Sample records for early mouse embryogenesis

  1. Immunocytochemical localisation of the nucleolar protein fibrillarin and RNA polymerase I during mouse early embryogenesis.

    PubMed

    Cuadros-Fernández, J M; Esponda, P

    1996-02-01

    We have employed immunocytochemical procedures to localise the nucleolar protein fibrillarin and the enzyme RNA polymerase I in the numerous dense fibrillar bodies (nucleolar precursor bodies) which appear in the nuclei of mammalian early embryos. The aim of this study was to search for relationships between the localisation of these proteins, the changes in the structure of the nucleolar precursor bodies and the resumption of rRNA gene transcription during mouse early embryogenesis. Three human autoimmune sera which recognised fibrillarin and a rabbit antiserum created against RNA polymerase I were employed for fluorescence and electron microscopic immunocytochemical assays. A statistical analysis was also applied. Immunocytochemistry revealed that fibrillarin and RNA polymerase I showed the same localisation in the nucleolar precursor bodies. These proteins were immunolocalised only from the late 2-cell stage onward. Fibrillarin was initially detected at the periphery of the nucleolar precursor bodies and the labelling gradually increased until the morula and blastocyst stages, where normally active nucleoli are found. The pattern of increase of fibrillarin during early embryogenesis shows a parallelism with the rise in rRNA gene transcription occurring during these embryonic stages, and a possible correlation between these two phenomena is suggested. Results demonstrated that nucleolar precursor bodies differ in their biochemical composition from the nucleolus and also from the prenucleolar bodies which appear during mitosis. When anti-fibrillarin antibodies were microinjected into the male pronucleus of mouse embryos to analyse the functions of fibrillarin during early development, they partially blocked the early development of mouse embryos and only 23.8% of injected embryos reach the blastocyst stage.

  2. Setting the Clock for Fail-Safe Early Embryogenesis.

    PubMed

    Fickentscher, Rolf; Struntz, Philipp; Weiss, Matthias

    2016-10-28

    The embryogenesis of the small nematode Caenorhabditis elegans is a remarkably robust self-organization phenomenon. Cell migration trajectories in the early embryo, for example, are well explained by mechanical cues that push cells into positions where they experience the least repulsive forces. Yet, how this mechanically guided progress in development is properly timed has remained elusive so far. Here, we show that cell volumes and division times are strongly anticorrelated during the early embryogenesis of C. elegans with significant differences between somatic cells and precursors of the germline. Our experimental findings are explained by a simple model that in conjunction with mechanical guidance can account for the fail-safe early embryogenesis of C. elegans.

  3. The vertebrate phylotypic stage and an early bilaterian-related stage in mouse embryogenesis defined by genomic information.

    PubMed

    Irie, Naoki; Sehara-Fujisawa, Atsuko

    2007-01-12

    Embryos of taxonomically different vertebrates are thought to pass through a stage in which they resemble one another morphologically. This "vertebrate phylotypic stage" may represent the basic vertebrate body plan that was established in the common ancestor of vertebrates. However, much controversy remains about when the phylotypic stage appears, and whether it even exists. To overcome the limitations of studies based on morphological comparison, we explored a comprehensive quantitative method for defining the constrained stage using expressed sequence tag (EST) data, gene ontologies (GO), and available genomes of various animals. If strong developmental constraints occur during the phylotypic stage of vertebrate embryos, then genes conserved among vertebrates would be highly expressed at this stage. We established a novel method for evaluating the ancestral nature of mouse embryonic stages that does not depend on comparative morphology. The numerical "ancestor index" revealed that the mouse indeed has a highly conserved embryonic period at embryonic day 8.0-8.5, the time of appearance of the pharyngeal arch and somites. During this period, the mouse prominently expresses GO-determined developmental genes shared among vertebrates. Similar analyses revealed the existence of a bilaterian-related period, during which GO-determined developmental genes shared among bilaterians are markedly expressed at the cleavage-to-gastrulation period. The genes associated with the phylotypic stage identified by our method are essential in embryogenesis. Our results demonstrate that the mid-embryonic stage of the mouse is indeed highly constrained, supporting the existence of the phylotypic stage. Furthermore, this candidate stage is preceded by a putative bilaterian ancestor-related period. These results not only support the developmental hourglass model, but also highlight the hierarchical aspect of embryogenesis proposed by von Baer. Identification of conserved stages and tissues

  4. Diverse roles of actin in C. elegans early embryogenesis

    PubMed Central

    Velarde, Nathalie; Gunsalus, Kristin C; Piano, Fabio

    2007-01-01

    Background The actin cytoskeleton plays critical roles in early development in Caenorhabditis elegans. To further understand the complex roles of actin in early embryogenesis we use RNAi and in vivo imaging of filamentous actin (F-actin) dynamics. Results Using RNAi, we found processes that are differentially sensitive to levels of actin during early embryogenesis. Mild actin depletion shows defects in cortical ruffling, pseudocleavage, and establishment of polarity, while more severe depletion shows defects in polar body extrusion, cytokinesis, chromosome segregation, and eventually, egg production. These defects indicate that actin is required for proper oocyte development, fertilization, and a wide range of important events during early embryogenesis, including proper chromosome segregation. In vivo visualization of the cortical actin cytoskeleton shows dynamics that parallel but are distinct from the previously described myosin dynamics. Two distinct types of actin organization are observed at the cortex. During asymmetric polarization to the anterior, or the establishment phase (Phase I), actin forms a meshwork of microfilaments and focal accumulations throughout the cortex, while during the anterior maintenance phase (Phase II) it undergoes a morphological transition to asymmetrically localized puncta. The proper asymmetric redistribution is dependent on the PAR proteins, while both asymmetric redistribution and morphological transitions are dependent upon PFN-1 and NMY-2. Just before cytokinesis, actin disappears from most of the cortex and is only found around the presumptive cytokinetic furrow. Finally, we describe dynamic actin-enriched comets in the early embryo. Conclusion During early C. elegans embryogenesis actin plays more roles and its organization is more dynamic than previously described. Morphological transitions of F-actin, from meshwork to puncta, as well as asymmetric redistribution, are regulated by the PAR proteins. Results from this study

  5. Selective loss of mouse embryos due to the expression of transgenic major histocompatibility class I molecules early in embryogenesis.

    PubMed

    Aït-Azzouzene, D; Langkopf, A; Cohen, J; Bleux, C; Gendron, M C; Kanellopoulos-Langevin, C

    1998-05-01

    Among the numerous hypotheses proposed to explain the absence of fetal rejection by the mother in mammals, it has been suggested that regulation of expression of the polymorphic major histocompatibility complex (MHC) at the fetal-maternal interface plays a major role. In addition to a lack of MHC gene expression in the placenta throughout gestation, the absence of polymorphic MHC molecules on the early embryo, as well as their low level of expression after midgestation, could contribute to this important biologic phenomenon. In order to test this hypothesis, we have produced transgenic mice able to express polymorphic MHC class I molecules early in embryogenesis. We have placed the MHC class la gene H-2Kb under the control of a housekeeping gene promoter, the hydroxy-methyl-glutaryl coenzyme A reductase (HMG) gene minimal promoter. This construct has been tested for functionality after transfection into mouse fibroblast L cells. The analysis of three founder transgenic mice and their progeny suggested that fetoplacental units that could express the H-2Kb heavy chains are unable to survive in utero beyond midgestation. We have shown further that a much higher resorption rate, on days 11 to 13 of embryonic development, is observed among transgenic embryos developing from eggs microinjected at the one-cell stage with the pHMG-Kb construct than in control embryos. This lethality is not due to immune phenomena, since it is observed in histocompatible combinations between mother and fetus. These results are discussed in the context of what is currently known about the regulation of MHC expression at the fetal-maternal interface and in various transgenic mouse models.

  6. The effects of microgravity on gametogenesis, fertilization, and early embryogenesis

    NASA Astrophysics Data System (ADS)

    Tan, X.

    Gametogenesis fertilization and early embryogenesis are crucial periods for normal development afterwards In past three decades many experiments have been conducted in space and in simulated weightlessness induced by clinostats to elucidate the issue Different animal species including Drosophila wasp shrimp fish amphibian mouse rats etc have been used for the study Oogenesis and spermatogenesis are affected by microgravity in different ways Some researches found that microgravity condition perturbed the process of oogenesis in many species A significant increased frequency of chromosomal non-disjunction was found in Drosophila females resulting the loss of chromosomes during meiosis and inhibition of cell division Studies on wasp showed a decreased hatchability and accumulation of unhatched eggs when the insects were exposed to spaceflight at different stages of oogenesis For experiments conducted on vertebrate animal models the results are somehow different however Microgravity has no significant effect for fish Medaka etc amphibian South African clawed toad Xenopus laevis or mammals mouse Spermatogenesis on the other hand is more significantly affected by microgravity condition Some researches indicated sperm are sensitive to changes in gravitational force and this sensitivity affects the ability of sperm to fertilize eggs Sperm swim with higher velocity in microgravity which is coupled with altered protein phosphorylation level in sperm under microgravity condition Microgravity also induced activation of the

  7. Conservation of proteo-lipid nuclear membrane fusion machinery during early embryogenesis.

    PubMed

    Byrne, Richard D; Veeriah, Selvaraju; Applebee, Christopher J; Larijani, Banafshé

    2014-01-01

    The fusogenic lipid diacylglycerol is essential for remodeling gamete and zygote nuclear envelopes (NE) during early embryogenesis. It is unclear whether upstream signaling molecules are likewise conserved. Here we demonstrate PLCγ and its activator SFK1, which co-operate during male pronuclear envelope formation, also promote the subsequent male and female pronuclear fusion. PLCγ and SFK1 interact directly at the fusion site leading to PLCγ activation. This is accompanied by a spatially restricted reduction of PtdIns(4,5)P2. Consequently, pronuclear fusion is blocked by PLCγ or SFK1 inhibition. These findings identify new regulators of events in the early embryo and suggest a conserved "toolkit" of fusion machinery drives successive NE fusion events during embryogenesis.

  8. The cell cycle of early mammalian embryos: lessons from genetic mouse models.

    PubMed

    Artus, Jérôme; Babinet, Charles; Cohen-Tannoudji, Michel

    2006-03-01

    Genes coding for cell cycle components predicted to be essential for its regulation have been shown to be dispensable in mice, at the whole organism level. Such studies have highlighted the extraordinary plasticity of the embryonic cell cycle and suggest that many aspects of in vivo cell cycle regulation remain to be discovered. Here, we discuss the particularities of the mouse early embryonic cell cycle and review the mutations that result in cell cycle defects during mouse early embryogenesis, including deficiencies for genes of the cyclin family (cyclin A2 and B1), genes involved in cell cycle checkpoints (Mad2, Bub3, Chk1, Atr), genes involved in ubiquitin and ubiquitin-like pathways (Uba3, Ubc9, Cul1, Cul3, Apc2, Apc10, Csn2) as well as genes the function of which had not been previously ascribed to cell cycle regulation (Cdc2P1, E4F and Omcg1).

  9. Reciprocal Expression of lin-41 and the microRNAs let-7 and mir-125 During Mouse Embryogenesis

    PubMed Central

    Schulman, Betsy R. Maller; Esquela-Kerscher, Aurora; Slack, Frank J.

    2008-01-01

    In C. elegans, heterochronic genes control the timing of cell fate determination during development. Two heterochronic genes, let-7 and lin-4, encode microRNAs (miRNAs) that down-regulate a third heterochronic gene lin-41 by binding to complementary sites in its 3’UTR. let-7 and lin-4 are conserved in mammals. Here we report the cloning and sequencing of mammalian lin-41 orthologs. We find that mouse and human lin-41 genes contain predicted conserved complementary sites for let-7 and the lin-4 ortholog, mir-125, in their 3’UTRs. Mouse lin-41 (Mlin-41) is temporally expressed in developing mouse embryos, most dramatically in the limb buds. Mlin-41 is down-regulated during mid-embryogenesis at the time when mouse let-7c and mir-125 RNA levels are up-regulated. Our results suggest that mammalian lin-41 is temporally regulated by miRNAs in order to direct key developmental events such as limb formation. PMID:16247770

  10. Evolution of early embryogenesis in rhabditid nematodes

    PubMed Central

    Brauchle, Michael; Kiontke, Karin; MacMenamin, Philip; Fitch, David H. A.; Piano, Fabio

    2009-01-01

    The cell biological events that guide early embryonic development occur with great precision within species but can be quite diverse across species. How these cellular processes evolve and which molecular components underlie evolutionary changes is poorly understood. To begin to address these questions, we systematically investigated early embryogenesis, from the one- to the four-cell embryo, in 34 nematode species related to C. elegans. We found 40 cell-biological characters that captured the phenotypic differences between these species. By tracing the evolutionary changes on a molecular phylogeny, we found that these characters evolved multiple times and independently of one another. Strikingly, all these phenotypes are mimicked by single-gene RNAi experiments in C. elegans. We use these comparisons to hypothesize the molecular mechanisms underlying the evolutionary changes. For example, we predict that a cell polarity module was altered during the evolution of the Protorhabditis group and show that PAR-1, a kinase localized asymmetrically in C. elegans early embryos, is symmetrically localized in the one-cell stage of Protorhabditis group species. Our genome-wide approach identifies candidate molecules—and thereby modules—associated with evolutionary changes in cell-biological phenotypes. PMID:19643102

  11. Cell death and morphogenesis during early mouse development: Are they interconnected?

    PubMed Central

    Bedzhov, Ivan; Zernicka-Goetz, Magdalena

    2015-01-01

    Shortly after implantation the embryonic lineage transforms from a coherent ball of cells into polarized cup shaped epithelium. Recently we elucidated a previously unknown apoptosis-independent morphogenic event that reorganizes the pluripotent lineage. Polarization cues from the surrounding basement membrane rearrange the epiblast into a polarized rosette-like structure, where subsequently a central lumen is established. Thus, we provided a new model revising the current concept of apoptosis-dependent epiblast morphogenesis. Cell death however has to be tightly regulated during embryogenesis to ensure developmental success. Here, we follow the stages of early mouse development and take a glimpse at the critical signaling and morphogenic events that determine cells destiny and reshape the embryonic lineage. PMID:25640415

  12. Expression of the Fanconi anemia group A gene (Fanca) during mouse embryogenesis.

    PubMed

    Abu-Issa, R; Eichele, G; Youssoufian, H

    1999-07-15

    About 80% of all cases of Fanconi anemia (FA) can be accounted for by complementation groups A and C. To understand the relationship between these groups, we analyzed the expression pattern of the mouse FA group-A gene (Fanca) during embryogenesis and compared it with the known pattern of the group-C gene (Fancc). Northern analysis of RNA from mouse embryos at embryonic days 7, 11, 15, and 17 showed a predominant 4.5 kb band in all stages. By in situ hybridization, Fanca transcripts were found in the whisker follicles, teeth, brain, retina, kidney, liver, and limbs. There was also stage-specific variation in Fanca expression, particularly within the developing whiskers and the brain. Some tissues known to express Fancc (eg, gut) failed to show Fanca expression. These observations show that (1) Fanca is under both tissue- and stage-specific regulation in several tissues; (2) the expression pattern of Fanca is consistent with the phenotype of the human disease; and (3) Fanca expression is not necessarily coupled to that of Fancc. The presence of distinct tissue targets for FA genes suggests that some of the variability in the clinical phenotype can be attributed to the complementation group assignment.

  13. Carbohydrate-mediated responses during zygotic and early somatic embryogenesis in the endangered conifer, Araucaria angustifolia

    PubMed Central

    Elbl, Paula; De Souza, Amanda P.; Jardim, Vinicius; de Oliveira, Leandro F.; Macedo, Amanda F.; dos Santos, André L. W.; Buckeridge, Marcos S.; Floh, Eny I. S.

    2017-01-01

    Three zygotic developmental stages and two somatic Araucaria angustifolia cell lines with contrasting embryogenic potential were analyzed to identify the carbohydrate-mediated responses associated with embryo formation. Using a comparison between zygotic and somatic embryogenesis systems, the non-structural carbohydrate content, cell wall sugar composition and expression of genes involved in sugar sensing were analyzed, and a network analysis was used to identify coordinated features during embryogenesis. We observed that carbohydrate-mediated responses occur mainly during the early stages of zygotic embryo formation, and that during seed development there are coordinated changes that affect the development of the different structures (embryo and megagametophyte). Furthermore, sucrose and starch accumulation were associated with the responsiveness of the cell lines. This study sheds light on how carbohydrate metabolism is influenced during zygotic and somatic embryogenesis in the endangered conifer species, A. angustifolia. PMID:28678868

  14. Cell death and morphogenesis during early mouse development: are they interconnected?

    PubMed

    Bedzhov, Ivan; Zernicka-Goetz, Magdalena

    2015-04-01

    Shortly after implantation the embryonic lineage transforms from a coherent ball of cells into polarized cup shaped epithelium. Recently we elucidated a previously unknown apoptosis-independent morphogenic event that reorganizes the pluripotent lineage. Polarization cues from the surrounding basement membrane rearrange the epiblast into a polarized rosette-like structure, where subsequently a central lumen is established. Thus, we provided a new model revising the current concept of apoptosis-dependent epiblast morphogenesis. Cell death however has to be tightly regulated during embryogenesis to ensure developmental success. Here, we follow the stages of early mouse development and take a glimpse at the critical signaling and morphogenic events that determine cells destiny and reshape the embryonic lineage. © 2015 The Authors. Bioessays published by WILEY Periodicals, Inc.

  15. Targeted deletion of p97 (VCP/CDC48) in mouse results in early embryonic lethality.

    PubMed

    Müller, J M M; Deinhardt, K; Rosewell, I; Warren, G; Shima, D T

    2007-03-09

    The highly conserved AAA ATPase p97 (VCP/CDC48) has well-established roles in cell cycle progression, proteasome degradation and membrane dynamics. Gene disruption in Saccromyces cerevisiae, Drosophila melanogaster and Trypanosoma brucei demonstrated that p97 is essential in unicellular and multicellular organisms. To explore the requirement for p97 in mammalian cell function and embryogenesis, we disrupted the p97 locus by gene targeting. Heterozygous p97+/- mice were indistinguishable from their wild-type littermates, whereas homozygous mutants did not survive to birth and died at a peri-implantation stage. These results show that p97 is an essential gene for early mouse development.

  16. Role of Abcg2 During Mouse Embroyonic Stem Cell Diffferentiation

    EPA Science Inventory

    Role of Abcg2 During Mouse Embryonic Stem Cell Differentiation. Abcg2 is a multidrug resistance ATP-binding cassette (ABC) transporter whose activity may be considered a hallmark of stem cell plasticity. The role of Abcg2 during early embryogenesis, however, is unclear. Studies...

  17. Visualization of early post-implantation mouse embryogenesis using 3D imaging modality (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hsu, Chih-Wei; Le, Henry H.; Li-Villarreal, Nanbing; Piazza, Victor G.; Kalaga, Sowmya; Dickinson, Mary E.

    2017-02-01

    Hemodynamic force is vital to cardiovascular remodeling in the early post-implantation mouse embryo. Here, we present work using microCT and lightsheet microscopy to establish the critical sequence of developmental events required for forming functional vasculature and circulation in the embryo, yolk sac, and placenta in the context of normal and impaired flow. A flow impaired model, Mlc2a+/- will be used to determine how hemodynamic force affects the specific events during embryonic development and vascular remodeling between the 4 and 29-somite stage using microCT. We have recently established high-resolution methods for the generation of 3D image volumes from the whole embryo within the deciduum (Hsu et al., in revision). This method enables the careful characterization of 3D images of vitelline and umbilical vessel remodeling to define how poor blood flow impacts both vitelline and umbilical vessel remodeling. Novel lightsheet live imaging techniques will be used to determine the consequence of impaired blood flow on yolk sac vasculature remodeling and formation of umbilical vessels using transgenic reporters: Flk-myr::mCherry, Flk1-H2B::YFP, or ɛGlobin-GFP. High-resolution 3D imaging of fixed and ScaleA2-cleared whole mount embryos labeled with Ki67 and Caspase3 will also be performed using lightsheet microscopy to quantify the proliferation and apoptotic indexes of early post-implanted embryos and yolk sac. This multi-modality approach is aimed at revealing further information about the cellular mechanisms required for proper vessel remodeling and the initial stages in placentation during early post-implantation development.

  18. Tissue specific characterisation of Lim-kinase 1 expression during mouse embryogenesis

    PubMed Central

    Lindström, Nils O.; Neves, Carlos; McIntosh, Rebecca; Miedzybrodzka, Zosia; Vargesson, Neil; Collinson, J. Martin

    2012-01-01

    The Lim-kinase (LIMK) proteins are important for the regulation of the actin cytoskeleton, in particular the control of actin nucleation and depolymerisation via regulation of cofilin, and hence may control a large number of processes during development, including cell tensegrity, migration, cell cycling, and axon guidance. LIMK1/LIMK2 knockouts disrupt spinal cord morphogenesis and synapse formation but other tissues and developmental processes that require LIMK are yet to be fully determined. To identify tissues and cell-types that may require LIMK, we characterised the pattern of LIMK1 protein during mouse embryogenesis. We showed that LIMK1 displays an expression pattern that is temporally dynamic and tissue-specific. In several tissues LIMK1 is detected in cell-types that also express Wilms’ tumour protein 1 and that undergo transitions between epithelial and mesenchymal states, including the pleura, epicardium, kidney nephrons, and gonads. LIMK1 was also found in a subset of cells in the dorsal retina, and in mesenchymal cells surrounding the peripheral nerves. This detailed study of the spatial and temporal expression of LIMK1 shows that LIMK1 expression is more dynamic than previously reported, in particular at sites of tissue–tissue interactions guiding multiple developmental processes. PMID:21167960

  19. Ecsit is required for Bmp signaling and mesoderm formation during mouse embryogenesis

    PubMed Central

    Xiao, Changchun; Shim, Jae-hyuck; Klüppel, Michael; Zhang, Samuel Shao-Min; Dong, Chen; Flavell, Richard A.; Fu, Xin-Yuan; Wrana, Jeffrey L.; Hogan, Brigid L.M.; Ghosh, Sankar

    2003-01-01

    Bone morphogenetic proteins (Bmps) are members of the transforming growth factor β (TGFβ) superfamily that play critical roles during mouse embryogenesis. Signaling by Bmp receptors is mediated mainly by Smad proteins. In this study, we show that a targeted null mutation of Ecsit, encoding a signaling intermediate of the Toll pathway, leads to reduced cell proliferation, altered epiblast patterning, impairment of mesoderm formation, and embryonic lethality at embryonic day 7.5 (E7.5), phenotypes that mimic the Bmp receptor type1a (Bmpr1a) null mutant. In addition, specific Bmp target gene expression is abolished in the absence of Ecsit. Biochemical analysis demonstrates that Ecsit associates constitutively with Smad4 and associates with Smad1 in a Bmp-inducible manner. Together with Smad1 and Smad4, Ecsit binds to the promoter of specific Bmp target genes. Finally, knock-down of Ecsit with Ecsit-specific short hairpin RNA inhibits both Bmp and Toll signaling. Therefore, these results show that Ecsit functions as an essential component in two important signal transduction pathways and establishes a novel role for Ecsit as a cofactor for Smad proteins in the Bmp signaling pathway. PMID:14633973

  20. Zebrafish E-cadherin: expression during early embryogenesis and regulation during brain development.

    PubMed

    Babb, S G; Barnett, J; Doedens, A L; Cobb, N; Liu, Q; Sorkin, B C; Yelick, P C; Raymond, P A; Marrs, J A

    2001-06-01

    Zebrafish E-cadherin (cdh1) cell adhesion molecule cDNAs were cloned. We investigated spatial and temporal expression of cdh1 during early embryogenesis. Expression was observed in blastomeres, the anterior mesoderm during gastrulation, and developing epithelial structures. In the developing nervous system, cdh1 was detected at the pharyngula stage (24 hpf) in the midbrain-hindbrain boundary (MHB). Developmental regulation of MHB formation involves wnt1 and pax2.1. wnt1 expression preceded cdh1 expression during MHB formation, and cdh1 expression in the MHB was dependent on normal development of this structure. Copyright 2001 Wiley-Liss, Inc.

  1. Nuclear lamins and peripheral nuclear antigens during fertilization and embryogenesis in mice and sea urchins

    NASA Technical Reports Server (NTRS)

    Schatten, G.; Schatten, H.; Simerly, C.; Maul, G. G.; Chaly, N.

    1985-01-01

    Nuclear structural changes during fertilization and embryogenesis in mice and sea urchins are traced using four antibodies. The oocytes from virgin female mice, morulae and blastocytes from mated females, and gametes from the sea urchin Lytechnius variegatis are studied using mouse monoclonal antibodies to nuclear lamin A/C, monoclonal antibody to P1, human autoimmune antibodies to lamin A/C, and to lamin B. The mouse fertilization data reveal no lamins on the oocyte; however, lamins are present on the pronuclei, and chromosomes are found on the oocytes and pronuclei. It is detected that on the sea urchin sperm the lamins are reduced to acrosomal and centriolar fossae and peripheral antigens are around the sperm nucleus. The mouse sperm bind lamin antibodies regionally and do not contain antigens. Lamins and antigens are observed on both pronuclei and chromosomes during sea urchin fertilization. Mouse embryogenesis reveals that lamin A/C is not recognized at morula and blastocyst stages; however, lamin B stains are retained. In sea urchin embryogenesis lamin recognition is lost at the blastrula, gastrula, and plutei stages. It is noted that nuclear lamins lost during spermatogenesis are restored at fertilization and peripheral antigens are associated with the surface of chromosomes during meiosis and mitosis and with the periphery of the pronuclei and nuclei during interphase.

  2. Microspore embryogenesis in wheat: new marker genes for early, middle and late stages of embryo development.

    PubMed

    Sánchez-Díaz, Rosa Angélica; Castillo, Ana María; Vallés, María Pilar

    2013-09-01

    Microspore embryogenesis involves reprogramming of the pollen immature cell towards embryogenesis. We have identified and characterized a collection of 14 genes induced along different morphological phases of microspore-derived embryo development in wheat (Triticum aestivum L.) anther culture. SERKs and FLAs genes previously associated with somatic embryogenesis and reproductive tissues, respectively, were also included in this analysis. Genes involved in signalling mechanisms such as TaTPD1-like and TAA1b, and two glutathione S-transferase (GSTF2 and GSTA2) were induced when microspores had acquired a 'star-like' morphology or had undergone the first divisions. Genes associated with control of plant development and stress response (TaNF-YA, TaAGL14, TaFLA26, CHI3, XIP-R; Tad1 and WALI6) were activated before exine rupture. When the multicellular structures have been released from the exine, TaEXPB4, TaAGP31-like and an unknown embryo-specific gene TaME1 were induced. Comparison of gene expression, between two wheat cultivars with different response to anther culture, showed that the profile of genes activated before exine rupture was shifted to earlier stages in the low responding cultivar. This collection of genes constitutes a value resource for study mechanism of intra-embryo communication, early pattern formation, cell wall modification and embryo differentiation.

  3. Four queries concerning the metaphysics of early human embryogenesis.

    PubMed

    Howsepian, A A

    2008-04-01

    In this essay, I attempt to provide answers to the following four queries concerning the metaphysics of early human embryogenesis. (1) Following its first cellular fission, is it coherent to claim that one and only one of two "blastomeric" twins of a human zygote is identical with that zygote? (2) Following the fusion of two human pre-embryos, is it coherent to claim that one and only one pre-fusion pre-embryo is identical with that postfusion pre-embryo? (3) Does a live human being come into existence only when its brain comes into existence? (4) At implantation, does a pre-embryo become a mere part of its mother? I argue that either if things have quidditative properties or if criterialism is false, then queries (1) and (2) can be answered in the affirmative; that in light of recent developments in theories of human death and in light of a more "functional" theory of brains, query (3) can be answered in the negative; and that plausible mereological principles require a negative answer to query (4).

  4. Expression of the cytokeratin endo A gene during early mouse embryogenesis.

    PubMed Central

    Duprey, P; Morello, D; Vasseur, M; Babinet, C; Condamine, H; Brûlet, P; Jacob, F

    1985-01-01

    Expression of cytokeratin endo A has been analyzed during mouse blastocyst formation and embryonal carcinoma cell differentiation. To study the regulation of endo A expression, nuclease S1 mapping experiments have been performed on RNA extracted from two-cell to 7.5-day embryos. Low levels of endo A mRNA begin to be detectable in eight-cell embryos. The amount of this mRNA increases at the blastocyst stage, suggesting that endo A expression is regulated at the mRNA level during blastocyst formation. At this stage, in situ hybridization studies show that endo A mRNA is present in the trophectoderm but not in the inner cell mass. In 7.5-day embryos, endo A mRNAs are also detectable in the endoderm layer and in the amnion. Images PMID:2417224

  5. Somatic embryogenesis in ferns: a new experimental system.

    PubMed

    Mikuła, Anna; Pożoga, Mariusz; Tomiczak, Karolina; Rybczyński, Jan J

    2015-05-01

    Somatic embryogenesis has never been reported in ferns. The study showed that it is much easier to evoke the acquisition and expression of embryogenic competence in ferns than in spermatophytes. We discovered that the tree fern Cyathea delgadii offers an effective model for the reproducible and rapid formation of somatic embryos on hormone-free medium. Our study provides cyto-morphological evidence for the single cell origin and development of somatic embryos. Somatic embryogenesis (SE) in both primary and secondary explants was induced on half-strength micro- and macro-nutrients Murashige and Skoog medium without the application of exogenous plant growth regulators, in darkness. The early stage of SE was characterized by sequential perpendicular cell divisions of an individual epidermal cell of etiolated stipe explant. These resulted in the formation of a linear pro-embryo. Later their development resembled that of the zygotic embryo. We defined three morphogenetic stages of fern somatic embryo development: linear, early and late embryonic leaf stage. The transition from somatic embryo to juvenile sporophyte was quick and proceeded without interruption caused by dormancy. Following 9 weeks of culture the efficiency of somatic embryogenesis reached 12-13 embryos per responding explant. Spontaneous formation of somatic embryos and callus production, which improved the effectiveness of the process sevenfold in 10-month-long culture, occurred without subculturing. The tendency for C. delgadii to propagate by SE in vitro makes this species an excellent model for studies relating to asexual embryogenesis and the endogenous hormonal regulation of that process and opens new avenues of experimentation.

  6. Copb2 is essential for embryogenesis and hypomorphic mutations cause human microcephaly.

    PubMed

    DiStasio, Andrew; Driver, Ashley; Sund, Kristen; Donlin, Milene; Muraleedharan, Ranjith M; Pooya, Shabnam; Kline-Fath, Beth; Kaufman, Kenneth M; Prows, Cynthia A; Schorry, Elizabeth; Dasgupta, Biplab; Stottmann, Rolf W

    2017-12-15

    Primary microcephaly is a congenital brain malformation characterized by a head circumference less than three standard deviations below the mean for age and sex and results in moderate to severe mental deficiencies and decreased lifespan. We recently studied two children with primary microcephaly in an otherwise unaffected family. Exome sequencing identified an autosomal recessive mutation leading to an amino acid substitution in a WD40 domain of the highly conserved Coatomer Protein Complex, Subunit Beta 2 (COPB2). To study the role of Copb2 in neural development, we utilized genome-editing technology to generate an allelic series in the mouse. Two independent null alleles revealed that Copb2 is essential for early stages of embryogenesis. Mice homozygous for the patient variant (Copb2R254C/R254C) appear to have a grossly normal phenotype, likely due to differences in corticogenesis between the two species. Strikingly, mice heterozygous for the patient mutation and a null allele (Copb2R254C/Zfn) show a severe perinatal phenotype including low neonatal weight, significantly increased apoptosis in the brain, and death within the first week of life. Immunostaining of the Copb2R254C/Zfnbrain revealed a reduction in layer V (CTIP2+) neurons, while the overall cell density of the cortex is unchanged. Moreover, neurospheres derived from animals with Copb2 variants grew less than control. These results identify a general requirement for COPB2 in embryogenesis and a specific role in corticogenesis. We further demonstrate the utility of CRISPR-Cas9 generated mouse models in the study of potential pathogenicity of variants of potential clinical interest. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Spaceflight reduces somatic embryogenesis in orchardgrass (Poaceae)

    NASA Technical Reports Server (NTRS)

    Conger, B. V.; Tomaszewski, Z. Jr; McDaniel, J. K.; Vasilenko, A.

    1998-01-01

    Somatic embryos initiate and develop from single mesophyll cells in in vitro cultured leaf segments of orchard-grass (Dactylis glomerata L.). Segments were plated at time periods ranging from 21 to 0.9 d (21 h) prior to launch on an 11 d spaceflight (STS-64). Using a paired t-test, there was no significant difference in embryogenesis from preplating periods of 14 d and 21 d. However, embryogenesis was reduced by 70% in segments plated 21 h before launch and this treatment was significant at P=0.0001. The initial cell divisions leading to embryo formation would be taking place during flight in this treatment. A higher ratio of anticlinal:periclinal first cell divisions observed in the flight compared to the control tissue suggests that microgravity affects axis determination and embryo polarity at a very early stage. A similar reduction in zygotic embryogenesis would reduce seed formation and have important implications for long-term space flight or colonization where seeds would be needed either for direct consumption or to grow another generation of plants.

  8. Maternal Argonaute 2 Is Essential for Early Mouse Development at the Maternal-Zygotic Transition

    PubMed Central

    Lykke-Andersen, Karin; Gilchrist, Michael J.; Grabarek, Joanna B.; Das, Partha; Miska, Eric

    2008-01-01

    Activation of zygotic gene expression in the two-cell mouse embryo is associated with destruction of maternally inherited transcripts, an important process for embryogenesis about which little is understood. We asked whether the Argonaute (Ago)/RNA-induced silencing complex, providing the mRNA “slicer” activity in gene silencing, might contribute to this process. Here we show that Ago2, 3, and 4 transcripts are contributed to the embryo maternally. By systematic knockdown of maternal Ago2, 3, and 4, individually and in combination, we find that only Ago2 is required for development beyond the two-cell stage. Knockdown of Ago2 stabilizes one set of maternal mRNAs and reduces zygotic transcripts of another set of genes. Ago2 is localized in mRNA-degradation P-bodies analogous to those that function in RNAi-like mechanisms in other systems. Profiling the expression of microRNAs throughout preimplantation development identified several candidates that could potentially work with Ago2 to mediate degradation of specific mRNAs. However, their low abundance raises the possibility that other endogenous siRNAs may also participate. Together, our results demonstrate that maternal expression of Ago2 is essential for the earliest stages of mouse embryogenesis and are compatible with the notion that degradation of a proportion of maternal messages involves the RNAi-machinery. PMID:18701707

  9. Somatic embryogenesis, scanning electron microscopy, histology and biochemical analysis at different developing stages of embryogenesis in six date palm (Phoenix dactylifera L.) cultivars.

    PubMed

    Aslam, Junaid; Khan, Saeed Ahmad; Cheruth, Abdul Jaleel; Mujib, Abdul; Sharma, Maheshwar Pershad; Srivastava, Prem Shanker

    2011-10-01

    An efficient somatic embryogenesis system has been established in six date palm (Phoenix dactylifera L.) cultivars (Barhee, Zardai, Khalasah, Muzati, Shishi and Zart). Somatic embryogenesis (SE) was growth regulators and cultivars dependent. Friable embryogenic callus was induced from excised shoot tips on MS medium supplemented with various auxins particularly 2,4-dichlorophenoxyacetic acid (2,4-D, 1.5 mg 1(-l)). Suspension culture increased embryogenesis potentiality. Only a-naphthaleneacetic acid (NAA, 0.5 mg 1(-1)) produced somatic embryos in culture. Somatic embryos germinated and converted into plantlets in N(6)-benzyladenine (BAP, 0.75 mg 1(-l)) added medium following a treatment with thidiazuron (TDZ, 1.0 mg 1(-l)) for maturation. Scanning electron microscopy showed early stages of somatic embryo particularly, globular types, and was in masses. Different developing stages of embryogenesis (heart, torpedo and cotyledonary) were observed under histological preparation of embryogenic callus. Biochemical screening at various stages of somatic embryogenesis (embryogenic callus, somatic embryos, matured, germinated embryos and converted plantlets) of date palm cultivars has been conducted and discussed in detail. The result discussed in this paper indicates that somatic embryos were produced in numbers and converted plantlets can be used as a good source of alternative propagation. Genetic modification to the embryo precursor cell may improve the fruit quality and yield further.

  10. Somatic embryogenesis, scanning electron microscopy, histology and biochemical analysis at different developing stages of embryogenesis in six date palm (Phoenix dactylifera L.) cultivars

    PubMed Central

    Aslam, Junaid; Khan, Saeed Ahmad; Cheruth, Abdul Jaleel; Mujib, Abdul; Sharma, Maheshwar Pershad; Srivastava, Prem Shanker

    2011-01-01

    An efficient somatic embryogenesis system has been established in six date palm (Phoenix dactylifera L.) cultivars (Barhee, Zardai, Khalasah, Muzati, Shishi and Zart). Somatic embryogenesis (SE) was growth regulators and cultivars dependent. Friable embryogenic callus was induced from excised shoot tips on MS medium supplemented with various auxins particularly 2,4-dichlorophenoxyacetic acid (2,4-D, 1.5 mg 1−l). Suspension culture increased embryogenesis potentiality. Only a-naphthaleneacetic acid (NAA, 0.5 mg 1−1) produced somatic embryos in culture. Somatic embryos germinated and converted into plantlets in N6-benzyladenine (BAP, 0.75 mg 1−l) added medium following a treatment with thidiazuron (TDZ, 1.0 mg 1−l) for maturation. Scanning electron microscopy showed early stages of somatic embryo particularly, globular types, and was in masses. Different developing stages of embryogenesis (heart, torpedo and cotyledonary) were observed under histological preparation of embryogenic callus. Biochemical screening at various stages of somatic embryogenesis (embryogenic callus, somatic embryos, matured, germinated embryos and converted plantlets) of date palm cultivars has been conducted and discussed in detail. The result discussed in this paper indicates that somatic embryos were produced in numbers and converted plantlets can be used as a good source of alternative propagation. Genetic modification to the embryo precursor cell may improve the fruit quality and yield further. PMID:23961149

  11. Non-equivalent contributions of maternal and paternal genomes to early plant embryogenesis.

    PubMed

    Del Toro-De León, Gerardo; García-Aguilar, Marcelina; Gillmor, C Stewart

    2014-10-30

    Zygotic genome activation in metazoans typically occurs several hours to a day after fertilization, and thus maternal RNAs and proteins drive early animal embryo development. In plants, despite several molecular studies of post-fertilization transcriptional activation, the timing of zygotic genome activation remains a matter of debate. For example, two recent reports that used different hybrid ecotype combinations for RNA sequence profiling of early Arabidopsis embryo transcriptomes came to divergent conclusions. One identified paternal contributions that varied by gene, but with overall maternal dominance, while the other found that the maternal and paternal genomes are transcriptionally equivalent. Here we assess paternal gene activation functionally in an isogenic background, by performing a large-scale genetic analysis of 49 EMBRYO DEFECTIVE genes and testing the ability of wild-type paternal alleles to complement phenotypes conditioned by mutant maternal alleles. Our results demonstrate that wild-type paternal alleles for nine of these genes are completely functional 2 days after pollination, with the remaining 40 genes showing partial activity beginning at 2, 3 or 5 days after pollination. Using our functional assay, we also demonstrate that different hybrid combinations exhibit significant variation in paternal allele activation, reconciling the apparently contradictory results of previous transcriptional studies. The variation in timing of gene function that we observe confirms that paternal genome activation does not occur in one early discrete step, provides large-scale functional evidence that maternal and paternal genomes make non-equivalent contributions to early plant embryogenesis, and uncovers an unexpectedly profound effect of hybrid genetic backgrounds on paternal gene activity.

  12. MICROSPOROGENESIS AND EMBRYOGENESIS IN QUERCUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stairs, G. R.

    1962-01-01

    Representative species from two subgenera in the genus Quercus were examined for floral structure and phenology, microsporogenesis, and embryogenesis. The species selected for investigation were: Quercus alba in the Lepidobalanus subgenera, and Quercus coccinea and Quercus ilicifolia from the Erythrobalanus group. Photographs of flowering and photomicrographs of microsporogensis and embryogenesis are used for illustration. The male flowers of the three species are borne on catkins which develop in the scale leaf axils of the current vegetative bud or in separate male buds. Meiosis occurred in the spring at the beginning of bud enlargement; division figures were regular in all themore » material observed. A haploid chromosome number of 12 was confirmed for the three species. Pollen was shed on May 10, 1962, from trees of Quercus coccinea and Quercus ilicifolia; and on May 26, 1962 from Quercus alba. The female flowers are located in the axils of the new leaves. Seed development requires one growing season in Quercus alba, but two growing seasons are required to mature seed of Quercus coccinea and Quercus ilicifolia. The chronology of embryo development was similar for Quercus coccinea and Quercus ilicifolia; embryo development of Quercus alba was about two weeks behind that of the other two species. Definition of ovule dominance within a seed occurred at the time of early embryo development. Failure of this physiological expression of dominance results in multiseeded acorns. No abnormal embryogenesis per se was observed in relation to multiple embryo development. (auth)« less

  13. Somatic embryogenesis in Carica papaya as affected by auxins and explants, and morphoanatomical-related aspects.

    PubMed

    Cipriano, Jamile L D; Cruz, Ana Cláudia F; Mancini, Karina C; Schmildt, Edilson R; Lopes, José Carlos; Otoni, Wagner C; Alexandre, Rodrigo S

    2018-01-01

    The aim of this study was to evaluate somatic embryogenesis in juvenile explants of the THB papaya cultivar. Apical shoots and cotyledonary leaves were inoculated in an induction medium composed of different concentrations of 2,4-D (6, 9, 12, 15 and 18 µM) or 4-CPA (19, 22, 25, 28 and 31 µM). The embryogenic calluses were transferred to a maturation medium for 30 days. Histological analysis were done during the induction and scanning electron microscopy after maturing. For both types of auxin, embryogenesis was achieved at higher frequencies with cotyledonary leaves incubated in induction medium than with apical shoots; except for callogenesis. The early-stage embryos (e.g., globular or heart-shape) predominated. Among the auxins, best results were observed in cotyledonary leaves induced with 4-CPA (25 µM). Histological analyses of the cotyledonary leaf-derived calluses confirmed that the somatic embryos (SEs) formed from parenchyma cells, predominantly differentiated via indirect and multicellular origin and infrequently via synchronized embryogenesis. The secondary embryogenesis was observed during induction and maturation phases in papaya THB cultivar. The combination of ABA (0.5 µM) and AC (15 g L-1) in maturation medium resulted in the highest somatic embryogenesis induction frequency (70 SEs callus-1) and the lowest percentage of early germination (4%).

  14. Expression of the homeotic gene mab-5 during Caenorhabditis elegans embryogenesis.

    PubMed

    Cowing, D W; Kenyon, C

    1992-10-01

    mab-5 is a member of a complex of homeobox-containing genes evolutionarily related to the Antennapedia and bithorax complexes of Drosophila melanogaster. Like the homeotic genes in Drosophila, mab-5 is required in a particular region along the anterior-posterior body axis, and acts during postembryonic development to give cells in this region their characteristic identities. We have used a mab-5-lacZ fusion integrated into the C. elegans genome to study the posterior-specific expression of mab-5 during embryogenesis. The mab-5-lacZ fusion was expressed in the posterior of the embryo by 180 minutes after the first cleavage, indicating that the mechanisms responsible for the position-specific expression of mab-5-lacZ act at a relatively early stage of embryogenesis. In embryos homozygous for mutations in the par genes, which disrupt segregation of factors during early cleavages, expression of mab-5-lacZ was no longer localized to the posterior. This suggests that posterior-specific expression of mab-5 depends on the appropriate segregation of developmental factors during early embryogenesis. After extrusion of any blastomere of the four-cell embryo, descendants of the remaining three cells could still express the mab-5-lacZ fusion. In these partial embryos, however, the fusion was often expressed in cells scattered throughout the embryo, suggesting that cell-cell interactions and/or proper positioning of early blastomeres are required for mab-5 expression to be localized to the posterior.

  15. Small RNA profiling and degradome analysis reveal regulation of microRNA in peanut embryogenesis and early pod development.

    PubMed

    Gao, Chao; Wang, Pengfei; Zhao, Shuzhen; Zhao, Chuanzhi; Xia, Han; Hou, Lei; Ju, Zheng; Zhang, Ye; Li, Changsheng; Wang, Xingjun

    2017-03-02

    As a typical geocarpic plant, peanut embryogenesis and pod development are complex processes involving many gene regulatory pathways and controlled by appropriate hormone level. MicroRNAs (miRNAs) are small non-coding RNAs that play indispensable roles in post-transcriptional gene regulation. Recently, identification and characterization of peanut miRNAs has been described. However, whether miRNAs participate in the regulation of peanut embryogenesis and pod development has yet to be explored. In this study, small RNA and degradome libraries from peanut early pod of different developmental stages were constructed and sequenced. A total of 70 known and 24 novel miRNA families were discovered. Among them, 16 miRNA families were legume-specific and 12 families were peanut-specific. 30 known and 10 novel miRNA families were differentially expressed during pod development. In addition, 115 target genes were identified for 47 miRNA families by degradome sequencing. Several new targets that might be specific to peanut were found and further validated by RNA ligase-mediated rapid amplification of 5' cDNA ends (RLM 5'-RACE). Furthermore, we performed profiling analysis of intact and total transcripts of several target genes, demonstrating that SPL (miR156/157), NAC (miR164), PPRP (miR167 and miR1088), AP2 (miR172) and GRF (miR396) are actively modulated during early pod development, respectively. Large numbers of miRNAs and their related target genes were identified through deep sequencing. These findings provided new information on miRNA-mediated regulatory pathways in peanut pod, which will contribute to the comprehensive understanding of the molecular mechanisms that governing peanut embryo and early pod development.

  16. Convergent occurrence of the developmental hourglass in plant and animal embryogenesis?

    PubMed

    Cridge, Andrew G; Dearden, Peter K; Brownfield, Lynette R

    2016-04-01

    The remarkable similarity of animal embryos at particular stages of development led to the proposal of a developmental hourglass. In this model, early events in development are less conserved across species but lead to a highly conserved 'phylotypic period'. Beyond this stage, the model suggests that development once again becomes less conserved, leading to the diversity of forms. Recent comparative studies of gene expression in animal groups have provided strong support for the hourglass model. How and why might such an hourglass pattern be generated? More importantly, how might early acting events in development evolve while still maintaining a later conserved stage? The discovery that an hourglass pattern may also exist in the embryogenesis of plants provides comparative data that may help us explain this phenomenon. Whether the developmental hourglass occurs in plants, and what this means for our understanding of embryogenesis in plants and animals is discussed. Models by which conserved early-acting genes might change their functional role in the evolution of gene networks, how networks buffer these changes, and how that might constrain, or confer diversity, of the body plan are also discused. Evidence of a morphological and molecular hourglass in plant and animal embryogenesis suggests convergent evolution. This convergence is likely due to developmental constraints imposed upon embryogenesis by the need to produce a viable embryo with an established body plan, controlled by the architecture of the underlying gene regulatory networks. As the body plan is largely laid down during the middle phases of embryo development in plants and animals, then it is perhaps not surprising this stage represents the narrow waist of the hourglass where the gene regulatory networks are the oldest and most robust and integrated, limiting species diversity and constraining morphological space. © The Author 2016. Published by Oxford University Press on behalf of the Annals of

  17. Comparative proteomic analysis of early somatic and zygotic embryogenesis in Theobroma cacao L.

    PubMed

    Noah, Alexandre Mboene; Niemenak, Nicolas; Sunderhaus, Stephanie; Haase, Christin; Omokolo, Denis Ndoumou; Winkelmann, Traud; Braun, Hans-Peter

    2013-01-14

    Somatic embryogenesis can efficiently foster the propagation of Theobroma cacao, but the poor quality of resulted plantlet hinders the use of this technique in the commercial scale. The current study has been initiated to systematically compare the physiological mechanisms underlying somatic and zygotic embryogenesis in T. cacao on the proteome level. About 1000 protein spots per fraction could be separated by two-dimensional isoelectric focusing/SDS PAGE. More than 50 of the protein spots clearly differed in abundance between zygotic and somatic embryos: 33 proteins spots were at least 3-fold higher in abundance in zygotic embryos and 20 in somatic embryos. Analyses of these protein spots differing in volume by mass spectrometry resulted in the identification of 68 distinct proteins. Many of the identified proteins are involved in genetic information processing (21 proteins), carbohydrate metabolism (11 proteins) and stress response (7 proteins). Somatic embryos especially displayed many stress related proteins, few enzymes involved in storage compound synthesis and an exceptional high abundance of endopeptidase inhibitors. Phosphoenolpyruvate carboxylase, which was accumulated more than 3-fold higher in zygotic embryos, represents a prominent enzyme in the storage compound metabolism in cacao seeds. Implications on the improvement of somatic embryogenesis in cacao are discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Apo-14 is required for digestive system organogenesis during fish embryogenesis and larval development.

    PubMed

    Xia, Jian-Hong; Liu, Jing-Xia; Zhou, Li; Li, Zhi; Gui, Jian-Fang

    2008-01-01

    Apo-14 is a fish-specific apolipoprotein and its biological function remains unknown. In this study, CagApo-14 was cloned from gibel carp (Carassius auratus gibelio) and its expression pattern was investigated during embryogenesis and early larval development. The CagApo-14 transcript and its protein product were firstly localized in the yolk syncytial layer at a high level during embryogenesis, and then found to be restricted to the digestive system including liver and intestine in later embryos and early larvae. Immunofluorescence staining in larvae and adults indicated that Cag Apo-14 protein was predominantly synthesized in and excreted from sinusoidal endothelial cells of liver tissue. Morpholino knockdown of Cag Apo-14 resulted in severe disruption of digestive organs including liver, intestine, pancreas and swim bladder. Moreover, yolk lipid transportation and utilization were severely affected in the Cag Apo-14 morphants. Overall, this data indicates that Cag Apo-14 is required for digestive system organogenesis during fish embryogenesis and larval development.

  19. Drosophila embryogenesis scales uniformly across temperature in developmentally diverse species.

    PubMed

    Kuntz, Steven G; Eisen, Michael B

    2014-04-01

    Temperature affects both the timing and outcome of animal development, but the detailed effects of temperature on the progress of early development have been poorly characterized. To determine the impact of temperature on the order and timing of events during Drosophila melanogaster embryogenesis, we used time-lapse imaging to track the progress of embryos from shortly after egg laying through hatching at seven precisely maintained temperatures between 17.5 °C and 32.5 °C. We employed a combination of automated and manual annotation to determine when 36 milestones occurred in each embryo. D. melanogaster embryogenesis takes [Formula: see text]33 hours at 17.5 °C, and accelerates with increasing temperature to a low of 16 hours at 27.5 °C, above which embryogenesis slows slightly. Remarkably, while the total time of embryogenesis varies over two fold, the relative timing of events from cellularization through hatching is constant across temperatures. To further explore the relationship between temperature and embryogenesis, we expanded our analysis to cover ten additional Drosophila species of varying climatic origins. Six of these species, like D. melanogaster, are of tropical origin, and embryogenesis time at different temperatures was similar for them all. D. mojavensis, a sub-tropical fly, develops slower than the tropical species at lower temperatures, while D. virilis, a temperate fly, exhibits slower development at all temperatures. The alpine sister species D. persimilis and D. pseudoobscura develop as rapidly as tropical flies at cooler temperatures, but exhibit diminished acceleration above 22.5 °C and have drastically slowed development by 30 °C. Despite ranging from 13 hours for D. erecta at 30 °C to 46 hours for D. virilis at 17.5 °C, the relative timing of events from cellularization through hatching is constant across all species and temperatures examined here, suggesting the existence of a previously unrecognized timer controlling the

  20. Assembly of embryonic and extraembryonic stem cells to mimic embryogenesis in vitro.

    PubMed

    Harrison, Sarah Ellys; Sozen, Berna; Christodoulou, Neophytos; Kyprianou, Christos; Zernicka-Goetz, Magdalena

    2017-04-14

    Mammalian embryogenesis requires intricate interactions between embryonic and extraembryonic tissues to orchestrate and coordinate morphogenesis with changes in developmental potential. Here, we combined mouse embryonic stem cells (ESCs) and extraembryonic trophoblast stem cells (TSCs) in a three-dimensional scaffold to generate structures whose morphogenesis is markedly similar to that of natural embryos. By using genetically modified stem cells and specific inhibitors, we show that embryogenesis of ESC- and TSC-derived embryos-ETS-embryos-depends on cross-talk involving Nodal signaling. When ETS-embryos develop, they spontaneously initiate expression of mesoderm and primordial germ cell markers asymmetrically on the embryonic and extraembryonic border, in response to Wnt and BMP signaling. Our study demonstrates the ability of distinct stem cell types to self-assemble in vitro to generate embryos whose morphogenesis, architecture, and constituent cell types resemble those of natural embryos. Copyright © 2017, American Association for the Advancement of Science.

  1. Expression of phosphatidylcholine biosynthetic enzymes during early embryogenesis in the amphibian Bufo arenarum.

    PubMed

    Fernández-Bussy, Rodrigo; Mouguelar, Valeria; Banchio, Claudia; Coux, Gabriela

    2015-04-01

    In the principal route of phosphatidylcholine (PC) synthesis the regulatory steps are catalysed by CTP:phosphocholine cytidylyltransferase (CCT) and choline kinase (CK). Knock-out mice in Pcyt1a (CCT gene) and Chka1 (CK gene) resulted in preimplantation embryonic lethality, demonstrating the essential role of this pathway. However, there is still a lack of detailed CCT and CK expression analysis during development. The aim of the current work was to study the expression during early development of both enzymes in the external-fertilization vertebrate Bufo arenarum. Reverse transcription polymerase chain reaction (RT-PCR) and western blot confirmed their presence in unfertilized eggs. Analysis performed in total extracts from staged embryos showed constant protein levels of both enzymes until the 32-cell stage: then they decreased, reaching a minimum in the gastrula before starting to recover. CTP:phosphocholine cytidylyltransferase is an amphitropic enzyme that inter-converts between cytosolic inactive and membrane-bound active forms. Immunoblot analysis demonstrated that the cytosolic:total CCT protein ratio does not change throughout embryogenesis, suggesting a progressive decline of CCT activity in early development. However, PC (and phosphatidylethanolamine) content per egg/embryo remained constant throughout the stages analysed. In conclusion, the current data for B. arenarum suggest that net synthesis of PC mediated by CCT and CK is not required in early development and that supplies for membrane biosynthesis are fulfilled by lipids already present in the egg/embryo reservoirs.

  2. Application of Somatic Embryogenesis in Woody Plants.

    PubMed Central

    Guan, Yuan; Li, Shui-Gen; Fan, Xiao-Fen; Su, Zhen-Hong

    2016-01-01

    Somatic embryogenesis is a developmental process where a plant somatic cell can dedifferentiate to a totipotent embryonic stem cell that has the ability to give rise to an embryo under appropriate conditions. This new embryo can further develop into a whole plant. In woody plants, somatic embryogenesis plays a critical role in clonal propagation and is a powerful tool for synthetic seed production, germplasm conservation, and cryopreservation. A key step in somatic embryogenesis is the transition of cell fate from a somatic cell to embryo cell. Although somatic embryogenesis has already been widely used in a number of woody species, propagating adult woody plants remains difficult. In this review, we focus on molecular mechanisms of somatic embryogenesis and its practical applications in economic woody plants. Furthermore, we propose a strategy to improve the process of somatic embryogenesis using molecular means. PMID:27446166

  3. Functional analysis of lysosomes during mouse preimplantation embryo development.

    PubMed

    Tsukamoto, Satoshi; Hara, Taichi; Yamamoto, Atsushi; Ohta, Yuki; Wada, Ayako; Ishida, Yuka; Kito, Seiji; Nishikawa, Tetsu; Minami, Naojiro; Sato, Ken; Kokubo, Toshiaki

    2013-01-01

    Lysosomes are acidic and highly dynamic organelles that are essential for macromolecule degradation and many other cellular functions. However, little is known about lysosomal function during early embryogenesis. Here, we found that the number of lysosomes increased after fertilization. Lysosomes were abundant during mouse preimplantation development until the morula stage, but their numbers decreased slightly in blastocysts. Consistently, the protein expression level of mature cathepsins B and D was high from the one-cell to morula stages but low in the blastocyst stage. One-cell embryos injected with siRNAs targeted to both lysosome-associated membrane protein 1 and 2 (LAMP1 and LAMP2) were developmentally arrested at the two-cell stage. Pharmacological inhibition of lysosomes also caused developmental retardation, resulting in accumulation of lipofuscin. Our findings highlight the functional changes in lysosomes in mouse preimplantation embryos.

  4. Differential proteome analysis during early somatic embryogenesis in Musa spp. AAA cv. Grand Naine.

    PubMed

    Kumaravel, Marimuthu; Uma, Subbaraya; Backiyarani, Suthanthiram; Saraswathi, Marimuthu Somasundaram; Vaganan, Muthu Mayil; Muthusamy, Muthusamy; Sajith, Kallu Purayil

    2017-01-01

    Endogenous hormone secretion proteins along with stress and defense proteins play predominant role in banana embryogenesis. This study reveals the underlying molecular mechanism during transition from vegetative to embryogenic state. Banana (Musa spp.) is well known globally as a food fruit crop for millions. The requirement of quality planting material of banana is enormous. Although mass multiplication through tissue culture is in vogue, high-throughput techniques like somatic embryogenesis (SE) as a mass multiplication tool needs to be improved. Apart from clonal propagation, SE has extensive applications in genetic improvement and mutation. SE in banana is completely genome-dependent and most of the commercial cultivars exhibit recalcitrance. Thus, understanding the molecular basis of embryogenesis in Musa will help to develop strategies for mass production of quality planting material. In this study, differentially expressed proteins between embryogenic calli (EC) and non-embryogenic calli (NEC) with respect to the explant, immature male flower buds (IMFB), of cv. Grand Naine (AAA) were determined using two-dimensional gel electrophoresis (2DE). The 2DE results were validated through qRT-PCR. In total, 65 proteins were identified: 42 were highly expressed and 23 were less expressed in EC compared to NEC and IMFB. qRT-PCR analysis of five candidate proteins, upregulated in EC, were well correlated with expression at transcript level. Further analysis of proteins showed that embryogenesis in banana is associated with the control of oxidative stress. The regulation of ROS scavenging system and protection of protein structure occurred in the presence of heat shock proteins. Alongside, high accumulation of stress-related cationic peroxidase and plant growth hormone-related proteins like indole-3-pyruvate monooxygenase and adenylate isopentenyltransferase in EC revealed the association with the induction of SE.

  5. A cell-based computational model of early embryogenesis coupling mechanical behaviour and gene regulation

    NASA Astrophysics Data System (ADS)

    Delile, Julien; Herrmann, Matthieu; Peyriéras, Nadine; Doursat, René

    2017-01-01

    The study of multicellular development is grounded in two complementary domains: cell biomechanics, which examines how physical forces shape the embryo, and genetic regulation and molecular signalling, which concern how cells determine their states and behaviours. Integrating both sides into a unified framework is crucial to fully understand the self-organized dynamics of morphogenesis. Here we introduce MecaGen, an integrative modelling platform enabling the hypothesis-driven simulation of these dual processes via the coupling between mechanical and chemical variables. Our approach relies upon a minimal `cell behaviour ontology' comprising mesenchymal and epithelial cells and their associated behaviours. MecaGen enables the specification and control of complex collective movements in 3D space through a biologically relevant gene regulatory network and parameter space exploration. Three case studies investigating pattern formation, epithelial differentiation and tissue tectonics in zebrafish early embryogenesis, the latter with quantitative comparison to live imaging data, demonstrate the validity and usefulness of our framework.

  6. Insights from Proteomic Studies into Plant Somatic Embryogenesis.

    PubMed

    Heringer, Angelo Schuabb; Santa-Catarina, Claudete; Silveira, Vanildo

    2018-03-01

    Somatic embryogenesis is a biotechnological approach mainly used for the clonal propagation of different plants worldwide. In somatic embryogenesis, embryos arise from somatic cells under appropriate culture conditions. This plasticity in plants is a demonstration of true cellular totipotency and is the best approach among the genetic transformation protocols used for plant regeneration. Despite the importance of somatic embryogenesis, knowledge regarding the control of the somatic embryogenesis process is limited. Therefore, the elucidation of both the biochemical and molecular processes is important for understanding the mechanisms by which a single somatic cell becomes a whole plant. Modern proteomic techniques rely on an alternative method for the identification and quantification of proteins with different abundances in embryogenic cell cultures or somatic embryos and enable the identification of specific proteins related to somatic embryogenesis development. This review focuses on somatic embryogenesis studies that use gel-free shotgun proteomic analyses to categorize proteins that could enhance our understanding of particular aspects of the somatic embryogenesis process and identify possible targets for future studies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Telomere length regulation during cloning, embryogenesis and ageing.

    PubMed

    Schaetzlein, S; Rudolph, K L

    2005-01-01

    Telomeres are nucleoprotein complexes at the end of eukaryotic chromosomes with an essential role in chromosome capping. Owing to the end-replication problem of DNA polymerase, telomeres shorten during each cell division. When telomeres become critically short, they loose their capping function, which in turn induces a DNA damage-like response. This mechanism inhibits cell proliferation at the senescence stage and there is evidence that it limits the regenerative capacity of tissues and organs during chronic diseases and ageing. The holoenzyme telomerase synthesises telomeric DNA de novo, but, in humans, it is active only during embryogenesis, in immature germ cells and in a subset of stem/progenitor cells during postnatal life. Telomere length can be maintained or increased by telomerase, a process that appears to be regulated by a variety of telomere-binding proteins that control telomerase recruitment and activity at the telomeres. During embryogenesis, telomerase is strongly activated at the morula/blastocyst transition. At this transition, telomeres are significantly elongated in murine and bovine embryos. Early embryonic telomere elongation is telomerase dependent and leads to a rejuvenation of telomeres in cloned bovine embryos. Understanding of the molecular mechanisms underlying this early embryonic telomere elongation programme is of great interest for medical research in the fields of regeneration, cell therapies and therapeutic cloning.

  8. Maize embryogenesis.

    PubMed

    Fontanet, Pilar; Vicient, Carlos M

    2008-01-01

    Plant embryo development is a complex process that includes several coordinated events. Maize mature embryos consist of a well-differentiated embryonic axis surrounded by a single massive cotyledon called scutellum. Mature embryo axis also includes lateral roots and several developed leaves. In contrast to Arabidopsis, in which the orientation of cell divisions are perfectly established, only the first planes of cell division are predictable in maize embryos. These distinctive characteristics joined to the availability of a large collection of embryo mutants, well-developed molecular biology and tissue culture tools, an established genetics and its economical importance make maize a good model plant for grass embryogenesis. Here, we describe basic concepts and techniques necessary for studying maize embryo development: how to grow maize in greenhouses and basic techniques for in vitro embryo culture, somatic embryogenesis and in situ hybridization.

  9. The effect of temperature and light on embryogenesis and post-embryogenesis of the spider Eratigena atrica (Araneae, Agelenidae).

    PubMed

    Napiórkowska, Teresa; Kobak, Jarosław; Napiórkowski, Paweł; Templin, Julita

    2018-02-01

    Embryogenesis and post-embryogenesis of spiders depend on several environmental factors including light and temperature. This study was aimed at evaluating the impact of different thermal and lighting conditions on embryonic and early post-embryonic development of Eratigena atrica. Embryos, larvae, nymphs I and II were incubated at constant temperatures of 12, 22, 25 and 32°C under three different light regimes: light, dark, light/dark. Extreme temperatures (12 and 32°C) significantly increased mortality of embryos (to 100%) and nymphs II, whereas larvae and nymphs I suffered reduced survival only at the lowest temperature. Moreover, the lowest temperature reduced the development rate of all stages. The impact of light conditions was less pronounced and more variable: constant light reduced the survival of nymphs I at lower temperatures, but increased that of larvae. Moreover, light increased the time of embryonic development and duration of nymphal stages, particularly at lower temperatures (12-22°C). Thus, the most optimal locations for spiders seem to be dark (though except larval stage) and warm (25°C) sites, where their development is fastest and mortality lowest. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The subcortical maternal complex controls symmetric division of mouse zygotes by regulating F-actin dynamics.

    PubMed

    Yu, Xing-Jiang; Yi, Zhaohong; Gao, Zheng; Qin, Dandan; Zhai, Yanhua; Chen, Xue; Ou-Yang, Yingchun; Wang, Zhen-Bo; Zheng, Ping; Zhu, Min-Sheng; Wang, Haibin; Sun, Qing-Yuan; Dean, Jurrien; Li, Lei

    2014-09-11

    Maternal effect genes play critical roles in early embryogenesis of model organisms where they have been intensively investigated. However, their molecular function in mammals remains largely unknown. Recently, we identified a subcortical maternal complex (SCMC) that contains four proteins encoded by maternal effect genes (Mater, Filia, Floped and Tle6). Here we report that TLE6, similar to FLOPED and MATER, stabilizes the SCMC and is necessary for cleavage beyond the two-cell stage of development. We document that the SCMC is required for formation of the cytoplasmic F-actin meshwork that controls the central position of the spindle and ensures symmetric division of mouse zygotes. We further demonstrate that the SCMC controls formation of the actin cytoskeleton specifically via Cofilin, a key regulator of F-actin assembly. Our results provide molecular insight into the physiological function of TLE6, its interaction with the SCMC and their roles in the symmetric division of the zygote in early mouse development.

  11. Homologue of Sox10 in Misgurnus anguillicaudatus: sequence, expression pattern during early embryogenesis.

    PubMed

    Xia, Xiaohua; Nan, Ping; Zhang, Linxia; Sun, Jinsheng; Chang, Zhongjie

    2013-10-01

    A number of genetic studies have established that Sox10 is a transcription factor associated with neurogenesis in vertebrates. We have isolated a homologue of Sox10 gene from the brain of Misgurnus anguillicaudatus by using homologous cloning and RACE method, designated as MaSox10b. The full-length cDNA of MaSox10b contained a 311 bp 5'UTR, a 312 bp 3'UTR and an ORF encoding a putative protein of 490 amino acids with a characteristic HMG-box DNA-binding domain of 79 amino acids (aa: 105-183). Phylogenetic tree shows that the MaSOX10b fits within the Sox10 clade and clusters firmly into Sox10b branches. During embryogenesis, MaSox10b was first detected in gastrulae stage. From somitogenesis stage and thereafter, distinct expression was observed in the medial neural tube, extending from the hindbrain through the posterior trunk. Taken together, these preliminary findings suggested that MaSox10b is highly conserved during vertebrate evolution and involved in a wide range of developmental processes including embryogenesis and neurogenesis.

  12. Effect of Culture Conditions on Viability of Mouse and Rat Embryos Developed in Vitro

    PubMed Central

    Popova, Elena; Bader, Michael; Krivokharchenko, Alexander

    2011-01-01

    Currently in vitro culture of mouse preimplantation embryos has become a very important technique to investigate different mechanisms of early embryogenesis. However, there is a big difference in the preimplantation development between mammalian species. Despite close relatedness to mice, in vitro cultivation of rat preimplantation embryos is still delicate and needs further investigation and optimizations. In this study we have compared the in vitro developmental potential of mouse and rat embryos cultured at different culture conditions in parallel experiments. Interestingly, mouse zygotes developed in vitro until blastocyst stage even in inadequate medium without any phosphates and with low osmolarity which was formulated especially for cultivation of rat embryos. Rat parthenotes and zygotes developed in M16 medium formulated for mouse embryos only till 2-cell stage and further development is blocked completely at this stage. Moreover, developmental ability of rat embryos in vitro was significantly lower in comparison with mouse even in special rat mR1ECM medium. Mouse and rat embryos at 2-cell stage obtained in vivo developed until blastocyst stages significantly more efficiently compared to zygotes. Culture of mouse zygotes in glass capillaries resulted in a significantly higher rate of morula and blastocyst development compared with dishes. The Well-of-the-Well system resulted in a significant improvement when compared with dishes for the culture of rat zygotes only until morula stage. Reduced oxygen tension increased the developmental rate of rat but not mouse zygotes until blastocyst stage. This study demonstrates that development of early preimplantation embryos is altered by different culture conditions and show strong differences even between two related species such as mice and rats. Therefore, for understanding the fundamental mechanisms of early mammalian development it is very important to use embryos of various species. PMID:24710194

  13. Expression profiling of the mouse early embryo: Reflections and Perspectives

    PubMed Central

    Ko, Minoru S. H.

    2008-01-01

    Laboratory mouse plays important role in our understanding of early mammalian development and provides invaluable model for human early embryos, which are difficult to study for ethical and technical reasons. Comprehensive collection of cDNA clones, their sequences, and complete genome sequence information, which have been accumulated over last two decades, have provided even more advantages to mouse models. Here the progress in global gene expression profiling in early mouse embryos and, to some extent, stem cells are reviewed and the future directions and challenges are discussed. The discussions include the restatement of global gene expression profiles as snapshot of cellular status, and subsequent distinction between the differentiation state and physiological state of the cells. The discussions then extend to the biological problems that can be addressed only through global expression profiling, which include: bird’s-eye view of global gene expression changes, molecular index for developmental potency, cell lineage trajectory, microarray-guided cell manipulation, and the possibility of delineating gene regulatory cascades and networks. PMID:16739220

  14. Characterisation of the dynamic behaviour of lipid droplets in the early mouse embryo using adaptive harmonic generation microscopy.

    PubMed

    Watanabe, Tomoko; Thayil, Anisha; Jesacher, Alexander; Grieve, Kate; Debarre, Delphine; Wilson, Tony; Booth, Martin; Srinivas, Shankar

    2010-06-03

    Lipid droplets (LD) are organelles with an important role in normal metabolism and disease. The lipid content of embryos has a major impact on viability and development. LD in Drosophila embryos and cultured cell lines have been shown to move and fuse in a microtubule dependent manner. Due to limitations in current imaging technology, little is known about the behaviour of LD in the mammalian embryo. Harmonic generation microscopy (HGM) allows one to image LD without the use of exogenous labels. Adaptive optics can be used to correct aberrations that would otherwise degrade the quality and information content of images. We have built a harmonic generation microscope with adaptive optics to characterise early mouse embryogenesis. At fertilization, LD are small and uniformly distributed, but in the implanting blastocyst, LD are larger and enriched in the invading giant cells of the trophectoderm. Time-lapse studies reveal that LD move continuously and collide but do not fuse, instead forming aggregates that subsequently behave as single units. Using specific inhibitors, we show that the velocity and dynamic behaviour of LD is dependent not only on microtubules as in other systems, but also on microfilaments. We explore the limits within which HGM can be used to study living embryos without compromising viability and make the counterintuitive finding that 16 J of energy delivered continuously over a period of minutes can be less deleterious than an order of magnitude lower energy delivered dis-continuously over a period of hours. LD in pre-implantation mouse embryos show a previously unappreciated complexity of behaviour that is dependent not only on microtubules, but also microfilaments. Unlike LD in other systems, LD in the mouse embryo do not fuse but form aggregates. This study establishes HGM with adaptive optics as a powerful tool for the study of LD biology and provides insights into the photo-toxic effects of imaging embryos.

  15. Ultrastructural changes and the distribution of arabinogalactan proteins during somatic embryogenesis of banana (Musa spp. AAA cv. 'Yueyoukang 1').

    PubMed

    Pan, Xiao; Yang, Xiao; Lin, Guimei; Zou, Ru; Chen, Houbin; Samaj, Jozef; Xu, Chunxiang

    2011-08-01

    A better understanding of somatic embryogenesis in banana (Musa spp.) may provide a practical way to improve regeneration of banana plants. In this study, we applied scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to visualize the ultrastructural changes during somatic embryogenesis of banana (Musa AAA cv. 'Yueyoukang 1'). We also used histological and immunohistochemical techniques with 16 monoclonal antibodies to study the spatial distribution and cellular/subcellular localization of different arabinogalactan protein (AGP) components of the cell wall during somatic embryogenesis. Histological study with periodic acid-Schiff staining documented diverse embryogenic stages from embryogenic cells (ECs) to the late embryos. SEM revealed a mesh-like structure on the surface of proembryos which represented an early structural marker of somatic embryogenesis. TEM showed that ECs were rich in juvenile mitochondria, endoplasmic reticulum and Golgi stacks. Cells in proembryos and early globular embryos resembled ECs, but they were more vacuolated, showed more regular nuclei and slightly more developed organelles. Immunocytochemical study revealed that the signal of most AGP epitopes was stronger in starch-rich cells when compared with typical ECs. The main AGP component in the extracellular matrix surface network of banana proembryos was the MAC204 epitope. Later, AGP immunolabelling patterns varied with the developmental stages of the embryos. These results about developmental regulation of AGP epitopes along with developmental changes in the ultrastructure of cells are providing new insights into the somatic embryogenesis of banana. Copyright © Physiologia Plantarum 2011.

  16. Dynamics of post-translationally modified histones during barley pollen embryogenesis in the presence or absence of the epi-drug trichostatin A.

    PubMed

    Pandey, Pooja; Daghma, Diaa S; Houben, Andreas; Kumlehn, Jochen; Melzer, Michael; Rutten, Twan

    2017-06-01

    Improving pollen embryogenesis. Despite the agro-economic importance of pollen embryogenesis, the mechanisms underlying this process are still poorly understood. We describe the dynamics of chromatin modifications (histones H3K4me2, H3K9ac, H3K9me2, and H3K27me3) and chromatin marks (RNA polymerase II CDC phospho-Ser5, and CENH3) during barley pollen embryogenesis. Immunolabeling results show that, in reaction to stress, immature pollen rapidly starts reorganizing several important chromatin modifications indicative of a change in cell fate. This new chromatin modification pattern was accomplished within 24 h from whereon it remained unaltered during subsequent mitotic activity. This indicates that cell fate transition, the central element of pollen embryogenesis, is completed early on during the induction process. Application of the histone deacetylase inhibitor trichostatin A stimulated pollen embryogenesis when used on pollen with a gametophytic style chromatin pattern. However, when this drug was administered to embryogenic pollen, the chromatin markers reversed toward a gametophytic profile, embryogenesis was halted and all pollen invariably died.

  17. Mutants in the mouse NuRD/Mi2 component P66alpha are embryonic lethal.

    PubMed

    Marino, Susan; Nusse, Roel

    2007-06-13

    The NuRD/Mi2 chromatin complex is involved in histone modifications and contains a large number of subunits, including the p66 protein. There are two mouse and human p66 paralogs, p66alpha and p66beta. The functions of these genes are not clear, in part because there are no mutants available, except in invertebrate model systems. We made loss of function mutants in the mouse p66alpha gene (mp66alpha, official name Gatad2a, MGI:2384585). We found that mp66alpha is essential for development, as mutant embryos die around day 10 of embryogenesis. The gene is not required for normal blastocyst development or for implantation. The phenotype of mutant embryos and the pattern of gene expression in mutants are consistent with a role of mp66alpha in gene silencing. mp66alpha is an essential gene, required for early mouse development. The lethal phenotype supports a role in execution of methylated DNA silencing.

  18. (Why) Does Evolution Favour Embryogenesis?

    PubMed

    Rensing, Stefan A

    2016-07-01

    Complex multicellular organisms typically possess life cycles in which zygotes (formed by gamete fusion) and meiosis occur. Canonical animal embryogenesis describes development from zygote to birth. It involves polarisation of the egg/zygote, asymmetric cell divisions, establishment of axes, symmetry breaking, formation of organs, and parental nutrition (at least in early stages). Similar developmental patterns have independently evolved in other eukaryotic lineages, including land plants and brown algae. The question arises whether embryo-like structures and associated developmental processes recurrently emerge because they are local optima of the evolutionary landscape. To understand which evolutionary principles govern complex multicellularity, we need to analyse why and how similar processes evolve convergently - von Baer's and Haeckel's phylotypic stage revisited in other phyla. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. LONO1 Encoding a Nucleoporin Is Required for Embryogenesis and Seed Viability in Arabidopsis1[C][W][OA

    PubMed Central

    Braud, Christopher; Zheng, Wenguang; Xiao, Wenyan

    2012-01-01

    Early embryogenesis in Arabidopsis (Arabidopsis thaliana) is distinguished by a predictable pattern of cell divisions and is a good system for investigating mechanisms of developmental pattern formation. Here, we identified a gene called LONO1 (LNO1) in Arabidopsis in which mutations can abolish the first asymmetrical cell division of the zygote, alter planes and number of cell divisions in early embryogenesis, and eventually arrest embryo development. LNO1 is highly expressed in anthers of flower buds, stigma papilla of open flowers, and embryo and endosperm during early embryogenesis, which is correlated with its functions in reproductive development. The homozygous lno1-1 seed is not viable. LNO1, a homolog of the nucleoporin NUP214 in human (Homo sapiens) and Nup159 in yeast (Saccharomyces cerevisiae), encodes a nucleoporin protein containing phenylalanine-glycine repeats in Arabidopsis. We demonstrate that LNO1 can functionally complement the defect in the yeast temperature-sensitive nucleoporin mutant nup159. We show that LNO1 specifically interacts with the Arabidopsis DEAD-box helicase/ATPase LOS4 in the yeast two-hybrid assay. Furthermore, mutations in AtGLE1, an Arabidopsis homolog of the yeast Gle1 involved in the same poly(A) mRNA export pathway as Nup159, also result in seed abortion. Our results suggest that LNO1 is a component of the nuclear pore complex required for mature mRNA export from the nucleus to the cytoplasm, which makes LNO1 essential for embryogenesis and seed viability in Arabidopsis. PMID:22898497

  20. Three-dimensional microCT imaging of murine embryonic development from immediate post-implantation to organogenesis: application for phenotyping analysis of early embryonic lethality in mutant animals.

    PubMed

    Ermakova, Olga; Orsini, Tiziana; Gambadoro, Alessia; Chiani, Francesco; Tocchini-Valentini, Glauco P

    2018-04-01

    In this work, we applied three-dimensional microCT imaging to study murine embryogenesis in the range from immediate post-implantation period (embryonic day 5.5) to mid-gestation (embryonic day 12.5) with the resolution up to 1.4 µm/voxel. Also, we introduce an imaging procedure for non-invasive volumetric estimation of an entire litter of embryos within the maternal uterine structures. This method allows for an accurate, detailed and systematic morphometric analysis of both embryonic and extra-embryonic components during embryogenesis. Three-dimensional imaging of unperturbed embryos was performed to visualize the egg cylinder, primitive streak, gastrulation and early organogenesis stages of murine development in the C57Bl6/N mouse reference strain. Further, we applied our microCT imaging protocol to determine the earliest point when embryonic development is arrested in a mouse line with knockout for tRNA splicing endonuclease subunit Tsen54 gene. Our analysis determined that the embryonic development in Tsen54 null embryos does not proceed beyond implantation. We demonstrated that application of microCT imaging to entire litter of non-perturbed embryos greatly facilitate studies to unravel gene function during early embryogenesis and to determine the precise point at which embryonic development is arrested in mutant animals. The described method is inexpensive, does not require lengthy embryos dissection and can be applicable for detailed analysis of mutant mice at laboratory scale as well as for high-throughput projects.

  1. [Changes in polyamine levels in Citrus sinensis Osb. cv. Valencia callus during somatic embryogenesis].

    PubMed

    Liu, Hua-Ying; Xiao, Lang-Tao; Lu, Xu-Dong; Hu, Jia-Jin; Wu, Shun; He, Chang-Zheng; Deng, Xiu-Xin

    2005-06-01

    Somatic embryogenetic capability and changes in polyamine level and their relationship were analyzed using the long-term (8 years) subcultured calli of Citrus sinensis Osb. cv. Valencia as materials. The results showed that endogenous polyamine contents in embryogenic calli were higher than those in non-embryogenic calli, and the embryogenetic capability was positively correlated to the levels of endogenous polyamines. When the calli were transferred to a differentiation medium, the putrescine content rapidly increased and reached a peak, then fell gradually. Applying exogenous putrescine raised the embryogenesis frequency and endogenous putrescine level. It indicated that increase in putrescine content at early stage of differentiation promoted embryogenesis. With the development of somatic embryo, spermidine content reached its the highest level at globular embryo stage, spermine content rose and reached a peak at a later stage of globular embryo development. Furthermore, changes of the putrescine, spermidine and spermine contents during somatic embryogenesis were similar in Valencia calli which had different ploidy levels, but their contents decreased following the increasing of ploidy level. Changes in arginine decarboxylase activity were positively correlated to the polyamine levels, which suggest that the later is a key factor in regulating the polyamine levels during somatic embryogenesis in citrus plants.

  2. The mouse homeobox gene, S8, is expressed during embryogenesis predominantly in mesenchyme.

    PubMed

    Opstelten, D J; Vogels, R; Robert, B; Kalkhoven, E; Zwartkruis, F; de Laaf, L; Destrée, O H; Deschamps, J; Lawson, K A; Meijlink, F

    1991-03-01

    The murine S8 gene, originally identified by Kongsuwan et al. [EMBO J. 7(1988)2131-2138] encodes a homeodomain which resembles those of the paired family. We studied the expression pattern during mid-gestation embryogenesis of S8 by in situ hybridization. Expression was detected locally in craniofacial mesenchyme, in the limb, the heart and the somites and sclerotomes all along the axis, and was absent from the central and peripheral nervous system, splanchnopleure, and endodermal derivatives. This pattern differs considerably from that of most previously described homeobox containing genes. By genetic analysis, the gene was located on chromosome 2, about 20 cM from the HOX-4 cluster.

  3. FLASH is essential during early embryogenesis and cooperates with p73 to regulate histone gene transcription.

    PubMed

    De Cola, A; Bongiorno-Borbone, L; Bianchi, E; Barcaroli, D; Carletti, E; Knight, R A; Di Ilio, C; Melino, G; Sette, C; De Laurenzi, V

    2012-02-02

    Replication-dependent histone gene expression is a fundamental process occurring in S-phase under the control of the cyclin-E/CDK2 complex. This process is regulated by a number of proteins, including Flice-Associated Huge Protein (FLASH) (CASP8AP2), concentrated in specific nuclear organelles known as HLBs. FLASH regulates both histone gene transcription and mRNA maturation, and its downregulation in vitro results in the depletion of the histone pull and cell-cycle arrest in S-phase. Here we show that the transcription factor p73 binds to FLASH and is part of the complex that regulates histone gene transcription. Moreover, we created a novel gene trap to disrupt FLASH in mice, and we show that homozygous deletion of FLASH results in early embryonic lethality, owing to arrest of FLASH(-/-) embryos at the morula stage. These results indicate that FLASH is an essential, non-redundant regulator of histone transcription and cell cycle during embryogenesis.

  4. Embryogenesis-promoting factors in rat serum.

    PubMed

    Katoh, M; Kimura, R; Shoji, R

    1998-06-15

    Regarding whole rat embryo cultures in vitro, rat serum as a culture medium is known to support the normal growth of rat embryos in the organogenesis phase. The purpose of the present study was to isolate the embryogenesis-promoting factors from rat serum as a first step in the development of a defined serum-free medium for a whole embryo culture system. Pooled rat serum after heat inactivation was fractionated into three major peaks (frA, containing a region of void volume, frB, and frC) by gel filtration. The 9.5-day rat embryos that were cultivated for 48 hr in essential salt medium containing frB (with a molecular size range of 100-500 kDa) revealed normal growth. Three proteins (27 kDa, 76 kDa, and 190 kDa) that had the embryogenesis-promoting effects were isolated from 3-hr delayed centrifuged rat serum by the ion exchange chromatography. The 76-kDa protein was found to be rat transferrin by immunoblotting. The 27-kDa protein was identified as apo-AI (the major apoprotein of high-density lipoprotein) by immunoblotting. High-density lipoprotein obtained from pooled rat serum by a NaBr density gradient ultracentrifugation was found to have a positive effect on embryogenesis. The 10-kDa protein was also identified as alpha 1-inhibitor 3 by immunoblotting. In addition, the embryogenesis-promoting effect of the fraction containing 27-kDa and 190-kDa proteins declined within a short period of storage at -20 degrees C. This decrease was countered by supplementing its fraction (D-2) with albumin isolated from rat serum. These results in the present study suggest that transferrin, high-density lipoprotein, and alpha 1-inhibitor 3 in rat serum may be embryogenesis-promoting factors, and that albumin appeared to play a role in the embryogenesis of rat embryos in whole embryo cultures.

  5. The role of chromatin modifications in somatic embryogenesis in plants

    PubMed Central

    De-la-Peña, Clelia; Nic-Can, Geovanny I.; Galaz-Ávalos, Rosa M.; Avilez-Montalvo, Randy; Loyola-Vargas, Víctor M.

    2015-01-01

    Somatic embryogenesis (SE) is a powerful tool for plant genetic improvement when used in combination with traditional agricultural techniques, and it is also an important technique to understand the different processes that occur during the development of plant embryogenesis. SE onset depends on a complex network of interactions among plant growth regulators, mainly auxins and cytokinins, during the proembryogenic early stages, and ethylene and gibberellic and abscisic acids later in the development of the somatic embryos. These growth regulators control spatial and temporal regulation of multiple genes in order to initiate change in the genetic program of somatic cells, as well as moderating the transition between embryo developmental stages. In recent years, epigenetic mechanisms have emerged as critical factors during SE. Some early reports indicate that auxins and in vitro conditions modify the levels of DNA methylation in embryogenic cells. The changes in DNA methylation patterns are associated with the regulation of several genes involved in SE, such as WUS, BBM1, LEC, and several others. In this review, we highlight the more recent discoveries in the understanding of the role of epigenetic regulation of SE. In addition, we include a survey of different approaches to the study of SE, and new opportunities to focus SE studies. PMID:26347757

  6. Gene expression of Hsp70, Hsp90 and Hsp110 families in normal palate and cleft palate during mouse embryogenesis.

    PubMed

    Zhu, Yongfei; Ren, Chuanlu; Wan, Xuying; Zhu, Yuping; Zhu, Jiangbo; Zhou, Hongyuan; Zhang, Tianbao

    2013-11-01

    Most previous studies focused on a small number of heat shock proteins (Hsps) and their relationships with embryogenesis, and the actual roles of these Hsps in normal and abnormal embryonic development remain unclear. It was found in the present systemic study that except for Grp170, whose expression was not detectable at GD18, all 19 Hsps of Hsp70, Hsp90 and Hsp110 families were expressed in the normal development of embryonic palate tissue in mice, but their expression patterns varied with different Hsps, presenting as a correlation with the developmental phases. In the treatment group by all-trans retinoic acid (atRA), the messenger RNA (mRNA) abundance of HspA1A, HspA1L, HspA8, HspA9, HspA12A, HspA12B, HspA13, HspA14, Hsp90AA1, Hsp90AB1, Grp94, Trap1, Hsp105, Hsp110 and Grp170 was higher in the palates at GD11 (the beginning of palate development), the mRNA abundance of HspA1A, HspA12A and HspA12B was higher at GD18 (before birth) and an mRNA expression peak of HspA1L, HspA8, HspA9, Hsp90AA1, Grp94, Hsp110 and Grp170 was observed at GD17. The mRNA abundance of most genes in atRA-induced cleft palates of the treatment group was different from that of the control group. Grp78, HspA14 and Hsp105 were closely associated with the normal palate development and cleft palate in mouse embryo, possibly as palate development-related genes. Except Grp170, the other genes may be closely associated with the development of mouse palates through participating in the stress response process and/or the antiapoptosis process.

  7. The roles of ERAS during cell lineage specification of mouse early embryonic development.

    PubMed

    Zhao, Zhen-Ao; Yu, Yang; Ma, Huai-Xiao; Wang, Xiao-Xiao; Lu, Xukun; Zhai, Yanhua; Zhang, Xiaoxin; Wang, Haibin; Li, Lei

    2015-08-01

    Eras encodes a Ras-like GTPase protein that was originally identified as an embryonic stem cell-specific Ras. ERAS has been known to be required for the growth of embryonic stem cells and stimulates somatic cell reprogramming, suggesting its roles on mouse early embryonic development. We now report a dynamic expression pattern of Eras during mouse peri-implantation development: its expression increases at the blastocyst stage, and specifically decreases in E7.5 mesoderm. In accordance with its expression pattern, the increased expression of Eras promotes cell proliferation through controlling AKT activation and the commitment from ground to primed state through ERK activation in mouse embryonic stem cells; and the reduced expression of Eras facilitates primitive streak and mesoderm formation through AKT inhibition during gastrulation. The expression of Eras is finely regulated to match its roles in mouse early embryonic development during which Eras expression is negatively regulated by the β-catenin pathway. Thus, beyond its well-known role on cell proliferation, ERAS may also play important roles in cell lineage specification during mouse early embryonic development. © 2015 The Authors.

  8. De novo DNA methylation during monkey pre-implantation embryogenesis.

    PubMed

    Gao, Fei; Niu, Yuyu; Sun, Yi Eve; Lu, Hanlin; Chen, Yongchang; Li, Siguang; Kang, Yu; Luo, Yuping; Si, Chenyang; Yu, Juehua; Li, Chang; Sun, Nianqin; Si, Wei; Wang, Hong; Ji, Weizhi; Tan, Tao

    2017-04-01

    Critical epigenetic regulation of primate embryogenesis entails DNA methylome changes. Here we report genome-wide composition, patterning, and stage-specific dynamics of DNA methylation in pre-implantation rhesus monkey embryos as well as male and female gametes studied using an optimized tagmentation-based whole-genome bisulfite sequencing method. We show that upon fertilization, both paternal and maternal genomes undergo active DNA demethylation, and genome-wide de novo DNA methylation is also initiated in the same period. By the 8-cell stage, remethylation becomes more pronounced than demethylation, resulting in an increase in global DNA methylation. Promoters of genes associated with oxidative phosphorylation are preferentially remethylated at the 8-cell stage, suggesting that this mode of energy metabolism may not be favored. Unlike in rodents, X chromosome inactivation is not observed during monkey pre-implantation development. Our study provides the first comprehensive illustration of the 'wax and wane' phases of DNA methylation dynamics. Most importantly, our DNA methyltransferase loss-of-function analysis indicates that DNA methylation influences early monkey embryogenesis.

  9. De novo DNA methylation during monkey pre-implantation embryogenesis

    PubMed Central

    Gao, Fei; Niu, Yuyu; Sun, Yi Eve; Lu, Hanlin; Chen, Yongchang; Li, Siguang; Kang, Yu; Luo, Yuping; Si, Chenyang; Yu, Juehua; Li, Chang; Sun, Nianqin; Si, Wei; Wang, Hong; Ji, Weizhi; Tan, Tao

    2017-01-01

    Critical epigenetic regulation of primate embryogenesis entails DNA methylome changes. Here we report genome-wide composition, patterning, and stage-specific dynamics of DNA methylation in pre-implantation rhesus monkey embryos as well as male and female gametes studied using an optimized tagmentation-based whole-genome bisulfite sequencing method. We show that upon fertilization, both paternal and maternal genomes undergo active DNA demethylation, and genome-wide de novo DNA methylation is also initiated in the same period. By the 8-cell stage, remethylation becomes more pronounced than demethylation, resulting in an increase in global DNA methylation. Promoters of genes associated with oxidative phosphorylation are preferentially remethylated at the 8-cell stage, suggesting that this mode of energy metabolism may not be favored. Unlike in rodents, X chromosome inactivation is not observed during monkey pre-implantation development. Our study provides the first comprehensive illustration of the 'wax and wane' phases of DNA methylation dynamics. Most importantly, our DNA methyltransferase loss-of-function analysis indicates that DNA methylation influences early monkey embryogenesis. PMID:28233770

  10. EHMT2 directs DNA methylation for efficient gene silencing in mouse embryos

    PubMed Central

    Auclair, Ghislain; Borgel, Julie; Sanz, Lionel A.; Vallet, Judith; Guibert, Sylvain; Dumas, Michael; Cavelier, Patricia; Girardot, Michael; Forné, Thierry; Feil, Robert; Weber, Michael

    2016-01-01

    The extent to which histone modifying enzymes contribute to DNA methylation in mammals remains unclear. Previous studies suggested a link between the lysine methyltransferase EHMT2 (also known as G9A and KMT1C) and DNA methylation in the mouse. Here, we used a model of knockout mice to explore the role of EHMT2 in DNA methylation during mouse embryogenesis. The Ehmt2 gene is expressed in epiblast cells but is dispensable for global DNA methylation in embryogenesis. In contrast, EHMT2 regulates DNA methylation at specific sequences that include CpG-rich promoters of germline-specific genes. These loci are bound by EHMT2 in embryonic cells, are marked by H3K9 dimethylation, and have strongly reduced DNA methylation in Ehmt2−/− embryos. EHMT2 also plays a role in the maintenance of germline-derived DNA methylation at one imprinted locus, the Slc38a4 gene. Finally, we show that DNA methylation is instrumental for EHMT2-mediated gene silencing in embryogenesis. Our findings identify EHMT2 as a critical factor that facilitates repressive DNA methylation at specific genomic loci during mammalian development. PMID:26576615

  11. Dual effects of fluoxetine on mouse early embryonic development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Chang-Woon; Department of Obstetrics and Gynecology, Samsung Changwon Hospital, Sungkyunkwan University, Changwon 630-723; Choe, Changyong

    2012-11-15

    Fluoxetine, a selective serotonin reuptake inhibitor, regulates a variety of physiological processes, such as cell proliferation and apoptosis, in mammalian cells. Little is known about the role of fluoxetine in early embryonic development. This study was undertaken to investigate the effect of fluoxetine during mouse early embryonic development. Late two-cell stage embryos (2-cells) were cultured in the presence of various concentrations of fluoxetine (1 to 50 μM) for different durations. When late 2-cells were incubated with 5 μM fluoxetine for 6 h, the percentage that developed into blastocysts increased compared to the control value. However, late 2-cells exposed to fluoxetinemore » (5 μM) over 24 h showed a reduction in blastocyst formation. The addition of fluoxetine (5 μM) together with KN93 or KN62 (calcium/calmodulin-dependent protein kinase II (CaMKII) inhibitors) failed to increase blastocyst formation. Fluoxetine treatment inhibited TREK-1 and TREK-2, members of the two-pore domain K{sup +} channel family expressed in mouse embryos, activities, indicating that fluoxetine-induced membrane depolarization in late 2-cells might have resulted from TREK inhibition. In addition, long-term exposure to fluoxetine altered the TREK mRNA expression levels. Furthermore, injection of siRNA targeting TREKs significantly decreased blastocyst formation by ∼ 30% compared to injection of scrambled siRNA. Long-term exposure of fluoxetine had no effect on blastocyst formation of TREK deficient embryos. These results indicate that low-dose and short-term exposures of late 2-cells to fluoxetine probably increase blastocyst formation through activation of CaMKII-dependent signal transduction pathways, whereas long-term exposure decreases mouse early embryonic development through inhibition of TREK channel gating. Highlights: ► Short-term exposure of 2-cells to fluoxetine enhances mouse blastocyst formation. ► The enhancive effect of fluoxetine is resulted from Ca

  12. Genome editing reveals a role for OCT4 in human embryogenesis.

    PubMed

    Fogarty, Norah M E; McCarthy, Afshan; Snijders, Kirsten E; Powell, Benjamin E; Kubikova, Nada; Blakeley, Paul; Lea, Rebecca; Elder, Kay; Wamaitha, Sissy E; Kim, Daesik; Maciulyte, Valdone; Kleinjung, Jens; Kim, Jin-Soo; Wells, Dagan; Vallier, Ludovic; Bertero, Alessandro; Turner, James M A; Niakan, Kathy K

    2017-10-05

    Despite their fundamental biological and clinical importance, the molecular mechanisms that regulate the first cell fate decisions in the human embryo are not well understood. Here we use CRISPR-Cas9-mediated genome editing to investigate the function of the pluripotency transcription factor OCT4 during human embryogenesis. We identified an efficient OCT4-targeting guide RNA using an inducible human embryonic stem cell-based system and microinjection of mouse zygotes. Using these refined methods, we efficiently and specifically targeted the gene encoding OCT4 (POU5F1) in diploid human zygotes and found that blastocyst development was compromised. Transcriptomics analysis revealed that, in POU5F1-null cells, gene expression was downregulated not only for extra-embryonic trophectoderm genes, such as CDX2, but also for regulators of the pluripotent epiblast, including NANOG. By contrast, Pou5f1-null mouse embryos maintained the expression of orthologous genes, and blastocyst development was established, but maintenance was compromised. We conclude that CRISPR-Cas9-mediated genome editing is a powerful method for investigating gene function in the context of human development.

  13. Spatial Anisotropies and Temporal Fluctuations in Extracellular Matrix Network Texture during Early Embryogenesis

    PubMed Central

    Loganathan, Rajprasad; Potetz, Brian R.; Rongish, Brenda J.; Little, Charles D.

    2012-01-01

    Early stages of vertebrate embryogenesis are characterized by a remarkable series of shape changes. The resulting morphological complexity is driven by molecular, cellular, and tissue-scale biophysical alterations. Operating at the cellular level, extracellular matrix (ECM) networks facilitate cell motility. At the tissue level, ECM networks provide material properties required to accommodate the large-scale deformations and forces that shape amniote embryos. In other words, the primordial biomaterial from which reptilian, avian, and mammalian embryos are molded is a dynamic composite comprised of cells and ECM. Despite its central importance during early morphogenesis we know little about the intrinsic micrometer-scale surface properties of primordial ECM networks. Here we computed, using avian embryos, five textural properties of fluorescently tagged ECM networks — (a) inertia, (b) correlation, (c) uniformity, (d) homogeneity, and (e) entropy. We analyzed fibronectin and fibrillin-2 as examples of fibrous ECM constituents. Our quantitative data demonstrated differences in the surface texture between the fibronectin and fibrillin-2 network in Day 1 (gastrulating) embryos, with the fibronectin network being relatively coarse compared to the fibrillin-2 network. Stage-specific regional anisotropy in fibronectin texture was also discovered. Relatively smooth fibronectin texture was exhibited in medial regions adjoining the primitive streak (PS) compared with the fibronectin network investing the lateral plate mesoderm (LPM), at embryonic stage 5. However, the texture differences had changed by embryonic stage 6, with the LPM fibronectin network exhibiting a relatively smooth texture compared with the medial PS-oriented network. Our data identify, and partially characterize, stage-specific regional anisotropy of fibronectin texture within tissues of a warm-blooded embryo. The data suggest that changes in ECM textural properties reflect orderly time

  14. Recognition of the CDEI motif GTCACATG by mouse nuclear proteins and interference with the early development of the mouse embryo.

    PubMed Central

    Blangy, A; Léopold, P; Vidal, F; Rassoulzadegan, M; Cuzin, F

    1991-01-01

    We have reported previously (1) two unexpected consequences of the microinjection into fertilized mouse eggs of a recombinant plasmid designated p12B1, carrying a 343 bp insert of non-repetitive mouse DNA. Injected at very low concentrations, this plasmid could be established as an extrachromosomal genetic element. When injected in greater concentration, an early arrest of embryonic development resulted. In the present work, we have studied this toxic effect in more detail by microinjecting short synthetic oligonucleotides with sequences from the mouse insert. Lethality was associated with the nucleotide sequence GTCACATG, identical with the CDEl element of yeast centromeres. Development of injected embryos was arrested between the one-cell and the early morula stages, with abnormal structures and DNA contents. Electrophoretic mobility shift and DNAse foot-printing assays demonstrated the binding of mouse nuclear protein(s) to the CDEl-like box. Base changes within the CDEl sequence prevented both the toxic effects in embryos and the formation of protein complex in vitro, suggesting that protein binding at such sites in chromosomal DNA plays an important role in early development. Images PMID:1766880

  15. Mutants in the Mouse NuRD/Mi2 Component P66α Are Embryonic Lethal

    PubMed Central

    Marino, Susan; Nusse, Roel

    2007-01-01

    Background The NuRD/Mi2 chromatin complex is involved in histone modifications and contains a large number of subunits, including the p66 protein. There are two mouse and human p66 paralogs, p66α and p66β. The functions of these genes are not clear, in part because there are no mutants available, except in invertebrate model systems. Methodology We made loss of function mutants in the mouse p66α gene (mp66α, official name Gatad2a, MGI:2384585). We found that mp66α is essential for development, as mutant embryos die around day 10 of embryogenesis. The gene is not required for normal blastocyst development or for implantation. The phenotype of mutant embryos and the pattern of gene expression in mutants are consistent with a role of mp66α in gene silencing. Conclusion mp66α is an essential gene, required for early mouse development. The lethal phenotype supports a role in execution of methylated DNA silencing. PMID:17565372

  16. Foxc2CreERT2 knock-in mice mark stage-specific Foxc2-expressing cells during mouse organogenesis.

    PubMed

    Amin, Mohammed Badrul; Miura, Naoyuki; Uddin, Mohammad Khaja Mafij; Islam, Mohammod Johirul; Yoshida, Nobuaki; Iseki, Sachiko; Kume, Tsutomu; Trainor, Paul A; Saitsu, Hirotomo; Aoto, Kazushi

    2017-01-01

    Foxc2, a member of the winged helix transcription factor family, is essential for eye, calvarial bone, cardiovascular and kidney development in mice. Nevertheless, how Foxc2-expressing cells and their descendent cells contribute to the development of these tissues and organs has not been elucidated. Here, we generated a Foxc2 knock-in (Foxc2 CreERT2 ) mouse, in which administration of estrogen receptor antagonist tamoxifen induces nuclear translocation of Cre recombinase in Foxc2-expressing cells. By crossing with ROSA-LacZ reporter mice (Foxc2 CreERT2 ; R26R), the fate of Foxc2 positive (Foxc2 + ) cells was analyzed through LacZ staining at various embryonic stages. We found Foxc2 + cell descendants in the supraoccipital and exoccipital bone in E18.5 embryos, when tamoxifen was administered at embryonic day (E) 8.5. Furthermore, Foxc2 + descendant cranial neural crest cells at E8-10 were restricted to the corneal mesenchyme, while Foxc2 + cell derived cardiac neural crest cells at E6-12 were found in the aorta, pulmonary trunk and valves, and endocardial cushions. Foxc2 + cell descendant contributions to the glomerular podocytes in the kidney were also observed following E6.5 tamoxifen treatment. Our results are consistent with previous reports of Foxc2 expression during early embryogenesis and the Foxc2 CreERT2 mouse provides a tool to investigate spatiotemporal roles of Foxc2 and contributions of Foxc2 + expressing cells during mouse embryogenesis. © 2016 Japanese Teratology Society.

  17. Argonaute-1 functions as a mitotic regulator by controlling Cyclin B during Drosophila early embryogenesis.

    PubMed

    Pushpavalli, Sreerangam N C V L; Sarkar, Arpita; Bag, Indira; Hunt, Clayton R; Ramaiah, M Janaki; Pandita, Tej K; Bhadra, Utpal; Pal-Bhadra, Manika

    2014-02-01

    The role of Ago-1 in microRNA (miRNA) biogenesis has been thoroughly studied, but little is known about its involvement in mitotic cell cycle progression. In this study, we established evidence of the regulatory role of Ago-1 in cell cycle control in association with the G2/M cyclin, cyclin B. Immunostaining of early embryos revealed that the maternal effect gene Ago-1 is essential for proper chromosome segregation, mitotic cell division, and spindle fiber assembly during early embryonic development. Ago-1 mutation resulted in the up-regulation of cyclin B-Cdk1 activity and down-regulation of p53, grp, mei-41, and wee1. The increased expression of cyclin B in Ago-1 mutants caused less stable microtubules and probably does not produce enough force to push the nuclei to the cortex, resulting in a decreased number of pole cells. The role of cyclin B in mitotic defects was further confirmed by suppressing the defects in the presence of one mutant copy of cyclin B. We identified involvement of 2 novel embryonic miRNAs--miR-981 and miR--317-for spatiotemporal regulation of cyclin B. In summary, our results demonstrate that the haploinsufficiency of maternal Ago-1 disrupts mitotic chromosome segregation and spindle fiber assembly via miRNA-guided control during early embryogenesis in Drosophila. The increased expression of cyclin B-Cdk1 and decreased activity of the Cdk1 inhibitor and cell cycle checkpoint proteins (mei-41 and grp) in Ago-1 mutant embryos allow the nuclei to enter into mitosis prematurely, even before completion of DNA replication. Thus, our results have established a novel role of Ago-1 as a regulator of the cell cycle.

  18. Hemoglobin promotes somatic embryogenesis in peanut cultures.

    PubMed

    Jayabalan, N; Anthony, P; Davey, M R; Power, J B; Lowe, K C

    2004-02-01

    Critical parameters influencing somatic embryogenesis include growth regulators and oxygen supply. Consequently, the present investigation has focused on optimization of a somatic embryogenic system for peanut (Arachis hypogaea L.) through media supplementation with the auxin, picloram. The latter at 30 mg L(-1) was optimal for inducing regeneration of somatic embryos from cultured explants of zygotic embryos. In contrast, somatic embryogenesis did not occur in the absence of this growth regulator. An assessment has also been made of the beneficial effect on somatic embryogenesis and plant regeneration of the commercial hemoglobin (Hb) solution, Erythrogen. Hemoglobin at 1:50 and 1:100 (v:v) stimulated increases in mean fresh weight (up to a maximum of 57% over control), mean number of explants producing somatic embryos (15%) and mean number of somatic embryos per explant (29%).

  19. Analysis of genetic stability at SSR loci during somatic embryogenesis in maritime pine (Pinus pinaster).

    PubMed

    Marum, Liliana; Rocheta, Margarida; Maroco, João; Oliveira, M Margarida; Miguel, Célia

    2009-04-01

    Somatic embryogenesis (SE) is a propagation tool of particular interest for accelerating the deployment of new high-performance planting stock in multivarietal forestry. However, genetic conformity in in vitro propagated plants should be assessed as early as possible, especially in long-living trees such as conifers. The main objective of this work was to study such conformity based on genetic stability at simple sequence repeat (SSR) loci during somatic embryogenesis in maritime pine (Pinus pinaster Ait.). Embryogenic cell lines (ECLs) subjected to tissue proliferation during 6, 14 or 22 months, as well as emblings regenerated from several ECLs, were analyzed. Genetic variation at seven SSR loci was detected in ECLs under proliferation conditions for all time points, and in 5 out of 52 emblings recovered from somatic embryos. Three of these five emblings showed an abnormal phenotype consisting mainly of plagiotropism and loss of apical dominance. Despite the variation found in somatic embryogenesis-derived plant material, no correlation was established between genetic stability at the analyzed loci and abnormal embling phenotype, present in 64% of the emblings. The use of microsatellites in this work was efficient for monitoring mutation events during the somatic embryogenesis in P. pinaster. These molecular markers should be useful in the implementation of new breeding and deployment strategies for improved trees using SE.

  20. Pollen embryogenesis to induce, detect, and analyze mutants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Constantin, M.J.

    The development of fully differentiated plants from individual pollen grains through a series of developmental phases that resemble embryogenesis beginning with the zygote was demonstrated during the mid-1960's. This technology opened the door to the use of haploid plants (sporophytes with the gametic number of chromosomes) for plant breeding and genetic studies, biochemical and metabolic studies, and the selection of mutations. Although pollen embryogenesis has been demonstrated successfully in numerous plant genera, the procedure cannot as yet be used routinely to generate large populations of plants for experiments. Practical results from use of the technology in genetic toxicology research tomore » detect mutations have failed to fully realize the theoretical potential; further developments of the technology could overcome the limitations. Pollen embryogenesis could be used to develop plants from mutant pollen grains to verify that genetic changes are involved. Through either spontaneous or induced chromosome doubling, these plants can be made homozygous and used to analyze genetically the mutants involved. The success of this approach will depend on the mutant frequency relative to the fraction of pollen grains that undergo embryogenesis; these two factors will dictate population size needed for success. Research effort is needed to further develop pollen embryogenesis for use in the detection of genotoxins under both laboratory and in situ conditions.« less

  1. Effects of simulated weightlessness on mammalian development. Part 1: Development of clinostat for mammalian tissue culture and use in studies on meiotic maturation of mouse oocytes

    NASA Technical Reports Server (NTRS)

    Wolegemuth, D. J.; Grills, G. S.

    1984-01-01

    The effects of weightlessness on three aspects of mammalian reproduction: oocyte development, fertilization, and early embryogenesis was studied. Zero-gravity conditions within the laboratory by construction of a clinostat designed to support in vitro tissue culture were simulated and the effects of simulated weightlessness on meiotic maturation in mammalian oocytes using mouse as the model system were studied. The timing and frequency of germinal vesicule breakdown and polar body extrusion, and the structural and numerical properties of meiotic chromosomes at Metaphase and Metaphase of meiosis are assessed.

  2. Somatic embryogenesis in cell cultures of Glycine species.

    PubMed

    Gamborg, O L; Davis, B P; Stahlhut, R W

    1983-08-01

    This report describes the development of procedures for the production of somatic embryos in cell cultures of Glycine species including soybean. The conditions for callus induction and initiation of rapidly growing cell suspension cultures were defined. Methods for inducing embryogenesis were tested on 16 lines of several Glycine species and cultivars of soybean. The SB-26 Culture of a G. soja gave the best results and was used in the experiments. Embryogenesis required the presence of picloram or 2,4-D. AMO 1618, CCC, PP-333 and Ancymidol enhanced the embryogenesis frequency. Plants of the G. soja (SB-26) were grown to maturity from seed-derived shoot tips. Characteristics of the plants are discussed.

  3. Essential role of the TFIID subunit TAF4 in murine embryogenesis and embryonic stem cell differentiation.

    PubMed

    Langer, Diana; Martianov, Igor; Alpern, Daniel; Rhinn, Muriel; Keime, Céline; Dollé, Pascal; Mengus, Gabrielle; Davidson, Irwin

    2016-03-30

    TAF4 (TATA-binding protein-associated factor 4) and its paralogue TAF4b are components of the TFIID core module. We inactivated the murine Taf4a gene to address Taf4 function during embryogenesis. Here we show that Taf4a(-/-) embryos survive until E9.5 where primary germ layers and many embryonic structures are identified showing Taf4 is dispensable for their specification. In contrast, Taf4 is required for correct patterning of the trunk and anterior structures, ventral morphogenesis and proper heart positioning. Overlapping expression of Taf4a and Taf4b during embryogenesis suggests their redundancy at early stages. In agreement with this, Taf4a(-/-) embryonic stem cells (ESCs) are viable and comprise Taf4b-containing TFIID. Nevertheless, Taf4a(-/-) ESCs do not complete differentiation into glutamatergic neurons and cardiomyocytes in vitro due to impaired preinitiation complex formation at the promoters of critical differentiation genes. We define an essential role of a core TFIID TAF in differentiation events during mammalian embryogenesis.

  4. Essential role of the TFIID subunit TAF4 in murine embryogenesis and embryonic stem cell differentiation

    PubMed Central

    Langer, Diana; Martianov, Igor; Alpern, Daniel; Rhinn, Muriel; Keime, Céline; Dollé, Pascal; Mengus, Gabrielle; Davidson, Irwin

    2016-01-01

    TAF4 (TATA-binding protein-associated factor 4) and its paralogue TAF4b are components of the TFIID core module. We inactivated the murine Taf4a gene to address Taf4 function during embryogenesis. Here we show that Taf4a−/− embryos survive until E9.5 where primary germ layers and many embryonic structures are identified showing Taf4 is dispensable for their specification. In contrast, Taf4 is required for correct patterning of the trunk and anterior structures, ventral morphogenesis and proper heart positioning. Overlapping expression of Taf4a and Taf4b during embryogenesis suggests their redundancy at early stages. In agreement with this, Taf4a−/− embryonic stem cells (ESCs) are viable and comprise Taf4b-containing TFIID. Nevertheless, Taf4a−/− ESCs do not complete differentiation into glutamatergic neurons and cardiomyocytes in vitro due to impaired preinitiation complex formation at the promoters of critical differentiation genes. We define an essential role of a core TFIID TAF in differentiation events during mammalian embryogenesis. PMID:27026076

  5. Mitotic waves in the early embryogenesis of Drosophila: Bistability traded for speed.

    PubMed

    Vergassola, Massimo; Deneke, Victoria E; Di Talia, Stefano

    2018-03-06

    Early embryogenesis of most metazoans is characterized by rapid and synchronous cleavage divisions. Chemical waves of Cdk1 activity were previously shown to spread across Drosophila embryos, and the underlying molecular processes were dissected. Here, we present the theory of the physical mechanisms that control Cdk1 waves in Drosophila The in vivo dynamics of Cdk1 are captured by a transiently bistable reaction-diffusion model, where time-dependent reaction terms account for the growing level of cyclins and Cdk1 activation across the cell cycle. We identify two distinct regimes. The first one is observed in mutants of the mitotic switch. There, waves are triggered by the classical mechanism of a stable state invading a metastable one. Conversely, waves in wild type reflect a transient phase that preserves the Cdk1 spatial gradients while the overall level of Cdk1 activity is swept upward by the time-dependent reaction terms. This unique mechanism generates a wave-like spreading that differs from bistable waves for its dependence on dynamic parameters and its faster speed. Namely, the speed of "sweep" waves strikingly decreases as the strength of the reaction terms increases and scales as the powers 3/4, -1/2, and 7/12 of Cdk1 molecular diffusivity, noise amplitude, and rate of increase of Cdk1 activity in the cell-cycle S phase, respectively. Theoretical predictions are supported by numerical simulations and experiments that couple quantitative measurements of Cdk1 activity and genetic perturbations of the accumulation rate of cyclins. Finally, our analysis bears upon the inhibition required to suppress Cdk1 waves at the cell-cycle pause for the maternal-to-zygotic transition.

  6. Histone variant H3.3-mediated chromatin remodeling is essential for paternal genome activation in mouse preimplantation embryos.

    PubMed

    Kong, Qingran; Banaszynski, Laura A; Geng, Fuqiang; Zhang, Xiaolei; Zhang, Jiaming; Zhang, Heng; O'Neill, Claire L; Yan, Peidong; Liu, Zhonghua; Shido, Koji; Palermo, Gianpiero D; Allis, C David; Rafii, Shahin; Rosenwaks, Zev; Wen, Duancheng

    2018-03-09

    Derepression of chromatin-mediated transcriptional repression of paternal and maternal genomes is considered the first major step that initiates zygotic gene expression after fertilization. The histone variant H3.3 is present in both male and female gametes and is thought to be important for remodeling the paternal and maternal genomes for activation during both fertilization and embryogenesis. However, the underlying mechanisms remain poorly understood. Using our H3.3B-HA-tagged mouse model, engineered to report H3.3 expression in live animals and to distinguish different sources of H3.3 protein in embryos, we show here that sperm-derived H3.3 (sH3.3) protein is removed from the sperm genome shortly after fertilization and extruded from the zygotes via the second polar bodies (PBII) during embryogenesis. We also found that the maternal H3.3 (mH3.3) protein is incorporated into the paternal genome as early as 2 h postfertilization and is detectable in the paternal genome until the morula stage. Knockdown of maternal H3.3 resulted in compromised embryonic development both of fertilized embryos and of androgenetic haploid embryos. Furthermore, we report that mH3.3 depletion in oocytes impairs both activation of the Oct4 pluripotency marker gene and global de novo transcription from the paternal genome important for early embryonic development. Our results suggest that H3.3-mediated paternal chromatin remodeling is essential for the development of preimplantation embryos and the activation of the paternal genome during embryogenesis. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Ectopic expression of the Coffea canephora SERK1 homolog-induced differential transcription of genes involved in auxin metabolism and in the developmental control of embryogenesis.

    PubMed

    Pérez-Pascual, Daniel; Jiménez-Guillen, Doribet; Villanueva-Alonzo, Hernán; Souza-Perera, Ramón; Godoy-Hernández, Gregorio; Zúñiga-Aguilar, José Juan

    2018-04-01

    Somatic embryogenesis receptor-like kinase 1 (SERK1) is a membrane receptor that might serve as common co-regulator of plant cell differentiation processes by forming heterodimers with specific receptor-like kinases. The Coffea canephora SERK1 homolog (CcSERK1) was cloned in this work, and its early function in the transcription of embryogenesis master genes and of genes encoding proteins involved in auxin metabolism was investigated by externally manipulating its expression in embryogenic leaf explants, before the appearance of embryogenic structures. Overexpression of CcSERK1 early during embryogenesis caused an increase in the number of somatic embryos when the 55-day process was completed. Suppression of CcSERK1 expression by RNA interference almost abolished somatic embryogenesis. Real time-PCR experiments revealed that the transcription of the CcAGL15, CcWUS, CcBBM, CcPKL, CcYUC1, CcPIN1 and CcPIN4 homologs was modified in direct proportion to the expression of CcSERK1 and that only CcLEC1 was inversely affected by the expression levels of CcSERK1. The expression of the CcYUC4 homolog was induced to more than 80-fold under CcSERK1 overexpression conditions, but it was also induced when CcSERK1 expression was silenced. The level of CcTIR1 was not affected by CcSERK1 overexpression but was almost abolished during CcSERK1 silencing. These results suggest that CcSERK1 co-regulates the induction of somatic embryogenesis in Coffea canephora by early activation of YUC-dependent auxin biosynthesis, auxin transport mediated by PIN1 and PIN4, and probably auxin perception by the TIR1 receptor, leading to the induction of early-stage homeotic genes (CcAGL15, CcWUS, CcPKL and CcBBM) and repression of late-stage homeotic genes (CcLec1). © 2018 Scandinavian Plant Physiology Society.

  8. Homologs of the Xenopus developmental gene DG42 are present in zebrafish and mouse and are involved in the synthesis of Nod-like chitin oligosaccharides during early embryogenesis.

    PubMed

    Semino, C E; Specht, C A; Raimondi, A; Robbins, P W

    1996-05-14

    The Xenopus developmental gene DG42 is expressed during early embryonic development, between the midblastula and neurulation stages. The deduced protein sequence of Xenopus DG42 shows similarity to Rhizobium Nod C, Streptococcus Has A, and fungal chitin synthases. Previously, we found that the DG42 protein made in an in vitro transcription/translation system catalyzed synthesis of an array of chitin oligosaccharides. Here we show that cell extracts from early Xenopus and zebrafish embryos also synthesize chitooligosaccharides. cDNA fragments homologous to DG42 from zebrafish and mouse were also cloned and sequenced. Expression of these homologs was similar to that described for Xenopus based on Northern and Western blot analysis. The Xenopus anti-DG42 antibody recognized a 63-kDa protein in extracts from zebrafish embryos that followed a similar developmental expression pattern to that previously described for Xenopus. The chitin oligosaccharide synthase activity found in extracts was inactivated by a specific DG42 antibody; synthesis of hyaluronic acid (HA) was not affected under the conditions tested. Other experiments demonstrate that expression of DG42 under plasmid control in mouse 3T3 cells gives rise to chitooligosaccharide synthase activity without an increase in HA synthase level. A possible relationship between our results and those of other investigators, which show stimulation of HA synthesis by DG42 in mammalian cell culture systems, is provided by structural analyses to be published elsewhere that suggest that chitin oligosaccharides are present at the reducing ends of HA chains. Since in at least one vertebrate system hyaluronic acid formation can be inhibited by a pure chitinase, it seems possible that chitin oligosaccharides serve as primers for hyaluronic acid synthesis.

  9. Dual effects of fluoxetine on mouse early embryonic development.

    PubMed

    Kim, Chang-Woon; Choe, Changyong; Kim, Eun-Jin; Lee, Jae-Ik; Yoon, Sook-Young; Cho, Young-Woo; Han, Sunkyu; Tak, Hyun-Min; Han, Jaehee; Kang, Dawon

    2012-11-15

    Fluoxetine, a selective serotonin reuptake inhibitor, regulates a variety of physiological processes, such as cell proliferation and apoptosis, in mammalian cells. Little is known about the role of fluoxetine in early embryonic development. This study was undertaken to investigate the effect of fluoxetine during mouse early embryonic development. Late two-cell stage embryos (2-cells) were cultured in the presence of various concentrations of fluoxetine (1 to 50μM) for different durations. When late 2-cells were incubated with 5μM fluoxetine for 6h, the percentage that developed into blastocysts increased compared to the control value. However, late 2-cells exposed to fluoxetine (5μM) over 24h showed a reduction in blastocyst formation. The addition of fluoxetine (5μM) together with KN93 or KN62 (calcium/calmodulin-dependent protein kinase II (CaMKII) inhibitors) failed to increase blastocyst formation. Fluoxetine treatment inhibited TREK-1 and TREK-2, members of the two-pore domain K(+) channel family expressed in mouse embryos, activities, indicating that fluoxetine-induced membrane depolarization in late 2-cells might have resulted from TREK inhibition. In addition, long-term exposure to fluoxetine altered the TREK mRNA expression levels. Furthermore, injection of siRNA targeting TREKs significantly decreased blastocyst formation by ~30% compared to injection of scrambled siRNA. Long-term exposure of fluoxetine had no effect on blastocyst formation of TREK deficient embryos. These results indicate that low-dose and short-term exposures of late 2-cells to fluoxetine probably increase blastocyst formation through activation of CaMKII-dependent signal transduction pathways, whereas long-term exposure decreases mouse early embryonic development through inhibition of TREK channel gating. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. 3D early embryogenesis image filtering by nonlinear partial differential equations.

    PubMed

    Krivá, Z; Mikula, K; Peyriéras, N; Rizzi, B; Sarti, A; Stasová, O

    2010-08-01

    We present nonlinear diffusion equations, numerical schemes to solve them and their application for filtering 3D images obtained from laser scanning microscopy (LSM) of living zebrafish embryos, with a goal to identify the optimal filtering method and its parameters. In the large scale applications dealing with analysis of 3D+time embryogenesis images, an important objective is a correct detection of the number and position of cell nuclei yielding the spatio-temporal cell lineage tree of embryogenesis. The filtering is the first and necessary step of the image analysis chain and must lead to correct results, removing the noise, sharpening the nuclei edges and correcting the acquisition errors related to spuriously connected subregions. In this paper we study such properties for the regularized Perona-Malik model and for the generalized mean curvature flow equations in the level-set formulation. A comparison with other nonlinear diffusion filters, like tensor anisotropic diffusion and Beltrami flow, is also included. All numerical schemes are based on the same discretization principles, i.e. finite volume method in space and semi-implicit scheme in time, for solving nonlinear partial differential equations. These numerical schemes are unconditionally stable, fast and naturally parallelizable. The filtering results are evaluated and compared first using the Mean Hausdorff distance between a gold standard and different isosurfaces of original and filtered data. Then, the number of isosurface connected components in a region of interest (ROI) detected in original and after the filtering is compared with the corresponding correct number of nuclei in the gold standard. Such analysis proves the robustness and reliability of the edge preserving nonlinear diffusion filtering for this type of data and lead to finding the optimal filtering parameters for the studied models and numerical schemes. Further comparisons consist in ability of splitting the very close objects which

  11. Notch1 is asymmetrically distributed from the beginning of embryogenesis and controls the ventral center.

    PubMed

    Castro Colabianchi, Aitana M; Revinski, Diego R; Encinas, Paula I; Baez, María Verónica; Monti, Renato J; Abinal, Mateo Rodríguez; Kodjabachian, Laurent; Franchini, Lucía F; López, Silvia L

    2018-06-04

    Based on functional evidence, we have previously demonstrated that an early ventral Notch1 activity restricts dorsoanterior development in Xenopus We found that Notch1 has ventralizing properties and abolishes the dorsalizing activity of β-catenin by reducing its steady state levels, in a process that does not require β-catenin phosphorylation by glycogen synthase kinase-3β. In the present work, we demonstrate that Notch1 mRNA and protein are enriched in the ventral region from the beginning of the embryogenesis in Xenopus This is the earliest sign of ventral development, preceding the localized expression of wnt8a , bmp4 and ventxs genes in the ventral center and the dorsal accumulation of nuclear β-catenin. Knock-down experiments indicate that Notch1 is necessary for the normal expression of genes essential for ventral-posterior development. These results indicate that during early embryogenesis, ventrally located Notch1 promotes the development of the ventral center. Together with our previous evidence, these results suggest that ventral enrichment of Notch1 underlies the process by which Notch1 participates in restricting nuclear accumulation of β-catenin to the dorsal side. © 2018. Published by The Company of Biologists Ltd.

  12. Developmental Localization and Methylesterification of Pectin Epitopes during Somatic Embryogenesis of Banana (Musa spp. AAA)

    PubMed Central

    Xu, Chunxiang; Zhao, Lu; Pan, Xiao; Šamaj, Jozef

    2011-01-01

    Background The plant cell walls play an important role in somatic embryogenesis and plant development. Pectins are major chemical components of primary cell walls while homogalacturonan (HG) is the most abundant pectin polysaccharide. Developmental regulation of HG methyl-esterification degree is important for cell adhesion, division and expansion, and in general for proper organ and plant development. Methodology/Principal Findings Developmental localization of pectic homogalacturonan (HG) epitopes and the (1→4)-β-D-galactan epitope of rhamnogalacturonan I (RG-I) and degree of pectin methyl-esterification (DM) were studied during somatic embryogenesis of banana (Musa spp. AAA). Histological analysis documented all major developmental stages including embryogenic cells (ECs), pre-globular, globular, pear-shaped and cotyledonary somatic embryos. Histochemical staining of extracellularly secreted pectins with ruthenium red showed the most intense staining at the surface of pre-globular, globular and pear-shaped somatic embryos. Biochemical analysis revealed developmental regulation of galacturonic acid content and DM in diverse embryogenic stages. Immunodots and immunolabeling on tissue sections revealed developmental regulation of highly methyl-esterified HG epitopes recognized by JIM7 and LM20 antibodies during somatic embryogenesis. Cell walls of pre-globular/globular and late-stage embryos contained both low methyl-esterified HG epitopes as well as partially and highly methyl-esterified ones. Extracellular matrix which covered surface of early developing embryos contained pectin epitopes recognized by 2F4, LM18, JIM5, JIM7 and LM5 antibodies. De-esterification of cell wall pectins by NaOH caused a decrease or an elimination of immunolabeling in the case of highly methyl-esterified HG epitopes. However, immunolabeling of some low methyl-esterified epitopes appeared stronger after this base treatment. Conclusions/Significance These data suggest that both low

  13. High stability of nuclear microsatellite loci during the early stages of somatic embryogenesis in Norway spruce.

    PubMed

    Helmersson, Andreas; von Arnold, Sara; Burg, Kornel; Bozhkov, Peter V

    2004-10-01

    Somatic embryos of Norway spruce (Picea abies (L.) Karst.) differentiate from proembryogenic masses (PEMs), which are subject to autodestruction through programmed cell death. In PEMs, somatic embryo formation and activation of programmed cell death are interrelated processes. We sought to determine if activation of programmed cell death in PEMs is caused by genetic aberrations during somatic embryogenesis. Based on the finding that withdrawal of auxin and cytokinin induces programmed cell death in PEMs, 1-week-old cell suspensions were cultured in medium either with or without auxin and cytokinin and then transferred to maturation medium containing abscisic acid. We analyzed the stability of three nuclear simple sequence repeat (SSR) microsatellite markers at successive stages of somatic embryogenesis in two cell lines. There were no mutations at the SSR loci at any of the successive developmental stages from PEMs to cotyledonary embryos, irrespective of whether or not the proliferation medium in which cell suspensions had been cultured contained auxin or cytokinin. The morphologies of plants regenerated from the cultures were similar, although withdrawal of auxin and cytokinin significantly stimulated the yield of both embryos and plants. We conclude, therefore, that the high genetic stability of somatic embryos in Norway spruce is unaffected by the induction of programmed cell death caused by withdrawal of auxin and cytokinin.

  14. Chemical Compositions, Somatic Embryogenesis, and Somaclonal Variation in Cumin

    PubMed Central

    Tohidfar, Masoud; Sadat Noori, Seyed Ahmad; Izadi Darbandi, Ali; Rao, Rosa

    2017-01-01

    This is the first report evaluating the relationship between the chemical compositions of cumin seeds (based on the analysis of the content of catalase, ascorbate peroxidase, proline, protein, terpenic compounds, alcohol/phenols, aldehydes, and epoxides) and the induction efficiency of somatic embryogenesis in two Iranian superior cumin landraces (Golestan and North Khorasan). Cotyledons isolated from Golestan landrace seeds cultivated on MS medium supplemented with 0.1 mg/L kinetin proved to be the best primary explant for the induction of somatic embryogenesis as well as the regeneration of the whole plantlet. Results indicated that different developmental stages of somatic embryos were simultaneously observed on a callus with embryogenic potential. The high content of catalase, ascorbate peroxidase, proline, and terpenic hydrocarbons and low content of alcoholic and phenolic compositions had a stimulatory effect on somatic embryogenesis. Band patterns of RAPD markers in regenerated plants were different from those of the mother plants. This may be related to somaclonal variations or pollination system of cumin. Generally, measurement of chemical compositions can be used as a marker for evaluating the occurrence of somatic embryogenesis in cumin. Also, somaclonal variations of regenerated plants can be applied by the plant breeders in breeding programs. PMID:29234682

  15. Somatic Embryogenesis: Still a Relevant Technique in Citrus Improvement.

    PubMed

    Omar, Ahmad A; Dutt, Manjul; Gmitter, Frederick G; Grosser, Jude W

    2016-01-01

    The genus Citrus contains numerous fresh and processed fruit cultivars that are economically important worldwide. New cultivars are needed to battle industry threatening diseases and to create new marketing opportunities. Citrus improvement by conventional methods alone has many limitations that can be overcome by applications of emerging biotechnologies, generally requiring cell to plant regeneration. Many citrus genotypes are amenable to somatic embryogenesis, which became a key regeneration pathway in many experimental approaches to cultivar improvement. This chapter provides a brief history of plant somatic embryogenesis with focus on citrus, followed by a discussion of proven applications in biotechnology-facilitated citrus improvement techniques, such as somatic hybridization, somatic cybridization, genetic transformation, and the exploitation of somaclonal variation. Finally, two important new protocols that feature plant regeneration via somatic embryogenesis are provided: protoplast transformation and Agrobacterium-mediated transformation of embryogenic cell suspension cultures.

  16. Bone Morphogenetic Protein 15 (BMP15) Acts as a BMP and Wnt Inhibitor during Early Embryogenesis*

    PubMed Central

    Di Pasquale, Elisa; Brivanlou, Ali H.

    2009-01-01

    Bone morphogenetic protein 15 (BMP15) belongs to an unusual subgroup of the transforming growth factor β (TGFβ) superfamily of signaling ligands as it lacks a key cysteine residue in the mature region required for proper intermolecular dimerization. Naturally occurring BMP15 mutation leads to early ovarian failure in humans, and BMP15 has been shown to activate the Smad1/5/8 pathway in that context. Despite its important role in germ cell specification, the embryological function of BMP15 remains unknown. Surprisingly, we find that during early Xenopus embryogenesis BMP15 acts solely as an inhibitor of the Smad1/5/8 pathway and the Wnt pathway. BMP15 gain-of-function leads to embryos with secondary ectopic heads and to direct neural induction in intact explants. BMP15 inhibits BMP4-mediated epidermal induction in dissociated explants. BMP15 strongly inhibits BRE response induced by BMP4 and blocks phosphorylation and activation of Smad1/5/8 MH2-domain. Mechanistically, BMP15 protein specifically interacts with BMP4 protein, suggesting inhibition upstream of receptor binding. Loss-of-function experiments using morpholinos or a naturally occurring human BMP15 dominant-negative mutant (BMP15-Y235C) leads to embryos lacking head. BMP15-Y235C also eliminates the inhibitory activity of BMP15 on BRE (BMP-responsive element). Finally, we show that BMP15 inhibits the canonical branch of the Wnt pathway, upstream of β-catenin. We, thus, demonstrate that BMP15 is necessary and sufficient for the specification of dorso-anterior structures and highlight novel mechanisms of BMP15 function that strongly suggest a reinterpretation of its function in ovaries specially for ovarian failure. PMID:19553676

  17. vasa and piwi are required for mitotic integrity in early embryogenesis in the spider Parasteatoda tepidariorum.

    PubMed

    Schwager, Evelyn E; Meng, Yue; Extavour, Cassandra G

    2015-06-15

    Studies in vertebrate and invertebrate model organisms on the molecular basis of primordial germ cell (PGC) specification have revealed that metazoans can specify their germ line either early in development by maternally transmitted cytoplasmic factors (inheritance), or later in development by signaling factors from neighboring tissues (induction). Regardless of the mode of PGC specification, once animal germ cells are specified, they invariably express a number of highly conserved genes. These include vasa and piwi, which can play essential roles in any or all of PGC specification, development, or gametogenesis. Although the arthropods are the most speciose animal phylum, to date there have been no functional studies of conserved germ line genes in species of the most basally branching arthropod clade, the chelicerates (which includes spiders, scorpions, and horseshoe crabs). Here we present the first such study by using molecular and functional tools to examine germ line development and the roles of vasa and piwi orthologues in the common house spider Parasteatoda (formerly Achaearanea) tepidariorum. We use transcript and protein expression patterns of Pt-vasa and Pt-piwi to show that primordial germ cells (PGCs) in the spider arise during late embryogenesis. Neither Pt-vasa nor Pt-piwi gene products are localized asymmetrically to any embryonic region before PGCs emerge as paired segmental clusters in opisthosomal segments 2-6 at late germ band stages. RNA interference studies reveal that both genes are required maternally for egg laying, mitotic progression in early embryos, and embryonic survival. Our results add to the growing body of evidence that vasa and piwi can play important roles in somatic development, and provide evidence for a previously hypothesized conserved role for vasa in cell cycle progression. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Differential expression of two scribble isoforms during Drosophila embryogenesis.

    PubMed

    Li, M; Marhold, J; Gatos, A; Török, I; Mechler, B M

    2001-10-01

    The tumour suppressor gene scribble (scrib) is required for epithelial polarity and growth control in Drosophila. Here, we report the identification and embryonic expression pattern of two Scrib protein isoforms resulting from alternative splicing during scrib transcription. Both proteins are first ubiquitously expressed during early embryogenesis. Then, during morphogenesis each Scrib protein displays a specific pattern of expression in the central and peripheral nervous systems, CNS and PNS, respectively. During germ band extension, the expression of the longer form Scrib1 occurs predominantly in the neuroblasts derived from the neuro-ectoderm and becomes later restricted to CNS neurones as well as to the pole cells in the gonads. By contrast, the shorter form Scrib2 is strongly expressed in the PNS and a subset of CNS neurones.

  19. Embryogenesis induction, callogenesis, and plant regeneration by in vitro culture of tomato isolated microspores and whole anthers.

    PubMed

    Seguí-Simarro, José M; Nuez, Fernando

    2007-01-01

    In this work, some of the different in vitro developmental pathways into which tomato microspores or microsporocytes can be deviated experimentally were explored. The two principal ones are direct embryogenesis from isolated microspores and callus formation from meiocyte-containing anthers. By means of light and electron microscopy, the process of early embryogenesis from isolated microspores and the disruption of normal meiotic development and change of developmental fate towards callus proliferation, morphogenesis, and plant regeneration have been shown. From microspores isolated at the vacuolate stage, embryos can be directly induced, thus avoiding non-androgenic products. In contrast, several different morphogenic events can be triggered in cultures of microsporocyte-containing anthers under adequate conditions, including indirect embryogenesis, adventitious organogenesis, and plant regeneration. Both callus and regenerated plants may be haploid, diploid, and mostly mixoploid. The results demonstrate that both gametophytic and sporophytic calli occur in cultured tomato anthers, and point to an in vitro-induced disturbance of cytokinesis and subsequent fusion of daughter nuclei as a putative cause for mixoploidy and genome doubling during both tetrad compartmentalization and callus proliferation. The potential implications of the different alternative pathways are discussed in the context of their application to the production of doubled-haploid plants in tomato, which is still very poorly developed.

  20. Transcriptome analyses of rhesus monkey preimplantation embryos reveal a reduced capacity for DNA double-strand break repair in primate oocytes and early embryos

    PubMed Central

    Wang, Xinyi; Liu, Denghui; He, Dajian; Suo, Shengbao; Xia, Xian; He, Xiechao; Han, Jing-Dong J.; Zheng, Ping

    2017-01-01

    Preimplantation embryogenesis encompasses several critical events including genome reprogramming, zygotic genome activation (ZGA), and cell-fate commitment. The molecular basis of these processes remains obscure in primates in which there is a high rate of embryo wastage. Thus, understanding the factors involved in genome reprogramming and ZGA might help reproductive success during this susceptible period of early development and generate induced pluripotent stem cells with greater efficiency. Moreover, explaining the molecular basis responsible for embryo wastage in primates will greatly expand our knowledge of species evolution. By using RNA-seq in single and pooled oocytes and embryos, we defined the transcriptome throughout preimplantation development in rhesus monkey. In comparison to archival human and mouse data, we found that the transcriptome dynamics of monkey oocytes and embryos were very similar to those of human but very different from those of mouse. We identified several classes of maternal and zygotic genes, whose expression peaks were highly correlated with the time frames of genome reprogramming, ZGA, and cell-fate commitment, respectively. Importantly, comparison of the ZGA-related network modules among the three species revealed less robust surveillance of genomic instability in primate oocytes and embryos than in rodents, particularly in the pathways of DNA damage signaling and homology-directed DNA double-strand break repair. This study highlights the utility of monkey models to better understand the molecular basis for genome reprogramming, ZGA, and genomic stability surveillance in human early embryogenesis and may provide insights for improved homologous recombination-mediated gene editing in monkey. PMID:28223401

  1. Influence of early life exposure, host genetics and diet on the mouse gut microbiome and metabolome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snijders, Antoine M.; Langley, Sasha A.; Kim, Young-Mo

    Although the gut microbiome plays important roles in host physiology, health and disease1, we lack understanding of the complex interplay between host genetics and early life environment on the microbial and metabolic composition of the gut.We used the genetically diverse Collaborative Cross mouse system2 to discover that early life history impacts themicrobiome composition, whereas dietary changes have only a moderate effect. By contrast, the gut metabolome was shaped mostly by diet, with specific non-dietary metabolites explained by microbial metabolism. Quantitative trait analysis identified mouse genetic trait loci (QTL) that impact the abundances of specific microbes. Human orthologues of genes inmore » the mouse QTL are implicated in gastrointestinal cancer. Additionally, genes located in mouse QTL for Lactobacillales abundance are implicated in arthritis, rheumatic disease and diabetes. Furthermore, Lactobacillales abundance was predictive of higher host T-helper cell counts, suggesting an important link between Lactobacillales and host adaptive immunity.« less

  2. Desiccation Treatment and Endogenous IAA Levels Are Key Factors Influencing High Frequency Somatic Embryogenesis in Cunninghamia lanceolata (Lamb.) Hook

    PubMed Central

    Zhou, Xiaohong; Zheng, Renhua; Liu, Guangxin; Xu, Yang; Zhou, Yanwei; Laux, Thomas; Zhen, Yan; Harding, Scott A.; Shi, Jisen; Chen, Jinhui

    2017-01-01

    Cunninghamia lanceolata (Lamb.) Hook (Chinese fir) is an important tree, commercially and ecologically, in southern China. The traditional regenerating methods are based on organogenesis and cutting propagation. Here, we report the development of a high-frequency somatic embryogenesis (SE) regeneration system synchronized via a liquid culture from immature zygotic embryos. Following synchronization, PEM II cell aggregates were developmentally equivalent in appearance to cleaved zygotic embryos. Embryo and suspensor growth and subsequent occurrence of the apical and then the cotyledonary meristems were similar for zygotic and SE embryo development. However, SE proembryos exhibited a more reddish coloration than zygotic proembryos, and SE embryos were smaller than zygotic embryos. Mature somatic embryos gave rise to plantlets on hormone-free medium. For juvenile explants, low concentrations of endogenous indole-3-acetic acid in initial explants correlated with improved proembryogenic mass formation, and high SE competency. Analysis of karyotypes and microsatellites detected no major genetic variation in the plants regenerated via SE, and suggest a potential in the further development of this system as a reliable methodology for true-to-type seedling production. Treatment with polyethylene glycol (PEG) and abscisic acid (ABA) were of great importance to proembryo formation and complemented each other. ABA assisted the growth of embryonal masses, whereas PEG facilitated the organization of the proembryo-like structures. SOMATIC EMBRYOGENESIS RECEPTOR KINASE SERK) and the WUSCHEL homeobox (WOX) transcription factor served as molecular markers during early embryogenesis. Our results show that ClSERKs are conserved and redundantly expressed during SE. SERK and WOX transcript levels were highest during development of the proembryos and lowest in developed embryos. ClWOX13 expression correlates with the critical transition from proembryogenic masses to proembryos. Both SERK

  3. Targeted Disruption of Mouse Yin Yang 1 Transcription Factor Results in Peri-Implantation Lethality

    PubMed Central

    Donohoe, Mary E.; Zhang, Xiaolin; McGinnis, Lynda; Biggers, John; Li, En; Shi, Yang

    1999-01-01

    Yin Yang 1 (YY1) is a zinc finger-containing transcription factor and a target of viral oncoproteins. To determine the biological role of YY1 in mammalian development, we generated mice deficient for YY1 by gene targeting. Homozygosity for the mutated YY1 allele results in embryonic lethality in the mouse. YY1 mutants undergo implantation and induce uterine decidualization but rapidly degenerate around the time of implantation. A subset of YY1 heterozygote embryos are developmentally retarded and exhibit neurulation defects, suggesting that YY1 may have additional roles during later stages of mouse embryogenesis. Our studies demonstrate an essential function for YY1 in the development of the mouse embryo. PMID:10490658

  4. Axes, planes and tubes, or the geometry of embryogenesis.

    PubMed

    Brauckmann, Sabine

    2011-12-01

    The paper presents selected figures of chick embryogenesis as depicted in the classic studies of Caspar Friedrich Wolff (1734-1794), Christian Heinrich Pander (1794-1865) and Karl Ernst von Baer (1792-1786). My main objective here is (1) to demonstrate how the imagery of Wolff, Pander and Baer attempted to project an image of a 3-dimensional rotating body into static figures on paper by means of linear contours, and (2) to ponder on the efficacy and pervasiveness of dots, lines and arrows for depicting embryogenesis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Somatic Embryogenesis in Lisianthus (Eustoma russellianum Griseb.).

    PubMed

    Ruffoni, Barbara; Bassolino, Laura

    2016-01-01

    Somatic embryogenesis is, for the main floricultural crops, a promising system for commercial scale-up, providing cloned material to be traded as seedlings. Somatic embryos, having the contemporary presence of root apical meristem and shoot apical meristem, can be readily acclimatized. For Lisianthus it is possible to induce embryogenic callus from leaf fragments of selected genotypes and to obtain embryos either in agarized substrate or in liquid suspension culture. The production of somatic embryos in liquid medium is high and can be modulated in order to synchronize the cycle and the size of the neoformed structures. The possibility to use the liquid substrate with high propagation rates reduces labor costs and could support the costs of eventual automation. In this paper we report a stepwise protocol for somatic embryogenesis in the species Eustoma russellianum.

  6. Somatic embryogenesis from leaf explants of Australian fan flower, Scaevola aemula R. Br.

    PubMed

    Wang, Y-H; Bhalla, P L

    2004-01-01

    Somatic embryogenesis from leaf explants of Scaevola aemula R. Br. was achieved. Somatic embryos were induced from explants cultured on MS medium supplemented with 0.2 mg/ 2,4-dichlorophenoxyacetic acid and 0.2-0.5 mg/l 6-benzylaminopurine (BAP). Various developmental stages of somatic embryos were found on this medium-from globular embryos to germinated embryos. The transfer of globular embryos to MS medium containing 0.5 mg/l BAP resulted in a high frequency of shoot regeneration. Leaf explants cultured on MS medium containing different combinations of BAP and alpha-naphthaleneacetic acid formed adventitious shoots and roots. Histological examination confirmed the process of somatic embryogenesis. Induction of somatic embryogenesis in Scaevola provides a system for studying embryogenesis in Australian native plants and will facilitate the improvement of these plants using genetic transformation techniques.

  7. High-Frequency Ultrasound for the Study of Early Mouse Embryonic Cardiovascular System.

    PubMed

    Greco, Adelaide; Coda, Anna Rita Daniela; Albanese, Sandra; Ragucci, Monica; Liuzzi, Raffaele; Auletta, Luigi; Gargiulo, Sara; Lamagna, Francesco; Salvatore, Marco; Mancini, Marcello

    2015-12-01

    An accurate diagnosis of congenital heart defects during fetal development is critical for interventional planning. Mice can be used to generate animal models with heart defects, and high-frequency ultrasound (HFUS) imaging enables in utero imaging of live mouse embryos. A wide range of physiological measurements is possible using Doppler-HFUS imaging; limitations of any single measurement warrant a multiparameter approach to characterize cardiovascular function. Doppler-HFUS was used to explore the embryonic (heart, aorta) and extraembryonic (umbilical blood flow) circulatory systems to create a database in normal mouse embryos between 9.5 and 16.5 days of gestation. Multivariate analyses were performed to explore correlations between gestational age and embryo echocardiographic parameters. Heart rate and peak velocity in the aorta were positively correlated with gestational time, whereas cardiac cycle length, isovolumetric relaxation time, myocardial performance index, and arterial deceleration time of the umbilical cord were negatively correlated with it. Doppler-HFUS facilitated detailed characterization of the embryonic mouse circulation and represents a useful tool for investigation of the early mouse embryonic cardiovascular system. © The Author(s) 2015.

  8. Somatic embryogenesis for efficient micropropagation of guava (Psidium guajava L.).

    PubMed

    Akhtar, Nasim

    2013-01-01

    Guava (Psidium guajava L.) is well known for edible fruit, environment friendly pharmaceutical and commercial products for both national and international market. The conventional propagation and in vitro organogenesis do not meet the demand for the good quality planting materials. Somatic embryogenesis for efficient micropropagation of guava (P. guajava L.) has been developed to fill up the gap. Somatic embryogenesis and plantlets regeneration are achieved from 10-week post-anthesis zygotic embryo explants by 8-day inductive treatment with different concentrations of 2,4-dichlorophenoxy acetic acid (2,4-D) on MS agar medium containing 5% sucrose. Subsequent development and maturation of somatic embryos occur after 8 days on MS basal medium supplemented with 5% sucrose without plant growth regulator. The process of somatic embryogenesis shows the highest relative efficiency in 8-day treatment of zygotic embryo explants with 1.0 mg L(-1) 2,4-D. High efficiency germination of somatic embryos and plantlet regeneration takes place on half strength semisolid MS medium amended with 3% sucrose within 2 weeks of subculture. Somatic plantlets are grown for additional 2 weeks by subculturing in MS liquid growth medium containing 3% sucrose. Well-grown plantlets from liquid medium have survived very well following 2-4 week hardening process. The protocol of somatic embryogenesis is optimized for high efficiency micropropagation of guava species.

  9. Somatic Embryogenesis in Two Orchid Genera (Cymbidium, Dendrobium).

    PubMed

    da Silva, Jaime A Teixeira; Winarto, Budi

    2016-01-01

    The protocorm-like body (PLB) is the de facto somatic embryo in orchids. Here we describe detailed protocols for two orchid genera (hybrid Cymbidium Twilight Moon 'Day Light' and Dendrobium 'Jayakarta', D. 'Gradita 31', and D. 'Zahra FR 62') for generating PLBs. These protocols will most likely have to be tweaked for different cultivars as the response of orchids in vitro tends to be dependent on genotype. In addition to primary somatic embryogenesis, secondary (or repetitive) somatic embryogenesis is also described for both genera. The use of thin cell layers as a sensitive tissue assay is outlined for hybrid Cymbidium while the protocol outlined is suitable for bioreactor culture of D. 'Zahra FR 62'.

  10. MicroRNA-127 Promotes Mesendoderm Differentiation of Mouse Embryonic Stem Cells by Targeting Left-Right Determination Factor 2.

    PubMed

    Ma, Haixia; Lin, Yu; Zhao, Zhen-Ao; Lu, Xukun; Yu, Yang; Zhang, Xiaoxin; Wang, Qiang; Li, Lei

    2016-06-03

    Specification of the three germ layers is a fundamental process and is essential for the establishment of organ rudiments. Multiple genetic and epigenetic factors regulate this dynamic process; however, the function of specific microRNAs in germ layer differentiation remains unknown. In this study, we established that microRNA-127 (miR-127) is related to germ layer specification via microRNA array analysis of isolated three germ layers of E7.5 mouse embryos and was verified through differentiation of mouse embryonic stem cells. miR-127 is highly expressed in endoderm and primitive streak. Overexpression of miR-127 increases and inhibition of miR-127 decreases the expression of mesendoderm markers. We further show that miR-127 promotes mesendoderm differentiation through the nodal pathway, a determinative signaling pathway in early embryogenesis. Using luciferase reporter assay, left-right determination factor 2 (Lefty2), an antagonist of nodal, is identified to be a novel target of miR-127. Furthermore, the role of miR-127 in mesendoderm differentiation is attenuated by Lefty2 overexpression. Altogether, our results indicate that miR-127 accelerates mesendoderm differentiation of mouse embryonic stem cells through nodal signaling by targeting Lefty2. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Effect of Salicylic Acid on Somatic Embryogenesis and Plant Regeneration in Hedychium bousigonianum

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to induce somatic embryogenesis in Hedychium bousigonianum Pierre ex Gagnepain and assess the influence of salicylic acid (S) on somatic embryogenesis. Somatic embryos and subsequently regenerated plants were successfully obtained 30 days after transfer of embryogenic...

  12. Drosophila MOF controls Checkpoint protein2 and regulates genomic stability during early embryogenesis

    PubMed Central

    2013-01-01

    Background In Drosophila embryos, checkpoints maintain genome stability by delaying cell cycle progression that allows time for damage repair or to complete DNA synthesis. Drosophila MOF, a member of MYST histone acetyl transferase is an essential component of male X hyperactivation process. Until recently its involvement in G2/M cell cycle arrest and defects in ionizing radiation induced DNA damage pathways was not well established. Results Drosophila MOF is highly expressed during early embryogenesis. In the present study we show that haplo-insufficiency of maternal MOF leads to spontaneous mitotic defects like mitotic asynchrony, mitotic catastrophe and chromatid bridges in the syncytial embryos. Such abnormal nuclei are eliminated and digested in the yolk tissues by nuclear fall out mechanism. MOF negatively regulates Drosophila checkpoint kinase 2 tumor suppressor homologue. In response to DNA damage the checkpoint gene Chk2 (Drosophila mnk) is activated in the mof mutants, there by causing centrosomal inactivation suggesting its role in response to genotoxic stress. A drastic decrease in the fall out nuclei in the syncytial embryos derived from mof1/+; mnkp6/+ females further confirms the role of DNA damage response gene Chk2 to ensure the removal of abnormal nuclei from the embryonic precursor pool and maintain genome stability. The fact that mof mutants undergo DNA damage has been further elucidated by the increased number of single and double stranded DNA breaks. Conclusion mof mutants exhibited genomic instability as evidenced by the occurance of frequent mitotic bridges in anaphase, asynchronous nuclear divisions, disruption of cytoskeleton, inactivation of centrosomes finally leading to DNA damage. Our findings are consistent to what has been reported earlier in mammals that; reduced levels of MOF resulted in increased genomic instability while total loss resulted in lethality. The study can be further extended using Drosophila as model system and carry

  13. Drosophila MOF controls Checkpoint protein2 and regulates genomic stability during early embryogenesis.

    PubMed

    Pushpavalli, Sreerangam N C V L; Sarkar, Arpita; Ramaiah, M Janaki; Chowdhury, Debabani Roy; Bhadra, Utpal; Pal-Bhadra, Manika

    2013-01-24

    In Drosophila embryos, checkpoints maintain genome stability by delaying cell cycle progression that allows time for damage repair or to complete DNA synthesis. Drosophila MOF, a member of MYST histone acetyl transferase is an essential component of male X hyperactivation process. Until recently its involvement in G2/M cell cycle arrest and defects in ionizing radiation induced DNA damage pathways was not well established. Drosophila MOF is highly expressed during early embryogenesis. In the present study we show that haplo-insufficiency of maternal MOF leads to spontaneous mitotic defects like mitotic asynchrony, mitotic catastrophe and chromatid bridges in the syncytial embryos. Such abnormal nuclei are eliminated and digested in the yolk tissues by nuclear fall out mechanism. MOF negatively regulates Drosophila checkpoint kinase 2 tumor suppressor homologue. In response to DNA damage the checkpoint gene Chk2 (Drosophila mnk) is activated in the mof mutants, there by causing centrosomal inactivation suggesting its role in response to genotoxic stress. A drastic decrease in the fall out nuclei in the syncytial embryos derived from mof¹/+; mnkp⁶/+ females further confirms the role of DNA damage response gene Chk2 to ensure the removal of abnormal nuclei from the embryonic precursor pool and maintain genome stability. The fact that mof mutants undergo DNA damage has been further elucidated by the increased number of single and double stranded DNA breaks. mof mutants exhibited genomic instability as evidenced by the occurance of frequent mitotic bridges in anaphase, asynchronous nuclear divisions, disruption of cytoskeleton, inactivation of centrosomes finally leading to DNA damage. Our findings are consistent to what has been reported earlier in mammals that; reduced levels of MOF resulted in increased genomic instability while total loss resulted in lethality. The study can be further extended using Drosophila as model system and carry out the interaction of MOF

  14. Effects of gravity on meiosis, fertilization and early embryogenesis in Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Sasagawa, Y.; Saito, Y.; Shimizu, M.; Ishioka, N.; Yamashita, M.; Takahashi, H.; Higashitani, A.

    The embryonic development of the nematode Caenorhabditis elegans was examined under different gravitational conditions. The first cleavage plane in the 1-cell embryo was slid to some extent by re-orientation of liquid culture vessel, but the pattern and timing of cleavages were not affected. Under 100G of hypergravity condition with swing-centrifuge, the number of eggs laid from an adult hermaphrodite decreased and their hatching rate was drastically reduced. On the other hand, the embryonic development after fertilization normally occurred and grew to adulthood at more than 100G of hypergravity. When the adult hermaphrodites cultured under 100G of hypergravity transferred to a ground condition (1G), the newly fertilized embryos normally developed and their hatching rate was fully recovered. These results indicated that the reproductive process except spermatogenesis, oogenesis and embryogenesis after fertilization is impaired under 100G of hypergravity condition, and the effect is transient. Namely, the fertilization process including meiotic divisions I and II is sensitive to hypergravity in the nematode C. elegans.

  15. Alcohol exposure alters DNA methylation profiles in mouse embryos at early neurulation

    PubMed Central

    Liu, Yunlong; Balaraman, Yokesh; Wang, Guohua; Nephew, Kenneth P.; Zhou, Feng C.

    2009-01-01

    Alcohol exposure during development can cause variable neurofacial deficit and growth retardation known as fetal alcohol spectrum disorders (FASD). The mechanism underlying FASD is not fully understood. However, alcohol, which is known to affect methyl donor metabolism, may induce aberrant epigenetic changes contributing to FASD. Using a tightly controlled whole-embryo culture, we investigated the effect of alcohol exposure (88 mM) at early embryonic neurulation on genome-wide DNA methylation and gene expression in the C57BL/6 mouse. The DNA methylation landscape around promoter CpG islands at early mouse development was analyzed using MeDIP (methylated DNA immunoprecipitation) coupled with microarray (MeDIP-chip). At early neurulation, genes associated with high CpG promoters (HCP) had a lower ratio of methylation but a greater ratio of expression. Alcohol-induced alterations in DNA methylation were observed, particularly in genes on chromosomes 7, 10 and X; remarkably, a >10 fold increase in the number of genes with increased methylation on chromosomes 10 and X was observed in alcohol-exposed embryos with a neural tube defect phenotype compared to embryos without a neural tube defect. Significant changes in methylation were seen in imprinted genes, genes known to play roles in cell cycle, growth, apoptosis, cancer, and in a large number of genes associated with olfaction. Altered methylation was associated with significant (p < 0.01) changes in expression for 84 genes. Sequenom EpiTYPER DNA methylation analysis was used for validation of the MeDIP-chip data. Increased methylation of genes known to play a role in metabolism (Cyp4f13) and decreased methylation of genes associated with development (Nlgn3, Elavl2, Sox21 and Sim1), imprinting (Igf2r) and chromatin (Hist1h3d) was confirmed. In a mouse model for FASD, we show for the first time that alcohol exposure during early neurulation can induce aberrant changes in DNA methylation patterns with associated changes

  16. Alcohol exposure alters DNA methylation profiles in mouse embryos at early neurulation.

    PubMed

    Liu, Yunlong; Balaraman, Yokesh; Wang, Guohua; Nephew, Kenneth P; Zhou, Feng C

    2009-10-01

    Alcohol exposure during development can cause variable neurofacial deficit and growth retardation known as fetal alcohol spectrum disorders (FASD). The mechanism underlying FASD is not fully understood. However, alcohol, which is known to affect methyl donor metabolism, may induce aberrant epigenetic changes contributing to FASD. Using a tightly controlled whole-embryo culture, we investigated the effect of alcohol exposure (88mM) at early embryonic neurulation on genome-wide DNA methylation and gene expression in the C57BL/6 mouse. The DNA methylation landscape around promoter CpG islands at early mouse development was analyzed using MeDIP (methylated DNA immunoprecipitation) coupled with microarray (MeDIP-chip). At early neurulation, genes associated with high CpG promoters (HCP) had a lower ratio of methylation but a greater ratio of expression. Alcohol-induced alterations in DNA methylation were observed, particularly in genes on chromosomes 7, 10, and X; remarkably, a >10 fold increase in the number of genes with increased methylation on chromosomes 10 and X was observed in alcohol-exposed embryos with a neural tube defect phenotype compared to embryos without a neural tube defect. Significant changes in methylation were seen in imprinted genes, genes known to play roles in cell cycle, growth, apoptosis, cancer, and in a large number of genes associated with olfaction. Altered methylation was associated with significant (p<0.01) changes in expression for 84 genes. Sequenom EpiTYPER DNA methylation analysis was used for validation of the MeDIP-chip data. Increased methylation of genes known to play a role in metabolism (Cyp4f13) and decreased methylation of genes associated with development (Nlgn3, Elavl2, Sox21 and Sim1), imprinting (Igf2r) and chromatin (Hist1h3d) was confirmed. In a mouse model for FASD, we show for the first time that alcohol exposure during early neurulation can induce aberrant changes in DNA methylation patterns with associated changes in

  17. Shoot regeneration and somatic embryogenesis from needles of redwood (Sequoia sempervirens (D.Don.) Endl.).

    PubMed

    Liu, Cuiqiong; Xia, Xinli; Yin, Weilun; Huang, Lichun; Zhou, Jianghong

    2006-07-01

    A rapid and effective system of somatic embryogenesis and organogenesis from the in vitro needles of redwood (Sequoia sempervirens (D.Don.) Endl.) had been established. The influences of plant growth regulators (PGRs) and days of seedlings in vitro on adventitious bud regeneration and somatic embryogenesis were studied. The process of somatic embryo formation was also observed. The results showed that embryogenic callus was induced and proliferated on Schenk and Hildebrandt (SH) medium with BA (0.5 mg/l), KT (0.5 mg/l) and IBA (1.0 mg/l). SH medium containing BA (0.5 mg/l), KT (0.2 mg/l) and IBA (0.2 mg/l) effectively promoted adventitious bud regeneration. The highest frequency (66.3%) of direct somatic embryogenesis was obtained in the combination of BA (0.5 mg/l) and IBA (0.5 mg/l). The optimal days of seedling in vitro for adventitious bud and somatic embryogenesis were 30 days and 30-40 days, respectively. The developments of somatic embryos were similar to that of zygotic embryogenesis. The result of histocytological studies indicated that proteins were gradually accumulated in the process of somatic embryo formation and there were two peaks of starch grains accumulation that one was in the embryogenic callus and the other was in the globular embryos. These results indicated that starch and protein were closely related with the energy supply and the molecular base of somatic embryogenesis, respectively.

  18. Transcriptome Analysis of Honeybee (Apis Mellifera) Haploid and Diploid Embryos Reveals Early Zygotic Transcription during Cleavage

    PubMed Central

    Pires, Camilla Valente; Freitas, Flávia Cristina de Paula; Cristino, Alexandre S.; Dearden, Peter K.; Simões, Zilá Luz Paulino

    2016-01-01

    In honeybees, the haplodiploid sex determination system promotes a unique embryogenesis process wherein females develop from fertilized eggs and males develop from unfertilized eggs. However, the developmental strategies of honeybees during early embryogenesis are virtually unknown. Similar to most animals, the honeybee oocytes are supplied with proteins and regulatory elements that support early embryogenesis. As the embryo develops, the zygotic genome is activated and zygotic products gradually replace the preloaded maternal material. The analysis of small RNA and mRNA libraries of mature oocytes and embryos originated from fertilized and unfertilized eggs has allowed us to explore the gene expression dynamics in the first steps of development and during the maternal-to-zygotic transition (MZT). We localized a short sequence motif identified as TAGteam motif and hypothesized to play a similar role in honeybees as in fruit flies, which includes the timing of early zygotic expression (MZT), a function sustained by the presence of the zelda ortholog, which is the main regulator of genome activation. Predicted microRNA (miRNA)-target interactions indicated that there were specific regulators of haploid and diploid embryonic development and an overlap of maternal and zygotic gene expression during the early steps of embryogenesis. Although a number of functions are highly conserved during the early steps of honeybee embryogenesis, the results showed that zygotic genome activation occurs earlier in honeybees than in Drosophila based on the presence of three primary miRNAs (pri-miRNAs) (ame-mir-375, ame-mir-34 and ame-mir-263b) during the cleavage stage in haploid and diploid embryonic development. PMID:26751956

  19. G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis

    PubMed Central

    Tachibana, Makoto; Sugimoto, Kenji; Nozaki, Masami; Ueda, Jun; Ohta, Tsutomu; Ohki, Misao; Fukuda, Mikiko; Takeda, Naoki; Niida, Hiroyuki; Kato, Hiroyuki; Shinkai, Yoichi

    2002-01-01

    Covalent modification of histone tails is crucial for transcriptional regulation, mitotic chromosomal condensation, and heterochromatin formation. Histone H3 lysine 9 (H3-K9) methylation catalyzed by the Suv39h family proteins is essential for establishing the architecture of pericentric heterochromatin. We recently identified a mammalian histone methyltransferase (HMTase), G9a, which has strong HMTase activity towards H3-K9 in vitro. To investigate the in vivo functions of G9a, we generated G9a-deficient mice and embryonic stem (ES) cells. We found that H3-K9 methylation was drastically decreased in G9a-deficient embryos, which displayed severe growth retardation and early lethality. G9a-deficient ES cells also exhibited reduced H3-K9 methylation compared to wild-type cells, indicating that G9a is a dominant H3-K9 HMTase in vivo. Importantly, the loss of G9a abolished methylated H3-K9 mostly in euchromatic regions. Finally, G9a exerted a transcriptionally suppressive function that depended on its HMTase activity. Our results indicate that euchromatic H3-K9 methylation regulated by G9a is essential for early embryogenesis and is involved in the transcriptional repression of developmental genes. PMID:12130538

  20. MiRNA-mediated regulation of cell signaling and homeostasis in the early mouse embryo.

    PubMed

    Pernaute, Barbara; Spruce, Thomas; Rodriguez, Tristan A; Manzanares, Miguel

    2011-02-15

    At the time of implantation the mouse embryo is composed of three tissues the epiblast, trophectoderm and primitive endoderm. As development progresses the epiblast goes on to form the foetus whilst the trophectoderm and primitive endoderm give rise to extra-embryonic structures with important roles in embryo patterning and nutrition. Dramatic changes in gene expression occur during early embryo development and these require regulation at different levels. miRNAs are small non coding RNAs that have emerged over the last decade as important post-transcriptional repressors of gene expression. The roles played by miRNAs during early mammalian development are only starting to be elucidated. In order to gain insight into the function of miRNAs in the different lineages of the early mouse embryo we have analysed in depth the phenotype of embryos and extra-embryonic stem cells mutant for the miRNA maturation protein Dicer. This study revealed that miRNAs are involved in regulating cell signaling and homeostasis in the early embryo. Specifically, we identified a role for miRNAs in regulating the Erk signaling pathway in the extra-embryonic endoderm, cell cycle progression in extra-embryonic tissues and apoptosis in the epiblast.

  1. Dual specificity of activin type II receptor ActRIIb in dorso-ventral patterning during zebrafish embryogenesis.

    PubMed

    Nagaso, H; Suzuki, A; Tada, M; Ueno, N

    1999-04-01

    Members of the transforming growth factor-beta (TGF-beta) superfamily are thought to regulate specification of a variety of tissue types in early embryogenesis. These effects are mediated through a cell surface receptor complex, consisting of two classes of ser/thr kinase receptor, type I and type II. In the present study, cDNA encoding zebrafish activin type II receptors, ActRIIa and ActRIIb was cloned and characterized. Overexpression of ActRIIb in zebrafish embryos caused dorsalization of embryos, as observed in activin-overexpressing embryos. However, in blastula stage embryos, ActRIIb induced formation of both dorsal and ventro-lateral mesoderm. It has been suggested that these inducing signals from ActRIIb are mediated through each specific type I receptor, TARAM-A and BMPRIA, depending on activin and bone morphogenetic protein (BMP), respectively. In addition, it was shown that a kinase-deleted form of ActRIIb (dnActRIIb) suppressed both activin- and BMP-like signaling pathways. These results suggest that ActRIIb at least has dual roles in both activin and BMP signaling pathways during zebrafish embryogenesis.

  2. Aberrant ligand-induced activation of G protein-coupled estrogen receptor 1 (GPER) results in developmental malformations during vertebrate embryogenesis.

    PubMed

    Jayasinghe, B Sumith; Volz, David C

    2012-01-01

    G protein-coupled estrogen receptor 1 (GPER) is a G protein-coupled receptor (GPCR) unrelated to nuclear estrogen receptors but strongly activated by 17β-estradiol in both mammals and fish. To date, the distribution and functional characterization of GPER within reproductive and nonreproductive vertebrate organs have been restricted to juvenile and adult animals. In contrast, virtually nothing is known about the spatiotemporal distribution and function of GPER during vertebrate embryogenesis. Using zebrafish as an animal model, we investigated the potential functional role and expression of GPER during embryogenesis. Based on real-time PCR and whole-mount in situ hybridization, gper was expressed as early as 1 h postfertilization (hpf) and exhibited strong stage-dependent expression patterns during embryogenesis. At 26 and 38 hpf, gper mRNA was broadly distributed throughout the body, whereas from 50 to 98 hpf, gper expression was increasingly localized to the heart, brain, neuromasts, craniofacial region, and somite boundaries of developing zebrafish. Continuous exposure to a selective GPER agonist (G-1)-but not continuous exposure to a selective GPER antagonist (G-15)-from 5 to 96 hpf, or within three developmental windows ranging from 10 to 72 hpf, resulted in adverse concentration-dependent effects on survival, gross morphology, and somite formation within the trunk of developing zebrafish embryos. Importantly, based on co-exposure studies, G-15 blocked severe G-1-induced developmental toxicity, suggesting that G-1 toxicity is mediated via aberrant activation of GPER. Overall, our findings suggest that xenobiotic-induced GPER activation represents a potentially novel and understudied mechanism of toxicity for environmentally relevant chemicals that affect vertebrate embryogenesis.

  3. The Roles of the Wnt-Antagonists Axin and Lrp4 during Embryogenesis of the Red Flour Beetle Tribolium castaneum

    PubMed Central

    Prühs, Romy

    2017-01-01

    In both vertebrates and invertebrates, the Wnt-signaling pathway is essential for numerous processes in embryogenesis and during adult life. Wnt activity is fine-tuned at various levels by the interplay of a number of Wnt-agonists (Wnt ligands, Frizzled-receptors, Lrp5/6 coreceptors) and Wnt-antagonists (among them Axin, Secreted frizzled and Lrp4) to define anterior–posterior polarity of the early embryo and specify cell fate in organogenesis. So far, the functional analysis of Wnt-pathway components in insects has concentrated on the roles of Wnt-agonists and on the Wnt-antagonist Axin. We depict here additional features of the Wnt-antagonist Axin in the flour beetle Tribolium castaneum. We show that Tc-axin is dynamically expressed throughout embryogenesis and confirm its essential role in head development. In addition, we describe an as yet undetected, more extreme Tc-axin RNAi-phenotype, the ectopic formation of posterior abdominal segments in reverse polarity and a second hindgut at the anterior. For the first time, we describe here that an lrp4 ortholog is involved in axis formation in an insect. The Tribolium Lrp4 ortholog is ubiquitously expressed throughout embryogenesis. Its downregulation via maternal RNAi results in the reduction of head structures but not in axis polarity reversal. Furthermore, segmentation is impaired and larvae develop with a severe gap-phenotype. We conclude that, as in vertebrates, Tc-lrp4 functions as a Wnt-inhibitor in Tribolium during various stages of embryogenesis. We discuss the role of both components as negative modulators of Wnt signaling in respect to axis formation and segmentation in Tribolium. PMID:29615567

  4. Cellular and molecular changes associated with somatic embryogenesis induction in Agave tequilana.

    PubMed

    Portillo, L; Olmedilla, A; Santacruz-Ruvalcaba, F

    2012-10-01

    In spite of the importance of somatic embryogenesis for basic research in plant embryology as well as for crop improvement and plant propagation, it is still unclear which mechanisms and cell signals are involved in acquiring embryogenic competence by a somatic cell. The aim of this work was to study cellular and molecular changes involved in the induction stage in calli of Agave tequilana Weber cultivar azul in order to gain more information on the initial stages of somatic embryogenesis in this species. Cytochemical and immunocytochemical techniques were used to identify differences between embryogenic and non-embryogenic cells from several genotypes. Presence of granular structures was detected after somatic embryogenesis induction in embryogenic cells; composition of these structures as well as changes in protein and polysaccharide distribution was studied using Coomassie brilliant blue and Periodic Acid-Schiff stains. Distribution of arabinogalactan proteins (AGPs) and pectins was investigated in embryogenic and non-embryogenic cells by immunolabelling using anti-AGP monoclonal antibodies (JIM4, JIM8 and JIM13) as well as an anti-methyl-esterified pectin-antibody (JIM7), in order to evaluate major modifications in cell wall composition in the initial stages of somatic embryogenesis. Our observations pointed out that induction of somatic embryogenesis produced accumulation of proteins and polysaccharides in embryogenic cells. Presence of JIM8, JIM13 and JIM7 epitopes were detected exclusively in embryogenic cells, which supports the idea that specific changes in cell wall are involved in the acquisition of embryogenic competence of A. tequilana.

  5. Tissue morphodynamics shaping the early mouse embryo.

    PubMed

    Sutherland, Ann E

    2016-07-01

    Generation of the elongated vertebrate body plan from the initially radially symmetrical embryo requires comprehensive changes to tissue form. These shape changes are generated by specific underlying cell behaviors, coordinated in time and space. Major principles and also specifics are emerging, from studies in many model systems, of the cell and physical biology of how region-specific cell behaviors produce regional tissue morphogenesis, and how these, in turn, are integrated at the level of the embryo. New technical approaches have made it possible more recently, to examine the morphogenesis of the mouse embryo in depth, and to elucidate the underlying cellular mechanisms. This review focuses on recent advances in understanding the cellular basis for the early fundamental events that establish the basic form of the embryo. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Profiling analysis of long non-coding RNAs in early postnatal mouse hearts

    PubMed Central

    Sun, Xiongshan; Han, Qi; Luo, Hongqin; Pan, Xiaodong; Ji, Yan; Yang, Yao; Chen, Hanying; Wang, Fangjie; Lai, Wenjing; Guan, Xiao; Zhang, Qi; Tang, Yuan; Chu, Jianhong; Yu, Jianhua; Shou, Weinian; Deng, Youcai; Li, Xiaohui

    2017-01-01

    Mammalian cardiomyocytes undergo a critical hyperplastic-to-hypertrophic growth transition at early postnatal age, which is important in establishing normal physiological function of postnatal hearts. In the current study, we intended to explore the role of long non-coding (lnc) RNAs in this transitional stage. We analyzed lncRNA expression profiles in mouse hearts at postnatal day (P) 1, P7 and P28 via microarray. We identified 1,146 differentially expressed lncRNAs with more than 2.0-fold change when compared the expression profiles of P1 to P7, P1 to P28, and P7 to P28. The neighboring genes of these differentially expressed lncRNAs were mainly involved in DNA replication-associated biological processes. We were particularly interested in one novel cardiac-enriched lncRNA, ENSMUST00000117266, whose expression was dramatically down-regulated from P1 to P28 and was also sensitive to hypoxia, paraquat, and myocardial infarction. Knockdown ENSMUST00000117266 led to a significant increase of neonatal mouse cardiomyocytes in G0/G1 phase and reduction in G2/M phase, suggesting that ENSMUST00000117266 is involved in regulating cardiomyocyte proliferative activity and is likely associated with hyperplastic-to-hypertrophic growth transition. In conclusion, our data have identified a large group of lncRNAs presented in the early postnatal mouse heart. Some of these lncRNAs may have important functions in cardiac hyperplastic-to-hypertrophic growth transition. PMID:28266538

  7. Somatic mutations reveal asymmetric cellular dynamics in the early human embryo

    DOE PAGES

    Ju, Young Seok; Martincorena, Inigo; Gerstung, Moritz; ...

    2017-03-22

    Somatic cells acquire mutations throughout the course of an individual’s life. Mutations occurring early in embryogenesis are often present in a substantial proportion of, but not all, cells in postnatal humans and thus have particular characteristics and effects. Depending on their location in the genome and the proportion of cells they are present in, these mosaic mutations can cause a wide range of genetic disease syndromes and predispose carriers to cancer. They have a high chance of being transmitted to offspring as de novo germline mutations and, in principle, can provide insights into early human embryonic cell lineages and theirmore » contributions to adult tissues. Although it is known that gross chromosomal abnormalities are remarkably common in early human embryos, our understanding of early embryonic somatic mutations is very limited. Here we use whole-genome sequences of normal blood from 241 adults to identify 163 early embryonic mutations. We estimate that approximately three base substitution mutations occur per cell per cell-doubling event in early human embryogenesis and these are mainly attributable to two known mutational signatures. We used the mutations to reconstruct developmental lineages of adult cells and demonstrate that the two daughter cells of many early embryonic cell-doubling events contribute asymmetrically to adult blood at an approximately 2:1 ratio. As a result, this study therefore provides insights into the mutation rates, mutational processes and developmental outcomes of cell dynamics that operate during early human embryogenesis.« less

  8. Somatic mutations reveal asymmetric cellular dynamics in the early human embryo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ju, Young Seok; Martincorena, Inigo; Gerstung, Moritz

    Somatic cells acquire mutations throughout the course of an individual’s life. Mutations occurring early in embryogenesis are often present in a substantial proportion of, but not all, cells in postnatal humans and thus have particular characteristics and effects. Depending on their location in the genome and the proportion of cells they are present in, these mosaic mutations can cause a wide range of genetic disease syndromes and predispose carriers to cancer. They have a high chance of being transmitted to offspring as de novo germline mutations and, in principle, can provide insights into early human embryonic cell lineages and theirmore » contributions to adult tissues. Although it is known that gross chromosomal abnormalities are remarkably common in early human embryos, our understanding of early embryonic somatic mutations is very limited. Here we use whole-genome sequences of normal blood from 241 adults to identify 163 early embryonic mutations. We estimate that approximately three base substitution mutations occur per cell per cell-doubling event in early human embryogenesis and these are mainly attributable to two known mutational signatures. We used the mutations to reconstruct developmental lineages of adult cells and demonstrate that the two daughter cells of many early embryonic cell-doubling events contribute asymmetrically to adult blood at an approximately 2:1 ratio. As a result, this study therefore provides insights into the mutation rates, mutational processes and developmental outcomes of cell dynamics that operate during early human embryogenesis.« less

  9. Progesterone is critical for the development of mouse embryos.

    PubMed

    Zhang, Cong; Murphy, Bruce D

    2014-08-01

    Infertility affects approximately 10-15 % of reproductive-aged couples, and embryo loss due to preimplantation death is common to many mammals. Previous studies showed that a complex series of interactive molecular events are associated with this process, especially hormones (progesterone and estrogens) and growth factors, and are important for the cleavage and differentiation of the blastocysts. Yet, the mechanism of preimplantation embryo development is unclear. Using conditional knockout mice (CKO), we showed the development of blastocyst is tightly controlled by the level of progesterone (P4); furthermore, we found that the time when P4 should increase is also crucial for the formation of blastocysts. In CKO mice whose Lrh1 (liver receptor homolog 1) is deleted under the expression of Cre recombinase driven by progesterone receptor promoter, which reduced P4 synthesis, few of their embryos can reach blastocyst stage. When these CKO mice were supplied with P4 in the afternoon of dpc 1 (day post copulation), most of the embryos can form blastocysts; when CKO mice were supplied with P4 from the morning of dpc1, one-third of the embryos can reach blastocyst stage; however, the supplement of P4 in the morning of dpc 2 made very few of the embryos become blastocysts. We conclude that early exposure to P4 is essential for timely progression of early embryogenesis in the mouse.

  10. Localization and identification of phenolic compounds in Theobroma cacao L. somatic embryogenesis.

    PubMed

    Alemanno, L; Ramos, T; Gargadenec, A; Andary, C; Ferriere, N

    2003-10-01

    Cocoa breeders and growers continue to face the problem of high heterogeneity between individuals derived from one progeny. Vegetative propagation by somatic embryogenesis could be a way to increase genetic gains in the field. Somatic embryogenesis in cocoa is difficult and this species is considered as recalcitrant. This study was conducted to investigate the phenolic composition of cocoa flowers (the explants used to achieve somatic embryogenesis) and how it changes during the process, by means of histochemistry and conventional chemical techniques. In flowers, all parts contained polyphenolics but their locations were specific to the organ considered. After placing floral explants in vitro, the polyphenolic content was qualitatively modified and maintained in the calli throughout the culture process. Among the new polyphenolics, the three most abundant were isolated and characterized by 1H- and 13C-NMR. They were hydroxycinnamic acid amides: N-trans-caffeoyl-l-DOPA or clovamide, N-trans-p-coumaroyl-l-tyrosine or deoxiclovamide, and N-trans-caffeoyl-l-tyrosine. The same compounds were found also in fresh, unfermented cocoa beans. The synthesis kinetics for these compounds in calli, under different somatic embryogenesis conditions, revealed a higher concentration under non-embryogenic conditions. Given the antioxidant nature of these compounds, they could reflect the stress status of the tissues.

  11. Localization and Identification of Phenolic Compounds in Theobroma cacao L. Somatic Embryogenesis

    PubMed Central

    ALEMANNO, L.; RAMOS, T.; GARGADENEC, A.; ANDARY, C.; FERRIERE, N.

    2003-01-01

    Cocoa breeders and growers continue to face the problem of high heterogeneity between individuals derived from one progeny. Vegetative propagation by somatic embryogenesis could be a way to increase genetic gains in the field. Somatic embryogenesis in cocoa is difficult and this species is considered as recalcitrant. This study was conducted to investigate the phenolic composition of cocoa flowers (the explants used to achieve somatic embryogenesis) and how it changes during the process, by means of histochemistry and conventional chemical techniques. In flowers, all parts contained polyphenolics but their locations were specific to the organ considered. After placing floral explants in vitro, the polyphenolic content was qualitatively modified and maintained in the calli throughout the culture process. Among the new polyphenolics, the three most abundant were isolated and characterized by 1H‐ and 13C‐NMR. They were hydroxycinnamic acid amides: N‐trans‐caffeoyl‐l‐DOPA or clovamide, N‐trans‐p‐coumaroyl‐l‐tyrosine or deoxiclovamide, and N‐trans‐caffeoyl‐l‐tyrosine. The same compounds were found also in fresh, unfermented cocoa beans. The synthesis kinetics for these compounds in calli, under different somatic embryogenesis conditions, revealed a higher concentration under non‐embryogenic conditions. Given the antioxidant nature of these compounds, they could reflect the stress status of the tissues. PMID:12933367

  12. Studies on Somatic Embryogenesis in Sweetpotato

    NASA Technical Reports Server (NTRS)

    Bennett, J. Rasheed; Prakash, C. S.

    1997-01-01

    The purpose of this study was to improve the somatic embryo (SE) system for plant production of sweetpotato Ipomoea batatas L.(Lam)l. Explants isolated from SE-derived sweet potato plants were compared with control (non SE-derived) plants for their competency for SE production. Leaf explants were cultured on Murashige-Skoog (MS) medium with 2,4-dichlorophenoxy acetic acid (0.2 mg/L) and 6-benzylaminopurine (2.5 mg/L) for 2 weeks in darkness and transferred to MS medium with abscisic acid (2.5 Explants isolated from those plants developed through somatic embryo-genesis produced new somatic embryos rapidly and in higher frequency than those isolated from control plants. They also appeared to grow faster in tissue culture than the control plants. Current studies in the laboratory are examining whether plants derived from a cyclical embryogenesis system (five cycles) would have any further positive impact on the rapidity and frequency of somatic embryo development. More detailed studies using electron microscopy are expected to show the point of origin of the embryos and to allow determination of their quality throughout the cyclical process. This study may facilitate improved plant micropropagation, gene transfer and germplasm conservation in sweet potato.

  13. Flow cytometric and morphological analyses of Pinus pinaster somatic embryogenesis.

    PubMed

    Marum, Liliana; Loureiro, João; Rodriguez, Eleazar; Santos, Conceição; Oliveira, M Margarida; Miguel, Célia

    2009-09-25

    An approach combining morphological profiling and flow cytometric analysis was used to assess genetic stability during the several steps of somatic embryogenesis in Pinus pinaster. Embryogenic cell lines of P. pinaster were established from immature zygotic embryos excised from seeds obtained from open-pollinated trees. During the maturation stage, phenotype of somatic embryos was characterized as being either normal or abnormal. Based upon the prevalent morphological traits, different types of abnormal embryos underwent further classification and quantification. Nuclear DNA content of maritime pine using the zygotic embryos was estimated to be 57.04 pg/2C, using propidium iodide flow cytometry. According to the same methodology, no significant differences (P< or =0.01) in DNA ploidy were detected among the most frequently observed abnormal phenotypes, embryogenic cell lines, zygotic and normal somatic embryos, and somatic embryogenesis-derived plantlets. Although the differences in DNA ploidy level do not exclude the occurrence of a low level of aneuploidy, the results obtained point to the absence of major changes in ploidy level during the somatic embryogenesis process of this economically important species. Therefore, our primary goal of true-to-typeness was assured at this level.

  14. Cracking the egg: virtual embryogenesis of real robots.

    PubMed

    Cussat-Blanc, Sylvain; Pollack, Jordan

    2014-01-01

    All multicellular living beings are created from a single cell. A developmental process, called embryogenesis, takes this first fertilized cell down a complex path of reproduction, migration, and specialization into a complex organism adapted to its environment. In most cases, the first steps of the embryogenesis take place in a protected environment such as in an egg or in utero. Starting from this observation, we propose a new approach to the generation of real robots, strongly inspired by living systems. Our robots are composed of tens of specialized cells, grown from a single cell using a bio-inspired virtual developmental process. Virtual cells, controlled by gene regulatory networks, divide, migrate, and specialize to produce the robot's body plan (morphology), and then the robot is manually built from this plan. Because the robot is as easy to assemble as Lego, the building process could be easily automated.

  15. Hemoglobins, programmed cell death and somatic embryogenesis.

    PubMed

    Hill, Robert D; Huang, Shuanglong; Stasolla, Claudio

    2013-10-01

    Programmed cell death (PCD) is a universal process in all multicellular organisms. It is a critical component in a diverse number of processes ranging from growth and differentiation to response to stress. Somatic embryogenesis is one such process where PCD is significantly involved. Nitric oxide is increasingly being recognized as playing a significant role in regulating PCD in both mammalian and plant systems. Plant hemoglobins scavenge NO, and evidence is accumulating that events that modify NO levels in plants also affect hemoglobin expression. Here, we review the process of PCD, describing the involvement of NO and plant hemoglobins in the process. NO is an effector of cell death in both plants and vertebrates, triggering the cascade of events leading to targeted cell death that is a part of an organism's response to stress or to tissue differentiation and development. Expression of specific hemoglobins can alter this response in plants by scavenging the NO, thus, interrupting the death process. Somatic embryogenesis is used as a model system to demonstrate how cell-specific expression of different classes of hemoglobins can alter the embryogenic process, affecting hormone synthesis, cell metabolite levels and genes associated with PCD and embryogenic competence. We propose that plant hemoglobins influence somatic embryogenesis and PCD through cell-specific expression of a distinct plant hemoglobin. It is based on the premise that both embryogenic competence and PCD are strongly influenced by cellular NO levels. Increases in cellular NO levels result in elevated Zn(2+) and reactive-oxygen species associated with PCD, but they also result in decreased expression of MYC2, a transcription factor that is a negative effector of indoleacetic acid synthesis, a hormone that positively influences embryogenic competence. Cell-specific hemoglobin expression reduces NO levels as a result of NO scavenging, resulting in cell survival. Copyright © 2013 Elsevier Ireland Ltd

  16. Function and regulation of heat shock factor 2 during mouse embryogenesis

    PubMed Central

    Rallu, M.; Loones, Mt.; Lallemand, Y.; Morimoto, R.; Morange, M.; Mezger, V.

    1997-01-01

    The spontaneous expression of heat shock genes during development is well documented in many animal species, but the mechanisms responsible for this developmental regulation are only poorly understood. In vertebrates, additional heat shock transcription factors, distinct from the heat shock factor 1 (HSF1) involved in the stress response, were suggested to be involved in this developmental control. In particular, the mouse HSF2 has been found to be active in testis and during preimplantation development. However, the role of HSF2 and its mechanism of activation have remained elusive due to the paucity of data on its expression during development. In this study, we have examined HSF2 expression during the postimplantation phase of mouse development. Our data show a developmental regulation of HSF2, which is expressed at least until 15.5 days of embryogenesis. It becomes restricted to the central nervous system during the second half of gestation. It is expressed in the ventricular layer of the neural tube which contains mitotically active cells but not in postmitotic neurons. Parallel results were obtained for mRNA, protein, and activity levels, demonstrating that the main level of control was transcriptional. The detailed analysis of the activity of a luciferase reporter gene under the control of the hsp70.1 promoter, as well as the description of the protein expression patterns of the major heat shock proteins in the central nervous system, show that HSF2 and heat shock protein expression domains do not coincide. This result suggests that HFS2 might be involved in other regulatory developmental pathways and paves the way to new functional approaches. PMID:9122205

  17. Intra-spindle Microtubule Assembly Regulates Clustering of Microtubule-Organizing Centers during Early Mouse Development.

    PubMed

    Watanabe, Sadanori; Shioi, Go; Furuta, Yasuhide; Goshima, Gohta

    2016-04-05

    Errors during cell division in oocytes and early embryos are linked to birth defects in mammals. Bipolar spindle assembly in early mouse embryos is unique in that three or more acentriolar microtubule-organizing centers (MTOCs) are initially formed and are then clustered into two spindle poles. Using a knockout mouse and live imaging of spindles in embryos, we demonstrate that MTOC clustering during the blastocyst stage requires augmin, a critical complex for MT-dependent MT nucleation within the spindle. Functional analyses in cultured cells with artificially increased numbers of centrosomes indicate that the lack of intra-spindle MT nucleation, but not loss of augmin per se or overall reduction of spindle MTs, is the cause of clustering failure. These data suggest that onset of mitosis with three or more MTOCs is turned into a typical bipolar division through augmin-dependent intra-spindle MT assembly. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Kinase-dead ATM protein causes genomic instability and early embryonic lethality in mice.

    PubMed

    Yamamoto, Kenta; Wang, Yunyue; Jiang, Wenxia; Liu, Xiangyu; Dubois, Richard L; Lin, Chyuan-Sheng; Ludwig, Thomas; Bakkenist, Christopher J; Zha, Shan

    2012-08-06

    Ataxia telangiectasia (A-T) mutated (ATM) kinase orchestrates deoxyribonucleic acid (DNA) damage responses by phosphorylating numerous substrates implicated in DNA repair and cell cycle checkpoint activation. A-T patients and mouse models that express no ATM protein undergo normal embryonic development but exhibit pleiotropic DNA repair defects. In this paper, we report that mice carrying homozygous kinase-dead mutations in Atm (Atm(KD/KD)) died during early embryonic development. Atm(KD/-) cells exhibited proliferation defects and genomic instability, especially chromatid breaks, at levels higher than Atm(-/-) cells. Despite this increased genomic instability, Atm(KD/-) lymphocytes progressed through variable, diversity, and joining recombination and immunoglobulin class switch recombination, two events requiring nonhomologous end joining, at levels comparable to Atm(-/-) lymphocytes. Together, these results reveal an essential function of ATM during embryogenesis and an important function of catalytically inactive ATM protein in DNA repair.

  19. New theory of uterovaginal embryogenesis.

    PubMed

    Makiyan, Zograb

    2016-01-02

    The explanation of uterine and vaginal embryogenesis in humans still poses many controversies, because it is difficult to assess early stages of an embryo. The literature review revealed many disagreements in Mullerian theory, inciting some authors to propose new embryological hypotheses. In the original Mullerian theory: the paramesonephral ducts form the Fallopian tubes, uterus and vagina; the mesonephral ducts regress in female embryos. The aim of this article is to investigate the development of Mullerian ducts in humans, using comparative analysis of fundamental embryological theory and various utero-vaginal anomalies. Between 1998 and 2015, 434 patients with various uterovaginal malformations had been operated on at the Scientific Centre of Obstetrics Gynaecology and Perynatology in Moscow. The anatomies of the uterovaginal malformations in these patients were diagnosed with ultrasound and MRI and then verified during surgical correction by laparoscopy. A systematic comparison of uterovaginal malformations to those in the literature has allowed us to formulate a new theory of embryonic morphogenesis. The new theory is significantly different: ovary, ovarian ligamentum proprium, and ligamentum teres uteri derive from gonadal ridges; Fallopian tubes and vagina completely develop from mesonephral ducts. The uterus develops in the area of intersection between the mesonephral ducts with gonadal ridges by the fusion of the two. The new theory may to induce future embryological studies. The hypothetic possibility that the ovary and endometrium derive from the gonadal ridges could be the key to understanding the enigmatic aetiologies of extragenital and ovarian endometriosis.

  20. Regulation of early Xenopus development by ErbB signaling

    PubMed Central

    Nie, Shuyi; Chang, Chenbei

    2008-01-01

    ErbB signaling has long been implicated in cancer formation and progression and is shown to regulate cell division, migration and death during tumorigenesis. The functions of the ErbB pathway during early vertebrate embryogenesis, however, are not well understood. Here we report characterization of ErbB activities during early frog development. Gain-of-function analyses show that EGFR, ErbB2 and ErbB4 induce ectopic tumor-like cell mass that contains increased numbers of mitotic cells. Both the muscle and the neural markers are expressed in these ectopic protrusions. ErbBs also induce mesodermal markers in ectodermal explants. Loss-of-function studies using carboxyl terminal-truncated dominant-negative ErbB receptors demonstrate that blocking ErbB signals leads to defective gastrulation movements and malformation of the embryonic axis with a reduction in the head structures in early frog embryos. These data, together with the observation that ErbBs are expressed early during frog embryogenesis, suggest that ErbBs regulate cell proliferation, movements and embryonic patterning during early Xenopus development. PMID:16258939

  1. [Crucial stages of embryogenesis of R. arvalis: Part 1. Linear measurements of embryonic structures].

    PubMed

    Severtsova, E A; Severtsov, A S

    2011-01-01

    Investigations of individual variability have allowed us to reveal the crucial (= nodal) stages in embryogenesis of the moor frog (Rana arvalis Nills.). These crucial stages are: the late gastrula stage (stages 18-20), the hatching stages (stages 32-33) and, apparently, early metamorphosis (stage 39). Moreover, we have found that each embryonic structure passes through its specific crucial stages. For example, stage 34 is crucial for the trait "tail width" but is internodal for all other embryonic traits. At this stage, larva passes from an attached to a free-swimming life style. We also found considerable differences between the different frog populations in the the level of developmental variability. These differences were associated with internodal developmental stages.

  2. Early Microglia Activation Precedes Photoreceptor Degeneration in a Mouse Model of CNGB1-Linked Retinitis Pigmentosa.

    PubMed

    Blank, Thomas; Goldmann, Tobias; Koch, Mirja; Amann, Lukas; Schön, Christian; Bonin, Michael; Pang, Shengru; Prinz, Marco; Burnet, Michael; Wagner, Johanna E; Biel, Martin; Michalakis, Stylianos

    2017-01-01

    Retinitis pigmentosa (RP) denotes a family of inherited blinding eye diseases characterized by progressive degeneration of rod and cone photoreceptors in the retina. In most cases, a rod-specific genetic defect results in early functional loss and degeneration of rods, which is followed by degeneration of cones and loss of daylight vision at later stages. Microglial cells, the immune cells of the central nervous system, are activated in retinas of RP patients and in several RP mouse models. However, it is still a matter of debate whether activated microglial cells may be responsible for the amplification of the typical degenerative processes. Here, we used Cngb1 -/- mice, which represent a slow degenerative mouse model of RP, to investigate the extent of microglia activation in retinal degeneration. With a combination of FACS analysis, immunohistochemistry and gene expression analysis we established that microglia in the Cngb1 -/- retina were already activated in an early, predegenerative stage of the disease. The evidence available so far suggests that early retinal microglia activation represents a first step in RP, which might initiate or accelerate photoreceptor degeneration.

  3. The effect of maternal diabetes on the Wnt-PCP pathway during embryogenesis as reflected in the developing mouse eye.

    PubMed

    López-Escobar, Beatriz; Cano, David A; Rojas, Anabel; de Felipe, Beatriz; Palma, Francisco; Sánchez-Alcázar, José A; Henderson, Deborah; Ybot-González, Patricia

    2015-02-01

    Embryopathies that develop as a consequence of maternal diabetes have been studied intensely in both experimental and clinical scenarios. Accordingly, hyperglycaemia has been shown to downregulate the expression of elements in the non-canonical Wnt-PCP pathway, such as the Dishevelled-associated activator of morphogenesis 1 (Daam1) and Vangl2. Daam1 is a formin that is essential for actin polymerization and for cytoskeletal reorganization, and it is expressed strongly in certain organs during mouse development, including the eye, neural tube and heart. Daam1(gt/gt) and Daam1(gt/+) embryos develop ocular defects (anophthalmia or microphthalmia) that are similar to those detected as a result of hyperglycaemia. Indeed, studying the effects of maternal diabetes on the Wnt-PCP pathway demonstrated that there was strong association with the Daam1 genotype, whereby the embryopathy observed in Daam1(gt/+) mutant embryos of diabetic dams was more severe. There was evidence that embryonic exposure to glucose in vitro diminishes the expression of genes in the Wnt-PCP pathway, leading to altered cytoskeletal organization, cell shape and cell polarity in the optic vesicle. Hence, the Wnt-PCP pathway appears to influence cell morphology and cell polarity, events that drive the cellular movements required for optic vesicle formation and that, in turn, are required to maintain the fate determination. Here, we demonstrate that the Wnt-PCP pathway is involved in the early stages of mouse eye development and that it is altered by diabetes, provoking the ocular phenotype observed in the affected embryos. © 2015. Published by The Company of Biologists Ltd.

  4. The effect of maternal diabetes on the Wnt-PCP pathway during embryogenesis as reflected in the developing mouse eye

    PubMed Central

    López-Escobar, Beatriz; Cano, David A.; Rojas, Anabel; de Felipe, Beatriz; Palma, Francisco; Sánchez-Alcázar, José A.; Henderson, Deborah; Ybot-González, Patricia

    2015-01-01

    Embryopathies that develop as a consequence of maternal diabetes have been studied intensely in both experimental and clinical scenarios. Accordingly, hyperglycaemia has been shown to downregulate the expression of elements in the non-canonical Wnt-PCP pathway, such as the Dishevelled-associated activator of morphogenesis 1 (Daam1) and Vangl2. Daam1 is a formin that is essential for actin polymerization and for cytoskeletal reorganization, and it is expressed strongly in certain organs during mouse development, including the eye, neural tube and heart. Daam1gt/gt and Daam1gt/+ embryos develop ocular defects (anophthalmia or microphthalmia) that are similar to those detected as a result of hyperglycaemia. Indeed, studying the effects of maternal diabetes on the Wnt-PCP pathway demonstrated that there was strong association with the Daam1 genotype, whereby the embryopathy observed in Daam1gt/+ mutant embryos of diabetic dams was more severe. There was evidence that embryonic exposure to glucose in vitro diminishes the expression of genes in the Wnt-PCP pathway, leading to altered cytoskeletal organization, cell shape and cell polarity in the optic vesicle. Hence, the Wnt-PCP pathway appears to influence cell morphology and cell polarity, events that drive the cellular movements required for optic vesicle formation and that, in turn, are required to maintain the fate determination. Here, we demonstrate that the Wnt-PCP pathway is involved in the early stages of mouse eye development and that it is altered by diabetes, provoking the ocular phenotype observed in the affected embryos. PMID:25540130

  5. Expression of the proliferation marker Ki-67 during early mouse development.

    PubMed

    Winking, H; Gerdes, J; Traut, W

    2004-01-01

    In somatic tissues, the mouse Ki-67 protein (pKi-67) is expressed in proliferating cells only. Depending on the stage of the cell cycle, pKi-67 is associated with different nuclear domains: with euchromatin as part of the perichromosomal layer, with centromeric heterochromatin, and with the nucleolus. In gametes, sex-specific expression is evident. Mature MII oocytes contain pKi-67, whereas pKi-67 is not detectable in mature sperm. We investigated the re-establishment of the cell cycle-dependent distribution of pKi-67 during early mouse development. After fertilization, male and female pronuclei exhibited very little or no pKi-67, while polar bodies were pKi-67 positive. Towards the end of the first cell cycle, prophase chromosomes of male and female pronuclei simultaneously got decorated with pKi-67. In 2-cell embryos, the distribution pattern changed, presumably depending on the progress of development of the embryo, from a distribution all over the nucleus to a preferential location in the nucleolus precursor bodies (NPBs). From the 4-cell stage onwards, pKi-67 showed the regular nuclear relocations known from somatic tissues: during mitosis the protein was found covering the chromosome arms as a constituent of the perichromosomal layer, in early G1 it was distributed in the whole nucleus, and for the rest of the cell cycle it was associated with NPBs or with the nucleolus. Copyright 2004 S. Karger AG, Basel

  6. Unfertilized ovary: a novel explant for coconut (Cocos nucifera L.) somatic embryogenesis.

    PubMed

    Perera, Prasanthi I P; Hocher, Valerie; Verdeil, Jean Luc; Doulbeau, Sylvie; Yakandawala, Deepthi M D; Weerakoon, L Kaushalya

    2007-01-01

    Unfertilized ovaries isolated from immature female flowers of coconut (Cocos nucifera L.) were tested as a source of explants for callogenesis and somatic embryogenesis. The correct developmental stage of ovary explants and suitable in vitro culture conditions for consistent callus production were identified. The concentration of 2,4-dichlorophenoxyacetic acid (2,4-D) and activated charcoal was found to be critical for callogenesis. When cultured in a medium containing 100 microM 2,4-D and 0.1% activated charcoal, ovary explants gave rise to 41% callusing. Embryogenic calli were sub-cultured into somatic embryogenesis induction medium containing 5 microM abscisic acid, followed by plant regeneration medium (with 5 microM 6-benzylaminopurine). Many of the somatic embryos formed were complete with shoot and root poles and upon germination they gave rise to normal shoots. However, some abnormal developments were also observed. Flow cytometric analysis revealed that all the calli tested were diploid. Through histological studies, it was possible to study the sequence of the events that take place during somatic embryogenesis including orientation, polarization and elongation of the embryos.

  7. Early biomarkers of doxorubicin-induced heart injury in a mouse model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desai, Varsha G., E-mail: varsha.desai@fda.hhs.gov; Kwekel, Joshua C.; Vijay, Vikrant

    Cardiac troponins, which are used as myocardial injury markers, are released in plasma only after tissue damage has occurred. Therefore, there is a need for identification of biomarkers of earlier events in cardiac injury to limit the extent of damage. To accomplish this, expression profiling of 1179 unique microRNAs (miRNAs) was performed in a chronic cardiotoxicity mouse model developed in our laboratory. Male B6C3F{sub 1} mice were injected intravenously with 3 mg/kg doxorubicin (DOX; an anti-cancer drug), or saline once a week for 2, 3, 4, 6, and 8 weeks, resulting in cumulative DOX doses of 6, 9, 12, 18,more » and 24 mg/kg, respectively. Mice were euthanized a week after the last dose. Cardiac injury was evidenced in mice exposed to 18 mg/kg and higher cumulative DOX dose whereas examination of hearts by light microscopy revealed cardiac lesions at 24 mg/kg DOX. Also, 24 miRNAs were differentially expressed in mouse hearts, with the expression of 1, 1, 2, 8, and 21 miRNAs altered at 6, 9, 12, 18, and 24 mg/kg DOX, respectively. A pro-apoptotic miR-34a was the only miRNA that was up-regulated at all cumulative DOX doses and showed a significant dose-related response. Up-regulation of miR-34a at 6 mg/kg DOX may suggest apoptosis as an early molecular change in the hearts of DOX-treated mice. At 12 mg/kg DOX, up-regulation of miR-34a was associated with down-regulation of hypertrophy-related miR-150; changes observed before cardiac injury. These findings may lead to the development of biomarkers of earlier events in DOX-induced cardiotoxicity that occur before the release of cardiac troponins. - Highlights: • Upregulation of miR-34a before doxorubicin-induced cardiac tissue injury • Apoptosis might be an early event in mouse heart during doxorubicin treatment. • Expression of miR-150 declined before doxorubicin-induced cardiac tissue injury.« less

  8. In vitro somatic embryogenesis and plant regeneration of cassava.

    PubMed

    Szabados, L; Hoyos, R; Roca, W

    1987-06-01

    An efficient and reproducible plant regeneration system, initiated in somatic tissues, has been devised for cassava (Manihot esculenta Crantz). Somatic embryogenesis has been induced from shoot tips and immature leaves of in vitro shoot cultures of 15 cassava genotypes. Somatic embryos developed directly on the explants when cultured on a medium containing 4-16 mg/l 2,4-D. Differences were observed with respect to the embryogenic capacity of the explants of different varieties. Secondary embryogenesis has been induced by subculture on solid or liquid induction medium. Long term cultures were established and maintained for up to 18 months by repeated subculture of the proliferating somatic embryos. Plantlets developed from primary and secondary embryos in the presence of 0.1 mg/l BAP, 1mg/l GA3, and 0.01 mg/l 2,4-D. Regenerated plants were transferred to the field, and were grown to maturity.

  9. Influence of Abscisic Acid and Sucrose on Somatic Embryogenesis in Cactus Copiapoa tenuissima Ritt. forma mostruosa

    PubMed Central

    Lema-Rumińska, J.; Goncerzewicz, K.; Gabriel, M.

    2013-01-01

    Having produced the embryos of cactus Copiapoa tenuissima Ritt. forma monstruosa at the globular stage and callus, we investigated the effect of abscisic acid (ABA) in the following concentrations: 0, 0.1, 1, 10, and 100 μM on successive stages of direct (DSE) and indirect somatic embryogenesis (ISE). In the indirect somatic embryogenesis process we also investigated a combined effect of ABA (0, 0.1, 1 μM) and sucrose (1, 3, 5%). The results showed that a low concentration of ABA (0-1 μM) stimulates the elongation of embryos at the globular stage and the number of correct embryos in direct somatic embryogenesis, while a high ABA concentration (10–100 μM) results in growth inhibition and turgor pressure loss of somatic embryos. The indirect somatic embryogenesis study in this cactus suggests that lower ABA concentrations enhance the increase in calli fresh weight, while a high concentration of 10 μM ABA or more changes calli color and decreases its proliferation rate. However, in the case of indirect somatic embryogenesis, ABA had no effect on the number of somatic embryos and their maturation. Nevertheless, we found a positive effect of sucrose concentration for both the number of somatic embryos and the increase in calli fresh weight. PMID:23843737

  10. Analysis of maternal-zygotic ugdh mutants reveals divergent roles for HSPGs in vertebrate embryogenesis and provides new insight into the initiation of left-right asymmetry.

    PubMed

    Superina, Simone; Borovina, Antonia; Ciruna, Brian

    2014-03-15

    Growth factors and morphogens regulate embryonic patterning, cell fate specification, cell migration, and morphogenesis. The activity and behavior of these signaling molecules are regulated in the extracellular space through interactions with proteoglycans (Bernfield et al., 1999; Perrimon and Bernfield 2000; Lander and Selleck 2000; Selleck 2000). Proteoglycans are high molecular-weight proteins consisting of a core protein with covalently linked glycosaminoglycan (GAG) side chains, which are thought to mediate ligand interaction. Drosophila mutant embryos deficient for UDP-glucose dehydrogenase activity (Ugdh, required for GAG synthesis) exhibit abnormal Fgf, Wnt and TGFß signaling and die during gastrulation, indicating a broad and critical role for proteoglycans during early embryonic development (Lin et al., 1999; Lin and Perrimon 2000) (Hacker et al., 1997). Mouse Ugdh mutants also die at gastrulation, however, only Fgf signaling appears disrupted (Garcia-Garcia and Anderson, 2003). These findings suggested a possible divergence in the requirement for proteoglycans during Drosophila and mouse embryogenesis, and that mammals may have evolved alternative means of regulating Wnt and TGFß activity. To further examine the function of proteoglycans in vertebrate development, we have characterized zebrafish mutants devoid of both maternal and zygotic Ugdh/Jekyll activity (MZjekyll). We demonstrate that MZjekyll mutant embryos display abnormal Fgf, Shh, and Wnt signaling activities, with concomitant defects in central nervous system patterning, cardiac ventricular fate specification and axial morphogenesis. Furthermore, we uncover a novel role for proteoglycans in left-right pattern formation. Our findings resolve longstanding questions into the evolutionary conservation of Ugdh function and provide new mechanistic insights into the initiation of left-right asymmetry. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Identification and functional analysis of long non-coding RNAs in human and mouse early embryos based on single-cell transcriptome data

    PubMed Central

    Qiu, Jia-jun; Ren, Zhao-rui; Yan, Jing-bin

    2016-01-01

    Epigenetics regulations have an important role in fertilization and proper embryonic development, and several human diseases are associated with epigenetic modification disorders, such as Rett syndrome, Beckwith-Wiedemann syndrome and Angelman syndrome. However, the dynamics and functions of long non-coding RNAs (lncRNAs), one type of epigenetic regulators, in human pre-implantation development have not yet been demonstrated. In this study, a comprehensive analysis of human and mouse early-stage embryonic lncRNAs was performed based on public single-cell RNA sequencing data. Expression profile analysis revealed that lncRNAs are expressed in a developmental stage–specific manner during human early-stage embryonic development, whereas a more temporal-specific expression pattern was identified in mouse embryos. Weighted gene co-expression network analysis suggested that lncRNAs involved in human early-stage embryonic development are associated with several important functions and processes, such as oocyte maturation, zygotic genome activation and mitochondrial functions. We also found that the network of lncRNAs involved in zygotic genome activation was highly preservative between human and mouse embryos, whereas in other stages no strong correlation between human and mouse embryo was observed. This study provides insight into the molecular mechanism underlying lncRNA involvement in human pre-implantation embryonic development. PMID:27542205

  12. Identification of Elf-1 and B61 as high affinity ligands for the receptor tyrosine kinase MDK1.

    PubMed

    Ciossek, T; Ullrich, A

    1997-01-09

    Mouse Developmental Kinase 1 (MDK1) is a receptor tyrosine kinase of the eck/eph subfamily expressed in a variety of tissues during early mouse embryogenesis. To obtain further insight into the function of MDK1, we determined identity and localisation of its physiological ligand(s). Staining whole embryos with fusion proteins between the extracellular domain of MDK1 and human secreted alkaline phosphatase revealed areas of high receptor binding in the caudal mesencephalon, the frontal neocortex and the limb buds. This staining was sensitive to treatment with phosphatidylinositol-specific phospholipase C. Using Scatchard analysis, high affinity binding of Elf-1 (1.7 x 10(-10) M) and B61 (2.2 x 10(-10) M) towards MDK1 could be demonstrated. However, the transmembrane ligand Lerk2 displayed no measurable affinity for MDK1. Elf-1 and B61 bind to the three full-length MDK1 isoforms with similar dissociation constants. Slightly lower affinities were observed for the two truncated receptors MDK1-Tl and MDK1-T2. The activation of MDK1 with Elf-1 or B61 leads to the rapid autophosphorylation of MDK1 as well as tyrosine phosphorylation of an unknown 62 kDa phosphoprotein in Rat1 cells. These findings implicate MDK1 in patterning processes during early mouse embryogenesis and suggest MDK1 involvement in early organogenesis and midbrain development.

  13. Characterization of a novel genetically obese mouse model demonstrating early onset hyperphagia and hyperleptinemia.

    PubMed

    Nakahara, Keiko; Bannai, Makoto; Maruyama, Keisuke; Suzuki, Yoshihiro; Okame, Rieko; Murakami, Noboru

    2013-08-01

    Obesity is a critical risk factor for the development of metabolic syndrome, and many obese animal models are used to investigate the mechanisms responsible for the appearance of symptoms. To establish a new obese mouse model, we screened ∼13,000 ICR mice and discovered a mouse demonstrating spontaneous obesity. We named this mouse "Daruma" after a traditional Japanese ornament. Following the fixation of the genotype, these animals exhibited obese phenotypes according to Mendel's law of inheritance. In the Daruma mouse, the leptin receptor gene sequence carried two base mutations that are good candidates for the variation(s) responsible for the obese phenotype. The Daruma mice developed characteristic visceral fat accumulation at 4 wk of age, and the white adipose and liver tissues exhibited increases in cell size and lipid droplets, respectively. No histological abnormalities were observed in other tissues of the Daruma mice, even after the mice reached 25 wk of age. Moreover, the onset of impaired leptin signaling was early and manifested as hyperleptinemia and hyperinsulinemia. Pair feeding completely inhibited obesity, although these mice rapidly developed hyperphagia and obesity followed by hyperleptinemia when pair feeding ceased and free-access feeding was permitted. Therefore, the Daruma mice exhibited unique characteristics and may be a good model for studying human metabolic syndrome.

  14. Perturbations in choline metabolism cause neural tube defects in mouse embryos in vitro.

    PubMed

    Fisher, Melanie C; Zeisel, Steven H; Mar, Mei-Heng; Sadler, Thomas W

    2002-04-01

    A role for choline during early stages of mammalian embryogenesis has not been established, although recent studies show that inhibitors of choline uptake and metabolism, 2-dimethylaminoethanol (DMAE), and 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine (ET-18-OCH3), produce neural tube defects in mouse embryos grown in vitro. To determine potential mechanisms responsible for these abnormalities, choline metabolism in the presence or absence of these inhibitors was evaluated in cultured, neurulating mouse embryos by using chromatographic techniques. Results showed that 90%-95% of 14C-choline was incorporated into phosphocholine and phosphatidylcholine (PtdCho), which was metabolized to sphingomyelin. Choline was oxidized to betaine, and betaine homocysteine methyltransferase was expressed. Acetylcholine was synthesized in yolk sacs, but 70 kDa choline acetyltransferase was undetectable by immunoblot. DMAE reduced embryonic choline uptake and inhibited phosphocholine, PtdCho, phosphatidylethanolamine (PtdEtn), and sphingomyelin synthesis. ET-18-OCH3 also inhibited PtdCho synthesis. In embryos and yolk sacs incubated with 3H-ethanolamine, 95% of recovered label was PtdEtn, but PtdEtn was not converted to PtdCho, which suggested that phosphatidylethanolamine methyltransferase (PeMT) activity was absent. In ET-18-OCH3 treated yolk sacs, PtdEtn was increased, but PtdCho was still not generated through PeMT. Results suggest that endogenous PtdCho synthesis is important during neurulation and that perturbed choline metabolism contributes to neural tube defects produced by DMAE and ET-18-OCH3.

  15. Effects of High Magneto-Gravitational Environment on Silkworm Embryogenesis

    NASA Astrophysics Data System (ADS)

    Tian, Zongcheng; Li, Muwang; Qian, Airong; Xu, Huiyun; Wang, Zhe; Di, Shengmeng; Yang, Pengfei; Hu, Lifang; Ding, Chong; Zhang, Wei; Luo, Mingzhi; Han, Jing; Gao, Xiang; Huang, Yongping; Shang, Peng

    2010-04-01

    The objective of this research was to observe whether silkworm embryos can survive in a high magneto-gravitational environment (HMGE) and what significant phenotype changes can be produced. The hatching rate, hatching time, life span, growth velocity and cocoon weight of silkworm were measured after silkworm embryos were exposed to HMGE (0 g, 12 T; 1 g, 16 T; and 2 g, 12 T) for a period of time. Compared with the control group, 0 g exposure resulted in a lower hatching rate and a shorter life span. Statistically insignificant morphological changes had been observed for larvae growth velocity, incidence of abnormal markings and weight of cocoons. These results suggest that the effect of HMGE on silkworm embryogenesis is not lethal. Bio-effects of silkworm embryogenesis at 0 g in a HMGE were similar with those of space flight. The hatching time, life span and hatching rates of silkworm may be potential phenotype markers related to exposure in a weightless environment.

  16. Studies for Somatic Embryogenesis in Sweet Potato

    NASA Technical Reports Server (NTRS)

    Bennett, J. Rasheed; Prakash, C. S.

    1997-01-01

    The purpose of this study was to improve the somatic embryo (SE) system for plant production of sweet potato (Ipomoea batatas L(Lam)). Explants isolated from SE-derived sweet potato plants were compared with control (non SE-derived) plants for their competency for SE production. Leaf explants were cultured on Murashige-Skoog (MS) medium with 2,4-dichlorophenoxy acetic acid (0.2 mg/L) and 6-benzylaminopurine (2.5 mg/L) for 2 weeks in darkness and transferred to MS medium with abscisic acid (2.5 mg/L). Explants isolated from those plants developed through somatic embryogenesis produced new somatic embryos rapidly and in higher frequency than those isolated from control plants They also appeared to grow faster in tissue culture than the control plants. Current studies in the laboratory are examining whether plants derived from a cyclical embryogenesis system (five cycles) would have any further positive impact on the rapidity and frequency of somatic embryo development. More detailed studies using electron microscopy are expected to show the point of origin of the embryos and to allow determination of their quality throughout the cyclical process. This study may facilitate improved plant micropropagation, gene transfer and germplasm conservation in sweet potato.

  17. Effects of p-chlorophenoxyisobutyric acid, arabinogalactan, and activated charcoal on microspore embryogenesis in kale.

    PubMed

    Niu, R Q; Zhang, Y; Tong, Y; Liu, Z Y; Wang, Y H; Feng, H

    2015-04-27

    To improve embryogenesis in microspore cultures of kale (Brassica oleracea L. var. acephala DC.), 6-benzylaminopurine (6-BA), naphthaleneacetic acid (NAA), arabinogalactan (AG), p-chlorophenoxyisobutyric acid (PCIB), and activated charcoal (AC) were added to the medium using four varieties of kale. The results showed that the addition of AG (0.1-0.2 g/L), AC (0.1-0.2 g/L) or a combination of 6-BA (0.1-0.2 mg/L) and NAA (0.1-0.2 mg/L) promoted embryo-genesis. Adding 40 μM PCIB or a combination of 40 μM PCIB and 0.2 g/L AC to NLN-13 medium at pH 5.8 effectively enhanced embryogenesis. Treatment with a combination of 40 μM PCIB and 10 mg/L AG gave the highest rate of embryonic induction, especially in genotype "Y007," which showed a twelve-fold increase in yield.

  18. Pax-3, a novel murine DNA binding protein expressed during early neurogenesis.

    PubMed Central

    Goulding, M D; Chalepakis, G; Deutsch, U; Erselius, J R; Gruss, P

    1991-01-01

    We describe the isolation and characterization of Pax-3, a novel murine paired box gene expressed exclusively during embryogenesis. Pax-3 encodes a 479 amino acid protein with an Mr of 56 kd containing both a paired domain and a paired-type homeodomain. The Pax-3 protein is a DNA binding protein that specifically recognizes the e5 sequence present upstream of the Drosophila even-skipped gene. Pax-3 transcripts are first detected in 8.5 day mouse embryos where they are restricted to the dorsal part of the neuroepithelium and to the adjacent segmented dermomyotome. During early neurogenesis, Pax-3 expression is limited to mitotic cells in the ventricular zone of the developing spinal cord and to distinct regions in the hindbrain, midbrain and diencephalon. In 10-12 day embryos, expression of Pax-3 is also seen in neural crest cells of the developing spinal ganglia, the craniofacial mesectoderm and in limb mesenchyme of 10 and 11 day embryos. Images PMID:2022185

  19. Tobacco arabinogalactan protein NtEPc can promote banana (Musa AAA) somatic embryogenesis.

    PubMed

    Shu, H; Xu, L; Li, Z; Li, J; Jin, Z; Chang, S

    2014-12-01

    Banana is an important tropical fruit worldwide. Parthenocarpy and female sterility made it impossible to improve banana varieties through common hybridization. Genetic transformation for banana improvement is imperative. But the low rate that banana embryogenic callus was induced made the transformation cannot be performed in many laboratories. Finding ways to promote banana somatic embryogenesis is critical for banana genetic transformation. After tobacco arabinogalactan protein gene NtEPc was transformed into Escherichia coli (DE3), the recombinant protein was purified and filter-sterilized. A series of the sterilized protein was added into tissue culture medium. It was found that the number of banana immature male flowers developing embryogenic calli increased significantly in the presence of NtEPc protein compared with the effect of the control medium. Among the treatments, explants cultured on medium containing 10 mg/l of NtEPc protein had the highest chance to develop embryogenic calli. The percentage of lines that developed embryogenic calli on this medium was about 12.5 %. These demonstrated that NtEPc protein can be used to promote banana embryogenesis. This is the first paper that reported that foreign arabinogalactan protein (AGP) could be used to improve banana somatic embryogenesis.

  20. Nucleostemin Delays Cellular Senescence and Negatively Regulates TRF1 Protein Stability▿ †

    PubMed Central

    Zhu, Qubo; Yasumoto, Hiroaki; Tsai, Robert Y. L.

    2006-01-01

    Nucleostemin (NS) encodes a nucleolar GTP-binding protein highly enriched in the stem cells and cancer cells. To determine its biological activity in vivo, we generated NS loss- and gain-of-function mouse models. The embryogenesis of homozygous NS-null (NS−/−) mice was aborted before the blastula stage. Although the growth and fertility of heterozygous NS-null (NS+/−) mice appeared normal, NS+/− mouse embryonic fibroblasts (MEFs) had fewer NS proteins, a lower population growth rate, and higher percentages of senescent cells from passage 5 (P5) to P7 than their wild-type littermates. Conversely, transgenic overexpression of NS could rescue the NS−/− embryo in a dose-dependent manner, increase the population growth rate, and reduce the senescent percentage of MEFs. Cell cycle analyses revealed increased pre-G1 percentages in the late-passage NS+/− MEF cultures compared to the wild-type cultures. We demonstrated that NS could interact with telomeric repeat-binding factor 1 (TRF1) and enhance the degradation but not the ubiquitination of the TRF1 protein, which negatively regulates telomere length and is essential for early embryogenesis. This work demonstrates the roles of NS in establishing early embryogenesis and delaying cellular senescence of MEFs and reveals a mechanism of a NS-regulated degradation of TRF1. PMID:17000763

  1. In vivo characterization of early-stage radiation skin injury in a mouse model by two-photon microscopy

    PubMed Central

    Jang, Won Hyuk; Shim, Sehwan; Wang, Taejun; Yoon, Yeoreum; Jang, Won-Suk; Myung, Jae Kyung; Park, Sunhoo; Kim, Ki Hean

    2016-01-01

    Ionizing radiation (IR) injury is tissue damage caused by high energy electromagnetic waves such as X-ray and gamma ray. Diagnosis and treatment of IR injury are difficult due to its characteristics of clinically latent post-irradiation periods and the following successive and unpredictable inflammatory bursts. Skin is one of the many sensitive organs to IR and bears local injury upon exposure. Early-stage diagnosis of IR skin injury is essential in order to maximize treatment efficiency and to prevent the aggravation of IR injury. In this study, early-stage changes of the IR injured skin at the cellular level were characterized in an in vivo mouse model by two-photon microscopy (TPM). Various IR doses were applied to the mouse hind limbs and the injured skin regions were imaged daily for 6 days after IR irradiation. Changes in the morphology and distribution of the epidermal cells and damage of the sebaceous glands were observed before clinical symptoms. These results showed that TPM is sensitive to early-stage changes of IR skin injury and may be useful for its diagnosis. PMID:26755422

  2. Ribosomal stress induces L11- and p53-dependent apoptosis in mouse pluripotent stem cells.

    PubMed

    Morgado-Palacin, Lucia; Llanos, Susana; Serrano, Manuel

    2012-02-01

    Ribosome biogenesis is the most demanding energetic process in proliferating cells and it is emerging as a critical sensor of cellular homeostasis. Upon disturbance of ribosome biogenesis, specific free ribosomal proteins, most notably L11, bind and inhibit Mdm2, resulting in activation of the tumor suppressor p53. This pathway has been characterized in somatic and cancer cells, but its function in embryonic pluripotent cells has remained unexplored. Here, we show that treatment with low doses of Actinomycin D or depletion of ribosomal protein L37, two well-established inducers of ribosomal stress, activate p53 in an L11-dependent manner in mouse embryonic stem cells (ESCs) and in induced pluripotent stem cells (iPSCs). Activation of p53 results in transcriptional induction of p53 targets, including p21, Mdm2, Pidd, Puma, Noxa and Bax. Finally, ribosomal stress elicits L11- and p53-dependent apoptosis in ESCs/iPSCs. These results extend to pluripotent cells the functionality of the ribosomal stress pathway and we speculate that this could be a relevant cellular checkpoint during early embryogenesis.

  3. Notch and Delta mRNAs in early-stage and mid-stage Drosophila embryos exhibit complementary patterns of protein producing potentials

    PubMed Central

    Shepherd, Andrew; Wesley, Uma; Wesley, Cedric

    2010-01-01

    Notch and Delta proteins generate Notch signaling that specifies cell fates during animal development. There is an intriguing phenomenon in Drosophila embryogenesis that has not received much attention and whose significance to embryogenesis is unknown. Notch and Delta mRNAs expressed in early-stage embryos are shorter than their counterparts in mid-stage embryos. We show here that the difference in sizes is due to mRNA 3′ processing at alternate polyadenylation sites. While the early-stage Notch mRNA has a lower protein-producing potential than the mid-stage Notch mRNA, the early-stage Delta mRNA has a higher protein-producing potential than the mid-stage Delta mRNA. Our data can explain the complementary patterns of Notch and Delta protein levels in early-stage and mid-stage embryos. Our data also raise the possibility that the manner and regulation of Notch signaling change in the course of embryogenesis and that this change is effected by 3′ UTR and mRNA 3′ processing factors. PMID:20201103

  4. CUL4B ubiquitin ligase in mouse development: a model for human X-linked mental retardation syndrome?

    PubMed

    Zhao, Yongchao; Sun, Yi

    2012-08-01

    CUL4B, a member of the cullin-RING ubiquitin ligase family, is frequently mutated in X-linked mental retardation (XLMR) patients. The study by Liu et al. showed that Cul4b plays an essential developmental role in the extra-embryonic tissues, while it is dispensable in the embryo proper during mouse embryogenesis. Viable Cul4b-null mice provide the first animal model to study neuronal and behavioral deficiencies seen in human CUL4B XLMR patients.

  5. Early life exposure to bisphenol A investigated in mouse models of airway allergy, food allergy and oral tolerance.

    PubMed

    Nygaard, Unni Cecilie; Vinje, Nina Eriksen; Samuelsen, Mari; Andreassen, Monica; Groeng, Else-Carin; Bølling, Anette Kocbach; Becher, Rune; Lovik, Martinus; Bodin, Johanna

    2015-09-01

    The impact of early life exposure to bisphenol A (BPA) through drinking water was investigated in mouse models of respiratory allergy, food allergy and oral tolerance. Balb/c mice were exposed to BPA (0, 10 or 100 μg/ml), and the offspring were intranasally exposed to the allergen ovalbumin (OVA). C3H/HeJ offspring were sensitized with the food allergen lupin by intragastric gavage, after exposure to BPA (0, 1, 10 or 100 μg/ml). In separate offspring, oral tolerance was induced by gavage of 5 mg lupin one week before entering the protocol for the food allergy induction. In the airway allergy model, BPA (100 μg/ml) caused increased eosinophil numbers in bronchoalveolar lavage fluid (BALF) and a trend of increased OVA-specific IgE levels. In the food allergy and tolerance models, BPA did not alter the clinical anaphylaxis or antibody responses, but induced alterations in splenocyte cytokines and decreased mouse mast cell protease (MMCP)-1 serum levels. In conclusion, early life exposure to BPA through drinking water modestly augmented allergic responses in a mouse model of airway allergy only at high doses, and not in mouse models for food allergy and tolerance. Thus, our data do not support that BPA promotes allergy development at exposure levels relevant for humans. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. High-frequency plant regeneration through cyclic secondary somatic embryogenesis in black pepper (Piper nigrum L.).

    PubMed

    Nair, R Ramakrishnan; Dutta Gupta, S

    2006-01-01

    A high-frequency plantlet regeneration protocol was developed for black pepper (Piper nigrum L.) through cyclic secondary somatic embryogenesis. Secondary embryos formed from the radicular end of the primary somatic embryos which were originally derived from micropylar tissues of germinating seeds on growth regulator-free SH medium in the absence of light. The process of secondary embryogenesis continued in a cyclic manner from the root pole of newly formed embryos resulting in clumps of somatic embryos. Strength of the medium and sucrose concentration influenced the process of secondary embryogenesis and fresh weight of somatic embryo clumps. Full-strength SH medium supplemented with 1.5% sucrose produced significantly higher fresh weight and numbers of secondary somatic embryos while 3.0 and 4.5% sucrose in the medium favored further development of proliferated embryos into plantlets. Ontogeny of secondary embryos was established by histological analysis. Secondary embryogenic potential was influenced by the developmental stage of the explanted somatic embryo and stages up to "torpedo" were more suitable. A single-flask system was standardized for proliferation, maturation, germination and conversion of secondary somatic embryos in suspension cultures. The system of cyclic secondary somatic embryogenesis in black pepper described here represents a permanent source of embryogenic material that can be used for genetic manipulations of this crop species.

  7. ADP-ribosyl cyclases regulate early development of the sea urchin.

    PubMed

    Ramakrishnan, Latha; Uhlinger, Kevin; Dale, Leslie; Hamdoun, Amro; Patel, Sandip

    2016-06-01

    ADP-ribosyl cyclases are multifunctional enzymes involved in the metabolism of nucleotide derivatives necessary for Ca 2+ signalling such as cADPR and NAADP. Although Ca 2+ signalling is a critical regulator of early development, little is known of the role of ADP-ribosyl cyclases during embryogenesis. Here we analyze the expression, activity and function of ADP-ribosyl cyclases in the embryo of the sea urchin - a key organism for study of both Ca 2+ signalling and embryonic development. ADP-ribosyl cyclase isoforms (SpARC1-4) showed unique changes in expression during early development. These changes were associated with an increase in the ratio of cADPR:NAADP production. Over-expression of SpARC4 (a preferential cyclase) disrupted gastrulation. Our data highlight the importance of ADP-ribosyl cyclases during embryogenesis.

  8. Identification of expressed sequences in the coffee genome potentially associated with somatic embryogenesis.

    PubMed

    Silva, A T; Paiva, L V; Andrade, A C; Barduche, D

    2013-05-21

    Brazil possesses the most modern and productive coffee growing farms in the world, but technological development is desired to cope with the increasing world demand. One way to increase Brazilian coffee growing productivity is wide scale production of clones with superior genotypes, which can be obtained with in vitro propagation technique, or from tissue culture. These procedures can generate thousands of clones. However, the methodologies for in vitro cultivation are genotype-dependent, which leads to an almost empirical development of specific protocols for each species. Therefore, molecular markers linked to the biochemical events of somatic embryogenesis would greatly facilitate the development of such protocols. In this context, sequences potentially involved in embryogenesis processes in the coffee plant were identified in silico from libraries generated by the Brazilian Coffee Genome Project. Through these in silico analyses, we identified 15 EST-contigs related to the embryogenesis process. Among these, 5 EST-contigs (3605, 9850, 13686, 17240, and 17265) could readily be associated with plant embryogenesis. Sequence analysis of EST-contig 3605, 9850, and 17265 revealed similarity to a polygalacturonase, to a cysteine-proteinase, and to an allergenine, respectively. Results also show that EST-contig 17265 sequences presented similarity to an expansin. Finally, analysis of EST-contig 17240 revealed similarity to a protein of unknown function, but it grouped in the similarity dendrogram with the WUSCHEL transcription factor. The data suggest that these EST-contigs are related to the embryogenic process and have potential as molecular markers to increase methodological efficiency in obtaining coffee plant embryogenic materials.

  9. Yield performance of cacao propagated by somatic embryogenesis and grafting

    USDA-ARS?s Scientific Manuscript database

    Twelve cacao (Theobroma cacao) clones propagated by grafting and somatic embryogenesis and grown on an Ultisol soil were evaluated for five years under intensive management at Corozal, Puerto Rico. Preliminary data showed no significant differences between propagation methods for yield of dry beans ...

  10. Mouse Mesenchyme forkhead 2 (Mf2): expression, DNA binding and induction by sonic hedgehog during somitogenesis.

    PubMed

    Wu, S C; Grindley, J; Winnier, G E; Hargett, L; Hogan, B L

    1998-01-01

    Cloning and sequencing of mouse Mf2 (mesoderm/mesenchyme forkhead 2) cDNAs revealed an open reading frame encoding a putative protein of 492 amino acids which, after in vitro translation, binds to a DNA consensus sequence. Mf2 is expressed at high levels in the ventral region of newly formed somites, in sclerotomal derivatives, in lateral plate and cephalic mesoderm and in the first and second branchial arches. Other regions of mesodermal expression include the developing tongue, meninges, nose, whiskers, kidney, genital tubercule and limb joints. In the nervous system Mf2 is transcribed in restricted regions of the mid- and forebrain. In several tissues, including the early somite, Mf2 is expressed in cell populations adjacent to regions expressing sonic hedgehog (Shh) and in explant cultures of presomitic mesoderm Mf2 is induced by Shh secreted by COS cells. These results suggest that Mf2, like other murine forkhead genes, has multiple roles in embryogenesis, possibly mediating the response of cells to signaling molecules such as SHH.

  11. Rapid quantification of neutral lipids and triglycerides during zebrafish embryogenesis.

    PubMed

    Yoganantharjah, Prusothman; Byreddy, Avinesh R; Fraher, Daniel; Puri, Munish; Gibert, Yann

    2017-01-01

    The zebrafish is a useful vertebrate model to study lipid metabolism. Oil Red-O (ORO) staining of zebrafish embryos, though sufficient for visualizing the localization of triglycerides, was previously inadequate to quantify neutral lipid abundance. For metabolic studies, it is crucial to be able to quantify lipids during embryogenesis. Currently no cost effective, rapid and reliable method exists to quantify the deposition of neutral lipids and triglycerides. Thin layer chromatography (TLC), gas chromatography and mass spectrometry can be used to accurately measure lipid levels, but are time consuming and costly in their use. Hence, we developed a rapid and reliable method to quantify neutral lipids and triglycerides. Zebrafish embryos were exposed to Rimonabant (Rimo) or WIN 55,212-2 mesylate (WIN), compounds previously shown to modify lipid content during zebrafish embryogenesis. Following this, ORO stain was extracted out of both the zebrafish body and yolk sac and optical density was measured to give an indication of neutral lipid and triglyceride accumulation. Embryos treated with 0.3 microM WIN resulted in increased lipid accumulation, whereas 3 microM Rimo caused a decrease in lipid accumulation during embryogenesis. TLC was performed on zebrafish bodies to validate the developed method. In addition, BODIPY free fatty acids were injected into zebrafish embryos to confirm quantification of changes in lipid content in the embryo. Previously, ORO was limited to qualitative assessment; now ORO can be used as a quantitative tool to directly determine changes in the levels of neutral lipids and triglycerides.

  12. Precision-cut rat, mouse, and human intestinal slices as novel models for the early-onset of intestinal fibrosis.

    PubMed

    Pham, Bao Tung; van Haaften, Wouter Tobias; Oosterhuis, Dorenda; Nieken, Judith; de Graaf, Inge Anne Maria; Olinga, Peter

    2015-04-01

    Intestinal fibrosis (IF) is a major complication of inflammatory bowel disease. IF research is limited by the lack of relevant in vitro and in vivo models. We evaluated precision-cut intestinal slices (PCIS) prepared from human, rat, and mouse intestine as ex vivo models mimicking the early-onset of (human) IF. Precision-cut intestinal slices prepared from human (h), rat (r), and mouse (m) jejunum, were incubated up to 72 h, the viability of PCIS was assessed by ATP content and morphology, and the gene expression of several fibrosis markers was determined. The viability of rPCIS decreased after 24 h of incubation, whereas mPCIS and hPCIS were viable up to 72 h of culturing. Furthermore, during this period, gene expression of heat shock protein 47 and plasminogen activator inhibitor 1 increased in all PCIS in addition to augmented expression of synaptophysin in hPCIS, fibronectin (Fn2) and TGF-β1 in rPCIS, and Fn2 and connective tissue growth factor (Ctgf) in mPCIS. Addition of TGF-β1 to rPCIS or mPCIS induced the gene expression of the fibrosis markers Pro-collagen1a1, Fn2, and Ctgf in both species. However, none of the fibrosis markers was further elevated in hPCIS. We successfully developed a novel ex vivo model that can mimic the early-onset of fibrosis in the intestine using human, rat, and mouse PCIS. Furthermore, in rat and mouse PCIS, TGF-β1 was able to even further increase the gene expression of fibrosis markers. This indicates that PCIS can be used as a model for the early-onset of IF. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  13. Generation and characterization of PDGFRα-GFPCreERT2 knock-In mouse line.

    PubMed

    Miwa, Hiroyuki; Era, Takumi

    2015-05-01

    Platelet-derived growth factor (PDGF) and its receptor play an important role in embryogenesis. PDGF receptor α (PDGFRα) is expressed specifically in the embryonic day 7.5 (E7.5) mesoderm and in the E9.5 neural crest among other tissues. PDGFRα-expressing cells and their descendants are involved in the formation of various tissues. To trace PDGFRα-expressing cells in vivo, we generated a knock-in mouse line that expressed a fusion protein of green fluorescent protein (GFP), Cre recombinase (Cre), and mutated estrogen receptor ligand-binding domain (ERT2) under the control of the PDGFRα promoter. In these mice, Cre activity in PDGFRα-expressing cells could be induced by tamoxifen treatment. Taken together, our results suggest that the knock-in mouse line generated here could be useful for studying PDGFRα-expressing cells and their descendants in vivo at various stages of development. © 2015 Wiley Periodicals, Inc.

  14. The near demise and subsequent revival of classical genetics for investigating Caenorhabditis elegans embryogenesis: RNAi meets next-generation DNA sequencing.

    PubMed

    Bowerman, Bruce

    2011-10-01

    Molecular genetic investigation of the early Caenorhabditis elegans embryo has contributed substantially to the discovery and general understanding of the genes, pathways, and mechanisms that regulate and execute developmental and cell biological processes. Initially, worm geneticists relied exclusively on a classical genetics approach, isolating mutants with interesting phenotypes after mutagenesis and then determining the identity of the affected genes. Subsequently, the discovery of RNA interference (RNAi) led to a much greater reliance on a reverse genetics approach: reducing the function of known genes with RNAi and then observing the phenotypic consequences. Now the advent of next-generation DNA sequencing technologies and the ensuing ease and affordability of whole-genome sequencing are reviving the use of classical genetics to investigate early C. elegans embryogenesis.

  15. Some ethylene biosynthesis and AP2/ERF genes reveal a specific pattern of expression during somatic embryogenesis in Hevea brasiliensis

    PubMed Central

    2012-01-01

    Background Ethylene production and signalling play an important role in somatic embryogenesis, especially for species that are recalcitrant in in vitro culture. The AP2/ERF superfamily has been identified and classified in Hevea brasiliensis. This superfamily includes the ERFs involved in response to ethylene. The relative transcript abundance of ethylene biosynthesis genes and of AP2/ERF genes was analysed during somatic embryogenesis for callus lines with different regeneration potential, in order to identify genes regulated during that process. Results The analysis of relative transcript abundance was carried out by real-time RT-PCR for 142 genes. The transcripts of ERFs from group I, VII and VIII were abundant at all stages of the somatic embryogenesis process. Forty genetic expression markers for callus regeneration capacity were identified. Fourteen markers were found for proliferating calli and 35 markers for calli at the end of the embryogenesis induction phase. Sixteen markers discriminated between normal and abnormal embryos and, lastly, there were 36 markers of conversion into plantlets. A phylogenetic analysis comparing the sequences of the AP2 domains of Hevea and Arabidopsis genes enabled us to predict the function of 13 expression marker genes. Conclusions This first characterization of the AP2/ERF superfamily in Hevea revealed dramatic regulation of the expression of AP2/ERF genes during the somatic embryogenesis process. The gene expression markers of proliferating callus capacity to regenerate plants by somatic embryogenesis should make it possible to predict callus lines suitable to be used for multiplication. Further functional characterization of these markers opens up prospects for discovering specific AP2/ERF functions in the Hevea species for which somatic embryogenesis is difficult. PMID:23268714

  16. TopBP1 deficiency causes an early embryonic lethality and induces cellular senescence in primary cells.

    PubMed

    Jeon, Yoon; Ko, Eun; Lee, Kyung Yong; Ko, Min Ji; Park, Seo Young; Kang, Jeeheon; Jeon, Chang Hwan; Lee, Ho; Hwang, Deog Su

    2011-02-18

    TopBP1 plays important roles in chromosome replication, DNA damage response, and other cellular regulatory functions in vertebrates. Although the roles of TopBP1 have been studied mostly in cancer cell lines, its physiological function remains unclear in mice and untransformed cells. We generated conditional knock-out mice in which exons 5 and 6 of the TopBP1 gene are flanked by loxP sequences. Although TopBP1-deficient embryos developed to the blastocyst stage, no homozygous mutant embryos were recovered at E8.5 or beyond, and completely resorbed embryos were frequent at E7.5, indicating that mutant embryos tend to die at the peri-implantation stage. This finding indicated that TopBP1 is essential for cell proliferation during early embryogenesis. Ablation of TopBP1 in TopBP1(flox/flox) mouse embryonic fibroblasts and 3T3 cells using Cre recombinase-expressing retrovirus arrests cell cycle progression at the G(1), S, and G(2)/M phases. The TopBP1-ablated mouse cells exhibit phosphorylation of H2AX and Chk2, indicating that the cells contain DNA breaks. The TopBP1-ablated mouse cells enter cellular senescence. Although RNA interference-mediated knockdown of TopBP1 induced cellular senescence in human primary cells, it induced apoptosis in cancer cells. Therefore, TopBP1 deficiency in untransformed mouse and human primary cells induces cellular senescence rather than apoptosis. These results indicate that TopBP1 is essential for cell proliferation and maintenance of chromosomal integrity.

  17. In-depth proteomics characterization of embryogenesis of the honey bee worker (Apis mellifera ligustica).

    PubMed

    Fang, Yu; Feng, Mao; Han, Bin; Lu, Xiaoshan; Ramadan, Haitham; Li, Jianke

    2014-09-01

    Identifying proteome changes of honey bee embryogenesis is of prime importance for unraveling the molecular mechanisms that they underlie. However, many proteomic changes during the embryonic period are not well characterized. We analyzed the proteomic alterations over the complete time course of honey bee worker embryogenesis at 24, 48, and 72 h of age, using mass spectrometry-based proteomics, label-free quantitation, and bioinformatics. Of the 1460 proteins identified the embryo of all three ages, the core proteome (proteins shared by the embryos of all three ages, accounting for 40%) was mainly involved in protein synthesis, metabolic energy, development, and molecular transporter, which indicates their centrality in driving embryogenesis. However, embryos at different developmental stages have their own specific proteome and pathway signatures to coordinate and modulate developmental events. The young embryos (<24 h) stronger expression of proteins related to nutrition storage and nucleic acid metabolism may correlate with the cell proliferation occurring at this stage. The middle aged embryos (24-48 h) enhanced expression of proteins associated with cell cycle control, transporters, antioxidant activity, and the cytoskeleton suggest their roles to support rudimentary organogenesis. Among these proteins, the biological pathways of aminoacyl-tRNA biosynthesis, β-alanine metabolism, and protein export are intensively activated in the embryos of middle age. The old embryos (48-72 h) elevated expression of proteins implicated in fatty acid metabolism and morphogenesis indicate their functionality for the formation and development of organs and dorsal closure, in which the biological pathways of fatty acid metabolism and RNA transport are highly activated. These findings add novel understanding to the molecular details of honey bee embryogenesis, in which the programmed activation of the proteome matches with the physiological transition observed during

  18. In-depth Proteomics Characterization of Embryogenesis of the Honey Bee Worker (Apis mellifera ligustica) *

    PubMed Central

    Fang, Yu; Feng, Mao; Han, Bin; Lu, Xiaoshan; Ramadan, Haitham; Li, Jianke

    2014-01-01

    Identifying proteome changes of honey bee embryogenesis is of prime importance for unraveling the molecular mechanisms that they underlie. However, many proteomic changes during the embryonic period are not well characterized. We analyzed the proteomic alterations over the complete time course of honey bee worker embryogenesis at 24, 48, and 72 h of age, using mass spectrometry-based proteomics, label-free quantitation, and bioinformatics. Of the 1460 proteins identified the embryo of all three ages, the core proteome (proteins shared by the embryos of all three ages, accounting for 40%) was mainly involved in protein synthesis, metabolic energy, development, and molecular transporter, which indicates their centrality in driving embryogenesis. However, embryos at different developmental stages have their own specific proteome and pathway signatures to coordinate and modulate developmental events. The young embryos (<24 h) stronger expression of proteins related to nutrition storage and nucleic acid metabolism may correlate with the cell proliferation occurring at this stage. The middle aged embryos (24–48 h) enhanced expression of proteins associated with cell cycle control, transporters, antioxidant activity, and the cytoskeleton suggest their roles to support rudimentary organogenesis. Among these proteins, the biological pathways of aminoacyl-tRNA biosynthesis, β-alanine metabolism, and protein export are intensively activated in the embryos of middle age. The old embryos (48–72 h) elevated expression of proteins implicated in fatty acid metabolism and morphogenesis indicate their functionality for the formation and development of organs and dorsal closure, in which the biological pathways of fatty acid metabolism and RNA transport are highly activated. These findings add novel understanding to the molecular details of honey bee embryogenesis, in which the programmed activation of the proteome matches with the physiological transition observed during

  19. Chromatin Immunoprecipitation in Early Mouse Embryos.

    PubMed

    García-González, Estela G; Roque-Ramirez, Bladimir; Palma-Flores, Carlos; Hernández-Hernández, J Manuel

    2018-01-01

    Epigenetic regulation is achieved at many levels by different factors such as tissue-specific transcription factors, members of the basal transcriptional apparatus, chromatin-binding proteins, and noncoding RNAs. Importantly, chromatin structure dictates the availability of a specific genomic locus for transcriptional activation as well as the efficiency with which transcription can occur. Chromatin immunoprecipitation (ChIP) is a method that allows elucidating gene regulation at the molecular level by assessing if chromatin modifications or proteins are present at a specific locus. Initially, the majority of ChIP experiments were performed on cultured cell lines and more recently this technique has been adapted to a variety of tissues in different model organisms. Using ChIP on mouse embryos, it is possible to document the presence or absence of specific proteins and chromatin modifications at genomic loci in vivo during mammalian development and to get biological meaning from observations made on tissue culture analyses. We describe here a ChIP protocol on freshly isolated mouse embryonic somites for in vivo analysis of muscle specific transcription factor binding on chromatin. This protocol has been easily adapted to other mouse embryonic tissues and has also been successfully scaled up to perform ChIP-Seq.

  20. Proteomic analysis of stipe explants reveals differentially expressed proteins involved in early direct somatic embryogenesis of the tree fern Cyathea delgadii Sternb.

    PubMed

    Domżalska, Lucyna; Kędracka-Krok, Sylwia; Jankowska, Urszula; Grzyb, Małgorzata; Sobczak, Mirosław; Rybczyński, Jan J; Mikuła, Anna

    2017-05-01

    Using cyto-morphological analysis of somatic embryogenesis (SE) in the tree fern Cyathea delgadii as a guide, we performed a comparative proteomic analysis in stipe explants undergoing direct SE. Plant material was cultured on hormone-free medium supplemented with 2% sucrose. Phenol extracted proteins were separated using two-dimensional gel electrophoresis (2-DE) and mass spectrometry was performed for protein identification. A total number of 114 differentially regulated proteins was identified during early SE, i.e. when the first cell divisions started and several-cell pro-embryos were formed. Proteins were assigned to seven functional categories: carbohydrate metabolism, protein metabolism, cell organization, defense and stress responses, amino acid metabolism, purine metabolism, and fatty acid metabolism. Carbohydrate and protein metabolism were found to be the most sensitive SE functions with the greatest number of alterations in the intensity of spots in gel. Differences, especially in non-enzymatic and structural protein abundance, are indicative for cell organization, including cytoskeleton rearrangement and changes in cell wall components. The highest induced changes concern those enzymes related to fatty acid metabolism. Global analysis of the proteome reveals several proteins that can represent markers for the first 16days of SE induction and expression in fern. The findings of this research improve the understanding of molecular processes involved in direct SE in C. delgadii. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Lethality in PARP-1/Ku80 double mutant mice reveals physiologicalsynergy during early embryogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henrie, Melinda S.; Kurimasa, Akihiro; Burma, Sandeep

    2002-09-24

    Ku is an abundant heterodimeric nuclear protein, consisting of 70-kDa and 86-kDa tightly associated subunits that comprise the DNA binding component of DNA-dependent protein kinase. Poly(ADP)ribose polymerase-1 (PARP-1) is a 113-kDa protein that catalyzes the synthesis of poly(ADP-ribose) on target proteins. Both Ku and PARP-1 recognize and bind to DNA ends. Ku functions in the non-homologous end joining (NHEJ) repair pathway whereas PARP-1 functions in the single strand break repair and base excision repair (BER) pathways. Recent studies have revealed that PARP-1 and Ku80 interact in vitro. To determine whether the association of PARP-1 and Ku80 has any physiological significancemore » or synergistic function in vivo, mice lacking both PARP-1 and Ku80 were generated. The resulting offspring died during embryonic development displaying abnormalities around the gastrulation stage. In addition, PARP-1-/-Ku80-/- cultured blastocysts had an increased level of apoptosis. These data suggest that the functions of both Ku80 and PARP-1 are essential for normal embryogenesis and that a loss of genomic integrity leading to cell death through apoptosis is likely the cause of the embryonic lethality observed in these mice.« less

  2. Detection and Evaluation of Early Breast Cancer via Magnetic Resonance Imaging: Studies of Mouse Models and Clinical Implementation

    DTIC Science & Technology

    2008-03-01

    CONTRACT NUMBER Detection and Evaluation of Early Breast Cancer via Magnetic Resonance Imaging: Studies of Mouse Models and Clinical Implementation...research proposed here can directly lead to clinical improvements in both early breast cancer detection, as well as effective breast cancer therapy. To date... cancer is a major prognostic factor in the management of the disease. In particular, detecting breast cancer in its pre-invasive form as ductal carcinoma

  3. Overlapping DNA Methylation Dynamics in Mouse Intestinal Cell Differentiation and Early Stages of Malignant Progression

    PubMed Central

    Forn, Marta; Díez-Villanueva, Anna; Merlos-Suárez, Anna; Muñoz, Mar; Lois, Sergi; Carriò, Elvira; Jordà, Mireia; Bigas, Anna; Batlle, Eduard; Peinado, Miguel A.

    2015-01-01

    Mouse models of intestinal crypt cell differentiation and tumorigenesis have been used to characterize the molecular mechanisms underlying both processes. DNA methylation is a key epigenetic mark and plays an important role in cell identity and differentiation programs and cancer. To get insights into the dynamics of cell differentiation and malignant transformation we have compared the DNA methylation profiles along the mouse small intestine crypt and early stages of tumorigenesis. Genome-scale analysis of DNA methylation together with microarray gene expression have been applied to compare intestinal crypt stem cells (EphB2high), differentiated cells (EphB2negative), ApcMin/+ adenomas and the corresponding non-tumor adjacent tissue, together with small and large intestine samples and the colon cancer cell line CT26. Compared with late stages, small intestine crypt differentiation and early stages of tumorigenesis display few and relatively small changes in DNA methylation. Hypermethylated loci are largely shared by the two processes and affect the proximities of promoter and enhancer regions, with enrichment in genes associated with the intestinal stem cell signature and the PRC2 complex. The hypermethylation is progressive, with minute levels in differentiated cells, as compared with intestinal stem cells, and reaching full methylation in advanced stages. Hypomethylation shows different signatures in differentiation and cancer and is already present in the non-tumor tissue adjacent to the adenomas in ApcMin/+ mice, but at lower levels than advanced cancers. This study provides a reference framework to decipher the mechanisms driving mouse intestinal tumorigenesis and also the human counterpart. PMID:25933092

  4. Custos controls β-catenin to regulate head development during vertebrate embryogenesis.

    PubMed

    Komiya, Yuko; Mandrekar, Noopur; Sato, Akira; Dawid, Igor B; Habas, Raymond

    2014-09-09

    Precise control of the canonical Wnt pathway is crucial in embryogenesis and all stages of life, and dysregulation of this pathway is implicated in many human diseases including cancers and birth defect disorders. A key aspect of canonical Wnt signaling is the cytoplasmic to nuclear translocation of β-catenin, a process that remains incompletely understood. Here we report the identification of a previously undescribed component of the canonical Wnt signaling pathway termed Custos, originally isolated as a Dishevelled-interacting protein. Custos contains casein kinase phosphorylation sites and nuclear localization sequences. In Xenopus, custos mRNA is expressed maternally and then widely throughout embryogenesis. Depletion or overexpression of Custos produced defective anterior head structures by inhibiting the formation of the Spemann-Mangold organizer. In addition, Custos expression blocked secondary axis induction by positive signaling components of the canonical Wnt pathway and inhibited β-catenin/TCF-dependent transcription. Custos binds to β-catenin in a Wnt responsive manner without affecting its stability, but rather modulates the cytoplasmic to nuclear translocation of β-catenin. This effect on nuclear import appears to be the mechanism by which Custos inhibits canonical Wnt signaling. The function of Custos is conserved as loss-of-function and gain-of-function studies in zebrafish also demonstrate a role for Custos in anterior head development. Our studies suggest a role for Custos in fine-tuning canonical Wnt signal transduction during embryogenesis, adding an additional layer of regulatory control in the Wnt-β-catenin signal transduction cascade.

  5. Regulated expression of homeobox genes Msx-1 and Msx-2 in mouse mammary gland development suggests a role in hormone action and epithelial-stromal interactions.

    PubMed

    Friedmann, Y; Daniel, C W

    1996-07-10

    The murine homeobox genes Msx-1 and Msx-2 are related to the Drosophila msh gene and are expressed in a variety of tissues during mouse embryogenesis. We now report the developmentally regulated expression of Msx-1 and Msx-2 in the mouse mammary gland and show that their expression patterns point toward significant functional roles. Msx-1 and Msx-2 transcripts were present in glands of virgin mice and in glands of mice in early pregnancy, but transcripts decreased dramatically during late pregnancy. Low levels of Msx-1 transcripts were detected in glands from lactating animals and during the first days of involution, whereas Msx-2 expression was not detected during lactation or early involution. Expression of both genes increased gradually as involution progressed. Msx-2 but not Msx-1 expression was decreased following ovariectomy or following exposure to anti-estrogen implanted directly into the gland. Hormonal regulation of Msx-2 expression was confirmed when transcripts returned to normal levels after estrogen was administered to ovariectomized animals. In situ molecular hybridization for Msx-1 showed transcripts localized to the mammary epithelium, whereas Msx-2 expression was confined to the periductal stroma. Mammary stroma from which mammary epithelium had been removed did not transcribe detectable amounts of Msx-2, showing that expression is regulated by contiguous mammary epithelium, and indicating a role for these homeobox genes in mesenchymal-epithelial interactions during mammary development.

  6. Effects of biotic and abiotic factors on the oxygen content of green sea turtle nests during embryogenesis.

    PubMed

    Chen, Chiu-Lin; Wang, Chun-Chun; Cheng, I-Jiunn

    2010-10-01

    Several biotic and abiotic factors can influence nest oxygen content during embryogenesis. Several of these factors were determined during each developmental stage of green sea turtle embryos on Wan-an Island, Penghu Archipelago, Taiwan. We examined oxygen content in 7 nests in 2007 and 11 in 2008. Oxygen in the adjacent sand, total and viable clutch sizes, air, sand and nest temperatures, and sand characters of each nest were also determined. Oxygen content was lower in late stages than in the early and middle stages. It was also lower in the middle layer than in the upper and bottom layers. Nest temperature showed opposite trends, reaching its maximum value in late stages of development. Nest oxygen content was influenced by fraction of viable eggs, total clutch sizes, sand temperatures, maximum nest temperature and maximum change in the nest temperature during incubation. Clutch size during embryogenesis was the most influential factor overall. However, the major influential factors were different for different developmental stages. In the first half of the incubation, the development rate was low, and the change in the nest oxygen content was influenced mainly by the clutch size. During the second half, the rapid embryonic development rate became the dominant factor, and hatchling activities caused even greater oxygen consumption during the last stage of development.

  7. Bottlenecks in bog pine multiplication by somatic embryogenesis and their visualization with the environmental scanning electron microscope.

    PubMed

    Vlašínová, Helena; Neděla, Vilem; Đorđević, Biljana; Havel, Ladislav

    2017-07-01

    Somatic embryogenesis (SE) is an important biotechnological technique used for the propagation of many pine species in vitro. However, in bog pine, one of the most endangered tree species in the Czech Republic, limitations were observed, which negatively influenced the development and further germination of somatic embryos. Although initiation frequency was very low-0.95 %, all obtained cell lines were subjected to maturation. The best responding cell line (BC1) was used and subjected to six different variants of the maturation media. The media on which the highest number of early-precotyledonary/cotyledonary somatic embryos was formed was supplemented with 121 μM abscisic acid (ABA) and with 6 % maltose. In the end of maturation experiments, different abnormalities in formation of somatic embryos were observed. For visualization and identification of abnormalities in meristem development during proliferation and maturation processes, the environmental scanning electron microscope was used. In comparison to the classical light microscope, the non-commercial environmental scanning electron microscope AQUASEM II has been found as a very useful tool for the quick recognition of apical meristem disruption and abnormal development. To our knowledge, this is the first report discussing somatic embryogenesis in bog pine. Based on this observation, the cultivation procedure could be enhanced and the method for SE of bog pine optimized.

  8. Enhanced somatic embryogenesis in Theobroma cacao using the homologous BABY BOOM transcription factor.

    PubMed

    Florez, Sergio L; Erwin, Rachel L; Maximova, Siela N; Guiltinan, Mark J; Curtis, Wayne R

    2015-05-16

    Theobroma cacao, the chocolate tree, is an important economic crop in East Africa, South East Asia, and South and Central America. Propagation of elite varieties has been achieved through somatic embryogenesis (SE) but low efficiencies and genotype dependence still presents a significant limitation for its propagation at commercial scales. Manipulation of transcription factors has been used to enhance the formation of SEs in several other plant species. This work describes the use of the transcription factor Baby Boom (BBM) to promote the transition of somatic cacao cells from the vegetative to embryonic state. An ortholog of the Arabidopsis thaliana BBM gene (AtBBM) was characterized in T. cacao (TcBBM). TcBBM expression was observed throughout embryo development and was expressed at higher levels during SE as compared to zygotic embryogenesis (ZE). TcBBM overexpression in A. thaliana and T. cacao led to phenotypes associated with SE that did not require exogenous hormones. While transient ectopic expression of TcBBM provided only moderate enhancements in embryogenic potential, constitutive overexpression dramatically increased SE proliferation but also appeared to inhibit subsequent development. Our work provides validation that TcBBM is an ortholog to AtBBM and has a specific role in both somatic and zygotic embryogenesis. Furthermore, our studies revealed that TcBBM transcript levels could serve as a biomarker for embryogenesis in cacao tissue. Results from transient expression of TcBBM provide confirmation that transcription factors can be used to enhance SE without compromising plant development and avoiding GMO plant production. This strategy could compliment a hormone-based method of reprogramming somatic cells and lead to more precise manipulation of SE at the regulatory level of transcription factors. The technology would benefit the propagation of elite varieties with low regeneration potential as well as the production of transgenic plants, which

  9. Yap1 is dispensable for self-renewal but required for proper differentiation of mouse embryonic stem (ES) cells.

    PubMed

    Chung, HaeWon; Lee, Bum-Kyu; Uprety, Nadima; Shen, Wenwen; Lee, Jiwoon; Kim, Jonghwan

    2016-04-01

    Yap1 is a transcriptional co-activator of the Hippo pathway. The importance of Yap1 in early cell fate decision during embryogenesis has been well established, though its role in embryonic stem (ES) cells remains elusive. Here, we report that Yap1 plays crucial roles in normal differentiation rather than self-renewal of ES cells. Yap1-depleted ES cells maintain undifferentiated state with a typical colony morphology as well as robust alkaline phosphatase activity. These cells also retain comparable levels of the core pluripotent factors, such as Pou5f1 and Sox2, to the levels in wild-type ES cells without significant alteration of lineage-specific marker genes. Conversely, overexpression of Yap1 in ES cells promotes nuclear translocation of Yap1, resulting in disruption of self-renewal and triggering differentiation by up-regulating lineage-specific genes. Moreover, Yap1-deficient ES cells show impaired induction of lineage markers during differentiation. Collectively, our data demonstrate that Yap1 is a required factor for proper differentiation of mouse ES cells, while remaining dispensable for self-renewal. © 2016 The Authors.

  10. Genetic Regulatory Networks in Embryogenesis and Evolution

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The article introduces a series of papers that were originally presented at a workshop titled Genetic Regulatory Network in Embryogenesis and Evaluation. Contents include the following: evolution of cleavage programs in relationship to axial specification and body plan evolution, changes in cell lineage specification elucidate evolutionary relations in spiralia, axial patterning in the leech: developmental mechanisms and evolutionary implications, hox genes in arthropod development and evolution, heterochronic genes in development and evolution, a common theme for LIM homeobox gene function across phylogeny, and mechanisms of specification in ascidian embryos.

  11. Apoptotic Signaling in Mouse Odontogenesis

    PubMed Central

    Svandova, Eva; Tucker, Abigail S.

    2012-01-01

    Abstract Apoptosis is an important morphogenetic event in embryogenesis as well as during postnatal life. In the last 2 decades, apoptosis in tooth development (odontogenesis) has been investigated with gradually increasing focus on the mechanisms and signaling pathways involved. The molecular machinery responsible for apoptosis exhibits a high degree of conservation but also organ and tissue specific patterns. This review aims to discuss recent knowledge about apoptotic signaling networks during odontogenesis, concentrating on the mouse, which is often used as a model organism for human dentistry. Apoptosis accompanies the entire development of the tooth and corresponding remodeling of the surrounding bony tissue. It is most evident in its role in the elimination of signaling centers within developing teeth, removal of vestigal tooth germs, and in odontoblast and ameloblast organization during tooth mineralization. Dental apoptosis is caspase dependent and proceeds via mitochondrial mediated cell death with possible amplification by Fas-FasL signaling modulated by Bcl-2 family members. PMID:22204278

  12. Proteome Analysis Unravels Mechanism Underling the Embryogenesis of the Honeybee Drone and Its Divergence with the Worker (Apis mellifera lingustica).

    PubMed

    Fang, Yu; Feng, Mao; Han, Bin; Qi, Yuping; Hu, Han; Fan, Pei; Huo, Xinmei; Meng, Lifeng; Li, Jianke

    2015-09-04

    The worker and drone bees each contain a separate diploid and haploid genetic makeup, respectively. Mechanisms regulating the embryogenesis of the drone and its mechanistic difference with the worker are still poorly understood. The proteomes of the two embryos at three time-points throughout development were analyzed by applying mass spectrometry-based proteomics. We identified 2788 and 2840 proteins in the worker and drone embryos, respectively. The age-dependent proteome driving the drone embryogenesis generally follows the worker's. The two embryos however evolve a distinct proteome setting to prime their respective embryogenesis. The strongly expressed proteins and pathways related to transcriptional-translational machinery and morphogenesis at 24 h drone embryo relative to the worker, illustrating the earlier occurrence of morphogenesis in the drone than worker. These morphogenesis differences remain through to the middle-late stage in the two embryos. The two embryos employ distinct antioxidant mechanisms coinciding with the temporal-difference organogenesis. The drone embryo's strongly expressed cytoskeletal proteins signify key roles to match its large body size. The RNAi induced knockdown of the ribosomal protein offers evidence for the functional investigation of gene regulating of honeybee embryogenesis. The data significantly expand novel regulatory mechanisms governing the embryogenesis, which is potentially important for honeybee and other insects.

  13. Generation of monoclonal antibodies specific for cell surface molecules expressed on early mouse endoderm.

    PubMed

    Gadue, Paul; Gouon-Evans, Valerie; Cheng, Xin; Wandzioch, Ewa; Zaret, Kenneth S; Grompe, Markus; Streeter, Philip R; Keller, Gordon M

    2009-09-01

    The development of functional cell populations such as hepatocytes and pancreatic beta cells from embryonic stem cell (ESC) is dependent on the efficient induction of definitive endoderm early in the differentiation process. To monitor definitive endoderm formation in mouse ESC differentiation cultures in a quantitative fashion, we generated a reporter cell line that expresses human CD25 from the Foxa3 locus and human CD4 from the Foxa2 locus. Induction of these reporter ESCs with high concentrations of activin A led to the development of a CD25-Foxa3+CD4-Foxa2+ population within 4-5 days of culture. Isolation and characterization of this population showed that it consists predominantly of definitive endoderm that is able to undergo hepatic specification under the appropriate conditions. To develop reagents that can be used for studies on endoderm development from unmanipulated ESCs, from induced pluripotent stem cells, and from the mouse embryo, we generated monoclonal antibodies against the CD25-Foxa3+CD4-Foxa2+ population. With this approach, we identified two antibodies that react specifically with endoderm from ESC cultures and from the early embryo. The specificity of these antibodies enables one to quantitatively monitor endoderm development in ESC differentiation cultures, to study endoderm formation in the embryo, and to isolate pure populations of culture- or embryo-derived endodermal cells.

  14. NvERTx: a gene expression database to compare embryogenesis and regeneration in the sea anemone Nematostella vectensis.

    PubMed

    Warner, Jacob F; Guerlais, Vincent; Amiel, Aldine R; Johnston, Hereroa; Nedoncelle, Karine; Röttinger, Eric

    2018-05-17

    For over a century, researchers have been comparing embryogenesis and regeneration hoping that lessons learned from embryonic development will unlock hidden regenerative potential. This problem has historically been a difficult one to investigate because the best regenerative model systems are poor embryonic models and vice versa. Recently, however, there has been renewed interest in this question, as emerging models have allowed researchers to investigate these processes in the same organism. This interest has been further fueled by the advent of high-throughput transcriptomic analyses that provide virtual mountains of data. Here, we present N ematostella vectensis Embryogenesis and Regeneration Transcriptomics (NvERTx), a platform for comparing gene expression during embryogenesis and regeneration. NvERTx consists of close to 50 transcriptomic data sets spanning embryogenesis and regeneration in Nematostella These data were used to perform a robust de novo transcriptome assembly, with which users can search, conduct BLAST analyses, and plot the expression of multiple genes during these two developmental processes. The site is also home to the results of gene clustering analyses, to further mine the data and identify groups of co-expressed genes. The site can be accessed at http://nvertx.kahikai.org. © 2018. Published by The Company of Biologists Ltd.

  15. Glycogen Synthase Kinase-3 is involved in glycogen metabolism control and embryogenesis of Rhodnius prolixus.

    PubMed

    Mury, Flávia B; Lugon, Magda D; DA Fonseca, Rodrigo Nunes; Silva, Jose R; Berni, Mateus; Araujo, Helena M; Fontenele, Marcio Ribeiro; Abreu, Leonardo Araujo DE; Dansa, Marílvia; Braz, Glória; Masuda, Hatisaburo; Logullo, Carlos

    2016-10-01

    Rhodnius prolixus is a blood-feeding insect that transmits Trypanosoma cruzi and Trypanosoma rangeli to vertebrate hosts. Rhodnius prolixus is also a classical model in insect physiology, and the recent availability of R. prolixus genome has opened new avenues on triatomine research. Glycogen synthase kinase 3 (GSK-3) is classically described as a key enzyme involved in glycogen metabolism, also acting as a downstream component of the Wnt pathway during embryogenesis. GSK-3 has been shown to be highly conserved among several organisms, mainly in the catalytic domain region. Meanwhile, the role of GSK-3 during R. prolixus embryogenesis or glycogen metabolism has not been investigated. Here we show that chemical inhibition of GSK-3 by alsterpaullone, an ATP-competitive inhibitor of GSK3, does not affect adult survival rate, though it alters oviposition and egg hatching. Specific GSK-3 gene silencing by dsRNA injection in adult females showed a similar phenotype. Furthermore, bright field and 4'-6-diamidino-2-phenylindole (DAPI) staining analysis revealed that ovaries and eggs from dsGSK-3 injected females exhibited specific morphological defects. We also demonstrate that glycogen content was inversely related to activity and transcription levels of GSK-3 during embryogenesis. Lastly, after GSK-3 knockdown, we observed changes in the expression of the Wingless (Wnt) downstream target β-catenin as well as in members of other pathways such as the receptor Notch. Taken together, our results show that GSK-3 regulation is essential for R. prolixus oogenesis and embryogenesis.

  16. Acellular Mouse Kidney ECM can be Used as a Three-Dimensional Substrate to Test the Differentiation Potential of Embryonic Stem Cell Derived Renal Progenitors.

    PubMed

    Sambi, Manpreet; Chow, Theresa; Whiteley, Jennifer; Li, Mira; Chua, Shawn; Raileanu, Vanessa; Rogers, Ian M

    2017-08-01

    The development of strategies for tissue regeneration and bio-artificial organ development is based on our understanding of embryogenesis. Differentiation protocols attempt to recapitulate the signaling modalities of gastrulation and organogenesis, coupled with cell selection regimens to isolate the cells of choice. This strategy is impeded by the lack of optimal in vitro culture systems since traditional culture systems do not allow for the three-dimensional interaction between cells and the extracellular matrix. While artificial three-dimensional scaffolds are available, using the natural extracellular matrix scaffold is advantageous because it has a distinct architecture that is difficult to replicate. The adult extracellular matrix is predicted to mediate signaling related to tissue repair not embryogenesis but existing similarities between the two argues that the extracellular matrix will influence the differentiation of stem and progenitor cells. Previous studies using undifferentiated embryonic stem cells grown directly on acellular kidney ECM demonstrated that the acellular kidney supported cell growth but limited differentiation occurred. Using mouse kidney extracellular matrix and mouse embryonic stem cells we report that the extracellular matrix can support the development of kidney structures if the stem cells are first differentiated to kidney progenitor cells before being applied to the acellular organ.

  17. Late Embryogenesis Abundant (LEA) proteins in legumes

    PubMed Central

    Battaglia, Marina; Covarrubias, Alejandra A.

    2013-01-01

    Plants are exposed to different external conditions that affect growth, development, and productivity. Water deficit is one of these adverse conditions caused by drought, salinity, and extreme temperatures. Plants have developed different responses to prevent, ameliorate or repair the damage inflicted by these stressful environments. One of these responses is the activation of a set of genes encoding a group of hydrophilic proteins that typically accumulate to high levels during seed dehydration, at the last stage of embryogenesis, hence named Late Embryogenesis Abundant (LEA) proteins. LEA proteins also accumulate in response to water limitation in vegetative tissues, and have been classified in seven groups based on their amino acid sequence similarity and on the presence of distinctive conserved motifs. These proteins are widely distributed in the plant kingdom, from ferns to angiosperms, suggesting a relevant role in the plant response to this unfavorable environmental condition. In this review, we analyzed the LEA proteins from those legumes whose complete genomes have been sequenced such as Phaseolus vulgaris, Glycine max, Medicago truncatula, Lotus japonicus, Cajanus cajan, and Cicer arietinum. Considering their distinctive motifs, LEA proteins from the different groups were identified, and their sequence analysis allowed the recognition of novel legume specific motifs. Moreover, we compile their transcript accumulation patterns based on publicly available data. In spite of the limited information on these proteins in legumes, the analysis and data compiled here confirm the high correlation between their accumulation and water deficit, reinforcing their functional relevance under this detrimental conditions. PMID:23805145

  18. Synchronization of Somatic Embryogenesis in Date Palm Suspension Culture Using Abscisic Acid.

    PubMed

    Alwael, Hussain A; Naik, Poornananda M; Al-Khayri, Jameel M

    2017-01-01

    Somatic embryogenesis is considered the most effective method for commercial propagation of date palm. However, the limitation of obtaining synchronized development of somatic embryos remains an impediment. The synchronization of somatic embryo development is ideal for the applications to produce artificial seeds. Abscisic acid (ABA) is associated with stress response and influences in vitro growth and development. This chapter describes an effective method to achieve synchronized development of somatic embryos in date palm cell suspension culture. Among the ABA concentrations tested (0, 1, 10, 50, 100 μM), the best synchronized growth was obtained in response to 50-100 μM. Here we provide a comprehensive protocol for in vitro plant regeneration of date palm starting with shoot-tip explant, callus initiation and growth, cell suspension establishment, embryogenesis synchronization with ABA treatment, somatic embryo germination, and rooting as well as acclimatized plantlet establishment.

  19. Single-cell RNA sequencing highlights transcription activity of autophagy-related genes during hematopoietic stem cell formation in mouse embryos.

    PubMed

    Hu, Yongfei; Huang, Yan; Yi, Ying; Wang, Hongwei; Liu, Bing; Yu, Jia; Wang, Dong

    2017-04-03

    Accumulating evidence has demonstrated that macroautophagy/autophagy plays an essential role in self-renewal and differentiation in embryonic hematopoiesis. Here, according to the RNA sequencing data sets of 5 population cells related to hematopoietic stem cell (HSC) formation during mouse embryogenesis (endothelial cells, PTPRC/CD45 - and PTPRC/CD45 + pre-HSCs in the E11 aorta-gonad-mesonephros (AGM) region, mature HSCs in E12 and E14 fetal liver), we explored the dynamic expression of mouse autophagy-related genes in this course at the single-cell level. Our results revealed that the transcription activity of autophagy-related genes had a substantial increase when endothelial cells (ECs) specified into pre-HSCs, and the upregulation of autophagy-essential genes correlated with reduced NOTCH signaling in pre-HSCs, suggesting the autophagy activity may be greatly enhanced during pre-HSC specification from endothelial precursors. In summary, our results presented strong evidence that autophagy plays a critical role in HSC emergence during mouse midgestation.

  20. Lysophosphatidic acid acts as a nutrient-derived developmental cue to regulate early hematopoiesis

    PubMed Central

    Li, Haisen; Yue, Rui; Wei, Bin; Gao, Ge; Du, Jiulin; Pei, Gang

    2014-01-01

    Primitive hematopoiesis occurs in the yolk sac blood islands during vertebrate embryogenesis, where abundant phosphatidylcholines (PC) are available as important nutrients for the developing embryo. However, whether these phospholipids also generate developmental cues to promote hematopoiesis is largely unknown. Here, we show that lysophosphatidic acid (LPA), a signaling molecule derived from PC, regulated hemangioblast formation and primitive hematopoiesis. Pharmacological and genetic blockage of LPA receptor 1 (LPAR1) or autotoxin (ATX), a secretory lysophospholipase that catalyzes LPA production, inhibited hematopoietic differentiation of mouse embryonic stem cells and impaired the formation of hemangioblasts. Mechanistic experiments revealed that the regulatory effect of ATX-LPA signaling was mediated by PI3K/Akt-Smad pathway. Furthermore, during in vivo embryogenesis in zebrafish, LPA functioned as a developmental cue for hemangioblast formation and primitive hematopoiesis. Taken together, we identified LPA as an important nutrient-derived developmental cue for primitive hematopoiesis as well as a novel mechanism of hemangioblast regulation. PMID:24829209

  1. Lysophosphatidic acid acts as a nutrient-derived developmental cue to regulate early hematopoiesis.

    PubMed

    Li, Haisen; Yue, Rui; Wei, Bin; Gao, Ge; Du, Jiulin; Pei, Gang

    2014-06-17

    Primitive hematopoiesis occurs in the yolk sac blood islands during vertebrate embryogenesis, where abundant phosphatidylcholines (PC) are available as important nutrients for the developing embryo. However, whether these phospholipids also generate developmental cues to promote hematopoiesis is largely unknown. Here, we show that lysophosphatidic acid (LPA), a signaling molecule derived from PC, regulated hemangioblast formation and primitive hematopoiesis. Pharmacological and genetic blockage of LPA receptor 1 (LPAR1) or autotoxin (ATX), a secretory lysophospholipase that catalyzes LPA production, inhibited hematopoietic differentiation of mouse embryonic stem cells and impaired the formation of hemangioblasts. Mechanistic experiments revealed that the regulatory effect of ATX-LPA signaling was mediated by PI3K/Akt-Smad pathway. Furthermore, during in vivo embryogenesis in zebrafish, LPA functioned as a developmental cue for hemangioblast formation and primitive hematopoiesis. Taken together, we identified LPA as an important nutrient-derived developmental cue for primitive hematopoiesis as well as a novel mechanism of hemangioblast regulation. © 2014 The Authors.

  2. Loss of CMD2‐mediated resistance to cassava mosaic disease in plants regenerated through somatic embryogenesis

    PubMed Central

    Chauhan, Raj Deepika; Wagaba, Henry; Moll, Theodore; Alicai, Titus; Miano, Douglas; Carrington, James C.; Taylor, Nigel J.

    2016-01-01

    Summary Cassava mosaic disease (CMD) and cassava brown streak disease (CBSD) are the two most important viral diseases affecting cassava production in Africa. Three sources of resistance are employed to combat CMD: polygenic recessive resistance, termed CMD1, the dominant monogenic type, named CMD2, and the recently characterized CMD3. The farmer‐preferred cultivar TME 204 carries inherent resistance to CMD mediated by CMD2, but is highly susceptible to CBSD. Selected plants of TME 204 produced for RNA interference (RNAi)‐mediated resistance to CBSD were regenerated via somatic embryogenesis and tested in confined field trials in East Africa. Although micropropagated, wild‐type TME 204 plants exhibited the expected levels of resistance, all plants regenerated via somatic embryogenesis were found to be highly susceptible to CMD. Glasshouse studies using infectious clones of East African cassava mosaic virus conclusively demonstrated that the process of somatic embryogenesis used to regenerate cassava caused the resulting plants to become susceptible to CMD. This phenomenon could be replicated in the two additional CMD2‐type varieties TME 3 and TME 7, but the CMD1‐type cultivar TMS 30572 and the CMD3‐type cultivar TMS 98/0505 maintained resistance to CMD after passage through somatic embryogenesis. Data are presented to define the specific tissue culture step at which the loss of CMD resistance occurs and to show that the loss of CMD2‐mediated resistance is maintained across vegetative generations. These findings reveal new aspects of the widely used technique of somatic embryogenesis, and the stability of field‐level resistance in CMD2‐type cultivars presently grown by farmers in East Africa, where CMD pressure is high. PMID:26662210

  3. The effects of triclosan on pluripotency factors and development of mouse embryonic stem cells and zebrafish.

    PubMed

    Chen, Xiaojiao; Xu, Bo; Han, Xiumei; Mao, Zhilei; Chen, Minjian; Du, Guizhen; Talbot, Prue; Wang, Xinru; Xia, Yankai

    2015-04-01

    Triclosan (TCS) poses potential risks to reproduction and development due to its endocrine-disrupting properties. However, the mechanism of TCS's effects on early embryonic development is little known. Embryonic stem cells (ESC) and zebrafish embryos provide valuable models for testing the toxic effects of environmental chemicals on early embryogenesis. In this study, mouse embryonic stem cells (mESC) were acutely exposed to TCS for 24 h, and general cytotoxicity and the effect of TCS on pluripotency were then evaluated. In addition, zebrafish embryos were exposed to TCS from 2- to 24-h post-fertilization (hpf), and their morphology was evaluated. In mESC, alkaline phosphatase staining was significantly decreased after treatment with the highest concentration of TCS (50 μM). Although the expression levels of Sox2 mRNA were not changed, the mRNA levels of Oct4 and Nanog in TCS-treated groups were significantly decreased compared to controls. In addition, the protein levels of Oct4, Sox2 and Nanog were significantly reduced in response to TCS treatment. MicroRNA (miR)-134, an expression inhibitor of pluripotency markers, was significantly increased in TCS-treated mESC. In zebrafish experiments, after 24 hpf of treatment, the controls had developed to the late stage of somitogenesis, while embryos exposed to 300 μg/L of TCS were still at the early stage of somitogenesis, and three genes (Oct4, Sox2 and Nanog) were upregulated in treated groups when compared with the controls. The two models demonstrated that TCS may affect early embryonic development by disturbing the expression of the pluripotency markers (Oct4, Sox2 and Nanog).

  4. Ultrasound-guided microinjection into the mouse forebrain in utero at E9.5.

    PubMed

    Pierfelice, Tarran J; Gaiano, Nicholas

    2010-11-13

    In utero survival surgery in mice permits the molecular manipulation of gene expression during development. However, because the uterine wall is opaque during early embryogenesis, the ability to target specific parts of the embryo for microinjection is greatly limited. Fortunately, high-frequency ultrasound imaging permits the generation of images that can be used in real time to guide a microinjection needle into the embryonic region of interest. Here we describe the use of such imaging to guide the injection of retroviral vectors into the ventricular system of the mouse forebrain at embryonic day (E) 9.5. This method uses a laparotomy to permit access to the uterine horns, and a specially designed plate that permits host embryos to be bathed in saline while they are imaged and injected. Successful surgeries often result in most or all of the injected embryos surviving to any subsequent time point of interest (embryonically or postnatally). The principles described here can be used with slight modifications to perform injections into the amnionic fluid of E8.5 embryos (thereby permitting infection along the anterior posterior extent of the neural tube, which has not yet closed), or into the ventricular system of the brain at E10.5/11.5. Furthermore, at mid-neurogenic ages (~E13.5), ultrasound imaging can be used direct injection into specific brain regions for viral infection or cell transplantation. The use of ultrasound imaging to guide in utero injections in mice is a very powerful technique that permits the molecular and cellular manipulation of mouse embryos in ways that would otherwise be exceptionally difficult if not impossible.

  5. The methyltransferase Setdb1 is essential for meiosis and mitosis in mouse oocytes and early embryos.

    PubMed

    Eymery, Angeline; Liu, Zichuan; Ozonov, Evgeniy A; Stadler, Michael B; Peters, Antoine H F M

    2016-08-01

    Oocytes develop the competence for meiosis and early embryogenesis during their growth. Setdb1 is a histone H3 lysine 9 (H3K9) methyltransferase required for post-implantation development and has been implicated in the transcriptional silencing of genes and endogenous retroviral elements (ERVs). To address its role in oogenesis and pre-implantation development, we conditionally deleted Setdb1 in growing oocytes. Loss of Setdb1 expression greatly impaired meiosis. It delayed meiotic resumption, altered the dynamics of chromatin condensation, and impaired kinetochore-spindle interactions, bipolar spindle organization and chromosome segregation in more mature oocytes. The observed phenotypes related to changes in abundance of specific transcripts in mutant oocytes. Setdb1 maternally deficient embryos arrested during pre-implantation development and showed comparable defects during cell cycle progression and in chromosome segregation. Finally, transcriptional profiling data indicate that Setdb1 downregulates rather than silences expression of ERVK and ERVL-MaLR retrotransposons and associated chimearic transcripts during oogenesis. Our results identify Setdb1 as a newly discovered meiotic and embryonic competence factor safeguarding genome integrity at the onset of life. © 2016. Published by The Company of Biologists Ltd.

  6. Comparative Developmental Staging of Female and Male Water Fleas Daphnia pulex and Daphnia magna During Embryogenesis.

    PubMed

    Toyota, Kenji; Hiruta, Chizue; Ogino, Yukiko; Miyagawa, Shinichi; Okamura, Tetsuro; Onishi, Yuta; Tatarazako, Norihisa; Iguchi, Taisen

    2016-02-01

    The freshwater crustacean genus Daphnia has been used extensively in ecological, developmental and ecotoxicological studies. Daphnids produce only female offspring by parthenogenesis under favorable conditions, but in response to various unfavorable conditions and external stimuli, they produce male offspring. Although we reported that exogenous exposure to juvenile hormones and their analogs can induce male offspring even under female-producing conditions, we recently established a male induction system in the Daphnia pulex WTN6 strain simply by changing day-length. This male and female induction system is suitable for understanding the innate mechanisms of sexual dimorphic development in daphnids. Embryogenesis has been described as a normal plate (developmental staging) in various daphnid species; however, all studies have mainly focused on female development. Here, we describe the developmental staging of both sexes during embryogenesis in two representative daphnids, D. pulex and D. magna, based on microscopic time-course observations. Our findings provide the first detailed insights into male embryogenesis in both species, and contribute to the elucidation of the mechanisms underlying sexual differentiation in daphnids.

  7. DNA methylation dynamics during early plant life.

    PubMed

    Bouyer, Daniel; Kramdi, Amira; Kassam, Mohamed; Heese, Maren; Schnittger, Arp; Roudier, François; Colot, Vincent

    2017-09-25

    Cytosine methylation is crucial for gene regulation and silencing of transposable elements in mammals and plants. While this epigenetic mark is extensively reprogrammed in the germline and early embryos of mammals, the extent to which DNA methylation is reset between generations in plants remains largely unknown. Using Arabidopsis as a model, we uncovered distinct DNA methylation dynamics over transposable element sequences during the early stages of plant development. Specifically, transposable elements and their relics show invariably high methylation at CG sites but increasing methylation at CHG and CHH sites. This non-CG methylation culminates in mature embryos, where it reaches saturation for a large fraction of methylated CHH sites, compared to the typical 10-20% methylation level observed in seedlings or adult plants. Moreover, the increase in CHH methylation during embryogenesis matches the hypomethylated state in the early endosperm. Finally, we show that interfering with the embryo-to-seedling transition results in the persistence of high CHH methylation levels after germination, specifically over sequences that are targeted by the RNA-directed DNA methylation (RdDM) machinery. Our findings indicate the absence of extensive resetting of DNA methylation patterns during early plant life and point instead to an important role of RdDM in reinforcing DNA methylation of transposable element sequences in every cell of the mature embryo. Furthermore, we provide evidence that this elevated RdDM activity is a specific property of embryogenesis.

  8. The cellular and molecular biology of conifer embryogenesis.

    PubMed

    Cairney, John; Pullman, Gerald S

    2007-01-01

    Gymnosperms and angiosperms are thought to have evolved from a common ancestor c. 300 million yr ago. The manner in which gymnosperms and angiosperms form seeds has diverged and, although broad similarities are evident, the anatomy and cell and molecular biology of embryogenesis in gymnosperms, such as the coniferous trees pine, spruce and fir, differ significantly from those in the most widely studied model angiosperm Arabidopsis thaliana. Molecular analysis of signaling pathways and processes such as programmed cell death and embryo maturation indicates that many developmental pathways are conserved between angiosperms and gymnosperms. Recent genomics research reveals that almost 30% of mRNAs found in developing pine embryos are absent from other conifer expressed sequence tag (EST) collections. These data show that the conifer embryo differs markedly from other gymnosperm tissues studied to date in terms of the range of genes transcribed. Approximately 72% of conifer embryo-expressed genes are found in the Arabidopsis proteome and conifer embryos contain mRNAs of very similar sequence to key genes that regulate seed development in Arabidopsis. However, 1388 loblolly pine (Pinus taeda) embryo ESTs (11.4% of the collection) are novel and, to date, have been found in no other plant. The data imply that, in gymnosperm embryogenesis, differences in structure and development are achieved by subtle molecular interactions, control of spatial and temporal gene expression and the regulating agency of a few unique proteins.

  9. In vitro plant regeneration of Aster scaber via somatic embryogenesis.

    PubMed

    Boo, Kyung Hwan; Cao, Dang Viet; Pamplona, Reniel S; Lee, Doseung; Riu, Key-Zung; Lee, Dong-Sun

    2015-01-01

    We established an in vitro plant regeneration system via somatic embryogenesis of Aster scaber, an important source of various biologically active phytochemicals. We examined the callus induction and embryogenic capacities of three explants, including leaves, petioles, and roots, on 25 different media containing different combinations of α-naphthalene acetic acid (NAA) and 6-benzyladenine (BA). The optimum concentrations of NAA and BA for the production of embryogenic calli were 5.0 μM and 0.05 μM, respectively. Media containing higher concentrations of auxin and cytokinin (such as 25 μM NAA and 25 μM BA) were suitable for shoot regeneration, especially for leaf-derived calli, which are the most readily available calli and are highly competent. For root induction from regenerated shoots, supplemental auxin and/or cytokinin did not improve rooting, but instead caused unwanted callus induction or retarded growth of regenerated plants. Therefore, plant growth regulator-free medium was preferable for root induction. Normal plants were successfully obtained from calli under the optimized conditions described above. This is the first report of the complete process of in vitro plant regeneration of A. scaber via somatic embryogenesis.

  10. Comparison of somatic embryogenesis in Medicago sativa and Medicago truncatula.

    PubMed

    Hoori, F; Ehsanpour, A A; Mostajeran, A

    2007-02-01

    In this study, the regeneration through embryogenesis of two species of Medicago were studied. Seeds of Medicago sativa cv. Rehnani and M. truncatula line A17 were grown on MS medium. After 4-6 weeks, segments of leaf and stem from two species were transferred to MS medium containing 2 mg L(-1) NAA, 2,4-D and Kinetin. The results indicated that callus formation from leaf explants of M. sativa was higher than M. trancatula. In the next stage, media with different combinations of auxin, cytokinin or ethinyl estradiol were provided for regeneration. Then in two stages, explants of leaf and stem of two species were transferred on these media. Results after 3-6 weeks showed that in medium containing NAA and TDZ, stem pieces ofM. sativa produced shoots while leaf pieces on NAA and ethinyl estradiol formed roots. Leaf explants of M. truncatula in the medium containing NAA and BAP, produced somatic embryos. Also in media with auxin and ethinyl estradiol, somatic embryos were formed on calli of two species. Ethinyl estradiol and auxin together can induce somatic embryogenesis and root production on calli and stem or leaf explants.

  11. A temporary immersion system improves in vitro regeneration of peach palm through secondary somatic embryogenesis

    PubMed Central

    Steinmacher, D. A.; Guerra, M. P.; Saare-Surminski, K.; Lieberei, R.

    2011-01-01

    Background and Aims Secondary somatic embryogenesis has been postulated to occur during induction of peach palm somatic embryogenesis. In the present study this morphogenetic pathway is described and a protocol for the establishment of cycling cultures using a temporary immersion system (TIS) is presented. Methods Zygotic embryos were used as explants, and induction of somatic embryogenesis and plantlet growth were compared in TIS and solid culture medium. Light microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to describe in vitro morphogenesis and accompany morpho-histological alterations during culture. Key Results The development of secondary somatic embryos occurs early during the induction of primary somatic embryos. Secondary somatic embryos were observed to develop continually in culture, resulting in non-synchronized development of these somatic embryos. Using these somatic embryos as explants allowed development of cycling cultures. Somatic embryos had high embryogenic potential (65·8 ± 3·0 to 86·2 ± 5·0 %) over the period tested. The use of a TIS greatly improved the number of somatic embryos obtained, as well as subsequent plantlet growth. Histological analyses showed that starch accumulation precedes the development of somatic embryos, and that these cells presented high nucleus/cytoplasm ratios and high mitotic indices, as evidenced by DAPI staining. Morphological and SEM observations revealed clusters of somatic embryos on one part of the explants, while other parts grew further, resulting in callus tissue. A multicellular origin of the secondary somatic embryos is hypothesized. Cells in the vicinity of callus accumulated large amounts of phenolic substances in their vacuoles. TEM revealed that these cells are metabolically very active, with the presence of numerous mitochondria and Golgi apparatuses. Light microscopy and TEM of the embryogenic sector revealed cells with numerous amyloplasts

  12. Arabinogalactan-proteins stimulate somatic embryogenesis and plant propagation of Pelargonium sidoides.

    PubMed

    Duchow, Stefanie; Dahlke, Renate I; Geske, Thomas; Blaschek, Wolfgang; Classen, Birgit

    2016-11-05

    Root extracts of the medicinal plant Pelargonium sidoides, native to South Africa, are used globally for the treatment of common cold and cough. Due to an increasing economic commercialization of P. sidoides remedies, wild collections of root material should be accompanied by effective methods for plant propagation like somatic embryogenesis. Based on this, the influence of arabinogalactan-proteins (AGPs) on somatic embryogenesis and plant propagation of P. sidoides has been investigated. High-molecular weight AGPs have been isolated from dried roots as well as from cell cultures of P. sidoides with yields between 0.1% and 0.9%, respectively. AGPs are characterized by a 1,3-linked Galp backbone, branched at C6 to 1,6-linked Galp side chains terminated by Araf and to a minor extent by GlcpA, Galp or Rhap. Treatment of explants of P. sidoides with AGPs from roots or suspension culture over 5.5 weeks resulted in effective stimulation of somatic embryo development and plant regeneration. Copyright © 2016. Published by Elsevier Ltd.

  13. Shoot regeneration and embryogenesis in lily shoot tips cryopreserved by droplet vitrification

    USDA-ARS?s Scientific Manuscript database

    Shoot regeneration and embryogenesis were, for the first time, achieved directly in shoot tips of Lilium Oriental hybrid ‘Siberia’ following cryopreservation by droplet-vitrification. Shoot tips (2 mm in length) including 2-3 leaf primordia were excised from 4-week-old adventitious shoots directly r...

  14. Excess caffeine exposure impairs eye development during chick embryogenesis

    PubMed Central

    Ma, Zheng-lai; Wang, Guang; Cheng, Xin; Chuai, Manli; Kurihara, Hiroshi; Lee, Kenneth Ka Ho; Yang, Xuesong

    2014-01-01

    Caffeine has been an integral component of our diet and medicines for centuries. It is now known that over consumption of caffeine has detrimental effects on our health, and also disrupts normal foetal development in pregnant mothers. In this study, we investigated the potential teratogenic effect of caffeine over-exposure on eye development in the early chick embryo. Firstly, we demonstrated that caffeine exposure caused chick embryos to develop asymmetrical microphthalmia and induced the orbital bone to develop abnormally. Secondly, caffeine exposure perturbed Pax6 expression in the retina of the developing eye. In addition, it perturbed the migration of HNK-1+ cranial neural crest cells. Pax6 is an important gene that regulates eye development, so altering the expression of this gene might be the cause for the abnormal eye development. Thirdly, we found that reactive oxygen species (ROS) production was significantly increased in eye tissues following caffeine treatment, and that the addition of anti-oxidant vitamin C could rescue the eyes from developing abnormally in the presence of caffeine. This suggests that excess ROS induced by caffeine is one of the mechanisms involved in the teratogenic alterations observed in the eye during embryogenesis. In sum, our experiments in the chick embryo demonstrated that caffeine is a potential teratogen. It causes asymmetrical microphthalmia to develop by increasing ROS production and perturbs Pax6 expression. PMID:24636305

  15. Early Maternal Alcohol Consumption Alters Hippocampal DNA Methylation, Gene Expression and Volume in a Mouse Model

    PubMed Central

    Marjonen, Heidi; Sierra, Alejandra; Nyman, Anna; Rogojin, Vladimir; Gröhn, Olli; Linden, Anni-Maija; Hautaniemi, Sampsa; Kaminen-Ahola, Nina

    2015-01-01

    The adverse effects of alcohol consumption during pregnancy are known, but the molecular events that lead to the phenotypic characteristics are unclear. To unravel the molecular mechanisms, we have used a mouse model of gestational ethanol exposure, which is based on maternal ad libitum ingestion of 10% (v/v) ethanol for the first 8 days of gestation (GD 0.5-8.5). Early neurulation takes place by the end of this period, which is equivalent to the developmental stage early in the fourth week post-fertilization in human. During this exposure period, dynamic epigenetic reprogramming takes place and the embryo is vulnerable to the effects of environmental factors. Thus, we hypothesize that early ethanol exposure disrupts the epigenetic reprogramming of the embryo, which leads to alterations in gene regulation and life-long changes in brain structure and function. Genome-wide analysis of gene expression in the mouse hippocampus revealed altered expression of 23 genes and three miRNAs in ethanol-exposed, adolescent offspring at postnatal day (P) 28. We confirmed this result by using two other tissues, where three candidate genes are known to express actively. Interestingly, we found a similar trend of upregulated gene expression in bone marrow and main olfactory epithelium. In addition, we observed altered DNA methylation in the CpG islands upstream of the candidate genes in the hippocampus. Our MRI study revealed asymmetry of brain structures in ethanol-exposed adult offspring (P60): we detected ethanol-induced enlargement of the left hippocampus and decreased volume of the left olfactory bulb. Our study indicates that ethanol exposure in early gestation can cause changes in DNA methylation, gene expression, and brain structure of offspring. Furthermore, the results support our hypothesis of early epigenetic origin of alcohol-induced disorders: changes in gene regulation may have already taken place in embryonic stem cells and therefore can be seen in different tissue

  16. Memory retrieval by activating engram cells in mouse models of early Alzheimer's disease.

    PubMed

    Roy, Dheeraj S; Arons, Autumn; Mitchell, Teryn I; Pignatelli, Michele; Ryan, Tomás J; Tonegawa, Susumu

    2016-03-24

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory decline and subsequent loss of broader cognitive functions. Memory decline in the early stages of AD is mostly limited to episodic memory, for which the hippocampus has a crucial role. However, it has been uncertain whether the observed amnesia in the early stages of AD is due to disrupted encoding and consolidation of episodic information, or an impairment in the retrieval of stored memory information. Here we show that in transgenic mouse models of early AD, direct optogenetic activation of hippocampal memory engram cells results in memory retrieval despite the fact that these mice are amnesic in long-term memory tests when natural recall cues are used, revealing a retrieval, rather than a storage impairment. Before amyloid plaque deposition, the amnesia in these mice is age-dependent, which correlates with a progressive reduction in spine density of hippocampal dentate gyrus engram cells. We show that optogenetic induction of long-term potentiation at perforant path synapses of dentate gyrus engram cells restores both spine density and long-term memory. We also demonstrate that an ablation of dentate gyrus engram cells containing restored spine density prevents the rescue of long-term memory. Thus, selective rescue of spine density in engram cells may lead to an effective strategy for treating memory loss in the early stages of AD.

  17. Somatic embryogenesis in immature cotyledons of Manchurian ash (Fraxinus mandshurica Rupr.)

    USDA-ARS?s Scientific Manuscript database

    Somatic embryogenesis was obtained from immature cotyledon explants that were cultured on half-strength Murashige and Skoog (MS) salts and vitamins with 5.4 uM naphthaleneacetic acid (NAA) and 0.2 uM thidiazuron (TDZ) plus a 4x4 factorial combination of 0,9.8, 34.6, or 49.2 uM indole-3-butyric acid ...

  18. Acid stress mediated adaptive divergence in ion channel function during embryogenesis in Rana arvalis

    PubMed Central

    Shu, Longfei; Laurila, Anssi; Räsänen, Katja

    2015-01-01

    Ion channels and pumps are responsible for ion flux in cells, and are key mechanisms mediating cellular function. Many environmental stressors, such as salinity and acidification, are known to severely disrupt ionic balance of organisms thereby challenging fitness of natural populations. Although ion channels can have several vital functions during early life-stages (e.g. embryogenesis), it is currently not known i) how developing embryos maintain proper intracellular conditions when exposed to environmental stress and ii) to what extent environmental stress can drive intra-specific divergence in ion channels. Here we studied the moor frog, Rana arvalis, from three divergent populations to investigate the role of different ion channels and pumps for embryonic survival under acid stress (pH 4 vs 7.5) and whether populations adapted to contrasting acidities differ in the relative role of different ion channel/pumps. We found that ion channels that mediate Ca2+ influx are essential for embryonic survival under acidic pH, and, intriguingly, that populations differ in calcium channel function. Our results suggest that adaptive divergence in embryonic acid stress tolerance of amphibians may in part be mediated by Ca2+ balance. We suggest that ion flux may mediate adaptive divergence of natural populations at early life-stages in the face of environmental stress. PMID:26381453

  19. Exopolyphosphatases in nuclear and mitochondrial fractions during embryogenesis of the hard tick Rhipicephalus (Boophilus) microplus.

    PubMed

    Campos, Eldo; Façanha, Arnoldo R; Costa, Evenilton P; da Silva Vaz, Itabajara; Masuda, Aoi; Logullo, Carlos

    2008-11-01

    The present work evaluated polyphosphate (poly P) metabolism in nuclear and mitochondrial fractions during Rhipicephalus microplus embryogenesis. Nuclear poly P decreased and activity of exopolyphosphatase (PPX - polyphosphate-phosphohydrolases; EC 3.6.1.11) increased after embryo cellularization until the end of embryogenesis. The utilization of mitochondrial poly P content occurred between embryo cellularization and segmentation stages. Increasing amounts of total RNA extracted from eggs progressively enhanced nuclear PPX activity, whereas it exerted no effect on mitochondrial PPX activity. The decline in total poly P content after the 7th day of embryogenesis does not reflect the free P(i) increase and the total poly P chain length decrease after embryo cellularization. The Km(app) utilizing poly P(3), poly P(15) and poly P(65) as substrate was almost the same for the nuclear fraction (around 1muM), while the affinity for substrate in mitochondrial fraction was around 10 times higher for poly P(3) (Km(app) = 0.2muM) than for poly P(15) (Km(app) = 2.8muM) and poly P(65) (Km(app) = 3.6muM). PPX activity was stimulated by a factor of two by Mg2+ and Co2+ in the nuclear fraction and only by Mg2+ in the mitochondrial fraction. Heparin (20microg/mL) inhibited nuclear and mitochondrial PPX activity in about 90 and 95% respectively. Together, these data are consistent with the existence of two different PPX isoforms operating in the nuclei and mitochondria of the hard tick R. microplus with distinct metal dependence, inhibitor and activator sensitivities. The data also shed new light on poly P biochemistry during arthropod embryogenesis, opening new routes for future comparative studies on the physiological roles of different poly P pools distributed over cell compartments.

  20. Ultra-deep sequencing of ribosome-associated poly-adenylated RNA in early Drosophila embryos reveals hundreds of conserved translated sORFs.

    PubMed

    Li, Hongmei; Hu, Chuansheng; Bai, Ling; Li, Hua; Li, Mingfa; Zhao, Xiaodong; Czajkowsky, Daniel M; Shao, Zhifeng

    2016-12-01

    There is growing recognition that small open reading frames (sORFs) encoding peptides shorter than 100 amino acids are an important class of functional elements in the eukaryotic genome, with several already identified to play critical roles in growth, development, and disease. However, our understanding of their biological importance has been hindered owing to the significant technical challenges limiting their annotation. Here we combined ultra-deep sequencing of ribosome-associated poly-adenylated RNAs with rigorous conservation analysis to identify a comprehensive population of translated sORFs during early Drosophila embryogenesis. In total, we identify 399 sORFs, including those previously annotated but without evidence of translational capacity, those found within transcripts previously classified as non-coding, and those not previously known to be transcribed. Further, we find, for the first time, evidence for translation of many sORFs with different isoforms, suggesting their regulation is as complex as longer ORFs. Furthermore, many sORFs are found not associated with ribosomes in late-stage Drosophila S2 cells, suggesting that many of the translated sORFs may have stage-specific functions during embryogenesis. These results thus provide the first comprehensive annotation of the sORFs present during early Drosophila embryogenesis, a necessary basis for a detailed delineation of their function in embryogenesis and other biological processes. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  1. Efficient plant regeneration through somatic embryogenesis from callus cultures of Oncidium (Orchidaceae).

    PubMed

    Chen, J -T.; Chang, W -C.

    2000-12-07

    An efficient method was established for high frequency somatic embryogenesis and plant regeneration from callus cultures of a hybrid of sympodial orchid (Oncidium 'Gower Ramsey'). Compact and yellow-white embryogenic calli formed from root tips and cut ends of stem and leaf segments on 1/2 MS [11] basal medium supplemented with 1-phenyl-3-(1,2,3-thiadiazol-5-yl)-urea (TDZ, 0.1-3 mg/l), 2,4-dichlorophenoxyacetic acid (2,4-D, 3-10 mg/l) and peptone (1 g/l) for 4-7 weeks. Embryogenic callus was maintained by subculture on the same medium for callus induction and proliferated 2-4 times (fresh weight) in 1 month. Initiation of somatic embryogenesis and development up to the protocorm-like-bodies (PLBs) from callus cultures was achieved on hormone-free basal medium. Regenerants were recovered from somatic embryos (SEs) after transfer to the same medium and showed normal development. The optimized protocol required about 12-14 weeks from the initiation of callus to the plantlet formation. Generally, the frequency of embryo formation of root-derived callus was higher than stem- and leaf-derived calli. Combinations of naphthaleneacetic acid (NAA) and TDZ significantly promoted embryo formation from callus cultures. The high-frequency (93.8%) somatic embryogenesis and an average of 29.1 SEs per callus (3x3 mm(2)) was found in root-derived callus on a basal medium supplemented with 0.1 mg/l NAA and 3 mg/l TDZ. Almost all the SEs converted and the plantlets grew well with an almost 100% survival rate when potted in sphagnum moss and acclimatized in the greenhouse.

  2. Plant regeneration via direct somatic embryogenesis from leaf explants of Tolumnia Louise Elmore 'Elsa'.

    PubMed

    Shen, Hui-Ju; Chen, Jen-Tsung; Chung, Hsiao-Hang; Chang, Wei-Chin

    2018-01-22

    Tolumnia genus (equitant Oncidium) is a group of small orchids with vivid flower color. Thousands of hybrids have been registered on Royal Horticulture Society and showed great potential for ornamental plant market. The aim of this study is to establish an efficient method for in vitro propagation. Leaf explants taken from in vitro-grown plants were used to induce direct somatic embryogenesis on a modified 1/2 MS medium supplemented with five kinds of cytokinins, 2iP, BA, kinetin, TDZ and zeatin at 0.3, 1 and 3 mg l -1 in darkness. TDZ at 3 mg l -1 gave the highest percentage of explants with somatic globular embryos after 90 days of culture. It was found that 2,4-D and light regime highly retarded direct somatic embryogenesis and showed 95-100% of explant browning. Histological observations revealed that the leaf cells divided into meristematic cells firstly, followed by somatic proembryos, and then somatic globular embryos. Eventually, somatic embryos developed a bipolar structure with the shoot apical meristem and the root meristem. Scanning electron microscopy observations showed that the direct somatic embryogenesis from leaf explants was asynchronously. The somatic embryos were found on the leaf tip, the adaxial surface and also the mesophyll through a cleft, and it reflected the heterogeneity of the explant. The 90-day-old globular embryos were detached from the parent explants and transferred onto a hormone-free 1/2 MS medium in light condition for about 1 month to obtain 1-cm-height plantlets. After another 3 months for growth, the plantlets were potted with Sphagnum moss and were acclimatized in a shaded greenhouse. After 1 month of culture, the survival rate was 100%. In this report, a protocol for efficient regenerating a Tolumnia orchid, Louise Elmore 'Elsa', was established via direct somatic embryogenesis and might reveal an alternative approach for mass propagation of Tolumnia genus in orchid industry.

  3. Effect of a 1800 MHz electromagnetic field emitted during embryogenesis on chick development and hatchability.

    PubMed

    Pawlak, K; Nieckarz, Z; Sechman, A; Wojtysiak, D; Bojarski, B; Tombarkiewicz, B

    2018-06-01

    The level of artificial electromagnetic field (EMF) has steadily increased with the development of human civilization. The developing chicken embryo has been considered a good model to study the effects of EMF on living organisms. The aim of the study was to determine the effect of a 1800 MHz electromagnetic field during embryogenesis on the frequency of chick embryo malformations, morphometric parameters of the heart and liver and concentration of corticosterone in blood plasma, lipid and glycogen content in the liver of newly hatched chicks. A 1800 MHz EMF was found to shorten the duration of embryogenesis (earlier pipping and hatching of chicks) while having no effect on the quantity and quality of chicks and on increasing the incidence of embryo malformations. Exposure of chick embryos to EMF caused decreases in relative heart weight and right ventricle wall thickness. The pipping and hatching of chicks can be accelerated by stressful impact of EMF, which is confirmed by a significant increase in plasma corticosterone concentrations and decrease in fat and glycogen in the liver of chicks exposed during embryogenesis on the electromagnetic field with a frequency of 1800 MHz. © 2018 Blackwell Verlag GmbH.

  4. The BABY BOOM Transcription Factor Activates the LEC1-ABI3-FUS3-LEC2 Network to Induce Somatic Embryogenesis1[OPEN

    PubMed Central

    Weemen, Mieke

    2017-01-01

    Somatic embryogenesis is an example of induced cellular totipotency, where embryos develop from vegetative cells rather than from gamete fusion. Somatic embryogenesis can be induced in vitro by exposing explants to growth regulators and/or stress treatments. The BABY BOOM (BBM) and LEAFY COTYLEDON1 (LEC1) and LEC2 transcription factors are key regulators of plant cell totipotency, as ectopic overexpression of either transcription factor induces somatic embryo formation from Arabidopsis (Arabidopsis thaliana) seedlings without exogenous growth regulators or stress treatments. Although LEC and BBM proteins regulate the same developmental process, it is not known whether they function in the same molecular pathway. We show that BBM transcriptionally regulates LEC1 and LEC2, as well as the two other LAFL genes, FUSCA3 (FUS3) and ABSCISIC ACID INSENSITIVE3 (ABI3). LEC2 and ABI3 quantitatively regulate BBM-mediated somatic embryogenesis, while FUS3 and LEC1 are essential for this process. BBM-mediated somatic embryogenesis is dose and context dependent, and the context-dependent phenotypes are associated with differential LAFL expression. We also uncover functional redundancy for somatic embryogenesis among other Arabidopsis BBM-like proteins and show that one of these proteins, PLETHORA2, also regulates LAFL gene expression. Our data place BBM upstream of other major regulators of plant embryo identity and totipotency. PMID:28830937

  5. [Expression of neural salient serine/arginine-rich protein 1 (NSSR1) in the development of mouse brain].

    PubMed

    Zhang, Wei; Fan, Li-mei; Li, Lin-lin; Peng, Zheng-yu

    2014-01-01

    To investigate the expression of neural salient serine/arginine-rich protein 1 (NSSR1) in the development of mouse brain. Brain samples were collected from mice with different developmental stages: 9, 12, 14 d before birth (E9, E12, E14) and 1 d, 3 weeks and 3 months after birth. The expression of NSSR1 in mouse brain at different developmental stages was detected by Western blot and the distribution of NSSR1 was analyzed by immunohistochemical staining. The expression and distribution of NSSR1 in mouse brain were compared among embryos, neonatal and adult animals. During embryogenesis, the expression of NSSR1 proteins increases significantly from 0.186(E9) to 0.445(E14) and reached a high level after birth. Immunohistochemical analysis showed that in E12 embryos, NSSR1 was specifically distributed in the marginal and mantle layers. The expression of NSSR1 in hippocampus was very low in neonatal animals but stronger in adults. In cerebellar cortex, NSSR1 was widely expressed in purkinje and granule cells of adult animals, but mainly expressed in Purkinje cells in neonates. The expression of NSSR1 is regulated by the development of mouse brain and presents dynamic changes.

  6. Mouse Polyomavirus Enters Early Endosomes, Requires Their Acidic pH for Productive Infection, and Meets Transferrin Cargo in Rab11-Positive Endosomes

    PubMed Central

    Liebl, David; Difato, Francesco; Horníková, Lenka; Mannová, Petra; Štokrová, Jitka; Forstová, Jitka

    2006-01-01

    Mouse polyomavirus (PyV) virions enter cells by internalization into smooth monopinocytic vesicles, which fuse under the cell membrane with larger endosomes. Caveolin-1 was detected on monopinocytic vesicles carrying PyV particles in mouse fibroblasts and epithelial cells (33). Here, we show that PyV can be efficiently internalized by Jurkat cells, which do not express caveolin-1 and lack caveolae, and that overexpression of a caveolin-1 dominant-negative mutant in mouse epithelial cells does not prevent their productive infection. Strong colocalization of VP1 with early endosome antigen 1 (EEA1) and of EEA1 with caveolin-1 in mouse fibroblasts and epithelial cells suggests that the monopinocytic vesicles carrying the virus (and vesicles containing caveolin-1) fuse with EEA1-positive early endosomes. In contrast to SV40, PyV infection is dependent on the acidic pH of endosomes. Bafilomycin A1 abolished PyV infection, and an increase in endosomal pH by NH4Cl markedly reduced its efficiency when drugs were applied during virion transport towards the cell nucleus. The block of acidification resulted in the retention of a fraction of virions in early endosomes. To monitor further trafficking of PyV, we used fluorescent resonance energy transfer (FRET) to determine mutual localization of PyV VP1 with transferrin and Rab11 GTPase at a 2- to 10-nm resolution. Positive FRET between PyV VP1 and transferrin cargo and between PyV VP1 and Rab11 suggests that during later times postinfection (1.5 to 3 h), the virus meets up with transferrin in the Rab11-positive recycling endosome. These results point to a convergence of the virus and the cargo internalized by different pathways in common transitional compartments. PMID:16611921

  7. Proteome profiling of early seed development in Cunninghamia lanceolata (Lamb.) Hook

    PubMed Central

    Shi, Jisen; Zhen, Yan; Zheng, Ren-Hua

    2010-01-01

    Knowledge of the proteome of the early gymnosperm embryo could provide important information for optimizing plant cloning procedures and for establishing platforms for research into plant development/regulation and in vitro transgenic studies. Compared with angiosperms, it is more difficult to induce somatic embryogenesis in gymnosperms; success in this endeavour could be increased, however, if proteomic information was available on the complex, dynamic, and multistage processes of gymnosperm embryogenesis in vivo. A proteomic analysis of Chinese fir seeds in six developmental stages was carried out during early embryogenesis. Proteins were extracted from seeds dissected from immature cones and separated by two-dimensional difference gel electrophoresis. Analysis with DeCyder 6.5 software revealed 136 spots that differed in kinetics of appearance. Analysis by liquid chromatography coupled to tandem mass spectrometry and MALDI-TOF mass spectrometry identified proteins represented by 71 of the spots. Functional annotation of these seed proteins revealed their involvement in programmed cell death and chromatin modification, indicating that the proteins may play a central role in determining the number of zygotic embryos generated and controlling embryo patterning and shape remodelling. The analysis also revealed other proteins involved in carbon metabolism, methionine metabolism, energy production, protein storage, synthesis and stabilization, disease/defence, the cytoskeleton, and embryo development. The comprehensive protein expression profiles generated by our study provide new insights into the complex developmental processes in the seeds of the Chinese fir. PMID:20363864

  8. The mRNA-bound proteome of the early fly embryo

    PubMed Central

    Wessels, Hans-Hermann; Imami, Koshi; Baltz, Alexander G.; Kolinski, Marcin; Beldovskaya, Anastasia; Selbach, Matthias; Small, Stephen; Ohler, Uwe; Landthaler, Markus

    2016-01-01

    Early embryogenesis is characterized by the maternal to zygotic transition (MZT), in which maternally deposited messenger RNAs are degraded while zygotic transcription begins. Before the MZT, post-transcriptional gene regulation by RNA-binding proteins (RBPs) is the dominant force in embryo patterning. We used two mRNA interactome capture methods to identify RBPs bound to polyadenylated transcripts within the first 2 h of Drosophila melanogaster embryogenesis. We identified a high-confidence set of 476 putative RBPs and confirmed RNA-binding activities for most of 24 tested candidates. Most proteins in the interactome are known RBPs or harbor canonical RBP features, but 99 exhibited previously uncharacterized RNA-binding activity. mRNA-bound RBPs and TFs exhibit distinct expression dynamics, in which the newly identified RBPs dominate the first 2 h of embryonic development. Integrating our resource with in situ hybridization data from existing databases showed that mRNAs encoding RBPs are enriched in posterior regions of the early embryo, suggesting their general importance in posterior patterning and germ cell maturation. PMID:27197210

  9. Somatic embryogenesis and plant regeneration of northern red oak (Quercus rubra L.)

    Treesearch

    G. Vengadesan; Paula M. Pijut

    2009-01-01

    A somatic embryogenesis protocol for plant regeneration of northern red oak (Quercus rubra) was established from immature cotyledon explants. Embryogenic callus cultures were induced on Murashige and Skoog medium (MS) containing 3% sucrose, 0.24% Phytagel™, and various concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D) after 4 weeks of...

  10. Changes in ecdysteroid levels and expression patterns of ecdysteroid-responsive factors and neuropeptide hormones during the embryogenesis of the blue crab, Callinectes sapidus.

    PubMed

    Techa, Sirinart; Alvarez, Javier V; Sook Chung, J

    2015-04-01

    Embryogenesis requires the involvement and coordination of multiple networks of various genes, according to a timeline governing development. Crustacean embryogenesis usually includes the first molt, a process that is known to be positively controlled by ecdysteroids. We determined the amounts of ecdysteroids, as well as other related factors: the ecdysone receptor (CasEcR), the retinoid X receptor (CasRXR), the molt-inhibiting hormone (CasMIH), and crustacean hyperglycemic hormone (CasCHH) during the ovarian and embryonic developments of Callinectes sapidus. In summary, the ovaries at stages 1-4 have expression levels of maternal CasEcR and CasRXR 10-50 times higher than levels seen in embryos at the yolk stage. This large difference in the amount of the these factors in C. sapidus ovaries suggests that these maternal ecdysteroid-responsive factors may be utilized at the initiation of embryogenesis. During embryogenesis, the changes in total ecdysteroids and levels of CasEcR and CasRXR expression are similar to those observed in juvenile molts. The full-length cDNA sequence of the C. sapidus BTB domain protein (CasBTBDP) initially isolated from Y-organ cDNA, contains only Broad-Complex, Tramtrack, and Bric a brac (BTB) domains. The levels of CasBTBDP are kept constant throughout embryogenesis. The expression profiles of CasMIH and CasCHH are similar to the titers of ecdysteroids. However, the timing of their appearance is followed by increases in CasEcRs and CasRXRs, implying that the expressions of these neuropeptides may be influenced by ecdysteroids. Moreover, the ecdysteroid profile during embryogenesis may track directly with the timing of organogenesis of Y-organs and their activity. Our work reports, for first time, the observed expression and changes of ecdysteroid-responsive factors, along with CasCHH and CasMIH, during embryogenesis in the crustacean C. sapidus. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Identification and profiling of conserved and novel microRNAs involved in oil and oleic acid production during embryogenesis in Carya cathayensis Sarg.

    PubMed

    Wang, Zhengjia; Huang, Ruiming; Sun, Zhichao; Zhang, Tong; Huang, Jianqin

    2017-05-01

    MicroRNAs (miRNAs) are important regulators of plant development and fruit formation. Mature embryos of hickory (Carya cathayensis Sarg.) nuts contain more than 70% oil (comprising 90% unsaturated fatty acids), along with a substantial amount of oleic acid. To understand the roles of miRNAs involved in oil and oleic acid production during hickory embryogenesis, three small RNA libraries from different stages of embryogenesis were constructed. Deep sequencing of these three libraries identified 95 conserved miRNAs with 19 miRNA*s, 7 novel miRNAs (as well as their corresponding miRNA*s), and 26 potentially novel miRNAs. The analysis identified 15 miRNAs involved in oil and oleic acid production that are differentially expressed during embryogenesis in hickory. Among them, nine miRNA sequences, including eight conserved and one novel, were confirmed by qRT-PCR. In addition, 145 target genes of the novel miRNAs were predicted using a bioinformatic approach. Our results provide a framework for better understanding the roles of miRNAs during embryogenesis in hickory.

  12. 5-azacytidine promotes microspore embryogenesis initiation by decreasing global DNA methylation, but prevents subsequent embryo development in rapeseed and barley

    PubMed Central

    Solís, María-Teresa; El-Tantawy, Ahmed-Abdalla; Cano, Vanesa; Risueño, María C.; Testillano, Pilar S.

    2015-01-01

    Microspores are reprogrammed by stress in vitro toward embryogenesis. This process is an important tool in breeding to obtain double-haploid plants. DNA methylation is a major epigenetic modification that changes in differentiation and proliferation. We have shown changes in global DNA methylation during microspore reprogramming. 5-Azacytidine (AzaC) cannot be methylated and leads to DNA hypomethylation. AzaC is a useful demethylating agent to study DNA dynamics, with a potential application in microspore embryogenesis. This work analyzes the effects of short and long AzaC treatments on microspore embryogenesis initiation and progression in two species, the dicot Brassica napus and the monocot Hordeum vulgare. This involved the quantitative analyses of proembryo and embryo production, the quantification of DNA methylation, 5-methyl-deoxy-cytidine (5mdC) immunofluorescence and confocal microscopy, and the analysis of chromatin organization (condensation/decondensation) by light and electron microscopy. Four days of AzaC treatments (2.5 μM) increased embryo induction, response associated with a decrease of DNA methylation, modified 5mdC, and heterochromatin patterns compared to untreated embryos. By contrast, longer AzaC treatments diminished embryo production. Similar effects were found in both species, indicating that DNA demethylation promotes microspore reprogramming, totipotency acquisition, and embryogenesis initiation, while embryo differentiation requires de novo DNA methylation and is prevented by AzaC. This suggests a role for DNA methylation in the repression of microspore reprogramming and possibly totipotency acquisition. Results provide new insights into the role of epigenetic modifications in microspore embryogenesis and suggest a potential benefit of inhibitors, such as AzaC, to improve the process efficiency in biotechnology and breeding programs. PMID:26161085

  13. Epigenetic modifications by Trithorax group proteins during early embryogenesis: do members of Trx-G function as maternal effect genes?

    PubMed

    Andreu-Vieyra, Claudia; Matzuk, Martin M

    2007-02-01

    Maternal effect genes encode transcripts that are expressed during oogenesis. These gene products are stored in the oocyte and become functional during resumption of meiosis and zygote genome activation, and in embryonic stem cells. To date, a few maternal effect genes have been identified in mammals. Epigenetic modifications have been shown to be important during early embryonic development and involve DNA methylation and post-translational modification of core histones. During development, two families of proteins have been shown to be involved in epigenetic changes: Trithorax group (Trx-G) and Polycomb group (Pc-G) proteins. Trx-G proteins function as transcriptional activators and have been shown to accumulate in the oocyte. Deletion of Trx-G members using conventional knockout technology results in embryonic lethality in the majority of the cases analysed to date. Recent studies using conditional knockout mice have revealed that at least one family member is necessary for zygote genome activation. We propose that other Trx-G members may also regulate embryonic genome activation and that the use of oocyte-specific deletor mouse lines will help clarify their roles in this process.

  14. Zscan4 is regulated by PI3-kinase and DNA-damaging agents and directly interacts with the transcriptional repressors LSD1 and CtBP2 in mouse embryonic stem cells.

    PubMed

    Storm, Michael P; Kumpfmueller, Benjamin; Bone, Heather K; Buchholz, Michael; Sanchez Ripoll, Yolanda; Chaudhuri, Julian B; Niwa, Hitoshi; Tosh, David; Welham, Melanie J

    2014-01-01

    The Zscan4 family of genes, encoding SCAN-domain and zinc finger-containing proteins, has been implicated in the control of early mammalian embryogenesis as well as the regulation of pluripotency and maintenance of genome integrity in mouse embryonic stem cells. However, many features of this enigmatic family of genes are poorly understood. Here we show that undifferentiated mouse embryonic stem cell (ESC) lines simultaneously express multiple members of the Zscan4 gene family, with Zscan4c, Zscan4f and Zscan4-ps2 consistently being the most abundant. Despite this, between only 0.1 and 0.7% of undifferentiated mouse pluripotent stem cells express Zscan4 protein at a given time, consistent with a very restricted pattern of Zscan4 transcripts reported previously. Herein we demonstrate that Zscan4 expression is regulated by the p110α catalytic isoform of phosphoinositide 3-kinases and is induced following exposure to a sub-class of DNA-damage-inducing agents, including Zeocin and Cisplatin. Furthermore, we observe that Zscan4 protein expression peaks during the G2 phase of the cell cycle, suggesting that it may play a critical role at this checkpoint. Studies with GAL4-fusion proteins suggest a role for Zscan4 in transcriptional regulation, further supported by the fact that protein interaction analyses demonstrate that Zscan4 interacts with both LSD1 and CtBP2 in ESC nuclei. This study advances and extends our understanding of Zscan4 expression, regulation and mechanism of action. Based on our data we propose that Zscan4 may regulate gene transcription in mouse ES cells through interaction with LSD1 and CtBP2.

  15. Zscan4 Is Regulated by PI3-Kinase and DNA-Damaging Agents and Directly Interacts with the Transcriptional Repressors LSD1 and CtBP2 in Mouse Embryonic Stem Cells

    PubMed Central

    Bone, Heather K.; Buchholz, Michael; Sanchez Ripoll, Yolanda; Chaudhuri, Julian B.; Niwa, Hitoshi; Tosh, David; Welham, Melanie J.

    2014-01-01

    The Zscan4 family of genes, encoding SCAN-domain and zinc finger-containing proteins, has been implicated in the control of early mammalian embryogenesis as well as the regulation of pluripotency and maintenance of genome integrity in mouse embryonic stem cells. However, many features of this enigmatic family of genes are poorly understood. Here we show that undifferentiated mouse embryonic stem cell (ESC) lines simultaneously express multiple members of the Zscan4 gene family, with Zscan4c, Zscan4f and Zscan4-ps2 consistently being the most abundant. Despite this, between only 0.1 and 0.7% of undifferentiated mouse pluripotent stem cells express Zscan4 protein at a given time, consistent with a very restricted pattern of Zscan4 transcripts reported previously. Herein we demonstrate that Zscan4 expression is regulated by the p110α catalytic isoform of phosphoinositide 3-kinases and is induced following exposure to a sub-class of DNA-damage-inducing agents, including Zeocin and Cisplatin. Furthermore, we observe that Zscan4 protein expression peaks during the G2 phase of the cell cycle, suggesting that it may play a critical role at this checkpoint. Studies with GAL4-fusion proteins suggest a role for Zscan4 in transcriptional regulation, further supported by the fact that protein interaction analyses demonstrate that Zscan4 interacts with both LSD1 and CtBP2 in ESC nuclei. This study advances and extends our understanding of Zscan4 expression, regulation and mechanism of action. Based on our data we propose that Zscan4 may regulate gene transcription in mouse ES cells through interaction with LSD1 and CtBP2. PMID:24594919

  16. Arsenic Exposure to Killifish During Embryogenesis Alters Muscle Development

    PubMed Central

    Gaworecki, Kristen M.; Chapman, Robert W.; Neely, Marion G.; D’Amico, Angela R.; Bain, Lisa J.

    2012-01-01

    Epidemiological studies have correlated arsenic exposure in drinking water with adverse developmental outcomes such as stillbirths, spontaneous abortions, neonatal mortality, low birth weight, delays in the use of musculature, and altered locomotor activity. Killifish (Fundulus heteroclitus) were used as a model to help to determine the mechanisms by which arsenic could impact development. Killifish embryos were exposed to three different sodium arsenite concentrations and were collected at 32 h post-fertilization (hpf), 42 hpf, 168 hpf, or < 24 h post-hatch. A killifish oligo microarray was developed and used to examine gene expression changes between control and 25-ppm arsenic-exposed hatchlings. With artificial neural network analysis of the transcriptomic data, accurate prediction of each group (control vs. arsenic-exposed embryos) was obtained using a small subset of only 332 genes. The genes differentially expressed include those involved in cell cycle, development, ubiquitination, and the musculature. Several of the genes involved in cell cycle regulation and muscle formation, such as fetuin B, cyclin D–binding protein 1, and CapZ, were differentially expressed in the embryos in a time- and dose-dependent manner. Examining muscle structure in the hatchlings showed that arsenic exposure during embryogenesis significantly reduces the average muscle fiber size, which is coupled with a significant 2.1- and 1.6-fold upregulation of skeletal myosin light and heavy chains, respectively. These findings collectively indicate that arsenic exposure during embryogenesis can initiate molecular changes that appear to lead to aberrant muscle formation. PMID:22058191

  17. Non-staining visualization of embryogenesis and energy metabolism in medaka fish eggs using near-infrared spectroscopy and imaging.

    PubMed

    Puangchit, Paralee; Ishigaki, Mika; Yasui, Yui; Kajita, Misato; Ritthiruangdej, Pitiporn; Ozaki, Yukihiro

    2017-12-04

    The energy metabolism and embryogenesis of fertilized Japanese medaka eggs were investigated in vivo at the molecular level using near-infrared (NIR) spectroscopy and imaging. Changes in chemical components, such as proteins and lipids, in yolk sphere and embryonic body were studied over the course of embryonic development. Metabolic changes that represent variations in the concentrations and molecular compositions of proteins and lipids in the yolk part, particularly on the 1 st day after fertilization and the day just before hatching, were successfully identified in the 4900-4000 cm -1 wavenumber region. The yolk components were shown to have specific functions at the very early and final stages of the embryonic development. Proteins with α-helix- or β-sheet-rich structures clearly showed the different variation patterns within the developing egg. Furthermore, the distribution of lipids could be selectively visualized using data from the higher wavenumber region. Detailed embryonic structures were clearly depicted in the NIR images using the data from the 6400-5500 cm -1 region in which the embryo parts had some characteristic peaks due to unsaturated fatty acids. It was made clear that yolk and embryo parts had different components especially lipid components. The present study provides new insights into material variations in the fertilized egg during its growth. NIR imaging proved to be valuable in investigating the embryogenesis in vivo at the molecular level in terms of changes in biomolecular concentrations and compositions, metabolic differentiation, and detailed information about embryonic structures without the need for staining.

  18. Early neurotrophic pharmacotherapy rescues developmental delay and Alzheimer’s-like memory deficits in the Ts65Dn mouse model of Down syndrome

    PubMed Central

    Kazim, Syed Faraz; Blanchard, Julie; Bianchi, Riccardo; Iqbal, Khalid

    2017-01-01

    Down syndrome (DS), caused by trisomy 21, is the most common genetic cause of intellectual disability and is associated with a greatly increased risk of early-onset Alzheimer’s disease (AD). The Ts65Dn mouse model of DS exhibits several key features of the disease including developmental delay and AD-like cognitive impairment. Accumulating evidence suggests that impairments in early brain development caused by trisomy 21 contribute significantly to memory deficits in adult life in DS. Prenatal genetic testing to diagnose DS in utero, provides the novel opportunity to initiate early pharmacological treatment to target this critical period of brain development. Here, we report that prenatal to early postnatal treatment with a ciliary neurotrophic factor (CNTF) small-molecule peptide mimetic, Peptide 021 (P021), rescued developmental delay in pups and AD-like hippocampus-dependent memory impairments in adult life in Ts65Dn mice. Furthermore, this treatment prevented pre-synaptic protein deficit, decreased glycogen synthase kinase-3beta (GSK3β) activity, and increased levels of synaptic plasticity markers including brain derived neurotrophic factor (BNDF) and phosphorylated CREB, both in young (3-week-old) and adult (~ 7-month-old) Ts65Dn mice. These findings provide novel evidence that providing neurotrophic support during early brain development can prevent developmental delay and AD-like memory impairments in a DS mouse model. PMID:28368015

  19. The histone demethylase Jarid1b ensures faithful mouse development by protecting developmental genes from aberrant H3K4me3.

    PubMed

    Albert, Mareike; Schmitz, Sandra U; Kooistra, Susanne M; Malatesta, Martina; Morales Torres, Cristina; Rekling, Jens C; Johansen, Jens V; Abarrategui, Iratxe; Helin, Kristian

    2013-04-01

    Embryonic development is tightly regulated by transcription factors and chromatin-associated proteins. H3K4me3 is associated with active transcription and H3K27me3 with gene repression, while the combination of both keeps genes required for development in a plastic state. Here we show that deletion of the H3K4me2/3 histone demethylase Jarid1b (Kdm5b/Plu1) results in major neonatal lethality due to respiratory failure. Jarid1b knockout embryos have several neural defects including disorganized cranial nerves, defects in eye development, and increased incidences of exencephaly. Moreover, in line with an overlap of Jarid1b and Polycomb target genes, Jarid1b knockout embryos display homeotic skeletal transformations typical for Polycomb mutants, supporting a functional interplay between Polycomb proteins and Jarid1b. To understand how Jarid1b regulates mouse development, we performed a genome-wide analysis of histone modifications, which demonstrated that normally inactive genes encoding developmental regulators acquire aberrant H3K4me3 during early embryogenesis in Jarid1b knockout embryos. H3K4me3 accumulates as embryonic development proceeds, leading to increased expression of neural master regulators like Pax6 and Otx2 in Jarid1b knockout brains. Taken together, these results suggest that Jarid1b regulates mouse development by protecting developmental genes from inappropriate acquisition of active histone modifications.

  20. The Histone Demethylase Jarid1b Ensures Faithful Mouse Development by Protecting Developmental Genes from Aberrant H3K4me3

    PubMed Central

    Kooistra, Susanne M.; Malatesta, Martina; Morales Torres, Cristina; Rekling, Jens C.; Johansen, Jens V.; Abarrategui, Iratxe; Helin, Kristian

    2013-01-01

    Embryonic development is tightly regulated by transcription factors and chromatin-associated proteins. H3K4me3 is associated with active transcription and H3K27me3 with gene repression, while the combination of both keeps genes required for development in a plastic state. Here we show that deletion of the H3K4me2/3 histone demethylase Jarid1b (Kdm5b/Plu1) results in major neonatal lethality due to respiratory failure. Jarid1b knockout embryos have several neural defects including disorganized cranial nerves, defects in eye development, and increased incidences of exencephaly. Moreover, in line with an overlap of Jarid1b and Polycomb target genes, Jarid1b knockout embryos display homeotic skeletal transformations typical for Polycomb mutants, supporting a functional interplay between Polycomb proteins and Jarid1b. To understand how Jarid1b regulates mouse development, we performed a genome-wide analysis of histone modifications, which demonstrated that normally inactive genes encoding developmental regulators acquire aberrant H3K4me3 during early embryogenesis in Jarid1b knockout embryos. H3K4me3 accumulates as embryonic development proceeds, leading to increased expression of neural master regulators like Pax6 and Otx2 in Jarid1b knockout brains. Taken together, these results suggest that Jarid1b regulates mouse development by protecting developmental genes from inappropriate acquisition of active histone modifications. PMID:23637629

  1. The role of early development in mammalian limb diversification: a descriptive comparison of early limb development between the Natal long-fingered bat (Miniopterus natalensis) and the mouse (Mus musculus).

    PubMed

    Hockman, Dorit; Mason, Mandy K; Jacobs, David S; Illing, Nicola

    2009-04-01

    Comparative embryology expands our understanding of unique limb structures, such as that found in bats. Bat forelimb digits 2 to 5 are differentially elongated and joined by webbing, while the hindlimb digits are of similar length in many species. We compare limb development between the mouse and the Natal long-fingered bat, Miniopterus natalensis, to pinpoint the stage at which their limbs begin to differ. The bat forelimb differs from the mouse at Carollia stage (CS) 14 with the appearance of the wing membrane primordia. This difference is enhanced at CS 15 with the posterior expansion of the hand plate. The bat hindlimb begins to differ from the mouse between CS 15 and 16 when the foot plate undergoes a proximal expansion resulting in digit primordia of very similar length. Our findings support recent gene expression studies, which reveal a role for early patterning in the development of the bat limb. Copyright 2009 Wiley-Liss, Inc.

  2. A microdroplet cell culture based high frequency somatic embryogenesis system for pigeonpea, Cajanus cajan (L.) Millsp.

    PubMed

    Kumar, Nagan Udhaya; Gnanaraj, Muniraj; Sindhujaa, Vajravel; Viji, Maluventhen; Manoharan, Kumariah

    2015-09-01

    A protocol for high frequency production of somatic embryos was worked out in pigeonpea, Cajanus cajan (L.) Millsp. The protocol involved sequential employment of embryogenic callus cultures, low density cell suspension cultures and a novel microdroplet cell culture system. The microdroplet cell cultures involved culture of a single cell in 10 μI of Murashige and Skoog's medium supplemented with phytohormones, growth factors and phospholipid precursors. By employing the microdroplet cell cultures, single cells in isolation were grown into cell clones which developed somatic embryos. Further, 2,4-dichlorophenoxyacetic acid, kinetin, polyethylene glycol, putrescine, spermine, spermidine, choline chloride, ethanolamine and LiCl were supplemented to the low density cell suspension cultures and microdroplet cell cultures to screen for their cell division and somatic embryogenesis activity. Incubation of callus or the inoculum employed for low density cell suspension cultures and microdroplet cell cultures with polyethylene glycol was found critical for induction of somatic embryogenesis. Somatic embryogenesis at a frequency of 1.19, 3.16 and 6.51 per 10(6) cells was achieved in the callus, low density cell suspension cultures and microdroplet cell cultures, respectively. Advantages of employing microdroplet cell cultures for high frequency production of somatic embryos and its application in genetic transformation protocols are discussed.

  3. The Orphan Nuclear Receptor TLX/NR2E1 in Neural Stem Cells and Diseases.

    PubMed

    Wang, Tao; Xiong, Jian-Qiong

    2016-02-01

    The human TLX gene encodes an orphan nuclear receptor predominantly expressed in the central nervous system. Tailess and Tlx, the TLX homologues in Drosophila and mouse, play essential roles in body-pattern formation and neurogenesis during early embryogenesis and perform crucial functions in maintaining stemness and controlling the differentiation of adult neural stem cells in the central nervous system, especially the visual system. Multiple target genes and signaling pathways are regulated by TLX and its homologues in specific tissues during various developmental stages. This review aims to summarize previous studies including many recent updates from different aspects concerning TLX and its homologues in Drosophila and mouse.

  4. Efficacy of Zingiber officinale ethanol extract on the viability, embryogenesis and infectivity of Toxocara canis eggs.

    PubMed

    El-Sayed, Nagwa Mostafa

    2017-12-01

    This study evaluated the effect of Zingiber officinal e ( Z. officinal e) ethanol extract on the viability, embryogenesis and infectivity Toxocara canis ( T. canis ) eggs. It was carried out both in vitro and in vivo. In the in vitro experiment, unembryonated T. canis eggs were incubated with 25, 50 and 100 mg/mL Z. officinal e extract at 25 °C for 6, 12, and 24 h to assess the effect of Z. officinal e on their viability and for two weeks to assess the effect of Z. officinal e on their embryogenesis. In vivo experiment was performed to assess the effect of Z. officinal e on infectivity of T. canis eggs. Treated embryonated eggs by Z. officinale extract at concentrations of 25, 50 and 100 mg/mL for 24 h were inoculated into mice and their livers were examined for the presence of T. canis larvae on the 7th day after infection and for histopathological evaluation at 14th day post-infection. Z. officinal e showed a significant ovicidal activity on T. canis eggs. The best effect was observed with 100 mg/mL concentration after 24 h with an efficacy of 98.2%. However, the treated eggs by 25, 50 mg/mL of Z. officinale extract after 24 h showed ovicidal activity by 59.22 and 82.5% respectively. Moreover, this extract effectively inhibited T. canis eggs embryogenesis by 99.64% and caused their degeneration at the concentration of 100 mg/mL after 2 weeks of treatment. However, the lower concentrations, 25 and 50 mg/mL inhibited embryogenesis by 51.19 and 78.57% respectively. The effect of Z. officinal e on the infectivity T. canis eggs was proven by the reduction of larvae recovery in the livers by 35.9, 62.8 and 89.5% in mice groups inoculated by Z. officinale treated eggs at concentrations of 25, 50 and 100 mg/mL respectively. Histopathologically, the liver tissues of mice infected with Z. officinale treated eggs at the concentration of 100 mg/mL appeared healthy with slight degenerative changes of hepatocytes, opposite to that recorded in the infected mice

  5. Adventitial fibroblasts are activated in the early stages of atherosclerosis in the apolipoprotein E knockout mouse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu Fang; Ji Jian; Li Li

    2007-01-19

    The role of the adventitia in vascular function and vascular lesion formation has been largely ignored. This study observed the activation of the adventitia and specifically the fibroblasts in the development of atherosclerosis in the apoE(-/-) mouse. The results showed a gradual increase in expression of collagen types I and III after 2, 4, and 8 weeks of hyperlipidic diet. The earliest expression of monocyte chemoattractant protein-1 (MCP-1) protein and mRNA was detected in the adventitial fibroblast before the formation of intimal lesions. Proliferation, too, was first found in the adventitial fibroblasts. We hypothesize that the adventitial fibroblast is activatedmore » in the early stage of atherosclerosis. Adventitial inflammation may be an early event in the development of atherosclerotic lesions.« less

  6. Bloomsbury report on mouse embryo phenotyping: recommendations from the IMPC workshop on embryonic lethal screening.

    PubMed

    Adams, David; Baldock, Richard; Bhattacharya, Shoumo; Copp, Andrew J; Dickinson, Mary; Greene, Nicholas D E; Henkelman, Mark; Justice, Monica; Mohun, Timothy; Murray, Stephen A; Pauws, Erwin; Raess, Michael; Rossant, Janet; Weaver, Tom; West, David

    2013-05-01

    Identifying genes that are important for embryo development is a crucial first step towards understanding their many functions in driving the ordered growth, differentiation and organogenesis of embryos. It can also shed light on the origins of developmental disease and congenital abnormalities. Current international efforts to examine gene function in the mouse provide a unique opportunity to pinpoint genes that are involved in embryogenesis, owing to the emergence of embryonic lethal knockout mutants. Through internationally coordinated efforts, the International Knockout Mouse Consortium (IKMC) has generated a public resource of mouse knockout strains and, in April 2012, the International Mouse Phenotyping Consortium (IMPC), supported by the EU InfraCoMP programme, convened a workshop to discuss developing a phenotyping pipeline for the investigation of embryonic lethal knockout lines. This workshop brought together over 100 scientists, from 13 countries, who are working in the academic and commercial research sectors, including experts and opinion leaders in the fields of embryology, animal imaging, data capture, quality control and annotation, high-throughput mouse production, phenotyping, and reporter gene analysis. This article summarises the outcome of the workshop, including (1) the vital scientific importance of phenotyping embryonic lethal mouse strains for basic and translational research; (2) a common framework to harmonise international efforts within this context; (3) the types of phenotyping that are likely to be most appropriate for systematic use, with a focus on 3D embryo imaging; (4) the importance of centralising data in a standardised form to facilitate data mining; and (5) the development of online tools to allow open access to and dissemination of the phenotyping data.

  7. Somatic embryogenesis and plant regeneration in Carica papaya L. tissue culture derived from root explants.

    PubMed

    Chen, M H; Wang, P J; Maeda, E

    1987-10-01

    The regeneration potential of shoot tip, stem, leaf, cotyledon and root explants of two papaya cultivars (Carica papaya cv. 'Solo' and cv. 'Sunrise') were studed. Callus induction of these two cultivars of papaya showed that the shoot tips and stems are most suitable for forming callus, while leaves, cotyledons and roots are comparatively difficult to induce callus. Callus induction also varied with the varities. Somatic embryogenesis was obtained from 3-month-old root cultures. A medium containing half strength of MS inorganic salts, 160 mg/l adenine sulfate, 1.0 mg/1 NAA, 0.5 mg/1 kinetin and 1.0 mg/1 GA3 was optimal for embryogenesis. The callus maintained high regenerative capacity after two years of culture on this medium. Plants derived from somatic embryos were obtained under green-house conditions.

  8. Mouse allergen exposure, wheeze and atopy in the first seven years of life

    PubMed Central

    Phipatanakul, W.; Celedón, J. C.; Hoffman, E. B.; Abdulkerim, H.; Ryan, L. M.; Gold, D. R.

    2008-01-01

    Background Little is known about mouse allergen exposure in home environments and the development of wheezing, asthma and atopy in childhood. Objective To examine the relation between mouse allergen exposure and wheezing, atopy, and asthma in the first 7 years of life. Methods Prospective study of 498 children with parental history of allergy or asthma followed from birth to age 7 years, with longitudinal questionnaire ascertainment of reported mouse exposure and dust sample mouse urinary protein allergen levels measured at age 2–3 months. Results Parental report of mouse exposure in the first year of life was associated with increased risk of transient wheeze and wheezing in early life. Current report of mouse exposure was also significantly associated with current wheeze throughout the first 7 years of life in the longitudinal analysis (P = 0.03 for overall relation of current mouse to current wheeze). However, early life mouse exposure did not predict asthma, eczema or allergic rhinitis at age 7 years. Exposure to detectable levels of mouse urinary protein in house dust samples collected at age 2–3 months was associated with a twofold increase in the odds of atopy (sensitization to >=1 allergen) at school age (95% confidence interval for odds ratio = 1.1–3.7; P = 0.03 in a multivariate analysis. Conclusions Among children with parental history of asthma or allergies, current mouse exposure is associated with increased risk of wheeze during the first 7 years of life. Early mouse exposure was associated with early wheeze and atopy later in life. PMID:18616677

  9. Complementary Gli activity mediates early patterning of the mouse visual system.

    PubMed

    Furimsky, Marosh; Wallace, Valerie A

    2006-03-01

    The Sonic hedgehog (Shh) signaling pathway plays a key role in the development of the vertebrate central nervous system, including the eye. This pathway is mediated by the Gli transcription factors (Gli1, Gli2, and Gli3) that differentially activate and repress the expression of specific downstream target genes. In this study, we investigated the roles of the three vertebrate Glis in mediating midline Shh signaling in early ocular development. We examined the ocular phenotypes of Shh and Gli combination mutant mouse embryos and monitored proximodistal and dorsoventral patterning by the expression of specific eye development regulatory genes using in situ hybridization. We show that midline Shh signaling relieves the repressor activity of Gli3 adjacent to the midline and then promotes eye pattern formation through the nonredundant activities of all three Gli proteins. Gli3, in particular, is required to specify the dorsal optic stalk and to define the boundary between the optic stalk and the optic cup.

  10. Normalizing gene expression by quantitative PCR during somatic embryogenesis in two representative conifer species: Pinus pinaster and Picea abies.

    PubMed

    de Vega-Bartol, José J; Santos, Raquen Raissa; Simões, Marta; Miguel, Célia M

    2013-05-01

    Suitable internal control genes to normalize qPCR data from different stages of embryo development and germination were identified in two representative conifer species. Clonal propagation by somatic embryogenesis has a great application potentiality in conifers. Quantitative PCR (qPCR) is widely used for gene expression analysis during somatic embryogenesis and embryo germination. No single reference gene is universal, so a systematic characterization of endogenous genes for concrete conditions is fundamental for accuracy. We identified suitable internal control genes to normalize qPCR data obtained at different steps of somatic embryogenesis (embryonal mass proliferation, embryo maturation and germination) in two representative conifer species, Pinus pinaster and Picea abies. Candidate genes included endogenous genes commonly used in conifers, genes previously tested in model plants, and genes with a lower variation of the expression along embryo development according to genome-wide transcript profiling studies. Three different algorithms were used to evaluate expression stability. The geometric average of the expression values of elongation factor-1α, α-tubulin and histone 3 in P. pinaster, and elongation factor-1α, α-tubulin, adenosine kinase and CAC in P. abies were adequate for expression studies throughout somatic embryogenesis. However, improved accuracy was achieved when using other gene combinations in experiments with samples at a single developmental stage. The importance of studies selecting reference genes to use in different tissues or developmental stages within one or close species, and the instability of commonly used reference genes, is highlighted.

  11. Controlled insertional mutagenesis using a LINE-1 (ORFeus) gene-trap mouse model.

    PubMed

    O'Donnell, Kathryn A; An, Wenfeng; Schrum, Christina T; Wheelan, Sarah J; Boeke, Jef D

    2013-07-16

    A codon-optimized mouse LINE-1 element, ORFeus, exhibits dramatically higher retrotransposition frequencies compared with its native long interspersed element 1 counterpart. To establish a retrotransposon-mediated mouse model with regulatable and potent mutagenic capabilities, we generated a tetracycline (tet)-regulated ORFeus element harboring a gene-trap cassette. Here, we show that mice expressing tet-ORFeus broadly exhibit robust retrotransposition in somatic tissues when treated with doxycycline. Consistent with a significant mutagenic burden, we observed a reduced number of double transgenic animals when treated with high-level doxycycline during embryogenesis. Transgene induction in skin resulted in a white spotting phenotype due to somatic ORFeus-mediated mutations that likely disrupt melanocyte development. The data suggest a high level of transposition in melanocyte precursors and consequent mutation of genes important for melanoblast proliferation, differentiation, or migration. These findings reveal the utility of a retrotransposon-based mutagenesis system as an alternative to existing DNA transposon systems. Moreover, breeding these mice to different tet-transactivator/reversible tet-transactivator lines supports broad functionality of tet-ORFeus because of the potential for dose-dependent, tissue-specific, and temporal-specific mutagenesis.

  12. Efficient embryonic culture method for the Japanese striped snake, Elaphe quadrivirgata, and its early developmental stages.

    PubMed

    Matsubara, Yoshiyuki; Sakai, Atsushi; Kuroiwa, Atsushi; Suzuki, Takayuki

    2014-10-01

    The morphogenesis of snake embryos is an elusive yet fascinating research target for developmental biologists. However, few data exist on development of early snake embryo due to limited availability of pregnant snakes, and the need to harvest early stage embryos directly from pregnant snakes before oviposition without knowing the date of fertilization. We established an ex vivo culture method for early snake embryos using the Japanese striped snake, Elaphe quadrivirgata. This method, which we named "sausage-style (SS) culture", allows us to harvest snake embryos at specific stages for each experiment. Using this SS culture system, we calculated somite formation rate at early stages before oviposition. The average somite formation rate between 6/7 and 12/13 somite stages was 145.9 min, between 60/70 and 80/91 somite stages 42.4 min, and between 113-115 and 126/127 somite stages 71 min. Thus, somite formation rate that we observed during early snake embryogenesis was changed over time. We also describe a developmental staging series for E. quadrivirgata. This is the first report of a developmental series of early snake embryogenesis prior to oviposition by full-color images with high-resolution. We propose that the SS culture system is an easy method for treating early snake embryos ex vivo. © 2014 The Authors Development, Growth & Differentiation © 2014 Japanese Society of Developmental Biologists.

  13. Annual Reproductive Cycle and Unusual Embryogenesis of a Temperate Coral in the Mediterranean Sea

    PubMed Central

    Marchini, Chiara; Airi, Valentina; Fontana, Roberto; Tortorelli, Giada; Rocchi, Marta; Falini, Giuseppe; Levy, Oren; Dubinsky, Zvy; Goffredo, Stefano

    2015-01-01

    The variety of reproductive processes and modes among coral species reflects their extraordinary regeneration ability. Scleractinians are an established example of clonal animals that can exhibit a mixed strategy of sexual and asexual reproduction to maintain their populations. This study provides the first description of the annual reproductive cycle and embryogenesis of the temperate species Caryophyllia inornata. Cytometric analyses were used to define the annual development of germ cells and embryogenesis. The species was gonochoric with three times more male polyps than female. Polyps were sexually mature from 6 to 8 mm length. Not only females, but also sexually inactive individuals (without germ cells) and males were found to brood their embryos. Spermaries required 12 months to reach maturity, while oogenesis seemed to occur more rapidly (5–6 months). Female polyps were found only during spring and summer. Furthermore, the rate of gamete development in both females and males increased significantly from March to May and fertilization was estimated to occur from April to July, when mature germ cells disappeared. Gametogenesis showed a strong seasonal influence, while embryos were found throughout the year in males and in sexually inactive individuals without a defined trend. This unusual embryogenesis suggests the possibility of agamic reproduction, which combined with sexual reproduction results in high fertility. This mechanism is uncommon and only four other scleractinians (Pocillopora damicornis, Tubastraea diaphana, T. coccinea and Oulastrea crispata) have been shown to generate their broods asexually. The precise nature of this process is still unknown. PMID:26513159

  14. Analysis of early thrombus dynamics in a humanized mouse laser injury model.

    PubMed

    Wang, Weiwei; Lindsey, John P; Chen, Jianchun; Diacovo, Thomas G; King, Michael R

    2014-01-01

    Platelet aggregation and thrombus formation at the site of injury is a dynamic process that involves the continuous addition of new platelets as well as thrombus rupture. In the early stages of hemostasis (within minutes after vessel injury) this process can be visualized by transfusing fluorescently labeled human platelets and observing their deposition and detachment. These two counterbalancing events help the developing thrombus reach a steady-state morphology, where it is large enough to cover the injured vessel surface but not too large to form a severe thrombotic occlusion. In this study, the spatial and temporal aspects of early stage thrombus dynamics which result from laser-induced injury on arterioles of cremaster muscle in the humanized mouse were visualized using fluorescent microscopy. It was found that rolling platelets show preference for the upstream region while tethering/detaching platelets were primarily found downstream. It was also determined that the platelet deposition rate is relatively steady, whereas the effective thrombus coverage area does not increase at a constant rate. By introducing a new method to graphically represent the real time in vivo physiological shear stress environment, we conclude that the thrombus continuously changes shape by regional growth and decay, and neither dominates in the high shear stress region.

  15. Aym1, a mouse meiotic gene identified by virtue of its ability to activate early meiotic genes in the yeast Saccharomyces cerevisiae.

    PubMed

    Malcov, Mira; Cesarkas, Karen; Stelzer, Gil; Shalom, Sarah; Dicken, Yosef; Naor, Yaniv; Goldstein, Ronald S; Sagee, Shira; Kassir, Yona; Don, Jeremy

    2004-12-01

    Our understanding of the molecular mechanisms that operate during differentiation of mitotically dividing spermatogonia cells into spermatocytes lags way behind what is known about other differentiating systems. Given the evolutionary conservation of the meiotic process, we screened for mouse proteins that could specifically activate early meiotic promoters in Saccharomyces cerevisiae yeast cells, when fused to the Gal4 activation domain (Gal4AD). Our screen yielded the Aym1 gene that encodes a short peptide of 45 amino acids. We show that a Gal4AD-AYM1 fusion protein activates expression of reporter genes through the promoters of the early meiosis-specific genes IME2 and HOP1, and that this activation is dependent on the DNA-binding protein Ume6. Aym1 is transcribed predominantly in mouse primary spermatocytes and in gonads of female embryos undergoing the corresponding meiotic divisions. Aym1 immunolocalized to nuclei of primary spermatocytes and oocytes and to specific type A spermatogonia cells, suggesting it might play a role in the processes leading to meiotic competence. The potential functional relationship between AYM1 and yeast proteins that regulate expression of early meiotic genes is discussed.

  16. Mechanical factors direct mouse aortic remodelling during early maturation

    PubMed Central

    Le, Victoria P.; Cheng, Jeffrey K.; Kim, Jungsil; Staiculescu, Marius C.; Ficker, Shawn W.; Sheth, Saahil C.; Bhayani, Siddharth A.; Mecham, Robert P.; Yanagisawa, Hiromi; Wagenseil, Jessica E.

    2015-01-01

    Numerous diseases have been linked to genetic mutations that lead to reduced amounts or disorganization of arterial elastic fibres. Previous work has shown that mice with reduced amounts of elastin (Eln+/−) are able to live a normal lifespan through cardiovascular adaptations, including changes in haemodynamic stresses, arterial geometry and arterial wall mechanics. It is not known if the timeline and presence of these adaptations are consistent in other mouse models of elastic fibre disease, such as those caused by the absence of fibulin-5 expression (Fbln5−/−). Adult Fbln5−/− mice have disorganized elastic fibres, decreased arterial compliance and high blood pressure. We examined mechanical behaviour of the aorta in Fbln5−/− mice through early maturation when the elastic fibres are being assembled. We found that the physiologic circumferential stretch, stress and modulus of Fbln5−/− aorta are maintained near wild-type levels. Constitutive modelling suggests that elastin contributions to the total stress are decreased, whereas collagen contributions are increased. Understanding how collagen fibre structure and mechanics compensate for defective elastic fibres to meet the mechanical requirements of the maturing aorta may help to better understand arterial remodelling in human elastinopathies. PMID:25652465

  17. Embryonic Cleavage Cycles: How Is a Mouse Like a Fly?

    PubMed Central

    O’Farrell, Patrick H.; Stumpff, Jason; Su, Tin Tin

    2009-01-01

    The evolutionary advent of uterine support of embryonic growth in mammals is relatively recent. Nonetheless, striking differences in the earliest steps of embryogenesis make it difficult to draw parallels even with other chordates. We suggest that use of fertilization as a reference point misaligns the earliest stages and masks parallels that are evident when development is aligned at conserved stages surrounding gastrulation. In externally deposited eggs from representatives of all the major phyla, gastrulation is preceded by specialized extremely rapid cleavage cell cycles. Mammals also exhibit remarkably fast cell cycles in close association with gastrulation, but instead of beginning development with these rapid cycles, the mammalian egg first devotes itself to the production of extraembryonic structures. Previous attempts to identify common features of cleavage cycles focused on post-fertilization divisions of the mammalian egg. We propose that comparison to the rapid peri-gastrulation cycles is more appropriate and suggest that these cycles are related by evolutionary descent to the early cleavage stages of embryos such as those of frog and fly. The deferral of events in mammalian embryogenesis might be due to an evolutionary shift in the timing of fertilization. PMID:14711435

  18. Memory retrieval by activating engram cells in mouse models of early Alzheimer’s disease

    PubMed Central

    Roy, Dheeraj S.; Arons, Autumn; Mitchell, Teryn I.; Pignatelli, Michele; Ryan, Tomás J.; Tonegawa, Susumu

    2016-01-01

    Summary Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by progressive memory decline and subsequent loss of broader cognitive functions1. Memory decline in early stages of Alzheimer’s is mostly limited to episodic memory, for which the hippocampus (HPC) plays a crucial role2. However, it has been uncertain whether the observed amnesia in early stages of Alzheimer’s is due to disrupted encoding and consolidation of episodic information, or an impairment in the retrieval of stored memory information. Here we show that in transgenic mouse models of early Alzheimer’s, direct optogenetic activation of hippocampal memory engram cells results in memory retrieval despite the fact that these mice are amnesic in long-term memory tests when natural recall cues are utilized, revealing a retrieval, rather than a storage impairment. Prior to amyloid plaque deposition, the amnesia in these mice is age-dependent3–5, which correlates with a progressive reduction of spine density of hippocampal dentate gyrus (DG) engram cells. We show that optogenetic induction of long-term potentiation (LTP) at perforant path (PP) synapses of DG engram cells restores both spine density and long-term memory. We also demonstrate that an ablation of DG engram cells containing restored spine density prevents the rescue of long-term memory. Thus, selective rescue of spine density in engram cells may lead to an effective strategy for treating memory loss in early stages of Alzheimer’s disease. PMID:26982728

  19. Traces of embryogenesis are the same in monozygotic and dizygotic twins: not compatible with double ovulation.

    PubMed

    Boklage, Charles E

    2009-06-01

    Common knowledge of over a century has it that monozygotic and dizygotic twinning events occur by unrelated mechanisms: monozygotic twinning 'splits' embryos, producing anomalously re-arranged embryogenic asymmetries; dizygotic twinning begins with independent ovulations yielding undisturbed parallel embryogeneses with no expectation of departures from singleton outcomes. The anomalies statistically associated with twin births are due to the re-arranged embryos of the monozygotics. Common knowledge further requires that dizygotic pairs are dichorionic; monochorionicity is exclusive to monozygotic pairs. These are fundamental certainties in the literature of twin biology. Multiple observations contradict those common knowledge understandings. The double ovulation hypothesis of dizygotic twinning is untenable. Girl-boy twins differ subtly from all other humans of either sex, absolutely not representative of all dizygotics. Embryogenesis of dizygotic twins differs from singleton development at least as much as monozygotic embryogenesis does, and in the same ways, and the differences between singletons and twins of both zygosities represent a coherent system of re-arranged embryogenic asymmetries. Dizygotic twinning and monozygotic twinning have the same list of consequences of anomalous embryogenesis. Those include an unignorable fraction of dizygotic pairs that are in fact monochorionic, plus many more sharing co-twins' cells in tissues other than a common chorion. The idea that monozygotic and dizygotic twinning events arise from the same embryogenic mechanism is the only plausible hypothesis that might explain all of the observations.

  20. [Direct and indirect somatic embryogenesis in Freesia refracta].

    PubMed

    Wang, L; Duan, X G; Hao, S

    1999-06-01

    Somatic embryogenesis can be induced in tissue cultures of Freesia refracta either directly from the epidermal cells of explant, or indirectly via intervening callus. In direct pathway, somatic embryos were in contact with maternal tissue in a suspensor-like structure. In indirect pathway, the explants first proliferacted to give rise to calluses before embryoids were induced. The two sorts of calluses were defined to embryogenic callus and non-embryogenic callus according to producing of somatic embryos. An indirect somatic embryo is developed from a pre-embryogenically determined cell. This kind of somatic embryo has no suspensor structure instead of a complex with maternal tissue. Somatic embryos have their own vascular tissues, and can develop new plantlets independently.

  1. Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells.

    PubMed

    Guo, Fan; Li, Lin; Li, Jingyun; Wu, Xinglong; Hu, Boqiang; Zhu, Ping; Wen, Lu; Tang, Fuchou

    2017-08-01

    Single-cell epigenome sequencing techniques have recently been developed. However, the combination of different layers of epigenome sequencing in an individual cell has not yet been achieved. Here, we developed a single-cell multi-omics sequencing technology (single-cell COOL-seq) that can analyze the chromatin state/nucleosome positioning, DNA methylation, copy number variation and ploidy simultaneously from the same individual mammalian cell. We used this method to analyze the reprogramming of the chromatin state and DNA methylation in mouse preimplantation embryos. We found that within < 12 h of fertilization, each individual cell undergoes global genome demethylation together with the rapid and global reprogramming of both maternal and paternal genomes to a highly opened chromatin state. This was followed by decreased openness after the late zygote stage. Furthermore, from the late zygote to the 4-cell stage, the residual DNA methylation is preferentially preserved on intergenic regions of the paternal alleles and intragenic regions of maternal alleles in each individual blastomere. However, chromatin accessibility is similar between paternal and maternal alleles in each individual cell from the late zygote to the blastocyst stage. The binding motifs of several pluripotency regulators are enriched at distal nucleosome depleted regions from as early as the 2-cell stage. This indicates that the cis-regulatory elements of such target genes have been primed to an open state from the 2-cell stage onward, long before pluripotency is eventually established in the ICM of the blastocyst. Genes may be classified into homogeneously open, homogeneously closed and divergent states based on the chromatin accessibility of their promoter regions among individual cells. This can be traced to step-wise transitions during preimplantation development. Our study offers the first single-cell and parental allele-specific analysis of the genome-scale chromatin state and DNA

  2. Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells

    PubMed Central

    Guo, Fan; Li, Lin; Li, Jingyun; Wu, Xinglong; Hu, Boqiang; Zhu, Ping; Wen, Lu; Tang, Fuchou

    2017-01-01

    Single-cell epigenome sequencing techniques have recently been developed. However, the combination of different layers of epigenome sequencing in an individual cell has not yet been achieved. Here, we developed a single-cell multi-omics sequencing technology (single-cell COOL-seq) that can analyze the chromatin state/nucleosome positioning, DNA methylation, copy number variation and ploidy simultaneously from the same individual mammalian cell. We used this method to analyze the reprogramming of the chromatin state and DNA methylation in mouse preimplantation embryos. We found that within < 12 h of fertilization, each individual cell undergoes global genome demethylation together with the rapid and global reprogramming of both maternal and paternal genomes to a highly opened chromatin state. This was followed by decreased openness after the late zygote stage. Furthermore, from the late zygote to the 4-cell stage, the residual DNA methylation is preferentially preserved on intergenic regions of the paternal alleles and intragenic regions of maternal alleles in each individual blastomere. However, chromatin accessibility is similar between paternal and maternal alleles in each individual cell from the late zygote to the blastocyst stage. The binding motifs of several pluripotency regulators are enriched at distal nucleosome depleted regions from as early as the 2-cell stage. This indicates that the cis-regulatory elements of such target genes have been primed to an open state from the 2-cell stage onward, long before pluripotency is eventually established in the ICM of the blastocyst. Genes may be classified into homogeneously open, homogeneously closed and divergent states based on the chromatin accessibility of their promoter regions among individual cells. This can be traced to step-wise transitions during preimplantation development. Our study offers the first single-cell and parental allele-specific analysis of the genome-scale chromatin state and DNA

  3. Role of nucleation-promoting factors in mouse early embryo development.

    PubMed

    Wang, Qiao-Chu; Liu, Jun; Wang, Fei; Duan, Xing; Dai, Xiao-Xin; Wang, Teng; Liu, Hong-Lin; Cui, Xiang-Shun; Sun, Shao-Chen; Kim, Nam-Hyung

    2013-06-01

    During mitosis nucleation-promoting factors (NPFs) bind to the Arp2/3 complex and activate actin assembly. JMY and WAVE2 are two critical members of the NPFs. Previous studies have demonstrated that NPFs promote multiple processes such as cell migration and cytokinesis. However, the role of NPFs in development of mammalian embryos is still unknown. Results of the present study show that the NPFs JMY and WAVE2 are critical for cytokinesis during development of mouse embryos. Both JMY and WAVE2 are expressed in mouse embryos. After injection of JMY or WAVE2 siRNA, all embryos failed to develop to the morula or blastocyst stages. Moreover, using fluorescence intensity analysis, we found that the expression of actin decreased, and multiple nuclei were observed within a single cell indicating that NPFs-induced actin reduction caused the failure of cell division. In addition, injection of JMY and WAVE2 siRNA also caused ARP2 degradation, indicating that involvement of NPFs in development of mouse embryos is mainly through regulation of ARP2/3-induced actin assembly. Taken together, these data suggested that WAVE2 and JMY are involved in development of mouse embryos, and their regulation may be through a NPFs-Arp2/3-actin pathway.

  4. Annotation of differentially expressed genes in the somatic embryogenesis of musa and their location in the banana genome.

    PubMed

    Maldonado-Borges, Josefina Ines; Ku-Cauich, José Roberto; Escobedo-Graciamedrano, Rosa Maria

    2013-01-01

    Analysis of cDNA-AFLP was used to study the genes expressed in zygotic and somatic embryogenesis of Musa acuminata Colla ssp. malaccensis, and a comparison was made between their differential transcribed fragments (TDFs) and the sequenced genome of the double haploid- (DH-) Pahang of the malaccensis subspecies that is available in the network. A total of 253 transcript-derived fragments (TDFs) were detected with apparent size of 100-4000 bp using 5 pairs of AFLP primers, of which 21 were differentially expressed during the different stages of banana embryogenesis; 15 of the sequences have matched DH-Pahang chromosomes, with 7 of them being homologous to gene sequences encoding either known or putative protein domains of higher plants. Four TDF sequences were located in all Musa chromosomes, while the rest were located in one or two chromosomes. Their putative individual function is briefly reviewed based on published information, and the potential roles of these genes in embryo development are discussed. Thus the availability of the genome of Musa and the information of TDFs sequences presented here opens new possibilities for an in-depth study of the molecular and biochemical research of zygotic and somatic embryogenesis of Musa.

  5. Differential Accumulation of Sunflower Tetraubiquitin mRNAs during Zygotic Embryogenesis and Developmental Regulation of Their Heat-Shock Response.

    PubMed Central

    Almoguera, C.; Coca, M. A.; Jordano, J.

    1995-01-01

    We have isolated and sequenced Ha UbiS, a cDNA for a dry-seed-stored mRNA that encodes tetraubiquitin. We have observed differential accumulation of tetraubiquitin mRNAs during sunflower (Helianthus annuus L.) zygotic embryogenesis. These mRNAs were up-regulated during late embryogenesis and reached higher prevalence in the dry seed, where they were found to be associated mainly with provascular tissue. UbiS mRNA, as confirmed by Rnase A protection experiments, accumulated also in response to heat shock, but only in leaves and later during postgerminative development. These novel observations demonstrate expression during seed maturation of specific plant polyubiquitin transcripts and developmental regulation of their heat-shock response. Using ubiquitin antibodies we also detected discrete, seed-specific proteins with distinct temporal expression patterns during zygotic embryogenesis. Some of these patterns were concurrent with UbiS mRNA accumulation in seeds. The most abundant ubiquitin-reacting proteins found in mature seeds were small (16-22 kD) and acidic (isoelectric points of 6.1-7.4). Possible functional implications for UbiS expression elicited from these observations are discussed. PMID:12228401

  6. Inducible somatic embryogenesis in Theobroma cacao achieved using the DEX-activatable transcription factor-glucocorticoid receptor fusion.

    PubMed

    Shires, Morgan E; Florez, Sergio L; Lai, Tina S; Curtis, Wayne R

    2017-11-01

    To carry out mass propagation of superior plants to improve agricultural and silvicultural production though advancements in plant cell totipotency, or the ability of differentiated somatic plant cells to regenerate an entire plant. The first demonstration of a titratable control over somatic embryo formation in a commercially relevant plant, Theobroma cacao (Chocolate tree), was achieved using a dexamethasone activatable chimeric transcription factor. This four-fold enhancement in embryo production rate utilized a glucocorticoid receptor fused to an embryogenic transcription factor LEAFY COTYLEDON 2. Where previous T. cacao somatic embryogenesis has been restricted to dissected flower parts, this construct confers an unprecedented embryogenic potential to leaves. Activatable chimeric transcription factors provide a means for elucidating the regulatory cascade associated with plant somatic embryogenesis towards improving its use for somatic regeneration of transgenics and plant propagation.

  7. Effects of simulated weightlessness on meiosis. Fertilization, and early development in mice

    NASA Technical Reports Server (NTRS)

    Wolgemuth, D. J.

    1986-01-01

    The initial goal was to construct a clinostat which could support mammalian cell culture. The clinostat was selected as a means by which to simulate microgravity conditions within the laboratory, by constant re-orientation of cells with respect to the gravity vector. The effects of this simulated microgravity on in-vitro meiotic maturation of oocytes, using mouse as the model system, was investigated. The effects of clinostat rotation on fertilization in-vitro was then examined. Specific endpoints included examining the timely appearance of male and female pronuclei (indicating fertilization) and the efficiency of extrusion of the second polar body. Particular attention was paid to detecting anomalies of fertilization, including parthenogenetic activation and multiple pronuclei. Finally, for the preliminary studies on mouse embryogenesis, a key feature of the clinostat was modified, that of the position of the cells during rotation. A means was found to immobilize the cells during the clinostat reotation, permitting the cells to remain at the axis of rotation yet not interfering with cellular development.

  8. Maternal Setdb1 Is Required for Meiotic Progression and Preimplantation Development in Mouse.

    PubMed

    Kim, Jeesun; Zhao, Hongbo; Dan, Jiameng; Kim, Soojin; Hardikar, Swanand; Hollowell, Debra; Lin, Kevin; Lu, Yue; Takata, Yoko; Shen, Jianjun; Chen, Taiping

    2016-04-01

    Oocyte meiotic progression and maternal-to-zygote transition are accompanied by dynamic epigenetic changes. The functional significance of these changes and the key epigenetic regulators involved are largely unknown. Here we show that Setdb1, a lysine methyltransferase, controls the global level of histone H3 lysine 9 di-methyl (H3K9me2) mark in growing oocytes. Conditional deletion of Setdb1 in developing oocytes leads to meiotic arrest at the germinal vesicle and meiosis I stages, resulting in substantially fewer mature eggs. Embryos derived from these eggs exhibit severe defects in cell cycle progression, progressive delays in preimplantation development, and degeneration before reaching the blastocyst stage. Rescue experiments by expressing wild-type or inactive Setdb1 in Setdb1-deficient oocytes suggest that the catalytic activity of Setdb1 is essential for meiotic progression and early embryogenesis. Mechanistically, up-regulation of Cdc14b, a dual-specificity phosphatase that inhibits meiotic progression, greatly contributes to the meiotic arrest phenotype. Setdb1 deficiency also leads to derepression of transposons and increased DNA damage in oocytes, which likely also contribute to meiotic defects. Thus, Setdb1 is a maternal-effect gene that controls meiotic progression and is essential for early embryogenesis. Our results uncover an important link between the epigenetic machinery and the major signaling pathway governing meiotic progression.

  9. Calcium-mediated signaling during sandalwood somatic embryogenesis. Role for exogenous calcium as second messenger.

    PubMed

    Anil, V S; Rao, K S

    2000-08-01

    The possible involvement of Ca(2+)-mediated signaling in the induction/regulation of somatic embryogenesis from pro-embryogenic cells of sandalwood (Santalum album) has been investigated. (45)Ca(2+)-uptake studies and fura-2 fluorescence ratio photometry were used to measure changes in [Ca(2+)](cyt) of pro-embryogenic cells in response to culture conditions conducive for embryo development. Sandalwood pro-embryogenic cell masses (PEMs) are obtained in the callus proliferation medium that contains the auxin 2,4-dichlorophenoxyacetic acid. Subculture of PEMs into the embryo differentiation medium, which lacks 2,4-dichlorophenoxyacetic acid and has higher osmoticum, results in a 4-fold higher (45)Ca(2+) incorporation into the symplast. Fura-2 ratiometric analysis corroboratively shows a 10- to 16-fold increase in the [Ca(2+)](cyt) of PEMs, increasing from a resting concentration of 30 to 50 nM to 650 to 800 nM. Chelation of exogenous Ca(2+) with ethyleneglycol-bis(aminoethyl ether)-N,N'-tetraacetic acid arrests such an elevation in [Ca(2+)](cyt). Exogenous Ca(2+) when chelated or deprived also arrests embryo development and inhibits the accumulation of a sandalwood Ca(2+)-dependent protein kinase. However, such culture conditions do not cause cell death as the PEMs continue to proliferate to form larger cell clumps. Culture treatment with N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide reduced embryogenic frequency by 85%, indicating that blockage of Ca(2+)-mediated signaling pathway(s) involving sandalwood Ca(2+)-dependent protein kinase and/or calmodulin causes the inhibition of embryogenesis. The observations presented are evidence to suggest a second messenger role for exogenous Ca(2+) during sandalwood somatic embryogenesis.

  10. Early development of the circumferential axonal pathway in mouse and chick spinal cord.

    PubMed

    Holley, J A

    1982-03-10

    The early development of the circumferential axonal pathway in the brachial and lumbar spinal cord of mouse and chick embryos was studied by scanning and transmission electron microscopy. The cellular processes which comprise this pathway grow in the transverse plane and along the lateral margin of the marginal zone (i.e., circumferentially oriented), as typified by the early embryonic commissural axons. The first formative event observed was in the ventrolateral margin of the primitive spinal cord ventricular zone. Cellular processes were found near the external limiting membrane that appeared to grow a variable distance either dorsally or ventrally. Later in development, presumptive motor column neurons migrated into the ventrolateral region, distal to these early circumferentially oriented processes. Concurrently, other circumferentially oriented perikarya and processes appeared along the dorsolateral margin. Due to their aligned sites of origin and parallel growth, the circumferential processes formed a more or less continuous line or pathway, which in about 10% of the scanned specimens could be followed along the entire lateral margin of the embryonic spinal cord. Several specimens later in development had two sets of aligned circumferential processes in the ventral region. Large numbers of circumferential axons were then found to follow the preformed pathway by fasciculation, after the primitive motor column had become established. Since the earliest circumferential processes appeared to differentiate into axons and were found nearly 24 hours prior to growth of most circumferential axons, their role in guidance as pioneering axons was suggested.

  11. A Synthetic Lethal Screen Identifies a Role for Lin-44/Wnt in C. elegans Embryogenesis.

    PubMed

    Hartin, Samantha N; Hudson, Martin L; Yingling, Curtis; Ackley, Brian D

    2015-01-01

    The C. elegans proteins PTP-3/LAR-RPTP and SDN-1/Syndecan are conserved cell adhesion molecules. Loss-of-function (LOF) mutations in either ptp-3 or sdn-1 result in low penetrance embryonic developmental defects. Work from other systems has shown that syndecans can function as ligands for LAR receptors in vivo. We used double mutant analysis to test whether ptp-3 and sdn-1 function in a linear genetic pathway during C. elegans embryogenesis. We found animals with LOF in both sdn-1 and ptp-3 exhibited a highly penetrant synthetic lethality (SynLet), with only a small percentage of animals surviving to adulthood. Analysis of the survivors demonstrated that these animals had a synergistic increase in the penetrance of embryonic developmental defects. Together, these data strongly suggested PTP-3 and SDN-1 function in parallel during embryogenesis. We subsequently used RNAi to knockdown ~3,600 genes predicted to encode secreted and/or transmembrane molecules to identify genes that interacted with ptp-3 or sdn-1. We found that the Wnt ligand, lin-44, was SynLet with sdn-1, but not ptp-3. We used 4-dimensional time-lapse analysis to characterize the interaction between lin-44 and sdn-1. We found evidence that loss of lin-44 caused defects in the polarization and migration of endodermal precursors during gastrulation, a previously undescribed role for lin-44 that is strongly enhanced by the loss of sdn-1. PTP-3 and SDN-1 function in compensatory pathways during C. elegans embryonic and larval development, as simultaneous loss of both genes has dire consequences for organismal survival. The Wnt ligand lin-44 contributes to the early stages of gastrulation in parallel to sdn-1, but in a genetic pathway with ptp-3. Overall, the SynLet phenotype provides a robust platform to identify ptp-3 and sdn-1 interacting genes, as well as other genes that function in development, yet might be missed in traditional forward genetic screens.

  12. A Synthetic Lethal Screen Identifies a Role for Lin-44/Wnt in C. elegans Embryogenesis

    PubMed Central

    Hartin, Samantha N.; Hudson, Martin L.; Yingling, Curtis; Ackley, Brian D.

    2015-01-01

    Background The C. elegans proteins PTP-3/LAR-RPTP and SDN-1/Syndecan are conserved cell adhesion molecules. Loss-of-function (LOF) mutations in either ptp-3 or sdn-1 result in low penetrance embryonic developmental defects. Work from other systems has shown that syndecans can function as ligands for LAR receptors in vivo. We used double mutant analysis to test whether ptp-3 and sdn-1 function in a linear genetic pathway during C. elegans embryogenesis. Results We found animals with LOF in both sdn-1 and ptp-3 exhibited a highly penetrant synthetic lethality (SynLet), with only a small percentage of animals surviving to adulthood. Analysis of the survivors demonstrated that these animals had a synergistic increase in the penetrance of embryonic developmental defects. Together, these data strongly suggested PTP-3 and SDN-1 function in parallel during embryogenesis. We subsequently used RNAi to knockdown ~3,600 genes predicted to encode secreted and/or transmembrane molecules to identify genes that interacted with ptp-3 or sdn-1. We found that the Wnt ligand, lin-44, was SynLet with sdn-1, but not ptp-3. We used 4-dimensional time-lapse analysis to characterize the interaction between lin-44 and sdn-1. We found evidence that loss of lin-44 caused defects in the polarization and migration of endodermal precursors during gastrulation, a previously undescribed role for lin-44 that is strongly enhanced by the loss of sdn-1. Conclusions PTP-3 and SDN-1 function in compensatory pathways during C. elegans embryonic and larval development, as simultaneous loss of both genes has dire consequences for organismal survival. The Wnt ligand lin-44 contributes to the early stages of gastrulation in parallel to sdn-1, but in a genetic pathway with ptp-3. Overall, the SynLet phenotype provides a robust platform to identify ptp-3 and sdn-1 interacting genes, as well as other genes that function in development, yet might be missed in traditional forward genetic screens. PMID:25938228

  13. Selection of early-occurring mutations dictates hormone-independent progression in mouse mammary tumor lines.

    PubMed

    Gattelli, Albana; Zimberlin, María N; Meiss, Roberto P; Castilla, Lucio H; Kordon, Edith C

    2006-11-01

    Mice harboring three mouse mammary tumor virus (MMTV) variants develop pregnancy-dependent (PD) tumors that progress to pregnancy-independent (PI) behavior through successive passages. Herein, we identified 10 predominant insertions in PI transplants from 8 independent tumor lines. These mutations were also detected in small cell populations in the early PD passages. In addition, we identified a new viral insertion upstream of the gene Rspo3, which is overexpressed in three of the eight independent tumor lines and codes for a protein very similar to the recently described protein encoded by Int7. This study suggests that during progression towards hormone independence, clonal expansion of cells with specific mutations might be more relevant than the occurrence of new MMTV insertions.

  14. Selection of Early-Occurring Mutations Dictates Hormone-Independent Progression in Mouse Mammary Tumor Lines▿

    PubMed Central

    Gattelli, Albana; Zimberlin, María N.; Meiss, Roberto P.; Castilla, Lucio H.; Kordon, Edith C.

    2006-01-01

    Mice harboring three mouse mammary tumor virus (MMTV) variants develop pregnancy-dependent (PD) tumors that progress to pregnancy-independent (PI) behavior through successive passages. Herein, we identified 10 predominant insertions in PI transplants from 8 independent tumor lines. These mutations were also detected in small cell populations in the early PD passages. In addition, we identified a new viral insertion upstream of the gene Rspo3, which is overexpressed in three of the eight independent tumor lines and codes for a protein very similar to the recently described protein encoded by Int7. This study suggests that during progression towards hormone independence, clonal expansion of cells with specific mutations might be more relevant than the occurrence of new MMTV insertions. PMID:16971449

  15. Comparison between reflectance confocal microscopy and two-photon microscopy in early detection of cutaneous radiation injury in a mouse model in-vivo.

    PubMed

    Jang, Won Hyuk; Kwon, Soonjae; Shim, Sehwan; Jang, Won-Suk; Myung, Jae Kyung; Yang, Sejung; Park, Sunhoo; Kim, Ki Hean

    2018-05-12

    Cutaneous radiation injury (CRI) is a skin injury caused by high dose exposure of ionizing radiation (IR). For proper treatment, early detection of CRI before clinical symptoms is important. Optical microscopic techniques such as reflectance confocal microscopy (RCM) and two-photon microscopy (TPM) have been tested as the early diagnosis method by detecting cellular changes. In this study, RCM and TPM were compared in the detection of cellular changes caused by CRI in an in-vivo mouse model. CRI was induced on the mouse hindlimb skin with various IR doses and the injured skin regions were imaged longitudinally by both modalities until the onset of clinical symptoms. Both RCM and TPM detected the changes of epidermal cells and sebaceous glands before clinical symptoms in different optical contrasts. RCM detected changes of cell morphology and scattering property based on light reflection. TPM detected detail changes of cellular structures based on autofluorescence of cells. Since both RCM and TPM were sensitive to the early-stage CRI by using different contrasts, the optimal method for clinical CRI diagnosis could be either individual methods or their combination. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. SMC5/6 is required for the formation of segregation-competent bivalent chromosomes during meiosis I in mouse oocytes

    PubMed Central

    Hwang, Grace; Sun, Fengyun; Eppig, John J.; Handel, Mary Ann

    2017-01-01

    SMC complexes include three major classes: cohesin, condensin and SMC5/6. However, the localization pattern and genetic requirements for the SMC5/6 complex during mammalian oogenesis have not previously been examined. In mouse oocytes, the SMC5/6 complex is enriched at the pericentromeric heterochromatin, and also localizes along chromosome arms during meiosis. The infertility phenotypes of females with a Zp3-Cre-driven conditional knockout (cKO) of Smc5 demonstrated that maternally expressed SMC5 protein is essential for early embryogenesis. Interestingly, protein levels of SMC5/6 complex components in oocytes decline as wild-type females age. When SMC5/6 complexes were completely absent in oocytes during meiotic resumption, homologous chromosomes failed to segregate accurately during meiosis I. Despite what appears to be an inability to resolve concatenation between chromosomes during meiosis, localization of topoisomerase IIα to bivalents was not affected; however, localization of condensin along the chromosome axes was perturbed. Taken together, these data demonstrate that the SMC5/6 complex is essential for the formation of segregation-competent bivalents during meiosis I, and findings suggest that age-dependent depletion of the SMC5/6 complex in oocytes could contribute to increased incidence of oocyte aneuploidy and spontaneous abortion in aging females. PMID:28302748

  17. Glycogen and Glucose Metabolism Are Essential for Early Embryonic Development of the Red Flour Beetle Tribolium castaneum

    PubMed Central

    Fraga, Amanda; Ribeiro, Lupis; Lobato, Mariana; Santos, Vitória; Silva, José Roberto; Gomes, Helga; da Cunha Moraes, Jorge Luiz; de Souza Menezes, Jackson

    2013-01-01

    Control of energy metabolism is an essential process for life. In insects, egg formation (oogenesis) and embryogenesis is dependent on stored molecules deposited by the mother or transcribed later by the zygote. In oviparous insects the egg becomes an isolated system after egg laying with all energy conversion taking place during embryogenesis. Previous studies in a few vector species showed a strong correlation of key morphogenetic events and changes in glucose metabolism. Here, we investigate glycogen and glucose metabolism in the red flour beetle Tribolium castaneum, an insect amenable to functional genomic studies. To examine the role of the key enzymes on glycogen and glucose regulation we cloned and analyzed the function of glycogen synthase kinase 3 (GSK-3) and hexokinase (HexA) genes during T. castaneum embryogenesis. Expression analysis via in situ hybridization shows that both genes are expressed only in the embryonic tissue, suggesting that embryonic and extra-embryonic cells display different metabolic activities. dsRNA adult female injection (parental RNAi) of both genes lead a reduction in egg laying and to embryonic lethality. Morphological analysis via DAPI stainings indicates that early development is impaired in Tc-GSK-3 and Tc-HexA1 RNAi embryos. Importantly, glycogen levels are upregulated after Tc-GSK-3 RNAi and glucose levels are upregulated after Tc-HexA1 RNAi, indicating that both genes control metabolism during embryogenesis and oogenesis, respectively. Altogether our results show that T. castaneum embryogenesis depends on the proper control of glucose and glycogen. PMID:23750237

  18. The role of arginine metabolic pathway during embryogenesis and germination in maritime pine (Pinus pinaster Ait.).

    PubMed

    Llebrés, María-Teresa; Pascual, María-Belén; Debille, Sandrine; Trontin, Jean-François; Harvengt, Luc; Avila, Concepción; Cánovas, Francisco M

    2018-03-01

    Vegetative propagation through somatic embryogenesis is critical in conifer biotechnology towards multivarietal forestry that uses elite varieties to cope with environmental and socio-economic issues. An important and still sub-optimal process during in vitro maturation of somatic embryos (SE) is the biosynthesis and deposition of storage proteins, which are rich in amino acids with high nitrogen (N) content, such as arginine. Mobilization of these N-rich proteins is essential for the germination and production of vigorous somatic seedlings. Somatic embryos accumulate lower levels of N reserves than zygotic embryos (ZE) at a similar stage of development. To understand the molecular basis for this difference, the arginine metabolic pathway has been characterized in maritime pine (Pinus pinaster Ait.). The genes involved in arginine metabolism have been identified and GFP-fusion constructs were used to locate the enzymes in different cellular compartments and clarify their metabolic roles during embryogenesis and germination. Analysis of gene expression during somatic embryo maturation revealed high levels of transcripts for genes involved in the biosynthesis and metabolic utilization of arginine. By contrast, enhanced expression levels were only observed during the last stages of maturation and germination of ZE, consistent with the adequate accumulation and mobilization of protein reserves. These results suggest that arginine metabolism is unbalanced in SE (simultaneous biosynthesis and degradation of arginine) and could explain the lower accumulation of storage proteins observed during the late stages of somatic embryogenesis.

  19. Gene Expression in Pre-MBT Embryos and Activation of Maternally-Inherited Program of Apoptosis to be Executed at around MBT as a Fail-Safe Mechanism in Xenopus Early Embryogenesis

    PubMed Central

    Shiokawa, Koichiro; Aso, Mai; Kondo, Takeshi; Uchiyama, Hiroaki; Kuroyanagi, Shinsaku; Takai, Jun-Ichi; Takahashi, Senji; Kajitani, Masayuki; Kaito, Chikara; Sekimizu, Kazuhisa; Takayama, Eiji; Igarashi, Kazuei; Hara, Hiroshi

    2008-01-01

    S-adenosylmethionine decarboxylase (SAMDC) is an enzyme which converts S-adenosylmethione (SAM), a methyl donor, to decarboxylated SAM (dcSAM), an aminopropyl donor for polyamine biosynthesis. In our studies on gene expression control in Xenopus early embryogenesis, we cloned the mRNA for Xenopus SAMDC, and overexpressed the enzyme by microinjecting its mRNA into Xenopus fertilized eggs. In the mRNA-injected embryos, the level of SAMDC was enormously increased, the SAM was exhausted, and protein synthesis was greatly inhibited, but cellular polyamine content did not change appreciably. SAMDC-overexpressed embryos cleaved and developed normally up to the early blastula stage, but at the midblastula stage, or the stage of midblastula transition (MBT), all the embryos were dissociated into cells, and destroyed due to execution of apoptosis. During cleavage SAMDC-overexpressed embryos transcribed caspase-8 gene, and this was followed by activation of caspase-9. When we overexpressed p53 mRNA in fertilized eggs, similar apoptosis took place at MBT, but in this case, transcription of caspase-8 did not occur, however activation of caspase-9 took place. Apoptosis induced by SAMDC-overexpression was completely suppressed by Bcl-2, whereas apoptosis induced by p53 overexpression or treatments with other toxic agents was only partially rescued. When we injected SAMDC mRNA into only one blastomere of 8- to 32-celled embryos, descendant cells of the mRNA-injected blastomere were segregated into the blastocoel and underwent apoptosis within the blastocoel, although such embryos continued to develop and became tadpoles with various extents of anomaly, reflecting the developmental fate of the eliminated cells. Thus, embryonic cells appear to check themselves at MBT and if physiologically severely-damaged cells occur, they are eliminated from the embryo by activation and execution of the maternally-inherited program of apoptosis. We assume that the apoptosis executed at MBT is a

  20. Distinct roles for motor neuron autophagy early and late in the SOD1G93A mouse model of ALS

    PubMed Central

    Rudnick, Noam D.; Griffey, Christopher J.; Guarnieri, Paolo; Gerbino, Valeria; Wang, Xueyong; Piersaint, Jason A.; Tapia, Juan Carlos; Rich, Mark M.; Maniatis, Tom

    2017-01-01

    Mutations in autophagy genes can cause familial and sporadic amyotrophic lateral sclerosis (ALS). However, the role of autophagy in ALS pathogenesis is poorly understood, in part due to the lack of cell type-specific manipulations of this pathway in animal models. Using a mouse model of ALS expressing mutant superoxide dismutase 1 (SOD1G93A), we show that motor neurons form large autophagosomes containing ubiquitinated aggregates early in disease progression. To investigate whether this response is protective or detrimental, we generated mice in which the critical autophagy gene Atg7 was specifically disrupted in motor neurons (Atg7 cKO). Atg7 cKO mice were viable but exhibited structural and functional defects at a subset of vulnerable neuromuscular junctions. By crossing Atg7 cKO mice to the SOD1G93A mouse model, we found that autophagy inhibition accelerated early neuromuscular denervation of the tibialis anterior muscle and the onset of hindlimb tremor. Surprisingly, however, lifespan was extended in Atg7 cKO; SOD1G93A double-mutant mice. Autophagy inhibition did not prevent motor neuron cell death, but it reduced glial inflammation and blocked activation of the stress-related transcription factor c-Jun in spinal interneurons. We conclude that motor neuron autophagy is required to maintain neuromuscular innervation early in disease but eventually acts in a non–cell-autonomous manner to promote disease progression. PMID:28904095

  1. A novel surgical approach for intratracheal administration of bioactive agents in a fetal mouse model.

    PubMed

    Carlon, Marianne S; Toelen, Jaan; da Cunha, Marina Mori; Vidović, Dragana; Van der Perren, Anke; Mayer, Steffi; Sbragia, Lourenço; Nuyts, Johan; Himmelreich, Uwe; Debyser, Zeger; Deprest, Jan

    2012-10-31

    Prenatal pulmonary delivery of cells, genes or pharmacologic agents could provide the basis for new therapeutic strategies for a variety of genetic and acquired diseases. Apart from congenital or inherited abnormalities with the requirement for long-term expression of the delivered gene, several non-inherited perinatal conditions, where short-term gene expression or pharmacological intervention is sufficient to achieve therapeutic effects, are considered as potential future indications for this kind of approach. Candidate diseases for the application of short-term prenatal therapy could be the transient neonatal deficiency of surfactant protein B causing neonatal respiratory distress syndrome(1,2) or hyperoxic injuries of the neonatal lung(3). Candidate diseases for permanent therapeutic correction are Cystic Fibrosis (CF)(4), genetic variants of surfactant deficiencies(5) and α1-antitrypsin deficiency(6). Generally, an important advantage of prenatal gene therapy is the ability to start therapeutic intervention early in development, at or even prior to clinical manifestations in the patient, thus preventing irreparable damage to the individual. In addition, fetal organs have an increased cell proliferation rate as compared to adult organs, which could allow a more efficient gene or stem cell transfer into the fetus. Furthermore, in utero gene delivery is performed when the individual's immune system is not completely mature. Therefore, transplantation of heterologous cells or supplementation of a non-functional or absent protein with a correct version should not cause immune sensitization to the cell, vector or transgene product, which has recently been proven to be the case with both cellular and genetic therapies(7). In the present study, we investigated the potential to directly target the fetal trachea in a mouse model. This procedure is in use in larger animal models such as rabbits and sheep(8), and even in a clinical setting(9), but has to date not been

  2. Annotation of Differentially Expressed Genes in the Somatic Embryogenesis of Musa and Their Location in the Banana Genome

    PubMed Central

    Maldonado-Borges, Josefina Ines; Ku-Cauich, José Roberto; Escobedo-GraciaMedrano, Rosa Maria

    2013-01-01

    Analysis of cDNA-AFLP was used to study the genes expressed in zygotic and somatic embryogenesis of Musa acuminata Colla ssp. malaccensis, and a comparison was made between their differential transcribed fragments (TDFs) and the sequenced genome of the double haploid- (DH-) Pahang of the malaccensis subspecies that is available in the network. A total of 253 transcript-derived fragments (TDFs) were detected with apparent size of 100–4000 bp using 5 pairs of AFLP primers, of which 21 were differentially expressed during the different stages of banana embryogenesis; 15 of the sequences have matched DH-Pahang chromosomes, with 7 of them being homologous to gene sequences encoding either known or putative protein domains of higher plants. Four TDF sequences were located in all Musa chromosomes, while the rest were located in one or two chromosomes. Their putative individual function is briefly reviewed based on published information, and the potential roles of these genes in embryo development are discussed. Thus the availability of the genome of Musa and the information of TDFs sequences presented here opens new possibilities for an in-depth study of the molecular and biochemical research of zygotic and somatic embryogenesis of Musa. PMID:24027442

  3. Early Changes of Articular Cartilage and Subchondral Bone in The DMM Mouse Model of Osteoarthritis.

    PubMed

    Fang, Hang; Huang, Lisi; Welch, Ian; Norley, Chris; Holdsworth, David W; Beier, Frank; Cai, Daozhang

    2018-02-12

    To examine the early changes of articular cartilage and subchondral bone in the DMM mouse model of osteoarthritis, mice were subjected to DMM or SHAM surgery and sacrificed at 2-, 5- and 10-week post-surgery. Catwalk gait analyses, Micro-Computed Tomography, Toluidine Blue, Picrosirius Red and Tartrate-Resistant Acid Phosphatase (TRAP) staining were used to investigate gait patterns, joint morphology, subchondral bone, cartilage, collagen organization and osteoclasts activity, respectively. Results showed OA progressed over 10-week time-course. Gait disparity occurred only at 10-week post-surgery. Osteophyte formed at 2-week post-surgery. BMDs of DMM showed no statistical differences comparing to SHAM at 2 weeks, but BV/TV is much higher in DMM mice. Increased BMD was clearly found at 5- and 10-week post-surgery in DMM mice. TRAP staining showed increased osteoclast activity at the site of osteophyte formation of DMM joints at 5- and 10-week time points. These results showed that subchondral bone turnover might occurred earlier than 2 weeks in this mouse DMM model. Gait disparity only occurred at later stage of OA in DMM mice. Notably, patella dislocation could occur in some of the DMM mice and cause a different pattern of OA in affected knee.

  4. Stokes shift spectroscopy for the early diagnosis of epithelial precancers in DMBA treated mouse skin carcinogenesis

    NASA Astrophysics Data System (ADS)

    Jeyasingh, Ebenezar; Singaravelu, Ganesan; Prakasarao, Aruna

    2018-02-01

    In this study, we aim to characterize the tissue transformation in dimethylbenz(a)anthracene (DMBA) treated mouse skin tumor model using stokes shift spectroscopy (SSS) technique for early detection of the neoplastic changes. Stokes shift (SS) spectra measured by scanning both excitation and emission wavelength simultaneously with a fixed wavelength of interval (Δλ=20 nm) in vivo from 33 DMBA treated animals and 6 control animals. The SS spectra of normal (n=6), hyperplasia (n=10), dysplasia (n=10), and WDSCC (n=13) of mice skin shows the distinct peaks around 300, 350, and 386 nm may be attributed to tryptophan, collagen, and NADH respectively. From the observed spectral differences and the ratio variables that resulted in better classification between groups, it is concluded that tryptophan, collagen, and NADH are the key fluorophores that undergo changes during tissue transformation process and hence they can be targeted as tumor markers for early neoplastic changes.

  5. The Pesticide Malathion Disrupts "Xenopus" and Zebrafish Embryogenesis: An Investigative Laboratory Exercise in Developmental Toxicology

    ERIC Educational Resources Information Center

    Chemotti, Diana C.; Davis, Sarah N.; Cook, Leslie W.; Willoughby, Ian R.; Paradise, Christopher J.; Lom, Barbara

    2006-01-01

    Malathion is an organophosphorus insecticide, which is often sprayed to control mosquitoes. When applied to aquatic habitats, malathion can also influence the embryogenesis of non-target organisms such as frogs and fish. We modified the frog embryo teratogen assay in "Xenopus" (FETAX), a standard toxicological assay, into an investigative…

  6. Calcium-Mediated Signaling during Sandalwood Somatic Embryogenesis. Role for Exogenous Calcium as Second Messenger1

    PubMed Central

    Anil, Veena S.; Rao, K. Sankara

    2000-01-01

    The possible involvement of Ca2+-mediated signaling in the induction/regulation of somatic embryogenesis from pro-embryogenic cells of sandalwood (Santalum album) has been investigated. 45Ca2+-uptake studies and fura-2 fluorescence ratio photometry were used to measure changes in [Ca2+]cyt of pro-embryogenic cells in response to culture conditions conducive for embryo development. Sandalwood pro-embryogenic cell masses (PEMs) are obtained in the callus proliferation medium that contains the auxin 2,4-dichlorophenoxyacetic acid. Subculture of PEMs into the embryo differentiation medium, which lacks 2,4-dichlorophenoxyacetic acid and has higher osmoticum, results in a 4-fold higher 45Ca2+ incorporation into the symplast. Fura-2 ratiometric analysis corroboratively shows a 10- to 16-fold increase in the [Ca2+]cyt of PEMs, increasing from a resting concentration of 30 to 50 nm to 650 to 800 nm. Chelation of exogenous Ca2+ with ethyleneglycol-bis(aminoethyl ether)-N,N′-tetraacetic acid arrests such an elevation in [Ca2+]cyt. Exogenous Ca2+ when chelated or deprived also arrests embryo development and inhibits the accumulation of a sandalwood Ca2+-dependent protein kinase. However, such culture conditions do not cause cell death as the PEMs continue to proliferate to form larger cell clumps. Culture treatment with N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide reduced embryogenic frequency by 85%, indicating that blockage of Ca2+-mediated signaling pathway(s) involving sandalwood Ca2+-dependent protein kinase and/or calmodulin causes the inhibition of embryogenesis. The observations presented are evidence to suggest a second messenger role for exogenous Ca2+ during sandalwood somatic embryogenesis. PMID:10938349

  7. Protocol for in vitro somatic embryogenesis and regeneration of rice (Oryza sativa L.).

    PubMed

    Verma, Dipti; Joshi, Rohit; Shukla, Alok; Kumar, Pramod

    2011-12-01

    Development of highly efficient and reproducible plant regeneration system has tremendous potential to provide improved technology to assist in genetic transformation of indica rice cultivars for their further exploitation in selection. For the development of a highly reproducible regeneration system through somatic embryogenesis, mature embryos of highly popular rice cultivars i.e., Govind (for rainfed areas), Pusa Basmati-1 (aromatic basmati) and Jaya (for irrigated areas) were used. Optimum callus formation (%) to MS medium supplemented with 2, 4-D was obtained at 12.0 microM in Govind, 14.0 microM in Jaya and 15.0 microM in Pusa Basmati-1. All the cultivars showed good proliferation on MS medium without hormone. In Govind, highest embryogenic response was observed in MS medium supplemented with 2, 4-D (0.4 microM) + kinetin (0.4 microM), while in Pusa Basmati-1 with 2, 4-D (0.4 microM) + kinetin (2.0 microM) and in Jaya on hormone-free MS medium. Excellent embryo regeneration in Govind was observed on MS medium supplemented with low concentrations (1.1 microM) of BAP or hormone-free MS medium, while in Pusa Basmati-1 and Jaya embryogenesis was observed on MS medium supplemented with higher concentration of BAP (2.2 microM). Similarly, maximum plantlets with proliferated roots were observed in Govind on hormone-free MS medium, while in Pusa Basmati-1 and Jaya on MS medium supplemented with high concentration of NAA (4.0 microM). Developed plantlets were further successfully acclimatized and grown under pot culture up to maturity. Further the yield potential of in vitro developed plants was accessed at par to the direct seeded one under pot culture. Present, protocol standardizes somatic embryogenesis and efficient regeneration of agronomically important, high yielding and diverse indica rice cultivars which can be utilized as an efficient tool for molecular studies and genetic transformation in future.

  8. Jmjd5 functions as a regulator of p53 signaling during mouse embryogenesis.

    PubMed

    Ishimura, Akihiko; Terashima, Minoru; Tange, Shoichiro; Suzuki, Takeshi

    2016-03-01

    Genetic studies have shown that aberrant activation of p53 signaling leads to embryonic lethality. Maintenance of a fine balance of the p53 protein level is critical for normal development. Previously, we have reported that Jmjd5, a member of the Jumonji C (JmjC) family, regulates embryonic cell proliferation through the control of Cdkn1a expression. Since Cdkn1a is the representative p53-regulated gene, we have examined whether the expression of other p53 target genes is coincidentally upregulated with Cdkn1a in Jmjd5-deficient embryos. The expression of a subset of p53-regulated genes was increased in both Jmjd5 hypomorphic mouse embryonic fibroblasts (MEFs) and Jmjd5-deficient embryos at embryonic day 8.25 without the induced expression of Trp53. Intercrossing of Jmjd5-deficient mice with Trp53 knockout mice showed that the growth defect of Jmjd5 mutant cells was significantly recovered under a Trp53 null genetic background. Chromatin immunoprecipitation analysis in Jmjd5 hypomorphic MEFs indicated the increased recruitment of p53 at several p53 target gene loci, such as Cdkn1a, Pmaip1, and Mdm2. These results suggest that Jmjd5 is involved in the transcriptional regulation of a subset of p53-regulated genes, possibly through the control of p53 recruitment at the gene loci. In Jmjd5-deficient embryos, the enhanced recruitment of p53 might result in the abnormal activation of p53 signaling leading to embryonic lethality.

  9. Embryogenesis and Larval Biology of the Cold-Water Coral Lophelia pertusa

    PubMed Central

    Strömberg, Susanna M.; Dahl, Mikael P.; Lundälv, Tomas; Brooke, Sandra

    2014-01-01

    Cold-water coral reefs form spectacular and highly diverse ecosystems in the deep sea but little is known about reproduction, and virtually nothing about the larval biology in these corals. This study is based on data from two locations of the North East Atlantic and documents the first observations of embryogenesis and larval development in Lophelia pertusa, the most common framework-building cold-water scleractinian. Embryos developed in a more or less organized radial cleavage pattern from ∼160 µm large neutral or negatively buoyant eggs, to 120–270 µm long ciliated planulae. Embryogenesis was slow with cleavage occurring at intervals of 6–8 hours up to the 64-cell stage. Genetically characterized larvae were sexually derived, with maternal and paternal alleles present. Larvae were active swimmers (0.5 mm s−1) initially residing in the upper part of the water column, with bottom probing behavior starting 3–5 weeks after fertilization. Nematocysts had developed by day 30, coinciding with peak bottom-probing behavior, and possibly an indication that larvae are fully competent to settle at this time. Planulae survived for eight weeks under laboratory conditions, and preliminary results indicate that these planulae are planktotrophic. The late onset of competency and larval longevity suggests a high dispersal potential. Understanding larval biology and behavior is of paramount importance for biophysical modeling of larval dispersal, which forms the basis for predictions of connectivity among populations. PMID:25028936

  10. EMG1 is essential for mouse pre-implantation embryo development.

    PubMed

    Wu, Xiaoli; Sandhu, Sumit; Patel, Nehal; Triggs-Raine, Barbara; Ding, Hao

    2010-09-21

    Essential for mitotic growth 1 (EMG1) is a highly conserved nucleolar protein identified in yeast to have a critical function in ribosome biogenesis. A mutation in the human EMG1 homolog causes Bowen-Conradi syndrome (BCS), a developmental disorder characterized by severe growth failure and psychomotor retardation leading to death in early childhood. To begin to understand the role of EMG1 in mammalian development, and how its deficiency could lead to Bowen-Conradi syndrome, we have used mouse as a model. The expression of Emg1 during mouse development was examined and mice carrying a null mutation for Emg1 were generated and characterized. Our studies indicated that Emg1 is broadly expressed during early mouse embryonic development. However, in late embryonic stages and during postnatal development, Emg1 exhibited specific expression patterns. To assess a developmental role for EMG1 in vivo, we exploited a mouse gene-targeting approach. Loss of EMG1 function in mice arrested embryonic development prior to the blastocyst stage. The arrested Emg1-/- embryos exhibited defects in early cell lineage-specification as well as in nucleologenesis. Further, loss of p53, which has been shown to rescue some phenotypes resulting from defects in ribosome biogenesis, failed to rescue the Emg1-/- pre-implantation lethality. Our data demonstrate that Emg1 is highly expressed during mouse embryonic development, and essential for mouse pre-implantation development. The absolute requirement for EMG1 in early embryonic development is consistent with its essential role in yeast. Further, our findings also lend support to the previous study that showed Bowen-Conradi syndrome results from a partial EMG1 deficiency. A complete deficiency would not be expected to be compatible with a live birth.

  11. Early VGLUT1-specific parallel fiber synaptic deficits and dysregulated cerebellar circuit in the KIKO mouse model of Friedreich ataxia.

    PubMed

    Lin, Hong; Magrane, Jordi; Clark, Elisia M; Halawani, Sarah M; Warren, Nathan; Rattelle, Amy; Lynch, David R

    2017-12-19

    Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disorder with progressive ataxia that affects both the peripheral and central nervous system (CNS). While later CNS neuropathology involves loss of large principal neurons and glutamatergic and GABAergic synaptic terminals in the cerebellar dentate nucleus, early pathological changes in FRDA cerebellum remain largely uncharacterized. Here, we report early cerebellar VGLUT1 (SLC17A7)-specific parallel fiber (PF) synaptic deficits and dysregulated cerebellar circuit in the frataxin knock-in/knockout (KIKO) FRDA mouse model. At asymptomatic ages, VGLUT1 levels in cerebellar homogenates are significantly decreased, whereas VGLUT2 (SLC17A6) levels are significantly increased, in KIKO mice compared with age-matched controls. Additionally, GAD65 (GAD2) levels are significantly increased, while GAD67 (GAD1) levels remain unaltered. This suggests early VGLUT1-specific synaptic input deficits, and dysregulation of VGLUT2 and GAD65 synaptic inputs, in the cerebellum of asymptomatic KIKO mice. Immunohistochemistry and electron microscopy further show specific reductions of VGLUT1-containing PF presynaptic terminals in the cerebellar molecular layer, demonstrating PF synaptic input deficiency in asymptomatic and symptomatic KIKO mice. Moreover, the parvalbumin levels in cerebellar homogenates and Purkinje neurons are significantly reduced, but preserved in other interneurons of the cerebellar molecular layer, suggesting specific parvalbumin dysregulation in Purkinje neurons of these mice. Furthermore, a moderate loss of large principal neurons is observed in the dentate nucleus of asymptomatic KIKO mice, mimicking that of FRDA patients. Our findings thus identify early VGLUT1-specific PF synaptic input deficits and dysregulated cerebellar circuit as potential mediators of cerebellar dysfunction in KIKO mice, reflecting developmental features of FRDA in this mouse model. © 2017. Published by The Company of

  12. Cyclooxygenase activity is important for efficient replication of mouse hepatitis virus at an early stage of infection

    PubMed Central

    Raaben, Matthijs; Einerhand, Alexandra WC; Taminiau, Lucas JA; van Houdt, Michel; Bouma, Janneke; Raatgeep, Rolien H; Büller, Hans A; de Haan, Cornelis AM; Rossen, John WA

    2007-01-01

    Cyclooxygenases (COXs) play a significant role in many different viral infections with respect to replication and pathogenesis. Here we investigated the role of COXs in the mouse hepatitis coronavirus (MHV) infection cycle. Blocking COX activity by different inhibitors or by RNA interference affected MHV infection in different cells. The COX inhibitors reduced MHV infection at a post-binding step, but early in the replication cycle. Both viral RNA and viral protein synthesis were affected with subsequent loss of progeny virus production. Thus, COX activity appears to be required for efficient MHV replication, providing a potential target for anti-coronaviral therapy. PMID:17555580

  13. EXPERIMENTAL STUDIES ON EMBRYOGENESIS IN HYDROZOANS (TRACHYLINA AND SIPHONOPHORA) WITH DIRECT DEVELOPMENT.

    PubMed

    Freeman, Gary

    1983-12-01

    The normal embryology of the trachymedusa Aglantha digitale and the siphonophores Nanomia cara and Muggiaea atlantica is described. Marking experiments on these embryos indicate that the site of first cleavage initiation corresponds to the oral pole of the oral-aboral axis. In Muggiaea the plane of the first cleavage corresponds to the plane of bilateral symmetry. Experiments in which presumptive aboral and oral regions are isolated from these embryos at different stages of development indicate that there is an early determination of different regions along this axis. Only the oral region of the Muggiaea embryo has the ability to regulate. These eggs have a pronounced centrolecithal organization. As a consequence of cleavage, the outer ectoplasmic layer of the egg ends up in the cells that form the ectoderm, while the inner or endoplasmic region of the egg ends up in the cells that form the endoderm. Experimentally created fragments of fertilized eggs that contain only ectoplasm differentiate to form an unorganized ectodermal cell mass, indicating that endoplasm is necessary in order to differentiate endoderm. The process of embryogenesis in these animals and the developmental mechanisms they use are very different from those used by hydrozoans with indirect development. These embryos use a suite of developmental mechanisms which are very similar to those used by ctenophores. The significance of this similarity is discussed.

  14. Nanos3 not nanos1 and nanos2 is a germ cell marker gene in large yellow croaker during embryogenesis.

    PubMed

    Han, Kunhuang; Chen, Shihai; Cai, Mingyi; Jiang, Yonghua; Zhang, Ziping; Wang, Yilei

    2018-04-01

    In this study, three nanos gene subtypes (Lcnanos1, Lcnanos2 and Lcnanos3) from Larimichthys crocea, were cloned and characterized. We determined the spatio-temporal expression patterns of each subtype in tissues as well as the cellular localization of mRNA in embryos. Results showed that deduced Nanos proteins have two main homology domains: N-terminal CCR4/NOT1 deadenylase interaction domain and highly conserved carboxy-terminal region bearing two conserved CCHC zinc-finger motifs. The expression levels of Lcnanos1 in testis were significantly higher than other tissues, followed by heart, brain, eye, and ovary. Nevertheless, both Lcnanos2 and Lcnanos3 were restrictedly expressed in testis and ovary, respectively. No signals of Lcnanos1 and Lcnanos2 expression were detected at any developmental stages during embryogenesis. On the contrary, the signals of Lcnanos3 were detected in all stages examined. Lcnanos3 transcripts were firstly localized to the distal end of cleavage furrow at the 2-cell stage. Subsequently, mounting positive signals started to appear in a small number of cells as the embryo developed to blastula stage and early-gastrula stage. As development proceeded, positive signals were found in the primitive gonadal ridge. These cells of Lcnanos3 positive signals implied the specification of the future PGCs at this stage. It also suggested that PGCs of croaker originate from four clusters of cells which inherit maternal germ plasm at blastula stage. Furthermore, we preliminarily analyzed the migration route of PGCs in embryos of L. crocea. In short, this study laid the foundation for studies on specification and development of germ cell from L. crocea during embryogenesis. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Genome Editing a Mouse Locus Encoding a Variant Histone, H3.3B, to Report on its Expression in Live Animals

    PubMed Central

    Wen, Duancheng; Noh, Kyung-Min; Goldberg, Aaron D.; Allis, C. David; Rosenwaks, Zev; Rafii, Shahin; Banaszynski, Laura A.

    2018-01-01

    Summary Chromatin remodeling via incorporation of histone variants plays a key role in the regulation of embryonic development. The histone variant H3.3 has been associated with a number of early events including formation of the paternal pronucleus upon fertilization. The small number of amino acid differences between H3.3 and its canonical counterparts (H3.1 and H3.2) has limited studies of the developmental significance of H3.3 deposition into chromatin due to difficulties in distinguishing the H3 isoforms. To this end, we used zinc-finger nuclease (ZFN) mediated gene editing to introduce a small C-terminal hemagglutinin (HA) tag to the endogenous H3.3B locus in mouse embryonic stem cells (ESCs), along with an internal ribosome entry site (IRES) and a separately translated fluorescent reporter of expression. This system will allow detection of expression driven by the reporter in cells, animals, and embryos, and will facilitate investigation of differential roles of paternal and maternal H3.3 protein during embryogenesis that would not be possible using variant-specific antibodies. Further, the ability to monitor endogenous H3.3 protein in various cell lineages will enhance our understanding of the dynamics of this histone variant over the course of development. genesis PMID:25262655

  16. Oil body biogenesis during Brassica napus embryogenesis.

    PubMed

    He, Yu-Qing; Wu, Yan

    2009-08-01

    Although the oil body is known to be an important membrane enclosed compartment for oil storage in seeds, we have little understanding about its biogenesis during embryogenesis. In the present study we investigated the oil body emergence and variations in Brassica napus cv. Topas. The results demonstrate that the oil bodies could be detected already at the heart stage, at the same time as the embryos began to turn green, and the starch grains accumulated in the chloroplast stroma. In comparison, we have studied the development of oil bodies between Arabidopsis thaliana wild type (Col) and the low-seed-oil mutant wrinkled1-3. We observed that the oil body development in the embryos of Col is similar to that of B. napus cv. Topas, and that the size of the oil bodies was obviously smaller in the embryos of wrinkled1-3. Our results suggest that the oil body biogenesis might be coupled with the embryo chloroplast.

  17. How Genetically Engineered Mouse Tumor Models Provide Insights Into Human Cancers

    PubMed Central

    Politi, Katerina; Pao, William

    2011-01-01

    Genetically engineered mouse models (GEMMs) of human cancer were first created nearly 30 years ago. These early transgenic models demonstrated that mouse cells could be transformed in vivo by expression of an oncogene. A new field emerged, dedicated to generating and using mouse models of human cancer to address a wide variety of questions in cancer biology. The aim of this review is to highlight the contributions of mouse models to the diagnosis and treatment of human cancers. Because of the breadth of the topic, we have selected representative examples of how GEMMs are clinically relevant rather than provided an exhaustive list of experiments. Today, as detailed here, sophisticated mouse models are being created to study many aspects of cancer biology, including but not limited to mechanisms of sensitivity and resistance to drug treatment, oncogene cooperation, early detection, and metastasis. Alternatives to GEMMs, such as chemically induced or spontaneous tumor models, are not discussed in this review. PMID:21263096

  18. Collective Cell Migration in Embryogenesis Follows the Laws of Wetting.

    PubMed

    Wallmeyer, Bernhard; Trinschek, Sarah; Yigit, Sargon; Thiele, Uwe; Betz, Timo

    2018-01-09

    Collective cell migration is a fundamental process during embryogenesis and its initial occurrence, called epiboly, is an excellent in vivo model to study the physical processes involved in collective cell movements that are key to understanding organ formation, cancer invasion, and wound healing. In zebrafish, epiboly starts with a cluster of cells at one pole of the spherical embryo. These cells are actively spreading in a continuous movement toward its other pole until they fully cover the yolk. Inspired by the physics of wetting, we determine the contact angle between the cells and the yolk during epiboly. By choosing a wetting approach, the relevant scale for this investigation is the tissue level, which is in contrast to other recent work. Similar to the case of a liquid drop on a surface, one observes three interfaces that carry mechanical tension. Assuming that interfacial force balance holds during the quasi-static spreading process, we employ the physics of wetting to predict the temporal change of the contact angle. Although the experimental values vary dramatically, the model allows us to rescale all measured contact-angle dynamics onto a single master curve explaining the collective cell movement. Thus, we describe the fundamental and complex developmental mechanism at the onset of embryogenesis by only three main parameters: the offset tension strength, α, that gives the strength of interfacial tension compared to other force-generating mechanisms; the tension ratio, δ, between the different interfaces; and the rate of tension variation, λ, which determines the timescale of the whole process. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Conditional Deletion of the Pten Gene in the Mouse Prostate Induces Prostatic Intraepithelial Neoplasms at Early Ages but a Slow Progression to Prostate Tumors

    PubMed Central

    Zhu, Chunfang; Lee, Suk Hyung; Ye, Ding-Wei; Luong, Richard; Sun, Zijie

    2013-01-01

    The PTEN tumor suppressor gene is frequently inactivated in human prostate cancer. Using Osr1 (odd skipped related 1)-Cre mice, we generated a novel conditional Pten knockout mouse strain, PtenLoxP:Osr1-Cre. Conditional biallelic and monoallelic Pten knockout mice were viable. Deletion of Pten expression was detected in the prostate of PtenLoxP/LoxP:Osr1-Cre mice as early as 2 weeks of age. Intriguingly, PtenLoxP/LoxP:Osr1-Cre mice develop high-grade prostatic intraepithelial neoplasms (PINs) with high penetrance as early as one-month of age, and locally invasive prostatic tumors after 12-months of age. PtenLoxP/+:Osr1-Cre mice show only mild oncogenic changes after 8-weeks of age. Castration of PtenLoxP/LoxP:Osr1-Cre mice shows no significant regression of prostate tumors, although a shift of androgen receptor (AR) staining from the nuclei to cytoplasm is observed in Pten null tumor cells of castrated mice. Enhanced Akt activity is observed in Pten null tumor cells of castrated PtenLoxP/LoxP:Osr1-Cre. This study provides a novel mouse model that can be used to investigate a primary role of Pten in initiating oncogenic transformation in the prostate and to examine other genetic and epigenetic changes that are required for tumor progression in the mouse prostate. PMID:23308230

  20. [Formation of antioxidant defence system of geese in embryogenesis and early postnatal ontogenesis].

    PubMed

    Danchenko, O O; Kalytka, V V

    2002-01-01

    The features of antioxidant protection of tissues of a liver and blood of the gooses in embriogenesis and early postnatal ontogenesis are found out. Maximal contents TBA active products both in a liver, and in a blood are observed in 28 diurnal embriones. Is shown, that in a liver the activity of basic antioxidant enzymes (superoxide dismutases, catalase and glutathione peroxidase) in a liver is developed already at early stages embriogenesis and is considerably enlarged in the end embriogenesis. The becoming of enzymatic system of a blood descends much more slower.

  1. Augmentation of sensory-evoked hemodynamic response in an early Alzheimer's disease mouse model.

    PubMed

    Kim, Jinho; Jeong, Yong

    2013-01-01

    Based on enlarged blood oxygen level-dependent (BOLD) responses in cognitively normal subjects at risk for Alzheimer's disease (AD), compensatory neuronal hyperactivation has been proposed as an early marker for diagnosis of AD. The BOLD response results from neurovascular coupling, i.e., hemodynamic response induced by neuronal activity. However, there has been no evidence of task-induced increases in hemodynamic response in animal models of AD. Here, we observed an augmented hemodynamic response pattern in a transgenic AβPP(SWE)/PS1ΔE9 mouse model of AD using three in vivo imaging methods: intrinsic optical signal imaging, multi-photon laser scanning microscopy, and laser Doppler flowmetry. Sensory stimulation resulted in augmented and prolonged hemodynamic responses in transgenic mice evidenced by changes in total, oxygenated, and deoxygenated hemoglobin concentration. This difference between transgenic and wild-type mice was significant at 7 months of age when amyloid plaques and cerebral amyloid angiopathy had developed but not at younger or older ages. Correspondingly, sensory stimulation-induced pial arteriole diameter was also augmented and prolonged in transgenic mice at 7 months of age. Cerebral blood flow response in transgenic mice was augmented but not prolonged. These results are consistent with the existence of BOLD signal hyperactivation in non-demented AD-risk human subjects, supporting its potential use as an early diagnostic marker of AD.

  2. The epigenetic memory of temperature during embryogenesis modifies the expression of bud burst-related genes in Norway spruce epitypes.

    PubMed

    Carneros, Elena; Yakovlev, Igor; Viejo, Marcos; Olsen, Jorunn E; Fossdal, Carl Gunnar

    2017-09-01

    Epigenetic memory affects the timing of bud burst phenology and the expression of bud burst-related genes in genetically identical Norway spruce epitypes in a manner usually associated with ecotypes. In Norway spruce, a temperature-dependent epigenetic memory established during embryogenesis affects the timing of bud burst and bud set in a reproducible and predictable manner. We hypothesize that the clinal variation in these phenological traits, which is associated with adaptation to growth under frost-free conditions, has an epigenetic component. In Norway spruce, dehydrins (DHNs) have been associated with extreme frost tolerance. DHN transcript levels decrease gradually prior to flushing, a time when trees are highly sensitive to frost. Furthermore, EARLY BUD BREAK 1 genes (EBB1) and the FT-TFL1-LIKE 2-gene (PaFTL2) were previously suggested to be implied in control of bud phenology. Here we report an analysis of transcript levels of 12 DHNs, 3 EBB1 genes and FTL2 in epitypes of the same genotype generated at different epitype-inducing temperatures, before and during spring bud burst. Earlier flushing of epitypes originating from embryos developed at 18 °C as compared to 28 °C, was associated with differential expression of these genes between epitypes and between buds and last year's needles. The majority of these genes showed significantly different expressions between epitypes in at least one time point. The general trend in DHN expression pattern in buds showed the expected reduction in transcript levels when approaching flushing, whereas, surprisingly, transcript levels peaked later in needles, mainly at the moment of bud burst. Collectively, our results demonstrate that the epigenetic memory of temperature during embryogenesis affects bud burst phenology and expression of the bud burst-related DHN, EBB1 and FTL2 genes in genetically identical Norway spruce epitypes.

  3. Relationship between Numerous Mast Cells and Early Follicular Development in Neonatal MRL/MpJ Mouse Ovaries

    PubMed Central

    Nakamura, Teppei; Otsuka, Saori; Ichii, Osamu; Sakata, Yuko; Nagasaki, Ken-Ichi; Hashimoto, Yoshiharu; Kon, Yasuhiro

    2013-01-01

    In the neonatal mouse ovary, clusters of oocytes called nests break into smaller cysts and subsequently form individual follicles. During this period, we found numerous mast cells in the ovary of MRL/MpJ mice and investigated their appearance and morphology with follicular development. The ovarian mast cells, which were already present at postnatal day 0, tended to localize adjacent to the surface epithelium. Among 11 different mouse strains, MRL/MpJ mice possessed the greatest number of ovarian mast cells. Ovarian mast cells were also found in DBA/1, BALB/c, NZW, and DBA/2 mice but rarely in C57BL/6, NZB, AKR, C3H/He, CBA, and ICR mice. The ovarian mast cells expressed connective tissue mast cell markers, although mast cells around the surface epithelium also expressed a mucosal mast cell marker in MRL/MpJ mice. Some ovarian mast cells migrated into the oocyte nests and directly contacted the compressed and degenerated oocytes. In MRL/MpJ mice, the number of oocytes in the nest was significantly lower than in the other strains, and the number of oocytes showed a positive correlation with the number of ovarian mast cells. The gene expression of a mast cell marker also correlated with the expression of an oocyte nest marker, suggesting a link between the appearance of ovarian ? 4mast cells and early follicular development. Furthermore, the expression of follicle developmental markers was significantly higher in MRL/MpJ mice than in C57BL/6 mice. These results indicate that the appearance of ovarian mast cells is a unique phenotype of neonatal MRL/MpJ mice, and that ovarian mast cells participate in early follicular development, especially nest breakdown. PMID:24124609

  4. Deconstructing cartilage shape and size into contributions from embryogenesis, metamorphosis, and tadpole and frog growth.

    PubMed

    Rose, Christopher S; Murawinski, Danny; Horne, Virginia

    2015-06-01

    Understanding skeletal diversification involves knowing not only how skeletal rudiments are shaped embryonically, but also how skeletal shape changes throughout life. The pharyngeal arch (PA) skeleton of metamorphosing amphibians persists largely as cartilage and undergoes two phases of development (embryogenesis and metamorphosis) and two phases of growth (larval and post-metamorphic). Though embryogenesis and metamorphosis produce species-specific features of PA cartilage shape, the extents to which shape and size change during growth and metamorphosis remain unaddressed. This study uses allometric equations and thin-plate spline, relative warp and elliptic Fourier analyses to describe shape and size trajectories for the ventral PA cartilages of the frog Xenopus laevis in tadpole and frog growth and metamorphosis. Cartilage sizes scale negatively with body size in both growth phases and cartilage shapes scale isometrically or close to it. This implies that most species-specific aspects of cartilage shape arise in embryogenesis and metamorphosis. Contributions from growth are limited to minor changes in lower jaw (LJ) curvature that produce relative gape narrowing and widening in tadpoles and frogs, respectively, and most cartilages becoming relatively thinner. Metamorphosis involves previously unreported decreases in cartilage size as well as changes in cartilage shape. The LJ becomes slightly longer, narrower and more curved, and the adult ceratohyal emerges from deep within the resorbing tadpole ceratohyal. This contrast in shape and size changes suggests a fundamental difference in the underlying cellular pathways. The observation that variation in PA cartilage shape decreases with tadpole growth supports the hypothesis that isometric growth is required for the metamorphic remodeling of PA cartilages. It also supports the existence of shape-regulating mechanisms that are specific to PA cartilages and that resist local adaptation and phenotypic plasticity.

  5. Deconstructing cartilage shape and size into contributions from embryogenesis, metamorphosis, and tadpole and frog growth

    PubMed Central

    Rose, Christopher S; Murawinski, Danny; Horne, Virginia

    2015-01-01

    Understanding skeletal diversification involves knowing not only how skeletal rudiments are shaped embryonically, but also how skeletal shape changes throughout life. The pharyngeal arch (PA) skeleton of metamorphosing amphibians persists largely as cartilage and undergoes two phases of development (embryogenesis and metamorphosis) and two phases of growth (larval and post-metamorphic). Though embryogenesis and metamorphosis produce species-specific features of PA cartilage shape, the extents to which shape and size change during growth and metamorphosis remain unaddressed. This study uses allometric equations and thin-plate spline, relative warp and elliptic Fourier analyses to describe shape and size trajectories for the ventral PA cartilages of the frog Xenopus laevis in tadpole and frog growth and metamorphosis. Cartilage sizes scale negatively with body size in both growth phases and cartilage shapes scale isometrically or close to it. This implies that most species-specific aspects of cartilage shape arise in embryogenesis and metamorphosis. Contributions from growth are limited to minor changes in lower jaw (LJ) curvature that produce relative gape narrowing and widening in tadpoles and frogs, respectively, and most cartilages becoming relatively thinner. Metamorphosis involves previously unreported decreases in cartilage size as well as changes in cartilage shape. The LJ becomes slightly longer, narrower and more curved, and the adult ceratohyal emerges from deep within the resorbing tadpole ceratohyal. This contrast in shape and size changes suggests a fundamental difference in the underlying cellular pathways. The observation that variation in PA cartilage shape decreases with tadpole growth supports the hypothesis that isometric growth is required for the metamorphic remodeling of PA cartilages. It also supports the existence of shape-regulating mechanisms that are specific to PA cartilages and that resist local adaptation and phenotypic plasticity. PMID

  6. Early-onset type 2 diabetes impairs skeletal acquisition in the male TALLYHO/JngJ mouse.

    PubMed

    Devlin, M J; Van Vliet, M; Motyl, K; Karim, L; Brooks, D J; Louis, L; Conlon, C; Rosen, C J; Bouxsein, M L

    2014-10-01

    Type 2 diabetes (T2D) incidence in adolescents is rising and may interfere with peak bone mass acquisition. We tested the effects of early-onset T2D on bone mass, microarchitecture, and strength in the TALLYHO/JngJ mouse, which develops T2D by 8 weeks of age. We assessed metabolism and skeletal acquisition in male TALLYHO/JngJ and SWR/J controls (n = 8-10/group) from 4 weeks to 8 and 17 weeks of age. Tallyho mice were obese; had an approximately 2-fold higher leptin and percentage body fat; and had lower bone mineral density vs SWR at all time points (P < .03 for all). Tallyho had severe deficits in distal femur trabecular bone volume fraction (-54%), trabecular number (-27%), and connectivity density (-82%) (P < .01 for all). Bone formation was higher in Tallyho mice at 8 weeks but lower by 17 weeks of age vs SWR despite similar numbers of osteoblasts. Bone marrow adiposity was 7- to 50-fold higher in Tallyho vs SWR. In vitro, primary bone marrow stromal cell differentiation into osteoblast and adipocyte lineages was similar in SWR and Tallyho, suggesting skeletal deficits were not due to intrinsic defects in Tallyho bone-forming cells. These data suggest the Tallyho mouse might be a useful model to study the skeletal effects of adolescent T2D.

  7. The autism associated MET receptor tyrosine kinase engages early neuronal growth mechanism and controls glutamatergic circuits development in the forebrain

    PubMed Central

    Peng, Yun; Lu, Zhongming; Li, Guohui; Piechowicz, Mariel; Anderson, Miranda; Uddin, Yasin; Wu, Jie; Qiu, Shenfeng

    2015-01-01

    The human MET gene imparts a replicated risk for autism spectrum disorder (ASD), and is implicated in the structural and functional integrity of brain. MET encodes a receptor tyrosine kinase, MET, which plays a pleiotropic role in embryogenesis and modifies a large number of neurodevelopmental events. Very little is known, however, on how MET signaling engages distinct cellular events to collectively affect brain development in ASD-relevant disease domains. Here, we show that MET protein expression is dynamically regulated and compartmentalized in developing neurons. MET is heavily expressed in neuronal growth cones at early developmental stages and its activation engages small GTPase Cdc42 to promote neuronal growth, dendritic arborization, and spine formation. Genetic ablation of MET signaling in mouse dorsal pallium leads to altered neuronal morphology indicative of early functional maturation. In contrast, prolonged activation of MET represses the formation and functional maturation of glutamatergic synapses. Moreover, manipulating MET signaling levels in vivo in the developing prefrontal projection neurons disrupts the local circuit connectivity made onto these neurons. Therefore, normal time-delimited MET signaling is critical in regulating the timing of neuronal growth, glutamatergic synapse maturation and cortical circuit function. Dysregulated MET signaling may lead to pathological changes in forebrain maturation and connectivity, and thus contribute to the emergence of neurological symptoms associated with ASD. PMID:26728565

  8. Wild worm embryogenesis harbors ubiquitous polygenic modifier variation.

    PubMed

    Paaby, Annalise B; White, Amelia G; Riccardi, David D; Gunsalus, Kristin C; Piano, Fabio; Rockman, Matthew V

    2015-08-22

    Embryogenesis is an essential and stereotypic process that nevertheless evolves among species. Its essentiality may favor the accumulation of cryptic genetic variation (CGV) that has no effect in the wild-type but that enhances or suppresses the effects of rare disruptions to gene function. Here, we adapted a classical modifier screen to interrogate the alleles segregating in natural populations of Caenorhabditis elegans: we induced gene knockdowns and used quantitative genetic methodology to examine how segregating variants modify the penetrance of embryonic lethality. Each perturbation revealed CGV, indicating that wild-type genomes harbor myriad genetic modifiers that may have little effect individually but which in aggregate can dramatically influence penetrance. Phenotypes were mediated by many modifiers, indicating high polygenicity, but the alleles tend to act very specifically, indicating low pleiotropy. Our findings demonstrate the extent of conditional functionality in complex trait architecture.

  9. Influence of low temperature preincubation on somatic embryogenesis and ethylene emanation from orchardgrass leaves

    NASA Technical Reports Server (NTRS)

    Tomaszewski, Z. Jr; Kuklin, A. I.; Sams, C. E.; Conger, B. V.

    1994-01-01

    The objectives of this study were to determine the effects of low temperature (4 degrees C) preincubation on somatic embryogenesis from orchardgrass (Dactylis glomerata L.) leaf cultures and to relate these effects to ethylene emanation during the preincubation and incubation periods. Experiments were also conducted with an ethylene biosynthesis inhibitor aminooxyacetic acid (AOA). Segments from the innermost two leaves were cultured on SH medium with 30 micromoles dicamba at 4 degrees C for 1 to 7 d before transfer to 21 degrees C. Results from a paired design showed that the embryogenic response of leaf segments preincubated at 4 degrees C was equal or superior to nonpreincubated leaves at all time periods. Ethylene emanation was decreased during the low temperature incubation. Transfer of leaf segments from 4 degrees C to 21 degrees C was accompanied by a burst of ethylene which rose to control levels within 30 min. AOA at 20 and 40 micromoles decreased ethylene emanation but did not stimulate the embryogenic response. We conclude that the stimulation of somatic embryogenesis by low temperature is probably due to factors other than suppression of ethylene biosynthesis.

  10. Identification of early zygotic genes in the yellow fever mosquito Aedes aegypti and discovery of a motif involved in early zygotic genome activation.

    PubMed

    Biedler, James K; Hu, Wanqi; Tae, Hongseok; Tu, Zhijian

    2012-01-01

    During early embryogenesis the zygotic genome is transcriptionally silent and all mRNAs present are of maternal origin. The maternal-zygotic transition marks the time over which embryogenesis changes its dependence from maternal RNAs to zygotically transcribed RNAs. Here we present the first systematic investigation of early zygotic genes (EZGs) in a mosquito species and focus on genes involved in the onset of transcription during 2-4 hr. We used transcriptome sequencing to identify the "pure" (without maternal expression) EZGs by analyzing transcripts from four embryonic time ranges of 0-2, 2-4, 4-8, and 8-12 hr, which includes the time of cellular blastoderm formation and up to the start of gastrulation. Blast of 16,789 annotated transcripts vs. the transcriptome reads revealed evidence for 63 (P<0.001) and 143 (P<0.05) nonmaternally derived transcripts having a significant increase in expression at 2-4 hr. One third of the 63 EZG transcripts do not have predicted introns compared to 10% of all Ae. aegypti genes. We have confirmed by RT-PCR that zygotic transcription starts as early as 2-3 hours. A degenerate motif VBRGGTA was found to be overrepresented in the upstream sequences of the identified EZGs using a motif identification software called SCOPE. We find evidence for homology between this motif and the TAGteam motif found in Drosophila that has been implicated in EZG activation. A 38 bp sequence in the proximal upstream sequence of a kinesin light chain EZG (KLC2.1) contains two copies of the mosquito motif. This sequence was shown to support EZG transcription by luciferase reporter assays performed on injected early embryos, and confers early zygotic activity to a heterologous promoter from a divergent mosquito species. The results of these studies are consistent with the model of early zygotic genome activation via transcriptional activators, similar to what has been found recently in Drosophila.

  11. The RNA-binding landscape of RBM10 and its role in alternative splicing regulation in models of mouse early development.

    PubMed

    Rodor, Julie; FitzPatrick, David R; Eyras, Eduardo; Cáceres, Javier F

    2017-01-02

    Mutations in the RNA-binding protein, RBM10, result in a human syndromic form of cleft palate, termed TARP syndrome. A role for RBM10 in alternative splicing regulation has been previously demonstrated in human cell lines. To uncover the cellular functions of RBM10 in a cell line that is relevant to the phenotype observed in TARP syndrome, we used iCLIP to identify its endogenous RNA targets in a mouse embryonic mandibular cell line. We observed that RBM10 binds to pre-mRNAs with significant enrichment in intronic regions, in agreement with a role for this protein in pre-mRNA splicing. In addition to protein-coding transcripts, RBM10 also binds to a variety of cellular RNAs, including non-coding RNAs, such as spliceosomal small nuclear RNAs, U2 and U12. RNA-seq was used to investigate changes in gene expression and alternative splicing in RBM10 KO mouse mandibular cells and also in mouse ES cells. We uncovered a role for RBM10 in the regulation of alternative splicing of common transcripts in both cell lines but also identified cell-type specific events. Importantly, those pre-mRNAs that display changes in alternative splicing also contain RBM10 iCLIP tags, suggesting a direct role of RBM10 in these events. Finally, we show that depletion of RBM10 in mouse ES cells leads to proliferation defects and to gross alterations in their differentiation potential. These results demonstrate a role for RBM10 in the regulation of alternative splicing in two cell models of mouse early development and suggests that mutations in RBM10 could lead to splicing changes that affect normal palate development and cause human disease.

  12. Ultrasound biomicroscopy in mouse cardiovascular development

    NASA Astrophysics Data System (ADS)

    Turnbull, Daniel H.

    2004-05-01

    The mouse is the preferred animal model for studying mammalian cardiovascular development and many human congenital heart diseases. Ultrasound biomicroscopy (UBM), utilizing high-frequency (40-50-MHz) ultrasound, is uniquely capable of providing in vivo, real-time microimaging and Doppler blood velocity measurements in mouse embryos and neonates. UBM analyses of normal and abnormal mouse cardiovascular function will be described to illustrate the power of this microimaging approach. In particular, real-time UBM images have been used to analyze dimensional changes in the mouse heart from embryonic to neonatal stages. UBM-Doppler has been used recently to examine the precise timing of onset of a functional circulation in early-stage mouse embryos, from the first detectable cardiac contractions. In other experiments, blood velocity waveforms have been analyzed to characterize the functional phenotype of mutant mouse embryos having defects in cardiac valve formation. Finally, UBM has been developed for real-time, in utero image-guided injection of mouse embryos, enabling cell transplantation and genetic gain-of-function experiments with transfected cells and retroviruses. In summary, UBM provides a unique and powerful approach for in vivo analysis and image-guided manipulation in normal and genetically engineered mice, over a wide range of embryonic to neonatal developmental stages.

  13. Gene function in early mouse embryonic stem cell differentiation

    PubMed Central

    Sene, Kagnew Hailesellasse; Porter, Christopher J; Palidwor, Gareth; Perez-Iratxeta, Carolina; Muro, Enrique M; Campbell, Pearl A; Rudnicki, Michael A; Andrade-Navarro, Miguel A

    2007-01-01

    Background Little is known about the genes that drive embryonic stem cell differentiation. However, such knowledge is necessary if we are to exploit the therapeutic potential of stem cells. To uncover the genetic determinants of mouse embryonic stem cell (mESC) differentiation, we have generated and analyzed 11-point time-series of DNA microarray data for three biologically equivalent but genetically distinct mESC lines (R1, J1, and V6.5) undergoing undirected differentiation into embryoid bodies (EBs) over a period of two weeks. Results We identified the initial 12 hour period as reflecting the early stages of mESC differentiation and studied probe sets showing consistent changes of gene expression in that period. Gene function analysis indicated significant up-regulation of genes related to regulation of transcription and mRNA splicing, and down-regulation of genes related to intracellular signaling. Phylogenetic analysis indicated that the genes showing the largest expression changes were more likely to have originated in metazoans. The probe sets with the most consistent gene changes in the three cell lines represented 24 down-regulated and 12 up-regulated genes, all with closely related human homologues. Whereas some of these genes are known to be involved in embryonic developmental processes (e.g. Klf4, Otx2, Smn1, Socs3, Tagln, Tdgf1), our analysis points to others (such as transcription factor Phf21a, extracellular matrix related Lama1 and Cyr61, or endoplasmic reticulum related Sc4mol and Scd2) that have not been previously related to mESC function. The majority of identified functions were related to transcriptional regulation, intracellular signaling, and cytoskeleton. Genes involved in other cellular functions important in ESC differentiation such as chromatin remodeling and transmembrane receptors were not observed in this set. Conclusion Our analysis profiles for the first time gene expression at a very early stage of mESC differentiation, and

  14. Developmental origins of neurotransmitter and transcriptome alterations in adult female zebrafish exposed to atrazine during embryogenesis.

    PubMed

    Wirbisky, Sara E; Weber, Gregory J; Sepúlveda, Maria S; Xiao, Changhe; Cannon, Jason R; Freeman, Jennifer L

    2015-07-03

    Atrazine is an herbicide applied to agricultural crops and is indicated to be an endocrine disruptor. Atrazine is frequently found to contaminate potable water supplies above the maximum contaminant level of 3μg/L as defined by the U.S. Environmental Protection Agency. The developmental origin of adult disease hypothesis suggests that toxicant exposure during development can increase the risk of certain diseases during adulthood. However, the molecular mechanisms underlying disease progression are still unknown. In this study, zebrafish embryos were exposed to 0, 0.3, 3, or 30μg/L atrazine throughout embryogenesis. Larvae were then allowed to mature under normal laboratory conditions with no further chemical treatment until 7 days post fertilization (dpf) or adulthood and neurotransmitter analysis completed. No significant alterations in neurotransmitter levels was observed at 7dpf or in adult males, but a significant decrease in 5-hydroxyindoleacetic acid (5-HIAA) and serotonin turnover was seen in adult female brain tissue. Transcriptomic analysis was completed on adult female brain tissue to identify molecular pathways underlying the observed neurological alterations. Altered expression of 1928, 89, and 435 genes in the females exposed to 0.3, 3, or 30μg/L atrazine during embryogenesis were identified, respectively. There was a high level of overlap between the biological processes and molecular pathways in which the altered genes were associated. Moreover, a subset of genes was down regulated throughout the serotonergic pathway. These results provide support of the developmental origins of neurological alterations observed in adult female zebrafish exposed to atrazine during embryogenesis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Rosmarinic acid plays a protective role in the embryogenesis of zebrafish exposed to food colours through its influence on aurora kinase A level.

    PubMed

    Swarnalatha, Y; Jerrine Joseph, I S; Jayakrishna, Tippabathani

    2017-05-01

    To evaluate the protective nature of the rosmarinic acid from Sphaeranthus amaranthoides during zebra fish embryogenesis. Rosmarinic acid was isolated from the S. amaranthoides. An accurate, sensitive and simple LC-MS analysis was performed to determine the rosmarinic acid from S. amaranthoides. In the present study, zebrafish embryos were exposed to crimson red and sunset yellow at a concentration of 0.1 and 0.5mg/l and the effect of these food colours on the levels of aurora kinase A was studied individually. Aurora kinase A levels are crucial for embryogenesis in zebrafish which is used as model in this study. The decrease of aurora kinase A levels in food colour treated embryos influences the embryogenesis, resulting in short and bent trunk leading to cell death and growth retardation. Elevated levels of aurora kinase A in rosmarinic acid treated groups can be attributed to the restoration of normal growth in zebra fish embryos with well developed brain and eyes. Further insilico docking studies were carried out and target was identified as rosmarinic acid. From the docking studies the docking poses and binding energy confirms that aurora kinase A is the target for rosmarinic acid. Rosmarinic acid was found to play a protective role in the embryogenesis of zebra fish exposed to food colours (crimson red and sunset yellow) through its influence on aurora kinase A levels. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Flight feather development: its early specialization during embryogenesis.

    PubMed

    Kondo, Mao; Sekine, Tomoe; Miyakoshi, Taku; Kitajima, Keiichi; Egawa, Shiro; Seki, Ryohei; Abe, Gembu; Tamura, Koji

    2018-01-01

    Flight feathers, a type of feather that is unique to extant/extinct birds and some non-avian dinosaurs, are the most evolutionally advanced type of feather. In general, feather types are formed in the second or later generation of feathers at the first and following molting, and the first molting begins at around two weeks post hatching in chicken. However, it has been stated in some previous reports that the first molting from the natal down feathers to the flight feathers is much earlier than that for other feather types, suggesting that flight feather formation starts as an embryonic event. The aim of this study was to determine the inception of flight feather morphogenesis and to identify embryological processes specific to flight feathers in contrast to those of down feathers. We found that the second generation of feather that shows a flight feather-type arrangement has already started developing by chick embryonic day 18, deep in the skin of the flight feather-forming region. This was confirmed by shh gene expression that shows barb pattern, and the expression pattern revealed that the second generation of feather development in the flight feather-forming region seems to start by embryonic day 14. The first stage at which we detected a specific morphology of the feather bud in the flight feather-forming region was embryonic day 11, when internal invagination of the feather bud starts, while the external morphology of the feather bud is radial down-type. The morphogenesis for the flight feather, the most advanced type of feather, has been drastically modified from the beginning of feather morphogenesis, suggesting that early modification of the embryonic morphogenetic process may have played a crucial role in the morphological evolution of this key innovation. Co-optation of molecular cues for axial morphogenesis in limb skeletal development may be able to modify morphogenesis of the feather bud, giving rise to flight feather-specific morphogenesis of traits.

  17. Epigenetic modulation by TFII-I during embryonic stem cell differentiation.

    PubMed

    Bayarsaihan, Dashzeveg; Makeyev, Aleksandr V; Enkhmandakh, Badam

    2012-10-01

    TFII-I transcription factors play an essential role during early vertebrate embryogenesis. Genome-wide mapping studies by ChIP-seq and ChIP-chip revealed that TFII-I primes multiple genomic loci in mouse embryonic stem cells and embryonic tissues. Moreover, many TFII-I-bound regions co-localize with H3K4me3/K27me3 bivalent chromatin within the promoters of lineage-specific genes. This minireview provides a summary of current knowledge regarding the function of TFII-I in epigenetic control of stem cell differentiation. Copyright © 2012 Wiley Periodicals, Inc.

  18. Gametic embryogenesis and haploid technology as valuable support to plant breeding.

    PubMed

    Germanà, Maria Antonietta

    2011-05-01

    Plant breeding is focused on continuously increasing crop production to meet the needs of an ever-growing world population, improving food quality to ensure a long and healthy life and address the problems of global warming and environment pollution, together with the challenges of developing novel sources of biofuels. The breeders' search for novel genetic combinations, with which to select plants with improved traits to satisfy both farmers and consumers, is endless. About half of the dramatic increase in crop yield obtained in the second half of the last century has been achieved thanks to the results of genetic improvement, while the residual advance has been due to the enhanced management techniques (pest and disease control, fertilization, and irrigation). Biotechnologies provide powerful tools for plant breeding, and among these ones, tissue culture, particularly haploid and doubled haploid technology, can effectively help to select superior plants. In fact, haploids (Hs), which are plants with gametophytic chromosome number, and doubled haploids (DHs), which are haploids that have undergone chromosome duplication, represent a particularly attractive biotechnological method to accelerate plant breeding. Currently, haploid technology, making possible through gametic embryogenesis the single-step development of complete homozygous lines from heterozygous parents, has already had a huge impact on agricultural systems of many agronomically important crops, representing an integral part in their improvement programmes. The aim of this review was to provide some background, recent advances, and future prospective on the employment of haploid technology through gametic embryogenesis as a powerful tool to support plant breeding.

  19. Lack of species-specific difference in pulmonary function when using mouse versus human plasma in a mouse model of hemorrhagic shock.

    PubMed

    Peng, Zhanglong; Pati, Shibani; Fontaine, Magali J; Hall, Kelly; Herrera, Anthony V; Kozar, Rosemary A

    2016-11-01

    Clinical studies have demonstrated that the early and empiric use of plasma improves survival after hemorrhagic shock. We have demonstrated in rodent models of hemorrhagic shock that resuscitation with plasma is protective to the lungs compared with lactated Ringer's solution. As our long-term objective is to determine the molecular mechanisms that modulate plasma's protective effects in injured bleeding patients, we have used human plasma in a mouse model of hemorrhagic shock. The goal of the current experiments is to determine if there are significant adverse effects on lung injury when using human versus mouse plasma in an established murine model of hemorrhagic shock and laparotomy. Mice underwent laparotomy and 90 minutes of hemorrhagic shock to a mean arterial pressure (MAP) of 35 ± 5 mm Hg followed by resuscitation at 1× shed blood using either mouse fresh frozen plasma (FFP), human FFP, or human lyophilized plasma. Mean arterial pressure was recorded during shock and for the first 30 minutes of resuscitation. After 3 hours, animals were killed, and lungs collected for analysis. There was a significant increase in early MAP when mouse FFP was used to resuscitate animals compared with human FFP or human lyophilized plasma. However, despite these differences, analysis of the mouse lungs revealed no significant differences in pulmonary histopathology, lung permeability, or lung edema between all three plasma groups. Analysis of neutrophil infiltration in the lungs revealed that mouse FFP decreased neutrophil influx as measured by neutrophil staining; however, myeloperoxidase immunostaining revealed no significant differences in between groups. The study of human plasma in a mouse model of hemorrhagic shock is feasible but does reveal some differences compared with mouse plasma-based resuscitation in physiologic measures such as MAP postresuscitation. Measures of end organ function such as lung injury appear to be comparable in this acute model of hemorrhagic

  20. Essential Role of Chromatin Remodeling Protein Bptf in Early Mouse Embryos and Embryonic Stem Cells

    PubMed Central

    Landry, Joseph; Sharov, Alexei A.; Piao, Yulan; Sharova, Lioudmila V.; Xiao, Hua; Southon, Eileen; Matta, Jennifer; Tessarollo, Lino; Zhang, Ying E.; Ko, Minoru S. H.; Kuehn, Michael R.; Yamaguchi, Terry P.; Wu, Carl

    2008-01-01

    We have characterized the biological functions of the chromatin remodeling protein Bptf (Bromodomain PHD-finger Transcription Factor), the largest subunit of NURF (Nucleosome Remodeling Factor) in a mammal. Bptf mutants manifest growth defects at the post-implantation stage and are reabsorbed by E8.5. Histological analyses of lineage markers show that Bptf−/− embryos implant but fail to establish a functional distal visceral endoderm. Microarray analysis at early stages of differentiation has identified Bptf-dependent gene targets including homeobox transcriptions factors and genes essential for the development of ectoderm, mesoderm, and both definitive and visceral endoderm. Differentiation of Bptf−/− embryonic stem cell lines into embryoid bodies revealed its requirement for development of mesoderm, endoderm, and ectoderm tissue lineages, and uncovered many genes whose activation or repression are Bptf-dependent. We also provide functional and physical links between the Bptf-containing NURF complex and the Smad transcription factors. These results suggest that Bptf may co-regulate some gene targets of this pathway, which is essential for establishment of the visceral endoderm. We conclude that Bptf likely regulates genes and signaling pathways essential for the development of key tissues of the early mouse embryo. PMID:18974875

  1. Otoprotective effects of mouse nerve growth factor in DBA/2J mice with early-onset progressive hearing loss.

    PubMed

    Wang, Qingzhu; Zhao, Hongchun; Zheng, Tihua; Wang, Wenjun; Zhang, Xiaolin; Wang, Andi; Li, Bo; Wang, Yanfei; Zheng, Qingyin

    2017-10-01

    As it displays progressive hair-cell loss and degeneration of spiral ganglion neurons (SGNs) characterized by early-onset progressive hearing loss (ePHL), DBA/2J is an inbred mouse strain widely used in hearing research. Mouse nerve growth factor (mNGF), as a common exogenous nerve growth factor (NGF), has been studied extensively for its ability to promote neuronal survival and growth. To determine whether mNGF can ameliorate progressive hearing loss (PHL) in DBA/2J mice, saline or mNGF was given to DBA/2J mice of either sex by daily intramuscular injection from the 1st to the 9th week after birth. At 5, 7, and 9 weeks of age, in comparison with vehicle groups, mNGF groups experienced decreased auditory-evoked brainstem response (ABR) thresholds and increased distortion product otoacoustic emission (DPOAE) amplitudes, the prevention of hair cell loss, and the inhibition of apoptosis of SGNs. Downregulation of Bak/Bax and Caspase genes and proteins in cochleae of mice receiving the mNGF treatment was detected by real-time PCR, Western blot, and immunohistochemistry. This suggests that the Bak-dependent mitochondrial apoptosis pathway may be involved in the otoprotective mechanism of mNGF in progressive hearing loss of DBA/2J mice. Our results demonstrate that mNGF can act as an otoprotectant in the DBA/2J mice for the early intervention of PHL and, thus, could become of great value in clinical applications. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Prenatal and Early Postnatal Odorant Exposure Heightens Odor-Evoked Mitral Cell Responses in the Mouse Olfactory Bulb

    PubMed Central

    2017-01-01

    Abstract Early sensory experience shapes the anatomy and function of sensory circuits. In the mouse olfactory bulb (OB), prenatal and early postnatal odorant exposure through odorized food (food/odorant pairing) not only increases the volume of activated glomeruli but also increases the number of mitral and tufted cells (M/TCs) connected to activated glomeruli. Given the importance of M/TCs in OB output and in mediating lateral inhibitory networks, increasing the number of M/TCs connected to a single glomerulus may significantly change odorant representation by increasing the total output of that glomerulus and/or by increasing the strength of lateral inhibition mediated by cells connected to the affected glomerulus. Here, we seek to understand the functional impact of this long-term odorant exposure paradigm on the population activity of mitral cells (MCs). We use viral expression of GCaMP6s to examine odor-evoked responses of MCs following prenatal and early postnatal odorant exposure to two dissimilar odorants, methyl salicylate (MS) and hexanal, which are both strong activators of glomeruli on the dorsal OB surface. Previous work suggests that odor familiarity may decrease odor-evoked MC response in rodents. However, we find that early food-based odorant exposure significantly changes MC responses in an unexpected way, resulting in broad increases in the amplitude, number, and reliability of excitatory MC responses across the dorsal OB. PMID:28955723

  3. Roles of Macrophages and Neutrophils in the Early Host Response to Bacillus anthracis Spores in a Mouse Model of Infection

    PubMed Central

    Cote, Christopher K.; Van Rooijen, Nico; Welkos, Susan L.

    2006-01-01

    The development of new approaches to combat anthrax requires that the pathogenesis and host response to Bacillus anthracis spores be better understood. We investigated the roles that macrophages and neutrophils play in the progression of infection by B. anthracis in a mouse model. Mice were treated with a macrophage depletion agent (liposome-encapsulated clodronate) or with a neutrophil depletion agent (cyclophosphamide or the rat anti-mouse granulocyte monoclonal antibody RB6-8C5), and the animals were then infected intraperitoneally or by aerosol challenge with fully virulent, ungerminated B. anthracis strain Ames spores. The macrophage-depleted mice were significantly more susceptible to the ensuing infection than the saline-pretreated mice, whereas the differences observed between the neutropenic mice and the saline-pretreated controls were generally not significant. We also found that augmenting peritoneal neutrophil populations before spore challenge did not increase resistance of the mice to infection. In addition, the bacterial load in macrophage-depleted mice was significantly greater and appeared significantly sooner than that observed with the saline-pretreated mice. However, the bacterial load in the neutropenic mice was comparable to that of the saline-pretreated mice. These data suggest that, in our model, neutrophils play a relatively minor role in the early host response to spores, whereas macrophages play a more dominant role in early host defenses against infection by B. anthracis spores. PMID:16369003

  4. Protective effect of [6]-gingerol on the ethanol-induced teratogenesis of cultured mouse embryos.

    PubMed

    Yon, Jung-Min; Baek, In-Jeoung; Lee, Se-Ra; Kim, Mi-Ra; Hong, Jin Tae; Yong, Hwanyul; Lee, Beom Jun; Yun, Young Won; Nam, Sang-Yoon

    2012-01-01

    Excessive ethanol consumption during pregnancy causes fetal alcohol syndrome. We investigated the effect of [6]-gingerol on ethanol-induced embryotoxicity using a whole embryo culture system. The morphological changes of embryos and the gene expression patterns of the antioxidant enzymes cytosolic glutathione peroxidase (cGPx), cytoplasmic Cu/Zn superoxide dismutase (SOD1), and Mn-SOD (SOD2), and SOD activity were examined in the cultured mouse embryos exposed to ethanol (5 μL/3 mL) and/or [6]-gingerol (1×10(-8) or 1×10(-7) μg/mL) for 2 days. In ethanol-exposed embryos, the standard morphological score of embryos was significantly decreased compared with those of the control (vehicle) group. However, cotreatment of embryos with [6]-gingerol and ethanol significantly improved all of the developmental parameters except crownrump length and head length, compared with those of the ethanol alone group. The mRNA expression levels of cGPx and SOD2, not SOD1, were decreased consistently, SOD activity were significantly decreased compared with the control group. However, the decreases in mRNA levels of antioxidant enzymes and SOD activity were significantly restored to the control levels by [6]-gingerol supplement. These results indicate that [6]-gingerol has a protective effect against ethanol-induced teratogenicity during mouse embryogenesis.

  5. Uterine NDRG2 expression is increased at implantation sites during early pregnancy in mice, and its down-regulation inhibits decidualization of mouse endometrial stromal cells.

    PubMed

    Gu, Yan; Zhang, Xuan; Yang, Qian; Wang, Jian-mei; He, Ya-ping; Sun, Zhao-gui; Zhang, Hui-qin; Wang, Jian

    2015-05-27

    N-myc down-regulated gene 2 (NDRG2) is a tumor suppressor involved in cell proliferation and differentiation. The aim of this study was to determine the uterine expression pattern of this gene during early pregnancy in mice. Uterine NDRG2 mRNA and protein expression levels were determined by RT-PCR and Western blot analyses, respectively, during the peri-implantation period in mice. Immunohistochemical (IHC) analysis was performed to examine the spatial localization of NDRG2 expression in mouse uterine tissues. The in vitro decidualization model of mouse endometrial stromal cells (ESCs) was used to evaluate decidualization of ESCs following NDRG2 knock down by small interfering RNA (siRNA). Statistical significance was analyzed by one-way ANOVA using SPSS 19.0 software. Uterine NDRG2 gene expression was significantly up-regulated and was predominantly localized to the secondary decidual zone on days 5 and 8 of pregnancy in mice. Its increased expression was associated with artificial decidualization as well as the activation of delayed implantation. Furthermore, uterine NDRG2 expression was induced by estrogen and progesterone treatments. The in vitro decidualization of mouse ESCs was accompanied by up-regulation of NDRG2 expression, and knock down of its expression in these cells by siRNA inhibited the decidualization process. These results suggest that NDRG2 might play an important role in the process of decidualization during early pregnancy.

  6. Sea Urchin Embryogenesis as Bioindicators of Marine Pollution in Impact Areas of the Sea of Japan/East Sea and the Sea of Okhotsk.

    PubMed

    Lukyanova, Olga N; Zhuravel, Elena V; Chulchekov, Denis N; Mazur, Andrey A

    2017-08-01

    The embryogenesis of the sea urchin sand dollar Scaphechinus mirabilis was used as bioindicators of seawater quality from the impact areas of the Sea of Japan/East Sea (Peter the Great Bay) and the Sea of Okhotsk (northwestern shelf of Sakhalin Island and western shelf of Kamchatka Peninsula). Fertilization membrane formation, first cleavage, blastula formation, gastrulation, and 2-armed and 4-armed pluteus formation have been analyzed and a number of abnormalities were calculated. Number of embryogenesis anomalies in sand dollar larvae exposed to sea water from different stations in Peter the Great Bay corresponds to pollution level at each area. The Sea of Okhotsk is the main fishing area for Russia. Anthropogenic impact on the marine ecosystem is caused by fishing and transport vessels mainly. But two shelf areas are considered as "hot spots" due to oil and gas drilling. Offshore oil exploitation on the northeastern Sakhalin Island has been started and at present time oil is being drill on oil-extracting platforms continuously. Significant reserves of hydrocarbons are prospected on western Kamchatka shelf, and exploitation drilling in this area was intensified in 2014. A higher number of abnormalities at gastrula and pluteus stages (19-36%) were detected for the stations around oil platforms near Sakhalin Island. On the western Kamchatka shelf number of abnormalities was 7-21%. Such anomalies as exogastrula, incomplete development of pairs of arms were not observed at all; only the delay of development was registered. Eggs, embryos, and larvae of sea urchins are the suitable bioindicators of early disturbances caused by marine pollution in impact ecosystems.

  7. Proteomic Analysis of Mouse Oocytes Identifies PRMT7 as a Reprogramming Factor that Replaces SOX2 in the Induction of Pluripotent Stem Cells.

    PubMed

    Wang, Bingyuan; Pfeiffer, Martin J; Drexler, Hannes C A; Fuellen, Georg; Boiani, Michele

    2016-08-05

    The reprogramming process that leads to induced pluripotent stem cells (iPSCs) may benefit from adding oocyte factors to Yamanaka's reprogramming cocktail (OCT4, SOX2, KLF4, with or without MYC; OSK(M)). We previously searched for such facilitators of reprogramming (the reprogrammome) by applying label-free LC-MS/MS analysis to mouse oocytes, producing a catalog of 28 candidates that are (i) able to robustly access the cell nucleus and (ii) shared between mature mouse oocytes and pluripotent embryonic stem cells. In the present study, we hypothesized that our 28 reprogrammome candidates would also be (iii) abundant in mature oocytes, (iv) depleted after the oocyte-to-embryo transition, and (v) able to potentiate or replace the OSKM factors. Using LC-MS/MS and isotopic labeling methods, we found that the abundance profiles of the 28 proteins were below those of known oocyte-specific and housekeeping proteins. Of the 28 proteins, only arginine methyltransferase 7 (PRMT7) changed substantially during mouse embryogenesis and promoted the conversion of mouse fibroblasts into iPSCs. Specifically, PRMT7 replaced SOX2 in a factor-substitution assay, yielding iPSCs. These findings exemplify how proteomics can be used to prioritize the functional analysis of reprogrammome candidates. The LC-MS/MS data are available via ProteomeXchange with identifier PXD003093.

  8. Defining the cause of skewed X-chromosome inactivation in X-linked mental retardation by use of a mouse model.

    PubMed

    Muers, Mary R; Sharpe, Jacqueline A; Garrick, David; Sloane-Stanley, Jacqueline; Nolan, Patrick M; Hacker, Terry; Wood, William G; Higgs, Douglas R; Gibbons, Richard J

    2007-06-01

    Extreme skewing of X-chromosome inactivation (XCI) is rare in the normal female population but is observed frequently in carriers of some X-linked mutations. Recently, it has been shown that various forms of X-linked mental retardation (XLMR) have a strong association with skewed XCI in female carriers, but the mechanisms underlying this skewing are unknown. ATR-X syndrome, caused by mutations in a ubiquitously expressed, chromatin-associated protein, provides a clear example of XLMR in which phenotypically normal female carriers virtually all have highly skewed XCI biased against the X chromosome that harbors the mutant allele. Here, we have used a mouse model to understand the processes causing skewed XCI. In female mice heterozygous for a null Atrx allele, we found that XCI is balanced early in embryogenesis but becomes skewed over the course of development, because of selection favoring cells expressing the wild-type Atrx allele. Unexpectedly, selection does not appear to be the result of general cellular-viability defects in Atrx-deficient cells, since it is restricted to specific stages of development and is not ongoing throughout the life of the animal. Instead, there is evidence that selection results from independent tissue-specific effects. This illustrates an important mechanism by which skewed XCI may occur in carriers of XLMR and provides insight into the normal role of ATRX in regulating cell fate.

  9. SMC5/6 is required for the formation of segregation-competent bivalent chromosomes during meiosis I in mouse oocytes.

    PubMed

    Hwang, Grace; Sun, Fengyun; O'Brien, Marilyn; Eppig, John J; Handel, Mary Ann; Jordan, Philip W

    2017-05-01

    SMC complexes include three major classes: cohesin, condensin and SMC5/6. However, the localization pattern and genetic requirements for the SMC5/6 complex during mammalian oogenesis have not previously been examined. In mouse oocytes, the SMC5/6 complex is enriched at the pericentromeric heterochromatin, and also localizes along chromosome arms during meiosis. The infertility phenotypes of females with a Zp3-Cre -driven conditional knockout (cKO) of Smc5 demonstrated that maternally expressed SMC5 protein is essential for early embryogenesis. Interestingly, protein levels of SMC5/6 complex components in oocytes decline as wild-type females age. When SMC5/6 complexes were completely absent in oocytes during meiotic resumption, homologous chromosomes failed to segregate accurately during meiosis I. Despite what appears to be an inability to resolve concatenation between chromosomes during meiosis, localization of topoisomerase IIα to bivalents was not affected; however, localization of condensin along the chromosome axes was perturbed. Taken together, these data demonstrate that the SMC5/6 complex is essential for the formation of segregation-competent bivalents during meiosis I, and findings suggest that age-dependent depletion of the SMC5/6 complex in oocytes could contribute to increased incidence of oocyte aneuploidy and spontaneous abortion in aging females. © 2017. Published by The Company of Biologists Ltd.

  10. Enhancer of zeste acts as a major developmental regulator of Ciona intestinalis embryogenesis

    PubMed Central

    Le Goff, Emilie; Martinand-Mari, Camille; Martin, Marianne; Feuillard, Jérôme; Boublik, Yvan; Godefroy, Nelly; Mangeat, Paul; Baghdiguian, Stephen; Cavalli, Giacomo

    2015-01-01

    ABSTRACT The paradigm of developmental regulation by Polycomb group (PcG) proteins posits that they maintain silencing outside the spatial expression domains of their target genes, particularly of Hox genes, starting from mid embryogenesis. The Enhancer of zeste [E(z)] PcG protein is the catalytic subunit of the PRC2 complex, which silences its targets via deposition of the H3K27me3 mark. Here, we studied the ascidian Ciona intestinalis counterpart of E(z). Ci-E(z) is detected by immunohistochemistry as soon as the 2- and 4-cell stages as a cytoplasmic form and becomes exclusively nuclear thereafter, whereas the H3K27me3 mark is detected starting from the gastrula stage and later. Morpholino invalidation of Ci-E(z) leads to the total disappearance of both Ci-E(z) protein and its H3K27me3 mark. Ci-E(z) morphants display a severe phenotype. Strikingly, the earliest defects occur at the 4-cell stage with the dysregulation of cell positioning and mitotic impairment. At later stages, Ci-E(z)-deficient embryos are affected by terminal differentiation defects of neural, epidermal and muscle tissues, by the failure to form a notochord and by the absence of caudal nerve. These major phenotypic defects are specifically rescued by injection of a morpholino-resistant Ci-E(z) mRNA, which restores expression of Ci-E(z) protein and re-deposition of the H3K27me3 mark. As observed by qPCR analyses, Ci-E(z) invalidation leads to the early derepression of tissue-specific developmental genes, whereas late-acting developmental genes are generally down-regulated. Altogether, our results suggest that Ci-E(z) plays a major role during embryonic development in Ciona intestinalis by silencing early-acting developmental genes in a Hox-independent manner. PMID:26276097

  11. Somatic embryogenesis from corolla tubes of interspecific amphiploids between cultivated sunflower (Helianthus annuus L.) and its wild species

    USDA-ARS?s Scientific Manuscript database

    Somatic embryogenesis in vitro provides an efficient means of plant multiplication, facilitating sunflower improvement and germplasm innovation. In the present study, using interspecific amphiploids (2n=4x=68) between cultivated sunflower and wild perennial Helianthus species as explant donors, soma...

  12. Micropropagation of Citrus spp. by organogenesis and somatic embryogenesis.

    PubMed

    Chiancone, Benedetta; Germanà, Maria Antonietta

    2013-01-01

    Citrus spp., the largest fruit crops produced worldwide, are usually asexually propagated by cuttings or grafting onto seedling rootstocks. Most of Citrus genotypes are characterized by polyembryony due to the occurrence of adventive nucellar embryos, which lead to the production of true-to-type plants by seed germination. Tissue culture and micropropagation, in particular, are valuable alternatives to traditional propagation to obtain a high number of uniform and healthy plants in a short time and in a small space. Moreover, in vitro propagation provides a rapid system to multiply the progeny obtained by breeding programs, allows the use of monoembryonic and seedless genotypes as rootstocks, and it is very useful also for breeding and germplasm preservation.In this chapter, two protocols regarding organogenesis of a rootstock and somatic embryogenesis of a cultivar have been described.

  13. ONTOGENY OF TRANSCRIPTION PROFILES DURING MOUSE EARLY CRANIOFACIAL DEVELOPMENT

    EPA Science Inventory

    Using the CD-1 mouse conceptus, we investigated gene expression changes found in vivo from gestational day (GD)8 through GD9 at 6h intervals, and then at 24h intervals through GD11. Data sets were analyzed for patterns in transcriptional expression over a time course as well as t...

  14. EARLY ONSET OF CRANIOSYNOSTOSIS IN AN APERT MOUSE MODEL REVEALS CRITICAL FEATURES OF THIS PATHOLOGY

    PubMed Central

    Holmes, Greg; Rothschild, Gerson; Roy, Upal Basu; Deng, Chu-Xia; Mansukhani, Alka; Basilico, Claudio

    2009-01-01

    Activating mutations of FGFRs1–3 cause craniosynostosis (CS), the premature fusion of cranial bones, in man and mouse. The mechanisms by which such mutations lead to CS have been variously ascribed to increased osteoblast proliferation, differentiation, and apoptosis, but it is not always clear how these disturbances relate to the process of suture fusion. We have reassessed coronal suture fusion in an Apert Fgfr2 (S252W) mouse model. We find that the critical event of CS is the early loss of basal sutural mesenchyme as the osteogenic fronts, expressing activated Fgfr2, unite to form a contiguous skeletogenic membrane. A mild increase in osteoprogenitor proliferation precedes but does not accompany this event, and apoptosis is insignificant. On the other hand, the more apical coronal suture initially forms appropriately but then undergoes fusion, albeit at a slower rate, accompanied by a significant decrease in osteoprogenitor proliferation, and increased osteoblast maturation. Apoptosis now accompanies fusion, but is restricted to bone fronts in contact with one another. We correlated these in vivo observations with the intrinsic effects of the activated Fgfr2 S252W mutation in primary osteoblasts in culture, which show an increased capacity for both proliferation and differentiation. Our studies suggest that the major determinant of Fgfr2-induced craniosynostosis is the failure to respond to signals that would halt the recruitment or the advancement of osteoprogenitor cells at the sites where sutures should normally form. PMID:19389359

  15. Polyamine and ethylene biosynthesis in relation to somatic embryogenesis in carrot (Daucus carota L.) cell cultures

    Treesearch

    Subhash C. Minocha; Cheryl A. Robie; Akhtar J. Khan; Nancy S. Papa; Andrew I. Samuelsen; Rakesh Minocha

    1990-01-01

    Carrot cell cultures provide a model experimental system for the analysis of biochemical and molecular events associated with morphogenesis in plants (3, 4, 5, 14). Among the biochemical changes accompanying somatic embryogenesis in this tissue is an increased biosynthesis ofpolyamines (1, 2, 7, 10, 11, 13). A variety of inhibitors of polyamine biosynthetic enzymes...

  16. The importance of SERINE DECARBOXYLASE1 (SDC1) and ethanolamine biosynthesis during embryogenesis of Arabidopsis thaliana.

    PubMed

    Yunus, Ian Sofian; Liu, Yu-Chi; Nakamura, Yuki

    2016-11-01

    In plants, ethanolamine is considered a precursor for the synthesis of choline, which is an essential dietary nutrient for animals. An enzyme serine decarboxylase (SDC) has been identified and characterized in Arabidopsis, which directly converts serine to ethanolamine, a precursor to phosphorylethanolamine and its subsequent metabolites in plants. However, the importance of SDC and ethanolamine production in plant growth and development remains unclear. Here, we show that SDC is required for ethanolamine biosynthesis in vivo and essential in plant embryogenesis in Arabidopsis. The knockout of SDC1 caused an embryonic lethal defect due to the developmental arrest of the embryos at the heart stage. During embryo development, the expression was observed at the later stages, at which developmental defect occurred in the knockout mutant. Overexpression of SDC1 in planta increased levels of ethanolamine, phosphatidylethanolamine, and phosphatidylcholine both in leaves and siliques. These results suggest that SDC1 plays an essential role in ethanolamine biosynthesis during the embryogenesis in Arabidopsis. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  17. Transcription of mouse Sp2 yields alternatively spliced and sub-genomic mRNAs in a tissue- and cell-type-specific fashion.

    PubMed

    Yin, Haifeng; Nichols, Teresa D; Horowitz, Jonathan M

    2010-07-01

    The Sp-family of transcription factors is comprised by nine members, Sp1-9, that share a highly conserved DNA-binding domain. Sp2 is a poorly characterized member of this transcription factor family that is widely expressed in murine and human cell lines yet exhibits little DNA-binding or trans-activation activity in these settings. As a prelude to the generation of a "knock-out" mouse strain, we isolated a mouse Sp2 cDNA and performed a detailed analysis of Sp2 transcription in embryonic and adult mouse tissues. We report that (1) the 5' untranslated region of Sp2 is subject to alternative splicing, (2) Sp2 transcription is regulated by at least two promoters that differ in their cell-type specificity, (3) one Sp2 promoter is highly active in nine mammalian cell lines and strains and is regulated by at least five discrete stimulatory and inhibitory elements, (4) a variety of sub-genomic messages are synthesized from the Sp2 locus in a tissue- and cell-type-specific fashion and these transcripts have the capacity to encode a novel partial-Sp2 protein, and (5) RNA in situ hybridization assays indicate that Sp2 is widely expressed during mouse embryogenesis, particularly in the embryonic brain, and robust Sp2 expression occurs in neurogenic regions of the post-natal and adult brain. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  18. A mouse model for creatine transporter deficiency reveals early onset cognitive impairment and neuropathology associated with brain aging.

    PubMed

    Baroncelli, Laura; Molinaro, Angelo; Cacciante, Francesco; Alessandrì, Maria Grazia; Napoli, Debora; Putignano, Elena; Tola, Jonida; Leuzzi, Vincenzo; Cioni, Giovanni; Pizzorusso, Tommaso

    2016-10-01

    Mutations in the creatine (Cr) transporter (CrT) gene lead to cerebral creatine deficiency syndrome-1 (CCDS1), an X-linked metabolic disorder characterized by cerebral Cr deficiency causing intellectual disability, seizures, movement and autistic-like behavioural disturbances, language and speech impairment. Since no data are available about the neural and molecular underpinnings of this disease, we performed a longitudinal analysis of behavioural and pathological alterations associated with CrT deficiency in a CCDS1 mouse model. We found precocious cognitive and autistic-like defects, mimicking the early key features of human CCDS1. Moreover, mutant mice displayed a progressive impairment of short and long-term declarative memory denoting an early brain aging. Pathological examination showed a prominent loss of GABAergic synapses, marked activation of microglia, reduction of hippocampal neurogenesis and the accumulation of autofluorescent lipofuscin. Our data suggest that brain Cr depletion causes both early intellectual disability and late progressive cognitive decline, and identify novel targets to design intervention strategies aimed at overcoming brain CCDS1 alterations. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Defining the molecular pathologies in cloaca malformation: similarities between mouse and human

    PubMed Central

    Runck, Laura A.; Method, Anna; Bischoff, Andrea; Levitt, Marc; Peña, Alberto; Collins, Margaret H.; Gupta, Anita; Shanmukhappa, Shiva; Wells, James M.; Guasch, Géraldine

    2014-01-01

    Anorectal malformations are congenital anomalies that form a spectrum of disorders, from the most benign type with excellent functional prognosis, to very complex, such as cloaca malformation in females in which the rectum, vagina and urethra fail to develop separately and instead drain via a single common channel into the perineum. The severity of this phenotype suggests that the defect occurs in the early stages of embryonic development of the organs derived from the cloaca. Owing to the inability to directly investigate human embryonic cloaca development, current research has relied on the use of mouse models of anorectal malformations. However, even studies of mouse embryos lack analysis of the earliest stages of cloaca patterning and morphogenesis. Here we compared human and mouse cloaca development and retrospectively identified that early mis-patterning of the embryonic cloaca might underlie the most severe forms of anorectal malformation in humans. In mouse, we identified that defective sonic hedgehog (Shh) signaling results in early dorsal-ventral epithelial abnormalities prior to the reported defects in septation. This is manifested by the absence of Sox2 and aberrant expression of keratins in the embryonic cloaca of Shh knockout mice. Shh knockout embryos additionally develop a hypervascular stroma, which is defective in BMP signaling. These epithelial and stromal defects persist later, creating an indeterminate epithelium with molecular alterations in the common channel. We then used these animals to perform a broad comparison with patients with mild-to-severe forms of anorectal malformations including cloaca malformation. We found striking parallels with the Shh mouse model, including nearly identical defective molecular identity of the epithelium and surrounding stroma. Our work strongly suggests that early embryonic cloacal epithelial differentiation defects might be the underlying cause of severe forms of anorectal malformations in humans. Moreover

  20. Relocalization of STIM1 in mouse oocytes at fertilization: early involvement of store-operated calcium entry.

    PubMed

    Gómez-Fernández, Carolina; Pozo-Guisado, Eulalia; Gañán-Parra, Miguel; Perianes, Mario J; Alvarez, Ignacio S; Martín-Romero, Francisco Javier

    2009-08-01

    Calcium waves represent one of the most important intracellular signaling events in oocytes at fertilization required for the exit from metaphase arrest and the resumption of the cell cycle. The molecular mechanism ruling this signaling has been described in terms of the contribution of intracellular calcium stores to calcium spikes. In this work, we considered the possible contribution of store-operated calcium entry (SOCE) to this signaling, by studying the localization of the protein STIM1 in oocytes. STIM1 has been suggested to play a key role in the recruitment and activation of plasma membrane calcium channels, and we show here that mature mouse oocytes express this protein distributed in discrete clusters throughout their periphery in resting cells, colocalizing with the endoplasmic reticulum marker calreticulin. However, immunolocalization of the endogenous STIM1 showed considerable redistribution over larger areas or patches covering the entire periphery of the oocyte during Ca(2+) store depletion induced with thapsigargin or ionomycin. Furthermore, pharmacological activation of endogenous phospholipase C induced a similar pattern of redistribution of STIM1 in the oocyte. Finally, fertilization of mouse oocytes revealed a significant and rapid relocalization of STIM1, similar to that found after pharmacological Ca(2+) store depletion. This particular relocalization supports a role for STIM1 and SOCE in the calcium signaling during early stages of fertilization.

  1. In vivo quantitative bioluminescence tomography using heterogeneous and homogeneous mouse models.

    PubMed

    Liu, Junting; Wang, Yabin; Qu, Xiaochao; Li, Xiangsi; Ma, Xiaopeng; Han, Runqiang; Hu, Zhenhua; Chen, Xueli; Sun, Dongdong; Zhang, Rongqing; Chen, Duofang; Chen, Dan; Chen, Xiaoyuan; Liang, Jimin; Cao, Feng; Tian, Jie

    2010-06-07

    Bioluminescence tomography (BLT) is a new optical molecular imaging modality, which can monitor both physiological and pathological processes by using bioluminescent light-emitting probes in small living animal. Especially, this technology possesses great potential in drug development, early detection, and therapy monitoring in preclinical settings. In the present study, we developed a dual modality BLT prototype system with Micro-computed tomography (MicroCT) registration approach, and improved the quantitative reconstruction algorithm based on adaptive hp finite element method (hp-FEM). Detailed comparisons of source reconstruction between the heterogeneous and homogeneous mouse models were performed. The models include mice with implanted luminescence source and tumor-bearing mice with firefly luciferase report gene. Our data suggest that the reconstruction based on heterogeneous mouse model is more accurate in localization and quantification than the homogeneous mouse model with appropriate optical parameters and that BLT allows super-early tumor detection in vivo based on tomographic reconstruction of heterogeneous mouse model signal.

  2. Spatio-temporal accumulation and activity of calcium-dependent protein kinases during embryogenesis, seed development, and germination in sandalwood.

    PubMed

    Anil, V S; Harmon, A C; Rao, K S

    2000-04-01

    Western-blot analysis and protein kinase assays identified two Ca(2+)-dependent protein kinases (CDPKs) of 55 to 60 kD in soluble protein extracts of embryogenic cultures of sandalwood (Santalum album L.). However, these sandalwood CDPKs (swCDPKs) were absent in plantlets regenerated from somatic embryos. swCDPKs exhibited differential expression (monitored at the level of the protein) and activity in different developmental stages. Zygotic embryos, seedlings, and endosperm showed high accumulation of swCDPK, but the enzyme was not detected in the soluble proteins of shoots and flowers. swCDPK exhibited a temporal pattern of expression in endosperm, showing high accumulation and activity in mature fruit and germinating stages; the enzyme was localized strongly in the storage bodies of the endosperm cells. The study also reports for the first time to our knowledge a post-translational inhibition/inactivation of swCDPK in zygotic embryos during seed dormancy and early stages of germination. The temporal expression of swCDPK during somatic/zygotic embryogenesis, seed maturation, and germination suggests involvement of the enzyme in these developmental processes.

  3. Functional Genomic and Proteomic Analysis Reveals Disruption of Myelin-Related Genes and Translation in a Mouse Model of Early Life Neglect

    PubMed Central

    Bordner, Kelly A.; George, Elizabeth D.; Carlyle, Becky C.; Duque, Alvaro; Kitchen, Robert R.; Lam, TuKiet T.; Colangelo, Christopher M.; Stone, Kathryn L.; Abbott, Thomas B.; Mane, Shrikant M.; Nairn, Angus C.; Simen, Arthur A.

    2011-01-01

    Early life neglect is an important public health problem which can lead to lasting psychological dysfunction. Good animal models are necessary to understand the mechanisms responsible for the behavioral and anatomical pathology that results. We recently described a novel model of early life neglect, maternal separation with early weaning (MSEW), that produces behavioral changes in the mouse that persist into adulthood. To begin to understand the mechanism by which MSEW leads to these changes we applied cDNA microarray, next-generation RNA-sequencing (RNA-seq), label-free proteomics, multiple reaction monitoring (MRM) proteomics, and methylation analysis to tissue samples obtained from medial prefrontal cortex to determine the molecular changes induced by MSEW that persist into adulthood. The results show that MSEW leads to dysregulation of markers of mature oligodendrocytes and genes involved in protein translation and other categories, an apparent downward biasing of translation, and methylation changes in the promoter regions of selected dysregulated genes. These findings are likely to prove useful in understanding the mechanism by which early life neglect affects brain structure, cognition, and behavior. PMID:21629843

  4. Tissue distribution and early developmental expression patterns of aldolase A, B, and C in grass carp Ctenopharyngodon idellus.

    PubMed

    Fan, J J; Bai, J J; Ma, D M; Yu, L Y; Jiang, P

    2017-09-27

    Aldolase is a key enzyme involved in glycolysis, gluconeogenesis, and the pentose phosphate pathway. To establish the expression patterns of all three aldolase isozyme genes in different tissues and during early embryogenesis in lower vertebrates, as well as to explore the functional differences between these three isozymes, the grass carp was selected as a model owing to its relatively high glucose-metabolizing capability. Based on the cDNA sequences of the aldolase A, B, and C genes, the expression patterns of these three isozymes were analyzed in different tissues and during early embryogenesis using quantitative real-time polymerase chain reaction (qRT-PCR). Sequence analysis of cDNAs indicated that aldolase A, B, and C (GenBank accession numbers: KM192250, KM192251, and KM192252) consist of 364, 364, and 363 amino acids, respectively. The qRT-PCR results showed that the expression levels of aldolase A, B, and C were highest in the muscle, liver, and brain, respectively. Aldolase A and C exhibited similar expression patterns during embryogenesis, with high levels observed in unfertilized and fertilized eggs and at the blastocyst stage, followed by a decline and then increase after organogenesis. In contrast, aldolase B transcript was not detected during the unfertilized egg stage, and appeared only from gastrulation; the expression increased markedly during the feeding period (72 h after hatching), at which point the level was higher than those of aldolase A and C. These data suggest that the glucose content of grass carp starter feed should be adjusted according to the metabolic activity of aldolase B.

  5. Aquinas's account of human embryogenesis and recent interpretations.

    PubMed

    Eberl, Jason T

    2005-08-01

    In addressing bioethical issues at the beginning of human life, such as abortion, in vitro fertilization, and embryonic stem cell research, one primary concern regards establishing when a developing human embryo or fetus can be considered a person. Thomas Aquinas argues that an embryo or fetus is not a human person until its body is informed by a rational soul. Aquinas's explicit account of human embryogenesis has been generally rejected by contemporary scholars due to its dependence upon medieval biological data, which has been far surpassed by current scientific research. A number of scholars, however, have attempted to combine Aquinas's basic metaphysical account of human nature with current embryological data to develop a contemporary Thomistic account of a human person's beginning. In this article, I discuss two recent interpretations in which it is argued that a human person does not begin to exist until a fetus has developed a functioning cerebral cortex.

  6. Wild worm embryogenesis harbors ubiquitous polygenic modifier variation

    PubMed Central

    Paaby, Annalise B; White, Amelia G; Riccardi, David D; Gunsalus, Kristin C; Piano, Fabio; Rockman, Matthew V

    2015-01-01

    Embryogenesis is an essential and stereotypic process that nevertheless evolves among species. Its essentiality may favor the accumulation of cryptic genetic variation (CGV) that has no effect in the wild-type but that enhances or suppresses the effects of rare disruptions to gene function. Here, we adapted a classical modifier screen to interrogate the alleles segregating in natural populations of Caenorhabditis elegans: we induced gene knockdowns and used quantitative genetic methodology to examine how segregating variants modify the penetrance of embryonic lethality. Each perturbation revealed CGV, indicating that wild-type genomes harbor myriad genetic modifiers that may have little effect individually but which in aggregate can dramatically influence penetrance. Phenotypes were mediated by many modifiers, indicating high polygenicity, but the alleles tend to act very specifically, indicating low pleiotropy. Our findings demonstrate the extent of conditional functionality in complex trait architecture. DOI: http://dx.doi.org/10.7554/eLife.09178.001 PMID:26297805

  7. Carry-over effects modulated by salinity during the early ontogeny of the euryhaline crab Hemigrapsus crenulatus from the Southeastern Pacific coast: Development time and carbon and energy content of offspring.

    PubMed

    Urzúa, Ángel; Bascur, Miguel; Guzmán, Fabián; Urbina, Mauricio

    2018-03-01

    Hemigrapsus crenulatus is a key species of coastal and estuarine ecosystems in the Southeastern Pacific and New Zealand. Since the gravid females-and their embryos-develop under conditions of variable salinity, we propose that low external salinity will be met with an increase in energy expenditures in order to maintain osmoregulation; subsequently, the use of energy reserves for reproduction will be affected. In this study, we investigate in H. crenulatus whether 1) the biomass and energy content of embryos is influenced by salinity experienced during oogenesis and embryogenesis and 2) how variation in the biomass and energy content of embryos affects larval energetic condition at hatching. Here at low salinity (5PSU), egg-bearing females experienced massive and frequent egg losses, and therefore the development of their eggs during embryogenesis was not completed. In turn, at intermediate and high salinity (15 and 30PSU) embryogenesis was completed, egg development was successful, and larvae were obtained. Consistently, larvae hatched from eggs produced and incubated at high salinity (30PSU) were larger, had higher dry weight, and had increased carbon content and energy than larvae hatched from eggs produced at intermediate salinity (15PSU). From these results, it is seen that the size and biomass of early life stages of H. crenulatus can be affected by environmental salinity experienced during oogenesis and embryogenesis, and this variation can then directly affect the energetic condition of offspring at birth. Therefore, this study reveals a "cascade effect" modulated by salinity during the early ontogeny. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. A protein domain-based interactome network for C. elegans early embryogenesis

    PubMed Central

    Boxem, Mike; Maliga, Zoltan; Klitgord, Niels; Li, Na; Lemmens, Irma; Mana, Miyeko; de Lichtervelde, Lorenzo; Mul, Joram D.; van de Peut, Diederik; Devos, Maxime; Simonis, Nicolas; Yildirim, Muhammed A.; Cokol, Murat; Kao, Huey-Ling; de Smet, Anne-Sophie; Wang, Haidong; Schlaitz, Anne-Lore; Hao, Tong; Milstein, Stuart; Fan, Changyu; Tipsword, Mike; Drew, Kevin; Galli, Matilde; Rhrissorrakrai, Kahn; Drechsel, David; Koller, Daphne; Roth, Frederick P.; Iakoucheva, Lilia M.; Dunker, A. Keith; Bonneau, Richard; Gunsalus, Kristin C.; Hill, David E.; Piano, Fabio; Tavernier, Jan; van den Heuvel, Sander; Hyman, Anthony A.; Vidal, Marc

    2008-01-01

    Summary Many protein-protein interactions are mediated through independently folding modular domains. Proteome-wide efforts to model protein-protein interaction or “interactome” networks have largely ignored this modular organization of proteins. We developed an experimental strategy to efficiently identify interaction domains and generated a domain-based interactome network for proteins involved in C. elegans early embryonic cell divisions. Minimal interacting regions were identified for over 200 proteins, providing important information on their domain organization. Furthermore, our approach increased the sensitivity of the two-hybrid system, resulting in a more complete interactome network. This interactome modeling strategy revealed new insights into C. elegans centrosome function and is applicable to other biological processes in this and other organisms. PMID:18692475

  9. Coordinated metabolic transitions during Drosophila embryogenesis and the onset of aerobic glycolysis.

    PubMed

    Tennessen, Jason M; Bertagnolli, Nicolas M; Evans, Janelle; Sieber, Matt H; Cox, James; Thummel, Carl S

    2014-03-12

    Rapidly proliferating cells such as cancer cells and embryonic stem cells rely on a specialized metabolic program known as aerobic glycolysis, which supports biomass production from carbohydrates. The fruit fly Drosophila melanogaster also utilizes aerobic glycolysis to support the rapid growth that occurs during larval development. Here we use singular value decomposition analysis of modENCODE RNA-seq data combined with GC-MS-based metabolomic analysis to analyze the changes in gene expression and metabolism that occur during Drosophila embryogenesis, spanning the onset of aerobic glycolysis. Unexpectedly, we find that the most common pattern of co-expressed genes in embryos includes the global switch to glycolytic gene expression that occurs midway through embryogenesis. In contrast to the canonical aerobic glycolytic pathway, however, which is accompanied by reduced mitochondrial oxidative metabolism, the expression of genes involved in the tricarboxylic cycle (TCA cycle) and the electron transport chain are also upregulated at this time. Mitochondrial activity, however, appears to be attenuated, as embryos exhibit a block in the TCA cycle that results in elevated levels of citrate, isocitrate, and α-ketoglutarate. We also find that genes involved in lipid breakdown and β-oxidation are upregulated prior to the transcriptional initiation of glycolysis, but are downregulated before the onset of larval development, revealing coordinated use of lipids and carbohydrates during development. These observations demonstrate the efficient use of nutrient stores to support embryonic development, define sequential metabolic transitions during this stage, and demonstrate striking similarities between the metabolic state of late-stage fly embryos and tumor cells. Copyright © 2014 Tennessen et al.

  10. Adhesion mechanisms in embryogenesis and in cancer invasion and metastasis.

    PubMed

    Thiery, J P; Boyer, B; Tucker, G; Gavrilovic, J; Valles, A M

    1988-01-01

    Cell-substratum and cell-cell adhesion mechanisms contribute to the development of animal form. The adhesive status of embryonic cells has been analysed during epithelial-mesenchymal cell interconversion and in cell migrations. Clear-cut examples of the modulation of cell adhesion molecules (CAMs) have been described at critical periods of morphogenesis. In chick embryos the three primary CAMs (N-CAM. L-CAM and N-cadherin) present early in embryogenesis are expressed later in a defined pattern during morphogenesis and histogenesis. The axial mesoderm derived from gastrulating cells expresses increasing amounts of N-cadherin and N-CAM. During metamerization these two adhesion molecules become abundant at somitic cell surfaces. Both CAMs are functional in an in vitro aggregation assay; however, the calcium-dependent adhesion molecule N-cadherin is more sensitive to perturbation by specific antibodies. Neural crest cells which separate from the neural epithelium lose their primary CAMs in a defined time-sequence. Adhesion to fibronectins via specific surface receptors becomes a predominant interaction during the migratory process, while some primary and secondary CAMs are expressed de novo during the ontogeny of the peripheral nervous system. In vitro, different fibronectin functional domains have been identified in the attachment, spreading and migration of neural crest cells. The fibronectin receptors which transduce the adhesive signals play a key role in the control of cell movement. All these results have prompted us to examine whether similar mechanisms operate in carcinoma cell invasion and metastasis. In vitro, rat bladder transitional carcinoma cells convert reversibly into invasive mesenchymal cells. A rapid modulation of adhesive properties is found during the epithelial-mesenchymal carcinoma cell interconversion. The different model systems analysed demonstrate that a limited repertoire of adhesion molecules, expressed in a well-defined spatiotemporal

  11. Metabolic and mitochondrial dysfunction in early mouse embryos following maternal dietary protein intervention.

    PubMed

    Mitchell, Megan; Schulz, Samantha L; Armstrong, David T; Lane, Michelle

    2009-04-01

    Dietary supply of nutrients, both periconception and during pregnancy, influence the growth and development of the fetus and offspring and their health into adult life. Despite the importance of research efforts surrounding the developmental origins of health and disease hypothesis, the biological mechanisms involved remain elusive. Mitochondria are of major importance in the oocyte and early embryo, particularly as a source of ATP generation, and perturbations in their function have been related to reduced embryo quality. The present study examined embryo development following periconception exposure of females to a high-protein diet (HPD) or a low-protein diet (LPD) relative to a medium-protein diet (MPD; control), and we hypothesized that perturbed mitochondrial metabolism in the mouse embryo may be responsible for the impaired embryo and fetal development reported by others. Although the rate of development to the blastocyst stage did not differ between diets, both the HPD and LPD reduced the number of inner cell mass cells in the blastocyst-stage embryo. Furthermore, mitochondrial membrane potential was reduced and mitochondrial calcium levels increased in the 2-cell embryo. Embryos from HPD females had elevated levels of reactive oxygen species and ADP concentrations, indicative of metabolic stress and, potentially, the uncoupling of oxidative phosphorylation, whereas embryos from LPD females had reduced mitochondrial clustering around the nucleus, suggestive of an overall quietening of metabolism. Thus, although periconception dietary supply of different levels of protein is permissive of development, mitochondrial metabolism is altered in the early embryo, and the nature of the perturbation differs between HPD and LPD exposure.

  12. New phenotypic aspects of the decidual spiral artery wall during early post-implantation mouse pregnancy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elia, Artemis; Charalambous, Fotini; Georgiades, Pantelis, E-mail: pgeor@ucy.ac.cy

    Highlights: Black-Right-Pointing-Pointer Spiral artery (SA) wall remodeling (SAR) is ill-defined and clinically important. Black-Right-Pointing-Pointer SA muscular phenotype prior to and during SAR in mice is underexplored. Black-Right-Pointing-Pointer SA muscular wall consists of contractile and non-contractile components. Black-Right-Pointing-Pointer SA wall non-contractile component may be synthetic smooth muscle. Black-Right-Pointing-Pointer Timing and extent of SA wall contractile component loss is revealed. -- Abstract: During pregnancy the walls of decidual spiral arteries (SAs) undergo clinically important structural modifications crucial for embryo survival/growth and maternal health. However, the mechanisms of SA remodeling (SAR) are poorly understood. Although an important prerequisite to this understanding is knowledgemore » about the phenotype of SA muscular wall prior to and during the beginning of mouse SAR, this remains largely unexplored and was the main aim of this work. Using histological and immunohistochemical techniques, this study shows for the first time that during early mouse gestation, from embryonic day 7.5 (E7.5) to E10.5, the decidual SA muscular coat is not a homogeneous structure, but consists of two concentric layers. The first is a largely one cell-thick sub-endothelial layer of contractile mural cells (positive for {alpha}-smooth muscle actin, calponin and SM22{alpha}) with pericyte characteristics (NG2 positive). The second layer is thicker, and evidence is presented that it may be of the synthetic/proliferative smooth muscle phenotype, based on absence ({alpha}-smooth muscle actin and calponin) or weak (SM22{alpha}) expression of contractile mural cell markers, and presence of synthetic smooth muscle characteristics (expression of non-muscle Myosin heavy chain-IIA and of the cell proliferation marker PCNA). Importantly, immunohistochemistry and morphometrics showed that the contractile mural cell layer although prominent at E7

  13. Seed-specific transcription factor HSFA9 links late embryogenesis and early photomorphogenesis

    PubMed Central

    Prieto-Dapena, Pilar; Almoguera, Concepción; Personat, José-María; Merchan, Francisco

    2017-01-01

    Abstract HSFA9 is a seed-specific transcription factor that in sunflower (Helianthus annuus) is involved in desiccation tolerance and longevity. Here we show that the constitutive overexpression of HSFA9 in tobacco (Nicotiana tabacum) seedlings attenuated hypocotyl growth under darkness and accelerated the initial photosynthetic development. Plants overexpressing HSFA9 increased accumulation of carotenoids, chlorophyllide, and chlorophyll, and displayed earlier unfolding of the cotyledons. HSFA9 enhanced phytochrome-dependent light responses, as shown by an intensified hypocotyl length reduction after treatments with continuous far-red or red light. This observation indicated the involvement of at least two phytochromes: PHYA and PHYB. Reduced hypocotyl length under darkness did not depend on phytochrome photo-activation; this was inferred from the lack of effect observed using far-red light pulses applied before the dark treatment. HSFA9 increased the expression of genes that activate photomorphogenesis, including PHYA, PHYB, and HY5. HSFA9 might directly upregulate PHYA and indirectly affect PHYB transcription, as suggested by transient expression assays. Converse effects on gene expression, greening, and cotyledon unfolding were observed using a dominant-negative form of HSFA9, which was overexpressed under a seed-specific promoter. This work uncovers a novel transcriptional link, through HSFA9, between seed maturation and early photomorphogenesis. In all, our data suggest that HSFA9 enhances photomorphogenesis via early transcriptional effects that start in seeds under darkness. PMID:28207924

  14. Developmental regulation of neuroligin genes in Japanese rice fish (oryzias latipes) embryogenesis maintains the rhythym during ethanol-in

    USDA-ARS?s Scientific Manuscript database

    Although prenatal alcohol exposure is the potential cause of fetal alcohol spectrum disorder (FASD) in humans, the molecular mechanism(s) of FASD is yet unknown. We have used Japanese rice fish (Oryzias latipes) embryogenesis as an animal model of FASD and reported that this model has effectively ge...

  15. Influences of DMP on the Fertilization Process and Subsequent Embryogenesis of Abalone (Haliotis diversicolor supertexta) by Gametes Exposure

    PubMed Central

    Cai, Zhong-Hua

    2011-01-01

    Di-methyl phthalate (DMP), a typical endocrine disrupting chemical (EDC), is ubiquitously distributed in aquatic environments; yet studies regarding its impact on gametes and the resulting effects on embryogenesis in marine gastropods are relatively scarce. In this study, the influences of DMP on the gametes and subsequent developmental process of abalone (Haliotis diversicolor supertexta, a representative marine benthic gastropod) were assessed. Newborn abalone eggs and sperm were exposed separately to different DMP concentrations (1, 10 or 100 ppb) for 60 min. At the end-point of exposure, the DMP-treated eggs and sperm were collected for analysis of their ultra-structures, ATPase activities and total lipid levels, and the fertilized gametes (embryos) were collected to monitor related reproductive parameters (fertilization rate, abnormal development rate and hatching success rate). Treatment with DMP did not significantly alter the structure or total lipid content of eggs at any of the doses tested. Hatching failures and morphological abnormalities were only observed with the highest dose of DMP (100 ppb). However, DMP exposure did suppress sperm ATPase activities and affect the morphological character of their mitochondria. DMP-treated sperm exhibited dose-dependent decreases in fertilization efficiency, morphogenesis and hatchability. Relatively obvious toxicological effects were observed when both sperm and eggs were exposed to DMP. Furthermore, RT-PCR results indicate that treatment of gametes with DMP changed the expression patterns of physiologically-regulated genes (cyp3a, 17β-HSD-11 and 17β-HSD-12) in subsequent embryogenesis. Taken together, this study proofed that pre-fertilization exposure of abalone eggs, sperm or both to DMP adversely affects the fertilization process and subsequent embryogenesis. PMID:22028799

  16. Metabolome analysis of Drosophila melanogaster during embryogenesis.

    PubMed

    An, Phan Nguyen Thuy; Yamaguchi, Masamitsu; Bamba, Takeshi; Fukusaki, Eiichiro

    2014-01-01

    The Drosophila melanogaster embryo has been widely utilized as a model for genetics and developmental biology due to its small size, short generation time, and large brood size. Information on embryonic metabolism during developmental progression is important for further understanding the mechanisms of Drosophila embryogenesis. Therefore, the aim of this study is to assess the changes in embryos' metabolome that occur at different stages of the Drosophila embryonic development. Time course samples of Drosophila embryos were subjected to GC/MS-based metabolome analysis for profiling of low molecular weight hydrophilic metabolites, including sugars, amino acids, and organic acids. The results showed that the metabolic profiles of Drosophila embryo varied during the course of development and there was a strong correlation between the metabolome and different embryonic stages. Using the metabolome information, we were able to establish a prediction model for developmental stages of embryos starting from their high-resolution quantitative metabolite composition. Among the important metabolites revealed from our model, we suggest that different amino acids appear to play distinct roles in different developmental stages and an appropriate balance in trehalose-glucose ratio is crucial to supply the carbohydrate source for the development of Drosophila embryo.

  17. Metabolome Analysis of Drosophila melanogaster during Embryogenesis

    PubMed Central

    An, Phan Nguyen Thuy; Yamaguchi, Masamitsu; Bamba, Takeshi; Fukusaki, Eiichiro

    2014-01-01

    The Drosophila melanogaster embryo has been widely utilized as a model for genetics and developmental biology due to its small size, short generation time, and large brood size. Information on embryonic metabolism during developmental progression is important for further understanding the mechanisms of Drosophila embryogenesis. Therefore, the aim of this study is to assess the changes in embryos’ metabolome that occur at different stages of the Drosophila embryonic development. Time course samples of Drosophila embryos were subjected to GC/MS-based metabolome analysis for profiling of low molecular weight hydrophilic metabolites, including sugars, amino acids, and organic acids. The results showed that the metabolic profiles of Drosophila embryo varied during the course of development and there was a strong correlation between the metabolome and different embryonic stages. Using the metabolome information, we were able to establish a prediction model for developmental stages of embryos starting from their high-resolution quantitative metabolite composition. Among the important metabolites revealed from our model, we suggest that different amino acids appear to play distinct roles in different developmental stages and an appropriate balance in trehalose-glucose ratio is crucial to supply the carbohydrate source for the development of Drosophila embryo. PMID:25121768

  18. Spatio-Temporal Accumulation and Activity of Calcium-Dependent Protein Kinases during Embryogenesis, Seed Development, and Germination in Sandalwood1

    PubMed Central

    Anil, Veena S.; Harmon, Alice C.; Rao, K. Sankara

    2000-01-01

    Western-blot analysis and protein kinase assays identified two Ca2+-dependent protein kinases (CDPKs) of 55 to 60 kD in soluble protein extracts of embryogenic cultures of sandalwood (Santalum album L.). However, these sandalwood CDPKs (swCDPKs) were absent in plantlets regenerated from somatic embryos. swCDPKs exhibited differential expression (monitored at the level of the protein) and activity in different developmental stages. Zygotic embryos, seedlings, and endosperm showed high accumulation of swCDPK, but the enzyme was not detected in the soluble proteins of shoots and flowers. swCDPK exhibited a temporal pattern of expression in endosperm, showing high accumulation and activity in mature fruit and germinating stages; the enzyme was localized strongly in the storage bodies of the endosperm cells. The study also reports for the first time to our knowledge a post-translational inhibition/inactivation of swCDPK in zygotic embryos during seed dormancy and early stages of germination. The temporal expression of swCDPK during somatic/zygotic embryogenesis, seed maturation, and germination suggests involvement of the enzyme in these developmental processes. PMID:10759499

  19. Effects of GhWUS from upland cotton (Gossypium hirsutum L.) on somatic embryogenesis and shoot regeneration.

    PubMed

    Xiao, Yanqing; Chen, Yanli; Ding, Yanpeng; Wu, Jie; Wang, Peng; Yu, Ya; Wei, Xi; Wang, Ye; Zhang, Chaojun; Li, Fuguang; Ge, Xiaoyang

    2018-05-01

    The WUSCHEL (WUS) gene encodes a plant-specific homeodomain-containing transcriptional regulator, which plays important roles during embryogenesis, as well as in the formation of shoot and flower meristems. Here, we isolated two homologues of Arabidopsis thaliana WUS (AtWUS), GhWUS1a_At and GhWUS1b_At, from upland cotton (Gossypium hirsutum). Domain analysis suggested that the two putative GhWUS proteins contained a highly conserved DNA-binding HOX domain and a WUS-box. Expression profile analysis showed that GhWUSs were predominantly expressed during the embryoid stage. Ectopic expression of GhWUSs in Arabidopsis could induce somatic embryo and shoot formation from seedling root tips. Furthermore, in the absence of exogenous hormone, overexpression of GhWUSs in Arabidopsis could promote shoot regeneration from excised roots, and in the presence of exogenous auxin, excised roots expressing GhWUS could be induced to produce somatic embryo. In addition, expression of the chimeric GhWUS repressor in cotton callus inhibited embryogenic callus formation. Our results show that GhWUS is an important regulator of somatic embryogenesis and shoot regeneration. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Effect of recombinant-LH and hCG in the absence of FSH on in vitro maturation (IVM) fertilization and early embryonic development of mouse germinal vesicle (GV)-stage oocytes.

    PubMed

    Dinopoulou, Vasiliki; Drakakis, Peter; Kefala, Stella; Kiapekou, Erasmia; Bletsa, Ritsa; Anagnostou, Elli; Kallianidis, Konstantinos; Loutradis, Dimitrios

    2016-06-01

    During in vitro maturation (IVM), intrinsic and extrinsic factors must co-operate properly in order to ensure cytoplasmic and nuclear maturation. We examined the possible effect of LH/hCG in the process of oocyte maturation in mice with the addition of recombinant LH (r-LH) and hCG in our IVM cultures of mouse germinal vesicle (GV)-stage oocytes. Moreover, the effects of these hormones on fertilization, early embryonic development and the expression of LH/hCG receptor were examined. Nuclear maturation of GV-stage oocytes was evaluated after culture in the presence of r-LH or hCG. Fertilization rates and embryonic development were assessed after 24h. Total RNA was isolated from oocytes of different stages of maturation and from zygotes and embryos of different stages of development in order to examine the expression of LH/hCG receptor, using RT-PCR. The in vitro nuclear maturation rate of GV-stage oocytes that received hCG was significantly higher compared to the control group. Early embryonic development was increased in the hCG and LH cultures of GV oocytes when LH was further added. The LH/hCG receptor was expressed in all stages of in vitro matured mouse oocytes and in every stage of early embryonic development. Addition of hCG in IVM cultures of mouse GV oocytes increased maturation rates significantly. LH, however, was more beneficial to early embryonic development than hCG. This suggests a promising new technique in basic science research or in clinical reproductive medicine. Copyright © 2016 Society for Biology of Reproduction & the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  1. A continuous culture system of direct somatic embryogenesis in microspore-derived embryos of Brassica juncea.

    PubMed

    Prabhudesai, V; Bhaskaran, S

    1993-03-01

    An efficient culture system has been developed for repeated cycles of somatic embryogenesis in microspore-derived embryos of Brassica juncea without a callus phase. Haploid embryos produced through anther culture showed a high propensity for direct production of somatic embryos in response to 2 mgL(-1) BA and 0.1 mgL(-1) NAA. The embryogenic cultures which comprised the elongated embryonal axis of microspore-derived embryos when explanted and grown on the medium of same composition produced a large number of secondary embryos. These somatic embryos in turn underwent axis elongation and produced more somatic embryos when explanted and cultured. This cycle of repetitive somatic embryogenesis continued with undiminished vigour passage after passage and was monitored for more than a year. Somatic embryos from any passage when isolated at cotyledonary stage and grown on auxin-free medium for 5 days and then on a medium containing NAA (0.1 mgL(-1)), developed into complete plants with a profuse root system and were easily established in the soil. The cytology of the root tips of these plants confirmed their haploid nature. The total absence of callus phase makes the system ideal for continuous cloning of androgenic lines, Agrobacterium-mediated transformation and mutation induction studies.

  2. Early social enrichment rescues adult behavioral and brain abnormalities in a mouse model of fragile X syndrome.

    PubMed

    Oddi, Diego; Subashi, Enejda; Middei, Silvia; Bellocchio, Luigi; Lemaire-Mayo, Valerie; Guzmán, Manuel; Crusio, Wim E; D'Amato, Francesca R; Pietropaolo, Susanna

    2015-03-13

    Converging lines of evidence support the use of environmental stimulation to ameliorate the symptoms of a variety of neurodevelopmental disorders. Applying these interventions at very early ages is critical to achieve a marked reduction of the pathological phenotypes. Here we evaluated the impact of early social enrichment in Fmr1-KO mice, a genetic mouse model of fragile X syndrome (FXS), a major developmental disorder and the most frequent monogenic cause of autism. Enrichment was achieved by providing male KO pups and their WT littermates with enhanced social stimulation, housing them from birth until weaning with the mother and an additional nonlactating female. At adulthood they were tested for locomotor, social, and cognitive abilities; furthermore, dendritic alterations were assessed in the hippocampus and amygdala, two brain regions known to be involved in the control of the examined behaviors and affected by spine pathology in Fmr1-KOs. Enrichment rescued the behavioral FXS-like deficits displayed in adulthood by Fmr1-KO mice, that is, hyperactivity, reduced social interactions, and cognitive deficits. Early social enrichment also eliminated the abnormalities shown by adult KO mice in the morphology of hippocampal and amygdala dendritic spines, namely an enhanced density of immature vs mature types. Importantly, enrichment did not induce neurobehavioral changes in WT mice, thus supporting specific effects on FXS-like pathology. These findings show that early environmental stimulation has profound and long-term beneficial effects on the pathological FXS phenotype, thereby encouraging the use of nonpharmacological interventions for the treatment of this and perhaps other neurodevelopmental diseases.

  3. Sensitivity of early mouse embryos to (/sup 3/H)thymidine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spindle, A.; Wu, K.; Pedersen, R.A.

    1982-12-01

    Effects of intranuclear radiation on the developmental capacity of early mouse embryos were studied by exposing embryos to (/sup 3/H)thymidine and counting the number of embryos forming blastocysts, trophoblast outgrowths, inner cell masses (ICMs), and two-layer ICMs (differentiated into primary endoderm and ectoderm). When embryos were cultured from the 2-cell stage for 8 days in the continuous presence of (/sup 3/H)thymidine, concentrations as low as 0.2 nCi/ml reduced the number of embryos forming two-layer ICMs. At 1 nCi/ml, the number of both ICMs and two-layer ICMs were reduced, and at 10 nCi/ml the number of embryos developing to all threemore » post-blastocyst endpoints was reduced. Blastocyst formation was not affected even at the highst concentration (/sup 3/H)thymidine and then cultured further in unlabelled medium, the effects were similar to those of 8-day exposure. When embryos were exposed to (/sup 3/H)thymidine for 24 h at various developmental stages, effects were less severe than when they were exposed continuously for 3 or 8 days, and the sensitivity of embryos differed between stages. The 24-h exposure of immunosurgically isolated ICMS to (/sup 3/H)thymidine revealed that the high sensitivity of the ICM to (/sup 3/H)thymidine persists through the late blastocyst stage and declines progressively thereafter. Autoradiography indicated that the change in radiosensitivity of embryos or ICMs is generally related to their ability to incorporate (/sup 3/H)thymidine into the DNA.« less

  4. Construction of a high-density linkage map and mapping quantitative trait loci for somatic embryogenesis using leaf petioles as explants in upland cotton (Gossypium hirsutum L.).

    PubMed

    Xu, Zhenzhen; Zhang, Chaojun; Ge, Xiaoyang; Wang, Ni; Zhou, Kehai; Yang, Xiaojie; Wu, Zhixia; Zhang, Xueyan; Liu, Chuanliang; Yang, Zuoren; Li, Changfeng; Liu, Kun; Yang, Zhaoen; Qian, Yuyuan; Li, Fuguang

    2015-07-01

    The first high-density linkage map was constructed to identify quantitative trait loci (QTLs) for somatic embryogenesis (SE) in cotton ( Gossypium hirsutum L.) using leaf petioles as explants. Cotton transformation is highly limited by only a few regenerable genotypes and the lack of understanding of the genetic and molecular basis of somatic embryogenesis (SE) in cotton (Gossypium hirsutum L.). To construct a more saturated linkage map and further identify quantitative trait loci (QTLs) for SE using leaf petioles as explants, a high embryogenesis frequency line (W10) from the commercial Chinese cotton cultivar CRI24 was crossed with TM-1, a genetic standard upland cotton with no embryogenesis frequency. The genetic map spanned 2300.41 cM in genetic distance and contained 411 polymorphic simple sequence repeat (SSR) loci. Of the 411 mapped loci, 25 were developed from unigenes identified for SE in our previous study. Six QTLs for SE were detected by composite interval mapping method, each explaining 6.88-37.07% of the phenotypic variance. Single marker analysis was also performed to verify the reliability of QTLs detection, and the SSR markers NAU3325 and DPL0209 were detected by the two methods. Further studies on the relatively stable and anchoring QTLs/markers for SE in an advanced population of W10 × TM-1 and other cross combinations with different SE abilities may shed light on the genetic and molecular mechanism of SE in cotton.

  5. H+/K+-ATPase-Inhibition Causes Left-Right Aortic Arch Inversion in Mouse Development.

    PubMed

    Miyachi, Yukihisa

    2017-09-01

    An organ known as a "node" forms during embryogenesis and plays a vital role in determining laterality in vertebrates. However, according to some reports in vertebrates, left-right patterning may be determined long before the node has developed. In this study, we analyzed left-right asymmetry formation in mammals based on ion-signaling factors, which has never been attempted before. First, a proton pump inhibitor was injected into pregnant mice to investigate whether H + /K + -ATPase is involved in the differentiation of pharyngeal arch arteries during embryonic development. Injection of 30 mg/kg of lansoprazole early in the organogenesis period increased the penetrance of right aortic arch formation by 34% compared to a saline injection. Furthermore, administration of a proton pump inhibitor resulted in strong expression of PI3K/phosphor-AKT, which led to potent inhibition of apoptosis induction factors such as BAD. This could relate to why the right pharyngeal arch arteries, which should have disappeared during differentiation, remained intact. The other important point is that proton pump inhibitors suppressed calcineurin signaling, and Wnt5a expression was significantly higher than in the controls. This research is particularly notable for demonstrating that administration of an H + /K + -ATPase inhibitor could cause dextroposition of the fetal vasculature. Moreover, since previous publications have reported that H + /K + -ATPase plays a role in asymmetry in other species, this article adds important information for developmental biology in that the role of H + /K + -ATPase in asymmetry is conserved in the mouse model, suggesting that rodents are not unique and that a common mechanism may function across vertebrates.

  6. Heart valve cardiomyocytes of mouse embryos express the serotonin transporter SERT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavone, Luigi Michele; Department of Biochemistry and Medical Biotechnologies, University of Naples Federico II, Naples; Spina, Anna

    2008-12-12

    Multiple evidence demonstrate a role for serotonin and its transporter SERT in heart valve development and disease. By utilizing a Cre/loxP system driven by SERT gene expression, we recently demonstrated a regionally restricted distribution of SERT-expressing cells in developing mouse heart. In order to characterize the cell types exhibiting SERT expression within the mouse heart valves at early developmental stages, in this study we performed immunohistochemistry for Islet1 (Isl1) and connexin-43 (Cx-43) on heart sections from SERT{sup Cre/+};ROSA26R embryos previously stained with X-gal. We observed the co-localization of LacZ staining with Isl1 labelling in the outflow tract, the right ventriclemore » and the conal region of E11.5 mouse heart. Cx-43 labelled cells co-localized with LacZ stained cells in the forming atrioventricular valves. These results demonstrate the cardiomyocyte phenotype of SERT-expressing cells in heart valves of the developing mouse heart, thus suggesting an active role of SERT in early heart valve development.« less

  7. Mouse IDGenes: a reference database for genetic interactions in the developing mouse brain

    PubMed Central

    Matthes, Michaela; Preusse, Martin; Zhang, Jingzhong; Schechter, Julia; Mayer, Daniela; Lentes, Bernd; Theis, Fabian; Prakash, Nilima; Wurst, Wolfgang; Trümbach, Dietrich

    2014-01-01

    The study of developmental processes in the mouse and other vertebrates includes the understanding of patterning along the anterior–posterior, dorsal–ventral and medial– lateral axis. Specifically, neural development is also of great clinical relevance because several human neuropsychiatric disorders such as schizophrenia, autism disorders or drug addiction and also brain malformations are thought to have neurodevelopmental origins, i.e. pathogenesis initiates during childhood and adolescence. Impacts during early neurodevelopment might also predispose to late-onset neurodegenerative disorders, such as Parkinson’s disease. The neural tube develops from its precursor tissue, the neural plate, in a patterning process that is determined by compartmentalization into morphogenetic units, the action of local signaling centers and a well-defined and locally restricted expression of genes and their interactions. While public databases provide gene expression data with spatio-temporal resolution, they usually neglect the genetic interactions that govern neural development. Here, we introduce Mouse IDGenes, a reference database for genetic interactions in the developing mouse brain. The database is highly curated and offers detailed information about gene expressions and the genetic interactions at the developing mid-/hindbrain boundary. To showcase the predictive power of interaction data, we infer new Wnt/β-catenin target genes by machine learning and validate one of them experimentally. The database is updated regularly. Moreover, it can easily be extended by the research community. Mouse IDGenes will contribute as an important resource to the research on mouse brain development, not exclusively by offering data retrieval, but also by allowing data input. Database URL: http://mouseidgenes.helmholtz-muenchen.de. PMID:25145340

  8. Animal models for studying neural crest development: is the mouse different?

    PubMed

    Barriga, Elias H; Trainor, Paul A; Bronner, Marianne; Mayor, Roberto

    2015-05-01

    The neural crest is a uniquely vertebrate cell type and has been well studied in a number of model systems. Zebrafish, Xenopus and chick embryos largely show consistent requirements for specific genes in early steps of neural crest development. By contrast, knockouts of homologous genes in the mouse often do not exhibit comparable early neural crest phenotypes. In this Spotlight article, we discuss these species-specific differences, suggest possible explanations for the divergent phenotypes in mouse and urge the community to consider these issues and the need for further research in complementary systems. © 2015. Published by The Company of Biologists Ltd.

  9. Live dynamic imaging and analysis of developmental cardiac defects in mouse models with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lopez, Andrew L.; Wang, Shang; Garcia, Monica; Valladolid, Christian; Larin, Kirill V.; Larina, Irina V.

    2015-03-01

    Understanding mouse embryonic development is an invaluable resource for our interpretation of normal human embryology and congenital defects. Our research focuses on developing methods for live imaging and dynamic characterization of early embryonic development in mouse models of human diseases. Using multidisciplinary methods: optical coherence tomography (OCT), live mouse embryo manipulations and static embryo culture, molecular biology, advanced image processing and computational modeling we aim to understand developmental processes. We have developed an OCT based approach to image live early mouse embryos (E8.5 - E9.5) cultured on an imaging stage and visualize developmental events with a spatial resolution of a few micrometers (less than the size of an individual cell) and a frame rate of up to hundreds of frames per second and reconstruct cardiodynamics in 4D (3D+time). We are now using these methods to study how specific embryonic lethal mutations affect cardiac morphology and function during early development.

  10. Nutrient-gene interactions in early pregnancy: a vascular hypothesis.

    PubMed

    Steegers-Theunissen, R P M; Steegers, E A P

    2003-02-10

    It is hypothesized that the following periconceptional and early pregnancy nutrient-gene interactions link vascular-related reproductive complications and cardiovascular diseases in adulthood: (1) Maternal and paternal genetically controlled nutrient status affects the quality of gametes and fertilization capacity; (2) The embryonic genetic constitution, derived from both parents, and the maternal genetically controlled nutrient environment determine embryogenesis and fetal growth; (3) Trophoblast invasion of decidua and spiral arteries is driven by genes derived from both parents as well as by maternal nutritional factors; (4) Angiogenesis, vasculogenesis and vascular function are dependent on the genetic constitution of the embryo, derived from both parents, and the maternal genetically controlled nutritional environment.Early intra-uterine programming of vessels may concern the same (in)dependent determinants of vascular-related complications during pregnancy and cardiovascular diseases in later life.

  11. Nitric oxide synthase during early embryonic development in silkworm Bombyx mori: Gene expression, enzyme activity, and tissue distribution.

    PubMed

    Kitta, Ryo; Kuwamoto, Marina; Yamahama, Yumi; Mase, Keisuke; Sawada, Hiroshi

    2016-12-01

    To elucidate the mechanism for embryonic diapause or the breakdown of diapause in Bombyx mori, we biochemically analyzed nitric oxide synthase (NOS) during the embryogenesis of B. mori. The gene expression and enzyme activity of B. mori NOS (BmNOS) were examined in diapause, non-diapause, and HCl-treated diapause eggs. In the case of HCl-treated diapause eggs, the gene expression and enzyme activity of BmNOS were induced by HCl treatment. However, in the case of diapause and non-diapause eggs during embryogenesis, changes in the BmNOS activity and gene expressions did not coincide except 48-60 h after oviposition in diapause eggs. The results imply that changes in BmNOS activity during the embryogenesis of diapause and non-diapause eggs are regulated not only at the level of transcription but also post-transcription. The distribution and localization of BmNOS were also investigated with an immunohistochemical technique using antibodies against the universal NOS; the localization of BmNOS was observed mainly in the cytoplasm of yolk cells in diapause eggs and HCl-treated diapause eggs. These data suggest that BmNOS has an important role in the early embryonic development of the B. mori. © 2016 Japanese Society of Developmental Biologists.

  12. Computer mouse movement patterns: A potential marker of mild cognitive impairment.

    PubMed

    Seelye, Adriana; Hagler, Stuart; Mattek, Nora; Howieson, Diane B; Wild, Katherine; Dodge, Hiroko H; Kaye, Jeffrey A

    2015-12-01

    Subtle changes in cognitively demanding activities occur in MCI but are difficult to assess with conventional methods. In an exploratory study, we examined whether patterns of computer mouse movements obtained from routine home computer use discriminated between older adults with and without MCI. Participants were 42 cognitively intact and 20 older adults with MCI enrolled in a longitudinal study of in-home monitoring technologies. Mouse pointer movement variables were computed during one week of routine home computer use using algorithms that identified and characterized mouse movements within each computer use session. MCI was associated with making significantly fewer total mouse moves ( p <.01), and making mouse movements that were more variable, less efficient, and with longer pauses between movements ( p <.05). Mouse movement measures were significantly associated with several cognitive domains ( p 's<.01-.05). Remotely monitored computer mouse movement patterns are a potential early marker of real-world cognitive changes in MCI.

  13. Position- and Hippo signaling-dependent plasticity during lineage segregation in the early mouse embryo

    PubMed Central

    Posfai, Eszter; Petropoulos, Sophie; de Barros, Flavia Regina Oliveira; Schell, John Paul; Jurisica, Igor; Sandberg, Rickard; Lanner, Fredrik; Rossant, Janet

    2017-01-01

    The segregation of the trophectoderm (TE) from the inner cell mass (ICM) in the mouse blastocyst is determined by position-dependent Hippo signaling. However, the window of responsiveness to Hippo signaling, the exact timing of lineage commitment and the overall relationship between cell commitment and global gene expression changes are still unclear. Single-cell RNA sequencing during lineage segregation revealed that the TE transcriptional profile stabilizes earlier than the ICM and prior to blastocyst formation. Using quantitative Cdx2-eGFP expression as a readout of Hippo signaling activity, we assessed the experimental potential of individual blastomeres based on their level of Cdx2-eGFP expression and correlated potential with gene expression dynamics. We find that TE specification and commitment coincide and occur at the time of transcriptional stabilization, whereas ICM cells still retain the ability to regenerate TE up to the early blastocyst stage. Plasticity of both lineages is coincident with their window of sensitivity to Hippo signaling. DOI: http://dx.doi.org/10.7554/eLife.22906.001 PMID:28226240

  14. Transcriptomic analysis highlights epigenetic and transcriptional regulation during zygotic embryo development of Pinus pinaster.

    PubMed

    de Vega-Bartol, José J; Simões, Marta; Lorenz, W Walter; Rodrigues, Andreia S; Alba, Rob; Dean, Jeffrey F D; Miguel, Célia M

    2013-08-30

    It is during embryogenesis that the plant body plan is established and the meristems responsible for all post-embryonic growth are specified. The molecular mechanisms governing conifer embryogenesis are still largely unknown. Their elucidation may contribute valuable information to clarify if the distinct features of embryo development in angiosperms and gymnosperms result from differential gene regulation. To address this issue, we have performed the first transcriptomic analysis of zygotic embryo development in a conifer species (Pinus pinaster) focusing our study in particular on regulatory genes playing important roles during plant embryo development, namely epigenetic regulators and transcription factors. Microarray analysis of P. pinaster zygotic embryogenesis was performed at five periods of embryo development from early developing to mature embryos. Our results show that most changes in transcript levels occurred in the first and the last embryo stage-to-stage transitions, namely early to pre-cotyledonary embryo and cotyledonary to mature embryo. An analysis of functional categories for genes that were differentially expressed through embryogenesis highlighted several epigenetic regulation mechanisms. While putative orthologs of transcripts associated with mechanisms that target transposable elements and repetitive sequences were strongly expressed in early embryogenesis, PRC2-mediated repression of genes seemed more relevant during late embryogenesis. On the other hand, functions related to sRNA pathways appeared differentially regulated across all stages of embryo development with a prevalence of miRNA functions in mid to late embryogenesis. Identification of putative transcription factor genes differentially regulated between consecutive embryo stages was strongly suggestive of the relevance of auxin responses and regulation of auxin carriers during early embryogenesis. Such responses could be involved in establishing embryo patterning. Later in

  15. RBP-Jkappa-dependent notch signaling is dispensable for mouse early embryonic development.

    PubMed

    Souilhol, Céline; Cormier, Sarah; Tanigaki, Kenji; Babinet, Charles; Cohen-Tannoudji, Michel

    2006-07-01

    The Notch signaling pathway is an evolutionarily conserved signaling system which has been shown to be essential in cell fate specification and in numerous aspects of embryonic development in all metazoans thus far studied. We recently demonstrated that several components of the Notch signaling pathway, including the four Notch receptors and their five ligands known in mammals, are expressed in mouse oocytes, in mouse preimplantation embryos, or both. This suggested a possible implication of the Notch pathway in the first cell fate specification of the dividing mouse embryo, which results in the formation of the blastocyst. To address this issue directly, we generated zygotes in which both the maternal and the zygotic expression of Rbpsuh, a key element of the core Notch signaling pathway, were abrogated. We find that such zygotes give rise to blastocysts which implant and develop normally. Nevertheless, after gastrulation, these embryos die around midgestation, similarly to Rbpsuh-null mutants. This demonstrates that the RBP-Jkappa-dependent pathway, otherwise called the canonical Notch pathway, is dispensable for blastocyst morphogenesis and the establishment of the three germ layers, ectoderm, endoderm, and mesoderm. These results are discussed in the light of recent observations which have challenged this conclusion.

  16. Pathway to a Phenocopy: Heat Stress Effects in Early Embryogenesis

    PubMed Central

    Crews, Sarah M.; McCleery, W. Tyler; Hutson, M. Shane

    2015-01-01

    Background Heat shocks applied at the onset of gastrulation in early Drosophila embryos frequently lead to phenocopies of U-shaped mutants – having characteristic failures in the late morphogenetic processes of germband retraction and dorsal closure. The pathway from non-specific heat stress to phenocopied abnormalities is unknown. Results Drosophila embryos subjected to 30-min, 38-°C heat shocks at gastrulation appear to recover and restart morphogenesis. Post-heat-shock development appears normal, albeit slower, until a large fraction of embryos develop amnioserosa holes (diameters > 100 μm). These holes are positively correlated with terminal U-shaped phenocopies. They initiate between amnioserosa cells and open over tens of minutes by evading normal wound healing responses. They are not caused by tissue-wide increases in mechanical stress or decreases in cell-cell adhesion, but instead appear to initiate from isolated apoptosis of amnioserosa cells. Conclusions The pathway from heat shock to U-shaped phenocopies involves the opening of one or more large holes in the amnioserosa that compromise its structural integrity and lead to failures in morphogenetic processes that rely on amnioserosa-generated tensile forces. The proposed mechanism by which heat shock leads to hole initiation and expansion is heterochonicity – i.e., disruption of morphogenetic coordination between embryonic and extra-embryonic cell types. PMID:26498920

  17. In vitro regeneration through organogenesis and somatic embryogenesis in pigeon pea [ Cajanus cajan (L.) Millsp.] cv. JKR105.

    PubMed

    Krishna, Gaurav; Reddy, P Sairam; Ramteke, Pramod W; Rambabu, Pogiri; Sohrab, Sayed S; Rana, Debashis; Bhattacharya, Parthasarathi

    2011-10-01

    In vitro regeneration of pigeon pea through organogenesis and somatic embryogenesis was demonstrated with pigeon pea cv. JKR105. Embryonic axes explants of pigeon pea showed greater regeneration of shoot buds on 2.5 mg L(-1) 6-benzylaminopurine (BAP) in the medium, followed by further elongation at lower concentrations. Rooting of shoots was observed on half-strength Murashige and Skoog (MS) medium with 2 % sucrose and 0.5 mg L(-1) 3-indolebutyric acid (IBA). On the other hand, the regeneration of globular embryos from cotyledon explant was faster and greater with thidiazuron (TDZ) than BAP with sucrose as carbohydrate source. These globular embryos were maturated on MS medium with abscisic acid (ABA) and finally germinated on half-strength MS medium at lower concentrations of BAP. Comparison of regeneration pathways in pigeon pea cv. JKR105 showed that the turnover of successful establishment of plants achieved through organogenesis was more compared to somatic embryogenesis, despite the production of more embryos than shoot buds.

  18. Developmental regulation of neuroligin genes in Japanese ricefish (Oryzias latipes) embryogenesis maintains the rhythm during ethanol-induced fetal alcohol spectrum disorder.

    PubMed

    Haron, Mona H; Khan, Ikhlas A; Dasmahapatra, Asok K

    2014-01-01

    Although prenatal alcohol exposure is the potential cause of fetal alcohol spectrum disorder (FASD) in humans, the molecular mechanism(s) of FASD is yet unknown. We have used Japanese ricefish (Oryzias latipes) embryogenesis as an animal model of FASD and reported that this model has effectively generated several phenotypic features in the cardiovasculature and neurocranial cartilages by developmental ethanol exposure which is analogous to human FASD phenotypes. As FASD is a neurobehavioral disorder, we are searching for a molecular target of ethanol that alters neurological functions. In this communication, we have focused on neuroligin genes (nlgn) which are known to be active at the postsynaptic side of both excitatory and inhibitory synapses of the central nervous system. There are six human NLGN homologs of Japanese ricefish reported in public data bases. We have partially cloned these genes and analyzed their expression pattern during normal development and also after exposing the embryos to ethanol. Our data indicate that the expression of all six nlgn genes in Japanese ricefish embryos is developmentally regulated. Although ethanol is able to induce developmental abnormalities in Japanese ricefish embryogenesis comparable to the FASD phenotypes, quantitative real-time PCR (qPCR) analysis of nlgn mRNAs indicate unresponsiveness of these genes to ethanol. We conclude that the disruption of the developmental rhythm of Japanese ricefish embryogenesis by ethanol that leads to FASD may not affect the nlgn gene expression at the message level. © 2013.

  19. Subchronic Glucocorticoid Receptor Inhibition Rescues Early Episodic Memory and Synaptic Plasticity Deficits in a Mouse Model of Alzheimer's Disease

    PubMed Central

    Lanté, Fabien; Chafai, Magda; Raymond, Elisabeth Fabienne; Salgueiro Pereira, Ana Rita; Mouska, Xavier; Kootar, Scherazad; Barik, Jacques; Bethus, Ingrid; Marie, Hélène

    2015-01-01

    The early phase of Alzheimer's disease (AD) is characterized by hippocampus-dependent memory deficits and impaired synaptic plasticity. Increasing evidence suggests that stress and dysregulation of the hypothalamo-pituitary-adrenal (HPA) axis, marked by the elevated circulating glucocorticoids, are risk factors for AD onset. How these changes contribute to early hippocampal dysfunction remains unclear. Using an elaborated version of the object recognition task, we carefully monitored alterations in key components of episodic memory, the first type of memory altered in AD patients, in early symptomatic Tg2576 AD mice. We also combined biochemical and ex vivo electrophysiological analyses to reveal novel cellular and molecular dysregulations underpinning the onset of the pathology. We show that HPA axis, circadian rhythm, and feedback mechanisms, as well as episodic memory, are compromised in this early symptomatic phase, reminiscent of human AD pathology. The cognitive decline could be rescued by subchronic in vivo treatment with RU486, a glucocorticoid receptor antagonist. These observed phenotypes were paralleled by a specific enhancement of N-Methyl-D-aspartic acid receptor (NMDAR)-dependent LTD in CA1 pyramidal neurons, whereas LTP and metabotropic glutamate receptor-dependent LTD remain unchanged. NMDAR transmission was also enhanced. Finally, we show that, as for the behavioral deficit, RU486 treatment rescues this abnormal synaptic phenotype. These preclinical results define glucocorticoid signaling as a contributing factor to both episodic memory loss and early synaptic failure in this AD mouse model, and suggest that glucocorticoid receptor targeting strategies could be beneficial to delay AD onset. PMID:25622751

  20. The final step of the ethylene biosynthesis pathway in turnip tops (Brassica rapa): molecular characterization of the 1-aminocyclopropane-1-carboxylate oxidase BrACO1 throughout zygotic embryogenesis and germination of heterogeneous seeds.

    PubMed

    Del Carmen Rodríguez-Gacio, María; Nicolás, Carlos; Matilla, Angel Jesús

    2004-05-01

    In a previous report from the present authors, it was shown that the 1-aminocyclopropane-1-carboxylate (ACC) oxidation may play a crucial role during zygotic embryogenesis of turnip tops seeds. The present study was performed to elucidate the contribution of the silique-wall and seeds in ethylene production during this developmental process. ACC content in the silique wall is only higher than in seeds during the middle phases of zygotic embryogenesis. The ACC-oxidase (ACO) activity peaks in the silique-wall and seeds during the onset of embryogenesis, declining gradually afterwards, being undetectable during desiccation period. Using reverse transcriptase-polymerase chain reaction, one cDNA clone coding for an ACO and called BrACO1, was isolated. The deduced protein for BrACO1 has a molecular weight of 36.8 kDa and a high homology with other crucifer ACOs. The heterologous expression of this cDNA confirmed that BrACO1 is an ACO. The expression of this gene was high during the first phases of silique-wall development, low during the middle phases and undetectable during desiccation. By contrast, BrACO1 transcript was accumulated only in the earliest phases of seed embryogenesis and may participate in the highest ACO activity and ethylene production by seeds at the beginning of embryogenesis. Finally, in this work a correlation between the heterogeneity of Brassica rapa L. cv. Rapa seeds and the ability to oxidize the ACC to ethylene has been demonstrated.

  1. Mouse IDGenes: a reference database for genetic interactions in the developing mouse brain.

    PubMed

    Matthes, Michaela; Preusse, Martin; Zhang, Jingzhong; Schechter, Julia; Mayer, Daniela; Lentes, Bernd; Theis, Fabian; Prakash, Nilima; Wurst, Wolfgang; Trümbach, Dietrich

    2014-01-01

    The study of developmental processes in the mouse and other vertebrates includes the understanding of patterning along the anterior-posterior, dorsal-ventral and medial- lateral axis. Specifically, neural development is also of great clinical relevance because several human neuropsychiatric disorders such as schizophrenia, autism disorders or drug addiction and also brain malformations are thought to have neurodevelopmental origins, i.e. pathogenesis initiates during childhood and adolescence. Impacts during early neurodevelopment might also predispose to late-onset neurodegenerative disorders, such as Parkinson's disease. The neural tube develops from its precursor tissue, the neural plate, in a patterning process that is determined by compartmentalization into morphogenetic units, the action of local signaling centers and a well-defined and locally restricted expression of genes and their interactions. While public databases provide gene expression data with spatio-temporal resolution, they usually neglect the genetic interactions that govern neural development. Here, we introduce Mouse IDGenes, a reference database for genetic interactions in the developing mouse brain. The database is highly curated and offers detailed information about gene expressions and the genetic interactions at the developing mid-/hindbrain boundary. To showcase the predictive power of interaction data, we infer new Wnt/β-catenin target genes by machine learning and validate one of them experimentally. The database is updated regularly. Moreover, it can easily be extended by the research community. Mouse IDGenes will contribute as an important resource to the research on mouse brain development, not exclusively by offering data retrieval, but also by allowing data input. http://mouseidgenes.helmholtz-muenchen.de. © The Author(s) 2014. Published by Oxford University Press.

  2. Positive and negative early life experiences differentially modulate long term survival and amyloid protein levels in a mouse model of Alzheimer's disease.

    PubMed

    Lesuis, Sylvie L; Maurin, Herve; Borghgraef, Peter; Lucassen, Paul J; Van Leuven, Fred; Krugers, Harm J

    2016-06-28

    Stress has been implicated as a risk factor for the severity and progression of sporadic Alzheimer's disease (AD). Early life experiences determine stress responsivity in later life, and modulate age-dependent cognitive decline. Therefore, we examined whether early life experiences influence AD outcome in a bigenic mouse model which progressively develops combined tau and amyloid pathology (biAT mice).Mice were subjected to either early life stress (ELS) or to 'positive' early handling (EH) postnatally (from day 2 to 9). In biAT mice, ELS significantly compromised long term survival, in contrast to EH which increased life expectancy. In 4 month old mice, ELS-reared biAT mice displayed increased hippocampal Aβ levels, while these levels were reduced in EH-reared biAT mice. No effects of ELS or EH were observed on the brain levels of APP, protein tau, or PSD-95. Dendritic morphology was moderately affected after ELS and EH in the amygdala and medial prefrontal cortex, while object recognition memory and open field performance were not affected. We conclude that despite the strong transgenic background, early life experiences significantly modulate the life expectancy of biAT mice. Parallel changes in hippocampal Aβ levels were evident, without affecting cognition of young adult biAT mice.

  3. G-protein-coupled estrogen receptor 1 is involved in brain development during zebrafish (Danio rerio) embryogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Yanan; Liu, Xiaochun; Zhu, Pei

    Highlights: •The Gper expression was detected in the developing brain of zebrafish. •Gper morpholino knockdown induced apoptosis of brain cells. •Gper morpholino knockdown reduced expression in neuron markers. •Zebrafish Gper may be involved in neuronal development. -- Abstract: G-protein-coupled estrogen receptor 1 (Gper, formerly known as GPR30) is found to be a trophic and protective factor in mediating action of estrogen in adult brain, while its role in developing brain remains to be elucidated. Here we present the expression pattern of Gper and its functions during embryogenesis in zebrafish. Both the mRNA and protein of Gper were detected throughout embryogenesis.more » Whole mount in situ hybridization (WISH) revealed a wide distribution of gper mRNAs in various regions of the developing brain. Gper knockdown by specific morpholinos resulted in growth retardation in embryos and morphological defects in the developing brain. In addition, induced apoptosis, decreased proliferation of the brain cells and maldevelopment of sensory and motor neurons were also found in the morphants. Our results provide novel insights into Gper functions in the developing brain, revealing that Gper can maintain the survival of the brain cells, and formation and/or differentiation of the sensory and motor neurons.« less

  4. Effect of microgravity and hypergravity on embryo axis alignment during postencystment embryogenesis in Artemia franciscana (Anostraca)

    NASA Technical Reports Server (NTRS)

    Rosowski, J. R.; Gouthro, M. A.; Schmidt, K. K.; Klement, B. J.; Spooner, B. S.

    1995-01-01

    Cysts of brine shrimp attached with a liquid adhesive to 12-mm diameter glass coverslips in a syringe-type fluid processing apparatus were flown aboard the NASA space shuttle Discovery, flight STS-60, from 3-11 February 1994, and were allowed to undergo postencystment embryogenesis and to hatch in microgravity. The shuttle flight and the ground-based control coverslips with attached cysts were parallel to the earth's surface during incubation in salt water. Based on the position of the cyst shell crack in the attached cyst population, the ground-control nauplii emerged mostly upward. On the shuttle in microgravity, although our method of detection of orientation would not reveal emergence toward the coverslip, the ratio of the position of the cyst shell crack in the population after hatching best fit the predicted values of a random direction for nauplii emergence. Centrifugation on earth was then used to create hypergravity forces of up to 73 g during postencystment embryogenesis and hatching. The upward orientation of emerging nauplii showed a high degree of correlation (r(2) =98.8%) with a linear relationship to the log of g, with 78.2% of the total hatching upward at 1 g and 91.0% hatching upward at 73 g.

  5. Differential gene expression during early embryonic development in diapause and non-diapause eggs of multivoltine silkworm Bombyx mori.

    PubMed

    Ponnuvel, Kangayam M; Murthy, Geetha N; Awasthi, Arvind K; Rao, Guruprasad; Vijayaprakash, Nanjappa B

    2010-11-01

    Quantification of the differential expression of metabolic enzyme and heat-shock protein genes (Hsp) during early embryogenesis in diapause and non-diapause eggs of the silkworm B. mori was carried out by semi-quantitative RT-PCR. Data analysis revealed that, the phosphofructokinase (PFK) expression started at a higher level in the early stage (6 h after oviposition) in non-diapause eggs, while in diapause induced eggs, it started at a lower level. However, the PFK gene expression in diapause eggs was comparatively higher than in non-diapause eggs. PFK facilitates use of carbohydrate reserves. The lower level of PFK gene expression in the early stage of diapause induced eggs but comparatively higher level of expression than in non-diapause eggs is due to enzyme inactivation via protein phosphorylation during early embryogenesis followed by de-phosphorylation in later stage. The sorbitol dehydrogenase-2 (SDH-2) gene was down regulated in diapause induced eggs up to 24 h and its expression levels in diapause induced eggs coincided with that of PFK gene at 48h in non-diapause eggs. During carbohydrate metabolism, there is an initial temporary accumulation of sorbitol which acts as protectant. The down regulation of SDH-2 gene during the first 24 hours in diapause induced eggs was due to the requirement of sorbitol as protectant. However, since the diapause process culminates by 48 h, the SDH-2 gene expression increased and coincided with that of PFK gene expression. The trehalase (Tre) gene expression was at a lower level in diapause induced eggs compared to non-diapausing eggs. The induction of Tre activity is to regulate uptake and use of sugar by the tissues. The non-diapause eggs revealed maximum expression of GPase gene with major fluctuations as well as an overall higher expression compared to diapause induced eggs. The diapause process requires less energy source which reflects lower activity of the gene. Heat shock protein (Hsp) genes (Hsp20.4, 40, 70, and 90

  6. Reproductive changes in fluctuating house mouse populations in southeastern Australia.

    PubMed

    Singleton, G; Krebs, C J; Davis, S; Chambers, L; Brown, P

    2001-08-22

    House mice (Mus domesticus) in the Victorian mallee region of southeastern Australia show irregular outbreaks. Changes in reproductive output that could potentially drive changes in mouse numbers were assessed from 1982 to 2000. Litter size in females is positively correlated with body size. When standardized to an average size female, litter size changes seasonally from highest in spring to lowest in autumn and winter. Litter size is depressed throughout breeding seasons that begin when the abundance of mice is high, but is similar in breeding seasons over which the abundance of mice increases rapidly or remains low. Breeding begins early and is extended on average by about five weeks during seasons when mouse abundance increases rapidly. The size at which females begin to reproduce is larger during breeding seasons that begin when mouse abundance is high. An extended breeding season that begins early in spring is necessary for the generation of a house mouse plague, but it is not in itself sufficient. Reproductive changes in outbreaks of house mice in Australia are similar but not identical to reproductive changes that accompany rodent population increases in the Northern Hemisphere. We conclude that food quality, particularly protein, is a probable mechanism driving these reproductive changes, but experimental evidence for field populations is conflicting.

  7. RBP-Jκ-Dependent Notch Signaling Is Dispensable for Mouse Early Embryonic Development

    PubMed Central

    Souilhol, Céline; Cormier, Sarah; Tanigaki, Kenji; Babinet, Charles; Cohen-Tannoudji, Michel

    2006-01-01

    The Notch signaling pathway is an evolutionarily conserved signaling system which has been shown to be essential in cell fate specification and in numerous aspects of embryonic development in all metazoans thus far studied. We recently demonstrated that several components of the Notch signaling pathway, including the four Notch receptors and their five ligands known in mammals, are expressed in mouse oocytes, in mouse preimplantation embryos, or both. This suggested a possible implication of the Notch pathway in the first cell fate specification of the dividing mouse embryo, which results in the formation of the blastocyst. To address this issue directly, we generated zygotes in which both the maternal and the zygotic expression of Rbpsuh, a key element of the core Notch signaling pathway, were abrogated. We find that such zygotes give rise to blastocysts which implant and develop normally. Nevertheless, after gastrulation, these embryos die around midgestation, similarly to Rbpsuh-null mutants. This demonstrates that the RBP-Jκ-dependent pathway, otherwise called the canonical Notch pathway, is dispensable for blastocyst morphogenesis and the establishment of the three germ layers, ectoderm, endoderm, and mesoderm. These results are discussed in the light of recent observations which have challenged this conclusion. PMID:16782866

  8. Doubled haploid production from Spanish onion (Allium cepa L.) germplasm: embryogenesis induction, plant regeneration and chromosome doubling.

    PubMed

    Fayos, Oreto; Vallés, María P; Garcés-Claver, Ana; Mallor, Cristina; Castillo, Ana M

    2015-01-01

    The use of doubled haploids in onion breeding is limited due to the low gynogenesis efficiency of this species. Gynogenesis capacity from Spanish germplasm, including the sweet cultivar Fuentes de Ebro, the highly pungent landrace BGHZ1354 and the two Valenciana type commercial varieties Recas and Rita, was evaluated and optimized in this study. The OH-1 population, characterized by a high gynogenesis induction, was used as control. Growing conditions of the donor plants were tested with a one-step protocol and field plants produced a slightly higher percentage of embryogenesis induction than growth chamber plants. A one-step protocol was compared with a two-step protocol for embryogenesis induction. Spanish germplasm produced a 2-3 times higher percentage of embryogenesis with the two-step protocol, Recas showing the highest percentage (2.09%) and Fuentes de Ebro the lowest (0.53%). These percentages were significantly lower than those from the OH-1 population, with an average of 15% independently of the protocol used. The effect of different containers on plant regeneration was tested using both protocols. The highest percentage of acclimated plants was obtained with the two-step protocol in combination with Eco2box (70%), whereas the lowest percentage was observed with glass tubes in the two protocols (20-23%). Different amiprofos-methyl (APM) treatments were applied to embryos for chromosome doubling. A similar number of doubled haploid plants were recovered with 25 or 50 μM APM in liquid medium. However, the application of 25 μM in solid medium for 24 h produced the highest number of doubled haploid plants. Somatic regeneration from flower buds of haploid and mixoploid plants proved to be a successful approach for chromosome doubling, since diploid plants were obtained from the four regenerated lines. In this study, doubled haploid plants were produced from the four Spanish cultivars, however further improvements are needed to increase their gynogenesis

  9. DNA methyltransferase expressions in Japanese rice fish (Oryzias latipes) embryogenesis is developmentally regulated and modulated by ethanol and 5-azacytidine

    USDA-ARS?s Scientific Manuscript database

    We aimed to investigate the impact of the epigenome in inducting fetal alcohol spectrum disorder (FASD) phenotypes in Japanese rice fish embryogenesis. One of the significant events in epigenome is DNA methylation which is catalyzed by DNA methyl transferase (DNMT) enzymes. We analyzed DNMT enzyme m...

  10. Inverted light-sheet microscope for imaging mouse pre-implantation development.

    PubMed

    Strnad, Petr; Gunther, Stefan; Reichmann, Judith; Krzic, Uros; Balazs, Balint; de Medeiros, Gustavo; Norlin, Nils; Hiiragi, Takashi; Hufnagel, Lars; Ellenberg, Jan

    2016-02-01

    Despite its importance for understanding human infertility and congenital diseases, early mammalian development has remained inaccessible to in toto imaging. We developed an inverted light-sheet microscope that enabled us to image mouse embryos from zygote to blastocyst, computationally track all cells and reconstruct a complete lineage tree of mouse pre-implantation development. We used this unique data set to show that the first cell fate specification occurs at the 16-cell stage.

  11. Abnormal neural precursor cell regulation in the early postnatal Fragile X mouse hippocampus.

    PubMed

    Sourial, Mary; Doering, Laurie C

    2017-07-01

    The regulation of neural precursor cells (NPCs) is indispensable for a properly functioning brain. Abnormalities in NPC proliferation, differentiation, survival, or integration have been linked to various neurological diseases including Fragile X syndrome. Yet, no studies have examined NPCs from the early postnatal Fragile X mouse hippocampus despite the importance of this developmental time point, which marks the highest expression level of FMRP, the protein missing in Fragile X, in the rodent hippocampus and is when hippocampal NPCs have migrated to the dentate gyrus (DG) to give rise to lifelong neurogenesis. In this study, we examined NPCs from the early postnatal hippocampus and DG of Fragile X mice (Fmr1-KO). Immunocytochemistry on neurospheres showed increased Nestin expression and decreased Ki67 expression, which collectively indicated aberrant NPC biology. Intriguingly, flow cytometric analysis of the expression of the antigens CD15, CD24, CD133, GLAST, and PSA-NCAM showed a decreased proportion of neural stem cells (GLAST + CD15 + CD133 + ) and an increased proportion of neuroblasts (PSA-NCAM + CD15 + ) in the DG of P7 Fmr1-KO mice. This was mirrored by lower expression levels of Nestin and the mitotic marker phospho-histone H3 in vivo in the P9 hippocampus, as well as a decreased proportion of cells in the G 2 /M phases of the P7 DG. Thus, the absence of FMRP leads to fewer actively cycling NPCs, coinciding with a decrease in neural stem cells and an increase in neuroblasts. Together, these results show the importance of FMRP in the developing hippocampal formation and suggest abnormalities in cell cycle regulation in Fragile X. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  12. Zeb1-Hdac2-eNOS circuitry identifies early cardiovascular precursors in naive mouse embryonic stem cells.

    PubMed

    Cencioni, Chiara; Spallotta, Francesco; Savoia, Matteo; Kuenne, Carsten; Guenther, Stefan; Re, Agnese; Wingert, Susanne; Rehage, Maike; Sürün, Duran; Siragusa, Mauro; Smith, Jacob G; Schnütgen, Frank; von Melchner, Harald; Rieger, Michael A; Martelli, Fabio; Riccio, Antonella; Fleming, Ingrid; Braun, Thomas; Zeiher, Andreas M; Farsetti, Antonella; Gaetano, Carlo

    2018-03-29

    Nitric oxide (NO) synthesis is a late event during differentiation of mouse embryonic stem cells (mESC) and occurs after release from serum and leukemia inhibitory factor (LIF). Here we show that after release from pluripotency, a subpopulation of mESC, kept in the naive state by 2i/LIF, expresses endothelial nitric oxide synthase (eNOS) and endogenously synthesizes NO. This eNOS/NO-positive subpopulation (ESNO+) expresses mesendodermal markers and is more efficient in the generation of cardiovascular precursors than eNOS/NO-negative cells. Mechanistically, production of endogenous NO triggers rapid Hdac2 S-nitrosylation, which reduces association of Hdac2 with the transcriptional repression factor Zeb1, allowing mesendodermal gene expression. In conclusion, our results suggest that the interaction between Zeb1, Hdac2, and eNOS is required for early mesendodermal differentiation of naive mESC.

  13. Localization of Brachyury (T) in embryonic and extraembryonic tissues during mouse gastrulation.

    PubMed

    Inman, Kimberly E; Downs, Karen M

    2006-10-01

    T-box gene family members have important roles during murine embryogenesis, gastrulation, and organogenesis. Although relatively little is known about how T-box genes are regulated, published gene expression studies have revealed dynamic and specific patterns in both embryonic and extraembryonic tissues of the mouse conceptus. Mutant alleles of the T-box gene Brachyury (T) have identified roles in formation of mesoderm and its derivatives, such as somites and the allantois. However, given the cell autonomous nature of T gene activity and conflicting results of gene expression studies, it has been difficult to attribute a primary function to T in normal allantoic development. We report localization of T protein by sectional immunohistochemistry in both embryonic and extraembryonic tissues during mouse gastrulation, emphasizing T localization within the allantois. T was detected in all previously reported sites within the conceptus, including the primitive streak and its derivatives, nascent embryonic mesoderm, the node and notochord, as well as notochord-associated endoderm and posterior neurectoderm. In addition, we have clarified T within the allantois, where it was first detected in the proximal midline of the late allantoic bud (approximately 7.5 days postcoitum, dpc) and persisted within an expanded midline domain until 6-somite pairs (s; approximately 8.5 dpc). Lastly, we have discovered several novel T sites, including the developing heart, visceral endoderm, extraembryonic ectoderm, and its derivative, chorionic ectoderm. Together, these data provide a unified picture of T in the mammalian conceptus, and demonstrate T's presence in unrelated cell types and tissues in highly dynamic spatiotemporal patterns in both embryonic and extraembryonic tissues.

  14. Investigations into Retinal Pathology in the Early Stages of a Mouse Model of Alzheimer’s Disease

    PubMed Central

    Chidlow, Glyn; Wood, John P.M.; Manavis, Jim; Finnie, John; Casson, Robert J.

    2016-01-01

    There is increasing recognition that visual performance is impaired in early stages of Alzheimer’s disease (AD); however, no consensus exists as to the mechanisms underlying this visual dysfunction, in particular regarding the timing, nature, and extent of retinal versus cortical pathology. If retinal pathology presents sufficiently early, it offers great potential as a source of novel biomarkers for disease diagnosis. The current project utilized an array of immunochemical and molecular tools to perform a characterization of retinal pathology in the early stages of disease progression using a well-validated mouse model of AD (APPSWE/PS1ΔE9). Analytical endpoints included examination of aberrant amyloid and tau in the retina, quantification of any neuronal degeneration, delineation of cellular stress responses of neurons and particularly glial cells, and investigation of oxidative stress. Brain, eyes, and optic nerves were taken from transgenic and wild-type mice of 3 to 12 months of age and processed for immunohistochemistry, qPCR, or western immunoblotting. The results revealed robust expression of the human APP transgene in the retinas of transgenic mice, but a lack of identifiable retinal pathology during the period when amyloid deposits were dramatically escalating in the brain. We were unable to demonstrate the presence of amyloid plaques, dystrophic neurites, neuronal loss, macro- or micro-gliosis, aberrant cell cycle re-entry, oxidative stress, tau hyperphosphorylation, or upregulations of proinflammatory cytokines or stress signaling molecules in the retina. The overall results do not support the hypothesis that detectable retinal pathology occurs concurrently with escalating amyloid deposition in the brains of APPSWE/PS1ΔE9 mice. PMID:28035930

  15. Transposable elements at the center of the crossroads between embryogenesis, embryonic stem cells, reprogramming, and long non-coding RNAs.

    PubMed

    Hutchins, Andrew Paul; Pei, Duanqing

    Transposable elements (TEs) are mobile genomic sequences of DNA capable of autonomous and non-autonomous duplication. TEs have been highly successful, and nearly half of the human genome now consists of various families of TEs. Originally thought to be non-functional, these elements have been co-opted by animal genomes to perform a variety of physiological functions ranging from TE-derived proteins acting directly in normal biological functions, to innovations in transcription factor logic and influence on epigenetic control of gene expression. During embryonic development, when the genome is epigenetically reprogrammed and DNA-demethylated, TEs are released from repression and show embryonic stage-specific expression, and in human and mouse embryos, intact TE-derived endogenous viral particles can even be detected. A similar process occurs during the reprogramming of somatic cells to pluripotent cells: When the somatic DNA is demethylated, TEs are released from repression. In embryonic stem cells (ESCs), where DNA is hypomethylated, an elaborate system of epigenetic control is employed to suppress TEs, a system that often overlaps with normal epigenetic control of ESC gene expression. Finally, many long non-coding RNAs (lncRNAs) involved in normal ESC function and those assisting or impairing reprogramming contain multiple TEs in their RNA. These TEs may act as regulatory units to recruit RNA-binding proteins and epigenetic modifiers. This review covers how TEs are interlinked with the epigenetic machinery and lncRNAs, and how these links influence each other to modulate aspects of ESCs, embryogenesis, and somatic cell reprogramming.

  16. In Vivo Hyperthermic Stress Model: An Easy Tool to Study the Effects of Oxidative Stress on Neuronal Tau Functionality in Mouse Brain.

    PubMed

    Chauderlier, Alban; Delattre, Lucie; Buée, Luc; Galas, Marie-Christine

    2017-01-01

    Oxidative damage is an early event in neurodegenerative disorders such as Alzheimer disease. To increase oxidative stress in AD-related mouse models is essential to study early mechanisms involved in the physiopathology of these diseases. In this chapter, we describe an experimental mouse model of transient and acute hyperthermic stress to induce in vivo an increase of oxidative stress in the brain of any kind of wild-type or transgenic mouse.

  17. Evaluation of haemoglobin (erythrogen): for improved somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L. cv. SVPR 2).

    PubMed

    Ganesan, M; Jayabalan, N

    2004-10-01

    Somatic embryogenesis in cotton (Gossypium hirsutum L.) is accelerated when the plant regeneration medium is supplemented with haemoglobin (erythrogen). In cotton SVPR 2 lines, a higher frequency of embryoid formation was observed when the medium contained 400 mg/l haemoglobin. Fresh weight of the callus, rate of embryoid induction, number of embryoids formed and the percentage of plant regeneration from somatic embryos were increased. Among the two different cultivars tested, MCU 11 showed no response to the presence of haemoglobin when compared to SVPR 2, and embryogenic callus formation was completely absent in the former. Medium containing MS salts, 100 mg/l myo-inositol , 0.3 mg/l thiamine-HCL, 0.3 mg/l Picloram (PIC), 0.1 mg/l kinetin and 400 mg/l haemoglobin effected a better response with respect to embryogenic callus induction. After 8 weeks of culture, a high frequency of embryoid induction was observed on medium containing MS basal salts, 100 mg/l myo-inositol, 0.3 mg/l PIC , 0.1 mg/l isopentenyl adenine, 1.0 g/l NH4NO3 and 400 mg/l haemoglobin. Plant regeneration was observed in 75.8% of the mature somatic embryos, and whole plant regeneration was achieved within 6-7 months of culture. The regenerated plantlets were fertile and similar to in vivo-grown, seed-derived plants except that they were phenotypically smaller. A positive influence of haemoglobin was observed at concentrations up to 400 mg/l at all stages of somatic embryogenesis. The increase in the levels of antioxidant enzyme activities, for example superoxide dismutase and peroxidase, indicated the presence of excess oxygen uptake and the stressed condition of the plant tissues that arose from haemoglobin supplementation. This increased oxygen uptake and haemoglobin-mediated stress appeared to accelerate somatic embryogenesis in cotton.

  18. Hedgehog signaling is required for formation of the notochord sheath and patterning of nuclei pulposi within the intervertebral discs

    PubMed Central

    Choi, Kyung-Suk; Harfe, Brian D.

    2011-01-01

    The vertebrae notochord is a transient rod-like structure that produces secreted factors that are responsible for patterning surrounding tissues. During later mouse embryogenesis, the notochord gives rise to the middle part of the intervertebral disc, called the nucleus pulposus. Currently, very little is known about the molecular mechanisms responsible for forming the intervertebral discs. Here we demonstrate that hedgehog signaling is required for formation of the intervertebral discs. Removal of hedgehog signaling in the notochord and nearby floorplate resulted in the formation of an aberrant notochord sheath that normally surrounds this structure. In the absence of the notochord sheath, small nuclei pulposi were formed, with most notochord cells dispersed throughout the vertebral bodies during embryogenesis. Our data suggest that the formation of the notochord sheath requires hedgehog signaling and that the sheath is essential for maintaining the rod-like structure of the notochord during early embryonic development. As notochord cells form nuclei pulposi, we propose that the notochord sheath functions as a “wrapper” around the notochord to constrain these cells along the vertebral column. PMID:21606373

  19. Hedgehog signaling is required for formation of the notochord sheath and patterning of nuclei pulposi within the intervertebral discs.

    PubMed

    Choi, Kyung-Suk; Harfe, Brian D

    2011-06-07

    The vertebrae notochord is a transient rod-like structure that produces secreted factors that are responsible for patterning surrounding tissues. During later mouse embryogenesis, the notochord gives rise to the middle part of the intervertebral disc, called the nucleus pulposus. Currently, very little is known about the molecular mechanisms responsible for forming the intervertebral discs. Here we demonstrate that hedgehog signaling is required for formation of the intervertebral discs. Removal of hedgehog signaling in the notochord and nearby floorplate resulted in the formation of an aberrant notochord sheath that normally surrounds this structure. In the absence of the notochord sheath, small nuclei pulposi were formed, with most notochord cells dispersed throughout the vertebral bodies during embryogenesis. Our data suggest that the formation of the notochord sheath requires hedgehog signaling and that the sheath is essential for maintaining the rod-like structure of the notochord during early embryonic development. As notochord cells form nuclei pulposi, we propose that the notochord sheath functions as a "wrapper" around the notochord to constrain these cells along the vertebral column.

  20. Early structural and functional plasticity alterations in a susceptibility period of DYT1 dystonia mouse striatum

    PubMed Central

    Maltese, Marta; Stanic, Jennifer; Tassone, Annalisa; Sciamanna, Giuseppe; Ponterio, Giulia; Vanni, Valentina; Martella, Giuseppina; Imbriani, Paola; Bonsi, Paola; Mercuri, Nicola Biagio

    2018-01-01

    The onset of abnormal movements in DYT1 dystonia is between childhood and adolescence, although it is unclear why clinical manifestations appear during this developmental period. Plasticity at corticostriatal synapses is critically involved in motor memory. In the Tor1a+/Δgag DYT1 dystonia mouse model, long-term potentiation (LTP) appeared prematurely in a critical developmental window in striatal spiny neurons (SPNs), while long-term depression (LTD) was never recorded. Analysis of dendritic spines showed an increase of both spine width and mature mushroom spines in Tor1a+/Δgag neurons, paralleled by an enhanced AMPA receptor (AMPAR) accumulation. BDNF regulates AMPAR expression during development. Accordingly, both proBDNF and BDNF levels were significantly higher in Tor1a+/Δgag mice. Consistently, antagonism of BDNF rescued synaptic plasticity deficits and AMPA currents. Our findings demonstrate that early loss of functional and structural synaptic homeostasis represents a unique endophenotypic trait during striatal maturation, promoting the appearance of clinical manifestations in mutation carriers. PMID:29504938

  1. Transcriptomic analysis highlights epigenetic and transcriptional regulation during zygotic embryo development of Pinus pinaster

    PubMed Central

    2013-01-01

    Background It is during embryogenesis that the plant body plan is established and the meristems responsible for all post-embryonic growth are specified. The molecular mechanisms governing conifer embryogenesis are still largely unknown. Their elucidation may contribute valuable information to clarify if the distinct features of embryo development in angiosperms and gymnosperms result from differential gene regulation. To address this issue, we have performed the first transcriptomic analysis of zygotic embryo development in a conifer species (Pinus pinaster) focusing our study in particular on regulatory genes playing important roles during plant embryo development, namely epigenetic regulators and transcription factors. Results Microarray analysis of P. pinaster zygotic embryogenesis was performed at five periods of embryo development from early developing to mature embryos. Our results show that most changes in transcript levels occurred in the first and the last embryo stage-to-stage transitions, namely early to pre-cotyledonary embryo and cotyledonary to mature embryo. An analysis of functional categories for genes that were differentially expressed through embryogenesis highlighted several epigenetic regulation mechanisms. While putative orthologs of transcripts associated with mechanisms that target transposable elements and repetitive sequences were strongly expressed in early embryogenesis, PRC2-mediated repression of genes seemed more relevant during late embryogenesis. On the other hand, functions related to sRNA pathways appeared differentially regulated across all stages of embryo development with a prevalence of miRNA functions in mid to late embryogenesis. Identification of putative transcription factor genes differentially regulated between consecutive embryo stages was strongly suggestive of the relevance of auxin responses and regulation of auxin carriers during early embryogenesis. Such responses could be involved in establishing embryo patterning

  2. The chromosomal mapping of four genes encoding winged helix proteins expressed early in mouse development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labosky, P.A.; Sakaki, Hiroshi; Hogan, B.L.M.

    1996-06-01

    Members of the winged helix family of transcription factors are required for the normal embryonic development of the mouse. Using the interspecific backcross panel from The Jackson Laboratory, we have determined the chromosomal locations of four genes that encode winged helix containing proteins. Mf1 was assigned to mouse Chromosome 8, Mf2 to Chromosome 4, Mf3 to Chromosome 9, and Mf4 to Chromosome 13. Since Mf3 is located in a region of Chromosome 9 containing many well-characterized mouse mutations such as short ear (se), ashen (ash), and dilute (d), we have analyzed deletion mutants to determine the location of Mf3 moremore » precisely. 14 refs., 3 figs.« less

  3. Central cell-derived peptides regulate early embryo patterning in flowering plants.

    PubMed

    Costa, Liliana M; Marshall, Eleanor; Tesfaye, Mesfin; Silverstein, Kevin A T; Mori, Masashi; Umetsu, Yoshitaka; Otterbach, Sophie L; Papareddy, Ranjith; Dickinson, Hugh G; Boutiller, Kim; VandenBosch, Kathryn A; Ohki, Shinya; Gutierrez-Marcos, José F

    2014-04-11

    Plant embryogenesis initiates with the establishment of an apical-basal axis; however, the molecular mechanisms accompanying this early event remain unclear. Here, we show that a small cysteine-rich peptide family is required for formation of the zygotic basal cell lineage and proembryo patterning in Arabidopsis. EMBRYO SURROUNDING FACTOR 1 (ESF1) peptides accumulate before fertilization in central cell gametes and thereafter in embryo-surrounding endosperm cells. Biochemical and structural analyses revealed cleavage of ESF1 propeptides to form biologically active mature peptides. Further, these peptides act in a non-cell-autonomous manner and synergistically with the receptor-like kinase SHORT SUSPENSOR to promote suspensor elongation through the YODA mitogen-activated protein kinase pathway. Our findings demonstrate that the second female gamete and its sexually derived endosperm regulate early embryonic patterning in flowering plants.

  4. Developmental localization and the role of hydroxyproline rich glycoproteins during somatic embryogenesis of banana (Musa spp. AAA)

    PubMed Central

    2011-01-01

    Background Hydroxyproline rich glycoproteins (HRGPs) are implicated to have a role in many aspects of plant growth and development but there is limited knowledge about their localization and function during somatic embryogenesis of higher plants. In this study, the localization and function of hydroxyproline rich glycoproteins in embryogenic cells (ECs) and somatic embryos of banana were investigated by using immunobloting and immunocytochemistry with monoclonal JIM11 and JIM20 antibodies as well as by treatment with 3,4-dehydro-L-proline (3,4-DHP, an inhibitor of extensin biosynthesis), and by immunomodulation with the JIM11 antibody. Results Immunofluorescence labelling of JIM11 and JIM20 hydroxyproline rich glycoprotein epitopes was relatively weak in non-embryogenic cells (NECs), mainly on the edge of small cell aggregates. On the other hand, hydroxyproline rich glycoprotein epitopes were found to be enriched in early embryogenic cells as well as in various developmental stages of somatic embryos. Embryogenic cells (ECs), proembryos and globular embryos showed strong labelling of hydroxyproline rich glycoprotein epitopes, especially in their cell walls and outer surface layer, so-called extracellular matrix (ECM). This hydroxyproline rich glycoprotein signal at embryo surfaces decreased and/or fully disappeared during later developmental stages (e.g. pear-shaped and cotyledonary stages) of embryos. In these later developmental embryogenic stages, however, new prominent hydroxyproline rich glycoprotein labelling appeared in tri-cellular junctions among parenchymatic cells inside these embryos. Overall immunofluorescence labelling of late stage embryos with JIM20 antibody was weaker than that of JIM11. Western blot analysis supported the above immunolocalization data. The treatment with 3,4-DHP inhibited the development of embryogenic cells and decreased the rate of embryo germination. Embryo-like structures, which developed after 3,4-DHP treatment showed

  5. Two Pore Channel 2 Differentially Modulates Neural Differentiation of Mouse Embryonic Stem Cells

    PubMed Central

    Zhang, Zhe-Hao; Lu, Ying-Ying; Yue, Jianbo

    2013-01-01

    Nicotinic acid adenine dinucleotide phosphate (NAADP) is an endogenous Ca2+ mobilizing nucleotide presented in various species. NAADP mobilizes Ca2+ from acidic organelles through two pore channel 2 (TPC2) in many cell types and it has been previously shown that NAADP can potently induce neuronal differentiation in PC12 cells. Here we examined the role of TPC2 signaling in the neural differentiation of mouse embryonic stem (ES) cells. We found that the expression of TPC2 was markedly decreased during the initial ES cell entry into neural progenitors, and the levels of TPC2 gradually rebounded during the late stages of neurogenesis. Correspondingly, TPC2 knockdown accelerated mouse ES cell differentiation into neural progenitors but inhibited these neural progenitors from committing to neurons. Overexpression of TPC2, on the other hand, inhibited mouse ES cell from entering the early neural lineage. Interestingly, TPC2 knockdown had no effect on the differentiation of astrocytes and oligodendrocytes of mouse ES cells. Taken together, our data indicate that TPC2 signaling plays a temporal and differential role in modulating the neural lineage entry of mouse ES cells, in that TPC2 signaling inhibits ES cell entry to early neural progenitors, but is required for late neuronal differentiation. PMID:23776607

  6. A Novel Use of Three-dimensional High-frequency Ultrasonography for Early Pregnancy Characterization in the Mouse.

    PubMed

    Peavey, Mary C; Reynolds, Corey L; Szwarc, Maria M; Gibbons, William E; Valdes, Cecilia T; DeMayo, Francesco J; Lydon, John P

    2017-10-24

    High-frequency ultrasonography (HFUS) is a common method to non-invasively monitor the real-time development of the human fetus in utero. The mouse is routinely used as an in vivo model to study embryo implantation and pregnancy progression. Unfortunately, such murine studies require pregnancy interruption to enable follow-up phenotypic analysis. To address this issue, we used three-dimensional (3-D) reconstruction of HFUS imaging data for early detection and characterization of murine embryo implantation sites and their individual developmental progression in utero. Combining HFUS imaging with 3-D reconstruction and modeling, we were able to accurately quantify embryo implantation site number as well as monitor developmental progression in pregnant C57BL6J/129S mice from 5.5 days post coitus (d.p.c.) through to 9.5 d.p.c. with the use of a transducer. Measurements included: number, location, and volume of implantation sites as well as inter-implantation site spacing; embryo viability was assessed by cardiac activity monitoring. In the immediate post-implantation period (5.5 to 8.5 d.p.c.), 3-D reconstruction of the gravid uterus in both mesh and solid overlay format enabled visual representation of the developing pregnancies within each uterine horn. As genetically engineered mice continue to be used to characterize female reproductive phenotypes derived from uterine dysfunction, this method offers a new approach to detect, quantify, and characterize early implantation events in vivo. This novel use of 3-D HFUS imaging demonstrates the ability to successfully detect, visualize, and characterize embryo-implantation sites during early murine pregnancy in a non-invasive manner. The technology offers a significant improvement over current methods, which rely on the interruption of pregnancies for gross tissue and histopathologic characterization. Here we use a video and text format to describe how to successfully perform ultrasounds of early murine pregnancy to

  7. L1CAM in the Early Enteric and Urogenital System

    PubMed Central

    Pechriggl, Elisabeth Judith; Concin, Nicole; Blumer, Michael J.; Bitsche, Mario; Zwierzina, Marit; Dudas, Jozsef; Koziel, Katarzyna; Altevogt, Peter; Zeimet, Alain-Gustave; Fritsch, Helga

    2016-01-01

    L1 cell adhesion molecule (L1CAM) is a transmembrane molecule belonging to the L1 protein family. It has shown to be a key player in axonal guidance in the course of neuronal development. Furthermore, L1CAM is also crucial for the establishment of the enteric and urogenital organs and is aberrantly expressed in cancer originating in these organs. Carcinogenesis and embryogenesis follow a lot of similar molecular pathways, but unfortunately, comprehensive data on L1CAM expression and localization in human developing organs are lacking so far. In the present study we, therefore, examined the spatiotemporal distribution of L1CAM in the early human fetal period (weeks 8–12 of gestation) by means of immunohistochemistry and in situ hybridization (ISH). In the epithelia of the gastrointestinal organs, L1CAM localization cannot be observed in the examined stages most likely due to their advanced polarization and differentiation. Despite these results, our ISH data indicate weak L1CAM expression, but only in few epithelial cells. The genital tracts, however, are distinctly L1CAM positive throughout the entire fetal period. We, therefore, conclude that in embryogenesis L1CAM is crucial for further differentiation of epithelia. PMID:28026654

  8. Early fear memory defects are associated with altered synaptic plasticity and molecular architecture in the TgCRND8 Alzheimer's disease mouse model.

    PubMed

    Steele, John W; Brautigam, Hannah; Short, Jennifer A; Sowa, Allison; Shi, Mengxi; Yadav, Aniruddha; Weaver, Christina M; Westaway, David; Fraser, Paul E; St George-Hyslop, Peter H; Gandy, Sam; Hof, Patrick R; Dickstein, Dara L

    2014-07-01

    Alzheimer's disease (AD) is a complex and slowly progressing dementing disorder that results in neuronal and synaptic loss, deposition in brain of aberrantly folded proteins, and impairment of spatial and episodic memory. Most studies of mouse models of AD have employed analyses of cognitive status and assessment of amyloid burden, gliosis, and molecular pathology during disease progression. Here we sought to understand the behavioral, cellular, ultrastructural, and molecular changes that occur at a pathological stage equivalent to the early stages of human AD. We studied the TgCRND8 mouse, a model of aggressive AD amyloidosis, at an early stage of plaque pathology (3 months of age) in comparison to their wildtype littermates and assessed changes in cognition, neuron and spine structure, and expression of synaptic glutamate receptor proteins. We found that, at this age, TgCRND8 mice display substantial plaque deposition in the neocortex and hippocampus and impairment on cued and contextual memory tasks. Of particular interest, we also observed a significant decrease in the number of neurons in the hippocampus. Furthermore, analysis of CA1 neurons revealed significant changes in apical and basal dendritic spine types, as well as altered expression of GluN1 and GluA2 receptors. This change in molecular architecture within the hippocampus may reflect a rising representation of inherently less stable thin spine populations, which can cause cognitive decline. These changes, taken together with toxic insults from amyloid-β protein, may underlie the observed neuronal loss. Copyright © 2014 Wiley Periodicals, Inc.

  9. Hyperconnectivity and slow synapses during early development of medial prefrontal cortex in a mouse model for mental retardation and autism.

    PubMed

    Testa-Silva, Guilherme; Loebel, Alex; Giugliano, Michele; de Kock, Christiaan P J; Mansvelder, Huibert D; Meredith, Rhiannon M

    2012-06-01

    Neuronal theories of neurodevelopmental disorders (NDDs) of autism and mental retardation propose that abnormal connectivity underlies deficits in attentional processing. We tested this theory by studying unitary synaptic connections between layer 5 pyramidal neurons within medial prefrontal cortex (mPFC) networks in the Fmr1-KO mouse model for mental retardation and autism. In line with predictions from neurocognitive theory, we found that neighboring pyramidal neurons were hyperconnected during a critical period in early mPFC development. Surprisingly, excitatory synaptic connections between Fmr1-KO pyramidal neurons were significantly slower and failed to recover from short-term depression as quickly as wild type (WT) synapses. By 4-5 weeks of mPFC development, connectivity rates were identical for both KO and WT pyramidal neurons and synapse dynamics changed from depressing to facilitating responses with similar properties in both groups. We propose that the early alteration in connectivity and synaptic recovery are tightly linked: using a network model, we show that slower synapses are essential to counterbalance hyperconnectivity in order to maintain a dynamic range of excitatory activity. However, the slow synaptic time constants induce decreased responsiveness to low-frequency stimulation, which may explain deficits in integration and early information processing in attentional neuronal networks in NDDs.

  10. Hyperconnectivity and Slow Synapses during Early Development of Medial Prefrontal Cortex in a Mouse Model for Mental Retardation and Autism

    PubMed Central

    Testa-Silva, Guilherme; Loebel, Alex; Giugliano, Michele; de Kock, Christiaan P.J.; Mansvelder, Huibert D.; Meredith, Rhiannon M.

    2013-01-01

    Neuronal theories of neurodevelopmental disorders (NDDs) of autism and mental retardation propose that abnormal connectivity underlies deficits in attentional processing. We tested this theory by studying unitary synaptic connections between layer 5 pyramidal neurons within medial prefrontal cortex (mPFC) networks in the Fmr1-KO mouse model for mental retardation and autism. In line with predictions from neurocognitive theory, we found that neighboring pyramidal neurons were hyperconnected during a critical period in early mPFC development. Surprisingly, excitatory synaptic connections between Fmr1-KO pyramidal neurons were significantly slower and failed to recover from short-term depression as quickly as wild type (WT) synapses. By 4--5 weeks of mPFC development, connectivity rates were identical for both KO and WT pyramidal neurons and synapse dynamics changed from depressing to facilitating responses with similar properties in both groups. We propose that the early alteration in connectivity and synaptic recovery are tightly linked: using a network model, we show that slower synapses are essential to counterbalance hyperconnectivity in order to maintain a dynamic range of excitatory activity. However, the slow synaptic time constants induce decreased responsiveness to low-frequency stimulation, which may explain deficits in integration and early information processing in attentional neuronal networks in NDDs. PMID:21856714

  11. Modeling cell-cycle synchronization during embryogenesis in Xenopus laevis

    NASA Astrophysics Data System (ADS)

    McIsaac, R. Scott; Huang, K. C.; Sengupta, Anirvan; Wingreen, Ned

    2010-03-01

    A widely conserved aspect of embryogenesis is the ability to synchronize nuclear divisions post-fertilization. How is synchronization achieved? Given a typical protein diffusion constant of 10 μm^2sec, and an embryo length of 1mm, it would take diffusion many hours to propagate a signal across the embryo. Therefore, synchrony cannot be attained by diffusion alone. We hypothesize that known autocatalytic reactions of cell-cycle components make the embryo an ``active medium'' in which waves propagate much faster than diffusion, enforcing synchrony. We report on robust spatial synchronization of components of the core cell cycle circuit based on a mathematical model previously determined by in vitro experiments. In vivo, synchronized divisions are preceded by a rapid calcium wave that sweeps across the embryo. Experimental evidence supports the hypothesis that increases in transient calcium levels lead to derepression of a negative feedback loop, allowing cell divisions to start. Preliminary results indicate a novel relationship between the speed of the initial calcium wave and the ability to achieve synchronous cell divisions.

  12. Effect of PMA-induced protein kinase C activation on development and apoptosis in early zebrafish embryos.

    PubMed

    Hrubik, Jelena; Glisic, Branka; Samardzija, Dragana; Stanic, Bojana; Pogrmic-Majkic, Kristina; Fa, Svetlana; Andric, Nebojsa

    2016-12-01

    Protein kinase C (PKC) isoforms have been implicated in several key steps during early development, but the consequences of xenobiotic-induced PKC activation during early embryogenesis are still unknown. In this study, zebrafish embryos were exposed to a range of phorbol 12-myristate 13-acetate (PMA) concentrations (0-200μg/L) at different time points after fertilization. Results showed that 200μgPMA/L caused development of yolk bags, cardiac edema, slow blood flow, pulsating blood flow, slow pulse, elongated heart, lack of tail fins, curved tail, and coagulation. PMA exposure decreased survival rate of the embryos starting within the first 24h and becoming more pronounced after prolonged exposure (96h). PMA increased the number of apoptotic cells in the brain region as demonstrated by acridine orange staining and caused up-regulation of caspase 9 (casp9) and p53 up-regulated modulator of apoptosis (puma) mRNA in whole embryos. PMA caused oxidative stress in the embryos as demonstrated by decreased mRNA expression of catalase and superoxide dismutase 2. Inhibition of Pkc with GF109203X improved overall survival rate, reduced apoptosis in the brain and decreased expression of casp9 and puma in the PMA-exposed embryos. However, Pkc inhibition neither prevented development of deformities nor reversed oxidative stress in the PMA-exposed embryos. These data suggest that direct over-activation of Pkc during early embryogenesis of zebrafish is associated with apoptosis and decreased survival rate of the embryos. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Acute molecular response of mouse hindlimb muscles to chronic stimulation.

    PubMed

    LaFramboise, W A; Jayaraman, R C; Bombach, K L; Ankrapp, D P; Krill-Burger, J M; Sciulli, C M; Petrosko, P; Wiseman, R W

    2009-09-01

    Stimulation of the mouse hindlimb via the sciatic nerve was performed for a 4-h period to investigate acute muscle gene activation in a model of muscle phenotype conversion. Initial force production (1.6 +/- 0.1 g/g body wt) declined 45% within 10 min and was maintained for the remainder of the experiment. Force returned to initial levels upon study completion. An immediate-early growth response was present in the extensor digitorum longus (EDL) muscle (FOS, JUN, activating transcription factor 3, and musculoaponeurotic fibrosarcoma oncogene) with a similar but attenuated pattern in the soleus muscle. Transcript profiles showed decreased fast fiber-specific mRNA (myosin heavy chains 2A and 2B, fast troponins T(3) and I, alpha-tropomyosin, muscle creatine kinase, and parvalbumin) and increased slow transcripts (myosin heavy chain-1beta/slow, troponin C slow, and tropomyosin 3y) in the EDL versus soleus muscles. Histological analysis of the EDL revealed glycogen depletion without inflammatory cell infiltration in stimulated versus control muscles, whereas ultrastructural analysis showed no evidence of myofiber damage after stimulation. Multiple fiber type-specific transcription factors (tea domain family member 1, nuclear factor of activated T cells 1, peroxisome proliferator-activated receptor-gamma coactivator-1alpha and -beta, circadian locomotor output cycles kaput, and hypoxia-inducible factor-1alpha) increased in the EDL along with transcription factors characteristic of embryogenesis (Kruppel-like factor 4; SRY box containing 17; transcription factor 15; PBX/knotted 1 homeobox 1; and embryonic lethal, abnormal vision). No established in vivo satellite cell markers or genes activated in our parallel experiments of satellite cell proliferation in vitro (cyclins A(2), B(2), C, and E(1) and MyoD) were differentially increased in the stimulated muscles. These results indicated that the molecular onset of fast to slow phenotype conversion occurred in the EDL within

  14. [Effect of human oviductal embryotrophic factors on gene expression of mouse preimplantation embryos].

    PubMed

    Yao, Yuan-Qing; Lee, Kai-Fai; Xu, Jia-Seng; Ho, Pak-Chung; Yeung, Shu-Biu

    2007-09-01

    To investigate the effect of embryotrophic factors (ETF) from human oviductal cells on gene expression of mouse early developmental embryos and discuss the role of fallopian tube in early development of embryos. ETF was isolated from conditioned medium of human oviductal cell line by sequential liquid chromatographic systems. Mouse embryos were treated by ETF in vitro. Using differential display RT-PCR, the gene expression of embryos treated by ETF was compared with embryos without ETF treatment. The differentially expressed genes were separated, re-amplified, cloned and sequenced. Gene expression profiles of embryos with ETF treatment was different from embryos without this treatment. Eight differentially expressed genes were cloned and sequenced. These genes functioned in RNA degradation, synthesis, splicing, protein trafficking, cellular differentiation and embryo development. Embryotrophic factors from human oviductal cells affect gene expression of early developmental embryos. The human oviductal cells play wide roles in early developmental stages of embryos.

  15. TGF-β mediates early angiogenesis and latent fibrosis in an Emilin1-deficient mouse model of aortic valve disease

    PubMed Central

    Munjal, Charu; Opoka, Amy M.; Osinska, Hanna; James, Jeanne F.; Bressan, Giorgio M.; Hinton, Robert B.

    2014-01-01

    Aortic valve disease (AVD) is characterized by elastic fiber fragmentation (EFF), fibrosis and aberrant angiogenesis. Emilin1 is an elastin-binding glycoprotein that regulates elastogenesis and inhibits TGF-β signaling, but the role of Emilin1 in valve tissue is unknown. We tested the hypothesis that Emilin1 deficiency results in AVD, mediated by non-canonical (MAPK/phosphorylated Erk1 and Erk2) TGF-β dysregulation. Using histology, immunohistochemistry, electron microscopy, quantitative gene expression analysis, immunoblotting and echocardiography, we examined the effects of Emilin1 deficiency (Emilin1−/−) in mouse aortic valve tissue. Emilin1 deficiency results in early postnatal cell-matrix defects in aortic valve tissue, including EFF, that progress to latent AVD and premature death. The Emilin1−/− aortic valve displays early aberrant provisional angiogenesis and late neovascularization. In addition, Emilin1−/− aortic valves are characterized by early valve interstitial cell activation and proliferation and late myofibroblast-like cell activation and fibrosis. Interestingly, canonical TGF-β signaling (phosphorylated Smad2 and Smad3) is upregulated constitutively from birth to senescence, whereas non-canonical TGF-β signaling (phosphorylated Erk1 and Erk2) progressively increases over time. Emilin1 deficiency recapitulates human fibrotic AVD, and advanced disease is mediated by non-canonical (MAPK/phosphorylated Erk1 and Erk2) TGF-β activation. The early manifestation of EFF and aberrant angiogenesis suggests that these processes are crucial intermediate factors involved in disease progression and therefore might provide new therapeutic targets for human AVD. PMID:25056700

  16. Preliminary molecular detection of the somatic embryogenesis receptor-like kinase (VpSERK) and knotted-like homeobox (VpKNOX1) genes during in vitro morphogenesis of Vanilla planifolia Jacks.

    PubMed

    Ramírez-Mosqueda, Marco A; Iglesias-Andreu, Lourdes G; Sáenz, Luis; Córdova, Iván

    2018-02-01

    This work aimed to evaluate the embryogenic competence of different tissues from different stages (friable callus, bud-regenerating callus, and whole buds) of Vanilla planifolia , through the molecular detection of the somatic embryogenesis receptor-like kinase ( VpSERK ) and knotted-like homeobox ( VpKNOX1 ) genes. RNA was extracted with Trizol ® , cDNA was obtained, and the studied transcripts were amplified. Using non-specific primers, VpSERK and VpSTM gene expression was detected in the three stages evaluated. This study might contribute to providing an explanation for the recalcitrance of this Vanilla species to somatic embryogenesis.

  17. 17β-Estradiol Promotes Schwann Cell Proliferation and Differentiation, Accelerating Early Remyelination in a Mouse Peripheral Nerve Injury Model

    PubMed Central

    Chen, Yan; Guo, Wenjie; Li, Wenjuan; Cheng, Meng; Hu, Ying; Xu, Wenming

    2016-01-01

    Estrogen induces oligodendrocyte remyelination in response to demyelination in the central nervous system. Our objective was to determine the effects of 17β-estradiol (E2) on Schwann cell function and peripheral nerve remyelination after injury. Adult male C57BL/6J mice were used to prepare the sciatic nerve transection injury model and were randomly categorized into control and E2 groups. To study myelination in vitro, dorsal root ganglion (DRG) explant culture was prepared using 13.5-day-old mouse embryos. Primary Schwann cells were isolated from the sciatic nerves of 1- to 3-day-old Sprague–Dawley rats. Immunostaining for myelin basic protein (MBP) expression and toluidine blue staining for myelin sheaths demonstrated that E2 treatment accelerates early remyelination in the “nerve bridge” region between the proximal and distal stumps of the transection injury site in the mouse sciatic nerve. The 5-bromo-2′-deoxyuridine incorporation assay revealed that E2 promotes Schwann cell proliferation in the bridge region and in the primary culture, which is blocked using AKT inhibitor MK2206. The in vitro myelination in the DRG explant culture determined showed that the MBP expression in the E2-treated group is higher than that in the control group. These results show that E2 promotes Schwann cell proliferation and myelination depending on AKT activation. PMID:27872858

  18. Plasticity in Cell Division Patterns and Auxin Transport Dependency during in Vitro Embryogenesis in Brassica napus[C][W

    PubMed Central

    Soriano, Mercedes; Li, Hui; Jacquard, Cédric; Angenent, Gerco C.; Krochko, Joan; Offringa, Remko; Boutilier, Kim

    2014-01-01

    In Arabidopsis thaliana, zygotic embryo divisions are highly regular, but it is not clear how embryo patterning is established in species or culture systems with irregular cell divisions. We investigated this using the Brassica napus microspore embryogenesis system, where the male gametophyte is reprogrammed in vitro to form haploid embryos in the absence of exogenous growth regulators. Microspore embryos are formed via two pathways: a zygotic-like pathway, characterized by initial suspensor formation followed by embryo proper formation from the distal cell of the suspensor, and a pathway characterized by initially unorganized embryos lacking a suspensor. Using embryo fate and auxin markers, we show that the zygotic-like pathway requires polar auxin transport for embryo proper specification from the suspensor, while the suspensorless pathway is polar auxin transport independent and marked by an initial auxin maximum, suggesting early embryo proper establishment in the absence of a basal suspensor. Polarity establishment in this suspensorless pathway was triggered and guided by rupture of the pollen exine. Irregular division patterns did not affect cell fate establishment in either pathway. These results confirm the importance of the suspensor and suspensor-driven auxin transport in patterning, but also uncover a mechanism where cell patterning is less regular and independent of auxin transport. PMID:24951481

  19. miRNA-21 is developmentally regulated in mouse brain and is co-expressed with SOX2 in glioma

    PubMed Central

    2012-01-01

    Background MicroRNAs (miRNAs) and their role during tumor development have been studied in great detail during the last decade, albeit their expression pattern and regulation during normal development are however not so well established. Previous studies have shown that miRNAs are differentially expressed in solid human tumors. Platelet-derived growth factor (PDGF) signaling is known to be involved in normal development of the brain as well as in malignant primary brain tumors, gliomas, but the complete mechanism is still lacking. We decided to investigate the expression of the oncogenic miR-21 during normal mouse development and glioma, focusing on PDGF signaling as a potential regulator of miR-21. Methods We generated mouse glioma using the RCAS/tv-a system for driving PDGF-BB expression in a cell-specific manner. Expression of miR-21 in mouse cell cultures and mouse brain were assessed using Northern blot analysis and in situ hybridization. Immunohistochemistry and Western blot analysis were used to investigate SOX2 expression. LNA-modified siRNA was used for irreversible depletion of miR-21. For inhibition of PDGF signaling Gleevec (imatinib mesylate), Rapamycin and U0126, as well as siRNA were used. Statistical significance was calculated using double-sided unpaired Student´s t-test. Results We identified miR-21 to be highly expressed during embryonic and newborn brain development followed by a gradual decrease until undetectable at postnatal day 7 (P7), this pattern correlated with SOX2 expression. Furthermore, miR-21 and SOX2 showed up-regulation and overlapping expression pattern in RCAS/tv-a generated mouse brain tumor specimens. Upon irreversible depletion of miR-21 the expression of SOX2 was strongly diminished in both mouse primary glioma cultures and human glioma cell lines. Interestingly, in normal fibroblasts the expression of miR-21 was induced by PDGF-BB, and inhibition of PDGF signaling in mouse glioma primary cultures resulted in suppression

  20. Novel mouse models of oculopharyngeal muscular dystrophy (OPMD) reveal early onset mitochondrial defects and suggest loss of PABPN1 may contribute to pathology.

    PubMed

    Vest, Katherine E; Phillips, Brittany L; Banerjee, Ayan; Apponi, Luciano H; Dammer, Eric B; Xu, Weiting; Zheng, Dinghai; Yu, Julia; Tian, Bin; Pavlath, Grace K; Corbett, Anita H

    2017-09-01

    Oculopharyngeal muscular dystrophy (OPMD) is a late onset disease caused by polyalanine expansion in the poly(A) binding protein nuclear 1 (PABPN1). Several mouse models have been generated to study OPMD; however, most of these models have employed transgenic overexpression of alanine-expanded PABPN1. These models do not recapitulate the OPMD patient genotype and PABPN1 overexpression could confound molecular phenotypes. We have developed a knock-in mouse model of OPMD (Pabpn1+/A17) that contains one alanine-expanded Pabpn1 allele under the control of the native promoter and one wild-type Pabpn1 allele. This mouse is the closest available genocopy of OPMD patients. We show that Pabpn1+/A17 mice have a mild myopathic phenotype in adult and aged animals. We examined early molecular and biochemical phenotypes associated with expressing native levels of A17-PABPN1 and detected shorter poly(A) tails, modest changes in poly(A) signal (PAS) usage, and evidence of mitochondrial damage in these mice. Recent studies have suggested that a loss of PABPN1 function could contribute to muscle pathology in OPMD. To investigate a loss of function model of pathology, we generated a heterozygous Pabpn1 knock-out mouse model (Pabpn1+/Δ). Like the Pabpn1+/A17 mice, Pabpn1+/Δ mice have mild histologic defects, shorter poly(A) tails, and evidence of mitochondrial damage. However, the phenotypes detected in Pabpn1+/Δ mice only partially overlap with those detected in Pabpn1+/A17 mice. These results suggest that loss of PABPN1 function could contribute to but may not completely explain the pathology detected in Pabpn1+/A17 mice. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Scube3 Is Expressed in Multiple Tissues during Development but Is Dispensable for Embryonic Survival in the Mouse

    PubMed Central

    Xavier, Guilherme M.; Panousopoulos, Leonidas; Cobourne, Martyn T.

    2013-01-01

    The vertebrate Scube family consists of three independent members Scube1-3; which encode secreted cell surface-associated membrane glycoproteins that share a domain organization of at least five recognizable motifs and the ability to both homo- and heterodimerize. There is recent biochemical evidence to suggest that Scube2 is directly involved in Hedgehog signaling, acting co-operatively with Dispatched to mediate the release in soluble form of cholesterol and palmitate-modified Hedgehog ligand during long-range activity. Indeed, in the zebrafish myotome, all three Scube proteins can subtly promote Hedgehog signal transduction in a non-cell autonomous manner. In order to further investigate the role of Scube genes during development, we have generated mice with targeted inactivation of Scube3. Despite a dynamic developmental expression pattern, with transcripts present in neuroectoderm, endoderm and endochondral tissues, particularly within the craniofacial region; an absence of Scube3 function results in no overt embryonic phenotype in the mouse. Mutant mice are born at expected Mendelian ratios, are both viable and fertile, and seemingly retain normal Hedgehog signaling activity in craniofacial tissues. These findings suggest that in the mouse, Scube3 is dispensable for normal development; however, they do not exclude the possibility of a co-operative role for Scube3 with other Scube members during embryogenesis or a potential role in adult tissue homeostasis over the long-term. PMID:23383134

  2. Perspectives and Open Problems in the Early Phases of Left-Right Patterning

    PubMed Central

    Vandenberg, Laura N.; Levin, Michael

    2009-01-01

    Summary Embryonic left-right (LR) patterning is a fascinating aspect of embryogenesis. The field currently faces important questions about the origin of LR asymmetry, the mechanisms by which consistent asymmetry is imposed on the scale of the whole embryo, and the degree of conservation of early phases of LR patterning among model systems. Recent progress on planar cell polarity and cellular asymmetry in a variety of tissues and species provides a new perspective on the early phases of LR patterning. Despite the huge diversity in body-plans over which consistent LR asymmetry is imposed, and the apparent divergence in molecular pathways that underlie laterality, the data reveal conservation of physiological modules among phyla and a basic scheme of cellular chirality amplified by a planar cell polarity-like pathway over large cell fields. PMID:19084609

  3. FGF8 coordinates tissue elongation and cell epithelialization during early kidney tubulogenesis

    PubMed Central

    Atsuta, Yuji; Takahashi, Yoshiko

    2015-01-01

    When a tubular structure forms during early embryogenesis, tubular elongation and lumen formation (epithelialization) proceed simultaneously in a spatiotemporally coordinated manner. We here demonstrate, using the Wolffian duct (WD) of early chicken embryos, that this coordination is regulated by the expression of FGF8, which shifts posteriorly during body axis elongation. FGF8 acts as a chemoattractant on the leader cells of the elongating WD and prevents them from epithelialization, whereas static (‘rear’) cells that receive progressively less FGF8 undergo epithelialization to form a lumen. Thus, FGF8 acts as a binary switch that distinguishes tubular elongation from lumen formation. The posteriorly shifting FGF8 is also known to regulate somite segmentation, suggesting that multiple types of tissue morphogenesis are coordinately regulated by macroscopic changes in body growth. PMID:26130757

  4. Adult mouse brain gene expression patterns bear an embryologic imprint

    PubMed Central

    Zapala, Matthew A.; Hovatta, Iiris; Ellison, Julie A.; Wodicka, Lisa; Del Rio, Jo A.; Tennant, Richard; Tynan, Wendy; Broide, Ron S.; Helton, Rob; Stoveken, Barbara S.; Winrow, Christopher; Lockhart, Daniel J.; Reilly, John F.; Young, Warren G.; Bloom, Floyd E.; Lockhart, David J.; Barlow, Carrolee

    2005-01-01

    The current model to explain the organization of the mammalian nervous system is based on studies of anatomy, embryology, and evolution. To further investigate the molecular organization of the adult mammalian brain, we have built a gene expression-based brain map. We measured gene expression patterns for 24 neural tissues covering the mouse central nervous system and found, surprisingly, that the adult brain bears a transcriptional “imprint” consistent with both embryological origins and classic evolutionary relationships. Embryonic cellular position along the anterior–posterior axis of the neural tube was shown to be closely associated with, and possibly a determinant of, the gene expression patterns in adult structures. We also observed a significant number of embryonic patterning and homeobox genes with region-specific expression in the adult nervous system. The relationships between global expression patterns for different anatomical regions and the nature of the observed region-specific genes suggest that the adult brain retains a degree of overall gene expression established during embryogenesis that is important for regional specificity and the functional relationships between regions in the adult. The complete collection of extensively annotated gene expression data along with data mining and visualization tools have been made available on a publicly accessible web site (www.barlow-lockhart-brainmapnimhgrant.org). PMID:16002470

  5. Transient Exposure to Ethanol during Zebrafish Embryogenesis Results in Defects in Neuronal Differentiation: An Alternative Model System to Study FASD

    PubMed Central

    Joya, Xavier; Garcia-Algar, Oscar; Vall, Oriol; Pujades, Cristina

    2014-01-01

    Background The exposure of the human embryo to ethanol results in a spectrum of disorders involving multiple organ systems, including the impairment of the development of the central nervous system (CNS). In spite of the importance for human health, the molecular basis of prenatal ethanol exposure remains poorly understood, mainly to the difficulty of sample collection. Zebrafish is now emerging as a powerful organism for the modeling and the study of human diseases. In this work, we have assessed the sensitivity of specific subsets of neurons to ethanol exposure during embryogenesis and we have visualized the sensitive embryonic developmental periods for specific neuronal groups by the use of different transgenic zebrafish lines. Methodology/Principal Findings In order to evaluate the teratogenic effects of acute ethanol exposure, we exposed zebrafish embryos to ethanol in a given time window and analyzed the effects in neurogenesis, neuronal differentiation and brain patterning. Zebrafish larvae exposed to ethanol displayed small eyes and/or a reduction of the body length, phenotypical features similar to the observed in children with prenatal exposure to ethanol. When neuronal populations were analyzed, we observed a clear reduction in the number of differentiated neurons in the spinal cord upon ethanol exposure. There was a decrease in the population of sensory neurons mainly due to a decrease in cell proliferation and subsequent apoptosis during neuronal differentiation, with no effect in motoneuron specification. Conclusion Our investigation highlights that transient exposure to ethanol during early embryonic development affects neuronal differentiation although does not result in defects in early neurogenesis. These results establish the use of zebrafish embryos as an alternative research model to elucidate the molecular mechanism(s) of ethanol-induced developmental toxicity at very early stages of embryonic development. PMID:25383948

  6. Ixodes pacificus Ticks Maintain Embryogenesis and Egg Hatching after Antibiotic Treatment of Rickettsia Endosymbiont

    PubMed Central

    Kurlovs, Andre H.; Li, Jinze; Cheng, Du; Zhong, Jianmin

    2014-01-01

    Rickettsia is a genus of intracellular bacteria that causes a variety of diseases in humans and other mammals and associates with a diverse group of arthropods. Although Rickettsia appears to be common in ticks, most Rickettsia-tick relationships remain generally uncharacterized. The most intimate of these associations is Rickettsia species phylotype G021, a maternally and transstadially transmitted endosymbiont that resides in 100% of I. pacificus in California. We investigated the effects of this Rickettsia phylotype on I. pacificus reproductive fitness using selective antibiotic treatment. Ciprofloxacin was 10-fold more effective than tetracycline in eliminating Rickettsia from I. pacificus, and quantitative PCR results showed that eggs from the ciprofloxacin-treated ticks contained an average of 0.02 Rickettsia per egg cell as opposed to the average of 0.2 in the tetracycline-treated ticks. Ampicillin did not significantly affect the number of Rickettsia per tick cell in adults or eggs compared to the water-injected control ticks. We found no relationship between tick embryogenesis and rickettsial density in engorged I. pacificus females. Tetracycline treatment significantly delayed oviposition of I. pacificus ticks, but the antibiotic’s effect was unlikely related to Rickettsia. We also demonstrated that Rickettsia-free eggs could successfully develop into larvae without any significant decrease in hatching compared to eggs containing Rickettsia. No significant differences in the incubation period, egg hatching rate, and the number of larvae were found between any of the antibiotic-treated groups and the water-injected tick control. We concluded that Rickettsia species phylotype G021 does not have an apparent effect on embryogenesis, oviposition, and egg hatching of I. pacificus. PMID:25105893

  7. Microfluidic-based patterning of embryonic stem cells for in vitro development studies.

    PubMed

    Suri, Shalu; Singh, Ankur; Nguyen, Anh H; Bratt-Leal, Andres M; McDevitt, Todd C; Lu, Hang

    2013-12-07

    In vitro recapitulation of mammalian embryogenesis and examination of the emerging behaviours of embryonic structures require both the means to engineer complexity and accurately assess phenotypes of multicellular aggregates. Current approaches to study multicellular populations in 3D configurations are limited by the inability to create complex (i.e. spatially heterogeneous) environments in a reproducible manner with high fidelity thus impeding the ability to engineer microenvironments and combinations of cells with similar complexity to that found during morphogenic processes such as development, remodelling and wound healing. Here, we develop a multicellular embryoid body (EB) fusion technique as a higher-throughput in vitro tool, compared to a manual assembly, to generate developmentally relevant embryonic patterns. We describe the physical principles of the EB fusion microfluidic device design; we demonstrate that >60 conjoined EBs can be generated overnight and emulate a development process analogous to mouse gastrulation during early embryogenesis. Using temporal delivery of bone morphogenic protein 4 (BMP4) to embryoid bodies, we recapitulate embryonic day 6.5 (E6.5) during mouse embryo development with induced mesoderm differentiation in murine embryonic stem cells leading to expression of Brachyury-T-green fluorescent protein (T-GFP), an indicator of primitive streak development and mesoderm differentiation during gastrulation. The proposed microfluidic approach could be used to manipulate hundreds or more of individual embryonic cell aggregates in a rapid fashion, thereby allowing controlled differentiation patterns in fused multicellular assemblies to generate complex yet spatially controlled microenvironments.

  8. Microfluidic-based patterning of embryonic stem cells for in vitro development studies

    PubMed Central

    Suri, Shalu; Singh, Ankur; Nguyen, Anh H.; Bratt-Leal, Andres M.; McDevitt, Todd C.

    2013-01-01

    In vitro recapitulation of mammalian embryogenesis and examination of the emerging behaviours of embryonic structures require both the means to engineer complexity and accurately assess phenotypes of multicellular aggregates. Current approaches to study multicellular populations in 3D configurations are limited by the inability to create complex (i.e. spatially heterogeneous) environments in a reproducible manner with high fidelity thus impeding the ability to engineer microenvironments and combinations of cells with similar complexity to that found during morphogenic processes such as development, remodelling and wound healing. Here, we develop a multicellular embryoid body (EB) fusion technique as a higher-throughput in vitro tool, compared to a manual assembly, to generate developmentally relevant embryonic patterns. We describe the physical principles of the EB fusion microfluidic device design; we demonstrate that >60 conjoined EBs can be generated overnight and emulate a development process analogous to mouse gastrulation during early embryogenesis. Using temporal delivery of bone morphogenic protein 4 (BMP4) to embryoid bodies, we recapitulate embryonic day 6.5 (E6.5) during mouse embryo development with induced mesoderm differentiation in murine embryonic stem cells leading to expression of Brachyury-T-green fluorescent protein (T-GFP), an indicator of primitive streak development and mesoderm differentiation during gastrulation. The proposed microfluidic approach could be used to manipulate hundreds or more of individual embryonic cell aggregates in a rapid fashion, thereby allowing controlled differentiation patterns in fused multicellular assemblies to generate complex yet spatially controlled microenvironments. PMID:24113509

  9. The circadian clock controls sunburn apoptosis and erythema in mouse skin.

    PubMed

    Gaddameedhi, Shobhan; Selby, Christopher P; Kemp, Michael G; Ye, Rui; Sancar, Aziz

    2015-04-01

    Epidemiological studies of humans and experimental studies with mouse models suggest that sunburn resulting from exposure to excessive UV light and damage to DNA confers an increased risk for melanoma and non-melanoma skin cancer. Previous reports have shown that both nucleotide excision repair, which is the sole pathway in humans for removing UV photoproducts, and DNA replication are regulated by the circadian clock in mouse skin. Furthermore, the timing of UV exposure during the circadian cycle has been shown to affect skin carcinogenesis in mice. Because sunburn and skin cancer are causally related, we investigated UV-induced sunburn apoptosis and erythema in mouse skin as a function of circadian time. Interestingly, we observed that sunburn apoptosis, inflammatory cytokine induction, and erythema were maximal following an acute early-morning exposure to UV and minimal following an afternoon exposure. Early-morning exposure to UV also produced maximal activation of ataxia telangiectasia mutated and Rad3-related (Atr)-mediated DNA damage checkpoint signaling, including activation of the tumor suppressor p53, which is known to control the process of sunburn apoptosis. These data provide early evidence that the circadian clock has an important role in the erythemal response in UV-irradiated skin. The early morning is when DNA repair is at a minimum, and thus the acute responses likely are associated with unrepaired DNA damage. The prior report that mice are more susceptible to skin cancer induction following chronic irradiation in the AM, when p53 levels are maximally induced, is discussed in terms of the mutational inactivation of p53 during chronic irradiation.

  10. Cell dedifferentiation, callus induction and somatic embryogenesis in Crataegus spp.

    PubMed

    Taimori, N; Kahrizi, D; Abdossi, V; Papzan, A H

    2016-09-30

    The present study describes the effects of light conditions, different kinds and concentrations of auxins [Naphthylacetic acid (NAA) and dichlorophenoxyacetic acid (2,4-D)] with cytokinin (Kin) in MS medium on callus induction and embryogenesis in Crataegus pseudoheterophylla, C. aronia and C.meyeri. At first leave explants sections were cultured on different combinations of plant growth regulators in dark and light for callus initiation and light conditions to evaluation the percentage and duration of survival, callus diameter, callus fresh weight and dry. Results of effects of plant growth regulators and light conditions on callus initiation revealed that highest percentage of callus initiation leaves in treatment (0.5 mg/l 2.4-D+0.5 mg/l KIN) for species C.pseudoheterophylla in dark conditions (100%). Dark conditions (100%) were more effective on callogenesis than light conditions (Photoperiodicity of 16-h and at light intensity of 40 µmol m-2 s-1). The callus induction of in vitro (64-100%) leaves was better than the ex vitro ones (0-100%). The combination of 2,4-D and Kin of in vitro leaves callogenesis has been indicated faster (one weeks) than the other combinations. The results also showed that the highest percentage (100%) and survival duration (6 months) was found in species C. pseudoheterophylla and C. meyeri in 0.1 mg/l 2,4.D + 0.5 mg/l KIN and 0.5 mg/l 2,4.D + 0.5 mg/l Kin. The minimum survival (0%) was absorbed in species C. aronia in 1 mg/l NAA. Maximum callus (10.63 and 10.00 mm respectively) was shown in 0.1 mg/l 2,4.D + 0.5 mg/l Kin and 0.5 mg/l 2,4.D + 0.5 mg/l Kin and was not significant differences after five week among species. The results showed that the highest fresh (1081.49 mg) and dry weight (506.88 and 506.98 mg respectively) was absorbed in species C. pseudoheterophylla in 0.1 mg/l 2,4.D + 0.5 mg/l Kin and 0.5 mg/l 2,4.D + 0.5 mg/l Kin. The embryogenesis was not occurred in any plant growth regulator combinations and species. The

  11. 4D MEMRI atlas of neonatal FVB/N mouse brain development.

    PubMed

    Szulc, Kamila U; Lerch, Jason P; Nieman, Brian J; Bartelle, Benjamin B; Friedel, Miriam; Suero-Abreu, Giselle A; Watson, Charles; Joyner, Alexandra L; Turnbull, Daniel H

    2015-09-01

    The widespread use of the mouse as a model system to study brain development has created the need for noninvasive neuroimaging methods that can be applied to early postnatal mice. The goal of this study was to optimize in vivo three- (3D) and four-dimensional (4D) manganese (Mn)-enhanced MRI (MEMRI) approaches for acquiring and analyzing data from the developing mouse brain. The combination of custom, stage-dependent holders and self-gated (motion-correcting) 3D MRI sequences enabled the acquisition of high-resolution (100-μm isotropic), motion artifact-free brain images with a high level of contrast due to Mn-enhancement of numerous brain regions and nuclei. We acquired high-quality longitudinal brain images from two groups of FVB/N strain mice, six mice per group, each mouse imaged on alternate odd or even days (6 3D MEMRI images at each day) covering the developmental stages between postnatal days 1 to 11. The effects of Mn-exposure, anesthesia and MRI were assessed, showing small but significant transient effects on body weight and brain volume, which recovered with time and did not result in significant morphological differences when compared to controls. Metrics derived from deformation-based morphometry (DBM) were used for quantitative analysis of changes in volume and position of a number of brain regions. The cerebellum, a brain region undergoing significant changes in size and patterning at early postnatal stages, was analyzed in detail to demonstrate the spatiotemporal characterization made possible by this new atlas of mouse brain development. These results show that MEMRI is a powerful tool for quantitative analysis of mouse brain development, with great potential for in vivo phenotype analysis in mouse models of neurodevelopmental diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. The development of inter-strain variation in cortical and trabecular traits during growth of the mouse lumbar vertebral body.

    PubMed

    Ramcharan, M A; Faillace, M E; Guengerich, Z; Williams, V A; Jepsen, K J

    2017-03-01

    How cortical and trabecular bone co-develop to establish a mechanically functional structure is not well understood. Comparing early postnatal differences in morphology of lumbar vertebral bodies for three inbred mouse strains identified coordinated changes within and between cortical and trabecular traits. These early coordinate changes defined the phenotypic differences among the inbred mouse strains. Age-related changes in cortical and trabecular traits have been well studied; however, very little is known about how these bone tissues co-develop from day 1 of postnatal growth to establish functional structures by adulthood. In this study, we aimed to establish how cortical and trabecular tissues within the lumbar vertebral body change during growth for three inbred mouse strains that express wide variation in adult bone structure and function. Bone traits were quantified for lumbar vertebral bodies of female A/J, C57BL/6J (B6), and C3H/HeJ (C3H) inbred mouse strains from 1 to 105 days of age (n = 6-10 mice/age/strain). Inter-strain differences in external bone size were observed as early as 1 day of age. Reciprocal and rapid changes in the trabecular bone volume fraction and alignment in the direction of axial compression were observed by 7 days of age. Importantly, the inter-strain difference in adult trabecular bone volume fraction was established by 7 days of age. Early variation in external bone size and trabecular architecture was followed by progressive increases in cortical area between 28 and 105 days of age, with the greatest increases in cortical area seen in the mouse strain with the lowest trabecular mass. Establishing the temporal changes in bone morphology for three inbred mouse strains revealed that genetic variation in adult trabecular traits were established early in postnatal development. Early variation in trabecular architecture preceded strain-specific increases in cortical area and changes in cortical thickness. This study

  13. The low molecular weight fraction of compounds released from immature wheat pistils supports barley pollen embryogenesis.

    PubMed

    Lippmann, Rico; Friedel, Swetlana; Mock, Hans-Peter; Kumlehn, Jochen

    2015-01-01

    Pollen embryogenesis provides a useful means of generating haploid plants for plant breeding and basic research. Although it is well-established that the efficacy of the process can be enhanced by the provision of immature pistils as a nurse tissue, the origin and compound class of the signal molecule(s) involved is still elusive. Here, a micro-culture system was established to enable the culturing of populations of barley pollen at a density too low to allow unaided embryogenesis to occur, and this was then exploited to assess the effect of using various parts of the pistil as nurse tissue. A five-fold increase in the number of embryogenic calli formed was obtained by simply cutting the pistils in half. The effectiveness of the pistil-conditioned medium was transitory, since it needed replacement at least every 4 days to measurably ensure embryogenic development. The differential effect of various size classes of compounds present in the pistil-conditioned medium showed that the relevant molecule(s) was of molecular weight below 3 kDa. This work narrows down possible feeder molecules to lower molecular weight compounds and showed that the cellular origin of the active compound(s) is not specific to any tested part of the pistil. Furthermore, the increased recovery of calli during treatment with cut pistils may provide a useful tool for plant breeders and researchers using haploid technology in barley and other plant species.

  14. Mouse vocal communication system: are ultrasounds learned or innate?

    PubMed Central

    Arriaga, Gustavo; Jarvis, Erich D.

    2013-01-01

    Mouse ultrasonic vocalizations (USVs) are often used as behavioral readouts of internal states, to measure effects of social and pharmacological manipulations, and for behavioral phenotyping of mouse models for neuropsychiatric and neurodegenerative disorders. However, little is known about the neurobiological mechanisms of rodent USV production. Here we discuss the available data to assess whether male mouse song behavior and the supporting brain circuits resemble those of known vocal non-learning or vocal learning species. Recent neurobiology studies have demonstrated that the mouse USV brain system includes motor cortex and striatal regions, and that the vocal motor cortex sends a direct sparse projection to the brainstem vocal motor nucleus ambiguous, a projection thought be unique to humans among mammals. Recent behavioral studies have reported opposing conclusions on mouse vocal plasticity, including vocal ontogeny changes in USVs over early development that might not be explained by innate maturation processes, evidence for and against a role for auditory feedback in developing and maintaining normal mouse USVs, and evidence for and against limited vocal imitation of song pitch. To reconcile these findings, we suggest that the trait of vocal learning may not be dichotomous but encompass a broad set of behavioral and neural traits we call the continuum hypothesis, and that mice possess some of the traits associated with a capacity for limited vocal learning. PMID:23295209

  15. Identification and characterization of bZIP-type transcription factors involved in carrot (Daucus carota L.) somatic embryogenesis.

    PubMed

    Guan, Yucheng; Ren, Haibo; Xie, He; Ma, Zeyang; Chen, Fan

    2009-10-01

    Seed dormancy is an important adaptive trait that enables seeds of many species to remain quiescent until conditions become favorable for germination. Abscisic acid (ABA) plays an important role in these developmental processes. Like dormancy and germination, the elongation of carrot somatic embryo radicles is retarded by sucrose concentrations at or above 6%, and normal growth resumes at sucrose concentrations below 3%. Using a yeast one-hybrid screening system, we isolated two bZIP-type transcription factors, CAREB1 and CAREB2, from a cDNA library prepared from carrot somatic embryos cultured in a high-sucrose medium. Both CAREB1 and CAREB2 were localized to the nucleus, and specifically bound to the ABA response element (ABRE) in the Dc3 promoter. Expression of CAREB2 was induced in seedlings by drought and exogenous ABA application; whereas expression of CAREB1 increased during late embryogenesis, and reduced dramatically when somatic embryos were treated with fluridone, an inhibitor of ABA synthesis. Overexpression of CAREB1 caused somatic embryos to develop slowly when cultured in low-sucrose medium, and retarded the elongation of the radicles. These results indicate that CAREB1 and CAREB2 have similar DNA-binding activities, but play different roles during carrot development. Our results indicate that CAREB1 functions as an important trans-acting factor in the ABA signal transduction pathway during carrot somatic embryogenesis.

  16. Early structural and functional plasticity alterations in a susceptibility period of DYT1 dystonia mouse striatum.

    PubMed

    Maltese, Marta; Stanic, Jennifer; Tassone, Annalisa; Sciamanna, Giuseppe; Ponterio, Giulia; Vanni, Valentina; Martella, Giuseppina; Imbriani, Paola; Bonsi, Paola; Mercuri, Nicola Biagio; Gardoni, Fabrizio; Pisani, Antonio

    2018-03-05

    The onset of abnormal movements in DYT1 dystonia is between childhood and adolescence, although it is unclear why clinical manifestations appear during this developmental period. Plasticity at corticostriatal synapses is critically involved in motor memory. In the Tor1a +/Δgag DYT1 dystonia mouse model, long-term potentiation (LTP) appeared prematurely in a critical developmental window in striatal spiny neurons (SPNs), while long-term depression (LTD) was never recorded. Analysis of dendritic spines showed an increase of both spine width and mature mushroom spines in Tor1a +/Δgag neurons, paralleled by an enhanced AMPA receptor (AMPAR) accumulation. BDNF regulates AMPAR expression during development. Accordingly, both proBDNF and BDNF levels were significantly higher in Tor1a +/Δgag mice. Consistently, antagonism of BDNF rescued synaptic plasticity deficits and AMPA currents. Our findings demonstrate that early loss of functional and structural synaptic homeostasis represents a unique endophenotypic trait during striatal maturation, promoting the appearance of clinical manifestations in mutation carriers. © 2018, Maltese et al.

  17. A quantitative approach to the study of cell shapes and interactions during early chordate embryogenesis.

    PubMed

    Tassy, Olivier; Daian, Fabrice; Hudson, Clare; Bertrand, Vincent; Lemaire, Patrick

    2006-02-21

    The prospects of deciphering the genetic program underlying embryonic development were recently boosted by the generation of large sets of precisely organized quantitative molecular data. In contrast, although the precise arrangement, interactions, and shapes of cells are crucial for the fulfilment of this program, their description remains coarse and qualitative. To bridge this gap, we developed a generic software, 3D Virtual Embryo, to quantify the geometry and interactions of cells in interactive three-dimensional embryo models. We applied this approach to early ascidian embryos, chosen because of their simplicity and their phylogenetic proximity to vertebrates. We generated a collection of 19 interactive ascidian embryos between the 2- and 44-cell stages. We characterized the evolution with time, and in different cell lineages, of the volume of cells and of eight mathematical descriptors of their geometry, and we measured the surface of contact between neighboring blastomeres. These analyses first revealed that early embryonic blastomeres adopt a surprising variety of shapes, which appeared to be under strict and dynamic developmental control. Second, we found novel asymmetric cell divisions in the posterior vegetal lineages, which gave birth to sister cells with different fates. Third, during neural induction, differences in the area of contact between individual competent animal cells and inducing vegetal blastomeres appeared important to select the induced cells. In addition to novel insight into both cell-autonomous and inductive processes controlling early ascidian development, we establish a generic conceptual framework for the quantitative analysis of embryo geometry that can be applied to other model organisms.

  18. Chick embryogenesis: a unique platform to study the effects of environmental factors on embryo development.

    PubMed

    Yahav, S; Brake, J

    2014-01-01

    Bird embryogenesis takes place in a relatively protected environment that can be manipulated especially well in domestic fowl (chickens) where incubation has long been a commercial process. The embryonic developmental process has been shown to begin in the oviduct such that the embryo has attained either the blastodermal and/or gastrulation stage of development at oviposition. Bird embryos can be affected by "maternal effects," and by environmental conditions during the pre-incubation and incubation periods. "Maternal effects" has been described as an evolutionary mechanism that has provided the mother, by hormonal deposition into the yolk, with the potential to proactively influence the development of her progeny by exposing them to her particular hormonal pattern in such a manner as to influence their ability to cope with the expected wide range of environmental conditions that may occur post-hatching. Another important aspect of "maternal effects" is the effect of the maternal nutrient intake on progeny traits. From a commercial broiler chicken production perspective, it has been established that greater cumulative nutrient intake by the hen during her pullet rearing phase prior to photostimulation resulted in faster growing broiler progeny. Generally, maternal effects on progeny, which have both a genetic and an environmental component represented by yolk hormones deposition and embryo nutrient utilization, have an important effect on the development of a wide range of progeny traits. Furthermore, commercial embryo development during pre-incubation storage and incubation, as well as during incubation per se has been shown to largely depend upon temperature, while other environmental factors that include egg position during storage, and the amount of H2O and CO2 lost by the egg and the subsequent effect on albumen pH and height during storage have become important environmental factors to be considered for successful embryogenesis under commercial conditions

  19. High-fat, high-calorie diet promotes early pancreatic neoplasia in the conditional KrasG12D mouse model.

    PubMed

    Dawson, David W; Hertzer, Kathleen; Moro, Aune; Donald, Graham; Chang, Hui-Hua; Go, Vay Liang; Pandol, Steven J; Lugea, Aurelia; Gukovskaya, Anna S; Li, Gang; Hines, Oscar J; Rozengurt, Enrique; Eibl, Guido

    2013-10-01

    There is epidemiologic evidence that obesity increases the risk of cancers. Several underlying mechanisms, including inflammation and insulin resistance, are proposed. However, the driving mechanisms in pancreatic cancer are poorly understood. The goal of the present study was to develop a model of diet-induced obesity and pancreatic cancer development in a state-of-the-art mouse model, which resembles important clinical features of human obesity, for example, weight gain and metabolic disturbances. Offspring of Pdx-1-Cre and LSL-KrasG12D mice were allocated to either a high-fat, high-calorie diet (HFCD; ∼4,535 kcal/kg; 40% of calories from fats) or control diet (∼3,725 kcal/kg; 12% of calories from fats) for 3 months. Compared with control animals, mice fed with the HFCD significantly gained more weight and developed hyperinsulinemia, hyperglycemia, hyperleptinemia, and elevated levels of insulin-like growth factor I (IGF-I). The pancreas of HFCD-fed animals showed robust signs of inflammation with increased numbers of infiltrating inflammatory cells (macrophages and T cells), elevated levels of several cytokines and chemokines, increased stromal fibrosis, and more advanced PanIN lesions. Our results show that a diet high in fats and calories leads to obesity and metabolic disturbances similar to humans and accelerates early pancreatic neoplasia in the conditional KrasG12D mouse model. This model and findings will provide the basis for more robust studies attempting to unravel the mechanisms underlying the cancer-promoting properties of obesity, as well as to evaluate dietary- and chemopreventive strategies targeting obesity-associated pancreatic cancer development.

  20. Identification of novel genes potentially involved in somatic embryogenesis in chicory (Cichorium intybus L.)

    PubMed Central

    2010-01-01

    Background In our laboratory we use cultured chicory (Cichorium intybus) explants as a model to investigate cell reactivation and somatic embryogenesis and have produced 2 chicory genotypes (K59, C15) sharing a similar genetic background. K59 is a responsive genotype (embryogenic) capable of undergoing complete cell reactivation i.e. cell de- and re-differentiation leading to somatic embryogenesis (SE), whereas C15 is a non-responsive genotype (non-embryogenic) and is unable to undergo SE. Previous studies [1] showed that the use of the β-D-glucosyl Yariv reagent (β-GlcY) that specifically binds arabinogalactan-proteins (AGPs) blocked somatic embryo production in chicory root explants. This observation indicates that β-GlcY is a useful tool for investigating somatic embryogenesis (SE) in chicory. In addition, a putative AGP (DT212818) encoding gene was previously found to be significantly up-regulated in the embryogenic K59 chicory genotype as compared to the non-embryogenic C15 genotype suggesting that this AGP could be involved in chicory re-differentiation [2]. In order to improve our understanding of the molecular and cellular regulation underlying SE in chicory, we undertook a detailed cytological study of cell reactivation events in K59 and C15 genotypes, and used microarray profiling to compare gene expression in these 2 genotypes. In addition we also used β-GlcY to block SE in order to identify genes potentially involved in this process. Results Microscopy confirmed that only the K59, but not the C15 genotype underwent complete cell reactivation leading to SE formation. β-GlcY-treatment of explants blocked in vitro SE induction, but not cell reactivation, and induced cell wall modifications. Microarray analyses revealed that 78 genes were differentially expressed between induced K59 and C15 genotypes. The expression profiles of 19 genes were modified by β-GlcY-treatment. Eight genes were both differentially expressed between K59 and C15 genotypes

  1. Patterns of protein synthesis in oocytes and early embryos of Rana esculenta complex.

    PubMed

    Chen, P S; Stumm-Zollinger, E

    1986-01-01

    We have used isotopic labelling and both one-and two-dimensional electrophoretic procedures to analyse the protien synthesis patterns in oocytes and early embryos of three phenotypes of the European green frogs. The results demonstrated that protein patterns of Rana ridibunda and R. esculenta are identical, but that they differ from those of R. lessonae. Progeny of the lethal cross R. esculenta × R. esculenta showed a distinct delay in the appearance of stage-specific proteins during early embryogenesis. The heat-shock response of R. ridibunda and R. esculenta oocytes was found to be identical, but different from that of Xenopus laevis. The implications of these findings, with respect to hybridogenesis in R. esculenta complex and variations in the regulations of heat shock genes in different amphibian species, are discussed.

  2. It’s never too early to get it Right

    PubMed Central

    Vandenberg, Laura N; Lemire, Joan M; Levin, Michael

    2013-01-01

    For centuries, scientists and physicians have been captivated by the consistent left-right (LR) asymmetry of the heart, viscera, and brain. A recent study implicated tubulin proteins in establishing laterality in several experimental models, including asymmetric chemosensory receptor expression in C. elegans neurons, polarization of HL-60 human neutrophil-like cells in culture, and asymmetric organ placement in Xenopus. The same mutations that randomized asymmetry in these diverse systems also affect chirality in Arabidopsis, revealing a remarkable conservation of symmetry-breaking mechanisms among kingdoms. In Xenopus, tubulin mutants only affected LR patterning very early, suggesting that this axis is established shortly after fertilization. This addendum summarizes and extends the knowledge of the cytoskeleton’s role in the patterning of the LR axis. Results from many species suggest a conserved role for the cytoskeleton as the initiator of asymmetry, and indicate that symmetry is first broken during early embryogenesis by an intracellular process. PMID:24505508

  3. The Treacher Collins syndrome (TCOF1) gene product is involved in ribosomal DNA gene transcription by interacting with upstream binding factor.

    PubMed

    Valdez, Benigno C; Henning, Dale; So, Rolando B; Dixon, Jill; Dixon, Michael J

    2004-07-20

    Treacher Collins syndrome (TCS) is an autosomal dominant disorder characterized by an abnormality of craniofacial development that arises during early embryogenesis. TCS is caused by mutations in the gene TCOF1, which encodes the nucleolar phosphoprotein treacle. Even though the genetic alterations causing TCS have been uncovered, the mechanism underlying its pathogenesis and the function of treacle remain unknown. Here, we show that treacle is involved in ribosomal DNA gene transcription by interacting with upstream binding factor (UBF). Immunofluorescence labeling shows treacle and UBF colocalize to specific nucleolar organizer regions and cosegregate within nucleolar caps of actinomycin d-treated HeLa cells. Biochemical analysis shows the association of treacle and UBF with chromatin. Immunoprecipitation and the yeast two-hybrid system both suggest physical interaction of the two nucleolar phosphoproteins. Down-regulation of treacle expression using specific short interfering RNA results in inhibition of ribosomal DNA transcription and cell growth. A similar correlation is observed in Tcof(+/-) mouse embryos that exhibit craniofacial defects and growth retardation. Thus, treacle haploinsufficiency in TCS patients might result in abnormal development caused by inadequate ribosomal RNA production in the prefusion neural folds during the early stages of embryogenesis. The elucidation of a physiological function of treacle provides important information of relevance to the molecular dissection of the biochemical pathology of TCS.

  4. The Treacher Collins syndrome (TCOF1) gene product is involved in ribosomal DNA gene transcription by interacting with upstream binding factor

    PubMed Central

    Valdez, Benigno C.; Henning, Dale; So, Rolando B.; Dixon, Jill; Dixon, Michael J.

    2004-01-01

    Treacher Collins syndrome (TCS) is an autosomal dominant disorder characterized by an abnormality of craniofacial development that arises during early embryogenesis. TCS is caused by mutations in the gene TCOF1, which encodes the nucleolar phosphoprotein treacle. Even though the genetic alterations causing TCS have been uncovered, the mechanism underlying its pathogenesis and the function of treacle remain unknown. Here, we show that treacle is involved in ribosomal DNA gene transcription by interacting with upstream binding factor (UBF). Immunofluorescence labeling shows treacle and UBF colocalize to specific nucleolar organizer regions and cosegregate within nucleolar caps of actinomycin d-treated HeLa cells. Biochemical analysis shows the association of treacle and UBF with chromatin. Immunoprecipitation and the yeast two-hybrid system both suggest physical interaction of the two nucleolar phosphoproteins. Down-regulation of treacle expression using specific short interfering RNA results in inhibition of ribosomal DNA transcription and cell growth. A similar correlation is observed in Tcof+/- mouse embryos that exhibit craniofacial defects and growth retardation. Thus, treacle haploinsufficiency in TCS patients might result in abnormal development caused by inadequate ribosomal RNA production in the prefusion neural folds during the early stages of embryogenesis. The elucidation of a physiological function of treacle provides important information of relevance to the molecular dissection of the biochemical pathology of TCS. PMID:15249688

  5. Isl1 Is required for multiple aspects of motor neuron development

    PubMed Central

    Liang, Xingqun; Song, Mi-Ryoung; Xu, ZengGuang; Lanuza, Guillermo M.; Liu, Yali; Zhuang, Tao; Chen, Yihan; Pfaff, Samuel L.; Evans, Sylvia M.; Sun, Yunfu

    2011-01-01

    The LIM homeodomain transcription factor Islet1 (Isl1) is expressed in multiple organs and plays essential roles during embryogenesis. Isl1 is required for the survival and specification of spinal cord motor neurons. Due to early embryonic lethality and loss of motor neurons, the role of Isl1 in other aspects of motor neuron development remains unclear. In this study, we generated Isl1 mutant mouse lines expressing graded doses of Isl1. Our study has revealed essential roles of Isl1 in multiple aspects of motor neuron development, including motor neuron cell body localization, motor column formation and axon growth. In addition, Isl1 is required for survival of cranial ganglia neurons. PMID:21569850

  6. Targeting early PKCθ-dependent T-cell infiltration of dystrophic muscle reduces disease severity in a mouse model of muscular dystrophy.

    PubMed

    Lozanoska-Ochser, Biliana; Benedetti, Anna; Rizzo, Giuseppe; Marrocco, Valeria; Di Maggio, Rosanna; Fiore, Piera; Bouche, Marina

    2018-03-01

    Chronic muscle inflammation is a critical feature of Duchenne muscular dystrophy and contributes to muscle fibre injury and disease progression. Although previous studies have implicated T cells in the development of muscle fibrosis, little is known about their role during the early stages of muscular dystrophy. Here, we show that T cells are among the first cells to infiltrate mdx mouse dystrophic muscle, prior to the onset of necrosis, suggesting an important role in early disease pathogenesis. Based on our comprehensive analysis of the kinetics of the immune response, we further identify the early pre-necrotic stage of muscular dystrophy as the relevant time frame for T-cell-based interventions. We focused on protein kinase C θ (PKCθ, encoded by Prkcq), a critical regulator of effector T-cell activation, as a potential target to inhibit T-cell activity in dystrophic muscle. Lack of PKCθ not only reduced the frequency and number of infiltrating T cells but also led to quantitative and qualitative changes in the innate immune cell infiltrate in mdx/Prkcq -/- muscle. These changes were due to the inhibition of T cells, since PKCθ was necessary for T-cell but not for myeloid cell infiltration of acutely injured muscle. Targeting T cells with a PKCθ inhibitor early in the disease process markedly diminished the size of the inflammatory cell infiltrate and resulted in reduced muscle damage. Moreover, diaphragm necrosis and fibrosis were also reduced following treatment. Overall, our findings identify the early T-cell infiltrate as a therapeutic target and highlight the potential of PKCθ inhibition as a therapeutic approach to muscular dystrophy. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  7. Anesthetic Sevoflurane Causes Rho-Dependent Filopodial Shortening in Mouse Neurons.

    PubMed

    Zimering, Jeffrey H; Dong, Yuanlin; Fang, Fang; Huang, Lining; Zhang, Yiying; Xie, Zhongcong

    2016-01-01

    Early postnatal anesthesia causes long-lasting learning and memory impairment in rodents, however, evidence for a specific neurotoxic effect on early synaptogenesis has not been demonstrated. Drebrin A is an actin binding protein whose localization in dendritic protrusions serves an important role in dendritic spine morphogenesis, and is a marker for early synaptogenesis. We therefore set out to investigate whether clinically-relevant concentrations of anesthetic sevoflurane, widely- used in infants and children, alters dendritic morphology in cultured fetal day 16 mouse hippocampal neurons. After 7 days in vitro, mouse hippocampal neurons were exposed to four hours of 3% sevoflurane in 95% air/5% CO2 or control condition (95% air/5% CO2). Neurons were fixed in 4% paraformaldehyde and stained with Alexa Fluor555-Phalloidin, and/or rabbit anti-mouse drebrin A/E antibodies which permitted subcellular localization of filamentous (F)-actin and/or drebrin immunoreactivity, respectively. Sevoflurane caused acute significant length-shortening in filopodia and thin dendritic spines in days-in-vitro 7 neurons, an effect which was completely rescued by co-incubating neurons with ten micromolar concentrations of the selective Rho kinase inhibitor Y27632. Filopodia and thin spine recovered in length two days after sevoflurane exposure. Yet cluster-type filopodia (a precursor to synaptic filopodia) were persistently significantly decreased in number on day-in-vitro 9, in part owing to preferential localization of drebrin immunoreactivity to dendritic shafts versus filopodial stalks. These data suggest that sevoflurane induces F-actin depolymerization leading to acute, reversible length-shortening in dendritic protrusions through a mechanism involving (in part) activation of RhoA/Rho kinase signaling and impairs localization of drebrin A to filopodia required for early excitatory synapse formation.

  8. Pipette-based Method to Study Embryoid Body Formation Derived from Mouse and Human Pluripotent Stem Cells Partially Recapitulating Early Embryonic Development Under Simulated Microgravity Conditions

    NASA Astrophysics Data System (ADS)

    Shinde, Vaibhav; Brungs, Sonja; Hescheler, Jürgen; Hemmersbach, Ruth; Sachinidis, Agapios

    2016-06-01

    The in vitro differentiation of pluripotent stem cells partially recapitulates early in vivo embryonic development. More recently, embryonic development under the influence of microgravity has become a primary focus of space life sciences. In order to integrate the technique of pluripotent stem cell differentiation with simulated microgravity approaches, the 2-D clinostat compatible pipette-based method was experimentally investigated and adapted for investigating stem cell differentiation processes under simulated microgravity conditions. In order to keep residual accelerations as low as possible during clinorotation, while also guaranteeing enough material for further analysis, stem cells were exposed in 1-mL pipettes with a diameter of 3.5 mm. The differentiation of mouse and human pluripotent stem cells inside the pipettes resulted in the formation of embryoid bodies at normal gravity (1 g) after 24 h and 3 days. Differentiation of the mouse pluripotent stem cells on a 2-D pipette-clinostat for 3 days also resulted in the formation of embryoid bodies. Interestingly, the expression of myosin heavy chain was downregulated when cultivation was continued for an additional 7 days at normal gravity. This paper describes the techniques for culturing and differentiation of pluripotent stem cells and exposure to simulated microgravity during culturing or differentiation on a 2-D pipette clinostat. The implementation of these methodologies along with -omics technologies will contribute to understand the mechanisms regulating how microgravity influences early embryonic development.

  9. High Genetic and Epigenetic Stability in Coffea arabica Plants Derived from Embryogenic Suspensions and Secondary Embryogenesis as Revealed by AFLP, MSAP and the Phenotypic Variation Rate

    PubMed Central

    Bobadilla Landey, Roberto; Cenci, Alberto; Georget, Frédéric; Bertrand, Benoît; Camayo, Gloria; Dechamp, Eveline; Herrera, Juan Carlos; Santoni, Sylvain; Lashermes, Philippe; Simpson, June; Etienne, Hervé

    2013-01-01

    Embryogenic suspensions that involve extensive cell division are risky in respect to genome and epigenome instability. Elevated frequencies of somaclonal variation in embryogenic suspension-derived plants were reported in many species, including coffee. This problem could be overcome by using culture conditions that allow moderate cell proliferation. In view of true-to-type large-scale propagation of C. arabica hybrids, suspension protocols based on low 2,4-D concentrations and short proliferation periods were developed. As mechanisms leading to somaclonal variation are often complex, the phenotypic, genetic and epigenetic changes were jointly assessed so as to accurately evaluate the conformity of suspension-derived plants. The effects of embryogenic suspensions and secondary embryogenesis, used as proliferation systems, on the genetic conformity of somatic embryogenesis-derived plants (emblings) were assessed in two hybrids. When applied over a 6 month period, both systems ensured very low somaclonal variation rates, as observed through massive phenotypic observations in field plots (0.74% from 200 000 plant). Molecular AFLP and MSAP analyses performed on 145 three year-old emblings showed that polymorphism between mother plants and emblings was extremely low, i.e. ranges of 0–0.003% and 0.07–0.18% respectively, with no significant difference between the proliferation systems for the two hybrids. No embling was found to cumulate more than three methylation polymorphisms. No relation was established between the variant phenotype (27 variants studied) and a particular MSAP pattern. Chromosome counting showed that 7 of the 11 variant emblings analyzed were characterized by the loss of 1–3 chromosomes. This work showed that both embryogenic suspensions and secondary embryogenesis are reliable for true-to-type propagation of elite material. Molecular analyses revealed that genetic and epigenetic alterations are particularly limited during coffee somatic

  10. Mouse Mix gene is activated early during differentiation of ES and F9 stem cells and induces endoderm in frog embryos.

    PubMed

    Mohn, Deanna; Chen, Siming W; Dias, Dora Campos; Weinstein, Daniel C; Dyer, Michael A; Sahr, Kenneth; Ducker, Charles E; Zahradka, Elizabeth; Keller, Gordon; Zaret, Kenneth S; Gudas, Lorraine J; Baron, Margaret H

    2003-03-01

    In frog and zebrafish, the Mix/Bix family of paired type homeodomain proteins play key roles in specification and differentiation of mesendoderm. However, in mouse, only a single Mix gene (mMix) has been identified to date and its function is unknown. We have analyzed the expression of mouse Mix RNA and protein in embryos, embryoid bodies formed from embryonic stem cells and F9 teratocarcinoma cells, as well as several differentiated cell types. Expression in embryoid bodies in culture mirrors that in embryos, where Mix is transcribed transiently in primitive (visceral) endoderm (VE) and in nascent mesoderm. In F9 cells induced by retinoic acid to differentiate to VE, mMix is coordinately expressed with three other endodermal transcription factors, well before AFP, and its protein product is localized to the nucleus. In a subpopulation of nascent mesodermal cells from embryonic stem cell embryoid bodies, mMix is coexpressed with Brachyury. Intriguingly, mMix mRNA is detected in a population (T+Flk1+) of cells which may contain hemangioblasts, before the onset of hematopoiesis and activation of hematopoietic markers. In vitro and in vivo, mMix expression in nascent mesoderm is rapidly down-regulated and becomes undetectable in differentiated cell types. In the region of the developing gut, mMix expression is confined to the mesoderm of mid- and hindgut but is absent from definitive endoderm. Injection of mouse mMix RNA into early frog embryos results in axial truncation of developing tadpoles and, in animal cap assays, mMix alone is sufficient to activate expression of several endodermal (but not mesodermal) markers. Although these observations do not exclude a possible cell-autonomous function for mMix in mesendodermal progenitor cells, they do suggest an additional, non-cell autonomous role in nascent mesoderm in the formation and/or patterning of adjacent definitive endoderm. Copyright 2003 Wiley-Liss, Inc.

  11. Enhanced Indirect Somatic Embryogenesis of Date Palm Using Low Levels of Seawater.

    PubMed

    Taha, Rania A

    2017-01-01

    Date palm tolerates salinity, drought, and high temperatures. Arid and semiarid zones, especially the Middle East region, need a huge number of date palms for cultivation. To meet this demand, tissue culture techniques have great potential for mass production of plantlets, especially using the indirect embryogenesis technique; any improvement of these techniques is a worthy objective. Low levels of salinity can enhance growth and development of tolerant plants. A low level of seawater, a natural source of salinity, reduces the time required for micropropagation processes of date palm cv. Malkaby when added to MS medium. Medium containing seawater at 500 ppm total dissolved solid (TDS) (12.2 mL/L) improves callus proliferation, whereas 1500 ppm (36.59 mL/L) enhances plant regeneration including multiplication of secondary embryos, embryo germination, and rooting.

  12. Identification of an epigenetic signature of early mouse liver regeneration that is disrupted by Zn-HDAC inhibition.

    PubMed

    Huang, Jiansheng; Schriefer, Andrew E; Yang, Wei; Cliften, Paul F; Rudnick, David A

    2014-11-01

    Liver regeneration has been well studied with hope of discovering strategies to improve liver disease outcomes. Nevertheless, the signals that initiate such regeneration remain incompletely defined, and translation of mechanism-based pro-regenerative interventions into new treatments for hepatic diseases has not yet been achieved. We previously reported the isoform-specific regulation and essential function of zinc-dependent histone deacetylases (Zn-HDACs) during mouse liver regeneration. Those data suggest that epigenetically regulated anti-proliferative genes are deacetylated and transcriptionally suppressed by Zn-HDAC activity or that pro-regenerative factors are acetylated and induced by such activity in response to partial hepatectomy (PH). To investigate these possibilities, we conducted genome-wide interrogation of the liver histone acetylome during early PH-induced liver regeneration in mice using acetyL-histone chromatin immunoprecipitation and next generation DNA sequencing. We also compared the findings of that study to those seen during the impaired regenerative response that occurs with Zn-HDAC inhibition. The results reveal an epigenetic signature of early liver regeneration that includes both hyperacetylation of pro-regenerative factors and deacetylation of anti-proliferative and pro-apoptotic genes. Our data also show that administration of an anti-regenerative regimen of the Zn-HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) not only disrupts gene-specific pro-regenerative changes in liver histone deacetylation but also reverses PH-induced effects on histone hyperacetylation. Taken together, these studies offer new insight into and suggest novel hypotheses about the epigenetic mechanisms that regulate liver regeneration.

  13. Identification of an epigenetic signature of early mouse liver regeneration that is disrupted by Zn-HDAC inhibition

    PubMed Central

    Huang, Jiansheng; Schriefer, Andrew E; Yang, Wei; Cliften, Paul F; Rudnick, David A

    2014-01-01

    Liver regeneration has been well studied with hope of discovering strategies to improve liver disease outcomes. Nevertheless, the signals that initiate such regeneration remain incompletely defined, and translation of mechanism-based pro-regenerative interventions into new treatments for hepatic diseases has not yet been achieved. We previously reported the isoform-specific regulation and essential function of zinc-dependent histone deacetylases (Zn-HDACs) during mouse liver regeneration. Those data suggest that epigenetically regulated anti-proliferative genes are deacetylated and transcriptionally suppressed by Zn-HDAC activity or that pro-regenerative factors are acetylated and induced by such activity in response to partial hepatectomy (PH). To investigate these possibilities, we conducted genome-wide interrogation of the liver histone acetylome during early PH-induced liver regeneration in mice using acetyL-histone chromatin immunoprecipitation and next generation DNA sequencing. We also compared the findings of that study to those seen during the impaired regenerative response that occurs with Zn-HDAC inhibition. The results reveal an epigenetic signature of early liver regeneration that includes both hyperacetylation of pro-regenerative factors and deacetylation of anti-proliferative and pro-apoptotic genes. Our data also show that administration of an anti-regenerative regimen of the Zn-HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) not only disrupts gene-specific pro-regenerative changes in liver histone deacetylation but also reverses PH-induced effects on histone hyperacetylation. Taken together, these studies offer new insight into and suggest novel hypotheses about the epigenetic mechanisms that regulate liver regeneration. PMID:25482284

  14. Comparative toxicities of selected rare earth elements: Sea urchin embryogenesis and fertilization damage with redox and cytogenetic effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pagano, Giovanni, E-mail: gbpagano@tin.it; Guida, Marco; Siciliano, Antonietta

    Background: Broad-ranging adverse effects are known for rare earth elements (REE), yet only a few studies tested the toxicity of several REE, prompting studies focusing on multi-parameter REE toxicity. Methods: Trichloride salts of Y, La, Ce, Nd, Sm, Eu and Gd were tested in Paracentrotus lividus sea urchin embryos and sperm for: (1) developmental defects in either REE-exposed larvae or in the offspring of REE-exposed sperm; (2) fertilization success; (3) mitotic anomalies in REE-exposed embryos and in the offspring of REE-exposed sperm, and (4) reactive oxygen species (ROS) formation, and malondialdehyde (MDA) and nitric oxide (NO) levels. Results: REEs affectedmore » P. lividus larvae with concentration-related increase in developmental defects, 10{sup −6} to 10{sup −4} M, ranking as: Gd(III)>Y(III)>La(III)>Nd(III)≅Eu(III)>Ce(III)≅Sm(III). Nominal concentrations of REE salts were confirmed by inductively coupled plasma mass spectrometry (ICP-MS). Significant increases in MDA levels, ROS formation, and NO levels were found in REE-exposed embryos. Sperm exposure to REEs (10{sup −5} to 10{sup −4} M) resulted in concentration-related decrease in fertilization success along with increase in offspring damage. Decreased mitotic activity and increased aberration rates were detected in REE-exposed embryos and in the offspring of REE-exposed sperm. Conclusion: REE-associated toxicity affecting embryogenesis, fertilization, cytogenetic and redox endpoints showed different activities of tested REEs. Damage to early life stages, along with redox and cytogenetic anomalies should be the focus of future REE toxicity studies. - Highlights: • Seven rare earth elements exerted different effects on sea urchin early life stages. • Embryo-, spermio- and mitotoxicity, and oxidative/ nitrosative stress were found. • Nominal vs. analytical REE concentrations were checked. • Comparative toxicities were evaluated for the different REE.« less

  15. Selection against BALB/c strain cells in mouse chimaeras

    PubMed Central

    Tang, Pin-Chi; MacKay, Gillian E.; Flockhart, Jean H.; Keighren, Margaret A.; Kopakaki, Anna

    2018-01-01

    ABSTRACT It has been shown previously that BALB/c strain embryos tend to contribute poorly to mouse aggregation chimaeras. In the present study we showed that BALB/c cells were not preferentially allocated to any extraembryonic lineages of mouse aggregation chimaeras, but their contribution decreased during the early postimplantation period and they were significantly depleted by E8.5. The development of BALB/c strain preimplantation embryos lagged behind embryos from some other strains and the contribution that BALB/c and other embryos made to chimaeras correlated with their developmental stage at E2.5. This relationship suggests that the poor contribution of BALB/c embryos to aggregation chimaeras is at least partly a consequence of generalised selection related to slow or delayed preimplantation development. The suitability of BALB/c embryos for maximising the ES cell contribution to mouse ES cell chimaeras is also discussed. PMID:29330350

  16. Pro-inflammatory Cytokine Expression of Spleen Dendritic Cells in Mouse Toxoplasmosis

    PubMed Central

    Nam, Ho-Woo; Ahn, Hye-Jin

    2011-01-01

    Dendritic cells have been known as a member of strong innate immune cells against infectious organelles. In this study, we evaluated the cytokine expression of splenic dendritic cells in chronic mouse toxoplasmosis by tissue cyst-forming Me49 strain and demonstrated the distribution of lymphoid dendritic cells by fluorescence-activated cell sorter (FACS). Pro-inflammatory cytokines, such as IL-1α, IL-1β, IL-6, and IL-10 increased rapidly at week 1 post-infection (PI) and peaked at week 3 PI. Serum IL-10 level followed the similar patterns. FACS analysis showed that the number of CD8α+/CD11c+ splenic dendritic cells increased at week 1 and peaked at week 3 PI. In conclusion, mouse splenic dendritic cells showed early and rapid cytokine changes and may have important protective roles in early phases of murine toxoplasmosis. PMID:21738265

  17. In vivo time-serial multi-modality optical imaging in a mouse model of ovarian tumorigenesis

    PubMed Central

    Watson, Jennifer M; Marion, Samuel L; Rice, Photini F; Bentley, David L; Besselsen, David G; Utzinger, Urs; Hoyer, Patricia B; Barton, Jennifer K

    2014-01-01

    Identification of the early microscopic changes associated with ovarian cancer may lead to development of a diagnostic test for high-risk women. In this study we use optical coherence tomography (OCT) and multiphoton microscopy (MPM) (collecting both two photon excited fluorescence [TPEF] and second harmonic generation [SHG]) to image mouse ovaries in vivo at multiple time points. We demonstrate the feasibility of imaging mouse ovaries in vivo during a long-term survival study and identify microscopic changes associated with early tumor development. These changes include alterations in tissue microstructure, as seen by OCT, alterations in cellular fluorescence and morphology, as seen by TPEF, and remodeling of collagen structure, as seen by SHG. These results suggest that a combined OCT-MPM system may be useful for early detection of ovarian cancer. PMID:24145178

  18. Functional insights into the late embryogenesis abundant (LEA) protein family from Dendrobium officinale (Orchidaceae) using an Escherichia coli system

    PubMed Central

    Ling, Hong; Zeng, Xu; Guo, Shunxing

    2016-01-01

    Late embryogenesis abundant (LEA) proteins, a diverse family, accumulate during seed desiccation in the later stages of embryogenesis. LEA proteins are associated with tolerance to abiotic stresses, such as drought, salinity and high or cold temperature. Here, we report the first comprehensive survey of the LEA gene family in Dendrobium officinale, an important and widely grown medicinal orchid in China. Based on phylogenetic relationships with the complete set of Arabidopsis and Oryza LEA proteins, 17 genes encoding D. officinale LEAs (DofLEAs) were identified and their deduced proteins were classified into seven groups. The motif composition of these deduced proteins was correlated with the gene structure found in each LEA group. Our results reveal the DofLEA genes are widely distributed and expressed in tissues. Additionally, 11 genes from different groups were introduced into Escherichia coli to assess the functions of DofLEAs. Expression of 6 and 7 DofLEAs in E. coli improved growth performance compared with the control under salt and heat stress, respectively. Based on qPCR data, all of these genes were up-regulated in various tissues following exposure to salt and heat stresses. Our results suggest that DofLEAs play an important role in responses to abiotic stress. PMID:28004781

  19. In Vitro Fertilization with Isolated, Single Gametes Results in Zygotic Embryogenesis and Fertile Maize Plants.

    PubMed Central

    Kranz, E; Lorz, H

    1993-01-01

    We demonstrate here the possibility of regenerating phenotypically normal, fertile maize plants via in vitro fertilization of isolated, single sperm and egg cells mediated by electrofusion. The technique leads to the highly efficient formation of polar zygotes, globular structures, proembryos, and transition-phase embryos and to the formation of plants from individually cultured fusion products. Regeneration of plants occurs via embryogenesis and occasionally by polyembryony and organogenesis. Flowering plants can be obtained within 100 days of gamete fusion. Regenerated plants were studied by karyological and morphological analyses, and the segregation of kernel color was determined. The hybrid nature of the plants was confirmed. PMID:12271084

  20. Molecular aspects of zygotic embryogenesis in sunflower (Helianthus annuus L.): correlation of positive histone marks with HaWUS expression and putative link HaWUS/HaL1L.

    PubMed

    Salvini, Mariangela; Fambrini, Marco; Giorgetti, Lucia; Pugliesi, Claudio

    2016-01-01

    The link HaWUS/ HaL1L , the opposite transcriptional behavior, and the decrease/increase in positive histone marks bond to both genes suggest an inhibitory effect of WUS on HaL1L in sunflower zygotic embryos. In Arabidopsis, a group of transcription factors implicated in the earliest events of embryogenesis is the WUSCHEL-RELATED HOMEOBOX (WOX) protein family including WUSCHEL (WUS) and other 14 WOX protein, some of which contain a conserved WUS-box domain in addition to the homeodomain. WUS transcripts appear very early in embryogenesis, at the 16-cell embryo stage, but gradually become restricted to the center of the developing shoot apical meristem (SAM) primordium and continues to be expressed in cells of the niche/organizing center of SAM and floral meristems to maintain stem cell population. Moreover, WUS has decisive roles in the embryonic program presumably promoting the vegetative-to-embryonic transition and/or maintaining the identity of the embryonic stem cells. However, data on the direct interaction between WUS and key genes for seed development (as LEC1 and L1L) are not collected. The novelty of this report consists in the characterization of Helianthus annuus WUS (HaWUS) gene and in its analysis regarding the pattern of the methylated lysine 4 (K4) of the Histone H3 and of the acetylated histone H3 during the zygotic embryo development. Also, a parallel investigation was performed for HaL1L gene since two copies of the WUS-binding site (WUSATA), previously identified on HaL1L nucleotide sequence, were able to be bound by the HaWUS recombinant protein suggesting a not described effect of HaWUS on HaL1L transcription.

  1. Early Onset Intrauterine Growth Restriction in a Mouse Model of Gestational Hypercholesterolemia and Atherosclerosis

    PubMed Central

    Busso, Dolores; Mascareño, Lilian; Salas, Francisca; Berkowitz, Loni; Santander, Nicolás; Quiroz, Alonso; Amigo, Ludwig; Valdés, Gloria; Rigotti, Attilio

    2014-01-01

    The susceptibility to develop atherosclerosis is increased by intrauterine growth restriction and prenatal exposure to maternal hypercholesterolemia. Here, we studied whether mouse gestational hypercholesterolemia and atherosclerosis affected fetal development and growth at different stages of gestation. Female LDLR KO mice fed a proatherogenic, high cholesterol (HC) diet for 3 weeks before conception and during pregnancy exhibited a significant increase in non-HDL cholesterol and developed atherosclerosis. At embryonic days 12.5 (E12.5), E15.5, and E18.5, maternal gestational hypercholesterolemia and atherosclerosis were associated to a 22–24% reduction in male and female fetal weight without alterations in fetal number/litter or morphology nor placental weight or structure. Feeding the HC diet exclusively at the periconceptional period did not alter fetal growth, suggesting that maternal hypercholesterolemia affected fetal weight only after implantation. Vitamin E supplementation (1,000 UI of α-tocopherol/kg) of HC-fed females did not change the mean weight of E18.5 fetuses but reduced the percentage of fetuses exhibiting body weights below the 10th percentile of weight (HC: 90% vs. HC/VitE: 68%). In conclusion, our results showed that maternal gestational hypercholesterolemia and atherosclerosis in mice were associated to early onset fetal growth restriction and that dietary vitamin E supplementation had a beneficial impact on this condition. PMID:25295255

  2. Characterization of Mouse Models of Early Pancreatic Lesions Induced by Alcohol and Chronic Pancreatitis.

    PubMed

    Xu, Shiping; Chheda, Chintan; Ouhaddi, Yassine; Benhaddou, Hajar; Bourhim, Mouloud; Grippo, Paul J; Principe, Daniel R; Mascariñas, Emman; DeCant, Brian; Tsukamoto, Hidekazu; Pandol, Stephen J; Edderkaoui, Mouad

    2015-08-01

    We describe the first mouse model of pancreatic intraepithelial neoplasia (PanIN) lesions induced by alcohol in the presence and absence of chronic pancreatitis. Pdx1-Cre;LSL-K-ras mice were exposed to Lieber-DeCarli alcohol diet for 6 weeks with cerulein injections. The PanIN lesions and markers of fibrosis, inflammation, histone deacetylation, epithelial-to-mesenchymal transition (EMT), and cancer stemness were measured by immunohistochemistry and Western. Exposure of Pdx1-Cre;LSL-K-ras mice to an alcohol diet significantly stimulated fibrosis and slightly but not significantly increased the level of PanIN lesions associated with an increase in tumor-promoting M2 macrophages. Importantly, the alcohol diet did not increase activation of stellate cells. Alcohol diet and cerulein injections resulted in synergistic and additive effects on PanIN lesion and M2 macrophage phenotype induction, respectively. Cerulein pancreatitis caused stellate cell activation, EMT, and cancer stemness in the pancreas. Pancreatitis caused histone deacetylation, which was promoted by the alcohol diet. Pancreatitis increased EMT and cancer stemness markers, which were not further affected by the alcohol diet. The results suggest that alcohol has independent effects on promotion of PDAC associated with fibrosis formed through a stellate cell-independent mechanism and that it further promotes early PDAC and M2 macrophage induction in the context of chronic pancreatitis.

  3. Characterizing early embryonic development of Brown Tsaiya Ducks (Anas platyrhynchos) in comparison with Taiwan Country Chicken (Gallus gallus domestics)

    PubMed Central

    Lumsangkul, Chompunut; Fan, Yang-Kwang; Chang, Shen-Chang; Ju, Jyh-Cherng

    2018-01-01

    Avian embryos are among the most convenient and the primary representatives for the study of classical embryology. It is well-known that the hatching time of duck embryos is approximately one week longer than that of chicken embryos. However, the key features associated with the slower embryonic development in ducks have not been adequately described. This study aimed to characterize the pattern and the speed of early embryogenesis in Brown Tsaiya Ducks (BTD) compared with those in Taiwan Country Chicken (TCC) by using growth parameters including embryonic crown-tail length (ECTL), primitive streak formation, somitogenesis, and other development-related parameters, during the first 72 h of incubation. Three hundred and sixty eggs from BTD and TCC, respectively, were incubated at 37.2°C, and were then dissected hourly to evaluate their developmental stages. We found that morphological changes of TCC embryos shared a major similarity with that of the Hamburger and Hamilton staging system during early chick embryogenesis. The initial primitive streak in TCC emerged between 6 and 7 h post-incubation, but its emergence was delayed until 10 to 13 h post-incubation in BTD. Similarly, the limb primordia (wing and limb buds) were observed at 51 h post-incubation in TCC embryos compared to 64 h post-incubation in BTD embryos. The allantois first appeared around 65 to 68 h in TCC embryos, but it was not observed in BTD embryos. At the 72 h post-incubation, 40 somites were clearly formed in TCC embryos while only 32 somites in BTD embryos. Overall, the BTD embryos developed approximately 16 h slower than the chicken embryo during the first 72 h of development. To our best knowledge, this is the first study to describe two distinct developmental time courses between TCC and BTD, which would facilitate future embryogenesis-related studies of the two important avian species in Taiwan. PMID:29742160

  4. Making lineage decisions with biological noise: Lessons from the early mouse embryo.

    PubMed

    Simon, Claire S; Hadjantonakis, Anna-Katerina; Schröter, Christian

    2018-04-30

    Understanding how individual cells make fate decisions that lead to the faithful formation and homeostatic maintenance of tissues is a fundamental goal of contemporary developmental and stem cell biology. Seemingly uniform populations of stem cells and multipotent progenitors display a surprising degree of heterogeneity, primarily originating from the inherent stochastic nature of molecular processes underlying gene expression. Despite this heterogeneity, lineage decisions result in tissues of a defined size and with consistent proportions of differentiated cell types. Using the early mouse embryo as a model we review recent developments that have allowed the quantification of molecular intercellular heterogeneity during cell differentiation. We first discuss the relationship between these heterogeneities and developmental cellular potential. We then review recent theoretical approaches that formalize the mechanisms underlying fate decisions in the inner cell mass of the blastocyst stage embryo. These models build on our extensive knowledge of the genetic control of fate decisions in this system and will become essential tools for a rigorous understanding of the connection between noisy molecular processes and reproducible outcomes at the multicellular level. We conclude by suggesting that cell-to-cell communication provides a mechanism to exploit and buffer intercellular variability in a self-organized process that culminates in the reproducible formation of the mature mammalian blastocyst stage embryo that is ready for implantation into the maternal uterus. This article is categorized under: Gene Expression and Transcriptional Hierarchies > Cellular Differentiation Establishment of Spatial and Temporal Patterns > Regulation of Size, Proportion, and Timing Gene Expression and Transcriptional Hierarchies > Gene Networks and Genomics Gene Expression and Transcriptional Hierarchies > Quantitative Methods and Models. © 2018 Wiley Periodicals, Inc.

  5. Comprehensive single cell-resolution analysis of the role of chromatin regulators in early C. elegans embryogenesis.

    PubMed

    Krüger, Angela V; Jelier, Rob; Dzyubachyk, Oleh; Zimmerman, Timo; Meijering, Erik; Lehner, Ben

    2015-02-15

    Chromatin regulators are widely expressed proteins with diverse roles in gene expression, nuclear organization, cell cycle regulation, pluripotency, physiology and development, and are frequently mutated in human diseases such as cancer. Their inhibition often results in pleiotropic effects that are difficult to study using conventional approaches. We have developed a semi-automated nuclear tracking algorithm to quantify the divisions, movements and positions of all nuclei during the early development of Caenorhabditis elegans and have used it to systematically study the effects of inhibiting chromatin regulators. The resulting high dimensional datasets revealed that inhibition of multiple regulators, including F55A3.3 (encoding FACT subunit SUPT16H), lin-53 (RBBP4/7), rba-1 (RBBP4/7), set-16 (MLL2/3), hda-1 (HDAC1/2), swsn-7 (ARID2), and let-526 (ARID1A/1B) affected cell cycle progression and caused chromosome segregation defects. In contrast, inhibition of cir-1 (CIR1) accelerated cell division timing in specific cells of the AB lineage. The inhibition of RNA polymerase II also accelerated these division timings, suggesting that normal gene expression is required to delay cell cycle progression in multiple lineages in the early embryo. Quantitative analyses of the dataset suggested the existence of at least two functionally distinct SWI/SNF chromatin remodeling complex activities in the early embryo, and identified a redundant requirement for the egl-27 and lin-40 MTA orthologs in the development of endoderm and mesoderm lineages. Moreover, our dataset also revealed a characteristic rearrangement of chromatin to the nuclear periphery upon the inhibition of multiple general regulators of gene expression. Our systematic, comprehensive and quantitative datasets illustrate the power of single cell-resolution quantitative tracking and high dimensional phenotyping to investigate gene function. Furthermore, the results provide an overview of the functions of essential

  6. [Specification of cell destiny in early Caenorhabditis elegans embryo].

    PubMed

    Schierenberg, E

    1997-02-01

    Embryogenesis of the nematode Caenorhabditis elegans has been described completely on a cell-by-cell basis and found to be essentially invariant. With this knowledge in hands, micromanipulated embryos and mutants have been analyzed for cell lineage defects and the distribution of specific gene products. The results challenge the classical view of cell-autonomous development in nematodes and indicate that the early embryo of C. elegans is a highly dynamic system. A network of inductive events between neighboring cells is being revealed, which is necessary to assign different developmental programs to blastomeres. In those cases where molecules involved in these cell-cell interactions have been identified, homologies to cell surface receptors, ligands and transcription factors found in other systems have become obvious.

  7. Transcriptional and epigenetic control in mouse pluripotency: lessons from in vivo and in vitro studies.

    PubMed

    Habibi, Ehsan; Stunnenberg, Hendrik G

    2017-10-01

    Pluripotent cells were first derived from mouse blastocysts several decades ago. Since then, our knowledge of the molecular events that occur in the pre-implantation embryo has been vastly progressing. The emergence of epigenetics has revolutionized stem cell and developmental biology and further deepened our understanding of the underlying molecular mechanisms controlling the early embryo development. In particular, the emergence of massive parallel sequencing technologies has opened new avenues and became indispensable tools in modern biology. Additionally, development of new and exciting techniques for genome manipulation (TALEN and CRISPR/Cas9) and in vivo imaging provide unique opportunities to perturb and trace biological systems at very high resolution. Finally, recent single-cell - omics combined with sophisticated computational methodologies allow accurate, quantitative measurements for deconvolution of cellular variation in complex cell populations. Collectively, these achievements enabled the detailed characterization and monitoring of various cell states and trajectories during early stages of embryonic development. Here we review recent studies of the transcriptional and epigenetic changes during very early stages of mouse embryo development and compare these with pluripotent cells grown in vitro under different culture conditions. We discuss whether the in vitro cell states have an 'epi-phenocopy' in the embryo and refine our understanding of the circuitries controlling pluripotency and lineage commitment during early stages of mouse development. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Absolute gene expression patterns of thioredoxin and glutaredoxin redox systems in mouse.

    PubMed

    Jurado, Juan; Prieto-Alamo, María-José; Madrid-Rísquez, José; Pueyo, Carmen

    2003-11-14

    This work provides the first absolute expression patterns of genes coding for all known components of both thioredoxin (Trx) and glutaredoxin (Grx) systems in mouse: Trx1, Trx2, Grx1, Grx2, TrxR1, TrxR2, thioredoxin/glutathione reductase, and glutathione reductase. We devised a novel assay that, combining the advantages of multiplex and real-time PCR, streamlines the quantitation of the actual mRNA copy numbers in whole-animal experiments. Quantitations reported establish differences among adult organs and embryonic stages, compare mRNA decay rates, explore the significance of alternative mRNA isoforms derived from TrxR1 and Grx2 genes, and examine the time-course expression upon superoxide stress promoted by paraquat. Collectively, these quantitations show: i) unique expression profiles for each transcript and mouse organ examined, yet with some general trends like the higher amounts of mRNA species coding for thioredoxins than those coding for the reductases that control their redox states and activities; ii) continuous expression during embryogenesis with outstanding up-regulations of Trx1 and TrxR1 mRNAs in specific temporal sequences; iii) drastic differences in mRNA stability, liver decay rates range from 2.8 h (thioredoxin/glutathione reductase) to >/= 35 h (Trx1 and Trx2), and directly correlate with mRNA steady-state values; iv) testis-specific differences in the amounts (relative to total isoforms) of transcripts yielding the mitochondrial Grx2a and 67-kDa TrxR1 variants; and v) coordinated up-regulation of TrxR1 and glutathione reductase mRNAs in response to superoxide stress in an organ-specific manner. Further insights into in vivo roles of these redox systems should be gained from more focused studies of the mechanisms underlying the vast differences reported here at the transcript level.

  9. An Ancient Transcription Factor Initiates the Burst of piRNA Production During Early Meiosis in Mouse Testes

    PubMed Central

    Li, Xin Zhiguo; Roy, Christian K.; Dong, Xianjun; Bolcun-Filas, Ewelina; Wang, Jie; Han, Bo W.; Xu, Jia; Moore, Melissa J.; Schimenti, John C.; Weng, Zhiping; Zamore, Phillip D.

    2013-01-01

    SUMMARY Animal germ cells produce PIWI-interacting RNAs (piRNAs), small silencing RNAs that suppress transposons and enable gamete maturation. Mammalian transposon-silencing piRNAs accumulate early in spermatogenesis, whereas pachytene piRNAs are produced later during post-natal spermatogenesis and account for >95% of all piRNAs in the adult mouse testis. Mutants defective for pachytene piRNA pathway proteins fail to produce mature sperm, but neither the piRNA precursor transcripts nor the trigger for pachytene piRNA production is known. Here, we show that the transcription factor A-MYB initiates pachytene piRNA production. A-MYB drives transcription of both pachytene piRNA precursor RNAs and the mRNAs for core piRNA biogenesis factors, including MIWI, the protein through which pachytene piRNAs function. A-MYB regulation of piRNA pathway proteins and piRNA genes creates a coherent feed-forward loop that ensures the robust accumulation of pachytene piRNAs. This regulatory circuit, which can be detected in rooster testes, likely predates the divergence of birds and mammals. PMID:23523368

  10. SLC52A3, A Brown–Vialetto–van Laere syndrome candidate gene is essential for mouse development, but dispensable for motor neuron differentiation

    PubMed Central

    Intoh, Atsushi; Suzuki, Naoki; Koszka, Kathryn; Eggan, Kevin

    2016-01-01

    Riboflavin, also known as vitamin B2, is essential for cellular reduction-oxidation reactions, but is not readily synthesized by mammalian cells. It has been proposed that riboflavin absorption occurs through solute carrier family 52 members (SLC52) A1, A2 and A3. These transporters are also candidate genes for the childhood onset-neural degenerative syndrome Brown–Vialetto–Van Laere (BVVL). Although riboflavin is an essential nutrient, why mutations in its transporters result in a neural cell-specific disorder remains unclear. Here, we provide evidence that Slc52a3 is the mouse ortholog of SLC52A3 and show that Slc52a3 deficiency results in early embryonic lethality. Loss of mutant embryos was associated with both defects in placental formation and increased rates of apoptosis in embryonic cells. In contrast, Slc52a3 −/− embryonic stem cell lines could be readily established and differentiated into motor neurons, suggesting that this transporter is dispensable for neural differentiation and short-term maintenance. Consistent with this finding, examination of Slc52a3 gene products in adult tissues revealed expression in the testis and intestine but little or none in the brain and spinal cord. Our results suggest that BVVL patients with SCL52A3 mutations may be good candidates for riboflavin replacement therapy and suggests that either the mutations these individuals carry are hypomorphic, or that in these cases alternative transporters act during human embryogenesis to allow full-term development. PMID:26976849

  11. The Mouse House: a brief history of the ORNL mouse-genetics program, 1947-2009.

    PubMed

    Russell, Liane B

    2013-01-01

    The large mouse genetics program at the Oak Ridge National Laboratory (ORNL) is often remembered chiefly for the germ-cell mutation-rate data it generated and their uses in estimating the risk of heritable radiation damage. In fact, it soon became a multi-faceted research effort that, over a period of almost 60 years, generated a wealth of information in the areas of mammalian mutagenesis, basic genetics (later enriched by molecular techniques), cytogenetics, reproductive biology, biochemistry of germ cells, and teratology. Research in the area of germ-cell mutagenesis explored the important physical and biological factors that affect the frequency and nature of induced mutations and made several unexpected discoveries, such as the major importance of the perigametic interval (the zygote stage) for the origin of spontaneous mutations and for the sensitivity to induced genetic change. Of practical value was the discovery that ethylnitrosourea was a supermutagen for point mutations, making high-efficiency mutagenesis in the mouse feasible worldwide. Teratogenesis findings resulted in recommendations still generally accepted in radiological practice. Studies supporting the mutagenesis research added whole bodies of information about mammalian germ-cell development and about molecular targets in germ cells. The early decision to not merely count but propagate genetic variants of all sorts made possible further discoveries, such as the Y-chromosome's importance in mammalian sex determination and the identification of rare X-autosome translocations, which, in turn, led to the formulation of the single-active-X hypothesis and provided tools for studies of functional mosaicism for autosomal genes, male sterility, and chromosome-pairing mechanism. Extensive genetic and then molecular analyses of large numbers of induced specific-locus mutants resulted in fine-structure physical and correlated functional mapping of significant portions of the mouse genome and constituted a

  12. Molecular Indicators of Stress-Induced Neuroinflammation in a Mouse Model Simulating Features of Post-Traumatic Stress Disorder (Open Access)

    DTIC Science & Technology

    2017-05-23

    OPEN ORIGINAL ARTICLE Molecular indicators of stress-induced neuroinflammation in a mouse model simulating features of post -traumatic stress disorder... post -traumatic stress disorder (PTSD). The model involved exposure of an intruder (male C57BL/6) mouse to a resident aggressor (male SJL) mouse for 5...revealed that neurogenesis and synaptic plasticity pathways were activated during the early responses but were inhibited after the later post -trauma

  13. A tetravalent alphavirus-vector based Dengue vaccine provides effective immunity in an early life mouse model

    PubMed Central

    Khalil, Syed Muaz; Tonkin, Daniel R.; Mattocks, Melissa D.; Snead, Andrew T.; Johnston, Robert E.; White, Laura J.

    2014-01-01

    Dengue viruses (DENV1-4) cause 390 million clinical infections every year, several hundred thousand of which progress to severe hemorrhagic and shock syndromes. Preexisting immunity resulting from a previous DENV infection is the major risk factor for severe dengue during secondary heterologous infections. During primary infections in infants, maternal antibodies pose an analogous risk. At the same time, maternal antibodies are likely to prevent induction of endogenous anti-DENV antibodies in response to current live, attenuated virus (LAV) vaccine candidates. Any effective early life dengue vaccine has to overcome maternal antibody interference (leading to ineffective vaccination) and poor induction of antibody responses (increasing the risk of severe dengue disease upon primary infection). In a previous study, we demonstrated that a non-propagating Venezuelan equine encephalitis virus replicon expression vector (VRP), expressing the ectodomain of DENV E protein (E85), overcomes maternal interference in a BALB/c mouse model. We report here that a single immunization with a tetravalent VRP vaccine induced NAb and T-cell responses to each serotype at a level equivalent to the monovalent vaccine components, suggesting that this vaccine modality can overcome serotype interference. Furthermore, neonatal immunization was durable and could be boosted later in life to further increase NAb and T-cell responses. Although the neonatal immune response was lower in magnitude than responses in adult BALB/c mice, we demonstrate that VRP vaccines generated protective immunity from a lethal challenge after a single neonatal immunization. In summary, VRP vaccines expressing DENV antigens were immunogenic and protective in neonates, and hence are promising candidates for safe and effective vaccination in early life. PMID:24882043

  14. ZINC INFLUENCES THE IN VITRO DEVELOPMENT OF PERI-IMPLANTATION MOUSE EMBRYOS

    EPA Science Inventory

    Background: For humans, it is estimated that over 70% of concepti are lost during early development. In culture, mouse peri-implantation embryos can mimic development from the blastocyst to the egg cylinder stage of development, a period during which implantation occurs in viv...

  15. Reproductive effects of the water-accommodated fraction of a natural gas condensate in the Indo-Pacific reef-building coral Pocillopora damicornis.

    PubMed

    Villanueva, R D; Yap, H T; Montaño, M N E

    2011-11-01

    Toxic effects of the water-accommodated fraction (WAF) of a natural gas condensate on the reproduction of the brooding coral Pocillopora damicornis were studied in short-term (24 h) laboratory experiments. Coral fragments were exposed to varying concentrations of condensate WAF during different reproductive phases: gametogenesis, early embryogenesis, and late embryogenesis (when nighttime planulation occurs). During gametogenesis, exposure to condensate WAF did not inhibit subsequent production of larvae. On the other hand, exposure to >25% WAF of gravid corals, at early and late embryogenesis, resulted in abortion and early release of larvae, respectively, with higher percentages of larvae expelled in fragments treated with higher concentrations of condensate WAF at least 3h after onset of exposure. Aborted larvae during early embryogenesis were 'premature', as they are of small size (0.06±0.03 mm³), low metamorphic competency (54%), and white in coloration, with a pale brown oral end (indicating low density of zooxanthellae). Those larvae released at the latter part of embryogenesis are bigger in size (0.22±0.08 mm³), possess 100% metamorphic competency, and are brown in coloration (high density of zooxanthellae). Aside from direct effects on reproduction, fragment mortality index was higher in samples exposed to higher concentrations of condensate WAF (>25%), hence lowering the number of potentially reproducing polyps. Altogether, exposure to >25% natural gas condensate WAF for at least 3h can potentially disrupt the replenishment of coral populations due to negative effects on reproduction and early life processes. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Identification of disease specific pathways using in vivo SILAC proteomics in dystrophin deficient mdx mouse.

    PubMed

    Rayavarapu, Sree; Coley, William; Cakir, Erdinc; Jahnke, Vanessa; Takeda, Shin'ichi; Aoki, Yoshitsugu; Grodish-Dressman, Heather; Jaiswal, Jyoti K; Hoffman, Eric P; Brown, Kristy J; Hathout, Yetrib; Nagaraju, Kanneboyina

    2013-05-01

    Duchenne muscular dystrophy (DMD) is an X-linked neuromuscular disorder caused by a mutation in the dystrophin gene. DMD is characterized by progressive weakness of skeletal, cardiac, and respiratory muscles. The molecular mechanisms underlying dystrophy-associated muscle weakness and damage are not well understood. Quantitative proteomics techniques could help to identify disease-specific pathways. Recent advances in the in vivo labeling strategies such as stable isotope labeling in mouse (SILAC mouse) with (13)C6-lysine or stable isotope labeling in mammals (SILAM) with (15)N have enabled accurate quantitative analysis of the proteomes of whole organs and tissues as a function of disease. Here we describe the use of the SILAC mouse strategy to define the underlying pathological mechanisms in dystrophin-deficient skeletal muscle. Differential SILAC proteome profiling was performed on the gastrocnemius muscles of 3-week-old (early stage) dystrophin-deficient mdx mice and wild-type (normal) mice. The generated data were further confirmed in an independent set of mdx and normal mice using a SILAC spike-in strategy. A total of 789 proteins were quantified; of these, 73 were found to be significantly altered between mdx and normal mice (p < 0.05). Bioinformatics analyses using Ingenuity Pathway software established that the integrin-linked kinase pathway, actin cytoskeleton signaling, mitochondrial energy metabolism, and calcium homeostasis are the pathways initially affected in dystrophin-deficient muscle at early stages of pathogenesis. The key proteins involved in these pathways were validated by means of immunoblotting and immunohistochemistry in independent sets of mdx mice and in human DMD muscle biopsies. The specific involvement of these molecular networks early in dystrophic pathology makes them potential therapeutic targets. In sum, our findings indicate that SILAC mouse strategy has uncovered previously unidentified pathological pathways in mouse models of

  17. Identification of Disease Specific Pathways Using in Vivo SILAC Proteomics in Dystrophin Deficient mdx Mouse*

    PubMed Central

    Rayavarapu, Sree; Coley, William; Cakir, Erdinc; Jahnke, Vanessa; Takeda, Shin'ichi; Aoki, Yoshitsugu; Grodish-Dressman, Heather; Jaiswal, Jyoti K.; Hoffman, Eric P.; Brown, Kristy J.; Hathout, Yetrib; Nagaraju, Kanneboyina

    2013-01-01

    Duchenne muscular dystrophy (DMD) is an X-linked neuromuscular disorder caused by a mutation in the dystrophin gene. DMD is characterized by progressive weakness of skeletal, cardiac, and respiratory muscles. The molecular mechanisms underlying dystrophy-associated muscle weakness and damage are not well understood. Quantitative proteomics techniques could help to identify disease-specific pathways. Recent advances in the in vivo labeling strategies such as stable isotope labeling in mouse (SILAC mouse) with 13C6-lysine or stable isotope labeling in mammals (SILAM) with 15N have enabled accurate quantitative analysis of the proteomes of whole organs and tissues as a function of disease. Here we describe the use of the SILAC mouse strategy to define the underlying pathological mechanisms in dystrophin-deficient skeletal muscle. Differential SILAC proteome profiling was performed on the gastrocnemius muscles of 3-week-old (early stage) dystrophin-deficient mdx mice and wild-type (normal) mice. The generated data were further confirmed in an independent set of mdx and normal mice using a SILAC spike-in strategy. A total of 789 proteins were quantified; of these, 73 were found to be significantly altered between mdx and normal mice (p < 0.05). Bioinformatics analyses using Ingenuity Pathway software established that the integrin-linked kinase pathway, actin cytoskeleton signaling, mitochondrial energy metabolism, and calcium homeostasis are the pathways initially affected in dystrophin-deficient muscle at early stages of pathogenesis. The key proteins involved in these pathways were validated by means of immunoblotting and immunohistochemistry in independent sets of mdx mice and in human DMD muscle biopsies. The specific involvement of these molecular networks early in dystrophic pathology makes them potential therapeutic targets. In sum, our findings indicate that SILAC mouse strategy has uncovered previously unidentified pathological pathways in mouse models of human

  18. The Circadian Clock Controls Sunburn Apoptosis and Erythema in Mouse Skin

    PubMed Central

    Gaddameedhi, Shobhan; Selby, Christopher P.; Kemp, Michael G.; Ye, Rui; Sancar, Aziz

    2014-01-01

    Epidemiological studies of humans and experimental studies with mouse models suggest that sunburn resulting from exposure to excessive UV light and damage to DNA confers an increased risk for melanoma and non-melanoma skin cancer. Previous reports have shown that both nucleotide excision repair, which is the sole pathway in humans for removing UV photoproducts, and DNA replication, are regulated by the circadian clock in mouse skin. Furthermore, the timing of UV exposure during the circadian cycle has been shown to affect skin carcinogenesis in mice. Because sunburn and skin cancer are causally related, we investigated UV-induced sunburn apoptosis and erythema in mouse skin as a function of circadian time. Interestingly, we observed that sunburn apoptosis, inflammatory cytokine induction, and erythema were maximal following an acute early morning exposure to UV and minimal following an afternoon exposure. Early morning exposure to UV also produced maximal activation of Atr-mediated DNA damage checkpoint signaling including activation of the tumor suppressor p53, which is known to control the process of sunburn apoptosis. To our knowledge these data provide the first evidence that the circadian clock plays an important role in the erythemal response in UV-irradiated skin. The early morning is when DNA repair is at a minimum, thus the acute responses likely are associated with unrepaired DNA damage. The prior report that mice are more susceptible to skin cancer induction following chronic irradiation in the AM, when p53 levels are maximally induced, is discussed in terms of the mutational inactivation of p53 during chronic irradiation. PMID:25431853

  19. Cannabinoid receptor 1 signaling in embryo neurodevelopment

    PubMed Central

    Psychoyos, Delphine; Vinod, K. Yaragudri; Cao, Jin; Hyson, Richard L.; Wlodarczyk, Bogdan; He, Weimin; Cooper, Thomas B.; Hungund, Basalingappa L.; Finnell, Richard H.

    2014-01-01

    In utero exposure to THC, the psychoactive component of marijuana, is associated with an increased risk for neurodevelopmental defects in the offspring by interfering with the functioning of the endocannabinoid (eCB) system. At the present time it is not clearly known whether the eCB system is present prior to neurogenesis. Using an array of biochemical techniques we analyzed the levels of CB1 receptors, eCBs (AEA and 2-AG), and the enzymes (NAPE-PLD, DAGLα, DAGLβ MAGL and FAAH) involved in the metabolism of the eCBs in chick and mouse models during development. The findings demonstrate the presence of eCB system in early embryo, prior to neurogenesis. The eCB system might play a critical role in early embryogenesis and there might be adverse developmental consequences of in utero exposure to marijuana and other drugs of abuse during this period. PMID:22311661

  20. Ossicular fusion and cholesteatoma in auriculo-condylar syndrome: in vivo evidence of arrest of embryogenesis.

    PubMed

    Propst, Evan J; Ngan, Bo Y; Mount, Richard J; Martin-Munoz, Daniel; Blaser, Susan; Harrison, Robert V; Cushing, Sharon L; Papsin, Blake C

    2013-02-01

    Auriculo-condylar syndrome (ACS) is a rare condition affecting first branchial arch structures. The types of hearing loss and temporal bone findings in ACS have not been reported. We describe a 14-year-old male with constricted pinnae, mandibular dysostosis, glossoptosis, a high-arched palate, hearing loss, and cholesteatoma. Computed tomography imaging demonstrated malleoincudal joint ankylosis. The fused malleoincudal complex was removed during mastoidectomy for cholesteatoma. Electron microscopy and histopathology of the joint suggested the fusion was congenital. This is the first report of ossicular fusion and cholesteatoma in ACS and the most detailed in vivo evidence of disruption of embryogenesis during malleoincudal joint formation. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.

  1. Centralized mouse repositories.

    PubMed

    Donahue, Leah Rae; Hrabe de Angelis, Martin; Hagn, Michael; Franklin, Craig; Lloyd, K C Kent; Magnuson, Terry; McKerlie, Colin; Nakagata, Naomi; Obata, Yuichi; Read, Stuart; Wurst, Wolfgang; Hörlein, Andreas; Davisson, Muriel T

    2012-10-01

    Because the mouse is used so widely for biomedical research and the number of mouse models being generated is increasing rapidly, centralized repositories are essential if the valuable mouse strains and models that have been developed are to be securely preserved and fully exploited. Ensuring the ongoing availability of these mouse strains preserves the investment made in creating and characterizing them and creates a global resource of enormous value. The establishment of centralized mouse repositories around the world for distributing and archiving these resources has provided critical access to and preservation of these strains. This article describes the common and specialized activities provided by major mouse repositories around the world.

  2. Expression of the Hsp23 chaperone during Drosophila embryogenesis: association to distinct neural and glial lineages

    PubMed Central

    Michaud, Sébastien; Tanguay, Robert M

    2003-01-01

    Background In addition to their strong induction following stress, small heat shock proteins (Hsp) are also expressed during development in a wide variety of organisms. However, the precise identity of cell(s) expressing these proteins and the functional contribution of small heat shock proteins in such developmental context remain to be determined. The present study provides a detailed description of the Drosophila small heat shock protein Hsp23 expression pattern during embryogenesis and evaluates its functional contribution to central nervous system development. Results Throughout embryogenesis, Hsp23 is expressed in a stage-specific manner by a restricted number of neuronal and glial lineages of the central nervous system. Hsp23 is also detected in the amnioserosa and within a single lateral chordotonal organ. Its expression within the MP2 lineage does not require the presence of a functional midline nor the activity of the Notch signaling pathway. Transactivation assays demonstrate that transcription factors implicated in the differentiation of the midline also regulate hsp23 promoter activity. Phenotypic analysis of a transgenic line exhibiting loss of Hsp23 expression in the central nervous system suggests that Hsp23 is not required for development and function of this tissue. Likewise, its overexpression does not cause deleterious effects, as development remains unaffected. Conclusions Based on the presented data, we suggest that the tightly regulated developmental expression of Hsp23 is not actively involved in cell differentiation and central nervous system development per se but rather reflects a putative role in preventive "pre-stress" neuroprotection or in non-vital process(es) common to the identified cell lineages. PMID:14617383

  3. Genome-wide analysis of transcription factors during somatic embryogenesis in banana (Musa spp.) cv. Grand Naine.

    PubMed

    Shivani; Awasthi, Praveen; Sharma, Vikrant; Kaur, Navjot; Kaur, Navneet; Pandey, Pankaj; Tiwari, Siddharth

    2017-01-01

    Transcription factors BABY BOOM (BBM), WUSCHEL (WUS), BSD, LEAFY COTYLEDON (LEC), LEAFY COTYLEDON LIKE (LIL), VIVIPAROUS1 (VP1), CUP SHAPED COTYLEDONS (CUC), BOLITA (BOL), and AGAMOUS LIKE (AGL) play a crucial role in somatic embryogenesis. In this study, we identified eighteen genes of these nine transcription factors families from the banana genome database. All genes were analyzed for their structural features, subcellular, and chromosomal localization. Protein sequence analysis indicated the presence of characteristic conserved domains in these transcription factors. Phylogenetic analysis revealed close evolutionary relationship among most transcription factors of various monocots. The expression patterns of eighteen genes in embryogenic callus containing somatic embryos (precisely isolated by Laser Capture Microdissection), non-embryogenic callus, and cell suspension cultures of banana cultivar Grand Naine were analyzed. The application of 2, 4-dichlorophenoxyacetic acid (2, 4-D) in the callus induction medium enhanced the expression of MaBBM1, MaBBM2, MaWUS2, and MaVP1 in the embryogenic callus. It suggested 2, 4-D acts as an inducer for the expression of these genes. The higher expression of MaBBM2 and MaWUS2 in embryogenic cell suspension (ECS) as compared to non-embryogenic cells suspension (NECS), suggested that these genes may play a crucial role in banana somatic embryogenesis. MaVP1 showed higher expression in both ECS and NECS, whereas MaLEC2 expression was significantly higher in NECS. It suggests that MaLEC2 has a role in the development of non-embryogenic cells. We postulate that MaBBM2 and MaWUS2 can be served as promising molecular markers for the embryogencity in banana.

  4. Plant Regeneration and Somatic Embryogenesis from Immature Embryos Derived through Interspecific Hybridization among Different Carica Species

    PubMed Central

    Azad, Md. Abul Kalam; Rabbani, Md. Golam; Amin, Latifah

    2012-01-01

    Plant regeneration and somatic embryogenesis through interspecific hybridization among different Carica species were studied for the development of a papaya ringspot virus-resistant variety. The maximum fruit sets were recorded from the cross of the native variety C. papaya cv. Shahi with the wild species C. cauliflora. The highest hybrid embryos were recorded at 90 days after pollination and the embryos were aborted at 150 days after pollination. The immature hybrid embryos were used for plant regeneration and somatic embryogenesis. The 90-day-old hybrid embryos from the cross of C. papaya cv. Shahi × C. cauliflora showed the highest percentage of germination, as well as plant regeneration on growth regulators free culture medium after 7 days pre-incubation on half-strength MS medium supplemented with 0.2 mg/L BAP, 0.5 mg/L NAA and 60 g/L sucrose. The 90-day-old hybrid embryos from the cross of C. papaya cv. Shahi × C. cauliflora produced maximum callus, as well as somatic embryos when cultured on half-strength MS medium containing 5 mg/L 2,4-D, 100 mg/L glutamine, 100 mg/L casein hydrolysate and 60 g/L sucrose. The somatic embryos were transferred into half-strength MS medium containing 0.5 mg/L BAP and 0.2 mg/L NAA and 60 g/L sucrose for maturation. The highest number of regenerated plants per hybrid embryo (10.33) was recorded from the cross of C. papaya cv. Shahi × C. cauliflora. Isoenzyme and dendrogram cluster analysis using UPGMA of the regenerated F1 plantlets confirmed the presence of the hybrid plantlets. PMID:23235330

  5. Genome-wide analysis of transcription factors during somatic embryogenesis in banana (Musa spp.) cv. Grand Naine

    PubMed Central

    Shivani; Awasthi, Praveen; Sharma, Vikrant; Kaur, Navjot; Kaur, Navneet; Pandey, Pankaj

    2017-01-01

    Transcription factors BABY BOOM (BBM), WUSCHEL (WUS), BSD, LEAFY COTYLEDON (LEC), LEAFY COTYLEDON LIKE (LIL), VIVIPAROUS1 (VP1), CUP SHAPED COTYLEDONS (CUC), BOLITA (BOL), and AGAMOUS LIKE (AGL) play a crucial role in somatic embryogenesis. In this study, we identified eighteen genes of these nine transcription factors families from the banana genome database. All genes were analyzed for their structural features, subcellular, and chromosomal localization. Protein sequence analysis indicated the presence of characteristic conserved domains in these transcription factors. Phylogenetic analysis revealed close evolutionary relationship among most transcription factors of various monocots. The expression patterns of eighteen genes in embryogenic callus containing somatic embryos (precisely isolated by Laser Capture Microdissection), non-embryogenic callus, and cell suspension cultures of banana cultivar Grand Naine were analyzed. The application of 2, 4-dichlorophenoxyacetic acid (2, 4-D) in the callus induction medium enhanced the expression of MaBBM1, MaBBM2, MaWUS2, and MaVP1 in the embryogenic callus. It suggested 2, 4-D acts as an inducer for the expression of these genes. The higher expression of MaBBM2 and MaWUS2 in embryogenic cell suspension (ECS) as compared to non-embryogenic cells suspension (NECS), suggested that these genes may play a crucial role in banana somatic embryogenesis. MaVP1 showed higher expression in both ECS and NECS, whereas MaLEC2 expression was significantly higher in NECS. It suggests that MaLEC2 has a role in the development of non-embryogenic cells. We postulate that MaBBM2 and MaWUS2 can be served as promising molecular markers for the embryogencity in banana. PMID:28797040

  6. Timing of Tissue-specific Cell Division Requires a Differential Onset of Zygotic Transcription during Metazoan Embryogenesis*

    PubMed Central

    Wong, Ming-Kin; Guan, Daogang; Ng, Kaoru Hon Chun; Ho, Vincy Wing Sze; An, Xiaomeng; Li, Runsheng; Ren, Xiaoliang

    2016-01-01

    Metazoan development demands not only precise cell fate differentiation but also accurate timing of cell division to ensure proper development. How cell divisions are temporally coordinated during development is poorly understood. Caenorhabditis elegans embryogenesis provides an excellent opportunity to study this coordination due to its invariant development and widespread division asynchronies. One of the most pronounced asynchronies is a significant delay of cell division in two endoderm progenitor cells, Ea and Ep, hereafter referred to as E2, relative to its cousins that mainly develop into mesoderm organs and tissues. To unravel the genetic control over the endoderm-specific E2 division timing, a total of 822 essential and conserved genes were knocked down using RNAi followed by quantification of cell cycle lengths using in toto imaging of C. elegans embryogenesis and automated lineage. Intriguingly, knockdown of numerous genes encoding the components of general transcription pathway or its regulatory factors leads to a significant reduction in the E2 cell cycle length but an increase in cell cycle length of the remaining cells, indicating a differential requirement of transcription for division timing between the two. Analysis of lineage-specific RNA-seq data demonstrates an earlier onset of transcription in endoderm than in other germ layers, the timing of which coincides with the birth of E2, supporting the notion that the endoderm-specific delay in E2 division timing demands robust zygotic transcription. The reduction in E2 cell cycle length is frequently associated with cell migration defect and gastrulation failure. The results suggest that a tissue-specific transcriptional activation is required to coordinate fate differentiation, division timing, and cell migration to ensure proper development. PMID:27056332

  7. Somatic Embryogenesis in Coffee: The Evolution of Biotechnology and the Integration of Omics Technologies Offer Great Opportunities

    PubMed Central

    Campos, Nádia A.; Panis, Bart; Carpentier, Sebastien C.

    2017-01-01

    One of the most important crops cultivated around the world is coffee. There are two main cultivated species, Coffea arabica and C. canephora. Both species are difficult to improve through conventional breeding, taking at least 20 years to produce a new cultivar. Biotechnological tools such as genetic transformation, micropropagation and somatic embryogenesis (SE) have been extensively studied in order to provide practical results for coffee improvement. While genetic transformation got many attention in the past and is booming with the CRISPR technology, micropropagation and SE are still the major bottle neck and urgently need more attention. The methodologies to induce SE and the further development of the embryos are genotype-dependent, what leads to an almost empirical development of specific protocols for each cultivar or clone. This is a serious limitation and excludes a general comprehensive understanding of the process as a whole. The aim of this review is to provide an overview of which achievements and molecular insights have been gained in (coffee) somatic embryogenesis and encourage researchers to invest further in the in vitro technology and combine it with the latest omics techniques (genomics, transcriptomics, proteomics, metabolomics, and phenomics). We conclude that the evolution of biotechnology and the integration of omics technologies offer great opportunities to (i) optimize the production process of SE and the subsequent conversion into rooted plantlets and (ii) to screen for possible somaclonal variation. However, currently the usage of the latest biotechnology did not pass the stage beyond proof of potential and needs to further improve. PMID:28871271

  8. Gene expression and metabolite profiling of gibberellin biosynthesis during induction of somatic embryogenesis in Medicago truncatula Gaertn

    PubMed Central

    Igielski, Rafał

    2017-01-01

    Gibberellins (GAs) are involved in the regulation of numerous developmental processes in plants including zygotic embryogenesis, but their biosynthesis and role during somatic embryogenesis (SE) is mostly unknown. In this study we show that during three week- long induction phase, when cells of leaf explants from non-embryogenic genotype (M9) and embryogenic variant (M9-10a) were forming the callus, all the bioactive gibberellins from non-13-hydroxylation (GA4, GA7) and 13-hydroxylation (GA1, GA5, GA3, GA6) pathways were present, but the contents of only a few of them differed between the tested lines. The GA53 and GA19 substrates synthesized by the 13-hydroxylation pathway accumulated specifically in the M9-10a line after the first week of induction; subsequently, among the bioactive gibberellins detected, only the content of GA3 increased and appeared to be connected with acquisition of embryogenic competence. We fully annotated 20 Medicago truncatula orthologous genes coding the enzymes which catalyze all the known reactions of gibberellin biosynthesis. Our results indicate that, within all the genes tested, expression of only three: MtCPS, MtGA3ox1 and MtGA3ox2, was specific to embryogenic explants and reflected the changes observed in GA53, GA19 and GA3 contents. Moreover, by analyzing expression of MtBBM, SE marker gene, we confirmed the inhibitory effect of manipulation in GAs metabolism, applying exogenous GA3, which not only impaired the production of somatic embryos, but also significantly decreased expression of this gene. PMID:28750086

  9. Heat shock protein 83 plays pleiotropic roles in embryogenesis, longevity, and fecundity of the pea aphid Acyrthosiphon pisum.

    PubMed

    Will, Torsten; Schmidtberg, Henrike; Skaljac, Marisa; Vilcinskas, Andreas

    2017-01-01

    Heat shock protein 83 (HSP83) is homologous to the chaperone HSP90. It has pleiotropic functions in Drosophila melanogaster, including the control of longevity and fecundity, and facilitates morphological evolution by buffering cryptic deleterious mutations in wild populations. In the pea aphid Acyrthosiphon pisum, HSP83 expression is moderately induced by bacterial infection but upregulated more strongly in response to heat stress and fungal infection. Stress-inducible heat shock proteins are of considerable evolutionary and ecological importance because they are known to buffer environmental variation and to influence fitness under non-optimal conditions. To investigate the functions of HSP83 in viviparous aphids, we used RNA interference to attenuate its expression and studied the impact on complex parameters. The RNA interference (RNAi)-mediated depletion of HSP83 expression in A. pisum reduced both longevity and fecundity, suggesting this chaperone has an evolutionarily conserved function in insects. Surprisingly, HSP83 depletion reduced the number of viviparous offspring while simultaneously increasing the number of premature nymphs developing in the ovaries, suggesting an unexpected role in aphid embryogenesis and eclosion. The present study indicates that reduced HSP83 expression in A. pisum reveals both functional similarities and differences compared with its reported roles in holometabolous insects. Its impact on aphid lifespan, fecundity, and embryogenesis suggests a function that determines their fitness. This could be achieved by targeting different client proteins, recruiting distinct co-chaperones or transposon activation.

  10. Generation and characterization of Dyt1 DeltaGAG knock-in mouse as a model for early-onset dystonia.

    PubMed

    Dang, Mai T; Yokoi, Fumiaki; McNaught, Kevin St P; Jengelley, Toni-Ann; Jackson, Tehone; Li, Jianyong; Li, Yuqing

    2005-12-01

    A trinucleotide deletion of GAG in the DYT1 gene that encodes torsinA protein is implicated in the neurological movement disorder of Oppenheim's early-onset dystonia. The mutation removes a glutamic acid in the carboxy region of torsinA, a member of the Clp protease/heat shock protein family. The function of torsinA and the role of the mutation in causing dystonia are largely unknown. To gain insight into these unknowns, we made a gene-targeted mouse model of Dyt1 DeltaGAG to mimic the mutation found in DYT1 dystonic patients. The mutated heterozygous mice had deficient performance on the beam-walking test, a measure of fine motor coordination and balance. In addition, they exhibited hyperactivity in the open-field test. Mutant mice also showed a gait abnormality of increased overlap. Mice at 3 months of age did not display deficits in beam-walking and gait, while 6-month mutant mice did, indicating an age factor in phenotypic expression as well. While striatal dopamine and 4-dihydroxyphenylacetic acid (DOPAC) levels in Dyt1 DeltaGAG mice were similar to that of wild-type mice, a 27% decrease in 4-hydroxy, 3-methoxyphenacetic acid (homovanillic acid) was detected in mutant mice. Dyt1 DeltaGAG tissues also have ubiquitin- and torsinA-containing aggregates in neurons of the pontine nuclei. A sex difference was noticed in the mutant mice with female mutant mice exhibiting fewer alterations in behavioral, neurochemical, and cellular changes. Our results show that knocking in a Dyt1 DeltaGAG allele in mouse alters their motor behavior and recapitulates the production of protein aggregates that are seen in dystonic patients. Our data further support alterations in the dopaminergic system as a part of dystonia's neuropathology.

  11. Regulatory function of homeodomain-leucine zipper (HD-ZIP) family proteins during embryogenesis.

    PubMed

    Roodbarkelari, Farshad; Groot, Edwin P

    2017-01-01

    Homeodomain-leucine zipper proteins (HD-ZIPs) form a plant-specific family of transcription factors functioning as homo- or heterodimers. Certain members of all four classes of this family are involved in embryogenesis, the focus of this review. They support auxin biosynthesis, transport and response, which are in turn essential for the apical-basal patterning of the embryo, radicle formation and outgrowth of the cotyledons. They transcriptionally regulate meristem regulators to maintain the shoot apical meristem once it is initiated. Some members are specific to the protoderm, the outermost layer of the embryo, and play a role in shoot apical meristem function. Within classes, homeodomain-leucine zippers tend to act redundantly during embryo development, and there are many examples of regulation within and between classes of homeodomain-leucine zippers. This indicates a complex network of regulation that awaits future experiments to uncover. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  12. The Mouse House: A brief history of the ORNL mouse-genetics program, 1947–2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Liane B.

    The large mouse genetics program at the Oak Ridge National Lab is often re-membered chiefly for the germ-cell mutation-rate data it generated and their uses in estimating the risk of heritable radiation damage. In fact, it soon became a multi-faceted research effort that, over a period of almost 60 years, generated a wealth of information in the areas of mammalian mutagenesis, basic genetics (later enriched by molecular techniques), cytogenetics, reproductive biology, biochemistry of germ cells, and teratology. Research in the area of germ-cell mutagenesis explored the important physical and biological factors that affect the frequency and nature of induced mutationsmore » and made several unexpected discoveries, such as the major importance of the perigametic interval (the zygote stage) for the origin of spontaneous mutations and for the sensitivity to induced genetic change. Of practical value was the discovery that ethylnitrosourea was a supermutagen for point mutations, making high-efficiency mutagenesis in the mouse feasible worldwide. Teratogenesis findings resulted in recommendations still generally accepted in radiological practice. Studies supporting the mutagenesis research added whole bodies of information about mammalian germ-cell development and about molecular targets in germ cells. The early decision to not merely count but propagate genetic variants of all sorts made possible further discoveries, such as the Y-Chromosome s importance in mammalian sex determination and the identification of rare X-autosome translocations, which, in turn, led to the formulation of the single-active-X hypothesis and provided tools for studies of functional mosaicism for autosomal genes, male sterility, and chromosome-pairing mechanism. Extensive genetic and then molecular analyses of large numbers of induced specific-locus mutants resulted in fine-structure physical and correlated functional mapping of significant portions of the mouse genome and constituted a

  13. Centralized Mouse Repositories

    PubMed Central

    Donahue, Leah Rae; de Angelis, Martin Hrabe; Hagn, Michael; Franklin, Craig; Lloyd, K. C. Kent; Magnuson, Terry; McKerlie, Colin; Nakagata, Naomi; Obata, Yuichi; Read, Stuart; Wurst, Wolfgang; Hörlein, Andreas; Davisson, Muriel T.

    2013-01-01

    Because the mouse is used so widely for biomedical research and the number of mouse models being generated is increasing rapidly, centralized repositories are essential if the valuable mouse strains and models that have been developed are to be securely preserved and fully exploited. Ensuring the ongoing availability of these mouse strains preserves the investment made in creating and characterizing them and creates a global resource of enormous value. The establishment of centralized mouse repositories around the world for distributing and archiving these resources has provided critical access to and preservation of these strains. This article describes the common and specialized activities provided by major mouse repositories around the world. PMID:22945696

  14. Isl1 is required for multiple aspects of motor neuron development.

    PubMed

    Liang, Xingqun; Song, Mi-Ryoung; Xu, ZengGuang; Lanuza, Guillermo M; Liu, Yali; Zhuang, Tao; Chen, Yihan; Pfaff, Samuel L; Evans, Sylvia M; Sun, Yunfu

    2011-07-01

    The LIM homeodomain transcription factor Islet1 (Isl1) is expressed in multiple organs and plays essential roles during embryogenesis. Isl1 is required for the survival and specification of spinal cord motor neurons. Due to early embryonic lethality and loss of motor neurons, the role of Isl1 in other aspects of motor neuron development remains unclear. In this study, we generated Isl1 mutant mouse lines expressing graded doses of Isl1. Our study has revealed essential roles of Isl1 in multiple aspects of motor neuron development, including motor neuron cell body localization, motor column formation and axon growth. In addition, Isl1 is required for survival of cranial ganglia neurons. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Genetically engineered mouse models for functional studies of SKP1-CUL1-F-box-protein (SCF) E3 ubiquitin ligases.

    PubMed

    Zhou, Weihua; Wei, Wenyi; Sun, Yi

    2013-05-01

    The SCF (SKP1 (S-phase-kinase-associated protein 1), Cullin-1, F-box protein) E3 ubiquitin ligases, the founding member of Cullin-RING ligases (CRLs), are the largest family of E3 ubiquitin ligases in mammals. Each individual SCF E3 ligase consists of one adaptor protein SKP1, one scaffold protein cullin-1 (the first family member of the eight cullins), one F-box protein out of 69 family members, and one out of two RING (Really Interesting New Gene) family proteins RBX1/ROC1 or RBX2/ROC2/SAG/RNF7. Various combinations of these four components construct a large number of SCF E3s that promote the degradation of many key regulatory proteins in cell-context, temporally, and spatially dependent manners, thus controlling precisely numerous important cellular processes, including cell cycle progression, apoptosis, gene transcription, signal transduction, DNA replication, maintenance of genome integrity, and tumorigenesis. To understand how the SCF E3 ligases regulate these cellular processes and embryonic development under in vivo physiological conditions, a number of mouse models with transgenic (Tg) expression or targeted deletion of components of SCF have been established and characterized. In this review, we will provide a brief introduction to the ubiquitin-proteasome system (UPS) and the SCF E3 ubiquitin ligases, followed by a comprehensive overview on the existing Tg and knockout (KO) mouse models of the SCF E3s, and discuss the role of each component in mouse embryogenesis, cell proliferation, apoptosis, carcinogenesis, as well as other pathogenic processes associated with human diseases. We will end with a brief discussion on the future directions of this research area and the potential applications of the knowledge gained to more effective therapeutic interventions of human diseases.

  16. Examination of diagnostic features in multiphoton microscopy and optical coherence tomography images of ovarian tumorigenesis in a mouse model

    NASA Astrophysics Data System (ADS)

    Watson, Jennifer M.

    Ovarian cancer is a deadly disease owing to the non-specific symptoms and suspected rapid progression, leading to frequent late stage detection and poor prognosis. Medical imaging methods such as CT, MRI and ultrasound as well as serum testing for cancer markers have had extremely poor performance for early disease detection. Due to the poor performance of available screening methods, and the impracticality and ineffectiveness of taking tissue biopsies from the ovary, women at high risk for developing ovarian cancer are often advised to undergo prophylactic salpingo-oophorectomy. This surgery results in many side effects and is most often unnecessary since only a fraction of high risk women go on to develop ovarian cancer. Better understanding of the early development of ovarian cancer and characterization of morphological changes associated with early disease could lead to the development of an effective screening test for women at high risk. Optical imaging methods including optical coherence tomography (OCT) and multiphoton microscopy (MPM) are excellent tools for studying disease progression owing to the high resolution and depth sectioning capabilities. Further, these techniques are excellent for optical biopsy because they can image in situ non-destructively. In the studies described in this dissertation OCT and MPM are used to identify cellular and tissue morphological changes associated with early tumor development in a mouse model of ovarian cancer. This work is organized into three specific aims. The first aim is to use the images from the MPM phenomenon of second harmonic generation to quantitatively examine the morphological differences in collagen structure in normal mouse ovarian tissue and mouse ovarian tumors. The second aim is to examine the differences in endogenous two-photon excited fluorescence in normal mouse ovarian tissue and mouse ovarian tumors. The third and final aim is to identify changes in ovarian microstructure resulting from early

  17. Early cell lineage specification in a marsupial: a case for diverse mechanisms among mammals.

    PubMed

    Frankenberg, Stephen; Shaw, Geoff; Freyer, Claudia; Pask, Andrew J; Renfree, Marilyn B

    2013-03-01

    Early cell lineage specification in eutherian mammals results in the formation of a pluripotent inner cell mass (ICM) and trophoblast. By contrast, marsupials have no ICM. Here, we present the first molecular analysis of mechanisms of early cell lineage specification in a marsupial, the tammar wallaby. There was no overt differential localisation of key lineage-specific transcription factors in cleavage and early unilaminar blastocyst stages. Pluriblast cells (equivalent to the ICM) became distinguishable from trophoblast cells by differential expression of POU5F1 and, to a greater extent, POU2, a paralogue of POU5F1. Unlike in the mouse, pluriblast-trophoblast differentiation coincided with a global nuclear-to-cytoplasmic transition of CDX2 localisation. Also unlike in the mouse, Hippo pathway factors YAP and WWTR1 showed mutually distinct localisation patterns that suggest non-redundant roles. NANOG and GATA6 were conserved as markers of epiblast and hypoblast, respectively, but some differences to the mouse were found in their mode of differentiation. Our results suggest that there is considerable evolutionary plasticity in the mechanisms regulating early lineage specification in mammals.

  18. Reactivity of mouse antibodies against bromelain-treated mouse erythrocytes with thrombin-treated mouse platelets.

    PubMed Central

    Kawaguchi, S

    1989-01-01

    The reactivity of mouse antibodies against bromelain-treated mouse erythrocytes (BrMRBC) with mouse platelets before and after thrombin treatment was assessed by flow cytometry. Anti-BrMRBC antibodies could bind to thrombin-treated platelets, although normal platelets were also weakly reactive with the antibodies. The binding of anti-BrMRBC antibodies to platelets was confirmed by complement-dependent lysis. It is suggested that thrombin-activated platelets may be a real target for anti-BrMRBC antibodies. PMID:2467876

  19. Mammalian pre-implantation chromosomal instability: species comparison, evolutionary considerations, and pathological correlations.

    PubMed

    Carbone, Lucia; Chavez, Shawn L

    2015-01-01

    Pre-implantation embryo development in mammals begins at fertilization with the migration and fusion of the maternal and paternal pro-nuclei, followed by the degradation of inherited factors involved in germ cell specification and the activation of embryonic genes required for subsequent cell divisions, compaction, and blastulation. The majority of studies on early embryogenesis have been conducted in the mouse or non-mammalian species, often requiring extrapolation of the findings to human development. Given both conserved similarities and species-specific differences, however, even comparison between closely related mammalian species may be challenging as certain aspects, including susceptibility to chromosomal aberrations, varies considerably across mammals. Moreover, most human embryo studies are limited to patient samples obtained from in vitro fertilization (IVF) clinics and donated for research, which are generally of poorer quality and produced with germ cells that may be sub-optimal. Recent technical advances in genetic, epigenetic, chromosomal, and time-lapse imaging analyses of high quality whole human embryos have greatly improved our understanding of early human embryogenesis, particularly at the single embryo and cell level. This review summarizes the major characteristics of mammalian pre-implantation development from a chromosomal perspective, in addition to discussing the technological achievements that have recently been developed to obtain this data. We also discuss potential translation to clinical applications in reproductive medicine and conclude by examining the broader implications of these findings for the evolution of mammalian species and cancer pathology in somatic cells.

  20. Somatic embryogenesis of East Kalimantan local upland rice varieties

    NASA Astrophysics Data System (ADS)

    Nurhasanah; Ramitha; Supriyanto, B.; Sunaryo, W.

    2018-04-01

    Somatic embryogenesis is the formation, growth and development of embryos from somatic cells. Somatic embryo induction is one of the in vitro plant propagation techniques that is very important for plant developmental purposes. Four local upland rice varieties of East Kalimantan, Mayas Pancing, Gedagai, Siam and Serai, were used in this study. A total of 200 explants (mature rice grains) for each varieties were inoculated on MS solid medium supplemented with 1 mg L-1 2,4 Dichlorophenoxy acetic acid (2,4-D) and 0.5 mg L-1 6-Benzylaminopurine (BAP). The results showed that response of each variety differed to embryosomatic induction, indicated by callus induction rate and callus quality, in terms of callus color and structure. The fastest callus formation was sobserved in Gedagai variety (8 days) while Mayas Pancing (13 days) was the latest one. The rate of callus induction varied from 60 to 98.5 %, and Serai variety has the highest callus induction rate. The highest friable callus structure was found in Siam variety (89.1%) and the lowest was in Gedagai (62.5%). Callus color was dominated by the yellowish-white (transparent) on all varieties tested. Most of the callus was potential as embryogenic callus characterized from the nodular and globular of friable callus structure and its yellowish-white color.