication skills (adjusted OR 1.12, 95% CI = 1.03–1.22, p = 0.010) is predictive of suspected or definite PEs in early adolescence, than those with stable and/or improving skills. Motor skills did not display the same pattern of association; although gender specific effects provided evidence that only declining pattern of fine motor skills was associated with suspected and definite PEs in males compared to females (interaction OR = 1.47, 95% CI = 1.09–1.97, p = 0.012). Conclusion: Findings suggest that decline rather than persistent impairment in social and communication skills were most predictive of PEs in early adolescence. Findings are discussed in terms of study’s strengths, limitations, and clinical implications. PMID:29375433
Hurd, Caitlin; Livingstone, Donna; Brunton, Kelly; Teves, Michelle; Zewdie, Ephrem; Smith, Allison; Ciechanski, Patrick; Gorassini, Monica A; Kirton, Adam; Watt, Man-Joe; Andersen, John; Yager, Jerome; Yang, Jaynie F
2017-08-01
Development of motor pathways is modulated by activity in these pathways, when they are maturing (ie, critical period). Perinatal stroke injures motor pathways, including the corticospinal tracts, reducing their activity and impairing motor function. Current intervention for the lower limb emphasizes passive approaches (stretching, braces, botulinum toxin injections). The study hypothesis was that intensive, early, child-initiated activity during the critical period will enhance connectivity of motor pathways to the legs and improve motor function. The study objective was to determine whether early intervention with intensive activity is better than standard care, intervention delivered during the proposed critical period is better than after, and the outcomes are different when the intervention is delivered by a physical therapist in an institution vs. a parent at home. A prospective, delay-group, single-blind, randomized controlled trial (RCT) and a parallel, cohort study of children living beyond commuting distance and receiving an intervention delivered by their parent. The RCT intervention was provided in university laboratories, and parent training was provided in the childs home. Children 8 months to 3 years old with MRI-confirmed perinatal ischemic stroke and early signs of hemiparesis. Intensive, play-based leg activity with weights for the affected leg and foot, 1 hour/day, 4 days/week for 12 weeks. The primary outcome was the Gross Motor Function Measure-66 score. Secondary outcomes were motion analysis of walking, full-day step counts, motor evoked potentials from transcranial magnetic stimulation, and patellar tendon reflexes. Inter-individual heterogeneity in the severity of the stroke and behavioral differences are substantial but measurable. Differences in intervention delivery and assessment scoring are minimized by standardization and training. The intervention, contrary to current practice, could change physical therapy interventions for children with perinatal stroke. © 2017 American Physical Therapy Association
Children's Use of Objects in an Early Years Playground
ERIC Educational Resources Information Center
Bateman, Amanda; Church, Amelia
2017-01-01
Early childhood research has investigated children's use of objects largely focusing on cognitive and motor development. Yet members of a particular culture, such as young children's peer groups, use objects that have cultural relevance as "conversational" items, as a means to interacting with other members of the group. This article…
Traumatic Brain Injury in Early Childhood: Developmental Effects and Interventions.
ERIC Educational Resources Information Center
Lowenthal, Barbara; Lowenthal, Barbara
1998-01-01
Describes the unique effects of traumatic brain injury (TBI) on development in early childhood and offers suggestions for interventions in the cognitive, language, social-emotional, motor, and adaptive domains. Urges more intensive, long-term studies on the immediate and long-term effects of TBI. (Author/DB)
Morgan, Catherine; Novak, Iona; Dale, Russell C; Guzzetta, Andrea; Badawi, Nadia
2014-10-07
Cerebral palsy is the most common physical disability of childhood and early detection is possible using evidence based assessments. Systematic reviews indicate early intervention trials rarely demonstrate efficacy for improving motor outcomes but environmental enrichment interventions appear promising. This study is built on a previous pilot study and has been designed to assess the effectiveness of a goal - oriented motor training and enrichment intervention programme, "GAME", on the motor outcomes of infants at very high risk of cerebral palsy (CP) compared with standard community based care. A two group, single blind randomised controlled trial (n = 30) will be conducted. Eligible infants are those diagnosed with CP or designated "at high risk of CP" on the basis of the General Movements Assessment and/or abnormal neuroimaging. A physiotherapist and occupational therapist will deliver home-based GAME intervention at least fortnightly until the infant's first birthday. The intervention aims to optimize motor function and engage parents in developmental activities aimed at enriching the home learning environment. Primary endpoint measures will be taken 16 weeks after intervention commences with the secondary endpoint at 12 months and 24 months corrected age. The primary outcome measure will be the Peabody Developmental Motor Scale second edition. Secondary outcomes measures include the Gross Motor Function Measure, Bayley Scales of Infant and Toddler Development, Affordances in the Home Environment for Motor Development - Infant Scale, and the Canadian Occupational Performance Measure. Parent well-being will be monitored using the Depression Anxiety and Stress Scale. This paper presents the background, design and intervention protocol of a randomised trial of a goal driven, motor learning approach with customised environmental interventions and parental education for young infants at high risk of cerebral palsy. This trial is registered on the Australian New Zealand Clinical Trial register: ACTRN12611000572965.
Hestbaek, Lise; Andersen, Sarah Thurøe; Skovgaard, Thomas; Olesen, Line Groenholt; Elmose, Mette; Bleses, Dorthe; Andersen, Simon Calmar; Lauridsen, Henrik Hein
2017-08-29
Good motor skills are considered important for children's physical, social, and psychological development, but the relationship is still poorly understood. Preschool age seems to be decisive for the development of motor skills and probably the most promising time-window in relation to preventive strategies based on improved motor skills. This research program has four overall aims: (1) investigation of the effect of a structured program aimed at improving motor skills in 3-6-year-old children on current and future motor skills, health, cognition, and wellbeing; (2) establish reference data on motor skills in 3-6-year-olds; (3) description of early development of musculoskeletal problems; and (4) establishment of a population-based cohort of 3-6-year-olds. Over a four-year period, all preschools in a Danish municipality, Svendborg, will implement a new program aimed at optimizing children's motor skills. By introducing the program into a subset of the preschools at onset and comparing these children to another subset (control) that will not receive the intervention the first three years, it is possible to document a potential effect of the intervention. At the same time, a cohort will be established including all children attending preschools in the municipality with extensive baseline data collection: gross and fine motor skills; movement patterns; musculoskeletal complaints; physical activity; anthropometry; general wellbeing; cognitive abilities; language status; medical history; demographic background; and more. The children are aged 3-6 years at baseline. A total of 1461 children have been invited into the cohort, 368 to the intervention arm and 359 to the control arm. Follow-up time for the trial is 2.5 years. The cohort is planned to run at least until the children leave school at age 15-16 years. Longer follow-up will depend on future funding. If the results of the trial are positive, the intervention can be implemented in other similar settings with reasonable ease and at a relatively low initial cost. This is due to the extensive end-user involvement, the broad population base, and the pragmatic nature of the intervention. The cohort will provide important information about the influence of early motor skills on children's development across many domains and the potential interactions between these domains. ISRCTN registry, ISRCTN23701994 . Registered on 13 October 2016.
Child Behaviors of Young Children With Autism Spectrum Disorder Across Play Settings.
MacDonald, Megan; Hatfield, Bridget; Twardzik, Erica
2017-01-01
The hallmark characteristics of a diagnosis of autism spectrum disorder (ASD) are deficits in social communicative skills and the use of repetitive and/or stereotyped behaviors. In addition, children with ASD experience known motor-skill delays. The purpose of this study was to examine salient child behaviors of young children with and without ASD in 2 distinctly different play settings: a traditional social-play-based setting and a motor-behavior-based play setting. Child behavior (engagement toward parent, negativity, and attention) and dyad characteristics (connectedness) were examined in 2 distinctly different play settings. Results indicated that children with ASD performed more like their peers without ASD in a social-play-based setting and less like their peers in a motor-behavior-based play setting. Aspects of our results shed light on the critical need to develop creative methods of early intervention that combine efforts in all aspects of child development, including motor-skill development.
The Case for Musical Instrument Training in Cerebral Palsy for Neurorehabilitation
2016-01-01
Recent imaging studies in cerebral palsy (CP) have described several brain structural changes, functional alterations, and neuroplastic processes that take place after brain injury during early development. These changes affect motor pathways as well as sensorimotor networks. Several of these changes correlate with behavioral measures of motor and sensory disability. It is now widely acknowledged that management of sensory deficits is relevant for rehabilitation in CP. Playing a musical instrument demands the coordination of hand movements with integrated auditory, visual, and tactile feedback, in a process that recruits multiple brain regions. These multiple demands during instrument playing, together with the entertaining character of music, have led to the development and investigation of music-supported therapies, especially for rehabilitation with motor disorders resulting from brain damage. We review scientific evidence that supports the use of musical instrument playing for rehabilitation in CP. We propose that active musical instrument playing may be an efficient means for triggering neuroplastic processes necessary for the development of sensorimotor skills in patients with early brain damage. We encourage experimental research on neuroplasticity and on its impact on the physical and personal development of individuals with CP. PMID:27867664
The Case for Musical Instrument Training in Cerebral Palsy for Neurorehabilitation.
Alves-Pinto, Ana; Turova, Varvara; Blumenstein, Tobias; Lampe, Renée
2016-01-01
Recent imaging studies in cerebral palsy (CP) have described several brain structural changes, functional alterations, and neuroplastic processes that take place after brain injury during early development. These changes affect motor pathways as well as sensorimotor networks. Several of these changes correlate with behavioral measures of motor and sensory disability. It is now widely acknowledged that management of sensory deficits is relevant for rehabilitation in CP. Playing a musical instrument demands the coordination of hand movements with integrated auditory, visual, and tactile feedback, in a process that recruits multiple brain regions. These multiple demands during instrument playing, together with the entertaining character of music, have led to the development and investigation of music-supported therapies, especially for rehabilitation with motor disorders resulting from brain damage. We review scientific evidence that supports the use of musical instrument playing for rehabilitation in CP. We propose that active musical instrument playing may be an efficient means for triggering neuroplastic processes necessary for the development of sensorimotor skills in patients with early brain damage. We encourage experimental research on neuroplasticity and on its impact on the physical and personal development of individuals with CP.
Kelava, Augustin; Raabe, Johannes; Höner, Oliver
2018-01-01
Several talent identification and development (TID) programs in soccer have implemented diagnostics to measure players’ motor performance. Yet, there is a lack of research investigating the relationship between motor development in adolescence and future, adult performance. This longitudinal study analyzed the three-year development of highly talented young soccer players’ speed abilities and technical skills and examined the relevance of this development to their adult success. The current research sample consisted of N = 1,134 players born between 1993 and 1995 who were selected for the German Soccer Association’s TID program and participated in nationwide motor diagnostics (sprinting, agility, dribbling, ball control, shooting) four times between the Under 12 (U12) and Under 15 (U15) age class. Relative age (RA) was assessed for all players, and a total motor score was calculated based on performances in the individual tests. In order to investigate players’ future success, participants were divided into two groups according to their adult performance level (APL) in the 2014/2015 season: Elite (1st-5th German division; N = 145, 12.8%) and non-elite players (lower divisions; N = 989, 87.2%). Using multilevel regression analyses each motor performance was predicted by Time, Time2 (level-1 predictors), APL, and RA (level-2 covariates) with simultaneous consideration for interaction effects between the respective variables. Time and Time2 were significant predictors for each test performance. A predictive value for RA was confirmed for sprinting and the total motor score. A significant relationship between APL and the motor score as well as between APL and agility, dribbling, ball control, and shooting emerged. Interaction effects distinctly failed to reach significance. The study found a non-linear improvement in players’ performance for all considered motor performance factors over a three-year period from early to middle adolescence. While their predictive value for future success was confirmed by a significant relationship between APL and most of the considered factors, there was no significant interaction between APL and Time. These findings indicate that future elite players had already been better at the beginning of the TID program and maintained this high level throughout their promotion from U12 to U15. PMID:29723200
Leyhr, Daniel; Kelava, Augustin; Raabe, Johannes; Höner, Oliver
2018-01-01
Several talent identification and development (TID) programs in soccer have implemented diagnostics to measure players' motor performance. Yet, there is a lack of research investigating the relationship between motor development in adolescence and future, adult performance. This longitudinal study analyzed the three-year development of highly talented young soccer players' speed abilities and technical skills and examined the relevance of this development to their adult success. The current research sample consisted of N = 1,134 players born between 1993 and 1995 who were selected for the German Soccer Association's TID program and participated in nationwide motor diagnostics (sprinting, agility, dribbling, ball control, shooting) four times between the Under 12 (U12) and Under 15 (U15) age class. Relative age (RA) was assessed for all players, and a total motor score was calculated based on performances in the individual tests. In order to investigate players' future success, participants were divided into two groups according to their adult performance level (APL) in the 2014/2015 season: Elite (1st-5th German division; N = 145, 12.8%) and non-elite players (lower divisions; N = 989, 87.2%). Using multilevel regression analyses each motor performance was predicted by Time, Time2 (level-1 predictors), APL, and RA (level-2 covariates) with simultaneous consideration for interaction effects between the respective variables. Time and Time2 were significant predictors for each test performance. A predictive value for RA was confirmed for sprinting and the total motor score. A significant relationship between APL and the motor score as well as between APL and agility, dribbling, ball control, and shooting emerged. Interaction effects distinctly failed to reach significance. The study found a non-linear improvement in players' performance for all considered motor performance factors over a three-year period from early to middle adolescence. While their predictive value for future success was confirmed by a significant relationship between APL and most of the considered factors, there was no significant interaction between APL and Time. These findings indicate that future elite players had already been better at the beginning of the TID program and maintained this high level throughout their promotion from U12 to U15.
Schrank, Bertold; Götz, Rudolf; Gunnersen, Jennifer M.; Ure, Janice M.; Toyka, Klaus V.; Smith, Austin G.; Sendtner, Michael
1997-01-01
Proximal spinal muscular atrophy is an autosomal recessive human disease of spinal motor neurons leading to muscular weakness with onset predominantly in infancy and childhood. With an estimated heterozygote frequency of 1/40 it is the most common monogenic disorder lethal to infants; milder forms represent the second most common pediatric neuromuscular disorder. Two candidate genes—survival motor neuron (SMN) and neuronal apoptosis inhibitory protein have been identified on chromosome 5q13 by positional cloning. However, the functional impact of these genes and the mechanism leading to a degeneration of motor neurons remain to be defined. To analyze the role of the SMN gene product in vivo we generated SMN-deficient mice. In contrast to the human genome, which contains two copies, the mouse genome contains only one SMN gene. Mice with homozygous SMN disruption display massive cell death during early embryonic development, indicating that the SMN gene product is necessary for cellular survival and function. PMID:9275227
Visuo-motor and cognitive procedural learning in children with basal ganglia pathology.
Mayor-Dubois, C; Maeder, P; Zesiger, P; Roulet-Perez, E
2010-06-01
We investigated procedural learning in 18 children with basal ganglia (BG) lesions or dysfunctions of various aetiologies, using a visuo-motor learning test, the Serial Reaction Time (SRT) task, and a cognitive learning test, the Probabilistic Classification Learning (PCL) task. We compared patients with early (<1 year old, n=9), later onset (>6 years old, n=7) or progressive disorder (idiopathic dystonia, n=2). All patients showed deficits in both visuo-motor and cognitive domains, except those with idiopathic dystonia, who displayed preserved classification learning skills. Impairments seem to be independent from the age of onset of pathology. As far as we know, this study is the first to investigate motor and cognitive procedural learning in children with BG damage. Procedural impairments were documented whatever the aetiology of the BG damage/dysfunction and time of pathology onset, thus supporting the claim of very early skill learning development and lack of plasticity in case of damage. Copyright 2010 Elsevier Ltd. All rights reserved.
Moraleda-Barreno, E; Romero-López, M; Cayetano-Menéndez, M J
2011-12-01
Cerebral palsy is usually associated with motor, cognitive, and language deficits, and with other disorders that cause disability in daily living skills, personal independence, social interaction and academic activities. Early detection of these deficits in the clinical setting is essential to anticipate and provide the child with the necessary support for adapting to the environment in all possible areas. The main objective of this study is to demonstrate that these deficits can be detected at an early age and comprehensively through the use of a brief development scale. We studied 100 children between 4 and 70 months old, half of them with cerebral palsy and the other half without any disorder. All subjects were evaluated using the Battelle Developmental Inventory screening test. We compared the developmental quotients in both groups and between the subjects with different motor impairments, using a simple prospective ex post facto design. The test detected statistically significant differences between the clinical group and the control group at all age levels. Statistically significant differences were also found between tetraplegia and other motor disorders. There were no differences by gender. The deficit in development associated with cerebral palsy can be quantified at early ages through the use of a brief development scale, thus we propose that the systematic implementation of protocols with this screening tool would be helpful for treatment and early intervention. This would also help in anticipating and establishing the means for the multidisciplinary actions required, and could provide guidance to other health professionals, to provide adequate school, social, and family support,. Copyright © 2011 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.
Bilateral Activity-Dependent Interactions in the Developing Corticospinal System
Friel, Kathleen M.; Martin, John H.
2009-01-01
Activity-dependent competition between the corticospinal (CS) systems in each hemisphere drives postnatal development of motor skills and stable CS tract connections with contralateral spinal motor circuits. Unilateral restriction of motor cortex (M1) activity during an early postnatal critical period impairs contralateral visually guided movements later in development and in maturity. Silenced M1 develops aberrant connections with the contralateral spinal cord whereas the initially active M1, in the other hemisphere, develops bilateral connections. In this study, we determined whether the aberrant pattern of CS tract terminations and motor impairments produced by early postnatal M1 activity restriction could be abrogated by reducing activity-dependent synaptic competition from the initially active M1 later in development. We first inactivated M1 unilaterally between postnatal weeks 5–7. We next inactivated M1 on the other side from weeks 7–11 (alternate inactivation), to reduce the competitive advantage that this side may have over the initially inactivated side. Alternate inactivation redirected aberrant contralateral CS tract terminations from the initially silenced M1 to their normal spinal territories and reduced the density of aberrant ipsilateral terminations from the initially active side. Normal movement endpoint control during visually guided locomotion was fully restored. This reorganization of CS terminals reveals an unsuspected late plasticity after the critical period for establishing the pattern of CS terminations in the spinal cord. Our findings show that robust bilateral interactions between the developing CS systems on each side are important for achieving balance between contralateral and ipsilateral CS tract connections and visuomotor control. PMID:17928450
Latent class analysis of early developmental trajectory in baby siblings of children with autism.
Landa, Rebecca J; Gross, Alden L; Stuart, Elizabeth A; Bauman, Margaret
2012-09-01
Siblings of children with autism (sibs-A) are at increased genetic risk for autism spectrum disorders (ASD) and milder impairments. To elucidate diversity and contour of early developmental trajectories exhibited by sibs-A, regardless of diagnostic classification, latent class modeling was used. Sibs-A (N = 204) were assessed with the Mullen Scales of Early Learning from age 6 to 36 months. Mullen T scores served as dependent variables. Outcome classifications at age 36 months included: ASD (N = 52); non-ASD social/communication delay (broader autism phenotype; BAP; N = 31); and unaffected (N = 121). Child-specific patterns of performance were studied using latent class growth analysis. Latent class membership was then related to diagnostic outcome through estimation of within-class proportions of children assigned to each diagnostic classification. A 4-class model was favored. Class 1 represented accelerated development and consisted of 25.7% of the sample, primarily unaffected children. Class 2 (40.0% of the sample), was characterized by normative development with above-average nonverbal cognitive outcome. Class 3 (22.3% of the sample) was characterized by receptive language, and gross and fine motor delay. Class 4 (12.0% of the sample), was characterized by widespread delayed skill acquisition, reflected by declining trajectories. Children with an outcome diagnosis of ASD were spread across Classes 2, 3, and 4. Results support a category of ASD that involves slowing in early non-social development. Receptive language and motor development is vulnerable to early delay in sibs-A with and without ASD outcomes. Non-ASD sibs-A are largely distributed across classes depicting average or accelerated development. Developmental trajectories of motor, language, and cognition appear independent of communication and social delays in non-ASD sibs-A. © 2012 The Authors. Journal of Child Psychology and Psychiatry © 2012 Association for Child and Adolescent Mental Health.
Guedeney, Antoine; Doukhan, Sarah; Forhan, Anne; Heude, Barbara; Peyre, Hugo
2017-11-01
The present study aims to determine to which extent social withdrawal at 1 year is associated with the child's IQ at the end of the preschool period. Children (N = 1045) from the EDEN mother-child cohort were assessed for social withdrawal behaviours at 1 year by trained midwives using the Alarm Distress BaBy (ADBB) scale. Midwives also examined infants' language and motor development at 1 year. At the age 5-6 years, IQ scores were based on the WPPSI-III. Linear regression models were used to determine the association between IQ and ADBB, adjusted for a broad range of pre- and postnatal environmental factors and for language and motor skills scores at 1 year. After adjusting for environmental factors, children with social withdrawal at 1 years (ADBB ≥5; N = 195) had significantly lower IQ scores at 5-6 years (-2.81 IQ points; p value 0.007) compared to children without social withdrawal (ADBB <5; N = 847). When motor and language skills at 1 year were included in the previous model, no association between social withdrawal and IQ at 5-6 years was found. Being socially withdrawn at 1 year is associated with lower IQ scores at 5-6 years. The potential influence of these developmental aspects on each other (withdrawal behaviour and language/motor skills) may occur early in development. Our results improve our understanding of the outcomes of early social withdrawal behaviour and call for early detection of delay in acquisition of language/motor skills among socially withdrawn young children.
Wu, J C-L; Bradley, R H; Chiang, T-L
2012-07-01
Taiwan has experienced a large influx of cross-border marriage migrants in recent years. The majority have been women in their childbearing ages and have come from countries with lower average standards of living than Taiwan. This trend has changed the ethnic composition of children who live in Taiwan, and it has generated considerable social concern over the future health status of Taiwan's citizens. This study aimed to examine: (1) whether there are disparities in development between children reared in families characterized by cross-border marriages and children reared in families with two Taiwanese-born parents; and (2) whether the quality of home environment explains the group differences in early childhood development. Data came from the Taiwan Birth Cohort Study. A total of 19,499 participants who completed 6-month, 18-month and 3-year surveys were included for analysis. Cross-border marriage status was defined by mother's original nationality and categorized into three broad groups: Taiwanese-born, Chinese cross-border and South-East Asian (SEA) cross-border. Early childhood development was measured at age 3 years, and covered the domains of gross motor, fine motor, language and socio-emotional competence. Hierarchical linear regressions were used to examine the mediation effects of the home environment. Children of Chinese and SEA cross-border groups scored lower in fine motor, language and socio-emotional competence than those of their Taiwanese-born counterpart at age 3 years. Chinese-Taiwanese group differences in all three developmental domains became insignificant after the addition of home environment, while SEA-Taiwanese group differences in fine motor and language development remained, yet were noticeably reduced. The mediation of home environment was further confirmed using the Sobel test. Home environment plays a central role in reducing the disparities in developmental outcomes among children of different marriage groups. Interventions should be directed towards enhancing the quality of early home environment for children reared in families of cross-border marriages. © 2011 Blackwell Publishing Ltd.
NASA Technical Reports Server (NTRS)
Stegenga, S. L.; Kalb, R. G.
2001-01-01
Spinal motor neurons undergo experience-dependent development during a critical period in early postnatal life. It has been suggested that the repertoire of glutamate receptor subunits differs between young and mature motor neurons and contributes to this activity-dependent development. In the present study we examined the expression patterns of N-methyl-D-aspartate- and kainate-type glutamate receptor subunits during the postnatal maturation of the spinal cord. Young motor neurons express much higher levels of the N-methyl-D-aspartate receptor subunit NR1 than do adult motor neurons. Although there are eight potential splice variants of NR1, only a subgroup is expressed by motor neurons. With respect to NR2 receptor subunits, young motor neurons express NR2A and C, while adult motor neurons express only NR2A. Young motor neurons express kainate receptor subunits GluR5, 6 and KA2 but we are unable to detect these or any other kainate receptor subunits in the adult spinal cord. Other spinal cord regions display a distinct pattern of developmental regulation of N-methyl-D-aspartate and kainate receptor subunit expression in comparison to motor neurons. Our findings indicate a precise spatio-temporal regulation of individual subunit expression in the developing spinal cord. Specific combinations of subunits in developing neurons influence their excitable properties and could participate in the emergence of adult neuronal form and function.
Doralp, Samantha; Bartlett, Doreen J
2013-09-01
The development and testing of a measure evaluating the quality and variability in the home environment as it relates to the motor development of infants during the first year of life. A sample of 112 boys and 95 girls with a mean age of 7.1 months (SD 1.8) and GA of 39.6 weeks (SD 1.5) participated in the study. The measurement development process was divided into three phases: measurement development (item generation or selection of items from existing measurement tools), pilot testing to determine acceptability and feasibility to parents, and exploratory factor analysis to organize items into meaningful concepts. Test-retest reliability and internal consistency were also determined. The environmental opportunities questionnaire (EOQ) is a feasible 21-item measure comprised of three factors including opportunities in the play space, sensory variety and parental encouragement. Overall, test-retest reliability was 0.92 (CI 0.84-0.96) and the internal consistency is 0.79. The EOQ emphasizes quality of the environment and access to equipment and toys that have the potential to facilitate early motor development. The preliminary analyses reported here suggest more work could be done on the EOQ to strengthen its use for research or clinical purposes; however, it is adequate for use in its current form. Implications for Rehabilitation New and feasible 21-item questionnaire that enables identification of malleable environmental factors that serve as potential points of intervention for children that are not developing typically. Therapeutic tool for use by therapists to inform and guide discussions with caregivers about potential influences of environmental, social and attitudinal factors in their child's early development.
Smith-Nielsen, Johanne; Tharner, Anne; Krogh, Marianne Thode; Vaever, Mette Skovgaard
2016-12-01
This study examined early and long-term effects of maternal postpartum depression on cognitive, language, and motor development in infants of clinically depressed mothers. Participants were 83 mothers and their full-term born children from the urban region of Copenhagen, Denmark. Of this group, 28 mothers were diagnosed with postnatal depression three to four months postpartum in a diagnostic interview. Cognitive, language, and motor development was assessed with the Bayley Scales of Infant and Toddler Development third edition, when the infants were 4 and 13 months of age. We found that maternal postpartum depression was associated with poorer cognitive development at infant age four months, the effect size being large (Cohen's d = 0.8) and with similar effects for boys and girls. At 13 months of age infants of clinical mothers did not differ from infants of non-clinical mothers. At this time most (79%) of the clinical mothers were no longer, or not again, depressed. These results may indicate that maternal depression can have an acute, concurrent effect on infant cognitive development as early as at four months postpartum. At the same time, in the absence of other risk factors, this effect may not be enduring. The main weaknesses of the study include the relatively small sample size and that depression scores were only available for 35 of the non-clinical mothers at 13 months. © 2016 Scandinavian Psychological Associations and John Wiley & Sons Ltd.
Santos, Denise CC; Angulo-Barroso, Rosa M; Li, Ming; Bian, Yang; Sturza, Julie; Richards, Blair; Lozoff, Betsy
2017-01-01
BACKGROUND/OBJECTIVES Poorer motor development is reported in infants with iron deficiency (ID). The role of timing, duration and severity is unclear. We assessed relations between ID timing, duration, and severity and gross motor scores, neurological integrity, and motor behavior quality at 9 months. METHODS Iron status was determined at birth and 9 months in otherwise healthy term Chinese infants. The 9-month motor evaluation included the Peabody Developmental Motor Scale (PDMS-2), Infant Neurological International Battery (INFANIB), and motor quality factor. Motor outcomes were analyzed by ID timing (fetal-neonatal, infancy), duration, and severity. For severity, we also considered maternal iron status. RESULTS Data were available for 1194 infants. Iron status was classified as fetal-neonatal and infancy ID (n=253), fetal-neonatal ID (n=256), infancy ID (n=288), and not ID (n=397). Compared with not ID, infants with fetal-neonatal or infancy ID had lower locomotion scores (effect size ds=0.19, 0.18) and those with ID in both periods (longer duration) had lower locomotion and overall PDMS-2 gross motor scores (ds=0.20, 0.18); ID groups did not differ. More severe ID in late pregnancy was associated with lower INFANIB Vestibular function (p=0.01), and total score (p=0.03). More severe ID in infancy was associated with lower scores for locomotion (p=0.03), overall gross motor (p=0.05). CONCLUSIONS Fetal-neonatal and/or infancy ID was associated with lower overall gross motor development and locomotion test scores at 9 months. Associations with ID severity varied by ID timing: more severe ID in late pregnancy, poorer neurological integrity; more severe ID in infancy, poorer gross motor development. PMID:29235557
Huang, Xinxin; Ng, Samuel Yong-Ern; Chia, Nicole Shuang-Yu; Acharyya, Sanchalika; Setiawan, Fiona; Lu, Z-H; Ng, Ebonne; Tay, Kay-Yaw; Au, Wing-Lok; Tan, Eng-King; Tan, Louis Chew-Seng
2018-05-17
Uric acid has been found to be potentially neuroprotective in Parkinson's disease (PD). We investigated the relationship between serum uric acid levels and both motor and non-motor features in a prospective early PD cohort study. Fasting serum uric acid levels were measured from 125 early PD patients. Demographic, clinical characteristics, motor and non-motor assessments were performed. Patients were categorized into three motor subtypes: tremor-dominant (TD), postural instability/gait difficulty (PIGD), and mixed. Non-motor symptoms were classified as present or absent based on the appropriate cut-offs for each non-motor instrument. Most patients had TD (n = 51, 40.8%) and mixed (n = 63, 50.4%) motor subtypes, while a minority had PIGD (n = 11, 8.8%) motor subtype. The mean serum uric acid levels were significantly different between the three motor subtypes (p = 0.0106), with the mixed subtype having the lowest serum uric acid levels. Using the TD subtype as reference, patients with higher serum uric acid levels were less likely to have the mixed (OR = 0.684; p = 0.0312) subtype as opposed to the TD subtype. Uric acid levels were not significantly different between the TD and PIGD subtypes. For non-motor symptoms, higher serum uric acid levels were significantly associated with less fatigue (OR = 0.693; p = 0.0408). Higher serum uric acid levels were associated with TD motor subtype and less fatigue in early PD, which could be related to its anti-oxidative properties. Uric acid could be an important biomarker for specific motor features and symptoms of fatigue in PD. Copyright © 2018 Elsevier Ltd. All rights reserved.
IUS solid rocket motor contamination prediction methods
NASA Technical Reports Server (NTRS)
Mullen, C. R.; Kearnes, J. H.
1980-01-01
A series of computer codes were developed to predict solid rocket motor produced contamination to spacecraft sensitive surfaces. Subscale and flight test data have confirmed some of the analytical results. Application of the analysis tools to a typical spacecraft has provided early identification of potential spacecraft contamination problems and provided insight into their solution; e.g., flight plan modifications, plume or outgassing shields and/or contamination covers.
2017-01-01
Several talent development programs in youth soccer have implemented motor diagnostics measuring performance factors. However, the predictive value of such tests for adult success is a controversial topic in talent research. This prospective cohort study evaluated the long-term predictive value of 1) motor tests and 2) players’ speed abilities (SA) and technical skills (TS) in early adolescence. The sample consisted of 14,178 U12 players from the German talent development program. Five tests (sprint, agility, dribbling, ball control, shooting) were conducted and players’ height, weight as well as relative age were assessed at nationwide diagnostics between 2004 and 2006. In the 2014/15 season, the players were then categorized as professional (n = 89), semi-professional (n = 913), or non-professional players (n = 13,176), indicating their adult performance level (APL). The motor tests’ prognostic relevance was determined using ANOVAs. Players’ future success was predicted by a logistic regression threshold model. This structural equation model comprised a measurement model with the motor tests and two correlated latent factors, SA and TS, with simultaneous consideration for the manifest covariates height, weight and relative age. Each motor predictor and anthropometric characteristic discriminated significantly between the APL (p < .001; η2 ≤ .02). The threshold model significantly predicted the APL (R2 = 24.8%), and in early adolescence the factor TS (p < .001) seems to have a stronger effect on adult performance than SA (p < .05). Both approaches (ANOVA, SEM) verified the diagnostics’ predictive validity over a long-term period (≈ 9 years). However, because of the limited effect sizes, the motor tests’ prognostic relevance remains ambiguous. A challenge for future research lies in the integration of different (e.g., person-oriented or multilevel) multivariate approaches that expand beyond the “traditional” topic of single tests’ predictive validity and toward more theoretically founded issues. PMID:28806410
Szajewska, Hania
2011-12-01
The role of early nutrition as a cost-effective measure to ensure optimal infant growth, development, and long-term health is gaining attention. In particular, the role of supplementation with nutrients such as n-3 (omega-3) fatty acids, iron, zinc, and B vitamins, which are relevant to brain structure and function, is of interest. However, for all of these nutrients, there is a lack of clarity and no consensus regarding their role in the mental and motor development of children. Systematic reviews with or without a meta-analysis are a well-established means of reviewing existing evidence and of integrating findings from various studies, including those related to infant nutrition. In this article, I provide an overview of the basic principles of systematic review and meta-analysis of randomized controlled trials (RCTs) and summarize such evidence related to the effects of early nutrition on mental and motor development. The inclusion of only RCTs in a systematic review could be considered the major strength. Randomization is the only means to control for unknown and unmeasured differences between comparison groups as well as for those that are known and measured. However, even if only RCTs are included, reviews are not free of potential biases. An understanding of the strengths and limitations of the meta-analytic approach, which I discuss in this article, is needed by everyone involved in decision making regarding interventions assessed by this approach.
Early physiological abnormalities after simian immunodeficiency virus infection.
Horn, T F; Huitron-Resendiz, S; Weed, M R; Henriksen, S J; Fox, H S
1998-12-08
Central nervous system (CNS) damage and dysfunction are devastating consequences of HIV infection. Although the CNS is one of the initial targets for HIV infection, little is known about early viral-induced abnormalities that can affect CNS function. Here we report the detection of early physiological abnormalities in simian immunodeficiency virus-infected monkeys. The acute infection caused a disruption of the circadian rhythm manifested by rises in body temperature, observed in all five individuals between 1 and 2 weeks postinoculation (p.i.), accompanied by a reduction in daily motor activity to 50% of control levels. Animals remained hyperthermic at 1 and 2 months p.i. and returned to preinoculation temperatures at 3 months after viral inoculation. Although motor activity recovered to baseline values at 1 month p.i., activity levels then decreased to approximately 50% of preinoculation values over the next 2 months. Analysis of sensory-evoked responses 1 month p.i. revealed distinct infection-induced changes in auditory-evoked potential peak latencies that persisted at 3 months after viral inoculation. These early physiological abnormalities may precede the development of observable cognitive or motor deficiencies and can provide an assay to evaluate agents to prevent or alleviate neuronal dysfunction.
Early physiological abnormalities after simian immunodeficiency virus infection
Horn, Thomas F. W.; Huitron-Resendiz, Salvador; Weed, Michael R.; Henriksen, Steven J.; Fox, Howard S.
1998-01-01
Central nervous system (CNS) damage and dysfunction are devastating consequences of HIV infection. Although the CNS is one of the initial targets for HIV infection, little is known about early viral-induced abnormalities that can affect CNS function. Here we report the detection of early physiological abnormalities in simian immunodeficiency virus-infected monkeys. The acute infection caused a disruption of the circadian rhythm manifested by rises in body temperature, observed in all five individuals between 1 and 2 weeks postinoculation (p.i.), accompanied by a reduction in daily motor activity to 50% of control levels. Animals remained hyperthermic at 1 and 2 months p.i. and returned to preinoculation temperatures at 3 months after viral inoculation. Although motor activity recovered to baseline values at 1 month p.i., activity levels then decreased to approximately 50% of preinoculation values over the next 2 months. Analysis of sensory-evoked responses 1 month p.i. revealed distinct infection-induced changes in auditory-evoked potential peak latencies that persisted at 3 months after viral inoculation. These early physiological abnormalities may precede the development of observable cognitive or motor deficiencies and can provide an assay to evaluate agents to prevent or alleviate neuronal dysfunction. PMID:9844017
Dualities in the analysis of phage DNA packaging motors
Serwer, Philip; Jiang, Wen
2012-01-01
The DNA packaging motors of double-stranded DNA phages are models for analysis of all multi-molecular motors and for analysis of several fundamental aspects of biology, including early evolution, relationship of in vivo to in vitro biochemistry and targets for anti-virals. Work on phage DNA packaging motors both has produced and is producing dualities in the interpretation of data obtained by use of both traditional techniques and the more recently developed procedures of single-molecule analysis. The dualities include (1) reductive vs. accretive evolution, (2) rotation vs. stasis of sub-assemblies of the motor, (3) thermal ratcheting vs. power stroking in generating force, (4) complete motor vs. spark plug role for the packaging ATPase, (5) use of previously isolated vs. new intermediates for analysis of the intermediate states of the motor and (6) a motor with one cycle vs. a motor with two cycles. We provide background for these dualities, some of which are under-emphasized in the literature. We suggest directions for future research. PMID:23532204
Autism as a disorder of biological and behavioral rhythms: toward new therapeutic perspectives.
Tordjman, Sylvie; Davlantis, Katherine S; Georgieff, Nicolas; Geoffray, Marie-Maude; Speranza, Mario; Anderson, George M; Xavier, Jean; Botbol, Michel; Oriol, Cécile; Bellissant, Eric; Vernay-Leconte, Julie; Fougerou, Claire; Hespel, Anne; Tavenard, Aude; Cohen, David; Kermarrec, Solenn; Coulon, Nathalie; Bonnot, Olivier; Dawson, Geraldine
2015-01-01
There is a growing interest in the role of biological and behavioral rhythms in typical and atypical development. Recent studies in cognitive and developmental psychology have highlighted the importance of rhythmicity and synchrony of motor, emotional, and interpersonal rhythms in early development of social communication. The synchronization of rhythms allows tuning and adaptation to the external environment. The role of melatonin in the ontogenetic establishment of circadian rhythms and the synchronization of the circadian clocks network suggests that this hormone might be also involved in the synchrony of motor, emotional, and interpersonal rhythms. Autism provides a challenging model of physiological and behavioral rhythm disturbances and their possible effects on the development of social communication impairments and repetitive behaviors and interests. This article situates autism as a disorder of biological and behavioral rhythms and reviews the recent literature on the role of rhythmicity and synchrony of rhythms in child development. Finally, the hypothesis is developed that an integrated approach focusing on biological, motor, emotional, and interpersonal rhythms may open interesting therapeutic perspectives for children with autism. More specifically, promising avenues are discussed for potential therapeutic benefits in autism spectrum disorder of melatonin combined with developmental behavioral interventions that emphasize synchrony, such as the Early Start Denver Model.
Autism as a Disorder of Biological and Behavioral Rhythms: Toward New Therapeutic Perspectives
Tordjman, Sylvie; Davlantis, Katherine S.; Georgieff, Nicolas; Geoffray, Marie-Maude; Speranza, Mario; Anderson, George M.; Xavier, Jean; Botbol, Michel; Oriol, Cécile; Bellissant, Eric; Vernay-Leconte, Julie; Fougerou, Claire; Hespel, Anne; Tavenard, Aude; Cohen, David; Kermarrec, Solenn; Coulon, Nathalie; Bonnot, Olivier; Dawson, Geraldine
2015-01-01
There is a growing interest in the role of biological and behavioral rhythms in typical and atypical development. Recent studies in cognitive and developmental psychology have highlighted the importance of rhythmicity and synchrony of motor, emotional, and interpersonal rhythms in early development of social communication. The synchronization of rhythms allows tuning and adaptation to the external environment. The role of melatonin in the ontogenetic establishment of circadian rhythms and the synchronization of the circadian clocks network suggests that this hormone might be also involved in the synchrony of motor, emotional, and interpersonal rhythms. Autism provides a challenging model of physiological and behavioral rhythm disturbances and their possible effects on the development of social communication impairments and repetitive behaviors and interests. This article situates autism as a disorder of biological and behavioral rhythms and reviews the recent literature on the role of rhythmicity and synchrony of rhythms in child development. Finally, the hypothesis is developed that an integrated approach focusing on biological, motor, emotional, and interpersonal rhythms may open interesting therapeutic perspectives for children with autism. More specifically, promising avenues are discussed for potential therapeutic benefits in autism spectrum disorder of melatonin combined with developmental behavioral interventions that emphasize synchrony, such as the Early Start Denver Model. PMID:25756039
Touchpoints: Your Child's Emotional and Behavioral Development.
ERIC Educational Resources Information Center
Brazelton, T. Berry
This book looks at children's early development through what are called "touchpoints": times just before a surge of rapid motor, cognitive, or emotional development when, for a short time, children regress in several areas and become difficult to understand. Part 1, called "Touchpoints of Development," is organized around the…
Detecting the Intention to Move Upper Limbs from Electroencephalographic Brain Signals.
Gudiño-Mendoza, Berenice; Sanchez-Ante, Gildardo; Antelis, Javier M
2016-01-01
Early decoding of motor states directly from the brain activity is essential to develop brain-machine interfaces (BMI) for natural motor control of neuroprosthetic devices. Hence, this study aimed to investigate the detection of movement information before the actual movement occurs. This information piece could be useful to provide early control signals to drive BMI-based rehabilitation and motor assisted devices, thus providing a natural and active rehabilitation therapy. In this work, electroencephalographic (EEG) brain signals from six healthy right-handed participants were recorded during self-initiated reaching movements of the upper limbs. The analysis of these EEG traces showed that significant event-related desynchronization is present before and during the execution of the movements, predominantly in the motor-related α and β frequency bands and in electrodes placed above the motor cortex. This oscillatory brain activity was used to continuously detect the intention to move the limbs, that is, to identify the motor phase prior to the actual execution of the reaching movement. The results showed, first, significant classification between relax and movement intention and, second, significant detection of movement intention prior to the onset of the executed movement. On the basis of these results, detection of movement intention could be used in BMI settings to reduce the gap between mental motor processes and the actual movement performed by an assisted or rehabilitation robotic device.
Terband, H; Maassen, B; Guenther, F H; Brumberg, J
2014-01-01
Differentiating the symptom complex due to phonological-level disorders, speech delay and pediatric motor speech disorders is a controversial issue in the field of pediatric speech and language pathology. The present study investigated the developmental interaction between neurological deficits in auditory and motor processes using computational modeling with the DIVA model. In a series of computer simulations, we investigated the effect of a motor processing deficit alone (MPD), and the effect of a motor processing deficit in combination with an auditory processing deficit (MPD+APD) on the trajectory and endpoint of speech motor development in the DIVA model. Simulation results showed that a motor programming deficit predominantly leads to deterioration on the phonological level (phonemic mappings) when auditory self-monitoring is intact, and on the systemic level (systemic mapping) if auditory self-monitoring is impaired. These findings suggest a close relation between quality of auditory self-monitoring and the involvement of phonological vs. motor processes in children with pediatric motor speech disorders. It is suggested that MPD+APD might be involved in typically apraxic speech output disorders and MPD in pediatric motor speech disorders that also have a phonological component. Possibilities to verify these hypotheses using empirical data collected from human subjects are discussed. The reader will be able to: (1) identify the difficulties in studying disordered speech motor development; (2) describe the differences in speech motor characteristics between SSD and subtype CAS; (3) describe the different types of learning that occur in the sensory-motor system during babbling and early speech acquisition; (4) identify the neural control subsystems involved in speech production; (5) describe the potential role of auditory self-monitoring in developmental speech disorders. Copyright © 2014 Elsevier Inc. All rights reserved.
Early Life Stress, Depression And Parkinson's Disease: A New Approach.
Dallé, Ernest; Mabandla, Musa V
2018-03-19
This review aims to shed light on the relationship that involves exposure to early life stress, depression and Parkinson's disease (PD). A systematic literature search was conducted in Pubmed, MEDLINE, EBSCOHost and Google Scholar and relevant data were submitted to a meta-analysis . Early life stress may contribute to the development of depression and patients with depression are at risk of developing PD later in life. Depression is a common non-motor symptom preceding motor symptoms in PD. Stimulation of regions contiguous to the substantia nigra as well as dopamine (DA) agonists have been shown to be able to attenuate depression. Therefore, since PD causes depletion of dopaminergic neurons in the substantia nigra, depression, rather than being just a simple mood disorder, may be part of the pathophysiological process that leads to PD. It is plausible that the mesocortical and mesolimbic dopaminergic pathways that mediate mood, emotion, and/or cognitive function may also play a key role in depression associated with PD. Here, we propose that a medication designed to address a deficiency in serotonin is more likely to influence motor symptoms of PD associated with depression. This review highlights the effects of an antidepressant, Fluvoxamine maleate, in an animal model that combines depressive-like symptoms and Parkinsonism.
Matijević, Valentina; Secić, Ana; Zivković, Tamara Kauzlarić; Borosak, Jesenka; Kolak, Zeljka; Dimić, Zdenka
2013-09-01
The early child development, from birth until the age of one year is, amongst other changes, characterized by intense motor learning. During that period, the voluntary learning patterns evolve from reflexive patterns to coordinated voluntary patterns. All of the child's voluntary movements present active forms in which the child communicates with the environment. In this communication, the hand plays an important role. Its brain representation covers one-third of the entire motor region, situated in the close proximity to the speech region. For this reason, some authors refer to hand as a "speech organ". According to numerous studies, each separate finger also has a relatively large representation in the cerebral cortex, which points to the importance of the fine motor skills development, or precise, highly differentiated movements of hand muscles following the principles of differentiation and hierarchical integration. Development of the fine motor skills in the hand is important for the overall child development, and it also serves as a predictor pointing to immaturity of the central nervous system. The aim of this paper is to present the development of hand motoricity from birth until the age of one year, as well as the most frequent deviations observed in children hospitalized at Children's Department of Rehabilitation, Clinical Department of Rheumatology, Physical Medicine and Rehabilitation, Sestre milosrdnice University Hospital Center.
Prenatal Development of Interlimb Motor Learning in the Rat Fetus
Robinson, Scott R.; Kleven, Gale A.; Brumley, Michele R.
2010-01-01
The role of sensory feedback in the early ontogeny of motor coordination remains a topic of speculation and debate. On E20 of gestation (the 20th day after conception, 2 days before birth), rat fetuses can alter interlimb coordination after a period of training with an interlimb yoke, which constrains limb movement and promotes synchronized, conjugate movement of the yoked limbs. The aim of this study was to determine how the ability to express this form of motor learning may change during prenatal development. Fetal rats were prepared for in vivo study at 4 ages (E18–21) and tested in a 65-min training-and-testing session examining hind limb motor learning. A significant increase in conjugate hind limb activity was expressed by E19, but not E18 fetuses, with further increases in conjugate hind limb activity on E20 and E21. These findings suggest substantial development of the ability of fetal rats to modify patterns of interlimb coordination in response to kinesthetic feedback during motor training before birth. PMID:20198121
de Oliveira, Suelen Rosa; de Paula Machado, Ana Carolina Cabral; de Paula, Jonas Jardim; de Moraes, Paulo Henrique Paiva; Nahin, Maria Juliana Silvério; Magalhães, Lívia de Castro; Novi, Sergio L; Mesquita, Rickson C; de Miranda, Débora Marques; Bouzada, Maria Cândida Ferrarez
2018-01-01
This study aimed to assess task-induced activation in motor cortex and its association with motor performance in full-term and preterm born infants at six months old. A cross-sectional study of 73 six-month-old infants was conducted (35 full-term and 38 preterm infants). Motor performance was assessed using the Bayley Scales of Infant Development third edition-Bayley-III. Brain hemodynamic activity during motor task was measured by functional near-infrared spectroscopy (fNIRS). Motor performance was similar in full-term and preterm infants. However, differences in hemodynamic response were identified. Full terms showed a more homogeneous unilateral and contralateral activated area, whereas in preterm-born the activation response was predominantly bilateral. The full-term group also exhibited a shorter latency for the hemodynamic response than the preterm group. Hemodynamic activity in the left sensorimotor region was positively associated with motor performance measured by Bayley-III. The results highlight the adequacy of fNIRS to assess differences in task-induced activation in sensorimotor cortex between groups. The association between motor performance and the hemodynamic activity require further investigation and suggest that fNIRS can become a suitable auxiliary tool to investigate aspects of neural basis on early development of motor abilities.
Composite ceramic superconducting wires for electric motor applications
NASA Astrophysics Data System (ADS)
Holloran, John W.
1989-07-01
Progress is described on developing Y-123 wire for an HTSC motor. The wire development involves synthesis of Y-123 powder, spinning polymer containing green fiber, heat treating the fiber to produce metallized superconducting filaments, and characterizing the electrical properties. A melt spinning process was developed for producing 125-micron diameter green fiber containing 50 vol percent Y-123. This fiber can be braided for producing transposed multifilamentary wire. A process was developed to coat green fiber with silver alloys which can be continuous sintering. A second process for multifilamentary ribbon wire is also being developed. The Y-123 filaments have 77 deg self-field Jc values up to 2600 A/sq cm, but Jc is reduced to 10 A/cm squared at 800 G. Preliminary data is presented on mechanical properties. A dc homopolar motor with an iron magnetic circuit is being designed to operate with early HTSC wire.
Muthugovindan, Deivasumathy; Singer, Harvey
2009-04-01
This review highlights recent advances in understanding the clinical features, prevalence, and outcomes of motor stereotypy disorders in typically developing children. Longitudinal data indicate that stereotypies in children with normal intelligence show an early age of onset, chronicity, and high prevalence of comorbid difficulties, including tics, obsessive-compulsive behaviors, and attention deficit hyperactivity disorder. The underlying abnormality remains unknown, but there is increasing evidence for Mendelian inheritance and a neurobiological mechanism. Primary motor stereotypies are relatively common in childhood and can be subdivided into three groups (common, head nodding, and complex motor). Movements are similar to those seen in children with autistic spectrum disorders, mental retardation, and sensory deprivation. The role of pharmacotherapy is not established and behavioral therapy can be beneficial.
IRON DEFICIENCY AND INFANT MOTOR DEVELOPMENT
Shafir, Tal; Angulo-Barroso, Rosa; Jing, Yuezhou; Lu Angelilli, Mary; Jacobson, Sandra W.; Lozoff, Betsy
2011-01-01
Background Iron deficiency (ID) during early development impairs myelination and basal ganglia function in animal models. Aims To examine the effects of iron deficiency anemia (IDA) and iron deficiency (ID) without anemia on infant motor skills that are likely related to myelination and basal ganglia function. Study design Observational study. Subjects Full-term inner-city African-American 9- to 10-month-old infants who were free of acute or chronic health problems with iron status indicators ranging from IDA to iron sufficiency (n = 106). Criteria for final iron status classification were met by 77 of these infants: 28 IDA, 28 non-anemic iron-deficient (NA ID), and 21 iron-sufficient (IS). Outcome measures Gross motor developmental milestones, Peabody Developmental Motor Scale, Infant Neurological International Battery (INFANIB), motor quality factor of the Bayley Behavioral Rating Scale, and a sequential/bi-manual coordination toy retrieval task. General linear model analyses tested for linear effects of iron status group and thresholds for effects. Results There were linear effects of iron status on developmental milestones, Peabody gross motor (suggestive trend), INFANIB standing item, motor quality, and toy retrieval. The threshold for effects was ID with or without anemia for developmental milestones, INFANIB standing item, and motor quality and IDA for toy retrieval. Conclusions Using a comprehensive and sensitive assessment of motor development, this study found poorer motor function in ID infants with and without anemia. Poorer motor function among non-anemic ID infants is particularly concerning, since ID without anemia is not detected by common screening procedures and is more widespread than IDA. PMID:18272298
Interrater reliability of early intervention providers scoring the alberta infant motor scale.
Blanchard, Y; Neilan, E; Busanich, J; Garavuso, L; Klimas, D
2004-01-01
This study was designed to examine the interrater reliability of early intervention providers scoring of the Alberta Infant Motor Scale (AIMS) and to examine whether training on the AIMS would improve their interrater reliability. Eight early intervention providers were randomly assigned to two groups. Participants in Group 1 scored the AIMS on seven videotapes of infants prior to receiving training and after training on another set of seven videotapes of infants. Participants in Group 2 scored the AIMS on all 14 videotapes of the infants after receiving training. Overall interrater reliability before and after training was high with intraclass correlation coefficients ranging from 0.98 to 0.99. Detailed examination of the results showed that training improved the reliability of the supine subscale in a subgroup of infants between the ages of five and seven months. Training also had an effect on the classification of infants as normal or abnormal in their motor development based on their percentile rankings. The AIMS manual provides sufficient information to attain high interrater reliability without training, but revisions regarding scoring are strongly recommended.
Effects of maternal separation on the neurobehavioral development of newborn Wistar rats.
Farkas, Jozsef; Reglodi, Dora; Gaszner, Balazs; Szogyi, Donat; Horvath, Gabor; Lubics, Andrea; Tamas, Andrea; Frank, Falko; Besirevic, Dario; Kiss, Peter
2009-05-29
Animal models of neonatal stress, like maternal separation, may provide important correlation with human stress-related disorders. Early maternal deprivation has been shown to cause several short- and long-term neurochemical and behavioral deficits. Little is known about the early neurobehavioral development after postnatal stress. The aim of the present study was to investigate the development of reflexes and motor coordination in male and female pups subjected to maternal deprivation. Pups were removed from their mothers from postnatal day 1-14, for 3h daily. Somatic development (weight gain, eye opening, ear unfolding, incisor eruption) and reflex development was tested during the first 3 weeks. The appearance of the following reflexes was investigated: crossed extensor, grasping, placing, gait, righting and sensory reflexes, and negative geotaxis. Timely performance of negative geotaxis, righting and gait were also tested daily during the first 3 weeks. Motor coordination and open-field tests were performed on postnatal weeks 3-5 (rotarod, elevated grid-walk, footfault, rope suspension, inclined board and walk initiation tests). The results revealed that a 3-h-long daily maternal separation did not lead to a marked delay or enhancement in reflex development and motor coordination. A subtle enhancement was observed in the appearance of hindlimb grasp and gait reflexes, and a better performance in footfault test in male rats suffering from maternal deprivation. In contrast, female maternally deprived (MD) rats displayed a slight delay in forelimb grasp and air righting reflex appearance, and surface righting performance. Open-field activity was not changed in maternally deprived rats. In summary, our present observations indicate that maternal deprivation does not induce drastic changes in early neurodevelopment, therefore, further research is needed to determine the onset of behavioral alterations in subject with maternal deprivation history. Gender differences described in this study could help to understand how gender-specific differences in early life experience-induced stress-related disorders appear in adult life.
Orthostatic hypotension predicts motor decline in early Parkinson disease.
Kotagal, Vikas; Lineback, Christina; Bohnen, Nicolaas I; Albin, Roger L
2016-11-01
Orthostatic hypotension is increasingly reported as a risk factor for development of late-stage disease features in Parkinson disease (PD). Less is known about its significance in individuals with early PD who are often targeted for neuroprotective trials. Using data from the CALM-PD trial (n = 275), we explored whether early orthostatic hypotension predicts a decline in the Unified Parkinson's Disease Rating Scale (UPDRS) II (activities of daily living) or UDPRS III (motor) score after 102 weeks. We also explored risk factors for worsening orthostatic hypotension over a nearly 2-year period. After controlling for age, disease duration, gender, study drug, change in mini-mental status exam score, levodopa equivalent dose, and baseline UPDRS II or III score respectively, the degree of orthostatic hypotension at enrollment associated with a worsening in UPDRS motor score (t = 2.40, p = 0.017) at week 102 but not with UPDRS ADL score (t = 0.83, p = 0.409). Worsening in orthostatic hypotension during the study associated with longer disease duration (t = 2.37, p = 0.019) and lower body mass index (BMI) (t = -2.96, p = 0.003). Baseline orthostatic hypotension is a predictor of UPDRS motor decline in individuals with early PD and should be accounted for in clinical trial design. Low BMI may predict orthostatic hypotension in PD. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hu, JunMei; Bortsov, Andrey V; Ballina, Lauren; Orrey, Danielle C; Swor, Robert A; Peak, David; Jones, Jeffrey; Rathlev, Niels; Lee, David C; Domeier, Robert; Hendry, Phyllis; Parry, Blair A; McLean, Samuel A
2016-02-01
Motor vehicle collision (MVC) can trigger chronic widespread pain (CWP) development in vulnerable individuals. Whether such CWP typically develops through the evolution of pain from regional to widespread or through the early development of widespread pain with nonrecovery is currently unknown. We evaluated the trajectory of CWP development (American College of Rheumatology criteria) among 948 European-American individuals who presented to the emergency department (ED) for care in the early aftermath of MVC. Pain extent was assessed in the ED and 6 weeks, 6 months, and 1 year after MVC on 100%, 91%, 89%, and 91% of participants, respectively. Individuals who reported prior CWP at the time of ED evaluation (n = 53) were excluded. Trajectory modeling identified a 2-group solution as optimal, with the Bayes Factor value (138) indicating strong model selection. Linear solution plots supported a nonrecovery model. Although the number of body regions with pain in the non-CWP group steadily declined, the number of body regions with pain in the CWP trajectory group (192/895, 22%) remained relatively constant over time. These data support the hypothesis that individuals who develop CWP after MVC develop widespread pain in the early aftermath of MVC, which does not remit.
Thaut, Michael H
2015-01-01
The discovery of rhythmic auditory-motor entrainment in clinical populations was a historical breakthrough in demonstrating for the first time a neurological mechanism linking music to retraining brain and behavioral functions. Early pilot studies from this research center were followed up by a systematic line of research studying rhythmic auditory stimulation on motor therapies for stroke, Parkinson's disease, traumatic brain injury, cerebral palsy, and other movement disorders. The comprehensive effects on improving multiple aspects of motor control established the first neuroscience-based clinical method in music, which became the bedrock for the later development of neurologic music therapy. The discovery of entrainment fundamentally shifted and extended the view of the therapeutic properties of music from a psychosocially dominated view to a view using the structural elements of music to retrain motor control, speech and language function, and cognitive functions such as attention and memory. © 2015 Elsevier B.V. All rights reserved.
Abnormal experimentally- and behaviorally-induced LTP-like plasticity in focal hand dystonia.
Belvisi, Daniele; Suppa, Antonio; Marsili, Luca; Di Stasio, Flavio; Parvez, Ahmad Khandker; Agostino, Rocco; Fabbrini, Giovanni; Berardelli, Alfredo
2013-02-01
Idiopathic focal hand dystonia (FHD) arises from abnormal plasticity in the primary motor cortex (M1) possibly reflecting abnormal sensori-motor integration processes. In this transcranial magnetic stimulation (TMS) study in FHD, we evaluated changes in motor evoked potentials (MEPs) after intermittent theta burst stimulation (iTBS) and paired associative stimulation (PAS), techniques that elicit different forms of experimentally-induced long-term potentiation (LTP)-like plasticity in M1. We also examined behaviorally-induced LTP-like plasticity as reflected by early motor learning of a simple motor task. We studied 14 patients with FHD and 14 healthy subjects. MEPs were recorded before and after iTBS and PAS at the 25 ms interstimulus interval (PAS(25)) in separate sessions. Subjects did a simple motor task entailing repetitive index finger abductions. To measure early motor learning we tested practice-related improvement in peak velocity and peak acceleration. In FHD patients iTBS failed to elicit the expected MEP changes and PAS(25) induced abnormally increased MEPs in target and non-target muscles. In the experiment testing early motor learning, patients lacked the expected practice-related changes in kinematic variables. In FHD, the degree of early motor learning correlated with patients' clinical features. We conclude that experimentally-induced (iTBS and PAS) and behaviorally-induced LTP-like plasticity are both altered in FHD. Copyright © 2012 Elsevier Inc. All rights reserved.
Premotor and non-motor features of Parkinson’s disease
Goldman, Jennifer G.; Postuma, Ron
2014-01-01
Purpose of review This review highlights recent advances in premotor and non-motor features in Parkinson’s disease, focusing on these issues in the context of prodromal and early stage Parkinson’s disease. Recent findings While Parkinson’s disease patients experience a wide range of non-motor symptoms throughout the disease course, studies demonstrate that non-motor features are not solely a late manifestation. Indeed, disturbances of smell, sleep, mood, and gastrointestinal function may herald Parkinson’s disease or related synucleinopathies and precede these neurodegenerative conditions by 5 or more years. In addition, other non-motor symptoms such as cognitive impairment are now recognized in incident or de novo Parkinson’s disease cohorts. Many of these non-motor features reflect disturbances in non-dopaminergic systems and early involvement of peripheral and central nervous systems including olfactory, enteric, and brainstem neurons as in Braak’s proposed pathological staging of Parkinson’s disease. Current research focuses on identifying potential biomarkers that may detect persons at risk for Parkinson’s disease and permit early intervention with neuroprotective or disease-modifying therapeutics. Summary Recent studies provide new insights on the frequency, pathophysiology, and importance of non-motor features in Parkinson’s disease as well as the recognition that these non-motor symptoms occur in premotor, early, and later phases of Parkinson’s disease. PMID:24978368
Caring for Infants--Trusting Your Feelings.
ERIC Educational Resources Information Center
Mast, Jacqueline
1991-01-01
Discusses the importance of child caregivers' attention to normal development of infants during the first year of life. Gut level feelings about abnormality are significant in early diagnoses of handicapped children. A list of warning signs that indicate problems in motor development is included. (SH)
Slip of the tongue: Implications for evolution and language development.
Forrester, Gillian S; Rodriguez, Alina
2015-08-01
A prevailing theory regarding the evolution of language implicates a gestural stage prior to the emergence of speech. In support of a transition of human language from a gestural to a vocal system, articulation of the hands and the tongue are underpinned by overlapping left hemisphere dominant neural regions. Behavioral studies demonstrate that human adults perform sympathetic mouth actions in imitative synchrony with manual actions. Additionally, right-handedness for precision manual actions in children has been correlated with the typical development of language, while a lack of hand bias has been associated with psychopathology. It therefore stands to reason that sympathetic mouth actions during fine precision motor action of the hands may be lateralized. We employed a fine-grained behavioral coding paradigm to provide the first investigation of tongue protrusions in typically developing 4-year old children. Tongue protrusions were investigated across a range of cognitive tasks that required varying degrees of manual action: precision motor action, gross motor action and no motor actions. The rate of tongue protrusions was influenced by the motor requirements of the task and tongue protrusions were significantly right-biased for only precision manual motor action (p<.001). From an evolutionary perspective, tongue protrusions can drive new investigations regarding how an early human communication system transitioned from hand to mouth. From a developmental perspective, the present study may serve to reveal patterns of tongue protrusions during the motor development of typically developing children. Copyright © 2015 Elsevier B.V. All rights reserved.
Nguyen, Phuong H; DiGirolamo, Ann M; Gonzalez-Casanova, Ines; Young, Melissa; Kim, Nicole; Nguyen, Son; Martorell, Reynaldo; Ramakrishnan, Usha
2018-01-01
Early childhood development plays a key role in a child's future health, educational success, and economic status. However, suboptimal early development remains a global challenge. This study examines the influences of quality of the home learning environment (HOME) and child stunting in the first year of life on child development. We used data collected from a randomized controlled trial of preconceptional micronutrient supplementation in Vietnam (n = 1,458). The Bayley Scales of Infant Development-III were used to assess cognition, language, and motor development domains at 2 years. At 1 year, 14% of children were stunted, and 15%, 58%, and 28% of children lived in poor, medium, and high HOME environments, respectively. In multivariate generalized linear regression models, living in a high HOME environment was significantly associated with higher scores (0.10 to 0.13 SD) in each of the developmental domains. Stunted children scored significantly lower for cognitive, language, and motor development (-0.11 to -0.18), compared to nonstunted children. The negative associations between stunting on development were modified by HOME; the associations were strong among children living in homes with a poor learning environment whereas they were nonsignificant for those living in high-quality learning environments. In conclusion, child stunting the first year of life was negatively associated with child development at 2 years among children in Vietnam, but a high-quality HOME appeared to attenuate these associations. Early interventions aimed at improving early child growth as well as providing a stimulating home environment are critical to ensure optimal child development. © 2017 John Wiley & Sons Ltd.
Disselhorst-Klug, Catherine; Heinze, Franziska; Breitbach-Faller, Nico; Schmitz-Rode, Thomas; Rau, Günter
2012-04-01
Coordination between perception and action is required to interact with the environment successfully. This is already trained by very young infants who perform spontaneous movements to learn how their body interacts with the environment. The strategies used by the infants for this purpose change with age. Therefore, very early progresses in action control made by the infants can be investigated by monitoring the development of spontaneous motor activity. In this paper, an objective method is introduced, which allows the quantitative evaluation of the development of spontaneous motor activity in newborns. The introduced methodology is based on the acquisition of spontaneous movement trajectories of the feet by 3D movement analysis and subsequent calculation of specific movement parameters from them. With these movement-based parameters, it was possible to provide an objective description of age-dependent developmental steps in healthy newborns younger than 6 months. Furthermore, it has been shown that pathologies like infantile cerebral palsy influence development of motor activity significantly. Since the introduced methodology is objective and quantitative, it is suitable to monitor how newborns train their cognitive processes, which will enable them to cope with their environment by motor interaction.
Piano training in youths with hand motor impairments after damage to the developing brain
Lampe, Renée; Thienel, Anna; Mitternacht, Jürgen; Blumenstein, Tobias; Turova, Varvara; Alves-Pinto, Ana
2015-01-01
Damage to the developing brain may lead to impairment of the hand motor function and negatively impact on patients’ quality of life. Development of manual dexterity and finger and hand motor function may be promoted by learning to play the piano. The latter brings together music with the intensive training of hand coordination and fine finger mobility. We investigated if learning to play the piano helped to improve hand motor skills in 18 youths with hand motor disorders resulting from damage during early brain development. Participants trained 35–40 minutes twice a week for 18 months with a professional piano teacher. With the use of a Musical Instrument Digital Interface piano, the uniformity of finger strokes could be objectively assessed from the timing of keystrokes. The analysis showed a significant improvement in the uniformity of keystrokes during the training. Furthermore, the youths showed strong motivation and engagement during the study. This is nevertheless an open study, and further studies remain needed to exclude effects of growth and concomitant therapies on the improvements observed and clarify which patients will more likely benefit from learning to play the piano. PMID:26345312
Piano training in youths with hand motor impairments after damage to the developing brain.
Lampe, Renée; Thienel, Anna; Mitternacht, Jürgen; Blumenstein, Tobias; Turova, Varvara; Alves-Pinto, Ana
2015-01-01
Damage to the developing brain may lead to impairment of the hand motor function and negatively impact on patients' quality of life. Development of manual dexterity and finger and hand motor function may be promoted by learning to play the piano. The latter brings together music with the intensive training of hand coordination and fine finger mobility. We investigated if learning to play the piano helped to improve hand motor skills in 18 youths with hand motor disorders resulting from damage during early brain development. Participants trained 35-40 minutes twice a week for 18 months with a professional piano teacher. With the use of a Musical Instrument Digital Interface piano, the uniformity of finger strokes could be objectively assessed from the timing of keystrokes. The analysis showed a significant improvement in the uniformity of keystrokes during the training. Furthermore, the youths showed strong motivation and engagement during the study. This is nevertheless an open study, and further studies remain needed to exclude effects of growth and concomitant therapies on the improvements observed and clarify which patients will more likely benefit from learning to play the piano.
Linke, Annika C; Wild, Conor; Zubiaurre-Elorza, Leire; Herzmann, Charlotte; Duffy, Hester; Han, Victor K; Lee, David S C; Cusack, Rhodri
2018-01-01
Functional connectivity magnetic resonance imaging (fcMRI) of neonates with perinatal brain injury could improve prediction of motor impairment before symptoms manifest, and establish how early brain organization relates to subsequent development. This cohort study is the first to describe and quantitatively assess functional brain networks and their relation to later motor skills in neonates with a diverse range of perinatal brain injuries. Infants ( n = 65, included in final analyses: n = 53) were recruited from the neonatal intensive care unit (NICU) and were stratified based on their age at birth (premature vs. term), and on whether neuropathology was diagnosed from structural MRI. Functional brain networks and a measure of disruption to functional connectivity were obtained from 14 min of fcMRI acquired during natural sleep at term-equivalent age. Disruption to connectivity of the somatomotor and frontoparietal executive networks predicted motor impairment at 4 and 8 months. This disruption in functional connectivity was not found to be driven by differences between clinical groups, or by any of the specific measures we captured to describe the clinical course. fcMRI was predictive over and above other clinical measures available at discharge from the NICU, including structural MRI. Motor learning was affected by disruption to somatomotor networks, but also frontoparietal executive networks, which supports the functional importance of these networks in early development. Disruption to these two networks might be best addressed by distinct intervention strategies.
Nasreen, Hashima-E; Kabir, Zarina Nahar; Forsell, Yvonne; Edhborg, Maigun
2013-04-05
Evidence linking maternal depressive symptoms with infant's growth and development in low-income countries is inadequate and conflicting. This study investigated the independent effect of maternal perinatal depressive symptoms on infant's growth and motor development in rural Bangladesh. A cohort of 720 pregnant women was followed from the third trimester of pregnancy to 6-8 months postpartum. For growth and developmental outcomes, 652 infants at 2-3 months and 6-8 months were assessed. Explanatory variables comprised maternal depressive symptoms, socioeconomic status, and infant's health and temperament. Outcome measures included infant's underweight, stunting and motor development. Multiple linear regression analyses identified predictors of infant growth and development. Maternal postpartum depressive symptoms independently predicted infant's underweight and impaired motor development, and antepartum depressive symptoms predicted infant's stunting. Infant's unadaptable temperament was inversely associated with infant's weight-for-age and motor development, and fussy and unpredictable temperament with height-for-age and motor development. Repeated measures design might threaten the internal validity of the results 8.3% of the participant does not participate in the measurements at different times. As the study was conducted in two sub-districts of rural Bangladesh, it does not represent the urban scenario and cannot be generalized even for other rural areas of the country. This study provides evidence that maternal ante- and postpartum depressive symptoms predict infant's growth and motor development in rural Bangladesh. It is recommended to integrate psychosocial components in maternal and child health interventions in order to counsel mothers with depressive symptoms. Copyright © 2012 Elsevier B.V. All rights reserved.
Somatosensory Contribution to the Initial Stages of Human Motor Learning
Bernardi, Nicolò F.; Darainy, Mohammad
2015-01-01
The early stages of motor skill acquisition are often marked by uncertainty about the sensory and motor goals of the task, as is the case in learning to speak or learning the feel of a good tennis serve. Here we present an experimental model of this early learning process, in which targets are acquired by exploration and reinforcement rather than sensory error. We use this model to investigate the relative contribution of motor and sensory factors to human motor learning. Participants make active reaching movements or matched passive movements to an unseen target using a robot arm. We find that learning through passive movements paired with reinforcement is comparable with learning associated with active movement, both in terms of magnitude and durability, with improvements due to training still observable at a 1 week retest. Motor learning is also accompanied by changes in somatosensory perceptual acuity. No stable changes in motor performance are observed for participants that train, actively or passively, in the absence of reinforcement, or for participants who are given explicit information about target position in the absence of somatosensory experience. These findings indicate that the somatosensory system dominates learning in the early stages of motor skill acquisition. SIGNIFICANCE STATEMENT The research focuses on the initial stages of human motor learning, introducing a new experimental model that closely approximates the key features of motor learning outside of the laboratory. The finding indicates that it is the somatosensory system rather than the motor system that dominates learning in the early stages of motor skill acquisition. This is important given that most of our computational models of motor learning are based on the idea that learning is motoric in origin. This is also a valuable finding for rehabilitation of patients with limited mobility as it shows that reinforcement in conjunction with passive movement results in benefits to motor learning that are as great as those observed for active movement training. PMID:26490869
Filteau, Suzanne; Rehman, Andrea M; Yousafzai, Aisha; Chugh, Reema; Kaur, Manpreet; Sachdev, H P S; Trilok-Kumar, Geeta
2016-01-08
There is little information regarding motor development of children born at term with low birth weight (LBW), a group that constitutes a large proportion of children in South Asia. We used data from infancy and at school age from a LBW cohort to investigate children's motor performance using causal inference. Cross-sectional follow-up study. Delhi, India. We recruited 912 children aged 5 years who had participated in a trial of vitamin D for term LBW infants in the first 6 months of life. We focused on gross motor development, using the Ages and Stages Questionnaire (ASQ) gross motor scale and several measures of motor performance. We examined the effects on these of current anthropometry, vitamin D status and bone health, controlling for age, sex, season of interview, socioeconomic variables, early growth, recent morbidity, sun exposure and animal food intake. In adjusted analyses, stunted children (height-for-age Z (HAZ) <-2) took longer to run 20 m (0.52 s, 95% CI 0.35 to 0.70; p<0.001) and had greater odds of a failing score on the ASQ (OR 3.00, 95% CI 1.41 to 6.38, p=0.004). Greater arm muscle area was associated with faster run time, and the ability to perform more stands and squats in 15 s. Poorer vitamin D status was associated with the ability to perform more stands and squats. Lower tibia ultrasound Z score was associated with greater hand grip strength. Early growth and current body mass index had no associations with motor outcomes. Current HAZ and arm muscle area showed the strongest associations with gross motor outcomes, likely due to a combination of simple physics and factors associated with stunting. The counterintuitive inverse associations of tibia health and vitamin D status with outcomes may require further research. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Filteau, Suzanne; Rehman, Andrea M; Yousafzai, Aisha; Chugh, Reema; Kaur, Manpreet; Sachdev, H P S; Trilok-Kumar, Geeta
2016-01-01
Objectives There is little information regarding motor development of children born at term with low birth weight (LBW), a group that constitutes a large proportion of children in South Asia. We used data from infancy and at school age from a LBW cohort to investigate children's motor performance using causal inference. Design Cross-sectional follow-up study. Setting Delhi, India. Participants We recruited 912 children aged 5 years who had participated in a trial of vitamin D for term LBW infants in the first 6 months of life. Outcome measures We focused on gross motor development, using the Ages and Stages Questionnaire (ASQ) gross motor scale and several measures of motor performance. We examined the effects on these of current anthropometry, vitamin D status and bone health, controlling for age, sex, season of interview, socioeconomic variables, early growth, recent morbidity, sun exposure and animal food intake. Results In adjusted analyses, stunted children (height-for-age Z (HAZ) <−2) took longer to run 20 m (0.52 s, 95% CI 0.35 to 0.70; p<0.001) and had greater odds of a failing score on the ASQ (OR 3.00, 95% CI 1.41 to 6.38, p=0.004). Greater arm muscle area was associated with faster run time, and the ability to perform more stands and squats in 15 s. Poorer vitamin D status was associated with the ability to perform more stands and squats. Lower tibia ultrasound Z score was associated with greater hand grip strength. Early growth and current body mass index had no associations with motor outcomes. Conclusions Current HAZ and arm muscle area showed the strongest associations with gross motor outcomes, likely due to a combination of simple physics and factors associated with stunting. The counterintuitive inverse associations of tibia health and vitamin D status with outcomes may require further research. PMID:26747034
Adde, Lars; Thomas, Niranjan; John, Hima B; Oommen, Samuel; Vågen, Randi Tynes; Fjørtoft, Toril; Jensenius, Alexander Refsum; Støen, Ragnhild
2016-11-01
Most studies on Prechtl's method of assessing General Movements (GMA) in young infants originate in Europe. To determine if motor behavior at an age of 3 months post term is associated with motor development at 12 months post age in VLBW infants in India. 243 VLBW infants (135 boys, 108 girls; median gestational age 31wks, range 26-39wks) were video-recorded at a median age of 11wks post term (range 9-16wks). Certified and experienced observers assessed the videos by the "Assessment of Motor Repertoire - 2-5 Months". Fidgety movements (FMs) were classified as abnormal if absent, sporadic or exaggerated, and as normal if intermittently or continually present. The motor behaviour was evaluated by repertoire of co-existent other movements (age-adequacy) and concurrent motor repertoire. In addition, videos of 215 infants were analyzed by computer and the variability of the spatial center of motion (C SD ) was calculated. The Peabody Developmental Motor Scales was used to assess motor development at 12 months. Abnormal FMs, reduced age adequacy, and an abnormal concurrent motor repertoire were significantly associated with lower Gross Motor and Total Motor Quotient (GMQ, TMQ) scores (p < 0.05). The C SD was higher in children with TMQ scores <90 (-1SD) than in children with higher TMQ scores (p = 0.002). Normal FMs (assessed by Gestalt perception) and a low variability of the spatial center of motion (assessed by computer-based video analysis) predicted higher Peabody scores in 12-month-old infants born in India with a very low birth weight. Copyright © 2016 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Whinnery, Stacie B.; Whinnery, Keith W.; Eddins, Daisy
2016-01-01
This article addresses the challenges educators face when attempting to find a balance between both functional and academic skill instruction for students with severe, multiple disabilities including motor impairments. The authors describe a strategy that employs embedded instruction of early numeracy and functional motor skills during physical…
Infant motor and cognitive abilities and subsequent executive function.
Wu, Meng; Liang, Xi; Lu, Shan; Wang, Zhengyan
2017-11-01
Although executive function (EF) is widely considered crucial to several aspects of life, the mechanisms underlying EF development remain largely unexplored, especially for infants. From a behavioral or neurodevelopmental perspective, motor and general cognitive abilities are linked with EF. EF development is a multistage process that starts with sensorimotor interactive behaviors, which become basic cognitive abilities and, in turn, mature EF. This study aims to examine how infant motor and general cognitive abilities are linked with their EF at 3 years of age. This work also aims to explore the potential processes of EF development from early movement. A longitudinal study was conducted with 96 infants (55 girls and 41 boys). The infants' motor and general cognitive abilities were assessed at 1 and 2 years of age with Bayley Scales of Infant and Toddler Development, Second and Third Editions, respectively. Infants' EFs were assessed at 3 years of age with Working Memory Span task, Day-Night task, Wrapped Gift task, and modified Gift-in-Bag task. Children with higher scores for cognitive ability at 2 years of age performed better in working memory, and children with higher scores for gross motor ability at 2 years performed better in cognitive inhibitory control (IC). Motor ability at 1 year and fine/gross motor ability at 2 years indirectly affected cognitive IC via general cognitive ability at 2 years and working memory. EF development is a multistage process that originates from physical movement to simple cognitive function, and then to complex cognitive function. Infants and toddlers can undergo targeted motor training to promote EF development. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
2004-01-01
In addition to Dr. Robert Goddard's pioneering work, American experimentation in rocketry prior to World War II grew, primarily in technical societies. This is an early rocket motor designed and developed by the American Rocket Society in 1932.
Kobayashi, Ihori; Sledjeski, Eve M; Spoonster, Eileen; Fallon, William F; Delahanty, Douglas L
2008-12-01
The present study prospectively examined the extent to which trauma-related nightmares affected the subsequent development of insomnia symptoms in 314 motor vehicle accident (MVA) victims. Participants were assessed in-hospital and at 2 weeks, 6 weeks, 3 months, and 1 year post-MVA. Hierarchical linear regression analyses showed that 6-week PTSD symptoms (PTSS) and 3-month nightmares, but not 2-week nightmares were positively associated with sleep onset and maintenance problems reported at 3-month post-MVA. Nightmares reported at 3-months post-MVA were positively associated with 1-year sleep maintenance problems. These findings highlight the dynamic relationship between PTSS and sleep problems as well as the potential importance of early intervention for trauma-related nightmares as a means to prevent sleep problems after a traumatic experience.
Finger-Based Numerical Skills Link Fine Motor Skills to Numerical Development in Preschoolers.
Suggate, Sebastian; Stoeger, Heidrun; Fischer, Ursula
2017-12-01
Previous studies investigating the association between fine-motor skills (FMS) and mathematical skills have lacked specificity. In this study, we test whether an FMS link to numerical skills is due to the involvement of finger representations in early mathematics. We gave 81 pre-schoolers (mean age of 4 years, 9 months) a set of FMS measures and numerical tasks with and without a specific finger focus. Additionally, we used receptive vocabulary and chronological age as control measures. FMS linked more closely to finger-based than to nonfinger-based numerical skills even after accounting for the control variables. Moreover, the relationship between FMS and numerical skill was entirely mediated by finger-based numerical skills. We concluded that FMS are closely related to early numerical skill development through finger-based numerical counting that aids the acquisition of mathematical mental representations.
ERIC Educational Resources Information Center
Ketcheson, Leah; Hauck, Janet; Ulrich, Dale
2017-01-01
Despite evidence suggesting one of the earliest indicators of an eventual autism spectrum disorder diagnoses is an early motor delay, there remain very few interventions targeting motor behavior as the primary outcome for young children with autism spectrum disorder. The aim of this pilot study was to measure the efficacy of an intensive motor…
NASA Astrophysics Data System (ADS)
Amano, Yoko; Ogasawara, Satoshi
In this paper, a new universal drive system of synchronous motors used Real-Time Interface (RTI) performs characteristic evaluation of Synchronous Reluctance (SynR) motors and Surface Permanent Magnet (SPM) synchronous motors. The RTI connects directly a simulation model with experimental equipment, and makes it possible to use the simulation model for an experiment. The RTI is very effective in the early detection of an actual problem and examination of solution technique. Moreover, it concentrates on examination of control algorithm, and efficient research and development are enabled. A measuring system of synchronous motors is built by the universal drive system. The examination of various synchronous motors is possible for the measurement system using the same control algorithm. Characteristic evaluation of a SynR motor and a SPM synchronous motor that are the same gap length and stator was performed using the measuring system. The measurement result shows experimentally that motor loss of the SynR motor is smaller rather than the SPM synchronous motor, at the time of high speed and low load operation. For example, the SynR motor is suitable to hybrid cars with the comparatively long time of low load and high-speed operation.
Sports Specialization, Part II
Myer, Gregory D.; Jayanthi, Neeru; DiFiori, John P.; Faigenbaum, Avery D.; Kiefer, Adam W.; Logerstedt, David; Micheli, Lyle J.
2016-01-01
Context: Many coaches, parents, and children believe that the best way to develop elite athletes is for them to participate in only 1 sport from an early age and to play it year-round. However, emerging evidence to the contrary indicates that efforts to specialize in 1 sport may reduce opportunities for all children to participate in a diverse year-round sports season and can lead to lost development of lifetime sports skills. Early sports specialization may also reduce motor skill development and ongoing participation in games and sports as a lifestyle choice. The purpose of this review is to employ the current literature to provide evidence-based alternative strategies that may help to optimize opportunities for all aspiring young athletes to maximize their health, fitness, and sports performance. Evidence Acquisition: Nonsystematic review with critical appraisal of existing literature. Study Design: Clinical review. Level of Evidence: Level 4. Conclusion: Based on the current evidence, parents and educators should help provide opportunities for free unstructured play to improve motor skill development and youth should be encouraged to participate in a variety of sports during their growing years to influence the development of diverse motor skills. For those children who do choose to specialize in a single sport, periods of intense training and specialized sport activities should be closely monitored for indicators of burnout, overuse injury, or potential decrements in performance due to overtraining. Last, the evidence indicates that all youth should be involved in periodized strength and conditioning (eg, integrative neuromuscular training) to help them prepare for the demands of competitive sport participation, and youth who specialize in a single sport should plan periods of isolated and focused integrative neuromuscular training to enhance diverse motor skill development and reduce injury risk factors. Strength of Recommendation Taxonomy (SORT): B. PMID:26517937
David, Fabian J.; Baranek, Grace T.; Wiesen, Chris; Miao, Adrienne F.; Thorpe, Deborah E.
2012-01-01
Impaired motor coordination is prevalent in children with Autism Spectrum Disorders (ASD) and affects adaptive skills. Little is known about the development of motor patterns in young children with ASD between 2 and 6 years of age. The purpose of the current study was threefold: (1) to describe developmental correlates of motor coordination in children with ASD, (2) to identify the extent to which motor coordination deficits are unique to ASD by using a control group of children with other developmental disabilities (DD), and (3) to determine the association between motor coordination variables and functional fine motor skills. Twenty-four children with ASD were compared to 30 children with typical development (TD) and 11 children with DD. A precision grip task was used to quantify and analyze motor coordination. The motor coordination variables were two temporal variables (grip to load force onset latency and time to peak grip force) and two force variables (grip force at onset of load force and peak grip force). Functional motor skills were assessed using the Fine Motor Age Equivalents of the Vineland Adaptive Behavior Scale and the Mullen Scales of Early Learning. Mixed regression models were used for all analyses. Children with ASD presented with significant motor coordination deficits only on the two temporal variables, and these variables differentiated children with ASD from the children with TD, but not from children with DD. Fine motor functional skills had no statistically significant associations with any of the motor coordination variables. These findings suggest that subtle problems in the timing of motor actions, possibly related to maturational delays in anticipatory feed-forward mechanisms, may underlie some motor deficits reported in children with ASD, but that these issues are not unique to this population. Further research is needed to investigate how children with ASD or DD compensate for motor control deficits to establish functional skills. PMID:23293589
Environmental Complexity and Central Nervous System Development and Function
ERIC Educational Resources Information Center
Lewis, Mark H.
2004-01-01
Environmental restriction or deprivation early in development can induce social, cognitive, affective, and motor abnormalities similar to those associated with autism. Conversely, rearing animals in larger, more complex environments results in enhanced brain structure and function, including increased brain weight, dendritic branching,…
Kouam, L; Werner-Spangenberg, I; Saling, E
1986-09-01
This study concerns the results obtained in respect of early morbidity and late development of 115 and 57 children, respectively, born between 1978 and 1983, who had been delivered by primary low cervical Caesarean section shortly before term. Early morbidity of the 115 children was analysed taking into consideration the risk factors, such as premature rupture, gestation diabetes, EPH gestosis, condition following Caesarean section, abnormal amnioscopic and antepartal cardiotocographic findings, as well as the methods of anaesthesia employed. In the study on late development 57 children between 1 1/4 and 6 years of age were followed up and examined with regard to several faculties (social contact, fine motoricity and adaptation, speech and gross motoricity) according to the Denver Developmental Screening Test. Children with abnormal findings were subjected to special examination. Children with abnormal findings were also subjected to a positional test according to Vojta and to the Munich functional developmental diagnosis after Hellbrüge et al. While employing physiotherapy after Bobath and early rehabilitation training by the parents, these children were followed up at regular intervals. There was no clinically relevant acidosis in the group of 115 newborn. A total of 44 newborn (38%) displayed slight to medium enhanced acidity (pH value, umbilical artery: 7.20 to 7.29) according to the stage classification after Saling and Wulf. Slight to medium acidosis (umbilical artery pH 7.10 to 7.19) was seen in 3 cases only (2.6%). In 112 newborn we found a correlation between the good Apgar score values (7-10) and normal acidity in the umbilical artery blood (act. umbilical artery pH greater than or equal to 7.30). In the remaining 3 newborn with lower Apgar scores (3-6) there was no acidosis in the umbilical artery blood. In the follow-up group (57 cases) we found one child with psychomotor retardation of speech (disturbed articulation and reduced vocabulary) and 6 children with slight motor disturbances in the early developmental stage. These disturbances were recorded as slight central disturbances of coordination according to Vojta within the framework of early diagnosis. Four of these children received early treatment according to Bobath. When they were between 1 and 1 1/2 years of age, all the 4 children showed normalisation of motoricity during the follow-up checks. The other two children displayed spontaneous regression of the mild central disturbance of coordination when they were 5 and 6 months of age.(ABSTRACT TRUNCATED AT 400 WORDS)
Wu, Meiqin; Wu, Deqing; Wu, Wei; Li, Hui; Cao, Lulu; Xu, Jian; Yu, Xiaodan; Bian, Xiaoyan; Yan, Chonghuai; Wang, Weiye
2016-08-01
It is well known that iodine plays an important role in the process of early growth and development of most organs, especially the brain. However, iodine concentration in the colostrum and its association with the neurobehavioral development of infants remains unclear. Colostrums from 150 women were collected, and their iodine concentrations were measured. The median colostrum iodine level was 187.8 μg/L. The Bayley Scales of Infant and Toddler Development-III test was performed when the infants were about 18 months. The mean cognitive, language, and motor composite scores were 105.3 ± 9.8, 105.2 ± 11.1, and 104.6 ± 6.7, respectively. And the mean scores of the 5 subtests were 11.1 ± 2.0, 9.3 ± 2.0, 12.4 ± 2.3, 11.1 ± 1.2, and 10.4 ± 1.2, respectively. No statistically significant difference was observed in the cognition, language, or motor development of infants across different levels of colostrum iodine. After adjusting for a range of confounding factors, colostrum iodine concentration was a predictor of motor development, specifically gross motor development. © The Author(s) 2016.
Sylvain, Nicole J; Brewster, Daniel L; Ali, Declan W
2010-01-01
Children exposed to alcohol in utero have significantly delayed gross and fine motor skills, as well as deficiencies in reflex development. The reasons that underlie the motor deficits caused by ethanol (EtOH) exposure remain to be fully elucidated. The present study was undertaken to investigate the effects of embryonic alcohol exposure (1.5%, 2% and 2.5% EtOH) on motor neuron and muscle fiber morphology in 3 days post fertilization (dpf) larval zebrafish. EtOH treated fish exhibited morphological deformities and fewer bouts of swimming in response to touch, compared with untreated fish. Immunolabelling with anti-acetylated tubulin indicated that fish exposed to 2.5% EtOH had significantly higher rates of motor neuron axon defects. Immunolabelling of primary and secondary motor neurons, using znp-1 and zn-8, revealed that fish exposed to 2% and 2.5% EtOH exhibited significantly higher rates of primary and secondary motor neuron axon defects compared to controls. Examination of red and white muscle fibers revealed that fish exposed to EtOH had significantly smaller fibers compared with controls. These findings indicate that motor neuron and muscle fiber morphology is affected by early alcohol exposure in zebrafish embryos, and that this may be related to deficits in locomotion. Copyright 2010 Elsevier Inc. All rights reserved.
Autism spectrum disorder and early motor abnormalities: Connected or coincidental companions?
Setoh, Peipei; Marschik, Peter B; Einspieler, Christa; Esposito, Gianluca
2017-01-01
Research in the past decade has produced a growing body of evidence showing that motor abnormalities in individuals with autism spectrum disorder (ASD) are the rule rather than the exception. The paper by Chinello and colleagues furthers our understanding of the importance of studying motor functions in ASD by testing a non-clinical population of parents-infant triads. Chinello and colleagues' findings seem to suggest that subclinical motor impairments may exist in the typical population with inherited non-clinical ASD traits. Chinello and colleagues' discovery also urges us to ask why motor abnormalities exist in typically developing infants when their parents present some subclinical ASD traits. We believe that there are at least two possibilities. In the first possible scenario, motor impairments and ASD traits form a single cluster of symptoms unique to a subgroup of individuals with autism. A second possible scenario is that motor atypicalities are the first warning signs of vulnerability often associated with atypical development. In conclusion, Chinello et al.'s findings inform us that subclinical atypical phenotypes such as sociocommunicative anomalies may be related to subclinical motor performances in the next generation. This adds to our knowledge by shedding some light on the relation of vulnerability in one domain with vulnerability in another domain. Copyright © 2016 Elsevier Ltd. All rights reserved.
Endedijk, H M; Meyer, M; Bekkering, H; Cillessen, A H N; Hunnius, S
2017-04-01
Whether we hand over objects to someone, play a team sport, or make music together, social interaction often involves interpersonal action coordination, both during instances of cooperation and entrainment. Neural mirroring is thought to play a crucial role in processing other's actions and is therefore considered important for social interaction. Still, to date, it is unknown whether interindividual differences in neural mirroring play a role in interpersonal coordination during different instances of social interaction. A relation between neural mirroring and interpersonal coordination has particularly relevant implications for early childhood, since successful early interaction with peers is predictive of a more favorable social development. We examined the relation between neural mirroring and children's interpersonal coordination during peer interaction using EEG and longitudinal behavioral data. Results showed that 4-year-old children with higher levels of motor system involvement during action observation (as indicated by lower beta-power) were more successful in early peer cooperation. This is the first evidence for a relation between motor system involvement during action observation and interpersonal coordination during other instances of social interaction. The findings suggest that interindividual differences in neural mirroring are related to interpersonal coordination and thus successful social interaction. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Miller, Natalie V; Degnan, Kathryn A; Hane, Amie A; Fox, Nathan A; Chronis-Tuscano, Andrea
2018-06-11
Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder with origins early in life. There is growing evidence that individual differences in temperament reactivity are predictive of ADHD symptoms, yet little is known about the relations between temperament reactivity in early infancy and later ADHD symptoms or the combined effect of reactivity with early environmental factors on ADHD symptom development. Using a 9-year prospective longitudinal design, this study tested the independent and interactive contributions of infant reactivity and maternal caregiving behaviors (MCB) on parent- and teacher-reported childhood ADHD symptoms. Participants included 291 children (132 male; 159 female) who participated in a larger study of temperament and social-emotional development. Reactivity was assessed by behavioral observation of negative affect, positive affect, and motor activity during novel stimuli presentations at 4 months of age. MCB were observed during a series of semistructured mother-infant tasks at 9 months of age. Finally, ADHD symptoms were assessed by parent- and teacher-report questionnaires at 7 and 9 years, respectively. Reactivity was predictive of ADHD symptoms, but results were sex specific. For boys, infant motor activity was positively predictive of later ADHD symptoms, but only at lower quality MCB. For girls, infant positive affect was positively predictive of later ADHD symptoms at lower quality MCB, and-unexpectedly-infant positive affect and motor activity were negatively predictive of later ADHD symptoms at higher quality MCB. These results point to early parenting as a moderating factor to mitigate temperament-related risk for later ADHD, suggesting this as a potential intervention target to mitigate risk for ADHD among reactive infants. © 2018 Association for Child and Adolescent Mental Health.
Ferrazzoli, Davide; Ortelli, Paola; Madeo, Graziella; Giladi, Nir; Petzinger, Giselle M; Frazzitta, Giuseppe
2018-07-01
Parkinson's disease (PD) is characterized by motor and cognitive dysfunctions, affecting the motor behaviour. We summarize evidence that the interplay between motor and cognitive approaches is crucial in PD rehabilitation. Rehabilitation is complementary to pharmacological therapy and effective in reducing the PD disturbances, probably acting by inducing neuroplastic effects. The motor behaviour results from a complex integration between cortical and subcortical areas, underlying the motor, cognitive and motivational aspects of movement. The close interplay amongst these areas makes possible to learn, control and express habitual-automatic actions, which are dysfunctional in PD. The physiopathology of PD could be considered the base for the development of effective rehabilitation treatments. As the volitional action control is spared in early-medium stages of disease, rehabilitative approaches engaging cognition permit to achieve motor benefits and appear to be the most effective for PD. We will point out data supporting the relevance of targeting both motor and cognitive aspects in PD rehabilitation. Finally, we will discuss the role of cognitive engagement in motor rehabilitation for PD. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
March, Samanta M.; Culleré, Marcela E.; Abate, Paula; Hernández, José I.; Spear, Norman E.; Molina, Juan C.
2013-01-01
Animal models have shown that early ontogeny seems to be a period of enhanced affinity to ethanol. Interestingly, the catalase system that transforms ethanol (EtOH) into acetaldehyde (ACD) in the brain, is more active in the perinatal rat compared to adults. ACD has been found to share EtOH's behavioral effects. The general purpose of the present study was to assess ACD motivational and motor effects in newborn rats as a function of prenatal exposure to EtOH. Experiment 1 evaluated if ACD (0.35 μmol) or EtOH (0.02 μmol) supported appetitive conditioning in newborn pups prenatally exposed to EtOH. Experiment 2 tested if prenatal alcohol exposure modulated neonatal susceptibility to ACD's motor effects (ACD dose: 0, 0.35 and 0.52 μmol). Experiment 1 showed that EtOH and ACD supported appetitive conditioning independently of prenatal treatments. In Experiment 2, latency to display motor activity was altered only in neonates prenatally treated with water and challenged with the highest ACD dose. Prenatal EtOH experience results in tolerance to ACD's motor activity effects. These results show early susceptibility to ACD's appetitive effects and attenuation of motor effects as a function of prenatal history with EtOH, within a stage in development where brain ACD production seems higher than later in life. PMID:23785319
Cryogenic actuator testing for the SAFARI ground calibration setup
NASA Astrophysics Data System (ADS)
de Jonge, C.; Eggens, M.; Nieuwenhuizen, A. C. T.; Detrain, A.; Smit, H.; Dieleman, P.
2012-09-01
For the on-ground calibration setup of the SAFARI instrument cryogenic mechanisms are being developed at SRON Netherlands Institute for Space Research, including a filter wheel, XYZ-scanner and a flipmirror mechanism. Due to the extremely low background radiation requirement of the SAFARI instrument, all of these mechanisms will have to perform their work at 4.5 Kelvin and low-dissipative cryogenic actuators are required to drive these mechanisms. In this paper, the performance of stepper motors, piezoelectric actuators and brushless DC-motors as cryogenic actuators are compared. We tested stepper motor mechanical performance and electrical dissipation at 4K. The actuator requirements, test setup and test results are presented. Furthermore, design considerations and early performance tests of the flipmirror mechanism are discussed. This flipmirror features a 102 x 72 mm aluminum mirror that can be rotated 45°. A Phytron stepper motor with reduction gearbox has been chosen to drive the flipmirror. Testing showed that this motor has a dissipation of 49mW at 4K with a torque of 60Nmm at 100rpm. Thermal modeling of the flipmirror mechanism predicts that with proper thermal strapping the peak temperature of the flipmirror after a single action will be within the background level requirements of the SAFARI instrument. Early tests confirm this result. For low-duty cycle operations commercial stepper motors appear suitable as actuators for test equipment in the SAFARI on ground calibration setup.
Measurement of talent in volleyball: 15-month follow-up of elite adolescent players.
Lidor, R; Hershko, Y; Bilkevitz, A; Arnon, M; Falk, B
2007-06-01
The purpose of this study was two-fold: first, to examine the contribution of a battery of physical and motor tests to early phases of talent detection and early development in volleyball, and second, to differentiate between and compare the motor ability of 16-year-old starter (S) and non-starter (NS) volleyball players. Fifteen male adolescent volleyball players underwent assessment of physical and motor ability 6 times during a 15-month training program; however, not all of them took part in each testing phase. The battery was composed of 8 physical and motor tests and 2 skill tests. The physical and motor tests included 2 speed tests, an agility run, 4 explosive power tests, and an endurance test. The skill tests evaluated service accuracy at rest and following effort. All participants improved their results in all but 2 tests (endurance and skill tests) across testing phases. Comparisons between the S (n=8) and NS (n=7) revealed that only one physical explosive power test (vertical jump with approach), was found to be a good indicator for distinguishing between the 2 groups of players. It was concluded that the volleyball battery of tests was not sensitive enough to distinguish between the ''good'' and ''very good'' players suggesting that physical and motor tests do not reflect open skill ability in volleyball.
Joseph, R
1982-01-01
Discussed evidence and assumptions that concern hemispheric laterality and asymmetrical functional representation. It is hypothesized that the asymmetrical linguistic-motor vs. sensory-spatial-affective representation of function may be a result of differential rates of cortical, subcortical and spinal motor-sensory maturation. Evidence with regard to embryological and early postnatal neurological development is reviewed. It is argued that motor areas mature before sensory and that the left hemisphere develops prior to the right, such that the left hemisphere gains a competitive advantage in the acquisition of motor representation, whereas the later maturing right has an advantage in the establishment of sensory-affective synaptic representation, including that of limbic mediation. The influences of these differing maturational events on cognitive and psychic functioning are examined, particularly with regard to limbic influences on the development of language, thought, and mental imagery, and the effects of early emotional experience on later behavior. Thinking is viewed in part as a left hemisphere internalization of egocentric language, the internalization of which corresponds to the increasing maturation of intra-cortical and subcortical structures and fiber pathways, and the myelination of the callosal connections that subserve information transfer between the hemispheres. It is argued that thought is a means of organizing, interpreting, and explaining impulses that arise in the non-linguistic portions of the nervous system so that the language dependent regions may achieve understanding. In addition, the neurodynamics and mechanisms involved in the mislabeling, misinterpretation, and inhibition of impulses, desires, and emotional expression are discussed in relation to disturbances in psychic functioning.
Chen, Chao-Ying; Harrison, Tondi; Heathcock, Jill
2015-08-01
The purpose of this study was to examine learning, short-term memory and general development including cognitive, motor, and language domains in infants with Complex Congenital Heart Defects (CCDH). Ten infants with CCHD (4 males, 6 females) and 14 infants with typical development (TD) were examined at 3 months of age. The mobile paradigm, where an infant's leg is tethered to an overhead mobile, was used to evaluate learning and short-term memory. The Bayley Scales of Infant Development 3rd edition (Bayley-III) was used to evaluate general development in cognitive, motor, and language domains. Infants with CCHD and infants with TD both showed learning with significant increase in kicking rate (p<0.001) across periods of the mobile paradigm, but only infants with TD demonstrated short-term memory (p=0.017) in the mobile paradigm. There were no differences on cognitive, motor, and language development between infants with CCHD and infants with TD on the Bayley-III. Early assessment is necessary to guide targeted treatment in infants with CCHD. One-time assessment may fail to detect potential cognitive impairments during early infancy in infants with CCHD. Supportive intervention programs for infants with CCHD that focuses on enhancing short-term memory are recommended. Copyright © 2015 Elsevier Inc. All rights reserved.
Dusing, Stacey C; Izzo, Theresa; Thacker, Leroy R; Galloway, James Cole
2014-10-01
Perception-action theory suggests a cyclical relationship between movement and perceptual information. In this case series, changes in postural complexity were used to quantify an infant's action and perception during the development of early motor behaviors. Three infants born preterm with periventricular white matter injury were included. Longitudinal changes in postural complexity (approximate entropy of the center of pressure), head control, reaching, and global development, measured with the Test of Infant Motor Performance and the Bayley Scales of Infant and Toddler Development, were assessed every 0.5 to 3 months during the first year of life. All 3 infants demonstrated altered postural complexity and developmental delays. However, the timing of the altered postural complexity and the type of delays varied among the infants. For infant 1, reduced postural complexity or limited action while learning to control her head in the midline position may have contributed to her motor delay. However, her ability to adapt her postural complexity eventually may have supported her ability to learn from her environment, as reflected in her relative cognitive strength. For infant 2, limited early postural complexity may have negatively affected his learning through action, resulting in cognitive delay. For infant 3, an increase in postural complexity above typical levels was associated with declining neurological status. Postural complexity is proposed as a measure of perception and action in the postural control system during the development of early behaviors. An optimal, intermediate level of postural complexity supports the use of a variety of postural control strategies and enhances the perception-action cycle. Either excessive or reduced postural complexity may contribute to developmental delays in infants born preterm with white matter injury. © 2014 American Physical Therapy Association.
Early Childhood Stunting and Later Fine Motor Abilities
ERIC Educational Resources Information Center
Chang, Susan M.; Walker, Susan P.; Grantham-McGregor, Sally; Powell, Christine A.
2010-01-01
Aim: The aim of this study was to determine the effects of early childhood stunting (height for age 2SD or more below reference values) and interventions on fine motor abilities at 11 to 12 years, and the relationship between fine motor abilities and school achievement and intelligence. Method: A cohort of stunted children who had participated in…
Determinants of early child development in rural Tanzania.
Ribe, Ingeborg G; Svensen, Erling; Lyngmo, Britt A; Mduma, Estomih; Hinderaker, Sven G
2018-01-01
It has been estimated that more than 200 million children under the age of five do not reach their full potential in cognitive development. Much of what we know about brain development is based on research from high-income countries. There is limited evidence on the determinants of early child development in low-income countries, especially rural sub-Saharan Africa. The present study aimed to identify the determinants of cognitive development in children living in villages surrounding Haydom, a rural area in north-central Tanzania. This cohort study is part of the MAL-ED (The Interactions of Malnutrition & Enteric Infections: Consequences for Child Health and Development) multi-country consortium studying risk factors for ill health and poor development in children. Descriptive analysis and linear regression analyses were performed. Associations between nutritional status, socio-economic status, and home environment at 6 months of age and cognitive outcomes at 15 months of age were studied. The third edition of the Bayley Scales for Infant and Toddler Development was used to assess cognitive, language and motor development. There were 262 children enrolled into the study, and this present analysis included the 137 children with data for 15-month Bayley scores. Univariate regression analysis, weight-for-age and weight-for-length z-scores at 6 months were significantly associated with 15-month Bayley gross motor score, but not with other 15-month Bayley scores. Length-for-age z-scores at 6 months were not significantly associated with 15-month Bayley scores. The socio-economic status, measured by a set of assets and monthly income was significantly associated with 15-month Bayley cognitive score, but not with language, motor, nor total 15-month Bayley scores. Other socio-economic variables were not significantly associated with 15-month Bayley scores. No significant associations were found between the home environment and 15-month Bayley scores. In multivariate regression analyses we found higher Bayley scores for girls and higher Bayley scores in families with more assets. Adjusted R-squared of this model was 8%. We conclude that poverty is associated with a slower cognitive development in children and malnutrition is associated with slower gross motor development. This information should encourage authorities and other stakeholders to invest in improved welfare and nutrition programmes for children from early infancy.
Phillips, Kimberley A; Ross, Corinna N; Spross, Jennifer; Cheng, Catherine J; Izquierdo, Alyssa; Biju, K C; Chen, Cang; Li, Senlin; Tardif, Suzette D
2017-05-15
Parkinson's disease is a chronic neurodegenerative disorder with the core motor features of resting tremor, bradykinesia, rigidity, and postural instability. Non-motor symptoms also occur, and include cognitive dysfunction, mood disorders, anosmia (loss of smell), and REM sleep disturbances. As the development of medications and other therapies for treatment of non-motor symptoms is ongoing, it is essential to have animal models that aid in understanding the neural changes underlying non-motor PD symptoms and serve as a testing ground for potential therapeutics. We investigated several non-motor symptoms in 10 adult male marmosets using the MPTP model, with both the full (n=5) and partial (n=5) MPTP dosing regimens. Baseline data in numerous domains were collected prior to dosing; assessments in these same domains occurred post-dosing for 12 weeks. Marmosets given the partial MPTP dose (designed to mimic the early stages of the disease) differed significantly from marmosets given the full MPTP dose in several ways, including behavior, olfactory discrimination, cognitive performance, and social responses. Importantly, while spontaneous recovery of PD motor symptoms has been previously reported in studies of MPTP monkeys and cats, we did not observe recovery of any non-motor symptoms. This suggests that the neurochemical mechanisms behind the non-motor symptoms of PD, which appear years before the onset of symptoms, are independent of the striatal dopaminergic transmission. We demonstrate the value of assessing a broad range of behavioral change to detect non-motor impairment, anosmia, and differences in socially appropriate responses, in the marmoset MPTP model of early PD. Copyright © 2017 Elsevier B.V. All rights reserved.
[Limits of conventional oral and transdermal medication in Parkinson's disease].
García-Ruiz, Pedro J; Luquin, M Rosario
2012-01-01
At the present time, we have effective and potent antiparkinsonian drugs available which allow patients to have an acceptable functional capacity during the early years of Parkinson's disease. Yet, as time goes by, motor and functional deterioration develop, partly due to the presence of motor and non-motor complications. The conventional medication is unable to provide an adequate response if the motor fluctuations are beyond 3-4 hours of duration. At this point, it is reasonable to consider other therapies; among them subcutaneous apomorphine injection must be taken into account due to its simplicity and efficacy and later on, subcutaneous apomorphine infusion. Apomorphine is a very effective and clearly underused drug in the treatment of advanced Parkinson's disease.
Genetics Home Reference: 19p13.13 deletion syndrome
... and walking) and fine motor skills (such as holding a pencil). Other signs and symptoms that can ... during the formation of reproductive cells (eggs and sperm) or in early fetal development. Most affected people ...
Growth hormone therapy, muscle thickness, and motor development in Prader-Willi syndrome: an RCT.
Reus, Linda; Pillen, Sigrid; Pelzer, Ben J; van Alfen-van der Velden, Janielle A A E M; Hokken-Koelega, Anita C S; Zwarts, Machiel; Otten, Barto J; Nijhuis-van der Sanden, Maria W G
2014-12-01
To investigate the effect of physical training combined with growth hormone (GH) on muscle thickness and its relationship with muscle strength and motor development in infants with Prader-Willi syndrome (PWS). In a randomized controlled trial, 22 infants with PWS (12.9 ± 7.1 months) were followed over 2 years to compare a treatment group (n = 10) with a waiting-list control group (n = 12). Muscle thickness of 4 muscle groups was measured by using ultrasound. Muscle strength was evaluated by using the Infant Muscle Strength meter. Motor performance was measured with the Gross Motor Function Measurement. Analyses of variance were used to evaluate between-group effects of GH on muscle thickness at 6 months and to compare pre- and posttreatment (after 12 months of GH) values. Multilevel analyses were used to evaluate effects of GH on muscle thickness over time, and multilevel bivariate analyses were used to test relationships between muscle thickness, muscle strength, and motor performance. A significant positive effect of GH on muscle thickness (P < .05) was found. Positive relationships were found between muscle thickness and muscle strength (r = 0.61, P < .001), muscle thickness and motor performance (r = 0.81, P < .001), and muscle strength and motor performance (r = 0.76, P < .001). GH increased muscle thickness, which was related to muscle strength and motor development in infants with PWS. Catch-up growth was faster in muscles that are most frequently used in early development. Because this effect was independent of GH, it suggests a training effect. Copyright © 2014 by the American Academy of Pediatrics.
Belnap, Starlie C; Lickliter, Robert
2017-06-01
Sensory-motor development begins early during embryogenesis and is influenced by sensory experience. Little is known about the prenatal factors that influence the development of motor coordination. Here we investigated whether and to what extent prenatal light experience can influence the development of motor coordination in bobwhite quail hatchlings. Quail embryos were incubated under four light conditions: no light (dark), 2h of total light (2HR), 6h of total light (6HR), and diffused sunlight (controls). Hatchlings were video recording walking down a runway at three developmental ages (12, 24, and 48h). Videos were assessed for forward locomotion, a measurement of motor coordination, falls, a measurement of motor instability, and motivation to complete the task. We anticipated a linear decline of coordination with a reduction in prenatal light experience and improved coordination with age. Furthermore, as motor coordination becomes more laborious we anticipated motivation to complete the task would decline. However, our findings revealed hatchlings did not uniformly improve with age as expected, nor did the reduction of light result in a linear reduction in motor coordination. Instead, we found a more complex relationship with 6HR and 2HR hatchlings showing distinct patterns of stability and instability. Similarly, we found a reduction in motivation within the 6HR light condition. It appears that prenatal light exposure influences the development of postnatal motor coordination and we discuss these finding in light of neurodevelopmental processes influenced by light experience. Copyright © 2017 Elsevier B.V. All rights reserved.
Oral Language: Expression of Thought.
ERIC Educational Resources Information Center
Anastasiow, Nicholas
A child's language reflects his thought processes and his level of development. Motor, emotional, and language development all have a direct relationship to the child's cognitive functioning--each follows the pattern of moving from gross and loosely differentiated states to refined and differentiated systems. Research in early childhood education…
Supporting Early Development of Infants with Identified Positional Plagiocephaly
ERIC Educational Resources Information Center
Nuysink, Jacqueline
2009-01-01
In this article, the author comments on an interesting study conducted by Kennedy and colleagues about the relationship between motor development, child rearing practices, and positional plagiocephaly (in recent literature also referred to as deformational plagiocephaly (DP) or nonsynostotic plagiocephaly). From the author's perspective, their…
Sustaining Preschoolers' Engagement during Interactive Writing Lessons
ERIC Educational Resources Information Center
Hall, Anna H.
2016-01-01
Interactive writing is a developmentally appropriate activity used to enhance children's literacy development in the preschool setting. This article describes the unique needs of preschoolers as emerging writers, including their developing fine motor skills, early literacy skills, and social skills related to group writing. Strategies are provided…
History of Rotating Machine Development and Foresight
NASA Astrophysics Data System (ADS)
Tari, Makoto; Nagano, Susumu; Amemori, Shiro; Aso, Toshiyuki
The history of electrical rotating machines such as generators and motors in Japan is around one hundred years. At early stage, all machines were imported from foreign countries, but now domestic industries introduce new concept of machines and are leading these kinds of technology. Reviewing of history and development and foresight seems meaningful for further development.
The Special Needs of Homeless Children: Early Intervention at a Welfare Hotel.
ERIC Educational Resources Information Center
Grant, Roy
1991-01-01
This case study of 72 homeless families and their 78 children in day care at a large welfare hotel in New York City evaluates the children's health status, separation and attachment, sleep patterns, eating patterns, emotional status, attention span, gross motor development, speech and language development, and cognitive development. (JDD)
Motor development of infants with positional plagiocephaly.
Kennedy, Eileen; Majnemer, Annette; Farmer, Jean-Pierre; Barr, Ronald G; Platt, Robert W
2009-01-01
Concurrent with recommendations to place infants to sleep in supine, there has been a dramatic increase in the number of infants with positional plagiocephaly (PP). Recent evidence suggests that infants who have decreased exposure to prone position may have a higher incidence of PP and may be at risk for a delay in the acquisition of certain motor skills. The purpose of this study was to compare motor development between infants with PP and matched peers without PP. We also examined differences in infant positioning practices when asleep and awake between the two groups. Twenty-seven infants with PP, 3 to 8 months of age, were matched by age, gender, and race to infants without PP. Motor performance was evaluated using the Alberta Infant Motor Scale (AIMS) and the Peabody Developmental Motor Scales (PDMS). Parents completed a diary that recorded infant positioning over a 3-day period. Mean AIMS percentile score for infants with PP was 31.1 +/- 21.6 as compared with 42.7 +/- 20.2 in infants without PP (p = .06). Better performance on the AIMS was positively correlated with the amount of time in prone position when awake, for both groups of children (PP r = .52, no PP r = .44, p < .05). Therapists should be aware of a risk of a motor delay when evaluating infants with PP. It is also important for parents to be informed about the importance of supervised prone playtime to enhance the development of early motor skills.
Charollais, A; Marret, S; Stumpf, M-H; Lemarchand, M; Delaporte, B; Philip, E; Monom-Diverre; Guillois, B; Datin-Dorriere, V; Debillon, T; Simon, M-J; De Barace, C; Pasquet, F; Saliba, E; Zebhib, R
2013-09-01
Clinical and radiological knowledge of language development in the former premature infant compared to the newborn allows us to argue for exploration of the sensorimotor co-factors required for proper language development. There are early representations of the maternal language in the infant's visual, auditory, and sensorimotor areas, activated or stabilized by orofacial and articulatory movements. The functional architecture of language is different for vulnerable children such as premature infants. We have already mentioned the impact of early dysfunction of the facial praxis fine motor skills in this population presenting comprehension disorders. A recent meta-analysis confirms the increasing difficulty of understanding between 3 and 12 years, questioning the quality of the initial linguistic processes. A precise analysis of language, referenced from 3 years of age, should be completed by sensorimotor tests to assess possible constraints in automating neurolinguistic foundations. The usual assessment at this age can exclude sensory disturbances and communication and offers guidance and socialization. However, a recent study shows the ineffectiveness of "language-reinforced immersion" at 2 and 3 years in a population of vulnerable children. The LAMOPRESCO study of language and motor skills in the premature infant (National PHRC 2010) has assessed language and sensorimotor skills of preterm-born (<33 weeks) 3.5-year-old children without cerebral palsy. Fragile children were randomized into 2 groups, 1 stimulated by a specific individual protocol, the other given guidance. The primary endpoint was phonology, assuming that it is composed of very early good-quality sensorimotor integration stabilized by the child's oral facial motor skills before 5 years of age. This developmental integrative dynamic validates the "motor theory of speech perception." Early and accurate assessment of language and the patient's constraints should differentiate and specify management strategies for all children, whatever their background and pathologies. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
A role for Kalirin-7 in corticostriatal synaptic dysfunction in Huntington's disease
Puigdellívol, Mar; Cherubini, Marta; Brito, Verónica; Giralt, Albert; Suelves, Núria; Ballesteros, Jesús; Zamora-Moratalla, Alfonsa; Martín, Eduardo D.; Eipper, Betty A.; Alberch, Jordi; Ginés, Silvia
2015-01-01
Cognitive dysfunction is an early clinical hallmark of Huntington's disease (HD) preceding the appearance of motor symptoms by several years. Neuronal dysfunction and altered corticostriatal connectivity have been postulated to be fundamental to explain these early disturbances. However, no treatments to attenuate cognitive changes have been successful: the reason may rely on the idea that the temporal sequence of pathological changes is as critical as the changes per se when new therapies are in development. To this aim, it becomes critical to use HD mouse models in which cognitive impairments appear prior to motor symptoms. In this study, we demonstrate procedural memory and motor learning deficits in two different HD mice and at ages preceding motor disturbances. These impairments are associated with altered corticostriatal long-term potentiation (LTP) and specific reduction of dendritic spine density and postsynaptic density (PSD)-95 and spinophilin-positive clusters in the cortex of HD mice. As a potential mechanism, we described an early decrease of Kalirin-7 (Kal7), a guanine-nucleotide exchange factor for Rho-like small GTPases critical to maintain excitatory synapse, in the cortex of HD mice. Supporting a role for Kal7 in HD synaptic deficits, exogenous expression of Kal7 restores the reduction of excitatory synapses in HD cortical cultures. Altogether, our results suggest that cortical dysfunction precedes striatal disturbances in HD and underlie early corticostriatal LTP and cognitive defects. Moreover, we identified diminished Kal7 as a key contributor to HD cortical alterations, placing Kal7 as a molecular target for future therapies aimed to restore corticostriatal function in HD. PMID:26464483
Late effects of early growth hormone treatment in Down syndrome.
Myrelid, Å; Bergman, S; Elfvik Strömberg, M; Jonsson, B; Nyberg, F; Gustafsson, J; Annerén, G
2010-05-01
Down syndrome (DS) is associated with short stature and psychomotor delay. We have previously shown that growth hormone (GH) treatment during infancy and childhood normalizes growth velocity and improves fine motor skill performance in DS. The aim of this study was to investigate late effects of early GH treatment on growth and psychomotor development in the DS subjects from the previous trial. Twelve of 15 adolescents with DS (3 F) from the GH group and 10 of 15 controls (5 F) participated in this follow-up study. Fifteen other subjects with DS (6 F) were included as controls in anthropometric analyses. Cognitive function was assessed with the Leiter International Performance Scale-Revised (Leiter-R) and selected subtests of the Wechsler Intelligence Scale for Children, Third edition (WISC-III). The Bruininks-Oseretsky Test of Motor Proficiency, Second edition (BOT-2), was used to assess general motor ability. Although early GH treatment had no effect on final height, the treated subjects had a greater head circumference standard deviation score (SDS) than the controls (-1.6 SDS vs. -2.2 SDS). The adolescents previously treated with GH had scores above those of the controls in all subtests of Leiter-R and WISC-III, but no difference in Brief IQ-score was seen between the groups. The age-adjusted motor performance of all subjects was below -2 SD, but the GH-treated subjects performed better than the controls in all but one subtest. The combined finding of a greater head circumference SDS and better psychomotor performance indicates that DS subjects may benefit from early GH treatment.
Bala, Gustav; Katić, Ratko
2009-12-01
The study included a sample of 333 preschool children (162 male and 171 female) at the time of school enrolment. Study subjects were recruited from the population of children in kindergartens in the cities of Novi Sad, Sombor, Sremska Mitrovica and Backa Palanka (Province of Voivodina, Serbia). Eight anthropometric variables, seven motor variables and one cognitive variable were analyzed to identify quantitative and qualitative sex differences in anthropometric characteristics, motor and cognitive functioning. Study results showed statistically significant sex differences in anthropometric characteristics and motor abilities in favor of male children, whereas no such difference was recorded in cognitive functioning. Sex differences found in morphological and motor spaces contributed to structuring proper general factors according to space and sex. Somewhat stronger structures were observed in male children. The cognitive aspect of functioning yielded better correlation with motor functioning in female than in male children. Motor functioning correlated better with morphological growth and development in male children, whereas cognitive functioning was relatively independent. These results are not fully in accordance with the current concept of general conditions in preschool children, nor they fully confirm the theory of integral development of children, hence they should be re-examined in future studies. Although these study results cannot be applied to sports practice in general, since we believe that it is too early for preschool children to take up sports and sport competitions, they are relevant for pointing to the need of developing general motor ability and motor behavior in preschool children.
Dance and Early Childhood Cognition: The Isadora Effect
ERIC Educational Resources Information Center
Faber, Rima
2017-01-01
This article proposes the existence of an "Isadora Effect": the propositions that motor development plays a primal role in brain development, and the first understanding of symbolic meaning among young children occurs from an understanding of movement and gesture. Anecdotal evidence for the past few decades has demonstrated that dance…
Serving Rural Families of Developmentally Disabled in a Cost-Effective Manner.
ERIC Educational Resources Information Center
Hedge, Russell; Johnson, Willard
Providing cost-effective services in 15 counties of Southeast Kansas, the Infant and Early Childhood Intervention Program (IECIP) teaches parents to provide daily one-to-one therapy in gross and fine perceptual motor development, speech and language development, social adjustment, and behavior management for developmentally delayed children from…
Rogers, Sally J.; Young, Gregory S.; Cook, Ian; Giolzetti, Angelo; Ozonoff, Sally
2010-01-01
This study was designed to examine the nature of object imitation performance in early autism. We hypothesized that imitation would be relatively preserved when behaviors on objects resulted in salient instrumental effects. We designed tasks in which, in one condition, the motor action resulted in a salient, meaningful effect on an object, whereas in the other condition, the same action resulted in a less salient effect because of differing object characteristics. The motor aspects of the tasks did not vary across conditions. Four participant groups of 2- to 5-year-olds were examined: 17 children with early-onset autism, 24 children with regressive onset autism, 22 children with developmental delays, and 22 children with typical development. Groups were matched on nonverbal skills, and differences in verbal development were examined as a moderator of imitative ability. Results revealed an interaction of group by condition, with the combined autism group failing more tasks than the combined comparison groups, and failing more tasks in the less salient condition than in the more salient condition, as hypothesized. Analyses of autism subgroups revealed these effects were primarily because of the regression onset group. Accuracy of motor performance was examined by analyzing errors. Among children passing imitative acts, there were no group differences and no condition effects in the number, type, or pattern of performance errors. Among children passing the tasks, the group with autism did not demonstrate more emulation errors (imitating the goal but not the means) than other groups. There was no evidence that either motor or attentional aspects of the tasks contributed to the poorer imitative performance of the children with autism. PMID:20102648
The effects of musical training on structural brain development: a longitudinal study.
Hyde, Krista L; Lerch, Jason; Norton, Andrea; Forgeard, Marie; Winner, Ellen; Evans, Alan C; Schlaug, Gottfried
2009-07-01
Long-term instrumental music training is an intense, multisensory and motor experience that offers an ideal opportunity to study structural brain plasticity in the developing brain in correlation with behavioral changes induced by training. Here, for the first time, we demonstrate structural brain changes after only 15 months of musical training in early childhood, which were correlated with improvements in musically relevant motor and auditory skills. These findings shed light on brain plasticity, and suggest that structural brain differences in adult experts (whether musicians or experts in other areas) are likely due to training-induced brain plasticity.
Effect of motor imagery in children with unilateral cerebral palsy: fMRI study.
Chinier, Eva; N'Guyen, Sylvie; Lignon, Grégoire; Ter Minassian, Aram; Richard, Isabelle; Dinomais, Mickaël
2014-01-01
Motor imagery is considered as a promising therapeutic tool for rehabilitation of motor planning problems in patients with cerebral palsy. However motor planning problems may lead to poor motor imagery ability. The aim of this functional magnetic resonance imaging study was to examine and compare brain activation following motor imagery tasks in patients with hemiplegic cerebral palsy with left or right early brain lesions. We tested also the influence of the side of imagined hand movement. Twenty patients with clinical hemiplegic cerebral palsy (sixteen males, mean age 12 years and 10 months, aged 6 years 10 months to 20 years 10 months) participated in this study. Using block design, brain activations following motor imagery of a simple opening-closing hand movement performed by either the paretic or nonparetic hand was examined. During motor imagery tasks, patients with early right brain damages activated bilateral fronto-parietal network that comprise most of the nodes of the network well described in healthy subjects. Inversely, in patients with left early brain lesion brain activation following motor imagery tasks was reduced, compared to patients with right brain lesions. We found also a weak influence of the side of imagined hand movement. Decreased activations following motor imagery in patients with right unilateral cerebral palsy highlight the dominance of the left hemisphere during motor imagery tasks. This study gives neuronal substrate to propose motor imagery tasks in unilateral cerebral palsy rehabilitation at least for patients with right brain lesions.
Childhood Stuttering – Where are we and Where are we going?
Smith, Anne; Weber, Christine
2017-01-01
Remarkable progress has been made over the past two decades in expanding our understanding of the behavioral, peripheral physiological, and central neurophysiological bases of stuttering in early childhood. It is clear that stuttering is a neurodevelopmental disorder characterized by atypical development of speech motor planning and execution networks. The speech motor system must interact in complex ways with neural systems mediating language, other cognitive, and emotional processes. During the time window when stuttering typically appears and follows its path to either recovery or persistence, all of these neurobehavioral systems are undergoing rapid and dramatic developmental changes. We summarize our current understanding of the various developmental trajectories relevant for the understanding of stuttering in early childhood. We also present theoretical and experimental approaches that we believe will be optimal for even more rapid progress toward developing better and more targeted treatment for stuttering in the preschool children who are more likely to persist in stuttering. PMID:27701705
Rhythmic Oscillations of Visual Contrast Sensitivity Synchronized with Action
Tomassini, Alice; Spinelli, Donatella; Jacono, Marco; Sandini, Giulio; Morrone, Maria Concetta
2016-01-01
It is well known that the motor and the sensory systems structure sensory data collection and cooperate to achieve an efficient integration and exchange of information. Increasing evidence suggests that both motor and sensory functions are regulated by rhythmic processes reflecting alternating states of neuronal excitability, and these may be involved in mediating sensory-motor interactions. Here we show an oscillatory fluctuation in early visual processing time locked with the execution of voluntary action, and, crucially, even for visual stimuli irrelevant to the motor task. Human participants were asked to perform a reaching movement toward a display and judge the orientation of a Gabor patch, near contrast threshold, briefly presented at random times before and during the reaching movement. When the data are temporally aligned to the onset of movement, visual contrast sensitivity oscillates with periodicity within the theta band. Importantly, the oscillations emerge during the motor planning stage, ~500 ms before movement onset. We suggest that brain oscillatory dynamics may mediate an automatic coupling between early motor planning and early visual processing, possibly instrumental in linking and closing up the visual-motor control loop. PMID:25948254
Meyer, C; Dittrich, U; Küster, S; Markgraf, E; Hofmann, G O; Strauss, B
2005-12-01
The aim of this study was to assess common risk factors for the early development of psychoreactive disorders during traumatological treatment and to estimate their predictive potential. The sample consisted of 126 consecutive patients with accidental injuries recruited in an emergency room of the university hospital. We assessed this population 1 week (T1) and-on average-8 months following the accident (T2). At T1 34.5% of all patients indicated moderate and 26.4% strong symptoms of an acute stress disorder; 26.7% of all patients assessed at T2 suffered from severe post-traumatic symptoms. Linear regression analysis, using morbidity status at T2 as the dependent variable, allowed the explanation of 46.2% of the variance. The degree of early acute stress symptoms, injury, and pain intensity contributed significantly to the predictive model. We conclude that a substantial proportion of severely injured accident victims that will develop PTSD can be screened to some degree by the assessment of early stress disorder, the degree of their injury, and pain intensity, enabling secondary prevention of trauma-dependent symptomatology.
A technological approach to studying motor planning ability in children at high risk for ASD.
Taffoni, F; Focaroli, V; Keller, F; Iverson, J M
2014-01-01
In this work we propose a new method to study the development of motor planning abilities in children and, in particular, in children at high risk for ASD. Although several modified motor signs have been found in children with ASD, no specific markers enabling the early assessment of risk have been found yet. In this work, we discuss the problem posed by objective and quantitative behavioral analysis in non-structured environment. After an initial description of the main constraints imposed by the ecological approach, a technological and methodological solution to these issues is presented. Preliminary results on 12 children are reported and briefly discussed.
Galler, J R; Ramsey, F; Solimano, G
1985-06-01
One hundred nine children, aged 8 through 15 yr, who suffered from malnutrition in the 1st yr of life and 107 well-nourished comparison children were tested for fine motor skills by the Purdue Pegboard test. The performance of index children was impaired on three of the four test measures. IQ measured concurrently showed a reduction in the index group; when the effects of IQ were eliminated, there was no longer any significant difference between index and comparison groups. The data suggest that the effects of early malnutrition on Pegboard performance are largely mediated by deficits in IQ. The presence of soft neurologic signs measured 4 yr earlier in the same children was highly correlated with reduced Pegboard performance, implying that early malnutrition has effects on nervous system function that are evident at least through 15 yr of age.
Filament overwrapped motor case technology
NASA Astrophysics Data System (ADS)
Compton, Joel P.
1993-11-01
Atlantic Research Corporation (ARC) joined with the French Societe Europeenne de Propulsion (SEP) to develop and deliver to the U.S. Navy a small quantity of composite filament wound rocket motors to demonstrate a manufacturing technique that was being applied at the two companies. It was perceived that the manufacturing technique could produce motors that would be light in weight, inexpensive to produce, and that had a good chance of meeting insensitive munitions (IM) requirements that were being formulated by the Navy in the early 1980s. Under subcontract to ARC, SEP designed, tested, and delivered 2.75-inch rocket motors to the U.S. Navy for IM tests that were conducted in 1989 at China Lake, California. The program was one of the first to be founded by Nunn Amendment money. The Government-to-Government program was sponsored by the Naval Air Systems Command and was monitored by the Naval Surface Warfare Center, Indian Head (NSWC-IH), Maryland. The motor propellant that was employed was a new, extruded composite formulation that was under development at the Naval Surface Warfare Center. The following paper describes the highlights of the program and gives the results of structural and ballistic static tests and insensitive munitions tests that were conducted on demonstration motors.
Early Boost and Slow Consolidation in Motor Skill Learning
ERIC Educational Resources Information Center
Hotermans, Christophe; Peigneux, Philippe; de Noordhout, Alain Maertens; Moonen, Gustave; Maquet, Pierre
2006-01-01
Motor skill learning is a dynamic process that continues covertly after training has ended and eventually leads to delayed increments in performance. Current theories suggest that this off-line improvement takes time and appears only after several hours. Here we show an early transient and short-lived boost in performance, emerging as early as…
AIMS baby movement scale application in high-risk infants early intervention analysis.
Wang, Y; Shi, J-P; Li, Y-H; Yang, W-H; Tian, Y-J; Gao, J; Li, S-J
2016-05-01
We investigated the application of Alberta Infant Motor Scale (AIMS) in screening motor development delay in the follow-up of high-risk infants who were discharged from NICU, to explain the state of infants' motor development and propose early individualized intervention. The study design was a randomized, single-blind trial by selecting patients between April 2015 and November 2015 in our hospital, children nerve recovery branch clinics and 77 cases of high-risk infants. We randomly divided the patients into observation group (39 cases) and control group (38 cases). To evaluate the application with AIMS, observation group was based on evaluation results for the first time to give rehabilitation training plan making, early intervention, control group according to the growth and development milestone in order to guide parents to take family training interval of 3 months. While comparing the two groups of high-risk infants before the intervention, the months of age, gender, risk factors, it was found that the AIMS scores, each position AIMS scores did not show a significant difference in percentile (p>0.05). There was also no significant difference between two groups in the seat and stand AIMS scores before and after intervention (p>0.05). However, the comparison of two groups of high-risk infants after intervention in comparison showed that the observation group supine AIMS scores and AIMS scores were significantly higher than the control group (p<0.05). Prone position AIMS scores observation group was also significantly higher than that of the control group (p<0.01). The corresponding percentile for two groups after the intervention of AIMS scores was less than 10% of cases, which was significantly lower in the observation group (p<0.01). AIMS can predict the development delay in high-risk infants, for improving the early hypernymic diagnosis and intervention.
Catenin-dependent cadherin function drives divisional segregation of spinal motor neurons.
Bello, Sanusi M; Millo, Hadas; Rajebhosale, Manisha; Price, Stephen R
2012-01-11
Motor neurons that control limb movements are organized as a neuronal nucleus in the developing ventral horn of the spinal cord called the lateral motor column. Neuronal migration segregates motor neurons into distinct lateral and medial divisions within the lateral motor column that project axons to dorsal or ventral limb targets, respectively. This migratory phase is followed by an aggregation phase whereby motor neurons within a division that project to the same muscle cluster together. These later phases of motor neuron organization depend on limb-regulated differential cadherin expression within motor neurons. Initially, all motor neurons display the same cadherin expression profile, which coincides with the migratory phase of motor neuron segregation. Here, we show that this early, pan-motor neuron cadherin function drives the divisional segregation of spinal motor neurons in the chicken embryo by controlling motor neuron migration. We manipulated pan-motor neuron cadherin function through dissociation of cadherin binding to their intracellular partners. We found that of the major intracellular transducers of cadherin signaling, γ-catenin and α-catenin predominate in the lateral motor column. In vivo manipulations that uncouple cadherin-catenin binding disrupt divisional segregation via deficits in motor neuron migration. Additionally, reduction of the expression of cadherin-7, a cadherin predominantly expressed in motor neurons only during their migration, also perturbs divisional segregation. Our results show that γ-catenin-dependent cadherin function is required for spinal motor neuron migration and divisional segregation and suggest a prolonged role for cadherin expression in all phases of motor neuron organization.
Jaspers, Merlijne; de Winter, Andrea F; Veenstra, René; Ormel, Johan; Verhulst, Frank C; Reijneveld, Sijmen A
2012-12-01
A disputed social status among peers puts children and adolescents at risk for developing a wide range of problems, such as being bullied. However, there is a lack of knowledge about which early predictors could be used to identify (young) adolescents at risk for a disputed social status. The aim of this study was to assess whether preventive child health care (PCH) findings on early childhood predict neglected and rejected status in early adolescence in a large longitudinal community-based sample. Data came from 898 participants who participated in TRAILS, a longitudinal study. Information on early childhood factors was extracted from the charts of routine PCH visits registered between infancy and age of 4 years. To assess social status, peer nominations were used at age of 10-12 years. Multinomial logistic regression showed that children who had a low birth weight, motor problems, and sleep problems; children of parents with a low educational level (odds ratios [ORs] between 1.71 and 2.90); and those with fewer attention hyperactivity problems (ORs = .43) were more likely to have a neglected status in early adolescence. Boys, children of parents with a low educational level, and children with early externalizing problems were more likely to have a rejected status in early adolescence (ORs between 1.69 and 2.56). PCH findings on early childhood-on motor and social development-are predictive of a neglected and a rejected status in early adolescence. PCH is a good setting to monitor risk factors that predict the social status of young adolescents. Copyright © 2012 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.
Linear Growth and Child Development in Burkina Faso, Ghana, and Malawi.
Prado, Elizabeth L; Abbeddou, Souheila; Adu-Afarwuah, Seth; Arimond, Mary; Ashorn, Per; Ashorn, Ulla; Brown, Kenneth H; Hess, Sonja Y; Lartey, Anna; Maleta, Kenneth; Ocansey, Eugenia; Ouédraogo, Jean-Bosco; Phuka, John; Somé, Jérôme W; Vosti, Steve A; Yakes Jimenez, Elizabeth; Dewey, Kathryn G
2016-08-01
We aimed to produce quantitative estimates of the associations between 4 domains of child development and linear growth during 3 periods: before birth, early infancy, and later infancy. We also aimed to determine whether several factors attenuated these associations. In 3700 children in Burkina Faso, Ghana, and Malawi, growth was measured several times from birth to age 18 months. At 18 months, language, motor, socioemotional, and executive function development were assessed. In Burkina Faso (n = 1111), personal-social development was assessed rather than the latter 2 domains. Linear growth was significantly associated with language, motor, and personal-social development but not socioemotional development or executive function. For language, the pooled adjusted estimate of the association with length-for-age z score (LAZ) at 6 months was 0.13 ± 0.02 SD, and with ΔLAZ from 6 to 18 months it was 0.11 ± 0.03 SD. For motor, these estimates were 0.16 ± 0.02 SD and 0.22 ± 0.03 SD, respectively. In 1412 children measured at birth, estimates of the association with LAZ at birth were similar (0.07-0.16 SD for language and 0.09-0.18 SD for motor development). These associations were weaker or absent in certain subsets of children with high levels of developmental stimulation or mothers who received nutritional supplementation. Growth faltering during any period from before birth to 18 months is associated with poor development of language and motor skills. Interventions to provide developmental stimulation or maternal supplementation may protect children who are faltering in growth from poor language and motor development. Copyright © 2016 by the American Academy of Pediatrics.
Motor Development and Physical Activity: A Longitudinal Discordant Twin-Pair Study.
Aaltonen, Sari; Latvala, Antti; Rose, Richard J; Pulkkinen, Lea; Kujala, Urho M; Kaprio, Jaakko; Silventoinen, Karri
2015-10-01
Previous longitudinal research suggests that motor proficiency in early life predicts physical activity in adulthood. Familial effects including genetic and environmental factors could explain the association, but no long-term follow-up studies have taken into account potential confounding by genetic and social family background. The present twin study investigated whether childhood motor skill development is associated with leisure-time physical activity levels in adulthood independent of family background. Altogether, 1550 twin pairs from the FinnTwin12 study and 1752 twin pairs from the FinnTwin16 study were included in the analysis. Childhood motor development was assessed by the parents' report of whether one of the co-twins had been ahead of the other in different indicators of motor skill development in childhood. Leisure-time physical activity (MET·h·d) was self-reported by the twins in young adulthood and adulthood. Statistical analyses included conditional and ordinary linear regression models within twin pairs. Using all activity-discordant twin pairs, the within-pair difference in a sum score of motor development in childhood predicted the within-pair difference in the leisure-time physical activity level in young adulthood (P < 0.001). Within specific motor development indicators, learning to stand unaided earlier in infancy predicted higher leisure-time MET values in young adulthood statistically significantly in both samples (FinnTwin12, P = 0.02; and FinnTwin16, P = 0.001) and also in the pooled data set of the FinnTwin12 and FinnTwin16 studies (P < 0.001). Having been more agile than the co-twin as a child predicted higher leisure-time MET values up to adulthood (P = 0.03). More advanced childhood motor development is associated with higher leisure-time MET values in young adulthood at least partly independent of family background in both men and women.
MOTOR DEVELOPMENT AND PHYSICAL ACTIVITY: A LONGITUDINAL DISCORDANT TWIN-PAIR STUDY
Aaltonen, Sari; Latvala, Antti; Rose, Richard J.; Pulkkinen, Lea; Kujala, Urho M.; Kaprio, Jaakko; Silventoinen, Karri
2015-01-01
Introduction Previous longitudinal research suggests that motor proficiency in early life predicts physical activity in adulthood. Familial effects including genetic and environmental factors could explain the association, but no long-term follow-up studies have taken into account potential confounding by genetic and social family background. The present twin study investigated whether childhood motor skill development is associated with leisure-time physical activity levels in adulthood independent of family background. Methods Altogether, 1 550 twin pairs from the FinnTwin12 study and 1 752 twin pairs from the FinnTwin16 study were included in the analysis. Childhood motor development was assessed by the parents’ report of whether one of the co-twins had been ahead of the other in different indicators of motor skill development in childhood. Leisure-time physical activity (MET hours/day) was self-reported by the twins in young adulthood and adulthood. Statistical analyses included conditional and ordinary linear regression models within twin pairs. Results Using all activity-discordant twin pairs, the within-pair difference in a sum score of motor development in childhood predicted the within-pair difference in the leisure-time physical activity level in young adulthood (p<0.001). Within specific motor development indicators, learning to stand unaided earlier in infancy predicted higher leisure-time MET values in young adulthood statistically significantly in both samples (FinnTwin12 p=0.02, FinnTwin16 p=0.001) and also in the pooled dataset of the FinnTwin12 and FinnTwin16 studies (p<0.001). Having been more agile than the co-twin as a child predicted higher leisure-time MET values up to adulthood (p=0.03). Conclusions More advanced childhood motor development is associated with higher leisure-time MET values in young adulthood at least partly independent of family background, in both men and women. PMID:26378945
ERIC Educational Resources Information Center
Rihtman, Tanya; Wilson, Brenda N.; Parush, Shula
2011-01-01
Purpose: The early identification of motor coordination challenges before school age may enable close monitoring of a child's development and perhaps ameliorate some of the social, psychological and behavioral sequela that often accompany unrecognized Developmental Coordination Disorder (DCD). The purpose of this study was to develop and assess…
ERIC Educational Resources Information Center
Sherry, Kate; Draper, Catherine E.
2013-01-01
Early childhood development (ECD) has gained substantial recognition in South Africa (SA) as a key issue to be addressed, but inequities and deficits remain evident, despite progressive policy and widespread effort by a range of role players in the non-governmental sector. ECD in SA requires far more attention if these are to be rectified, and…
Preferred sleep position and gross motor achievement in early infancy.
Carmeli, Eli; Marmur, Rachel; Cohen, Ayala; Tirosh, Emanuel
2009-06-01
The aim of this study was to assess the effect of an infant's favoured position on their motor development at the age of six months. Seventy-five full-term infants were prospectively observed at home for their preferred sleep, awake, play and uninterrupted positions. A parental log was completed daily and then weekly up to the age of six months, when the Alberta Infant Motor Scale (AIMS) was administered. No significant relationship between the preferred or sleep positions as well as the awake and mutual play positions and gross motor developmental attainment at six months of age was noted. A significant change in the preferred recumbent posture with increased prone positioning both during sleep and awake time over the first six months was noted. A balanced positioning policy while awake, regardless of the infant's preference while recumbent, is not associated with gross motor delay.
A plea for developmental motor screening in Canadian infants.
Harris, Susan R
2016-04-01
Motor delays during infancy may be the first observable sign of a specific neurodevelopmental disability or of more global developmental delays. The earlier such disorders are identified, the sooner these infants can be referred for early intervention services. Although developmental motor screening is strongly recommended in other Western countries, Canada has yet to provide a developmental surveillance and screening program. Ideally, screening for motor disabilities should occur as part of the 12-month well-baby visit. In advance of that visit, parents can be provided with a parent-screening questionnaire that they can complete and bring with them to their 12-month office visit. Interpretation of the parent-completed questionnaire takes only 2 min to 3 min of the health care professional's time and, based on the results, can either reassure parents that their infant is developing typically, or lead to a referral for standardized motor screening or assessment by a paediatric physical or occupational therapist.
ERIC Educational Resources Information Center
Mazer, Petra; Gischler, Saskia J.; van der Cammen-van Zijp, Monique H. M.; Tibboel, Dick; Bax, Nicolaas M. A.; Ijsselstijn, Hanneke; van Dijk, Monique; Duivenvoorden, Hugo J.
2010-01-01
Aim: The aim of this study was to evaluate cognitive and motor development in children with major congenital anomalies and the predictability of development at age 5 years. Method: A prospective, longitudinal follow-up study was undertaken. The Dutch version of the Bayley Scales of Infant Development--Mental Developmental Index (MDI) and…
Campione, Giovanna Cristina; Piazza, Caterina; Villa, Laura; Molteni, Massimo
2016-06-01
The study was aimed at better clarifying whether action execution impairment in autism depends mainly on disruptions either in feedforward mechanisms or in feedback-based control processes supporting motor execution. To this purpose, we analyzed prehension movement kinematics in 4- and 5-year-old children with autism and in peers with typical development. Statistical analysis showed that the kinematics of the grasp component was spared in autism, whereas early kinematics of the reach component was atypical. We discussed this evidence as suggesting impairment in the feedforward processes involved in action execution, whereas impairment in feedback-based control processes remained unclear. We proposed that certain motor abilities are available in autism, and children may use them differently as a function of motor context complexity.
Reaching and Grasping in Autism Spectrum Disorder: A Review of Recent Literature
Sacrey, Lori-Ann R.; Germani, Tamara; Bryson, Susan E.; Zwaigenbaum, Lonnie
2013-01-01
Impairments in motor functioning, which, until recently, have rarely been a primary focus in autism spectrum disorder (ASD) research, may play a key role in the early expression of biological vulnerability and be associated with key social-communication deficits. This review summarizes current knowledge of motor behavior in ASD, focusing specifically on reaching and grasping. Convergent data across the lifespan indicate that impairments to reaching and grasping emerge early in life, affect the planning and execution of motor programs, and may be impacted by additional impairments to sensory control of motor behavior. The relationship between motor impairments and diagnostic outcomes will be discussed. PMID:24478753
Stoodley, Catherine J.; Limperopoulos, Catherine
2016-01-01
SUMMARY The increasing appreciation of the role of the cerebellum in motor and non-motor functions is crucial to understanding the outcomes of acquired cerebellar injury and developmental lesions in high-risk fetal and neonatal populations, children with cerebellar damage (e.g. posterior fossa tumors), and neurodevelopmental disorders (e.g. autism). We review available data regarding the relationship between the topography of cerebellar injury or abnormality and functional outcomes. We report emerging structure–function relationships with specific symptoms: cerebellar regions that interconnect with sensorimotor cortices are associated with motor impairments when damaged; disruption to posterolateral cerebellar regions that form circuits with association cortices impact long-term cognitive outcomes; and midline posterior vermal damage is associated with behavioral dysregulation and an autism-like phenotype. We also explore the impact of age and the potential role for critical periods on cerebellar structure and child function. These findings suggest that the cerebellum plays a critical role in motor, cognitive, and social–behavioral development, possibly via modulatory effects on the developing cerebral cortex. PMID:27184461
Motor skills and calibrated autism severity in young children with autism spectrum disorder.
MacDonald, Megan; Lord, Catherine; Ulrich, Dale A
2014-04-01
In addition to the core characteristics of autism spectrum disorder (ASD), motor skill deficits are present, persistent, and pervasive across age. Although motor skill deficits have been indicated in young children with autism, they have not been included in the primary discussion of early intervention content. One hundred fifty-nine young children with a confirmed diagnosis of ASD (n = 110), PDD-NOS (n = 26), and non-ASD (n = 23) between the ages of 14-33 months participated in this study.1 The univariate general linear model tested the relationship of fine and gross motor skills and social communicative skills (using calibrated autism severity scores). Fine motor and gross motor skills significantly predicted calibrated autism severity (p < .05). Children with weaker motor skills have greater social communicative skill deficits. Future directions and the role of motor skills in early intervention are discussed.
Kaňková, Sárka; Sulc, Jan; Křivohlavá, Romana; Kuběna, Aleš; Flegr, Jaroslav
2012-11-01
Toxoplasmosis, a zoonosis caused by a protozoan, Toxoplasma gondii, is probably the most widespread human parasitosis in developed countries. Pregnant women with latent toxoplasmosis have seemingly younger fetuses especially in the 16th week of gestation, which suggests that fetuses of Toxoplasma-infected mothers have slower rates of development in the first trimester of pregnancy. In the present retrospective cohort study, we analyzed data on postnatal motor development of infants from 331 questionnaire respondents including 53 Toxoplasma-infected mothers to search for signs of early postnatal development disorders. During the first year of life, a slower postnatal motor development was observed in infants of mothers with latent toxoplasmosis. These infants significantly later developed the ability to control the head position (p=0.039), to roll from supine to prone position (p=0.022) and were slightly later to begin crawling (p=0.059). Our results are compatible with the hypothesis that the difference in the rates of prenatal and early postnatal development between children of Toxoplasma-negative and Toxoplasma-positive mothers might be caused by a decreased stringency of embryo quality control in partly immunosuppressed Toxoplasma-positive mothers resulting in a higher proportion of infants with genetic or developmental disorders in offspring. However, because of relatively low return rate of questionnaires and an associated risk of a sieve effect, our results should be considered as preliminary and performing a large scale prospective study in the future is critically needed. Copyright © 2012 Elsevier Ltd. All rights reserved.
Sukal-Moulton, Theresa; Krosschell, Kristin J; Gaebler-Spira, Deborah J; Dewald, Julius P A
2014-01-01
Extensive neuromotor development occurs early in human life, and the timing of brain injury may affect the resulting motor impairment. In Part I of this series, it was demonstrated that the distribution of weakness in the upper extremity depended on the timing of brain injury in individuals with childhood-onset hemiparesis. The goal of this study was to characterize how timing of brain injury affects joint torque synergies, or losses of independent joint control. Twenty-four individuals with hemiparesis were divided into 3 groups based on the timing of their injury: before birth (PRE-natal, n = 8), around the time of birth (PERI-natal, n = 8), and after 6 months of age (POST-natal, n = 8). Individuals with hemiparesis and 8 typically developing peers participated in maximal isometric shoulder, elbow, wrist, and finger torque generation tasks while their efforts were recorded by a multiple degree-of-freedom load cell. Motor output in 4 joints of the upper extremity was concurrently measured during 8 primary torque generation tasks to quantify joint torque synergies. There were a number of significant coupling patterns identified in individuals with hemiparesis that differed from the typically developing group. POST-natal differences were most noted in the coupling of shoulder abductors with elbow, wrist, and finger flexors, while the PRE-natal group demonstrated significant distal joint coupling with elbow flexion. The torque synergies measured provide indirect evidence for the use of bulbospinal pathways in the POST-natal group, while those with earlier injury may use relatively preserved ipsilateral corticospinal motor pathways.
Schuler, Maureen E.; Black, Maureen M.; Kettinger, Laurie; Harrington, Donna
2011-01-01
Objective To assess the relationship between cumulative environmental risks and early intervention, parenting attitudes, potential for child abuse and child development in substance abusing mothers. Method We studied 161 substance-abusing women, from a randomized longitudinal study of a home based early intervention, who had custody of their children through 18 months. The intervention group received weekly home visits in the first 6 months and biweekly visits from 6 to 18 months. Parenting stress and child abuse potential were assessed at 6 and 18 months postpartum. Children’s mental and motor development (Bayley MDI and PDI) and language development (REEL) were assessed at 6, 12, and 18 months postpartum. Ten maternal risk factors were assessed: maternal depression, domestic violence, nondomestic violence, family size, incarceration, no significant other in home, negative life events, psychiatric problems, homelessness, and severity of drug use. Level of risk was recoded into four categories (2 or less, 3, 4, and 5 or more), which had adequate cell sizes for repeated measures analysis. Data analysis Repeated measures analyses were run to examine how level of risk and group (intervention or control) were related to parenting stress, child abuse potential, and children’s mental, motor and language development over time. Results Parenting stress and child abuse potential were higher for women with five risks or more compared with women who had four or fewer risks; children’s mental, motor, and language development were not related to level of risk. Children in the intervention group had significantly higher scores on the PDI at 6 and 18 months (107.4 vs. 103.6 and 101.1 vs. 97.2) and had marginally better scores on the MDI at 6 and 12 months (107.7 vs. 104.2 and 103.6 vs. 100.1), compared to the control group. Conclusion Compared to drug-abusing women with fewer than five risks, women with five or more risks found parenting more stressful and indicated greater inclination towards abusive and neglectful behavior, placing their infants at increased risk for poor parenting, abuse and neglect. Early home-based intervention in high-risk families may be beneficial to infant development. PMID:14550327
Tissue inhibitor of metalloproteinase-2(TIMP-2)-deficient mice display motor deficits.
Jaworski, Diane M; Soloway, Paul; Caterina, John; Falls, William A
2006-01-01
The degradation of the extracellular matrix is regulated by matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). Matrix components of the basement membrane play critical roles in the development and maintenance of the neuromuscular junction (NMJ), yet almost nothing is known about the regulation of MMP and TIMP expression in either the pre- or postsynaptic compartments. Here, we demonstrate that TIMP-2 is expressed by both spinal motor neurons and skeletal muscle. To determine whether motor function is altered in the absence of TIMP-2, motor behavior was assessed using a battery of tests (e.g., RotaRod, balance beam, hindlimb extension, grip strength, loaded grid, and gait analysis). TIMP-2(-/-) mice fall off the RotaRod significantly faster than wild-type littermates. In addition, hindlimb extension is reduced and gait is both splayed and lengthened in TIMP-2(-/-) mice. Motor dysfunction is more pronounced during early postnatal development. A preliminary analysis revealed NMJ alterations in TIMP-2(-/-) mice. Juvenile TIMP-2(-/-) mice have increased nerve branching and acetylcholine receptor expression. Adult TIMP-2(-/-) endplates are enlarged and more complex. This suggests a role for TIMP-2 in NMJ sculpting during development. In contrast to the increased NMJ nerve branching, cerebellar Purkinje cells have decreased neurite outgrowth. Thus, the TIMP-2(-/-) motor phenotype is likely due to both peripheral and central defects. The tissue specificity of the nerve branching phenotype suggests the involvement of different MMPs and/or extracellular matrix molecules underlying the TIMP-2(-/-) motor phenotype.
Gajewska, Ewa; Sobieska, Magdalena
2015-05-01
The proposed assessment sheet aims to show in detail, which qualitative elements of motor performance are performed correctly in the 2nd month of life by children who in the 9th month reached the erect posture. Similar analysis was performed for the qualitative assessment in the 6th month. The prospective investigation of motor development involved a group of 109 children (40 girls and 69 boys). The study was based on the previously described quantity and quality assessment sheet of motor performance, validated for the 2nd and 6th month. Final investigation took place in the 9th month of life and was based on a neurological assessment. It could be shown that a completely correct assessment at the age of 2 months precludes future severe motor development disorders, especially cerebral palsy, although it does not rule out a slight delay. Prematurity and the analyzed risk factors, particularly IVH, impair the motor performance. The absence of axial symmetry, the shoulders protraction and improper position of the pelvis are the most important alarming features at the 2nd month. Distal elements observed in the prone position at the 6th month show a good prognosis for the motor performance in the 9th month. Any abnormalities, mainly related to the body axis and symmetry observed at 2 months of age should encourage one to put a child under observation. Copyright © 2015 Elsevier Inc. All rights reserved.
A Curriculum Program for Infants Six to Twelve Months.
ERIC Educational Resources Information Center
Dickinson, Barbara Gibello
This curriculum program was developed to serve as a guide or reference for those professionals wishing to implement or improve upon a current participation program for parents of 6- to 12-month-old infants. The curriculum program covers such topics as the importance of early stimulation, infants' gross and fine motor development, social/emotional…
Modelling Gesture Use and Early Language Development in Autism Spectrum Disorder
ERIC Educational Resources Information Center
Manwaring, Stacy S.; Mead, Danielle L.; Swineford, Lauren; Thurm, Audrey
2017-01-01
Background: Nonverbal communication abilities, including gesture use, are impaired in autism spectrum disorder (ASD). However, little is known about how common gestures may influence or be influenced by other areas of development. Aims: To examine the relationships between gesture, fine motor and language in young children with ASD compared with a…
The Need for Motor Development Programs for Visually Impaired Preschoolers.
ERIC Educational Resources Information Center
Palazesi, Margot A.
1986-01-01
The paper advocates the development of movement programs for preschool visually impaired children to compensate for their orientation deficits. The author asserts that skills necessary for acquisition of spatial concepts should be taught through movement programs at an early age in the normal developmental sequence instead of attempting to remedy…
Ní Choisdealbha, Áine; Reid, Vincent
2014-06-01
The widespread use of EEG methods and the introduction of new brain imaging methods such as near-infrared spectroscopy have made cognitive neuroscience research with infants more feasible, resulting in an explosion of new findings. Among the long-established study of the neural correlates of face and speech perception in infancy, there has been an abundance of recent research on infant perception and production of action and concomitant neurocognitive development. In this review, three significant strands of developmental action research are discussed. The first strand focuses on the relationship of diverse social cognitive processes, including the perception of goals and animacy, and the development of precursors to theory of mind, to action perception. The second investigates the role of motor resonance and mirror systems in early action development. The third strand focuses on the extraction of meaning from action by infants and discusses how semantic processing of action emerges early in life. Although these strands of research are pursued separately, many of the findings from each strand inform all three theoretical frameworks. This review will evaluate the evidence for a synthesised account of infant action development.
Motor recovery monitoring using acceleration measurements in post acute stroke patients.
Gubbi, Jayavardhana; Rao, Aravinda S; Fang, Kun; Yan, Bernard; Palaniswami, Marimuthu
2013-04-16
Stroke is one of the major causes of morbidity and mortality. Its recovery and treatment depends on close clinical monitoring by a clinician especially during the first few hours after the onset of stroke. Patients who do not exhibit early motor recovery post thrombolysis may benefit from more aggressive treatment. A novel approach for monitoring stroke during the first few hours after the onset of stroke using a wireless accelerometer based motor activity monitoring system is developed. It monitors the motor activity by measuring the acceleration of the arms in three axes. In the presented proof of concept study, the measured acceleration data is transferred wirelessly using iMote2 platform to the base station that is equipped with an online algorithm capable of calculating an index equivalent to the National Institute of Health Stroke Score (NIHSS) motor index. The system is developed by collecting data from 15 patients. We have successfully demonstrated an end-to-end stroke monitoring system reporting an accuracy of calculating stroke index of more than 80%, highest Cohen's overall agreement of 0.91 (with excellent κ coefficient of 0.76). A wireless accelerometer based 'hot stroke' monitoring system is developed to monitor the motor recovery in acute-stroke patients. It has been shown to monitor stroke patients continuously, which has not been possible so far with high reliability.
Motor recovery monitoring using acceleration measurements in post acute stroke patients
2013-01-01
Background Stroke is one of the major causes of morbidity and mortality. Its recovery and treatment depends on close clinical monitoring by a clinician especially during the first few hours after the onset of stroke. Patients who do not exhibit early motor recovery post thrombolysis may benefit from more aggressive treatment. Method A novel approach for monitoring stroke during the first few hours after the onset of stroke using a wireless accelerometer based motor activity monitoring system is developed. It monitors the motor activity by measuring the acceleration of the arms in three axes. In the presented proof of concept study, the measured acceleration data is transferred wirelessly using iMote2 platform to the base station that is equipped with an online algorithm capable of calculating an index equivalent to the National Institute of Health Stroke Score (NIHSS) motor index. The system is developed by collecting data from 15 patients. Results We have successfully demonstrated an end-to-end stroke monitoring system reporting an accuracy of calculating stroke index of more than 80%, highest Cohen’s overall agreement of 0.91 (with excellent κ coefficient of 0.76). Conclusion A wireless accelerometer based ‘hot stroke’ monitoring system is developed to monitor the motor recovery in acute-stroke patients. It has been shown to monitor stroke patients continuously, which has not been possible so far with high reliability. PMID:23590690
Early development of the circumferential axonal pathway in mouse and chick spinal cord.
Holley, J A
1982-03-10
The early development of the circumferential axonal pathway in the brachial and lumbar spinal cord of mouse and chick embryos was studied by scanning and transmission electron microscopy. The cellular processes which comprise this pathway grow in the transverse plane and along the lateral margin of the marginal zone (i.e., circumferentially oriented), as typified by the early embryonic commissural axons. The first formative event observed was in the ventrolateral margin of the primitive spinal cord ventricular zone. Cellular processes were found near the external limiting membrane that appeared to grow a variable distance either dorsally or ventrally. Later in development, presumptive motor column neurons migrated into the ventrolateral region, distal to these early circumferentially oriented processes. Concurrently, other circumferentially oriented perikarya and processes appeared along the dorsolateral margin. Due to their aligned sites of origin and parallel growth, the circumferential processes formed a more or less continuous line or pathway, which in about 10% of the scanned specimens could be followed along the entire lateral margin of the embryonic spinal cord. Several specimens later in development had two sets of aligned circumferential processes in the ventral region. Large numbers of circumferential axons were then found to follow the preformed pathway by fasciculation, after the primitive motor column had become established. Since the earliest circumferential processes appeared to differentiate into axons and were found nearly 24 hours prior to growth of most circumferential axons, their role in guidance as pioneering axons was suggested.
Coleman, Andrea; Weir, Kelly A; Ware, Robert S; Boyd, Roslyn N
2013-11-01
To explore the communication skills of children with cerebral palsy (CP) at 24 months' corrected age with reference to typically developing children, and to determine the relationship between communication ability, gross motor function, and other comorbidities associated with CP. Prospective, cross-sectional, population-based cohort study. General community. Children with CP (N=124; mean age, 24mo; functional severity on Gross Motor Function Classification System [GMFCS]: I=47, II=14, III=22, IV=19, V=22). Not applicable. Parents reported communication skills on the Communication and Symbolic Behavior Scales Developmental Profile (CSBS-DP) Infant-Toddler Checklist. Two independent physiotherapists classified motor type, distribution, and GMFCS. Data on comorbidities were obtained from parent interviews and medical records. Children with mild CP (GMFCS I/II) had mean CSBS-DP scores that were 0.5 to 0.6 SD below the mean for typically developing peers, while those with moderate-severe impairment (GMFCS III-V) were 1.4 to 2.6 SD below the mean. GMFCS was significantly associated with performance on the CSBS-DP (F=18.55, P<.001), with gross motor ability accounting for 38% of the variation in communication. Poorer communication was strongly associated with gross motor function and full-term birth. Preschool-aged children with CP, with more severe gross motor impairment, showed delayed communication, while children with mild motor impairment were less vulnerable. Term-born children had significantly poorer communication than those born prematurely. Because a portion of each gross motor functional severity level is at risk, this study reinforces the need for early monitoring of communication development for all children with CP. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
A Critical Period for Postnatal Adaptive Plasticity in a Model of Motor Axon Miswiring
Castiblanco-Urbina, Maria A.; Winzeck, Stefan; Sundermeier, Julia; Theis, Fabian J.; Fouad, Karim; Huber, Andrea B.
2015-01-01
The correct wiring of neuronal circuits is of crucial importance for precise neuromuscular functionality. Therefore, guidance cues provide tight spatiotemporal control of axon growth and guidance. Mice lacking the guidance cue Semaphorin 3F (Sema3F) display very specific axon wiring deficits of motor neurons in the medial aspect of the lateral motor column (LMCm). While these deficits have been investigated extensively during embryonic development, it remained unclear how Sema3F mutant mice cope with these errors postnatally. We therefore investigated whether these animals provide a suitable model for the exploration of adaptive plasticity in a system of miswired neuronal circuitry. We show that the embryonically developed wiring deficits in Sema3F mutants persist until adulthood. As a consequence, these mutants display impairments in motor coordination that improve during normal postnatal development, but never reach wildtype levels. These improvements in motor coordination were boosted to wildtype levels by housing the animals in an enriched environment starting at birth. In contrast, a delayed start of enriched environment housing, at 4 weeks after birth, did not similarly affect motor performance of Sema3F mutants. These results, which are corroborated by neuroanatomical analyses, suggest a critical period for adaptive plasticity in neuromuscular circuitry. Interestingly, the formation of perineuronal nets, which are known to close the critical period for plastic changes in other systems, was not altered between the different housing groups. However, we found significant changes in the number of excitatory synapses on limb innervating motor neurons. Thus, we propose that during the early postnatal phase, when perineuronal nets have not yet been formed around spinal motor neurons, housing in enriched environment conditions induces adaptive plasticity in the motor system by the formation of additional synaptic contacts, in order to compensate for coordination deficits. PMID:25874621
Early life exposure to permethrin: a progressive animal model of Parkinson's disease.
Nasuti, Cinzia; Brunori, Gloria; Eusepi, Piera; Marinelli, Lisa; Ciccocioppo, Roberto; Gabbianelli, Rosita
Oxidative stress, alpha-synuclein changes, mitochondrial complex I defects and dopamine loss, observed in the striatum of rats exposed to the pesticide permethrin in early life, could represent neuropathological hallmarks of Parkinson's disease (PD). Nevertheless, an animal model of PD should also fulfill criteria of face and predictive validities. This study was designed to: 1) verify dopaminergic status in the striatum and substantia nigra pars compacta; 2) recognize non-motor symptoms; 3) investigate the time-course development of motor disabilities; 4) assess L-Dopa effectiveness on motor symptoms in rats previously exposed to permethrin in early life. The permethrin-treated group received 34mg/kg daily of permethrin from postnatal day 6 to 21, whereas the age-matched control group was administered with the vehicle only. At adolescent age, the permethrin-treated group showed decreased levels of dopamine in the striatum, loss of dopaminergic neurons in the substantia nigra pars compacta and cognitive impairments. Motor coordination defects appeared at adult age (150days old) in permethrin-treated rats on rotarod and beam walking tasks, whereas no differences between the treated and control groups were detected on the foot print task. Predictive validity was evaluated by testing the ability of L-Dopa (5, 10 or 15mg/kg, os) to restore the postural instability in permethrin-treated rats (150days old) tested in a beam walking task. The results revealed full reversal of motor deficits starting from 10mg/kg of L-Dopa. The overall results indicate that this animal model replicates the progressive, time-dependent nature of the neurodegenerative process in Parkinson's disease. Copyright © 2016 Elsevier Inc. All rights reserved.
Kisiel-Sajewicz, Katarzyna; Davis, Mellar P; Siemionow, Vlodek; Seyidova-Khoshknabi, Dilara; Wyant, Alexandria; Walsh, Declan; Hou, Juliet; Yue, Guang H
2012-09-01
Fatigue is one of the most common symptoms reported by cancer survivors, and fatigue worsens when patients are engaged in muscle exertion, which results in early motor task failure. Central fatigue plays a significant role, more than muscle (peripheral) fatigue, in contributing to early task failure in cancer-related fatigue (CRF). The purpose of this study was to determine if muscle contractile property alterations (reflecting muscle fatigue) occurred at the end of a low-intensity muscle contraction to exhaustion and if these properties differed between those with CRF and healthy controls. Ten patients (aged 59.9±10.6 years, seven women) with advanced solid cancer and CRF and 12 age- and gender-matched healthy controls (aged 46.6±12.8 years, nine women) performed a sustained contraction of the right arm elbow flexion at 30% maximal level until exhaustion. Peak twitch force, time to peak twitch force, rate of peak twitch force development, and half relaxation time derived from electrical stimulation-evoked twitches were analyzed pre- and post-sustained contraction. CRF patients reported significantly greater fatigue as measured by the Brief Fatigue Inventory and failed the motor task earlier, 340±140 vs. 503±155 seconds in controls. All contractile property parameters did not change significantly in CRF but did change significantly in controls. CRF patients perceive physical exhaustion sooner during a motor fatigue task with minimal muscular fatigue. The observation supports that central fatigue is a more significant factor than peripheral fatigue in causing fatigue feelings and limits motor function in cancer survivors with fatigue symptoms. Copyright © 2012. Published by Elsevier Inc.
Motor vehicle traffic crash fatality and injury estimates for 2000
DOT National Transportation Integrated Search
2001-01-01
This brochure, prepared from a slide presentation, contains the Early Assessment estimates for motor vehicle traffic crashes in 2000 and the resulting injuries and fatalities. They are compared to estimates from the 1999 Annual Files. These Early Ass...
Poewe, Werner; Seppi, Klaus; Tanner, Caroline M; Halliday, Glenda M; Brundin, Patrik; Volkmann, Jens; Schrag, Anette-Eleonore; Lang, Anthony E
2017-03-23
Parkinson disease is the second-most common neurodegenerative disorder that affects 2-3% of the population ≥65 years of age. Neuronal loss in the substantia nigra, which causes striatal dopamine deficiency, and intracellular inclusions containing aggregates of α-synuclein are the neuropathological hallmarks of Parkinson disease. Multiple other cell types throughout the central and peripheral autonomic nervous system are also involved, probably from early disease onwards. Although clinical diagnosis relies on the presence of bradykinesia and other cardinal motor features, Parkinson disease is associated with many non-motor symptoms that add to overall disability. The underlying molecular pathogenesis involves multiple pathways and mechanisms: α-synuclein proteostasis, mitochondrial function, oxidative stress, calcium homeostasis, axonal transport and neuroinflammation. Recent research into diagnostic biomarkers has taken advantage of neuroimaging in which several modalities, including PET, single-photon emission CT (SPECT) and novel MRI techniques, have been shown to aid early and differential diagnosis. Treatment of Parkinson disease is anchored on pharmacological substitution of striatal dopamine, in addition to non-dopaminergic approaches to address both motor and non-motor symptoms and deep brain stimulation for those developing intractable L-DOPA-related motor complications. Experimental therapies have tried to restore striatal dopamine by gene-based and cell-based approaches, and most recently, aggregation and cellular transport of α-synuclein have become therapeutic targets. One of the greatest current challenges is to identify markers for prodromal disease stages, which would allow novel disease-modifying therapies to be started earlier.
NASA Astrophysics Data System (ADS)
Murrah, William M., III
The achievement score gaps between advantaged and disadvantaged children at school entry is a major problem in education today. Identifying the skills critical for school readiness is an important step in developing interventions aimed at addressing these score gaps. The purpose of this study is to compare a number of school readiness skills with an eye toward finding out which are the best predictors of later academic achievement in math, reading, and science. The predictors were early reading, math, general knowledge, socioemotional skills, and motor skills. Data were obtained from the Early Childhood Longitudinal Study of 1998 (NCES, 1998) database. While controlling for an extensive set of family characteristics, predictions were made across five years - from the end of kindergarten to the end of fifth grade. Consistent with current findings, reading and math skills predicted later achievement. Interestingly, general knowledge, attention, and fine motor skills also proved to be important predictors of later academic achievement, but socioemotional skills were not. The findings were interpreted from a neurobiological perspective involving the development of self-regulation. These school entry skills are used to predict later achievement in reading, math, and science. I argued that in addition to acquiring early academic knowledge, children need to regulate the use of this knowledge to meet academic goals.
ERIC Educational Resources Information Center
Serdarevic, Fadila; van Batenburg-Eddes, Tamara; Mous, Sabine E.; White, Tonya; Hofman, Albert; Jaddoe, Vincent W. V.; Verhulst, Frank C.; Ghassabian, Akhgar; Tiemeier, Henning
2016-01-01
Within a population-based study of 3356 children, we investigated whether infant neuromotor development was associated with cognition in early childhood. Neuromotor development was examined with an adapted version of Touwen's Neurodevelopmental Examination between 9 and 20 weeks. Parents rated their children's executive functioning at 4 years. At…
Developing Intervention Strategies to Optimise Body Composition in Early Childhood in South Africa
Tomaz, Simone A.; Stone, Matthew; Hinkley, Trina; Jones, Rachel A.; Louw, Johann; Twine, Rhian; Kahn, Kathleen; Norris, Shane A.
2017-01-01
Purpose. The purpose of this research was to collect data to inform intervention strategies to optimise body composition in South African preschool children. Methods. Data were collected in urban and rural settings. Weight status, physical activity, and gross motor skill assessments were conducted with 341 3–6-year-old children, and 55 teachers and parents/caregivers participated in focus groups. Results. Overweight and obesity were a concern in low-income urban settings (14%), but levels of physical activity and gross motor skills were adequate across all settings. Focus group findings from urban and rural settings indicated that teachers would welcome input on leading activities to promote physical activity and gross motor skill development. Teachers and parents/caregivers were also positive about young children being physically active. Recommendations for potential intervention strategies include a teacher-training component, parent/child activity mornings, and a home-based component for parents/caregivers. Conclusion. The findings suggest that an intervention focussed on increasing physical activity and improving gross motor skills per se is largely not required but that contextually relevant physical activity and gross motor skills may still be useful for promoting healthy weight and a vehicle for engaging with teachers and parents/caregivers for promoting other child outcomes, such as cognitive development. PMID:28194417
Practice makes transfer of motor skills imperfect.
Boutin, Arnaud; Badets, Arnaud; Salesse, Robin N; Fries, Udo; Panzer, Stefan; Blandin, Yannick
2012-09-01
We investigated the practice-effects on motor skill transfer and the associated representational memory changes that occur during the within-practice and between-practice phases. In two experiments, participants produced extension-flexion movements with their dominant right arm for a limited or prolonged practice session arranged in either a single- or multi-session format. We tested the ability of participants to transfer the original pattern (extrinsic transformation) or the mirrored one (intrinsic transformation) to the non-dominant left arm, 10 min and 24 h after the practice sessions. Results showed that practice induces rapid motor skill improvements that are non-transferable irrespective of the amount of acquisition trials. Furthermore, the extrinsic component of the skill develops early and remains the dominant coding system during practice. Conversely, we found distinct between-practice memory changes: a limited practice induces an off-line development of the extrinsic component, whereas a prolonged practice session subserves the off-line development of the intrinsic component (experiment 2). We provided further evidence that the long-term representation of the motor skill also depends on the nature of the practice session itself: the parsing of practice into multiple sessions narrows the effector-transfer capacities in comparison to a single session (experiment 1). These findings yield theoretical and practical implications that are discussed in the context of recent motor skill learning models.
The Role of Sensorimotor Difficulties in Autism Spectrum Conditions
Hannant, Penelope; Tavassoli, Teresa; Cassidy, Sarah
2016-01-01
In addition to difficulties in social communication, current diagnostic criteria for autism spectrum conditions (ASC) also incorporate sensorimotor difficulties, repetitive motor movements, and atypical reactivity to sensory input (1). This paper explores whether sensorimotor difficulties are associated with the development and maintenance of symptoms in ASC. First, studies have shown difficulties coordinating sensory input into planning and executing movement effectively in ASC. Second, studies have shown associations between sensory reactivity and motor coordination with core ASC symptoms, suggesting these areas each strongly influence the development of social and communication skills. Third, studies have begun to demonstrate that sensorimotor difficulties in ASC could account for reduced social attention early in development, with a cascading effect on later social, communicative and emotional development. These results suggest that sensorimotor difficulties not only contribute to non-social difficulties such as narrow circumscribed interests, but also to the development of social behaviors such as effectively coordinating eye contact with speech and gesture, interpreting others’ behavior, and responding appropriately. Further research is needed to explore the link between sensory and motor difficulties in ASC and their contribution to the development and maintenance of ASC. PMID:27559329
ERIC Educational Resources Information Center
Whitcraft, Carol
Investigations and theories concerning interrelationships of motoric experiences, perceptual-motor skills, and learning are reviewed, with emphasis on early engramming of form and space concepts. Covered are studies on haptic perception of form, the matching of perceptual data and motor information, Kephart's perceptual-motor theory, and…
Implications of white matter damage in amyotrophic lateral sclerosis
Zhou, Ting; Ahmad, Tina Khorshid; Gozda, Kiana; Truong, Jessica; Kong, Jiming; Namaka, Michael
2017-01-01
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease, which involves the progressive degeneration of motor neurons. ALS has long been considered a disease of the grey matter; however, pathological alterations of the white matter (WM), including axonal loss, axonal demyelination and oligodendrocyte death, have been reported in patients with ALS. The present review examined motor neuron death as the primary cause of ALS and evaluated the associated WM damage that is guided by neuronal-glial interactions. Previous studies have suggested that WM damage may occur prior to the death of motor neurons, and thus may be considered an early indicator for the diagnosis and prognosis of ALS. However, the exact molecular mechanisms underlying early-onset WM damage in ALS have yet to be elucidated. The present review explored the detailed anatomy of WM and identified several pathological mechanisms that may be implicated in WM damage in ALS. In addition, it associated the pathophysiological alterations of WM, which may contribute to motor neuron death in ALS, with similar mechanisms of WM damage that are involved in multiple sclerosis (MS). Furthermore, the early detection of WM damage in ALS, using neuroimaging techniques, may lead to earlier therapeutic intervention, using immunomodulatory treatment strategies similar to those used in relapsing-remitting MS, aimed at delaying WM damage in ALS. Early therapeutic approaches may have the potential to delay motor neuron damage and thus prolong the survival of patients with ALS. The therapeutic interventions that are currently available for ALS are only marginally effective. However, early intervention with immunomodulatory drugs may slow the progression of WM damage in the early stages of ALS, thus delaying motor neuron death and increasing the life expectancy of patients with ALS. PMID:28791401
de Vries, A G M; Huiting, H G; van den Heuvel, E R; L'Abée, C; Corpeleijn, E; Stolk, R P
2015-04-01
Obesity tracks from childhood into adulthood. We evaluated the effect of early stimulation of physical activity on growth, body composition, motor activity and motor development in toddlers. We performed a cluster randomised controlled single-blinded trial in Dutch Well Baby Clinics, with seven nurses and 96 children (40% girls) randomised to the intervention group and six nurses and 65 children (57% girls) to the control group. Intervention nurses advised parents on stimulating motor development and physical activity during regular visits at 2 weeks and two, four, eight and 11 months. Baseline characteristics such as birthweight and mode of feeding were comparable. Outcomes at two-and-a-half years included anthropometry, skinfold thicknesses, bioelectrical impedance analyses, motor development and daily physical activity. We used linear mixed models with nurses as cluster. We evaluated 143 children (89 intervention, 54 control) as 18 dropped out. Skinfolds were significantly lower in intervention children (29.6 ± 4.7 mm) than controls (32.4 ± 6.0 mm), without differences in motor development or daily physical activity. Female interventions showed lower weight, skinfolds, waist and hip circumference. An activity stimulating programme during the child's first year improved indicators of adiposity when they were toddlers, especially in girls. Further research should determine whether these effects persist. ©2014 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.
Abnormal Eye Movements in Creutzfeldt-Jakob Disease
NASA Technical Reports Server (NTRS)
Grant, Michael P.; Cohen, Mark; Petersen, Robert B.; Halmagyi, G. Michael; McDougall, Alan; Tusa, Ronald J.; Leigh, R. John
1993-01-01
We report 3 patients with autopsy-proven Creutzfeldt-Jakob disease who, early in their course, developed abnormal eye movements that included periodic alternating nystagmus and slow vertical saccades. These findings suggested involvement of the cerebellar nodulus and uvula, and the brainstem reticular formation, respectively. Cerebellar ataxia was also an early manifestation and, in one patient, a frontal lobe brain biopsy was normal at a time when ocular motor and cerebellar signs were conspicuous. As the disease progressed, all saccades and quick phases of nystagmus were lost, but periodic alternating gaze deviation persisted. At autopsy, 2 of the 3 patients had pronounced involvement of the cerebellum, especially of the midline structures. Creutzfeldt-Jakob disease should be considered in patients with subacute progressive neurological disease when cognitive changes are overshadowed by ocular motor findings or ataxia.
Kinali, Gulsah; Üçsular, Ferda Dokuztuğ
2018-01-01
[Purpose] This study aimed to establish a scientific and clinical basis for the development of a method for the early diagnosis of cumulative trauma disorders experienced by mothers of disabled children. [Subjects and Methods] Ten volunteer mothers who came to a rehabilitation centre for the treatment of their children were included in this study. Surface electromyography measurements were taken during maximum isometric contraction through the extensor muscle motor point of the wrist of the mothers, and hand grip strength was measured. [Results] In the electromyography measurements, the mean electromyogram signal value obtained from the wrist extensor muscle motor point of the mothers of the healthy children was 0.3 ± 0.08 mV and the crude handgrip strength was 28.5 ± 2.08 kg. In mothers of rehabilitated children, the crude hand grip strength was 7.0 ± 1.1 kg, and the mean electromyogram signal value from the extender muscle motor point was 0.1 ± 0.02 mV. There was a significant difference between the mothers with healthy and disabled children with respect to handgrip strength and electromyography. [Conclusion] The result obtained may be important in the development of health protection programs. Further research may lead to the development of protective rehabilitation programs and the improvement of social rights for mothers with disabled children. PMID:29545677
Links between motor control and classroom behaviors: Moderation by low birth weight
Razza, Rachel A.; Martin, Anne; Brooks-Gunn, Jeanne
2016-01-01
It is unclear from past research on effortful control whether one of its components, motor control, independently contributes to adaptive classroom behaviors. The goal of this study was to identify associations between early motor control, measured by the walk-a-line task at age 3, and teacher-reported learning-related behaviors (approaches to learning and attention problems) and behavior problems in kindergarten classrooms. Models tested whether children who were vulnerable to poorer learning behaviors and more behavior problems due to having been born low birth weight benefited more, less, or the same as other children from better motor control. Data were drawn from the national Fragile Families and Child-Wellbeing Study (n = 751). Regression models indicated that motor control was significantly associated with better approaches to learning and fewer behavior problems. Children who were low birth weight benefitted more than normal birth weight children from better motor control with respect to their approaches to learning, but equally with respect to behavior problems. Additionally, for low but not normal birth weight children, better motor control predicted fewer attention problems. These findings suggest that motor control follows a compensatory model of development for low birth weight children and classroom behaviors. PMID:27594776
Dettmer, Amanda M; Ruggiero, Angela M; Novak, Melinda A; Meyer, Jerrold S; Suomi, Stephen J
2008-05-01
A biological mother's movement appears necessary for optimal development in infant monkeys. However, nursery-reared monkeys are typically provided with inanimate surrogate mothers that move very little. The purpose of this study was to evaluate the effects of a novel, highly mobile surrogate mother on motor development, exploration, and reactions to novelty. Six infant rhesus macaques (Macaca mulatta) were reared on mobile hanging surrogates (MS) and compared to six infants reared on standard stationary rocking surrogates (RS) and to 9-15 infants reared with their biological mothers (MR) for early developmental outcome. We predicted that MS infants would develop more similarly to MR infants than RS infants. In neonatal assessments conducted at Day 30, both MS and MR infants showed more highly developed motor activity than RS infants on measures of grasping (p = .009), coordination (p = .038), spontaneous crawl (p = .009), and balance (p = .003). At 2-3 months of age, both MS and MR infants displayed higher levels of exploration in the home cage than RS infants (p = .016). In a novel situation in which only MS and RS infants were tested, MS infants spent less time near their surrogates in the first five minutes of the test session than RS infants (p = .05), indicating a higher level of comfort. Collectively, these results suggest that when nursery-rearing of infant monkeys is necessary, a mobile hanging surrogate may encourage more normative development of gross motor skills and exploratory behavior and may serve as a useful alternative to stationary or rocking surrogates.
ERIC Educational Resources Information Center
Hoopes, Amy T.
Research into visual, perceptual, and motor coordination suggests that the kind of physical activity and coordination involved in swimming might prevent some cases of dyslexia and improve the academic performance of many learning disabled children. Early neurological development shows a relationship among the creeping period, later communication…
DOT National Transportation Integrated Search
1973-05-01
Considerable effort has been expended in recent years to develop anticipatory crash sensors-effective means of detecting motor vehicle collisions immediately prior to occurrence. If the potential crash is sensed early enough, evasive action may be in...
The Therapeutic Potential of Exercise to Improve Mood, Cognition, and Sleep in Parkinson’s Disease
Reynolds, Gretchen O.; Otto, Michael W.; Ellis, Terry D.; Cronin-Golomb, Alice
2015-01-01
In addition to the classic motor symptoms, Parkinson’s disease (PD) is associated with a variety of non-motor symptoms that significantly reduce quality of life, even in the early stages of the disease. There is an urgent need to develop evidence-based treatments for these symptoms, which include mood disturbances, cognitive dysfunction, and sleep disruption. We focus here on exercise interventions, which have been used to improve mood, cognition, and sleep in healthy older adults and clinical populations, but to date have primarily targeted motor symptoms in PD. We synthesize the existing literature on the benefits of aerobic exercise and strength training on mood, sleep, and cognition as demonstrated in healthy older adults and adults with PD, and suggest that these types of exercise offer a feasible and promising adjunct treatment for mood, cognition, and sleep difficulties in PD. Across stages of the disease, exercise interventions represent a treatment strategy with the unique ability to improve a range of non-motor symptoms while also alleviating the classic motor symptoms of the disease. Future research in PD should include non-motor outcomes in exercise trials with the goal of developing evidence-based exercise interventions as a safe, broad-spectrum treatment approach to improve mood, cognition, and sleep for individuals with PD. PMID:26715466
Bardid, Farid; Huyben, Floris; Lenoir, Matthieu; Seghers, Jan; De Martelaer, Kristine; Goodway, Jacqueline D; Deconinck, Frederik J A
2016-06-01
This study aimed to understand the fundamental motor skills (FMS) of Belgian children using the process-oriented Test of Gross Motor Development, Second Edition (TGMD-2) and to investigate the suitability of using the United States (USA) test norms in Belgium. FMS were assessed using the TGMD-2. Gender, age and motor performance were examined in 1614 Belgian children aged 3-8 years (52.1% boys) and compared with the US reference sample. More proficient FMS performance was found with increasing age, from 3 to 6 years for locomotor skills and 3 to 7 years for object control skills. Gender differences were observed in object control skills, with boys performing better than girls. In general, Belgian children had lower levels of motor competence than the US reference sample, specifically for object control skills. The score distribution of the Belgian sample was skewed, with 37.4% scoring below average and only 6.9% scoring above average. This study supported the usefulness of the TGMD-2 as a process-oriented instrument to measure gross motor development in early childhood in Belgium. However, it also demonstrated that caution is warranted when using the US reference norms. ©2016 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.
The ALS gene FUS regulates synaptic transmission at the Drosophila neuromuscular junction
Machamer, James B.; Collins, Sarah E.; Lloyd, Thomas E.
2014-01-01
Mutations in the RNA binding protein Fused in sarcoma (FUS) are estimated to account for 5–10% of all inherited cases of amyotrophic lateral sclerosis (ALS), but the function of FUS in motor neurons is poorly understood. Here, we investigate the early functional consequences of overexpressing wild-type or ALS-associated mutant FUS proteins in Drosophila motor neurons, and compare them to phenotypes arising from loss of the Drosophila homolog of FUS, Cabeza (Caz). We find that lethality and locomotor phenotypes correlate with levels of FUS transgene expression, indicating that toxicity in developing motor neurons is largely independent of ALS-linked mutations. At the neuromuscular junction (NMJ), overexpression of either wild-type or mutant FUS results in decreased number of presynaptic active zones and altered postsynaptic glutamate receptor subunit composition, coinciding with a reduction in synaptic transmission as a result of both reduced quantal size and quantal content. Interestingly, expression of human FUS downregulates endogenous Caz levels, demonstrating that FUS autoregulation occurs in motor neurons in vivo. However, loss of Caz from motor neurons increases synaptic transmission as a result of increased quantal size, suggesting that the loss of Caz in animals expressing FUS does not contribute to motor deficits. These data demonstrate that FUS/Caz regulates NMJ development and plays an evolutionarily conserved role in modulating the strength of synaptic transmission in motor neurons. PMID:24569165
Rasagiline for the treatment of Parkinson's disease: an update.
Stocchi, Fabrizio; Fossati, Chiara; Torti, Margherita
2015-01-01
Rasagiline is a potent, selective, irreversible Monoamine Oxidase-B (MAO-B) inhibitor, developed to prolong the action of dopamine in the brain. It has been demonstrated that rasagiline can improve motor and some non-motor symptoms (NMS) in both early and advanced Parkinson's disease (PD) patients, and it also exhibits neuroprotective and antiapoptotic properties. The objective of this review, performed by a Medline search on the most recent papers investigating the therapeutic effects of rasagiline, is to describe the role of rasagiline in the schedule of treatment of early and advanced PD patients. It will then focus on its role in treating NMS, fatigue, early morning off and cognitive decline, which heavily affect quality of life for PD patients. Rasagiline is an efficacious, well-tolerated, easy to use drug. The drug has been extensively studied and has proven its efficacy in monotherapy and in combination with any other antiparkinsonian therapy. It proved to be efficacious in reducing 'off' time and in improving early morning 'off' but also some NMS, thus enhancing the therapeutic approach to PD.
Kamson, David O.; Juhász, Csaba; Shin, Joseph; Behen, Michael E.; Guy, William C.; Chugani, Harry T.; Jeong, Jeong-Won
2014-01-01
Background Reorganization of the corticospinal tract (CST) after early damage can limit motor deficit. In this study, we explored patterns of structural CST reorganization in children with Sturge-Weber syndrome. Methods Five children (age 1.5-7 years) with motor deficit due to unilateral Sturge-Weber syndrome were studied prospectively and longitudinally (1-2 years follow-up). CST segments belonging to hand and leg movements were separated, and their volume was measured by diffusion tensor imaging (DTI) tractography using a recently validated method. CST segmental volumes were normalized and compared between the SWS children and age-matched healthy controls. Volume changes during follow-up were also compared to clinical motor symptoms. Results In the SWS children, hand-related (but not leg-related) CST volumes were consistently decreased in the affected cerebral hemisphere at baseline. At follow-up, two distinct patterns of hand CST volume changes emerged: (i) Two children with extensive frontal lobe damage showed a CST volume decrease in the lesional hemisphere and a concomitant increase in the non-lesional (contralateral) hemisphere. These children developed good hand grasp but no fine motor skills. (ii) The three other children, with relative sparing of the frontal lobe, showed an interval increase of the normalized hand CST volume in the affected hemisphere; these children showed no gross motor deficit at follow-up. Conclusions DTI tractography can detect differential abnormalities in the hand CST segment both ipsi- and contralateral to the lesion. Interval increase in the CST hand segment suggests structural reorganization, whose pattern may determine clinical motor outcome and could guide strategies for early motor intervention. PMID:24507695
Kamson, David O; Juhász, Csaba; Shin, Joseph; Behen, Michael E; Guy, William C; Chugani, Harry T; Jeong, Jeong-Won
2014-04-01
Reorganization of the corticospinal tract after early damage can limit motor deficit. In this study, we explored patterns of structural corticospinal tract reorganization in children with Sturge-Weber syndrome. Five children (age 1.5-7 years) with motor deficit resulting from unilateral Sturge-Weber syndrome were studied prospectively and longitudinally (1-2 years follow-up). Corticospinal tract segments belonging to hand and leg movements were separated and their volume was measured by diffusion tensor imaging tractography using a recently validated method. Corticospinal tract segmental volumes were normalized and compared between the Sturge-Weber syndrome children and age-matched healthy controls. Volume changes during follow-up were also compared with clinical motor symptoms. In the Sturge-Weber syndrome children, hand-related (but not leg-related) corticospinal tract volumes were consistently decreased in the affected cerebral hemisphere at baseline. At follow-up, two distinct patterns of hand corticospinal tract volume changes emerged. (1) Two children with extensive frontal lobe damage showed a corticospinal tract volume decrease in the lesional hemisphere and a concomitant increase in the nonlesional (contralateral) hemisphere. These children developed good hand grasp but no fine motor skills. (2) The three other children, with relative sparing of the frontal lobe, showed an interval increase of the normalized hand corticospinal tract volume in the affected hemisphere; these children showed no gross motor deficit at follow-up. Diffusion tensor imaging tractography can detect differential abnormalities in the hand corticospinal tract segment both ipsi- and contralateral to the lesion. Interval increase in the corticospinal tract hand segment suggests structural reorganization, whose pattern may determine clinical motor outcome and could guide strategies for early motor intervention. Copyright © 2014 Elsevier Inc. All rights reserved.
Smith, Susan M; Flentke, George R; Kragtorp, Katherine A; Tessmer, Laura
2011-02-01
Prenatal alcohol exposure is a leading cause of childhood neurodevelopmental disability. The adverse behavioral effects of alcohol exposure during the second and third trimester are well documented; less clear is whether early first trimester-equivalent exposures also alter behavior. We investigated this question using an established chick model of alcohol exposure. In ovo embryos experienced a single, acute ethanol exposure that spanned gastrulation through neuroectoderm induction and early brain patterning (19-22h incubation). At 7 days posthatch, the chicks were evaluated for reflexive motor function (wingflap extension, righting reflex), fearfulness (tonic immobility [TI]), and fear/social reinstatement (open-field behavior). Chicks exposed to a peak ethanol level of 0.23-0.28% were compared against untreated and saline-treated controls. Birds receiving early ethanol exposure had a normal righting reflex and a significantly reduced wingflap extension in response to a sudden descent. The ethanol-treated chicks also displayed heightened fearfulness, reflected in increased frequency of TI, and they required significantly fewer trials for its induction. In an open-field test, ethanol treatment did not affect latency to move, steps taken, vocalizations, defecations, or escape attempts. The current findings demonstrate that early ethanol exposure can increase fearfulness and impair aspects of motor function. Importantly, the observed dysfunctions resulted from an acute ethanol exposure during the period when the major brain components are induced and patterned. The equivalent period in human development is 3-4 weeks postconception. The current findings emphasize that ethanol exposure during the early first trimester equivalent can produce neurodevelopmental disability in the offspring. Copyright © 2011 Elsevier Inc. All rights reserved.
Zuccarini, Mariagrazia; Guarini, Annalisa; Savini, Silvia; Iverson, Jana M; Aureli, Tiziana; Alessandroni, Rosina; Faldella, Giacomo; Sansavini, Alessandra
2017-09-01
Although early object exploration is considered a key ability for subsequent achievements, very few studies have analyzed its development in extremely low gestational age infants (ELGA- GA <28 weeks), whose early motor skills are delayed. Moreover, no studies have examined its developmental relationship with cognitive and language skills. The present study examined developmental change in Motor Object Exploration (MOE) and different types of MOE (Holding, Oral, Manual and Manual Rhythmic Exploration) in 20 ELGA and 20 full term (FT) infants observed during mother-infant play interaction at 6 and 9 months. It also explored whether specific types of MOE were longitudinally related to 24-month language and cognitive abilities (GMDS-R scores). ELGA infants increased MOE duration from 6 to 9 months, eliminating the initial difference with FT infants. In addition, ELGA infants showed a different pattern of Oral Exploration, that did not increase at 6 months and decrease at 9 months. Oral and Manual Exploration durations at 6 months were longitudinally related to 24-month GMDS-R language and cognitive performance scores respectively. We discuss the relevance of assessing early exploratory abilities in ELGA infants in order to implement customized intervention programs for supporting the development of these skills. Copyright © 2017 Elsevier Ltd. All rights reserved.
Early effect of intra-arterial treatment in ischemic stroke on aphasia recovery in MR CLEAN.
Crijnen, Yvette S; Nouwens, Femke; de Lau, Lonneke M L; Visch-Brink, Evy G; van de Sandt-Koenderman, Mieke W M E; Berkhemer, Olvert A; Fransen, Puck S S; Beumer, Debbie; van den Berg, Lucie A; Lingsma, Hester F; Roos, Yvo B W E M; van der Lugt, Aad; van Oostenbrugge, Robert J; van Zwam, Wim H; Majoie, Charles B L M; Dippel, Diederik W J
2016-05-31
To investigate the effect of intra-arterial treatment (IAT) on early recovery from aphasia in acute ischemic stroke. We hypothesized that the early effect of IAT on aphasia is smaller than the effect on motor deficits. We included patients with aphasia from the Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute Ischemic Stroke in the Netherlands (MR CLEAN), in which 500 patients with a proximal anterior circulation stroke were randomized to usual care plus IAT (<6 hours after stroke, mainly stent retrievers) or usual care alone. We estimated the effect of IAT on the shift on the NIH Stroke Scale (NIHSS) item language and the NIHSS item motor arm at 24 hours and 1 week after stroke with multivariable ordinal logistic regression as a common odds ratio, adjusted for prognostic variables (acOR). Differences between the effect of IAT on aphasia and on motor deficits were tested in a multilevel model with a multiplicative interaction term. Of the 288 patients with aphasia, 126 were assigned to IAT and 162 to usual care alone. The acOR for improvement of language score at 24 hours was 1.65 (95% confidence interval [CI] 1.05-2.60), and at 1 week 1.86 (95% CI 1.18-2.94). The acOR for improvement of motor deficit at 24 hours was 2.44 (95% CI 1.54-3.88), and at 1 week 2.32 (95% CI 1.43-3.77). The effect of IAT on language deficits was significantly different from the effect on motor deficits at 24 hours and 1 week (p = 0.005 and p = 0.011). IAT results in better early recovery from aphasia than usual care alone. The early effect of IAT on aphasia is smaller than the effect on motor deficits. This study provides Class II evidence that for patients with acute ischemic stroke IAT increases early recovery from aphasia and that the early effect on aphasia, as measured by the NIHSS, is smaller than the effect on motor deficits. © 2016 American Academy of Neurology.
Activation of the cerebellar cortex and the dentate nucleus in a prism adaptation fMRI study.
Küper, Michael; Wünnemann, Meret J S; Thürling, Markus; Stefanescu, Roxana M; Maderwald, Stefan; Elles, Hans G; Göricke, Sophia; Ladd, Mark E; Timmann, Dagmar
2014-04-01
During prism adaptation two types of learning processes can be distinguished. First, fast strategic motor control responses are predominant in the early course of prism adaptation to achieve rapid error correction within few trials. Second, slower spatial realignment occurs among the misaligned visual and proprioceptive sensorimotor coordinate system. The aim of the present ultra-highfield (7T) functional magnetic resonance imaging (fMRI) study was to explore cerebellar cortical and dentate nucleus activation during the course of prism adaptation in relation to a similar visuomotor task without prism exposure. Nineteen young healthy participants were included into the study. Recently developed normalization procedures were applied for the cerebellar cortex and the dentate nucleus. By means of subtraction analysis (early prism adaptation > visuomotor, early prism adaptation > late prism adaptation) we identified ipsilateral activation associated with strategic motor control responses within the posterior cerebellar cortex (lobules VIII and IX) and the ventro-caudal dentate nucleus. During the late phase of adaptation we observed pronounced activation of posterior parts of lobule VI, although subtraction analyses (late prism adaptation > visuomotor) remained negative. These results are in good accordance with the concept of a representation of non-motor functions, here strategic control, within the ventro-caudal dentate nucleus. Copyright © 2013 Wiley Periodicals, Inc.
Scintigraphic Evaluation of Mild to Moderate Dysphagia in Motor Neuron Disease.
Szacka, Katarzyna; Potulska-Chromik, Anna; Fronczewska-Wieniawska, Katarzyna; Spychała, Andrzej; Kròlicki, Leszek; Kuźma-Kozakiewicz, Magdalena
2016-04-01
Approximately 30% of patients with motor neuron disease (MND) present swallowing difficulties even in early disease stages. The aim of this study was to examine the usefulness of esophageal scintigraphy in detecting early stage of dysphagia in MND. Esophageal scintigraphy (ES) including mean transit time (MTT) estimation was performed in 121 MND patients presenting various levels of upper (UMN) and lower motor neuron (LMN) degeneration. ES detected dysphagia in more than 80% of MND patients who had referenced swallowing difficulties. In MND patients with ES-confirmed dysphagia, the MTT was increased approximately 2-fold without significant differences between the clinical phenotypes. The MTT was significantly longer in patients with bulbar-pseudobulbar syndrome in comparison to patients with isolated pseudobulbar syndrome, which indicates a higher involvement of the LMN deficiency in developing dysphagia in MND. The esophageal passage in MND was not dependent on age, sex, disease duration, or diagnosis delay. Interestingly, ES was also able to detect dysphagia in almost 70% of MND individuals who had no swallowing complaints (subclinical dysphagia). A more benign disease course and a higher percentage of male patients characterized this group. Esophageal scintigraphy is a helpful screening tool in determining early swallowing impairment in a high percent of patients with MND of various clinical phenotypes.
Tremblay, Sophie; Pai, Alex; Richter, Lindsay; Vafaei, Rod; Potluri, Praneetha; Ellegood, Jacob; Lerch, Jason P; Goldowitz, Daniel
2017-11-01
Despite the increased recognition of cerebellar injury in survivors of preterm birth, the neurodevelopmental consequences of isolated cerebellar injury have been largely unexplored and our current understanding of the functional deficits requires further attention in order to translate knowledge to best practices. Preterm infants are exposed to multiple stressors during their postnatal development including perinatal cerebellar haemorrhage (CBH) and postnatal infection, two major risk factors for neurodevelopmental impairments. We developed a translational mouse model of CBH and/or inflammation to measure the short- and long-term outcomes in cerebellar structure and function. Mice exposed to early combined insults of CBH and early inflammatory state (EIS) have a delay in grasping acquisition, neonatal motor deficits and deficient long-term memory. CBH combined with late inflammatory state (LIS) does not induce neonatal motor problems but leads to poor fine motor function and long-term memory deficits at adulthood. Early combined insults result in poor cerebellar growth from postnatal day 15 until adulthood shown by MRI, which are reflected in diminished volumes of cerebellar structures. There are also decreases in volumes of gray matter and hippocampus. Cerebellar microgliosis appears 24h after the combined insults and persists until postnatal day 15 in the cerebellar molecular layer and cerebellar nuclei in association with a disrupted patterning of myelin deposition, a delay of oligodendrocyte maturation and reduced white matter cerebellar volume. Together, these findings reveal poor outcomes in developing brains exposed to combined cerebellar perinatal insults in association with cerebellar hypoplasia, persistence of microgliosis and alterations of cerebellar white matter maturation and growth. Copyright © 2017 Elsevier Inc. All rights reserved.
Subcortical grey matter changes in untreated, early stage Parkinson's disease without dementia.
Lee, Hye Mi; Kwon, Kyum-Yil; Kim, Min-Jik; Jang, Ji-Wan; Suh, Sang-Il; Koh, Seong-Beom; Kim, Ji Hyun
2014-06-01
Previous MRI studies have investigated cortical or subcortical grey matter changes in patients with Parkinson's disease (PD), yielding inconsistent findings between the studies. We therefore sought to determine whether focal cortical or subcortical grey matter changes may be present from the early disease stage. We recruited 49 untreated, early stage PD patients without dementia and 53 control subjects. Voxel-based morphometry was used to evaluate cortical grey matter changes, and automated volumetry and shape analysis were used to assess volume changes and shape deformation of the subcortical grey matter structures, respectively. Voxel-based morphometry showed neither reductions nor increases in grey matter volume in patients compared to controls. Compared to controls, PD patients had significant reductions in adjusted volumes of putamen, nucleus accumbens, and hippocampus (corrected p < 0.05). Vertex-based shape analysis showed regionally contracted area on the posterolateral and ventromedial putamen bilaterally in PD patients (corrected p < 0.05). No correlations were found between cortical and subcortical grey matter and clinical variables representing disease duration and severity. Our results suggest that untreated, early stage PD without dementia is associated with volume reduction and shape deformation of subcortical grey matter, but not with cortical grey matter reduction. Our findings of structural changes in the posterolateral putamen and ventromedial putamen/nucleus accumbens could provide neuroanatomical basis for the involvement of motor and limbic striatum, further implicating motor and non-motor symptoms in PD, respectively. Early hippocampal involvement might be related to the risk for developing dementia in PD patients. Copyright © 2014 Elsevier Ltd. All rights reserved.
Rothkirch, Inken; Wolff, Stephan; Margraf, Nils G.; Pedersen, Anya; Witt, Karsten
2018-01-01
Previous studies demonstrated the influence of the post-learning period on procedural motor memory consolidation. In an early period after the acquisition, motor skills are vulnerable to modifications during wakefulness. Indeed, specific interventions such as world-list learning within this early phase of motor memory consolidation seem to enhance motor performance as an indicator for successful consolidation. This finding highlights the idea that manipulations of procedural and declarative memory systems during the early phase of memory consolidation over wakefulness may influence off-line consolidation. Using functional magnetic resonance imaging (fMRI) during initial motor sequence learning and motor sequence recall, we indirectly assess the influence of a secondary task taken place in the early phase of memory consolidation. All participants were scanned using fMRI during the learning phase of a serial reaction time task (SRTT) at 8 a.m. Afterwards, they were randomly assigned to one of five conditions. One group performed a declarative verbal, one a declarative nonverbal learning task. Two groups worked on attention tasks. A control group passed a resting condition. Participants stayed awake the whole day and performed the SRTT in the MRI scanner 12 h later at 8 p.m. At the behavioral level, the analysis of the reaction times failed to show a significant group difference. The primary analysis assessing fMRI data based on the contrast (sequence – random) between learning and retrieval also did not show any significant group differences. Therefore, our main analysis do not support the hypothesis that a secondary task influences the retrieval of the SRTT. In a more liberal fMRI analysis, we compared only the sequence blocks of the SRTT from learning to recall. BOLD signal decreased in the ipsilateral cerebellum and the supplementary motor area solely in the verbal learning group. Although our primary analysis failed to show significant changes between our groups, results of the secondary analysis could be an indication for a beneficial effect of the verbal declarative task in the early post-learning phase. A nonverbal learning task did not affect the activation within the motor network. Further studies are needed to replicate this finding and to assess the usefulness of this manipulation. PMID:29755315
Rothkirch, Inken; Wolff, Stephan; Margraf, Nils G; Pedersen, Anya; Witt, Karsten
2018-01-01
Previous studies demonstrated the influence of the post-learning period on procedural motor memory consolidation. In an early period after the acquisition, motor skills are vulnerable to modifications during wakefulness. Indeed, specific interventions such as world-list learning within this early phase of motor memory consolidation seem to enhance motor performance as an indicator for successful consolidation. This finding highlights the idea that manipulations of procedural and declarative memory systems during the early phase of memory consolidation over wakefulness may influence off-line consolidation. Using functional magnetic resonance imaging (fMRI) during initial motor sequence learning and motor sequence recall, we indirectly assess the influence of a secondary task taken place in the early phase of memory consolidation. All participants were scanned using fMRI during the learning phase of a serial reaction time task (SRTT) at 8 a.m. Afterwards, they were randomly assigned to one of five conditions. One group performed a declarative verbal, one a declarative nonverbal learning task. Two groups worked on attention tasks. A control group passed a resting condition. Participants stayed awake the whole day and performed the SRTT in the MRI scanner 12 h later at 8 p.m. At the behavioral level, the analysis of the reaction times failed to show a significant group difference. The primary analysis assessing fMRI data based on the contrast (sequence - random) between learning and retrieval also did not show any significant group differences. Therefore, our main analysis do not support the hypothesis that a secondary task influences the retrieval of the SRTT. In a more liberal fMRI analysis, we compared only the sequence blocks of the SRTT from learning to recall. BOLD signal decreased in the ipsilateral cerebellum and the supplementary motor area solely in the verbal learning group. Although our primary analysis failed to show significant changes between our groups, results of the secondary analysis could be an indication for a beneficial effect of the verbal declarative task in the early post-learning phase. A nonverbal learning task did not affect the activation within the motor network. Further studies are needed to replicate this finding and to assess the usefulness of this manipulation.
The motor repertoire in 3- to 5-month old infants with Down syndrome.
Herrero, Dafne; Einspieler, Christa; Panvequio Aizawa, Carolina Y; Mutlu, Akmer; Yang, Hong; Nogolová, Alice; Pansy, Jasmin; Nielsen-Saines, Karin; Marschik, Peter B
2017-08-01
Even though Down syndrome is the most common chromosomal cause of intellectual disability, studies on early development are scarce. To describe movements and postures in 3- to 5-month-old infants with Down syndrome and assess the relation between pre- and perinatal risk factors and the eventual motor performance. Exploratory study; 47 infants with Down syndrome (26 males, 27 infants born preterm, 22 infants with congenital heart disease) were videoed at 10-19 weeks post-term (median=14 weeks). We assessed their Motor Optimality Score (MOS) based on postures and movements (including fidgety movements) and compared it to that of 47 infants later diagnosed with cerebral palsy and 47 infants with a normal neurological outcome, matched for gestational and recording ages. The MOS (median=13, range 10-28) was significantly lower than in infants with a normal neurological outcome (median=26), but higher than in infants later diagnosed with cerebral palsy (median=6). Fourteen infants with Down syndrome showed normal fidgety movements, 13 no fidgety movements, and 20 exaggerated, too fast or too slow fidgety movements. A lack of movements to the midline and several atypical postures were observed. Neither preterm birth nor congenital heart disease was related to aberrant fidgety movements or reduced MOS. The heterogeneity in fidgety movements and MOS add to an understanding of the large variability of the early phenotype of Down syndrome. Studies on the predictive values of the early spontaneous motor repertoire, especially for the cognitive outcome, are warranted. The significance of this exploratory study lies in its minute description of the motor repertoire of infants with Down syndrome aged 3-5 months. Thirty percent of infants with Down syndrome showed age-specific normal fidgety movements. The rate of abnormal fidgety movements (large amplitude, high/slow speed) or a lack of fidgety movements was exceedingly high. The motor optimality score of infants with Down syndrome was lower than in infants with normal neurological outcome but higher than in infants who were later diagnosed with cerebral palsy. Neither preterm birth nor congenital heart disease were related to the motor performance at 3-5 months. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
ERIC Educational Resources Information Center
Westmacott, Robyn; Askalan, Rand; MacGregor, Daune; Anderson, Peter; deVeber, Gabrielle
2010-01-01
Aim: Plasticity in the developing brain is a controversial issue. Although language and motor function often recover remarkably well following early brain injury, recent evidence suggests that damage to the developing brain results in significant long-term neuropsychological impairment. Our aim was to investigate the relationship among age at…
Watkins, Stephanie; Jonsson-Funk, Michele; Brookhart, M Alan; Rosenberg, Steven A; O'Shea, T Michael; Daniels, Julie
2014-05-01
Children born very low birth weight (VLBW) are at an increased risk of delayed development of motor skills. Physical and occupational therapy services may reduce this risk. Among VLBW children, we evaluated whether receipt of physical or occupational therapy services between 9 months and 2 years of age is associated with improved preschool age motor ability. Using data from the Early Childhood Longitudinal Study Birth Cohort we estimated the association between receipt of therapy and the following preschool motor milestones: skipping eight consecutive steps, hopping five times, standing on one leg for 10 seconds, walking backwards six steps on a line, and jumping distance. We used propensity score methods to adjust for differences in baseline characteristics between children who did and did not receive physical or occupational therapy, since children receiving therapy may be at higher risk of impairment. We applied propensity score weights and modeled the estimated effect of therapy on the distance that the child jumped using linear regression. We modeled all other end points using logistic regression. Treated VLBW children were 1.70 times as likely to skip eight steps (RR 1.70, 95 % CI 0.84, 3.44) compared to the untreated group and 30 % more likely to walk six steps backwards (RR 1.30, 95 % CI 0.63, 2.71), although these differences were not statistically significant. We found little effect of therapy on other endpoints. Providing therapy to VLBW children during early childhood may improve select preschool motor skills involving complex motor planning.
Matsumoto, Satoshi; Matsumoto, Mishiya; Yamashita, Atsuo; Ohtake, Kazunobu; Ishida, Kazuyoshi; Morimoto, Yasuhiro; Sakabe, Takefumi
2003-06-01
In the present study, we sought to elucidate the temporal profile of the reaction of microglia, astrocytes, and macrophages in the progression of delayed onset motor dysfunction after spinal cord ischemia (15 min) in rabbits. At 2, 4, 8, 12, 24, and 48 h after reperfusion (9 animals in each), hind limb motor function was assessed, and the lumbar spinal cord was histologically examined. Delayed motor dysfunction was observed in most animals at 48 h after ischemia, which could be predicted by a poor recovery of segmental spinal cord evoked potentials at 15 min of reperfusion. In the gray matter of the lumbar spinal cord, both microglia and astrocytes were activated early (2 h) after reperfusion. Microglia were diffusely activated and engulfed motor neurons irrespective of the recovery of segmental spinal cord evoked potentials. In contrast, early astrocytic activation was confined to the area where neurons started to show degeneration. Macrophages were first detected at 8 h after reperfusion and mainly surrounded the infarction area later. Although the precise roles of the activation of microglia, astrocytes, and macrophages are to be further determined, the results indicate that understanding functional changes of astrocytes may be important in the mechanism of delayed onset motor dysfunction including paraplegia. Microglia and macrophages play a role in removing tissue debris after transient spinal cord ischemia. Disturbance of astrocytic defense mechanism, breakdown of the blood-spinal cord barrier, or both seemed to be involved in the development of delayed motor dysfunction.
Eisner-Janowicz, Ines; Barbay, Scott; Hoover, Erica; Stowe, Ann M; Frost, Shawn B; Plautz, Erik J; Nudo, Randolph J
2008-09-01
Neuroimaging studies in stroke survivors have suggested that adaptive plasticity occurs following stroke. However, the complex temporal dynamics of neural reorganization after injury make the interpretation of functional imaging studies equivocal. In the present study in adult squirrel monkeys, intracortical microstimulation (ICMS) techniques were used to monitor changes in representational maps of the distal forelimb in the supplementary motor area (SMA) after a unilateral ischemic infarct of primary motor (M1) and premotor distal forelimb representations (DFLs). In each animal, ICMS maps were derived at early (3 wk) and late (13 wk) postinfarct stages. Lesions resulted in severe deficits in motor abilities on a reach and retrieval task. Limited behavioral recovery occurred and plateaued at 3 wk postinfarct. At both early and late postinfarct stages, distal forelimb movements could still be evoked by ICMS in SMA at low current levels. However, the size of the SMA DFL changed after the infarct. In particular, wrist-forearm representations enlarged significantly between early and late stages, attaining a size substantially larger than the preinfarct area. At the late postinfarct stage, the expansion in the SMA DFL area was directly proportional to the absolute size of the lesion. The motor performance scores were positively correlated to the absolute size of the SMA DFL at the late postinfarct stage. Together, these data suggest that, at least in squirrel monkeys, descending output from M1 and dorsal and ventral premotor cortices is not necessary for SMA representations to be maintained and that SMA motor output maps undergo delayed increases in representational area after damage to other motor areas. Finally, the role of SMA in recovery of function after such lesions remains unclear because behavioral recovery appears to precede neurophysiological map changes.
Logan, S W; Robinson, L E; Wilson, A E; Lucas, W A
2012-05-01
The development of fundamental movement skills (FMS) is associated with positive health-related outcomes. Children do not develop FMS naturally through maturational processes. These skills need to be learned, practised and reinforced. The objective was to determine the effectiveness of motor skill interventions in children. The following databases were searched for relevant articles: Academic Search Premier, PsycArticles, PsycInfo, SportDiscus and ERIC. No date range was specified and each search was conducted to include all possible years of publication specific to each database. Key terms for the search included motor, skill, movement, intervention, programme or children. Searches were conducted using single and combined terms. Pertinent journals and article reference lists were also manually searched. (1) implementation of any type of motor skill intervention; (2) pre- and post-qualitative assessment of FMS; and (3) availability of means and standard deviations of motor performance. A significant positive effect of motor skill interventions on the improvement of FMS in children was found (d= 0.39, P < 0.001). Results indicate that object control (d= 0.41, P < 0.001) and locomotor skills (d= 0.45, P < 0.001) improved similarly from pre- to post-intervention. The overall effect size for control groups (i.e. free play) was not significant (d= 0.06, P= 0.33). A Pearson correlation indicated a non-significant (P= 0.296), negative correlation (r=-0.18) between effect size of pre- to post-improvement of FMS and the duration of the intervention (in minutes). Motor skill interventions are effective in improving FMS in children. Early childhood education centres should implement 'planned' movement programmes as a strategy to promote motor skill development in children. © 2011 Blackwell Publishing Ltd.
Macgregor, Lewis J; Hunter, Angus M
2018-01-01
Exercise-induced muscle damage (EIMD) is associated with impaired muscle function and reduced neuromuscular recruitment. However, motor unit firing behaviour throughout the recovery period is unclear. EIMD impairment of maximal voluntary force (MVC) will, in part, be caused by reduced high-threshold motor unit firing, which will subsequently increase to recover MVC. Fourteen healthy active males completed a bout of eccentric exercise on the knee extensors, with measurements of MVC, rate of torque development and surface electromyography performed pre-exercise and 2, 3, 7 and 14 days post-exercise, on both damaged and control limb. EIMD was associated with decreased MVC (235.2 ± 49.3 Nm vs. 161.3 ± 52.5 Nm; p <0.001) and rate of torque development (495.7 ± 136.9 Nm.s-1 vs. 163.4 ± 163.7 Nm.s-1; p <0.001) 48h post-exercise. Mean motor unit firing rate was reduced (16.4 ± 2.2 Hz vs. 12.6 ± 1.7 Hz; p <0.01) in high-threshold motor units only, 48h post-exercise, and common drive was elevated (0.36 ± 0.027 vs. 0.56 ± 0.032; p< 0.001) 48h post-exercise. The firing rate of high-threshold motor units was reduced in parallel with impaired muscle function, whilst early recruited motor units remained unaltered. Common drive of motor units increased in offset to the firing rate impairment. These alterations correlated with the recovery of force decrement, but not of pain elevation. This study provides fresh insight into the central mechanisms associated with EIMD recovery, relative to muscle function. These findings may in turn lead to development of novel management and preventative procedures.
Macgregor, Lewis J.
2018-01-01
Exercise-induced muscle damage (EIMD) is associated with impaired muscle function and reduced neuromuscular recruitment. However, motor unit firing behaviour throughout the recovery period is unclear. EIMD impairment of maximal voluntary force (MVC) will, in part, be caused by reduced high-threshold motor unit firing, which will subsequently increase to recover MVC. Fourteen healthy active males completed a bout of eccentric exercise on the knee extensors, with measurements of MVC, rate of torque development and surface electromyography performed pre-exercise and 2, 3, 7 and 14 days post-exercise, on both damaged and control limb. EIMD was associated with decreased MVC (235.2 ± 49.3 Nm vs. 161.3 ± 52.5 Nm; p <0.001) and rate of torque development (495.7 ± 136.9 Nm.s-1 vs. 163.4 ± 163.7 Nm.s-1; p <0.001) 48h post-exercise. Mean motor unit firing rate was reduced (16.4 ± 2.2 Hz vs. 12.6 ± 1.7 Hz; p <0.01) in high-threshold motor units only, 48h post-exercise, and common drive was elevated (0.36 ± 0.027 vs. 0.56 ± 0.032; p< 0.001) 48h post-exercise. The firing rate of high-threshold motor units was reduced in parallel with impaired muscle function, whilst early recruited motor units remained unaltered. Common drive of motor units increased in offset to the firing rate impairment. These alterations correlated with the recovery of force decrement, but not of pain elevation. This study provides fresh insight into the central mechanisms associated with EIMD recovery, relative to muscle function. These findings may in turn lead to development of novel management and preventative procedures. PMID:29630622
Collaer, Marcia L; Brook, Charles G D; Conway, Gerard S; Hindmarsh, Peter C; Hines, Melissa
2009-02-01
This study investigated early androgen influence on the development of human motor and visuomotor characteristics. Participants, ages 12-45 years, were individuals with congenital adrenal hyperplasia (CAH), a disorder causing increased adrenal androgen production before birth (40 females, 29 males) and their unaffected relatives (29 females, 30 males). We investigated grip strength and visuomotor targeting tasks on which males generally outperform females, and fine motor pegboard tasks on which females generally outperform males. Physical characteristics (height and weight) were measured to explore whether body parameters could explain differences in motor skills. Females with CAH were stronger and showed better targeting than unaffected females and showed reduced fine visuomotor skill on one pegboard measure, with no difference on the other. Males with CAH were weaker than unaffected males in grip strength but did not differ on the targeting or pegboard measures. Correction for body size could not explain the findings for females, but suggests that the reduced strength of males with CAH may relate to their smaller stature. Further, the targeting advantage in females with CAH persisted following adjustment for their greater strength. Results in females support the hypothesis that androgen may masculinize, or promote, certain motor characteristics at which males excel, and contribute to defeminization of certain fine motor characteristics at which females excel. Thus, these data suggest that organizational effects of androgens on behavior during prenatal life may extend to motor characteristics and may contribute to general sex differences in motor-related behaviors; however, alternative explanations based on activational influences of androgen or altered experiential factors cannot be excluded without further study.
Wang, G; Scott, S A
2000-07-15
During embryonic development motor axons in the chick hindlimb grow out slightly before sensory axons and wait in the plexus region at the base of the limb for approximately 24 hr before invading the limb itself (Tosney and Landmesser, 1985a). We have investigated the role of this waiting period by asking, Is the arrest of growth cones in the plexus region a general property of both sensory and motor axons? Why do axons wait? Does eliminating the waiting period affect the further development of motor and sensory neurons? Here we show that sensory axons, like motor axons, pause in the plexus region and that neither sensory nor motor axons require cues from the other population to wait in or exit from the plexus region. By transplanting older or younger donor limbs to host embryos, we show that host axons innervate donor limbs on a schedule consistent with the age of the grafted limbs. Thus, axons wait in the plexus region for maturational changes to occur in the limb rather than in the neurons themselves. Both sensory and motor axons innervate their appropriate peripheral targets when the waiting period is eliminated by grafting older donor limbs. Therefore, axons do not require a prolonged period in the plexus region to sort out and project appropriately. Eliminating the waiting period does, however, accelerate the onset of naturally occurring cell death, but it does not enhance the development of central projections or the biochemical maturation of sensory neurons.
Valizadeh, Leila; Sanaeefar, Mahnaz; Hosseini, Mohammad Bager; Asgari Jafarabadi, Mohammad; Shamili, Aryan
2017-01-01
Introduction: Although the survival rate of infants born preterm has increased, the prevalence of developmental problems and motor disorders among this population of infants remains the same. This study investigated the effect of physical activity programs in and out of water on motor performance and neuromuscular development of infants born preterm and had induced immobility by mechanical ventilation. Methods: This study was carried out in Al-Zahra hospital, Tabriz. 76 premature infants were randomly assigned into four groups. One group received daily passive range of motion to all extremities based on the Moyer-Mileur protocol. Hydrotherapy group received exercises for shoulders and pelvic area in water every other day. A combination group received physical activity programs in and out of water on alternating days. Infants in a containment group were held in a fetal position. Duration of study was two weeks ‘from 32 through 33 weeks post menstrual age (PMA). Motor outcomes were measured by the Test of Infant Motor Performance. Neuromuscular developmental was assessed by New Ballard scale and leg recoil and Ankle dorsiflexion items from Dubowitz scale. Data were analyzed using SPSS version 13. Results: TIMP and neuromuscular scores improved in all groups. Motor performance did not differ between groups at 34 weeks PMA. Postural tone of leg recoil was significantly higher in physical activity groups post intervention. Conclusion: Physical activities and containment didn’t have different effects on motor performance in infants born preterm. Leg recoil of neuromuscular development items was affected by physical activity programs. PMID:28299299
Cappagli, Giulia; Finocchietti, Sara; Baud-Bovy, Gabriel; Cocchi, Elena; Gori, Monica
2017-01-01
Since it has been shown that spatial development can be delayed in blind children, focused sensorimotor trainings that associate auditory and motor information might be used to prevent the risk of spatial-related developmental delays or impairments from an early age. With this aim, we proposed a new technological device based on the implicit link between action and perception: ABBI (Audio Bracelet for Blind Interaction) is an audio bracelet that produces a sound when a movement occurs by allowing the substitution of the visuo-motor association with a new audio-motor association. In this study, we assessed the effects of an extensive but entertaining sensorimotor training with ABBI on the development of spatial hearing in a group of seven 3–5 years old children with congenital blindness (n = 2; light perception or no perception of light) or low vision (n = 5; visual acuity range 1.1–1.7 LogMAR). The training required the participants to play several spatial games individually and/or together with the psychomotor therapist 1 h per week for 3 months: the spatial games consisted of exercises meant to train their ability to associate visual and motor-related signals from their body, in order to foster the development of multisensory processes. We measured spatial performance by asking participants to indicate the position of one single fixed (static condition) or moving (dynamic condition) sound source on a vertical sensorized surface. We found that spatial performance of congenitally blind but not low vision children is improved after the training, indicating that early interventions with the use of science-driven devices based on multisensory capabilities can provide consistent advancements in therapeutic interventions, improving the quality of life of children with visual disability. PMID:29097987
Cortical dynamics and subcortical signatures of motor-language coupling in Parkinson's disease.
Melloni, Margherita; Sedeño, Lucas; Hesse, Eugenia; García-Cordero, Indira; Mikulan, Ezequiel; Plastino, Angelo; Marcotti, Aida; López, José David; Bustamante, Catalina; Lopera, Francisco; Pineda, David; García, Adolfo M; Manes, Facundo; Trujillo, Natalia; Ibáñez, Agustín
2015-07-08
Impairments of action language have been documented in early stage Parkinson's disease (EPD). The action-sentence compatibility effect (ACE) paradigm has revealed that EPD involves deficits to integrate action-verb processing and ongoing motor actions. Recent studies suggest that an abolished ACE in EPD reflects a cortico-subcortical disruption, and recent neurocognitive models highlight the role of the basal ganglia (BG) in motor-language coupling. Building on such breakthroughs, we report the first exploration of convergent cortical and subcortical signatures of ACE in EPD patients and matched controls. Specifically, we combined cortical recordings of the motor potential, functional connectivity measures, and structural analysis of the BG through voxel-based morphometry. Relative to controls, EPD patients exhibited an impaired ACE, a reduced motor potential, and aberrant frontotemporal connectivity. Furthermore, motor potential abnormalities during the ACE task were predicted by overall BG volume and atrophy. These results corroborate that motor-language coupling is mainly subserved by a cortico-subcortical network including the BG as a key hub. They also evince that action-verb processing may constitute a neurocognitive marker of EPD. Our findings suggest that research on the relationship between language and motor domains is crucial to develop models of motor cognition as well as diagnostic and intervention strategies.
Physical Therapy and Infants with Down's Syndrome: The Effects of Early Intervention.
ERIC Educational Resources Information Center
Harris, Susan R.
1981-01-01
The neuromotor development of Down's syndrome (DS) infants is reviewed, current physical therapy approaches are cited, a neurodevelopmental treatment (NDT) approach is described, and a study on the effects of NDT on motor performance in DS infants is reported. (SB)
Changes of motor-cortical oscillations associated with motor learning.
Pollok, B; Latz, D; Krause, V; Butz, M; Schnitzler, A
2014-09-05
Motor learning results from practice but also between practice sessions. After skill acquisition early consolidation results in less interference with other motor tasks and even improved performance of the newly learned skill. A specific significance of the primary motor cortex (M1) for early consolidation has been suggested. Since synchronized oscillatory activity is assumed to facilitate neuronal plasticity, we here investigate alterations of motor-cortical oscillations by means of event-related desynchronization (ERD) at alpha (8-12 Hz) and beta (13-30 Hz) frequencies in healthy humans. Neuromagnetic activity was recorded using a 306-channel whole-head magnetoencephalography (MEG) system. ERD was investigated in 15 subjects during training on a serial reaction time task and 10 min after initial training. The data were compared with performance during a randomly varying sequence serving as control condition. The data reveal a stepwise decline of alpha-band ERD associated with faster reaction times replicating previous findings. The amount of beta-band suppression was significantly correlated with reduction of reaction times. While changes of alpha power have been related to lower cognitive control after initial skill acquisition, the present data suggest that the amount of beta suppression represents a neurophysiological marker of early cortical reorganization associated with motor learning. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Childhood Stuttering: Where Are We and Where Are We Going?
Smith, Anne; Weber, Christine
2016-11-01
Remarkable progress has been made over the past two decades in expanding our understanding of the behavioral, peripheral physiologic, and central neurophysiologic bases of stuttering in early childhood. It is clear that stuttering is a neurodevelopmental disorder characterized by atypical development of speech motor planning and execution networks. The speech motor system must interact in complex ways with neural systems mediating language and other cognitive and emotional processes. During the time when stuttering typically appears and follows its path to either recovery or persistence, all of these neurobehavioral systems are undergoing rapid and dramatic developmental changes. We summarize our current understanding of the various developmental trajectories relevant for the understanding of stuttering in early childhood. We also present theoretical and experimental approaches that we believe will be optimal for even more rapid progress toward developing better and more targeted treatment for stuttering in the preschool children who are more likely to persist in stuttering. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
The effect of fine and grapho-motor skill demands on preschoolers' decoding skill.
Suggate, Sebastian; Pufke, Eva; Stoeger, Heidrun
2016-01-01
Previous correlational research has found indications that fine motor skills (FMS) link to early reading development, but the work has not demonstrated causality. We manipulated 51 preschoolers' FMS while children learned to decode letters and nonsense words in a within-participants, randomized, and counterbalanced single-factor design with pre- and posttesting. In two conditions, children wrote with a pencil that had a conical shape fitted to the end filled with either steel (impaired writing condition) or polystyrene (normal writing condition). In a third control condition, children simply pointed at the letters with the light pencil as they learned to read the words (pointing condition). Results indicate that children learned the most decoding skills in the normal writing condition, followed by the pointing and impaired writing conditions. In addition, working memory, phonemic awareness, and grapho-motor skills were generally predictors of decoding skill development. The findings provide experimental evidence that having lower FMS is disadvantageous for reading development. Copyright © 2015 Elsevier Inc. All rights reserved.
Hartman, E; Houwen, S; Scherder, E; Visscher, C
2010-05-01
It has been suggested that children with intellectual disabilities (ID) have motor problems and higher-order cognitive deficits. The aim of this study was to examine the motor skills and executive functions in school-age children with borderline and mild ID. The second aim was to investigate the relationship between the two performance domains. Sixty-one children aged between 7 and 12 years diagnosed with borderline ID (33 boys and 28 girls; 71 < IQ < 79) and 36 age peers with mild ID (24 boys and 12 girls; 54 < IQ < 70) were assessed. Their abilities were compared with those of 97 age- and gender-matched typically developing children. Qualitative motor skills, i.e. locomotor ability and object control, were evaluated with the Test of Gross Motor Development (TGMD-2). Executive functioning (EF), in terms of planning ability, strategic decision-making and problem solving, was gauged with the Tower of London (TOL) task. Compared with the reference group, the full ID cohort scored significantly lower on all assessments. For the locomotor skills, the children with mild ID scored significantly lower than the children with borderline ID, but for the object control skills and the TOL score, no significant differences between the two groups were found. Motor performance and EF correlated positively. At the most complex level, the TOL showed decision time to be a mediator between motor performance and EF: the children with the lower motor scores had significantly shorter decision times and lower EF scores. Analogously, the children with the lower object control scores had longer execution times and lower EF scores. The current results support the notion that besides being impaired in qualitative motor skills intellectually challenged children are also impaired in higher-order executive functions. The deficits in the two domains are interrelated, so early interventions boosting their motor and cognitive development are recommended.
Fuengfoo, Adidsuda; Sakulnoom, Kim
2014-06-01
Queen Sirikit National Institute of Child Health is a tertiary institute of children in Thailand, where early intervention programs have been provided since 1990 by multidisciplinary approach especially in Down syndrome children. This aim of the present study is to follow the impact of early intervention on the outcome of Down syndrome children. The school attendance number of Down syndrome children was compared between regular early intervention and non-regular early intervention. The present study group consists of 210 Down syndrome children who attended early intervention programs at Queen Sirikit National Institute of Child Health between June 2008 and January 2012. Data include clinical features, school attendance developmental quotient (DQ) at 3 years of age using Capute Scales Cognitive Adaptive Test/Scale (CAT/CLAMS). Developmental milestones have been recorded as to the time of appearance of gross motor, fine motor, language, personal-social development compared to those non-regular intervention patients. Of 210 Down syndrome children, 117 were boys and 93 were girls. About 87% received regular intervention, 68% attended speech training. Mean DQ at 3 years of age was 65. Of the 184 children who still did follow-up at developmental department, 124 children (59%) attended school: mainstream school children 78 (63%) and special school children 46 (37%). The mean age at entrance to school was 5.8 ± 1.4 years. The school attendance was correlated with maternal education and regular early intervention attendance. Regular early intervention starts have proven to have a positive effect on development. The school attendance number of Down syndrome children receiving regular early intervention was statistically and significantly higher than the number of Down syndrome children receiving non-regular early intervention was. School attendance correlated with maternal education and attended regularly early intervention. Regular early intervention together with maternal education are contributing factors influencing school attendance in Down syndrome children in the present study
Graphonomics and its contribution to the field of motor behavior: A position statement.
Van Gemmert, Arend W A; Contreras-Vidal, Jose L
2015-10-01
The term graphonomics was conceived in the early 1980s; it defined a multidisciplinary emerging field focused on handwriting and drawing movements. Researchers in the field of graphonomics have made important contribution to the field of motor behavior by developing models aimed to conceptualize the production of fine motor movements using graphical tools. Although skeptics have argued that recent technological advancements would reduce the impact of graphonomic research, a shift of focus within in the field of graphonomics into fine motor tasks in general proves the resilience of the field. Moreover, it has been suggested that the use of fine motor movements due to technological advances has increased in importance in everyday life. It is concluded that the International Graphonomics Society can have a leading role in fostering collaborative multidisciplinary efforts and can help with the dissemination of findings contributing to the field of human movement sciences to a larger public. Copyright © 2015. Published by Elsevier B.V.
Assessment of the upper motor neuron in amyotrophic lateral sclerosis.
Huynh, William; Simon, Neil G; Grosskreutz, Julian; Turner, Martin R; Vucic, Steve; Kiernan, Matthew C
2016-07-01
Clinical signs of upper motor neuron (UMN) involvement are an important component in supporting the diagnosis of amyotrophic lateral sclerosis (ALS), but are often not easily appreciated in a limb that is concurrently affected by muscle wasting and lower motor neuron degeneration, particularly in the early symptomatic stages of ALS. Whilst recent criteria have been proposed to facilitate improved detection of lower motor neuron impairment through electrophysiological features that have improved diagnostic sensitivity, assessment of upper motor neuron involvement remains essentially clinical. As a result, there is often a significant diagnostic delay that in turn may impact institution of disease-modifying therapy and access to other optimal patient management. Biomarkers of pathological UMN involvement are also required to ensure patients with suspected ALS have timely access to appropriate therapeutic trials. The present review provides an analysis of current and recently developed assessment techniques, including novel imaging and electrophysiological approaches used to study corticomotoneuronal pathology in ALS. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
ERIC Educational Resources Information Center
Moser, Thomas; Reikerås, Elin
2016-01-01
This article discusses motor-life-skills in a sample (n?=?1083) of 33 months (2.9-year-old) children in Norwegian early childhood education and care institutions (ECEC-institutions) and to compare the findings with the results from a similar British sample. The Early Years Movement Skills Checklist (EYMSC) (Chambers and Sugden 2006) was applied.…
McCoy, Dana Charles; Sudfeld, Christopher R; Bellinger, David C; Muhihi, Alfa; Ashery, Geofrey; Weary, Taylor E; Fawzi, Wafaie; Fink, Günther
2017-02-09
Low-cost, cross-culturally comparable measures of the motor, cognitive, and socioemotional skills of children under 3 years remain scarce. In the present paper, we aim to develop a new caregiver-reported early childhood development (ECD) scale designed to be implemented as part of household surveys in low-resourced settings. We evaluate the acceptability, test-retest reliability, internal consistency, and discriminant validity of the new ECD items, subscales, and full scale in a sample of 2481 18- to 36-month-old children from peri-urban and rural Tanzania. We also compare total and subscale scores with performance on the Bayley Scales of Infant Development (BSID-III) in a subsample of 1036 children. Qualitative interviews from 10 mothers and 10 field workers are used to inform quantitative data. Adequate levels of acceptability and internal consistency were found for the new scale and its motor, cognitive, and socioemotional subscales. Correlations between the new scale and the BSID-III were high (r > .50) for the motor and cognitive subscales, but low (r < .20) for the socioemotional subscale. The new scale discriminated between children's skills based on age, stunting status, caregiver-reported disability, and adult stimulation. Test-retest reliability scores were variable among a subset of items tested. Results of this study provide empirical support from a low-income country setting for the acceptability, reliability, and validity of a new caregiver-reported ECD scale. Additional research is needed to test these and other caregiver reported items in children in the full 0 to 3 year range across multiple cultural and linguistic settings.
Brief, Early Treatment for ASD/PTSD Following Motor Vehicle Accidents
ERIC Educational Resources Information Center
Hickling, Edward J.; Blanchard, Edward B.; Kuhn, Eric
2005-01-01
Early, brief interventions for posttraumatic stress disorder (PTSD) secondary to motor vehicle accidents (MVAs) have historically been, with few exceptions, unsuccessful with single session or even very brief (3 to 6 sessions) interventions. In contrast, very intensive cognitive behavioral therapy (CBT) applied over the first 6 to 8 weeks…
Early Screening Inventory (ESI).
ERIC Educational Resources Information Center
Welge-Crow, Patricia; And Others
1990-01-01
The Early Screening Inventory is designed to identify English- or Spanish-speaking children, ages 4-6, who may need special education services. The instrument measures the ability to acquire new skills in the areas of visual-motor/adaptive, language/cognition, and gross-motor/body-awareness. This paper describes administration, summation of data,…
SKIPing with Teachers: An Early Years Motor Skill Intervention
ERIC Educational Resources Information Center
Brian, Ali; Goodway, Jacqueline D.; Logan, Jessica A.; Sutherland, Sue
2017-01-01
Background: Fundamental motor skill (FMS) interventions when delivered by an expert can significantly improve the FMS of young children with and without developmental delays. However, there is a gap in the literature as few early childhood centers employ experts with the professional background to deliver FMS intervention. Purpose: The primary…
The evolution of neocortex in primates
Kaas, Jon H.
2013-01-01
We can learn about the evolution of neocortex in primates through comparative studies of cortical organization in primates and those mammals that are the closest living relatives of primates, in conjunction with brain features revealed by the skull endocasts of fossil archaic primates. Such studies suggest that early primates had acquired a number of features of neocortex that now distinguish modern primates. Most notably, early primates had an array of new visual areas, and those visual areas widely shared with other mammals had been modified. Posterior parietal cortex was greatly expanded with sensorimotor modules for reaching, grasping, and personal defense. Motor cortex had become more specialized for hand use, and the functions of primary motor cortex were enhanced by the addition and development of premotor and cingulate motor areas. Cortical architecture became more varied, and cortical neuron populations became denser overall than in nonprimate ancestors. Primary visual cortex had the densest population of neurons, and this became more pronounced in the anthropoid radiation. Within the primate clade, considerable variability in cortical size, numbers of areas, and architecture evolved. PMID:22230624
The evolution of neocortex in primates.
Kaas, Jon H
2012-01-01
We can learn about the evolution of neocortex in primates through comparative studies of cortical organization in primates and those mammals that are the closest living relatives of primates, in conjunction with brain features revealed by the skull endocasts of fossil archaic primates. Such studies suggest that early primates had acquired a number of features of neocortex that now distinguish modern primates. Most notably, early primates had an array of new visual areas, and those visual areas widely shared with other mammals had been modified. Posterior parietal cortex was greatly expanded with sensorimotor modules for reaching, grasping, and personal defense. Motor cortex had become more specialized for hand use, and the functions of primary motor cortex were enhanced by the addition and development of premotor and cingulate motor areas. Cortical architecture became more varied, and cortical neuron populations became denser overall than in nonprimate ancestors. Primary visual cortex had the densest population of neurons, and this became more pronounced in the anthropoid radiation. Within the primate clade, considerable variability in cortical size, numbers of areas, and architecture evolved. Copyright © 2012 Elsevier B.V. All rights reserved.
Motor Stereotypies and Volumetric Brain Alterations in Children with Autistic Disorder
ERIC Educational Resources Information Center
Goldman, Sylvie; O'Brien, Liam M.; Filipek, Pauline A.; Rapin, Isabelle; Herbert, Martha R.
2013-01-01
Motor stereotypies are defined as patterned, repetitive, purposeless movements. These stigmatizing motor behaviors represent one manifestation of the third core criterion for an Autistic Disorder (AD) diagnosis, and are becoming viewed as potential early markers of autism. Moreover, motor stereotypies might be a tangible expression of the…
Cools, Wouter; Martelaer, Kristine De; Samaey, Christiane; Andries, Caroline
2009-06-01
The importance of movement is often overlooked because it is such a natural part of human life. It is, however, crucial for a child's physical, cognitive and social development. In addition, experiences support learning and development of fundamental movement skills. The foundations of those skills are laid in early childhood and essential to encourage a physically active lifestyle. Fundamental movement skill performance can be examined with several assessment tools. The choice of a test will depend on the context in which the assessment is planned. This article compares seven assessment tools which are often referred to in European or international context. It discusses the tools' usefulness for the assessment of movement skill development in general population samples. After a brief description of each assessment tool the article focuses on contents, reliability, validity and normative data. A conclusion outline of strengths and weaknesses of all reviewed assessment tools focusing on their use in educational research settings is provided and stresses the importance of regular data collection of fundamental movement skill development among preschool children. Key pointsThis review discusses seven movement skill assessment tool's test content, reliability, validity and normative samples.The seven assessment tools all showed to be of great value. Strengths and weaknesses indicate that test choice will depend on specific purpose of test use.Further data collection should also include larger data samples of able bodied preschool children.Admitting PE specialists in assessment of fundamental movement skill performance among preschool children is recommended.The assessment tool's normative data samples would benefit from frequent movement skill performance follow-up of today's children. MOT 4-6: Motoriktest fur vier- bis sechsjährige Kinder, M-ABC: Movement Assessment Battery for Children, PDMS: Peabody Development Scales, KTK: Körper-Koordinationtest für Kinder, TGDM: Test of Gross Motor Development, MMT: Maastrichtse Motoriektest, BOTMP: Bruininks-Oseretsky Test of Motor Proficiency. ICC: intraclass correlation coefficient, NR: not reported, GM: gross motor, LV: long version, SV: short version, LF: long form, SF: short form, STV: subtest version, SEMs: standard errors of measurement, TMQ: Total Motor Quotient, TMC: Total Motor Composite, CSSA: Comprehensive Scales of Student Abilities MSEL: Mullen Scales of Early learning: AGS Edition AUC: Areas under curve BC: Battery composite ROC: Receiver operating characteristic.
Cools, Wouter; Martelaer, Kristine De; Samaey, Christiane; Andries, Caroline
2009-01-01
The importance of movement is often overlooked because it is such a natural part of human life. It is, however, crucial for a child’s physical, cognitive and social development. In addition, experiences support learning and development of fundamental movement skills. The foundations of those skills are laid in early childhood and essential to encourage a physically active lifestyle. Fundamental movement skill performance can be examined with several assessment tools. The choice of a test will depend on the context in which the assessment is planned. This article compares seven assessment tools which are often referred to in European or international context. It discusses the tools’ usefulness for the assessment of movement skill development in general population samples. After a brief description of each assessment tool the article focuses on contents, reliability, validity and normative data. A conclusion outline of strengths and weaknesses of all reviewed assessment tools focusing on their use in educational research settings is provided and stresses the importance of regular data collection of fundamental movement skill development among preschool children. Key pointsThis review discusses seven movement skill assessment tool’s test content, reliability, validity and normative samples.The seven assessment tools all showed to be of great value. Strengths and weaknesses indicate that test choice will depend on specific purpose of test use.Further data collection should also include larger data samples of able bodied preschool children.Admitting PE specialists in assessment of fundamental movement skill performance among preschool children is recommended.The assessment tool’s normative data samples would benefit from frequent movement skill performance follow-up of today’s children. Abbreviations MOT 4-6: Motoriktest fur vier- bis sechsjährige Kinder, M-ABC: Movement Assessment Battery for Children, PDMS: Peabody Development Scales, KTK: Körper-Koordinationtest für Kinder, TGDM: Test of Gross Motor Development, MMT: Maastrichtse Motoriektest, BOTMP: Bruininks-Oseretsky Test of Motor Proficiency. ICC: intraclass correlation coefficient, NR: not reported, GM: gross motor, LV: long version, SV: short version, LF: long form, SF: short form, STV: subtest version, SEMs: standard errors of measurement, TMQ: Total Motor Quotient, TMC: Total Motor Composite, CSSA: Comprehensive Scales of Student Abilities MSEL: Mullen Scales of Early learning: AGS Edition AUC: Areas under curve BC: Battery composite ROC: Receiver operating characteristic PMID:24149522
Van Rooijen, Maaike; Verhoeven, Ludo; Steenbergen, Bert
2016-01-01
Early numeracy is an important precursor for arithmetic performance, academic proficiency, and work success. Besides their apparent motor difficulties, children with cerebral palsy (CP) often show additional cognitive disturbances. In this study, we examine whether working memory, non-verbal intelligence, linguistic skills, counting and fine motor skills are positively related to the early numeracy performance of 6-year-old children with CP. A total of 56 children (M = 6.0, SD = 0.61, 37 boys) from Dutch special education schools participated in this cross-sectional study. Of the total group, 81% of the children have the spastic type of CP (33% unilateral and 66% bilateral), 9% have been diagnosed as having diskinetic CP, 8% have been diagnosed as having spastic and diskinetic CP and 2% have been diagnosed as having a combination of diskinetic and atactic CP. The children completed standardized tests assessing early numeracy performance, working memory, non-verbal intelligence, sentence understanding and fine motor skills. In addition, an experimental task was administered to examine their basic counting performance. Structural equation modeling showed that working memory and fine motor skills were significantly related to the early numeracy performance of the children (β = .79 and p < .001, β = .41 and p < .001, respectively). Furthermore, counting was a mediating variable between working memory and early numeracy (β = .57, p < .001). Together, these findings highlight the importance of working memory for early numeracy performance in children with CP and they warrant further research into the efficacy of intervention programs aimed at working memory training.
Toddlers’ Fine Motor Milestone Achievement Is Associated with Early Touchscreen Scrolling
Bedford, Rachael; Saez de Urabain, Irati R.; Cheung, Celeste H. M.; Karmiloff-Smith, Annette; Smith, Tim J.
2016-01-01
Touchscreen technologies provide an intuitive and attractive source of sensory/cognitive stimulation for young children. Despite fears that usage may have a negative impact on toddlers’ cognitive development, empirical evidence is lacking. The current study presents results from the UK Toddler Attentional Behaviours and LEarning with Touchscreens (TABLET) project, examining the association between toddlers’ touchscreen use and the attainment of developmental milestones. Data were gathered in an online survey of 715 parents of 6- to 36-month-olds to address two research questions: (1) How does touchscreen use change from 6 to 36 months? (2) In toddlers (19–36 months, i.e., above the median age, n = 366), how does retrospectively reported age of first touchscreen usage relate to gross motor (i.e., walking), fine motor (i.e., stacking blocks), and language (i.e., producing two-word utterances) milestones? In our sample, the proportion of children using touchscreens, as well as the average daily usage time, increased with age (youngest quartile, 6–11 months: 51.22% users, 8.53 min per day; oldest quartile, 26–36 months: 92.05% users, average use of 43.95 min per day). In toddlers, aged 19–36 months, age of first touchscreen use was significantly associated with fine motor (stacking blocks), p = 0.03, after controlling for covariates age, sex, mother’s education (a proxy for socioeconomic status) as well as age of early fine motor milestone achievement (pincer grip). This effect was only present for active scrolling of the touchscreen p = 0.04, not for video watching. No significant relationships were found between touchscreen use and either gross motor or language milestones. Touchscreen use increases rapidly over the first 3 years of life. In the current study, we find no evidence to support a negative association between the age of first touchscreen usage and developmental milestones. Indeed, earlier touchscreen use, specifically scrolling of the screen, was associated with earlier fine motor achievement. Future longitudinal studies are required to elucidate the temporal order and mechanisms of this association, and to examine the impact of touchscreen use on other, more fine-grained, measures of behavioral, cognitive, and neural development. PMID:27531985
Oral motor deficits in speech-impaired children with autism
Belmonte, Matthew K.; Saxena-Chandhok, Tanushree; Cherian, Ruth; Muneer, Reema; George, Lisa; Karanth, Prathibha
2013-01-01
Absence of communicative speech in autism has been presumed to reflect a fundamental deficit in the use of language, but at least in a subpopulation may instead stem from motor and oral motor issues. Clinical reports of disparity between receptive vs. expressive speech/language abilities reinforce this hypothesis. Our early-intervention clinic develops skills prerequisite to learning and communication, including sitting, attending, and pointing or reference, in children below 6 years of age. In a cohort of 31 children, gross and fine motor skills and activities of daily living as well as receptive and expressive speech were assessed at intake and after 6 and 10 months of intervention. Oral motor skills were evaluated separately within the first 5 months of the child's enrolment in the intervention programme and again at 10 months of intervention. Assessment used a clinician-rated structured report, normed against samples of 360 (for motor and speech skills) and 90 (for oral motor skills) typically developing children matched for age, cultural environment and socio-economic status. In the full sample, oral and other motor skills correlated with receptive and expressive language both in terms of pre-intervention measures and in terms of learning rates during the intervention. A motor-impaired group comprising a third of the sample was discriminated by an uneven profile of skills with oral motor and expressive language deficits out of proportion to the receptive language deficit. This group learnt language more slowly, and ended intervention lagging in oral motor skills. In individuals incapable of the degree of motor sequencing and timing necessary for speech movements, receptive language may outstrip expressive speech. Our data suggest that autistic motor difficulties could range from more basic skills such as pointing to more refined skills such as articulation, and need to be assessed and addressed across this entire range in each individual. PMID:23847480
ERIC Educational Resources Information Center
Hilger, Allison I.; Zelaznik, Howard; Smith, Anne
2016-01-01
Purpose: Stuttering involves a breakdown in the speech motor system. We address whether stuttering in its early stage is specific to the speech motor system or whether its impact is observable across motor systems. Method: As an extension of Olander, Smith, and Zelaznik (2010), we measured bimanual motor timing performance in 115 children: 70…
Corrado, Bruno; Sommella, Nadia; Ciardi, Gianluca; Raiano, Enza; Scala, Iris; Strisciuglio, Pietro; Servodio Iammarrone, Clemente
2018-02-19
The development of both gross and fine motor skills in a child with Down syndrome is generally delayed. The most seriously affected stage is the achievement of independent walking ability, which influences the onset of all following motor and cognityive skills. The study objectives were (a) to assess the time taken to achieve independent walking ability in a cohort of children with Down syndrome, (b) to examine differences in walking onset by patient characteristics, (c) to verify the effect of early physical therapy (Neurodevelopmental Treatment on the basis of Bobath Concept practised within the first months of life) in the achievement of that skill. A retrospective study was carried out on a cohort of 86 children with Down Syndrome. The knowledge of the exact age of walking onset and information about comorobities and rehabilitation practised since birth were the eligibility criteria. The average age at which walking began in the sample was 26 months (Standard Deviation = 9.66). Some patient characteristics proved to be related negatively to the walking onset: gender male, trisomy 21, improved joint ligamentous laxity. When practised, early physical therapy was able to contrast the delay in walking. NDT-Bobath is a well-known and valid instrument for a child with Down syndrome to attain his highest possible psychomotor functioning level. This study pointed out for the first time ever its capability to contrast the delay on walking onset, which can influences positively the development of the following motor and cognitive skills.
Vezoli, Julien; Fifel, Karim; Leviel, Vincent; Dehay, Colette; Kennedy, Henry; Cooper, Howard M.; Gronfier, Claude; Procyk, Emmanuel
2011-01-01
Background It is increasingly recognized that non-motor symptoms are a prominent feature of Parkinson's disease and in the case of cognitive deficits can precede onset of the characteristic motor symptoms. Here, we examine in 4 monkeys chronically treated with low doses of the neurotoxin MPTP the early and long-term alterations of rest-activity rhythms in relationship to the appearance of motor and cognitive symptoms. Methodology/Principal Findings Behavioral activity recordings as well as motor and cognitive assessments were carried out continuously and in parallel before, during and for several months following MPTP-treatment (12–56 weeks). Cognitive abilities were assessed using a task that is dependent on the functional integrity of the fronto-striatal axis. Rest-activity cycles were monitored continuously using infrared movement detectors of locomotor activity. Motor impairment was evaluated using standardized scales for primates. Results show that MPTP treatment led to an immediate alteration (within one week) of rest-activity cycles and cognitive deficits. Parkinsonian motor deficits only became apparent 3 to 5 weeks after initiating chronic MPTP administration. In three of the four animals studied, clinical scores returned to control levels 5–7 weeks following cessation of MPTP treatment. In contrast, both cognitive deficits and chronobiological alterations persisted for many months. Levodopa treatment led to an improvement of cognitive performance but did not affect rest-activity rhythms in the two cases tested. Conclusions/Significance Present results show that i) changes in the rest activity cycles constituted early detectable consequences of MPTP treatment and, along with cognitive alterations, characterize the presymptomatic stage; ii) following motor recovery there is a long-term persistence of non-motor symptoms that could reflect differential underlying compensatory mechanisms in these domains; iii) the progressive MPTP-monkey model of presymptomatic ongoing parkinsonism offers possibilities for in-depth studies of early non-motor symptoms including sleep alterations and cognitive deficits. PMID:21887350
Dalen, Monica; Theie, Steinar
2014-07-01
In this study, we compare internationally adopted children's communication, gross motor development, temperament, and challenging behavior with the same characteristics in nonadopted children at age 24 and 36 months. At 24 months, adopted children lag behind in communication and in gross motor development. The adopted children are less active and show less physically challenging behavior. At age 36 months, most of these differences have diminished, but the adopted children still lag behind in communication. This is an important finding because communication skills in the toddler years are a crucial factor in children's attachment, social development, and later language and cognitive development. Looking at the overall outcomes during early toddler years, internationally adopted children are developing very well considering the preadoption adversity to which many of them have been exposed.
A new device for monitoring early motor development: prenatal nicotine-induced changes.
Schlumpf, M; Gähwiler, M; Ribary, U; Lichtensteiger, W
1988-05-01
A new type of activity meter has been designed especially for young rats. It consists of a warmed platform for the animal, a TV camera with monitor and a microprocessor. The TV camera detects the animal as a black figure on a light background. This picture is digitalized and stored in a Z80 microprocessor. Every 200 msec a new image is compared to the foregoing one. The total number of black points that are changing from black to white and vice versa provides a measure for motor activity of the animal. Prenatally nicotine-treated rat pups were tested on the activity meter. The developmental pattern of motor activity was different for male and female pups. Motor activity of nicotine-treated male pups differed significantly from controls at postnatal days 7 and 15 while this drug effect was not seen in females.
Neurocognitive Effects of HIV Infection on Young Children: Implications for Assessment.
ERIC Educational Resources Information Center
Landry, Kris; Smith, Tina
1998-01-01
Describes the various direct and indirect effects of HIV and AIDS on children's development and the implications for early intervention assessment. HIV and AIDS effects include disorganization during the neonatal period, failure to thrive, motor difficulties, cognitive dysfunction, expressive language behavior, attention problems, and…
Method and system for early detection of incipient faults in electric motors
Parlos, Alexander G; Kim, Kyusung
2003-07-08
A method and system for early detection of incipient faults in an electric motor are disclosed. First, current and voltage values for one or more phases of the electric motor are measured during motor operations. A set of current predictions is then determined via a neural network-based current predictor based on the measured voltage values and an estimate of motor speed values of the electric motor. Next, a set of residuals is generated by combining the set of current predictions with the measured current values. A set of fault indicators is subsequently computed from the set of residuals and the measured current values. Finally, a determination is made as to whether or not there is an incipient electrical, mechanical, and/or electromechanical fault occurring based on the comparison result of the set of fault indicators and a set of predetermined baseline values.
Silver, Monica K; Shao, Jie; Zhu, Binquan; Chen, Minjian; Xia, Yankai; Kaciroti, Niko; Lozoff, Betsy; Meeker, John D
2017-09-01
Organophosphate insecticides (OPs) are used worldwide, yet despite nearly ubiquitous exposure in the general population, few have been studied outside the laboratory. Fetal brains undergo rapid growth and development, leaving them susceptible to long-term effects of neurotoxic OPs. The objective here was to investigate the extent to which prenatal exposure to OPs affects infant motor development. 30 OPs were measured in umbilical cord blood using gas chromatography tandem mass spectrometry in a cohort of Chinese infants. Motor function was assessed at 6-weeks and 9-months using Peabody Developmental Motor Scales 2nd edition (PDMS-2) (n=199). Outcomes included subtest scores: reflexes, stationary, locomotion, grasping, visual-motor integration (V-M), composite scores: gross (GM), fine (FM), total motor (TM), and standardized motor quotients: gross (GMQ), fine (FMQ), total motor (TMQ). Naled, methamidophos, trichlorfon, chlorpyrifos, and phorate were detected in ≥10% of samples. Prenatal naled and chlorpyrifos were associated with decreased 9-month motor function. Scores were 0.55, 0.85, and 0.90 points lower per 1ng/mL increase in log-naled, for V-M (p=0.04), FM (p=0.04), and FMQ (p=0.08), respectively. For chlorpyrifos, scores were 0.50, 1.98, 0.80, 1.91, 3.49, 2.71, 6.29, 2.56, 2.04, and 2.59 points lower for exposed versus unexposed infants, for reflexes (p=0.04), locomotion (p=0.02), grasping (p=0.05), V-M (p<0.001), GM (p=0.007), FM (p=0.002), TM (p<0.001), GMQ (p=0.01), FMQ (p=0.07), and TMQ (p=0.008), respectively. Girls appeared to be more sensitive to the negative effects of OPs on 9-month motor function than boys. We found deficits in 9-month motor function in infants with prenatal exposure to naled and chlorpyrifos. Naled is being aerially sprayed to combat mosquitoes carrying Zika virus, yet this is the first non-occupational human study of its health effects. Delays in early-motor skill acquisition may be detrimental for downstream development and cognition. Copyright © 2017 Elsevier Ltd. All rights reserved.
Leventakou, Vasiliki; Roumeliotaki, Theano; Koutra, Katerina; Vassilaki, Maria; Mantzouranis, Evangelia; Bitsios, Panos; Kogevinas, Manolis; Chatzi, Leda
2015-03-01
Breast feeding duration has been associated with improved cognitive development in children. However, few population-based prospective studies have evaluated dose-response relationships of breastfeeding duration with language and motor development at early ages, and results are discrepant. The study uses data from the prospective mother-child cohort ('Rhea' study) in Crete, Greece. 540 mother-child pairs were included in the present analysis. Information about parental and child characteristics and breastfeeding practices was obtained by interview-administered questionnaires. Trained psychologists assessed cognitive, language and motor development by using the Bayley Scales of Infant Toddler Development (3rd edition) at the age of 18 months. Duration of breast feeding was linearly positively associated with all the Bayley scales, except of gross motor. The association persisted after adjustment for potential confounders with an increase of 0.28 points in the scale of cognitive development (β=0.28; 95% CI 0.01 to 0.55), 0.29 points in the scale of receptive communication (β=0.29; 95% CI 0.04 to 0.54), 0.30 points in the scale of expressive communication (β=0.30; 95% CI 0.04 to 0.57) and 0.29 points in the scale of fine motor development (β=0.29; 95% CI 0.02 to 0.56) per accumulated month of breast feeding. Children who were breast fed longer than 6 months had a 4.44-point increase in the scale of fine motor development (β=4.44; 95% CI 0.06 to 8.82) compared with those never breast fed. Longer duration of breast feeding was associated with increased scores in cognitive, language and motor development at 18 months of age, independently from a wide range of parental and infant characteristics. Additional longitudinal studies and trials are needed to confirm these results. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
NASA Astrophysics Data System (ADS)
Nagappa, R.; Kurup, M. R.; Muthunayagam, A. E.
1989-08-01
Solid rocket motors have been the mainstay of ISRO's sounding rockets and the first generation satellite launch vehicles. For the new launch vehicle under development also, the solid rocket motors contribute significantly to the vehicle's total propulsive power. The rocket motors in use and under development have been developed for a variety of applications and range in size from 30 mm dia employing 450 g of solid propellant—employed for providing a spin to the apogee motors—to the giant 2.8 m dia motor employing nearly 130 tonnes of solid propellant. The initial development, undertaken in 1967 was of small calibre motor of 75 mm dia using a double base charge. The development was essentially to understand the technological elements. Extruded aluminium tubes were used as a rocket motor casing. The fore and aft closures were machined from aluminium rods. The grain was a seven-pointed star with an enlargement of the port at the aft end and was charged into the chamber using a polyester resin system. The nozzle was a metallic heat sink type with graphite throat insert. The motor was ignited with a black powder charge and fired for 2.0 s. Subsequent to this, further developmental activities were undertaken using PVC plastisol based propellants. A class of sounding rockets ranging from 125 to 560 mm calibre were realized. These rocket motors employed improved designs and had delivered lsp ranging from 2060 to 2256 Ns/kg. Case bonding could not be adopted due to the higher cure temperatures of the plastisol propellants but improvements were made in the grain charging techniques and in the design of the igniters and the nozzle. Ablative nozzles based on asbestos phenolic and silica phenolic with graphite inserts were used. For the larger calibre rocket motors, the lsp could be improved by metallic additives. In the early 1970s designs were evolved for larger and more efficient motors. A series of 4 motors for the country's first satellite launch vehicle SLV-3 were developed. The first and second stages of 1 and 0.8 m dia respectively used low carbon steel casing and PBAN propellant. The first stage used segmented construction with a total propellant weight of 8600 kg. The second stage employed about 3 tonnes of the same propellant. The third and fourth stages were of GFRP construction and employed respectively 1100 and 275 kg of CTPB type propellants. Nozzle expansion ratios upto 30 were employed and delivered vacuum lsp of 2766 Ns/kg realized. The fourth stage motor was subsequently used as the apogee motor for orbit injection of India's first geosynchronous satellite—APPLE. All these motors have been flight proven a number of times. Further design improvements have been incorporated and these motors continue to be in use. Starting in 1984 design for a large booster was undertaken. This booster employs a nominal propellant weight of 125 tonne in a 2.8 m dia casing. The motor is expected to be qualified for flight test in 1989. Side by side a high performance motor housing nearly 7 tonnes of propellant in composite casing of 2 m dia and having flex nozzle control system is also under development for upper stage application. Details of the development of the motors, their leading specifications and performance are described.
[Vojta's method as the early neurodevelopmental diagnosis and therapy concept].
Banaszek, Grazyna
2010-01-01
Vaclav Vojta (1917-2000) developed an early diagnostic method of the neurodevelopmental disorder of infants and came up with therapeutic concept consisting in releasing of global motor complexes by means of the stimulation of proper areas on patients body. In the diagnostics apart from very careful observation of the spontaneous movement of the infant and examination of the reflexes that are characteristic for the first weeks of human's life, Vojta applied the examination of the 7 postural reactions. Presence of the trouble in patterns and dynamics of the postural reactions Vojta called Central Nervous Coordination Disorder--CNCD and regarded as work diagnosis or alarm signal indicating necessity of application of the therapy, especially when asymmetry of the muscle tone and primitive reflexes beyond their physiological appearance period are observed or the number of the abnormal reactions exceeds 5. Global motor complexes as reflex locomotion--crawling and rotation--consist of all the partial motion patterns, which are gradually used by healthy infant in the process of postural and motor ontogenesis. Providing the central nervous system with proper external stimulation allows to, using neuronal plasticity, recreate an access to the human's postural development program and gradually replace pathological motor patterns by those more regular. Exercises repeated several times a day rebuilt support, erectile and vertical mechanisms, improve automatic postural control and phase lower limb movement. Affecting especially on autochtonic muscles of the spine exercises balance synergic cooperation of muscle groups in the trunk and those surrounding key body joints. This way they correct body's posture and peripheral motion and pathology of the outlasted primitive reflexes gradually withdraws.
Myer, Gregory D; Faigenbaum, Avery D; Edwards, Nicholas M; Clark, Joseph F; Best, Thomas M; Sallis, Robert E
2015-12-01
Current recommendations for physical activity in children overlook the critical importance of motor skill acquisition early in life. Instead, they focus on the quantitative aspects of physical activity (eg, accumulate 60 min of daily moderate to vigorous physical activity) and selected health-related components of physical fitness (eg, aerobic fitness, muscular strength, muscular endurance, flexibility and body composition). This focus on exercise quantity in youth may limit considerations of qualitative aspects of programme design which include (1) skill development, (2) socialisation and (3) enjoyment of exercise. The timing of brain development and associated neuroplasticity for motor skill learning makes the preadolescence period a critical time to develop and reinforce fundamental movement skills in boys and girls. Children who do not participate regularly in structured motor skill-enriched activities during physical education classes or diverse youth sports programmes may never reach their genetic potential for motor skill control which underlies sustainable physical fitness later in life. The goals of this review are twofold: (1) challenge current dogma that is currently focused on the quantitative rather than qualitative aspects of physical activity recommendations for youth and (2) synthesise the latest evidence regarding the brain and motor control that will provide the foundation for integrative exercise programming that provide a framework sustainable activity for life. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
ERIC Educational Resources Information Center
Jackson, Janice; Flamboe, Thomas C.
The annotated bibliography contains approximately 110 references (1969-1976) of articles related to the Sewall Early Education Developmental Program. Entries are arranged alphabetically by author within the following seven topic areas: social emotional, gross motor, fine motor, adaptive reasoning, speech and language, feeding and dressing and…
Dettmer, Amanda M.; Ruggerio, Angela M.; Novak, Melinda A.; Meyer, Jerrold S.; Suomi, Stephen J.
2008-01-01
A biological mother’s movement appears necessary for optimal development in infant monkeys. However, nursery-reared monkeys are typically provided with inanimate surrogate mothers that move very little. The purpose of this study was to evaluate the effects of a novel, highly mobile surrogate mother on motor development, exploration, and reactions to novelty. Six infant rhesus macaques (Macaca mulatta) were reared on mobile hanging surrogates (MS) and compared to six infants reared on standard stationary rocking surrogates (RS) and to 9-15 infants reared with their biological mothers (MR) for early developmental outcome. We predicted that MS infants would develop more similarly to MR infants than RS infants. In neonatal assessments conducted at day 30, both MS and MR infants showed more highly developed motor activity than RS infants on measures of grasping (p=.009), coordination (p=.038), spontaneous crawl (p=.009), and balance (p=.003). At 2-3 months of age, both MS and MR infants displayed higher levels of exploration in the home cage than RS infants (p=.016). In a novel situation in which only MS and RS infants were tested, MS infants showed less of a stress response, spending less time near their surrogates in the first five minutes of the test session than RS infants (p=.05) and exhibiting a significantly lower rise in salivary cortisol after the test than RS infants (p=.018). Collectively, these results suggest that when nursery-rearing of infant monkeys is necessary, a mobile hanging surrogate may encourage more normative development of gross motor skills and exploratory behavior and may serve as a useful alternative to stationary or rocking surrogates. PMID:19810188
Coleman, Kristine; Robertson, Nicola D.; Dissen, Gregory A.; Neuringer, Martha D.; Martin, L. Drew; Cuzon Carlson, Verginia C.; Kroenke, Christopher; Fair, Damien; Brambrink, Ansgar
2016-01-01
Background Experimental evidence correlates anesthetic exposure during early development with neuronal and glial injury and death as well as behavioral and cognitive impairments in young animals. Several, although not all, retrospective human studies of neurocognitive and behavioral disorders following childhood exposure to anesthesia suggest a similar association. Few studies have specifically investigated the effects of infant anesthesia exposure on subsequent neurobehavioral development. Using a highly translational nonhuman primate model, we investigated the potential dose-dependent effects of anesthesia across the first year of development. Methods We examined effects of single or multiple early postnatal isoflurane exposures on subsequent behavioral development in 24 socially reared rhesus macaques. Infants were exposed to 5-h of isoflurane anesthesia either once, three times, or not at all (control). We assessed reflex development and anxiety using standardized tests. At approximately one year, infants (n=23) were weaned and housed indoors with 5-6 other subjects. We recorded their response to this move and re-assessed anxiety. Results Compared to controls, animals exposed to repeated isoflurane (ISO-3) presented with motor reflex deficits at 1 month (median, range: ISO-3= 2 [1–5] versus control= 5 [3–7], p<0.005) and responded to their new social environment with increased anxiety (median, range: ISO-3=0.4 bouts/minute [0.2–0.6]; control= 0.25 [0.1–0.3], p,0.05) and affiliative/appeasement behavior (median, range: ISO-3=0.1 bouts/min [0–0.2]; control= 0 [0–0.1], p<0.01) at 12 months. There were no statistically significant behavioral alterations after single isoflurane exposure. Conclusions Neonatal exposure to isoflurane, particularly when repeated, has long-term behavioral consequences affecting both motor and socio-emotional aspects of behavior. PMID:27749311
Developmental coordination disorders: state of art.
Vaivre-Douret, L
2014-01-01
In the literature, descriptions of children with motor coordination difficulties and clumsy movements have been discussed since the early 1900s. According to the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV), it is a marked impairment in the development of fine or global motor coordination, affecting 6% of school-age children. All these children are characterized for developmental coordination disorder (DCD) in motor learning and new motor skill acquisition, in contrast to adult apraxia which is a disorder in the execution of already learned movements. No consensus has been established about etiology of DCD. Intragroup approach through factor and cluster analysis highlights that motor impairment in DCD children varies both in severity and nature. Indeed, most studies have used screening measures of performance on some developmental milestones derived from global motor tests. A few studies have investigated different functions together with standardized assessments, such as neuromuscular tone and soft signs, qualitative and quantitative measures related to gross and fine motor coordination and the specific difficulties -academic, language, gnosic, visual motor/visual-perceptual, and attentional/executive- n order to allow a better identification of DCD subtypes with diagnostic criteria and to provide an understanding of the mechanisms and of the cerebral involvement. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Is auditory perceptual timing a core deficit of developmental coordination disorder?
Trainor, Laurel J; Chang, Andrew; Cairney, John; Li, Yao-Chuen
2018-05-09
Time is an essential dimension for perceiving and processing auditory events, and for planning and producing motor behaviors. Developmental coordination disorder (DCD) is a neurodevelopmental disorder affecting 5-6% of children that is characterized by deficits in motor skills. Studies show that children with DCD have motor timing and sensorimotor timing deficits. We suggest that auditory perceptual timing deficits may also be core characteristics of DCD. This idea is consistent with evidence from several domains, (1) motor-related brain regions are often involved in auditory timing process; (2) DCD has high comorbidity with dyslexia and attention deficit hyperactivity, which are known to be associated with auditory timing deficits; (3) a few studies report deficits in auditory-motor timing among children with DCD; and (4) our preliminary behavioral and neuroimaging results show that children with DCD at age 6 and 7 have deficits in auditory time discrimination compared to typically developing children. We propose directions for investigating auditory perceptual timing processing in DCD that use various behavioral and neuroimaging approaches. From a clinical perspective, research findings can potentially benefit our understanding of the etiology of DCD, identify early biomarkers of DCD, and can be used to develop evidence-based interventions for DCD involving auditory-motor training. © 2018 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals, Inc. on behalf of The New York Academy of Sciences.
Gustafsson, Peik; Kerekes, Nóra; Anckarsäter, Henrik; Lichtenstein, Paul; Gillberg, Christopher; Råstam, Maria
2014-01-01
Children with early symptomatic psychiatric disorders such as Attention-Deficit/Hyperactivity Disorder (ADHD) and Autism Spectrum Disorder (ASD) have been found to have high rates of motor and/or perception difficulties. However, there have been few large-scale studies reporting on the association between Conduct Disorder (CD) and motor/perception functions. The aim of the present study was to investigate how motor function and perception relate to measures of ADHD, ASD, and CD. Parents of 16,994 Swedish twins (ages nine and twelve years) were interviewed using the Autism-Tics, ADHD and other Comorbidities inventory (A-TAC), which has been validated as a screening instrument for early onset child psychiatric disorders and symptoms. Associations between categorical variables of scoring above previously validated cut-off values for diagnosing ADHD, ASD, and CD on the one hand and motor and/or perception problems on the other hand were analysed using cross-tabulations, and the Fisher exact test. Associations between the continuous scores for ADHD, ASD, CD, and the subdomains Concentration/Attention, Impulsiveness/Activity, Flexibility, Social Interaction and Language, and the categorical factors age and gender, on the one hand, and the dependent dichotomic variables Motor control and Perception problems, on the other hand, were analysed using binary logistic regression in general estimated equation models. Male gender was associated with increased risk of Motor control and/or Perception problems. Children scoring above the cut-off for ADHD, ASD, and/or CD, but not those who were 'CD positive' but 'ADHD/ASD negative', had more Motor control and/or Perception problems, compared with children who were screen-negative for all three diagnoses. In the multivariable model, CD and Impulsiveness/Activity had no positive associations with Motor control and/or Perception problems. CD symptoms or problems with Impulsiveness/Activity were associated with Motor control or Perception problems only in the presence of ASD symptoms and/or symptoms of inattention. Our results indicate that children with CD but without ASD or inattention do not show a deviant development of motor and perceptual functions. Therefore, all children with CD should be examined concerning motor control and perception. If problems are present, a suspicion of ADHD and/or ASD should be raised.
Sukal-Moulton, Theresa; Krosschell, Kristin J.; Gaebler-Spira, Deborah J.; Dewald, Julius P.A.
2014-01-01
Background Extensive neuromotor development occurs early in human life, but the time that a brain injury occurs during development has not been rigorously studied when quantifying motor impairments. Objective This study investigated the impact of timing of brain injury on magnitude and distribution of weakness in the paretic arm of individuals with childhood-onset hemiparesis. Methods Twenty-four individuals with hemiparesis were divided into time periods of injury before birth (PRE-natal, n=8), around the time of birth (PERI-natal, n=8) or after 6 months of age (POST-natal, n=8). They, along with 8 typically developing peers, participated in maximal isometric shoulder, elbow, wrist, and finger torque generation tasks using a multiple degree-of-freedom load cell to quantify torques in 10 directions. A mixed model ANOVA was used to determine the effect of group and task on a calculated relative weakness ratio between arms. Results There was a significant effect of both time of injury group (p<0.001) and joint torque direction (p<0.001) on the relative weakness of the paretic arm. Distal joints were more affected compared to proximal joints, especially in the POST-natal group. Conclusions The distribution of weakness provides evidence for the relative preservation of ipsilateral corticospinal motor pathways to the paretic limb in those individuals injured earlier, while those who sustained later injury may rely more on indirect ipsilateral cortico-bulbospinal projections during the generation of torques with the paretic arm. PMID:24009182
Sukal-Moulton, Theresa; Krosschell, Kristin J; Gaebler-Spira, Deborah J; Dewald, Julius P A
2014-01-01
Extensive neuromotor development occurs early in human life, but the time that a brain injury occurs during development has not been rigorously studied when quantifying motor impairments. This study investigated the impact of timing of brain injury on the magnitude and distribution of weakness in the paretic arm of individuals with childhood-onset hemiparesis. A total of 24 individuals with hemiparesis were divided into time periods of injury before birth (PRE-natal, n = 8), around the time of birth (PERI-natal, n = 8), or after 6 months of age (POST-natal, n = 8). They, along with 8 typically developing peers, participated in maximal isometric shoulder, elbow, wrist, and finger torque generation tasks using a multiple-degree-of-freedom load cell to quantify torques in 10 directions. A mixed-model ANOVA was used to determine the effect of group and task on a calculated relative weakness ratio between arms. There was a significant effect of both time of injury group (P < .001) and joint torque direction (P < .001) on the relative weakness of the paretic arm. Distal joints were more affected compared with proximal joints, especially in the POST-natal group. The distribution of weakness provides evidence for the relative preservation of ipsilateral corticospinal motor pathways to the paretic limb in those individuals injured earlier, whereas those who sustained later injury may rely more on indirect ipsilateral corticobulbospinal projections during the generation of torques with the paretic arm.
Maternal Alcohol Consumption during Pregnancy and Infant Social, Mental, and Motor Development
ERIC Educational Resources Information Center
Brown, Carole Williams; Olson, Heather Carmichael; Croninger, Robert G.
2010-01-01
Maternal alcohol consumption during pregnancy is a significant social problem associated with developmental difficulties in young children. Child developmental and behavioral characteristics were examined from the 9-month data point of the Early Childhood Longitudinal Studies-Birth Cohort, a prospective nationally representative study. Several…
Critical Learning Periods and Programs of Early Intervention.
ERIC Educational Resources Information Center
Magill, Richard A.
In an effort to clarify understanding of the concept of critical learning periods, this paper discusses problems that people concerned with the motor development of children have had determining relationships between critical periods and learning, and a "readiness model" is offered as a solution that could enhance understanding of critical…
Examining the Quality of Outdoor Play in Chinese Kindergartens
ERIC Educational Resources Information Center
Hu, Bi Ying; Li, Kejian; De Marco, Allison; Chen, Yuewen
2015-01-01
The benefits of outdoor play for children's well-rounded development are maximized when children experience enjoyment and, at the same time, gain physical, motor, cognitive, and social-emotional competence. This study examined the quality of outdoor play in Chinese kindergartens, the dominant form of full-day early childhood education program…
Resource-Based Intervention: Success with Community-Centered Practices
ERIC Educational Resources Information Center
Torrey, Michelle Kerber; Leginus, Mary Anne; Cecere, Susan
2011-01-01
In this commentary the authors share their experiences on the design and implementation of community-centered early intervention programs in Prince George's County, MD. Their aim in designing community-centered programs was to provide infants and toddlers opportunities for learning, language, and motor development in natural environments with…
Expectations Do Not Alter Early Sensory Processing during Perceptual Decision-Making.
Rungratsameetaweemana, Nuttida; Itthipuripat, Sirawaj; Salazar, Annalisa; Serences, John T
2018-06-13
Two factors play important roles in shaping perception: the allocation of selective attention to behaviorally relevant sensory features, and prior expectations about regularities in the environment. Signal detection theory proposes distinct roles of attention and expectation on decision-making such that attention modulates early sensory processing, whereas expectation influences the selection and execution of motor responses. Challenging this classic framework, recent studies suggest that expectations about sensory regularities enhance the encoding and accumulation of sensory evidence during decision-making. However, it is possible, that these findings reflect well documented attentional modulations in visual cortex. Here, we tested this framework in a group of male and female human participants by examining how expectations about stimulus features (orientation and color) and expectations about motor responses impacted electroencephalography (EEG) markers of early sensory processing and the accumulation of sensory evidence during decision-making (the early visual negative potential and the centro-parietal positive potential, respectively). We first demonstrate that these markers are sensitive to changes in the amount of sensory evidence in the display. Then we show, counter to recent findings, that neither marker is modulated by either feature or motor expectations, despite a robust effect of expectations on behavior. Instead, violating expectations about likely sensory features and motor responses impacts posterior alpha and frontal theta oscillations, signals thought to index overall processing time and cognitive conflict. These findings are inconsistent with recent theoretical accounts and suggest instead that expectations primarily influence decisions by modulating post-perceptual stages of information processing. SIGNIFICANCE STATEMENT Expectations about likely features or motor responses play an important role in shaping behavior. Classic theoretical frameworks posit that expectations modulate decision-making by biasing late stages of decision-making including the selection and execution of motor responses. In contrast, recent accounts suggest that expectations also modulate decisions by improving the quality of early sensory processing. However, these effects could instead reflect the influence of selective attention. Here we examine the effect of expectations about sensory features and motor responses on a set of electroencephalography (EEG) markers that index early sensory processing and later post-perceptual processing. Counter to recent empirical results, expectations have little effect on early sensory processing but instead modulate EEG markers of time-on-task and cognitive conflict. Copyright © 2018 the authors 0270-6474/18/385632-17$15.00/0.
Seke Etet, Paul F; Farahna, Mohammed; Satti, Gwiria M H; Bushara, Yahia M; El-Tahir, Ahmed; Hamza, Muaawia A; Osman, Sayed Y; Dibia, Ambrose C; Vecchio, Lorella
2017-04-15
Background We reported recently that extracts of seeds of Garcinia kola, a plant with established hypoglycemic properties, prevented the loss of inflammation-sensible neuronal populations like Purkinje cells in a rat model of type 1 diabetes mellitus (T1DM). Here, we assessed G. kola extract ability to prevent the early cognitive and motor dysfunctions observed in this model. Methods Rats made diabetic by single injection of streptozotocin were treated daily with either vehicle solution (diabetic control group), insulin, or G. kola extract from the first to the 6th week post-injection. Then, cognitive and motor functions were assessed using holeboard and vertical pole behavioral tests, and animals were sacrificed. Brains were dissected out, cut, and processed for Nissl staining and immunohistochemistry. Results Hyperglycemia (209.26 %), body weight loss (-12.37 %), and T1DM-like cognitive and motor dysfunctions revealed behavioral tests in diabetic control animals were not observed in insulin and extract-treated animals. Similar, expressions of inflammation markers tumor necrosis factor (TNF), iba1 (CD68), and Glial fibrillary acidic protein (GFAP), as well as decreases of neuronal density in regions involved in cognitive and motor functions (-49.56 % motor cortex, -33.24 % medial septal nucleus, -41.8 % /-37.34 % cerebellar Purkinje /granular cell layers) were observed in diabetic controls but not in animals treated with insulin or G. kola. Conclusions Our results indicate that T1DM-like functional alterations are mediated, at least partly, by neuroinflammation and neuronal loss in this model. The prevention of the development of such alterations by early treatment with G. kola confirms the neuroprotective properties of the plant and warrant further mechanistic studies, considering the potential for human disease.
[Drug treatment of early-stage (de novo and "honeymoon") Parkinson disease].
Cesaro, P; Defebvre, L
2014-04-01
In this article, we discuss the management of motor symptoms during the early phases of Parkinson's disease, excluding that of any other clinical manifestation. We relied primarily upon recently published data and do not describe older publications relating to anticholinergic drugs or amantadine. The initial pharmacological treatment of idiopathic Parkinson's disease (IPD) is symptomatic and remains based upon dopaminergic drugs. However, the development of new drugs has broadened the range of strategic options and improved overall patient management. Announcing the diagnosis is a critical moment, as pointed out by patients' associations. Patients should be advised to maintain personal, professional, social and physical activities as long as possible. The potential benefit of early pharmacological treatment should be explained, focusing on the possible disease-modifying effect of drugs such as rasagiline. According to current guidelines, L-Dopa is preferred in patients above 65years of age, while those below 65 should be treated with dopamine agonists. Like monoamine oxidase inhibitors B (MAOI-B), synthetic dopamine agonists exhibit several advantages: easy-to-use treatment with a once-daily administration, delayed L-Dopa initiation, significant efficacy on motor symptoms (although lower than that of L-Dopa). MOAI can be prescribed in association with L-Dopa or dopamine agonists. Rasagiline also delays L-Dopa initiation, and consequently motor complications. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Ketcheson, Leah; Hauck, Janet Lynn; Ulrich, Dale
2018-05-01
Autism spectrum disorder is the fastest growing developmental disability in the United States. As such, there is an unprecedented need for research examining factors contributing to the health disparities in this population. This research suggests a relationship between the levels of physical activity and health outcomes. In fact, excessive sedentary behavior during early childhood is associated with a number of negative health outcomes. A total of 53 children participated in this study, including typically developing children (mean age = 42.5 ± 10.78 months, n = 19) and children with autism spectrum disorder (mean age = 47.42 ± 12.81 months, n = 34). The t-test results reveal that children with autism spectrum disorder spent significantly less time per day in sedentary behavior when compared to the typically developing group ( t(52) = 4.57, p < 0.001). Furthermore, the results from the general linear model reveal that there is no relationship between motor skills and the levels of physical activity. The ongoing need for objective measurement of physical activity in young children with autism spectrum disorder is of critical importance as it may shed light on an often overlooked need for early community-based interventions to increase physical activity early on in development.
Cabrera-Martos, I; Valenza, M C; Valenza-Demet, G; Benítez-Feliponi, A; Robles-Vizcaíno, C; Ruiz-Extremera, A
2016-11-01
Despite growing evidence regarding nonsynostotic plagiocephaly and their repercussions on motor development, there is little evidence to support the use of manual therapy as an adjuvant option. The aim of this study was to evaluate the effects of a therapeutic approach based on manual therapy as an adjuvant option on treatment duration and motor development in infants with severe nonsynostotic plagiocephaly. This is a randomised controlled pilot study. The study was conducted at a university hospital. Forty-six infants with severe nonsynostotic plagiocephaly (types 4-5 of the Argenta scale) referred to the Early Care and Monitoring Unit were randomly allocated to a control group receiving standard treatment (repositioning and an orthotic helmet) or to an experimental group treated with manual therapy added to standard treatment. Infants were discharged when the correction of the asymmetry was optimal taken into account the previous clinical characteristics. The outcome measures were treatment duration and motor development assessed with the Alberta Infant Motor Scale (AIMS) at baseline and at discharge. Asymmetry after the treatment was minimal (type 0 or 1 according to the Argenta scale) in both groups. A comparative analysis showed that treatment duration was significantly shorter (p < 0.001) in the experimental group (109.84 ± 14.45 days) compared to the control group (148.65 ± 11.53 days). The motor behaviour was normal (scores above the 16th percentile of the AIMS) in all the infants after the treatment. Manual therapy added to standard treatment reduces the treatment duration in infants with severe nonsynostotic plagiocephaly.
Duerden, E G; Foong, J; Chau, V; Branson, H; Poskitt, K J; Grunau, R E; Synnes, A; Zwicker, J G; Miller, S P
2015-08-01
Adverse neurodevelopmental outcome is common in children born preterm. Early sensitive predictors of neurodevelopmental outcome such as MR imaging are needed. Tract-based spatial statistics, a diffusion MR imaging analysis method, performed at term-equivalent age (40 weeks) is a promising predictor of neurodevelopmental outcomes in children born very preterm. We sought to determine the association of tract-based spatial statistics findings before term-equivalent age with neurodevelopmental outcome at 18-months corrected age. Of 180 neonates (born at 24-32-weeks' gestation) enrolled, 153 had DTI acquired early at 32 weeks' postmenstrual age and 105 had DTI acquired later at 39.6 weeks' postmenstrual age. Voxelwise statistics were calculated by performing tract-based spatial statistics on DTI that was aligned to age-appropriate templates. At 18-month corrected age, 166 neonates underwent neurodevelopmental assessment by using the Bayley Scales of Infant Development, 3rd ed, and the Peabody Developmental Motor Scales, 2nd ed. Tract-based spatial statistics analysis applied to early-acquired scans (postmenstrual age of 30-33 weeks) indicated a limited significant positive association between motor skills and axial diffusivity and radial diffusivity values in the corpus callosum, internal and external/extreme capsules, and midbrain (P < .05, corrected). In contrast, for term scans (postmenstrual age of 37-41 weeks), tract-based spatial statistics analysis showed a significant relationship between both motor and cognitive scores with fractional anisotropy in the corpus callosum and corticospinal tracts (P < .05, corrected). Tract-based spatial statistics in a limited subset of neonates (n = 22) scanned at <30 weeks did not significantly predict neurodevelopmental outcomes. The strength of the association between fractional anisotropy values and neurodevelopmental outcome scores increased from early-to-late-acquired scans in preterm-born neonates, consistent with brain dysmaturation in this population. © 2015 by American Journal of Neuroradiology.
Morsan, Valentina; Fantoni, Carlo; Tallandini, Maria Anna
2018-03-15
To verify whether it is appropriate to use age correction for infants born preterm in all the developmental domains (cognitive, linguistic, and motor) considered by the Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III). Seventy-three infants born preterm (26-35wks) without major neurological sequelae and 67 infants born at term were assessed at 12 months (corrected age for infants born preterm). The performance of the infants born preterm was assessed with two different evaluations: scores based on uncorrected age and scores based on corrected age. The developmental trends of infants born at term and infants born preterm differ across domains. Statistical analysis shows that age correction produces an overrated estimate of motor performance (12.5 points [95% confidence interval 9.05-16.01]) but not of cognitive performance. Given the broad use of the Bayley-III by psychologists and paediatricians, these results are important in the early diagnosis of developmental difficulties for children born preterm. Correction for gestational age should be applied for the cognitive domain only; whereas for the motor domain, chronological age should be used. No clear data emerged for language. Age correction with Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III) for infants born preterm should be applied differently in cognitive, language, and motor domains. Using corrected age with Bayley-III, the motor skills are overrated. Correction for preterm births adequately measures cognitive skills. No clear indication emerged about language skills. © 2018 Mac Keith Press.
NASA Astrophysics Data System (ADS)
Staveley, Chris
2014-06-01
With the growth in deep-water oil and gas production, condition monitoring of high-value subsea assets to give early warning of developing problems is vital. Offshore operators can then transport and deploy spare parts before a failure occurs, so minimizing equipment down-time, and the significant costs associated with unscheduled maintenance. Results are presented from a suite of tests in which multiple elements of a subsea twin-screw pump and associated electric motor were monitored using a fibre optic sensing system based on fibre Bragg gratings (FBG) that simultaneously measured dynamic strain on the main rotor bearings, pressure and temperature of the lubricating oil, distributed temperature through the motor stator windings and vibration of the pump and motor housings.
ERIC Educational Resources Information Center
Prado, Elizabeth L.; Abbeddou, Souheila; Adu-Afarwuah, Seth; Arimond, Mary; Ashorn, Per; Ashorn, Ulla; Bendabenda, Jaden; Brown, Kenneth H.; Hess, Sonja Y.; Kortekangas, Emma; Lartey, Anna; Maleta, Kenneth; Oaks, Brietta M.; Ocansey, Eugenia; Okronipa, Harriet; Ouédraogo, Jean Bosco; Pulakka, Anna; Somé, Jérôme W.; Stewart, Christine P.; Stewart, Robert C.; Vosti, Stephen A.; Yakes Jimenez, Elizabeth; Dewey, Kathryn G.
2017-01-01
Background: Previous reviews have identified 44 risk factors for poor early child development (ECD) in low- and middle-income countries. Further understanding of their relative influence and pathways is needed to inform the design of interventions targeting ECD. Methods: We conducted path analyses of factors associated with 18-month language and…
Kaas, Jon H; Stepniewska, Iwona
2016-02-15
Posterior parietal cortex (PPC) is an extensive region of the human brain that develops relatively late and is proportionally large compared with that of monkeys and prosimian primates. Our ongoing comparative studies have led to several conclusions about the evolution of this posterior parietal region. In early placental mammals, PPC likely was a small multisensory region much like PPC of extant rodents and tree shrews. In early primates, PPC likely resembled that of prosimian galagos, in which caudal PPC (PPCc) is visual and rostral PPC (PPCr) has eight or more multisensory domains where electrical stimulation evokes different complex motor behaviors, including reaching, hand-to-mouth, looking, protecting the face or body, and grasping. These evoked behaviors depend on connections with functionally matched domains in premotor cortex (PMC) and motor cortex (M1). Domains in each region compete with each other, and a serial arrangement of domains allows different factors to influence motor outcomes successively. Similar arrangements of domains have been retained in New and Old World monkeys, and humans appear to have at least some of these domains. The great expansion and prolonged development of PPC in humans suggest the addition of functionally distinct territories. We propose that, across primates, PMC and M1 domains are second and third levels in a number of parallel, interacting networks for mediating and selecting one type of action over others. © 2015 Wiley Periodicals, Inc.
How Wearable Sensors Can Support Parkinson's Disease Diagnosis and Treatment: A Systematic Review
Rovini, Erika; Maremmani, Carlo; Cavallo, Filippo
2017-01-01
Background: Parkinson's disease (PD) is a common and disabling pathology that is characterized by both motor and non-motor symptoms and affects millions of people worldwide. The disease significantly affects quality of life of those affected. Many works in literature discuss the effects of the disease. The most promising trends involve sensor devices, which are low cost, low power, unobtrusive, and accurate in the measurements, for monitoring and managing the pathology. Objectives: This review focuses on wearable devices for PD applications and identifies five main fields: early diagnosis, tremor, body motion analysis, motor fluctuations (ON–OFF phases), and home and long-term monitoring. The concept is to obtain an overview of the pathology at each stage of development, from the beginning of the disease to consider early symptoms, during disease progression with analysis of the most common disorders, and including management of the most complicated situations (i.e., motor fluctuations and long-term remote monitoring). Data sources: The research was conducted within three databases: IEEE Xplore®, Science Direct®, and PubMed Central®, between January 2006 and December 2016. Study eligibility criteria: Since 1,429 articles were found, accurate definition of the exclusion criteria and selection strategy allowed identification of the most relevant papers. Results: Finally, 136 papers were fully evaluated and included in this review, allowing a wide overview of wearable devices for the management of Parkinson's disease. PMID:29056899
How Wearable Sensors Can Support Parkinson's Disease Diagnosis and Treatment: A Systematic Review.
Rovini, Erika; Maremmani, Carlo; Cavallo, Filippo
2017-01-01
Background: Parkinson's disease (PD) is a common and disabling pathology that is characterized by both motor and non-motor symptoms and affects millions of people worldwide. The disease significantly affects quality of life of those affected. Many works in literature discuss the effects of the disease. The most promising trends involve sensor devices, which are low cost, low power, unobtrusive, and accurate in the measurements, for monitoring and managing the pathology. This review focuses on wearable devices for PD applications and identifies five main fields: early diagnosis, tremor, body motion analysis, motor fluctuations (ON-OFF phases), and home and long-term monitoring. The concept is to obtain an overview of the pathology at each stage of development, from the beginning of the disease to consider early symptoms, during disease progression with analysis of the most common disorders, and including management of the most complicated situations (i.e., motor fluctuations and long-term remote monitoring). The research was conducted within three databases: IEEE Xplore®, Science Direct®, and PubMed Central®, between January 2006 and December 2016. Since 1,429 articles were found, accurate definition of the exclusion criteria and selection strategy allowed identification of the most relevant papers. Finally, 136 papers were fully evaluated and included in this review, allowing a wide overview of wearable devices for the management of Parkinson's disease.
Majeed, Zana R.; Abdeljaber, Esraa; Soveland, Robin; Cornwell, Kristin; Bankemper, Aubrey; Koch, Felicitas; Cooper, Robin L.
2016-01-01
Serotonin modulates various physiological processes and behaviors. This study investigates the role of 5-HT in locomotion and feeding behaviors as well as in modulation of sensory-motor circuits. The 5-HT biosynthesis was dysregulated by feeding Drosophila larvae 5-HT, a 5-HT precursor, or an inhibitor of tryptophan hydroxylase during early stages of development. The effects of feeding fluoxetine, a selective serotonin reuptake inhibitor, during early second instars were also examined. 5-HT receptor subtypes were manipulated using RNA interference mediated knockdown and 5-HT receptor insertional mutations. Moreover, synaptic transmission at 5-HT neurons was blocked or enhanced in both larvae and adult flies. The results demonstrate that disruption of components within the 5-HT system significantly impairs locomotion and feeding behaviors in larvae. Acute activation of 5-HT neurons disrupts normal locomotion activity in adult flies. To determine which 5-HT receptor subtype modulates the evoked sensory-motor activity, pharmacological agents were used. In addition, the activity of 5-HT neurons was enhanced by expressing and activating TrpA1 channels or channelrhodopsin-2 while recording the evoked excitatory postsynaptic potentials (EPSPs) in muscle fibers. 5-HT2 receptor activation mediates a modulatory role in a sensory-motor circuit, and the activation of 5-HT neurons can suppress the neural circuit activity, while fluoxetine can significantly decrease the sensory-motor activity. PMID:26989517
[Binocular functions in amblyopia and strabismus].
Awaya, S; Sato, M; Tsuzuki, K; Takara, T; Hiraiwa, S; Ota, K; Arai, M; Yoshida, M; Miyake, Y; Terasaki, H; Horiguchi, M; Hirano, K; Hirose, H; Uno, Y; Suzuki, Y; Iwata, M; Takai, Y; Maeda, M; Hisano, S; Kawakita, T; Omura, T; Ota, Y; Kondo, N; Takashi, A; Kawakami, O
1997-12-01
Regarding the changing trends in the concept, definition, etiological classification, and criteria for diagnosis of amblyopia, we reviewed a total of 4,693 cases of amblyopia seen during the past 37 years. The amblyopia was divided into four types: strabismic, anisometropic, ametropic, and form vision deprivative. There was a definite trend for the incidence to decrease and for the diagnosis to be made during earlier age in recent years. Although favorable recovery of visual acuity is obtained after treatment of amblyopia and strabismus, there are difficulties in obtaining good binocular functions in early-onset amblyopia and strabismus. This feature was evaluated in regard to motion perception asymmetry (MPA) and binocular depth from motion (DFM). Many cases of early-onset amblyopia and strabismus showed no disparity stereopsis, or position stereopsis, in spite of the presence of DFM. The MPA appeared to be closely related to early-onset esotropia regardless of age, while it disappeared and motion perception became symmetric 4 to 5 months after birth in normal infants. The DFM seemed to play an important role in maintaining good motor alignment for several years after surgery. I developed a checkerboard pattern stimulator in 1978. This method proved to be useful in developing binocular functions and motor alignment by applying simultaneous bifoveolar stimulation and anti-suppression. Extensive exposure to the stimulation was essential for therapeutic success.
FGF-2 induces behavioral recovery after early adolescent injury to the motor cortex of rats.
Nemati, Farshad; Kolb, Bryan
2011-11-20
Motor cortex injuries in adulthood lead to poor performance in behavioral tasks sensitive to limb movements in the rat. We have shown previously that motor cortex injury on day 10 or day 55 allow significant spontaneous recovery but not injury in early adolescence (postnatal day 35 "P35"). Previous studies have indicated that injection of basic fibroblast growth factor (FGF-2) enhances behavioral recovery after neonatal cortical injury but such effect has not been studied following motor cortex lesions in early adolescence. The present study undertook to investigate the possibility of such behavioral recovery. Rats with unilateral motor cortex lesions were assigned to two groups in which they received FGF-2 or bovine serum albumin (BSA) and were tested in a number of behavioral tests (postural asymmetry, skilled reaching, sunflower seed manipulation, forepaw inhibition in swimming). Golgi-Cox analysis was used to examine the dendritic structure of pyramidal cells in the animals' parietal (layer III) and forelimb (layer V) area of the cortex. The results indicated that rats injected with FGF-2 (but not BSA) showed significant behavioral recovery that was associated with increased dendritic length and spine density. The present study suggests a role for FGF-2 in the recovery of function following injury during early adolescence. Copyright © 2011 Elsevier B.V. All rights reserved.
Neuromotor outcomes at school age after extremely low birth weight: early detection of subtle signs.
Gidley Larson, Jennifer C; Baron, Ida Sue; Erickson, Kristine; Ahronovich, Margot D; Baker, Robin; Litman, Fern R
2011-01-01
Motor impairments are prevalent in children born at extremely low birth weight (ELBW; <1,000 g). Rarely studied are subtle motor deficits that indicate dysfunction or delay in neural systems critical for optimal cognitive, academic, and behavioral function. We aimed to examine quantifiable signs of subtle neuromotor dysfunction in an early school-aged ELBW cohort that coincidentally had age-appropriate cognition and design copying. We studied 97 participants born between 1998 and 2001; 74 ELBW (6.7 years ± 0.75) compared with 23 term-born (6.6 years ± 0.29). Neuromotor outcomes were assessed using the Physical and Neurological Examination of Subtle Signs-Revised, and measures of dexterity/coordination and visual-motor integration. ELBW participants performed worse than term-born on design-copying and dexterity, were age-appropriate compared to normative data, and had slower timed movements and more subtle overflow movements. Those ELBW born <26 weeks performed most poorly compared with those born 26-34 weeks and term-born. Subtle motor dysfunctions are detectable and quantifiable in ELBW children by school age, even in the presence of average cognition. Early age assessment of incoordination, motor speed, and overflow movements should aid initiation of timely therapies to prepare at-risk ELBW children for subsequent school entry and facilitate design of optimal early treatment strategies. (c) 2010 APA, all rights reserved.
Subthalamic nucleus deep brain stimulation impacts language in early Parkinson's disease.
Phillips, Lara; Litcofsky, Kaitlyn A; Pelster, Michael; Gelfand, Matthew; Ullman, Michael T; Charles, P David
2012-01-01
Although deep brain stimulation (DBS) of the basal ganglia improves motor outcomes in Parkinson's disease (PD), its effects on cognition, including language, remain unclear. This study examined the impact of subthalamic nucleus (STN) DBS on two fundamental capacities of language, grammatical and lexical functions. These functions were tested with the production of regular and irregular past-tenses, which contrast aspects of grammatical (regulars) and lexical (irregulars) processing while controlling for multiple potentially confounding factors. Aspects of the motor system were tested by contrasting the naming of manipulated (motor) and non-manipulated (non-motor) objects. Performance was compared between healthy controls and early-stage PD patients treated with either DBS/medications or medications alone. Patients were assessed on and off treatment, with controls following a parallel testing schedule. STN-DBS improved naming of manipulated (motor) but not non-manipulated (non-motor) objects, as compared to both controls and patients with just medications, who did not differ from each other across assessment sessions. In contrast, STN-DBS led to worse performance at regulars (grammar) but not irregulars (lexicon), as compared to the other two subject groups, who again did not differ. The results suggest that STN-DBS negatively impacts language in early PD, but may be specific in depressing aspects of grammatical and not lexical processing. The finding that STN-DBS affects both motor and grammar (but not lexical) functions strengthens the view that both depend on basal ganglia circuitry, although the mechanisms for its differential impact on the two (improved motor, impaired grammar) remain to be elucidated.
Subthalamic Nucleus Deep Brain Stimulation Impacts Language in Early Parkinson's Disease
Phillips, Lara; Litcofsky, Kaitlyn A.; Pelster, Michael; Gelfand, Matthew
2012-01-01
Although deep brain stimulation (DBS) of the basal ganglia improves motor outcomes in Parkinson's disease (PD), its effects on cognition, including language, remain unclear. This study examined the impact of subthalamic nucleus (STN) DBS on two fundamental capacities of language, grammatical and lexical functions. These functions were tested with the production of regular and irregular past-tenses, which contrast aspects of grammatical (regulars) and lexical (irregulars) processing while controlling for multiple potentially confounding factors. Aspects of the motor system were tested by contrasting the naming of manipulated (motor) and non-manipulated (non-motor) objects. Performance was compared between healthy controls and early-stage PD patients treated with either DBS/medications or medications alone. Patients were assessed on and off treatment, with controls following a parallel testing schedule. STN-DBS improved naming of manipulated (motor) but not non-manipulated (non-motor) objects, as compared to both controls and patients with just medications, who did not differ from each other across assessment sessions. In contrast, STN-DBS led to worse performance at regulars (grammar) but not irregulars (lexicon), as compared to the other two subject groups, who again did not differ. The results suggest that STN-DBS negatively impacts language in early PD, but may be specific in depressing aspects of grammatical and not lexical processing. The finding that STN-DBS affects both motor and grammar (but not lexical) functions strengthens the view that both depend on basal ganglia circuitry, although the mechanisms for its differential impact on the two (improved motor, impaired grammar) remain to be elucidated. PMID:22880117
Scattone, Dorothy; Raggio, Donald J; May, Warren
2011-10-01
The Vineland Adaptive Behavior Scales, Second Edition (Vineland-II), and Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III) were administered to 65 children between the ages of 12 and 42 months referred for developmental delays. Standard scores and age equivalents were compared across instruments. Analyses showed no statistical difference between Vineland-II ABC standard scores and cognitive levels obtained from the Bayley-III. However, Vineland-II Communication and Motor domain standard scores were significantly higher than corresponding scores on the Bayley-III. In addition, age equivalent scores were significantly higher on the Vineland-II for the fine motor subdomain. Implications for early intervention are discussed.
Bender, Stephan; Resch, Franz; Klein, Christoph; Renner, Tobias; Fallgatter, Andreas J; Weisbrod, Matthias; Romanos, Marcel
2012-01-01
Hyperactivity is one of the core symptoms in attention deficit hyperactivity disorder (ADHD). However, it remains unclear in which way the motor system itself and its development are affected by the disorder. Movement-related potentials (MRP) can separate different stages of movement execution, from the programming of a movement to motor post-processing and memory traces. Pre-movement MRP are absent or positive during early childhood and display a developmental increase of negativity. We examined the influences of response-speed, an indicator of the level of attention, and stimulant medication on lateralized MRP in 16 children with combined type ADHD compared to 20 matched healthy controls. We detected a significantly diminished lateralisation of MRP over the pre-motor and primary motor cortex during movement execution (initial motor potential peak, iMP) in patients with ADHD. Fast reactions (indicating increased visuo-motor attention) led to increased lateralized negativity during movement execution only in healthy controls, while in children with ADHD faster reaction times were associated with more positive amplitudes. Even though stimulant medication had some effect on attenuating group differences in lateralized MRP, this effect was insufficient to normalize lateralized iMP amplitudes. A reduced focal (lateralized) motor cortex activation during the command to muscle contraction points towards an immature motor system and a maturation delay of the (pre-) motor cortex in children with ADHD. A delayed maturation of the neuronal circuitry, which involves primary motor cortex, may contribute to ADHD pathophysiology.
Motor and cognitive growth following a Football Training Program.
Alesi, Marianna; Bianco, Antonino; Padulo, Johnny; Luppina, Giorgio; Petrucci, Marco; Paoli, Antonio; Palma, Antonio; Pepi, Annamaria
2015-01-01
Motor and cognitive growth in children may be influenced by football practice. Therefore the aim of this study was to assess whether a Football Training Program taken over 6 months would improve motor and cognitive performances in children. Motor skills concerned coordinative skills, running, and explosive legs strength. Cognitive abilities involved visual discrimination times and visual selective attention times. Forty-six children with chronological age of ∼9.10 years, were divided into two groups: Group 1 (n = 24) attended a Football Exercise Program and Group 2 (n = 22) was composed of sedentary children. Their abilities were measured by a battery of tests including motor and cognitive tasks. Football Exercise Program resulted in improved running, coordination, and explosive leg strength performances as well as shorter visual discrimination times in children regularly attending football courses compared with their sedentary peers. On the whole these results support the thesis that the improvement of motor and cognitive abilities is related not only to general physical activity but also to specific ability related to the ball. Football Exercise Programs is assumed to be a "natural and enjoyable tool" to enhance cognitive resources as well as promoting and encouraging the participation in sport activities from early development.
A Wireless Sensor System for Real-Time Monitoring and Fault Detection of Motor Arrays
Medina-García, Jonathan; Sánchez-Rodríguez, Trinidad; Galán, Juan Antonio Gómez; Delgado, Aránzazu; Gómez-Bravo, Fernando; Jiménez, Raúl
2017-01-01
This paper presents a wireless fault detection system for industrial motors that combines vibration, motor current and temperature analysis, thus improving the detection of mechanical faults. The design also considers the time of detection and further possible actions, which are also important for the early detection of possible malfunctions, and thus for avoiding irreversible damage to the motor. The remote motor condition monitoring is implemented through a wireless sensor network (WSN) based on the IEEE 802.15.4 standard. The deployed network uses the beacon-enabled mode to synchronize several sensor nodes with the coordinator node, and the guaranteed time slot mechanism provides data monitoring with a predetermined latency. A graphic user interface offers remote access to motor conditions and real-time monitoring of several parameters. The developed wireless sensor node exhibits very low power consumption since it has been optimized both in terms of hardware and software. The result is a low cost, highly reliable and compact design, achieving a high degree of autonomy of more than two years with just one 3.3 V/2600 mAh battery. Laboratory and field tests confirm the feasibility of the wireless system. PMID:28245623
Kobesova, Alena; Kolar, Pavel
2014-01-01
Three levels of sensorimotor control within the central nervous system (CNS) can be distinguished. During the neonatal stage, general movements and primitive reflexes are controlled at the spinal and brain stem levels. Analysis of the newborn's spontaneous general movements and the assessment of primitive reflexes is crucial in the screening and early recognition of a risk for abnormal development. Following the newborn period, the subcortical level of the CNS motor control emerges and matures mainly during the first year of life. This allows for basic trunk stabilization, a prerequisite for any phasic movement and for the locomotor function of the extremities. At the subcortical level, orofacial muscles and afferent information are automatically integrated within postural-locomotor patterns. Finally, the cortical (the highest) level of motor control increasingly becomes activated. Cortical control is important for the individual qualities and characteristics of movement. It also allows for isolated segmental movement and relaxation. A child with impaired cortical motor control may be diagnosed with developmental dyspraxia or developmental coordination disorder. Human ontogenetic models, i.e., developmental motor patterns, can be used in both the diagnosis and treatment of locomotor system dysfunction. Copyright © 2013 Elsevier Ltd. All rights reserved.
A Wireless Sensor System for Real-Time Monitoring and Fault Detection of Motor Arrays.
Medina-García, Jonathan; Sánchez-Rodríguez, Trinidad; Galán, Juan Antonio Gómez; Delgado, Aránzazu; Gómez-Bravo, Fernando; Jiménez, Raúl
2017-02-25
This paper presents a wireless fault detection system for industrial motors that combines vibration, motor current and temperature analysis, thus improving the detection of mechanical faults. The design also considers the time of detection and further possible actions, which are also important for the early detection of possible malfunctions, and thus for avoiding irreversible damage to the motor. The remote motor condition monitoring is implemented through a wireless sensor network (WSN) based on the IEEE 802.15.4 standard. The deployed network uses the beacon-enabled mode to synchronize several sensor nodes with the coordinator node, and the guaranteed time slot mechanism provides data monitoring with a predetermined latency. A graphic user interface offers remote access to motor conditions and real-time monitoring of several parameters. The developed wireless sensor node exhibits very low power consumption since it has been optimized both in terms of hardware and software. The result is a low cost, highly reliable and compact design, achieving a high degree of autonomy of more than two years with just one 3.3 V/2600 mAh battery. Laboratory and field tests confirm the feasibility of the wireless system.
Motor and cognitive growth following a Football Training Program
Alesi, Marianna; Bianco, Antonino; Padulo, Johnny; Luppina, Giorgio; Petrucci, Marco; Paoli, Antonio; Palma, Antonio; Pepi, Annamaria
2015-01-01
Motor and cognitive growth in children may be influenced by football practice. Therefore the aim of this study was to assess whether a Football Training Program taken over 6 months would improve motor and cognitive performances in children. Motor skills concerned coordinative skills, running, and explosive legs strength. Cognitive abilities involved visual discrimination times and visual selective attention times. Forty-six children with chronological age of ∼9.10 years, were divided into two groups: Group 1 (n = 24) attended a Football Exercise Program and Group 2 (n = 22) was composed of sedentary children. Their abilities were measured by a battery of tests including motor and cognitive tasks. Football Exercise Program resulted in improved running, coordination, and explosive leg strength performances as well as shorter visual discrimination times in children regularly attending football courses compared with their sedentary peers. On the whole these results support the thesis that the improvement of motor and cognitive abilities is related not only to general physical activity but also to specific ability related to the ball. Football Exercise Programs is assumed to be a “natural and enjoyable tool” to enhance cognitive resources as well as promoting and encouraging the participation in sport activities from early development. PMID:26579014
Mireku, Michael O; Davidson, Leslie L; Zoumenou, Romeo; Massougbodji, Achille; Cot, Michel; Bodeau-Livinec, Florence
2018-06-07
To investigate the relationship between prenatal geophagy, maternal prenatal haematological indices, malaria, helminth infections and cognitive and motor development among offspring. At least a year after delivery, 552 of 863 HIV-negative mothers with singleton births who completed a clinical trial comparing the efficacy of sulfadoxine-pyrimethamine and mefloquine during pregnancy in Allada, Benin, responded to a nutrition questionnaire including their geophageous habits during pregnancy. During the clinical trial, helminth infection, malaria, haemoglobin and ferritin concentrations were assessed at 1st and 2nd antenatal care visits (ANV) and at delivery. After the first ANV, women were administered daily iron and folic acid supplements until three what? post-delivery. Singleton children were assessed for cognitive function at age 1 year using the Mullen Scales of Early Learning. The prevalence of geophagy during pregnancy was 31.9%. Pregnant women reporting geophagy were more likely to be anaemic (AOR= 1.9, 95% CI [1.1, 3.4]) at their first ANV if they reported geophagy at the first trimester. Overall, prenatal geophagy was not associated with maternal haematological indices, malaria or helminth infections, but geophagy during the third trimester and throughout pregnancy was associated with poor motor function (AOR= -3.8, 95% CI [-6.9, -0.6]) and increased odds of geophageous behaviour in early childhood, respectively. Prenatal geophagy is not associated with haematological indices in the presence of micronutrient supplementation. However, it may be associated with poor child motor function and infant geophagy. Geophagy should be screened early in pregnancy. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Excitability properties of motor axons in adults with cerebral palsy
Klein, Cliff S.; Zhou, Ping; Marciniak, Christina
2015-01-01
Cerebral palsy (CP) is a permanent disorder caused by a lesion to the developing brain that significantly impairs motor function. The neurophysiological mechanisms underlying motor impairment are not well understood. Specifically, few have addressed whether motoneuron or peripheral axon properties are altered in CP, even though disruption of descending inputs to the spinal cord may cause them to change. In the present study, we have compared nerve excitability properties in seven adults with CP and fourteen healthy controls using threshold tracking techniques by stimulating the median nerve at the wrist and recording the compound muscle action potential over the abductor pollicis brevis. The excitability properties in the CP subjects were found to be abnormal. Early and late depolarizing and hyperpolarizing threshold electrotonus was significantly larger (i.e., fanning out), and resting current–threshold (I/V) slope was smaller, in CP compared to control. In addition resting threshold and rheobase tended to be larger in CP. According to a modeling analysis of the data, an increase in leakage current under or through the myelin sheath, i.e., the Barrett–Barrett conductance, combined with a slight hyperpolarization of the resting membrane potential, best explained the group differences in excitability properties. There was a trend for those with greater impairment in gross motor function to have more abnormal axon properties. The findings indicate plasticity of motor axon properties far removed from the site of the lesion. We suspect that this plasticity is caused by disruption of descending inputs to the motoneurons at an early age around the time of their injury. PMID:26089791
Motor, cognitive, and functional declines contribute to a single progressive factor in early HD.
Schobel, Scott A; Palermo, Giuseppe; Auinger, Peggy; Long, Jeffrey D; Ma, Shiyang; Khwaja, Omar S; Trundell, Dylan; Cudkowicz, Merit; Hersch, Steven; Sampaio, Cristina; Dorsey, E Ray; Leavitt, Blair R; Kieburtz, Karl D; Sevigny, Jeffrey J; Langbehn, Douglas R; Tabrizi, Sarah J
2017-12-12
To identify an improved measure of clinical progression in early Huntington disease (HD) using data from prospective observational cohort studies and placebo group data from randomized double-blind clinical trials. We studied Unified Huntington Disease Rating Scale (UHDRS) and non-UHDRS clinical measures and brain measures of progressive atrophy in 1,668 individuals with early HD followed up prospectively for up to 30 to 36 months of longitudinal clinical follow-up. The results demonstrated that a composite measure of motor, cognitive, and global functional decline best characterized clinical progression and was most strongly associated with brain measures of progressive corticostriatal atrophy. Use of a composite motor, cognitive, and global functional clinical outcome measure in HD provides an improved measure of clinical progression more related to measures of progressive brain atrophy and provides an opportunity for enhanced clinical trial efficiency relative to currently used individual motor, cognitive, and functional outcome measures. © 2017 American Academy of Neurology.
Taking the brakes off the learning curve.
Gheysen, Freja; Lasne, Gabriel; Pélégrini-Issac, Mélanie; Albouy, Genevieve; Meunier, Sabine; Benali, Habib; Doyon, Julien; Popa, Traian
2017-03-01
Motor learning is characterized by patterns of cerebello-striato-cortical activations shifting in time, yet the early dynamic and function of these activations remains unclear. Five groups of subjects underwent either continuous or intermittent theta-burst stimulation of one cerebellar hemisphere, or no stimulation just before learning a new motor sequence during fMRI scanning. We identified three phases during initial learning: one rapid, one slow, and one quasi-asymptotic performance phase. These phases were not changed by left cerebellar stimulation. Right cerebellar inhibition, however, accelerated learning and enhanced brain activation in critical motor learning-related areas during the first phase, continuing with reduced brain activation but high-performance in late phase. Right cerebellar excitation did not affect the early learning process, but slowed learning significantly in late phase, along with increased brain activation. We conclude that the right cerebellum is a key factor coordinating other neuronal loops in the early acquisition of an explicit motor sequential skill. Hum Brain Mapp 38:1676-1691, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Tandonnet, Christophe; Garry, Michael I; Summers, Jeffery J
2013-07-01
To make a decision may rely on accumulating evidence in favor of one alternative until a threshold is reached. Sequential-sampling models differ by the way of accumulating evidence and the link with action implementation. Here, we tested a model's prediction of an early action implementation specific to potential actions. We assessed the dynamics of action implementation in go/no-go and between-hand choice tasks by transcranial magnetic stimulation of the motor cortex (single- or paired-pulse TMS; 3-ms interstimulus interval). Prior to implementation of the selected action, the amplitude of the motor evoked potential first increased whatever the visual stimulus but only for the hand potentially involved in the to-be-produced action. These findings suggest that visual stimuli can trigger an early motor activation specific to potential actions, consistent with race-like models with continuous transmission between decision making and action implementation. Copyright © 2013 Society for Psychophysiological Research.
ERIC Educational Resources Information Center
Reikerås, Elin; Moser, Thomas; Tønnessen, Finn Egil
2017-01-01
This study examines possible relations between early mathematical skills and motor life skills in 450 toddlers aged two years and nine months. The study employs baseline data from the longitudinal Stavanger Project--The Learning Child. The children's mathematical skills and motor life skills were assessed by structured observation in the natural…
Inhibition of myostatin does not ameliorate disease features of severe spinal muscular atrophy mice.
Sumner, Charlotte J; Wee, Claribel D; Warsing, Leigh C; Choe, Dong W; Ng, Andrew S; Lutz, Cathleen; Wagner, Kathryn R
2009-09-01
There is currently no treatment for the inherited motor neuron disease, spinal muscular atrophy (SMA). Severe SMA causes lower motor neuron loss, impaired myofiber development, profound muscle weakness and early mortality. Myostatin is a transforming growth factor-beta family member that inhibits muscle growth. Loss or blockade of myostatin signaling increases muscle mass and improves muscle strength in mouse models of primary muscle disease and in the motor neuron disease, amyotrophic lateral sclerosis. In this study, we evaluated the effects of blocking myostatin signaling in severe SMA mice (hSMN2/delta7SMN/mSmn(-/-)) by two independent strategies: (i) transgenic overexpression of the myostatin inhibitor follistatin and (ii) post-natal administration of a soluble activin receptor IIB (ActRIIB-Fc). SMA mice overexpressing follistatin showed little increase in muscle mass and no improvement in motor function or survival. SMA mice treated with ActRIIB-Fc showed minimal improvement in motor function, and no extension of survival compared with vehicle-treated mice. Together these results suggest that inhibition of myostatin may not be a promising therapeutic strategy in severe forms of SMA.
Non-motor symptoms in Parkinson's disease.
Poewe, W
2008-04-01
Although still considered a paradigmatic movement disorder, Parkinson's disease (PD) is associated with a broad spectrum of non-motor symptoms. These include disorders of mood and affect with apathy, anhedonia and depression, cognitive dysfunction and hallucinosis, as well as complex behavioural disorders. Sensory dysfunction with hyposmia or pain is almost universal, as are disturbances of sleep-wake cycle regulation. Autonomic dysfunction including orthostatic hypotension, urogenital dysfunction and constipation is also present to some degree in a majority of patients. Whilst overall non-motor symptoms become increasingly prevalent with advancing disease, many of them can also antedate the first occurrence of motor signs - most notably depression, hyposmia or rapid eye movement sleep behaviour disorder (RBD). Although exact clinicopathological correlations for most of these non-motor features are still poorly understood, the occurrence of constipation, RBD or hyposmia prior to the onset of clinically overt motor dysfunction would appear consistent with the ascending hypothesis of PD pathology proposed by Braak and colleagues. Screening these early non-motor features might, therefore, be one approach towards early 'preclinical' diagnosis of PD. This review article provides an overview of the clinical spectrum of non-motor symptoms in PD together with a brief review of treatment options.
Disease Mechanisms and Therapeutic Approaches in Spinal Muscular Atrophy
Tisdale, Sarah
2015-01-01
Motor neuron diseases are neurological disorders characterized primarily by the degeneration of spinal motor neurons, skeletal muscle atrophy, and debilitating and often fatal motor dysfunction. Spinal muscular atrophy (SMA) is an autosomal-recessive motor neuron disease of high incidence and severity and the most common genetic cause of infant mortality. SMA is caused by homozygous mutations in the survival motor neuron 1 (SMN1) gene and retention of at least one copy of the hypomorphic gene paralog SMN2. Early studies established a loss-of-function disease mechanism involving ubiquitous SMN deficiency and suggested SMN upregulation as a possible therapeutic approach. In recent years, greater knowledge of the central role of SMN in RNA processing combined with deep characterization of animal models of SMA has significantly advanced our understanding of the cellular and molecular basis of the disease. SMA is emerging as an RNA disease not limited to motor neurons, but one that involves dysfunction of motor circuits that comprise multiple neuronal subpopulations and possibly other cell types. Advances in SMA research have also led to the development of several potential therapeutics shown to be effective in animal models of SMA that are now in clinical trials. These agents offer unprecedented promise for the treatment of this still incurable neurodegenerative disease. PMID:26063904
2009-01-01
Background Early developmental interventions to prevent the high rate of neurodevelopmental problems in very preterm children, including cognitive, motor and behavioral impairments, are urgently needed. These interventions should be multi-faceted and include modules for caregivers given their high rates of mental health problems. Methods/Design We have designed a randomized controlled trial to assess the effectiveness of a preventative care program delivered at home over the first 12 months of life for infants born very preterm (<30 weeks of gestational age) and their families, compared with standard medical follow-up. The aim of the program, delivered over nine sessions by a team comprising a physiotherapist and psychologist, is to improve infant development (cognitive, motor and language), behavioral regulation, caregiver-child interactions and caregiver mental health at 24 months' corrected age. The infants will be stratified by severity of brain white matter injury (assessed by magnetic resonance imaging) at term equivalent age, and then randomized. At 12 months' corrected age interim outcome measures will include motor development assessed using the Alberta Infant Motor Scale and the Neurological Sensory Motor Developmental Assessment. Caregivers will also complete a questionnaire at this time to obtain information on behavior, parenting, caregiver mental health, and social support. The primary outcomes are at 24 months' corrected age and include cognitive, motor and language development assessed with the Bayley Scales of Infant and Toddler Development (Bayley-III). Secondary outcomes at 24 months include caregiver-child interaction measured using an observational task, and infant behavior, parenting, caregiver mental health and social support measured via standardized parental questionnaires. Discussion This paper presents the background, study design and protocol for a randomized controlled trial in very preterm infants utilizing a preventative care program in the first year after discharge home designed to improve cognitive, motor and behavioral outcomes of very preterm children and caregiver mental health at two-years' corrected age. Clinical Trial Registration Number ACTRN12605000492651 PMID:19954550
A Study of Early Fine Motor Intervention in Down's Syndrome Children
ERIC Educational Resources Information Center
Aparicio, Teresa Sanz; Balana, Javier Menendez
2009-01-01
The marked delay in acquisition of fine motor skills in trisomic-21/Down's syndrome children is undeniable. In this study, we began with an affirmation that the cause of this deficit could be found in a different environment for which early intervention is essential. A sample of 30 Down's syndrome children was used to study at different ages: six…
Improving Fine Motor Skills in Young Children: An Intervention Study
ERIC Educational Resources Information Center
Brown, Carol G.
2010-01-01
The aim of this study was to evaluate the effect of the Primary Movement programme on the fine motor skills of children in an early years setting in an area of high social disadvantage. Primary Movement is a programme which can be used as an early intervention technique to help children inhibit persistent primary reflexes that have been shown to…
Testing promotes effector transfer.
Boutin, Arnaud; Panzer, Stefan; Salesse, Robin N; Blandin, Yannick
2012-11-01
The retrieval of information from memory during testing has recently been shown to promote transfer in the verbal domain. Motor-related research, however, has ignored testing as a relevant method to enhance motor transfer. We thus investigated whether testing has the potential to induce generalised motor memories by favouring effector transfer. Participants were required to reproduce a spatial-temporal pattern of elbow extensions and flexions with their dominant right arm. We tested the ability of participants to transfer the original pattern (extrinsic transformation; i.e., goal-based configuration) or the mirrored pattern (intrinsic transformation; i.e., movement-based configuration) to the unpractised non-dominant left arm. To evaluate how testing affects motor transfer at 24-h testing, participants were either administered an initial testing session during early practice (early testing group) or shortly after the end of practice (late testing group; i.e., no alternation between practice and testing sessions). No initial testing session was completed for the control group. We found better effector transfer at 24-h testing for the early testing group for both extrinsic and intrinsic transformations of the movement pattern when compared with the control group, while no testing benefit was observed for the late testing group. This indicates that testing positively affects motor learning, yielding enhanced long-term transfer capabilities. We thus demonstrate the critical role of retrieval practice via testing during the process of motor memory encoding, and provide the conditions under which testing effectively contributes to the generalisation of motor memories. Copyright © 2012 Elsevier B.V. All rights reserved.
Several studies in the literature have shown that exposure of mice and rats to nicotine early in development alters its effects when the rodents are subsequently challenged with nicotine. Anatoxin-a is a nicotinic agonist produced by several genera of cyanobacteria, and has caus...
Physical Activity and Walking Onset in Infants with Down Syndrome
ERIC Educational Resources Information Center
Lloyd, Meghann; Burghardt, Amy; Ulrich, Dale A.; Angulo-Barroso, Rosa
2010-01-01
Infants with Down syndrome (DS) are described as being less active and they also experience significant delays in motor development. It is hypothesized that early infant physical activity may be influential for the acquisition of independent walking. Physical activity was monitored longitudinally in 30 infants with DS starting at an average age of…
Preschool Music Curricula: Children's Music Development Program.
ERIC Educational Resources Information Center
Levinowitz, Lili Muhler; Gordon, Edwin Elias
These developmental music curricula for preschool children 18 months to 3 years old, 3-year-olds, 4-year-olds, and 5- to 6-year-olds are specifically designed to meet perceptual-motor, cognitive-linguistic, social-emotional, and music needs of children of different ages. Materials provided in this paper include: (1) a rationale for early music…
Fine Motor Skills and Early Comprehension of the World: Two New School Readiness Indicators
ERIC Educational Resources Information Center
Grissmer, David; Grimm, Kevin J.; Aiyer, Sophie M.; Murrah, William M.; Steele, Joel S.
2010-01-01
Duncan et al. (2007) presented a new methodology for identifying kindergarten readiness factors and quantifying their importance by determining which of children's developing skills measured around kindergarten entrance would predict later reading and math achievement. This article extends Duncan et al.'s work to identify kindergarten readiness…
Early versus Late Entry to Preschool: Some Developmental Implications
ERIC Educational Resources Information Center
Zupancic, Maja; Kavcic, Tina
2004-01-01
This study explores the relationship between cognitive, motor, social and personality development of 3-year-old children and the age of their entry into preschool, which ranged from 10 to 45 months. 247 children from 17 preschools in different regions of Slovenia, all implementing the same National Curriculum, participated. Preschool teachers…
Movement Based Language: The Van Dijk Model.
ERIC Educational Resources Information Center
Magin, Kevin D.
The paper examines the development of language in the deaf blind child with emphasis on the child's motoric behavior and imitation as the initial step in language acquisition. Discussed are the following early developmental stages: symbionic (the close physical and emotional identification of child with the mother to be or new mother); resonance…
Nelson, Lindsey; Lapsiwala, Samir; Haughton, Victor M; Noyes, Jane; Sadrzadeh, Amir H; Moritz, Chad H; Meyerand, M Elizabeth; Badie, Behnam
2002-11-01
Injury to the supplementary motor area (SMA) is thought to be responsible for transient motor and speech deficits following resection of tumors involving the medial frontal lobe. Because direct intraoperative localization of SMA is difficult, the authors hypothesized that functional magnetic resonance (fMR) imaging might be useful in predicting the risk of postoperative deficits in patients who undergo resection of tumors in this region. Twelve patients who had undergone fMR imaging mapping while performing speech and motor tasks prior to excision of their tumor, that is, based on anatomical landmarks involving the SMA, were included in this study. The distance between the edge of the tumor and the center of SMA activation was measured and was correlated with the risk of incurring postoperative neurological deficits. In every patient, SMA activation was noted in the superior frontal gyrus on preoperative fMR imaging. Two speech and two motor deficits typical of SMA injury were observed in three of the 12 patients. The two speech deficits occurred in patients with tumors involving the dominant hemisphere, whereas one of the motor deficits occurred in a patient with a tumor in the nondominant hemisphere. The risk of developing a postoperative speech or motor deficit was 100% when the distance between the SMA and the tumor was 5 mm or less. When the distance between SMA activation and the lesion was greater than 5 mm, the risk of developing a motor or a speech deficit was 0% (p = 0.0007). Early data from this study indicated that fMR imaging might be useful in localizing the SMA and in determining the risk of postoperative deficits in patients who undergo resection of tumors located in the medial frontal lobe.
Gross Motor Development in Children Aged 3-5 Years, United States 2012.
Kit, Brian K; Akinbami, Lara J; Isfahani, Neda Sarafrazi; Ulrich, Dale A
2017-07-01
Objective Gross motor development in early childhood is important in fostering greater interaction with the environment. The purpose of this study is to describe gross motor skills among US children aged 3-5 years using the Test of Gross Motor Development (TGMD-2). Methods We used 2012 NHANES National Youth Fitness Survey (NNYFS) data, which included TGMD-2 scores obtained according to an established protocol. Outcome measures included locomotor and object control raw and age-standardized scores. Means and standard errors were calculated for demographic and weight status with SUDAAN using sample weights to calculate nationally representative estimates, and survey design variables to account for the complex sampling methods. Results The sample included 339 children aged 3-5 years. As expected, locomotor and object control raw scores increased with age. Overall mean standardized scores for locomotor and object control were similar to the mean value previously determined using a normative sample. Girls had a higher mean locomotor, but not mean object control, standardized score than boys (p < 0.05). However, the mean locomotor standardized scores for both boys and girls fell into the range categorized as "average." There were no other differences by age, race/Hispanic origin, weight status, or income in either of the subtest standardized scores (p > 0.05). Conclusions In a nationally representative sample of US children aged 3-5 years, TGMD-2 mean locomotor and object control standardized scores were similar to the established mean. These results suggest that standardized gross motor development among young children generally did not differ by demographic or weight status.
Salimi, I; Friel, KM; Martin, JH
2008-01-01
Motor development depends on forming specific connections between the corticospinal tract (CST) and the spinal cord. Blocking CST activity in kittens during the critical period for establishing connections with spinal motor circuits results in permanent impairments in connectivity and function. The changes in connections are consistent with the hypothesis that the inactive tract is less competitive in developing spinal connections than the active tract. In this study we tested the competition hypothesis by determining if activating CST axons, after prior silencing during the critical period, abrogated development of aberrant corticospinal connections and motor impairments. In kittens, we inactivated motor cortex by muscimol infusion between postnatal weeks 5-7. We next electrically stimulated CST axons in the medullary pyramid 2.5 hours daily, between weeks 7-10. In controls (n=3), CST terminations were densest within the contralateral deeper, premotor, spinal layers. After prior inactivation (n=3), CST terminations were densest within the dorsal, somatic sensory, layers. There were more ipsilateral terminations from the active tract. During visually guided locomotion, there was a movement endpoint impairment. Stimulation after inactivation (n=6) resulted in significantly fewer terminations in the sensory layers and more in the premotor layers, and fewer ipsilateral connections from active cortex. Chronic stimulation reduced the current threshold for evoking contralateral movements by pyramidal stimulation, suggesting strengthening of connections. Importantly, stimulation significantly improved stepping accuracy. These findings show the importance of activity-dependent processes in specifying CST connections. They also provide a strategy for harnessing activity to rescue CST axons at risk of developing aberrant connections after CNS injury. PMID:18632946
Whitmore, Ani S; Romski, Mary Ann; Sevcik, Rose A
2014-09-01
This exploratory study examined the potential secondary outcome of an early augmented language intervention that incorporates speech-generating devices (SGD) on motor skill use for children with developmental delays. The data presented are from a longitudinal study by Romski and colleagues. Toddlers in the augmented language interventions were either required (Augmented Communication-Output; AC-O) or not required (Augmented Communication-Input; AC-I) to use the SGD to produce an augmented word. Three standardized assessments and five event-based coding schemes measured the participants' language abilities and motor skills. Toddlers in the AC-O intervention used more developmentally appropriate motor movements and became more accurate when using the SGD to communicate than toddlers in the AC-I intervention. AAC strategies, interventionist/parent support, motor learning opportunities, and physical feedback may all contribute to this secondary benefit of AAC interventions that use devices.
Persson, Kristina; Sonnander, Karin; Magnusson, Margaretha; Sarkadi, Anna; Lucas, Steven
2017-01-01
Aim This study aimed to evaluate the clinical utility of the Structured Observation of Motor Performance in Infants (SOMP-I) when used by nurses in routine child healthcare by analyzing the nurses’ SOMP-I assessments and the actions taken when motor problems were suspected. Method Infants from three child health centers in Uppsala County, Sweden, were consecutively enrolled in a longitudinal study. The 242 infants were assessed using SOMP-I by the nurse responsible for the infant as part of the regular well-child visits at as close to 2, 4, 6 and 10 months of age as possible. The nurses noted actions taken such as giving advice, scheduling an extra follow-up or referring the infant to specialized care. The infants’ motor development was reassessed at 18 months of age through review of medical records or parental report. Results The assessments of level of motor development at 2 and 10 months showed a distribution corresponding to the percentile distribution of the SOMP-I method. Fewer infants than expected were assessed as delayed at 4 and 6 months or deficient in quality at all assessment ages. When an infant was assessed as delayed in level or deficient in quality, the likelihood of the nurse taking actions increased. This increased further if both delay and quality deficit were found at the same assessment or if one or both were found at repeated assessments. The reassessment of the motor development at 18 months did not reveal any missed infants with major motor impairments. Interpretation The use of SOMP-I appears to demonstrate favorable clinical utility in routine child healthcare as tested here. Child health nurses can assess early motor performance using this standardized assessment method, and using the method appears to support them the clinical decision-making. PMID:28723929
Shaping Early Reorganization of Neural Networks Promotes Motor Function after Stroke
Volz, L. J.; Rehme, A. K.; Michely, J.; Nettekoven, C.; Eickhoff, S. B.; Fink, G. R.; Grefkes, C.
2016-01-01
Neural plasticity is a major factor driving cortical reorganization after stroke. We here tested whether repetitively enhancing motor cortex plasticity by means of intermittent theta-burst stimulation (iTBS) prior to physiotherapy might promote recovery of function early after stroke. Functional magnetic resonance imaging (fMRI) was used to elucidate underlying neural mechanisms. Twenty-six hospitalized, first-ever stroke patients (time since stroke: 1–16 days) with hand motor deficits were enrolled in a sham-controlled design and pseudo-randomized into 2 groups. iTBS was administered prior to physiotherapy on 5 consecutive days either over ipsilesional primary motor cortex (M1-stimulation group) or parieto-occipital vertex (control-stimulation group). Hand motor function, cortical excitability, and resting-state fMRI were assessed 1 day prior to the first stimulation and 1 day after the last stimulation. Recovery of grip strength was significantly stronger in the M1-stimulation compared to the control-stimulation group. Higher levels of motor network connectivity were associated with better motor outcome. Consistently, control-stimulated patients featured a decrease in intra- and interhemispheric connectivity of the motor network, which was absent in the M1-stimulation group. Hence, adding iTBS to prime physiotherapy in recovering stroke patients seems to interfere with motor network degradation, possibly reflecting alleviation of post-stroke diaschisis. PMID:26980614
Kanda, Toyoko; Pidcock, Frank S; Hayakawa, Katumi; Yamori, Yuriko; Shikata, Yuko
2004-03-01
The objective of this study is to determine the clinical effectiveness of early onset long-term intensive physiotherapy on motor development in children with spastic diplegic cerebral palsy (CP). The study was a non-randomized cohort study with 62 months (mean) follow-up. The participants were ten infants who were first examined before 3 months of age corrected for prematurity. All had a gestational age of less than 33 weeks and a birth weight of less than 2000 g. Brain magnetic resonance imaging revealed periventricular white matter injury in nine subjects and moderate grade bilateral porencephaly in one. Five completed a full course of training of 52 months (mean), two did not receive therapy, and three received an insufficient course of therapy. The study was conducted at the Regional Center for Children with Disabilities including outpatient clinics and a school for children with special needs. The Vojta Method was used, which is an extensive family oriented physiotherapy program which uses isometric strengthening of muscles with tactile stimulation. Subjects were evaluated for the highest motor developmental level at the outcome evaluation 59 months (mean) after initiation of therapy. Four of the five who completed training could either stand still for 5 s or walk at the time of the outcome evaluation 52 months after the beginning of the therapy program. None of the five subjects with no training or insufficient training could accomplish this task when evaluated 64 months following therapy initiation. This was a statistically significant difference (P = 0.0278). A consistently applied physiotherapy program resulted in better motor outcomes in this group of children at risk for developing spastic diplegic CP.
Zhang, Xiaoli; Rocha-Ferreira, Eridan; Li, Tao; Vontell, Regina; Jabin, Darakhshan; Hua, Sha; Zhou, Kai; Nazmi, Arshed; Albertsson, Anna-Maj; Sobotka, Kristina; Ek, Joakim; Thornton, Claire; Hagberg, Henrik; Mallard, Carina; Leavenworth, Jianmei W; Zhu, Changlian; Wang, Xiaoyang
2017-12-20
Infection and sepsis are associated with brain white matter injury in preterm infants and the subsequent development of cerebral palsy. In the present study, we used a neonatal mouse sepsis-induced white matter injury model to determine the contribution of different T cell subsets (αβT cells and γδT cells) to white matter injury and consequent behavioral changes. C57BL/6J wild-type (WT), T cell receptor (TCR) δ-deficient (Tcrd -/- , lacking γδT cells), and TCRα-deficient (Tcra -/- , lacking αβT cells) mice were administered with lipopolysaccharide (LPS) at postnatal day (PND) 2. Brain myelination was examined at PNDs 12, 26, and 60. Motor function and anxiety-like behavior were evaluated at PND 26 or 30 using DigiGait analysis and an elevated plus maze. White matter development was normal in Tcrd -/- and Tcrα -/- compared to WT mice. LPS exposure induced reductions in white matter tissue volume in WT and Tcrα -/- mice, but not in the Tcrd -/- mice, compared with the saline-treated groups. Neither LPS administration nor the T cell deficiency affected anxiety behavior in these mice as determined with the elevated plus maze. DigiGait analysis revealed motor function deficiency after LPS-induced sepsis in both WT and Tcrα -/- mice, but no such effect was observed in Tcrd -/- mice. Our results suggest that γδT cells but not αβT cells contribute to sepsis-induced white matter injury and subsequent motor function abnormalities in early life. Modulating the activity of γδT cells in the early stages of preterm white matter injury might represent a novel therapeutic strategy for the treatment of perinatal brain injury.
Heineman, Kirsten R; Bos, Arend F; Hadders-Algra, Mijna
2008-04-01
A reliable and valid instrument to assess neuromotor condition in infancy is a prerequisite for early detection of developmental motor disorders. We developed a video-based assessment of motor behaviour, the Infant Motor Profile (IMP), to evaluate motor abilities, movement variability, ability to select motor strategies, movement symmetry, and fluency. The IMP consists of 80 items and is applicable in children from 3 to 18 months. The present study aimed to test intra- and interobserver reliability and concurrent validity of the IMP with the Alberta Infant Motor Scale (AIMS) and Touwen neurological examination. The study group consisted of 40 low-risk term (median gestational age [GA] 40 wks, range 38-42 wks) and 40 high-risk preterm infants (median GA 29.6 wks, range 26-33 wks) with corrected ages 4 to 18 months (31 females, 49 males). Intra- and interobserver agreement of the IMP were satisfactory (Spearman's rho=0.9). Concurrent validity of IMP and AIMS was good (Spearman's rho=0.8, p<0.005). The IMP was able to differentiate between infants with normal neurological condition, simple minor neurological dysfunction (MND), complex MND, and abnormal neurological condition (p<0.005). This means that the IMP may be a promising tool to evaluate neurological integrity during infancy, a suggestion that needs confirmation by means of assessment of larger groups of infants with heterogeneous neurological conditions.
Wali, Ahmad; Kanwar, Dureshahwar; Khan, Safoora A; Khan, Sara
2017-12-01
Acute inflammatory demyelinating polyradiculoneuropathy (AIDP) and acute motor axonal neuropathy are the most common variants of Guillian-Barre syndrome documented in the Asian population. However, the variability of early neurophysiologic findings in the Asian population compared to western data has not been documented. Eighty-seven cases of AIDP were retrospectively reviewed for their demographic, clinical, electrophysiological, and laboratory data. Mean age of subjects was 31 ± 8 years with males more commonly affected. Motor symptoms (97%) at presentation predominated. Common early nerve conduction findings included low motor amplitudes (85%), recordable sural sensory responses (85%), and absent H-reflex responses (65%). Prolonged F-latencies were found most commonly in posterior tibial nerves (23%) in the lower limbs and median and ulnar nerves (18%) in the upper limbs. Blink reflex (BR) studies were performed in 57 patients and were abnormal in 80% of those with clinical facial weakness and in 17 of 52 patients (33%) with no clinical cranial nerve signs, suggesting subclinical cranial nerve involvement. Abnormal motor and sensory amplitudes are seen early. Prolonged distal latencies, temporal dispersion/conduction blocks and sural sparing pattern are other common early nerve conduction study findings of AIDP seen in the Pakistani population. There are no significant differences in abnormalities of conduction velocities and delayed reflex responses compared to published data. The BR can help in the early diagnosis of AIDP. © 2017 Peripheral Nerve Society.
Symptom development in childhood onset schizophrenia.
Watkins, J M; Asarnow, R F; Tanguay, P E
1988-11-01
Symptom development from birth to 12 years of age was examined in 18 children who met DSM-III criteria for schizophrenia with onset before 10 years of age. Using a follow-back design, symptom development was rated at each of four age levels using a DSM-III Symptom Rating Scale and the Achenbach Child Behavior Checklist. Results revealed a gradual developmental unfolding of a broad spectrum of symptoms affecting social, cognitive, sensory and motor functioning and beginning many years before the appearance of schizophrenic symptoms--usually in early infancy. Prior to 6 years of age, severe language deficits and motor development problems were each found in 72% of the sample and symptoms of infantile autism were found in 39% of the sample. Onset of schizophrenia occurred at an earlier age for children with a history of autistic symptoms during infancy than for other children in the sample. Schizophrenia as defined by DSM-III was entirely absent before 6 years of age.
Task-specific compensation and recovery following focal motor cortex lesion in stressed rats.
Kirkland, Scott W; Smith, Lori K; Metz, Gerlinde A
2012-03-01
One reason for the difficulty to develop effective therapies for stroke is that intrinsic factors, such as stress, may critically influence pathological mechanisms and recovery. In cognitive tasks, stress can both exaggerate and alleviate functional loss after focal ischemia in rodents. Using a comprehensive motor assessment in rats, this study examined if chronic stress and corticosterone treatment affect skill recovery and compensation in a task-specific manner. Groups of rats received daily restraint stress or oral corticosterone supplementation for two weeks prior to a focal motor cortex lesion. After lesion, stress and corticosterone treatments continued for three weeks. Motor performance was assessed in two skilled reaching tasks, skilled walking, forelimb inhibition, forelimb asymmetry and open field behavior. The results revealed that persistent stress and elevated corticosterone levels mainly limit motor recovery. Treated animals dropped larger amounts of food in successful reaches and showed exaggerated loss of forelimb inhibition early after lesion. Stress also caused a moderate, but non-significant increase in infarct size. By contrast, stress and corticosterone treatments promoted reaching success and other quantitative measures in the tray reaching task. Comparative analysis revealed that improvements are due to task-specific development of compensatory strategies. These findings suggest that stress and stress hormones may partially facilitate task-specific and adaptive compensatory movement strategies. The observations support the notion that hypothalamic-pituitary-adrenal axis activation may be a key determinant of recovery and motor system plasticity after ischemic stroke.