Sample records for early mri response

  1. Diffusion MRI in early cancer therapeutic response assessment

    PubMed Central

    Galbán, C. J.; Hoff, B. A.; Chenevert, T. L.; Ross, B. D.

    2016-01-01

    Imaging biomarkers for the predictive assessment of treatment response in patients with cancer earlier than standard tumor volumetric metrics would provide new opportunities to individualize therapy. Diffusion-weighted MRI (DW-MRI), highly sensitive to microenvironmental alterations at the cellular level, has been evaluated extensively as a technique for the generation of quantitative and early imaging biomarkers of therapeutic response and clinical outcome. First demonstrated in a rodent tumor model, subsequent studies have shown that DW-MRI can be applied to many different solid tumors for the detection of changes in cellularity as measured indirectly by an increase in the apparent diffusion coefficient (ADC) of water molecules within the lesion. The introduction of quantitative DW-MRI into the treatment management of patients with cancer may aid physicians to individualize therapy, thereby minimizing unnecessary systemic toxicity associated with ineffective therapies, saving valuable time, reducing patient care costs and ultimately improving clinical outcome. This review covers the theoretical basis behind the application of DW-MRI to monitor therapeutic response in cancer, the analytical techniques used and the results obtained from various clinical studies that have demonstrated the efficacy of DW-MRI for the prediction of cancer treatment response. PMID:26773848

  2. EARLY VERSUS LATE MRI IN ASPHYXIATED NEWBORNS TREATED WITH HYPOTHERMIA

    PubMed Central

    Wintermark, Pia; Hansen, Anne; Soul, Janet; Labrecque, Michelle; Robertson, Richard L.; Warfield, Simon K.

    2012-01-01

    Objective The purposes of this feasibility study are to assess: (1) the potential utility of early brain magnetic resonance imaging (MRI) in asphyxiated newborns treated with hypothermia; (2) whether early MRI predicts later brain injury observed in these newborns after hypothermia is completed; and (3) whether early MRI indicators of brain injury in these newborns represent reversible changes. Patients and Methods All consecutive asphyxiated term newborns meeting the criteria for therapeutic hypothermia were enrolled prospectively. Each of them underwent 1–2 “early” MRI scans while receiving hypothermia, on day of life (DOL) 1 and DOL 2–3, and also 1–2 “late” MRI scans on DOL 8–13 and at 1 month of age. Results Thirty-seven MRI scans were obtained in twelve asphyxiated neonates treated with induced hypothermia. Four newborns did develop MRI evidence of brain injury, already visible on early MRI scans. The remaining eight newborns did not develop significant MRI evidence of brain injury on any of the MRI scans. In addition, two patients displayed unexpected findings on early MRIs, leading to early termination of hypothermia treatment. Conclusions MRI scans obtained on DOL 2–3 during hypothermia seem to predict later brain injuries in asphyxiated newborns in this feasibility study. Brain injuries identified during this early time appear to represent irreversible changes. Early MRI scans might also be useful to demonstrate unexpected findings not related to hypoxic-ischemic encephalopathy, which could potentially be exacerbated by induced hypothermia. Additional studies with larger numbers of patients will be useful to more definitively confirm these results. PMID:20688865

  3. Characterizing the functional MRI response using Tikhonov regularization.

    PubMed

    Vakorin, Vasily A; Borowsky, Ron; Sarty, Gordon E

    2007-09-20

    The problem of evaluating an averaged functional magnetic resonance imaging (fMRI) response for repeated block design experiments was considered within a semiparametric regression model with autocorrelated residuals. We applied functional data analysis (FDA) techniques that use a least-squares fitting of B-spline expansions with Tikhonov regularization. To deal with the noise autocorrelation, we proposed a regularization parameter selection method based on the idea of combining temporal smoothing with residual whitening. A criterion based on a generalized chi(2)-test of the residuals for white noise was compared with a generalized cross-validation scheme. We evaluated and compared the performance of the two criteria, based on their effect on the quality of the fMRI response. We found that the regularization parameter can be tuned to improve the noise autocorrelation structure, but the whitening criterion provides too much smoothing when compared with the cross-validation criterion. The ultimate goal of the proposed smoothing techniques is to facilitate the extraction of temporal features in the hemodynamic response for further analysis. In particular, these FDA methods allow us to compute derivatives and integrals of the fMRI signal so that fMRI data may be correlated with behavioral and physiological models. For example, positive and negative hemodynamic responses may be easily and robustly identified on the basis of the first derivative at an early time point in the response. Ultimately, these methods allow us to verify previously reported correlations between the hemodynamic response and the behavioral measures of accuracy and reaction time, showing the potential to recover new information from fMRI data. 2007 John Wiley & Sons, Ltd

  4. Vessel calibre—a potential MRI biomarker of tumour response in clinical trials

    PubMed Central

    Emblem, Kyrre E.; Farrar, Christian T.; Gerstner, Elizabeth R.; Batchelor, Tracy T.; Borra, Ronald J. H.; Rosen, Bruce R.; Sorensen, A. Gregory; Jain, Rakesh K.

    2015-01-01

    Our understanding of the importance of blood vessels and angiogenesis in cancer has increased considerably over the past decades, and the assessment of tumour vessel calibre and structure has become increasingly important for in vivo monitoring of therapeutic response. The preferred method for in vivo imaging of most solid cancers is MRI, and the concept of vessel-calibre MRI has evolved since its initial inception in the early 1990s. Almost a quarter of a century later, unlike traditional contrast-enhanced MRI techniques, vessel-calibre MRI remains widely inaccessible to the general clinical community. The narrow availability of the technique is, in part, attributable to limited awareness and a lack of imaging standardization. Thus, the role of vessel-calibre MRI in early phase clinical trials remains to be determined. By contrast, regulatory approvals of antiangiogenic agents that are not directly cytotoxic have created an urgent need for clinical trials incorporating advanced imaging analyses, going beyond traditional assessments of tumour volume. To this end, we review the field of vessel-calibre MRI and summarize the emerging evidence supporting the use of this technique to monitor response to anticancer therapy. We also discuss the potential use of this biomarker assessment in clinical imaging trials and highlight relevant avenues for future research. PMID:25113840

  5. Volume fractions of DCE-MRI parameter as early predictor of histologic response in soft tissue sarcoma: A feasibility study.

    PubMed

    Xia, Wei; Yan, Zhuangzhi; Gao, Xin

    2017-10-01

    To find early predictors of histologic response in soft tissue sarcoma through volume transfer constant (K trans ) analysis based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). 11 Patients with soft tissue sarcoma of the lower extremity that underwent preoperative chemoradiotherapy followed by limb salvage surgery were included in this retrospective study. For each patient, DCE-MRI data sets were collected before and two weeks after therapy initiation, and histologic tumor cell necrosis rate (TCNR) was reported at surgery. The DCE-MRI volumes were aligned by registration. Then, the aligned volumes were used to obtain the K trans variation map. Accordingly, three sub-volumes (with increased, decreased or unchanged K trans ) were defined and identified, and fractions of the sub-volumes, denoted as F + , F - and F 0 , respectively, were calculated. The predictive ability of volume fractions was determined by using area under a receiver operating characteristic curve (AUC). Linear regression analysis was performed to investigate the relationship between TCNR and volume fractions. In addition, the K trans values of the sub-volumes were compared. The AUC for F - (0.896) and F 0 (0.833) were larger than that for change of tumor longest diameter ΔD (0.625) and the change of mean K trans ΔK trans ¯ (0.792). Moreover, the regression results indicated that TCNR was directly proportional to F 0 (R 2 =0.75, P=0.0003), while it was inversely proportional to F - (R 2 =0.77, P=0.0002). However, TCNR had relatively weak linear relationship with ΔK trans ¯ (R 2 =0.64, P=0.0018). Additionally, TCNR did not have linear relationship with DD (R 2 =0.16, P=0.1246). The volume fraction F - and F 0 have potential as early predictors of soft tissue sarcoma histologic response. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Repeated diffusion MRI reveals earliest time point for stratification of radiotherapy response in brain metastases

    NASA Astrophysics Data System (ADS)

    Mahmood, Faisal; Johannesen, Helle H.; Geertsen, Poul; Hansen, Rasmus H.

    2017-04-01

    An imaging biomarker for early prediction of treatment response potentially provides a non-invasive tool for better prognostics and individualized management of the disease. Radiotherapy (RT) response is generally related to changes in gross tumor volume manifesting months later. In this prospective study we investigated the apparent diffusion coefficient (ADC), perfusion fraction and pseudo diffusion coefficient derived from diffusion weighted MRI as potential early biomarkers for radiotherapy response of brain metastases. It was a particular aim to assess the optimal time point for acquiring the DW-MRI scan during the course of treatment, since to our knowledge this important question has not been addressed directly in previous studies. Twenty-nine metastases (N  =  29) from twenty-one patients, treated with whole-brain fractionated external beam RT were analyzed. Patients were scanned with a 1 T MRI system to acquire DW-, T2*W-, T2W- and T1W scans, before start of RT, at each fraction and at follow up two to three months after RT. The DW-MRI parameters were derived using regions of interest based on high b-value images (b  =  800 s mm-2). Both volumetric and RECIST criteria were applied for response evaluation. It was found that in non-responding metastases the mean ADC decreased and in responding metastases it increased. The volume based response proved to be far more consistently predictable by the ADC change found at fraction number 7 and later, compared to the linear response (RECIST). The perfusion fraction and pseudo diffusion coefficient did not show sufficient prognostic value with either response assessment criteria. In conclusion this study shows that the ADC derived using high b-values may be a reliable biomarker for early assessment of radiotherapy response for brain metastases patients. The earliest response stratification can be achieved using two DW-MRI scans, one pre-treatment and one at treatment day 7-9 (equivalent to 21 Gy).

  7. Early disrupted neurovascular coupling and changed event level hemodynamic response function in type 2 diabetes: an fMRI study.

    PubMed

    Duarte, João V; Pereira, João M S; Quendera, Bruno; Raimundo, Miguel; Moreno, Carolina; Gomes, Leonor; Carrilho, Francisco; Castelo-Branco, Miguel

    2015-10-01

    Type 2 diabetes (T2DM) patients develop vascular complications and have increased risk for neurophysiological impairment. Vascular pathophysiology may alter the blood flow regulation in cerebral microvasculature, affecting neurovascular coupling. Reduced fMRI signal can result from decreased neuronal activation or disrupted neurovascular coupling. The uncertainty about pathophysiological mechanisms (neurodegenerative, vascular, or both) underlying brain function impairments remains. In this cross-sectional study, we investigated if the hemodynamic response function (HRF) in lesion-free brains of patients is altered by measuring BOLD (Blood Oxygenation Level-Dependent) response to visual motion stimuli. We used a standard block design to examine the BOLD response and an event-related deconvolution approach. Importantly, the latter allowed for the first time to directly extract the true shape of HRF without any assumption and probe neurovascular coupling, using performance-matched stimuli. We discovered a change in HRF in early stages of diabetes. T2DM patients show significantly different fMRI response profiles. Our visual paradigm therefore demonstrated impaired neurovascular coupling in intact brain tissue. This implies that functional studies in T2DM require the definition of HRF, only achievable with deconvolution in event-related experiments. Further investigation of the mechanisms underlying impaired neurovascular coupling is needed to understand and potentially prevent the progression of brain function decrements in diabetes.

  8. TU-F-CAMPUS-J-02: Evaluation of Textural Feature Extraction for Radiotherapy Response Assessment of Early Stage Breast Cancer Patients Using Diffusion Weighted MRI and Dynamic Contrast Enhanced MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Y; Wang, C; Horton, J

    Purpose: To investigate the feasibility of using classic textural feature extraction in radiotherapy response assessment, we studied a unique cohort of early stage breast cancer patients with paired pre - and post-radiation Diffusion Weighted MRI (DWI-MRI) and Dynamic Contrast Enhanced MRI (DCE-MRI). Methods: 15 female patients from our prospective phase I trial evaluating preoperative radiotherapy were included in this retrospective study. Each patient received a single-fraction radiation treatment, and DWI and DCE scans were conducted before and after the radiotherapy. DWI scans were acquired using a spin-echo EPI sequence with diffusion weighting factors of b = 0 and b =more » 500 mm{sup 2} /s, and the apparent diffusion coefficient (ADC) maps were calculated. DCE-MRI scans were acquired using a T{sub 1}-weighted 3D SPGR sequence with a temporal resolution of about 1 minute. The contrast agent (CA) was intravenously injected with a 0.1 mmol/kg bodyweight dose at 2 ml/s. Two parameters, volume transfer constant (K{sup trans} ) and k{sub ep} were analyzed using the two-compartment Tofts kinetic model. For DCE parametric maps and ADC maps, 33 textural features were generated from the clinical target volume (CTV) in a 3D fashion using the classic gray level co-occurrence matrix (GLCOM) and gray level run length matrix (GLRLM). Wilcoxon signed-rank test was used to determine the significance of each texture feature’s change after the radiotherapy. The significance was set to 0.05 with Bonferroni correction. Results: For ADC maps calculated from DWI-MRI, 24 out of 33 CTV features changed significantly after the radiotherapy. For DCE-MRI pharmacokinetic parameters, all 33 CTV features of K{sup trans} and 33 features of k{sub ep} changed significantly. Conclusion: Initial results indicate that those significantly changed classic texture features are sensitive to radiation-induced changes and can be used for assessment of radiotherapy response in breast cancer.« less

  9. Role of MRI in osteosarcoma for evaluation and prediction of chemotherapy response: correlation with histological necrosis.

    PubMed

    Bajpai, Jyoti; Gamnagatti, Shivanand; Kumar, Rakesh; Sreenivas, Vishnubhatla; Sharma, Mehar Chand; Khan, Shah Alam; Rastogi, Shishir; Malhotra, Arun; Safaya, Rajni; Bakhshi, Sameer

    2011-04-01

    Histological necrosis, the current standard for response evaluation in osteosarcoma, is attainable after neoadjuvant chemotherapy. To establish the role of surrogate markers of response prediction and evaluation using MRI in the early phases of the disease. Thirty-one treatment-naïve osteosarcoma patients received three cycles of neoadjuvant chemotherapy followed by surgery during 2006-2008. All patients underwent baseline and post-chemotherapy conventional, diffusion-weighted and dynamic contrast-enhanced MRI. Taking histological response (good response ≥90% necrosis) as the reference standard, various parameters of MRI were compared to it. A tumor was considered ellipsoidal; volume, average tumor plane and its relative value (average tumor plane relative/body surface area) was calculated using the standard formula for ellipse. Receiver operating characteristic curves were generated to assess best threshold and predictability. After deriving thresholds for each parameter in univariable analysis, multivariable analysis was carried out. Both pre-and post-chemotherapy absolute and relative-size parameters correlated well with necrosis. Apparent diffusion coefficient did not correlate with necrosis; however, on adjusting for volume, significant correlation was found. Thus, we could derive a new parameter: diffusion per unit volume. In osteosarcoma, chemotherapy response can be predicted and evaluated by conventional and diffusion-weighted MRI early in the disease course and it correlates well with necrosis. Further, newly derived parameter diffusion per unit volume appears to be a sensitive substitute for response evaluation in osteosarcoma.

  10. fMRI during natural sleep as a method to study brain function during early childhood.

    PubMed

    Redcay, Elizabeth; Kennedy, Daniel P; Courchesne, Eric

    2007-12-01

    Many techniques to study early functional brain development lack the whole-brain spatial resolution that is available with fMRI. We utilized a relatively novel method in which fMRI data were collected from children during natural sleep. Stimulus-evoked responses to auditory and visual stimuli as well as stimulus-independent functional networks were examined in typically developing 2-4-year-old children. Reliable fMRI data were collected from 13 children during presentation of auditory stimuli (tones, vocal sounds, and nonvocal sounds) in a block design. Twelve children were presented with visual flashing lights at 2.5 Hz. When analyses combined all three types of auditory stimulus conditions as compared to rest, activation included bilateral superior temporal gyri/sulci (STG/S) and right cerebellum. Direct comparisons between conditions revealed significantly greater responses to nonvocal sounds and tones than to vocal sounds in a number of brain regions including superior temporal gyrus/sulcus, medial frontal cortex and right lateral cerebellum. The response to visual stimuli was localized to occipital cortex. Furthermore, stimulus-independent functional connectivity MRI analyses (fcMRI) revealed functional connectivity between STG and other temporal regions (including contralateral STG) and medial and lateral prefrontal regions. Functional connectivity with an occipital seed was localized to occipital and parietal cortex. In sum, 2-4 year olds showed a differential fMRI response both between stimulus modalities and between stimuli in the auditory modality. Furthermore, superior temporal regions showed functional connectivity with numerous higher-order regions during sleep. We conclude that the use of sleep fMRI may be a valuable tool for examining functional brain organization in young children.

  11. Blood oxygenation level-dependent (BOLD) contrast magnetic resonance imaging (MRI) for prediction of breast cancer chemotherapy response: a pilot study.

    PubMed

    Jiang, Lan; Weatherall, Paul T; McColl, Roderick W; Tripathy, Debu; Mason, Ralph P

    2013-05-01

    To determine whether a simple noninvasive method of assessing tumor oxygenation is feasible in the clinical setting and can provide useful, potentially predictive information. Tumor microcirculation and oxygenation play critical roles in tumor growth and responsiveness to cytotoxic treatment and may provide prognostic indicators for cancer therapy. Deoxyhemoglobin is paramagnetic and can serve as an endogenous contrast agent causing signal loss in echo planar magnetic resonance imaging (MRI) (blood oxygenation level-dependent [BOLD]-MRI). We used BOLD-MRI to provide early evaluation of response to neoadjuvant chemotherapy in patients with locally advanced breast cancer. MRI was performed on 11 patients with biopsy-proven malignancy. MRI exams were scheduled before, during, and after chemotherapy. The BOLD study applied a 6-minute oxygen breathing challenge. Seven patients successfully completed the exams. Before chemotherapy, BOLD contrast enhancement was observed in all tumors, but the patients, who ultimately had complete pathological response, exhibited a significantly higher BOLD response to oxygen breathing. We have successfully implemented an oxygen-breathing challenge BOLD contrast technique as part of the standard breast MRI exam in patients with locally advanced breast cancer. The preliminary observation that a large BOLD response correlated with better treatment response suggests a predictive capability for BOLD MRI. Copyright © 2012 Wiley Periodicals, Inc.

  12. Evaluation of the diagnostic accuracy of hand and foot MRI for early Rheumatoid Arthritis.

    PubMed

    Nieuwenhuis, Wouter P; van Steenbergen, Hanna W; Mangnus, Lukas; Newsum, Elize C; Bloem, Johan L; Huizinga, Tom W J; le Cessie, Saskia; Reijnierse, Monique; van der Helm-van Mil, Annette H M

    2017-08-01

    To assess the diagnostic value of MRI for early RA. In some RA patients, a classifiable diagnosis cannot be made at first presentation; these patients present with unclassified arthritis (UA). The use of MRI for early diagnosis of RA is recommended, yet the evidence for its reliability is limited. MRI of hand and foot was performed in 589 early arthritis patients included in the Leiden Early Arthritis Clinic (229 presented with RA, 159 with other arthritides and 201 with UA). Symptom-free controls provided a reference for defining an abnormal MRI. In preliminary investigations, MRI of patients who presented with RA was compared with MRI of symptom-free controls and of patients with other arthritides. Thereafter, the value of MRI in early RA diagnosis was determined in UA patients using the 1-year follow-up on fulfilling the 1987 RA criteria and start of disease-modifying drugs as outcomes. Preliminary investigations were promising. Of the UA patients, 14% developed RA and 37% started disease-modifying treatment. MRI-detected tenosynovitis was associated with RA development independent of other types of MRI-detected inflammation [odds ratio (OR) = 7.5, 95% CI: 2.4, 23] and also independent of age and other inflammatory measures (swollen joints, CRP) (OR = 4.2, 95% CI: 1.4, 12.9). Within UA patients, the negative predictive value of abnormal tenosynovitis was 95% (95% CI: 89%, 98%) and the positive predictive value 25% (95% CI: 17%, 35%). The performance was best in the subgroup of UA patients presenting with oligoarthritis (18% developed RA): the positive predictive value was 36% (95% CI: 23%, 52%), the negative predictive value was 98% (95% CI: 88%, 100%), the sensitivity was 93% (95% CI: 70%, 99%) and the specificity was 63% (95% CI: 51%, 74%). MRI contributes to the identification of UA patients who will develop RA, mostly in UA patients presenting with oligoarthritis. © The Author 2017. Published by Oxford University Press on behalf of the British Society for

  13. Reliability of Early Magnetic Resonance Imaging (MRI) and Necessity of Repeating MRI in Noncooled and Cooled Infants With Neonatal Encephalopathy.

    PubMed

    Chakkarapani, Elavazhagan; Poskitt, Kenneth J; Miller, Steven P; Zwicker, Jill G; Xu, Qi; Wong, Darren S T; Roland, Elke H; Hill, Alan; Chau, Vann

    2016-04-01

    In cooled newborns with encephalopathy, although late magnetic resonance imaging (MRI) scan (10-14 days of age) is reliable in predicting long-term outcome, it is unknown whether early scan (3-6 days of life) is. We compared the predominant pattern and extent of lesion between early and late MRI in 89 term neonates with neonatal encephalopathy. Forty-three neonates (48%) were cooled. The predominant pattern of lesions and the extent of lesion in the watershed region agreed near perfectly in noncooled (kappa = 0.94; k = 0.88) and cooled (k = 0.89; k = 0.87) infants respectively. There was perfect agreement in the extent of lesion in the basal nuclei in noncooled infants (k = 0.83) and excellent agreement in cooled infants (k = 0.67). Changes in extent of lesions on late MRI occurred in 19 of 89 infants, with higher risk in infants with hypoglycemia and moderate-severe lesions in basal nuclei. In most term neonates with neonatal encephalopathy, early MRI (relative to late scan) robustly predicts the predominant pattern and extent of injury. © The Author(s) 2015.

  14. Parametric Response Maps of Perfusion MRI May Identify Recurrent Glioblastomas Responsive to Bevacizumab and Irinotecan

    PubMed Central

    Aquino, Domenico; Cuppini, Lucia; Anghileri, Elena; Finocchiaro, Gaetano; Bruzzone, Maria Grazia; Eoli, Marica

    2014-01-01

    Background Perfusion weighted imaging (PWI) can be used to measure key aspects of tumor vascularity in vivo and recent studies suggest that perfusion imaging may be useful in the early assessment of response to angiogenesis inhibitors. Aim of this work is to compare Parametric Response Maps (PRMs) with the Region Of Interest (ROI) approach in the analysis of tumor changes induced by bevacizumab and irinotecan in recurrent glioblastomas (rGBM), and to evaluate if changes in tumor blood volume measured by perfusion MRI may predict clinical outcome. Methods 42 rGBM patients with KPS ≥50 were treated until progression, as defined by MRI with RANO criteria. Relative cerebral blood volume (rCBV) variation after 8 weeks of treatment was calculated through semi-automatic ROI placement in the same anatomic region as in baseline. Alternatively, rCBV variations with respect to baseline were calculated into the evolving tumor region using a voxel-by-voxel difference. PRMs were created showing where rCBV significantly increased, decreased or remained unchanged. Results An increased blood volume in PRM (PRMCBV+) higher than 18% (first quartile) after 8 weeks of treatment was associated with increased progression free survival (PFS; 24 versus 13 weeks, p = 0.045) and overall survival (OS; 38 versus 25 weeks, p = 0.016). After 8 weeks of treatment ROI analysis showed that mean rCBV remained elevated in non responsive patients (4.8±0.9 versus 5.1±1.2, p = 0.38), whereas decreased in responsive patients (4.2±1.3 versus 3.8±1.6 p = 0.04), and re-increased progressively when patients approached tumor progression. Conclusions Our data suggest that PRMs can provide an early marker of response to antiangiogenic treatment and warrant further confirmation in a larger cohort of GBM patients. PMID:24675671

  15. Changes in Water Mobility Measured by Diffusion MRI Predict Response of Metastatic Breast Cancer to Chemotherapy

    PubMed Central

    Theilmann, Rebecca J; Borders, Rebecca; Trouard, Theodore P; Xia, Guowei; Outwater, Eric; Ranger-Moore, James; Gillies, Robert J; Stopeck, Alison

    2004-01-01

    Abstract A goal of oncology is the individualization of patient care to optimize therapeutic responses and minimize toxicities. Achieving this will require noninvasive, quantifiable, and early markers of tumor response. Preclinical data from xenografted tumors using a variety of antitumor therapies have shown that magnetic resonance imaging (MRI)-measured mobility of tissue water (apparent diffusion coefficient of water, or ADCw) is a biomarker presaging cell death in the tumor. This communication tests the hypothesis that changes in water mobility will quantitatively presage tumor responses in patients with metastatic liver lesions from breast cancer. A total of 13 patients with metastatic breast cancer and 60measurable liver lesionsweremonitored by diffusion MRI after initiation of new courses of chemotherapy. MR images were obtained prior to, and at 4, 11, and 39 days following the initiation of therapy for determination of volumes and ADCw values. The data indicate that diffusion MRI can predict response by 4 or 11 days after commencement of therapy, depending on the analytic method. The highest concordance was observed in tumor lesions that were less than 8 cm3 in volume at presentation. These results suggest that diffusion MRI can be useful to predict the response of liver metastases to effective chemotherapy. PMID:15720810

  16. Estimating neural response functions from fMRI

    PubMed Central

    Kumar, Sukhbinder; Penny, William

    2014-01-01

    This paper proposes a methodology for estimating Neural Response Functions (NRFs) from fMRI data. These NRFs describe non-linear relationships between experimental stimuli and neuronal population responses. The method is based on a two-stage model comprising an NRF and a Hemodynamic Response Function (HRF) that are simultaneously fitted to fMRI data using a Bayesian optimization algorithm. This algorithm also produces a model evidence score, providing a formal model comparison method for evaluating alternative NRFs. The HRF is characterized using previously established “Balloon” and BOLD signal models. We illustrate the method with two example applications based on fMRI studies of the auditory system. In the first, we estimate the time constants of repetition suppression and facilitation, and in the second we estimate the parameters of population receptive fields in a tonotopic mapping study. PMID:24847246

  17. Aortic dilatation in Turner syndrome: the role of MRI in early recognition.

    PubMed

    Chalard, François; Ferey, Solène; Teinturier, Cécile; Kalifa, Gabriel

    2005-03-01

    Aortic dilatation and dissection are rare but important complications of Turner syndrome that increase the risk of sudden death in young patients. To assess the value of aortic MRI in patients with Turner syndrome; in particular to demonstrate early aortic dilatation. A total of 21 patients with Turner syndrome underwent MRI of the thoracic aorta with measurement of vessel diameter at four levels. Measurements were normal for age in 15 cases, two patients presented with values at the upper limit of normal and four had obvious dilatation of the ascending aorta. All were symptom free. MRI allows the non-invasive demonstration of early aortic dilatation, which may lead to earlier surgery in asymptomatic individuals.

  18. Multimodal MRI-based imputation of the Aβ+ in early mild cognitive impairment

    PubMed Central

    Tosun, Duygu; Joshi, Sarang; Weiner, Michael W; for the Alzheimer's Disease Neuroimaging Initiative

    2014-01-01

    Objective The primary goal of this study was to identify brain atrophy from structural MRI (magnetic resonance imaging) and cerebral blood flow (CBF) patterns from arterial spin labeling perfusion MRI that are best predictors of the Aβ-burden, measured as composite 18F-AV45-PET (positron emission tomography) uptake, in individuals with early mild cognitive impairment (MCI). Furthermore, another objective was to assess the relative importance of imaging modalities in classification of Aβ+/Aβ− early MCI. Methods Sixty-seven Alzheimer's Disease Neuroimaging Initiative (ADNI)-GO/2 participants with early MCI were included. Voxel-wise anatomical shape variation measures were computed by estimating the initial diffeomorphic mapping momenta from an unbiased control template. CBF measures normalized to average motor cortex CBF were mapped onto the template space. Using partial least squares regression, we identified the structural and CBF signatures of Aβ after accounting for normal cofounding effects of age, gender, and education. Results 18F-AV45-positive early MCIs could be identified with 83% classification accuracy, 87% positive predictive value, and 84% negative predictive value by multidisciplinary classifiers combining demographics data, ApoE ε4-genotype, and a multimodal MRI-based Aβ score. Interpretation Multimodal MRI can be used to predict the amyloid status of early-MCI individuals. MRI is a very attractive candidate for the identification of inexpensive and noninvasive surrogate biomarkers of Aβ deposition. Our approach is expected to have value for the identification of individuals likely to be Aβ+ in circumstances where cost or logistical problems prevent Aβ detection using cerebrospinal fluid analysis or Aβ-PET. This can also be used in clinical settings and clinical trials, aiding subject recruitment and evaluation of treatment efficacy. Imputation of the Aβ-positivity status could also complement Aβ-PET by identifying individuals who would

  19. Time-variant fMRI activity in the brainstem and higher structures in response to acupuncture.

    PubMed

    Napadow, Vitaly; Dhond, Rupali; Park, Kyungmo; Kim, Jieun; Makris, Nikos; Kwong, Kenneth K; Harris, Richard E; Purdon, Patrick L; Kettner, Norman; Hui, Kathleen K S

    2009-08-01

    Acupuncture modulation of activity in the human brainstem is not well known. This structure is plagued by physiological artifact in neuroimaging experiments. In addition, most studies have used short (<15 min) block designs, which miss delayed responses following longer duration stimulation. We used brainstem-focused cardiac-gated fMRI and evaluated time-variant brain response to longer duration (>30 min) stimulation with verum (VA, electro-stimulation at acupoint ST-36) or sham point (SPA, non-acupoint electro-stimulation) acupuncture. Our results provide evidence that acupuncture modulates brainstem nuclei important to endogenous monoaminergic and opioidergic systems. Specifically, VA modulated activity in the substantia nigra (SN), nucleus raphe magnus, locus ceruleus, nucleus cuneiformis, and periaqueductal gray (PAG). Activation in the ventrolateral PAG was greater for VA compared to SPA. Linearly decreasing time-variant activation, suggesting classical habituation, was found in response to both VA and SPA in sensorimotor (SII, posterior insula, premotor cortex) brain regions. However, VA also produced linearly time-variant activity in limbic regions (amygdala, hippocampus, and SN), which was bimodal and not likely habituation--consisting of activation in early blocks, and deactivation by the end of the run. Thus, acupuncture induces different brain response early, compared to 20-30 min after stimulation. We attribute the fMRI differences between VA and SPA to more varied and stronger psychophysical response induced by VA. Our study demonstrates that acupuncture modulation of brainstem structures can be studied non-invasively in humans, allowing for comparison to animal studies. Our protocol also demonstrates a fMRI approach to study habituation and other time-variant phenomena over longer time durations.

  20. Clinical and MRI responses to etanercept in early non-radiographic axial spondyloarthritis: 48-week results from the EMBARK study

    PubMed Central

    Maksymowych, Walter P; Dougados, Maxime; Sieper, Joachim; Braun, Jürgen; Citera, Gustavo; Van den Bosch, Filip; Logeart, Isabelle; Wajdula, Joseph; Jones, Heather; Marshall, Lisa; Bonin, Randi; Pedersen, Ron; Vlahos, Bonnie; Kotak, Sameer; Bukowski, Jack F

    2016-01-01

    Objective To evaluate the efficacy and safety of etanercept (ETN) after 48 weeks in patients with early active non-radiographic axial spondyloarthritis (nr-axSpA). Methods Patients meeting Assessment of SpondyloArthritis international Society (ASAS) classification criteria for axSpA, but not modified New York radiographic criteria, received double-blind ETN 50 mg/week or placebo (PBO) for 12 weeks, then open-label ETN (ETN/ETN or PBO/ETN). Clinical, health, productivity, MRI and safety outcomes were assessed and the 48-week data are presented here. Results 208/225 patients (92%) entered the open-label phase at week 12 (ETN, n=102; PBO, n=106). The percentage of patients achieving ASAS40 increased from 33% to 52% between weeks 12 and 48 for ETN/ETN and from 15% to 53% for PBO/ETN (within-group p value <0.001 for both). For ETN/ETN and PBO/ETN, the EuroQol 5 Dimensions utility score improved by 0.14 and 0.08, respectively, between baseline and week 12 and by 0.23 and 0.22 between baseline and week 48. Between weeks 12 and 48, MRI Spondyloarthritis Research Consortium of Canada sacroiliac joint (SIJ) scores decreased by −1.1 for ETN/ETN and by −3.0 for PBO/ETN, p<0.001 for both. Decreases in MRI SIJ inflammation and C-reactive protein correlated with several clinical outcomes at weeks 12 and 48. Conclusions Patients with early active nr-axSpA demonstrated improvement from week 12 in clinical, health, productivity and MRI outcomes that was sustained to 48 weeks. Trial registration number NCT01258738. PMID:26269397

  1. Clinical and MRI responses to etanercept in early non-radiographic axial spondyloarthritis: 48-week results from the EMBARK study.

    PubMed

    Maksymowych, Walter P; Dougados, Maxime; van der Heijde, Désirée; Sieper, Joachim; Braun, Jürgen; Citera, Gustavo; Van den Bosch, Filip; Logeart, Isabelle; Wajdula, Joseph; Jones, Heather; Marshall, Lisa; Bonin, Randi; Pedersen, Ron; Vlahos, Bonnie; Kotak, Sameer; Bukowski, Jack F

    2016-07-01

    To evaluate the efficacy and safety of etanercept (ETN) after 48 weeks in patients with early active non-radiographic axial spondyloarthritis (nr-axSpA). Patients meeting Assessment of SpondyloArthritis international Society (ASAS) classification criteria for axSpA, but not modified New York radiographic criteria, received double-blind ETN 50 mg/week or placebo (PBO) for 12 weeks, then open-label ETN (ETN/ETN or PBO/ETN). Clinical, health, productivity, MRI and safety outcomes were assessed and the 48-week data are presented here. 208/225 patients (92%) entered the open-label phase at week 12 (ETN, n=102; PBO, n=106). The percentage of patients achieving ASAS40 increased from 33% to 52% between weeks 12 and 48 for ETN/ETN and from 15% to 53% for PBO/ETN (within-group p value <0.001 for both). For ETN/ETN and PBO/ETN, the EuroQol 5 Dimensions utility score improved by 0.14 and 0.08, respectively, between baseline and week 12 and by 0.23 and 0.22 between baseline and week 48. Between weeks 12 and 48, MRI Spondyloarthritis Research Consortium of Canada sacroiliac joint (SIJ) scores decreased by -1.1 for ETN/ETN and by -3.0 for PBO/ETN, p<0.001 for both. Decreases in MRI SIJ inflammation and C-reactive protein correlated with several clinical outcomes at weeks 12 and 48. Patients with early active nr-axSpA demonstrated improvement from week 12 in clinical, health, productivity and MRI outcomes that was sustained to 48 weeks. NCT01258738. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  2. Identifying MRI markers to evaluate early treatment-related changes post-laser ablation for cancer pain management

    NASA Astrophysics Data System (ADS)

    Tiwari, Pallavi; Danish, Shabbar; Madabhushi, Anant

    2014-03-01

    Laser interstitial thermal therapy (LITT) has recently emerged as a new treatment modality for cancer pain management that targets the cingulum (pain center in the brain), and has shown promise over radio-frequency (RF) based ablation which is reported to provide temporary relief. One of the major advantages enjoyed by LITT is its compatibility with magnetic resonance imaging (MRI), allowing for high resolution in vivo imaging to be used in LITT procedures. Since laser ablation for pain management is currently exploratory and is only performed at a few centers worldwide, its short-, and long-term effects on the cingulum are currently unknown. Traditionally treatment effects are evaluated by monitoring changes in volume of the ablation zone post-treatment. However, this is sub-optimal since it involves evaluating a single global parameter (volume) to detect changes pre-, and post-MRI. Additionally, the qualitative observations of LITT-related changes on multi-parametric MRI (MPMRI) do not specifically address differentiation between the appearance of treatment related changes (edema, necrosis) from recurrence of the disease (pain recurrence). In this work, we explore the utility of computer extracted texture descriptors on MP-MRI to capture early treatment related changes on a per-voxel basis by extracting quantitative relationships that may allow for an in-depth understanding of tissue response to LITT on MRI, subtle changes that may not be appreciable on original MR intensities. The second objective of this work is to investigate the efficacy of different MRI protocols in accurately capturing treatment related changes within and outside the ablation zone post-LITT. A retrospective cohort of studies comprising pre- and 24-hour post-LITT 3 Tesla T1-weighted (T1w), T2w, T2-GRE, and T2-FLAIR acquisitions was considered. Our scheme involved (1) inter-protocol as well as inter-acquisition affine registration of pre- and post-LITT MRI, (2) quantitation of MRI parameters

  3. Early Change in Stroke Size Performs Best in Predicting Response to Therapy.

    PubMed

    Simpkins, Alexis Nétis; Dias, Christian; Norato, Gina; Kim, Eunhee; Leigh, Richard

    2017-01-01

    Reliable imaging biomarkers of response to therapy in acute stroke are needed. The final infarct volume and percent of early reperfusion have been used for this purpose. Early fluctuation in stroke size is a recognized phenomenon, but its utility as a biomarker for response to therapy has not been established. This study examined the clinical relevance of early change in stroke volume and compared it with the final infarct volume and percent of early reperfusion in identifying early neurologic improvement (ENI). Acute stroke patients, enrolled between 2013 and 2014 with serial magnetic resonance imaging (MRI) scans (pretreatment baseline, 2 h post, and 24 h post), who received thrombolysis were included in the analysis. Early change in stroke volume, infarct volume at 24 h on diffusion, and percent of early reperfusion were calculated from the baseline and 2 h MRI scans were compared. ENI was defined as ≥4 point decrease in National Institutes of Health Stroke Scales within 24 h. Logistic regression models and receiver operator characteristics analysis were used to compare the efficacy of 3 imaging biomarkers. Serial MRIs of 58 acute stroke patients were analyzed. Early change in stroke volume was significantly associated with ENI by logistic regression analysis (OR 0.93, p = 0.048) and remained significant after controlling for stroke size and severity (OR 0.90, p = 0.032). Thus, for every 1 mL increase in stroke volume, there was a 10% decrease in the odds of ENI, while for every 1 mL decrease in stroke volume, there was a 10% increase in the odds of ENI. Neither infarct volume at 24 h nor percent of early reperfusion were significantly associated with ENI by logistic regression. Receiver-operator characteristic analysis identified early change in stroke volume as the only biomarker of the 3 that performed significantly different than chance (p = 0.03). Early fluctuations in stroke size may represent a more reliable biomarker for response to therapy than the

  4. Role of MRI in the early diagnosis of tubal ectopic pregnancy.

    PubMed

    Si, Ming-Jue; Gui, Shuang; Fan, Qin; Han, Hong-Xiu; Zhao, Qian-Qian; Li, Zhi-Xin; Zhao, Jiang-Min

    2016-07-01

    To determine the role of MRI in the early diagnosis of tubal ectopic pregnancy (EP). Clinical and MRI features of 27 cases of tubal pregnancy were reviewed. A thick-walled gestational sac (GS)-like structure was demonstrated lateral to the uterus in all cases. On T2-weighted images, the thick wall typically exhibited 3 discrete rings in 22 cases (81 %), among which 17 cases (63 %) displayed small vessels and 6 cases (33 %) exhibited small areas of fresh haemorrhage inside the thick wall. The contents demonstrated non-specific liquid in 26 %, papillary solid components in 56 %, and fresh blood or fluid-fluid level in 19 % of the cases. Dilatation of the affected fallopian tube associated with hematosalpinx was demonstrated in 18 cases (67 %) and marked enhancement of the tubal wall was observed in 22 cases (81 %). No correlation was found between the size of the GS and the estimated gestational age (r = 0.056). MRI plays an important role in the early diagnosis and management of tubal pregnancy. The characteristic MRI features include a GS-like structure with a "three rings" appearance on T2-weighted images, presence of solid components in the sac, dilatation of the affected fallopian tube with hematosalpinx, and tubal wall enhancement. • MR imaging has served as a problem-solving procedure in ectopic pregnancy. • MR imaging features can be criteria for early diagnosis of tubal pregnancy. • Detailed assessment of ectopic implantation is necessary for management decision-making.

  5. Quantitative multiparametric MRI assessment of glioma response to radiotherapy in a rat model.

    PubMed

    Hong, Xiaohua; Liu, Li; Wang, Meiyun; Ding, Kai; Fan, Ying; Ma, Bo; Lal, Bachchu; Tyler, Betty; Mangraviti, Antonella; Wang, Silun; Wong, John; Laterra, John; Zhou, Jinyuan

    2014-06-01

    The inability of structural MRI to accurately measure tumor response to therapy complicates care management for patients with gliomas. The purpose of this study was to assess the potential of several noninvasive functional and molecular MRI biomarkers for the assessment of glioma response to radiotherapy. Fourteen U87 tumor-bearing rats were irradiated using a small-animal radiation research platform (40 or 20 Gy), and 6 rats were used as controls. MRI was performed on a 4.7 T animal scanner, preradiation treatment, as well as at 3, 6, 9, and 14 days postradiation. Image features of the tumors, as well as tumor volumes and animal survival, were quantitatively compared. Structural MRI showed that all irradiated tumors still grew in size during the initial days postradiation. The apparent diffusion coefficient (ADC) values of tumors increased significantly postradiation (40 and 20 Gy), except at day 3 postradiation, compared with preradiation. The tumor blood flow decreased significantly postradiation (40 and 20 Gy), but the relative blood flow (tumor vs contralateral) did not show a significant change at most time points postradiation. The amide proton transfer weighted (APTw) signals of the tumor decreased significantly at all time points postradiation (40 Gy), and also at day 9 postradiation (20 Gy). The blood flow and APTw maps demonstrated tumor features that were similar to those seen on gadolinium-enhanced T1-weighted images. Tumor ADC, blood flow, and APTw were all useful imaging biomarkers by which to predict glioma response to radiotherapy. The APTw signal was most promising for early response assessment in this model. © The Author(s) 2013. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. MRI surveillance of cancer cell fate in a brain metastasis model after early radiotherapy.

    PubMed

    Murrell, Donna H; Zarghami, Niloufar; Jensen, Michael D; Dickson, Fiona; Chambers, Ann F; Wong, Eugene; Foster, Paula J

    2017-10-01

    Incidence of brain metastasis attributed to breast cancer is increasing and prognosis is poor. It is thought that disseminated dormant cancer cells persist in metastatic organs and may evade treatments, thereby facilitating a mechanism for recurrence. Radiotherapy is used to treat brain metastases clinically, but assessment has been limited to macroscopic tumor volumes detectable by clinical imaging. Here, we use cellular MRI to understand the concurrent responses of metastases and nonproliferative or slowly cycling cancer cells to radiotherapy. MRI cell tracking was used to investigate the impact of early cranial irradiation on the fate of individual iron-labeled cancer cells and outgrowth of breast cancer brain metastases in the human MDA-MB-231-BR-HER2 cell model. Early whole-brain radiotherapy significantly reduced the outgrowth of metastases from individual disseminated cancer cells in treated animals compared to controls. However, the numbers of nonproliferative iron-retaining cancer cells in the brain were not significantly different. Radiotherapy, when given early in cancer progression, is effective in preventing the outgrowth of solitary cancer cells to brain metastases. Future studies of the nonproliferative cancer cells' clonogenic potentials are warranted, given that their persistent presence suggests that they may have evaded treatment. Magn Reson Med 78:1506-1512, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  7. Use of MRI for the early diagnosis of masticatory muscle myositis.

    PubMed

    Cauduro, Alberto; Paolo, Favole; Asperio, Roberto M; Rossini, Valeria; Dondi, Maurizio; Simonetto, Lucia A; Cantile, Carlo; Lorenzo, Valentina

    2013-01-01

    The medical records of two dogs that were diagnosed with masticatory muscle myositis (MMM) were reviewed. The reported clinical signs included intense pain when opening the mouth and restricted jaw movement. MRI detected widespread, symmetrical, and inhomogeneously hyperintense areas in the masticatory muscle. Electromyography (EMG) demonstrated severe and spontaneous pathologic activity in the temporal and masseter muscles. With early therapeutic treatment, remission of symptoms occurred within 2 mo, and no relapses were observed for the subsequent 2 yr. The gold standard for the diagnosis of MMM is the 2M antibody test, but the purpose of this study was to evaluate the use of MRI as an accurate and efficient diagnostic tool for the initiation of early therapy for the treatment of muscle myositis.

  8. Early functional MRI activation predicts motor outcome after ischemic stroke: a longitudinal, multimodal study.

    PubMed

    Du, Juan; Yang, Fang; Zhang, Zhiqiang; Hu, Jingze; Xu, Qiang; Hu, Jianping; Zeng, Fanyong; Lu, Guangming; Liu, Xinfeng

    2018-05-15

    An accurate prediction of long term outcome after stroke is urgently required to provide early individualized neurorehabilitation. This study aimed to examine the added value of early neuroimaging measures and identify the best approaches for predicting motor outcome after stroke. This prospective study involved 34 first-ever ischemic stroke patients (time since stroke: 1-14 days) with upper limb impairment. All patients underwent baseline multimodal assessments that included clinical (age, motor impairment), neurophysiological (motor-evoked potentials, MEP) and neuroimaging (diffusion tensor imaging and motor task-based fMRI) measures, and also underwent reassessment 3 months after stroke. Bivariate analysis and multivariate linear regression models were used to predict the motor scores (Fugl-Meyer assessment, FMA) at 3 months post-stroke. With bivariate analysis, better motor outcome significantly correlated with (1) less initial motor impairment and disability, (2) less corticospinal tract injury, (3) the initial presence of MEPs, (4) stronger baseline motor fMRI activations. In multivariate analysis, incorporating neuroimaging data improved the predictive accuracy relative to only clinical and neurophysiological assessments. Baseline fMRI activation in SMA was an independent predictor of motor outcome after stroke. A multimodal model incorporating fMRI and clinical measures best predicted the motor outcome following stroke. fMRI measures obtained early after stroke provided independent prediction of long-term motor outcome.

  9. Delineation of early brain development from fetuses to infants with diffusion MRI and beyond.

    PubMed

    Ouyang, Minhui; Dubois, Jessica; Yu, Qinlin; Mukherjee, Pratik; Huang, Hao

    2018-04-12

    Dynamic macrostructural and microstructural changes take place from the mid-fetal stage to 2 years after birth. Delineating structural changes of the brain during early development provides new insights into the complicated processes of both typical development and the pathological mechanisms underlying various psychiatric and neurological disorders including autism, attention deficit hyperactivity disorder and schizophrenia. Decades of histological studies have identified strong spatial and functional maturation gradients in human brain gray and white matter. The recent improvements in magnetic resonance imaging (MRI) techniques, especially diffusion MRI (dMRI), relaxometry imaging, and magnetization transfer imaging (MTI) have provided unprecedented opportunities to non-invasively quantify and map the early developmental changes at whole brain and regional levels. Here, we review the recent advances in understanding early brain structural development during the second half of gestation and the first two postnatal years using modern MR techniques. Specifically, we review studies that delineate the emergence and microstructural maturation of white matter tracts, as well as dynamic mapping of inhomogeneous cortical microstructural organization unique to fetuses and infants. These imaging studies converge into maturational curves of MRI measurements that are distinctive across different white matter tracts and cortical regions. Furthermore, contemporary models offering biophysical interpretations of the dMRI-derived measurements are illustrated to infer the underlying microstructural changes. Collectively, this review summarizes findings that contribute to charting spatiotemporally heterogeneous gray and white matter structural development, offering MRI-based biomarkers of typical brain development and setting the stage for understanding aberrant brain development in neurodevelopmental disorders. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Multimodal MRI for early diabetic mild cognitive impairment: study protocol of a prospective diagnostic trial.

    PubMed

    Yu, Ying; Sun, Qian; Yan, Lin-Feng; Hu, Yu-Chuan; Nan, Hai-Yan; Yang, Yang; Liu, Zhi-Cheng; Wang, Wen; Cui, Guang-Bin

    2016-08-24

    Type 2 diabetes mellitus (T2DM) is a risk factor for dementia. Mild cognitive impairment (MCI), an intermediary state between normal cognition and dementia, often occurs during the prodromal diabetic stage, making early diagnosis and intervention of MCI very important. Latest neuroimaging techniques revealed some underlying microstructure alterations for diabetic MCI, from certain aspects. But there still lacks an integrated multimodal MRI system to detect early neuroimaging changes in diabetic MCI patients. Thus, we intended to conduct a diagnostic trial using multimodal MRI techniques to detect early diabetic MCI that is determined by the Montreal Cognitive Assessment (MoCA). In this study, healthy controls, prodromal diabetes and diabetes subjects (53 subjects/group) aged 40-60 years will be recruited from the physical examination center of Tangdu Hospital. The neuroimaging and psychometric measurements will be repeated at a 0.5 year-interval for 2.5 years' follow-up. The primary outcome measures are 1) Microstructural and functional alterations revealed with multimodal MRI scans including structure magnetic resonance imaging (sMRI), resting state functional magnetic resonance imaging (rs-fMRI), diffusion kurtosis imaging (DKI), and three-dimensional pseudo-continuous arterial spin labeling (3D-pCASL); 2) Cognition evaluation with MoCA. The second outcome measures are obesity, metabolic characteristics, lifestyle and quality of life. The study will provide evidence for the potential use of multimodal MRI techniques with psychometric evaluation in diagnosing MCI at prodromal diabetic stage so as to help decision making in early intervention and improve the prognosis of T2DM. This study has been registered to ClinicalTrials.gov ( NCT02420470 ) on April 2, 2015 and published on July 29, 2015.

  11. Reconstructing the spectrotemporal modulations of real-life sounds from fMRI response patterns

    PubMed Central

    Santoro, Roberta; Moerel, Michelle; De Martino, Federico; Valente, Giancarlo; Ugurbil, Kamil; Yacoub, Essa; Formisano, Elia

    2017-01-01

    Ethological views of brain functioning suggest that sound representations and computations in the auditory neural system are optimized finely to process and discriminate behaviorally relevant acoustic features and sounds (e.g., spectrotemporal modulations in the songs of zebra finches). Here, we show that modeling of neural sound representations in terms of frequency-specific spectrotemporal modulations enables accurate and specific reconstruction of real-life sounds from high-resolution functional magnetic resonance imaging (fMRI) response patterns in the human auditory cortex. Region-based analyses indicated that response patterns in separate portions of the auditory cortex are informative of distinctive sets of spectrotemporal modulations. Most relevantly, results revealed that in early auditory regions, and progressively more in surrounding regions, temporal modulations in a range relevant for speech analysis (∼2–4 Hz) were reconstructed more faithfully than other temporal modulations. In early auditory regions, this effect was frequency-dependent and only present for lower frequencies (<∼2 kHz), whereas for higher frequencies, reconstruction accuracy was higher for faster temporal modulations. Further analyses suggested that auditory cortical processing optimized for the fine-grained discrimination of speech and vocal sounds underlies this enhanced reconstruction accuracy. In sum, the present study introduces an approach to embed models of neural sound representations in the analysis of fMRI response patterns. Furthermore, it reveals that, in the human brain, even general purpose and fundamental neural processing mechanisms are shaped by the physical features of real-world stimuli that are most relevant for behavior (i.e., speech, voice). PMID:28420788

  12. Vestibular evoked myogenic potentials and MRI in early multiple sclerosis: Validation of the VEMP score.

    PubMed

    Crnošija, Luka; Krbot Skorić, Magdalena; Gabelić, Tereza; Adamec, Ivan; Habek, Mario

    2017-01-15

    To validate the VEMP score as a measure of brainstem dysfunction in patients with the first symptom of multiple sclerosis (MS) (clinically isolated syndrome (CIS)) and to investigate the correlation between VEMP and brainstem MRI results. 121 consecutive CIS patients were enrolled and brainstem functional system score (BSFS) was determined. Ocular VEMP (oVEMP) and cervical VEMP (cVEMP) were analyzed for latencies, conduction block and amplitude asymmetry ratio and the VEMP score was calculated. MRI was analyzed for the presence of brainstem lesions as a whole and separately for the presence of pontine, midbrain and medulla oblongata lesions. Patients with signs of brainstem involvement during the neurological examination (with BSFS ≥1) had a higher oVEMP score compared to patients with no signs of brainstem involvement. A binary logistic regression model showed that patients with brainstem lesion on the MRI are 6.780 times more likely to have BSFS ≥1 (p=0.001); and also, a higher VEMP score is associated with BSFS ≥1 (p=0.042). Furthermore, significant correlations were found between clinical brainstem involvement and brainstem and pontine MRI lesions, and prolonged latencies and/or absent VEMP responses. The VEMP score is a valuable tool in evaluation of brainstem involvement in patients with early MS. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. MRI in patients with inflammatory bowel disease

    PubMed Central

    Gee, Michael S.; Harisinghani, Mukesh G.

    2011-01-01

    Inflammatory bowel disease (IBD) affects approximately 1.4 million people in North America and, because of its typical early age of onset and episodic disease course, IBD patients often undergo numerous imaging studies over the course of their lifetimes. CT has become the standard imaging modality for assessment of IBD patients because of its widespread availability, rapid image acquisition, and ability to evaluate intraluminal and extraluminal disease. However, repetitive CT imaging has been associated with a significant ionizing radiation risk to patients, making MRI an appealing alternative IBD imaging modality. Pelvic MRI is currently the imaging gold standard for detecting perianal disease, while recent studies indicate that MRI bowel-directed techniques (enteroclysis, enterography, colonography) can accurately evaluate bowel inflammation in IBD. With recent technical innovations leading to faster and higher resolution body MRI, the role of MRI in IBD evaluation is likely to continue to expand. Future applications include surveillance imaging, detection of mural fibrosis, and early assessment of therapy response. PMID:21512607

  14. fMRI-constrained source analysis reveals early top-down modulations of interference processing using a flanker task.

    PubMed

    Siemann, Julia; Herrmann, Manfred; Galashan, Daniela

    2016-08-01

    Usually, incongruent flanker stimuli provoke conflict processing whereas congruent flankers should facilitate task performance. Various behavioral studies reported improved or even absent conflict processing with correctly oriented selective attention. In the present study we attempted to reinvestigate these behavioral effects and to disentangle neuronal activity patterns underlying the attentional cueing effect taking advantage of a combination of the high temporal resolution of Electroencephalographic (EEG) and the spatial resolution of functional magnetic resonance imaging (fMRI). Data from 20 participants were acquired in different sessions per method. We expected the conflict-related N200 event-related potential (ERP) component and areas associated with flanker processing to show validity-specific modulations. Additionally, the spatio-temporal dynamics during cued flanker processing were examined using an fMRI-constrained source analysis approach. In the ERP data we found early differences in flanker processing between validity levels. An early centro-parietal relative positivity for incongruent stimuli occurred only with valid cueing during the N200 time window, while a subsequent fronto-central negativity was specific to invalidly cued interference processing. The source analysis additionally pointed to separate neural generators of these effects. Regional sources in visual areas were involved in conflict processing with valid cueing, while a regional source in the anterior cingulate cortex (ACC) seemed to contribute to the ERP differences with invalid cueing. Moreover, the ACC and precentral gyrus demonstrated an early and a late phase of congruency-related activity differences with invalid cueing. We discuss the first effect to reflect conflict detection and response activation while the latter more likely originated from conflict monitoring and control processes during response competition. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Non-hypervascular hypointense nodules on Gd-EOB-DTPA-enhanced MRI as a predictor of outcomes for early-stage HCC.

    PubMed

    Toyoda, Hidenori; Kumada, Takashi; Tada, Toshifumi; Sone, Yasuhiro; Maeda, Atsuyuki; Kaneoka, Yuji

    2015-01-01

    In patients with hepatocellular carcinoma (HCC), gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) often identifies non-hypervascular hypointense hepatic nodules during the hepatobiliary phase, but their prognostic significance is unclear. We conducted a prospective observational study to investigate the impact of non-hypervascular hypointense hepatic nodules detected by Gd-EOB-DTPA-enhanced MRI on the outcome of patients with early-stage HCC. Post-treatment recurrence and survival rates were analyzed in 138 patients with non-recurrent, early-stage HCC [Barcelona Clinic Liver Cancer (BCLC) stage 0 or A] and Child-Pugh A liver function according to the presence of non-hypervascular hypointense nodules on pretreatment Gd-EOB-DTPA-enhanced MRI. Non-hypervascular hypointense hepatic nodules were detected in 51 (37.0%) patients with early-stage HCC on pretreatment Gd-EOB-DTPA-enhanced MRI. Recurrence rates were significantly higher in patients with non-hypervascular hypointense nodules (p < 0.0001). Based on a multivariate analysis, the presence of non-hypervascular hypointense hepatic nodules on Gd-EOB-DTPA-enhanced MRI was independently associated with an increased recurrence rate, independent of tumor progression or treatment (p = 0.0005). The survival rate was significantly lower in patients with non-hypervascular hypointense nodules on Gd-EOB-DTPA-enhanced MRI (p = 0.0108). In patients with early-stage typical HCC (BCLC 0 or A), the presence of concurrent non-hypervascular hypointense hepatic nodules in the hepatobiliary phase of pretreatment Gd-EOB-DTPA-enhanced MRI is an indicator of higher likelihood of recurrence after treatment and may be a marker for unfavorable outcome.

  16. Characteristics of early MRI in children and adolescents with vanishing white matter.

    PubMed

    van der Lei, Hannemieke D; Steenweg, Marjan E; Barkhof, Frederik; de Grauw, Ton; d'Hooghe, Marc; Morton, Richard; Shah, Siddharth; Wolf, Nicole; van der Knaap, Marjo S

    2012-02-01

    MRI in vanishing white matter typically shows diffuse abnormality of the cerebral white matter, which becomes increasingly rarefied and cystic. We investigated the MRI characteristics preceding this stage. In a retrospective observational study, we evaluated all available MRIs in our database of DNA-confirmed VWM patients and selected MRIs without diffuse cerebral white matter abnormalities and without signs of rarefaction or cystic degeneration in patients below 20 years of age. A previously established scoring list was used to evaluate the MRIs. An MRI of seven patients fulfilled the criteria. All had confluent and symmetrical abnormalities in the periventricular and bordering deep white matter. In young patients, myelination was delayed. The inner rim of the corpus callosum was affected in all patients. In early stages of VWM, MRI does not necessarily display diffuse cerebral white matter involvement and rarefaction or cystic degeneration. If the MRI abnormalities do not meet the criteria for VWM, it helps to look at the corpus callosum. If the inner rim (the callosal-septal interface) is affected, VWM should be considered. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  17. Reduced response cluster size in early visual areas explains the acuity deficit in amblyopia.

    PubMed

    Huang, Yufeng; Feng, Lixia; Zhou, Yifeng

    2017-05-03

    Focal visual stimulation typically results in the activation of a large portion of the early visual cortex. This spread of activity is attributed to long-range lateral interactions. Such long-range interactions may serve to stabilize a visual representation or to simply modulate incoming signals, and any associated dysfunction in long-range activation may reduce sensitivity to visual information in conditions such as amblyopia. We sought to measure the dispersion of cortical activity following local visual stimulation in a group of patients with amblyopia and matched normal. Twenty adult anisometropic amblyopes and 10 normal controls participated in this study. Using a multifocal stimulation, we simultaneously measured cluster sizes to multiple stimulation points in the visual field. We found that the functional MRI (fMRI) response cluster size that corresponded to the fellow eye was significantly larger as opposed to that corresponding to the amblyopic eye and that the fMRI response cluster size at the two more central retinotopic locations correlated with amblyopia acuity deficit. Our results suggest that the amblyopic visual cortex has a diminished long-range communication as evidenced by significantly smaller cluster of activity as measured with fMRI. These results have important implications for models of amblyopia and approaches to treatment.

  18. MRI evidence of persistent joint inflammation and progressive joint damage despite clinical remission during treatment of early rheumatoid arthritis.

    PubMed

    Forslind, K; Svensson, B

    2016-01-01

    To determine the value of magnetic resonance imaging (MRI) of bones and joints in patients with recent-onset rheumatoid arthritis (RA) treated for 2 years from diagnosis with disease-modifying anti-rheumatic drugs (DMARDs) and glucocorticoids. Thirteen patients with early RA were treated according to clinical practice and followed with MRI, radiographs, and Disease Activity Score calculated on 28 joints (DAS28) at inclusion (baseline) and after 1, 4, 7, 13, and 25 months. MRI of the dominant wrist and metacarpophalangeal (MCP) joints were assessed for synovitis, bone oedema, and erosions using the RA MRI Score (RAMRIS) and for tenosynovitis by an MRI tenosynovitis scoring method. Radiographs were assessed by the van der Heijde modified Sharp score (SHS). Clinical remission was defined by a DAS28 < 2.6. MRI at baseline detected inflammation in joints and tendons in all patients as well as erosions in 10 out of 13 patients. Over time, the erosion score increased while the synovitis and tenosynovitis scores remained almost unchanged. Bone oedema strongly correlated with synovitis. Synovitis and tenosynovitis correlated well with the erosion score at baseline but not thereafter. The MRI changes showed that joint damage started early and continued in the presence of persistent synovial and tenosynovial inflammation. The observations made in this small study suggest that the treatment goal of 'clinical remission' should be supplemented by a 'joint remission' goal. To this end, MRI is an appropriate tool. Further studies are needed to evaluate the optimal use of MRI in early RA.

  19. Multivariate pattern analysis of fMRI: the early beginnings.

    PubMed

    Haxby, James V

    2012-08-15

    In 2001, we published a paper on the representation of faces and objects in ventral temporal cortex that introduced a new method for fMRI analysis, which subsequently came to be called multivariate pattern analysis (MVPA). MVPA now refers to a diverse set of methods that analyze neural responses as patterns of activity that reflect the varying brain states that a cortical field or system can produce. This paper recounts the circumstances and events that led to the original study and later developments and innovations that have greatly expanded this approach to fMRI data analysis, leading to its widespread application. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Parametric fMRI of paced motor responses uncovers novel whole-brain imaging biomarkers in spinocerebellar ataxia type 3.

    PubMed

    Duarte, João Valente; Faustino, Ricardo; Lobo, Mercês; Cunha, Gil; Nunes, César; Ferreira, Carlos; Januário, Cristina; Castelo-Branco, Miguel

    2016-10-01

    Machado-Joseph Disease, inherited type 3 spinocerebellar ataxia (SCA3), is the most common form worldwide. Neuroimaging and neuropathology have consistently demonstrated cerebellar alterations. Here we aimed to discover whole-brain functional biomarkers, based on parametric performance-level-dependent signals. We assessed 13 patients with early SCA3 and 14 healthy participants. We used a combined parametric behavioral/functional neuroimaging design to investigate disease fingerprints, as a function of performance levels, coupled with structural MRI and voxel-based morphometry. Functional magnetic resonance imaging (fMRI) was designed to parametrically analyze behavior and neural responses to audio-paced bilateral thumb movements at temporal frequencies of 1, 3, and 5 Hz. Our performance-level-based design probing neuronal correlates of motor coordination enabled the discovery that neural activation and behavior show critical loss of parametric modulation specifically in SCA3, associated with frequency-dependent cortico/subcortical activation/deactivation patterns. Cerebellar/cortical rate-dependent dissociation patterns could clearly differentiate between groups irrespective of grey matter loss. Our findings suggest functional reorganization of the motor network and indicate a possible role of fMRI as a tool to monitor disease progression in SCA3. Accordingly, fMRI patterns proved to be potential biomarkers in early SCA3, as tested by receiver operating characteristic analysis of both behavior and neural activation at different frequencies. Discrimination analysis based on BOLD signal in response to the applied parametric finger-tapping task significantly often reached >80% sensitivity and specificity in single regions-of-interest.Functional fingerprints based on cerebellar and cortical BOLD performance dependent signal modulation can thus be combined as diagnostic and/or therapeutic targets in hereditary ataxia. Hum Brain Mapp 37:3656-3668, 2016. © 2016 Wiley

  1. Quantitative correlational study of microbubble-enhanced ultrasound imaging and magnetic resonance imaging of glioma and early response to radiotherapy in a rat model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Chen; Lee, Dong-Hoon; Zhang, Kai

    Purpose: Radiotherapy remains a major treatment method for malignant tumors. Magnetic resonance imaging (MRI) is the standard modality for assessing glioma treatment response in the clinic. Compared to MRI, ultrasound imaging is low-cost and portable and can be used during intraoperative procedures. The purpose of this study was to quantitatively compare contrast-enhanced ultrasound (CEUS) imaging and MRI of irradiated gliomas in rats and to determine which quantitative ultrasound imaging parameters can be used for the assessment of early response to radiation in glioma. Methods: Thirteen nude rats with U87 glioma were used. A small thinned skull window preparation was performedmore » to facilitate ultrasound imaging and mimic intraoperative procedures. Both CEUS and MRI with structural, functional, and molecular imaging parameters were performed at preradiation and at 1 day and 4 days postradiation. Statistical analysis was performed to determine the correlations between MRI and CEUS parameters and the changes between pre- and postradiation imaging. Results: Area under the curve (AUC) in CEUS showed significant difference between preradiation and 4 days postradiation, along with four MRI parameters, T{sub 2}, apparent diffusion coefficient, cerebral blood flow, and amide proton transfer-weighted (APTw) (all p < 0.05). The APTw signal was correlated with three CEUS parameters, rise time (r = − 0.527, p < 0.05), time to peak (r = − 0.501, p < 0.05), and perfusion index (r = 458, p < 0.05). Cerebral blood flow was correlated with rise time (r = − 0.589, p < 0.01) and time to peak (r = − 0.543, p < 0.05). Conclusions: MRI can be used for the assessment of radiotherapy treatment response and CEUS with AUC as a new technique and can also be one of the assessment methods for early response to radiation in glioma.« less

  2. Quantitative correlational study of microbubble-enhanced ultrasound imaging and magnetic resonance imaging of glioma and early response to radiotherapy in a rat model.

    PubMed

    Yang, Chen; Lee, Dong-Hoon; Mangraviti, Antonella; Su, Lin; Zhang, Kai; Zhang, Yin; Zhang, Bin; Li, Wenxiao; Tyler, Betty; Wong, John; Wang, Ken Kang-Hsin; Velarde, Esteban; Zhou, Jinyuan; Ding, Kai

    2015-08-01

    Radiotherapy remains a major treatment method for malignant tumors. Magnetic resonance imaging (MRI) is the standard modality for assessing glioma treatment response in the clinic. Compared to MRI, ultrasound imaging is low-cost and portable and can be used during intraoperative procedures. The purpose of this study was to quantitatively compare contrast-enhanced ultrasound (CEUS) imaging and MRI of irradiated gliomas in rats and to determine which quantitative ultrasound imaging parameters can be used for the assessment of early response to radiation in glioma. Thirteen nude rats with U87 glioma were used. A small thinned skull window preparation was performed to facilitate ultrasound imaging and mimic intraoperative procedures. Both CEUS and MRI with structural, functional, and molecular imaging parameters were performed at preradiation and at 1 day and 4 days postradiation. Statistical analysis was performed to determine the correlations between MRI and CEUS parameters and the changes between pre- and postradiation imaging. Area under the curve (AUC) in CEUS showed significant difference between preradiation and 4 days postradiation, along with four MRI parameters, T2, apparent diffusion coefficient, cerebral blood flow, and amide proton transfer-weighted (APTw) (all p < 0.05). The APTw signal was correlated with three CEUS parameters, rise time (r = - 0.527, p < 0.05), time to peak (r = - 0.501, p < 0.05), and perfusion index (r = 458, p < 0.05). Cerebral blood flow was correlated with rise time (r = - 0.589, p < 0.01) and time to peak (r = - 0.543, p < 0.05). MRI can be used for the assessment of radiotherapy treatment response and CEUS with AUC as a new technique and can also be one of the assessment methods for early response to radiation in glioma.

  3. The Clinical Utility and Diagnostic Performance of MRI for Identification of Early and Advanced Knee Osteoarthritis: A Systematic Review

    PubMed Central

    Quatman, Carmen E.; Hettrich, Carolyn M.; Schmitt, Laura C.; Spindler, Kurt P.

    2013-01-01

    Background Current diagnostic strategies for detection of structural articular cartilage abnormalities, the earliest structural signs of osteoarthritis, often do not capture the condition until it is too far advanced for the most potential benefit of non-invasive interventions. Purpose Systematically review the literature relative to the following questions: (1) Is MRI a valid, sensitive, specific, accurate and reliable instrument to identify knee articular cartilage abnormalities compared to arthroscopy? (2) Is MRI a sensitive tool that can be utilized to identify early cartilage degeneration? Study Design Systematic Review Methods A systematic search was performed in November 2010 using PubMed MEDLINE (from 1966), CINAHL (from 1982), SPORTDiscus (from 1985), and SCOPUS (from 1996) databases. Results Fourteen level I and 13 level II studies were identified that met inclusion criteria and provided information related to diagnostic performance of MRI compared to arthroscopic evaluation. The diagnostic performance of MRI demonstrated a large range of sensitivities, specificities, and accuracies. The sensitivity for identifying articular cartilage abnormalities in the knee joint was reported between 26–96%. Specificity and accuracy was reported between 50–100% and 49–94%, respectively. The sensitivity, specificity, and accuracy for identifying early osteoarthritis were reported between 0–86%, 48–95%, and 5–94%, respectively. As a result of inconsistencies between imaging techniques and methodological shortcomings of many of the studies, a meta-analysis was not performed and it was difficult to fully synthesize the information to state firm conclusions about the diagnostic performance of MRI. Conclusions There is evidence in some MRI protocols that MRI is a relatively valid, sensitive, specific, accurate, and reliable clinical tool for identifying articular cartilage degeneration. Due to heterogeneity of MRI sequences it is not possible to make definitive

  4. Diagnostic role of (99)Tc(m)-MDP SPECT/CT combined SPECT/MRI Multi modality imaging for early and atypical bone metastases.

    PubMed

    Chen, Xiao-Liang; Li, Qian; Cao, Lin; Jiang, Shi-Xi

    2014-01-01

    The bone metastasis appeared early before the bone imaging for most of the above patients. (99)Tc(m)-MDP ((99)Tc(m) marked methylene diphosphonate) bone imaging could diagnosis the bone metastasis with highly sensitivity, but with lower specificity. The aim of this study is to explore the diagnostic value of (99)Tc(m)-MDP SPECT/CT combined SPECT/MRI Multi modality imaging for the early period atypical bone metastases. 15 to 30 mCi (99)Tc(m)-MDP was intravenously injected to the 34 malignant patients diagnosed as doubtful early bone metastases. SPECT, CT and SPECT/CT images were captured and analyzed consequently. For the patients diagnosed as early period atypical bone metastases by SPECT/CT, combining the SPECT/CT and MRI together as the SPECT/MRI integrated image. The obtained SPECT/MRI image was analyzed and compared with the pathogenic results of patients. The results indicated that 34 early period doubtful metastatic focus, including 34 SPECT positive focus, 17 focus without special changes by using CT method, 11 bone metastases focus by using SPECT/CT method, 23 doubtful bone metastases focus, 8 doubtful bone metastases focus, 14 doubtful bone metastases focus and 2 focus without clear image. Totally, SPECT/CT combined with SPECT/MRI method diagnosed 30 bone metastatic focus and 4 doubtfully metastatic focus. In conclusion, (99)Tc(m)-MDP SPECT/CT combined SPECT/MRI Multi modality imaging shows a higher diagnostic value for the early period bone metastases, which also enhances the diagnostic accuracy rate.

  5. A review of responsive MRI contrast agents: 2005–2014

    PubMed Central

    Hingorani, Dina V.; Bernstein, Adam S.; Pagel, Mark D.

    2014-01-01

    This review focuses on MRI contrast agents that are responsive to a change in a physiological biomarker. The response mechanisms are dependent on six physicochemical characteristics, including the accessibility of water to the agent, tumbling time, proton exchange rate, electron spin state, MR frequency, or superparamagnetism of the agent. These characteristics can be affected by changes in concentrations or activities of enzymes, proteins, nucleic acids, metabolites, or metal ions, or changes in redox state, pH, temperature, or light. A total of 117 examples are presented, including examples that employ nuclei other than 1H, which attests to the creativity of multidisciplinary research efforts to develop responsive MRI contrast agents. PMID:25355685

  6. Early detection of response to radiation therapy in patients with brain malignancies using conventional and high b-value diffusion-weighted magnetic resonance imaging.

    PubMed

    Mardor, Yael; Pfeffer, Raphael; Spiegelmann, Roberto; Roth, Yiftach; Maier, Stephan E; Nissim, Ouzi; Berger, Raanan; Glicksman, Ami; Baram, Jacob; Orenstein, Arie; Cohen, Jack S; Tichler, Thomas

    2003-03-15

    To study the feasibility of using diffusion-weighted magnetic resonance imaging (DWMRI), which is sensitive to the diffusion of water molecules in tissues, for detection of early tumor response to radiation therapy; and to evaluate the additional information obtained from high DWMRI, which is more sensitive to low-mobility water molecules (such as intracellular or bound water), in increasing the sensitivity to response. Standard MRI and DWMRI were acquired before and at regular intervals after initiating radiation therapy for 10 malignant brain lesions in eight patients. One week posttherapy, three of six responding lesions showed an increase in the conventional DWMRI parameters. Another three responding lesions showed no change. Four nonresponding lesions showed a decrease or no change. The early change in the diffusion parameters was enhanced by using high DWMRI. When high DWMRI was used, all responding lesions showed increase in the diffusion parameter and all nonresponding lesions showed no change or decrease. Response was determined by standard MRI 7 weeks posttherapy. The changes in the diffusion parameters measured 1 week after initiating treatment were correlated with later tumor response or no response (P <.006). This correlation was increased to P <.0006 when high DWMRI was used. The significant correlation between changes in diffusion parameters 1 week after initiating treatment and later tumor response or no response suggests the feasibility of using DWMRI for early, noninvasive prediction of tumor response. The ability to predict response may enable early termination of treatment in nonresponding patients, prevent additional toxicity, and allow for early changes in treatment.

  7. Prediction of chemotherapeutic response in bladder cancer using k-means clustering of DCE-MRI pharmacokinetic parameters

    PubMed Central

    Nguyen, Huyen T.; Jia, Guang; Shah, Zarine K.; Pohar, Kamal; Mortazavi, Amir; Zynger, Debra L.; Wei, Lai; Yang, Xiangyu; Clark, Daniel; Knopp, Michael V.

    2015-01-01

    Purpose To apply k-means clustering of two pharmacokinetic parameters derived from 3T DCE-MRI to predict chemotherapeutic response in bladder cancer at the mid-cycle time-point. Materials and Methods With the pre-determined number of 3 clusters, k-means clustering was performed on non-dimensionalized Amp and kep estimates of each bladder tumor. Three cluster volume fractions (VFs) were calculated for each tumor at baseline and mid-cycle. The changes of three cluster VFs from baseline to mid-cycle were correlated with the tumor’s chemotherapeutic response. Receiver-operating-characteristics curve analysis was used to evaluate the performance of each cluster VF change as a biomarker of chemotherapeutic response in bladder cancer. Results k-means clustering partitioned each bladder tumor into cluster 1 (low kep and low Amp), cluster 2 (low kep and high Amp), cluster 3 (high kep and low Amp). The changes of all three cluster VFs were found to be associated with bladder tumor response to chemotherapy. The VF change of cluster 2 presented with the highest area-under-the-curve value (0.96) and the highest sensitivity/specificity/accuracy (96%/100%/97%) with a selected cutoff value. Conclusion k-means clustering of the two DCE-MRI pharmacokinetic parameters can characterize the complex microcirculatory changes within a bladder tumor to enable early prediction of the tumor’s chemotherapeutic response. PMID:24943272

  8. fMRI responses to words repeated in a congruous semantic context are abnormal in mild Alzheimer’s disease

    PubMed Central

    Olichney, John M.; Taylor, Jason R.; Chan, Shiaohui; Yang, Jin-Chen; Stringfellow, Andrew; Hillert, Dieter G.; Simmons, Amanda L.; Salmon, David P.; Iragui-Madoz, Vicente; Kutas, Marta

    2010-01-01

    Background We adapted an event-related brain potential word repetition paradigm, sensitive to early Alzheimer’s disease (AD), for functional MRI (fMRI). We hypothesized that AD would be associated with reduced differential response to new/old congruous words. Methods Fifteen mild AD patients (mean age = 72.9) and 15 normal elderly underwent 1.5T fMRI during a semantic category decision task. Results We found robust between-groups differences in BOLD response to congruous words. In controls, the New > Old contrast demonstrated larger responses in much of the left-hemisphere (including putative P600 generators: parahippocampal, cingulate, fusiform, perirhinal, middle temporal (MTG) and inferior frontal gyri (IFG)); the Old > New contrast showed modest activation, mainly in right parietal and prefrontal cortex. By contrast, there were relatively few regions of significant New > Old responses in AD patients, mainly in the right-hemisphere, and their Old > New contrast did not demonstrate a right-hemisphere predominance. Across subjects, the spatial extent of New > Old responses in left medial temporal lobe (MTL) correlated with subsequent recall and recognition (r’s ≥ 0.60). In controls, the magnitude of New - Old response in left MTL, fusiform, IFG, MTG, superior temporal and cingulate gyrus correlated with subsequent cued recall and/or recognition (0.51 ≤ r’s ≤ 0.78). Conclusions A distributed network of mostly left-hemisphere structures, which are putative P600 generators, appears important for successful verbal encoding (with New > Old responses to congruous words in normal elderly). This network appears dysfunctional in mild AD patients, as reflected in decreased word repetition effects particularly in left association cortex, paralimbic and MTL structures. PMID:20433856

  9. Distinct fMRI Responses to Self-Induced versus Stimulus Motion during Free Viewing in the Macaque

    PubMed Central

    Kaneko, Takaaki; Saleem, Kadharbatcha S.; Berman, Rebecca A.; Leopold, David A.

    2016-01-01

    Visual motion responses in the brain are shaped by two distinct sources: the physical movement of objects in the environment and motion resulting from one's own actions. The latter source, termed visual reafference, stems from movements of the head and body, and in primates from the frequent saccadic eye movements that mark natural vision. To study the relative contribution of reafferent and stimulus motion during natural vision, we measured fMRI activity in the brains of two macaques as they freely viewed >50 hours of naturalistic video footage depicting dynamic social interactions. We used eye movements obtained during scanning to estimate the level of reafferent retinal motion at each moment in time. We also estimated the net stimulus motion by analyzing the video content during the same time periods. Mapping the responses to these distinct sources of retinal motion, we found a striking dissociation in the distribution of visual responses throughout the brain. Reafferent motion drove fMRI activity in the early retinotopic areas V1, V2, V3, and V4, particularly in their central visual field representations, as well as lateral aspects of the caudal inferotemporal cortex (area TEO). However, stimulus motion dominated fMRI responses in the superior temporal sulcus, including areas MT, MST, and FST as well as more rostral areas. We discuss this pronounced separation of motion processing in the context of natural vision, saccadic suppression, and the brain's utilization of corollary discharge signals. SIGNIFICANCE STATEMENT Visual motion arises not only from events in the external world, but also from the movements of the observer. For example, even if objects are stationary in the world, the act of walking through a room or shifting one's eyes causes motion on the retina. This “reafferent” motion propagates into the brain as signals that must be interpreted in the context of real object motion. The delineation of whole-brain responses to stimulus versus self

  10. Pharmacological MRI (phMRI) of the Human Central Nervous System.

    PubMed

    Lanfermann, H; Schindler, C; Jordan, J; Krug, N; Raab, P

    2015-10-01

    Pharmacological magnetic resonance imaging (phMRI) of the central nervous system (CNS) addresses the increasing demands in the biopharma industry for new methods that can accurately predict, as early as possible, whether novel CNS agents will be effective and safe. Imaging of physiological and molecular-level function can provide a more direct measure of a drug mechanism of action, enabling more predictive measures of drug activity. The availability of phMRI of the nervous system within the professional infrastructure of the Clinical Research Center (CRC) Hannover as proof of concept center ensures that advances in basic science progress swiftly into benefits for patients. Advanced standardized MRI techniques including quantitative MRI, kurtosis determination, functional MRI, and spectroscopic imaging of the entire brain are necessary for phMRI. As a result, MR scanners will evolve into high-precision measuring instruments for assessment of desirable and undesirable effects of drugs as the basic precondition for individually tailored therapy. The CRC's Imaging Unit with high-end large-scale equipment will allow the following unique opportunities: for example, identification of MR-based biomarkers to assess the effect of drugs (surrogate parameters), establishment of normal levels and reference ranges for MRI-based biomarkers, evaluation of the most relevant MRI sequences for drug monitoring in outpatient care. Another very important prerequisite for phMRI is the MHH Core Facility as the scientific and operational study unit of the CRC partner Hannover Medical School. This unit is responsible for the study coordination, conduction, complete study logistics, administration, and application of the quality assurance system based on required industry standards.

  11. MRI uncovers disrupted hippocampal microstructure that underlies memory impairments after early-life adversity.

    PubMed

    Molet, Jenny; Maras, Pamela M; Kinney-Lang, Eli; Harris, Neil G; Rashid, Faisal; Ivy, Autumn S; Solodkin, Ana; Obenaus, Andre; Baram, Tallie Z

    2016-12-01

    Memory and related cognitive functions are progressively impaired in a subgroup of individuals experiencing childhood adversity and stress. However, it is not possible to identify vulnerable individuals early, a crucial step for intervention. In this study, high-resolution magnetic resonance imaging (MRI) and intra-hippocampal diffusion tensor imaging (DTI) were employed to examine for structural signatures of cognitive adolescent vulnerabilities in a rodent model of early-life adversity. These methods were complemented by neuroanatomical and functional assessments of hippocampal network integrity during adolescence, adulthood and middle-age. The high-resolution MRI identified selective loss of dorsal hippocampal volume, and intra-hippocampal DTI uncovered disruption of dendritic structure, consistent with disrupted local connectivity, already during late adolescence in adversity-experiencing rats. Memory deteriorated over time, and stunting of hippocampal dendritic trees was apparent on neuroanatomical analyses. Thus, disrupted hippocampal neuronal structure and connectivity, associated with cognitive impairments, are detectable via non-invasive imaging modalities in rats experiencing early-life adversity. These high-resolution imaging approaches may constitute promising tools for prediction and assessment of at-risk individuals in the clinic. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Worsened MRI findings during the early period of treatment with penicillin in a patient with general paresis.

    PubMed

    Zhang, She-Qing; Wan, Bo; Ma, Xiao-Long; Zheng, Hui-Min

    2008-10-01

    A 52-year-old man was diagnosed with general paresis, whose HIV antibodies were negative. After initiation of treatment with penicillin on the first day, no obvious clinical Jarisch-Herxheimer reaction was found. However, 6 days after treatment, the patient was found more irritable and was unable to fall asleep at night. On the seventh day, worsened magnetic resonance imaging (MRI) abnormalities in the bilateral medial and anterior temporal lobes were unexpectedly discovered. These worsened MRI abnormalities improved quickly after the addition of dexamethasone treatment. We consider that these transient and slight mental symptoms may be associated with the transiently worsening phenomenon in cerebral MRI findings during the early period of treatment with penicillin. This indicates that some nonspecific inflammatory process has happened in the early stage of treatment, which necessitates the use of corticosteroids after the occurrence of systemic or mental symptoms.

  13. fMRI and EEG responses to periodic visual stimulation.

    PubMed

    Guy, C N; ffytche, D H; Brovelli, A; Chumillas, J

    1999-08-01

    EEG/VEP and fMRI responses to periodic visual stimulation are reported. The purpose of these experiments was to look for similar patterns in the time series produced by each method to help understand the relationship between the two. The stimulation protocol was the same for both sets of experiments and consisted of five complete cycles of checkerboard pattern reversal at 1.87 Hz for 30 s followed by 30 s of a stationary checkerboard. The fMRI data was analyzed using standard methods, while the EEG was analyzed with a new measurement of activation-the VEPEG. Both VEPEG and fMRI time series contain the fundamental frequency of the stimulus and quasi harmonic components-an unexplained double frequency commonly found in fMRI data. These results have prompted a reappraisal of the methods for analyzing fMRI data and have suggested a connection between our findings and much older published invasive electrophysiological measurements of blood flow and the partial pressures of oxygen and carbon dioxide. Overall our new analysis suggests that fMRI signals are strongly dependant on hydraulic blood flow effects. We distinguish three categories of fMRI signal corresponding to: focal activated regions of brain tissue; diffuse nonspecific regions of steal; and major cerebral vessels of arterial supply or venous drainage. Each category of signal has its own finger print in frequency, amplitude, and phase. Finally, we put forward the hypothesis that modulations in blood flow are not only the consequence but are also the cause of modulations in functional activity. Copyright 1999 Academic Press.

  14. Diagnostic accuracy of point-of-care ultrasound for evaluation of early blood-induced joint changes: Comparison with MRI.

    PubMed

    Foppen, W; van der Schaaf, I C; Beek, F J A; Mali, W P T M; Fischer, K

    2018-05-23

    Recurrent joint bleeding is the hallmark of haemophilia. Synovial hypertrophy observed with Magnetic Resonance Imaging (MRI) is associated with an increased risk of future joint bleeding. The aim of this study was to investigate whether point-of-care ultrasound (POC-US) is an accurate alternative for MRI for the detection of early joint changes. In this single centre diagnostic accuracy study, bilateral knees and ankles of haemophilia patients with no or minimal arthropathy on X-rays were scanned using POC-US and 3 Tesla MRI. POC-US was performed by 1 medical doctor, blinded for MRI, according to the "Haemophilia Early Arthropathy Detection with Ultrasound" (HEAD-US) protocol. MRIs were independently scored by 2 radiologists, blinded for clinical data and ultrasound results. Diagnostic accuracy parameters were calculated with 95% confidence intervals (CI). Knees and ankles of 24 haemophilia patients (96 joints), aged 18-34, were studied. Synovial hypertrophy on MRI was observed in 20% of joints. POC-US for synovial tissue was correct (overall accuracy) in 97% (CI: 91-99) with a positive predictive value of 94% (CI: 73-100) and a negative predictive value of 97% (CI: 91-100). The overall accuracy of POC-US for cartilage abnormalities was 91% (CI: 83-96) and for bone surface irregularities 97% (CI: 91-99). POC-US could accurately assess synovial hypertrophy, bone surface irregularities and cartilage abnormalities in haemophilia patients with limited joint disease. As POC-US is an accurate and available alternative for MRI, it can be used for routine evaluation of early joint changes. © 2018 The Authors. Haemophilia published by John Wiley & Sons Ltd.

  15. Quantitative structural MRI for early detection of Alzheimer’s disease

    PubMed Central

    McEvoy, Linda K; Brewer, James B

    2011-01-01

    Alzheimer’s disease (AD) is a common progressive neurodegenerative disorder that is not currently diagnosed until a patient reaches the stage of dementia. There is a pressing need to identify AD at an earlier stage, so that treatment, when available, can begin early. Quantitative structural MRI is sensitive to the neurodegeneration that occurs in mild and preclinical AD, and is predictive of decline to dementia in individuals with mild cognitive impairment. Objective evidence of ongoing brain atrophy will be critical for risk/benefit decisions once potentially aggressive, disease-modifying treatments become available. Recent advances have paved the way for the use of quantitative structural MRI in clinical practice, and initial clinical use has been promising. However, further experience with these measures in the relatively unselected patient populations seen in clinical practice is needed to complete translation of the recent enormous advances in scientific knowledge of AD into the clinical realm. PMID:20977326

  16. Diffusion-weighted MRI monitoring of pancreatic cancer response to radiofrequency heat-enhanced intratumor chemotherapy.

    PubMed

    Zhang, Tong; Zhang, Feng; Meng, Yanfeng; Wang, Han; Le, Thomas; Wei, Baojie; Lee, Donghoon; Willis, Patrick; Shen, Baozhong; Yang, Xiaoming

    2013-12-01

    The aim of this study was to evaluate the feasibility of using diffusion-weighted MRI to monitor the early response of pancreatic cancers to radiofrequency heat (RFH)-enhanced chemotherapy. Human pancreatic carcinoma cells (PANC-1) in different groups and 24 mice with pancreatic cancer xenografts in four groups were treated with phosphate-buffered saline (PBS) as a control, RFH at 42 °C, gemcitabine and gemcitabine plus RFH at 42 °C. One day before and 1, 7 and 14 days after treatment, diffusion-weighted MRI and T2 -weighted imaging were applied to monitor the apparent diffusion coefficients (ADCs) of tumors and tumor growth. MRI findings were correlated with the results of tumor apoptosis analysis. In the in vitro experiments, the quantitative viability assay showed lower relative cell viabilities for treatment with gemcitabine plus RFH at 42 °C relative to treatment with RFH only and gemcitabine only (37 ± 5% versus 65 ± 4% and 58 ± 8%, respectively, p < 0.05). In the in vivo experiments, the combination therapy resulted in smaller relative tumor volumes than RFH only and chemotherapy only (0.82 ± 0.17 versus 2.23 ± 0.90 and 1.64 ± 0.44, respectively, p = 0.003). In vivo, 14-T MRI demonstrated a remarkable decrease in ADCs at day 1 and increased ADCs at days 7 and 14 in the combination therapy group. The apoptosis index in the combination therapy group was significantly higher than those in the chemotherapy-only, RFH-only and PBS treatment groups (37 ± 6% versus 20 ± 5%, 8 ± 2% and 3 ± 1%, respectively, p < 0.05). This study confirms that it is feasible to use MRI to monitor RFH-enhanced chemotherapy in pancreatic cancers, which may present new options for the efficient treatment of pancreatic malignancies using MRI/RFH-integrated local chemotherapy. Copyright © 2013 John Wiley & Sons, Ltd.

  17. Application of artificial neural network to fMRI regression analysis.

    PubMed

    Misaki, Masaya; Miyauchi, Satoru

    2006-01-15

    We used an artificial neural network (ANN) to detect correlations between event sequences and fMRI (functional magnetic resonance imaging) signals. The layered feed-forward neural network, given a series of events as inputs and the fMRI signal as a supervised signal, performed a non-linear regression analysis. This type of ANN is capable of approximating any continuous function, and thus this analysis method can detect any fMRI signals that correlated with corresponding events. Because of the flexible nature of ANNs, fitting to autocorrelation noise is a problem in fMRI analyses. We avoided this problem by using cross-validation and an early stopping procedure. The results showed that the ANN could detect various responses with different time courses. The simulation analysis also indicated an additional advantage of ANN over non-parametric methods in detecting parametrically modulated responses, i.e., it can detect various types of parametric modulations without a priori assumptions. The ANN regression analysis is therefore beneficial for exploratory fMRI analyses in detecting continuous changes in responses modulated by changes in input values.

  18. Distinct fMRI Responses to Self-Induced versus Stimulus Motion during Free Viewing in the Macaque.

    PubMed

    Russ, Brian E; Kaneko, Takaaki; Saleem, Kadharbatcha S; Berman, Rebecca A; Leopold, David A

    2016-09-14

    Visual motion responses in the brain are shaped by two distinct sources: the physical movement of objects in the environment and motion resulting from one's own actions. The latter source, termed visual reafference, stems from movements of the head and body, and in primates from the frequent saccadic eye movements that mark natural vision. To study the relative contribution of reafferent and stimulus motion during natural vision, we measured fMRI activity in the brains of two macaques as they freely viewed >50 hours of naturalistic video footage depicting dynamic social interactions. We used eye movements obtained during scanning to estimate the level of reafferent retinal motion at each moment in time. We also estimated the net stimulus motion by analyzing the video content during the same time periods. Mapping the responses to these distinct sources of retinal motion, we found a striking dissociation in the distribution of visual responses throughout the brain. Reafferent motion drove fMRI activity in the early retinotopic areas V1, V2, V3, and V4, particularly in their central visual field representations, as well as lateral aspects of the caudal inferotemporal cortex (area TEO). However, stimulus motion dominated fMRI responses in the superior temporal sulcus, including areas MT, MST, and FST as well as more rostral areas. We discuss this pronounced separation of motion processing in the context of natural vision, saccadic suppression, and the brain's utilization of corollary discharge signals. Visual motion arises not only from events in the external world, but also from the movements of the observer. For example, even if objects are stationary in the world, the act of walking through a room or shifting one's eyes causes motion on the retina. This "reafferent" motion propagates into the brain as signals that must be interpreted in the context of real object motion. The delineation of whole-brain responses to stimulus versus self-generated retinal motion

  19. Resting-state functional MRI as a tool for evaluating brain hemodynamic responsiveness to external stimuli in rats.

    PubMed

    Paasonen, Jaakko; Salo, Raimo A; Huttunen, Joanna K; Gröhn, Olli

    2017-09-01

    Anesthesia is a major confounding factor in functional MRI (fMRI) experiments attributed to its effects on brain function. Recent evidence suggests that parameters obtained with resting-state fMRI (rs-fMRI) are coupled with anesthetic depth. Therefore, we investigated whether parameters obtained with rs-fMRI, such as functional connectivity (FC), are also directly related to blood-oxygen-level-dependent (BOLD) responses. A simple rs-fMRI protocol was implemented in a pharmacological fMRI study to evaluate the coupling between hemodynamic responses and FC under five anesthetics (α-chloralose, isoflurane, medetomidine, thiobutabarbital, and urethane). Temporal change in the FC was evaluated at 1-hour interval. Supplementary forepaw stimulation experiments were also conducted. Under thiobutabarbital anesthesia, FC was clearly coupled with nicotine-induced BOLD responses. Good correlation values were also obtained under isoflurane and medetomidine anesthesia. The observations in the thiobutabarbital group were supported by forepaw stimulation experiments. Additionally, the rs-fMRI protocol revealed significant temporal changes in the FC in the α-chloralose, thiobutabarbital, and urethane groups. Our results suggest that FC can be used to estimate brain hemodynamic responsiveness to stimuli and evaluate the level and temporal changes of anesthesia. Therefore, analysis of the fMRI baseline signal may be highly valuable tool for controlling the outcome of preclinical fMRI experiments. Magn Reson Med 78:1136-1146, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  20. PET/MRI of Hepatic 90Y Microsphere Deposition Determines Individual Tumor Response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, Kathryn J.; Maughan, Nichole M.; Laforest, Richard

    PurposeThe purpose of our study is to determine if there is a relationship between dose deposition measured by PET/MRI and individual lesion response to yttrium-90 ({sup 90}Y) microsphere radioembolization.Materials and Methods26 patients undergoing lobar treatment with {sup 90}Y microspheres underwent PET/MRI within 66 h of treatment and had follow-up imaging available. Adequate visualization of tumor was available in 24 patients, and contours were drawn on simultaneously acquired PET/MRI data. Dose volume histograms (DVHs) were extracted from dose maps, which were generated using a voxelized dose kernel. Similar contours to capture dimensional and volumetric change of tumors were drawn on follow-up imaging.more » Response was analyzed using both RECIST and volumetric RECIST (vRECIST) criteria.ResultsA total of 8 hepatocellular carcinoma (HCC), 4 neuroendocrine tumor (NET), 9 colorectal metastases (CRC) patients, and 3 patients with other metastatic disease met inclusion criteria. Average dose was useful in predicting response between responders and non-responders for all lesion types and for CRC lesions alone using both response criteria (p < 0.05). D70 (minimum dose to 70 % of volume) was also useful in predicting response when using vRECIST. No significant trend was seen in the other tumor types. For CRC lesions, an average dose of 29.8 Gy offered 76.9 % sensitivity and 75.9 % specificity for response.ConclusionsPET/MRI of {sup 90}Y microsphere distribution showed significantly higher DVH values for responders than non-responders in patients with CRC. DVH analysis of {sup 90}Y microsphere distribution following treatment may be an important predictor of response and could be used to guide future adaptive therapy trials.« less

  1. Spatiotemporal characteristics and vascular sources of neural-specific and -nonspecific fMRI signals at submillimeter columnar resolution

    PubMed Central

    Moon, Chan Hong; Fukuda, Mitsuhiro; Kim, Seong-Gi

    2012-01-01

    The neural specificity of hemodynamic-based functional magnetic resonance imaging (fMRI) signals are dependent on both the vascular regulation and the sensitivity of the applied fMRI technique to different types and sizes of blood vessels. In order to examine the specificity of MRI-detectable hemodynamic responses, submillimeter blood oxygenation-level dependent (BOLD) and cerebral blood volume (CBV) fMRI studies were performed in a well-established cat orientation column model at 9.4 Tesla. Neural-nonspecific and -specific signals were separated by comparing the fMRI responses of orthogonal orientation stimuli. The BOLD response was dominantly neural-nonspecific, mostly originating from pial and intracortical emerging veins, and thus was highly correlated with baseline blood volume. Uneven baseline CBV may displace or distort small functional domains in high-resolution BOLD maps. The CBV response in the parenchyma exhibited dual spatiotemporal characteristics, a fast and early neural-nonspecific response (with 4.3-s time constant) and a slightly slower and delayed neural-specific response (with 9.4-s time constant). The nonspecific CBV signal originates from early-responding arteries and arterioles, while the specific CBV response, which is not correlated with baseline blood volume, arises from late-responding microvessels including small pre-capillary arterioles and capillaries. Our data indicate that although the neural specificity of CBV fMRI signals is dependent on stimulation duration, high-resolution functional maps can be obtained from steady-state CBV studies. PMID:22960251

  2. Relationship between fMRI response during a nonverbal memory task and marijuana use in college students.

    PubMed

    Dager, Alecia D; Tice, Madelynn R; Book, Gregory A; Tennen, Howard; Raskin, Sarah A; Austad, Carol S; Wood, Rebecca M; Fallahi, Carolyn R; Hawkins, Keith A; Pearlson, Godfrey D

    2018-04-26

    Marijuana (MJ) is widely used among college students, with peak use between ages 18-22. Research suggests memory dysfunction in adolescent and young adult MJ users, but the neural correlates are unclear. We examined functional magnetic resonance imaging (fMRI) response during a memory task among college students with varying degrees of MJ involvement. Participants were 64 college students, ages 18-20, who performed a visual encoding and recognition task during fMRI. MJ use was ascertained for 3 months prior to scanning; 27 individuals reported past 3-month MJ use, and 33 individuals did not. fMRI response was modeled during encoding based on whether targets were subsequently recognized (correct encoding), and during recognition based on target identification (hits). fMRI response in left and right inferior frontal gyrus (IFG) and hippocampal regions of interest was examined between MJ users and controls. There were no group differences between MJ users and controls on fMRI response during encoding, although single sample t-tests revealed that MJ users failed to activate the hippocampus. During recognition, MJ users showed less fMRI response than controls in right hippocampus (Cohen's d = 0.55), left hippocampus (Cohen's d = 0.67) and left IFG (Cohen's d = 0.61). Heavier MJ involvement was associated with lower fMRI response in left hippocampus and left IFG. This study provides evidence of MJ-related prefrontal and hippocampal dysfunction during recognition memory in college students. These findings may contribute to our previously identified decrements in academic performance in college MJ users and could have substantial implications for academic and occupational functioning. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. A biomarker-responsive T2ex MRI contrast agent.

    PubMed

    Daryaei, Iman; Randtke, Edward A; Pagel, Mark D

    2017-04-01

    This study investigated a fundamentally new type of responsive MRI contrast agent for molecular imaging that alters T 2 exchange (T 2ex ) properties after interacting with a molecular biomarker. The contrast agent Tm-DO3A-oAA was treated with nitric oxide (NO) and O 2 . The R 1 and R 2 relaxation rates of the reactant and product were measured with respect to concentration, temperature, and pH. Chemical exchange saturation transfer (CEST) spectra of the reactant and product were acquired using a 7 Tesla (T) MRI scanner and analyzed to estimate the chemical exchange rates and r 2ex relaxivities. The reaction of Tm-DO3A-oAA with NO and O 2 caused a 6.4-fold increase in the r 2 relaxivity of the agent, whereas r 1 relaxivity remained unchanged, which demonstrated that Tm-DO3A-oAA is a responsive T 2ex agent. The effects of pH and temperature on the r 2 relaxivities of the reactant and product supported the conclusion that the product's benzimidazole ligand caused the agent to have a fast chemical exchange rate relative to the slow exchange rate of the reactant's ortho-aminoanilide ligand. T 2ex MRI contrast agents are a new type of responsive agent that have good detection sensitivity and specificity for detecting a biomarker, which can serve as a new tool for molecular imaging. Magn Reson Med 77:1665-1670, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  4. Dynamic MRI-based computer aided diagnostic systems for early detection of kidney transplant rejection: A survey

    NASA Astrophysics Data System (ADS)

    Mostapha, Mahmoud; Khalifa, Fahmi; Alansary, Amir; Soliman, Ahmed; Gimel'farb, Georgy; El-Baz, Ayman

    2013-10-01

    Early detection of renal transplant rejection is important to implement appropriate medical and immune therapy in patients with transplanted kidneys. In literature, a large number of computer-aided diagnostic (CAD) systems using different image modalities, such as ultrasound (US), magnetic resonance imaging (MRI), computed tomography (CT), and radionuclide imaging, have been proposed for early detection of kidney diseases. A typical CAD system for kidney diagnosis consists of a set of processing steps including: motion correction, segmentation of the kidney and/or its internal structures (e.g., cortex, medulla), construction of agent kinetic curves, functional parameter estimation, diagnosis, and assessment of the kidney status. In this paper, we survey the current state-of-the-art CAD systems that have been developed for kidney disease diagnosis using dynamic MRI. In addition, the paper addresses several challenges that researchers face in developing efficient, fast and reliable CAD systems for the early detection of kidney diseases.

  5. Dynamic contrast-enhanced MR imaging pharmacokinetic parameters as predictors of treatment response of brain metastases in patients with lung cancer.

    PubMed

    Kuchcinski, Grégory; Le Rhun, Emilie; Cortot, Alexis B; Drumez, Elodie; Duhal, Romain; Lalisse, Maxime; Dumont, Julien; Lopes, Renaud; Pruvo, Jean-Pierre; Leclerc, Xavier; Delmaire, Christine

    2017-09-01

    To determine the diagnostic accuracy of pharmacokinetic parameters measured by dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) in predicting the response of brain metastases to antineoplastic therapy in patients with lung cancer. Forty-four consecutive patients with lung cancer, harbouring 123 newly diagnosed brain metastases prospectively underwent conventional 3-T MRI at baseline (within 1 month before treatment), during the early (7-10 weeks) and midterm (5-7 months) post-treatment period. An additional DCE MRI sequence was performed during baseline and early post-treatment MRI to evaluate baseline pharmacokinetic parameters (K trans , k ep , v e , v p ) and their early variation (∆K trans , ∆k ep , ∆v e , ∆v p ). The objective response was judged by the volume variation of each metastasis from baseline to midterm MRI. ROC curve analysis determined the best DCE MRI parameter to predict the objective response. Baseline DCE MRI parameters were not associated with the objective response. Early ∆K trans , ∆v e and ∆v p were significantly associated with the objective response (p = 0.02, p = 0.001 and p = 0.02, respectively). The best predictor of objective response was ∆v e with an area under the curve of 0.93 [95% CI = 0.87, 0.99]. DCE MRI and early ∆v e may be a useful tool to predict the objective response of brain metastases in patients with lung cancer. • DCE MRI could predict the response of brain metastases from lung cancer • ∆v e was the best predictor of response • DCE MRI could be used to individualize patients' follow-up.

  6. Combining MRI and VEP imaging to isolate the temporal response of visual cortical areas

    NASA Astrophysics Data System (ADS)

    Carney, Thom; Ales, Justin; Klein, Stanley A.

    2008-02-01

    The human brain has well over 30 cortical areas devoted to visual processing. Classical neuro-anatomical as well as fMRI studies have demonstrated that early visual areas have a retinotopic organization whereby adjacent locations in visual space are represented in adjacent areas of cortex within a visual area. At the 2006 Electronic Imaging meeting we presented a method using sprite graphics to obtain high resolution retinotopic visual evoked potential responses using multi-focal m-sequence technology (mfVEP). We have used this method to record mfVEPs from up to 192 non overlapping checkerboard stimulus patches scaled such that each patch activates about 12 mm2 of cortex in area V1 and even less in V2. This dense coverage enables us to incorporate cortical folding constraints, given by anatomical MRI and fMRI results from the same subject, to isolate the V1 and V2 temporal responses. Moreover, the method offers a simple means of validating the accuracy of the extracted V1 and V2 time functions by comparing the results between left and right hemispheres that have unique folding patterns and are processed independently. Previous VEP studies have been contradictory as to which area responds first to visual stimuli. This new method accurately separates the signals from the two areas and demonstrates that both respond with essentially the same latency. A new method is introduced which describes better ways to isolate cortical areas using an empirically determined forward model. The method includes a novel steady state mfVEP and complex SVD techniques. In addition, this evolving technology is put to use examining how stimulus attributes differentially impact the response in different cortical areas, in particular how fast nonlinear contrast processing occurs. This question is examined using both state triggered kernel estimation (STKE) and m-sequence "conditioned kernels". The analysis indicates different contrast gain control processes in areas V1 and V2. Finally we

  7. MRI predictors of treatment response for perianal fistulizing Crohn disease in children and young adults.

    PubMed

    Shenoy-Bhangle, Anuradha; Nimkin, Katherine; Goldner, Dana; Bradley, William F; Israel, Esther J; Gee, Michael S

    2014-01-01

    Magnetic resonance imaging (MRI) is considered the imaging standard for diagnosis and characterization of perianal complications associated with Crohn disease in children and adults. To define MRI criteria that could act as potential predictors of treatment response in fistulizing Crohn disease in children, in order to guide more informed study interpretation. We performed a retrospective database query to identify all children and young adults with Crohn disease who underwent serial MRI studies for assessment of perianal symptoms between 2003 and 2010. We examined imaging features of perianal disease including fistula number, type and length, presence and size of associated abscess, and disease response/progression on follow-up MRI. We reviewed imaging studies and electronic medical records. Statistical analysis, including logistic regression, was performed to associate MR imaging features with treatment response and disease progression. We included 36 patients (22 male, 14 female; age range 8-21 years). Of these, 32 had a second MRI exam and 4 had clinical evidence of complete response, obviating the need for repeat imaging. Of the parameters analyzed, presence of abscess, type of fistula according to the Parks classification, and multiplicity were not predictors of treatment outcome. Maximum length of the dominant fistula and aggregate fistula length in the case of multiple fistulae were the best predictors of treatment outcome. Maximum fistula length <2.5 cm was a predictor of treatment response, while aggregate fistula length ≥2.5 cm was a predictor of disease progression. Perianal fistula length is an important imaging feature to assess on MRI of fistulizing Crohn disease.

  8. White versus gray matter: fMRI hemodynamic responses show similar characteristics, but differ in peak amplitude

    PubMed Central

    2012-01-01

    Background There is growing evidence for the idea of fMRI activation in white matter. In the current study, we compared hemodynamic response functions (HRF) in white matter and gray matter using 4 T fMRI. White matter fMRI activation was elicited in the isthmus of the corpus callosum at both the group and individual levels (using an established interhemispheric transfer task). Callosal HRFs were compared to HRFs from cingulate and parietal activation. Results Examination of the raw HRF revealed similar overall response characteristics. Finite impulse response modeling confirmed that the WM HRF characteristics were comparable to those of the GM HRF, but had significantly decreased peak response amplitudes. Conclusions Overall, the results matched a priori expectations of smaller HRF responses in white matter due to the relative drop in cerebral blood flow (CBF) and cerebral blood volume (CBV). Importantly, the findings demonstrate that despite lower CBF and CBV, white matter fMRI activation remained within detectable ranges at 4 T. PMID:22852798

  9. Aggressive fibromatosis response to tamoxifen: lack of correlation between MRI and symptomatic response.

    PubMed

    Libertini, M; Mitra, I; van der Graaf, W T A; Miah, A B; Judson, I; Jones, R L; Thomas, K; Moskovic, E; Szucs, Z; Benson, C; Messiou, C

    2018-01-01

    One of the commonly used systemic agents for the treatment of aggressive fibromatosis is the anti-oestrogen drug tamoxifen. However, data on efficacy and optimum methods of response assessment are limited, consisting mainly of small case series and reports. A retrospective database was used to identify consecutive patients diagnosed with aggressive fibromatosis (AF) and treated with tamoxifen plus/minus non-steroidal anti-inflammatory drugs at our tertiary referral centre between 2007 and 2014. MRI and symptom changes were recorded. Thirty-two patients (13 male 19 female, median age 41 years) were included. Median duration of treatment with tamoxifen was 316 days. Of 9 patients with progressive disease by RECIST 1.1 (28%): 4 patients experienced worsening symptoms; 3 patients had improved symptoms and 2 had no change in symptoms. Of 22 patients with stable disease (69%): 11 had no change in symptoms; 6 had improved symptoms and 5 patients had worsening symptoms. One patient achieved a partial response with improved symptoms. No relationship was identified between symptomatic benefit and response by RECIST 1.1 on MRI. Prospective studies in AF should incorporate endpoints focusing on patient symptoms.

  10. Association of medial meniscal extrusion with medial tibial osteophyte distance detected by T2 mapping MRI in patients with early-stage knee osteoarthritis.

    PubMed

    Hada, Shinnosuke; Ishijima, Muneaki; Kaneko, Haruka; Kinoshita, Mayuko; Liu, Lizu; Sadatsuki, Ryo; Futami, Ippei; Yusup, Anwajan; Takamura, Tomohiro; Arita, Hitoshi; Shiozawa, Jun; Aoki, Takako; Takazawa, Yuji; Ikeda, Hiroshi; Aoki, Shigeki; Kurosawa, Hisashi; Okada, Yasunori; Kaneko, Kazuo

    2017-09-12

    Medial meniscal extrusion (MME) is associated with progression of medial knee osteoarthritis (OA), but no or little information is available for relationships between MME and osteophytes, which are found in cartilage and bone parts. Because of the limitation in detectability of the cartilage part of osteophytes by radiography or conventional magnetic resonance imaging (MRI), the rate of development and size of osteophytes appear to have been underestimated. Because T2 mapping MRI may enable us to evaluate the cartilage part of osteophytes, we aimed to examine the association between MME and OA-related changes, including osteophytes, by using conventional and T2 mapping MRI. Patients with early-stage knee OA (n = 50) were examined. MRI-detected OA-related changes, in addition to MME, were evaluated according to the Whole-Organ Magnetic Resonance Imaging Score. T2 values of the medial meniscus and osteophytes were measured on T2 mapping images. Osteophytes surgically removed from patients with end-stage knee OA were histologically analyzed and compared with findings derived by radiography and MRI. Medial side osteophytes were detected by T2 mapping MRI in 98% of patients with early-stage knee OA, although the detection rate was 48% by conventional MRI and 40% by radiography. Among the OA-related changes, medial tibial osteophyte distance was most closely associated with MME, as determined by multiple logistic regression analysis, in the patients with early-stage knee OA (β = 0.711, p < 0.001). T2 values of the medial meniscus were directly correlated with MME in patients with early-stage knee OA, who showed ≥ 3 mm of MME (r = 0.58, p = 0.003). The accuracy of osteophyte evaluation by T2 mapping MRI was confirmed by histological analysis of the osteophytes removed from patients with end-stage knee OA. Our study demonstrates that medial tibial osteophyte evaluated by T2 mapping MRI is frequently observed in the patients with early-stage knee

  11. Elevated Amygdala Response to Faces following Early Deprivation

    ERIC Educational Resources Information Center

    Tottenham, N.; Hare, T. A.; Millner, A.; Gilhooly, T.; Zevin, J. D.; Casey, B. J.

    2011-01-01

    A functional neuroimaging study examined the long-term neural correlates of early adverse rearing conditions in humans as they relate to socio-emotional development. Previously institutionalized (PI) children and a same-aged comparison group were scanned using functional magnetic resonance imaging (fMRI) while performing an Emotional Face Go/Nogo…

  12. Dynamic fractal signature dissimilarity analysis for therapeutic response assessment using dynamic contrast-enhanced MRI

    PubMed Central

    Wang, Chunhao; Subashi, Ergys; Yin, Fang-Fang; Chang, Zheng

    2016-01-01

    , the achieved accuracies were 93.8% and 93.8% at first and second post-treatment scan days, respectively. In comparison, the classification accuracies using d1 and d2 of Ktrans map were 87.5% and 100% at first and second post-treatment scan days, respectively. Conclusions: As quantitative metrics of tumor contrast agent uptake heterogeneity, the selected parameters from the dynamic FSD method accurately captured the therapeutic response in the experiment. The potential application of the proposed method is promising, and its addition to the existing DCE-MRI techniques could improve DCE-MRI performance in early assessment of treatment response. PMID:26936718

  13. TH-A-BRF-04: Intra-Fraction Motion Characterization for Early Stage Rectal Cancer Using Cine-MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleijnen, J; Asselen, B; Burbach, M

    2014-06-15

    Purpose: To investigate the intra-fraction motion in patients with early stage rectal cancer using cine-MRI. Methods: Sixteen patient diagnosed with early stage rectal cancer underwent 1.5 T MR imaging prior to each treatment fraction of their short course radiotherapy (n=76). During each scan session, three 2D sagittal cine-MRIs were performed: at the beginning (Start), after 9:30 minutes (Mid), and after 18 minutes (End). Each cine-MRI has a duration of one minute at 2Hz temporal resolution, resulting in a total of 3:48 hours of cine-MRI. Additionally, standard T2-weighted (T2w) imaging was performed. Clinical target volume (CTV) an tumor (GTV) were delineatedmore » on the T2w scan and transferred to the first time-point of each cine-MRI scan. Within each cine-MRI, the first frame was registered to the remaining frames of the scan, using a non-rigid B-spline registration. To investigate potential drifts, a similar registration was performed between the first frame of the Start and End scans.To evaluate the motion, the distances by which the edge pixels of the delineations move in anterior-posterior (AP) and cranial-caudal (CC) direction, were determined using the deformation field of the registrations. The distance which incorporated 95% of these edge pixels (dist95%) was determined within each cine-MRI, and between Start- End scans, respectively. Results: Within a cine-MRI, we observed an average dist95% for the CTV of 1.3mm/1.5mm (SD=0.7mm/0.6mm) and for the GTV of 1.2mm/1.5mm (SD=0.8mm/0.9mm), in respectively AP/CC. For the CTV motion between the Start and End scan, an average dist95% of 5.5mm/5.3mm (SD=3.1mm/2.5mm) was found, in respectively AP/CC. For the GTV motion, an average dist95% of 3.6mm/3.9mm (SD=2.2mm/2.5mm) was found in AP/CC, respectively. Conclusion: Although intra-fraction motion within a one minute cine-MRI is limited, substantial intra-fraction motion was observed within the 18 minute time period between the Start and End cine-MRI.« less

  14. Prediction of chemotherapeutic response in bladder cancer using K-means clustering of dynamic contrast-enhanced (DCE)-MRI pharmacokinetic parameters.

    PubMed

    Nguyen, Huyen T; Jia, Guang; Shah, Zarine K; Pohar, Kamal; Mortazavi, Amir; Zynger, Debra L; Wei, Lai; Yang, Xiangyu; Clark, Daniel; Knopp, Michael V

    2015-05-01

    To apply k-means clustering of two pharmacokinetic parameters derived from 3T dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to predict the chemotherapeutic response in bladder cancer at the mid-cycle timepoint. With the predetermined number of three clusters, k-means clustering was performed on nondimensionalized Amp and kep estimates of each bladder tumor. Three cluster volume fractions (VFs) were calculated for each tumor at baseline and mid-cycle. The changes of three cluster VFs from baseline to mid-cycle were correlated with the tumor's chemotherapeutic response. Receiver-operating-characteristics curve analysis was used to evaluate the performance of each cluster VF change as a biomarker of chemotherapeutic response in bladder cancer. The k-means clustering partitioned each bladder tumor into cluster 1 (low kep and low Amp), cluster 2 (low kep and high Amp), cluster 3 (high kep and low Amp). The changes of all three cluster VFs were found to be associated with bladder tumor response to chemotherapy. The VF change of cluster 2 presented with the highest area-under-the-curve value (0.96) and the highest sensitivity/specificity/accuracy (96%/100%/97%) with a selected cutoff value. The k-means clustering of the two DCE-MRI pharmacokinetic parameters can characterize the complex microcirculatory changes within a bladder tumor to enable early prediction of the tumor's chemotherapeutic response. © 2014 Wiley Periodicals, Inc.

  15. Does rewording MRI reports improve patient understanding and emotional response to a clinical report?

    PubMed

    Bossen, Jeroen K J; Hageman, Michiel G J S; King, John D; Ring, David C

    2013-11-01

    Diagnostic MRI reports can be distressing for patients with limited health literacy. Humans tend to prepare for the worst particularly when we are in pain, and words like "tear" can make us feel damaged and in need of repair. Research on words used in provider-patient interactions have shown an affect on response to treatment and coping strategies, but the literature on this remains relatively sparse. The aim of this observational cross-sectional study is to determine whether rewording of MRI reports in understandable, more dispassionate language will result in better patient ratings of emotional response, satisfaction, usefulness, and understanding. Furthermore, we wanted to find out which type of report patients would choose to receive. One hundred patients visiting an orthopaedic hand and upper extremity outpatient office for reasons unrelated to the presented MRI report were enrolled. Four MRI reports, concerning upper extremity conditions, were reworded to an eighth-grade reading level and with the use of neutral descriptive words and the most optimistic interpretations based on current best evidence. After reading each report, emotional response was measured using the Self Assessment Manikin (SAM). Subjects also completed questions about satisfaction, usefulness, and understanding of the report. According to the results of the SAM questionnaire, the reworded MRI reports resulted in significantly higher pleasure and dominance scores and lower arousal scores. The mean satisfaction, usefulness, and understanding scores of the reworded report were significantly higher compared with the original reports. Seventy percent of the patients preferred the reworded reports over the original reports. Emotional response, satisfaction, usefulness, and understanding were all superior in MRI reports reworded for lower reading level and optimal emotional content and optimism. Given that patients increasingly have access to their medical records and diagnostic reports

  16. Olfactory Deficit Detected by fMRI in Early Alzheimer’s Disease

    PubMed Central

    Wang, Jianli; Eslinger, Paul J.; Doty, Richard L.; Zimmerman, Erin K.; Grunfeld, Robert; Sun, Xiaoyu; Connor, James R.; Price, Joseph L.; Smith, Michael B.; Yang, Qing X.

    2012-01-01

    Alzheimer’s disease (AD) is accompanied by smell dysfunction, as measured by psychophysical tests. Currently it is unknown whether AD-related alterations in central olfactory system neural activity, as measured by functional magnetic resonance imaging (fMRI), are detectable beyond those observed in healthy elderly. Moreover, it is not known whether such changes are correlated with indices of odor perception and dementia. To investigate these issues, twelve early stage AD patients and thirteen non-demented controls underwent fMRI while being exposed to each of three concentrations of lavender oil odorant. All participants were administered the University of Pennsylvania Smell Identification Test (UPSIT), the Mini-Mental State Examination (MMSE), the Mattis Dementia Rating Scale-2 (DRS-2), and the Clinical Dementia Rating Scale (CDR). The Blood oxygen level-dependent (BOLD) signal at primary olfactory cortex (POC) was weaker in AD than in HC subjects. At the lowest odorant concentration, the BOLD signals within POC, hippocampus, and insula were significantly correlated with UPSIT, MMSE, DRS-2, and CDR scores. The BOLD signal intensity and activation volume within the POC increased significantly as a function of odorant concentration in the AD group, but not in the control group. These findings demonstrate that olfactory fMRI is sensitive to the AD-related olfactory and functional cognitive decline. PMID:20709038

  17. Visual spatial attention enhances the amplitude of positive and negative fMRI responses to visual stimulation in an eccentricity-dependent manner

    PubMed Central

    Bressler, David W.; Fortenbaugh, Francesca C.; Robertson, Lynn C.; Silver, Michael A.

    2013-01-01

    Endogenous visual spatial attention improves perception and enhances neural responses to visual stimuli at attended locations. Although many aspects of visual processing differ significantly between central and peripheral vision, little is known regarding the neural substrates of the eccentricity dependence of spatial attention effects. We measured amplitudes of positive and negative fMRI responses to visual stimuli as a function of eccentricity in a large number of topographically-organized cortical areas. Responses to each stimulus were obtained when the stimulus was attended and when spatial attention was directed to a stimulus in the opposite visual hemifield. Attending to the stimulus increased both positive and negative response amplitudes in all cortical areas we studied: V1, V2, V3, hV4, VO1, LO1, LO2, V3A/B, IPS0, TO1, and TO2. However, the eccentricity dependence of these effects differed considerably across cortical areas. In early visual, ventral, and lateral occipital cortex, attentional enhancement of positive responses was greater for central compared to peripheral eccentricities. The opposite pattern was observed in dorsal stream areas IPS0 and putative MT homolog TO1, where attentional enhancement of positive responses was greater in the periphery. Both the magnitude and the eccentricity dependence of attentional modulation of negative fMRI responses closely mirrored that of positive responses across cortical areas. PMID:23562388

  18. Characterizing Response to Elemental Unit of Acoustic Imaging Noise: An fMRI Study

    PubMed Central

    Luh, Wen-Ming; Talavage, Thomas M.

    2010-01-01

    Acoustic imaging noise produced during functional magnetic resonance imaging (fMRI) studies can hinder auditory fMRI research analysis by altering the properties of the acquired time-series data. Acoustic imaging noise can be especially confounding when estimating the time course of the hemodynamic response (HDR) in auditory event-related fMRI (fMRI) experiments. This study is motivated by the desire to establish a baseline function that can serve not only as a comparison to other quantities of acoustic imaging noise for determining how detrimental is one's experimental noise, but also as a foundation for a model that compensates for the response to acoustic imaging noise. Therefore, the amplitude and spatial extent of the HDR to the elemental unit of acoustic imaging noise (i.e., a single ping) associated with echoplanar acquisition were characterized and modeled. Results from this fMRI study at 1.5 T indicate that the group-averaged HDR in left and right auditory cortex to acoustic imaging noise (duration of 46 ms) has an estimated peak magnitude of 0.29% (right) to 0.48% (left) signal change from baseline, peaks between 3 and 5 s after stimulus presentation, and returns to baseline and remains within the noise range approximately 8 s after stimulus presentation. PMID:19304477

  19. Dynamic contrast-enhanced MRI evaluates the early response of human head and neck tumor xenografts following anti-EMMPRIN therapy with cisplatin or irradiation.

    PubMed

    Kim, Hyunki; Hartman, Yolanda E; Zhai, Guihua; Chung, Thomas K; Korb, Melissa L; Beasley, Timothy M; Zhou, Tong; Rosenthal, Eben L

    2015-10-01

    To assess the early therapeutic effects of anti-EMMPRIN (extracellular matrix metalloprotease inducer) antibody with/without cisplatin or X-ray radiation in head and neck cancer mouse models using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Mice bearing SCC1 (or OSC19) tumor xenografts were treated with anti-EMMPRIN antibody, radiation, cisplatin, or anti-EMMPRIN antibody plus cisplatin (or radiation) for a week (n = 4-5 per group). DCE-MRI was carried out on a 9.4T small animal MR scanner on days 0, 3, and 7, and K(trans) values were averaged in a 0.5-mm-thick peripheral tumor region. Ki67 and CD31 staining were implemented for all tumors after imaging. The K(trans) changes of SCC1 and OSC19 tumors treated with anti-EMMPRIN antibody for 3 days were -18 ± 8% and 4 ± 7%, respectively, which were significantly lower than those of control groups (39 ± 5% and 45 ± 7%; P = 0.0025 and 0.0220, respectively). When cisplatin was added, those were -42 ± 9% and -44 ± 9%, respectively, and with radiation, -45 ± 9% and -27 ± 10%, respectively, which were also significantly lower than those of control groups (P < 0.0001 for all four comparisons). In the eight groups untreated (served as control) or treated with anti-EMMPRIN antibody with/without cisplatin or radiation, the mean K(trans) change for 3 days was significantly correlated with the mean tumor volume change for 7 days (r = 0.74, P = 0.0346), Ki67-expressing cell density (r = 0.96, P = 0.0001), and CD31 density (r = 0.84, P = 0.0084). DCE-MRI might be utilized to assess the early therapeutic effects of anti-EMMPRIN antibody with/without chemotherapy or radiotherapy in head and neck cancer. © 2015 Wiley Periodicals, Inc.

  20. Early myocardial dysfunction in streptozotocin-induced diabetic mice: a study using in vivo magnetic resonance imaging (MRI)

    PubMed Central

    Yu, Xichun; Tesiram, Yasvir A; Towner, Rheal A; Abbott, Andrew; Patterson, Eugene; Huang, Shijun; Garrett, Marion W; Chandrasekaran, Suresh; Matsuzaki, Satoshi; Szweda, Luke I; Gordon, Brian E; Kem, David C

    2007-01-01

    Background Diabetes is associated with a cardiomyopathy that is independent of coronary artery disease or hypertension. In the present study we used in vivo magnetic resonance imaging (MRI) and echocardiographic techniques to examine and characterize early changes in myocardial function in a mouse model of type 1 diabetes. Methods Diabetes was induced in 8-week old C57BL/6 mice with two intraperitoneal injections of streptozotocin. The blood glucose levels were maintained at 19–25 mmol/l using intermittent low dosages of long acting insulin glargine. MRI and echocardiography were performed at 4 weeks of diabetes (age of 12 weeks) in diabetic mice and age-matched controls. Results After 4 weeks of hyperglycemia one marker of mitochondrial function, NADH oxidase activity, was decreased to 50% of control animals. MRI studies of diabetic mice at 4 weeks demonstrated significant deficits in myocardial morphology and functionality including: a decreased left ventricular (LV) wall thickness, an increased LV end-systolic diameter and volume, a diminished LV ejection fraction and cardiac output, a decreased LV circumferential shortening, and decreased LV peak ejection and filling rates. M-mode echocardiographic and Doppler flow studies of diabetic mice at 4 weeks showed a decreased wall thickening and increased E/A ratio, supporting both systolic and diastolic dysfunction. Conclusion Our study demonstrates that MRI interrogation can identify the onset of diabetic cardiomyopathy in mice with its impaired functional capacity and altered morphology. The MRI technique will lend itself to repetitive study of early changes in cardiac function in small animal models of diabetic cardiomyopathy. PMID:17309798

  1. Does Post-task Declarative Learning Have an Influence on Early Motor Memory Consolidation Over Day? An fMRI Study

    PubMed Central

    Rothkirch, Inken; Wolff, Stephan; Margraf, Nils G.; Pedersen, Anya; Witt, Karsten

    2018-01-01

    Previous studies demonstrated the influence of the post-learning period on procedural motor memory consolidation. In an early period after the acquisition, motor skills are vulnerable to modifications during wakefulness. Indeed, specific interventions such as world-list learning within this early phase of motor memory consolidation seem to enhance motor performance as an indicator for successful consolidation. This finding highlights the idea that manipulations of procedural and declarative memory systems during the early phase of memory consolidation over wakefulness may influence off-line consolidation. Using functional magnetic resonance imaging (fMRI) during initial motor sequence learning and motor sequence recall, we indirectly assess the influence of a secondary task taken place in the early phase of memory consolidation. All participants were scanned using fMRI during the learning phase of a serial reaction time task (SRTT) at 8 a.m. Afterwards, they were randomly assigned to one of five conditions. One group performed a declarative verbal, one a declarative nonverbal learning task. Two groups worked on attention tasks. A control group passed a resting condition. Participants stayed awake the whole day and performed the SRTT in the MRI scanner 12 h later at 8 p.m. At the behavioral level, the analysis of the reaction times failed to show a significant group difference. The primary analysis assessing fMRI data based on the contrast (sequence – random) between learning and retrieval also did not show any significant group differences. Therefore, our main analysis do not support the hypothesis that a secondary task influences the retrieval of the SRTT. In a more liberal fMRI analysis, we compared only the sequence blocks of the SRTT from learning to recall. BOLD signal decreased in the ipsilateral cerebellum and the supplementary motor area solely in the verbal learning group. Although our primary analysis failed to show significant changes between our

  2. Does Post-task Declarative Learning Have an Influence on Early Motor Memory Consolidation Over Day? An fMRI Study.

    PubMed

    Rothkirch, Inken; Wolff, Stephan; Margraf, Nils G; Pedersen, Anya; Witt, Karsten

    2018-01-01

    Previous studies demonstrated the influence of the post-learning period on procedural motor memory consolidation. In an early period after the acquisition, motor skills are vulnerable to modifications during wakefulness. Indeed, specific interventions such as world-list learning within this early phase of motor memory consolidation seem to enhance motor performance as an indicator for successful consolidation. This finding highlights the idea that manipulations of procedural and declarative memory systems during the early phase of memory consolidation over wakefulness may influence off-line consolidation. Using functional magnetic resonance imaging (fMRI) during initial motor sequence learning and motor sequence recall, we indirectly assess the influence of a secondary task taken place in the early phase of memory consolidation. All participants were scanned using fMRI during the learning phase of a serial reaction time task (SRTT) at 8 a.m. Afterwards, they were randomly assigned to one of five conditions. One group performed a declarative verbal, one a declarative nonverbal learning task. Two groups worked on attention tasks. A control group passed a resting condition. Participants stayed awake the whole day and performed the SRTT in the MRI scanner 12 h later at 8 p.m. At the behavioral level, the analysis of the reaction times failed to show a significant group difference. The primary analysis assessing fMRI data based on the contrast (sequence - random) between learning and retrieval also did not show any significant group differences. Therefore, our main analysis do not support the hypothesis that a secondary task influences the retrieval of the SRTT. In a more liberal fMRI analysis, we compared only the sequence blocks of the SRTT from learning to recall. BOLD signal decreased in the ipsilateral cerebellum and the supplementary motor area solely in the verbal learning group. Although our primary analysis failed to show significant changes between our groups

  3. A study of structural and functional connectivity in early Alzheimer's disease using rest fMRI and diffusion tensor imaging.

    PubMed

    Balachandar, R; John, J P; Saini, J; Kumar, K J; Joshi, H; Sadanand, S; Aiyappan, S; Sivakumar, P T; Loganathan, S; Varghese, M; Bharath, S

    2015-05-01

    Alzheimer's disease (AD) is a progressive neurodegenerative condition where in early diagnosis and interventions are key policy priorities in dementia services and research. We studied the functional and structural connectivity in mild AD to determine the nature of connectivity changes that coexist with neurocognitive deficits in the early stages of AD. Fifteen mild AD subjects and 15 cognitively healthy controls (CHc) matched for age and gender, underwent detailed neurocognitive assessment and magnetic resonance imaging (MRI) of resting state functional MRI (rs-fMRI) and diffusion tensor imaging (DTI). Rest fMRI was analyzed using dual regression approach and DTI by voxel wise statistics. Patients with mild AD had significantly lower functional connectivity (FC) within the default mode network and increased FC within the executive network. The mild AD group scored significantly lower in all domains of cognition compared with CHc. But fractional anisotropy did not significantly (p < 0.05) differ between the groups. Resting state functional connectivity alterations are noted during initial stages of cognitive decline in AD, even when there are no significant white matter microstructural changes. Copyright © 2014 John Wiley & Sons, Ltd.

  4. Response assessment of bevacizumab therapy in GBM with integrated 11C-MET-PET/MRI: a feasibility study.

    PubMed

    Deuschl, Cornelius; Moenninghoff, Christoph; Goericke, Sophia; Kirchner, Julian; Köppen, Susanne; Binse, Ina; Poeppel, Thorsten D; Quick, Harald H; Forsting, Michael; Umutlu, Lale; Herrmann, Ken; Hense, Joerg; Schlamann, Marc

    2017-08-01

    The objective of this study was to evaluate the potential of integrated 11C-MET PET/MR for response assessment of relapsed glioblastoma (GBM) receiving bevacizumab treatment. Eleven consecutive patients with relapsed GBM were enrolled for an integrated 11C-MET PET/MRI at baseline and at follow-up. Treatment response for MRI was evaluated according to Response Assessment in Neuro-oncology (RANO) criteria and integrated 11C-MET PET was assessed by the T/N ratio. MRI showed no patient with complete response (CR), six of 11 patients with PR, four of 11 patients with SD, and one of 11 patients with progressive disease (PD). PET revealed metabolic response in five of the six patients with partial response (PR) and in two of the four patients with stable disease (SD), whereas metabolic non-response was detected in one of the six patients with PR, in two of the four patients with SD, and in the one patient with PD. Morphological imaging was predictive for PFS and OS when response was defined as CR, PR, SD, and non-response as PD. Metabolic imaging was predictive when using T/N ratio reduction of >25 as discriminator. Based on the morphologic and metabolic findings of this study a proposal for applying integrated PET/MRI for treatment response in relapsed GBM was developed, which was significantly predictive for PFS and OS (P = 0.010 respectively 0,029, log). This study demonstrates the potential of integrated 11C-MET-PET/MRI for response assessment of GBM and the utility of combined assessment of morphologic and metabolic information with the proposal for assessing relapsed GBM.

  5. Three-dimensional ultrasonography of the breast; An adequate replacement for MRI in neoadjuvant chemotherapy tumour response evaluation? - RESPONDER trial.

    PubMed

    van Egdom, L S E; Lagendijk, M; Heijkoop, E H M; Koning, A H J; van Deurzen, C H M; Jager, A; van Lankeren, W; Koppert, L B

    2018-07-01

    Accurate measurement of tumour response during and after neoadjuvant chemotherapy (NAC) is important and may influence treatment decisions in invasive breast cancer patients. Breast MRI forms the gold standard but is more burdensome, time consuming and costly. In this study response measurement was done with 3-D ultrasound by Automated Breast Volume Scanner (ABVS) and compared to breast MRI. Moreover, patient satisfaction with both techniques was compared. A single-institution, prospective observational pilot study evaluating tumour response by ABVS in addition to breast MRI (standard care) was performed in 25 invasive breast cancer patients receiving NAC. Tumour response was evaluated comparing longest tumour diameters as well as tumour volumes at predefined time points using Bland-Altman analysis. Volume measurements for breast MRI were obtained using a fully immersive virtual reality system (a Barco I-Space) and V-Scope software. Same software was used to obtain ABVS volume measurements using an in-house developed desktop VR system. Inter- and intra-observer agreement was evaluated by Intraclass Correlation Coefficient (ICC). Twenty-five patients were eligible for baseline measurement, 20 for a mid-NAC response evaluation, and five for a post-NAC response evaluation. MRI and ABVS showed absolute concordance in 73% of patients for the mid-NAC evaluation, with a 'good' correlation for the difference in longest diameter measurement (ICC 0.73, p < 0.01) as compared to baseline assessment. Concerning difference in volume measurement in the mid-NAC response evaluation showed a 'fair' correlation (ICC 0.52, p < 0.01) and in the post-NAC response evaluation an 'excellent' correlation (ICC 0.98, p < 0.01). 'Excellent' inter- and intra-observer agreement was found (ICC 0.88, p < 0.01) with comparable limits of agreement (LOA) for observer 1 and 2 in both diameter and volume measurement. Patient satisfaction was higher for ABVS compared to breast MRI, 93

  6. Girls' challenging social experiences in early adolescence predict neural response to rewards and depressive symptoms.

    PubMed

    Casement, Melynda D; Guyer, Amanda E; Hipwell, Alison E; McAloon, Rose L; Hoffmann, Amy M; Keenan, Kathryn E; Forbes, Erika E

    2014-04-01

    Developmental models of psychopathology posit that exposure to social stressors may confer risk for depression in adolescent girls by disrupting neural reward circuitry. The current study tested this hypothesis by examining the relationship between early adolescent social stressors and later neural reward processing and depressive symptoms. Participants were 120 girls from an ongoing longitudinal study of precursors to depression across adolescent development. Low parental warmth, peer victimization, and depressive symptoms were assessed when the girls were 11 and 12 years old, and participants completed a monetary reward guessing fMRI task and assessment of depressive symptoms at age 16. Results indicate that low parental warmth was associated with increased response to potential rewards in the medial prefrontal cortex (mPFC), striatum, and amygdala, whereas peer victimization was associated with decreased response to potential rewards in the mPFC. Furthermore, concurrent depressive symptoms were associated with increased reward anticipation response in mPFC and striatal regions that were also associated with early adolescent psychosocial stressors, with mPFC and striatal response mediating the association between social stressors and depressive symptoms. These findings are consistent with developmental models that emphasize the adverse impact of early psychosocial stressors on neural reward processing and risk for depression in adolescence. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Visual spatial attention enhances the amplitude of positive and negative fMRI responses to visual stimulation in an eccentricity-dependent manner.

    PubMed

    Bressler, David W; Fortenbaugh, Francesca C; Robertson, Lynn C; Silver, Michael A

    2013-06-07

    Endogenous visual spatial attention improves perception and enhances neural responses to visual stimuli at attended locations. Although many aspects of visual processing differ significantly between central and peripheral vision, little is known regarding the neural substrates of the eccentricity dependence of spatial attention effects. We measured amplitudes of positive and negative fMRI responses to visual stimuli as a function of eccentricity in a large number of topographically-organized cortical areas. Responses to each stimulus were obtained when the stimulus was attended and when spatial attention was directed to a stimulus in the opposite visual hemifield. Attending to the stimulus increased both positive and negative response amplitudes in all cortical areas we studied: V1, V2, V3, hV4, VO1, LO1, LO2, V3A/B, IPS0, TO1, and TO2. However, the eccentricity dependence of these effects differed considerably across cortical areas. In early visual, ventral, and lateral occipital cortex, attentional enhancement of positive responses was greater for central compared to peripheral eccentricities. The opposite pattern was observed in dorsal stream areas IPS0 and putative MT homolog TO1, where attentional enhancement of positive responses was greater in the periphery. Both the magnitude and the eccentricity dependence of attentional modulation of negative fMRI responses closely mirrored that of positive responses across cortical areas. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Neural responses to reward in childhood: relations to early behavioral inhibition and social anxiety

    PubMed Central

    Lahat, Ayelet; Benson, Brenda E; Pine, Daniel S; Fox, Nathan A; Ernst, Monique

    2018-01-01

    Abstract Behavioral inhibition (BI) is an early temperamental profile characterized by negative reactivity to novelty, withdrawal from social situations, and increased risk for social anxiety. Previous research associated BI assessed in early childhood to striatal hypersensitivity in mid-to-late adolescence. The present study examined this association among 10 year-olds, characterized with BI at ages 24 and 36 months on measures of temperamental reactivity. Participants (n = 40) were studied at age 10 using a reward processing task during functional magnetic resonance imaging (fMRI). Child- and maternal-report of social anxiety symptoms was collected at ages 10 and 13. Findings indicate greater caudate activation and stronger striatal connectivity in high, compared to low, behaviorally inhibited children. Caudate activation related to social anxiety symptoms at both ages. These findings suggest that enhanced striatal responsivity reliably manifests among high behaviorally inhibited children as early as age 10. This may reflect hyper-sensitivity to reward or excessive motivation to avoid errors. PMID:27531387

  9. MRI volumetry for prediction of tumour response to neoadjuvant chemotherapy followed by chemoradiotherapy in locally advanced rectal cancer

    PubMed Central

    Seierstad, T; Hole, K H; Grøholt, K K; Dueland, S; Ree, A H; Flatmark, K

    2015-01-01

    Objective: To investigate if MRI-assessed tumour volumetry correlates with histological tumour response to neoadjuvant chemotherapy (NACT) and subsequent chemoradiotherapy (CRT) in locally advanced rectal cancer (LARC). Methods: Data from 69 prospectively enrolled patients with LARC receiving NACT followed by CRT and radical surgery were analysed. Whole-tumour volumes were contoured in T2 weighted MR images obtained pre-treatment (VPRE), after NACT (VNACT) and after the full course of NACT followed by CRT (VCRT). VPRE, VNACT and tumour volume changes relative to VPRE, ΔVNACT and ΔVCRT were calculated and correlated to histological tumour regression grade (TRG). Results: 61% of good histological responders (TRG 1–2) to NACT followed by CRT were correctly predicted by combining VPRE < 10.5 cm3, ΔVNACT > −78.2% and VNACT < 3.3 cm3. The highest accuracy was found for VNACT, with 55.1% sensitivity given 100% specificity. The volume regression after completed NACT and CRT (VCRT) was not significantly different between good and poor responders (TRG 1–2 vs TRG 3–5). Conclusion: MRI-assessed small tumour volumes after NACT correlated with good histological tumour response (TRG 1–2) to the completed course of NACT and CRT. Furthermore, by combining tumour volume measurements before, during and after NACT, more good responders were identified. Advances in knowledge: MRI volumetry may be a tool for early identification of good and poor responders to NACT followed by CRT and surgery in LARC in order to aid more individualized, multimodal treatment. PMID:25899892

  10. Learning to associate orientation with color in early visual areas by associative decoded fMRI neurofeedback

    PubMed Central

    Amano, Kaoru; Shibata, Kazuhisa; Kawato, Mitsuo; Sasaki, Yuka; Watanabe, Takeo

    2016-01-01

    Summary Associative learning is an essential brain process where the contingency of different items increases after training. Associative learning has been found to occur in many brain regions [1-4]. However, there is no clear evidence that associative learning of visual features occurs in early visual areas, although a number of studies have indicated that learning of a single visual feature (perceptual learning) involves early visual areas [5-8]. Here, via decoded functional magnetic resonance imaging (fMRI) neurofeedback, termed “DecNef” [9], we tested whether associative learning of color and orientation can be created in early visual areas. During three days' training, DecNef induced fMRI signal patterns that corresponded to a specific target color (red) mostly in early visual areas while a vertical achromatic grating was physically presented to participants. As a result, participants came to perceive “red” significantly more frequently than “green” in an achromatic vertical grating. This effect was also observed 3 to 5 months after the training. These results suggest that long-term associative learning of the two different visual features such as color and orientation was created most likely in early visual areas. This newly extended technique that induces associative learning is called “A(ssociative)-DecNef” and may be used as an important tool for understanding and modifying brain functions, since associations are fundamental and ubiquitous functions in the brain. PMID:27374335

  11. Learning to Associate Orientation with Color in Early Visual Areas by Associative Decoded fMRI Neurofeedback.

    PubMed

    Amano, Kaoru; Shibata, Kazuhisa; Kawato, Mitsuo; Sasaki, Yuka; Watanabe, Takeo

    2016-07-25

    Associative learning is an essential brain process where the contingency of different items increases after training. Associative learning has been found to occur in many brain regions [1-4]. However, there is no clear evidence that associative learning of visual features occurs in early visual areas, although a number of studies have indicated that learning of a single visual feature (perceptual learning) involves early visual areas [5-8]. Here, via decoded fMRI neurofeedback termed "DecNef" [9], we tested whether associative learning of orientation and color can be created in early visual areas. During 3 days of training, DecNef induced fMRI signal patterns that corresponded to a specific target color (red) mostly in early visual areas while a vertical achromatic grating was physically presented to participants. As a result, participants came to perceive "red" significantly more frequently than "green" in an achromatic vertical grating. This effect was also observed 3-5 months after the training. These results suggest that long-term associative learning of two different visual features such as orientation and color was created, most likely in early visual areas. This newly extended technique that induces associative learning is called "A-DecNef," and it may be used as an important tool for understanding and modifying brain functions because associations are fundamental and ubiquitous functions in the brain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Negative childhood experiences alter a prefrontal-insular-motor cortical network in healthy adults: A preliminary multimodal rsfMRI-fMRI-MRS-dMRI study

    PubMed Central

    Duncan, Niall W.; Hayes, Dave J.; Wiebking, Christine; Tiret, Brice; Pietruska, Karin; Chen, David Q.; Rainville, Pierre; Marjańska, Malgorzata; Mohammid, Omar; Doyon, Julien; Hodaie, Mojgan; Northoff, Georg

    2016-01-01

    Research in humans and animals has shown that negative childhood experiences (NCE) can have long-term effects on the structure and function of the brain. Alterations have been noted in grey and white matter, in the brain’s resting state, on the glutamatergic system, and on neural and behavioural responses to aversive stimuli. These effects can be linked to psychiatric disorder such as depression and anxiety disorders that are influenced by excessive exposure to early life stressors. The aim of the current study was to investigate the effect of NCEs on these systems. Resting state functional MRI (rsfMRI), aversion task fMRI, glutamate magnetic resonance spectroscopy (MRS), and diffusion magnetic resonance imaging (dMRI) were combined with the Childhood Trauma Questionnaire (CTQ) in healthy subjects to examine the impact of NCEs on the brain. Low CTQ scores, a measure of NCEs, were related to higher resting state glutamate levels and higher resting state entropy in the medial prefrontal cortex (mPFC). CTQ scores, mPFC glutamate and entropy, correlated with neural BOLD responses to the anticipation of aversive stimuli in regions throughout the aversion-related network, with strong correlations between all measures in the motor cortex and left insula. Structural connectivity strength, measured using mean fractional anisotropy, between the mPFC and left insula correlated to aversion-related signal changes in the motor cortex. These findings highlight the impact of NCEs on multiple inter-related brain systems. In particular, they highlight the role of a prefrontal-insular-motor cortical network in the processing and responsivity to aversive stimuli and its potential adaptability by NCEs. PMID:26287448

  13. The role of early magnetic resonance imaging in predicting survival on bevacizumab for recurrent glioblastoma: Results from a prospective clinical trial (CABARET).

    PubMed

    Field, Kathryn M; Phal, Pramit M; Fitt, Greg; Goh, Christine; Nowak, Anna K; Rosenthal, Mark A; Simes, John; Barnes, Elizabeth H; Sawkins, Kate; Cher, Lawrence M; Hovey, Elizabeth J; Wheeler, Helen

    2017-09-15

    Bevacizumab has been associated with prolonged progression-free survival for patients with recurrent glioblastoma; however, not all derive a benefit. An early indicator of efficacy or futility may allow early discontinuation for nonresponders. This study prospectively assessed the role of early magnetic resonance imaging (eMRI) and its correlation with subsequent routine magnetic resonance imaging (MRI) results and survival. Patients were part of a randomized phase 2 clinical trial (CABARET) comparing bevacizumab with bevacizumab plus carboplatin for recurrent glioblastoma. eMRI was conducted after 4 weeks in the trial (after 2 treatments with bevacizumab [10 mg/kg every 2 weeks]). The results were compared with the results of the subsequent 8-week MRI standard. For 119 of 122 patients, eMRI was available, and 111 had subsequent MRI for comparison. Thirty-six (30%) had an early radiological response, and 17 (14%) had progressive disease. The concordance between eMRI and 8-week MRI was moderate (κ = 0.56), with most providing the same result (n = 79 [71%]). There was strong evidence that progression-free survival and overall survival were predicted by the eMRI response (both P values < .001). The median survival was 8.6 months for an eMRI response, 6.6 months for stable disease, and 3.7 months for progressive disease; the hazard ratio (progressive disease vs stable disease) was 3.4 (95% confidence interval, 1.9-6.0). Landmark analyses showed that eMRI progression was a strong predictor of mortality independent of other potential baseline predictors. In this study, early progression on MRI appears to be a robust marker of a poor prognosis for patients on bevacizumab. Cancer 2017;123:3576-82. © 2017 American Cancer Society. © 2017 American Cancer Society.

  14. WE-G-BRD-01: Diffusion Weighted MRI for Response Assessment of Inoperable Lung Tumors for Patients Undergoing SBRT Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyagi, N; Wengler, K; Yorke, E

    2014-06-15

    Purpose: To investigate early changes in tumor Apparent Diffusion Coefficients derived from diffusion weighted (DW)-MRI of lung cancer patients undergoing SBRT, as a possible early predictor of treatment response. Methods: DW-MRI scans were performed in this prospective phase I IRB-approved study of inoperable lung tumors at various time-points during the course of SBRT treatments. Axial DW scan using multi b-values ranging from 0–1000 s/mm{sup 2} were acquired in treatment position on a 3T Philips MR scanner during simulation, one hour after the first fraction (8 Gy), after a total of 5 fractions (40 Gy) and 4 weeks after SBRT delivery.more » A monoexponential model based on a least square fit from all b values was performed on a pixel-by-pixel basis and ADC was calculated. GTVs drawn on 4DCT for planning were mapped on the T2w MRI (acquired at exhale) after deformable registration. These volumes were then mapped on DWI scan for ADC calculation after rigid registration between the anatomical scan and diffusion scan. T2w scan on followup time points were deformably registered to the pretreatment T2 scan. Results: The first two patients in this study were analyzed. Median ADC values were 1.48, 1.48, 1.62 and 1.83 (10{sup −3}×) mm{sup 2}/s at pretreatment, after 8 Gy, after 40 Gy and 4 weeks posttreatment for the first patient and 1.57, 1.53, 1.66 and 1.72 (10{sup −3}×) mm{sup 2}/s for the second patient. ADC increased more significantly after 4 weeks of treatment rather than immediately post treatment, implying that late ADC value may be a better predictor of tumor response for SBRT treatment. The fraction of tumor pixels at high ADC values increased at 4 weeks post treatment. Conclusion: The observed increase in ADC values before the end of radiotherapy may be a surrogate for tumor response, but further patient accrual will be necessary to determine its value.« less

  15. Simultaneous EEG/fMRI analysis of the resonance phenomena in steady-state visual evoked responses.

    PubMed

    Bayram, Ali; Bayraktaroglu, Zubeyir; Karahan, Esin; Erdogan, Basri; Bilgic, Basar; Ozker, Muge; Kasikci, Itir; Duru, Adil D; Ademoglu, Ahmet; Oztürk, Cengizhan; Arikan, Kemal; Tarhan, Nevzat; Demiralp, Tamer

    2011-04-01

    The stability of the steady-state visual evoked potentials (SSVEPs) across trials and subjects makes them a suitable tool for the investigation of the visual system. The reproducible pattern of the frequency characteristics of SSVEPs shows a global amplitude maximum around 10 Hz and additional local maxima around 20 and 40 Hz, which have been argued to represent resonant behavior of damped neuronal oscillators. Simultaneous electroencephalogram/functional magnetic resonance imaging (EEG/fMRI) measurement allows testing of the resonance hypothesis about the frequency-selective increases in SSVEP amplitudes in human subjects, because the total synaptic activity that is represented in the fMRI-Blood Oxygen Level Dependent (fMRI-BOLD) response would not increase but get synchronized at the resonance frequency. For this purpose, 40 healthy volunteers were visually stimulated with flickering light at systematically varying frequencies between 6 and 46 Hz, and the correlations between SSVEP amplitudes and the BOLD responses were computed. The SSVEP frequency characteristics of all subjects showed 3 frequency ranges with an amplitude maximum in each of them, which roughly correspond to alpha, beta and gamma bands of the EEG. The correlation maps between BOLD responses and SSVEP amplitude changes across the different stimulation frequencies within each frequency band showed no significant correlation in the alpha range, while significant correlations were obtained in the primary visual area for the beta and gamma bands. This non-linear relationship between the surface recorded SSVEP amplitudes and the BOLD responses of the visual cortex at stimulation frequencies around the alpha band supports the view that a resonance at the tuning frequency of the thalamo-cortical alpha oscillator in the visual system is responsible for the global amplitude maximum of the SSVEP around 10 Hz. Information gained from the SSVEP/fMRI analyses in the present study might be extrapolated to the

  16. Dissociation of face-selective cortical responses by attention.

    PubMed

    Furey, Maura L; Tanskanen, Topi; Beauchamp, Michael S; Avikainen, Sari; Uutela, Kimmo; Hari, Riitta; Haxby, James V

    2006-01-24

    We studied attentional modulation of cortical processing of faces and houses with functional MRI and magnetoencephalography (MEG). MEG detected an early, transient face-selective response. Directing attention to houses in "double-exposure" pictures of superimposed faces and houses strongly suppressed the characteristic, face-selective functional MRI response in the fusiform gyrus. By contrast, attention had no effect on the M170, the early, face-selective response detected with MEG. Late (>190 ms) category-related MEG responses elicited by faces and houses, however, were strongly modulated by attention. These results indicate that hemodynamic and electrophysiological measures of face-selective cortical processing complement each other. The hemodynamic signals reflect primarily late responses that can be modulated by feedback connections. By contrast, the early, face-specific M170 that was not modulated by attention likely reflects a rapid, feed-forward phase of face-selective processing.

  17. Computer-aided diagnosis of early knee osteoarthritis based on MRI T2 mapping.

    PubMed

    Wu, Yixiao; Yang, Ran; Jia, Sen; Li, Zhanjun; Zhou, Zhiyang; Lou, Ting

    2014-01-01

    This work was aimed at studying the method of computer-aided diagnosis of early knee OA (OA: osteoarthritis). Based on the technique of MRI (MRI: Magnetic Resonance Imaging) T2 Mapping, through computer image processing, feature extraction, calculation and analysis via constructing a classifier, an effective computer-aided diagnosis method for knee OA was created to assist doctors in their accurate, timely and convenient detection of potential risk of OA. In order to evaluate this method, a total of 1380 data from the MRI images of 46 samples of knee joints were collected. These data were then modeled through linear regression on an offline general platform by the use of the ImageJ software, and a map of the physical parameter T2 was reconstructed. After the image processing, the T2 values of ten regions in the WORMS (WORMS: Whole-organ Magnetic Resonance Imaging Score) areas of the articular cartilage were extracted to be used as the eigenvalues in data mining. Then,a RBF (RBF: Radical Basis Function) network classifier was built to classify and identify the collected data. The classifier exhibited a final identification accuracy of 75%, indicating a good result of assisting diagnosis. Since the knee OA classifier constituted by a weights-directly-determined RBF neural network didn't require any iteration, our results demonstrated that the optimal weights, appropriate center and variance could be yielded through simple procedures. Furthermore, the accuracy for both the training samples and the testing samples from the normal group could reach 100%. Finally, the classifier was superior both in time efficiency and classification performance to the frequently used classifiers based on iterative learning. Thus it was suitable to be used as an aid to computer-aided diagnosis of early knee OA.

  18. Early caregiving and physiological stress responses.

    PubMed

    Luecken, Linda J; Lemery, Kathryn S

    2004-05-01

    Inadequate early caregiving has been associated with risks of stress-related psychological and physical illness over the life span. Dysregulated physiological stress responses may represent a mechanism linking early caregiving to health outcomes. This paper reviews evidence linking early caregiving to physiological responses that can increase vulnerability to stress-related illness. A number of high-risk family characteristics, including high conflict, divorce, abuse, and parental psychopathology, are considered in the development of stress vulnerability. Three theoretical pathways linking caregiving to physiological stress responses are outlined: genetic, psychosocial, and cognitive-affective. Exciting preliminary evidence suggests that early caregiving can impact long-term physiological stress responses. Directions for future research in this area are suggested.

  19. Placental baseline conditions modulate the hyperoxic BOLD-MRI response.

    PubMed

    Sinding, Marianne; Peters, David A; Poulsen, Sofie S; Frøkjær, Jens B; Christiansen, Ole B; Petersen, Astrid; Uldbjerg, Niels; Sørensen, Anne

    2018-01-01

    Human pregnancies complicated by placental dysfunction may be characterized by a high hyperoxic Blood oxygen level-dependent (BOLD) MRI response. The pathophysiology behind this phenomenon remains to be established. The aim of this study was to evaluate whether it is associated with altered placental baseline conditions, including a lower oxygenation and altered tissue morphology, as estimated by the placental transverse relaxation time (T2*). We included 49 normal pregnancies (controls) and 13 pregnancies complicated by placental dysfunction (cases), defined by a birth weight < 10th percentile in combination with placental pathological signs of vascular malperfusion. During maternal oxygen inhalation, we measured the relative ΔBOLD response ((hyperoxic BOLD - baseline BOLD)/baseline BOLD) from a dynamic single-echo gradient-recalled echo (GRE) MRI sequence and the absolute ΔT2* (hyperoxic T2*- baseline T2*) from breath-hold multi-echo GRE sequences. In the control group, the relative ΔBOLD response increased during gestation from 5% in gestational week 20 to 20% in week 40. In the case group, the relative ΔBOLD response was significantly higher (mean Z-score 4.94; 95% CI 2.41, 7.47). The absolute ΔT2*, however, did not differ between controls and cases (p = 0.37), whereas the baseline T2* was lower among cases (mean Z-score -3.13; 95% CI -3.94, -2.32). Furthermore, we demonstrated a strong negative linear correlation between the Log 10 ΔBOLD response and the baseline T2* (r = -0.88, p < 0.0001). The high hyperoxic ΔBOLD response demonstrated in pregnancies complicated by placental dysfunction may simply reflect altered baseline conditions, as the absolute increase in placental oxygenation (ΔT2*) does not differ between groups. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Prediction of chemotherapeutic response of colorectal liver metastases with dynamic gadolinium-DTPA-enhanced MRI and localized 19F MRS pharmacokinetic studies of 5-fluorouracil.

    PubMed

    van Laarhoven, H W M; Klomp, D W J; Rijpkema, M; Kamm, Y L M; Wagener, D J Th; Barentsz, J O; Punt, C J A; Heerschap, A

    2007-04-01

    Systemic chemotherapy is effective in only a subset of patients with metastasized colorectal cancer. Therefore, early selection of patients who are most likely to benefit from chemotherapy is desirable. Response to treatment may be determined by the delivery of the drug to the tumor, retention of the drug in the tumor and by the amount of intracellular uptake, metabolic activation and catabolism, as well as other factors. The first aim of this study was to investigate the predictive value of DCE-MRI with the contrast agent Gd-DTPA for tumor response to first-line chemotherapy in patients with liver metastases of colorectal cancer. The second aim was to investigate the predictive value of 5-fluorouracil (FU) uptake, retention and catabolism as measured by localized (19)F MRS for tumor response to FU therapy. Since FU uptake, retention and metabolism may depend on tumor vascularization, the relationship between (19)F MRS and the DCE-MRI parameters k(ep), K(trans) and v(e) was also examined (1). In this study, 37 patients were included. The kinetic parameters of DCE-MRI, k(ep), K(trans) and v(e), before start of treatment did not predict tumor response after 2 months, suggesting that the delivery of chemotherapy by tumor vasculature is not a major factor determining response in first-line treatment. No evident correlations between (19)F MRS parameters and tumor response were found. This suggests that in liver metastases that are not selected on the basis of their tumor diameter, FU uptake and catabolism are not limiting factors for response. The transfer constant K(trans), as measured by DCE-MRI before start of treatment, was negatively correlated with FU half-life in the liver metastases, which suggests that, in metastases with a larger tumor blood flow or permeability surface area product, FU is rapidly washed out from the tumor. c 2006 John Wiley & Sons, Ltd.

  1. Longitudinal diffusion MRI for treatment response assessment: Preliminary experience using an MRI-guided tri-cobalt 60 radiotherapy system.

    PubMed

    Yang, Yingli; Cao, Minsong; Sheng, Ke; Gao, Yu; Chen, Allen; Kamrava, Mitch; Lee, Percy; Agazaryan, Nzhde; Lamb, James; Thomas, David; Low, Daniel; Hu, Peng

    2016-03-01

    To demonstrate the preliminary feasibility of a longitudinal diffusion magnetic resonance imaging (MRI) strategy for assessing patient response to radiotherapy at 0.35 T using an MRI-guided radiotherapy system (ViewRay). Six patients (three head and neck cancer, three sarcoma) who underwent fractionated radiotherapy were enrolled in this study. A 2D multislice spin echo single-shot echo planar imaging diffusion pulse sequence was implemented on the ViewRay system and tested in phantom studies. The same pulse sequence was used to acquire longitudinal diffusion data (every 2-5 fractions) on the six patients throughout the entire course of radiotherapy. The reproducibility of the apparent diffusion coefficient (ADC) measurements was assessed using reference regions and the temporal variations of the tumor ADC values were evaluated. In diffusion phantom studies, the ADC values measured on the ViewRay system matched well with reference ADC values with <5% error for a range of ground truth diffusion coefficients of 0.4-1.1 × 10(-3) mm(2)/s. The remote reference regions (i.e., brainstem in head and neck patients) had consistent ADC values throughout the therapy for all three head and neck patients, indicating acceptable reproducibility of the diffusion imaging sequence. The tumor ADC values changed throughout therapy, with the change differing between patients, ranging from a 40% drop in ADC within the first week of therapy to gradually increasing throughout therapy. For larger tumors, intratumoral heterogeneity was observed. For one sarcoma patient, postradiotherapy biopsy showed less than 10% necrosis score, which correlated with the observed 40% decrease in ADC from the fifth fraction to the eighth treatment fraction. This pilot study demonstrated that longitudinal diffusion MRI is feasible using the 0.35 T ViewRay MRI. Larger patient cohort studies are warranted to correlate the longitudinal diffusion measurements to patient outcomes. Such an approach may enable

  2. Cerebral responses and role of the prefrontal cortex in conditioned pain modulation: an fMRI study in healthy subjects

    PubMed Central

    Bogdanov, Volodymyr B.; Viganò, Alessandro; Noirhomme, Quentin; Bogdanova, Olena V.; Guy, Nathalie; Laureys, Steven; Renshaw, Perry F.; Dallel, Radhouane; Phillips, Christophe; Schoenen, Jean

    2017-01-01

    The mechanisms underlying conditioned pain modulation (CPM) are multifaceted. We searched for a link between individual differences in prefrontal cortex activity during multi-trial heterotopic noxious cold conditioning and modulation of the cerebral response to phasic heat pain. In 24 healthy female subjects, we conditioned laser heat stimuli to the left hand by applying alternatively ice-cold or lukewarm compresses to the right foot. We compared pain ratings with cerebral fMRI BOLD responses. We also analyzed the relation between CPM and BOLD changes produced by the heterotopic cold conditioning itself, as well as the impact of anxiety and habituation of cold-pain ratings. Specific cerebral activation was identified in precuneus and left posterior insula/SII, respectively, during early and sustained phases of cold application. During cold conditioning, laser pain decreased (n = 7), increased (n = 10) or stayed unchanged (n = 7). At the individual level, the psychophysical effect was directly proportional to the cold-induced modulation of the laser-induced BOLD response in left posterior insula/SII. The latter correlated with the BOLD response recorded 80 s earlier during the initial 10-s phase of cold application in anterior cingulate, orbitofrontal and lateral prefrontal cortices. High anxiety and habituation of cold pain were associated with greater laser heat-induced pain during heterotopic cold stimulation. The habituation was also linked to the early cold-induced orbitofrontal responses. We conclude that individual differences in conditioned pain modulation are related to different levels of prefrontal cortical activation by the early part of the conditioning stimulus, possibly due to different levels in trait anxiety. PMID:25461267

  3. Enhanced Thalamic Functional Connectivity with No fMRI Responses to Affected Forelimb Stimulation in Stroke-Recovered Rats.

    PubMed

    Shim, Woo H; Suh, Ji-Yeon; Kim, Jeong K; Jeong, Jaeseung; Kim, Young R

    2016-01-01

    Neurological recovery after stroke has been extensively investigated to provide better understanding of neurobiological mechanism, therapy, and patient management. Recent advances in neuroimaging techniques, particularly functional MRI (fMRI), have widely contributed to unravel the relationship between the altered neural function and stroke-affected brain areas. As results of previous investigations, the plastic reorganization and/or gradual restoration of the hemodynamic fMRI responses to neural stimuli have been suggested as relevant mechanisms underlying the stroke recovery process. However, divergent study results and modality-dependent outcomes have clouded the proper interpretation of variable fMRI signals. Here, we performed both evoked and resting state fMRI (rs-fMRI) to clarify the link between the fMRI phenotypes and post-stroke functional recovery. The experiments were designed to examine the altered neural activity within the contra-lesional hemisphere and other undamaged brain regions using rat models with large unilateral stroke, which despite the severe injury, exhibited nearly full recovery at ∼6 months after stroke. Surprisingly, both blood oxygenation level-dependent and blood volume-weighted (CBVw) fMRI activities elicited by electrical stimulation of the stroke-affected forelimb were completely absent, failing to reveal the neural origin of the behavioral recovery. In contrast, the functional connectivity maps showed highly robust rs-fMRI activity concentrated in the contra-lesional ventromedial nucleus of thalamus (VM). The negative finding in the stimuli-induced fMRI study using the popular rat middle cerebral artery model denotes weak association between the fMRI hemodynamic responses and neurological improvement. The results strongly caution the indiscreet interpretation of stroke-affected fMRI signals and demonstrate rs-fMRI as a complementary tool for efficiently characterizing stroke recovery.

  4. Comparison of fMRI analysis methods for heterogeneous BOLD responses in block design studies

    PubMed Central

    Bernal-Casas, David; Fang, Zhongnan; Lee, Jin Hyung

    2017-01-01

    A large number of fMRI studies have shown that the temporal dynamics of evoked BOLD responses can be highly heterogeneous. Failing to model heterogeneous responses in statistical analysis can lead to significant errors in signal detection and characterization and alter the neurobiological interpretation. However, to date it is not clear that, out of a large number of options, which methods are robust against variability in the temporal dynamics of BOLD responses in block-design studies. Here, we used rodent optogenetic fMRI data with heterogeneous BOLD responses and simulations guided by experimental data as a means to investigate different analysis methods’ performance against heterogeneous BOLD responses. Evaluations are carried out within the general linear model (GLM) framework and consist of standard basis sets as well as independent component analysis (ICA). Analyses show that, in the presence of heterogeneous BOLD responses, conventionally used GLM with a canonical basis set leads to considerable errors in the detection and characterization of BOLD responses. Our results suggest that the 3rd and 4th order gamma basis sets, the 7th to 9th order finite impulse response (FIR) basis sets, the 5th to 9th order B-spline basis sets, and the 2nd to 5th order Fourier basis sets are optimal for good balance between detection and characterization, while the 1st order Fourier basis set (coherence analysis) used in our earlier studies show good detection capability. ICA has mostly good detection and characterization capabilities, but detects a large volume of spurious activation with the control fMRI data. PMID:27993672

  5. MRI Predictive Factors for Tumor Response in Rectal Cancer Following Neoadjuvant Chemoradiation Therapy - Implications for Induction Chemotherapy?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Stanley K.T.; Tait, Diana; Chau, Ian

    2013-11-01

    Purpose: Clinical and magnetic resonance imaging (MRI) characteristics at baseline and following chemoradiation therapy (CRT) most strongly associated with histopathologic response were investigated and survival outcomes evaluated in accordance with imaging and pathological response. Methods and Materials: Responders were defined as mrT3c/d-4 downstaged to ypT0-2 on pathology or low at risk mrT2 downstaged to ypT1 or T0. Multivariate logistic regression of baseline and posttreatment MRI: T, N, extramural venous invasion (EMVI), circumferential resection margin, craniocaudal length <5 cm, and MRI tumor height ≤5 cm were used to identify independent predictor(s) for response. An association between induction chemotherapy and EMVI statusmore » was analyzed. Survival outcomes for pathologic and MRI responders and nonresponders were analyzed. Results: Two hundred eighty-one patients were eligible; 114 (41%) patients were pathology responders. Baseline MRI negative EMVI (odds ratio 2.94, P=.007), tumor height ≤5 cm (OR 1.96, P=.02), and mrEMVI status change (positive to negative) following CRT (OR 3.09, P<.001) were the only predictors for response. There was a strong association detected between induction chemotherapy and ymrEMVI status change after CRT (OR 9.0, P<.003). ymrT0-2 gave a positive predictive value of 80% and OR of 9.1 for ypT0-2. ymrN stage accuracy of ypN stage was 75%. Three-year disease-free survival for pathology and MRI responders were similar at 80% and 79% and significantly better than poor responders. Conclusions: Tumor height and mrEMVI status are more important than baseline size and stage of the tumor as predictors of response to CRT. Both MRI- and pathologic-defined responders have significantly improved survival. “Good response” to CRT in locally advanced rectal cancer with ypT0-2 carries significantly better 3-year overall survival and disease-free survival. Use of induction chemotherapy for improving mrEMVI status and knowledge of

  6. Alteration of diffusion-tensor MRI measures in brain regions involved in early stages of Parkinson's disease.

    PubMed

    Chen, Nan-Kuei; Chou, Ying-Hui; Sundman, Mark; Hickey, Patrick; Kasoff, Willard S; Bernstein, Adam; Trouard, Theodore P; Lin, Tanya; Rapcsak, Steven Z; Sherman, Scott J; Weingarten, Carol

    2018-06-07

    Many non-motor symptoms (e.g., hyposmia) appear years before the cardinal motor features of Parkinson's disease (PD). It is thus desirable to be able to use noninvasive brain imaging methods, such as magnetic resonance imaging (MRI), to detect brain abnormalities in early PD stages. Among the MRI modalities, diffusion tensor imaging (DTI) is suitable for detecting changes of brain tissue structure due to neurological diseases. The main purpose of this study was to investigate whether DTI signals measured from brain regions involved in early stages of PD differ from those of healthy controls. To answer this question, we analyzed whole-brain DTI data of 30 early-stage PD patients and 30 controls using improved ROI based analysis methods. Results showed that 1) the fractional anisotropy (FA) values in the olfactory tract (connected with the olfactory bulb: one of the first structures affected by PD) are lower in PD patients than healthy controls; 2) FA values are higher in PD patients than healthy controls in the following brain regions: corticospinal tract, cingulum (near hippocampus), and superior longitudinal fasciculus (temporal part). Experimental results suggest that the tissue property, measured by FA, in olfactory regions is structurally modulated by PD with a mechanism that is different from other brain regions.

  7. fMRI responses to Jung's Word Association Test: implications for theory, treatment and research.

    PubMed

    Petchkovsky, Leon; Petchkovsky, Michael; Morris, Philip; Dickson, Paul; Montgomery, Danielle; Dwyer, Jonathan; Burnett, Patrick

    2013-06-01

    Jung's Word Association Test was performed under fMRI conditions by 12 normal subjects. Pooled complexed responses were contrasted against pooled neutral ones. The fMRI activation pattern of this generic 'complexed response' was very strong (corrected Z scores ranging from 4.90 to 5.69). The activation pattern in each hemisphere includes mirror neurone areas that track 'otherness' (perspectival empathy), anterior insula (both self-awareness and emotional empathy), and cingulated gyrus (self-awareness and conflict-monitoring). These are the sites described by Siegel and colleagues as the 'resonance circuitry' in the brain which is central to mindfulness (awareness of self) and empathy (sense of the other), negotiations between self awareness and the 'internal other'. But there is also an interhemispheric dialogue. Within 3 seconds, the left hemisphere over-rides the right (at least in our normal subjects). Mindfulness and empathy are central to good psychotherapy, and complexes can be windows of opportunity if left-brain hegemony is resisted. This study sets foundations for further research: (i) QEEG studies (with their finer temporal resolution) of complexed responses in normal subjects (ii) QEEG and fMRI studies of complexed responses in other conditions, like schizophrenia, PTSD, disorders of self organization. © 2013, The Society of Analytical Psychology.

  8. Neoadjuvant chemotherapy evaluation by MRI volumetry in rectal cancer followed by chemoradiation and total mesorectal excision: Initial experience.

    PubMed

    Nougaret, Stephanie; Fujii, Shinya; Addley, Helen C; Bibeau, Frederic; Pandey, Himanshu; Mikhael, Hisham; Reinhold, Caroline; Azria, David; Rouanet, Philippe; Gallix, Benoit

    2013-09-01

    To evaluate rectal cancer volumetry in predicting initial neoadjuvant chemotherapy response. Sixteen consecutive patients who underwent neoadjuvant chemotherapy (CX) before chemoradiotherapy (CRT) and surgery were enrolled in this retrospective study. Tumor volume was evaluated at the first magnetic resonance imaging (MRI), after CX and after CRT. Tumor volume regression (TVR) and downstaging were compared with histological results according to Tumor Regression Grade (TRG) to assess CX and CRT response, respectively. The mean tumor volume was 132 cm(3) ± 166 before and 56 cm(3) ± 71 after CX. TVR after CX was significantly different between patients with poor histologic response (TRG1/2) and those with good histologic response (TRG3/4) (P = 0.001). An optimal cutoff of TVR >68% (area under the curve [AUC]: 0.9, 95% confidence interval [CI]: 0.65-0.98, P = 0.0001) to predict good histology response after CX was assessed by receiver operating characteristic curve. According to previous data and this study, we defined 70% as the best cutoff values according to sensitivity (86%), specificity (100%) of TVR for predicting good histology response. In contradistinction, MRI downstaging was associated with TRG only after CRT (P = 0.04). Our pilot study showed that MRI volumetry can predict early histological response after CX and before CRT. MRI volumetry could help the clinician to distinguish early responders in order to aid appropriate individually tailored therapies. Copyright © 2013 Wiley Periodicals, Inc., a Wiley company.

  9. Regional brain activity during early-stage intense romantic love predicted relationship outcomes after 40 months: an fMRI assessment.

    PubMed

    Xu, Xiaomeng; Brown, Lucy; Aron, Arthur; Cao, Guikang; Feng, Tingyong; Acevedo, Bianca; Weng, Xuchu

    2012-09-20

    Early-stage romantic love is associated with activation in reward and motivation systems of the brain. Can these localized activations, or others, predict long-term relationship stability? We contacted participants from a previous fMRI study of early-stage love by Xu et al. [34] after 40 months from initial assessments. We compared brain activation during the initial assessment at early-stage love for those who were still together at 40 months and those who were apart, and surveyed those still together about their relationship happiness and commitment at 40 months. Six participants who were still with their partners at 40 months (compared to six who had broken up) showed less activation during early-stage love in the medial orbitofrontal cortex, right subcallosal cingulate and right accumbens, regions implicated in long-term love and relationship satisfaction [1,2]. These regions of deactivation at the early stage of love were also negatively correlated with relationship happiness scores collected at 40 months. Other areas involved were the caudate tail, and temporal and parietal lobes. These data are preliminary evidence that neural responses in the early stages of romantic love can predict relationship stability and quality up to 40 months later in the relationship. The brain regions involved suggest that forebrain reward functions may be predictive for relationship stability, as well as regions involved in social evaluation, emotional regulation, and mood. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. An fMRI-study of locally oriented perception in autism: altered early visual processing of the block design test.

    PubMed

    Bölte, S; Hubl, D; Dierks, T; Holtmann, M; Poustka, F

    2008-01-01

    Autism has been associated with enhanced local processing on visual tasks. Originally, this was based on findings that individuals with autism exhibited peak performance on the block design test (BDT) from the Wechsler Intelligence Scales. In autism, the neurofunctional correlates of local bias on this test have not yet been established, although there is evidence of alterations in the early visual cortex. Functional MRI was used to analyze hemodynamic responses in the striate and extrastriate visual cortex during BDT performance and a color counting control task in subjects with autism compared to healthy controls. In autism, BDT processing was accompanied by low blood oxygenation level-dependent signal changes in the right ventral quadrant of V2. Findings indicate that, in autism, locally oriented processing of the BDT is associated with altered responses of angle and grating-selective neurons, that contribute to shape representation, figure-ground, and gestalt organization. The findings favor a low-level explanation of BDT performance in autism.

  11. Comparison of fMRI analysis methods for heterogeneous BOLD responses in block design studies.

    PubMed

    Liu, Jia; Duffy, Ben A; Bernal-Casas, David; Fang, Zhongnan; Lee, Jin Hyung

    2017-02-15

    A large number of fMRI studies have shown that the temporal dynamics of evoked BOLD responses can be highly heterogeneous. Failing to model heterogeneous responses in statistical analysis can lead to significant errors in signal detection and characterization and alter the neurobiological interpretation. However, to date it is not clear that, out of a large number of options, which methods are robust against variability in the temporal dynamics of BOLD responses in block-design studies. Here, we used rodent optogenetic fMRI data with heterogeneous BOLD responses and simulations guided by experimental data as a means to investigate different analysis methods' performance against heterogeneous BOLD responses. Evaluations are carried out within the general linear model (GLM) framework and consist of standard basis sets as well as independent component analysis (ICA). Analyses show that, in the presence of heterogeneous BOLD responses, conventionally used GLM with a canonical basis set leads to considerable errors in the detection and characterization of BOLD responses. Our results suggest that the 3rd and 4th order gamma basis sets, the 7th to 9th order finite impulse response (FIR) basis sets, the 5th to 9th order B-spline basis sets, and the 2nd to 5th order Fourier basis sets are optimal for good balance between detection and characterization, while the 1st order Fourier basis set (coherence analysis) used in our earlier studies show good detection capability. ICA has mostly good detection and characterization capabilities, but detects a large volume of spurious activation with the control fMRI data. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Population Response Profiles in Early Visual Cortex Are Biased in Favor of More Valuable Stimuli

    PubMed Central

    Saproo, Sameer

    2010-01-01

    Voluntary and stimulus-driven shifts of attention can modulate the representation of behaviorally relevant stimuli in early areas of visual cortex. In turn, attended items are processed faster and more accurately, facilitating the selection of appropriate behavioral responses. Information processing is also strongly influenced by past experience and recent studies indicate that the learned value of a stimulus can influence relatively late stages of decision making such as the process of selecting a motor response. However, the learned value of a stimulus can also influence the magnitude of cortical responses in early sensory areas such as V1 and S1. These early effects of stimulus value are presumed to improve the quality of sensory representations; however, the nature of these modulations is not clear. They could reflect nonspecific changes in response amplitude associated with changes in general arousal or they could reflect a bias in population responses so that high-value features are represented more robustly. To examine this issue, subjects performed a two-alternative forced choice paradigm with a variable-interval payoff schedule to dynamically manipulate the relative value of two stimuli defined by their orientation (one was rotated clockwise from vertical, the other counterclockwise). Activation levels in visual cortex were monitored using functional MRI and feature-selective voxel tuning functions while subjects performed the behavioral task. The results suggest that value not only modulates the relative amplitude of responses in early areas of human visual cortex, but also sharpens the response profile across the populations of feature-selective neurons that encode the critical stimulus feature (orientation). Moreover, changes in space- or feature-based attention cannot easily explain the results because representations of both the selected and the unselected stimuli underwent a similar feature-selective modulation. This sharpening in the population

  13. Real-time fMRI and its application to neurofeedback.

    PubMed

    Weiskopf, Nikolaus

    2012-08-15

    Real-time fMRI (rtfMRI) allows immediate access to experimental results by analyzing data as fast as they are acquired. It was devised soon after the inception of fMRI and has undergone a rapid development since then. The availability of results during the ongoing experiment facilitates a variety of applications such as quality assurance or fast functional localization. RtfMRI can also be used as a brain-computer interface (BCI) with high spatial resolution and whole-brain coverage, overcoming limitations of EEG based BCIs. This review will focus on the application of rtfMRI BCIs to neurofeedback, i.e., the online feedback of the blood oxygen level dependent (BOLD) response. I will motivate its development and place its beginnings into the contemporary scientific context by providing an account of our early work at the University of Tübingen, followed by a review of the accomplishments and the current state of rtfMRI neurofeedback. RtfMRI neurofeedback has been used to train self-regulation of the local BOLD response in various different brain areas and to study consequential behavioral effects. Behavioral effects such as modulation of pain, reaction time, linguistic or emotional processing have been shown in healthy and/or patient populations. RtfMRI neurofeedback presents a new paradigm for studying the relation between brain behavior and physiology, because the latter can be regarded as the independent variable (unlike in conventional neuroimaging studies where behavior is the independent variable). The initial results in patient populations improving pain, tinnitus, depression or modulating perception in schizophrenia are encouraging and merit further controlled clinical studies. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Investigation of the factors responsible for burns during MRI.

    PubMed

    Dempsey, M F; Condon, B; Hadley, D M

    2001-04-01

    Numerous reported burn injuries have been sustained during clinical MRI procedures. The aim of this study was to investigate the possible factors that may be responsible for such burns. Experiments were performed to investigate three possible mechanisms for causing heating in copper wire during MRI: direct electromagnetic induction in a conductive loop, induction in a resonant conducting loop, and electric field resonant coupling with a wire (the antenna effect). Maximum recorded temperature rises were 0.6 degrees C for the loop, 61.1 degrees C for the resonant loop, and 63.5 degrees C for the resonant antenna. These experimental findings suggest that, contrary to common belief, it is unlikely that direct induction in a conductive loop will result in thermal injury. Burn incidents are more likely to occur due to the formation of resonant conducting loops and from extended wires forming resonant antenna. The characteristics of resonance should be considered when formulating safety guidelines.

  15. [Application evaluation of multi-parametric MRI in the diagnosis and differential diagnosis of early prostate cancer and prostatitis].

    PubMed

    Li, P; Huang, Y; Li, Y; Cai, L; Ji, G H; Zheng, Y; Chen, Z Q

    2016-10-11

    Objective: To evaluate the value of multi-parametric MRI (Mp-MRI) in the diagnosis and differential diagnosis of early prostate cancer(PCa) in the peripheral zone(PZ) and low T 2 WI signal intensity of prostatitis. Methods: A total of 40 patients with PZ early PCa and 37 with prostatitis of hypointense T 2 WI signal in PZ were retrospectively analyzed, which were collected from the General Hospital of Ningxia Medical University from Janurary 2009 to June 2015, who underwent T 2 WI, DWI, and DCE-MRI examination and all patients were confirmed by pathology. All the data was transferred to GE Advanced Workstation AW4.3, the indexes divided into cancerous and prostatitis regions were calculated by Functool2 of signal intensity-time(SI-T) curve and ADC value, to calcuate the time to minimum(T max ), the whole enhancment degree (SI max ). ROC cure was used to determine the cutoff value for PCa detection with the ADC value. Result: On T 2 WI, 57.5% of PCa (23/40) showed focal nodular homogeneous low signal intensity, 70.3% of prostatitis(26/37) showed diffuse inhomogeneous low signal intensity. DCE-MRI, the distribution of curve types for malignant tumors was type Ⅰ 2.5%(1/40), typeⅡ32.5%(13/40) and type Ⅲ 65.0% (26/40). While the numbers for prostatitis was type Ⅰ 16.2%(6/37) , type Ⅱ 56.8% (21/37) and type Ⅲ 27.0% (10/37)respectively.The patterns of curve types in malignant lesions were different from benign lesions significantly(χ 2 =12.32, P <0.01). The mean values of T max , SI max in cancerous and prostatitis regions were (17.96±2.91)s, 1.76%±0.23% and (21.19±3.59)s, 1.53%±0.18%, respectively ( t =5.37, 6.10; P <0.01). On DWI, The mean ADC values in cancerous and prostatitis regions were (0.95±0.13)×10 -3 mm 2 /s and (1.12±0.13)×10 -3 mm 2 /s, respectively ( t =7.10, P <0.01). According to the ROC analysis, when the cutoff value was 1.01×10 -3 mm 2 /s, the early PCa of diagnostic sensitivity, specificity and accuracy was 79.1%, 72.7% and 76

  16. Evaluation of renal allografts function early after transplantation using intravoxel incoherent motion and arterial spin labeling MRI.

    PubMed

    Ren, Tao; Wen, Cheng-Long; Chen, Li-Hua; Xie, Shuang-Shuang; Cheng, Yue; Fu, Ying-Xin; Oesingmann, Niels; de Oliveira, Andre; Zuo, Pan-Li; Yin, Jian-Zhong; Xia, Shuang; Shen, Wen

    2016-09-01

    To evaluate renal allografts function early after transplantation using intravoxel incoherent motion (IVIM) and arterial spin labeling (ASL) MRI. This prospective study was approved by the local ethics committee, and written informed consent was obtained from all participants. A total of 82 participants with 62 renal allograft recipients (2-4weeks after kidney transplantation) and 20 volunteers were enrolled to be scanned using IVIM and ASL MRI on a 3.0T MR scanner. Recipients were divided into two groups with either normal or impaired function according to the estimated glomerular filtration rate (eGFR) with a threshold of 60ml/min/1.73m(2). The apparent diffusion coefficient (ADC) of pure diffusion (ADCslow), the ADC of pseudodiffusion (ADCfast), perfusion fraction (PF), and renal blood flow (RBF) of cortex were compared among three groups. The correlation of ADCslow, ADCfast, PF and RBF with eGFR was evaluated. The receiver operating characteristic (ROC) curve and binary logistic regression analyses were performed to assess the diagnostic efficiency of using IVIM and ASL parameters to discriminate allografts with impaired function from normal function. P<0.05 was considered statistically significant. In allografts with normal function, no significant difference of mean cortical ADCslow, ADCfast, and PF was found compared with healthy controls (P>0.05). Cortical RBF in allografts with normal function was statistically lower than that of healthy controls (P<0.001). Mean cortical ADCslow, ADCfast, PF and RBF were lower for allografts with impaired function than that with normal function (P<0.05). Mean cortical ADCslow, ADCfast, PF and RBF showed a positive correlation with eGFR (all P<0.01) for recipients. The combination of IVIM and ASL MRI showed a higher area under the ROC curve (AUC) (0.865) than that of ASL MRI alone (P=0.02). Combined IVIM and ASL MRI can better evaluate the diffusion and perfusion properties for allografts early after kidney transplantation

  17. Cerebral Asymmetry of fMRI-BOLD Responses to Visual Stimulation

    PubMed Central

    Hougaard, Anders; Jensen, Bettina Hagström; Amin, Faisal Mohammad; Rostrup, Egill; Hoffmann, Michael B.; Ashina, Messoud

    2015-01-01

    Hemispheric asymmetry of a wide range of functions is a hallmark of the human brain. The visual system has traditionally been thought of as symmetrically distributed in the brain, but a growing body of evidence has challenged this view. Some highly specific visual tasks have been shown to depend on hemispheric specialization. However, the possible lateralization of cerebral responses to a simple checkerboard visual stimulation has not been a focus of previous studies. To investigate this, we performed two sessions of blood-oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) in 54 healthy subjects during stimulation with a black and white checkerboard visual stimulus. While carefully excluding possible non-physiological causes of left-to-right bias, we compared the activation of the left and the right cerebral hemispheres and related this to grey matter volume, handedness, age, gender, ocular dominance, interocular difference in visual acuity, as well as line-bisection performance. We found a general lateralization of cerebral activation towards the right hemisphere of early visual cortical areas and areas of higher-level visual processing, involved in visuospatial attention, especially in top-down (i.e., goal-oriented) attentional processing. This right hemisphere lateralization was partly, but not completely, explained by an increased grey matter volume in the right hemisphere of the early visual areas. Difference in activation of the superior parietal lobule was correlated with subject age, suggesting a shift towards the left hemisphere with increasing age. Our findings suggest a right-hemispheric dominance of these areas, which could lend support to the generally observed leftward visual attentional bias and to the left hemifield advantage for some visual perception tasks. PMID:25985078

  18. Clinical and MRI outcome of cervical spine lesions in children with juvenile idiopathic arthritis treated with anti-TNFα drugs early in disease course.

    PubMed

    Ključevšek, Damjana; Emeršič, Nina; Toplak, Nataša; Avčin, Tadej

    2017-05-15

    The purpose of the study was to evaluate the clinical and magnetic resonance imaging (MRI) outcome of cervical spine arthritis in children with juvenile idiopathic arthritis (JIA), who received anti-TNFα early in the course of cervical spine arthritis. Medical charts and imaging of JIA patients with cervical spine involvement were reviewed in this retrospective study. Data, including age at disease onset, JIA type, disease activity, treatment and clinical outcome were collected. Initial and followup MRI examinations of cervical spine were performed according to the hospital protocol to evaluate the presence of inflammation and potential chronic/late changes. Fifteen JIA patients with MRI proved cervical spine inflammation (11 girls, 4 boys, median age 6.3y) were included in the study: 9 had polyarthritis, 3 extended oligoarthritis, 2 persistent oligoarthritis and 1 juvenile psoriatic arthritis. All children were initially treated with high-dose steroids and methotrexate. In addition, 11 patients were treated with anti-TNFα drug within 3 months, and 3 patients within 7 months of cervical spine involvement confirmed by MRI. Mean observation time was 2.9y, mean duration of anti-TNFα treatment was 2.2y. Last MRI showed no active inflammation in 12/15 children, allowing to stop biological treatment in 3 patients, and in 3/15 significant reduction of inflammation. Mild chronic changes were found on MRI in 3 children. Early treatment with anti-TNFα drugs resulted in significantly reduced inflammation or complete remission of cervical spine arthritis proved by MRI, and prevented the development of serious chronic/late changes. Repeated MRI examinations are suggested in the follow-up of JIA patients with cervical spine arthritis.

  19. Early pathological alterations of lower lumbar cords detected by ultrahigh-field MRI in a mouse multiple sclerosis model.

    PubMed

    Mori, Yuki; Murakami, Masaaki; Arima, Yasunobu; Zhu, Dasong; Terayama, Yasuo; Komai, Yutaka; Nakatsuji, Yuji; Kamimura, Daisuke; Yoshioka, Yoshichika

    2014-02-01

    Magnetic resonance imaging (MRI) is widely employed for the diagnosis of multiple sclerosis (MS). However, sometimes, the lesions found by MRI do not correlate with the neurological impairments observed in MS patients. We recently showed autoreactive T cells accumulate in the fifth lumbar cord (L5) to pass the blood-brain barrier and cause inflammation in the central nervous system of experimental autoimmune encephalomyelitis (EAE) mice, an MS model. We here investigated this early event using ultrahigh-field MRI. T2-weighted image signals, which conform to the water content, increased in L4 and L5 during the development of EAE. At the same time, the sizes of L4 and L5 changed. Moreover, angiographic images of MRI showed branch positions of the blood vessels in the lower lumbar cords were significantly altered. Interestingly, EAE mice showed occluded and thickened vessels, particularly during the peak phase, followed by reperfusion in the remission phase. Additionally, demyelination regions of some MS patients had increased lactic acid content, suggesting the presence of ischemic events. These results suggest that inflammation-mediated alterations in the lower lumbar cord change the homeostasis of the spinal cord and demonstrate that ultrahigh-field MRI enables the detection of previously invisible pathological alterations in EAE.

  20. Simultaneous PET/MRI in assessing the response to chemo/radiotherapy in head and neck carcinoma: initial experience.

    PubMed

    Romeo, Valeria; Iorio, Brigida; Mesolella, Massimo; Ugga, Lorenzo; Verde, Francesco; Nicolai, Emanuele; Covello, Mario

    2018-06-19

    The purpose of the study was to assess by simultaneous positron emission tomography/magnetic resonance imaging (PET/MRI) the response to chemotherapy (CHT) and/or radiotherapy (RT) in patients with head and neck squamous cell carcinoma (HNSCC). Five patients with HNSCC underwent simultaneous PET/MRI examination before and after CHT and/or RT. Standard uptake volume (SUV), apparent diffusion coefficient (ADC), Ktrans, Kep, Ve, and iAUC pre- and post-treatment values were extracted and compared. The response to treatment was assessed according to RECIST criteria and classified as complete response (CR), partial response (PR), stable disease (SD), and progression disease (PD). In patient 1, PR was observed with increased ADC, Ktrans, and Ve values and reduction of SUV, iAUC, and Kep values; during clinical and instrumental follow-up, the patient experienced disease progression. Patient 2, classified as PR, showed increased ADC values and reduction of SUV and all perfusion parameters; follow-up demonstrated disease stability. Patient 3, considered as SD, showed increase of ADC and all perfusion values with a mild decrease of SUV; PD was observed during clinical and instrumental follow-up. Patients 4 and 5 showed a CR with no detectable tumor lesions at post-treatment PET/MRI examination, confirmed by 1-year follow-up. Multiparametric evaluation with simultaneous PET/MRI could be a useful tool to assess and predict the response to CHT and/or RT in patients with HNSCC.

  1. fMRI response to spatial working memory in adolescents with comorbid marijuana and alcohol use disorders☆

    PubMed Central

    Schweinsburg, Alecia D.; Schweinsburg, Brian C.; Cheung, Erick H.; Brown, Gregory G.; Brown, Sandra A.; Tapert, Susan F.

    2008-01-01

    Alcohol and marijuana use are prevalent in adolescence, yet the neural impact of concomitant use remains unclear. We previously demonstrated functional magnetic resonance imaging (fMRI) response to spatial working memory (SWM) among teens with alcohol use disorders (AUD) compared to controls, and predicted that adolescents with marijuana and alcohol use disorders would show additional abnormalities. Participants were three groups of 15−17-year-olds: 19 non-abusing controls, 15 AUD teens with limited exposure to drugs, and 15 teens with comorbid marijuana and alcohol use disorders (MAUD) and minimal other drug experience. After >2 days’ abstinence, participants performed a SWM task during fMRI acquisition. fMRI brain response patterns differed between groups, despite similar performance on the task. MAUD youths showed less activation in inferior frontal and temporal regions than controls, and more response in other prefrontal regions. Compared to AUD teens, MAUD youths also showed less inferior frontal and temporal activation, but more medial frontal response. Overall, MAUD youths showed different brain response abnormalities than teens with AUD alone, despite relatively short histories of substance involvement. This pattern could suggest compensation for marijuana-related attention and working memory deficits. However, relatively recent use and premorbid features may influence results, and should be examined in future studies. PMID:16002029

  2. Altered functional connectivity in early Alzheimer's disease: a resting-state fMRI study.

    PubMed

    Wang, Kun; Liang, Meng; Wang, Liang; Tian, Lixia; Zhang, Xinqing; Li, Kuncheng; Jiang, Tianzi

    2007-10-01

    Previous studies have led to the proposal that patients with Alzheimer's disease (AD) may have disturbed functional connectivity between different brain regions. Furthermore, recent resting-state functional magnetic resonance imaging (fMRI) studies have also shown that low-frequency (<0.08 Hz) fluctuations (LFF) of the blood oxygenation level-dependent signals were abnormal in several brain areas of AD patients. However, few studies have investigated disturbed LFF connectivity in AD patients. By using resting-state fMRI, this study sought to investigate the abnormal functional connectivities throughout the entire brain of early AD patients, and analyze the global distribution of these abnormalities. For this purpose, the authors divided the whole brain into 116 regions and identified abnormal connectivities by comparing the correlation coefficients of each pair. Compared with healthy controls, AD patients had decreased positive correlations between the prefrontal and parietal lobes, but increased positive correlations within the prefrontal lobe, parietal lobe, and occipital lobe. The AD patients also had decreased negative correlations (closer to zero) between two intrinsically anti-correlated networks that had previously been found in the resting brain. By using resting-state fMRI, our results supported previous studies that have reported an anterior-posterior disconnection phenomenon and increased within-lobe functional connectivity in AD patients. In addition, the results also suggest that AD may disturb the correlation/anti-correlation effect in the two intrinsically anti-correlated networks. Wiley-Liss, Inc.

  3. Histogram analysis of apparent diffusion coefficient for monitoring early response in patients with advanced cervical cancers undergoing concurrent chemo-radiotherapy.

    PubMed

    Meng, Jie; Zhu, Lijing; Zhu, Li; Ge, Yun; He, Jian; Zhou, Zhengyang; Yang, Xiaofeng

    2017-11-01

    Background Apparent diffusion coefficient (ADC) histogram analysis has been widely used in determining tumor prognosis. Purpose To investigate the dynamic changes of ADC histogram parameters during concurrent chemo-radiotherapy (CCRT) in patients with advanced cervical cancers. Material and Methods This prospective study enrolled 32 patients with advanced cervical cancers undergoing CCRT who received diffusion-weighted (DW) magnetic resonance imaging (MRI) before CCRT, at the end of the second and fourth week during CCRT and one month after CCRT completion. The ADC histogram for the entire tumor volume was generated, and a series of histogram parameters was obtained. Dynamic changes of those parameters in cervical cancers were investigated as early biomarkers for treatment response. Results All histogram parameters except AUC low showed significant changes during CCRT (all P < 0.05). There were three variable trends involving different parameters. The mode, 5th, 10th, and 25th percentiles showed similar early increase rates (33.33%, 33.99%, 34.12%, and 30.49%, respectively) at the end of the second week of CCRT. The pre-CCRT 5th and 25th percentiles of the complete response (CR) group were significantly lower than those of the partial response (PR) group. Conclusion A series of ADC histogram parameters of cervical cancers changed significantly at the early stage of CCRT, indicating their potential in monitoring early tumor response to therapy.

  4. Early classification of Alzheimer's disease using hippocampal texture from structural MRI

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Ding, Yanhui; Wang, Pan; Dou, Xuejiao; Zhou, Bo; Yao, Hongxiang; An, Ningyu; Zhang, Yongxin; Zhang, Xi; Liu, Yong

    2017-03-01

    Convergent evidence has been collected to support that Alzheimer's disease (AD) is associated with reduction in hippocampal volume based on anatomical magnetic resonance imaging (MRI) and impaired functional connectivity based on functional MRI. Radiomics texture analysis has been previously successfully used to identify MRI biomarkers of several diseases, including AD, mild cognitive impairment and multiple sclerosis. In this study, our goal was to determine if MRI hippocampal textures, including the intensity, shape, texture and wavelet features, could be served as an MRI biomarker of AD. For this purpose, the texture marker was trained and evaluated from MRI data of 48 AD and 39 normal samples. The result highlights the presence of hippocampal texture abnormalities in AD, and the possibility that texture may serve as a neuroimaging biomarker for AD.

  5. Cortical sensory map rearrangement after spinal cord injury: fMRI responses linked to Nogo signalling.

    PubMed

    Endo, Toshiki; Spenger, Christian; Tominaga, Teiji; Brené, Stefan; Olson, Lars

    2007-11-01

    Cortical sensory maps can reorganize in the adult brain in an experience-dependent manner. We monitored somatosensory cortical reorganization after sensory deafferentation using functional magnetic resonance imaging (fMRI) in rats subjected to complete transection of the mid-thoracic spinal cord. Cortical representation in response to spared forelimb stimulation was observed to enlarge and invade adjacent sensory-deprived hind limb territory in the primary somatosensory cortex as early as 3 days after injury. Functional MRI also demonstrated long-term cortical plasticity accompanied by increased thalamic activation. To support the notion that alterations of cortical neuronal circuitry after spinal cord injury may underlie the fMRI changes, we quantified transcriptional activities of several genes related to cortical plasticity including the Nogo receptor (NgR), its co-receptor LINGO-1 and brain derived neurotrophic factor (BDNF), using in situ hybridization. We demonstrate that NgR and LINGO-1 are down-regulated specifically in cortical areas deprived of sensory input and in adjacent cortex from 1 day after injury, while BDNF is up-regulated. Our results demonstrate that cortical neurons react to sensory deprivation by decreasing transcriptional activities of genes encoding the Nogo receptor components in the sensory deprived and the anatomically adjacent non-deprived area. Combined with the BDNF up-regulation, these changes presumably allow structural changes in the neuropil. Our observations therefore suggest an involvement of Nogo signalling in cortical activity-dependent plasticity in the somatosensory system. In spinal cord injury, cortical reorganization as shown here can become a disadvantage, much like the situation in amblyopia or phantom sensation. Successful strategies to repair sensory pathways at the spinal cord level may not lead to proper reestablishment of cortical connections, once deprived hind limb cortical areas have been reallocated to forelimb

  6. Brain Correlates of Phasic Autonomic Response to Acupuncture Stimulation: An Event-Related fMRI Study

    PubMed Central

    Napadow, Vitaly; Lee, Jeungchan; Kim, Jieun; Cina, Stephen; Maeda, Yumi; Barbieri, Riccardo; Harris, Richard E.; Kettner, Norman; Park, Kyungmo

    2013-01-01

    Autonomic nervous system (ANS) response to acupuncture has been investigated by multiple studies; however, the brain circuitry underlying this response is not well understood. We applied event-related fMRI (er-fMRI) in conjunction with ANS recording (heart rate, HR; skin conductance response, SCR). Brief manual acupuncture stimuli were delivered at acupoints ST36 and SP9, while sham stimuli were delivered at control location, SH1. Acupuncture produced activation in S2, insula, and mid-cingulate cortex, and deactivation in default mode network (DMN) areas. On average, HR deceleration (HR–) and SCR were noted following both real and sham acupuncture, though magnitude of response was greater following real acupuncture and inter-subject magnitude of response correlated with evoked sensation intensity. Acupuncture events with strong SCR also produced greater anterior insula activation than without SCR. Moreover, acupuncture at SP9, which produced greater SCR, also produced stronger sharp pain sensation, and greater anterior insula activation. Conversely, acupuncture-induced HR– was associated with greater DMN deactivation. Between-event correlation demonstrated that this association was strongest for ST36, which also produced more robust HR–. In fact, DMN deactivation was significantly more pronounced across acupuncture stimuli producing HR–, versus those events characterized by acceleration (HR+). Thus, differential brain response underlying acupuncture stimuli may be related to differential autonomic outflows and may result from heterogeneity in evoked sensations. Our er-fMRI approach suggests that ANS response to acupuncture, consistent with previously characterized orienting and startle/defense responses, arises from activity within distinct subregions of the more general brain circuitry responding to acupuncture stimuli. PMID:22504841

  7. Corticostriatal and Dopaminergic Response to Beer Flavor with Both fMRI and [(11) C]raclopride Positron Emission Tomography.

    PubMed

    Oberlin, Brandon G; Dzemidzic, Mario; Harezlak, Jaroslaw; Kudela, Maria A; Tran, Stella M; Soeurt, Christina M; Yoder, Karmen K; Kareken, David A

    2016-09-01

    Cue-evoked drug-seeking behavior likely depends on interactions between frontal activity and ventral striatal (VST) dopamine (DA) transmission. Using [(11) C]raclopride (RAC) positron emission tomography (PET), we previously demonstrated that beer flavor (absent intoxication) elicited VST DA release in beer drinkers, inferred by RAC displacement. Here, a subset of subjects from this previous RAC-PET study underwent a similar paradigm during functional magnetic resonance imaging (fMRI) to test how orbitofrontal cortex (OFC) and VST blood oxygenation level-dependent (BOLD) responses to beer flavor are related to VST DA release and motivation to drink. Male beer drinkers (n = 28, age = 24 ± 2, drinks/wk = 16 ± 10) from our previous PET study participated in a similar fMRI paradigm wherein subjects tasted their most frequently consumed brand of beer and Gatorade(®) (appetitive control). We tested for correlations between BOLD activation in fMRI and VST DA responses in PET, and drinking-related variables. Compared to Gatorade, beer flavor increased wanting and desire to drink, and induced BOLD responses in bilateral OFC and right VST. Wanting and desire to drink correlated with both right VST and medial OFC BOLD activation to beer flavor. Like the BOLD findings, beer flavor (relative to Gatorade) again induced right VST DA release in this fMRI subject subset, but there was no correlation between DA release and the magnitude of BOLD responses in frontal regions of interest. Both imaging modalities showed a right-lateralized VST response (BOLD and DA release) to a drug-paired conditioned stimulus, whereas fMRI BOLD responses in the VST and medial OFC also reflected wanting and desire to drink. The data suggest the possibility that responses to drug-paired cues may be rightward biased in the VST (at least in right-handed males) and that VST and OFC responses in this gustatory paradigm reflect stimulus wanting. Copyright © 2016 by the Research Society on

  8. MRI patterns in prolonged low response states following traumatic brain injury in children and adolescents.

    PubMed

    Patrick, Peter D; Mabry, Jennifer L; Gurka, Matthew J; Buck, Marcia L; Boatwright, Evelyn; Blackman, James A

    2007-01-01

    To explore the relationship between location and pattern of brain injury identified on MRI and prolonged low response state in children post-traumatic brain injury (TBI). This observational study compared 15 children who spontaneously recovered within 30 days post-TBI to 17 who remained in a prolonged low response state. 92.9% of children with brain stem injury were in the low response group. The predicted probability was 0.81 for brain stem injury alone, increasing to 0.95 with a regional pattern of injury to the brain stem, basal ganglia, and thalamus. Low response state in children post-TBI is strongly correlated with two distinctive regions of injury: the brain stem alone, and an injury pattern to the brain stem, basal ganglia, and thalamus. This study demonstrates the need for large-scale clinical studies using MRI as a tool for outcome assessment in children and adolescents following severe TBI.

  9. Abnormal response to methylphenidate across multiple fMRI procedures in cocaine use disorder: feasibility study.

    PubMed

    Moeller, Scott J; Konova, Anna B; Tomasi, Dardo; Parvaz, Muhammad A; Goldstein, Rita Z

    2016-07-01

    The indirect dopamine agonist methylphenidate remediates cognitive deficits in psychopathology, but the individual characteristics that determine its effects on the brain are not known. We aimed to determine whether targeted dopaminergically modulated traits and individual differences could predict neural response to methylphenidate across multiple functional magnetic resonance imaging (fMRI) procedures. We combined neural measures from three separate procedures (two inhibitory control tasks differing in their degree of emotional salience and resting-state functional connectivity) during methylphenidate (20 mg oral, versus randomized and counterbalanced placebo) and correlated these aggregated responses with cocaine use disorder diagnosis (22 cocaine abusers, 21 controls), symptoms of attention deficit hyperactivity disorder, and working memory capacity. Cocaine abusers, relative to controls, had a lower response in the dorsolateral prefrontal cortex to methylphenidate across all three procedures, driven by responses to the two inhibitory control tasks; reduced methylphenidate fMRI response in this region further correlated with more frequent cocaine use. Cocaine abuse (and its frequency), associated with lower tonic dopamine levels, correlated with a reduction in activation to methylphenidate (versus placebo). These initial results provide feasibility to the idea that multimodal fMRI tasks can be meaningfully aggregated, and that these aggregated procedures show a common disruption in addiction in a highly anticipated region relevant to cognitive control. Results also suggest that drug use frequency may represent an important modulatory variable in interpreting the efficacy of pharmacologically enhanced cognitive interventions in addiction.

  10. Early detection of osteoarthritis in rabbits using MRI with a double-contrast agent.

    PubMed

    Onishi, Okihiro; Ikoma, Kazuya; Kido, Masamitsu; Kabuto, Yukichi; Ueshima, Keiichiro; Matsuda, Ken-Ichi; Tanaka, Masaki; Kubo, Toshikazu

    2018-03-13

    Articular cartilage degeneration has been evaluated by magnetic resonance imaging (MRI). However, this method has several problems, including its time-consuming nature and the requirement of a high magnetic field or specialized hardware. The purpose of this study was to sequentially assess early degenerative changes in rabbit knee articular cartilage using MRI with a new double-contrast agent. We induced osteoarthritis (OA) in the right knee of rabbits by anterior cruciate ligament transection and partial medial meniscectomy. Proton density-weighted images and T 2 -calculated images were obtained before and after contrast agent injection into the knee. The signal intensity ratio (SIR) values on the proton density-weighted images were calculated by dividing the signal intensity of the articular cartilage by that of joint fluid. Six rabbits were examined using MRI at 2 (designated 2-w OA) and 4 weeks (4-w OA) after the operation. Histological examination was performed 4 weeks after the operation. One rabbit was histologically examined 2 weeks after the operation. The control consisted of six rabbits that were not subjected to the operation. The SIR values, T 2 values and the thicknesses of the cartilage of the 2-w OA, 4-w OA and the control before and after contrast agent injection were analyzed. The Mankin score and OARSI (Osteoarthritis Research Society International) score were used for the histological evaluation. Significant differences in the SIR and T 2 values of the medial and lateral condyles of the femur were found between the control and the 4-w OA only after contrast agent injection. No significant differences were found in the SIR and T 2 values before contrast agent injection between the control, the 2-w OA and 4-w OA. The thickness of the articular cartilage revealed no significant differences. In the histological assessment, the Mankin score and OARSI score sequentially increased from the control to the 4-w OA. We evaluated the SIR and T 2 values

  11. Auditory motion processing after early blindness

    PubMed Central

    Jiang, Fang; Stecker, G. Christopher; Fine, Ione

    2014-01-01

    Studies showing that occipital cortex responds to auditory and tactile stimuli after early blindness are often interpreted as demonstrating that early blind subjects “see” auditory and tactile stimuli. However, it is not clear whether these occipital responses directly mediate the perception of auditory/tactile stimuli, or simply modulate or augment responses within other sensory areas. We used fMRI pattern classification to categorize the perceived direction of motion for both coherent and ambiguous auditory motion stimuli. In sighted individuals, perceived motion direction was accurately categorized based on neural responses within the planum temporale (PT) and right lateral occipital cortex (LOC). Within early blind individuals, auditory motion decisions for both stimuli were successfully categorized from responses within the human middle temporal complex (hMT+), but not the PT or right LOC. These findings suggest that early blind responses within hMT+ are associated with the perception of auditory motion, and that these responses in hMT+ may usurp some of the functions of nondeprived PT. Thus, our results provide further evidence that blind individuals do indeed “see” auditory motion. PMID:25378368

  12. Modelling responses of the inert-gas washout and MRI to bronchoconstriction.

    PubMed

    Foy, Brody H; Kay, David; Bordas, Rafel

    2017-01-01

    Many lung diseases lead to an increase in ventilation heterogeneity (VH). Two clinical practices for the measurement of patient VH are in vivo imaging, and the inert gas multiple breath washout (MBW). In this study computational modelling was used to compare the responses of MBW indices LCI and s cond and MRI measured global and local ventilation indices, σ r and σ local , to constriction of airways in the conducting zone of the lungs. The simulations show that s cond , LCI and σ r behave quite similarly to each other, all being sensitive to increases in the severity of constriction, while exhibiting little sensitivity to the depth at which constriction occurs. In contrast, the local MRI index σ local shows strong sensitivity to depth of constriction, but lowered sensitivity to constriction severity. We finish with an analysis of the sensitivity of MRI indices to grid sizes, showing that results should be interpreted with reference to the image resolution. Overall we conclude that the application of both local and global VH measures may help to classify different types of bronchoconstriction. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Central Pain Processing in Early-Stage Parkinson's Disease: A Laser Pain fMRI Study

    PubMed Central

    Petschow, Christine; Scheef, Lukas; Paus, Sebastian; Zimmermann, Nadine; Schild, Hans H.; Klockgether, Thomas; Boecker, Henning

    2016-01-01

    Background & Objective Pain is a common non-motor symptom in Parkinson’s disease. As dopaminergic dysfunction is suggested to affect intrinsic nociceptive processing, this study was designed to characterize laser-induced pain processing in early-stage Parkinson’s disease patients in the dopaminergic OFF state, using a multimodal experimental approach at behavioral, autonomic, imaging levels. Methods 13 right-handed early-stage Parkinson’s disease patients without cognitive or sensory impairment were investigated OFF medication, along with 13 age-matched healthy control subjects. Measurements included warmth perception thresholds, heat pain thresholds, and central pain processing with event-related functional magnetic resonance imaging (erfMRI) during laser-induced pain stimulation at lower (E = 440 mJ) and higher (E = 640 mJ) target energies. Additionally, electrodermal activity was characterized during delivery of 60 randomized pain stimuli ranging from 440 mJ to 640 mJ, along with evaluation of subjective pain ratings on a visual analogue scale. Results No significant differences in warmth perception thresholds, heat pain thresholds, electrodermal activity and subjective pain ratings were found between Parkinson’s disease patients and controls, and erfMRI revealed a generally comparable activation pattern induced by laser-pain stimuli in brain areas belonging to the central pain matrix. However, relatively reduced deactivation was found in Parkinson’s disease patients in posterior regions of the default mode network, notably the precuneus and the posterior cingulate cortex. Conclusion Our data during pain processing extend previous findings suggesting default mode network dysfunction in Parkinson’s disease. On the other hand, they argue against a genuine pain-specific processing abnormality in early-stage Parkinson’s disease. Future studies are now required using similar multimodal experimental designs to examine pain processing in more advanced

  14. Linear Discriminant Analysis Achieves High Classification Accuracy for the BOLD fMRI Response to Naturalistic Movie Stimuli

    PubMed Central

    Mandelkow, Hendrik; de Zwart, Jacco A.; Duyn, Jeff H.

    2016-01-01

    Naturalistic stimuli like movies evoke complex perceptual processes, which are of great interest in the study of human cognition by functional MRI (fMRI). However, conventional fMRI analysis based on statistical parametric mapping (SPM) and the general linear model (GLM) is hampered by a lack of accurate parametric models of the BOLD response to complex stimuli. In this situation, statistical machine-learning methods, a.k.a. multivariate pattern analysis (MVPA), have received growing attention for their ability to generate stimulus response models in a data-driven fashion. However, machine-learning methods typically require large amounts of training data as well as computational resources. In the past, this has largely limited their application to fMRI experiments involving small sets of stimulus categories and small regions of interest in the brain. By contrast, the present study compares several classification algorithms known as Nearest Neighbor (NN), Gaussian Naïve Bayes (GNB), and (regularized) Linear Discriminant Analysis (LDA) in terms of their classification accuracy in discriminating the global fMRI response patterns evoked by a large number of naturalistic visual stimuli presented as a movie. Results show that LDA regularized by principal component analysis (PCA) achieved high classification accuracies, above 90% on average for single fMRI volumes acquired 2 s apart during a 300 s movie (chance level 0.7% = 2 s/300 s). The largest source of classification errors were autocorrelations in the BOLD signal compounded by the similarity of consecutive stimuli. All classifiers performed best when given input features from a large region of interest comprising around 25% of the voxels that responded significantly to the visual stimulus. Consistent with this, the most informative principal components represented widespread distributions of co-activated brain regions that were similar between subjects and may represent functional networks. In light of these

  15. In vivo high-resolution 7 Tesla MRI shows early and diffuse cortical alterations in CADASIL.

    PubMed

    De Guio, François; Reyes, Sonia; Vignaud, Alexandre; Duering, Marco; Ropele, Stefan; Duchesnay, Edouard; Chabriat, Hugues; Jouvent, Eric

    2014-01-01

    Recent data suggest that early symptoms may be related to cortex alterations in CADASIL (Cerebral Autosomal-Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy), a monogenic model of cerebral small vessel disease (SVD). The aim of this study was to investigate cortical alterations using both high-resolution T2* acquisitions obtained with 7 Tesla MRI and structural T1 images with 3 Tesla MRI in CADASIL patients with no or only mild symptomatology (modified Rankin's scale ≤1 and Mini Mental State Examination (MMSE) ≥24). Complete reconstructions of the cortex using 7 Tesla T2* acquisitions with 0.7 mm isotropic resolution were obtained in 11 patients (52.1±13.2 years, 36% male) and 24 controls (54.8±11.0 years, 42% male). Seven Tesla T2* within the cortex and cortical thickness and morphology obtained from 3 Tesla images were compared between CADASIL and control subjects using general linear models. MMSE, brain volume, cortical thickness and global sulcal morphology did not differ between groups. By contrast, T2* measured by 7 Tesla MRI was significantly increased in frontal, parietal, occipital and cingulate cortices in patients after correction for multiple testing. These changes were not related to white matter lesions, lacunes or microhemorrhages in patients having no brain atrophy compared to controls. Seven Tesla MRI, by contrast to state of the art post-processing of 3 Tesla acquisitions, shows diffuse T2* alterations within the cortical mantle in CADASIL whose origin remains to be determined.

  16. In Vivo High-Resolution 7 Tesla MRI Shows Early and Diffuse Cortical Alterations in CADASIL

    PubMed Central

    De Guio, François; Reyes, Sonia; Vignaud, Alexandre; Duering, Marco; Ropele, Stefan; Duchesnay, Edouard; Chabriat, Hugues; Jouvent, Eric

    2014-01-01

    Background and Purpose Recent data suggest that early symptoms may be related to cortex alterations in CADASIL (Cerebral Autosomal-Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy), a monogenic model of cerebral small vessel disease (SVD). The aim of this study was to investigate cortical alterations using both high-resolution T2* acquisitions obtained with 7 Tesla MRI and structural T1 images with 3 Tesla MRI in CADASIL patients with no or only mild symptomatology (modified Rankin’s scale ≤1 and Mini Mental State Examination (MMSE) ≥24). Methods Complete reconstructions of the cortex using 7 Tesla T2* acquisitions with 0.7 mm isotropic resolution were obtained in 11 patients (52.1±13.2 years, 36% male) and 24 controls (54.8±11.0 years, 42% male). Seven Tesla T2* within the cortex and cortical thickness and morphology obtained from 3 Tesla images were compared between CADASIL and control subjects using general linear models. Results MMSE, brain volume, cortical thickness and global sulcal morphology did not differ between groups. By contrast, T2* measured by 7 Tesla MRI was significantly increased in frontal, parietal, occipital and cingulate cortices in patients after correction for multiple testing. These changes were not related to white matter lesions, lacunes or microhemorrhages in patients having no brain atrophy compared to controls. Conclusions Seven Tesla MRI, by contrast to state of the art post-processing of 3 Tesla acquisitions, shows diffuse T2* alterations within the cortical mantle in CADASIL whose origin remains to be determined. PMID:25165824

  17. Brain responses to facial attractiveness induced by facial proportions: evidence from an fMRI study

    PubMed Central

    Shen, Hui; Chau, Desmond K. P.; Su, Jianpo; Zeng, Ling-Li; Jiang, Weixiong; He, Jufang; Fan, Jintu; Hu, Dewen

    2016-01-01

    Brain responses to facial attractiveness induced by facial proportions are investigated by using functional magnetic resonance imaging (fMRI), in 41 young adults (22 males and 19 females). The subjects underwent fMRI while they were presented with computer-generated, yet realistic face images, which had varying facial proportions, but the same neutral facial expression, baldhead and skin tone, as stimuli. Statistical parametric mapping with parametric modulation was used to explore the brain regions with the response modulated by facial attractiveness ratings (ARs). The results showed significant linear effects of the ARs in the caudate nucleus and the orbitofrontal cortex for all of the subjects, and a non-linear response profile in the right amygdala for only the male subjects. Furthermore, canonical correlation analysis was used to learn the most relevant facial ratios that were best correlated with facial attractiveness. A regression model on the fMRI-derived facial ratio components demonstrated a strong linear relationship between the visually assessed mean ARs and the predictive ARs. Overall, this study provided, for the first time, direct neurophysiologic evidence of the effects of facial ratios on facial attractiveness and suggested that there are notable gender differences in perceiving facial attractiveness as induced by facial proportions. PMID:27779211

  18. Brain responses to facial attractiveness induced by facial proportions: evidence from an fMRI study.

    PubMed

    Shen, Hui; Chau, Desmond K P; Su, Jianpo; Zeng, Ling-Li; Jiang, Weixiong; He, Jufang; Fan, Jintu; Hu, Dewen

    2016-10-25

    Brain responses to facial attractiveness induced by facial proportions are investigated by using functional magnetic resonance imaging (fMRI), in 41 young adults (22 males and 19 females). The subjects underwent fMRI while they were presented with computer-generated, yet realistic face images, which had varying facial proportions, but the same neutral facial expression, baldhead and skin tone, as stimuli. Statistical parametric mapping with parametric modulation was used to explore the brain regions with the response modulated by facial attractiveness ratings (ARs). The results showed significant linear effects of the ARs in the caudate nucleus and the orbitofrontal cortex for all of the subjects, and a non-linear response profile in the right amygdala for only the male subjects. Furthermore, canonical correlation analysis was used to learn the most relevant facial ratios that were best correlated with facial attractiveness. A regression model on the fMRI-derived facial ratio components demonstrated a strong linear relationship between the visually assessed mean ARs and the predictive ARs. Overall, this study provided, for the first time, direct neurophysiologic evidence of the effects of facial ratios on facial attractiveness and suggested that there are notable gender differences in perceiving facial attractiveness as induced by facial proportions.

  19. P300 amplitude variation is related to ventral striatum BOLD response during gain and loss anticipation: an EEG and fMRI experiment.

    PubMed

    Pfabigan, Daniela M; Seidel, Eva-Maria; Sladky, Ronald; Hahn, Andreas; Paul, Katharina; Grahl, Arvina; Küblböck, Martin; Kraus, Christoph; Hummer, Allan; Kranz, Georg S; Windischberger, Christian; Lanzenberger, Rupert; Lamm, Claus

    2014-08-01

    The anticipation of favourable or unfavourable events is a key component in our daily life. However, the temporal dynamics of anticipation processes in relation to brain activation are still not fully understood. A modified version of the monetary incentive delay task was administered during separate functional magnetic resonance imaging (fMRI) and electroencephalogram (EEG) sessions in the same 25 participants to assess anticipatory processes with a multi-modal neuroimaging set-up. During fMRI, gain and loss anticipation were both associated with heightened activation in ventral striatum and reward-related areas. EEG revealed most pronounced P300 amplitudes for gain anticipation, whereas CNV amplitudes distinguished neutral from gain and loss anticipation. Importantly, P300, but not CNV amplitudes, were correlated to neural activation in the ventral striatum for both gain and loss anticipation. Larger P300 amplitudes indicated higher ventral striatum blood oxygen level dependent (BOLD) response. Early stimulus evaluation processes indexed by EEG seem to be positively related to higher activation levels in the ventral striatum, indexed by fMRI, which are usually associated with reward processing. The current results, however, point towards a more general motivational mechanism processing salient stimuli during anticipation. Copyright © 2014. Published by Elsevier Inc.

  20. Global signal modulation of single-trial fMRI response variability: Effect on positive vs negative BOLD response relationship.

    PubMed

    Mayhew, S D; Mullinger, K J; Ostwald, D; Porcaro, C; Bowtell, R; Bagshaw, A P; Francis, S T

    2016-06-01

    In functional magnetic resonance imaging (fMRI), the relationship between positive BOLD responses (PBRs) and negative BOLD responses (NBRs) to stimulation is potentially informative about the balance of excitatory and inhibitory brain responses in sensory cortex. In this study, we performed three separate experiments delivering visual, motor or somatosensory stimulation unilaterally, to one side of the sensory field, to induce PBR and NBR in opposite brain hemispheres. We then assessed the relationship between the evoked amplitudes of contralateral PBR and ipsilateral NBR at the level of both single-trial and average responses. We measure single-trial PBR and NBR peak amplitudes from individual time-courses, and show that they were positively correlated in all experiments. In contrast, in the average response across trials the absolute magnitudes of both PBR and NBR increased with increasing stimulus intensity, resulting in a negative correlation between mean response amplitudes. Subsequent analysis showed that the amplitude of single-trial PBR was positively correlated with the BOLD response across all grey-matter voxels and was not specifically related to the ipsilateral sensory cortical response. We demonstrate that the global component of this single-trial response modulation could be fully explained by voxel-wise vascular reactivity, the BOLD signal standard deviation measured in a separate resting-state scan (resting state fluctuation amplitude, RSFA). However, bilateral positive correlation between PBR and NBR regions remained. We further report that modulations in the global brain fMRI signal cannot fully account for this positive PBR-NBR coupling and conclude that the local sensory network response reflects a combination of superimposed vascular and neuronal signals. More detailed quantification of physiological and noise contributions to the BOLD signal is required to fully understand the trial-by-trial PBR and NBR relationship compared with that of

  1. The selectivity of responses to red-green colour and achromatic contrast in the human visual cortex: an fMRI adaptation study.

    PubMed

    Mullen, Kathy T; Chang, Dorita H F; Hess, Robert F

    2015-12-01

    There is controversy as to how responses to colour in the human brain are organized within the visual pathways. A key issue is whether there are modular pathways that respond selectively to colour or whether there are common neural substrates for both colour and achromatic (Ach) contrast. We used functional magnetic resonance imaging (fMRI) adaptation to investigate the responses of early and extrastriate visual areas to colour and Ach contrast. High-contrast red-green (RG) and Ach sinewave rings (0.5 cycles/degree, 2 Hz) were used as both adapting stimuli and test stimuli in a block design. We found robust adaptation to RG or Ach contrast in all visual areas. Cross-adaptation between RG and Ach contrast occurred in all areas indicating the presence of integrated, colour and Ach responses. Notably, we revealed contrasting trends for the two test stimuli. For the RG test, unselective processing (robust adaptation to both RG and Ach contrast) was most evident in the early visual areas (V1 and V2), but selective responses, revealed as greater adaptation between the same stimuli than cross-adaptation between different stimuli, emerged in the ventral cortex, in V4 and VO in particular. For the Ach test, unselective responses were again most evident in early visual areas but Ach selectivity emerged in the dorsal cortex (V3a and hMT+). Our findings support a strong presence of integrated mechanisms for colour and Ach contrast across the visual hierarchy, with a progression towards selective processing in extrastriate visual areas. © 2015 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  2. Synthesis and characterization of superparamagnetic iron oxide nanoparticles as calcium-responsive MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Xu, Pengfei; Shen, Zhiwei; Zhang, Baolin; Wang, Jun; Wu, Renhua

    2016-12-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) as T2 contrast agents have great potential to sense calcium ion (Ca2+) using magnetic resonance imaging (MRI). Here we prepared calcium-responsive SPIONs for MRI, formed by combining poly(ethylene glycol) (PEG) and polyethylenimine (PEI) coated iron oxide nanoparticle (PEI/PEG-SPIONs) contrast agents with the straightforward calcium-sensing compound EGTA (ethylene glycol tetraacetic acid). EGTA was conjugated onto PEI/PEG-SPIONs using EDC/sulfo-NHS method. EGTA-SPIONs were characterized using TEM, XPS, DSL, TGA and SQUIID. DSL results show that the SPIONs aggregate in the presence of Ca2+. MRI analyses indicate that the water proton T2 relaxation rates in HEPES suspensions of the EGTA-SPIONs significantly increase with the calcium concentration because the SPIONs aggregate in the presence of Ca2+. The T2 values decreased 25% when Ca2+ concentration decreased from 1.2 to 0.8 mM. The aggregation of EGTA-SPIONs could be reversed by EDTA. EGTA-SPIONs have potential as smart contrast agents for Ca2+-sensitive MRI.

  3. Recognition Alters the Spatial Pattern of fMRI Activation in Early Retinotopic Cortex

    PubMed Central

    Vul, E.; Kanwisher, N.

    2010-01-01

    Early retinotopic cortex has traditionally been viewed as containing a veridical representation of the low-level properties of the image, not imbued by high-level interpretation and meaning. Yet several recent results indicate that neural representations in early retinotopic cortex reflect not just the sensory properties of the image, but also the perceived size and brightness of image regions. Here we used functional magnetic resonance imaging pattern analyses to ask whether the representation of an object in early retinotopic cortex changes when the object is recognized compared with when the same stimulus is presented but not recognized. Our data confirmed this hypothesis: the pattern of response in early retinotopic visual cortex to a two-tone “Mooney” image of an object was more similar to the response to the full grayscale photo version of the same image when observers knew what the two-tone image represented than when they did not. Further, in a second experiment, high-level interpretations actually overrode bottom-up stimulus information, such that the pattern of response in early retinotopic cortex to an identified two-tone image was more similar to the response to the photographic version of that stimulus than it was to the response to the identical two-tone image when it was not identified. Our findings are consistent with prior results indicating that perceived size and brightness affect representations in early retinotopic visual cortex and, further, show that even higher-level information—knowledge of object identity—also affects the representation of an object in early retinotopic cortex. PMID:20071627

  4. Reactivity of hemodynamic responses and functional connectivity to different states of alpha synchrony: a concurrent EEG-fMRI study.

    PubMed

    Wu, Lei; Eichele, Tom; Calhoun, Vince D

    2010-10-01

    Concurrent EEG-fMRI studies have provided increasing details of the dynamics of intrinsic brain activity during the resting state. Here, we investigate a prominent effect in EEG during relaxed resting, i.e. the increase of the alpha power when the eyes are closed compared to when the eyes are open. This phenomenon is related to changes in thalamo-cortical and cortico-cortical synchronization. In order to investigate possible changes to EEG-fMRI coupling and fMRI functional connectivity during the two states we adopted a data-driven approach that fuses the multimodal data on the basis of parallel ICA decompositions of the fMRI data in the spatial domain and of the EEG data in the spectral domain. The power variation of a posterior alpha component was used as a reference function to deconvolve the hemodynamic responses from occipital, frontal, temporal, and subcortical fMRI components. Additionally, we computed the functional connectivity between these components. The results showed widespread alpha hemodynamic responses and high functional connectivity during eyes-closed (EC) rest, while eyes open (EO) resting abolished many of the hemodynamic responses and markedly decreased functional connectivity. These data suggest that generation of local hemodynamic responses is highly sensitive to state changes that do not involve changes of mental effort or awareness. They also indicate the localized power differences in posterior alpha between EO and EC in resting state data are accompanied by spatially widespread amplitude changes in hemodynamic responses and inter-regional functional connectivity, i.e. low frequency hemodynamic signals display an equivalent of alpha reactivity. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Perfusion MRI in Early Stage of Legg-Calvé-Perthes Disease to Predict Lateral Pillar Involvement: A Preliminary Study.

    PubMed

    Kim, Harry K W; Wiesman, Kathryn D; Kulkarni, Vedant; Burgess, Jamie; Chen, Elena; Brabham, Case; Ikram, Haseeb; Du, Jerry; Lu, Amanda; Kulkarni, Ashok V; Dempsey, Molly; Herring, J Anthony

    2014-07-16

    Current radiographic classifications for Legg-Calvé-Perthes disease cannot be applied at the early stages of the disease. The purpose of this study was to quantify the perfusion of the femoral epiphysis in the early stages of Legg-Calvé-Perthes disease with use of perfusion magnetic resonance imaging (MRI) and to determine if the extent of epiphyseal perfusion can predict the lateral pillar involvement at the mid-fragmentation stage. Twenty-nine patients had gadolinium-enhanced perfusion MRI at the initial stage or early fragmentation stage of Legg-Calvé-Perthes disease and were followed prospectively. The percent perfusion of the whole epiphysis and its lateral third was measured by four independent observers using image analysis software. The radiographs obtained at the mid-fragmentation stage were used for the lateral pillar classification. Intraclass correlation coefficient (ICC) and logistic regression analyses were performed. The mean age (and standard deviation) at diagnosis was 7.7 ± 1.7 years (range, 5.3 to 11.3 years). The mean interval between the MRI and the time of maximum fragmentation was 8.2 ± 5.5 months. The interobserver ICC for the percent perfusion of the lateral third of the epiphysis was 0.90 (95% confidence interval [CI]: 0.83 to 0.95). The mean percent perfusion of the lateral third of the epiphysis was 92% ± 2%, 68% ± 18%, and 46% ± 12% for the hips in which the lateral pillar was later classified as A, B, and C, respectively (p = 0.001). When the perfusion level was ≥90% in the lateral third of the epiphysis, the odds ratio of the lateral pillar being later classified as group A, as opposed to B or C, was 72.0 (CI: 3.5 to 1476). With a perfusion level of ≤55% in the lateral third of the epiphysis, the odds ratio of the lateral pillar being later classified as group C, as opposed to A or B, was 33.3 (CI: 2.8 to 392). Similar results were obtained for the whole epiphysis. Perfusion MRI measurements of the total epiphysis and its

  6. [MODEL ESTABLISHMENT, MRI AND PATHOLOGICAL FEATURES OF EARLY STEROID-INDUCED AVASCULAR NECROSIS OF FEMORAL HEAD IN RABBIT].

    PubMed

    Zhang, Liyan; Sun, Xin; Tian, Dan; Xu, Rui; Lei, Hao; Al, Jinhui; Zhao, Bo; Chen, Jiying; Chai, Wei; Ma, Shoucheng; Liu, Weijia; Shen, Siyuan

    2015-10-01

    To establish an rabbit model of early steroid-induced avascular necrosis of the femoral head (SANFH) and evaluate its validity with MRI and pathological examination. Twenty 6-month-old rabbits (weighing, 2-3 kg) were randomly divided into 2 groups (control group and model group), 10 rabbits in each group. Dexamethasone sodium phosphate solution (10 mg/kg) was injected into bilateral gluteus in model group, and the same amount of saline was injected in control group, every 3 days for 14 times. General observation was done after modelling. Osteonecrosis was verified by pathological observation and MRI findings at 6 weeks. After 6 weeks, rabbits did not show obvious changes in control group; increased hair removal, decreased food intake, and slight limp were observed in model group. The MRI results showed normal shape of the bilateral femoral head and no abnormal signals in control group; irregular shape of the bilateral femoral head and a slice of irregular abnormal signals were observed, and necrosis and cystolization of the subchondral bone and sparse changes of trabecular bone were shown in model group. General observation from coronal section of femoral head showed smooth red cartilage surface in control group; on the contrary, the cartilage surface of the femoral head became dull, thin even visible hemorrhage under articular cartilage and necrosis of the femoral head were observed. The histopathological examination indicated that trabecular bone of the femoral head in control group was massive, thick, and close and osteocytes in the bone lacunae had normal shapes. The osseous trabecular became thinner and broken; karyopyknosis of osteocytes and bone empty lacunae could be obviously seen in model. group. The rates of empty lacunae were 8.0% ± 0.5% in control group and 49.0% ± 0.3% in model group, showing significant difference (t = 21.940, P = 0.000). Establishing a model of early SANFH through injecting short-term, shock, and high dose of dexamethasone, and it

  7. [Early mobilization. Competencies, responsibilities, milestones].

    PubMed

    Nydahl, P; Dewes, M; Dubb, R; Filipovic, S; Hermes, C; Jüttner, F; Kaltwasser, A; Klarmann, S; Klas, K; Mende, H; Rothaug, O; Schuchhardt, D

    2016-03-01

    Early mobilization is an evident, interprofessional concept to improve the outcome of intensive care patients. It reduces psychocognitive deficits and delirium and attenuates a general deconditioning, including atrophy of the respiratory pump and skeletal muscles. In this regard the interdisciplinary approach of early mobilization, taking into account different levels of mobilization, appears to be beneficial. The purpose of this study was to explore opinions on collaboration and tasks between different professional groups. During the 25th Bremen Conference on Intensive Medicine and Nursing on 20 February 2015, a questionnaire survey was carried out among the 120 participants of the German Early Mobilization Network meeting. In all, 102 questionnaires were analyzed. Most participants reported on the interdisciplinarity of the approach, but none of the tasks and responsibilities concerning early mobilization can be assigned to a single professional group. The practical implementation of mobilizing orally intubated patients may require two registered nurses as well as a physical therapist. Implementation in daily practice seems to be heterogeneous. There is no consensus regarding collaboration, competencies, and responsibilities with respect to early mobilization of intensive care patients. The approach to date has been characterized by a lack of interprofessional communication, which may lead to an inefficient use of the broad and varied base of knowledge and experienceof the different professions.

  8. The neural mechanisms of semantic and response conflicts: an fMRI study of practice-related effects in the Stroop task.

    PubMed

    Chen, Zhencai; Lei, Xu; Ding, Cody; Li, Hong; Chen, Antao

    2013-02-01

    Previous studies have demonstrated that there are separate neural mechanisms underlying semantic and response conflicts in the Stroop task. However, the practice effects of these conflicts need to be elucidated and the possible involvements of common neural mechanisms are yet to be established. We employed functional magnetic resonance imaging (fMRI) in a 4-2 mapping practice-related Stroop task to determine the neural substrates under these conflicts. Results showed that different patterns of brain activations are associated with practice in the attentional networks (e.g., dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex (ACC), and posterior parietal cortex (PPC)) for both conflicts, response control regions (e.g., inferior frontal junction (IFJ), inferior frontal gyrus (IFG)/insula, and pre-supplementary motor areas (pre-SMA)) for semantic conflict, and posterior cortex for response conflict. We also found areas of common activation in the left hemisphere within the attentional networks, for the early practice stage in semantic conflict and the late stage in "pure" response conflict using conjunction analysis. The different practice effects indicate that there are distinct mechanisms underlying these two conflict types: semantic conflict practice effects are attributable to the automation of stimulus processing, conflict and response control; response conflict practice effects are attributable to the proportional increase of conflict-related cognitive resources. In addition, the areas of common activation suggest that the semantic conflict effect may contain a partial response conflict effect, particularly at the beginning of the task. These findings indicate that there are two kinds of response conflicts contained in the key-pressing Stroop task: the vocal-level (mainly in the early stage) and key-pressing (mainly in the late stage) response conflicts; thus, the use of the subtraction method for the exploration of semantic and response conflicts

  9. MRI Correlates of Disability in African-Americans with Multiple Sclerosis

    PubMed Central

    Howard, Jonathan; Battaglini, Marco; Babb, James Scott; Arienzo, Donatello; Holst, Brigitte; Omari, Mirza; De Stefano, Nicola; Herbert, Joseph; Inglese, Matilde

    2012-01-01

    Objectives Multiple sclerosis (MS) in African-Americans (AAs) is characterized by more rapid disease progression and poorer response to treatment than in Caucasian-Americans (CAs). MRI provides useful and non-invasive tools to investigate the pathological substrate of clinical progression. The aim of our study was to compare MRI measures of brain damage between AAs and CAs with MS. Methods Retrospective analysis of 97 AAs and 97 CAs with MS matched for age, gender, disease duration and age at MRI examination. Results AA patients had significantly greater T2- (p = 0.001) and T1-weighted (p = 0.0003) lesion volumes compared to CA patients. In contrast, measurements of global and regional brain volume did not significantly differ between the two ethnic groups (p>0.1). Conclusions By studying a quite large sample of well demographically and clinically matched CA and AA patients with a homogeneous MRI protocol we showed that higher lesion accumulation, rather than pronounced brain volume decrease might explain the early progress to ambulatory assistance of AAs with MS. PMID:22900088

  10. Diffusion fMRI detects white-matter dysfunction in mice with acute optic neuritis

    PubMed Central

    Lin, Tsen-Hsuan; Spees, William M.; Chiang, Chia-Wen; Trinkaus, Kathryn; Cross, Anne H.; Song, Sheng-Kwei

    2014-01-01

    Optic neuritis is a frequent and early symptom of multiple sclerosis (MS). Conventional magnetic resonance (MR) techniques provide means to assess multiple MS-related pathologies, including axonal injury, demyelination, and inflammation. A method to directly and non-invasively probe white-matter function could further elucidate the interplay of underlying pathologies and functional impairments. Previously, we demonstrated a significant 27% activation-associated decrease in the apparent diffusion coefficient of water perpendicular to the axonal fibers (ADC⊥) in normal C57BL/6 mouse optic nerve with visual stimulation using diffusion fMRI. Here we apply this approach to explore the relationship between visual acuity, optic nerve pathology, and diffusion fMRI in the experimental autoimmune encephalomyelitis (EAE) mouse model of optic neuritis. Visual stimulation produced a significant 25% (vs. baseline) ADC⊥ decrease in sham EAE optic nerves, while only a 7% (vs. baseline) ADC⊥ decrease was seen in EAE mice with acute optic neuritis. The reduced activation-associated ADC⊥ response correlated with post-MRI immunohistochemistry determined pathologies (including inflammation, demyelination, and axonal injury). The negative correlation between activation-associated ADC⊥ response and visual acuity was also found when pooling EAE-affected and sham groups under our experimental criteria. Results suggest that reduction in diffusion fMRI directly reflects impaired axonal-activation in EAE mice with optic neuritis. Diffusion fMRI holds promise for directly gauging in vivo white-matter dysfunction or therapeutic responses in MS patients. PMID:24632420

  11. Portable MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espy, Michelle A.

    This project proposes to: (1) provide the power of MRI to situations where it presently isn't available; (2) perform the engineering required to move from lab to a functional prototype; and (3) leverage significant existing infrastructure and capability in ultra-low field MRI. The reasons for doing this: (1) MRI is the most powerful tool for imaging soft-tissue (e.g. brain); (2) Billions don't have access due to cost or safety issues; (3) metal will heat/move in high magnetic fields; (4) Millions of cases of traumatic brain injury in US alone; (5) even more of non-traumatic brain injury; (6) (e.g. stroke, infection,more » chemical exposure); (7) Need for early diagnostic; (8) 'Signature' wound of recent conflicts; (9) 22% of injuries; (10) Implications for post-traumatic stress disorder; and (11) chronic traumatic encephalopathy.« less

  12. Neural correlates of audiotactile phonetic processing in early-blind readers: an fMRI study.

    PubMed

    Pishnamazi, Morteza; Nojaba, Yasaman; Ganjgahi, Habib; Amousoltani, Asie; Oghabian, Mohammad Ali

    2016-05-01

    Reading is a multisensory function that relies on arbitrary associations between auditory speech sounds and symbols from a second modality. Studies of bimodal phonetic perception have mostly investigated the integration of visual letters and speech sounds. Blind readers perform an analogous task by using tactile Braille letters instead of visual letters. The neural underpinnings of audiotactile phonetic processing have not been studied before. We used functional magnetic resonance imaging to reveal the neural correlates of audiotactile phonetic processing in 16 early-blind Braille readers. Braille letters and corresponding speech sounds were presented in unimodal, and congruent/incongruent bimodal configurations. We also used a behavioral task to measure the speed of blind readers in identifying letters presented via tactile and/or auditory modalities. Reaction times for tactile stimuli were faster. The reaction times for bimodal stimuli were equal to those for the slower auditory-only stimuli. fMRI analyses revealed the convergence of unimodal auditory and unimodal tactile responses in areas of the right precentral gyrus and bilateral crus I of the cerebellum. The left and right planum temporale fulfilled the 'max criterion' for bimodal integration, but activities of these areas were not sensitive to the phonetical congruency between sounds and Braille letters. Nevertheless, congruency effects were found in regions of frontal lobe and cerebellum. Our findings suggest that, unlike sighted readers who are assumed to have amodal phonetic representations, blind readers probably process letters and sounds separately. We discuss that this distinction might be due to mal-development of multisensory neural circuits in early blinds or it might be due to inherent differences between Braille and print reading mechanisms.

  13. Age-related differences in memory-encoding fMRI responses after accounting for decline in vascular reactivity

    PubMed Central

    Liu, Peiying; Hebrank, Andrew C.; Rodrigue, Karen M.; Kennedy, Kristen M.; Section, Jarren; Park, Denise C.; Lu, Hanzhang

    2013-01-01

    BOLD fMRI has provided a wealth of information about the aging brain. A common finding is that posterior regions of the brain manifest an age-related decrease in activation while the anterior regions show an age-related increase. Several neurocognitive models have been proposed to interpret these findings. However, one issue that has not been sufficiently considered to date is that the BOLD signal is based on vascular responses secondary to neural activity. Thus the above findings could be in part due to a vascular change, especially in view of the expected decline of vascular health with age. In the present study, we aim to examine age-related differences in memory-encoding fMRI response in the context of vascular aging. One hundred and thirty healthy subjects ranging from 20 to 89 years old underwent a scene-viewing fMRI task and, in the same session, cerebrovascular reactivity (CVR) was measured in each subject using a CO2-inhalation task. Without accounting for the influence of vascular changes, the task-activated fMRI signal showed the typical age-related decrease in visual cortex and medial temporal lobe (MTL), but manifested an increase in the right inferior frontal gyrus (IFG). In the same individuals, an age-related CVR reduction was observed in all of these regions. We then used a previously proposed normalization approach to calculate a CVR-corrected fMRI signal, which was defined as the uncorrected signal divided by CVR. Based on the CVR-corrected fMRI signal, an age-related increase is now seen in both the left and right side of IFG; and no brain regions showed a signal decrease with age. We additionally used a model-based approach to examine the fMRI data in the context of CVR, which again suggested an age-related change in the two frontal regions, but not in the visual and MTL regions. PMID:23624491

  14. Variability comparison of simultaneous brain near-infrared spectroscopy (NIRS) and functional MRI (fMRI) during visual stimulation

    PubMed Central

    Minati, Ludovico; Visani, Elisa; Dowell, Nick G; Medford, Nick; Critchley, Hugo D

    2011-01-01

    Brain near-infrared spectroscopy (NIRS) is emerging as a potential alternative to functional MRI (fMRI). To date, no study has explicitly compared the two techniques in terms of measurement variability, a key parameter dictating attainable statistical power. Here, NIRS and fMRI were simultaneously recorded during event-related visual stimulation. Inter-subject coefficients of variation (CVs) for peak response amplitude were considerably larger for NIRS than fMRI, but inter-subject CVs for response latency and intra-subject CVs for response amplitude were overall comparable. Our results may represent an optimistic estimate of the CVs of NIRS measurements, as optode positioning was guided by structural MRI, which is normally unavailable. We conclude that fMRI may be preferable to NIRS for group comparisons, but NIRS is equally powerful when comparing conditions within participants. The discrepancy between inter- and intra-subject CVs is likely related to variability in head anatomy and tissue properties which may be better accounted for by emerging NIRS technology. PMID:21780948

  15. Longitudinal MRI Study of Cortical Development through Early Childhood in Autism

    PubMed Central

    Schumann, C.M.; Bloss, C.S.; Barnes, C. Carter; Wideman, G.M.; Carper, R.A.; Akshoomoff, N.; Pierce, K.; Hagler, D.; Schork, N.; Lord, C.; Courchesne, E.

    2010-01-01

    Cross-sectional MRI studies have long hypothesized that the brain in children with autism undergoes an abnormal growth trajectory that includes a period of early overgrowth; however this has never been confirmed by a longitudinal study. We carried out the first longitudinal study of brain growth in toddlers at the time symptoms of autism are becoming clinically apparent utilizing structural MRI scans at multiple time points beginning at 1.5 years up to 5 years of age. We collected 193 scans on 41 toddlers who received a confirmed diagnosis of Autistic Disorder at ~48 months of age and 44 typically developing controls. By 2.5 years of age, both cerebral gray and white matter was significantly enlarged in toddlers with Autistic Disorder, with the most severe enlargement occurring in frontal, temporal and cingulate cortices. In the longitudinal analyses, which we accounted for age and gender effect, we found that all regions (cerebral gray, cerebral white, frontal gray, temporal gray, cingulate gray, and parietal gray) except occipital gray developed at an abnormal growth rate in toddlers with Autistic Disorder that was mainly characterized by a quadratic age effect. Females with Autistic Disorder displayed a more pronounced abnormal growth profile in more brain regions than males with the disorder. Given that overgrowth clearly begins before 2 years of age, future longitudinal studies would benefit from inclusion of even younger populations as well as further characterization of genetic and other biomarkers in order to determine the underlying neuropathological processes causing the onset of autistic symptoms. PMID:20335478

  16. Differential Effects of Anaesthesia on the phMRI Response to Acute Ketamine Challenge

    PubMed Central

    Hodkinson, Duncan J.; de Groote, Carmen; McKie, Shane; Deakin, J. F. William; Williams, Steve R.

    2012-01-01

    Aims Pharmacological-challenge magnetic resonance imaging (phMRI) is powerful new tool enabling researchers to map the central effects of neuroactive drugs in vivo. To employ this technique pre-clinically, head movements and the stress of restraint are usually reduced by maintaining animals under general anaesthesia. However, interactions between the drug of interest and the anaesthetic employed may potentially confound data interpretation. NMDA receptor (NMDAR) antagonists used widely to mimic schizophrenia have recently been shown to interact with the anaesthetic halothane. It may be the case that neural and cerebrovascular responses to NMDAR antagonists are dependent on the types of anaesthetic used. Methodology We compared the phMRI response to NMDAR antagonist ketamine in rats maintained under α-chloralose to those under isoflurane anaesthesia. A randomized placebo/vehicle controlled design was used in each of the anaesthetic groups. Results Changes in the anaesthetic agent resulted in two very different profiles of activity. In the case of α-chloralose, positive activations in cortical and sub-cortical structures reflected a response which was similar to patterns seen in healthy human volunteers and metabolic maps of conscious rats. However, the use of isoflurane completely reversed such effects, causing widespread deactivations in the cortex and hippocampus. Conclusion This study provides initial evidence for a drug-anesthetic interaction between ketamine and isoflurane that is very different from responses to α-chloralose-ketamine. PMID:22737655

  17. Adaptive Changes in Early and Late Blind: A fMRI Study of Verb Generation to Heard Nouns

    PubMed Central

    BURTON, H.; SNYDER, A. Z.; DIAMOND, J. B.; RAICHLE, M. E.

    2013-01-01

    Literacy for blind people requires learning Braille. Along with others, we have shown that reading Braille activates visual cortex. This includes striate cortex (V1), i.e., banks of calcarine sulcus, and several higher visual areas in lingual, fusiform, cuneus, lateral occipital, inferior temporal, and middle temporal gyri. The spatial extent and magnitude of magnetic resonance (MR) signals in visual cortex is greatest for those who became blind early in life. Individuals who lost sight as adults, and subsequently learned Braille, still exhibited activity in some of the same visual cortex regions, especially V1. These findings suggest these visual cortex regions become adapted to processing tactile information and that this cross-modal neural change might support Braille literacy. Here we tested the alternative hypothesis that these regions directly respond to linguistic aspects of a task. Accordingly, language task performance by blind persons should activate the same visual cortex regions regardless of input modality. Specifically, visual cortex activity in blind people ought to arise during a language task involving heard words. Eight early blind, six late blind, and eight sighted subjects were studied using functional magnetic resonance imaging (fMRI) during covert generation of verbs to heard nouns. The control task was passive listening to indecipherable sounds (reverse words) matched to the nouns in sound intensity, duration, and spectral content. Functional responses were analyzed at the level of individual subjects using methods based on the general linear model and at the group level, using voxel based ANOVA and t-test analyses. Blind and sighted subjects showed comparable activation of language areas in left inferior frontal, dorsolateral prefrontal, and left posterior superior temporal gyri. The main distinction was bilateral, left dominant activation of the same visual cortex regions previously noted with Braille reading in all blind subjects. The

  18. Changes in multimodality functional imaging parameters early during chemoradiation predict treatment response in patients with locally advanced head and neck cancer.

    PubMed

    Wong, Kee H; Panek, Rafal; Dunlop, Alex; Mcquaid, Dualta; Riddell, Angela; Welsh, Liam C; Murray, Iain; Koh, Dow-Mu; Leach, Martin O; Bhide, Shreerang A; Nutting, Christopher M; Oyen, Wim J; Harrington, Kevin J; Newbold, Kate L

    2018-05-01

    To assess the optimal timing and predictive value of early intra-treatment changes in multimodality functional and molecular imaging (FMI) parameters as biomarkers for clinical remission in patients receiving chemoradiation for head and neck squamous cell carcinoma (HNSCC). Thirty-five patients with stage III-IVb (AJCC 7th edition) HNSCC prospectively underwent 18 F-FDG-PET/CT, and diffusion-weighted (DW), dynamic contrast-enhanced (DCE) and susceptibility-weighted MRI at baseline, week 1 and week 2 of chemoradiation. Patients with evidence of persistent or recurrent disease during follow-up were classed as non-responders. Changes in FMI parameters at week 1 and week 2 were compared between responders and non-responders with the Mann-Whitney U test. The significance threshold was set at a p value of <0.05. There were 27 responders and 8 non-responders. Responders showed a greater reduction in PET-derived tumor total lesion glycolysis (TLG 40% ; p = 0.007) and maximum standardized uptake value (SUV max ; p = 0.034) after week 1 than non-responders but these differences were absent by week 2. In contrast, it was not until week 2 that MRI-derived parameters were able to discriminate between the two groups: larger fractional increases in primary tumor apparent diffusion coefficient (ADC; p < 0.001), volume transfer constant (K trans ; p = 0.012) and interstitial space volume fraction (V e ; p = 0.047) were observed in responders versus non-responders. ADC was the most powerful predictor (∆ >17%, AUC 0.937). Early intra-treatment changes in FDG-PET, DW and DCE MRI-derived parameters are predictive of ultimate response to chemoradiation in HNSCC. However, the optimal timing for assessment with FDG-PET parameters (week 1) differed from MRI parameters (week 2). This highlighted the importance of scanning time points for the design of FMI risk-stratified interventional studies.

  19. The hepatocyte phase of Gd-EOB-DTPA-enhanced MRI in the evaluation of hepatic fibrosis and early liver cirrhosis in a rat model: an experimental study.

    PubMed

    Ma, Chunmei; Liu, Ailian; Wang, Yuanyuan; Geng, Xiaoling; Hao, Li; Song, Qingwei; Sun, Bo; Wang, Heqing; Zhao, Gang

    2014-07-17

    To evaluate the hepatocyte phase of Gd-EOB-DTPA-enhanced MRI in the early diagnosis of hepatic fibrosis and cirrhosis and assessment of liver function in a rat model. In 2 groups of SD rats, liver fibrosis was induced in experimental animals by repetitive carbon tetrachloride injections, while the control group received saline injections. Five experimental rats and 2 control rats were randomly selected at weeks 4, 8, 12. One week after carbon tetrachloride administration, MRI (FIRM T1WI) scan was performed. Gd-EOB-DTPA (0.08mL) was injected into the rat's tail vein and hepatocyte phase images were obtained after 20min. The pre-enhanced phase and hepatocyte phase signal intensities (SI) were measured, and the relative contrast enhancement index (RCEI) was calculated. ANOVA analysis (LSD) of RCEI values in controls (n=6), hepatic fibrosis (n=7), and histopathologically-determined early cirrhosis group (n=6) was performed. RECI values showed a decreasing trend in the control group, hepatic fibrosis and early cirrhosis groups (1.11±0.43, 0.96±0.22, and 0.57±0.33, respectively). While the difference between the control and early cirrhosis groups was statistically significant (p=0.013), there was no significant difference in the hepatic fibrosis group vs the control (p=0.416) and the hepatic fibrosis group vs the early cirrhosis group (p=0.054). Hepatocyte phase RCEI values obtained with Gd-EOB-DTPA-enhanced MRI scan indicate liver injury in hepatic fibrosis and early cirrhosis. RCEI values are helpful for early diagnosis of liver cirrhosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Cortical processing of pitch: Model-based encoding and decoding of auditory fMRI responses to real-life sounds.

    PubMed

    De Angelis, Vittoria; De Martino, Federico; Moerel, Michelle; Santoro, Roberta; Hausfeld, Lars; Formisano, Elia

    2017-11-13

    Pitch is a perceptual attribute related to the fundamental frequency (or periodicity) of a sound. So far, the cortical processing of pitch has been investigated mostly using synthetic sounds. However, the complex harmonic structure of natural sounds may require different mechanisms for the extraction and analysis of pitch. This study investigated the neural representation of pitch in human auditory cortex using model-based encoding and decoding analyses of high field (7 T) functional magnetic resonance imaging (fMRI) data collected while participants listened to a wide range of real-life sounds. Specifically, we modeled the fMRI responses as a function of the sounds' perceived pitch height and salience (related to the fundamental frequency and the harmonic structure respectively), which we estimated with a computational algorithm of pitch extraction (de Cheveigné and Kawahara, 2002). First, using single-voxel fMRI encoding, we identified a pitch-coding region in the antero-lateral Heschl's gyrus (HG) and adjacent superior temporal gyrus (STG). In these regions, the pitch representation model combining height and salience predicted the fMRI responses comparatively better than other models of acoustic processing and, in the right hemisphere, better than pitch representations based on height/salience alone. Second, we assessed with model-based decoding that multi-voxel response patterns of the identified regions are more informative of perceived pitch than the remainder of the auditory cortex. Further multivariate analyses showed that complementing a multi-resolution spectro-temporal sound representation with pitch produces a small but significant improvement to the decoding of complex sounds from fMRI response patterns. In sum, this work extends model-based fMRI encoding and decoding methods - previously employed to examine the representation and processing of acoustic sound features in the human auditory system - to the representation and processing of a relevant

  1. TU-AB-BRA-07: Distortion-Free 3D Diffusion MRI On An MRI-Guided Radiotherapy System for Longitudinal Tumor Response Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Y; Yang, Y; Rangwala, N

    Purpose: To develop a reliable, 3D distortion-free diffusion MRI technique for longitudinal tumor response assessment and MRI-guided adaptive radiotherapy(RT). Methods: A diffusion prepared 3D turbo spin echo readout (DP-TSE) sequence was developed and compared with the conventional diffusion-weighted single-shot echo-planar-imaging (DW-ssEPI) sequence in a commercially available diffusion phantom, and one head-and-neck and one brain cancer patient on an MRI-guided RT system (ViewRay). In phantom study, the geometric fidelity was quantified as the ratio between the left-right (RL) and anterior-posterior (AP) dimension. Ten slices were measured on DP-TSE, DW-ssEPI and standard TSE images where the later was used as the geometricmore » reference. ADC accuracy was verified at both 0°C (reference ADC available) and room temperature with a range of diffusivity between 0.35 and 2.0*10{sup −3}mm{sup 2}/s. The ADC reproducibility was assessed based on 8 room-temperature measurements on 6 different days. In the pilot single-slice in-vivo study, CT images were used as the geometric reference, and ADC maps from both diffusion sequences were compared. Results: Distortion and susceptive-related artifact were severe in DW-ssEPI, with significantly lower RL/AP ratio (0.9579±0.0163) than DP-TSE (0.9990±0.0031) and TSE (0.9995±0.0031). ADCs from the two diffusion sequences both matched well with the vendor-provided values at 0°C; however DW-ssEPI fails to provide accurate ADC for high diffusivity vials at room temperature due to high noise level (10 times higher than DP-TSE). The DP-TSE sequence had excellent ADC reproducibility with <4% ADC variation among 8 separate measurements. In patient study, DP-TSE exhibited substantially improved geometric reliability. ROI analysis in ADC maps generated from DP-TSE and DW-ssEPI showed <5% difference where high b-value images were excluded from the latter approach due to excessive noise level. Conclusion: A diffusion MRI sequence

  2. The role of beta-arrestin2 in shaping fMRI BOLD responses to dopaminergic stimulation.

    PubMed

    Sahlholm, Kristoffer; Ielacqua, Giovanna D; Xu, Jinbin; Jones, Lynne A; Schlegel, Felix; Mach, Robert H; Rudin, Markus; Schroeter, Aileen

    2017-07-01

    The dopamine D 2 receptor (D 2 R) couples to inhibitory G i/o proteins and is targeted by antipsychotic and antiparkinsonian drugs. Beta-arrestin2 binds to the intracellular regions of the agonist-occupied D 2 R to terminate G protein activation and promote internalization, but also to initiate downstream signaling cascades which have been implicated in psychosis. Functional magnetic resonance imaging (fMRI) has proven valuable for measuring dopamine receptor-mediated changes in neuronal activity, and might enable beta-arrestin2 function to be studied in vivo. The present study examined fMRI blood oxygenation level dependent (BOLD) signal changes elicited by a dopamine agonist in wild-type (WT) and beta-arrestin2 knockout (KO) mice, to investigate whether genetic deletion of beta-arrestin2 prolongs or otherwise modifies D 2 R-dependent responses. fMRI BOLD data were acquired on a 9.4 T system. During scans, animals received 0.2 mg/kg apomorphine, i.v. In a subset of experiments, animals were pretreated with 2 mg/kg of the D 2 R antagonist, eticlopride. Following apomorphine administration, BOLD signal decreases were observed in caudate/putamen of WT and KO animals. The time course of response decay in caudate/putamen was significantly slower in KO vs. WT animals. In cingulate cortex, an initial BOLD signal decrease was followed by a positive response component in WT but not in KO animals. Eticlopride pretreatment significantly reduced apomorphine-induced BOLD signal changes. The prolonged striatal response decay rates in KO animals might reflect impaired D 2 R desensitization, consistent with the known function of beta-arrestin2. Furthermore, the apomorphine-induced positive response component in cingulate cortex may depend on beta-arrestin2 signaling downstream of D 2 R.

  3. Alterations of functional connectivities from early to middle adulthood: Clues from multivariate pattern analysis of resting-state fMRI data.

    PubMed

    Tian, Lixia; Ma, Lin; Wang, Linlin

    2016-04-01

    In contrast to extended research interests in the maturation and aging of human brain, alterations of brain structure and function from early to middle adulthood have been much less studied. The aim of the present study was to investigate the extent and pattern of the alterations of functional interactions between brain regions from early to middle adulthood. We carried out the study by multivariate pattern analysis of resting-state fMRI (RS-fMRI) data of 63 adults aged 18 to 45 years. Specifically, using elastic net, we performed brain age estimation and age-group classification (young adults aged 18-28 years vs. middle-aged adults aged 35-45 years) based on the resting-state functional connectivities (RSFCs) between 160 regions of interest (ROIs) evaluated on the RS-fMRI data of each subject. The results indicate that the estimated brain ages were significantly correlated with the chronological age (R=0.78, MAE=4.81), and a classification rate of 94.44% and area under the receiver operating characteristic curve (AUC) of 0.99 were obtained when classifying the young and middle-aged adults. These results provide strong evidence that functional interactions between brain regions undergo notable alterations from early to middle adulthood. By analyzing the RSFCs that contribute to brain age estimation/age-group classification, we found that a majority of the RSFCs were inter-network, and we speculate that inter-network RSFCs might mature late but age early as compared to intra-network ones. In addition, the strengthening/weakening of the RSFCs associated with the left/right hemispheric ROIs, the weakening of cortico-cerebellar RSFCs and the strengthening of the RSFCs between the default mode network and other networks contributed much to both brain age estimation and age-group classification. All these alterations might reflect that aging of brain function is already in progress in middle adulthood. Overall, the present study indicated that the RSFCs undergo notable

  4. Effects of prenatal marijuana on response inhibition: an fMRI study of young adults.

    PubMed

    Smith, Andra M; Fried, Peter A; Hogan, Matthew J; Cameron, Ian

    2004-01-01

    The neurophysiological effects of prenatal marijuana exposure on response inhibition were assessed in 18- to 22-year-olds. Thirty-one participants from the Ottawa Prenatal Prospective Study (OPPS) performed a blocked design Go/No-Go task while neural activity was imaged with functional magnetic resonance imaging (fMRI). The OPPS is a longitudinal study that provides a unique body of information collected from each participant over 20 years, including prenatal drug history, detailed cognitive/behavioral performance from infancy to young adulthood, and current and past drug usage. The fMRI results showed that with increased prenatal marijuana exposure, there was a significant increase in neural activity in bilateral prefrontal cortex and right premotor cortex during response inhibition. There was also an attenuation of activity in left cerebellum with increased prenatal exposure to marijuana when challenging the response inhibition neural circuitry. Prenatally exposed offspring had significantly more commission errors than nonexposed participants, but all participants were able to perform the task with more than 85% accuracy. These findings were observed when controlling for present marijuana use and prenatal exposure to nicotine, alcohol and caffeine, and suggest that prenatal marijuana exposure is related to changes in neural activity during response inhibition that last into young adulthood. Copyright 2004 Elsevier Inc.

  5. Multivariate analysis of fMRI time series: classification and regression of brain responses using machine learning.

    PubMed

    Formisano, Elia; De Martino, Federico; Valente, Giancarlo

    2008-09-01

    Machine learning and pattern recognition techniques are being increasingly employed in functional magnetic resonance imaging (fMRI) data analysis. By taking into account the full spatial pattern of brain activity measured simultaneously at many locations, these methods allow detecting subtle, non-strictly localized effects that may remain invisible to the conventional analysis with univariate statistical methods. In typical fMRI applications, pattern recognition algorithms "learn" a functional relationship between brain response patterns and a perceptual, cognitive or behavioral state of a subject expressed in terms of a label, which may assume discrete (classification) or continuous (regression) values. This learned functional relationship is then used to predict the unseen labels from a new data set ("brain reading"). In this article, we describe the mathematical foundations of machine learning applications in fMRI. We focus on two methods, support vector machines and relevance vector machines, which are respectively suited for the classification and regression of fMRI patterns. Furthermore, by means of several examples and applications, we illustrate and discuss the methodological challenges of using machine learning algorithms in the context of fMRI data analysis.

  6. A decomposition model and voxel selection framework for fMRI analysis to predict neural response of visual stimuli.

    PubMed

    Raut, Savita V; Yadav, Dinkar M

    2018-03-28

    This paper presents an fMRI signal analysis methodology using geometric mean curve decomposition (GMCD) and mutual information-based voxel selection framework. Previously, the fMRI signal analysis has been conducted using empirical mean curve decomposition (EMCD) model and voxel selection on raw fMRI signal. The erstwhile methodology loses frequency component, while the latter methodology suffers from signal redundancy. Both challenges are addressed by our methodology in which the frequency component is considered by decomposing the raw fMRI signal using geometric mean rather than arithmetic mean and the voxels are selected from EMCD signal using GMCD components, rather than raw fMRI signal. The proposed methodologies are adopted for predicting the neural response. Experimentations are conducted in the openly available fMRI data of six subjects, and comparisons are made with existing decomposition models and voxel selection frameworks. Subsequently, the effect of degree of selected voxels and the selection constraints are analyzed. The comparative results and the analysis demonstrate the superiority and the reliability of the proposed methodology.

  7. A comparison of functional magnetic resonance imaging findings in children with and without a history of early exposure to general anesthesia.

    PubMed

    Taghon, Thomas A; Masunga, Abigail N; Small, Robert H; Kashou, Nasser H

    2015-03-01

    Functional magnetic resonance imaging (fMRI) has been used to evaluate the long-term consequences of early exposure to neurotoxic agents. fMRI shows that different patterns of brain activation occur in ethanol-exposed subjects performing a go/no-go response inhibition task. Pharmacologically, ethanol and general anesthetics have similar receptor-level activity in the brain. This study utilizes fMRI to examine brain activation patterns in children exposed to general anesthesia and surgery during early brain development. After obtaining Nationwide Children's Hospital IRB approval, a surgical database was utilized to identify children aged 10-17 years with a history of at least 1 h of exposure to general anesthetics and surgery when they were between 0 and 24 months of age. Age- and gender-matched children without anesthesia exposure were recruited as a control group. All subjects were scanned while being presented with a go/no-go response inhibition task. Reaction time and accuracy data were acquired, and the blood-oxygen-level-dependent (BOLD) fMRI signal was measured as a biomarker for regional neuronal activity. There were no differences in terms of performance accuracy and response time. The analysis did not reveal any significant activation differences in the primary region of interest (prefrontal cortex and caudate nucleus); however, activation differences were seen in other structures, including the cerebellum, cingulate gyrus, and paracentral lobule. Early anesthetic exposure and surgery did not affect accuracy, response time, or activation patterns in the primary region of interest during performance of the task. Intergroup differences in activation patterns in other areas of the brain were observed, and the significance of these findings is unknown. fMRI appears to be a useful tool in evaluating the long-term effects of early exposure to general anesthesia. © 2015 John Wiley & Sons Ltd.

  8. Evaluation of treatment response and resistance in metastatic renal cell cancer (mRCC) using integrated 18F-Fluorodeoxyglucose (18F-FDG) positron emission tomography/magnetic resonance imaging (PET/MRI); The REMAP study.

    PubMed

    Kelly-Morland, Christian; Rudman, Sarah; Nathan, Paul; Mallett, Susan; Montana, Giovanni; Cook, Gary; Goh, Vicky

    2017-06-02

    categorisation. The REMAP study will demonstrate the ability of integrated 18 F-FDG PET-MRI to provide a more personalised approach to therapy. We suggest that 18 F-FDG PET/MRI will provide superior sensitivity and specificity in early response/non-response categorisation when compared to standard CT (using RECIST 1.1 and alternative (modified)Choi or MASS criteria) thus facilitating more timely and better informed treatment decisions. The trial is approved by the Southeast London Research Ethics Committee reference 16/LO/1499 and registered on the NIHR clinical research network portfolio ISRCTN12114913 .

  9. Role of New Functional MRI Techniques in the Diagnosis, Staging, and Followup of Gynecological Cancer: Comparison with PET-CT

    PubMed Central

    Alvarez Moreno, Elena; Jimenez de la Peña, Mar; Cano Alonso, Raquel

    2012-01-01

    Recent developments in diagnostic imaging techniques have magnified the role and potential of both MRI and PET-CT in female pelvic imaging. This article reviews the techniques and clinical applications of new functional MRI (fMRI) including diffusion-weighted MRI (DWI), dynamic contrast-enhanced (DCE)-MRI, comparing with PET-CT. These new emerging provide not only anatomic but also functional imaging, allowing detection of small volumes of active tumor at diagnosis and early disease relapse, which may not result in detectable morphological changes at conventional imaging. This information is useful in distinguishing between recurrent/residual tumor and post-treatment changes and assessing treatment response, with a clear impact on patient management. Both PET-CT and now fMRI have proved to be very valuable tools for evaluation of gynecologic tumors. Most papers try to compare these techniques, but in our experience both are complementary in management of these patients. Meanwhile PET-CT is superior in diagnosis of ganglionar disease; fMRI presents higher accuracy in local preoperative staging. Both techniques can be used as biomarkers of tumor response and present high accuracy in diagnosis of local recurrence and peritoneal dissemination, with complementary roles depending on histological type, anatomic location and tumoral volume. PMID:22315683

  10. The specificity of neural responses to music and their relation to voice processing: an fMRI-adaptation study.

    PubMed

    Armony, Jorge L; Aubé, William; Angulo-Perkins, Arafat; Peretz, Isabelle; Concha, Luis

    2015-04-23

    Several studies have identified, using functional magnetic resonance imaging (fMRI), a region within the superior temporal gyrus that preferentially responds to musical stimuli. However, in most cases, significant responses to other complex stimuli, particularly human voice, were also observed. Thus, it remains unknown if the same neurons respond to both stimulus types, albeit with different strengths, or whether the responses observed with fMRI are generated by distinct, overlapping neural populations. To address this question, we conducted an fMRI experiment in which short music excerpts and human vocalizations were presented in a pseudo-random order. Critically, we performed an adaptation-based analysis in which responses to the stimuli were analyzed taking into account the category of the preceding stimulus. Our results confirm the presence of a region in the anterior STG that responds more strongly to music than voice. Moreover, we found a music-specific adaptation effect in this area, consistent with the existence of music-preferred neurons. Lack of differences between musicians and non-musicians argues against an expertise effect. These findings provide further support for neural separability between music and speech within the temporal lobe. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Early MRI Detection and Closed Bone Graft Epiphysiodesis May Alter the Course of Avascular Necrosis Following Unstable Slipped Capital Femoral Epiphysis.

    PubMed

    Napora, Joshua K; Gilmore, Allison; Son-Hing, Jochen P; Grimberg, Dominic C; Thompson, George H; Liu, Raymond W

    2018-04-01

    Unstable slipped capital femoral epiphysis (SCFE) has an increased incidence of avascular necrosis (AVN). Early identification and surgical intervention for AVN may help preserve the femoral head. We retrospectively reviewed 48 patients (50 hips) with unstable SCFE managed between 2000 and 2014. AVN was diagnosed based on 2 different postoperative protocols. Seventeen patients (17 hips) had a scheduled magnetic resonance imaging (MRI) between 1 and 6 months from initial surgery, and the remaining 31 patients (33 hips) were evaluated by plain radiographs alone. If AVN was diagnosed, we offered core decompression and closed bone graft epiphysiodesis (CBGE) to mitigate its affects. At final follow-up, we assessed progression of AVN using the Steinberg classification. Overall 13 hips (26%) with unstable SCFEs developed AVN. MRI revealed AVN in 7 of 17 hips (41%) at a mean of 2.5 months postoperatively (range, 1.0 to 5.2 mo). Six hips diagnosed by MRI received surgical intervention (4 CBGE, 1 free vascularized fibula graft, and 1 repinning due to screw cutout) at a mean of 4.1 months (range, 1.3 to 7.2 mo) postoperatively. None of the 4 patients treated with CBGE within 2 months postoperatively progressed to stage IVC AVN. The 2 patients treated after 4 months postoperatively both progressed to stage VC AVN.Plain radiographs demonstrated AVN in 6 of 33 hips (18%) at a mean of 6.8 months postoperatively (range, 2.1 to 21.1 mo). One patient diagnosed with stage IVB AVN at 2.4 months had screw cutout and received CBGE at 2.5 months from initial pinning. The remaining 5 were not offered surgical intervention. Five of the 6 radiographically diagnosed AVN, including the 1 treated with CBGE, progressed to stage IVC AVN or greater. Although all patients with positive MRI scans developed radiographic AVN, none of the 4 patients treated with CBGE within 2 months after pinning developed grade IVC or greater AVN. Early MRI detection and CBGE may mitigate the effects of AVN after

  12. Multicentre standardisation of chest MRI as radiation-free outcome measure of lung disease in young children with cystic fibrosis.

    PubMed

    Wielpütz, Mark O; von Stackelberg, Oyunbileg; Stahl, Mirjam; Jobst, Bertram J; Eichinger, Monika; Puderbach, Michael U; Nährlich, Lutz; Barth, Sandra; Schneider, Christian; Kopp, Matthias V; Ricklefs, Isabell; Buchholz, Michael; Tümmler, Burkhard; Dopfer, Christian; Vogel-Claussen, Jens; Kauczor, Hans-Ulrich; Mall, Marcus A

    2018-05-24

    A recent single-centre study demonstrated that MRI is sensitive to detect early abnormalities in the lung and response to therapy in infants and preschool children with cystic fibrosis (CF) supporting MRI as an outcome measure of early CF lung disease. However, the feasibility of multicentre standardisation remains unknown. To determine the feasibility of multicentre standardisation of chest MRI in infants and preschool children with CF. A standardised chest 1.5 T MRI protocol was implemented across four specialised CF centres. Following training and initiation visits, 42 infants and preschool children (mean age 3.2 ± 1.5 years, range 0-6 years) with clinically stable CF underwent MRI and chest X-ray (CXR). Image quality and lung abnormalities were assessed using a standardised questionnaire and an established CF MRI and CXR score. MRI was successfully performed with diagnostic quality in all patients (100%). Incomplete lung coverage was observed in 6% and artefacts also in 6% of sequence acquisitions, but these were compensated by remaining sequences in all patients. The range of the MRI score in CF patients was similar across centres with a mean global MRI score of 13.3 ± 5.8. Cross-validation of the MRI against the CXR score revealed a moderate correlation (r = 0.43-0.50, p < 0.01). Our results demonstrate that multicentre standardisation of chest MRI is feasible and support its use as radiation-free outcome measure of lung disease in infants and preschool children with CF. Copyright © 2018 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  13. Adjudicating between face-coding models with individual-face fMRI responses

    PubMed Central

    Kriegeskorte, Nikolaus

    2017-01-01

    The perceptual representation of individual faces is often explained with reference to a norm-based face space. In such spaces, individuals are encoded as vectors where identity is primarily conveyed by direction and distinctiveness by eccentricity. Here we measured human fMRI responses and psychophysical similarity judgments of individual face exemplars, which were generated as realistic 3D animations using a computer-graphics model. We developed and evaluated multiple neurobiologically plausible computational models, each of which predicts a representational distance matrix and a regional-mean activation profile for 24 face stimuli. In the fusiform face area, a face-space coding model with sigmoidal ramp tuning provided a better account of the data than one based on exemplar tuning. However, an image-processing model with weighted banks of Gabor filters performed similarly. Accounting for the data required the inclusion of a measurement-level population averaging mechanism that approximates how fMRI voxels locally average distinct neuronal tunings. Our study demonstrates the importance of comparing multiple models and of modeling the measurement process in computational neuroimaging. PMID:28746335

  14. Early change in glucose metabolic rate measured using FDG-PET in patients with high-grade glioma predicts response to temozolomide but not temozolomide plus radiotherapy.

    PubMed

    Charnley, Natalie; West, Catharine M; Barnett, Carolyn M; Brock, Catherine; Bydder, Graeme M; Glaser, Mark; Newlands, Ed S; Swindell, Ric; Matthews, Julian; Price, Pat

    2006-10-01

    To compare the ability of positron emission tomography (PET) to predict response to temozolomide vs. temozolomide plus radiotherapy. Nineteen patients with high-grade glioma (HGG) were studied. Patients with recurrent glioma received temozolomide 75 mg/m2 daily for 7 weeks (n=8). Newly diagnosed patients received temozolomide 75 mg/m2 daily plus radiotherapy 60 Gy/30 fractions over 6 weeks, followed by six cycles of adjuvant temozolomide 200 mg/m2/day (Days 1-5 q28) starting 1 month after radiotherapy (n=11). [18F]Fluorodeoxyglucose ([18F]FDG) PET scan and magnetic resonance imaging (MRI) were performed at baseline, and 7 and 19 weeks after initiation of temozolomide administration. Changes in glucose metabolic rate (MRGlu) and MRI response were correlated with patient survival. In the temozolomide-alone group, patients who survived>26 vs. or=25%, survived longer than nonresponders with mean survival times of 75 weeks (95% CI, 34-115 vs. 20 weeks (95% CI, 14-26) (p=0.0067). In the small group of patients studied, there was no relationship between MRI response and survival (p=0.52). For patients receiving temozolomide plus radiotherapy, there was no difference in survival between PET responders and nonresponders (p=0.32). Early changes in MRGlu predict response to temozolomide, but not temozolomide plus radiotherapy.

  15. Using Cartilage MRI T2-Mapping to Analyze Early Cartilage Degeneration in the Knee Joint of Young Professional Soccer Players.

    PubMed

    Waldenmeier, Leonie; Evers, Christoph; Uder, Michael; Janka, Rolf; Hennig, Frank Friedrich; Pachowsky, Milena Liese; Welsch, Götz Hannes

    2018-02-01

    Objective To evaluate and characterize the appearance of articular cartilage in the tibiofemoral joint of young professional soccer players using T2-relaxation time evaluation on magnetic resonance imaging (MRI). Design In this study, we included 57 male adolescents from the youth academy of a professional soccer team. The MRI scans were acquired of the knee joint of the supporting leg. An "early unloading" (minute 0) and "late unloading" (minute 28) T2-sequence was included in the set of images. Quantitative T2-analysis was performed in the femorotibial joint cartilage in 4 slices with each 10 regions of interest (ROIs). Statistical evaluation, using Wilcoxon signed-rank tests, was primarily performed to compare the T2 values of the "early unloading" and "late unloading." Results When comparing "early unloading" with "late unloading," our findings showed a significant increase of T2-relaxation times in the weightbearing femoral cartilage of the medial ( P < 0.001) and lateral ( P < 0.001) compartment of the knee and in the tibial cartilage of the medial compartment ( P < 0.001). Conclusion In this study, alterations of the cartilage were found with a maximum in the medial condyle where the biomechanical load of the knee joint is highest, as well as where most of the chronic cartilage lesions occur. To avoid chronic damage, special focus should be laid on this region.

  16. Early- and Late-Onset Depression in Late Life: A Prospective Study on Clinical and Structural Brain Characteristics and Response to Electroconvulsive Therapy.

    PubMed

    Dols, Annemiek; Bouckaert, Filip; Sienaert, Pascal; Rhebergen, Didi; Vansteelandt, Kristof; Ten Kate, Mara; de Winter, Francois-Laurent; Comijs, Hannie C; Emsell, Louise; Oudega, Mardien L; van Exel, Eric; Schouws, Sigfried; Obbels, Jasmien; Wattjes, Mike; Barkhof, Frederik; Eikelenboom, Piet; Vandenbulcke, Mathieu; Stek, Max L

    2017-02-01

    The clinical profile of late-life depression (LLD) is frequently associated with cognitive impairment, aging-related brain changes, and somatic comorbidity. This two-site naturalistic longitudinal study aimed to explore differences in clinical and brain characteristics and response to electroconvulsive therapy (ECT) in early- (EOD) versus late-onset (LOD) late-life depression (respectively onset <55 and ≥55 years). Between January 2011 and December 2013, 110 patients aged 55 years and older with ECT-treated unipolar depression were included in The Mood Disorders in Elderly treated with ECT study. Clinical profile and somatic health were assessed. Magnetic resonance imaging (MRI) scans were performed before the first ECT and visually rated. Response rate was 78.2% and similar between the two sites but significantly higher in LOD compared with EOD (86.9 versus 67.3%). Clinical, somatic, and brain characteristics were not different between EOD and LOD. Response to ECT was associated with late age at onset and presence of psychotic symptoms and not with structural MRI characteristics. In EOD only, the odds for a higher response were associated with a shorter index episode. The clinical profile, somatic comorbidities, and brain characteristics in LLD were similar in EOD and LOD. Nevertheless, patients with LOD showed a superior response to ECT compared with patients with EOD. Our results indicate that ECT is very effective in LLD, even in vascular burdened patients. Copyright © 2017 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.

  17. Assessment of temporal state-dependent interactions between auditory fMRI responses to desired and undesired acoustic sources.

    PubMed

    Olulade, O; Hu, S; Gonzalez-Castillo, J; Tamer, G G; Luh, W-M; Ulmer, J L; Talavage, T M

    2011-07-01

    A confounding factor in auditory functional magnetic resonance imaging (fMRI) experiments is the presence of the acoustic noise inherently associated with the echo planar imaging acquisition technique. Previous studies have demonstrated that this noise can induce unwanted neuronal responses that can mask stimulus-induced responses. Similarly, activation accumulated over multiple stimuli has been demonstrated to elevate the baseline, thus reducing the dynamic range available for subsequent responses. To best evaluate responses to auditory stimuli, it is necessary to account for the presence of all recent acoustic stimulation, beginning with an understanding of the attenuating effects brought about by interaction between and among induced unwanted neuronal responses, and responses to desired auditory stimuli. This study focuses on the characterization of the duration of this temporal memory and qualitative assessment of the associated response attenuation. Two experimental parameters--inter-stimulus interval (ISI) and repetition time (TR)--were varied during an fMRI experiment in which participants were asked to passively attend to an auditory stimulus. Results present evidence of a state-dependent interaction between induced responses. As expected, attenuating effects of these interactions become less significant as TR and ISI increase and in contrast to previous work, persist up to 18s after a stimulus presentation. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Surface Modification of Gd Nanoparticles with pH-Responsive Block Copolymers for Use As Smart MRI Contrast Agents.

    PubMed

    Zhu, Liping; Yang, Yuan; Farquhar, Kirsten; Wang, Jingjing; Tian, Chixia; Ranville, James; Boyes, Stephen G

    2016-02-01

    Despite recent advances in the understanding of fundamental cancer biology, cancer remains the second most common cause of death in the United States. One of the primary factors indicative of high cancer morbidity and mortality and aggressive cancer phenotypes is tumors with a low extracellular pH (pHe). Thus, the ability to measure tumor pHe in vivo using noninvasive and accurate techniques that also provide high spatiotemporal resolution has become increasingly important and is of great interest to researchers and clinicians. In an effort to develop a pH-responsive magnetic resonance imaging (MRI) contrast agent (CA) that has the potential to be used to measure tumor pHe, well-defined pH-responsive polymers, synthesized via reversible addition-fragmentation chain transfer polymerization, were attached to the surface of gadolinium-based nanoparticles (GdNPs) via a "grafting to" method after reduction of the thiocarbonylthio end groups. The successful modification of the GdNPs was verified by transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis and dynamic light scattering. The performance of the pH-responsive polymer modified GdNPs was then evaluated for potential use as smart MRI CAs via monitoring the relaxivity changes with changing environmental pH. The results suggested that the pH-responsive polymers can be used to effectively modify the GdNPs surface to prepare a smart contrast agent for MRI.

  19. Application of 23Na MRI to Monitor Chemotherapeutic Response in RIF-1 Tumors1

    PubMed Central

    Babsky, Andriy M; Hekmatyar, Shahryar K; Zhang, Hong; Solomon, James L; Bansal, Navin

    2005-01-01

    Abstract Effects of an alkylating anticancer drug, cyclophosphamide (Cp), on 23Na signal intensity (23Na SI) and water apparent diffusion coefficient (ADC) were examined in subcutaneously-implanted radiation-induced fibrosarcoma (RIF-1) tumors by in vivo 23Na and 1H magnetic resonance imaging (MRI). MRI experiments were performed on untreated control (n = 5) and Cp-treated (n = 6) C3H mice, once before Cp injection (300 mg/kg) then daily for 3 days after treatment. Tumor volumes were significantly lower in treated animals 2 and 3 days posttreatment. At the same time points, MRI experiments showed an increase in both 23Na SI and water ADC in treated tumors, whereas control tumors did not show any significant changes. The correlation between 23Na SI and water ADC changes was dramatically increased in the Cp-treated group, suggesting that the observed increases in 23Na SI and water ADC were caused by the same mechanism. Histologic sections showed decreased cell density in the regions of increased 23Na and water ADC SI. Destructive chemical analysis showed that Cp treatment increased the relative extracellular space and tumor [Na+]. We conclude that the changes in water ADC and 23Na SI were largely due to an increase in extracellular space. 23Na MRI and 1H water ADC measurements may provide valuable noninvasive techniques for monitoring chemotherapeutic responses. PMID:16026645

  20. Functional localization of the human color center by decreased water displacement using diffusion-weighted fMRI.

    PubMed

    Williams, Rebecca J; Reutens, David C; Hocking, Julia

    2015-11-01

    Decreased water displacement following increased neural activity has been observed using diffusion-weighted functional MRI (DfMRI) at high b-values. The physiological mechanisms underlying the diffusion signal change may be unique from the standard blood oxygenation level-dependent (BOLD) contrast and closer to the source of neural activity. Whether DfMRI reflects neural activity more directly than BOLD outside the primary cerebral regions remains unclear. Colored and achromatic Mondrian visual stimuli were statistically contrasted to functionally localize the human color center Area V4 in neurologically intact adults. Spatial and temporal properties of DfMRI and BOLD activation were examined across regions of the visual cortex. At the individual level, DfMRI activation patterns showed greater spatial specificity to V4 than BOLD. The BOLD activation patterns were more prominent in the primary visual cortex than DfMRI, where activation was localized to the ventral temporal lobe. Temporally, the diffusion signal change in V4 and V1 both preceded the corresponding hemodynamic response, however the early diffusion signal change was more evident in V1. DfMRI may be of use in imaging applications implementing cognitive subtraction paradigms, and where highly precise individual functional localization is required.

  1. Response-related fMRI of veridical and false recognition of words.

    PubMed

    Heun, Reinhard; Jessen, Frank; Klose, Uwe; Erb, Michael; Granath, Dirk-Oliver; Grodd, Wolfgang

    2004-02-01

    Studies on the relation between local cerebral activation and retrieval success usually compared high and low performance conditions, and thus showed performance-related activation of different brain areas. Only a few studies directly compared signal intensities of different response categories during retrieval. During verbal recognition, we recently observed increased parieto-occipital activation related to false alarms. The present study intends to replicate and extend this observation by investigating common and differential activation by veridical and false recognition. Fifteen healthy volunteers performed a verbal recognition paradigm using 160 learned target and 160 new distractor words. The subjects had to indicate whether they had learned the word before or not. Echo-planar MRI of blood-oxygen-level-dependent signal changes was performed during this recognition task. Words were classified post hoc according to the subjects' responses, i.e. hits, false alarms, correct rejections and misses. Response-related fMRI-analysis was used to compare activation associated with the subjects' recognition success, i.e. signal intensities related to the presentation of words were compared by the above-mentioned four response types. During recognition, all word categories showed increased bilateral activation of the inferior frontal gyrus, the inferior temporal gyrus, the occipital lobe and the brainstem in comparison with the control condition. Hits and false alarms activated several areas including the left medial and lateral parieto-occipital cortex in comparison with subjectively unknown items, i.e. correct rejections and misses. Hits showed more pronounced activation in the medial, false alarms in the lateral parts of the left parieto-occipital cortex. Veridical and false recognition show common as well as different areas of cerebral activation in the left parieto-occipital lobe: increased activation of the medial parietal cortex by hits may correspond to true

  2. Highly Sensitive Detection of Caspase-3/7 Activity in Living Mice Using Enzyme-Responsive 19F MRI Nanoprobes.

    PubMed

    Akazawa, Kazuki; Sugihara, Fuminori; Nakamura, Tatsuya; Mizukami, Shin; Kikuchi, Kazuya

    2018-05-16

    Highly sensitive imaging of enzymatic activities in the deep tissues of living mammals provides useful information about their biological functions and for developing new drugs; however, such imaging is challenging. 19 F magnetic resonance imaging (MRI) is suitable for noninvasive visualization of enzymatic activities without endogenous background signals. Although various enzyme-responsive 19 F MRI probes have been developed, most cannot be used for in vivo imaging because of their low sensitivity. Recently, we developed unique nanoparticles, called FLAMEs, that are composed of a liquid perfluorocarbon core and a robust silica shell, and demonstrated their outstanding sensitivity in vivo. Here, we report a highly functionalized nanoprobe, FLAME-DEVD 2, with an OFF/ON 19 F MRI switch for detecting caspase-3/7 activity based on the paramagnetic relaxation enhancement effect. To improve the cleavage efficiency of peptides by caspase-3, we designed a novel Gd 3+ complex-conjugated peptide, DEVD X ( X = 1, 2), which is a substrate peptide sequence tandemly repeated X times, and demonstrated that DEVD 2 showed faster cleavage kinetics than DEVD 1. By incorporating this novel concept into a signal activation strategy, FLAME-DEVD 2 showed a high 19 F MRI signal enhancement rate in response to caspase-3 activity. After intravenous injection of FLAME-DEVD 2 and an apoptosis-inducing reagent, caspase-3/7 activity in the spleen of a living mouse was successfully imaged by 19 F MRI. This imaging platform shows great potential for highly sensitive detection of enzymatic activities in vivo.

  3. Comparison of fMRI data from passive listening and active-response story processing tasks in children

    PubMed Central

    Vannest, Jennifer J.; Karunanayaka, Prasanna R.; Altaye, Mekibib; Schmithorst, Vincent J.; Plante, Elena M.; Eaton, Kenneth J.; Rasmussen, Jerod M.; Holland, Scott K.

    2009-01-01

    Purpose To use functional MRI methods to visualize a network of auditory and language-processing brain regions associated with processing an aurally-presented story. We compare a passive listening (PL) story paradigm to an active-response (AR) version including on-line performance monitoring and a sparse acquisition technique. Materials/Methods Twenty children (ages 11−13) completed PL and AR story processing tasks. The PL version presented alternating 30-second blocks of stories and tones; the AR version presented story segments, comprehension questions, and 5s tone sequences, with fMRI acquisitions between stimuli. fMRI data was analyzed using a general linear model approach and paired t-test identifying significant group activation. Results Both tasks activated in primary auditory cortex, superior temporal gyrus bilaterally, left inferior frontal gyrus. The AR task demonstrated more extensive activation, including dorsolateral prefrontal cortex and anterior/posterior cingulate cortex. Comparison of effect size in each paradigm showed a larger effect for the AR paradigm in a left inferior frontal ROI. Conclusion Activation patterns for story processing in children are similar in passive listening and active-response tasks. Increases in extent and magnitude of activation in the AR task are likely associated with memory and attention resources engaged across acquisition intervals. PMID:19306445

  4. Relationship between preoperative breast MRI and surgical treatment of non-metastatic breast cancer.

    PubMed

    Onega, Tracy; Weiss, Julie E; Goodrich, Martha E; Zhu, Weiwei; DeMartini, Wendy B; Kerlikowske, Karla; Ozanne, Elissa; Tosteson, Anna N A; Henderson, Louise M; Buist, Diana S M; Wernli, Karen J; Herschorn, Sally D; Hotaling, Elise; O'Donoghue, Cristina; Hubbard, Rebecca

    2017-12-01

    More extensive surgical treatments for early stage breast cancer are increasing. The patterns of preoperative MRI overall and by stage for this trend has not been well established. Using Breast Cancer Surveillance Consortium registry data from 2010 through 2014, we identified women with an incident non-metastatic breast cancer and determined use of preoperative MRI and initial surgical treatment (mastectomy, with or without contralateral prophylactic mastectomy (CPM), reconstruction, and breast conserving surgery ± radiation). Clinical and sociodemographic covariates were included in multivariable logistic regression models to estimate adjusted odds ratios and 95% confidence intervals. Of the 13 097 women, 2217 (16.9%) had a preoperative MRI. Among the women with MRI, results indicated 32% higher odds of unilateral mastectomy compared to breast conserving surgery and of mastectomy with CPM compared to unilateral mastectomy. Women with preoperative MRI also had 56% higher odds of reconstruction. Preoperative MRI in women with DCIS and early stage invasive breast cancer is associated with more frequent mastectomy, CPM, and reconstruction surgical treatment. Use of more extensive surgical treatment and reconstruction among women with DCIS and early stage invasive cancer whom undergo MRI warrants further investigation. © 2017 Wiley Periodicals, Inc.

  5. Cellular Imaging With MRI.

    PubMed

    Makela, Ashley V; Murrell, Donna H; Parkins, Katie M; Kara, Jenna; Gaudet, Jeffrey M; Foster, Paula J

    2016-10-01

    Cellular magnetic resonance imaging (MRI) is an evolving field of imaging with strong translational and research potential. The ability to detect, track, and quantify cells in vivo and over time allows for studying cellular events related to disease processes and may be used as a biomarker for decisions about treatments and for monitoring responses to treatments. In this review, we discuss methods for labeling cells, various applications for cellular MRI, the existing limitations, strategies to address these shortcomings, and clinical cellular MRI.

  6. Cluster analysis of quantitative parametric maps from DCE-MRI: application in evaluating heterogeneity of tumor response to antiangiogenic treatment.

    PubMed

    Longo, Dario Livio; Dastrù, Walter; Consolino, Lorena; Espak, Miklos; Arigoni, Maddalena; Cavallo, Federica; Aime, Silvio

    2015-07-01

    The objective of this study was to compare a clustering approach to conventional analysis methods for assessing changes in pharmacokinetic parameters obtained from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) during antiangiogenic treatment in a breast cancer model. BALB/c mice bearing established transplantable her2+ tumors were treated with a DNA-based antiangiogenic vaccine or with an empty plasmid (untreated group). DCE-MRI was carried out by administering a dose of 0.05 mmol/kg of Gadocoletic acid trisodium salt, a Gd-based blood pool contrast agent (CA) at 1T. Changes in pharmacokinetic estimates (K(trans) and vp) in a nine-day interval were compared between treated and untreated groups on a voxel-by-voxel analysis. The tumor response to therapy was assessed by a clustering approach and compared with conventional summary statistics, with sub-regions analysis and with histogram analysis. Both the K(trans) and vp estimates, following blood-pool CA injection, showed marked and spatial heterogeneous changes with antiangiogenic treatment. Averaged values for the whole tumor region, as well as from the rim/core sub-regions analysis were unable to assess the antiangiogenic response. Histogram analysis resulted in significant changes only in the vp estimates (p<0.05). The proposed clustering approach depicted marked changes in both the K(trans) and vp estimates, with significant spatial heterogeneity in vp maps in response to treatment (p<0.05), provided that DCE-MRI data are properly clustered in three or four sub-regions. This study demonstrated the value of cluster analysis applied to pharmacokinetic DCE-MRI parametric maps for assessing tumor response to antiangiogenic therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. MRI: update on technology diffusion and acquisition.

    PubMed

    Hoppszallern, S; Hughes, C; Zimmerman, R A

    1991-04-01

    Over the past three years, magnetic resonance imaging (MRI) has become accepted as a valuable diagnostic tool, and its applications continue to expand. During this time, the number of units installed in the United States doubled. By 1990 about 2,000 MRI units were in place in the United States and nearly 20 percent of the MRI-installed base was mobile, according to a research study conducted by the Hadley Hart Group (Chicago) and Drew Consultants, Inc. (Concord, MA). With the introduction of the prospective payment system, many hospitals were hesitant to spend limited capital on new technology, such as MRI. At the same time, freestanding diagnostic imaging centers were on the rise. Some hospitals and entrepreneurs who foresaw the potential of MRI in health care pioneered its use in the clinical setting. Hospitals began to examine new partnership arrangements and alternative forms of financing, so that they too could offer MRI services. By the end of 1988, the majority of hospitals offering MRI services did not own their own unit and about 40 percent of the hospitals offering MRI services were in a mobile configuration according to the Hadley Hart Group. While the technology has been diffused into 100-bed hospitals via mobile service vendors in some parts of the country, many medium-sized and large hospitals also have entered the MRI services market in this fashion. In the larger hospitals, the patient demand or need for the service often would justify acquisition of MRI, but the expense of the technology, and in many areas restrictive state health planning policies, modified purchase of MRI systems by hospitals. Mobile service vendors offered hospitals a way to startup MRI services in a limited fashion without a major capital expenditure and its associated risk. As hospitals gain experience with mobile MRI and achieve or exceed their early utilization projections, administrators are reevaluating the need to expand services to a full-time fixed site. Early fixed

  8. Can responses to basic non-numerical visual features explain neural numerosity responses?

    PubMed

    Harvey, Ben M; Dumoulin, Serge O

    2017-04-01

    Humans and many animals can distinguish between stimuli that differ in numerosity, the number of objects in a set. Human and macaque parietal lobes contain neurons that respond to changes in stimulus numerosity. However, basic non-numerical visual features can affect neural responses to and perception of numerosity, and visual features often co-vary with numerosity. Therefore, it is debated whether numerosity or co-varying low-level visual features underlie neural and behavioral responses to numerosity. To test the hypothesis that non-numerical visual features underlie neural numerosity responses in a human parietal numerosity map, we analyze responses to a group of numerosity stimulus configurations that have the same numerosity progression but vary considerably in their non-numerical visual features. Using ultra-high-field (7T) fMRI, we measure responses to these stimulus configurations in an area of posterior parietal cortex whose responses are believed to reflect numerosity-selective activity. We describe an fMRI analysis method to distinguish between alternative models of neural response functions, following a population receptive field (pRF) modeling approach. For each stimulus configuration, we first quantify the relationships between numerosity and several non-numerical visual features that have been proposed to underlie performance in numerosity discrimination tasks. We then determine how well responses to these non-numerical visual features predict the observed fMRI responses, and compare this to the predictions of responses to numerosity. We demonstrate that a numerosity response model predicts observed responses more accurately than models of responses to simple non-numerical visual features. As such, neural responses in cognitive processing need not reflect simpler properties of early sensory inputs. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. A deep learning classifier for prediction of pathological complete response to neoadjuvant chemotherapy from baseline breast DCE-MRI

    NASA Astrophysics Data System (ADS)

    Ravichandran, Kavya; Braman, Nathaniel; Janowczyk, Andrew; Madabhushi, Anant

    2018-02-01

    Neoadjuvant chemotherapy (NAC) is routinely used to treat breast tumors before surgery to reduce tumor size and improve outcome. However, no current clinical or imaging metrics can effectively predict before treatment which NAC recipients will achieve pathological complete response (pCR), the absence of residual invasive disease in the breast or lymph nodes following surgical resection. In this work, we developed and applied a convolu- tional neural network (CNN) to predict pCR from pre-treatment dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) scans on a per-voxel basis. In this study, DCE-MRI data for a total of 166 breast cancer pa- tients from the ISPY1 Clinical Trial were split into a training set of 133 patients and a testing set of 33 patients. A CNN consisting of 6 convolutional blocks was trained over 30 epochs. The pre-contrast and post-contrast DCE-MRI phases were considered in isolation and conjunction. A CNN utilizing a combination of both pre- and post-contrast images best distinguished responders, with an AUC of 0.77; 82% of the patients in the testing set were correctly classified based on their treatment response. Within the testing set, the CNN was able to produce probability heatmaps that visualized tumor regions that most strongly predicted therapeutic response. Multi- variate analysis with prognostic clinical variables (age, largest diameter, hormone receptor and HER2 status), revealed that the network was an independent predictor of response (p=0.05), and that the inclusion of HER2 status could further improve capability to predict response (AUC = 0.85, accuracy = 85%).

  10. Effects of citalopram and escitalopram on fMRI response to affective stimuli in healthy volunteers selected by serotonin transporter genotype

    PubMed Central

    Henry, Michael E.; Lauriat, Tara L.; Lowen, Steven B.; Churchill, Jeffrey H.; Hodgkinson, Colin A.; Goldman, David; Renshaw, Perry F.

    2015-01-01

    This study was designed to assess whether functional magnetic resonance imaging (fMRI) following antidepressant administration (pharmaco-fMRI) is sufficiently sensitive to detect differences in patterns of activation between enantiomers of the same compound. Healthy adult males (n = 11) participated in a randomized, double-blind, cross-over trial with three medication periods during which they received citalopram (racemic mixture), escitalopram (S-citalopram alone), or placebo for 2 weeks. All participants had high expression serotonin transporter genotypes. An fMRI scan that included passive viewing of overt and covert affective faces and affective words was performed after each medication period. Activation in response to overt faces was greater following escitalopram than following citalopram in the right insula, thalamus, and putamen when the faces were compared with a fixation stimulus. For the rapid covert presentation, a greater response was observed in the left middle temporal gyrus in the happy versus fearful contrast following escitalopram than following citalopram. Thus, the combination of genomics and fMRI was successful in discriminating between two very similar drugs. However, the pattern of activation observed suggests that further studies are indicated to understand how to optimally combine the two techniques. PMID:23845563

  11. MRI and PET/CT for evaluation of the pathological response to neoadjuvant chemotherapy in breast cancer: A systematic review and meta-analysis.

    PubMed

    Li, Huimin; Yao, Liang; Jin, Penghui; Hu, Lidong; Li, Xiaofei; Guo, Tiankang; Yang, Kehu

    2018-05-11

    Neoadjuvant chemotherapy (NAC) has become an essential treatment for breast cancer. However, there is still no consensus on the best tool to evaluate pathological response to NAC. Two reviewers systematically searched Cochrane, PubMed, EMBASE, Web of Science, and CBM (last updated in February 2017) for eligible articles. We independently screened and selected studies that conformed to the inclusion criteria and extracted the requisite data. Pooled sensitivity, specificity, and the area under the SROC curve were calculated to estimate the diagnostic accuracy of magnetic resonance imaging (MRI) and positron emission computed tomography (PET/CT). And the relative DOR (RDOR) was used to compare accuracy for levels of the covariable. Thirteen studies involving 575 patients who underwent MRI and 618 who underwent PET/CT were included in our analysis. The pooled sensitivity and specificity of MRI were 0.88 (95% CI: 0.78-0.94) and 0.69 (95% CI: 0.51-0.83), respectively. The corresponding values for PET/CT were 0.77 (95% CI: 0.58-0.90) and 0.78 (95% CI: 0.63-0.88), respectively. The area under the SROC curve for MRI and PET/CT were 0.88 and 0.84, respectively. And the RDOR = 1.44 (95% CI, 0.46-4.47 P = 0.83). MRI had a higher sensitivity and PET/CT had a higher specificity in predicting the pathologic response after NAC in patients with breast cancer. According to the area under the SROC curve and anatomic discriminative resolution, MRI is the more suitable recommendation for predicting the pathologic response after NAC. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. MRI EVALUATION OF KNEE CARTILAGE

    PubMed Central

    Rodrigues, Marcelo Bordalo; Camanho, Gilberto Luís

    2015-01-01

    Through the ability of magnetic resonance imaging (MRI) to characterize soft tissue noninvasively, it has become an excellent method for evaluating cartilage. The development of new and faster methods allowed increased resolution and contrast in evaluating chondral structure, with greater diagnostic accuracy. In addition, physiological techniques for cartilage assessment that can detect early changes before the appearance of cracks and erosion have been developed. In this updating article, the various techniques for chondral assessment using knee MRI will be discussed and demonstrated. PMID:27022562

  13. Detection of necrotic neural response in super-acute cerebral ischemia using activity-induced manganese-enhanced (AIM) MRI.

    PubMed

    Inoue, Yasuo; Aoki, Ichio; Mori, Yuki; Kawai, Yuko; Ebisu, Toshihiko; Osaka, Yasuhiko; Houri, Takashi; Mineura, Katsuyoshi; Higuchi, Toshihiro; Tanaka, Chuzo

    2010-04-01

    Immediate and certain determination of the treatable area is important for choosing risky treatments such as thrombolysis for brain ischemia, especially in the super-acute phase. Although it has been suggested that the mismatch between regions displaying 'large abnormal perfusion' and 'small abnormal diffusion' indicates a treatable area on an MRI, it has also been reported that the mismatch region is an imperfect approximation of the treatable region named the 'penumbra'. Manganese accumulation reflecting calcium influx into cells was reported previously in a middle cerebral artery occlusion (MCAO) model using activity-induced manganese-enhanced (AIM) MRI. However, in the super-acute phase, there have been no reports about mismatches between areas showing changes to the apparent diffusion coefficient (ADC) and regions that are enhanced in AIM MRI. It is expected that the AIM signal can be enhanced immediately after cerebral ischemia in the necrotic core region due to calcium influx. In this study, a remote embolic rat model, created using titanium-oxide macrospheres, was used to observe necrotic neural responses in the super-acute phase after ischemia. In addition, images were evaluated by comparison between ADC, AIM MRI, and histology. The signal enhancement in AIM MRI was detected at 2 min after the cerebral infarction using a remote embolic method. The enhanced area on the AIM MRI was significantly smaller than that on the ADC map. The tissue degeneration highlighted by histological analysis corresponded more closely to the enhanced area on the AIM MRI than that on the ADC map. Thus, the manganese-enhanced region in brain ischemia might indicate 'necrotic' irreversible tissue that underwent calcium influx. 2010 John Wiley & Sons, Ltd.

  14. Who gets afraid in the MRI-scanner? Neurogenetics of state-anxiety changes during an fMRI experiment.

    PubMed

    Mutschler, Isabella; Wieckhorst, Birgit; Meyer, Andrea H; Schweizer, Tina; Klarhöfer, Markus; Wilhelm, Frank H; Seifritz, Erich; Ball, Tonio

    2014-11-07

    Experiments using functional magnetic resonance imaging (fMRI) play a fundamental role in affective neuroscience. When placed in an MR scanner, some volunteers feel safe and relaxed in this situation, while others experience uneasiness and fear. Little is known about the basis and consequences of such inter-individually different responses to the general experimental fMRI setting. In this study emotional stimuli were presented during fMRI and subjects' state-anxiety was assessed at the onset and end of the experiment while they were within the scanner. We show that Val/Val but neither Met/Met nor Val/Met carriers of the catechol-O-methyltransferase (COMT) Val(158)Met polymorphism-a prime candidate for anxiety vulnerability-became significantly more anxious during the fMRI experiment (N=97 females: 24 Val/Val, 51 Val/Met, and 22 Met/Met). Met carriers demonstrated brain responses with increased stability over time in the right parietal cortex and significantly better cognitive performances likely mediated by lower levels of anxiety. Val/Val, Val/Met and Met/Met did not significantly differ in state-anxiety at the beginning of the experiment. The exposure of a control group (N=56 females) to the same experiment outside the scanner did not cause a significant increase in state-anxiety, suggesting that the increase we observe in the fMRI experiment may be specific to the fMRI setting. Our findings reveal that genetics may play an important role in shaping inter-individual different emotional, cognitive and neuronal responses during fMRI experiments. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Impact of Early Life Adversity on Reward Processing in Young Adults: EEG-fMRI Results from a Prospective Study over 25 Years

    PubMed Central

    Boecker, Regina; Holz, Nathalie E.; Buchmann, Arlette F.; Blomeyer, Dorothea; Plichta, Michael M.; Wolf, Isabella; Baumeister, Sarah; Meyer-Lindenberg, Andreas; Banaschewski, Tobias

    2014-01-01

    Several lines of evidence have implicated the mesolimbic dopamine reward pathway in altered brain function resulting from exposure to early adversity. The present study examined the impact of early life adversity on different stages of neuronal reward processing later in life and their association with a related behavioral phenotype, i.e. attention deficit/hyperactivity disorder (ADHD). 162 healthy young adults (mean age = 24.4 years; 58% female) from an epidemiological cohort study followed since birth participated in a simultaneous EEG-fMRI study using a monetary incentive delay task. Early life adversity according to an early family adversity index (EFA) and lifetime ADHD symptoms were assessed using standardized parent interviews conducted at the offspring's age of 3 months and between 2 and 15 years, respectively. fMRI region-of-interest analysis revealed a significant effect of EFA during reward anticipation in reward-related areas (i.e. ventral striatum, putamen, thalamus), indicating decreased activation when EFA increased. EEG analysis demonstrated a similar effect for the contingent negative variation (CNV), with the CNV decreasing with the level of EFA. In contrast, during reward delivery, activation of the bilateral insula, right pallidum and bilateral putamen increased with EFA. There was a significant association of lifetime ADHD symptoms with lower activation in the left ventral striatum during reward anticipation and higher activation in the right insula during reward delivery. The present findings indicate a differential long-term impact of early life adversity on reward processing, implicating hyporesponsiveness during reward anticipation and hyperresponsiveness when receiving a reward. Moreover, a similar activation pattern related to lifetime ADHD suggests that the impact of early life stress on ADHD may possibly be mediated by a dysfunctional reward pathway. PMID:25118701

  16. fMRI response during visual motion stimulation in patients with late whiplash syndrome.

    PubMed

    Freitag, P; Greenlee, M W; Wachter, K; Ettlin, T M; Radue, E W

    2001-01-01

    After whiplash trauma, up to one fourth of patients develop chronic symptoms including head and neck pain and cognitive disturbances. Resting perfusion single-photon-emission computed tomography (SPECT) found decreased temporoparietooccipital tracer uptake among these long-term symptomatic patients with late whiplash syndrome. As MT/MST (V5/V5a) are located in that area, this study addressed the question whether these patients show impairments in visual motion perception. We examined five symptomatic patients with late whiplash syndrome, five asymptomatic patients after whiplash trauma, and a control group of seven volunteers without the history of trauma. Tests for visual motion perception and functional magnetic resonance imaging (fMRI) measurements during visual motion stimulation were performed. Symptomatic patients showed a significant reduction in their ability to perceive coherent visual motion compared with controls, whereas the asymptomatic patients did not show this effect. fMRI activation was similar during random dot motion in all three groups, but was significantly decreased during coherent dot motion in the symptomatic patients compared with the other two groups. Reduced psychophysical motion performance and reduced fMRI responses in symptomatic patients with late whiplash syndrome both point to a functional impairment in cortical areas sensitive to coherent motion. Larger studies are needed to confirm these clinical and functional imaging results to provide a possible additional diagnostic criterion for the evaluation of patients with late whiplash syndrome.

  17. [A case of glioblastoma multiforme which indicated the early stage on brain MRI].

    PubMed

    Ono, K; Tohma, Y; Yoshida, M; Takamori, M

    2000-04-01

    A 57-year-old male was urgently carried to our hospital because of sudden loss of consciousness, lasting about 10 minutes. He had resumed consciousness before he arrived at our hospital. Neurologically, he had mild muscle weakness of the right arm. Deep tendon reflexes in the right upper extremity were reduced. In high level functions, speech disturbance, dysgraphia (disturbed ability to write Hiragana), and constructive apraxia were noted. A brain MRI upon admission showed a poorly demarcated, high signal intensity area in the cortical and subcortical layers of the left temporal and parietal lobes. This was visible on T 2 weighted images(T 2 WI), although no abnormalities were visible on T 1 weighted images(T 1 WI). No contrast enhancement was effected by Gd-DTPA. The patient was therefore suspected of having a tumor or degenerative disease and was monitored closely. About 4 months later after onset, his symptoms became aggravated, and brain MRI disclosed a marked low signal intensity area on T 1 WI and a heterogeneous high signal intensity area on T 2 WI. The abnormal signal intensity area was surrounded by extensive edema and mass effect. Ring-shaped, irregular, contrast enhanced areas were also visible. Cerebral angiography revealed a poorly demarcated tumor stain in the area supplied by the middle cerebral artery. The tumor was removed surgically and was histopathologically rated as glioblastoma multiforme(GBM). Because this case represents a valuable example of early stage of GBM, it will be discussed in this paper, along with differential diagnoses.

  18. Structural and functional correlates of visual field asymmetry in the human brain by diffusion kurtosis MRI and functional MRI.

    PubMed

    O'Connell, Caitlin; Ho, Leon C; Murphy, Matthew C; Conner, Ian P; Wollstein, Gadi; Cham, Rakie; Chan, Kevin C

    2016-11-09

    Human visual performance has been observed to show superiority in localized regions of the visual field across many classes of stimuli. However, the underlying neural mechanisms remain unclear. This study aims to determine whether the visual information processing in the human brain is dependent on the location of stimuli in the visual field and the corresponding neuroarchitecture using blood-oxygenation-level-dependent functional MRI (fMRI) and diffusion kurtosis MRI, respectively, in 15 healthy individuals at 3 T. In fMRI, visual stimulation to the lower hemifield showed stronger brain responses and larger brain activation volumes than the upper hemifield, indicative of the differential sensitivity of the human brain across the visual field. In diffusion kurtosis MRI, the brain regions mapping to the lower visual field showed higher mean kurtosis, but not fractional anisotropy or mean diffusivity compared with the upper visual field. These results suggested the different distributions of microstructural organization across visual field brain representations. There was also a strong positive relationship between diffusion kurtosis and fMRI responses in the lower field brain representations. In summary, this study suggested the structural and functional brain involvements in the asymmetry of visual field responses in humans, and is important to the neurophysiological and psychological understanding of human visual information processing.

  19. Comparison of fMRI data from passive listening and active-response story processing tasks in children.

    PubMed

    Vannest, Jennifer J; Karunanayaka, Prasanna R; Altaye, Mekibib; Schmithorst, Vincent J; Plante, Elena M; Eaton, Kenneth J; Rasmussen, Jerod M; Holland, Scott K

    2009-04-01

    To use functional MRI (fMRI) methods to visualize a network of auditory and language-processing brain regions associated with processing an aurally-presented story. We compare a passive listening (PL) story paradigm to an active-response (AR) version including online performance monitoring and a sparse acquisition technique. Twenty children (ages 11-13 years) completed PL and AR story processing tasks. The PL version presented alternating 30-second blocks of stories and tones; the AR version presented story segments, comprehension questions, and 5-second tone sequences, with fMRI acquisitions between stimuli. fMRI data was analyzed using a general linear model approach and paired t-test identifying significant group activation. Both tasks showed activation in the primary auditory cortex, superior temporal gyrus bilaterally, and left inferior frontal gyrus (IFG). The AR task demonstrated more extensive activation, including the dorsolateral prefrontal cortex and anterior/posterior cingulate cortex. Comparison of effect size in each paradigm showed a larger effect for the AR paradigm in a left inferior frontal region-of-interest (ROI). Activation patterns for story processing in children are similar in PL and AR tasks. Increases in extent and magnitude of activation in the AR task are likely associated with memory and attention resources engaged across acquisition intervals.

  20. MRI of inflammatory spondyloarthropathy following traumatic cauda equina syndrome.

    PubMed

    Ginder, L M; Porter, N A; Subedi, N; Singh, J; Lalam, R K; Tins, B J; Tyrrell, P N M; Osman, A; Cassar-Pullicino, V N

    2015-03-01

    Spondyloarthropathy has been described radiographically in patients following paralysis from spinal cord trauma. Onset of these findings after cauda equina syndrome have not been reported previously. Furthermore, the magnetic resonance documentation of its early evolution has not been recorded. We report a case of early-onset spondyloarthropathy shown by magnetic resonance imaging (MRI) in a patient with cauda equina syndrome due to bilateral sacral insufficiency fractures. Unique case study review, one case. Review of the clinical case notes and imaging including initial and subsequent MR imaging. The initial MRI of the lumbosacral spine showed bilateral sacral insufficiency fractures with a kyphotic deformity. The vertebral bodies were normal on the initial computed tomography and MRI studies, which did not reveal pre-existing features of sacroiliitis. The second MRI performed 5 months later clearly showed spondylitis at multiple vertebral levels with partial resolution 18 months post injury. Spondyloarthropathy in patients with paralysis due to spinal cord injury is well documented in the English language literature, but until now this has not been demonstrated by MRI. It is a rare complication of traumatic cauda equina syndrome that commences soon after the traumatic event and can resolve spontaneously.

  1. Synovial volume vs synovial measurements from dynamic contrast enhanced MRI as measures of response in osteoarthritis.

    PubMed

    Gait, A D; Hodgson, R; Parkes, M J; Hutchinson, C E; O'Neill, T W; Maricar, N; Marjanovic, E J; Cootes, T F; Felson, D T

    2016-08-01

    Synovium is increasingly a target of osteoarthritis (OA) treatment, yet its optimal measurement is unclear. Using dynamic contrast enhanced (DCE) MRI in knee OA patients before and after intraarticular steroid injection, we compared the responsiveness of static synovial volume measures to measures of dynamic changes in synovial enhancement, changes that are strongly related to synovial vascularity. Ninety three patients underwent DCE-MRI before and 1-2 weeks after intra-articular injection of 80 mg methylprednisolone. Synovium was segmented and volume, relative enhancement rate (RER), maximum relative enhancement (REmax), late relative enhancement (RElate) and pharmacokinetic parameters (K(trans), ve) were calculated. KOOS (​knee injury and osteoarthritis outcome score) pain score was recorded before and after injection. Standardized change scores were calculated for each parameter. Linear regression and Pearson's correlations were used to investigate the relationship between change in MRI parameters and change in pain. The change in standardized score for the measures of synovial enhancement, RElate and REmax were -0.58 (95% CI -0.79 to -0.37) and -0.62 (95% CI -0.83 to -0.41) respectively, whereas the score for synovial volume was -0.30 (-0.52 to -0.09). Further, change in knee pain correlated more strongly with changes in enhancement (for both REmax and RElate, r = -0.27 (95% CI -0.45 to -0.07)) than with changes in synovial volume -0.15 (-0.35 to 0.05). This study suggests DCE-MRI derived measures of synovial enhancement may be more sensitive to the response to treatment and more strongly associated with changes in pain than synovial volume and may be better outcomes for assessment of structural effects of treatment in OA. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Disentangling reward anticipation with simultaneous pupillometry / fMRI.

    PubMed

    Schneider, Max; Leuchs, Laura; Czisch, Michael; Sämann, Philipp G; Spoormaker, Victor I

    2018-05-05

    The reward system may provide an interesting intermediate phenotype for anhedonia in affective disorders. Reward anticipation is characterized by an increase in arousal, and previous studies have linked the anterior cingulate cortex (ACC) to arousal responses such as dilation of the pupil. Here, we examined pupil dynamics during a reward anticipation task in forty-six healthy human subjects and evaluated its neural correlates using functional magnetic resonance imaging (fMRI). Pupil size showed a strong increase during monetary reward anticipation, a moderate increase during verbal reward anticipation and a decrease during control trials. For fMRI analyses, average pupil size and pupil change were computed in 1-s time bins during the anticipation phase. Activity in the ventral striatum was inversely related to the pupil size time course, indicating an early onset of activation and a role in reward prediction processing. Pupil dilations were linked to increased activity in the salience network (dorsal ACC and bilateral insula), which likely triggers an increase in arousal to enhance task performance. Finally, increased pupil size preceding the required motor response was associated with activity in the ventral attention network. In sum, pupillometry provides an effective tool for disentangling different phases of reward anticipation, with relevance for affective symptomatology. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Decoding Articulatory Features from fMRI Responses in Dorsal Speech Regions.

    PubMed

    Correia, Joao M; Jansma, Bernadette M B; Bonte, Milene

    2015-11-11

    The brain's circuitry for perceiving and producing speech may show a notable level of overlap that is crucial for normal development and behavior. The extent to which sensorimotor integration plays a role in speech perception remains highly controversial, however. Methodological constraints related to experimental designs and analysis methods have so far prevented the disentanglement of neural responses to acoustic versus articulatory speech features. Using a passive listening paradigm and multivariate decoding of single-trial fMRI responses to spoken syllables, we investigated brain-based generalization of articulatory features (place and manner of articulation, and voicing) beyond their acoustic (surface) form in adult human listeners. For example, we trained a classifier to discriminate place of articulation within stop syllables (e.g., /pa/ vs /ta/) and tested whether this training generalizes to fricatives (e.g., /fa/ vs /sa/). This novel approach revealed generalization of place and manner of articulation at multiple cortical levels within the dorsal auditory pathway, including auditory, sensorimotor, motor, and somatosensory regions, suggesting the representation of sensorimotor information. Additionally, generalization of voicing included the right anterior superior temporal sulcus associated with the perception of human voices as well as somatosensory regions bilaterally. Our findings highlight the close connection between brain systems for speech perception and production, and in particular, indicate the availability of articulatory codes during passive speech perception. Sensorimotor integration is central to verbal communication and provides a link between auditory signals of speech perception and motor programs of speech production. It remains highly controversial, however, to what extent the brain's speech perception system actively uses articulatory (motor), in addition to acoustic/phonetic, representations. In this study, we examine the role of

  4. A 3-dimensional DTI MRI-based model of GBM growth and response to radiation therapy.

    PubMed

    Hathout, Leith; Patel, Vishal; Wen, Patrick

    2016-09-01

    Glioblastoma (GBM) is both the most common and the most aggressive intra-axial brain tumor, with a notoriously poor prognosis. To improve this prognosis, it is necessary to understand the dynamics of GBM growth, response to treatment and recurrence. The present study presents a mathematical diffusion-proliferation model of GBM growth and response to radiation therapy based on diffusion tensor (DTI) MRI imaging. This represents an important advance because it allows 3-dimensional tumor modeling in the anatomical context of the brain. Specifically, tumor infiltration is guided by the direction of the white matter tracts along which glioma cells infiltrate. This provides the potential to model different tumor growth patterns based on location within the brain, and to simulate the tumor's response to different radiation therapy regimens. Tumor infiltration across the corpus callosum is simulated in biologically accurate time frames. The response to radiation therapy, including changes in cell density gradients and how these compare across different radiation fractionation protocols, can be rendered. Also, the model can estimate the amount of subthreshold tumor which has extended beyond the visible MR imaging margins. When combined with the ability of being able to estimate the biological parameters of invasiveness and proliferation of a particular GBM from serial MRI scans, it is shown that the model has potential to simulate realistic tumor growth, response and recurrence patterns in individual patients. To the best of our knowledge, this is the first presentation of a DTI-based GBM growth and radiation therapy treatment model.

  5. Dynamic timecourse of typical childhood absence seizures: EEG, behavior and fMRI

    PubMed Central

    Bai, X; Vestal, M; Berman, R; Negishi, M; Spann, M; Vega, C; Desalvo, M; Novotny, EJ; Constable, RT; Blumenfeld, H

    2010-01-01

    Absence seizures are 5–10 second episodes of impaired consciousness accompanied by 3–4Hz generalized spike-and-wave discharge on electroencephalography (EEG). The timecourse of functional magnetic resonance imaging (fMRI) changes in absence seizures in relation to EEG and behavior is not known. We acquired simultaneous EEG-fMRI in 88 typical childhood absence seizures from 9 pediatric patients. We investigated behavior concurrently using a continuous performance task (CPT) or simpler repetitive tapping task (RTT). EEG time-frequency analysis revealed abrupt onset and end of 3–4 Hz spike-wave discharges with a mean duration of 6.6 s. Behavioral analysis also showed rapid onset and end of deficits associated with electrographic seizure start and end. In contrast, we observed small early fMRI increases in the orbital/medial frontal and medial/lateral parietal cortex >5s before seizure onset, followed by profound fMRI decreases continuing >20s after seizure end. This timecourse differed markedly from the hemodynamic response function (HRF) model used in conventional fMRI analysis, consisting of large increases beginning after electrical event onset, followed by small fMRI decreases. Other regions, such as the lateral frontal cortex, showed more balanced fMRI increases followed by approximately equal decreases. The thalamus showed delayed increases after seizure onset followed by small decreases, most closely resembling the HRF model. These findings reveal a complex and long lasting sequence of fMRI changes in absence seizures, which are not detectible by conventional HRF modeling in many regions. These results may be important mechanistically for seizure initiation and termination and may also contribute to changes in EEG and behavior. PMID:20427649

  6. Optogenetic Functional MRI

    PubMed Central

    Lin, Peter; Fang, Zhongnan; Liu, Jia; Lee, Jin Hyung

    2016-01-01

    The investigation of the functional connectivity of precise neural circuits across the entire intact brain can be achieved through optogenetic functional magnetic resonance imaging (ofMRI), which is a novel technique that combines the relatively high spatial resolution of high-field fMRI with the precision of optogenetic stimulation. Fiber optics that enable delivery of specific wavelengths of light deep into the brain in vivo are implanted into regions of interest in order to specifically stimulate targeted cell types that have been genetically induced to express light-sensitive trans-membrane conductance channels, called opsins. fMRI is used to provide a non-invasive method of determining the brain's global dynamic response to optogenetic stimulation of specific neural circuits through measurement of the blood-oxygen-level-dependent (BOLD) signal, which provides an indirect measurement of neuronal activity. This protocol describes the construction of fiber optic implants, the implantation surgeries, the imaging with photostimulation and the data analysis required to successfully perform ofMRI. In summary, the precise stimulation and whole-brain monitoring ability of ofMRI are crucial factors in making ofMRI a powerful tool for the study of the connectomics of the brain in both healthy and diseased states. PMID:27167840

  7. Effects of citalopram and escitalopram on fMRI response to affective stimuli in healthy volunteers selected by serotonin transporter genotype.

    PubMed

    Henry, Michael E; Lauriat, Tara L; Lowen, Steven B; Churchill, Jeffrey H; Hodgkinson, Colin A; Goldman, David; Renshaw, Perry F

    2013-09-30

    This study was designed to assess whether functional magnetic resonance imaging (fMRI) following antidepressant administration (pharmaco-fMRI) is sufficiently sensitive to detect differences in patterns of activation between enantiomers of the same compound. Healthy adult males (n=11) participated in a randomized, double-blind, cross-over trial with three medication periods during which they received citalopram (racemic mixture), escitalopram (S-citalopram alone), or placebo for 2 weeks. All participants had high expression serotonin transporter genotypes. An fMRI scan that included passive viewing of overt and covert affective faces and affective words was performed after each medication period. Activation in response to overt faces was greater following escitalopram than following citalopram in the right insula, thalamus, and putamen when the faces were compared with a fixation stimulus. For the rapid covert presentation, a greater response was observed in the left middle temporal gyrus in the happy versus fearful contrast following escitalopram than following citalopram. Thus, the combination of genomics and fMRI was successful in discriminating between two very similar drugs. However, the pattern of activation observed suggests that further studies are indicated to understand how to optimally combine the two techniques. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Prospects for Quantitative fMRI: Investigating the Effects of Caffeine on Baseline Oxygen Metabolism and the Response to a Visual Stimulus in Humans

    PubMed Central

    Griffeth, Valerie E.M.; Perthen, Joanna E.; Buxton, Richard B.

    2011-01-01

    Functional magnetic resonance imaging (fMRI) provides an indirect reflection of neural activity change in the working brain through detection of blood oxygenation level dependent (BOLD) signal changes. Although widely used to map patterns of brain activation, fMRI has not yet met its potential for clinical and pharmacological studies due to difficulties in quantitatively interpreting the BOLD signal. This difficulty is due to the BOLD response being strongly modulated by two physiological factors in addition to the level of neural activity: the amount of deoxyhemoglobin present in the baseline state and the coupling ratio, n, of evoked changes in blood flow and oxygen metabolism. In this study, we used a quantitative fMRI approach with dual measurement of blood flow and BOLD responses to overcome these limitations and show that these two sources of modulation work in opposite directions following caffeine administration in healthy human subjects. A strong 27% reduction in baseline blood flow and a 22% increase in baseline oxygen metabolism after caffeine consumption led to a decrease in baseline blood oxygenation and was expected to increase the subsequent BOLD response to the visual stimulus. Opposing this, caffeine reduced n through a strong 61% increase in the evoked oxygen metabolism response to the visual stimulus. The combined effect was that BOLD responses pre- and post-caffeine were similar despite large underlying physiological changes, indicating that the magnitude of the BOLD response alone should not be interpreted as a direct measure of underlying neurophysiological changes. Instead, a quantitative methodology based on dual-echo measurement of blood flow and BOLD responses is a promising tool for applying fMRI to disease and drug studies in which both baseline conditions and the coupling of blood flow and oxygen metabolism responses to a stimulus may be altered. PMID:21586328

  9. FPGA-based RF interference reduction techniques for simultaneous PET-MRI

    NASA Astrophysics Data System (ADS)

    Gebhardt, P.; Wehner, J.; Weissler, B.; Botnar, R.; Marsden, P. K.; Schulz, V.

    2016-05-01

    The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) as a multi-modal imaging technique is considered very promising and powerful with regard to in vivo disease progression examination, therapy response monitoring and drug development. However, PET-MRI system design enabling simultaneous operation with unaffected intrinsic performance of both modalities is challenging. As one of the major issues, both the PET detectors and the MRI radio-frequency (RF) subsystem are exposed to electromagnetic (EM) interference, which may lead to PET and MRI signal-to-noise ratio (SNR) deteriorations. Early digitization of electronic PET signals within the MRI bore helps to preserve PET SNR, but occurs at the expense of increased amount of PET electronics inside the MRI and associated RF field emissions. This raises the likelihood of PET-related MRI interference by coupling into the MRI RF coil unwanted spurious signals considered as RF noise, as it degrades MRI SNR and results in MR image artefacts. RF shielding of PET detectors is a commonly used technique to reduce PET-related RF interferences, but can introduce eddy-current-related MRI disturbances and hinder the highest system integration. In this paper, we present RF interference reduction methods which rely on EM field coupling-decoupling principles of RF receive coils rather than suppressing emitted fields. By modifying clock frequencies and changing clock phase relations of digital circuits, the resulting RF field emission is optimised with regard to a lower field coupling into the MRI RF coil, thereby increasing the RF silence of PET detectors. Our methods are demonstrated by performing FPGA-based clock frequency and phase shifting of digital silicon photo-multipliers (dSiPMs) used in the PET modules of our MR-compatible Hyperion II D PET insert. We present simulations and magnetic-field map scans visualising the impact of altered clock phase pattern on the spatial RF field distribution

  10. FPGA-based RF interference reduction techniques for simultaneous PET–MRI

    PubMed Central

    Gebhardt, P; Wehner, J; Weissler, B; Botnar, R; Marsden, P K; Schulz, V

    2016-01-01

    Abstract The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) as a multi-modal imaging technique is considered very promising and powerful with regard to in vivo disease progression examination, therapy response monitoring and drug development. However, PET–MRI system design enabling simultaneous operation with unaffected intrinsic performance of both modalities is challenging. As one of the major issues, both the PET detectors and the MRI radio-frequency (RF) subsystem are exposed to electromagnetic (EM) interference, which may lead to PET and MRI signal-to-noise ratio (SNR) deteriorations. Early digitization of electronic PET signals within the MRI bore helps to preserve PET SNR, but occurs at the expense of increased amount of PET electronics inside the MRI and associated RF field emissions. This raises the likelihood of PET-related MRI interference by coupling into the MRI RF coil unwanted spurious signals considered as RF noise, as it degrades MRI SNR and results in MR image artefacts. RF shielding of PET detectors is a commonly used technique to reduce PET-related RF interferences, but can introduce eddy-current-related MRI disturbances and hinder the highest system integration. In this paper, we present RF interference reduction methods which rely on EM field coupling–decoupling principles of RF receive coils rather than suppressing emitted fields. By modifying clock frequencies and changing clock phase relations of digital circuits, the resulting RF field emission is optimised with regard to a lower field coupling into the MRI RF coil, thereby increasing the RF silence of PET detectors. Our methods are demonstrated by performing FPGA-based clock frequency and phase shifting of digital silicon photo-multipliers (dSiPMs) used in the PET modules of our MR-compatible Hyperion IID PET insert. We present simulations and magnetic-field map scans visualising the impact of altered clock phase pattern on the spatial RF field

  11. FPGA-based RF interference reduction techniques for simultaneous PET-MRI.

    PubMed

    Gebhardt, P; Wehner, J; Weissler, B; Botnar, R; Marsden, P K; Schulz, V

    2016-05-07

    The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) as a multi-modal imaging technique is considered very promising and powerful with regard to in vivo disease progression examination, therapy response monitoring and drug development. However, PET-MRI system design enabling simultaneous operation with unaffected intrinsic performance of both modalities is challenging. As one of the major issues, both the PET detectors and the MRI radio-frequency (RF) subsystem are exposed to electromagnetic (EM) interference, which may lead to PET and MRI signal-to-noise ratio (SNR) deteriorations. Early digitization of electronic PET signals within the MRI bore helps to preserve PET SNR, but occurs at the expense of increased amount of PET electronics inside the MRI and associated RF field emissions. This raises the likelihood of PET-related MRI interference by coupling into the MRI RF coil unwanted spurious signals considered as RF noise, as it degrades MRI SNR and results in MR image artefacts. RF shielding of PET detectors is a commonly used technique to reduce PET-related RF interferences, but can introduce eddy-current-related MRI disturbances and hinder the highest system integration. In this paper, we present RF interference reduction methods which rely on EM field coupling-decoupling principles of RF receive coils rather than suppressing emitted fields. By modifying clock frequencies and changing clock phase relations of digital circuits, the resulting RF field emission is optimised with regard to a lower field coupling into the MRI RF coil, thereby increasing the RF silence of PET detectors. Our methods are demonstrated by performing FPGA-based clock frequency and phase shifting of digital silicon photo-multipliers (dSiPMs) used in the PET modules of our MR-compatible Hyperion II (D) PET insert. We present simulations and magnetic-field map scans visualising the impact of altered clock phase pattern on the spatial RF field

  12. Combined ERP/fMRI evidence for early word recognition effects in the posterior inferior temporal gyrus.

    PubMed

    Dien, Joseph; Brian, Eric S; Molfese, Dennis L; Gold, Brian T

    2013-10-01

    Two brain regions with established roles in reading are the posterior middle temporal gyrus and the posterior fusiform gyrus (FG). Lesion studies have also suggested that the region located between them, the posterior inferior temporal gyrus (pITG), plays a central role in word recognition. However, these lesion results could reflect disconnection effects since neuroimaging studies have not reported consistent lexicality effects in pITG. Here we tested whether these reported pITG lesion effects are due to disconnection effects or not using parallel Event-related Potentials (ERP)/functional magnetic resonance imaging (fMRI) studies. We predicted that the Recognition Potential (RP), a left-lateralized ERP negativity that peaks at about 200-250 msec, might be the electrophysiological correlate of pITG activity and that conditions that evoke the RP (perceptual degradation) might therefore also evoke pITG activity. In Experiment 1, twenty-three participants performed a lexical decision task (temporally flanked by supraliminal masks) while having high-density 129-channel ERP data collected. In Experiment 2, a separate group of fifteen participants underwent the same task while having fMRI data collected in a 3T scanner. Examination of the ERP data suggested that a canonical RP effect was produced. The strongest corresponding effect in the fMRI data was in the vicinity of the pITG. In addition, results indicated stimulus-dependent functional connectivity between pITG and a region of the posterior FG near the Visual Word Form Area (VWFA) during word compared to nonword processing. These results provide convergent spatiotemporal evidence that the pITG contributes to early lexical access through interaction with the VWFA. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Effect of Combined 68Ga-PSMAHBED-CC Uptake Pattern and Multiparametric MRI Derived With Simultaneous PET/MRI in the Diagnosis of Primary Prostate Cancer: Initial Experience.

    PubMed

    Taneja, Sangeeta; Jena, Amarnath; Taneja, Rajesh; Singh, Aru; Ahuja, Aashim

    2018-06-01

    The purpose of this study is to assess whether temporal changes in 68 Ga-prostate-specific membrane antigen (PSMA)-HBED-CC uptake and multiparametric MRI parameters derived using PET/MRI can aid in characterization of benign and malignant prostate lesions. Thirty-five men with 29 malignant and six benign prostate lesions undergoing complete clinical workup including histologic analysis were enrolled for this retrospective study. All had undergone simultaneous whole-body 68 Ga-PSMAHBED-CC PET/MRI. Prostate Imaging Reporting and Data System version 2 (PI-RADSv2) assessment was made using a 5-point scale showing the likelihood of cancer with the combination of multiparametric MRI findings. Gallium-68-PSMA uptake was recorded at two time points: early (7 minutes) and delayed (54 minutes), adopting a copy-and-paste function of the ROI defined on MR images. ROC curve analysis was performed to test the diagnostic accuracy of early versus delayed PSMA uptake (measured as maximum standardized uptake value [SUV]). A multiple-ROI analysis was done to obtain ROCs for combined PET SUV and multiparametric MRI datasets. Spearman analysis was performed to assess the correlations. There was a significant difference between early and delayed PSMA uptake in malignant prostatic lesions (p < 0.01), which was able to characterize prostate lesions with an AUC of 0.83 and 0.94. Combined ROC analysis of PI-RADSv2 category derived from multiparametric MRI and differential PSMA uptake in characterizing prostatic lesions improved the AUC to 0.99. Dual-phase PSMA uptake improves accuracy of classifying malignant versus benign prostate lesions and complements multiparametric MRI in the diagnosis of prostate cancer.

  14. Adaptive changes in early and late blind: a fMRI study of Braille reading.

    PubMed

    Burton, H; Snyder, A Z; Conturo, T E; Akbudak, E; Ollinger, J M; Raichle, M E

    2002-01-01

    Braille reading depends on remarkable adaptations that connect the somatosensory system to language. We hypothesized that the pattern of cortical activations in blind individuals reading Braille would reflect these adaptations. Activations in visual (occipital-temporal), frontal-language, and somatosensory cortex in blind individuals reading Braille were examined for evidence of differences relative to previously reported studies of sighted subjects reading print or receiving tactile stimulation. Nine congenitally blind and seven late-onset blind subjects were studied with fMRI as they covertly performed verb generation in response to reading Braille embossed nouns. The control task was reading the nonlexical Braille string "######". This study emphasized image analysis in individual subjects rather than pooled data. Group differences were examined by comparing magnitudes and spatial extent of activated regions first determined to be significant using the general linear model. The major adaptive change was robust activation of visual cortex despite the complete absence of vision in all subjects. This included foci in peri-calcarine, lingual, cuneus and fusiform cortex, and in the lateral and superior occipital gyri encompassing primary (V1), secondary (V2), and higher tier (VP, V4v, LO and possibly V3A) visual areas previously identified in sighted subjects. Subjects who never had vision differed from late blind subjects in showing even greater activity in occipital-temporal cortex, provisionally corresponding to V5/MT and V8. In addition, the early blind had stronger activation of occipital cortex located contralateral to the hand used for reading Braille. Responses in frontal and parietal cortex were nearly identical in both subject groups. There was no evidence of modifications in frontal cortex language areas (inferior frontal gyrus and dorsolateral prefrontal cortex). Surprisingly, there was also no evidence of an adaptive expansion of the somatosensory or

  15. Adaptive Changes in Early and Late Blind: A fMRI Study of Braille Reading

    PubMed Central

    SNYDER, A. Z.; CONTURO, T. E.; AKBUDAK, E.; OLLINGER, J. M.; RAICHLE, M. E.

    2013-01-01

    Braille reading depends on remarkable adaptations that connect the somatosensory system to language. We hypothesized that the pattern of cortical activations in blind individuals reading Braille would reflect these adaptations. Activations in visual (occipital-temporal), frontal-language, and somatosensory cortex in blind individuals reading Braille were examined for evidence of differences relative to previously reported studies of sighted subjects reading print or receiving tactile stimulation. Nine congenitally blind and seven late-onset blind subjects were studied with fMRI as they covertly performed verb generation in response to reading Braille embossed nouns. The control task was reading the nonlexical Braille string “######”. This study emphasized image analysis in individual subjects rather than pooled data. Group differences were examined by comparing magnitudes and spatial extent of activated regions first determined to be significant using the general linear model. The major adaptive change was robust activation of visual cortex despite the complete absence of vision in all subjects. This included foci in peri-calcarine, lingual, cuneus and fusiform cortex, and in the lateral and superior occipital gyri encompassing primary (V1), secondary (V2), and higher tier (VP, V4v, LO and possibly V3A) visual areas previously identified in sighted subjects. Subjects who never had vision differed from late blind subjects in showing even greater activity in occipital-temporal cortex, provisionally corresponding to V5/MT and V8. In addition, the early blind had stronger activation of occipital cortex located contralateral to the hand used for reading Braille. Responses in frontal and parietal cortex were nearly identical in both subject groups. There was no evidence of modifications in frontal cortex language areas (inferior frontal gyrus and dorsolateral prefrontal cortex). Surprisingly, there was also no evidence of an adaptive expansion of the somatosensory or

  16. Pretreatment prediction of brain tumors' response to radiation therapy using high b-value diffusion-weighted MRI.

    PubMed

    Mardor, Yael; Roth, Yiftach; Ochershvilli, Aharon; Spiegelmann, Roberto; Tichler, Thomas; Daniels, Dianne; Maier, Stephan E; Nissim, Ouzi; Ram, Zvi; Baram, Jacob; Orenstein, Arie; Pfeffer, Raphael

    2004-01-01

    Diffusion-weighted magnetic resonance imaging (DWMRI) is sensitive to tissues' biophysical characteristics, including apparent diffusion coefficients (ADCs) and volume fractions of water in different populations. In this work, we evaluate the clinical efficacy of DWMRI and high diffusion-weighted magnetic resonance imaging (HDWMRI), acquired up to b = 4000 sec/mm(2) to amplify sensitivity to water diffusion properties, in pretreatment prediction of brain tumors' response to radiotherapy. Twelve patients with 20 brain lesions were studied. Six ring-enhancing lesions were excluded due to their distinct diffusion characteristics. Conventional and DWMRI were acquired on a 0.5-T MRI. Response to therapy was determined from relative changes in tumor volumes calculated from contrast-enhanced T1-weighted MRI, acquired before and a mean of 46 days after beginning therapy. ADCs and a diffusion index, R(D), reflecting tissue viability based on water diffusion were calculated from DWMRIs. Pretreatment values of ADC and R(D) were found to correlate significantly with later tumor response/nonresponse (r = 0.76, P <.002 and r = 0.77, P <.001). This correlation implies that tumors with low pretreatment diffusion values, indicating high viability, will respond better to radiotherapy than tumors with high diffusion values, indicating necrosis. These results demonstrate the feasibility of using DWMRI for pretreatment prediction of response to therapy in patients with brain tumors undergoing radiotherapy.

  17. Progressive brain changes in children and adolescents with early-onset psychosis: A meta-analysis of longitudinal MRI studies.

    PubMed

    Fraguas, David; Díaz-Caneja, Covadonga M; Pina-Camacho, Laura; Janssen, Joost; Arango, Celso

    2016-06-01

    Studies on longitudinal brain volume changes in patients with early-onset psychosis (EOP) are particularly valuable for understanding the neurobiological basis of brain abnormalities associated with psychosis. However, findings have not been consistent across studies in this population. We aimed to conduct a meta-analysis on progressive brain volume changes in children and adolescents with EOP. A systematic literature search of magnetic resonance imaging (MRI) studies comparing longitudinal brain volume changes in children and adolescents with EOP and healthy controls was conducted. The annualized rates of relative change in brain volume by region of interest (ROI) were used as raw data for the meta-analysis. The effect of age, sex, duration of illness, and specific diagnosis on volume change was also evaluated. Five original studies with 156 EOP patients (mean age at baseline MRI in the five studies ranged from 13.3 to 16.6years, 67.31% males) and 163 age- and sex-matched healthy controls, with a mean duration of follow-up of 2.46years (range 2.02-3.40), were included. Frontal gray matter (GM) was the only region in which significant differences in volume change over time were found between patients and controls (Hedges' g -0.435, 95% confidence interval (CI): -0.678 to -0.193, p<0.001). Younger age at baseline MRI was associated with greater loss of temporal GM volume over time in patients as compared with controls (p=0.005). Within patients, a diagnosis of schizophrenia was related to greater occipital GM volume loss over time (p=0.001). Compared with healthy individuals, EOP patients show greater progressive frontal GM loss over the first few years after illness onset. Age at baseline MRI and diagnosis of schizophrenia appear to be significant moderators of particular specific brain volume changes. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. DCE-MRI Parameters Have Potential to Predict Response of Locally Advanced Breast Cancer Patients to Neoadjuvant Chemotherapy and Hyperthermia: A Pilot Study

    PubMed Central

    Craciunescu, Oana I.; Blackwell, Kimberly L.; Jones, Ellen L.; MacFall, James R.; Yu, Daohai; Vujaskovic, Zeljko; Wong, Terence Z.; Liotcheva, Vlayka; Rosen, Eric L.; Prosnitz, Leonard R.; Samulski, Thaddeus V.; Dewhirst, Mark W.

    2009-01-01

    Purpose To use a novel Morpho-Physiological Tumor Score (MPTS) generated from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to predict response to treatment. Materials and Methods A protocol was designed to acquire DCE-MRI images of 20 locally advanced breast cancer (LABC) patients treated with neoadjuvant chemotherapy (NA ChT) and hyperthermia (HT). Imaging was done over 30 minutes following bolus injection of Gd-based contrast agent. Parametric maps were generated by fitting the signal intensity to a double exponential curve and were used to derive a morphological characterization of the lesions. Enhancement-variance dynamics parameters, washin and washout parameters (WiP, WoP) were extracted. The morphological characterization and the WiP and WoP were combined into a MPTS with the intent of achieving better prognostic efficacy. The MPTS was correlated with response to NA therapy as determined by pathologic residual tumor and MRI imaging. Results The contrast agent in all tumors typically peaked in the first 1–4 minutes. The tumors WiP and WoP varied considerably. The MPTS was highly correlated with whether the patients had a pathologic response. This scoring system has a specificity of 78% and a sensitivity of 91% for predicting response to NA chemotherapy. The kappa was 0.69 with a 95% confidence interval of [0.38, 1.0] and a p-value of 0.002. Conclusions This pilot study shows that the MPTS derived using pre-treatment MRI images has the potential to predict response to NA ChT and HT in LABC patients. Further prospective studies are needed to confirm the validity of these results. PMID:19657852

  19. Integrin αvβ3-targeted dynamic contrast-enhanced magnetic resonance imaging using a gadolinium-loaded polyethylene gycol-dendrimer-cyclic RGD conjugate to evaluate tumor angiogenesis and to assess early antiangiogenic treatment response in a mouse xenograft tumor model.

    PubMed

    Chen, Wei-Tsung; Shih, Tiffany Ting Fang; Chen, Ran-Chou; Tu, Shin-Yang; Hsieh, Wen-Yuen; Yang, Pang-Chyr

    2012-01-01

    The purpose of this study was to validate an integrin αvβ3-targeted magnetic resonance contrast agent, PEG-G3-(Gd-DTPA)6-(cRGD-DTPA)2, for its ability to detect tumor angiogenesis and assess early response to antiangiogenic therapy using dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI). Integrin αvβ3-positive U87 cells and control groups were incubated with fluorescein-labeled cRGD-conjugated dendrimer, and the cellular attachment of the dendrimer was observed. DCE MRI was performed on mice bearing KB xenograft tumors using either PEG-G3-(Gd-DTPA)6-(cRGD-DTPA)2 or PEG-G3-(Gd-DTPA)6-(cRAD-DTPA)2. DCE MRI was also performed 2 hours after anti-integrin αvβ3 monoclonal antibody treatment and after bevacizumab treatment on days 3 and 6t. Using DCE MRI, the 30-minute contrast washout percentage was significantly lower in the cRGD-conjugate injection groups. The enhancement patterns were different between the two contrast injection groups. In the antiangiogenic therapy groups, a rapid increase in 30-minute contrast washout percentage was observed in both the LM609 and bevacizumab treatment groups, and this occurred before there was an observable decrease in tumor size. The integrin αvβ3 targeting ability of PEG-G3-(Gd-DTPA)6-(cRGD-DTPA)2 in vitro and in vivo was demonstrated. The 30-minute contrast washout percentage is a useful parameter for examining tumor angiogenesis and for the early assessment of antiangiogenic treatment response.

  20. Rheumatoid arthritis: what do MRI and ultrasound show

    PubMed Central

    Jans, Lennart; Teh, James

    2017-01-01

    Rheumatoid arthritis is the most common inflammatory arthritis, affecting approximately 1% of the world’s population. Its pathogenesis has not been completely understood. However, there is evidence that the disease may involve synovial joints, subchondral bone marrow as well as intra- and extraarticular fat tissue, and may lead to progressive joint destruction and disability. Over the last two decades, significant improvement in its prognosis has been achieved owing to new strategies for disease management, the emergence of new biologic therapies and better utilization of conventional disease-modifying antirheumatic drugs. Prompt diagnosis and appropriate therapy have been recognized as essential for improving clinical outcomes in patients with early rheumatoid arthritis. Despite the potential of ultrasonography and magnetic resonance imaging to visualize all tissues typically involved in the pathogenesis of rheumatoid arthritis, the diagnosis of early disease remains difficult due to limited specificity of findings. This paper summarizes the pathogenesis phenomena of rheumatoid arthritis and describes rheumatoid arthritis-related features of the disease within the synovium, subchondral bone marrow and articular fat tissue on MRI and ultrasound. Moreover, the paper aims to illustrate the significance of MRI and ultrasound findings in rheumatoid arthritis in the diagnosis of subclinical and early inflammation, and the importance of MRI and US in the follow-up and establishing remission. Finally, we also discuss MRI of the spine in rheumatoid arthritis, which may help assess the presence of active inflammation and complications. PMID:28439423

  1. The fMRI BOLD response to unisensory and multisensory smoking cues in nicotine-dependent adults

    PubMed Central

    Cortese, Bernadette M.; Uhde, Thomas W.; Brady, Kathleen T.; McClernon, F. Joseph; Yang, Qing X.; Collins, Heather R.; LeMatty, Todd; Hartwell, Karen J.

    2015-01-01

    Given that the vast majority of functional magnetic resonance imaging (fMRI) studies of drug cue reactivity use unisensory visual cues, but that multisensory cues may elicit greater craving-related brain responses, the current study sought to compare the fMRI BOLD response to unisensory visual and multisensory, visual plus odor, smoking cues in 17 nicotine-dependent adult cigarette smokers. Brain activation to smoking-related, compared to neutral, pictures was assessed under cigarette smoke and odorless odor conditions. While smoking pictures elicited a pattern of activation consistent with the addiction literature, the multisensory (odor + picture) smoking cues elicited significantly greater and more widespread activation in mainly frontal and temporal regions. BOLD signal elicited by the multi-sensory, but not unisensory cues, was significantly related to participants’ level of control over craving as well. Results demonstrated that the co-presentation of cigarette smoke odor with smoking-related visual cues, compared to the visual cues alone, elicited greater levels of craving-related brain activation in key regions implicated in reward. These preliminary findings support future research aimed at a better understanding of multisensory integration of drug cues and craving. PMID:26475784

  2. The fMRI BOLD response to unisensory and multisensory smoking cues in nicotine-dependent adults.

    PubMed

    Cortese, Bernadette M; Uhde, Thomas W; Brady, Kathleen T; McClernon, F Joseph; Yang, Qing X; Collins, Heather R; LeMatty, Todd; Hartwell, Karen J

    2015-12-30

    Given that the vast majority of functional magnetic resonance imaging (fMRI) studies of drug cue reactivity use unisensory visual cues, but that multisensory cues may elicit greater craving-related brain responses, the current study sought to compare the fMRI BOLD response to unisensory visual and multisensory, visual plus odor, smoking cues in 17 nicotine-dependent adult cigarette smokers. Brain activation to smoking-related, compared to neutral, pictures was assessed under cigarette smoke and odorless odor conditions. While smoking pictures elicited a pattern of activation consistent with the addiction literature, the multisensory (odor+picture) smoking cues elicited significantly greater and more widespread activation in mainly frontal and temporal regions. BOLD signal elicited by the multisensory, but not unisensory cues, was significantly related to participants' level of control over craving as well. Results demonstrated that the co-presentation of cigarette smoke odor with smoking-related visual cues, compared to the visual cues alone, elicited greater levels of craving-related brain activation in key regions implicated in reward. These preliminary findings support future research aimed at a better understanding of multisensory integration of drug cues and craving. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Comparison of SPECT/CT, MRI and CT in diagnosis of skull base bone invasion in nasopharyngeal carcinoma.

    PubMed

    Zhang, Shu-xu; Han, Peng-hui; Zhang, Guo-qian; Wang, Rui-hao; Ge, Yong-bin; Ren, Zhi-gang; Li, Jian-sheng; Fu, Wen-hai

    2014-01-01

    Early detection of skull base invasion in nasopharyngeal carcinoma (NPC) is crucial for correct staging, assessing treatment response and contouring the tumor target in radiotherapy planning, as well as improving the patient's prognosis. To compare the diagnostic efficacy of single photon emission computed tomography/computed tomography (SPECT/CT) imaging, magnetic resonance imaging (MRI) and computed tomography (CT) for the detection of skull base invasion in NPC. Sixty untreated patients with histologically proven NPC underwent SPECT/CT imaging, contrast-enhanced MRI and CT. Of the 60 patients, 30 had skull base invasion confirmed by the final results of contrast-enhanced MRI, CT and six-month follow-up imaging (MRI and CT). The diagnostic efficacy of the three imaging modalities in detecting skull base invasion was evaluated. The rates of positive findings of skull base invasion for SPECT/CT, MRI and CT were 53.3%, 48.3% and 33.3%, respectively. The sensitivity, specificity and accuracy were 93.3%, 86.7% and 90.0% for SPECT/CT fusion imaging, 96.7%, 100.0% and 98.3% for contrast-enhanced MRI, and 66.7%, 100.0% and 83.3% for contrast-enhanced CT. MRI showed the best performance for the diagnosis of skull base invasion in nasopharyngeal carcinoma, followed closely by SPECT/CT. SPECT/CT had poorer specificity than that of both MRI and CT, while CT had the lowest sensitivity.

  4. Can Induced Hypothermia Be Assured During Brain MRI in Neonates with Hypoxic-Ischemic Encephalopathy?

    PubMed Central

    Wintermark, Pia; Labrecque, Michelle; Warfield, Simon. K.; DeHart, Stephanie; Hansen, Anne

    2012-01-01

    Until now, brain magnetic resonance imaging (MRIs) in asphyxiated neonates receiving therapeutic hypothermia have been performed after treatment is complete. However, there is increasing interest in early brain MRI while hypothermia is still being provided, in order to rapidly understand the degree of brain injury and possibly refine neuroprotective strategies. This study was designed to assess whether therapeutic hypothermia can be maintained while performing a brain MRI. Twenty MRI scans were obtained in twelve asphyxiated neonates while they were treated with hypothermia. Median difference between esophageal temperature on NICU departure and return was 0.1°C (range: −0.8 to 0.8°C). In conclusion, therapeutic hypothermia can be safely and reproducibly maintained during a brain MRI. Hypothermia treatment should not prevent obtaining an early brain MRI if clinically indicated. PMID:20737144

  5. In vivo MRI assessment of permanent middle cerebral artery occlusion by electrocoagulation: pitfalls of procedure

    PubMed Central

    2010-01-01

    Permanent middle cerebral artery (MCA) occlusion (pMCAO) by electrocoagulation is a commonly used model but with potential traumatic lesions. Early MRI monitoring may assess pMCAO for non-specific brain damage. The surgical steps of pMCAO were evaluated for traumatic cerebral injury in 22 Swiss mice using diffusion and T2-weighted MRI (7T) performed within 1 h and 24 h after surgery. Temporal muscle cauterization without MCA occlusion produced an early T2 hyperintensity mimicking an infarct. No lesion was visible after temporal muscle incision or craniotomy. Early MRI monitoring is useful to identify non-specific brain injury that could hamper neuroprotective drugs assessment. PMID:20298536

  6. Evaluation of Magnetic Resonance Imaging Responsiveness in Active Psoriatic Arthritis at Multiple Timepoints during the First 12 Weeks of Antitumor Necrosis Factor Therapy.

    PubMed

    Feletar, Marie; Hall, Stephen; Bird, Paul

    2016-01-01

    To assess the responsiveness of high- and low-field extremity magnetic resonance imaging (MRI) variables at multiple timepoints in the first 12 weeks post-antitumor necrosis factor (anti-TNF) therapy initiation in patients with psoriatic arthritis (PsA) and active dactylitis. Twelve patients with active PsA and clinical evidence of dactylitis involving at least 1 digit were recruited. Patients underwent sequential high-field conventional (1.5 Tesla) and extremity low-field MRI (0.2 Tesla) of the affected hand or foot, pre- and postgadolinium at baseline (pre-TNF), 2 weeks (post-TNF), 6 weeks, and 12 weeks. A blinded observer scored all images on 2 occasions using the PsA MRI scoring system. Eleven patients completed the study, but only 6 patients completed all high-field and low-field MRI assessments. MRI scores demonstrated rapid response to TNF inhibition with score reduction in tenosynovitis, synovitis, and osteitis at 2 weeks. Intraobserver reliability was good to excellent for all variables. High-field MRI demonstrated greater sensitivity to tenosynovitis, synovitis, and osteitis and greater responsiveness to change posttreatment. Treatment responses were maintained to 12 weeks. This study demonstrates the use of MRI in detecting early response to biologic therapy. MRI variables of tenosynovitis, synovitis, and osteitis demonstrated responsiveness posttherapy with high-field scores more responsive to change than low-field scores.

  7. Interocular suppression in strabismic amblyopia results in an attenuated and delayed hemodynamic response function in early visual cortex.

    PubMed

    Farivar, Reza; Thompson, Benjamin; Mansouri, Behzad; Hess, Robert F

    2011-12-20

    Factors such as strabismus or anisometropia during infancy can disrupt normal visual development and result in amblyopia, characterized by reduced visual function in an otherwise healthy eye and often associated with persistent suppression of inputs from the amblyopic eye by those from the dominant eye. It has become evident from fMRI studies that the cortical response to stimulation of the amblyopic eye is also affected. We were interested to compare the hemodynamic response function (HRF) of early visual cortex to amblyopic vs. dominant eye stimulation. In the first experiment, we found that stimulation of the amblyopic eye resulted in a signal that was both attenuated and delayed in its time to peak. We postulated that this delay may be due to suppressive effects of the dominant eye and, in our second experiment, measured the cortical response of amblyopic eye stimulation under two conditions--where the dominant eye was open and seeing a static pattern (high suppression) or where the dominant eye was patched and closed (low suppression). We found that the HRF in response to amblyopic eye stimulation depended on whether the dominant eye was open. This effect was manifested as both a delayed HRF under the suppressed condition and an amplitude reduction.

  8. Structural and Functional Correlates of Visual Field Asymmetry in the Human Brain by Diffusion Kurtosis MRI and Functional MRI

    PubMed Central

    O’Connell, Caitlin; Ho, Leon C.; Murphy, Matthew C.; Conner, Ian P.; Wollstein, Gadi; Cham, Rakie; Chan, Kevin C.

    2016-01-01

    Human visual performance has been observed to exhibit superiority in localized regions of the visual field across many classes of stimuli. However, the underlying neural mechanisms remain unclear. This study aims to determine if the visual information processing in the human brain is dependent on the location of stimuli in the visual field and the corresponding neuroarchitecture using blood-oxygenation-level-dependent functional MRI (fMRI) and diffusion kurtosis MRI (DKI), respectively in 15 healthy individuals at 3 Tesla. In fMRI, visual stimulation to the lower hemifield showed stronger brain responses and larger brain activation volumes than the upper hemifield, indicative of the differential sensitivity of the human brain across the visual field. In DKI, the brain regions mapping to the lower visual field exhibited higher mean kurtosis but not fractional anisotropy or mean diffusivity when compared to the upper visual field. These results suggested the different distributions of microstructural organization across visual field brain representations. There was also a strong positive relationship between diffusion kurtosis and fMRI responses in the lower field brain representations. In summary, this study suggested the structural and functional brain involvements in the asymmetry of visual field responses in humans, and is important to the neurophysiological and psychological understanding of human visual information processing. PMID:27631541

  9. Blood gene expression profiling of an early acetaminophen response.

    PubMed

    Bushel, P R; Fannin, R D; Gerrish, K; Watkins, P B; Paules, R S

    2017-06-01

    Acetaminophen can adversely affect the liver especially when overdosed. We used whole blood as a surrogate to identify genes as potential early indicators of an acetaminophen-induced response. In a clinical study, healthy human subjects were dosed daily with 4 g of either acetaminophen or placebo pills for 7 days and evaluated over the course of 14 days. Alanine aminotransferase (ALT) levels for responders to acetaminophen increased between days 4 and 9 after dosing, and 12 genes were detected with expression profiles significantly altered within 24 h. The early responsive genes separated the subjects by class and dose period. In addition, the genes clustered patients who overdosed on acetaminophen apart from controls and also predicted the exposure classifications with 100% accuracy. The responsive genes serve as early indicators of an acetaminophen exposure, and their gene expression profiles can potentially be evaluated as molecular indicators for further consideration.

  10. Blood Gene Expression Profiling of an Early Acetaminophen Response

    PubMed Central

    Bushel, Pierre R.; Fannin, Rick D.; Gerrish, Kevin; Watkins, Paul B.; Paules, Richard S.

    2018-01-01

    Acetaminophen can adversely affect the liver especially when overdosed. We used whole blood as a surrogate to identify genes as potential early indicators of an acetaminophen-induced response. In a clinical study, healthy human subjects were dosed daily with 4g of either acetaminophen or placebo pills for 7 days and evaluated over the course of 14 days. Alanine aminotransferase (ALT) levels for responders to acetaminophen increased between days 4 and 9 after dosing and 12 genes were detected with expression profiles significantly altered within 24 hrs. The early responsive genes separated the subjects by class and dose period. In addition, the genes clustered patients who overdosed on acetaminophen apart from controls and also predicted the exposure classifications with 100% accuracy. The responsive genes serve as early indicators of an acetaminophen exposure and their gene expression profiles can potentially be evaluated as molecular indicators for further consideration. PMID:26927286

  11. DCE-MRI, DW-MRI, and MRS in Cancer: Challenges and Advantages of Implementing Qualitative and Quantitative Multi-parametric Imaging in the Clinic

    PubMed Central

    Winfield, Jessica M.; Payne, Geoffrey S.; Weller, Alex; deSouza, Nandita M.

    2016-01-01

    Abstract Multi-parametric magnetic resonance imaging (mpMRI) offers a unique insight into tumor biology by combining functional MRI techniques that inform on cellularity (diffusion-weighted MRI), vascular properties (dynamic contrast-enhanced MRI), and metabolites (magnetic resonance spectroscopy) and has scope to provide valuable information for prognostication and response assessment. Challenges in the application of mpMRI in the clinic include the technical considerations in acquiring good quality functional MRI data, development of robust techniques for analysis, and clinical interpretation of the results. This article summarizes the technical challenges in acquisition and analysis of multi-parametric MRI data before reviewing the key applications of multi-parametric MRI in clinical research and practice. PMID:27748710

  12. Early response to psychological trauma--what GPs can do.

    PubMed

    Wade, Darryl; Howard, Alexandra; Fletcher, Susan; Cooper, John; Forbes, David

    2013-09-01

    There is a high prevalence of psychological trauma exposure among primary care patients. General practitioners are well placed to provide appropriate support for patients coping with trauma. This article outlines an evidence-based early response to psychological trauma. Psychological first aid is the preferred approach in providing early assistance to patients who have experienced a traumatic event. General practitioners can be guided by five empirically derived principles in their early response: promoting a sense of safety, calming, self efficacy, connectedness and hope. Structured psychological interventions, including psychological debriefing, are not routinely recommended in the first few weeks following trauma exposure. General practitioner self care is an important aspect of providing post-trauma patient care.

  13. Current whole-body MRI applications in the neurofibromatoses

    PubMed Central

    Fayad, Laura M.; Khan, Muhammad Shayan; Bredella, Miriam A.; Harris, Gordon J.; Evans, D. Gareth; Farschtschi, Said; Jacobs, Michael A.; Chhabra, Avneesh; Salamon, Johannes M.; Wenzel, Ralph; Mautner, Victor F.; Dombi, Eva; Cai, Wenli; Plotkin, Scott R.; Blakeley, Jaishri O.

    2016-01-01

    Objectives: The Response Evaluation in Neurofibromatosis and Schwannomatosis (REiNS) International Collaboration Whole-Body MRI (WB-MRI) Working Group reviewed the existing literature on WB-MRI, an emerging technology for assessing disease in patients with neurofibromatosis type 1 (NF1), neurofibromatosis type 2 (NF2), and schwannomatosis (SWN), to recommend optimal image acquisition and analysis methods to enable WB-MRI as an endpoint in NF clinical trials. Methods: A systematic process was used to review all published data about WB-MRI in NF syndromes to assess diagnostic accuracy, feasibility and reproducibility, and data about specific techniques for assessment of tumor burden, characterization of neoplasms, and response to therapy. Results: WB-MRI at 1.5T or 3.0T is feasible for image acquisition. Short tau inversion recovery (STIR) sequence is used in all investigations to date, suggesting consensus about the utility of this sequence for detection of WB tumor burden in people with NF. There are insufficient data to support a consensus statement about the optimal imaging planes (axial vs coronal) or 2D vs 3D approaches. Functional imaging, although used in some NF studies, has not been systematically applied or evaluated. There are no comparative studies between regional vs WB-MRI or evaluations of WB-MRI reproducibility. Conclusions: WB-MRI is feasible for identifying tumors using both 1.5T and 3.0T systems. The STIR sequence is a core sequence. Additional investigation is needed to define the optimal approach for volumetric analysis, the reproducibility of WB-MRI in NF, and the diagnostic performance of WB-MRI vs regional MRI. PMID:27527647

  14. Predicting response before initiation of neoadjuvant chemotherapy in breast cancer using new methods for the analysis of dynamic contrast enhanced MRI (DCE MRI) data

    NASA Astrophysics Data System (ADS)

    DeGrandchamp, Joseph B.; Whisenant, Jennifer G.; Arlinghaus, Lori R.; Abramson, V. G.; Yankeelov, Thomas E.; Cárdenas-Rodríguez, Julio

    2016-03-01

    The pharmacokinetic parameters derived from dynamic contrast enhanced (DCE) MRI have shown promise as biomarkers for tumor response to therapy. However, standard methods of analyzing DCE MRI data (Tofts model) require high temporal resolution, high signal-to-noise ratio (SNR), and the Arterial Input Function (AIF). Such models produce reliable biomarkers of response only when a therapy has a large effect on the parameters. We recently reported a method that solves the limitations, the Linear Reference Region Model (LRRM). Similar to other reference region models, the LRRM needs no AIF. Additionally, the LRRM is more accurate and precise than standard methods at low SNR and slow temporal resolution, suggesting LRRM-derived biomarkers could be better predictors. Here, the LRRM, Non-linear Reference Region Model (NRRM), Linear Tofts model (LTM), and Non-linear Tofts Model (NLTM) were used to estimate the RKtrans between muscle and tumor (or the Ktrans for Tofts) and the tumor kep,TOI for 39 breast cancer patients who received neoadjuvant chemotherapy (NAC). These parameters and the receptor statuses of each patient were used to construct cross-validated predictive models to classify patients as complete pathological responders (pCR) or non-complete pathological responders (non-pCR) to NAC. Model performance was evaluated using area under the ROC curve (AUC). The AUC for receptor status alone was 0.62, while the best performance using predictors from the LRRM, NRRM, LTM, and NLTM were AUCs of 0.79, 0.55, 0.60, and 0.59 respectively. This suggests that the LRRM can be used to predict response to NAC in breast cancer.

  15. MRI-guidance in percutaneous core decompression of osteonecrosis of the femoral head.

    PubMed

    Kerimaa, Pekka; Väänänen, Matti; Ojala, Risto; Hyvönen, Pekka; Lehenkari, Petri; Tervonen, Osmo; Blanco Sequeiros, Roberto

    2016-04-01

    The purpose of this study was to evaluate the usefulness of MRI-guidance for core decompression of avascular necrosis of the femoral head. Twelve MRI-guided core decompressions were performed on patients with different stages of avascular necrosis of the femoral head. The patients were asked to evaluate their pain and their ability to function before and after the procedure and imaging findings were reviewed respectively. Technical success in reaching the target was 100 % without complications. Mean duration of the procedure itself was 54 min. All patients with ARCO stage 1 osteonecrosis experienced clinical benefit and pathological MRI findings were seen to diminish. Patients with more advanced disease gained less, if any, benefit and total hip arthroplasty was eventually performed on four patients. MRI-guidance seems technically feasible, accurate and safe for core decompression of avascular necrosis of the femoral head. Patients with early stage osteonecrosis may benefit from the procedure. • MRI is a useful guidance method for minimally invasive musculoskeletal interventions. • Bone drilling seems beneficial at early stages of avascular necrosis. • MRI-guidance is safe and accurate for bone drilling.

  16. A Stimulus-Locked Vector Autoregressive Model for Slow Event-Related fMRI Designs

    PubMed Central

    Siegle, Greg

    2009-01-01

    Summary Neuroscientists have become increasingly interested in exploring dynamic relationships among brain regions. Such a relationship, when directed from one region toward another, is denoted by “effective connectivity.” An fMRI experimental paradigm which is well-suited for examination of effective connectivity is the slow event-related design. This design presents stimuli at sufficient temporal spacing for determining within-trial trajectories of BOLD activation, allowing for the analysis of stimulus-locked temporal covariation of brain responses in multiple regions. This may be especially important for emotional stimuli processing, which can evolve over the course of several seconds, if not longer. However, while several methods have been devised for determining fMRI effective connectivity, few are adapted to event-related designs, which include non-stationary BOLD responses and multiple levels of nesting. We propose a model tailored for exploring effective connectivity of multiple brain regions in event-related fMRI designs - a semi-parametric adaptation of vector autoregressive (VAR) models, termed “stimulus-locked VAR” (SloVAR). Connectivity coefficients vary as a function of time relative to stimulus onset, are regularized via basis expansions, and vary randomly across subjects. SloVAR obtains flexible, data-driven estimates of effective connectivity and hence is useful for building connectivity models when prior information on dynamic regional relationships is sparse. Indices derived from the coefficient estimates can also be used to relate effective connectivity estimates to behavioral or clinical measures. We demonstrate the SloVAR model on a sample of clinically depressed and normal controls, showing that early but not late cortico-amygdala connectivity appears crucial to emotional control and early but not late cortico-cortico connectivity predicts depression severity in the depressed group, relationships that would have been missed in a more

  17. Value of diffusion-weighted MRI and apparent diffusion coefficient measurements for predicting the response of locally advanced rectal cancer to neoadjuvant chemoradiotherapy.

    PubMed

    Iannicelli, Elsa; Di Pietropaolo, Marco; Pilozzi, Emanuela; Osti, Mattia Falchetto; Valentino, Maria; Masoni, Luigi; Ferri, Mario

    2016-10-01

    The aim of our study was to assess the performance value of magnetic resonance imaging (MRI) in the restaging of locally advanced rectal cancer after neoadjuvant chemoradiotherapy (CRT) and in the identification of good vs. poor responders to neoadjuvant therapy. A total of 34 patients with locally advanced rectal cancer underwent MRI prior to and after CRT. T stage and tumor regression grade (TRG) on post-CRT MRI was compared with the pathological staging ypT and TRG. Tumor volume and the apparent diffusion coefficient (ADC) were measured using diffusion-weighted imaging (DWI) before and after neoadjuvant CRT; the percentage of tumor volume reduction and the change of ADC (ΔADC) was also calculated. ADC parameters and the percentage of tumor volume reduction were correlated to histopathological results. The diagnostic performance of ADC and volume reduction to assess tumor response was evaluated by calculating the area under the ROC curve and the optimal cut-off values. A significant correlation between the T stage and the TRG defined in DW-MRI after CRT and the ypT and the TRG observed on the surgical specimens was found (p = 0.001; p < 0.001). The mean post-CRT ADC and ΔADC in responder patients was significantly higher compared to non-responder ones (p = 0.001; p = 0.01). Furthermore, the mean post-CRT ADC values were significantly higher in tumors with T-downstage (p = 0.01). DW-MRI may have a significant role in the restaging and in the evaluation of post-CRT response of locally advanced rectal cancer. Quantitative analysis of DWI through ADC map may result in a promising noninvasive tool to evaluate the response to therapy.

  18. Pretreatment Prediction of Brain Tumors' Response to Radiation Therapy Using High b-Value Diffusion-Weighted MRI1

    PubMed Central

    Mardor, Yael; Roth, Yiftach; Ocherashvilli, Aharon; Spiegelmann, Roberto; Tichler, Thomas; Daniels, Dianne; Maier, Stephan E; Nissim, Ouzi; Ram, Zvi; Baram, Jacob; Orenstein, Arie; Pfeffer, Raphael

    2004-01-01

    Abstract Diffusion-weighted magnetic resonance imaging (DWMRI) is sensitive to tissues' biophysical characteristics, including apparent diffusion coefficients (ADCs) and volume fractions of water in different populations. In this work, we evaluate the clinical efficacy of DWMRI and high diffusion-weighted magnetic resonance imaging (HDWMRI), acquired up to b = 4000 sec/mm2 to amplify sensitivity to water diffusion properties, in pretreatment prediction of brain tumors' response to radiotherapy. Twelve patients with 20 brain lesions were studied. Six ring-enhancing lesions were excluded due to their distinct diffusion characteristics. Conventional and DWMRI were acquired on a 0.5-T MRI. Response to therapy was determined from relative changes in tumor volumes calculated from contrast-enhanced T1-weighted MRI, acquired before and a mean of 46 days after beginning therapy. ADCs and a diffusion index, RD, reflecting tissue viability based on water diffusion were calculated from DWMRIs. Pretreatment values of ADC and RD were found to correlate significantly with later tumor response/nonresponse (r = 0.76, P < .002 and r = 0.77, P < .001). This correlation implies that tumors with low pretreatment diffusion values, indicating high viability, will respond better to radiotherapy than tumors with high diffusion values, indicating necrosis. These results demonstrate the feasibility of using DWMRI for pretreatment prediction of response to therapy in patients with brain tumors undergoing radiotherapy. PMID:15140402

  19. Investigation of a calcium-responsive contrast agent in cellular model systems: feasibility for use as a smart molecular probe in functional MRI.

    PubMed

    Angelovski, Goran; Gottschalk, Sven; Milošević, Milena; Engelmann, Jörn; Hagberg, Gisela E; Kadjane, Pascal; Andjus, Pavle; Logothetis, Nikos K

    2014-05-21

    Responsive or smart contrast agents (SCAs) represent a promising direction for development of novel functional MRI (fMRI) methods for the eventual noninvasive assessment of brain function. In particular, SCAs that respond to Ca(2+) may allow tracking neuronal activity independent of brain vasculature, thus avoiding the characteristic limitations of current fMRI techniques. Here we report an in vitro proof-of-principle study with a Ca(2+)-sensitive, Gd(3+)-based SCA in an attempt to validate its potential use as a functional in vivo marker. First, we quantified its relaxometric response in a complex 3D cell culture model. Subsequently, we examined potential changes in the functionality of primary glial cells following administration of this SCA. Monitoring intracellular Ca(2+) showed that, despite a reduction in the Ca(2+) level, transport of Ca(2+) through the plasma membrane remained unaffected, while stimulation with ATP induced Ca(2+)-transients suggested normal cellular signaling in the presence of low millimolar SCA concentrations. SCAs merely lowered the intracellular Ca(2+) level. Finally, we estimated the longitudinal relaxation times (T1) for an idealized in vivo fMRI experiment with SCA, for extracellular Ca(2+) concentration level changes expected during intense neuronal activity which takes place upon repetitive stimulation. The values we obtained indicate changes in T1 of around 1-6%, sufficient to be robustly detectable using modern MRI methods in high field scanners. Our results encourage further attempts to develop even more potent SCAs and appropriate fMRI protocols. This would result in novel methods that allow monitoring of essential physiological processes at the cellular and molecular level.

  20. Background parenchymal enhancement in preoperative breast MRI.

    PubMed

    Kohara, Satoko; Ishigaki, Satoko; Satake, Hiroko; Kawamura, Akiko; Kawai, Hisashi; Kikumori, Toyone; Naganawa, Shinji

    2015-08-01

    We aimed to assess the influence of background parenchymal enhancement (BPE) on surgical planning performed using preoperative MRI for breast cancer evaluation. Between January 2009 and December 2010, 91 newly diagnosed breast cancer patients (mean age, 55.5 years; range, 30-88 years) who underwent preoperative bilateral breast MRI followed by planned breast conservation therapy were retrospectively enrolled. MRI was performed to assess the tumor extent in addition to mammography and breast ultrasonography. BPE in the contralateral normal breast MRI at the early dynamic phase was visually classified as follows: minimal (n=49), mild (n=27), moderate (n=7), and marked (n=8). The correlations between the BPE grade and age, menopausal status, index tumor size, changes in surgical management based on MRI results, positive predictive value (PPV) of MRI, and surgical margins were assessed. Patients in the strong BPE groups were significantly younger (p=0.002) and generally premenopausal (p<0.001). Surgical treatment was not changed in 67 cases (73.6%), while extended excision and mastectomy were performed in 12 cases (13.2%), each based on additional lesions on MRI. Six of 79 (7.6%) patients who underwent breast conservation therapy had tumor-positive resection margins. In cases where surgical management was changed, the PPV for MRI-detected foci was high in the minimal (91.7%) and mild groups (66.7%), and 0% in the moderate and marked groups (p=0.002). Strong BPE causes false-positive MRI findings and may lead to overly extensive surgery, whereas MRI may be beneficial in select patients with weak BPE.

  1. [MRI methods for pulmonary ventilation and perfusion imaging].

    PubMed

    Sommer, G; Bauman, G

    2016-02-01

    Separate assessment of respiratory mechanics, gas exchange and pulmonary circulation is essential for the diagnosis and therapy of pulmonary diseases. Due to the global character of the information obtained clinical lung function tests are often not sufficiently specific in the differential diagnosis or have a limited sensitivity in the detection of early pathological changes. The standard procedures of pulmonary imaging are computed tomography (CT) for depiction of the morphology as well as perfusion/ventilation scintigraphy and single photon emission computed tomography (SPECT) for functional assessment. Magnetic resonance imaging (MRI) with hyperpolarized gases, O2-enhanced MRI, MRI with fluorinated gases and Fourier decomposition MRI (FD-MRI) are available for assessment of pulmonary ventilation. For assessment of pulmonary perfusion dynamic contrast-enhanced MRI (DCE-MRI), arterial spin labeling (ASL) and FD-MRI can be used. Imaging provides a more precise insight into the pathophysiology of pulmonary function on a regional level. The advantages of MRI are a lack of ionizing radiation, which allows a protective acquisition of dynamic data as well as the high number of available contrasts and therefore accessible lung function parameters. Sufficient clinical data exist only for certain applications of DCE-MRI. For the other techniques, only feasibility studies and case series of different sizes are available. The clinical applicability of hyperpolarized gases is limited for technical reasons. The clinical application of the techniques described, except for DCE-MRI, should be restricted to scientific studies.

  2. Altered Dynamics of the fMRI Response to Faces in Individuals with Autism

    ERIC Educational Resources Information Center

    Kleinhans, Natalia M.; Richards, Todd; Greenson, Jessica; Dawson, Geraldine; Aylward, Elizabeth

    2016-01-01

    Abnormal fMRI habituation in autism spectrum disorders (ASDs) has been proposed as a critical component in social impairment. This study investigated habituation to fearful faces and houses in ASD and whether fMRI measures of brain activity discriminate between ASD and typically developing (TD) controls. Two identical fMRI runs presenting masked…

  3. T₁ρ MRI of human musculoskeletal system.

    PubMed

    Wang, Ligong; Regatte, Ravinder R

    2015-03-01

    Magnetic resonance imaging (MRI) offers the direct visualization of the human musculoskeletal (MSK) system, especially all diarthrodial tissues including cartilage, bone, menisci, ligaments, tendon, hip, synovium, etc. Conventional MRI techniques based on T1 - and T2 -weighted, proton density (PD) contrast are inconclusive in quantifying early biochemically degenerative changes in MSK system in general and articular cartilage in particular. In recent years, quantitative MR parameter mapping techniques have been used to quantify the biochemical changes in articular cartilage, with a special emphasis on evaluating joint injury, cartilage degeneration, and soft tissue repair. In this article we focus on cartilage biochemical composition, basic principles of T1ρ MRI, implementation of T1ρ pulse sequences, biochemical validation, and summarize the potential applications of the T1ρ MRI technique in MSK diseases including osteoarthritis (OA), anterior cruciate ligament (ACL) injury, and knee joint repair. Finally, we also review the potential advantages, challenges, and future prospects of T1ρ MRI for widespread clinical translation. © 2014 Wiley Periodicals, Inc.

  4. Studies of MRI relaxivities of gadolinium-labeled dendrons

    NASA Astrophysics Data System (ADS)

    Pan, Hongmu; Daniel, Marie-Christine

    2011-05-01

    In cancer detection, imaging techniques have a great importance in early diagnosis. The more sensitive the imaging technique and the earlier the tumor can be detected. Contrast agents have the capability to increase the sensitivity in imaging techniques such as magnetic resonance imaging (MRI). Until now, gadolinium-based contrast agents are mainly used for MRI, and show good enhancement. But improvement is needed for detection of smaller tumors at the earliest stage possible. The dendrons complexed with Gd(DOTA) were synthesized and evaluated as a new MRI contrast agent. The longitudinal and transverse relaxation effects were tested and compared with commercial drug Magnevist, Gd(DTPA).

  5. fMRI Analysis-by-Synthesis Reveals a Dorsal Hierarchy That Extracts Surface Slant.

    PubMed

    Ban, Hiroshi; Welchman, Andrew E

    2015-07-08

    The brain's skill in estimating the 3-D orientation of viewed surfaces supports a range of behaviors, from placing an object on a nearby table, to planning the best route when hill walking. This ability relies on integrating depth signals across extensive regions of space that exceed the receptive fields of early sensory neurons. Although hierarchical selection and pooling is central to understanding of the ventral visual pathway, the successive operations in the dorsal stream are poorly understood. Here we use computational modeling of human fMRI signals to probe the computations that extract 3-D surface orientation from binocular disparity. To understand how representations evolve across the hierarchy, we developed an inference approach using a series of generative models to explain the empirical fMRI data in different cortical areas. Specifically, we simulated the responses of candidate visual processing algorithms and tested how well they explained fMRI responses. Thereby we demonstrate a hierarchical refinement of visual representations moving from the representation of edges and figure-ground segmentation (V1, V2) to spatially extensive disparity gradients in V3A. We show that responses in V3A are little affected by low-level image covariates, and have a partial tolerance to the overall depth position. Finally, we show that responses in V3A parallel perceptual judgments of slant. This reveals a relatively short computational hierarchy that captures key information about the 3-D structure of nearby surfaces, and more generally demonstrates an analysis approach that may be of merit in a diverse range of brain imaging domains. Copyright © 2015 Ban and Welchman.

  6. Fast fMRI can detect oscillatory neural activity in humans.

    PubMed

    Lewis, Laura D; Setsompop, Kawin; Rosen, Bruce R; Polimeni, Jonathan R

    2016-10-25

    Oscillatory neural dynamics play an important role in the coordination of large-scale brain networks. High-level cognitive processes depend on dynamics evolving over hundreds of milliseconds, so measuring neural activity in this frequency range is important for cognitive neuroscience. However, current noninvasive neuroimaging methods are not able to precisely localize oscillatory neural activity above 0.2 Hz. Electroencephalography and magnetoencephalography have limited spatial resolution, whereas fMRI has limited temporal resolution because it measures vascular responses rather than directly recording neural activity. We hypothesized that the recent development of fast fMRI techniques, combined with the extra sensitivity afforded by ultra-high-field systems, could enable precise localization of neural oscillations. We tested whether fMRI can detect neural oscillations using human visual cortex as a model system. We detected small oscillatory fMRI signals in response to stimuli oscillating at up to 0.75 Hz within single scan sessions, and these responses were an order of magnitude larger than predicted by canonical linear models. Simultaneous EEG-fMRI and simulations based on a biophysical model of the hemodynamic response to neuronal activity suggested that the blood oxygen level-dependent response becomes faster for rapidly varying stimuli, enabling the detection of higher frequencies than expected. Accounting for phase delays across voxels further improved detection, demonstrating that identifying vascular delays will be of increasing importance with higher-frequency activity. These results challenge the assumption that the hemodynamic response is slow, and demonstrate that fMRI has the potential to map neural oscillations directly throughout the brain.

  7. Health responsibility and workplace health promotion among women: early detection of cancer.

    PubMed

    Kushnir, T; Rabinowitz, S; Melamed, S; Weisberg, E; Ribak, J

    1995-01-01

    The importance of health responsibility as one aspect of a health-promoting lifestyle has been emphasized repeatedly. Yet there are only a few empirical studies of its role in preventive behavior. We examined the relationship between health responsibility and early-detection practices for breast and cervical cancer. A group of 253 women employees of a large industrial company participated in a cancer screening program subsidized by the employer. They completed questionnaires assessing health responsibility and reported early-detection practices: frequency of breast self-examination and physician breast examinations, frequency of Pap tests, and time lapsed since last Pap test and breast examinations. Health responsibility was a significant independent predictor of breast examination indicators but not of Pap tests. Education level was an important predictor for Pap tests, and age predicted most early-detection practices. The findings lend some support to the role of health responsibility in initiating breast examinations. Better prediction of early-detection practices could be achieved by adding cognitive and emotional components to the existing responsibility scale and by distinguishing between retrospective and prospective responsibility.

  8. Presence of early stage cancer does not impair the early protein metabolic response to major surgery

    PubMed Central

    Klimberg, V. Suzanne; Allasia, Arianna; Deutz, Nicolaas EP

    2017-01-01

    Abstract Background Combined bilateral mastectomy and reconstruction is a common major surgical procedure in women with breast cancer and in those with a family history of breast cancer. As this large surgical procedure induces muscle protein loss, a preserved anabolic response to nutrition is warranted for optimal recovery. It is unclear whether the presence of early stage cancer negatively affects the protein metabolic response to major surgery as this would mandate perioperative nutritional support. Methods In nine women with early stage (Stage II) breast malignancy and nine healthy women with a genetic predisposition to breast cancer undergoing the same large surgical procedure, we examined whether surgery influences the catabolic response to overnight fasting and the anabolic response to nutrition differently. Prior to and within 24 h after combined bilateral mastectomy and reconstruction surgery, whole body protein synthesis and breakdown rates were assessed after overnight fasting and after meal intake by stable isotope methodology to enable the calculation of net protein catabolism in the post‐absorptive state and net protein anabolic response to a meal. Results Major surgery resulted in an up‐regulation of post‐absorptive protein synthesis and breakdown rates (P < 0.001) and lower net protein catabolism (P < 0.05) and was associated with insulin resistance and increased systemic inflammation (P < 0.01). Net anabolic response to the meal was reduced after surgery (P < 0.05) but higher in cancer (P < 0.05) indicative of a more preserved meal efficiency. The significant relationship between net protein anabolism and the amount of amino acids available in the circulation (R 2 = 0.85, P < 0.001) was independent of the presence of non‐cachectic early stage breast cancer or surgery. Conclusions The presence of early stage breast cancer does not enhance the normal catabolic response to major surgery or further attenuates the

  9. Presence of early stage cancer does not impair the early protein metabolic response to major surgery.

    PubMed

    Engelen, Mariëlle P K J; Klimberg, V Suzanne; Allasia, Arianna; Deutz, Nicolaas Ep

    2017-06-01

    Combined bilateral mastectomy and reconstruction is a common major surgical procedure in women with breast cancer and in those with a family history of breast cancer. As this large surgical procedure induces muscle protein loss, a preserved anabolic response to nutrition is warranted for optimal recovery. It is unclear whether the presence of early stage cancer negatively affects the protein metabolic response to major surgery as this would mandate perioperative nutritional support. In nine women with early stage (Stage II) breast malignancy and nine healthy women with a genetic predisposition to breast cancer undergoing the same large surgical procedure, we examined whether surgery influences the catabolic response to overnight fasting and the anabolic response to nutrition differently. Prior to and within 24 h after combined bilateral mastectomy and reconstruction surgery, whole body protein synthesis and breakdown rates were assessed after overnight fasting and after meal intake by stable isotope methodology to enable the calculation of net protein catabolism in the post-absorptive state and net protein anabolic response to a meal. Major surgery resulted in an up-regulation of post-absorptive protein synthesis and breakdown rates (P < 0.001) and lower net protein catabolism (P < 0.05) and was associated with insulin resistance and increased systemic inflammation (P < 0.01). Net anabolic response to the meal was reduced after surgery (P < 0.05) but higher in cancer (P < 0.05) indicative of a more preserved meal efficiency. The significant relationship between net protein anabolism and the amount of amino acids available in the circulation (R 2  = 0.85, P < 0.001) was independent of the presence of non-cachectic early stage breast cancer or surgery. The presence of early stage breast cancer does not enhance the normal catabolic response to major surgery or further attenuates the anabolic response to meal intake within 24 h after

  10. WE-FG-202-10: Assessing Hepatocellular Carcinoma (HCC) Response to SBRT Using DCE-MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Y; Buckstein, M; Chao, M

    2016-06-15

    Purpose: To investigate the feasibility of using DCE-MRI to assess treatment response of HCC to SBRT. Methods: For seven liver HCC patients treated by photon SBRT with radiation dose ranging from 35 to 50 Gy in 5 fractions, T1-weighted DCE-MRI was performed before and at 1–3 months after the treatment. Each study included one pre-contrast and five post Gd-EOB-DTPA-enhanced imaging series. The target tumor and the liver were manually outlined on the arterial phase images. Then, a regional deformable image registration was applied to align liver volumes at different phases in order to compensate respiratory and cardiac motions. An unsupervisedmore » fuzzy c-means clustering technique was carried out to partition the tumor voxels into a number of groups based on their enhancement patterns over time. The representative kinetic curve of the tumor was selected as the one with the maximum enhancement. Six semi-quantitative features were extracted to depict the maximum contrast enhancement, uptake rate, washout rate, time to peak, the area under the kinetic curve (AUKC), as well as the ratio of the most enhanced area in each tumor. The change of these feature values after SBRT was compared using Wann-Whiteney test to characterize the tumor response to RT. Results: Eight HCCs from these seven patients were included in this retrospective study, in which four were identified to respond well to SBRT. The responding tumors showed reduced enhancement after SBRT while the non-responding tumors had steady or even enhanced kinetic dynamics. The median AUKC change after SBRT was −0.65 for responding tumors and 1.0165 for non-responding tumors (p=0.029) Conclusion: The preliminary results demonstrate that DCE-MRI has the potential to monitor the effects of SBRT in patients with HCC. We are expanding our database and developing more quantitative imaging biomarkers in the future study.« less

  11. Does neuroanatomy account for superior temporal dysfunction in early psychosis? A multimodal MRI investigation

    PubMed Central

    Pettersson-Yeo, William; Benetti, Stefania; Frisciata, Silvia; Catani, Marco; Williams, Steve C.R.; Allen, Paul; McGuire, Philip; Mechelli, Andrea

    2015-01-01

    Background Neuroimaging studies of ultra-high risk (UHR) and first-episode psychosis (FEP) have revealed widespread alterations in brain structure and function. Recent evidence suggests there is an intrinsic relationship between these 2 types of alterations; however, there is very little research linking these 2 modalities in the early stages of psychosis. Methods To test the hypothesis that functional alteration in UHR and FEP participants would be associated with corresponding structural alteration, we examined brain function and structure in these participants as well as in a group of healthy controls using multimodal MRI. The data were analyzed using statistical parametric mapping. Results We included 24 participants in the FEP group, 18 in the UHR group and 21 in the control group. Patients in the FEP group showed a reduction in functional activation in the left superior temporal gyrus relative to controls, and the UHR group showed intermediate values. The same region showed a corresponding reduction in grey matter volume in the FEP group relative to controls. However, while the difference in grey matter volume remained significant after including functional activation as a covariate of no interest, the reduction in functional activation was no longer evident after including grey matter volume as a covariate of no interest. Limitations Our sample size was relatively small. All participants in the FEP group and 2 in the UHR group had received antipsychotic medication, which may have impacted neurofunction and/or neuroanatomy. Conclusion Our results suggest that superior temporal dysfunction in early psychosis is accounted for by a corresponding alteration in grey matter volume. This finding has important implications for the interpretation of functional alteration in early psychosis. PMID:25338016

  12. Integrating EEG and fMRI in epilepsy.

    PubMed

    Formaggio, Emanuela; Storti, Silvia Francesca; Bertoldo, Alessandra; Manganotti, Paolo; Fiaschi, Antonio; Toffolo, Gianna Maria

    2011-02-14

    Integrating electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) studies enables to non-invasively investigate human brain function and to find the direct correlation of these two important measures of brain activity. Presurgical evaluation of patients with epilepsy is one of the areas where EEG and fMRI integration has considerable clinical relevance for localizing the brain regions generating interictal epileptiform activity. The conventional analysis of EEG-fMRI data is based on the visual identification of the interictal epileptiform discharges (IEDs) on scalp EEG. The convolution of these EEG events, represented as stick functions, with a model of the fMRI response, i.e. the hemodynamic response function, provides the regressor for general linear model (GLM) analysis of fMRI data. However, the conventional analysis is not automatic and suffers of some subjectivity in IEDs classification. Here, we present an easy-to-use and automatic approach for combined EEG-fMRI analysis able to improve IEDs identification based on Independent Component Analysis and wavelet analysis. EEG signal due to IED is reconstructed and its wavelet power is used as a regressor in GLM. The method was validated on simulated data and then applied on real data set consisting of 2 normal subjects and 5 patients with partial epilepsy. In all continuous EEG-fMRI recording sessions a good quality EEG was obtained allowing the detection of spontaneous IEDs and the analysis of the related BOLD activation. The main clinical finding in EEG-fMRI studies of patients with partial epilepsy is that focal interictal slow-wave activity was invariably associated with increased focal BOLD responses in a spatially related brain area. Our study extends current knowledge on epileptic foci localization and confirms previous reports suggesting that BOLD activation associated with slow activity might have a role in localizing the epileptogenic region even in the absence of clear

  13. Brain Tumor Image Segmentation in MRI Image

    NASA Astrophysics Data System (ADS)

    Peni Agustin Tjahyaningtijas, Hapsari

    2018-04-01

    Brain tumor segmentation plays an important role in medical image processing. Treatment of patients with brain tumors is highly dependent on early detection of these tumors. Early detection of brain tumors will improve the patient’s life chances. Diagnosis of brain tumors by experts usually use a manual segmentation that is difficult and time consuming because of the necessary automatic segmentation. Nowadays automatic segmentation is very populer and can be a solution to the problem of tumor brain segmentation with better performance. The purpose of this paper is to provide a review of MRI-based brain tumor segmentation methods. There are number of existing review papers, focusing on traditional methods for MRI-based brain tumor image segmentation. this paper, we focus on the recent trend of automatic segmentation in this field. First, an introduction to brain tumors and methods for brain tumor segmentation is given. Then, the state-of-the-art algorithms with a focus on recent trend of full automatic segmentaion are discussed. Finally, an assessment of the current state is presented and future developments to standardize MRI-based brain tumor segmentation methods into daily clinical routine are addressed.

  14. Characterization of the blood-oxygen level-dependent (BOLD) response in cat auditory cortex using high-field fMRI.

    PubMed

    Brown, Trecia A; Joanisse, Marc F; Gati, Joseph S; Hughes, Sarah M; Nixon, Pam L; Menon, Ravi S; Lomber, Stephen G

    2013-01-01

    Much of what is known about the cortical organization for audition in humans draws from studies of auditory cortex in the cat. However, these data build largely on electrophysiological recordings that are both highly invasive and provide less evidence concerning macroscopic patterns of brain activation. Optical imaging, using intrinsic signals or dyes, allows visualization of surface-based activity but is also quite invasive. Functional magnetic resonance imaging (fMRI) overcomes these limitations by providing a large-scale perspective of distributed activity across the brain in a non-invasive manner. The present study used fMRI to characterize stimulus-evoked activity in auditory cortex of an anesthetized (ketamine/isoflurane) cat, focusing specifically on the blood-oxygen-level-dependent (BOLD) signal time course. Functional images were acquired for adult cats in a 7 T MRI scanner. To determine the BOLD signal time course, we presented 1s broadband noise bursts between widely spaced scan acquisitions at randomized delays (1-12 s in 1s increments) prior to each scan. Baseline trials in which no stimulus was presented were also acquired. Our results indicate that the BOLD response peaks at about 3.5s in primary auditory cortex (AI) and at about 4.5 s in non-primary areas (AII, PAF) of cat auditory cortex. The observed peak latency is within the range reported for humans and non-human primates (3-4 s). The time course of hemodynamic activity in cat auditory cortex also occurs on a comparatively shorter scale than in cat visual cortex. The results of this study will provide a foundation for future auditory fMRI studies in the cat to incorporate these hemodynamic response properties into appropriate analyses of cat auditory cortex. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Reduced fMRI activity predicts relapse in patients recovering from stimulant dependence.

    PubMed

    Clark, Vincent P; Beatty, Gregory K; Anderson, Robert E; Kodituwakku, Piyadassa; Phillips, John P; Lane, Terran D R; Kiehl, Kent A; Calhoun, Vince D

    2014-02-01

    Relapse presents a significant problem for patients recovering from stimulant dependence. Here we examined the hypothesis that patterns of brain function obtained at an early stage of abstinence differentiates patients who later relapse versus those who remain abstinent. Forty-five recently abstinent stimulant-dependent patients were tested using a randomized event-related functional MRI (ER-fMRI) design that was developed in order to replicate a previous ERP study of relapse using a selective attention task, and were then monitored until 6 months of verified abstinence or stimulant use occurred. SPM revealed smaller absolute blood oxygen level-dependent (BOLD) response amplitude in bilateral ventral posterior cingulate and right insular cortex in 23 patients positive for relapse to stimulant use compared with 22 who remained abstinent. ER-fMRI, psychiatric, neuropsychological, demographic, personal and family history of drug use were compared in order to form predictive models. ER-fMRI was found to predict abstinence with higher accuracy than any other single measure obtained in this study. Logistic regression using fMRI amplitude in right posterior cingulate and insular cortex predicted abstinence with 77.8% accuracy, which increased to 89.9% accuracy when history of mania was included. Using 10-fold cross-validation, Bayesian logistic regression and multilayer perceptron algorithms provided the highest accuracy of 84.4%. These results, combined with previous studies, suggest that the functional organization of paralimbic brain regions including ventral anterior and posterior cingulate and right insula are related to patients' ability to maintain abstinence. Novel therapies designed to target these paralimbic regions identified using ER-fMRI may improve treatment outcome. Copyright © 2012 Wiley Periodicals, Inc.

  16. Identification of type IV collagen exposure as a molecular imaging target for early detection of thoracic aortic dissection

    PubMed Central

    Xu, Ke; Xu, Chen; Zhang, Yanzhenzi; Qi, Feiran; Yu, Bingran; Li, Ping; Jia, Lixin; Li, Yulin; Xu, Fu-jian; Du, Jie

    2018-01-01

    Thoracic aortic dissection (TAD) is an aggressive and life-threatening vascular disease and there is no effective means of early diagnosis of dissection. Type IV collagen (Col-IV) is a major component of the sub-endothelial basement membrane, which is initially exposed followed by endothelial injury as early-stage event of TAD. So, we want to build a noninvasive diagnostic method to detect early dissection by identifying the exposed Col-IV via MRI. Methods: Col-IV-targeted magnetic resonance/ fluorescence dual probe (Col-IV-DOTA-Gd-rhodamine B; CDR) was synthesized by amide reaction and coordination reaction. Flow cytometry analysis was used to evaluate the cell viability of SMC treated with CDR and fluorescence assays were used to assess the Col-IV targeting ability of CDR in vitro. We then examined the sensitivity and specificity of CDR at different stages of TAD via MRI and bioluminescence imaging in vivo. Results: The localization of Col-IV (under the intima) was observed by histology images. CDR bound specifically to Col-IV-expressing vascular smooth muscle cells and BAPN-induced dissected aorta. The CDR signal was co-detected by magnetic resonance imaging (MRI) and bioluminescence imaging as early as 2 weeks after BAPN administration (pre-dissection stage). The ability to detect rupture of dissected aorta was indicated by a strong normalized signal enhancement (NSE) in vivo. Moreover, NSE was negatively correlated with the time of dissection rupture after BAPN administration (r2 = 0.8482). Conclusion: As confirmed by in vivo studies, the CDR can identify the exposed Col-IV in degenerated aorta to monitor the progress of aortic dissection from the early stage to the rupture via MRI. Thus, CDR-enhanced MRI proposes a potential method for dissection screening, and for monitoring disease progression and therapeutic response. PMID:29290819

  17. R6/2 Huntington's disease mice develop early and progressive abnormal brain metabolism and seizures.

    PubMed

    Cepeda-Prado, Efrain; Popp, Susanna; Khan, Usman; Stefanov, Dimitre; Rodríguez, Jorge; Menalled, Liliana B; Dow-Edwards, Diana; Small, Scott A; Moreno, Herman

    2012-05-09

    A hallmark feature of Huntington's disease pathology is the atrophy of brain regions including, but not limited to, the striatum. Though MRI studies have identified structural CNS changes in several Huntington's disease (HD) mouse models, the functional consequences of HD pathology during the progression of the disease have yet to be investigated using in vivo functional MRI (fMRI). To address this issue, we first established the structural and functional MRI phenotype of juvenile HD mouse model R6/2 at early and advanced stages of disease. Significantly higher fMRI signals [relative cerebral blood volumes (rCBVs)] and atrophy were observed in both age groups in specific brain regions. Next, fMRI results were correlated with electrophysiological analysis, which showed abnormal increases in neuronal activity in affected brain regions, thus identifying a mechanism accounting for the abnormal fMRI findings. [(14)C] 2-deoxyglucose maps to investigate patterns of glucose utilization were also generated. An interesting mismatch between increases in rCBV and decreases in glucose uptake was observed. Finally, we evaluated the sensitivity of this mouse line to audiogenic seizures early in the disease course. We found that R6/2 mice had an increased susceptibility to develop seizures. Together, these findings identified seizure activity in R6/2 mice and show that neuroimaging measures sensitive to oxygen metabolism can be used as in vivo biomarkers, preceding the onset of an overt behavioral phenotype. Since fMRI-rCBV can also be obtained in patients, we propose that it may serve as a translational tool to evaluate therapeutic responses in humans and HD mouse models.

  18. A Combination of Ex vivo Diffusion MRI and Multiphoton to Study Microglia/Monocytes Alterations after Spinal Cord Injury

    PubMed Central

    Noristani, Harun N.; Boukhaddaoui, Hassan; Saint-Martin, Guillaume; Auzer, Pauline; Sidiboulenouar, Rahima; Lonjon, Nicolas; Alibert, Eric; Tricaud, Nicolas; Goze-Bac, Christophe; Coillot, Christophe; Perrin, Florence E.

    2017-01-01

    Central nervous system (CNS) injury has been observed to lead to microglia activation and monocytes infiltration at the lesion site. Ex vivo diffusion magnetic resonance imaging (diffusion MRI or DWI) allows detailed examination of CNS tissues, and recent advances in clearing procedures allow detailed imaging of fluorescent-labeled cells at high resolution. No study has yet combined ex vivo diffusion MRI and clearing procedures to establish a possible link between microglia/monocytes response and diffusion coefficient in the context of spinal cord injury (SCI). We carried out ex vivo MRI of the spinal cord at different time-points after spinal cord transection followed by tetrahydrofuran based clearing and examined the density and morphology of microglia/monocytes using two-photon microscopy. Quantitative analysis revealed an early marked increase in microglial/monocytes density that is associated with an increase in the extension of the lesion measured using diffusion MRI. Morphological examination of microglia/monocytes somata at the lesion site revealed a significant increase in their surface area and volume as early as 72 hours post-injury. Time-course analysis showed differential microglial/monocytes response rostral and caudal to the lesion site. Microglia/monocytes showed a decrease in reactivity over time caudal to the lesion site, but an increase was observed rostrally. Direct comparison of microglia/monocytes morphology, obtained through multiphoton, and the longitudinal apparent diffusion coefficient (ADC), measured with diffusion MRI, highlighted that axonal integrity does not correlate with the density of microglia/monocytes or their somata morphology. We emphasize that differential microglial/monocytes reactivity rostral and caudal to the lesion site may thus coincide, at least partially, with reported temporal differences in debris clearance. Our study demonstrates that the combination of ex vivo diffusion MRI and two-photon microscopy may be used to

  19. Monitoring the early signs of cognitive decline in elderly by computer games: an MRI study.

    PubMed

    Sirály, Enikő; Szabó, Ádám; Szita, Bernadett; Kovács, Vivienne; Fodor, Zsuzsanna; Marosi, Csilla; Salacz, Pál; Hidasi, Zoltán; Maros, Viktor; Hanák, Péter; Csibri, Éva; Csukly, Gábor

    2015-01-01

    It is anticipated that current and future preventive therapies will likely be more effective in the early stages of dementia, when everyday functioning is not affected. Accordingly the early identification of people at risk is particularly important. In most cases, when subjects visit an expert and are examined using neuropsychological tests, the disease has already been developed. Contrary to this cognitive games are played by healthy, well functioning elderly people, subjects who should be monitored for early signs. Further advantages of cognitive games are their accessibility and their cost-effectiveness. The aim of the investigation was to show that computer games can help to identify those who are at risk. In order to validate games analysis was completed which measured the correlations between results of the 'Find the Pairs' memory game and the volumes of the temporal brain regions previously found to be good predictors of later cognitive decline. 34 healthy elderly subjects were enrolled in the study. The volume of the cerebral structures was measured by MRI. Cortical reconstruction and volumetric segmentation were performed by Freesurfer. There was a correlation between the number of attempts and the time required to complete the memory game and the volume of the entorhinal cortex, the temporal pole, and the hippocampus. There was also a correlation between the results of the Paired Associates Learning (PAL) test and the memory game. The results gathered support the initial hypothesis that healthy elderly subjects achieving lower scores in the memory game have increased level of atrophy in the temporal brain structures and showed a decreased performance in the PAL test. Based on these results it can be concluded that memory games may be useful in early screening for cognitive decline.

  20. MRI findings in 6 cases of children by inadvertent ingestion of diphenoxylate-atropine.

    PubMed

    Xiao, Lianxiang; Lin, Xiangtao; Cao, Jinfeng; Wang, Xueyu; Wu, Lebin

    2011-09-01

    Compound diphenoxylate (diphenoxylate-atropine) poisoning can cause toxic encephalopathy in children, and magnetic resonance imaging (MRI) of the brain in this condition has not been reported. This study is to analyze brain MRI findings and to investigate the relations between MRI features and possible pathophysiological changes in children. Six children accidentally swallowed compound diphenoxylate, 4 males, 2 females, aged 20-46 months, average 33 months. Quantity of ingested diphenoxylate-atropine was from 6 to 30 tablets, each tablet contains diphenoxylate 2.5mg and atropine 0.025 mg. These patients were referred to our hospital within 24h after diphenoxylate-atropine ingestion, and underwent brain MRI scan within 24-72 h after emergency treatment. The characteristics of conventional MRI were analyzed. These pediatric patients had various symptoms of opioid intoxication and atropine toxicity. Brain MRI showed abnormal low signal intensity on T1-weighted images (T1WI) and abnormal high signal intensity on T2-weighted images (T2WI) and fluid-attenuated inversion recovery (FLAIR) imaging in bilateral in all cases; abnormal high signal intensity on T1WI, T2WI and FLAIR in 4 cases. Encephalomalacia was observed in 3 cases during follow-up. In the early stage of compound diphenoxylate poisoning in children, multiple extensive edema-necrosis and hemorrhagic-necrosis focus were observed in basic nucleus, pallium and cerebellum, these resulted in the corresponding brain dysfunction with encephalomalacia. MRI scan in the early stage in this condition may provide evidences of brain impairment, and is beneficial for the early diagnosis, treatment and prognosis assessment. Crown Copyright © 2010. Published by Elsevier Ireland Ltd. All rights reserved.

  1. Corticolimbic hyper-response to emotion and glutamatergic function in people with high schizotypy: a multimodal fMRI-MRS study

    PubMed Central

    Modinos, G; McLaughlin, A; Egerton, A; McMullen, K; Kumari, V; Barker, G J; Keysers, C; Williams, S C R

    2017-01-01

    Animal models and human neuroimaging studies suggest that altered levels of glutamatergic metabolites within a corticolimbic circuit have a major role in the pathophysiology of schizophrenia. Rodent models propose that prefrontal glutamate dysfunction could lead to amygdala hyper-response to environmental stress and underlie hippocampal overdrive in schizophrenia. Here we determine whether changes in brain glutamate are present in individuals with high schizotypy (HS), which refers to the presence of schizophrenia-like characteristics in healthy individuals, and whether glutamate levels are related to altered corticolimbic response to emotion. Twenty-one healthy HS subjects and 22 healthy subjects with low schizotypy (LS) were selected based on their Oxford and Liverpool Inventory of Feelings and Experiences rating. Glutamate levels were measured in the anterior cingulate cortex (ACC) using proton magnetic resonance spectroscopy, followed by a functional magnetic resonance imaging (fMRI) scan to measure corticolimbic response during emotional processing. fMRI results and fMRI × glutamate interactions were considered significant after voxel-wise P<0.05 family-wise error correction. While viewing emotional pictures, HS individuals showed greater activation than did subjects with LS in the caudate, and marginally in the ACC, hippocampus, medial prefrontal cortex (MPFC) and putamen. Although no between-group differences were found in glutamate concentrations, within the HS group ACC glutamate was negatively correlated with striatal activation (left: z=4.30, P=0.004 and right: z=4.12 P=0.008 caudate; left putamen: z=3.89, P=0.018) and marginally with MPFC (z=3.55, P=0.052) and amygdala (left: z=2.88, P=0.062; right: z=2.79, P=0.079), correlations that were not present in LS subjects. These findings provide, to our knowledge, the first evidence that brain glutamate levels are associated with hyper-responsivity in brain regions thought to be critical in the

  2. 4D MRI of polycystic kidneys from rapamycin-treated Glis3-deficient mice

    PubMed Central

    Xie, Luke; Qi, Yi; Subashi, Ergys; Liao, Grace; Miller DeGraff, Laura; Jetten, Anton M.; Johnson, G. Allan

    2015-01-01

    Polycystic kidney disease (PKD) is a life-threatening disease that leads to a grotesque enlargement of the kidney and significant lose of function. Several imaging studies with MRI have demonstrated that cyst size in polycystic kidneys can determine disease severity and progression. In the present study, we found that while kidney volume and cyst volume decreased with drug treatment, renal function did not improve with treatment. Here, we applied dynamic contrast-enhanced MRI to study PKD in a Glis3-deficient mouse model. Cysts from this model have a wide range of sizes and develop at an early age. To capture this crucial stage and assess cysts in detail, we imaged during early development (3 to 17 weeks) and applied high spatiotemporal resolution MRI (125×125×125 cubic microns every 7.7 seconds). A drug treatment with rapamycin (also known as sirolimus) was applied to determine whether disease progression could be halted. The effect and synergy (interaction) of aging and treatment were evaluated using an analysis of variance (ANOVA). Structural measurements including kidney volume, cyst volume, and cyst-kidney volume ratio changed significantly with age. Drug treatment significantly decreased these metrics. Functional measurements of time-to-peak (TTP) mean and TTP variance were determined. TTP mean did not change with age, while TTP variance increased with age. The treatment of rapamycin generally did not affect these functional metrics. Synergistic effects of treatment and age were not found for any measurements. Together, the size and volume ratio of cysts decreased with drug treatment, while renal function remained the same. Quantifying renal structure and function with MRI can comprehensively assess the pathophysiology of PKD and response to treatment. PMID:25810360

  3. Data collection and analysis strategies for phMRI.

    PubMed

    Mandeville, Joseph B; Liu, Christina H; Vanduffel, Wim; Marota, John J A; Jenkins, Bruce G

    2014-09-01

    Although functional MRI traditionally has been applied mainly to study changes in task-induced brain function, evolving acquisition methodologies and improved knowledge of signal mechanisms have increased the utility of this method for studying responses to pharmacological stimuli, a technique often dubbed "phMRI". The proliferation of higher magnetic field strengths and the use of exogenous contrast agent have boosted detection power, a critical factor for successful phMRI due to the restricted ability to average multiple stimuli within subjects. Receptor-based models of neurovascular coupling, including explicit pharmacological models incorporating receptor densities and affinities and data-driven models that incorporate weak biophysical constraints, have demonstrated compelling descriptions of phMRI signal induced by dopaminergic stimuli. This report describes phMRI acquisition and analysis methodologies, with an emphasis on data-driven analyses. As an example application, statistically efficient data-driven regressors were used to describe the biphasic response to the mu-opioid agonist remifentanil, and antagonism using dopaminergic and GABAergic ligands revealed modulation of the mesolimbic pathway. Results illustrate the power of phMRI as well as our incomplete understanding of mechanisms underlying the signal. Future directions are discussed for phMRI acquisitions in human studies, for evolving analysis methodologies, and for interpretative studies using the new generation of simultaneous PET/MRI scanners. This article is part of the Special Issue Section entitled 'Neuroimaging in Neuropharmacology'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Association of pharmacokinetic and metabolic parameters derived using simultaneous PET/MRI: Initial findings and impact on response evaluation in breast cancer.

    PubMed

    Jena, Amarnath; Taneja, Sangeeta; Singh, Aru; Negi, Pradeep; Mehta, Shashi Bhushan; Ahuja, Aashim; Singhal, Manish; Sarin, Ramesh

    2017-07-01

    To study relationships among pharmacokinetic and 18 F-fluorodeoxyglucose ( 18 F-FDG) PET parameters obtained through simultaneous PET/MRI in breast cancer patients and evaluate their combined potential for response evaluation. The study included 41 breast cancer patients for correlation study and 9 patients (pre and post therapy) for response evaluation. All patients underwent simultaneous PET/MRI with dedicated breast imaging. Pharmacokinetic parameters and PET parameters for tumor were derived using an in- house developed and vendor provided softwares respectively. Relationships between SUV and pharmacokinetic parameters and clinical as well as histopathologic parameters were evaluated using Spearman correlation analysis. Response to chemotherapy was derived as percentage reduction in size and in parameters post therapy. Significant correlations were observed between SUVmean, max, peak, TLG with K trans (ρ=0.446, 0.417, 0.491, 0.430; p≤0.01); with Kep(ρ=0.303, ρ=0.315, ρ=0.319; p≤0.05); and with iAUC(ρ=0.401, ρ=0.410, ρ=0.379; p≤0.05, p≤0.01). The ratio of ve/iAUC showed significant negative correlation to SUVmean, max, peak and TLG (ρ=0.420, 0.446, 0.443, 0.426; p≤0.01). Ability of SUV as well as pharmacokinetic parameters to predict response to therapy matched the RECIST criteria in 9 out of 11 lesions in 9 patients. Maximum post therapy quantitative reduction was observed in SUVpeak, TLG and K trans . Simultaneous PET/MRI enables illustration of close interactions between glucose metabolism and pharmacokinetic parameters in breast cancer patients and potential of their simultaneity in response assessment to therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Early life socioeconomic position and immune response to persistent infections among elderly Latinos.

    PubMed

    Meier, Helen C S; Haan, Mary N; Mendes de Leon, Carlos F; Simanek, Amanda M; Dowd, Jennifer B; Aiello, Allison E

    2016-10-01

    Persistent infections, such as cytomegalovirus (CMV), herpes simplex virus-1 (HSV-1), Helicobacter pylori (H. pylori), and Toxoplasma gondii (T. gondii), are common in the U.S. but their prevalence varies by socioeconomic status. It is unclear if early or later life socioeconomic position (SEP) is a more salient driver of disparities in immune control of these infections. Using data from the Sacramento Area Latino Study on Aging, we examined whether early or later life SEP was the strongest predictor of immune control later in life by contrasting two life course models, the critical period model and the chain of risk model. Early life SEP was measured as a latent variable, derived from parental education and occupation, and food availability. Indicators for SEP in later life included education level and occupation. Individuals were categorized by immune response to each pathogen (seronegative, low, medium and high) with increasing immune response representing poorer immune control. Cumulative immune response was estimated using a latent profile analysis with higher total immune response representing poorer immune control. Structural equation models were used to examine direct, indirect and total effects of early life SEP on each infection and cumulative immune response, controlling for age and gender. The direct effect of early life SEP on immune response was not statistically significant for the infections or cumulative immune response. Higher early life SEP was associated with lower immune response for T. gondii, H. pylori and cumulative immune response through pathways mediated by later life SEP. For CMV, higher early life SEP was both directly associated and partially mediated by later life SEP. No association was found between SEP and HSV-1. Findings from this study support a chain of risk model, whereby early life SEP acts through later life SEP to affect immune response to persistent infections in older age. Copyright © 2016 Elsevier Ltd. All rights

  6. Functional MRI detects perfusion impairment in renal allografts with delayed graft function.

    PubMed

    Hueper, Katja; Gueler, Faikah; Bräsen, Jan Hinrich; Gutberlet, Marcel; Jang, Mi-Sun; Lehner, Frank; Richter, Nicolas; Hanke, Nils; Peperhove, Matti; Martirosian, Petros; Tewes, Susanne; Vo Chieu, Van Dai; Großhennig, Anika; Haller, Hermann; Wacker, Frank; Gwinner, Wilfried; Hartung, Dagmar

    2015-06-15

    Delayed graft function (DGF) after kidney transplantation is not uncommon, and it is associated with long-term allograft impairment. Our aim was to compare renal perfusion changes measured with noninvasive functional MRI in patients early after kidney transplantation to renal function and allograft histology in biopsy samples. Forty-six patients underwent MRI 4-11 days after transplantation. Contrast-free MRI renal perfusion images were acquired using an arterial spin labeling technique. Renal function was assessed by estimated glomerular filtration rate (eGFR), and renal biopsies were performed when indicated within 5 days of MRI. Twenty-six of 46 patients had DGF. Of these, nine patients had acute rejection (including borderline), and eight had other changes (e.g., tubular injury or glomerulosclerosis). Renal perfusion was significantly lower in the DGF group compared with the group with good allograft function (231 ± 15 vs. 331 ± 15 ml·min(-1)·100 g(-1), P < 0.001). Living donor allografts exhibited significantly higher perfusion values compared with deceased donor allografts (P < 0.001). Renal perfusion significantly correlated with eGFR (r = 0.64, P < 0.001), resistance index (r = -0.57, P < 0.001), and cold ischemia time (r = -0.48, P < 0.01). Furthermore, renal perfusion impairment early after transplantation predicted inferior renal outcome and graft loss. In conclusion, noninvasive functional MRI detects renal perfusion impairment early after kidney transplantation in patients with DGF. Copyright © 2015 the American Physiological Society.

  7. The long-term effects of prenatal nicotine exposure on response inhibition: an fMRI study of young adults.

    PubMed

    Longo, Carmelinda A; Fried, Peter A; Cameron, Ian; Smith, Andra M

    2013-01-01

    The long-term effects of prenatal nicotine exposure on response inhibition were investigated in young adults using functional magnetic resonance imaging (fMRI). Participants were members of the Ottawa Prenatal Prospective Study, a longitudinal study that collected a unique body of information on participants from infancy to young adulthood, which allowed for the measurement of an unprecedented number of potentially confounding drug exposure variables including: prenatal marijuana and alcohol exposure and current marijuana, nicotine and alcohol use. Twelve young adults with prenatal nicotine exposure and 13 non-exposed controls performed a Go/No-Go task while fMRI blood oxygen level-dependent responses were examined. Despite similar task performance, participants prenatally exposed to nicotine demonstrated significantly greater activity in several regions of the brain that typically subserve response inhibition including the inferior frontal gyrus, the inferior parietal lobe, the thalamus and the basal ganglia. In addition, prenatally exposed participants showed greater activity in relatively large posterior regions of the cerebellum. These results suggest that prenatal nicotine exposure leads to altered neural functioning during response inhibition that continues into adulthood. This alteration is compensated for by recruitment of greater neural resources within regions of the brain that subserve response inhibition and the recruitment of additional brain regions to successfully perform the task. Response inhibition is an important executive functioning skill and impairments can impede functioning in much of everyday life. Thus, awareness of the continued long-term neural physiological effects of prenatal nicotine exposure is critical. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Dynamic modeling of neuronal responses in fMRI using cubature Kalman filtering

    PubMed Central

    Havlicek, Martin; Friston, Karl J.; Jan, Jiri; Brazdil, Milan; Calhoun, Vince D.

    2011-01-01

    This paper presents a new approach to inverting (fitting) models of coupled dynamical systems based on state-of-the-art (cubature) Kalman filtering. Crucially, this inversion furnishes posterior estimates of both the hidden states and parameters of a system, including any unknown exogenous input. Because the underlying generative model is formulated in continuous time (with a discrete observation process) it can be applied to a wide variety of models specified with either ordinary or stochastic differential equations. These are an important class of models that are particularly appropriate for biological time-series, where the underlying system is specified in terms of kinetics or dynamics (i.e., dynamic causal models). We provide comparative evaluations with generalized Bayesian filtering (dynamic expectation maximization) and demonstrate marked improvements in accuracy and computational efficiency. We compare the schemes using a series of difficult (nonlinear) toy examples and conclude with a special focus on hemodynamic models of evoked brain responses in fMRI. Our scheme promises to provide a significant advance in characterizing the functional architectures of distributed neuronal systems, even in the absence of known exogenous (experimental) input; e.g., resting state fMRI studies and spontaneous fluctuations in electrophysiological studies. Importantly, unlike current Bayesian filters (e.g. DEM), our scheme provides estimates of time-varying parameters, which we will exploit in future work on the adaptation and enabling of connections in the brain. PMID:21396454

  9. Effects of ageing and Alzheimer disease on haemodynamic response function: a challenge for event-related fMRI.

    PubMed

    Asemani, Davud; Morsheddost, Hassan; Shalchy, Mahsa Alizadeh

    2017-06-01

    Functional magnetic resonance imaging (fMRI) can generate brain images that show neuronal activity due to sensory, cognitive or motor tasks. Haemodynamic response function (HRF) may be considered as a biomarker to discriminate the Alzheimer disease (AD) from healthy ageing. As blood-oxygenation-level-dependent fMRI signal is much weak and noisy, particularly for the elderly subjects, a robust method is necessary for HRF estimation to efficiently differentiate the AD. After applying minimum description length wavelet as an extra denoising step, deconvolution algorithm is here employed for HRF estimation, substituting the averaging method used in the previous works. The HRF amplitude peaks are compared for three groups HRF of young, non-demented and demented elderly groups for both vision and motor regions. Prior works often reported significant differences in the HRF peak amplitude between the young and the elderly. The authors' experimentations show that the HRF peaks are not significantly different comparing the young adults with the elderly (either demented or non-demented). It is here demonstrated that the contradictory findings of the previous studies on the HRF peaks for the elderly compared with the young are originated from the noise contribution in fMRI data.

  10. Brightness and transparency in the early visual cortex.

    PubMed

    Salmela, Viljami R; Vanni, Simo

    2013-06-24

    Several psychophysical studies have shown that transparency can have drastic effects on brightness and lightness. However, the neural processes generating these effects have remained unresolved. Several lines of evidence suggest that the early visual cortex is important for brightness perception. While single cell recordings suggest that surface brightness is represented in the primary visual cortex, the results of functional magnetic resonance imaging (fMRI) studies have been discrepant. In addition, the location of the neural representation of transparency is not yet known. We investigated whether the fMRI responses in areas V1, V2, and V3 correlate with brightness and transparency. To dissociate the blood oxygen level-dependent (BOLD) response to brightness from the response to local border contrast and mean luminance, we used variants of White's brightness illusion, both opaque and transparent, in which luminance increments and decrements cancel each other out. The stimuli consisted of a target surface and a surround. The surround luminance was always sinusoidally modulated at 0.5 Hz to induce brightness modulation to the target. The target luminance was constant or modulated in counterphase to null brightness modulation. The mean signal changes were calculated from the voxels in V1, V2, and V3 corresponding to the retinotopic location of the target surface. The BOLD responses were significantly stronger for modulating brightness than for stimuli with constant brightness. In addition, the responses were stronger for transparent than for opaque stimuli, but there was more individual variation. No interaction between brightness and transparency was found. The results show that the early visual areas V1-V3 are sensitive to surface brightness and transparency and suggest that brightness and transparency are represented separately.

  11. The Global ECT-MRI Research Collaboration (GEMRIC): Establishing a multi-site investigation of the neural mechanisms underlying response to electroconvulsive therapy.

    PubMed

    Oltedal, Leif; Bartsch, Hauke; Sørhaug, Ole Johan Evjenth; Kessler, Ute; Abbott, Christopher; Dols, Annemieke; Stek, Max L; Ersland, Lars; Emsell, Louise; van Eijndhoven, Philip; Argyelan, Miklos; Tendolkar, Indira; Nordanskog, Pia; Hamilton, Paul; Jorgensen, Martin Balslev; Sommer, Iris E; Heringa, Sophie M; Draganski, Bogdan; Redlich, Ronny; Dannlowski, Udo; Kugel, Harald; Bouckaert, Filip; Sienaert, Pascal; Anand, Amit; Espinoza, Randall; Narr, Katherine L; Holland, Dominic; Dale, Anders M; Oedegaard, Ketil J

    2017-01-01

    Major depression, currently the world's primary cause of disability, leads to profound personal suffering and increased risk of suicide. Unfortunately, the success of antidepressant treatment varies amongst individuals and can take weeks to months in those who respond. Electroconvulsive therapy (ECT), generally prescribed for the most severely depressed and when standard treatments fail, produces a more rapid response and remains the most effective intervention for severe depression. Exploring the neurobiological effects of ECT is thus an ideal approach to better understand the mechanisms of successful therapeutic response. Though several recent neuroimaging studies show structural and functional changes associated with ECT, not all brain changes associate with clinical outcome. Larger studies that can address individual differences in clinical and treatment parameters may better target biological factors relating to or predictive of ECT-related therapeutic response. We have thus formed the Global ECT-MRI Research Collaboration (GEMRIC) that aims to combine longitudinal neuroimaging as well as clinical, behavioral and other physiological data across multiple independent sites. Here, we summarize the ECT sample characteristics from currently participating sites, and the common data-repository and standardized image analysis pipeline developed for this initiative. This includes data harmonization across sites and MRI platforms, and a method for obtaining unbiased estimates of structural change based on longitudinal measurements with serial MRI scans. The optimized analysis pipeline, together with the large and heterogeneous combined GEMRIC dataset, will provide new opportunities to elucidate the mechanisms of ECT response and the factors mediating and predictive of clinical outcomes, which may ultimately lead to more effective personalized treatment approaches.

  12. Structural MRI markers of brain aging early after ischemic stroke.

    PubMed

    Werden, Emilio; Cumming, Toby; Li, Qi; Bird, Laura; Veldsman, Michele; Pardoe, Heath R; Jackson, Graeme; Donnan, Geoffrey A; Brodtmann, Amy

    2017-07-11

    To examine associations between ischemic stroke, vascular risk factors, and MRI markers of brain aging. Eighty-one patients (mean age 67.5 ± 13.1 years, 31 left-sided, 61 men) with confirmed first-ever (n = 66) or recurrent (n = 15) ischemic stroke underwent 3T MRI scanning within 6 weeks of symptom onset (mean 26 ± 9 days). Age-matched controls (n = 40) completed identical testing. Multivariate regression analyses examined associations between group membership and MRI markers of brain aging (cortical thickness, total brain volume, white matter hyperintensity [WMH] volume, hippocampal volume), normalized against intracranial volume, and the effects of vascular risk factors on these relationships. First-ever stroke was associated with smaller hippocampal volume ( p = 0.025) and greater WMH volume ( p = 0.004) relative to controls. Recurrent stroke was in turn associated with smaller hippocampal volume relative to both first-ever stroke ( p = 0.017) and controls ( p = 0.001). These associations remained significant after adjustment for age, sex, education, and, in stroke patients, infarct volume. Total brain volume was not significantly smaller in first-ever stroke patients than in controls ( p = 0.056), but the association became significant after further adjustment for atrial fibrillation ( p = 0.036). Cortical thickness and brain volumes did not differ as a function of stroke type, infarct volume, or etiology. Brain structure is likely to be compromised before ischemic stroke by vascular risk factors. Smaller hippocampal and total brain volumes and increased WMH load represent proxies for underlying vascular brain injury. Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

  13. An fMRI compatible wrist robotic interface to study brain development in neonates.

    PubMed

    Allievi, A G; Melendez-Calderon, A; Arichi, T; Edwards, A D; Burdet, E

    2013-06-01

    A comprehensive understanding of the mechanisms that underlie brain development in premature infants and newborns is crucial for the identification of interventional therapies and rehabilitative strategies. fMRI has the potential to identify such mechanisms, but standard techniques used in adults cannot be implemented in infant studies in a straightforward manner. We have developed an MR safe wrist stimulating robot to systematically investigate the functional brain activity related to both spontaneous and induced wrist movements in premature babies using fMRI. We present the technical aspects of this development and the results of validation experiments. Using the device, the cortical activity associated with both active and passive finger movements were reliably identified in a healthy adult subject. In two preterm infants, passive wrist movements induced a well localized positive BOLD response in the contralateral somatosensory cortex. Furthermore, in a single preterm infant, spontaneous wrist movements were found to be associated with an adjacent cluster of activity, at the level of the infant's primary motor cortex. The described device will allow detailed and objective fMRI studies of somatosensory and motor system development during early human life and following neonatal brain injury.

  14. Differential fMRI Activation Patterns to Noxious Heat and Tactile Stimuli in the Primate Spinal Cord

    PubMed Central

    Yang, Pai-Feng; Wang, Feng

    2015-01-01

    Mesoscale local functional organizations of the primate spinal cord are largely unknown. Using high-resolution fMRI at 9.4 T, we identified distinct interhorn and intersegment fMRI activation patterns to tactile versus nociceptive heat stimulation of digits in lightly anesthetized monkeys. Within a spinal segment, 8 Hz vibrotactile stimuli elicited predominantly fMRI activations in the middle part of ipsilateral dorsal horn (iDH), along with significantly weaker activations in ipsilateral (iVH) and contralateral (cVH) ventral horns. In contrast, nociceptive heat stimuli evoked widespread strong activations in the superficial part of iDH, as well as in iVH and contralateral dorsal (cDH) horns. As controls, only weak signal fluctuations were detected in the white matter. The iDH responded most strongly to both tactile and heat stimuli, whereas the cVH and cDH responded selectively to tactile versus nociceptive heat, respectively. Across spinal segments, iDH activations were detected in three consecutive segments in both tactile and heat conditions. Heat responses, however, were more extensive along the cord, with strong activations in iVH and cDH in two consecutive segments. Subsequent subunit B of cholera toxin tracer histology confirmed that the spinal segments showing fMRI activations indeed received afferent inputs from the stimulated digits. Comparisons of the fMRI signal time courses in early somatosensory area 3b and iDH revealed very similar hemodynamic stimulus–response functions. In summary, we identified with fMRI distinct segmental networks for the processing of tactile and nociceptive heat stimuli in the cervical spinal cord of nonhuman primates. SIGNIFICANCE STATEMENT This is the first fMRI demonstration of distinct intrasegmental and intersegmental nociceptive heat and touch processing circuits in the spinal cord of nonhuman primates. This study provides novel insights into the local functional organizations of the primate spinal cord for pain and

  15. Arterial spin labeling MRI is able to detect early hemodynamic changes in diabetic nephropathy.

    PubMed

    Mora-Gutiérrez, José María; Garcia-Fernandez, Nuria; Slon Roblero, M Fernanda; Páramo, Jose A; Escalada, F Javier; Wang, Danny Jj; Benito, Alberto; Fernández-Seara, María A

    2017-12-01

    To investigate whether arterial spin labeling (ASL) MRI could detect renal hemodynamic impairment in diabetes mellitus (DM) along different stages of chronic kidney disease (CKD). Three Tesla (3T) ASL-MRI was performed to evaluate renal blood flow (RBF) in 91 subjects (46 healthy volunteers and 45 type 2 diabetic patients). Patients were classified according to their estimated glomerular filtration rate (eGFR) as group I (eGFR > 60 mL/min/1.73 m 2 ), group II (60 ≥ eGFR>30 mL/min/1.73 m 2 ), or group III (eGFR ≤ 30 mL/min/1.73 m 2 ), to determine differences depending on renal function. Studies were performed at 3T using a 12-channel flexible body array combined with the spine array coil as receiver. A 28% reduction in cortical RBF was seen in diabetics in comparison with healthy controls (185.79 [54.60] versus 258.83 [37.96] mL/min/100 g, P < 3 × 10 -6 ). Differences were also seen between controls and diabetic patients despite normal eGFR and absence of overt albuminuria (RBF [mL/min/100 g]: controls=258.83 [37.96], group I=208.89 [58.83], P = 0.0018; eGFR [mL/min/1.73 m 2 ]: controls = 95.50 [12.60], group I = 82.00 [20.76], P > 0.05; albumin-creatinine ratio [mg/g]: controls = 3.50 [4.45], group I = 17.50 [21.20], P > 0.05). A marked decrease in RBF was noted a long with progression of diabetic nephropathy (DN) through the five stages of CKD (χ 2  = 43.58; P = 1.85 × 10 -9 ). Strong correlation (r = 0.62; P = 4 × 10 -10 ) was obtained between RBF and GFR estimated by cystatin C. ASL-MRI is able to quantify early renal perfusion impairment in DM, as well as changes according to different CKD stages of DN. In addition, we demonstrated a correlation of RBF quantified by ASL and GFR estimated by cystatin C. 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2017;46:1810-1817. © 2017 International Society for Magnetic Resonance in Medicine.

  16. Response competition and response inhibition during different choice-discrimination tasks: evidence from ERP measured inside MRI scanner.

    PubMed

    Gonzalez-Rosa, Javier J; Inuggi, Alberto; Blasi, Valeria; Cursi, Marco; Annovazzi, Pietro; Comi, Giancarlo; Falini, Andrea; Leocani, Letizia

    2013-07-01

    We investigated the neural correlates underlying response inhibition and conflict detection processes using ERPs and source localization analyses simultaneously acquired during fMRI scanning. ERPs were elicited by a simple reaction time task (SRT), a Go/NoGo task, and a Stroop-like task (CST). The cognitive conflict was thus manipulated in order to probe the degree to which information processing is shared across cognitive systems. We proposed to dissociate inhibition and interference conflict effects on brain activity by using identical Stroop-like congruent/incongruent stimuli in all three task contexts and while varying the response required. NoGo-incongruent trials showed a larger N2 and enhanced activations of rostral anterior cingulate cortex (ACC) and pre-supplementary motor area, whereas Go-congruent trials showed a larger P3 and increased parietal activations. Congruent and incongruent conditions of the CST task also elicited similar N2, P3 and late negativity (LN) ERPs, though CST-incongruent trials revealed a larger LN and enhanced prefrontal and ACC activations. Considering the stimulus probability and experimental manipulation of our study, current findings suggest that NoGo N2 and frontal NoGo P3 appear to be more associated to response inhibition rather than a specific conflict monitoring, whereas occipito-parietal P3 of Go and CST conditions may be more linked to a planned response competition between the prepared and required response. LN, however, appears to be related to higher level conflict monitoring associated with response choice-discrimination but not when the presence of cognitive conflict is associated with response inhibition. Copyright © 2013. Published by Elsevier B.V.

  17. Representation of Sound Objects within Early-Stage Auditory Areas: A Repetition Effect Study Using 7T fMRI

    PubMed Central

    Da Costa, Sandra; Bourquin, Nathalie M.-P.; Knebel, Jean-François; Saenz, Melissa; van der Zwaag, Wietske; Clarke, Stephanie

    2015-01-01

    Environmental sounds are highly complex stimuli whose recognition depends on the interaction of top-down and bottom-up processes in the brain. Their semantic representations were shown to yield repetition suppression effects, i. e. a decrease in activity during exposure to a sound that is perceived as belonging to the same source as a preceding sound. Making use of the high spatial resolution of 7T fMRI we have investigated the representations of sound objects within early-stage auditory areas on the supratemporal plane. The primary auditory cortex was identified by means of tonotopic mapping and the non-primary areas by comparison with previous histological studies. Repeated presentations of different exemplars of the same sound source, as compared to the presentation of different sound sources, yielded significant repetition suppression effects within a subset of early-stage areas. This effect was found within the right hemisphere in primary areas A1 and R as well as two non-primary areas on the antero-medial part of the planum temporale, and within the left hemisphere in A1 and a non-primary area on the medial part of Heschl’s gyrus. Thus, several, but not all early-stage auditory areas encode the meaning of environmental sounds. PMID:25938430

  18. Surgical induction, histological evaluation, and MRI identification of cartilage necrosis in the distal femur in goats to model early lesions of osteochondrosis.

    PubMed

    Tóth, F; Nissi, M J; Wang, L; Ellermann, J M; Carlson, C S

    2015-02-01

    Identify and interrupt the vascular supply to portions of the distal femoral articular-epiphyseal cartilage complex (AECC) in goat kids to induce cartilage necrosis, characteristic of early lesions of osteochondrosis (OC); then utilize magnetic resonance imaging (MRI) to identify necrotic areas of cartilage. Distal femora were perfused and cleared in goat kids of various ages to visualize the vascular supply to the distal femoral AECC. Vessels located on the axial aspect of the medial femoral condyle (MFC) and on the abaxial side of the lateral trochlear ridge were transected in eight 4- to 5-day-old goats to induce cartilage necrosis. Goats were euthanized 1, 2, 3, 4, 5, 6, 9, and 10 weeks post operatively and operated stifles were harvested. Adiabatic T1ρ relaxation time maps of the harvested distal femora were generated using a 9.4 T MR scanner, after which samples were evaluated histologically. Interruption of the vascular supply to the MFC caused lesions of cartilage necrosis in 6/8 goat kids that were demonstrated histologically. Adiabatic T1ρ relaxation time mapping identified these areas of cartilage necrosis in 5/6 cases. No significant findings were detected after transection of perichondrial vessels supplying the lateral trochlear ridge. Cartilage necrosis, characteristic of early OC, can be induced by interrupting the vascular supply to the distal femoral AECC in goat kids. The ability of high field MRI to identify these areas of cartilage necrosis in the AECC using the adiabatic T1ρ sequence suggests that this technique may be useful in the future for the early diagnosis of OC. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  19. LH-RH agonists modulate amygdala response to visual sexual stimulation: a single case fMRI study in pedophilia.

    PubMed

    Habermeyer, Benedikt; Händel, Nadja; Lemoine, Patrick; Klarhöfer, Markus; Seifritz, Erich; Dittmann, Volker; Graf, Marc

    2012-01-01

    Pedophilia is characterized by a persistent sexual attraction to prepubescent children. Treatment with anti-androgen agents, such as luteinizing hormone-releasing hormone (LH-RH) agonists, reduces testosterone levels and thereby sexual drive and arousal. We used functional magnetic resonance imaging (fMRI) to compare visual erotic stimulation pre- and on-treatment with the LH-RH agonist leuprolide acetate in the case of homosexual pedophilia. The pre-treatment contrasts of the erotic pictures against the respective neutral pictures showed an activation of the right amygdala and adjacent parahippocampal gyrus that decreased significantly under treatment with leuprolide acetate. Our single case fMRI study supports the notion that anti-androgens may modify amygdala response to visual erotic stimulation, a hypothesis that should be further examined in larger studies.

  20. Early-life inflammation, immune response and ageing.

    PubMed

    Khan, Imroze; Agashe, Deepa; Rolff, Jens

    2017-03-15

    Age-related diseases are often attributed to immunopathology, which results in self-damage caused by an inappropriate inflammatory response. Immunopathology associated with early-life inflammation also appears to cause faster ageing, although we lack direct experimental evidence for this association. To understand the interactions between ageing, inflammation and immunopathology, we used the mealworm beetle Tenebrio molitor as a study organism. We hypothesized that phenoloxidase, an important immune effector in insect defence, may impose substantial immunopathological costs by causing tissue damage to Malpighian tubules (MTs; functionally equivalent to the human kidney), in turn accelerating ageing. In support of this hypothesis, we found that RNAi knockdown of phenoloxidase (PO) transcripts in young adults possibly reduced inflammation-induced autoreactive tissue damage to MTs, and increased adult lifespan. Our work thus suggests a causative link between immunopathological costs of early-life inflammation and faster ageing. We also reasoned that if natural selection weakens with age, older individuals should display increased immunopathological costs associated with an immune response. Indeed, we found that while old infected individuals cleared infection faster than young individuals, possibly they also displayed exacerbated immunopathological costs (larger decline in MT function) and higher post-infection mortality. RNAi-mediated knockdown of PO response partially rescued MTs function in older beetles and resulted in increased lifespan after infection. Taken together, our data are consistent with a direct role of immunopathological consequences of immune response during ageing in insects. Our work is also the first report that highlights the pervasive role of tissue damage under diverse contexts of ageing and immune response. © 2017 The Author(s).

  1. Early-life inflammation, immune response and ageing

    PubMed Central

    2017-01-01

    Age-related diseases are often attributed to immunopathology, which results in self-damage caused by an inappropriate inflammatory response. Immunopathology associated with early-life inflammation also appears to cause faster ageing, although we lack direct experimental evidence for this association. To understand the interactions between ageing, inflammation and immunopathology, we used the mealworm beetle Tenebrio molitor as a study organism. We hypothesized that phenoloxidase, an important immune effector in insect defence, may impose substantial immunopathological costs by causing tissue damage to Malpighian tubules (MTs; functionally equivalent to the human kidney), in turn accelerating ageing. In support of this hypothesis, we found that RNAi knockdown of phenoloxidase (PO) transcripts in young adults possibly reduced inflammation-induced autoreactive tissue damage to MTs, and increased adult lifespan. Our work thus suggests a causative link between immunopathological costs of early-life inflammation and faster ageing. We also reasoned that if natural selection weakens with age, older individuals should display increased immunopathological costs associated with an immune response. Indeed, we found that while old infected individuals cleared infection faster than young individuals, possibly they also displayed exacerbated immunopathological costs (larger decline in MT function) and higher post-infection mortality. RNAi-mediated knockdown of PO response partially rescued MTs function in older beetles and resulted in increased lifespan after infection. Taken together, our data are consistent with a direct role of immunopathological consequences of immune response during ageing in insects. Our work is also the first report that highlights the pervasive role of tissue damage under diverse contexts of ageing and immune response. PMID:28275145

  2. Cortical connective field estimates from resting state fMRI activity.

    PubMed

    Gravel, Nicolás; Harvey, Ben; Nordhjem, Barbara; Haak, Koen V; Dumoulin, Serge O; Renken, Remco; Curčić-Blake, Branislava; Cornelissen, Frans W

    2014-01-01

    One way to study connectivity in visual cortical areas is by examining spontaneous neural activity. In the absence of visual input, such activity remains shaped by the underlying neural architecture and, presumably, may still reflect visuotopic organization. Here, we applied population connective field (CF) modeling to estimate the spatial profile of functional connectivity in the early visual cortex during resting state functional magnetic resonance imaging (RS-fMRI). This model-based analysis estimates the spatial integration between blood-oxygen level dependent (BOLD) signals in distinct cortical visual field maps using fMRI. Just as population receptive field (pRF) mapping predicts the collective neural activity in a voxel as a function of response selectivity to stimulus position in visual space, CF modeling predicts the activity of voxels in one visual area as a function of the aggregate activity in voxels in another visual area. In combination with pRF mapping, CF locations on the cortical surface can be interpreted in visual space, thus enabling reconstruction of visuotopic maps from resting state data. We demonstrate that V1 ➤ V2 and V1 ➤ V3 CF maps estimated from resting state fMRI data show visuotopic organization. Therefore, we conclude that-despite some variability in CF estimates between RS scans-neural properties such as CF maps and CF size can be derived from resting state data.

  3. Recognition memory for Braille or spoken words: an fMRI study in early blind.

    PubMed

    Burton, Harold; Sinclair, Robert J; Agato, Alvin

    2012-02-15

    We examined cortical activity in early blind during word recognition memory. Nine participants were blind at birth and one by 1.5years. In an event-related design, we studied blood oxygen level-dependent responses to studied ("old") compared to novel ("new") words. Presentation mode was in Braille or spoken. Responses were larger for identified "new" words read with Braille in bilateral lower and higher tier visual areas and primary somatosensory cortex. Responses to spoken "new" words were larger in bilateral primary and accessory auditory cortex. Auditory cortex was unresponsive to Braille words and occipital cortex responded to spoken words but not differentially with "old"/"new" recognition. Left dorsolateral prefrontal cortex had larger responses to "old" words only with Braille. Larger occipital cortex responses to "new" Braille words suggested verbal memory based on the mechanism of recollection. A previous report in sighted noted larger responses for "new" words studied in association with pictures that created a distinctiveness heuristic source factor which enhanced recollection during remembering. Prior behavioral studies in early blind noted an exceptional ability to recall words. Utilization of this skill by participants in the current study possibly engendered recollection that augmented remembering "old" words. A larger response when identifying "new" words possibly resulted from exhaustive recollecting the sensory properties of "old" words in modality appropriate sensory cortices. The uniqueness of a memory role for occipital cortex is in its cross-modal responses to coding tactile properties of Braille. The latter possibly reflects a "sensory echo" that aids recollection. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Functional cartilage MRI T2 mapping: evaluating the effect of age and training on knee cartilage response to running.

    PubMed

    Mosher, T J; Liu, Y; Torok, C M

    2010-03-01

    To characterize effects of age and physical activity level on cartilage thickness and T2 response immediately after running. Institutional review board approval was obtained and all subjects provided informed consent prior to study participation. Cartilage thickness and magnetic resonance imaging (MRI) T2 values of 22 marathon runners and 15 sedentary controls were compared before and after 30 min of running. Runner and control groups were stratified by ageor=46 years. Multi-echo [(Time to Repetition (TR)/Time to Echo (TE) 1500 ms/9-109 ms)] MR images obtained using a 3.0 T scanner were used to calculate thickness and T2 values from the central femoral and tibial cartilage. Baseline cartilage T2 values, and change in cartilage thickness and T2 values after running were compared between the four groups using one-way analysis of variance (ANOVA). After running MRI T2 values decreased in superficial femoral (2 ms-4 ms) and tibial (1 ms-3 ms) cartilage along with a decrease in cartilage thickness: (femoral: 4%-8%, tibial: 0%-12%). Smaller decrease in cartilage T2 values were observed in the middle zone of cartilage, and no change was observed in the deepest layer. There was no difference cartilage deformation or T2 response to running as a function of age or level of physical activity. Running results in a measurable decrease in cartilage thickness and MRI T2 values of superficial cartilage consistent with greater compressibility of the superficial cartilage layer. Age and level of physical activity did not alter the T2 response to running. Copyright 2009 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  5. Testing the physiological plausibility of conflicting psychological models of response inhibition: A forward inference fMRI study.

    PubMed

    Criaud, Marion; Longcamp, Marieke; Anton, Jean-Luc; Nazarian, Bruno; Roth, Muriel; Sescousse, Guillaume; Strafella, Antonio P; Ballanger, Bénédicte; Boulinguez, Philippe

    2017-08-30

    The neural mechanisms underlying response inhibition and related disorders are unclear and controversial for several reasons. First, it is a major challenge to assess the psychological bases of behaviour, and ultimately brain-behaviour relationships, of a function which is precisely intended to suppress overt measurable behaviours. Second, response inhibition is difficult to disentangle from other parallel processes involved in more general aspects of cognitive control. Consequently, different psychological and anatomo-functional models coexist, which often appear in conflict with each other even though they are not necessarily mutually exclusive. The standard model of response inhibition in go/no-go tasks assumes that inhibitory processes are reactively and selectively triggered by the stimulus that participants must refrain from reacting to. Recent alternative models suggest that action restraint could instead rely on reactive but non-selective mechanisms (all automatic responses are automatically inhibited in uncertain contexts) or on proactive and non-selective mechanisms (a gating function by which reaction to any stimulus is prevented in anticipation of stimulation when the situation is unpredictable). Here, we assessed the physiological plausibility of these different models by testing their respective predictions regarding event-related BOLD modulations (forward inference using fMRI). We set up a single fMRI design which allowed for us to record simultaneously the different possible forms of inhibition while limiting confounds between response inhibition and parallel cognitive processes. We found BOLD dynamics consistent with non-selective models. These results provide new theoretical and methodological lines of inquiry for the study of basic functions involved in behavioural control and related disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Treatment-responsive limbic encephalitis identified by neuropil antibodies: MRI and PET correlates

    PubMed Central

    Ances, Beau M.; Vitaliani, Roberta; Taylor, Robert A.; Liebeskind, David S.; Voloschin, Alfredo; Houghton, David J.; Galetta, Steven L.; Dichter, Marc; Alavi, Abass; Rosenfeld, Myrna R.; Dalmau, Josep

    2007-01-01

    had dramatic clinical and neuroimaging responses to immunotherapy or tumour resection; two patients had neurological relapse and improved with immunotherapy. Overall, the phenotype associated with the novel neuropil antibodies includes dominant behavioural and psychiatric symptoms and seizures that often interfere with the evaluation of cognition and memory, and brain MRI or FDG-PET abnormalities less frequently restricted to the medial temporal lobes than in patients with classical paraneoplastic or VGKC antibodies. When compared with patients with VGKC antibodies, patients with these novel antibodies are more likely to have CSF inflammatory abnormalities and systemic tumours (teratoma and thymoma), and they do not develop SIADH-like hyponatraemia. Although most autoantigens await characterization, all share intense expression by the neuropil of hippocampus, with patterns of immunolabelling characteristic enough to suggest the diagnosis of these disorders and predict response to treatment. PMID:15888538

  7. How challenges in auditory fMRI led to general advancements for the field.

    PubMed

    Talavage, Thomas M; Hall, Deborah A

    2012-08-15

    In the early years of fMRI research, the auditory neuroscience community sought to expand its knowledge of the underlying physiology of hearing, while also seeking to come to grips with the inherent acoustic disadvantages of working in the fMRI environment. Early collaborative efforts between prominent auditory research laboratories and prominent fMRI centers led to development of a number of key technical advances that have subsequently been widely used to elucidate principles of auditory neurophysiology. Perhaps the key imaging advance was the simultaneous and parallel development of strategies to use pulse sequences in which the volume acquisitions were "clustered," providing gaps in which stimuli could be presented without direct masking. Such sequences have become widespread in fMRI studies using auditory stimuli and also in a range of translational research domains. This review presents the parallel stories of the people and the auditory neurophysiology research that led to these sequences. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Early magnetic resonance imaging in acute knee injury: a cost analysis.

    PubMed

    Patel, Nirav K; Bucknill, Andrew; Ahearne, David; Denning, Janet; Desai, Kailash; Watson, Martin

    2012-06-01

    Acute knee injury is common, and MRI is often only used when non-operative management fails because of limited availability. We investigated whether early MRI in acute knee injury is more clinically and cost-effective compared to conventional physiotherapy and reassessment. All patients with acute indirect soft tissue knee injury referred to fracture clinic were approached. Recruited patients were randomised to either the MRI group: early MRI within 2 weeks or the control group: conventional management with physiotherapy. Patients were assessed in clinic initially, at 2 weeks and 3 months post-injury. Management costs were calculated for all patients until surgical treatment or discharge. Forty-six patients were recruited: 23 in the MRI and 23 in the control group. Male sex and mean age were similar in the two groups. The total management cost of the MRI group was £16,127 and control group was £16,170, with a similar mean cost per patient (NS). The MRI group had less mean physiotherapy (2.5 ± 1.9 vs. 5.1 ± 3.5, p < 0.01) and outpatient appointments (NS). Median time to surgery and time off work was less in the MRI group (NS). The MRI group had less pain (p < 0.05), less activity limitation (p = 0.04) and better satisfaction (p = 0.04). Early MRI in acute knee injury facilitates faster diagnosis and management of internal derangement at a cost comparable to conventional treatment. Moreover, patients had significantly less time off work with improved pain, activity limitation and satisfaction scores. II.

  9. Early skin toxicity predicts better outcomes, and early tumor shrinkage predicts better response after cetuximab treatment in advanced colorectal cancer.

    PubMed

    Kogawa, T; Doi, A; Shimokawa, M; Fouad, T M; Osuga, T; Tamura, F; Mizushima, T; Kimura, T; Abe, S; Ihara, H; Kukitsu, T; Sumiyoshi, T; Yoshizaki, N; Hirayama, M; Sasaki, T; Kawarada, Y; Kitashiro, S; Okushiba, S; Kondo, H; Tsuji, Y

    2015-03-01

    Cetuximab-containing treatments for metastatic colorectal cancer have been shown to have higher overall response rates and longer progression-free and overall survival than other systemic therapies. Cetuximab-related manifestations, including severe skin toxicity and early tumor shrinkage, have been shown to be predictors of response to cetuximab. We hypothesized that early skin toxicity is a predictor of response and better outcomes in patients with advanced colorectal carcinoma. We retrospectively evaluated 62 patients with colorectal adenocarcinoma who had unresectable tumors and were treated with cetuximab in our institution. Skin toxicity grade was evaluated on each treatment day. Tumor size was evaluated using computed tomography prior to treatment and 4-8 weeks after the start of treatment with cetuximab.Patients with early tumor shrinkage after starting treatment with cetuximab had a significantly higher overall response rate (P = 0.0001). Patients with early skin toxicity showed significantly longer overall survival (P = 0.0305), and patients with higher skin toxicity grades had longer progression-free survival (P = 0.0168).We have shown that early tumor shrinkage, early onset of skin toxicity, and high skin toxicity grade are predictors of treatment efficacy and/or outcome in patients with advanced colorectal carcinoma treated with cetuximab.

  10. Subclinical Disease Burden as Assessed by Whole-Body MRI in Subjects With Prediabetes, Subjects With Diabetes, and Normal Control Subjects From the General Population: The KORA-MRI Study.

    PubMed

    Bamberg, Fabian; Hetterich, Holger; Rospleszcz, Susanne; Lorbeer, Roberto; Auweter, Sigrid D; Schlett, Christopher L; Schafnitzel, Anina; Bayerl, Christian; Schindler, Andreas; Saam, Tobias; Müller-Peltzer, Katharina; Sommer, Wieland; Zitzelsberger, Tanja; Machann, Jürgen; Ingrisch, Michael; Selder, Sonja; Rathmann, Wolfgang; Heier, Margit; Linkohr, Birgit; Meisinger, Christa; Weber, Christian; Ertl-Wagner, Birgit; Massberg, Steffen; Reiser, Maximilian F; Peters, Annette

    2017-01-01

    Detailed pathophysiological manifestations of early disease in the context of prediabetes are poorly understood. This study aimed to evaluate the extent of early signs of metabolic and cardio-cerebrovascular complications affecting multiple organs in individuals with prediabetes. Subjects without a history of stroke, coronary artery disease, or peripheral artery disease were enrolled in a case-control study nested within the Cooperative Health Research in the Region of Augsburg (KORA) FF4 cohort and underwent comprehensive MRI assessment to characterize cerebral parameters (white matter lesions, microbleeds), cardiovascular parameters (carotid plaque, left ventricular function, and myocardial late gadolinium enhancement [LGE]), and metabolic parameters (hepatic proton-density fat fraction [PDFF] and subcutaneous and visceral abdominal fat). Among 400 subjects who underwent MRI, 103 subjects had prediabetes and 54 had established diabetes. Subjects with prediabetes had an increased risk for carotid plaque and adverse functional cardiac parameters, including reduced early diastolic filling rates as well as a higher prevalence of LGE compared with healthy control subjects. In addition, people with prediabetes had significantly elevated levels of PDFF and total and visceral fat. Thus, subjects with prediabetes show early signs of subclinical disease that include vascular, cardiac, and metabolic changes, as measured by whole-body MRI after adjusting for cardiometabolic risk factors. © 2017 by the American Diabetes Association.

  11. In vivo characterization of a smart MRI agent that displays an inverse response to calcium concentration.

    PubMed

    Mamedov, Ilgar; Canals, Santiago; Henig, Jörg; Beyerlein, Michael; Murayama, Yusuke; Mayer, Hermann A; Logothetis, Nikos K; Angelovski, Goran

    2010-12-15

    Contrast agents for magnetic resonance imaging (MRI) that exhibit sensitivity toward specific ions or molecules represent a challenging but attractive direction of research. Here a Gd(3+) complex linked to an aminobis(methylenephosphonate) group for chelating Ca(2+) was synthesized and investigated. The longitudinal relaxivity (r(1)) of this complex decreases during the relaxometric titration with Ca(2+) from 5.76 to 3.57 mM(-1) s(-1) upon saturation. The r(1) is modulated by changes in the hydration number, which was confirmed by determination of the luminescence emission lifetimes of the analogous Eu(3+) complex. The initial in vivo characterization of this responsive contrast agent was performed by means of electrophysiology and MRI experiments. The investigated complex is fully biocompatible, having no observable effect on neuronal function after administration into the brain ventricles or parenchyma. Distribution studies demonstrated that the diffusivity of this agent is significantly lower compared with that of gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA).

  12. MR Imaging Biomarkers to Monitor Early Response to Hypoxia-Activated Prodrug TH-302 in Pancreatic Cancer Xenografts.

    PubMed

    Zhang, Xiaomeng; Wojtkowiak, Jonathan W; Martinez, Gary V; Cornnell, Heather H; Hart, Charles P; Baker, Amanda F; Gillies, Robert

    2016-01-01

    TH-302 is a hypoxia-activated prodrug known to activate selectively under the hypoxic conditions commonly found in solid tumors. It is currently being evaluated in clinical trials, including two trials in Pancreatic Ductal Adenocarcinomas (PDAC). The current study was undertaken to evaluate imaging biomarkers for prediction and response monitoring of TH-302 efficacy in xenograft models of PDAC. Dynamic contrast-enhanced (DCE) and diffusion weighted (DW) magnetic resonance imaging (MRI) were used to monitor acute effects on tumor vasculature and cellularity, respectively. Three human PDAC xenografts with known differential responses to TH-302 were imaged prior to, and at 24 h and 48 hours following a single dose of TH-302 or vehicle to determine if imaging changes presaged changes in tumor volumes. DW-MRI was performed at five b-values to generate apparent diffusion coefficient of water (ADC) maps. For DCE-MRI, a standard clinically available contrast reagent, Gd-DTPA, was used to determine blood flow into the tumor region of interest. TH-302 induced a dramatic decrease in the DCE transfer constant (Ktrans) within 48 hours after treatment in the sensitive tumors, Hs766t and Mia PaCa-2, whereas TH-302 had no effect on the perfusion behavior of resistant SU.86.86 tumors. Tumor cellularity, estimated from ADC, was significantly increased 24 and 48 hours after treatment in Hs766t, but was not observed in the Mia PaCa-2 and SU.86.86 groups. Notably, growth inhibition of Hs766t was observed immediately (day 3) following initiation of treatment, but was not observed in MiaPaCa-2 tumors until 8 days after initiation of treatment. Based on these preclinical findings, DCE-MRI measures of vascular perfusion dynamics and ADC measures of cell density are suggested as potential TH-302 response biomarkers in clinical trials.

  13. The Use of Functional MRI to Study Appetite Control in the CNS

    PubMed Central

    De Silva, Akila; Salem, Victoria; Matthews, Paul M.; Dhillo, Waljit S.

    2012-01-01

    Functional magnetic resonance imaging (fMRI) has provided the opportunity to safely investigate the workings of the human brain. This paper focuses on its use in the field of human appetitive behaviour and its impact in obesity research. In the present absence of any safe or effective centrally acting appetite suppressants, a better understanding of how appetite is controlled is vital for the development of new antiobesity pharmacotherapies. Early functional imaging techniques revealed an attenuation of brain reward area activity in response to visual food stimuli when humans are fed—in other words, the physiological state of hunger somehow increases the appeal value of food. Later studies have investigated the action of appetite modulating hormones on the fMRI signal, showing how the attenuation of brain reward region activity that follows feeding can be recreated in the fasted state by the administration of anorectic gut hormones. Furthermore, differences in brain activity between obese and lean individuals have provided clues about the possible aetiology of overeating. The hypothalamus acts as a central gateway modulating homeostatic and nonhomeostatic drives to eat. As fMRI techniques constantly improve, functional data regarding the role of this small but hugely important structure in appetite control is emerging. PMID:22719753

  14. The gymnast's shoulder MRI and clinical findings.

    PubMed

    De Carli, A; Mossa, L; Larciprete, M; Ferretti, M; Argento, G; Ferretti, A

    2012-02-01

    The aim of the study was to evaluate effects of shoulder overuse in elite symptomatic or asymptomatic gymnasts. This was a university-based sport traumatology research, a cohort study, with a control group comparison. Patients included were: 21 elite male gymnasts performing in the Italian National team for at least 10 years and a control group of 10 patients (20 shoulders) of the same age and sex, randomly selected among a healthy non-athletic population who underwent shoulder MRI. Magnetic resonance imaging without contrast were performed to all participants and clinical findings were summarized. Two experienced musculoskeletal radiologists interpreted each MRI scan for multiple variables (rotator cuff tendons, labral signal, capsule), including type of measurements performed on soft tissues (muscles, tendons) to assess global modifications of the shoulders. Signal abnormalities were detected in 36/36 (100%) gymnasts' shoulders, and in 4/20 (20%) of the controls. Sixteen of 36 (44.4%) shoulders had findings consistent with SLAP tears, bilateral in four patients; anteroinferior labrum lesions were identified in 10/36 (27.7%) shoulders, as compared with none (0%) in the controls. Eight of 36 (22%) shoulders had findings consistent with partial- or full-thickness tears of the rotator cuff as compared with none (0%) of the controls. Increased thickness of rotator cuff tendons and hypertrophy of rotator cuff muscles and deltoid muscles were recorded: such reports were symmetrical between dominant and non dominant arms, and increased when compared to controls. Gymnasts' shoulders are significantly different from those of the general population. MRI findings, especially SLAP tears, and hypertrophy are symmetrical. SLAP tears seem to be responsible of most early retirement.

  15. Istanbul Earthquake Early Warning and Rapid Response System

    NASA Astrophysics Data System (ADS)

    Erdik, M. O.; Fahjan, Y.; Ozel, O.; Alcik, H.; Aydin, M.; Gul, M.

    2003-12-01

    As part of the preparations for the future earthquake in Istanbul a Rapid Response and Early Warning system in the metropolitan area is in operation. For the Early Warning system ten strong motion stations were installed as close as possible to the fault zone. Continuous on-line data from these stations via digital radio modem provide early warning for potentially disastrous earthquakes. Considering the complexity of fault rupture and the short fault distances involved, a simple and robust Early Warning algorithm, based on the exceedance of specified threshold time domain amplitude levels is implemented. The band-pass filtered accelerations and the cumulative absolute velocity (CAV) are compared with specified threshold levels. When any acceleration or CAV (on any channel) in a given station exceeds specific threshold values it is considered a vote. Whenever we have 2 station votes within selectable time interval, after the first vote, the first alarm is declared. In order to specify the appropriate threshold levels a data set of near field strong ground motions records form Turkey and the world has been analyzed. Correlations among these thresholds in terms of the epicenter distance the magnitude of the earthquake have been studied. The encrypted early warning signals will be communicated to the respective end users by UHF systems through a "service provider" company. The users of the early warning signal will be power and gas companies, nuclear research facilities, critical chemical factories, subway system and several high-rise buildings. Depending on the location of the earthquake (initiation of fault rupture) and the recipient facility the alarm time can be as high as about 8s. For the rapid response system one hundred 18 bit-resolution strong motion accelerometers were placed in quasi-free field locations (basement of small buildings) in the populated areas of the city, within an area of approximately 50x30km, to constitute a network that will enable early

  16. Magnetic resonance imaging for diagnosis of early Alzheimer's disease.

    PubMed

    Colliot, O; Hamelin, L; Sarazin, M

    2013-10-01

    A major challenge for neuroimaging is to contribute to the early diagnosis of Alzheimer's disease (AD). In particular, magnetic resonance imaging (MRI) allows detecting different types of structural and functional abnormalities at an early stage of the disease. Anatomical MRI is the most widely used technique and provides local and global measures of atrophy. The recent diagnostic criteria of "mild cognitive impairment due to AD" include hippocampal atrophy, which is considered a marker of neuronal injury. Advanced image analysis techniques generate automatic and reproducible measures both in the hippocampus and throughout the whole brain. Recent modalities such as diffusion-tensor imaging and resting-state functional MRI provide additional measures that could contribute to the early diagnosis but require further validation. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  17. Recognition Memory for Braille or Spoken Words: An fMRI study in Early Blind

    PubMed Central

    Burton, Harold; Sinclair, Robert J.; Agato, Alvin

    2012-01-01

    We examined cortical activity in early blind during word recognition memory. Nine participants were blind at birth and one by 1.5 yrs. In an event-related design, we studied blood oxygen level-dependent responses to studied (“old”) compared to novel (“new”) words. Presentation mode was in Braille or spoken. Responses were larger for identified “new” words read with Braille in bilateral lower and higher tier visual areas and primary somatosensory cortex. Responses to spoken “new” words were larger in bilateral primary and accessory auditory cortex. Auditory cortex was unresponsive to Braille words and occipital cortex responded to spoken words but not differentially with “old”/“new” recognition. Left dorsolateral prefrontal cortex had larger responses to “old” words only with Braille. Larger occipital cortex responses to “new” Braille words suggested verbal memory based on the mechanism of recollection. A previous report in sighted noted larger responses for “new” words studied in association with pictures that created a distinctiveness heuristic source factor which enhanced recollection during remembering. Prior behavioral studies in early blind noted an exceptional ability to recall words. Utilization of this skill by participants in the current study possibly engendered recollection that augmented remembering “old” words. A larger response when identifying “new” words possibly resulted from exhaustive recollecting the sensory properties of “old” words in modality appropriate sensory cortices. The uniqueness of a memory role for occipital cortex is in its cross-modal responses to coding tactile properties of Braille. The latter possibly reflects a “sensory echo” that aids recollection. PMID:22251836

  18. Dynamic modeling of neuronal responses in fMRI using cubature Kalman filtering.

    PubMed

    Havlicek, Martin; Friston, Karl J; Jan, Jiri; Brazdil, Milan; Calhoun, Vince D

    2011-06-15

    This paper presents a new approach to inverting (fitting) models of coupled dynamical systems based on state-of-the-art (cubature) Kalman filtering. Crucially, this inversion furnishes posterior estimates of both the hidden states and parameters of a system, including any unknown exogenous input. Because the underlying generative model is formulated in continuous time (with a discrete observation process) it can be applied to a wide variety of models specified with either ordinary or stochastic differential equations. These are an important class of models that are particularly appropriate for biological time-series, where the underlying system is specified in terms of kinetics or dynamics (i.e., dynamic causal models). We provide comparative evaluations with generalized Bayesian filtering (dynamic expectation maximization) and demonstrate marked improvements in accuracy and computational efficiency. We compare the schemes using a series of difficult (nonlinear) toy examples and conclude with a special focus on hemodynamic models of evoked brain responses in fMRI. Our scheme promises to provide a significant advance in characterizing the functional architectures of distributed neuronal systems, even in the absence of known exogenous (experimental) input; e.g., resting state fMRI studies and spontaneous fluctuations in electrophysiological studies. Importantly, unlike current Bayesian filters (e.g. DEM), our scheme provides estimates of time-varying parameters, which we will exploit in future work on the adaptation and enabling of connections in the brain. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Predicting and monitoring response to chemotherapy by 1,3-bis(2-chloroethyl)-1-nitrosourea in subcutaneously implanted 9L glioma using the apparent diffusion coefficient of water and 23Na MRI.

    PubMed

    Babsky, Andriy M; Hekmatyar, S K; Zhang, Hong; Solomon, James L; Bansal, Navin

    2006-07-01

    To examine the effects of the alkylating anticancer drug 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) on (23)Na MRI and the water apparent diffusion coefficient (ADC) in subcutaneously- (sc-) implanted 9L glioma in rats. (23)Na MRI and (1)H water ADC measurements were performed on sham-treated control (N = 6) and BCNU-treated (N = 15) Fisher rats one day before BCNU injection and then one, three, and five days after BCNU injection. The BCNU-treated tumors were divided into BCNU-responsive (R(BCNU)) and BCNU-nonresponsive (NR(BCNU)) groups depending on the tumor volume changes that occurred after therapy. The pretreatment (23)Na MRI signal intensity (SI) and water ADC values were higher in R(BCNU) tumors compared to NR(BCNU) tumors. (23)Na MRI SI and water ADC increased with tumor growth in control and NR(BCNU) groups, but these changes were interrupted by BCNU therapy in R(BCNU) group. (23)Na MRI and water ADC measurements may be useful for predicting and monitoring response to chemotherapy in some tumors. However, the changes that occurred in (23)Na MRI SI and water ADC in sc-implanted 9L tumors are in contrast to previously published results for BCNU therapy of orthotopic 9L tumors. This may have important implications for monitoring therapy response in tumors. (c) 2006 Wiley-Liss, Inc.

  20. Neural correlates of experienced moral emotion: an fMRI investigation of emotion in response to prejudice feedback.

    PubMed

    Fourie, Melike M; Thomas, Kevin G F; Amodio, David M; Warton, Christopher M R; Meintjes, Ernesta M

    2014-01-01

    Guilt, shame, and embarrassment are quintessential moral emotions with important regulatory functions for the individual and society. Moral emotions are, however, difficult to study with neuroimaging methods because their elicitation is more intricate than that of basic emotions. Here, using functional MRI (fMRI), we employed a novel social prejudice paradigm to examine specific brain regions associated with real-time moral emotion, focusing on guilt and related moral-negative emotions. The paradigm induced intense moral-negative emotion (primarily guilt) in 22 low-prejudice individuals through preprogrammed feedback indicating implicit prejudice against Black and disabled people. fMRI data indicated that this experience of moral-negative emotion was associated with increased activity in anterior paralimbic structures, including the anterior cingulate cortex (ACC) and anterior insula, in addition to areas associated with mentalizing, including the dorsomedial prefrontal cortex, posterior cingulate cortex, and precuneus. Of significance was prominent conflict-related activity in the supragenual ACC, which is consistent with theories proposing an association between acute guilt and behavioral inhibition. Finally, a significant negative association between self-reported guilt and neural activity in the pregenual ACC suggested a role of self-regulatory processes in response to moral-negative affect. These findings are consistent with the multifaceted self-regulatory functions of moral-negative emotions in social behavior.

  1. Early Identification of Aortic Valve Sclerosis Using Iron Oxide Enhanced MRI

    PubMed Central

    Hamilton, Amanda M.; Rogers, Kem A.; Belisle, Andre J.L.; Ronald, John A.; Rutt, Brian K.; Weissleder, Ralph; Boughner, Derek R.

    2017-01-01

    Purpose To test the ability of MION-47 enhanced MRI to identify tissue macrophage infiltration in a rabbit model of aortic valve sclerosis (AVS). Materials and Methods The aortic valves of control and cholesterol-fed New Zealand White rabbits were imaged in vivo pre- and 48 h post-intravenous administration of MION-47 using a 1.5 Tesla (T) MR clinical scanner and a CINE fSPGR sequence. MION-47 aortic valve cusps were imaged ex vivo on a 3.0T whole-body MR system with a custom gradient insert coil and a three-dimensional (3D) FIESTA sequence and compared with aortic valve cusps from control and cholesterol-fed contrast-free rabbits. Histopathological analysis was performed to determine the site of iron oxide uptake. Results MION-47 enhanced the visibility of both control and cholesterol-fed rabbit valves in in vivo images. Ex vivo image analysis confirmed the presence of significant signal voids in contrast-administered aortic valves. Signal voids were not observed in contrast-free valve cusps. In MION-47 administered rabbits, histopathological analysis revealed iron staining not only in fibrosal macrophages of cholesterol-fed valves but also in myofibroblasts from control and cholesterol-fed valves. Conclusion Although iron oxide labeling of macrophage infiltration in AVS has the potential to detect the disease process early, a macrophage-specific iron compound rather than passive targeting may be required. PMID:20027578

  2. [Use of MRI before biopsy in diagnosis of prostate cancer: Single-operator study].

    PubMed

    Bassard, S; Mege, J-L

    2015-12-01

    The diagnostic for prostate cancer is changing. To improve the detection of this cancer, urologists expect a lot from the contribution of magnetic resonance imaging (MRI). What is the role of this imaging in prostate cancer detection? This is a retrospective study, from 2011 to 2013, mono-centric and single-operator. Of the 464 needle biopsy of the prostate (BP), we excluded those with PSA>20 ng/mL or digital rectal examination (DRE)>T3. The remaining 430 BP were submitted or not to a 1.5 tesla MRI with pelvic antenna. The primary aim is the overall detection of prostate cancer. Secondary aim was the detection rate during the first series of BP and repeat BP, between the two groups in the MRI group. MRI and MRI without populations are comparable for age (63.3 vs 64.6), PSA (6.10 vs 6.13), DRE>T1c, prostate volume (55.4 cm(3) vs 51.7 cm(3)). There is no significant difference in overall detection between the two groups (P=0.12). There is no significant difference in cancer detection between the first BP (P=0.13) and the repeat BP (P=0.07). There is a significant difference in the early detection of BP MRI group (P=0.03) but not for the BP repeat MRI group (P=0.07). For 108 BP iterative MRI group, there were 67 BP targeted "mentally" with MRI: 18 cancers were detected, making a 25% detection rate. This study helps to highlight the value of MRI in the early rounds of BP but we can ask the value of this imaging during repeat biopsies. Targeted biopsies "mentally" do not have the expected detection sensitivity and seems to require a three-dimensional reconstruction to be more effective. 5. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  3. Quantification of regional early stage gas exchange changes using hyperpolarized (129)Xe MRI in a rat model of radiation-induced lung injury.

    PubMed

    Doganay, Ozkan; Stirrat, Elaine; McKenzie, Charles; Schulte, Rolf F; Santyr, Giles E

    2016-05-01

    To assess the feasibility of hyperpolarized (HP) (129)Xe MRI for detection of early stage radiation-induced lung injury (RILI) in a rat model involving unilateral irradiation by assessing differences in gas exchange dynamics between irradiated and unirradiated lungs. The dynamics of gas exchange between alveolar air space and pulmonary tissue (PT), PT and red blood cells (RBCs) was measured using single-shot spiral iterative decomposition of water and fat with echo asymmetry and least-squares estimation images of the right and left lungs of two age-matched cohorts of Sprague Dawley rats. The first cohort (n = 5) received 18 Gy irradiation to the right lung using a (60)Co source and the second cohort (n = 5) was not irradiated and served as the healthy control. Both groups were imaged two weeks following irradiation when radiation pneumonitis (RP) was expected to be present. The gas exchange data were fit to a theoretical gas exchange model to extract measurements of pulmonary tissue thickness (LPT) and relative blood volume (VRBC) from each of the right and left lungs of both cohorts. Following imaging, lung specimens were retrieved and percent tissue area (PTA) was assessed histologically to confirm RP and correlate with MRI measurements. Statistically significant differences in LPT and VRBC were observed between the irradiated and non-irradiated cohorts. In particular, LPT of the right and left lungs was increased approximately 8.2% and 5.0% respectively in the irradiated cohort. Additionally, VRBC of the right and left lungs was decreased approximately 36.1% and 11.7% respectively for the irradiated cohort compared to the non-irradiated cohort. PTA measurements in both right and left lungs were increased in the irradiated group compared to the non-irradiated cohort for both the left (P < 0.05) and right lungs (P < 0.01) confirming the presence of RP. PTA measurements also correlated with the MRI measurements for both the non-irradiated (r = 0.79, P < 0.01) and

  4. Parameterizing the Logistic Model of Tumor Growth by DW-MRI and DCE-MRI Data to Predict Treatment Response and Changes in Breast Cancer Cellularity during Neoadjuvant Chemotherapy1

    PubMed Central

    Atuegwu, Nkiruka C; Arlinghaus, Lori R; Li, Xia; Chakravarthy, A Bapsi; Abramson, Vandana G; Sanders, Melinda E; Yankeelov, Thomas E

    2013-01-01

    Diffusion-weighted and dynamic contrast-enhanced magnetic resonance imaging (MRI) data of 28 patients were obtained pretreatment, after one cycle, and after completion of all cycles of neoadjuvant chemotherapy (NAC). For each patient at each time point, the tumor cell number was estimated using the apparent diffusion coefficient and the extravascular extracellular (ve) and plasma volume (vp) fractions. The proliferation/death rate was obtained using the number of tumor cells from the first two time points in conjunction with the logistic model of tumor growth, which was then used to predict tumor cellularity at the conclusion of NAC. The Pearson correlation coefficient between the predicted and the experimental number of tumor cells measured at the end of NAC was 0.81 (P = .0043). The proliferation rate estimated after the first cycle of therapy was able to separate patients who went on to achieve pathologic complete response from those who did not (P = .021) with a sensitivity and specificity of 82.4% and 72.7%, respectively. These data provide preliminary results indicating that incorporating readily available quantitative MRI data into a simple model of tumor growth can lead to potentially clinically relevant information for predicting an individual patient's response to NAC. PMID:23730404

  5. Head MRI

    MedlinePlus

    ... the head; MRI - cranial; NMR - cranial; Cranial MRI; Brain MRI; MRI - brain; MRI - head ... the test, tell your provider if you have: Brain aneurysm clips An artificial heart valves Heart defibrillator ...

  6. Early feeding and early life housing conditions influence the response towards a noninfectious lung challenge in broilers.

    PubMed

    Simon, K; de Vries Reilingh, G; Bolhuis, J E; Kemp, B; Lammers, A

    2015-09-01

    Early life conditions such as feed and water availability immediately post hatch (PH) and housing conditions may influence immune development and therefore immune reactivity later in life. The current study addressed the consequences of a combination of these 2 early life conditions for immune reactivity, i.e., the specific antibody response towards a non-infectious lung challenge. Broiler chicks received feed and water either immediately p.h. or with a 72 h delay and were either reared in a floor or a cage system. At 4 weeks of age, chicks received either an intra-tracheally administered Escherichia coli lipopolysaccharide (LPS)/Human Serum Albumin (HUSA) challenge or a placebo, and antibody titers were measured up to day 14 after administration of the challenge. Chicks housed on the floor and which had a delayed access to feed p.h. showed the highest antibody titers against HuSA. These chicks also showed the strongest sickness response and poorest performance in response to the challenge, indicating that chicks with delayed access to feed might be more sensitive to an environment with higher antigenic pressure. In conclusion, results from the present study show that early life feeding strategy and housing conditions influence a chick's response to an immune challenge later in life. These 2 early life factors should therefore be taken into account when striving for a balance between disease resistance and performance in poultry. © 2015 Poultry Science Association Inc.

  7. Sodium Iodate Produces a Strain-Dependent Retinal Oxidative Stress Response Measured In Vivo Using QUEST MRI.

    PubMed

    Berkowitz, Bruce A; Podolsky, Robert H; Lenning, Jacob; Khetarpal, Nikita; Tran, Catherine; Wu, Johnny Y; Berri, Ali M; Dernay, Kristin; Shafie-Khorassani, Fatema; Roberts, Robin

    2017-06-01

    We identify noninvasive biomarkers that measure the severity of oxidative stress within retina layers in sodium iodate (SI)-atrophy vulnerable (C57BL/6 [B6]) and SI-atrophy resistant (129S6/SvEvTac [S6]) mice. At 24 hours after administering systemic SI to B6 and S6 mice we measured: (1) superoxide production in whole retina ex vivo, (2) excessive free radical production in vivo based on layer-specific 1/T1 values before and after α-lipoic acid (ALA) administration while the animal was inside the magnet (QUEnch-assiSTed MRI [QUEST MRI]), and (3) visual performance (optokinetic tracking) ± antioxidants; control mice were similarly assessed. Retinal layer spacing and thickness in vivo also were evaluated (optical coherence tomography, MRI). SI-treated B6 mice retina had a significantly higher superoxide production than SI-treated S6 mice. ALA-injected SI-treated B6 mice had reduced 1/T1 in more retinal layers in vivo than in SI-treated S6 mice. Uninjected and saline-injected SI-treated B6 mice had similar transretinal 1/T1 profiles. Notably, the inner segment layer 1/T1 of SI-treated B6 mice was responsive to ALA but was unresponsive in SI-treated S6 mice. In both SI-treated strains, antioxidants improved contrast sensitivity to similar extents; antioxidants did not change acuity in either group. Retinal thicknesses were normal in both SI-treated strains at 24 hours after treatment. QUEST MRI uniquely measured severity of excessive free radical production within retinal layers of the same subject. Identifying the mechanisms underlying genetic vulnerabilities to oxidative stress is expected to help in understanding the pathogenesis of retinal degeneration.

  8. Defining Clinical Response Criteria and Early Response Criteria for Precision Oncology: Current State-of-the-Art and Future Perspectives.

    PubMed

    Subbiah, Vivek; Chuang, Hubert H; Gambhire, Dhiraj; Kairemo, Kalevi

    2017-02-15

    In this era of precision oncology, there has been an exponential growth in the armamentarium of genomically targeted therapies and immunotherapies. Evaluating early responses to precision therapy is essential for "go" versus "no go" decisions for these molecularly targeted drugs and agents that arm the immune system. Many different response assessment criteria exist for use in solid tumors and lymphomas. We reviewed the literature using the Medline/PubMed database for keywords "response assessment" and various known response assessment criteria published up to 2016. In this article we review the commonly used response assessment criteria. We present a decision tree to facilitate selection of appropriate criteria. We also suggest methods for standardization of various response assessment criteria. The relevant response assessment criteria were further studied for rational of development, key features, proposed use and acceptance by various entities. We also discuss early response evaluation and provide specific case studies of early response to targeted therapy. With high-throughput, advanced computing programs and digital data-mining it is now possible to acquire vast amount of high quality imaging data opening up a new field of "omics in radiology"-radiomics that complements genomics for personalized medicine. Radiomics is rapidly evolving and is still in the research arena. This cutting-edge technology is poised to move soon to the mainstream clinical arena. Novel agents with new mechanisms of action require advanced molecular imaging as imaging biomarkers. There is an urgent need for development of standardized early response assessment criteria for evaluation of response to precision therapy.

  9. Quantitative representations of an exaggerated anxiety response in the brain of female spider phobics-a parametric fMRI study.

    PubMed

    Zilverstand, Anna; Sorger, Bettina; Kaemingk, Anita; Goebel, Rainer

    2017-06-01

    We employed a novel parametric spider picture set in the context of a parametric fMRI anxiety provocation study, designed to tease apart brain regions involved in threat monitoring from regions representing an exaggerated anxiety response in spider phobics. For the stimulus set, we systematically manipulated perceived proximity of threat by varying a depicted spider's context, size, and posture. All stimuli were validated in a behavioral rating study (phobics n = 20; controls n = 20; all female). An independent group participated in a subsequent fMRI anxiety provocation study (phobics n = 7; controls n = 7; all female), in which we compared a whole-brain categorical to a whole-brain parametric analysis. Results demonstrated that the parametric analysis provided a richer characterization of the functional role of the involved brain networks. In three brain regions-the mid insula, the dorsal anterior cingulate, and the ventrolateral prefrontal cortex-activation was linearly modulated by perceived proximity specifically in the spider phobia group, indicating a quantitative representation of an exaggerated anxiety response. In other regions (e.g., the amygdala), activation was linearly modulated in both groups, suggesting a functional role in threat monitoring. Prefrontal regions, such as dorsolateral prefrontal cortex, were activated during anxiety provocation but did not show a stimulus-dependent linear modulation in either group. The results confirm that brain regions involved in anxiety processing hold a quantitative representation of a pathological anxiety response and more generally suggest that parametric fMRI designs may be a very powerful tool for clinical research in the future, particularly when developing novel brain-based interventions (e.g., neurofeedback training). Hum Brain Mapp 38:3025-3038, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Spatial attention improves reliability of fMRI retinotopic mapping signals in occipital and parietal cortex

    PubMed Central

    Bressler, David W.; Silver, Michael A.

    2010-01-01

    Spatial attention improves visual perception and increases the amplitude of neural responses in visual cortex. In addition, spatial attention tasks and fMRI have been used to discover topographic visual field representations in regions outside visual cortex. We therefore hypothesized that requiring subjects to attend to a retinotopic mapping stimulus would facilitate the characterization of visual field representations in a number of cortical areas. In our study, subjects attended either a central fixation point or a wedge-shaped stimulus that rotated about the fixation point. Response reliability was assessed by computing coherence between the fMRI time series and a sinusoid with the same frequency as the rotating wedge stimulus. When subjects attended to the rotating wedge instead of ignoring it, the reliability of retinotopic mapping signals increased by approximately 50% in early visual cortical areas (V1, V2, V3, V3A/B, V4) and ventral occipital cortex (VO1) and by approximately 75% in lateral occipital (LO1, LO2) and posterior parietal (IPS0, IPS1 and IPS2) cortical areas. Additionally, one 5-minute run of retinotopic mapping in the attention-to-wedge condition produced responses as reliable as the average of three to five (early visual cortex) or more than five (lateral occipital, ventral occipital, and posterior parietal cortex) attention-to-fixation runs. These results demonstrate that allocating attention to the retinotopic mapping stimulus substantially reduces the amount of scanning time needed to determine the visual field representations in occipital and parietal topographic cortical areas. Attention significantly increased response reliability in every cortical area we examined and may therefore be a general mechanism for improving the fidelity of neural representations of sensory stimuli at multiple levels of the cortical processing hierarchy. PMID:20600961

  11. Diffusion-Weighted Magnetic Resonance Imaging Early After Chemoradiotherapy to Monitor Treatment Response in Head-and-Neck Squamous Cell Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vandecaveye, Vincent, E-mail: Vincent.Vandecaveye@uzleuven.be; Dirix, Piet; De Keyzer, Frederik

    2012-03-01

    Purpose: To evaluate diffusion-weighted imaging (DWI) for assessment of treatment response in head and neck squamous cell carcinoma (HNSCC) three weeks after the end of chemoradiotherapy (CRT). Methods and Materials: Twenty-nine patients with HNSCC underwent magnetic resonance imaging (MRI) prior to and 3 weeks after CRT, including T{sub 2}-weighted and pre- and postcontrast T{sub 1}-weighted sequences and an echo-planar DWI sequence with six b values (0 to 1,000 s/mm{sup 2}), from which the apparent diffusion coefficient (ADC) was calculated. ADC changes 3 weeks posttreatment compared to baseline ( Increment ADC) between responding and nonresponding primary lesions and adenopathies were correlatedmore » with 2 years locoregional control and compared with a Mann-Whitney test. In a blinded manner, the Increment ADC was compared to conventional MRI 3 weeks post-CRT and the routinely implemented CT, on average 3 months post-CRT, which used size-related and morphological criteria. Positive and negative predictive values (PPV and NPV, respectively) were compared between the Increment ADC and anatomical imaging. Results: The Increment ADC of lesions with later tumor recurrence was significantly lower than lesions with complete remission for both primary lesions (-2.3% {+-} 0.3% vs. 80% {+-} 41%; p < 0.0001) and adenopathies (19.9% {+-} 32% vs. 63% {+-} 36%; p = 0.003). The Increment ADC showed a PPV of 89% and an NPV of 100% for primary lesions and a PPV of 70% and an NPV of 96% for adenopathies per neck side. DWI improved PPV and NPV compared to anatomical imaging. Conclusion: DWI with the Increment ADC 3 weeks after concluding CRT for HNSCC allows for early assessment of treatment response.« less

  12. A Combined Pharmacokinetic and Radiologic Assessment of Dynamic Contrast-Enhanced Magnetic Resonance Imaging Predicts Response to Chemoradiation in Locally Advanced Cervical Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semple, Scott; Harry, Vanessa N. MRCOG.; Parkin, David E.

    2009-10-01

    Purpose: To investigate the combination of pharmacokinetic and radiologic assessment of dynamic contrast-enhanced magnetic resonance imaging (MRI) as an early response indicator in women receiving chemoradiation for advanced cervical cancer. Methods and Materials: Twenty women with locally advanced cervical cancer were included in a prospective cohort study. Dynamic contrast-enhanced MRI was carried out before chemoradiation, after 2 weeks of therapy, and at the conclusion of therapy using a 1.5-T MRI scanner. Radiologic assessment of uptake parameters was obtained from resultant intensity curves. Pharmacokinetic analysis using a multicompartment model was also performed. General linear modeling was used to combine radiologic andmore » pharmacokinetic parameters and correlated with eventual response as determined by change in MRI tumor size and conventional clinical response. A subgroup of 11 women underwent repeat pretherapy MRI to test pharmacokinetic reproducibility. Results: Pretherapy radiologic parameters and pharmacokinetic K{sup trans} correlated with response (p < 0.01). General linear modeling demonstrated that a combination of radiologic and pharmacokinetic assessments before therapy was able to predict more than 88% of variance of response. Reproducibility of pharmacokinetic modeling was confirmed. Conclusions: A combination of radiologic assessment with pharmacokinetic modeling applied to dynamic MRI before the start of chemoradiation improves the predictive power of either by more than 20%. The potential improvements in therapy response prediction using this type of combined analysis of dynamic contrast-enhanced MRI may aid in the development of more individualized, effective therapy regimens for this patient group.« less

  13. Dependence of chromatic responses in V1 on visual field eccentricity and spatial frequency: an fMRI study.

    PubMed

    D'Souza, Dany V; Auer, Tibor; Frahm, Jens; Strasburger, Hans; Lee, Barry B

    2016-03-01

    Psychophysical sensitivity to red-green chromatic modulation decreases with visual eccentricity, compared to sensitivity to luminance modulation, even after appropriate stimulus scaling. This is likely to occur at a central, rather than a retinal, site. Blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) responses to stimuli designed to separately stimulate different afferent channels' [red-green, luminance, and short-wavelength (S)-cone] circular gratings were recorded as a function of visual eccentricity (±10  deg) and spatial frequency (SF) in human primary visual cortex (V1) and further visual areas (V2v, V3v). In V1, the SF tuning of BOLD fMRI responses became coarser with eccentricity. For red-green and luminance gratings, similar SF tuning curves were found at all eccentricities. The pattern for S-cone modulation differed, with SF tuning changing more slowly with eccentricity than for the other two modalities. This may be due to the different retinal distribution with eccentricity of this receptor type. A similar pattern held in V2v and V3v. This would suggest that transformation or spatial filtering of the chromatic (red-green) signal occurs beyond these areas.

  14. An fMRI study of emotional face processing in adolescent major depression.

    PubMed

    Hall, Leah M J; Klimes-Dougan, Bonnie; Hunt, Ruskin H; Thomas, Kathleen M; Houri, Alaa; Noack, Emily; Mueller, Bryon A; Lim, Kelvin O; Cullen, Kathryn R

    2014-10-01

    Major depressive disorder (MDD) often begins during adolescence when the brain is still maturing. To better understand the neurobiological underpinnings of MDD early in development, this study examined brain function in response to emotional faces in adolescents with MDD and healthy (HC) adolescents using functional magnetic resonance imaging (fMRI). Thirty-two unmedicated adolescents with MDD and 23 healthy age- and gender-matched controls completed an fMRI task viewing happy and fearful faces. Fronto-limbic regions of interest (ROI; bilateral amygdala, insula, subgenual and rostral anterior cingulate cortices) and whole-brain analyses were conducted to examine between-group differences in brain function. ROI analyses revealed that patients had greater bilateral amygdala activity than HC in response to viewing fearful versus happy faces, which remained significant when controlling for comorbid anxiety. Whole-brain analyses revealed that adolescents with MDD had lower activation compared to HC in a right hemisphere cluster comprised of the insula, superior/middle temporal gyrus, and Heschl׳s gyrus when viewing fearful faces. Brain activity in the subgenual anterior cingulate cortex was inversely correlated with depression severity. Limitations include a cross-sectional design with a modest sample size and use of a limited range of emotional stimuli. Results replicate previous studies that suggest emotion processing in adolescent MDD is associated with abnormalities within fronto-limbic brain regions. Findings implicate elevated amygdalar arousal to negative stimuli in adolescents with depression and provide new evidence for a deficit in functioning of the saliency network, which may be a future target for early intervention and MDD treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Hamstring Reinjuries Occur at the Same Location and Early After Return to Sport: A Descriptive Study of MRI-Confirmed Reinjuries.

    PubMed

    Wangensteen, Arnlaug; Tol, Johannes L; Witvrouw, Erik; Van Linschoten, Robbart; Almusa, Emad; Hamilton, Bruce; Bahr, Roald

    2016-08-01

    Despite relatively high reinjury rates after acute hamstring injuries, there is a lack of detailed knowledge about where and when hamstring reinjuries occur, and studies including imaging-confirmed reinjuries are scarce. To investigate the location, radiological severity, and timing of reinjuries on magnetic resonance imaging (MRI) compared with the index injury. Case series; Level of evidence, 4. A MRI scan was obtained ≤5 days after an acute hamstring index injury in 180 athletes, and time to return to sport (RTS) was registered. Athletes with an MRI-confirmed reinjury in the same leg ≤365 days after RTS were included. Categorical grading and standardized MRI parameters of the index injury and reinjury were scored by a single radiologist (with excellent intraobserver reliability). To determine the location of the reinjury, axial and coronal views of the index injury and reinjury were directly compared on proton density-weighted fat-suppressed images. In the 19 athletes included with reinjury, 79% of these reinjuries occurred in the same location within the muscle as the index injury. The median time to RTS after the index injury was 19 days (range, 5-37 days; interquartile range [IQR], 15 days). The median time between the index injury and reinjury was 60 days (range, 20-316 days; IQR, 131 days) and the median time between RTS after the index injury and the reinjury was 24 days (range, 4-311 days; IQR, 140 days). More than 50% of reinjuries occurred within 25 days (4 weeks) after RTS from the index injury and 50% occurred within 50 days after the index injury. All reinjuries with more severe radiological grading occurred in the same location as the index injury. The majority of the hamstring reinjuries occurred in the same location as the index injury, early after RTS and with a radiologically greater extent, suggesting incomplete biological and/or functional healing of the index injury. Specific exercise programs focusing on reinjury prevention initiated

  16. Identification of early and distinct glioblastoma response patterns treated by boron neutron capture therapy not predicted by standard radiographic assessment using functional diffusion map

    PubMed Central

    2013-01-01

    Background Radiologic response of brain tumors is traditionally assessed according to the Macdonald criteria 10 weeks from the start of therapy. Because glioblastoma (GB) responds in days rather than weeks after boron neutron capture therapy (BNCT) that is a form of tumor-selective particle radiation, it is inconvenient to use the Macdonald criteria to assess the therapeutic efficacy of BNCT by gadolinium-magnetic resonance imaging (Gd-MRI). Our study assessed the utility of functional diffusion map (fDM) for evaluating response patterns in GB treated by BNCT. Methods The fDM is an image assessment using time-dependent changes of apparent diffusion coefficient (ADC) in tumors on a voxel-by-voxel approach. Other than time-dependent changes of ADC, fDM can automatically assess minimum/maximum ADC, Response Evaluation Criteria In Solid Tumors (RECIST), and the volume of enhanced lesions on Gd-MRI over time. We assessed 17 GB patients treated by BNCT using fDM. Additionally, in order to verify our results, we performed a histopathological examination using F98 rat glioma models. Results Only the volume of tumor with decreased ADC by fDM at 2 days after BNCT was a good predictor for GB patients treated by BNCT (P value = 0.022 by log-rank test and 0.033 by wilcoxon test). In a histopathological examination, brain sections of F98 rat glioma models treated by BNCT showed cell swelling of both the nuclei and the cytoplasm compared with untreated rat glioma models. Conclusions The fDM could identify response patterns in BNCT-treated GB earlier than a standard radiographic assessment. Early detection of treatment failure can allow a change or supplementation before tumor progression and might lead to an improvement of GB patients’ prognosis. PMID:23915330

  17. Early Conventional MRI for Prediction of Neurodevelopmental Impairment in Extremely-Low-Birth-Weight Infants.

    PubMed

    Slaughter, Laurel A; Bonfante-Mejia, Eliana; Hintz, Susan R; Dvorchik, Igor; Parikh, Nehal A

    2016-01-01

    Extremely-low-birth-weight (ELBW; ≤1,000 g) infants are at high risk for neurodevelopmental impairments. Conventional brain MRI at term-equivalent age is increasingly used for prediction of outcomes. However, optimal prediction models remain to be determined, especially for cognitive outcomes. The aim was to evaluate the accuracy of a data-driven MRI scoring system to predict neurodevelopmental impairments. 122 ELBW infants had a brain MRI performed at term-equivalent age. Conventional MRI findings were scored with a standardized algorithm and tested using a multivariable regression model to predict neurodevelopmental impairment, defined as one or more of the following at 18-24 months' corrected age: cerebral palsy, bilateral blindness, bilateral deafness requiring amplification, and/or cognitive/language delay. Results were compared with a commonly cited scoring system. In multivariable analyses, only moderate-to-severe gyral maturational delay was a significant predictor of overall neurodevelopmental impairment (OR: 12.6, 95% CI: 2.6, 62.0; p < 0.001). Moderate-to-severe gyral maturational delay also predicted cognitive delay, cognitive delay/death, and neurodevelopmental impairment/death. Diffuse cystic abnormality was a significant predictor of cerebral palsy (OR: 33.6, 95% CI: 4.9, 229.7; p < 0.001). These predictors exhibited high specificity (range: 94-99%) but low sensitivity (30-67%) for the above outcomes. White or gray matter scores, determined using a commonly cited scoring system, did not show significant association with neurodevelopmental impairment. In our cohort, conventional MRI at term-equivalent age exhibited high specificity in predicting neurodevelopmental outcomes. However, sensitivity was suboptimal, suggesting additional clinical factors and biomarkers are needed to enable accurate prognostication. © 2016 S. Karger AG, Basel.

  18. External validation of the MRI-DRAGON score: early prediction of stroke outcome after intravenous thrombolysis.

    PubMed

    Turc, Guillaume; Aguettaz, Pierre; Ponchelle-Dequatre, Nelly; Hénon, Hilde; Naggara, Olivier; Leclerc, Xavier; Cordonnier, Charlotte; Leys, Didier; Mas, Jean-Louis; Oppenheim, Catherine

    2014-01-01

    The aim of our study was to validate in an independent cohort the MRI-DRAGON score, an adaptation of the (CT-) DRAGON score to predict 3-month outcome in acute ischemic stroke patients undergoing MRI before intravenous thrombolysis (IV-tPA). We reviewed consecutive (2009-2013) anterior circulation stroke patients treated within 4.5 hours by IV-tPA in the Lille stroke unit (France), where MRI is the first-line pretherapeutic work-up. We assessed the discrimination and calibration of the MRI-DRAGON score to predict poor 3-month outcome, defined as modified Rankin Score >2, using c-statistic and the Hosmer-Lemeshow test, respectively. We included 230 patients (mean ±SD age 70.4±16.0 years, median [IQR] baseline NIHSS 8 [5]-[14]; poor outcome in 78(34%) patients). The c-statistic was 0.81 (95%CI 0.75-0.87), and the Hosmer-Lemeshow test was not significant (p = 0.54). The MRI-DRAGON score showed good prognostic performance in the external validation cohort. It could therefore be used to inform the patient's relatives about long-term prognosis and help to identify poor responders to IV-tPA alone, who may be candidates for additional therapeutic strategies, if they are otherwise eligible for such procedures based on the institutional criteria.

  19. Determinants of motion response anisotropies in human early visual cortex: the role of configuration and eccentricity.

    PubMed

    Maloney, Ryan T; Watson, Tamara L; Clifford, Colin W G

    2014-10-15

    Anisotropies in the cortical representation of various stimulus parameters can reveal the fundamental mechanisms by which sensory properties are analysed and coded by the brain. One example is the preference for motion radial to the point of fixation (i.e. centripetal or centrifugal) exhibited in mammalian visual cortex. In two experiments, this study used functional magnetic resonance imaging (fMRI) to explore the determinants of these radial biases for motion in functionally-defined areas of human early visual cortex, and in particular their dependence upon eccentricity which has been indicated in recent reports. In one experiment, the cortical response to wide-field random dot kinematograms forming 16 different complex motion patterns (including centrifugal, centripetal, rotational and spiral motion) was measured. The response was analysed according to preferred eccentricity within four different eccentricity ranges. Response anisotropies were characterised by enhanced activity for centripetal or centrifugal patterns that changed systematically with eccentricity in visual areas V1-V3 and hV4 (but not V3A/B or V5/MT+). Responses evolved from a preference for centrifugal over centripetal patterns close to the fovea, to a preference for centripetal over centrifugal at the most peripheral region stimulated, in agreement with previous work. These effects were strongest in V2 and V3. In a second experiment, the stimuli were restricted to within narrow annuli either close to the fovea (0.75-1.88°) or further in the periphery (4.82-6.28°), in a way that preserved the local motion information available in the first experiment. In this configuration a preference for radial motion (centripetal or centrifugal) persisted but the dependence upon eccentricity disappeared. Again this was clearest in V2 and V3. A novel interpretation of the dependence upon eccentricity of motion anisotropies in early visual cortex is offered that takes into account the spatiotemporal

  20. WE-B-BRD-00: MRI for Radiation Oncology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The use of MRI in radiation therapy is rapidly increasing. Applications vary from the MRI simulator, to the MRI fused with CT, and to the integrated MRI+RT system. Compared with the standard MRI QA, a broader scope of QA features has to be defined in order to maximize the benefits of using MRI in radiation therapy. These QA features include geometric fidelity, image registration, motion management, cross-system alignment, and hardware interference. Advanced MRI techniques require a specific type of QA, as they are being widely used in radiation therapy planning, dose calculations, post-implant dosimetry, and prognoses. A vigorous and adaptivemore » QA program is crucial to defining the responsibility of the entire radiation therapy group and detecting deviations from the performance of high-quality treatment. As a drastic departure from CT simulation, MRI simulation requires changes in the work flow of treatment planning and image guidance. MRI guided radiotherapy platforms are being developed and commercialized to take the advantage of the advance in knowledge, technology and clinical experience. This symposium will from an educational perspective discuss the scope and specific issues related to MRI guided radiotherapy. Learning Objectives: Understand the difference between a standard and a radiotherapy-specific MRI QA program. Understand the effects of MRI artifacts (geometric distortion and motion) on radiotherapy. Understand advanced MRI techniques (ultrashort echo, fast MRI including dynamic MRI and 4DMRI, diffusion, perfusion, and MRS) and related QA. Understand the methods to prepare MRI for treatment planning (electron density assignment, multimodality image registration, segmentation and motion management). Current status of MRI guided treatment platforms. Dr. Jihong Wang has a research grant with Elekta-MRL project. Dr. Ke Sheng receives research grants from Varian Medical systems.« less

  1. MRI contrast agent for targeting glioma: interleukin-13 labeled liposome encapsulating gadolinium-DTPA

    PubMed Central

    Liu, Xiaoli; Madhankumar, Achuthamangalam B.; Miller, Patti A.; Duck, Kari A.; Hafenstein, Susan; Rizk, Elias; Slagle-Webb, Becky; Sheehan, Jonas M.; Connor, James R.; Yang, Qing X.

    2016-01-01

    Background Detection of glioma with MRI contrast agent is limited to cases in which the blood-brain barrier (BBB) is compromised as contrast agents cannot cross the BBB. Thus, an early-stage infiltrating tumor is not detectable. Interleukin-13 receptor alpha 2 (IL-13Rα2), which has been shown to be overexpressed in glioma, can be used as a target moiety. We hypothesized that liposomes conjugated with IL-13 and encapsulating MRI contrast agent are capable of passing through an intact BBB and producing MRI contrast with greater sensitivity. Methods The targeted MRI contrast agent was created by encapsulating Magnevist (Gd-DTPA) into liposomes conjugated with IL-13 and characterized by particle size distribution, cytotoxicity, and MRI relaxivity. MR image intensity was evaluated in the brain in normal mice post injection of Gd-DTPA and IL-13-liposome-Gd-DTPA one day apart. The specificity for glioma detection by IL-13-liposome-Gd-DTPA was demonstrated in an intracranial glioma mouse model and validated histologically. Results The average size of IL-13-liposome-Gd-DTPA was 137 ± 43 nm with relaxivity of 4.0 ± 0.4 L/mmole-s at 7 Tesla. No significant cytotoxicity was observed with MTS assay and serum chemistry in mice. The MRI signal intensity was enhanced up to 15% post injection of IL-13-liposome-Gd-DTPA in normal brain tissue following a similar time course as that for the pituitary gland outside of the BBB. MRI enhanced by IL-13-liposome-Gd-DTPA detected small tumor masses in addition to those seen with Magnevist-enhanced MRI. Conclusions IL-13-liposome-Gd-DTPA is able to pass through the uncompromised BBB and detect an early stage glioma that cannot be seen with conventional contrast-enhanced MRI. PMID:26519740

  2. Functional MRI during Hippocampal Deep Brain Stimulation in the Healthy Rat Brain.

    PubMed

    Van Den Berge, Nathalie; Vanhove, Christian; Descamps, Benedicte; Dauwe, Ine; van Mierlo, Pieter; Vonck, Kristl; Keereman, Vincent; Raedt, Robrecht; Boon, Paul; Van Holen, Roel

    2015-01-01

    Deep Brain Stimulation (DBS) is a promising treatment for neurological and psychiatric disorders. The mechanism of action and the effects of electrical fields administered to the brain by means of an electrode remain to be elucidated. The effects of DBS have been investigated primarily by electrophysiological and neurochemical studies, which lack the ability to investigate DBS-related responses on a whole-brain scale. Visualization of whole-brain effects of DBS requires functional imaging techniques such as functional Magnetic Resonance Imaging (fMRI), which reflects changes in blood oxygen level dependent (BOLD) responses throughout the entire brain volume. In order to visualize BOLD responses induced by DBS, we have developed an MRI-compatible electrode and an acquisition protocol to perform DBS during BOLD fMRI. In this study, we investigate whether DBS during fMRI is valuable to study local and whole-brain effects of hippocampal DBS and to investigate the changes induced by different stimulation intensities. Seven rats were stereotactically implanted with a custom-made MRI-compatible DBS-electrode in the right hippocampus. High frequency Poisson distributed stimulation was applied using a block-design paradigm. Data were processed by means of Independent Component Analysis. Clusters were considered significant when p-values were <0.05 after correction for multiple comparisons. Our data indicate that real-time hippocampal DBS evokes a bilateral BOLD response in hippocampal and other mesolimbic structures, depending on the applied stimulation intensity. We conclude that simultaneous DBS and fMRI can be used to detect local and whole-brain responses to circuit activation with different stimulation intensities, making this technique potentially powerful for exploration of cerebral changes in response to DBS for both preclinical and clinical DBS.

  3. WE-FG-202-08: Assessment of Treatment Response Via Longitudinal Diffusion MRI On A MRI-Guided System: Initial Experience of Quantitative Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, X; Yang, Y; Yang, L

    Purpose: To report our initial experience of systematic monitoring treatment response using longitudinal diffusion MR images on a Co-60 MRI-guided radiotherapy system. Methods: Four patients, including 2 head-and-necks, 1 sarcoma and 1 GBM treated on a 0.35 Tesla MRI-guided treatment system, were analyzed. For each patient, 3D TrueFISP MRIs were acquired during CT simulation and before each treatment for treatment planning and patient setup purposes respectively. Additionally, 2D diffusion-weighted MR images (DWI) were acquired weekly throughout the treatment course. The gross target volume (GTV) and brainstem (as a reference structure) were delineated on weekly 3D TrueFISP MRIs to monitor anatomymore » changes, the contours were then transferred onto the corresponding DWI images after fusing with the weekly TrueFISP images. The patient-specific temporal and spatial variations during the entire treatment course, such as anatomic changes, target apparent diffusion coefficient (ADC) distribution were evaluated in a longitudinal pattern. Results: Routine MRI revealed progressive soft-tissue GTV volume changes (up to 53%) for the H&N cases during the treatment course of 5–7 weeks. Within the GTV, the mean ADC values varied from −44% (ADC decrease) to +26% (ADC increase) in a week. The gradual increase of ADC value was inversely associated with target volume variation for one H&N case. The maximal changes of mean ADC values within the brainstem were 5.3% for the H&N cases. For the large size sarcoma and GBM tumors, spatial heterogeneity and temporal variations were observed through longitudinal ADC analysis. Conclusion: In addition to the superior soft-tissue visualization, the 0.35T MR system on ViewRay showed the potential to quantitatively measure the ADC values for both tumor and normal tissues. For normal tissue that is minimally affected by radiation, its ADC values are reproducible. Tumor ADC values show temporal and spatial fluctuation that can be

  4. Clinical, Radiologic, and Legal Significance of "Extensor Response" in Posttraumatic Coma.

    PubMed

    Firsching, Raimund; Woischneck, Dieter; Langejürgen, Alexander; Parreidt, Andreas; Bondar, Imre; Skalej, Martin; Röhl, Friedrich; Voellger, Benjamin

    2015-11-01

    The timely detection of neurologic deterioration can be critical for the survival of a neurosurgical patient following head injury. Because little reliable evidence is available on the prognostic value of the clinical sign "extensor response" in comatose posttraumatic patients, we investigated the correlation of this clinical sign with outcome and with early radiologic findings from magnetic resonance imaging (MRI). This retrospective analysis of prospectively obtained data included 157 patients who had remained in a coma for a minimum of 24 hours after traumatic brain injury. All patients received a 1.5-T MRI within 10 days (median: 2 days) of the injury. The correlations between clinical findings 12 and 24 hours after the injury-in particular, extensor response and pupillary function, MRI findings, and outcome after 1 year-were investigated. Statistical analysis included contingency tables, Fisher exact test, odds ratios (ORs) with confidence intervals (CIs), and weighted κ values. There were 48 patients with extensor response within the first 24 hours after the injury. Patients with extensor response (World Federation of Neurosurgical Societies coma grade III) statistically were significantly more likely to harbor MRI lesions in the brainstem when compared with patients in a coma who had no further deficiencies (coma grade I; p = 0.0004 by Fisher exact test, OR 10.8 with 95% CI, 2.7-42.5) and patients with unilateral loss of pupil function (coma grade II; p = 0.0187, OR 2.8 with 95% CI, 1.2-6.5). The correlation of brainstem lesions as found by MRI and outcome according to the Glasgow Outcome Scale after 1 year was also highly significant (p ≤ 0.016). The correlation of extensor response and loss of pupil function with an unfavorable outcome and with brainstem lesions revealed by MRI is highly significant. Their sudden onset may be associated with the sudden onset of brainstem dysfunction and should therefore be regarded as one of the most

  5. HINTS to diagnose stroke in the acute vestibular syndrome: three-step bedside oculomotor examination more sensitive than early MRI diffusion-weighted imaging.

    PubMed

    Kattah, Jorge C; Talkad, Arun V; Wang, David Z; Hsieh, Yu-Hsiang; Newman-Toker, David E

    2009-11-01

    Acute vestibular syndrome (AVS) is often due to vestibular neuritis but can result from vertebrobasilar strokes. Misdiagnosis of posterior fossa infarcts in emergency care settings is frequent. Bedside oculomotor findings may reliably identify stroke in AVS, but prospective studies have been lacking. The authors conducted a prospective, cross-sectional study at an academic hospital. Consecutive patients with AVS (vertigo, nystagmus, nausea/vomiting, head-motion intolerance, unsteady gait) with >or=1 stroke risk factor underwent structured examination, including horizontal head impulse test of vestibulo-ocular reflex function, observation of nystagmus in different gaze positions, and prism cross-cover test of ocular alignment. All underwent neuroimaging and admission (generally <72 hours after symptom onset). Strokes were diagnosed by MRI or CT. Peripheral lesions were diagnosed by normal MRI and clinical follow-up. One hundred one high-risk patients with AVS included 25 peripheral and 76 central lesions (69 ischemic strokes, 4 hemorrhages, 3 other). The presence of normal horizontal head impulse test, direction-changing nystagmus in eccentric gaze, or skew deviation (vertical ocular misalignment) was 100% sensitive and 96% specific for stroke. Skew was present in 17% and associated with brainstem lesions (4% peripheral, 4% pure cerebellar, 30% brainstem involvement; chi(2), P=0.003). Skew correctly predicted lateral pontine stroke in 2 of 3 cases in which an abnormal horizontal head impulse test erroneously suggested peripheral localization. Initial MRI diffusion-weighted imaging was falsely negative in 12% (all <48 hours after symptom onset). Skew predicts brainstem involvement in AVS and can identify stroke when an abnormal horizontal head impulse test falsely suggests a peripheral lesion. A 3-step bedside oculomotor examination (HINTS: Head-Impulse-Nystagmus-Test-of-Skew) appears more sensitive for stroke than early MRI in AVS.

  6. SU-F-303-05: DCE-MRI Before and During Treatment for Prediction of Concurrent Chemotherapy and Radiation Therapy Response in Head and Neck Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y; Diwanji, T; Zhang, B

    2015-06-15

    Purpose: To determine the ability of pharmacokinetic parameters derived from dynamic contrast-enhanced MRI (DCE- MRI) acquired before and during concurrent chemotherapy and radiation therapy to predict clinical response in patients with head and neck cancer. Methods: Eleven patients underwent a DCE-MRI scan at three time points: 1–2 weeks before treatment, 4–5 weeks after treatment initiation, and 3–4 months after treatment completion. Post-processing of MRI data included correction to reduce motion artifacts. The arterial input function was obtained by measuring the dynamic tracer concentration in the jugular veins. The volume transfer constant (Ktrans), extracellular extravascular volume fraction (ve), rate constant (Kep;more » Kep = Ktrans/ve), and plasma volume fraction (vp) were computed for primary tumors and cervical nodal masses. Patients were categorized into two groups based on response to therapy at 3–4 months: responders (no evidence of disease) and partial responders (regression of disease). Responses of the primary tumor and nodes were evaluated separately. A linear classifier and receiver operating characteristic curve analyses were used to determine the best model for discrimination of responders from partial responders. Results: When the above pharmacokinetic parameters of the primary tumor measured before and during treatment were incorporated into the linear classifier, a discriminative accuracy of 88.9%, with sensitivity =100% and specificity = 66.7%, was observed between responders (n=6) and partial responders (n=3) for the primary tumor with the corresponding accuracy = 44.4%, sensitivity = 66.7%, and specificity of 0% for nodal masses. When only pre-treatment parameters were used, the accuracy decreased to 66.7%, with sensitivity = 66.7% and specificity = 66.7% for the primary tumor and decreased to 33.3%, sensitivity of 50%, and specificity of 0% for nodal masses. Conclusion: Higher accuracy, sensitivity, and specificity were

  7. Heart MRI

    MedlinePlus

    Magnetic resonance imaging - cardiac; Magnetic resonance imaging - heart; Nuclear magnetic resonance - cardiac; NMR - cardiac; MRI of the heart; Cardiomyopathy - MRI; Heart failure - MRI; Congenital heart disease - MRI

  8. Auditory-neurophysiological responses to speech during early childhood: Effects of background noise

    PubMed Central

    White-Schwoch, Travis; Davies, Evan C.; Thompson, Elaine C.; Carr, Kali Woodruff; Nicol, Trent; Bradlow, Ann R.; Kraus, Nina

    2015-01-01

    Early childhood is a critical period of auditory learning, during which children are constantly mapping sounds to meaning. But learning rarely occurs under ideal listening conditions—children are forced to listen against a relentless din. This background noise degrades the neural coding of these critical sounds, in turn interfering with auditory learning. Despite the importance of robust and reliable auditory processing during early childhood, little is known about the neurophysiology underlying speech processing in children so young. To better understand the physiological constraints these adverse listening scenarios impose on speech sound coding during early childhood, auditory-neurophysiological responses were elicited to a consonant-vowel syllable in quiet and background noise in a cohort of typically-developing preschoolers (ages 3–5 yr). Overall, responses were degraded in noise: they were smaller, less stable across trials, slower, and there was poorer coding of spectral content and the temporal envelope. These effects were exacerbated in response to the consonant transition relative to the vowel, suggesting that the neural coding of spectrotemporally-dynamic speech features is more tenuous in noise than the coding of static features—even in children this young. Neural coding of speech temporal fine structure, however, was more resilient to the addition of background noise than coding of temporal envelope information. Taken together, these results demonstrate that noise places a neurophysiological constraint on speech processing during early childhood by causing a breakdown in neural processing of speech acoustics. These results may explain why some listeners have inordinate difficulties understanding speech in noise. Speech-elicited auditory-neurophysiological responses offer objective insight into listening skills during early childhood by reflecting the integrity of neural coding in quiet and noise; this paper documents typical response properties

  9. Altered Evoked Gamma-Band Responses Reveal Impaired Early Visual Processing in ADHD Children

    ERIC Educational Resources Information Center

    Lenz, Daniel; Krauel, Kerstin; Flechtner, Hans-Henning; Schadow, Jeanette; Hinrichs, Hermann; Herrmann, Christoph S.

    2010-01-01

    Neurophysiological studies yield contrary results whether attentional problems of patients with attention-deficit/hyperactivity disorder (ADHD) are related to early visual processing deficits or not. Evoked gamma-band responses (GBRs), being among the first cortical responses occurring as early as 90 ms after visual stimulation in human EEG, have…

  10. fMRI responses to pictures of mutilation and contamination.

    PubMed

    Schienle, Anne; Schäfer, Axel; Hermann, Andrea; Walter, Bertram; Stark, Rudolf; Vaitl, Dieter

    2006-01-30

    Findings from several functional magnetic resonance imaging (fMRI) studies implicate the existence of a distinct neural disgust substrate, whereas others support the idea of distributed and integrative brain systems involved in emotional processing. In the present fMRI experiment 12 healthy females viewed pictures from four emotion categories. Two categories were disgust-relevant and depicted contamination or mutilation. The other scenes showed attacks (fear) or were affectively neutral. The two types of disgust elicitors received comparable ratings for disgust, fear and arousal. Both were associated with activation of the occipitotemporal cortex, the amygdala, and the orbitofrontal cortex; insula activity was nonsignificant in the two disgust conditions. Mutilation scenes induced greater inferior parietal activity than contamination scenes, which might mirror their greater capacity to capture attention. Our results are in disagreement with the idea of selective disgust processing at the insula. They point to a network of brain regions involved in the decoding of stimulus salience and the regulation of attention.

  11. TH-E-BRF-03: A Multivariate Interaction Model for Assessment of Hippocampal Vascular Dose-Response and Early Prediction of Radiation-Induced Neurocognitive Dysfunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farjam, R; Pramanik, P; Srinivasan, A

    Purpose: Vascular injury could be a cause of hippocampal dysfunction leading to late neurocognitive decline in patients receiving brain radiotherapy (RT). Hence, our aim was to develop a multivariate interaction model for characterization of hippocampal vascular dose-response and early prediction of radiation-induced late neurocognitive impairments. Methods: 27 patients (17 males and 10 females, age 31–80 years) were enrolled in an IRB-approved prospective longitudinal study. All patients were diagnosed with a low-grade glioma or benign tumor and treated by 3-D conformal or intensity-modulated RT with a median dose of 54 Gy (50.4–59.4 Gy in 1.8− Gy fractions). Six DCE-MRI scans weremore » performed from pre-RT to 18 months post-RT. DCE data were fitted to the modified Toft model to obtain the transfer constant of gadolinium influx from the intravascular space into the extravascular extracellular space, Ktrans, and the fraction of blood plasma volume, Vp. The hippocampus vascular property alterations after starting RT were characterized by changes in the hippocampal mean values of, μh(Ktrans)τ and μh(Vp)τ. The dose-response, Δμh(Ktrans/Vp)pre->τ, was modeled using a multivariate linear regression considering integrations of doses with age, sex, hippocampal laterality and presence of tumor/edema near a hippocampus. Finally, the early vascular dose-response in hippocampus was correlated with neurocognitive decline 6 and 18 months post-RT. Results: The μh(Ktrans) increased significantly from pre-RT to 1 month post-RT (p<0.0004). The multivariate model showed that the dose effect on Δμh(Ktrans)pre->1M post-RT was interacted with sex (p<0.0007) and age (p<0.00004), with the dose-response more pronounced in older females. Also, the vascular dose-response in the left hippocampus of females was significantly correlated with memory function decline at 6 (r = − 0.95, p<0.0006) and 18 (r = −0.88, p<0.02) months post-RT. Conclusion: The hippocampal

  12. Early MRI changes in glioblastoma in the period between surgery and adjuvant therapy.

    PubMed

    Farace, Paolo; Amelio, Dante; Ricciardi, Giuseppe K; Zoccatelli, Giada; Magon, Stefano; Pizzini, Francesca; Alessandrini, Franco; Sbarbati, Andrea; Amichetti, Maurizio; Beltramello, Alberto

    2013-01-01

    To investigate the increase in MRI contrast enhancement (CE) occurring in glioblastoma during the period between surgery and initiation of chemo-radiotherapy, thirty-seven patients with newly diagnosed glioblastoma were analyzed by early post-operative magnetic resonance (EPMR) imaging within three days of surgery and by pre-adjuvant magnetic resonance (PAMR) examination before adjuvant therapy. Areas of new CE were investigated by use of EPMR diffusion-weighted imaging and PAMR perfusion imaging (by arterial spin-labeling). PAMR was acquired, on average, 29.9 days later than EPMR (range 20-37 days). During this period an increased area of CE was observed for 17/37 patients. For 3/17 patients these regions were confined to areas of reduced EPMR diffusion, suggesting postsurgical infarct. For the other 14/17 patients, these areas suggested progression. For 11/17 patients the co-occurrence of hyperperfusion in PAMR perfusion suggested progression. PAMR perfusion and EPMR diffusion did not give consistent results for 3/17 patients for whom small new areas of CE were observed, presumably because of the poor spatial resolution of perfusion imaging. Before initiation of adjuvant therapy, areas of new CE of resected glioblastomas are frequently observed. Most of these suggest tumor progression, according to EPMR diffusion and PAMR perfusion criteria.

  13. Functional MRI Detection of Hemodynamic Response of Repeated Median Nerve Stimulation

    PubMed Central

    Ai, Leo; Oya, Hiroyuki; Howard, Matthew; Xiong, Jinhu

    2012-01-01

    Median nerve stimulation is a commonly used technique in the clinical setting to determine areas of neuronal function in the brain. Neuronal activity of repeated median nerve stimulation is well studied. The cerebral hemodynamic response of the stimulation, on the other hand, is not very clear. In this study, we investigate how cerebral hemodynamics behaves over time using the same repeated median nerve stimulation. Ten subjects received constant repeated electrical stimulation to the right median nerve. Each subject had fMRI scans while receiving said stimulations for seven runs. Our results show that the BOLD signal significantly decreases across each run. Significant BOLD signal decreases can also be seen within runs. These results are consistent with studies that have studied the hemodynamic habituation effect with other forms of stimulation. However, the results do not completely agree with the findings of studies where evoked potentials were examined. Thus, further inquiry of how evoked potentials and cerebral hemodynamics are coupled when using constant stimulations is needed. PMID:23228312

  14. Gd-EOB-DTPA-enhanced MRI is better than MDCT in decision making of curative treatment for hepatocellular carcinoma.

    PubMed

    Yoo, Sun Hong; Choi, Jong Young; Jang, Jeong Won; Bae, Si Hyun; Yoon, Seung Kew; Kim, Dong Goo; Yoo, Young Kyoung; Rha, Sung Eun; Lee, Young Joon; Jung, Eun Sun

    2013-09-01

    We assessed the change in the therapeutic decision among curative treatments after adding Gd-EOB-DTPA-enhanced MRI to triple-phase MDCT for patients with early-stage HCC. This study retrospectively investigated two groups: 33 pathologically confirmed HCC patients after liver transplantation in group 1; 34 HCC patients without pathology in group 2. In group 1, we simulated the therapeutic decision-making process by pretransplant MDCT and Gd-EOB-DTPA-enhanced MRI. In group 2, including the 34 early-stage HCC patients consecutively enrolled, we investigated the change of therapeutic decision after adding Gd-EOB-DTPA-enhanced MRI to MDCT. In the simulation from group 1, after adding Gd-EOB-DTPA-enhanced MRI, 33.3% (11/33 patients) of treatment decisions were changed from the decision based on MDCT alone. Among 22 patients considered eligible for resection and 33 patients for radiofrequency ablation, the therapeutic decision was changed for 10 patients in the surgical group and 4 patients for the RFA group (45.5 and 12.1%). In group 2, the rate of change in the therapeutic decision after adding Gd-EOB-DTPA-enhanced MRI to MDCT was 41.2% (14/34 patients). In group 1 with explants pathology, the median diameter of HCCs not detected by MDCT but detected by Gd-EOB-DTPA-enhanced MRI was 1.15 cm (0.3-3.0 cm). The median diameter of HCCs seen only in the explanted liver was 1.0 cm (0.3-1.7 cm), and 60.7% of them were well-differentiated HCCs. This study suggests that performing Gd-EOB-DTPA-enhanced MRI before deciding on curative treatment for early-stage HCC may improve the accuracy of treatment decision for early-stage HCC.

  15. Critical role of STIR MRI in early detection of post-streptococcal periostitis with dysproteinaemia (Goldbloom's syndrome).

    PubMed

    Papa, Riccardo; Consolaro, Alessandro; Minoia, Francesca; Caorsi, Roberta; Magnano, Gianmichele; Gattorno, Marco; Ravelli, Angelo; Picco, Paolo

    2017-01-01

    In 1966, Goldbloom et al. described two children who developed a peculiar clinical picture characterized by intermittent daily bone pain in the lower limbs, fever spikes, increased acute phase reactants and dysproteinaemia. The syndrome occurred two weeks after a group A β-haemolytic streptococcus infection. So far, only a few cases have been reported in the medical literature in English. We report two further cases of Goldbloom's syndrome with a review of the literature in English. Our two patients lived in the same Italian region and presented their syndrome onset a week apart. Early use of STIR MRI revealed an atypical metaphyseal hyperintensity in the femurs and tibias. X-ray showed periosteal hyperostosis. A short cycle of corticosteroids led to rapid recovery of symptoms and disappearance of bone changes. The reported cases highlight a likely under-recognised post-streptococcal inflammatory periosteal reaction and emphasise the diagnostic utility of the newer imaging modalities.

  16. Processes of early stroke care and hospital costs.

    PubMed

    Svendsen, Marie Louise; Ehlers, Lars H; Hundborg, Heidi H; Ingeman, Annette; Johnsen, Søren P

    2014-08-01

    The relationship between processes of early stroke care and hospital costs remains unclear. We therefore examined the association in a population based cohort study. We identified 5909 stroke patients who were admitted to stroke units in a Danish county between 2005 and 2010.The examined recommended processes of care included early admission to a stroke unit, early initiation of antiplatelet or anticoagulant therapy, early computed tomography/magnetic resonance imaging (CT/MRI) scan, early physiotherapy and occupational therapy, early assessment of nutritional risk, constipation risk and of swallowing function, early mobilization,early catheterization, and early thromboembolism prophylaxis.Hospital costs were assessed for each patient based on the number of days spent in different in-hospital facilities using local hospital charges. The mean costs of hospitalization were $23 352 (standard deviation 27 827). The relationship between receiving more relevant processes of early stroke care and lower hospital costs followed a dose–response relationship. The adjusted costs were $24 566 (95% confidence interval 19 364–29 769) lower for patients who received 75–100% of the relevant processes of care compared with patients receiving 0–24%. All processes of care were associated with potential cost savings, except for early catheterization and early thromboembolism prophylaxis. Early care in agreement with key guidelines recommendations for the management of patients with stroke may be associated with hospital savings.

  17. Population receptive field (pRF) measurements of chromatic responses in human visual cortex using fMRI.

    PubMed

    Welbourne, Lauren E; Morland, Antony B; Wade, Alex R

    2018-02-15

    The spatial sensitivity of the human visual system depends on stimulus color: achromatic gratings can be resolved at relatively high spatial frequencies while sensitivity to isoluminant color contrast tends to be more low-pass. Models of early spatial vision often assume that the receptive field size of pattern-sensitive neurons is correlated with their spatial frequency sensitivity - larger receptive fields are typically associated with lower optimal spatial frequency. A strong prediction of this model is that neurons coding isoluminant chromatic patterns should have, on average, a larger receptive field size than neurons sensitive to achromatic patterns. Here, we test this assumption using functional magnetic resonance imaging (fMRI). We show that while spatial frequency sensitivity depends on chromaticity in the manner predicted by behavioral measurements, population receptive field (pRF) size measurements show no such dependency. At any given eccentricity, the mean pRF size for neuronal populations driven by luminance, opponent red/green and S-cone isolating contrast, are identical. Changes in pRF size (for example, an increase with eccentricity and visual area hierarchy) are also identical across the three chromatic conditions. These results suggest that fMRI measurements of receptive field size and spatial resolution can be decoupled under some circumstances - potentially reflecting a fundamental dissociation between these parameters at the level of neuronal populations. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Interim heterogeneity changes measured using entropy texture features on T2-weighted MRI at 3.0 T are associated with pathological response to neoadjuvant chemotherapy in primary breast cancer.

    PubMed

    Henderson, Shelley; Purdie, Colin; Michie, Caroline; Evans, Andrew; Lerski, Richard; Johnston, Marilyn; Vinnicombe, Sarah; Thompson, Alastair M

    2017-11-01

    To investigate whether interim changes in hetereogeneity (measured using entropy features) on MRI were associated with pathological residual cancer burden (RCB) at final surgery in patients receiving neoadjuvant chemotherapy (NAC) for primary breast cancer. This was a retrospective study of 88 consenting women (age: 30-79 years). Scanning was performed on a 3.0 T MRI scanner prior to NAC (baseline) and after 2-3 cycles of treatment (interim). Entropy was derived from the grey-level co-occurrence matrix, on slice-matched baseline/interim T2-weighted images. Response, assessed using RCB score on surgically resected specimens, was compared statistically with entropy/heterogeneity changes and ROC analysis performed. Association of pCR within each tumour immunophenotype was evaluated. Mean entropy percent differences between examinations, by response category, were: pCR: 32.8%, RCB-I: 10.5%, RCB-II: 9.7% and RCB-III: 3.0%. Association of ultimate pCR with coarse entropy changes between baseline/interim MRI across all lesions yielded 85.2% accuracy (area under ROC curve: 0.845). Excellent sensitivity/specificity was obtained for pCR prediction within each immunophenotype: ER+: 100%/100%; HER2+: 83.3%/95.7%, TNBC: 87.5%/80.0%. Lesion T2 heterogeneity changes are associated with response to NAC using RCB scores, particularly for pCR, and can be useful across all immunophenotypes with good diagnostic accuracy. • Texture analysis provides a means of measuring lesion heterogeneity on MRI images. • Heterogeneity changes between baseline/interim MRI can be linked with ultimate pathological response. • Heterogeneity changes give good diagnostic accuracy of pCR response across all immunophenotypes. • Percentage reduction in heterogeneity is associated with pCR with good accuracy and NPV.

  19. A real-time data acquisition and control of gradient coil noise for fMRI identification of hearing disorder in children with history of ear infection.

    PubMed

    Lee, Jaeseung; Holte, James; Ritenour, E Russell

    2013-02-01

    Early ear infection and trauma, from birth to age 12 are known to have a significant effect on sensory and cognitive development. This effect can be demonstrated through the fMRI study of children who have a history of ear infection compared to a control group. A second research question is the extent to which brain plasticity at an early age can reduce the impact of infection on hearing and cognitive development. Functional Magnetic Resonance Imaging (fMRI) provides a mapping of brain activity in cognitive and sensory regions by recording the oxygenation state of the local cerebral blood flow. The gradient coils of fMRI scanners generate intense acoustic noise (GCN) - to which the subject is in close proximity - in the range of 90 to 140 db SPL during the imaging process. Clearly this noise will impress its signature on low level brain response patterns. An Active Noise Canceller (ANC) system can suppress the effect of GCN on the subject's perception of a phonetic stimulus at the phoneme, word or phrase level. Due to a superimposition of the frequency and time domain components of the test signal and GCN for MR test, the ANC filtering system performs its function in real time - we must capture the brain's response to the test signal AFTER the noise has been removed. This goal is achieved through the application of field programmable gate array (FPGA) technology of NI LabVIEW. The presentation (in the noisy fMRI environment) of test words and phrases to hearing impaired children can identify sources of distortion to their perceptual processes associated with GCN. Once this distortion has been identified, learning strategies may be introduced to replace the hearing function distorted by early infection as well as the short term effect of GCN. The study of speech cognition without the confounding effect of GCN and with the varying level of GCN for a repeated test signal at later age can be allowed to a measure of recovery through brain plasticity.

  20. A real-time data acquisition and control of gradient coil noise for fMRI identification of hearing disorder in children with history of ear infection

    PubMed Central

    Lee, Jaeseung; Holte, James

    2013-01-01

    Early ear infection and trauma, from birth to age 12 are known to have a significant effect on sensory and cognitive development. This effect can be demonstrated through the fMRI study of children who have a history of ear infection compared to a control group. A second research question is the extent to which brain plasticity at an early age can reduce the impact of infection on hearing and cognitive development. Functional Magnetic Resonance Imaging (fMRI) provides a mapping of brain activity in cognitive and sensory regions by recording the oxygenation state of the local cerebral blood flow. The gradient coils of fMRI scanners generate intense acoustic noise (GCN) - to which the subject is in close proximity - in the range of 90 to 140 db SPL during the imaging process. Clearly this noise will impress its signature on low level brain response patterns. An Active Noise Canceller (ANC) system can suppress the effect of GCN on the subject’s perception of a phonetic stimulus at the phoneme, word or phrase level. Due to a superimposition of the frequency and time domain components of the test signal and GCN for MR test, the ANC filtering system performs its function in real time - we must capture the brain’s response to the test signal AFTER the noise has been removed. This goal is achieved through the application of field programmable gate array (FPGA) technology of NI LabVIEW. The presentation (in the noisy fMRI environment) of test words and phrases to hearing impaired children can identify sources of distortion to their perceptual processes associated with GCN. Once this distortion has been identified, learning strategies may be introduced to replace the hearing function distorted by early infection as well as the short term effect of GCN. The study of speech cognition without the confounding effect of GCN and with the varying level of GCN for a repeated test signal at later age can be allowed to a measure of recovery through brain plasticity. PMID:23482910

  1. MRI as a Translational Tool for the Study of Neonatal Stroke

    PubMed Central

    Dzietko, Mark; Wendland, Michael; Derugin, Nikita; Ferriero, Donna M.; Vexler, Zinaida S.

    2013-01-01

    More than half of neonatal stroke survivors have long-term sequelae, including seizures and neurological deficits. Although the immature brain has tremendous potential for recovery, mechanisms governing repair are essentially unexplored. We explored whether magnetic resonance imaging (MRI) early or late after transient middle cerebral arterial occlusion in 10-day-old (P10) rats can serve as an intermediate endpoint for long-term studies. Injured animals selected by diffusion-weighted MRI during middle cerebral arterial occlusion were scanned using T2-weighted MRI at P18 and P25 (injury volumes on MRI and histology were compared), or were subjected to contrast-enhanced MRI at P13 to characterize cerebral microcirculatory disturbances and blood-brain barrier leakage. Injury volume did not predict histological outcome at 2 weeks. Major reductions occurred by P18, with no further changes by P25. Cerebral perfusion was significantly reduced in the injured caudate but blood-brain barrier leakage was small. Therefore, conventional T2-weighted MRI performed during a subchronic injury phase predicts long-term histological outcome after experimental neonatal focal stroke. PMID:21670390

  2. Devising an endoluminal bimodal probe which combines autofluorescence and reflectance spectroscopy with high resolution MRI for early stage colorectal cancer diagnosis: technique, feasibility and preliminary in-vivo (rabbit) results

    NASA Astrophysics Data System (ADS)

    Ramgolam, A.; Sablong, R.; Bou-Saïd, B.; Bouvard, S.; Saint-Jalmes, H.; Beuf, O.

    2011-07-01

    Conventional white light endoscopy (WLE) is the most widespread technique used today for colorectal cancer diagnosis and is considered as the gold standard when coupled to biopsy and histology. However for early stage colorectal cancer diagnosis, which is very often characterised by flat adenomas, the use of WLE is quite difficult due to subtle or quasiinvisible morphological changes of the colonic lining. Figures worldwide point out that diagnosing colorectal cancer in its early stages would significantly reduce the death toll all while increasing the 5-year survival rate. Several techniques are currently being investigated in the scope of providing new tools that would allow such a diagnostic or assist actual techniques in so doing. We hereby present a novel technique where High spatial Resolution MRI (HR-MRI) is coupled to optical spectroscopy (autofluorescence and reflectance) in a bimodal endoluminal probe to extract morphological data and biochemical information respectively. The design and conception of the endoluminal probe along with the preliminary results obtained with an organic phantom and in-vivo (rabbit) are presented and discussed.

  3. Ultra-low field MRI: bringing MRI to new arenas

    DOE PAGES

    Magnelind, Per Erik; Matlashov, Andrei Nikolaevich; Newman, Shaun Garrett; ...

    2016-11-01

    Conventional magnetic resonance imaging (MRI) is moving toward the use of stronger and stronger magnetic fields with 3T, and even 7 T systems being increasingly used in routine clinical applications. However there is another branch of MRI, namely Ultra Low Field MRI (ULF-MRI) where the magnetic fields during readout are several orders of magnitude smaller, namely 1–100 μT. While conventional high-field MRI remains the gold standard there are several situations such as in military emergencies or in developing countries where for cost and logistical reasons, conventional MRI is not practical. In such scenarios, ULF-MRI could provide a solution. Lastly, thismore » article describes the basic principles and the potential of ULF-MRI.« less

  4. Ultra-low field MRI: bringing MRI to new arenas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magnelind, Per Erik; Matlashov, Andrei Nikolaevich; Newman, Shaun Garrett

    Conventional magnetic resonance imaging (MRI) is moving toward the use of stronger and stronger magnetic fields with 3T, and even 7 T systems being increasingly used in routine clinical applications. However there is another branch of MRI, namely Ultra Low Field MRI (ULF-MRI) where the magnetic fields during readout are several orders of magnitude smaller, namely 1–100 μT. While conventional high-field MRI remains the gold standard there are several situations such as in military emergencies or in developing countries where for cost and logistical reasons, conventional MRI is not practical. In such scenarios, ULF-MRI could provide a solution. Lastly, thismore » article describes the basic principles and the potential of ULF-MRI.« less

  5. Functional MRI during Hippocampal Deep Brain Stimulation in the Healthy Rat Brain

    PubMed Central

    Van Den Berge, Nathalie; Vanhove, Christian; Descamps, Benedicte; Dauwe, Ine; van Mierlo, Pieter; Vonck, Kristl; Keereman, Vincent; Raedt, Robrecht; Boon, Paul; Van Holen, Roel

    2015-01-01

    Deep Brain Stimulation (DBS) is a promising treatment for neurological and psychiatric disorders. The mechanism of action and the effects of electrical fields administered to the brain by means of an electrode remain to be elucidated. The effects of DBS have been investigated primarily by electrophysiological and neurochemical studies, which lack the ability to investigate DBS-related responses on a whole-brain scale. Visualization of whole-brain effects of DBS requires functional imaging techniques such as functional Magnetic Resonance Imaging (fMRI), which reflects changes in blood oxygen level dependent (BOLD) responses throughout the entire brain volume. In order to visualize BOLD responses induced by DBS, we have developed an MRI-compatible electrode and an acquisition protocol to perform DBS during BOLD fMRI. In this study, we investigate whether DBS during fMRI is valuable to study local and whole-brain effects of hippocampal DBS and to investigate the changes induced by different stimulation intensities. Seven rats were stereotactically implanted with a custom-made MRI-compatible DBS-electrode in the right hippocampus. High frequency Poisson distributed stimulation was applied using a block-design paradigm. Data were processed by means of Independent Component Analysis. Clusters were considered significant when p-values were <0.05 after correction for multiple comparisons. Our data indicate that real-time hippocampal DBS evokes a bilateral BOLD response in hippocampal and other mesolimbic structures, depending on the applied stimulation intensity. We conclude that simultaneous DBS and fMRI can be used to detect local and whole-brain responses to circuit activation with different stimulation intensities, making this technique potentially powerful for exploration of cerebral changes in response to DBS for both preclinical and clinical DBS. PMID:26193653

  6. Imaging Characteristics of Prostate Cancer Patients Who Discontinued Active Surveillance on 3-T Multiparametric Prostate MRI.

    PubMed

    Habibian, David J; Liu, Corinne C; Dao, Alex; Kosinski, Kaitlin E; Katz, Aaron E

    2017-03-01

    Early-stage prostate cancer may be followed with active surveillance to avoid overtreatment. Our institution's active surveillance regimen uses annual MRI in place of serial biopsies, and biopsies are performed only when clinically necessary. The objective of our study was to report the multiparametric MRI characteristics of prostate cancer patients who discontinued active surveillance at our institution after repeat imaging revealed possible evidence of tumor upgrading. The Department of Urology at Winthrop University Hospital prospectively maintains a database of prostate cancer patients who are monitored with active surveillance. At the time of this study, there were 200 prostate cancer patients being monitored with active surveillance. Of those patients, 114 patients had an initial multiparametric MRI study that was performed before active surveillance started and at least one follow-up multiparametric MRI study that was performed after active surveillance began. The MRI findings were evaluated and correlated with pathology results, if available. Fourteen patients discontinued active surveillance because changes on follow-up MRI suggested progression of cancer. Follow-up MRI showed an enlarged or more prominent lesion compared with the appearance on a previous MRI in three (21.4%) patients, a new lesion or lesions suspicious for cancer in two (14.3%) patients, and findings suspicious for or confirming extracapsular extension in nine (64.3%) patients. Seven of the 14 (50.0%) patients had a biopsy after follow-up multiparametric MRI, and biopsy results led to tumor upgrading in six of the 14 (42.9%) patients. The duration of active surveillance ranged from 4 to 110 months. All patients received definitive treatment. The small number of patients with follow-up multiparametric MRI findings showing worsening disease supports the role of MRI in patients with early-stage prostate cancer. Multiparametric MRI is useful in monitoring patients on active surveillance and

  7. Fear-potentiated startle processing in humans: Parallel fMRI and orbicularis EMG assessment during cue conditioning and extinction.

    PubMed

    Lindner, Katja; Neubert, Jörg; Pfannmöller, Jörg; Lotze, Martin; Hamm, Alfons O; Wendt, Julia

    2015-12-01

    Studying neural networks and behavioral indices such as potentiated startle responses during fear conditioning has a long tradition in both animal and human research. However, most of the studies in humans do not link startle potentiation and neural activity during fear acquisition and extinction. Therefore, we examined startle blink responses measured with electromyography (EMG) and brain activity measured with functional MRI simultaneously during differential conditioning. Furthermore, we combined these behavioral fear indices with brain network activity by analyzing the brain activity evoked by the startle probe stimulus presented during conditioned visual threat and safety cues as well as in the absence of visual stimulation. In line with previous research, we found a fear-induced potentiation of the startle blink responses when elicited during a conditioned threat stimulus and a rapid decline of amygdala activity after an initial differentiation of threat and safety cues in early acquisition trials. Increased activation during processing of threat cues was also found in the anterior insula, the anterior cingulate cortex (ACC), and the periaqueductal gray (PAG). More importantly, our results depict an increase of brain activity to probes presented during threatening in comparison to safety cues indicating an involvement of the anterior insula, the ACC, the thalamus, and the PAG in fear-potentiated startle processing during early extinction trials. Our study underlines that parallel assessment of fear-potentiated startle in fMRI paradigms can provide a helpful method to investigate common and distinct processing pathways in humans and animals and, thus, contributes to translational research. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Review of MRI-based measurements of pulse wave velocity: a biomarker of arterial stiffness

    PubMed Central

    Wentland, Andrew L.; Grist, Thomas M.

    2014-01-01

    Atherosclerosis is the leading cause of cardiovascular disease (CVD) in the Western world. In the early development of atherosclerosis, vessel walls remodel outwardly such that the vessel luminal diameter is minimally affected by early plaque development. Only in the late stages of the disease does the vessel lumen begin to narrow—leading to stenoses. As a result, angiographic techniques are not useful for diagnosing early atherosclerosis. Given the absence of stenoses in the early stages of atherosclerosis, CVD remains subclinical for decades. Thus, methods of diagnosing atherosclerosis early in the disease process are needed so that affected patients can receive the necessary interventions to prevent further disease progression. Pulse wave velocity (PWV) is a biomarker directly related to vessel stiffness that has the potential to provide information on early atherosclerotic disease burden. A number of clinical methods are available for evaluating global PWV, including applanation tonometry and ultrasound. However, these methods only provide a gross global measurement of PWV—from the carotid to femoral arteries—and may mitigate regional stiffness within the vasculature. Additionally, the distance measurements used in the PWV calculation with these methods can be highly inaccurate. Faster and more robust magnetic resonance imaging (MRI) sequences have facilitated increased interest in MRI-based PWV measurements. This review provides an overview of the state-of-the-art in MRI-based PWV measurements. In addition, both gold standard and clinical standard methods of computing PWV are discussed. PMID:24834415

  9. Dual function of CD70 in viral infection: modulator of early cytokine responses and activator of adaptive responses1

    PubMed Central

    Allam, Atef; Swiecki, Melissa; Vermi, William; Ashwell, Jonathan D.; Colonna, Marco

    2014-01-01

    The role of the tumor necrosis factor family member CD70 in adaptive T cell responses has been intensively studied but its function in innate responses is still under investigation. Here we show that CD70 inhibits the early innate response to murine cytomegalovirus (MCMV) but is essential for the optimal generation of virus-specific CD8 T cells. CD70-/- mice reacted to MCMV infection with a robust type I interferon and proinflammatory cytokine response. This response was sufficient for initial control of MCMV, although at later time points, CD70-/- mice became more susceptible to MCMV infection. The heightened cytokine response during the early phase of MCMV infection in CD70-/- mice was paralleled by a reduction in regulatory T cells (Treg). Treg from naïve CD70-/- mice were not as efficient at suppressing T cell proliferation compared to Treg from naïve WT mice and depletion of Treg during MCMV infection in Foxp3-DTR mice or in WT mice recapitulated the phenotype observed in CD70-/- mice. Our study demonstrates that while CD70 is required for the activation of the antiviral adaptive response, it has a regulatory role in early cytokine responses to viruses such as MCMV, possibly through maintenance of Treg survival and function. PMID:24913981

  10. Value of MRI in diagnostics and evaluation of myositis.

    PubMed

    Pipitone, Nicolò

    2016-11-01

    This review aims at covering the role of muscle MRI in supporting the diagnosis of myositis, in aiding to differentiate it from other muscle disorders, and in monitoring myositis patients over time by assessing response to treatment and by discriminating between muscle inflammation and chronic damage. MRI can assist in 'pattern recognition' of muscle involvement across numerous myopathies, including myositis. Novel applications of magnetic resonance such as cardiac MRI, MR elastography and blood oxigenation level-dependent magnetic resonance can shed light on different aspects of myositis and usefully complement conventional MRI in assessing patients with myositis. MRI can guide therapy by determining whether muscle weakness is related to edema (active inflammation) or muscle atrophy/fat replacement (chronic damage). There is a need to better standardize the assessment of MRI findings in myositis to provide defined outcome measures for use in clinical trials. VIDEO ABSTRACT.

  11. Biophysical and physiological origins of blood oxygenation level-dependent fMRI signals.

    PubMed

    Kim, Seong-Gi; Ogawa, Seiji

    2012-07-01

    After its discovery in 1990, blood oxygenation level-dependent (BOLD) contrast in functional magnetic resonance imaging (fMRI) has been widely used to map brain activation in humans and animals. Since fMRI relies on signal changes induced by neural activity, its signal source can be complex and is also dependent on imaging parameters and techniques. In this review, we identify and describe the origins of BOLD fMRI signals, including the topics of (1) effects of spin density, volume fraction, inflow, perfusion, and susceptibility as potential contributors to BOLD fMRI, (2) intravascular and extravascular contributions to conventional gradient-echo and spin-echo BOLD fMRI, (3) spatial specificity of hemodynamic-based fMRI related to vascular architecture and intrinsic hemodynamic responses, (4) BOLD signal contributions from functional changes in cerebral blood flow (CBF), cerebral blood volume (CBV), and cerebral metabolic rate of O(2) utilization (CMRO(2)), (5) dynamic responses of BOLD, CBF, CMRO(2), and arterial and venous CBV, (6) potential sources of initial BOLD dips, poststimulus BOLD undershoots, and prolonged negative BOLD fMRI signals, (7) dependence of stimulus-evoked BOLD signals on baseline physiology, and (8) basis of resting-state BOLD fluctuations. These discussions are highly relevant to interpreting BOLD fMRI signals as physiological means.

  12. Biophysical and physiological origins of blood oxygenation level-dependent fMRI signals

    PubMed Central

    Kim, Seong-Gi; Ogawa, Seiji

    2012-01-01

    After its discovery in 1990, blood oxygenation level-dependent (BOLD) contrast in functional magnetic resonance imaging (fMRI) has been widely used to map brain activation in humans and animals. Since fMRI relies on signal changes induced by neural activity, its signal source can be complex and is also dependent on imaging parameters and techniques. In this review, we identify and describe the origins of BOLD fMRI signals, including the topics of (1) effects of spin density, volume fraction, inflow, perfusion, and susceptibility as potential contributors to BOLD fMRI, (2) intravascular and extravascular contributions to conventional gradient-echo and spin-echo BOLD fMRI, (3) spatial specificity of hemodynamic-based fMRI related to vascular architecture and intrinsic hemodynamic responses, (4) BOLD signal contributions from functional changes in cerebral blood flow (CBF), cerebral blood volume (CBV), and cerebral metabolic rate of O2 utilization (CMRO2), (5) dynamic responses of BOLD, CBF, CMRO2, and arterial and venous CBV, (6) potential sources of initial BOLD dips, poststimulus BOLD undershoots, and prolonged negative BOLD fMRI signals, (7) dependence of stimulus-evoked BOLD signals on baseline physiology, and (8) basis of resting-state BOLD fluctuations. These discussions are highly relevant to interpreting BOLD fMRI signals as physiological means. PMID:22395207

  13. Children's cortisol responses to a social evaluative laboratory stressor from early to middle childhood.

    PubMed

    Leppert, Katherine A; Kushner, Marissa; Smith, Victoria C; Lemay, Edward P; Dougherty, Lea R

    2016-12-01

    This study examined the stability of children's cortisol responses to a social evaluative laboratory stressor from early to middle childhood. Ninety-six children (51 males) completed stress-inducing laboratory tasks and provided five salivary cortisol samples in early (W1) and middle (W2) childhood. Although W1 cortisol responses did not predict W2 cortisol responses, children's cortisol responses demonstrated change: compared to their W1 cortisol responses, children's W2 cortisol responses demonstrated an increased slope and more negative quadratic curvature. Furthermore, child psychiatric symptoms at W1 moderated the stability of children's cortisol responses. Children with fewer preschool psychiatric symptoms demonstrated greater inter-individual and intra-individual stability, whereas children with higher preschool psychiatric symptoms and comorbidity demonstrated systematic inter-individual and intra-individual instability in cortisol responses over time. Findings suggest a developmental shift toward increasing cortisol stress responses from early to middle childhood and highlight preschool psychopathology as a moderator of stability in children's cortisol responses over time. © 2016 Wiley Periodicals, Inc.

  14. Can Depression be Diagnosed by Response to Mother's Face? A Personalized Attachment-Based Paradigm for Diagnostic fMRI

    PubMed Central

    Zhang, Xian; Yaseen, Zimri S.; Galynker, Igor I.; Hirsch, Joy; Winston, Arnold

    2011-01-01

    Objective Objective measurement of depression remains elusive. Depression has been associated with insecure attachment, and both have been associated with changes in brain reactivity in response to viewing standard emotional and neutral faces. In this study, we developed a method to calculate predicted scores for the Beck Depression Inventory II (BDI-II) using personalized stimuli: fMRI imaging of subjects viewing pictures of their own mothers. Methods 28 female subjects ages 18–30 (14 healthy controls and 14 unipolar depressed diagnosed by MINI psychiatric interview) were scored on the Beck Depression Inventory II (BDI-II) and the Adult Attachment Interview (AAI) coherence of mind scale of global attachment security. Subjects viewed pictures of Mother (M), Friend (F) and Stranger (S), during functional magnetic resonance imaging (fMRI). Using a principal component regression method (PCR), a predicted Beck Depression Inventory II (BDI-II) score was obtained from activity patterns in the paracingulate gyrus (Brodmann area 32) and compared to clinical diagnosis and the measured BDI-II score. The same procedure was performed for AAI coherence of mind scores. Results Activity patterns in BA-32 identified depressed subjects. The categorical agreement between the derived BDI-II score (using the standard clinical cut-score of 14 on the BDI-II) and depression diagnosis by MINI psychiatric interview was 89%, with sensitivity 85.7% and specificity 92.8%. Predicted and measured BDI-II scores had a correlation of 0.55. Prediction of attachment security was not statistically significant. Conclusions Brain activity in response to viewing one's mother may be diagnostic of depression. Functional magnetic resonance imaging using personalized paradigms has the potential to provide objective assessments, even when behavioral measures are not informative. Further, fMRI based diagnostic algorithms may enhance our understanding of the neural mechanisms of depression by identifying

  15. Early presentation of primary glioblastoma.

    PubMed

    Faguer, R; Tanguy, J-Y; Rousseau, A; Clavreul, A; Menei, P

    2014-08-01

    Clinical and neuroimaging findings of glioblastomas (GBM) at an early stage have rarely been described and those tumors are most probably under-diagnosed. Furthermore, their genetic alterations, to our knowledge, have never been previously reported. We report the clinical as well as neuroimaging findings of four early cases of patients with GBM. In our series, early stage GBM occurred at a mean age of 57 years. All patients had seizures as their first symptom. In all early stages, MRI showed a hyperintense signal on T2-weighted sequences and an enhancement on GdE-T1WI sequences. A hyperintense signal on diffusion sequences with a low ADC value was also found. These early observed occurrences of GBM developed rapidly and presented the MRI characteristics of classic GBM within a few weeks. The GBM size was multiplied by 32 in one month. Immunohistochemical analysis indicated the de novo nature of these tumors, i.e. absence of mutant IDH1 R132H protein expression, which is a diagnostic marker of low-grade diffuse glioma and secondary GBM. A better knowledge of early GBM presentation would allow a more suitable management of the patients and may improve their prognosis. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  16. Optimized Design and Analysis of Sparse-Sampling fMRI Experiments

    PubMed Central

    Perrachione, Tyler K.; Ghosh, Satrajit S.

    2013-01-01

    Sparse-sampling is an important methodological advance in functional magnetic resonance imaging (fMRI), in which silent delays are introduced between MR volume acquisitions, allowing for the presentation of auditory stimuli without contamination by acoustic scanner noise and for overt vocal responses without motion-induced artifacts in the functional time series. As such, the sparse-sampling technique has become a mainstay of principled fMRI research into the cognitive and systems neuroscience of speech, language, hearing, and music. Despite being in use for over a decade, there has been little systematic investigation of the acquisition parameters, experimental design considerations, and statistical analysis approaches that bear on the results and interpretation of sparse-sampling fMRI experiments. In this report, we examined how design and analysis choices related to the duration of repetition time (TR) delay (an acquisition parameter), stimulation rate (an experimental design parameter), and model basis function (an analysis parameter) act independently and interactively to affect the neural activation profiles observed in fMRI. First, we conducted a series of computational simulations to explore the parameter space of sparse design and analysis with respect to these variables; second, we validated the results of these simulations in a series of sparse-sampling fMRI experiments. Overall, these experiments suggest the employment of three methodological approaches that can, in many situations, substantially improve the detection of neurophysiological response in sparse fMRI: (1) Sparse analyses should utilize a physiologically informed model that incorporates hemodynamic response convolution to reduce model error. (2) The design of sparse fMRI experiments should maintain a high rate of stimulus presentation to maximize effect size. (3) TR delays of short to intermediate length can be used between acquisitions of sparse-sampled functional image volumes to increase

  17. Sequential inhibitory control processes assessed through simultaneous EEG-fMRI.

    PubMed

    Baumeister, Sarah; Hohmann, Sarah; Wolf, Isabella; Plichta, Michael M; Rechtsteiner, Stefanie; Zangl, Maria; Ruf, Matthias; Holz, Nathalie; Boecker, Regina; Meyer-Lindenberg, Andreas; Holtmann, Martin; Laucht, Manfred; Banaschewski, Tobias; Brandeis, Daniel

    2014-07-01

    Inhibitory response control has been extensively investigated in both electrophysiological (ERP) and hemodynamic (fMRI) studies. However, very few multimodal results address the coupling of these inhibition markers. In fMRI, response inhibition has been most consistently linked to activation of the anterior insula and inferior frontal cortex (IFC), often also the anterior cingulate cortex (ACC). ERP work has established increased N2 and P3 amplitudes during NoGo compared to Go conditions in most studies. Previous simultaneous EEG-fMRI imaging reported association of the N2/P3 complex with activation of areas like the anterior midcingulate cortex (aMCC) and anterior insula. In this study we investigated inhibitory control in 23 healthy young adults (mean age=24.7, n=17 for EEG during fMRI) using a combined Flanker/NoGo task during simultaneous EEG and fMRI recording. Separate fMRI and ERP analysis yielded higher activation in the anterior insula, IFG and ACC as well as increased N2 and P3 amplitudes during NoGo trials in accordance with the literature. Combined analysis modelling sequential N2 and P3 effects through joint parametric modulation revealed correlation of higher N2 amplitude with deactivation in parts of the default mode network (DMN) and the cingulate motor area (CMA) as well as correlation of higher central P3 amplitude with activation of the left anterior insula, IFG and posterior cingulate. The EEG-fMRI results resolve the localizations of these sequential activations. They suggest a general role for allocation of attentional resources and motor inhibition for N2 and link memory recollection and internal reflection to P3 amplitude, in addition to previously described response inhibition as reflected by the anterior insula. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Systematic review and meta-analysis of the accuracy of MRI and endorectal ultrasound in the restaging and response assessment of rectal cancer following neoadjuvant therapy.

    PubMed

    Memon, S; Lynch, A C; Bressel, M; Wise, A G; Heriot, A G

    2015-09-01

    Restaging imaging by MRI or endorectal ultrasound (ERUS) following neoadjuvant chemoradiotherapy is not routinely performed, but the assessment of response is becoming increasingly important to facilitate individualization of management. A search of the MEDLINE and Scopus databases was performed for studies that evaluated the accuracy of restaging of rectal cancer following neoadjuvant chemoradiotherapy with MRI or ERUS against the histopathological outcome. A systematic review of selected studies was performed. The methodological quality of studies that qualified for meta-analysis was critically assessed to identify studies suitable for inclusion in the meta-analysis. Sixty-three articles were included in the systematic review. Twelve restaging MRI studies and 18 restaging ERUS studies were eligible for meta-analysis of T-stage restaging accuracy. Overall, ERUS T-stage restaging accuracy (mean [95% CI]: 65% [56-72%]) was nonsignificantly higher than MRI T-stage accuracy (52% [44-59%]). Restaging MRI is accurate at excluding circumferential resection margin involvement. Restaging MRI and ERUS were equivalent for prediction of nodal status: the accuracy of both investigations was 72% with over-staging and under-staging occurring in 10-15%. The heterogeneity amongst restaging studies is high, limiting conclusive findings regarding their accuracies. The accuracy of restaging imaging is different for different pathological T stages and highest for T3 tumours. Morphological assessment of T- or N-stage by MRI or ERUS is currently not accurate or consistent enough for clinical application. Restaging MRI appears to have a role in excluding circumferential resection margin involvement. Colorectal Disease © 2015 The Association of Coloproctology of Great Britain and Ireland.

  19. Comparison of block and event-related experimental designs in diffusion-weighted functional MRI.

    PubMed

    Williams, Rebecca J; McMahon, Katie L; Hocking, Julia; Reutens, David C

    2014-08-01

    To compare diffusion-weighted functional magnetic resonance imaging (DfMRI), a novel alternative to the blood oxygenation level-dependent (BOLD) contrast, in a functional MRI experiment. Nine participants viewed contrast reversing (7.5 Hz) black-and-white checkerboard stimuli using block and event-related paradigms. DfMRI (b = 1800 mm/s(2)) and BOLD sequences were acquired. Four parameters describing the observed signal were assessed: percent signal change, spatial extent of the activation, the Euclidean distance between peak voxel locations, and the time-to-peak of the best fitting impulse response for different paradigms and sequences. The BOLD conditions showed a higher percent signal change relative to DfMRI; however, event-related DfMRI showed the strongest group activation (t = 21.23, P < 0.0005). Activation was more diffuse and spatially closer to the BOLD response for DfMRI when the block design was used. DfMRIevent showed the shortest TTP (4.4 ± 0.88 sec). The hemodynamic contribution to DfMRI may increase with the use of block designs. © 2013 Wiley Periodicals, Inc.

  20. Novel use of non-echo-planar diffusion weighted MRI in monitoring disease activity and treatment response in active Grave's orbitopathy: An initial observational cohort study.

    PubMed

    Lingam, Ravi Kumar; Mundada, Pravin; Lee, Vickie

    2018-01-10

    To examine the novel use of non-echo-planar diffusion weighted MRI (DWI) in depicting activity and treatment response in active Grave's orbitopathy (GO) by assessing, with inter-observer agreement, for a correlation between its apparent diffusion coefficients (ADCs) and conventional Short tau Inversion Recovery (STIR) MRI signal-intensity ratios (SIRs). A total of 23 actively inflamed muscles and 30 muscle response episodes were analysed in patients with active GO who underwent medical treatment. The MRI orbit scans included STIR sequences and non-echo-planar DWI were evaluated. Two observers independently assessed the images qualitatively for the presence of activity in the extraocular muscles (EOMs) and recorded the STIR signal-intensity (SI), SIR (SI ratio of EOM/temporalis muscle), and ADC values of any actively inflamed muscle on the pre-treatment scans and their corresponding values on the subsequent post-treatment scans. Inter-observer agreement was examined. There was a significant positive correlation (0.57, p < 0.001) between ADC and both SIR and STIR SI of the actively inflamed EOM. There was also a significant positive correlation (0.75, p < 0.001) between SIR and ADC values depicting change in muscle activity associated with treatment response. There was good inter-observer agreement. Our preliminary results indicate that quantitative evaluation with non-echo-planar DWI ADC values correlates well with conventional STIR SIR in detecting active GO and monitoring its treatment response, with good inter-observer agreement.

  1. Role of emotional processing in depressive responses to sex-hormone manipulation: a pharmacological fMRI study

    PubMed Central

    Henningsson, S; Madsen, K H; Pinborg, A; Heede, M; Knudsen, G M; Siebner, H R; Frokjaer, V G

    2015-01-01

    Sex-hormone fluctuations may increase risk for developing depressive symptoms and alter emotional processing as supported by observations in menopausal and pre- to postpartum transition. In this double-blinded, placebo-controlled study, we used blood−oxygen level dependent functional magnetic resonance imaging (fMRI) to investigate if sex-steroid hormone manipulation with a gonadotropin-releasing hormone agonist (GnRHa) influences emotional processing. Fifty-six healthy women were investigated twice: at baseline (follicular phase of menstrual cycle) and 16±3 days post intervention. At both sessions, fMRI-scans during exposure to faces expressing fear, anger, happiness or no emotion, depressive symptom scores and estradiol levels were acquired. The fMRI analyses focused on regions of interest for emotional processing. As expected, GnRHa initially increased and subsequently reduced estradiol to menopausal levels, which was accompanied by an increase in subclinical depressive symptoms relative to placebo. Women who displayed larger GnRHa-induced increase in depressive symptoms had a larger increase in both negative and positive emotion-elicited activity in the anterior insula. When considering the post-GnRHa scan only, depressive responses were associated with emotion-elicited activity in the anterior insula and amygdala. The effect on regional activity in anterior insula was not associated with the estradiol net decline, only by the GnRHa-induced changes in mood. Our data implicate enhanced insula recruitment during emotional processing in the emergence of depressive symptoms following sex-hormone fluctuations. This may correspond to the emotional hypersensitivity frequently experienced by women postpartum. PMID:26624927

  2. Quantitative Serial MRI of the Treated Fibroid Uterus

    PubMed Central

    Williams, Alistair R. W.; McKillop, Graham; Walker, Jane; Horne, Andrew W.; Newby, David E.; Anderson, Richard A.; Semple, Scott I.; Marshall, Ian; Lewis, Steff C.; Millar, Robert P.; Bastin, Mark E.; Critchley, Hilary O. D.

    2014-01-01

    Objective There are no long-term medical treatments for uterine fibroids, and non-invasive biomarkers are needed to evaluate novel therapeutic interventions. The aim of this study was to determine whether serial dynamic contrast-enhanced MRI (DCE-MRI) and magnetization transfer MRI (MT-MRI) are able to detect changes that accompany volume reduction in patients administered GnRH analogue drugs, a treatment which is known to reduce fibroid volume and perfusion. Our secondary aim was to determine whether rapid suppression of ovarian activity by combining GnRH agonist and antagonist therapies results in faster volume reduction. Methods Forty women were assessed for eligibility at gynaecology clinics in the region, of whom thirty premenopausal women scheduled for hysterectomy due to symptomatic fibroids were randomized to three groups, receiving (1) GnRH agonist (Goserelin), (2) GnRH agonist+GnRH antagonist (Goserelin and Cetrorelix) or (3) no treatment. Patients were monitored by serial structural, DCE-MRI and MT-MRI, as well as by ultrasound and serum oestradiol concentration measurements from enrolment to hysterectomy (approximately 3 months). Results A volumetric treatment effect assessed by structural MRI occurred by day 14 of treatment (9% median reduction versus 9% increase in untreated women; P = 0.022) and persisted throughout. Reduced fibroid perfusion and permeability assessed by DCE-MRI occurred later and was demonstrable by 2–3 months (43% median reduction versus 20% increase respectively; P = 0.0093). There was no apparent treatment effect by MT-MRI. Effective suppression of oestradiol was associated with early volume reduction at days 14 (P = 0.041) and 28 (P = 0.0061). Conclusion DCE-MRI is sensitive to the vascular changes thought to accompany successful GnRH analogue treatment of uterine fibroids and should be considered for use in future mechanism/efficacy studies of proposed fibroid drug therapies. GnRH antagonist administration

  3. Frameworks for Response to Intervention in Early Childhood: Description and Implications

    ERIC Educational Resources Information Center

    Communication Disorders Quarterly, 2014

    2014-01-01

    In February, 2013, the Division of Early Childhood, the National Association for the Education of Young Children, and the National Head Start Association released a collaborative paper to provide clarification and assistance regarding the relationship of response to intervention (RTI) with the field of early childhood (EC). In addition to…

  4. Three-dimensional power Doppler ultrasound in the early assessment of response to concurrent chemo-radiotherapy for advanced cervical cancer.

    PubMed

    Xu, Yan; Zhu, Lijing; Ru, Tong; Wang, Huanhuan; He, Jian; Zhou, Zhengyang; Yang, Xiaofeng

    2017-09-01

    Background Three-dimensional power Doppler ultrasound (3D-PDU) imaging has been widely applied to the differentiation of benign and malignant cervical lesions; however, its potential value for predicting response to chemo-radiotherapy has not been fully explored. Purpose To investigate the feasibility of 3D-PDU imaging in predicting treatment response in patients receiving concurrent chemo-radiotherapy (CCRT) for advanced cervical cancer. Material and Methods Fifty-two patients with advanced cervical cancer who received CCRT underwent 3D-PDU examinations at four timepoints: pre-therapy (baseline), 1 week and 2 weeks during, as well as immediately post CCRT. Final tumor response was determined by change in tumor size using magnetic resonance imaging (MRI). Cervical tumor volumes and vascular indices were calculated and compared with the clinical outcome. Results Of the 52 patients, 32 patients who completed all four examinations were included in the analyses: 21 were classified as complete response (CR) and 11 as partial response (PR). During the treatment, the CR group showed that 3D vascular indices (VI and VFI) significantly increased at 1 week ( P = 0.028, P = 0.017, respectively) then decreased at 2 weeks and obviously decreased at therapy completion (both P < 0.001), whereas tumors significantly decreased in volume at 2 weeks after therapy initiation ( P < 0.05). However, no significant differences in 3D vascular indices values were seen in the PR group during the treatment course (all P > 0.05). Conclusion Prospective longitudinal 3D-PDU imaging may have potentials in monitoring early therapeutic response to CCRT in patients with cervical cancer.

  5. A New Paradigm for Individual Subject Language Mapping: Movie-Watching fMRI.

    PubMed

    Tie, Yanmei; Rigolo, Laura; Ozdemir Ovalioglu, Aysegul; Olubiyi, Olutayo; Doolin, Kelly L; Mukundan, Srinivasan; Golby, Alexandra J

    2015-01-01

    Functional MRI (fMRI) based on language tasks has been used in presurgical language mapping in patients with lesions in or near putative language areas. However, if patients have difficulty performing the tasks due to neurological deficits, it leads to unreliable or noninterpretable results. In this study, we investigate the feasibility of using a movie-watching fMRI for language mapping. A 7-minute movie clip with contrasting speech and nonspeech segments was shown to 22 right-handed healthy subjects. Based on all subjects' language functional regions-of-interest, 6 language response areas were defined, within which a language response model (LRM) was derived by extracting the main temporal activation profile. Using a leave-one-out procedure, individuals' language areas were identified as the areas that expressed highly correlated temporal responses with the LRM derived from an independent group of subjects. Compared with an antonym generation task-based fMRI, the movie-watching fMRI generated language maps with more localized activations in the left frontal language area, larger activations in the left temporoparietal language area, and significant activations in their right-hemisphere homologues. Results of 2 brain tumor patients' movie-watching fMRI using the LRM derived from the healthy subjects indicated its ability to map putative language areas; while their task-based fMRI maps were less robust and noisier. These results suggest that it is feasible to use this novel "task-free" paradigm as a complementary tool for fMRI language mapping when patients cannot perform the tasks. Its deployment in more neurosurgical patients and validation against gold-standard techniques need further investigation. Copyright © 2015 by the American Society of Neuroimaging.

  6. A new paradigm for individual subject language mapping: Movie-watching fMRI

    PubMed Central

    Tie, Yanmei; Rigolo, Laura; Ovalioglu, Aysegul Ozdemir; Olubiyi, Olutayo; Doolin, Kelly L.; Mukundan, Srinivasan; Golby, Alexandra J.

    2015-01-01

    Background Functional MRI (fMRI) based on language tasks has been used in pre-surgical language mapping in patients with lesions in or near putative language areas. However, if the patients have difficulty performing the tasks due to neurological deficits, it leads to unreliable or non-interpretable results. In this study, we investigate the feasibility of using a movie-watching fMRI for language mapping. Methods A 7-min movie clip with contrasting speech and non-speech segments was shown to 22 right-handed healthy subjects. Based on all subjects' language functional regions-of-interest, six language response areas were defined, within which a language response model (LRM) was derived by extracting the main temporal activation profile. Using a leave-one-out procedure, individuals' language areas were identified as the areas that expressed highly correlated temporal responses with the LRM derived from an independent group of subjects. Results Compared with an antonym generation task-based fMRI, the movie-watching fMRI generated language maps with more localized activations in the left frontal language area, larger activations in the left temporoparietal language area, and significant activations in their right-hemisphere homologues. Results of two brain tumor patients' movie-watching fMRI using the LRM derived from the healthy subjects indicated its ability to map putative language areas; while their task-based fMRI maps were less robust and noisier. Conclusions These results suggest that it is feasible to use this novel “task-free” paradigm as a complementary tool for fMRI language mapping when patients cannot perform the tasks. Its deployment in more neurosurgical patients and validation against gold-standard techniques need further investigation. PMID:25962953

  7. Early improvements in anxiety, depression, and anger/hostility symptoms and response to antidepressant treatment.

    PubMed

    Farabaugh, Amy; Sonawalla, Shamsah; Johnson, Daniel P; Witte, Janet; Papakostas, George I; Goodness, Tracie; Clain, Alisabet; Baer, Lee; Mischoulon, David; Fava, Maurizio; Harley, Rebecca

    2010-08-01

    The purpose of this study was to examine whether treatment response to fluoxetine by depressed outpatients was predicted by early improvement on any of 3 subscales (Anxiety, Depression, and Anger/Hostility) of the Symptom Questionnaire (SQ). We evaluated 169 depressed outpatients (52.6% female) between ages 18 and 65 (mean age, 40.3 +/- 10.6 years) meeting DSM-IIIR criteria for major depressive disorder (MDD). All patients completed the SQ at baseline (week 0) and at weeks 2, 4, and 8 of treatment with fluoxetine 20 mg/d. We defined treatment response as a > or= 50% reduction in score on the 17-item Hamilton Rating Scale for Depression, and early improvement on 3 SQ subscales (Anxiety, Depression, and Anger/Hostility) as a >30% reduction in score by week 2. The percentage of patients with significant early improvement in anger was significantly greater than the percentage of those with early improvements in anxiety or depression. When early improvement on the Anxiety, Depression, and Anger/Hostility subscales of the SQ were assessed independently by logistic regression, all 3 subscales were predictors of response to treatment. Early improvement in anger, anxiety, and depressive symptoms may predict response to antidepressant treatment among outpatients with MDD.

  8. Early Twentieth Century Responses to the Drug Problem.

    ERIC Educational Resources Information Center

    Pfennig, Dennis Joseph

    1991-01-01

    Describes early twentieth-century responses to the drug problem in the United States. Discusses pressure from the media and reformers to control the availability of drugs such as opium and cocaine that were widely available in over-the-counter medications. Focuses on New York State, which took the lead in enacting drug control legislation. (DK)

  9. Assessment of pulmonary structure-function relationships in young children and adolescents with cystic fibrosis by multivolume proton-MRI and CT.

    PubMed

    Pennati, Francesca; Roach, David J; Clancy, John P; Brody, Alan S; Fleck, Robert J; Aliverti, Andrea; Woods, Jason C

    2018-02-19

    Lung disease is the most frequent cause of morbidity and mortality in patients with cystic fibrosis (CF), and there is a shortage of sensitive biomarkers able to regionally monitor disease progression and to assess early responses to therapy. To determine the feasibility of noncontrast-enhanced multivolume MRI, which assesses intensity changes between expiratory and inspiratory breath-hold images, to detect and quantify regional ventilation abnormalities in CF lung disease, with a focus on the structure-function relationship. Retrospective. Twenty-nine subjects, including healthy young children (n = 9, 7-37 months), healthy adolescents (n = 4, 14-22 years), young children with CF lung disease (n = 10, 7-47 months), and adolescents with CF lung disease (n = 6, 8-18 years) were studied. 3D spoiled gradient-recalled sequence at 1.5T. Subjects were scanned during breath-hold at functional residual capacity (FRC) and total lung capacity (TLC) through noncontrast-enhanced MRI and CT. Expiratory-inspiratory differences in MR signal-intensity (Δ 1 H-MRI) and CT-density (ΔHU) were computed to estimate regional ventilation. MR and CT images were also evaluated using a CF-specific scoring system. Quadratic regression, Spearman's correlation, one-way analysis of variance (ANOVA). Δ 1 H-MRI maps were sensitive to ventilation heterogeneity related to gravity dependence in healthy lung and to ventilation impairment in CF lung disease. A high correlation was found between MRI and CT ventilation maps (R 2  = 0.79, P < 0.001). Globally, Δ 1 H-MRI and ΔHU decrease with increasing morphological score (respectively, R 2  = 0.56, P < 0.001 and R 2  = 0.31, P < 0.001). Locally, Δ 1 H-MRI was higher in healthy regions (median 15%) compared to regions with bronchiectasis, air trapping, consolidation, and to segments fed by airways with bronchial wall thickening (P < 0.001). Multivolume noncontrast-enhanced MRI, as a nonionizing imaging

  10. Assessment of tumor response to oxygen challenge using quantitative diffusion MRI in an animal model.

    PubMed

    Zhang, Zhongwei; Yuan, Qing; Zhou, Heling; Zhao, Dawen; Li, Li; Gerberich, Jenifer L; Mason, Ralph P

    2015-11-01

    To assess tumor response to oxygen challenge using quantitative diffusion magnetic resonance imaging (MRI). A well-characterized Dunning R3327-AT1 rat prostate cancer line was implanted subcutaneously in the right thigh of male Copenhagen rats (n = 8). Diffusion-weighted images (DWI) with multiple b values (0, 25, 50, 100, 150, 200, 300, 500, 1000, 1500 s/mm(2) ) in three orthogonal directions were obtained using a multishot FSE-based Stejskal-Tanner DWI sequence (FSE-DWI) at 4.7T, while rats breathed medical air (21% oxygen) and with 100% oxygen challenge. Stretched-exponential and intravoxel incoherent motion (IVIM) models were used to calculate and compare quantitative diffusion parameters: diffusion heterogeneity index (α), intravoxel distribution of diffusion coefficients (DDC), tissue diffusivity (Dt), pseudo-diffusivity (Dp), and perfusion fraction (f) on a voxel-by-voxel basis. A significant increase of α (73.9 ± 4.7% in air vs. 78.1 ± 4.5% in oxygen, P = 0.0198) and a significant decrease of f (13.4 ± 3.7% in air vs. 10.4 ± 2.7% in oxygen, P = 0.0201) were observed to accompany oxygen challenge. Correlations between f and α during both air and oxygen breathing were found; the correlation coefficients (r) were -0.90 and -0.96, respectively. Positive correlations between Dt and DDC with oxygen breathing (r = 0.95, P = 0.0003), f and DDC with air breathing were also observed (r = 0.95, P = 0.0004). Quantitative diffusion MRI demonstrated changes in tumor perfusion in response to oxygen challenge. © 2015 Wiley Periodicals, Inc.

  11. Detection of early subclinical lung disease in children with cystic fibrosis by lung ventilation imaging with hyperpolarised gas MRI.

    PubMed

    Marshall, Helen; Horsley, Alex; Taylor, Chris J; Smith, Laurie; Hughes, David; Horn, Felix C; Swift, Andrew J; Parra-Robles, Juan; Hughes, Paul J; Norquay, Graham; Stewart, Neil J; Collier, Guilhem J; Teare, Dawn; Cunningham, Steve; Aldag, Ina; Wild, Jim M

    2017-08-01

    Hyperpolarised 3 He ventilation-MRI, anatomical lung MRI, lung clearance index (LCI), low-dose CT and spirometry were performed on 19 children (6-16 years) with clinically stable mild cystic fibrosis (CF) (FEV 1 >-1.96), and 10 controls. All controls had normal spirometry, MRI and LCI. Ventilation-MRI was the most sensitive method of detecting abnormalities, present in 89% of patients with CF, compared with CT abnormalities in 68%, LCI 47% and conventional MRI 22%. Ventilation defects were present in the absence of CT abnormalities and in patients with normal physiology, including LCI. Ventilation-MRI is thus feasible in young children, highly sensitive and provides additional information about lung structure-function relationships. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  12. Screening for lung cancer: Does MRI have a role?

    PubMed

    Biederer, Juergen; Ohno, Yoshiharu; Hatabu, Hiroto; Schiebler, Mark L; van Beek, Edwin J R; Vogel-Claussen, Jens; Kauczor, Hans-Ulrich

    2017-01-01

    While the inauguration of national low dose computed tomographic (LDCT) lung cancer screening programs has started in the USA, other countries remain undecided, awaiting the results of ongoing trials. The continuous technical development achieved by stronger gradients, parallel imaging and shorter echo time has made lung magnetic resonance imaging (MRI) an interesting alternative to CT. For the detection of solid lesions with lung MRI, experimental and clinical studies have shown a threshold size of 3-4mm for nodules, with detection rates of 60-90% for lesions of 5-8mm and close to 100% for lesions of 8mm or larger. From experimental work, the sensitivity for infiltrative, non-solid lesions would be expected to be similarly high as that for solid lesions, but the published data for the MRI detection of lepidic growth type adenocarcinoma is sparse. Moreover, biological features such as a longer T2 time of lung cancer tissue, tissue compliance and a more rapid uptake of contrast material compared to granulomatous diseases, in principle should allow for the multi-parametric characterization of lung pathology. Experience with the clinical use of lung MRI is growing. There are now standardized protocols which are easy to implement on current scanner hardware configurations. The image quality has become more robust and currently ongoing studies will help to further contribute experience with multi-center, multi-vendor and multi-platform implementation of this technology. All of the required prerequisites have now been achieved to allow for a dedicated prospective large scale MRI based lung cancer screening trial to investigate the outcomes from using MRI rather than CT for lung cancer screening. This is driven by the hypothesis that MRI would reach a similarly high sensitivity for the detection of early lung cancer with fewer false positive exams (better specificity) than LDCT. The purpose of this review article is to discuss the potential role of lung MRI for the early

  13. Definition of osteoarthritis on MRI: results of a Delphi exercise.

    PubMed

    Hunter, D J; Arden, N; Conaghan, P G; Eckstein, F; Gold, G; Grainger, A; Guermazi, A; Harvey, W; Jones, G; Hellio Le Graverand, M P; Laredo, J D; Lo, G; Losina, E; Mosher, T J; Roemer, F; Zhang, W

    2011-08-01

    sensitivity (0.46) likely due to detection of disease earlier on MRI. We have developed MRI definition of knee OA that requires further formal testing with regards their diagnostic performance (especially in datasets of persons with early disease), before they are more widely used. Our current analysis suggests that further testing should focus on comparisons other than the radiograph, that may capture later stage disease and thus nullify the potential for detecting early disease that MRI may afford. The propositions are not to detract from, nor to discourage the use of traditional means of diagnosing OA. Copyright © 2011 Osteoarthritis Research Society International. All rights reserved.

  14. Discriminative analysis of early Alzheimer's disease based on two intrinsically anti-correlated networks with resting-state fMRI.

    PubMed

    Wang, Kun; Jiang, Tianzi; Liang, Meng; Wang, Liang; Tian, Lixia; Zhang, Xinqing; Li, Kuncheng; Liu, Zhening

    2006-01-01

    In this work, we proposed a discriminative model of Alzheimer's disease (AD) on the basis of multivariate pattern classification and functional magnetic resonance imaging (fMRI). This model used the correlation/anti-correlation coefficients of two intrinsically anti-correlated networks in resting brains, which have been suggested by two recent studies, as the feature of classification. Pseudo-Fisher Linear Discriminative Analysis (pFLDA) was then performed on the feature space and a linear classifier was generated. Using leave-one-out (LOO) cross validation, our results showed a correct classification rate of 83%. We also compared the proposed model with another one based on the whole brain functional connectivity. Our proposed model outperformed the other one significantly, and this implied that the two intrinsically anti-correlated networks may be a more susceptible part of the whole brain network in the early stage of AD.

  15. Modulation of Craving Related Brain Responses Using Real-Time fMRI in Patients with Alcohol Use Disorder

    PubMed Central

    Hümmer, Sebastian; Paolini, Marco; Kirsch, Valerie; Karali, Temmuz; Kupka, Michael; Rauchmann, Boris-Stephan; Chrobok, Agnieszka; Blautzik, Janusch; Koller, Gabi; Ertl-Wagner, Birgit; Pogarell, Oliver

    2015-01-01

    Literature One prominent symptom in addiction disorders is the strong desire to consume a particular substance or to display a certain behaviour (craving). Especially the strong association between craving and the probability of relapse emphasises the importance of craving in the therapeutic process. Neuroimaging studies have shown that craving is associated with increased responses, predominantly in fronto-striatal areas. Aim and Methods The aim of the present study is the modification of craving-related neuronal responses in patients with alcohol addiction using fMRI real-time neurofeedback. For that purpose, patients with alcohol use disorder and healthy controls participated once in neurofeedback training; during the sessions neuronal activity within an individualized cortical region of interest (ROI) (anterior cingulate cortex, insula, dorsolateral prefrontal cortex) was evaluated. In addition, variations regarding the connectivity between brain regions were assessed in the resting state. Results and Discussion The results showed a significant reduction of neuronal activity in patients at the end of the training compared to the beginning, especially in the anterior cingulate cortex, the insula, the inferior temporal gyrus and the medial frontal gyrus. Furthermore, the results show that patients were able to regulate their neuronal activities in the ROI, whereas healthy subjects achieved no significant reduction. However, there was a wide variability regarding the effects of the training within the group of patients. After the neurofeedback-sessions, individual craving was slightly reduced compared to baseline. The results demonstrate that it seems feasible for patients with alcohol dependency to reduce their neuronal activity using rtfMRI neurofeedback. In addition, there is some evidence that craving can be influenced with the help of this technique. Future Prospects In future, real-time fMRI might be a complementary neurophysiological-based strategy for the

  16. [Role of MRI for detection and characterization of pulmonary nodules].

    PubMed

    Sommer, G; Koenigkam-Santos, M; Biederer, J; Puderbach, M

    2014-05-01

    Due to physical and technical limitations, magnetic resonance imaging (MRI) has hitherto played only a minor role in image-based diagnostics of the lungs. However, as a consequence of important methodological developments during recent years, MRI has developed into a technically mature and clinically well-proven method for specific pulmonary questions. The purpose of this article is to provide an overview on the currently available sequences and techniques for assessment of pulmonary nodules and analyzes the clinical significance according to the current literature. The main focus is on the detection of lung metastases, the detection of primary pulmonary malignancies in high-risk individuals and the differentiation between pulmonary nodules of benign and malignant character. The MRI technique has a sensitivity of approximately 80 % for detection of malignant pulmonary nodules compared to the reference standard low-dose computed tomography (CT) and is thus somewhat inferior to CT. Advantages of MRI on the other hand are a higher specificity in differentiating malignant and benign pulmonary nodules and the absence of ionizing radiation exposure. A systematic use of MRI as a primary tool for detection and characterization of pulmonary nodules is currently not recommended due to insufficient data. The diagnostic potential of MRI for early detection and staging of malignant pulmonary diseases, however, seems promising. Therefore, further evaluation of MRI as a secondary imaging modality in clinical trials is highly warranted.

  17. Discrimination of amygdala response predicts future separation anxiety in youth with early deprivation.

    PubMed

    Green, Shulamite A; Goff, Bonnie; Gee, Dylan G; Gabard-Durnam, Laurel; Flannery, Jessica; Telzer, Eva H; Humphreys, Kathryn L; Louie, Jennifer; Tottenham, Nim

    2016-10-01

    Significant disruption in caregiving is associated with increased internalizing symptoms, most notably heightened separation anxiety symptoms during childhood. It is also associated with altered functional development of the amygdala, a neurobiological correlate of anxious behavior. However, much less is known about how functional alterations of amygdala predict individual differences in anxiety. Here, we probed amygdala function following institutional caregiving using very subtle social-affective stimuli (trustworthy and untrustworthy faces), which typically result in large differences in amygdala signal, and change in separation anxiety behaviors over a 2-year period. We hypothesized that the degree of differentiation of amygdala signal to trustworthy versus untrustworthy face stimuli would predict separation anxiety symptoms. Seventy-four youths mean (SD) age = 9.7 years (2.64) with and without previous institutional care, who were all living in families at the time of testing, participated in an fMRI task designed to examine differential amygdala response to trustworthy versus untrustworthy faces. Parents reported on their children's separation anxiety symptoms at the time of scan and again 2 years later. Previous institutional care was associated with diminished amygdala signal differences and behavioral differences to the contrast of untrustworthy and trustworthy faces. Diminished differentiation of these stimuli types predicted more severe separation anxiety symptoms 2 years later. Older age at adoption was associated with diminished differentiation of amygdala responses. A history of institutional care is associated with reduced differential amygdala responses to social-affective cues of trustworthiness that are typically exhibited by comparison samples. Individual differences in the degree of amygdala differential responding to these cues predict the severity of separation anxiety symptoms over a 2-year period. These findings provide a biological

  18. Early response in cognitive-behavior therapy for syndromes of medically unexplained symptoms.

    PubMed

    Kleinstäuber, Maria; Lambert, Michael J; Hiller, Wolfgang

    2017-05-25

    Early dramatic treatment response suggests a subset of patients who respond to treatment before most of it has been offered. These early responders tend to be over represented among those who are well at termination and at follow-up. Early response patterns in psychotherapy have been investigated only for a few of mental disorders so far. The main aim of the current study was to examine early response after five therapy-preparing sessions of a cognitive behavior therapy (CBT) for syndromes of medically unexplained symptoms (MUS). In the context of a randomized, waiting-list controlled trial 48 patients who suffered from ≥3 MUS over ≥6 months received 5 therapy-preparing sessions and 20 sessions of CBT for somatoform disorders. They completed self-report scales of somatic symptom severity (SOMS-7 T), depression (BDI-II), anxiety (BSI), illness anxiety and behavior (IAS) at pre-treatment, after 5 therapy-preparing sessions (FU-5P) and at therapy termination (FU-20 T). The current analyses are based on data from the treatment arm only. Repeated measure ANOVAs revealed a significant decrease of depression (d = 0.34), anxiety (d = 0.60), illness anxiety (d = 0.38) and illness behavior (d = 0.42), but no change of somatic symptom severity (d = -0.03) between pre-treatment and FU-5P. Hierarchical linear multiple regression analyses showed that symptom improvements between pre-treatment and FU-5P predict a better outcome at therapy termination for depression and illness anxiety, after controlling for pre-treatment scores. Mixed-effect ANOVAs revealed significant group*time interaction effects indicating differences in the course of symptom improvement over the therapy between patients who fulfilled a reliable change (i.e., early response) during the 5 therapy-preparing sessions and patients who did not reach an early reliable change. Demographic or clinical variables at pre-treatment were not significantly correlated with differential scores between pre

  19. Changes in brain activation induced by visual stimulus during and after propofol conscious sedation: a functional MRI study.

    PubMed

    Shinohe, Yutaka; Higuchi, Satomi; Sasaki, Makoto; Sato, Masahito; Noda, Mamoru; Joh, Shigeharu; Satoh, Kenichi

    2016-12-07

    Conscious sedation with propofol sometimes causes amnesia while keeping the patient awake. However, it remains unknown how propofol compromises the memory function. Therefore, we investigated the changes in brain activation induced by visual stimulation during and after conscious sedation with propofol using serial functional MRI. Healthy volunteers received a target-controlled infusion of propofol, and underwent functional MRI scans with a block-design paradigm of visual stimulus before, during, and after conscious sedation. Random-effect model analyses were performed using Statistical Parametric Mapping software. Among the areas showing significant activation in response to the visual stimulus, the visual cortex and fusiform gyrus were significantly suppressed in the sedation session and tended to recover in the early-recovery session of ∼20 min (P<0.001, uncorrected). In contrast, decreased activations of the hippocampus, thalamus, inferior frontal cortex (ventrolateral prefrontal cortex), and cerebellum were maintained during the sedation and early-recovery sessions (P<0.001, uncorrected) and were recovered in the late-recovery session of ∼40 min. Temporal changes in the signals from these areas varied in a manner comparable to that described by the random-effect model analysis (P<0.05, corrected). In conclusion, conscious sedation with propofol may cause prolonged suppression of the activation of memory-related structures, such as the hippocampus, during the early-recovery period, which may lead to transient amnesia.

  20. MRI contrast agent for targeting glioma: interleukin-13 labeled liposome encapsulating gadolinium-DTPA.

    PubMed

    Liu, Xiaoli; Madhankumar, Achuthamangalam B; Miller, Patti A; Duck, Kari A; Hafenstein, Susan; Rizk, Elias; Slagle-Webb, Becky; Sheehan, Jonas M; Connor, James R; Yang, Qing X

    2016-05-01

    Detection of glioma with MRI contrast agent is limited to cases in which the blood-brain barrier (BBB) is compromised as contrast agents cannot cross the BBB. Thus, an early-stage infiltrating tumor is not detectable. Interleukin-13 receptor alpha 2 (IL-13Rα2), which has been shown to be overexpressed in glioma, can be used as a target moiety. We hypothesized that liposomes conjugated with IL-13 and encapsulating MRI contrast agent are capable of passing through an intact BBB and producing MRI contrast with greater sensitivity. The targeted MRI contrast agent was created by encapsulating Magnevist (Gd-DTPA) into liposomes conjugated with IL-13 and characterized by particle size distribution, cytotoxicity, and MRI relaxivity. MR image intensity was evaluated in the brain in normal mice post injection of Gd-DTPA and IL-13-liposome-Gd-DTPA one day apart. The specificity for glioma detection by IL-13-liposome-Gd-DTPA was demonstrated in an intracranial glioma mouse model and validated histologically. The average size of IL-13-liposome-Gd-DTPA was 137 ± 43 nm with relaxivity of 4.0 ± 0.4 L/mmole-s at 7 Tesla. No significant cytotoxicity was observed with MTS assay and serum chemistry in mice. The MRI signal intensity was enhanced up to 15% post injection of IL-13-liposome-Gd-DTPA in normal brain tissue following a similar time course as that for the pituitary gland outside of the BBB. MRI enhanced by IL-13-liposome-Gd-DTPA detected small tumor masses in addition to those seen with Magnevist-enhanced MRI. IL-13-liposome-Gd-DTPA is able to pass through the uncompromised BBB and detect an early stage glioma that cannot be seen with conventional contrast-enhanced MRI. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Vessel wall characterization using quantitative MRI: what's in a number?

    PubMed

    Coolen, Bram F; Calcagno, Claudia; van Ooij, Pim; Fayad, Zahi A; Strijkers, Gustav J; Nederveen, Aart J

    2018-02-01

    The past decade has witnessed the rapid development of new MRI technology for vessel wall imaging. Today, with advances in MRI hardware and pulse sequences, quantitative MRI of the vessel wall represents a real alternative to conventional qualitative imaging, which is hindered by significant intra- and inter-observer variability. Quantitative MRI can measure several important morphological and functional characteristics of the vessel wall. This review provides a detailed introduction to novel quantitative MRI methods for measuring vessel wall dimensions, plaque composition and permeability, endothelial shear stress and wall stiffness. Together, these methods show the versatility of non-invasive quantitative MRI for probing vascular disease at several stages. These quantitative MRI biomarkers can play an important role in the context of both treatment response monitoring and risk prediction. Given the rapid developments in scan acceleration techniques and novel image reconstruction, we foresee the possibility of integrating the acquisition of multiple quantitative vessel wall parameters within a single scan session.

  2. Increased fMRI signal with age in familial Alzheimer’s disease mutation carriers

    PubMed Central

    Braskie, Meredith N.; Medina, Luis D.; Rodriguez-Agudelo, Yaneth; Geschwind, Daniel H.; Macias-Islas, Miguel Angel; Cummings, Jeffrey L.; Bookheimer, Susan Y.; Ringman, John M.

    2010-01-01

    Although many Alzheimer’s disease (AD) patients have a family history of the disease, it is rarely inherited in a predictable way. Functional magnetic resonance imaging (fMRI) studies of non-demented adults carrying familial AD mutations provide an opportunity to prospectively identify brain differences associated with early AD-related changes. We compared fMRI activity of 18 non-demented autosomal dominant AD mutation carriers with fMRI activity in 8 of their non-carrier relatives as they performed a novelty encoding task in which they viewed novel and repeated images. Because age of disease onset is relatively consistent within families, we also correlated fMRI activity with subjects’ distance from the median age of diagnosis for their family. Mutation carriers did not show significantly different voxelwise fMRI activity from non-carriers as a group. However, as they approached their family age of disease diagnosis, only mutation carriers showed increased fMRI activity in the fusiform and middle temporal gyri. This suggests that during novelty encoding, increased fMRI activity in the temporal lobe may relate to incipient AD processes. PMID:21129823

  3. MRI to assess renal structure and function.

    PubMed

    Artunc, Ferruh; Rossi, Cristina; Boss, Andreas

    2011-11-01

    In addition to excellent anatomical depiction, MRI techniques have expanded to study functional aspects of renal physiology, such as renal perfusion, glomerular filtration rate (GFR) or tissue oxygenation. This review will focus on current developments with an emphasis on clinical applicability. The method of GFR determination is largely heterogeneous and still has weaknesses. However, the technique of employing liver disappearance curves has been shown to be accurate in healthy persons and patients with chronic kidney disease. In potential kidney donors, complete evaluation of kidney anatomy and function can be accomplished in a single-stop investigation. Techniques without contrast media can be utilized to measure renal tissue oxygenation (blood oxygen level-dependent MRI) or perfusion (arterial spin labeling) and could aid in the diagnosis and treatment of ischemic renal diseases, such as renal artery stenosis. Diffusion imaging techniques may provide information on spatially restricted water diffusion and tumor cellularity. Functional MRI opens new horizons in studying renal physiology and pathophysiology in vivo. Although extensively utilized in research, labor-intensive postprocessing and lack of standardization currently limit the clinical applicability of functional MRI. Further studies are necessary to evaluate the clinical value of functional magnetic resonance techniques for early discovery and characterization of kidney disease.

  4. MRI in early prostate cancer detection: how to manage indeterminate or equivocal PI-RADS 3 lesions?

    PubMed

    Schoots, Ivo G

    2018-02-01

    This review focuses on indeterminate lesions on prostate magnetic resonance imaging (MRI), assigned as PI-RADS category 3. The prevalence of PI-RADS 3 index lesion in the diagnostic work-up is significant, varying between one in three (32%) to one in five (22%) men, depending on patient cohort of first biopsies, previously negative biopsies, and active surveillance biopsies. A management strategy must be developed for this group of men with an indeterminate suspicion of having clinically significant prostate cancer (csPCa). Currently available data show that the actual prevalence of csPCa after targeted biopsy in PI-RADS 3 lesions vary between patients groups from one in five (21%) to one in six (16%), depending on previous biopsy status. Although this prevalence is lower in comparison to PI-RADS 4 and PI-RADS 5 lesions, still a considerable proportion of men harbor significant disease. Men with such a PI-RADS 3 lesion should therefore be adequately managed. In general, the clinical approach of using a threshold of PI-RADS ≥4 instead of PI-RADS ≥3 to select MRI for targeted biopsies is not supported by data from our explorative literature search using current definitions of csPCa. A possible adaptation to the threshold of PI-RADS ≥4 in combination with other clinical markers could be considered within an active surveillance protocol, where the balance between the individual risk of missing csPCa and the constant process of repeating prostate biopsies is crucial. In the future, improvements in MR imaging and interpretation, combined with molecular biomarkers and multivariate risk models will all be employed in prostate cancer detection and monitoring. These combinations will aid decision-making in challenging circumstances, such as unclear and diagnostic equivocal results for csPCa at early detection.

  5. Sex differences, hormones, and fMRI stress response circuitry deficits in psychoses.

    PubMed

    Goldstein, Jill M; Lancaster, Katie; Longenecker, Julia M; Abbs, Brandon; Holsen, Laura M; Cherkerzian, Sara; Whitfield-Gabrieli, Susan; Makris, Nicolas; Tsuang, Ming T; Buka, Stephen L; Seidman, Larry J; Klibanski, Anne

    2015-06-30

    Response to stress is dysregulated in psychosis (PSY). fMRI studies showed hyperactivity in hypothalamus (HYPO), hippocampus (HIPP), amygdala (AMYG), anterior cingulate (ACC), orbital and medial prefrontal (OFC; mPFC) cortices, with some studies reporting sex differences. We predicted abnormal steroid hormone levels in PSY would be associated with sex differences in hyperactivity in HYPO, AMYG, and HIPP, and hypoactivity in PFC and ACC, with more severe deficits in men. We studied 32 PSY cases (50.0% women) and 39 controls (43.6% women) using a novel visual stress challenge while collecting blood. PSY males showed BOLD hyperactivity across all hypothesized regions, including HYPO and ACC by FWE-correction. Females showed hyperactivity in HIPP and AMYG and hypoactivity in OFC and mPFC, the latter FWE-corrected. Interaction of group by sex was significant in mPFC (F = 7.00, p = 0.01), with PSY females exhibiting the lowest activity. Male hyperactivity in HYPO and ACC was significantly associated with hypercortisolemia post-stress challenge, and mPFC with low androgens. Steroid hormones and neural activity were dissociated in PSY women. Findings suggest disruptions in neural circuitry-hormone associations in response to stress are sex-dependent in psychosis, particularly in prefrontal cortex. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Association between early administration of high-dose erythropoietin in preterm infants and brain MRI abnormality at term-equivalent age.

    PubMed

    Leuchter, Russia Ha-Vinh; Gui, Laura; Poncet, Antoine; Hagmann, Cornelia; Lodygensky, Gregory Anton; Martin, Ernst; Koller, Brigitte; Darqué, Alexandra; Bucher, Hans Ulrich; Hüppi, Petra Susan

    2014-08-27

    Premature infants are at risk of developing encephalopathy of prematurity, which is associated with long-term neurodevelopmental delay. Erythropoietin was shown to be neuroprotective in experimental and retrospective clinical studies. To determine if there is an association between early high-dose recombinant human erythropoietin treatment in preterm infants and biomarkers of encephalopathy of prematurity on magnetic resonance imaging (MRI) at term-equivalent age. A total of 495 infants were included in a randomized, double-blind, placebo-controlled study conducted in Switzerland between 2005 and 2012. In a nonrandomized subset of 165 infants (n=77 erythropoietin; n=88 placebo), brain abnormalities were evaluated on MRI acquired at term-equivalent age. Participants were randomly assigned to receive recombinant human erythropoietin (3000 IU/kg; n=256) or placebo (n=239) intravenously before 3 hours, at 12 to 18 hours, and at 36 to 42 hours after birth. The primary outcome of the trial, neurodevelopment at 24 months, has not yet been assessed. The secondary outcome, white matter disease of the preterm infant, was semiquantitatively assessed from MRI at term-equivalent age based on an established scoring method. The resulting white matter injury and gray matter injury scores were categorized as normal or abnormal according to thresholds established in the literature by correlation with neurodevelopmental outcome. At term-equivalent age, compared with untreated controls, fewer infants treated with recombinant human erythropoietin had abnormal scores for white matter injury (22% [17/77] vs 36% [32/88]; adjusted risk ratio [RR], 0.58; 95% CI, 0.35-0.96), white matter signal intensity (3% [2/77] vs 11% [10/88]; adjusted RR, 0.20; 95% CI, 0.05-0.90), periventricular white matter loss (18% [14/77] vs 33% [29/88]; adjusted RR, 0.53; 95% CI, 0.30-0.92), and gray matter injury (7% [5/77] vs 19% [17/88]; adjusted RR, 0.34; 95% CI, 0.13-0.89). In an analysis of secondary

  7. Accounting for the role of hematocrit in between-subject variations of MRI-derived baseline cerebral hemodynamic parameters and functional BOLD responses.

    PubMed

    Xu, Feng; Li, Wenbo; Liu, Peiying; Hua, Jun; Strouse, John J; Pekar, James J; Lu, Hanzhang; van Zijl, Peter C M; Qin, Qin

    2018-01-01

    Baseline hematocrit fraction (Hct) is a determinant for baseline cerebral blood flow (CBF) and between-subject variation of Hct thus causes variation in task-based BOLD fMRI signal changes. We first verified in healthy volunteers (n = 12) that Hct values can be derived reliably from venous blood T 1 values by comparison with the conventional lab test. Together with CBF measured using phase-contrast MRI, this noninvasive estimation of Hct, instead of using a population-averaged Hct value, enabled more individual determination of oxygen delivery (DO 2 ), oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen (CMRO 2 ). The inverse correlation of CBF and Hct explained about 80% of between-subject variation of CBF in this relatively uniform cohort of subjects, as expected based on the regulation of DO 2 to maintain constant CMRO 2 . Furthermore, we compared the relationships of visual task-evoked BOLD response with Hct and CBF. We showed that Hct and CBF contributed 22%-33% of variance in BOLD signal and removing the positive correlation with Hct and negative correlation with CBF allowed normalization of BOLD signal with 16%-22% lower variability. The results of this study suggest that adjustment for Hct effects is useful for studies of MRI perfusion and BOLD fMRI. Hum Brain Mapp 39:344-353, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. fMRI neurofeedback of amygdala response to aversive stimuli enhances prefrontal-limbic brain connectivity.

    PubMed

    Paret, Christian; Ruf, Matthias; Gerchen, Martin Fungisai; Kluetsch, Rosemarie; Demirakca, Traute; Jungkunz, Martin; Bertsch, Katja; Schmahl, Christian; Ende, Gabriele

    2016-01-15

    Down-regulation of the amygdala with real-time fMRI neurofeedback (rtfMRI NF) potentially allows targeting brain circuits of emotion processing and may involve prefrontal-limbic networks underlying effective emotion regulation. Little research has been dedicated to the effect of rtfMRI NF on the functional connectivity of the amygdala and connectivity patterns in amygdala down-regulation with neurofeedback have not been addressed yet. Using psychophysiological interaction analysis of fMRI data, we present evidence that voluntary amygdala down-regulation by rtfMRI NF while viewing aversive pictures was associated with increased connectivity of the right amygdala with the ventromedial prefrontal cortex (vmPFC) in healthy subjects (N=16). In contrast, a control group (N=16) receiving sham feedback did not alter amygdala connectivity (Group×Condition t-contrast: p<.05 at cluster-level). Task-dependent increases in amygdala-vmPFC connectivity were predicted by picture arousal (β=.59, p<.05). A dynamic causal modeling analysis with Bayesian model selection aimed at further characterizing the underlying causal structure and favored a bottom-up model assuming predominant information flow from the amygdala to the vmPFC (xp=.90). The results were complemented by the observation of task-dependent alterations in functional connectivity of the vmPFC with the visual cortex and the ventrolateral PFC in the experimental group (Condition t-contrast: p<.05 at cluster-level). Taken together, the results underscore the potential of amygdala fMRI neurofeedback to influence functional connectivity in key networks of emotion processing and regulation. This may be beneficial for patients suffering from severe emotion dysregulation by improving neural self-regulation. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Utility of Early Post-operative High Resolution Volumetric MR Imaging after Transsphenoidal Pituitary Tumor Surgery

    PubMed Central

    Patel, Kunal S.; Kazam, Jacob; Tsiouris, Apostolos J.; Anand, Vijay K.; Schwartz, Theodore H.

    2014-01-01

    Objective Controversy exists over the utility of early post-operative magnetic resonance imaging (MRI) after transsphenoidal pituitary surgery for macroadenomas. We investigate whether valuable information can be derived from current higher resolution scans. Methods Volumetric MRI scans were obtained in the early (<10 days) and late (>30 days) post-operative periods in a series of patients undergoing transsphenoidal pituitary surgery. The volume of the residual tumor, resection cavity, and corresponding visual field tests were recorded at each time point. Statistical analyses of changes in tumor volume and cavity size were calculated using the late MRI as the gold standard. Results 40 patients met the inclusion criteria. Pre-operative tumor volume averaged 8.8 cm3. Early postoperative assessment of average residual tumor volume (1.18 cm3) was quite accurate and did not differ statistically from late post-operative volume (1.23 cm3, p=.64), indicating the utility of early scans to measure residual tumor. Early scans were 100% sensitive and 91% specific for predicting ≥ 98% resection (p<.001, Fisher’s exact test). The average percent decrease in cavity volume from pre-operative MRI (tumor volume) to early post-operative imaging was 45% with decreases in all but 3 patients. There was no correlation between the size of the early cavity and the visual outcome. Conclusions Early high resolution volumetric MRI is valuable in determining the presence or absence of residual tumor. Cavity volume almost always decreases after surgery and a lack of decrease should alert the surgeon to possible persistent compression of the optic apparatus that may warrant re-operation. PMID:25045791

  10. Evidence-Based Early Reading Practices within a Response to Intervention System

    ERIC Educational Resources Information Center

    Bursuck, Bill; Blanks, Brooke

    2010-01-01

    Many students who experience reading failure are inappropriately placed in special education. A promising response to reducing reading failure and the overidentification of students for special education is Response to Intervention (RTI), a comprehensive early detection and prevention system that allows teachers to identify and support struggling…

  11. Functional magnetic resonance imaging (fMRI) response to alcohol pictures predicts subsequent transition to heavy drinking in college students.

    PubMed

    Dager, Alecia D; Anderson, Beth M; Rosen, Rivkah; Khadka, Sabin; Sawyer, Broderick; Jiantonio-Kelly, Rachel E; Austad, Carol S; Raskin, Sarah A; Tennen, Howard; Wood, Rebecca M; Fallahi, Carolyn R; Pearlson, Godfrey D

    2014-04-01

    Young adults show the highest rates of escalating drinking, yet the neural risk mechanisms remain unclear. Heavy drinkers show variant functional magnetic resonance imaging (fMRI) blood oxygen level-dependent (BOLD) response to alcohol cues, which may presage increasing drinking. In this longitudinal study, we ascertained whether BOLD response to alcohol pictures predicted subsequent heavy drinking among college students. Participants were 43 18-21-year-olds in the United States who underwent BOLD scanning and completed monthly substance use surveys over the following year. Participants were categorized according to baseline and follow-up drinking into 13 continuously moderate drinkers, 16 continuously heavy drinkers and 14 transitioners who drank moderately at baseline but heavily by follow-up. During fMRI scanning at baseline, participants viewed alcohol and matched non-alcohol beverage images. We observed group differences in alcohol cue-elicited BOLD response in bilateral caudate, orbitofrontal cortex, medial frontal cortex/anterior cingulate and left insula (clusters > 2619 ml, voxelwise F(2,40)  > 3.23, P < 0.05, whole-brain corrected P < 0.05), where transitioners hyperactivated compared with moderate and heavy drinkers (all Tukey P < 0.05). Exploratory factor analysis revealed a single brain network differentiating those who subsequently increased drinking. Exploratory regressions showed that, compared with other risk factors (e.g., alcoholism family history, impulsivity), BOLD response best predicted escalating drinking amount and alcohol-related problems. Neural response to pictures of alcohol is substantially enhanced among United States college students who subsequently escalate drinking. Greater cue-reactivity is associated with larger increases in drinking and alcohol-related problems, regardless of other baseline factors. Thus, neural cue-reactivity could uniquely facilitate identifying individuals at greatest risk for future

  12. Real time MRI prostate segmentation based on wavelet multiscale products flow tracking.

    PubMed

    Flores-Tapia, Daniel; Venugopal, Niranjan; Thomas, Gabriel; McCurdy, Boyd; Ryner, Lawrence; Pistorius, Stephen

    2010-01-01

    Currently, prostate cancer is the third leading cause of cancer-related deaths among men in North America. As with many others types of cancer, early detection and treatment greatly increases the patient's chance of survival. Combined Magnetic Resonance Imaging and Spectroscopic Imaging (MRI/MRSI) techniques have became a reliable tool for early stage prostate cancer detection. Nevertheless, their performance is strongly affected by the determination of the region of interest (ROI) prior to data acquisition process. The process of executing prostate MRI/MRSI techniques can be significantly enhanced by segmenting the whole prostate. A novel method for segmentation of the prostate in MRI datasets is presented. This method exploits the different behavior presented by signal singularities and noise in the wavelet domain in order to accurately detect the borders around the prostate. The prostate contour is then traced by using a set of spatially variant rules that are based on prior knowledge about the general shape of the prostate. The proposed method yielded promising results when applied to clinical datasets.

  13. Modulation of cerebral haemodynamic response to olfactory stimuli by emotional valence detected by functional magnetic resonance imaging

    PubMed Central

    Caous, Cristofer André; Tobo, Patrícia Renovato; Talarico, Vânia Hercília; Gonçales, Luciana Ribeiro Lopes; Yoshimine, Elise; da Cruz Jr, Antonio Cesário; Albuquerque, Cristóvão; Amaro Jr, Edson

    2015-01-01

    Olfactory perception, although restricted to just a few contexts in everyday life, is key in medicine. Several dementia conditions have been associated with early loss of olfactory discrimination. Despite the fact that several brain areas have been associated with olfaction in functional magnetic resonance imaging (fMRI), the mechanisms by which emotional valence is conveyed to the brain are not fully understood. Methods In this study, we compared cerebral activations by olfactory stimuli using different emotional valence stimuli on event-related fMRI. We used three standard olfactory odorants with different valence (positive, neutral and negative). Forty-three healthy subjects (22 males) were scanned on a 3.0T MR system. Olfactory stimulation was attained through a delivery system synchronized with image acquisition and subjects´ breathing instructions. fMRI data analysis was performed by the FSL package (Oxford University) including head movement correction, GLM modeling of the neurovascular (BOLD) response and group activation maps produced at p<0.05and corrected for multiple comparison. Results Increased cerebral responses within the anterior cingulate, amygdaloid nuclei, as well as the dorsolateral prefrontal, occipital and orbitofrontal cortices were observed in positive and negative valence conditions, while response to neutral valence arousal was less intense and not observed in the amygdaloid complex. The most significant statistical response aroused from the stimuli clusters was observed in the negative condition. Conclusion The results of the present study support the hypothesis that neutral stimuli may be more sensitive to early losses in pathological conditions, particularly dementia. PMID:29213990

  14. Cortisol Response to Psychosocial Stress in Chinese Early Puberty Girls: Possible Role of Depressive Symptoms.

    PubMed

    Sun, Ying; Deng, Fang; Liu, Yang; Tao, Fang-Biao

    2015-01-01

    Objective. The present study aimed at investigating unique patterns of salivary cortisol reactivity and recovery in response to a social stressor among girls with early puberty and exploring possible role of depressive symptom in this association. Design. Case-control study. Patients. Fifty-six girls with early puberty and age- and body mass index- (BMI-) matched normal puberty controls (n = 56) were selected. Measurements. Salivary cortisol was measured in response to the Groningen Social Stress Test for Children. Results. Girls with early puberty had higher cortisol concentration at the end of the GSST (C3), cortisol concentration 20 min after the end of the GSST (C4), and AUC increment (AUCi) compared to non-early puberty girls. Depressive symptoms correlated with blunted HPA reactivity among girls with early puberty. Conclusion. This study demonstrated the disturbance effect of objectively examined early pubertal timing on HPA axis responses. It also suggested that stress reactivity might be blunted for individuals with depressive symptoms.

  15. Distortion Products in Auditory fMRI Research: Measurements and Solutions

    PubMed Central

    Norman-Haignere, Sam; McDermott, Josh H.

    2016-01-01

    Nonlinearities in the cochlea can introduce audio frequencies that are not present in the sound signal entering the ear. Known as distortion products (DPs), these added frequencies complicate the interpretation of auditory experiments. Sound production systems also introduce distortion via nonlinearities, a particular concern for fMRI research because the Sensimetrics earphones widely used for sound presentation are less linear than most high-end audio devices (due to design constraints). Here we describe the acoustic and neural effects of cochlear and earphone distortion in the context of fMRI studies of pitch perception, and discuss how their effects can be minimized with appropriate stimuli and masking noise. The amplitude of cochlear and Sensimetrics earphone DPs were measured for a large collection of harmonic stimuli to assess effects of level, frequency, and waveform amplitude. Cochlear DP amplitudes were highly sensitive to the absolute frequency of the DP, and were most prominent at frequencies below 300 Hz. Cochlear DPs could thus be effectively masked by low-frequency noise, as expected. Earphone DP amplitudes, in contrast, were highly sensitive to both stimulus and DP frequency (due to prominent resonances in the earphone’s transfer function), and their levels grew more rapidly with increasing stimulus level than did cochlear DP amplitudes. As a result, earphone DP amplitudes often exceeded those of cochlear DPs. Using fMRI, we found that earphone DPs had a substantial effect on the response of pitch-sensitive cortical regions. In contrast, cochlear DPs had a small effect on cortical fMRI responses that did not reach statistical significance, consistent with their lower amplitudes. Based on these findings, we designed a set of pitch stimuli optimized for identifying pitch-responsive brain regions using fMRI. These stimuli robustly drive pitch-responsive brain regions while producing minimal cochlear and earphone distortion, and will hopefully aid fMRI

  16. Distortion products in auditory fMRI research: Measurements and solutions.

    PubMed

    Norman-Haignere, Sam; McDermott, Josh H

    2016-04-01

    Nonlinearities in the cochlea can introduce audio frequencies that are not present in the sound signal entering the ear. Known as distortion products (DPs), these added frequencies complicate the interpretation of auditory experiments. Sound production systems also introduce distortion via nonlinearities, a particular concern for fMRI research because the Sensimetrics earphones widely used for sound presentation are less linear than most high-end audio devices (due to design constraints). Here we describe the acoustic and neural effects of cochlear and earphone distortion in the context of fMRI studies of pitch perception, and discuss how their effects can be minimized with appropriate stimuli and masking noise. The amplitude of cochlear and Sensimetrics earphone DPs were measured for a large collection of harmonic stimuli to assess effects of level, frequency, and waveform amplitude. Cochlear DP amplitudes were highly sensitive to the absolute frequency of the DP, and were most prominent at frequencies below 300 Hz. Cochlear DPs could thus be effectively masked by low-frequency noise, as expected. Earphone DP amplitudes, in contrast, were highly sensitive to both stimulus and DP frequency (due to prominent resonances in the earphone's transfer function), and their levels grew more rapidly with increasing stimulus level than did cochlear DP amplitudes. As a result, earphone DP amplitudes often exceeded those of cochlear DPs. Using fMRI, we found that earphone DPs had a substantial effect on the response of pitch-sensitive cortical regions. In contrast, cochlear DPs had a small effect on cortical fMRI responses that did not reach statistical significance, consistent with their lower amplitudes. Based on these findings, we designed a set of pitch stimuli optimized for identifying pitch-responsive brain regions using fMRI. These stimuli robustly drive pitch-responsive brain regions while producing minimal cochlear and earphone distortion, and will hopefully aid fMRI

  17. Sex differences in the response to emotional distraction: an event-related fMRI investigation.

    PubMed

    Iordan, Alexandru D; Dolcos, Sanda; Denkova, Ekaterina; Dolcos, Florin

    2013-03-01

    Evidence has suggested that women have greater emotional reactivity than men. However, it is unclear whether these differences in basic emotional responses are also associated with differences in emotional distractibility, and what the neural mechanisms that implement differences in emotional distractibility between women and men are. Functional MRI recording was used in conjunction with a working memory (WM) task, with emotional distraction (angry faces) presented during the interval between the memoranda and the probes. First, we found an increased impact of emotional distraction among women in trials associated with high-confidence responses, in the context of overall similar WM performance in women and men. Second, women showed increased sensitivity to emotional distraction in brain areas associated with "hot" emotional processing, whereas men showed increased sensitivity in areas associated with "cold" executive processing, in the context of overall similar patterns of response to emotional distraction in women and men. Third, a sex-related dorsal-ventral hemispheric dissociation emerged in the lateral PFC related to coping with emotional distraction, with women showing a positive correlation with WM performance in left ventral PFC, and men showing similar effects in the right dorsal PFC. In addition to extending to men results that have previously been reported in women, by showing that both sexes engage mechanisms that are similar overall in response to emotional distraction, the present study identifies sex differences in both the response to and coping with emotional distraction. These results have implications for understanding sex differences in the susceptibility to affective disorders, in which basic emotional responses, emotional distractibility, and coping abilities are altered.

  18. The Processing of Somatosensory Information Shifts from an Early Parallel into a Serial Processing Mode: A Combined fMRI/MEG Study.

    PubMed

    Klingner, Carsten M; Brodoehl, Stefan; Huonker, Ralph; Witte, Otto W

    2016-01-01

    The question regarding whether somatosensory inputs are processed in parallel or in series has not been clearly answered. Several studies that have applied dynamic causal modeling (DCM) to fMRI data have arrived at seemingly divergent conclusions. However, these divergent results could be explained by the hypothesis that the processing route of somatosensory information changes with time. Specifically, we suggest that somatosensory stimuli are processed in parallel only during the early stage, whereas the processing is later dominated by serial processing. This hypothesis was revisited in the present study based on fMRI analyses of tactile stimuli and the application of DCM to magnetoencephalographic (MEG) data collected during sustained (260 ms) tactile stimulation. Bayesian model comparisons were used to infer the processing stream. We demonstrated that the favored processing stream changes over time. We found that the neural activity elicited in the first 100 ms following somatosensory stimuli is best explained by models that support a parallel processing route, whereas a serial processing route is subsequently favored. These results suggest that the secondary somatosensory area (SII) receives information regarding a new stimulus in parallel with the primary somatosensory area (SI), whereas later processing in the SII is dominated by the preprocessed input from the SI.

  19. The Processing of Somatosensory Information Shifts from an Early Parallel into a Serial Processing Mode: A Combined fMRI/MEG Study

    PubMed Central

    Klingner, Carsten M.; Brodoehl, Stefan; Huonker, Ralph; Witte, Otto W.

    2016-01-01

    The question regarding whether somatosensory inputs are processed in parallel or in series has not been clearly answered. Several studies that have applied dynamic causal modeling (DCM) to fMRI data have arrived at seemingly divergent conclusions. However, these divergent results could be explained by the hypothesis that the processing route of somatosensory information changes with time. Specifically, we suggest that somatosensory stimuli are processed in parallel only during the early stage, whereas the processing is later dominated by serial processing. This hypothesis was revisited in the present study based on fMRI analyses of tactile stimuli and the application of DCM to magnetoencephalographic (MEG) data collected during sustained (260 ms) tactile stimulation. Bayesian model comparisons were used to infer the processing stream. We demonstrated that the favored processing stream changes over time. We found that the neural activity elicited in the first 100 ms following somatosensory stimuli is best explained by models that support a parallel processing route, whereas a serial processing route is subsequently favored. These results suggest that the secondary somatosensory area (SII) receives information regarding a new stimulus in parallel with the primary somatosensory area (SI), whereas later processing in the SII is dominated by the preprocessed input from the SI. PMID:28066197

  20. Application of a biodegradable macromolecular contrast agent in dynamic contrast enhanced MRI for assessing the efficacy of indocyanine green enhanced photothermal cancer therapy

    PubMed Central

    Feng, Yi; Emerson, Lyska; Jeong, Eun-Kee; Parker, Dennis L.; Lu, Zheng-Rong

    2009-01-01

    Purpose To investigate the effectiveness of a polydisulfide-based biodegradable macromolecular contrast agent, (Gd-DTPA)-cystamine copolymers (GDCC), in assessing the efficacy of indocyanine green enhanced photothermal cancer therapy using dynamic contrast enhanced MRI (DCE-MRI). Materials and Methods Breast cancer xenografts in mice were injected with indocyanine green and irradiated with laser. The efficacy was assessed using DCE-MRI with GDCC of 40 KDa (GDCC-40) at 4 hours and 7 days after the treatment. The uptake of GDCC-40 by the tumors was fit to a two-compartment model to obtain tumor vascular parameters, including fractional plasma volume (fPV), endothelium transfer coefficient (KPS), and permeability surface area product (PS). Results GDCC-40 resulted in similar tumor vascular parameters at three doses with larger standard deviations at lower doses. The values of fPV, KPS and PS of the treated tumors were smaller (p < 0.05) than those of untreated tumors at 4 hours after the treatment and recovered to pretreatment values (p > 0.05) at 7 days after the treatment. Conclusion DCE-MRI with GDCC-40 is effective for assessing tumor early response to dye-enhanced photothermal therapy and detecting tumor relapse after the treatment. GDCC-40 has a potential to non-invasively monitor anticancer therapies with DCE-MRI. PMID:19629979

  1. Predictors of Responsiveness to Early Literacy Intervention: A 10-Year Update

    ERIC Educational Resources Information Center

    Lam, Elizabeth A.; McMaster, Kristen L.

    2014-01-01

    The purpose of this review was to update previous reviews on factors related to students' responsiveness to early literacy intervention. The 14 studies in this synthesis used experimental designs, provided small-group or one-on-one reading interventions, and analyzed factors related to responsiveness to those interventions. Participants were…

  2. Juvenile Dermatomyositis: Key Roles of Muscle Magnetic Resonance Imaging and Early Aggressive Treatment.

    PubMed

    Corral-Magaña, O; Bauzá-Alonso, A F; Escudero-Góngora, M M; Lacruz, L; Martín-Santiago, A

    2017-09-12

    Juvenile dermatomyositis is a rare systemic connective tissue disease with onset during childhood. It presents clinically with proximal muscle weakness and characteristic skin involvement. Diagnosis is based on the Bohan and Peter criteria, though many authors are now substituting biopsy with muscle magnetic resonance imaging (MRI) for both diagnosis and follow-up. Without intensive early treatment, complications such as calcinosis cutis and lipodystrophy can develop in the chronic phases of the disease. Early recognition is therefore key to management. We present a series of 5 patients who were diagnosed with Juvenile dermatomyositis on muscle MRI without undergoing muscle biopsy and who received early treatment. We draw attention to the usefulness of muscle MRI for the diagnosis of muscle involvement and to the importance of early initiation of intensive treatment to prevent complications. Copyright © 2017 AEDV. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. Comparison of BOLD, diffusion-weighted fMRI and ADC-fMRI for stimulation of the primary visual system with a block paradigm.

    PubMed

    Nicolas, R; Gros-Dagnac, H; Aubry, F; Celsis, P

    2017-06-01

    The blood oxygen level-dependent (BOLD) effect is extensively used for functional MRI (fMRI) but presents some limitations. Diffusion-weighted fMRI (DfMRI) has been proposed as a method more tightly linked to neuronal activity. This work proposes a protocol of DfMRI acquired for several b-values and diffusion directions that is compared to gradient-echo BOLD (GE-BOLD) and to repeated spin-echo BOLD (SE-BOLD, acquisitions performed with b=0s/mm 2 ), which was also used to ensure the reproducibility of the response. A block stimulation paradigm of the primary visual system (V1) was performed in 12 healthy subjects with checkerboard alternations (2Hz frequency). DfMRI was performed at 3T with 5 b-values (b=1500, 1000, 500, 250, 0s/mm 2 ) with TR/TE=1004/93ms, Δ/δ=45.4ms/30ms, and 6 spatial directions for diffusion measures. GE-BOLD was performed with a similar block stimulation design timing. Apparent Diffusion Coefficient (ADC)-fMRI was computed with all b-values used. An identical Z-score level was used for all fMRI modalities for the comparison of volumes of activation. ADC-fMRI and SE-BOLD fMRI activation locations were compared in a voxel-based analysis to a cytoarchitectural probability map of V1. SE-BOLD activation volumes represented only 55% of the GE-BOLD activation volumes (P<0.0001). DfMRI activation volumes averaged for all b-values acquired represented only 12% of GE-BOLD (P<0.0001) and only 22% of SE-BOLD activation volumes (P<0.005). Compared to SE-BOLD-fMRI, ADC-fMRI activations showed fewer pixels outside of V1 and a higher average probability of belonging to V1. DfMRI and ADC-fMRI acquisition at 3T could be easily post-processed with common neuro-imaging software. DfMRI and ADC-fMRI activation volumes were significantly smaller than those obtained with SE-BOLD. ADC-fMRI activations were more precisely localized in V1 than those of SE-BOLD-fMRI. This validated the increased capability of ADC-fMRI compared to BOLD to enhance the precision of

  4. Cortisol Stress Response Variability in Early Adolescence Attachment, Affect and Sex

    PubMed Central

    Cameron, Catherine Ann; McKay, Stacey; Susman, Elizabeth J.; Wynne-Edwards, Katherine; Wright, Joan M.; Weinberg, Joanne

    2017-01-01

    Attachment, affect, and sex shape responsivity to psychosocial stress. Concurrent social contexts influence cortisol secretion, a stress hormone and biological marker of hypothalamic–pituitary–adrenal axis activity. Patterns of attachment, emotion status, and sex were hypothesized to relate to bifurcated, that is, accentuated and attenuated, cortisol reactivity. The theoretical framework for this study posits that multiple individual differences mediate a cortisol stress response. The effects of two psychosocial stress interventions, a modified Trier Social Stress Test for Teens and the Frustration Social Stressor for Adolescents were developed and investigated with early adolescents. Both of these protocols induced a significant stress reaction and evoked predicted bifurcation in cortisol responses; an increase or decrease from baseline to reactivity. In Study I, 120 predominantly middle-class, Euro-Canadian early adolescents with a mean age of 13.43 years were studied. The girls' attenuated cortisol reactivity to the public performance stressor related significantly to their self-reported lower maternal-attachment and higher trait-anger. In Study II, a community sample of 146 predominantly Euro-Canadian middle-class youth, with an average age of 14.5 years participated. Their self-reports of higher trait-anger and trait-anxiety, and lower parental attachment by both sexes related differentially to accentuated and attenuated cortisol reactivity to the frustration stressor. Thus, attachment, affect, sex, and the stressor contextual factors were associated with the adrenal-cortical responses of these adolescents through complex interactions. Further studies of individual differences in physiological responses to stress are called for in order to clarify the identities of concurrent protective and risk factors in the psychosocial stress and physiological stress responses of early adolescents. PMID:27468997

  5. Cortisol Stress Response Variability in Early Adolescence: Attachment, Affect and Sex.

    PubMed

    Cameron, Catherine Ann; McKay, Stacey; Susman, Elizabeth J; Wynne-Edwards, Katherine; Wright, Joan M; Weinberg, Joanne

    2017-01-01

    Attachment, affect, and sex shape responsivity to psychosocial stress. Concurrent social contexts influence cortisol secretion, a stress hormone and biological marker of hypothalamic-pituitary-adrenal axis activity. Patterns of attachment, emotion status, and sex were hypothesized to relate to bifurcated, that is, accentuated and attenuated, cortisol reactivity. The theoretical framework for this study posits that multiple individual differences mediate a cortisol stress response. The effects of two psychosocial stress interventions, a modified Trier Social Stress Test for Teens and the Frustration Social Stressor for Adolescents were developed and investigated with early adolescents. Both of these protocols induced a significant stress reaction and evoked predicted bifurcation in cortisol responses; an increase or decrease from baseline to reactivity. In Study I, 120 predominantly middle-class, Euro-Canadian early adolescents with a mean age of 13.43 years were studied. The girls' attenuated cortisol reactivity to the public performance stressor related significantly to their self-reported lower maternal-attachment and higher trait-anger. In Study II, a community sample of 146 predominantly Euro-Canadian middle-class youth, with an average age of 14.5 years participated. Their self-reports of higher trait-anger and trait-anxiety, and lower parental attachment by both sexes related differentially to accentuated and attenuated cortisol reactivity to the frustration stressor. Thus, attachment, affect, sex, and the stressor contextual factors were associated with the adrenal-cortical responses of these adolescents through complex interactions. Further studies of individual differences in physiological responses to stress are called for in order to clarify the identities of concurrent protective and risk factors in the psychosocial stress and physiological stress responses of early adolescents.

  6. Biomedical Applications of Sodium MRI In Vivo

    PubMed Central

    Madelin, Guillaume; Regatte, Ravinder R.

    2013-01-01

    In this article, we present an up-to-date overview of the potential biomedical applications of sodium MRI in vivo. Sodium MRI is a subject of increasing interest in translational imaging research as it can give some direct and quantitative biochemical information on the tissue viability, cell integrity and function, and therefore not only help the diagnosis but also the prognosis of diseases and treatment outcomes. It has already been applied in vivo in most of human tissues, such as brain for stroke or tumor detection and therapeutic response, in breast cancer, in articular cartilage, in muscle and in kidney, and it was shown in some studies that it could provide very useful new information not available through standard proton MRI. However, this technique is still very challenging due to the low detectable sodium signal in biological tissue with MRI and hardware/software limitations of the clinical scanners. The article is divided in three parts: (1) the role of sodium in biological tissues, (2) a short review on sodium magnetic resonance, and (3) a review of some studies on sodium MRI on different organs/diseases to date. PMID:23722972

  7. Abnormal Social Reward Responses in Anorexia Nervosa: An fMRI Study.

    PubMed

    Via, Esther; Soriano-Mas, Carles; Sánchez, Isabel; Forcano, Laura; Harrison, Ben J; Davey, Christopher G; Pujol, Jesús; Martínez-Zalacaín, Ignacio; Menchón, José M; Fernández-Aranda, Fernando; Cardoner, Narcís

    2015-01-01

    Patients with anorexia nervosa (AN) display impaired social interactions, implicated in the development and prognosis of the disorder. Importantly, social behavior is modulated by reward-based processes, and dysfunctional at-brain-level reward responses have been involved in AN neurobiological models. However, no prior evidence exists of whether these neural alterations would be equally present in social contexts. In this study, we conducted a cross-sectional social-judgment functional magnetic resonance imaging (fMRI) study of 20 restrictive-subtype AN patients and 20 matched healthy controls. Brain activity during acceptance and rejection was investigated and correlated with severity measures (Eating Disorder Inventory -EDI-2) and with personality traits of interest known to modulate social behavior (The Sensitivity to Punishment and Sensitivity to Reward Questionnaire). Patients showed hypoactivation of the dorsomedial prefrontal cortex (DMPFC) during social acceptance and hyperactivation of visual areas during social rejection. Ventral striatum activation during rejection was positively correlated in patients with clinical severity scores. During acceptance, activation of the frontal opercula-anterior insula and dorsomedial/dorsolateral prefrontal cortices was differentially associated with reward sensitivity between groups. These results suggest an abnormal motivational drive for social stimuli, and involve overlapping social cognition and reward systems leading to a disruption of adaptive responses in the processing of social reward. The specific association of reward-related regions with clinical and psychometric measures suggests the putative involvement of reward structures in the maintenance of pathological behaviors in AN.

  8. Functional MRI of human pancreas using BOLD contrast: Responses following glucose ingestion.

    PubMed

    Chen, Bozhu; Chen, Weibo; Chan, Queenie; Zhou, Nan; He, Jian; Zhou, Zhengyang

    2017-09-01

    To evaluate the response of the pancreas to glucose ingestion in healthy volunteers by blood oxygenation level-dependent (BOLD) magnetic resonance imaging (MRI). This study was approved by the local Ethics Committee, and informed consent was obtained from all subjects. A multiple gradient recalled echo (mGRE) sequence was performed on a 3.0T MR scanner in 12 healthy volunteers before and after glucose or water ingestion. Pancreatic T2* values were calculated from it at each timepoint, and changes following stimulation were analyzed using summary measures. The valley values and times were compared between the glucose and water ingestion by paired samples t-test. The repeatability of the pancreatic T2* measurements was assessed by calculating the intraclass correlation coefficient (ICC) and coefficient of variation (CV). Pancreatic T2* measurements showed good repeatability (all ICC >0.75). CV for the six baseline acquisitions was 2.74 ± 0.97%, indicating a 5.37% measurement error. A transient but significant decrease (-6.88 ± 1.01%, P value, 0.0005-0.0467) in the pancreatic T2* values was observed within 5 minutes after glucose ingestion, rather than water consumption. Compared to water, glucose ingestion induced earlier (valley times: 3.46 ± 3.22 vs. 7.75 ± 4.09 min, P = 0.0006) and remarkable pancreatic T2* decrease (valley values: -15.33 ± 5.90% vs. -6.88 ± 3.11%, P = 0.0006). BOLD MRI enabled noninvasive quantification of pancreatic T2* changes during glucose stimulation. Glucose ingestion resulted in a rapid and significant pancreatic T2* decrease in healthy young volunteers. 1 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:831-836. © 2017 International Society for Magnetic Resonance in Medicine.

  9. The effects of orientation and attention during surround suppression of small image features: A 7 Tesla fMRI study.

    PubMed

    Schallmo, Michael-Paul; Grant, Andrea N; Burton, Philip C; Olman, Cheryl A

    2016-08-01

    Although V1 responses are driven primarily by elements within a neuron's receptive field, which subtends about 1° visual angle in parafoveal regions, previous work has shown that localized fMRI responses to visual elements reflect not only local feature encoding but also long-range pattern attributes. However, separating the response to an image feature from the response to the surrounding stimulus and studying the interactions between these two responses demands both spatial precision and signal independence, which may be challenging to attain with fMRI. The present study used 7 Tesla fMRI with 1.2-mm resolution to measure the interactions between small sinusoidal grating patches (targets) at 3° eccentricity and surrounds of various sizes and orientations to test the conditions under which localized, context-dependent fMRI responses could be predicted from either psychophysical or electrophysiological data. Targets were presented at 8%, 16%, and 32% contrast while manipulating (a) spatial extent of parallel (strongly suppressive) or orthogonal (weakly suppressive) surrounds, (b) locus of attention, (c) stimulus onset asynchrony between target and surround, and (d) blocked versus event-related design. In all experiments, the V1 fMRI signal was lower when target stimuli were flanked by parallel versus orthogonal context. Attention amplified fMRI responses to all stimuli but did not show a selective effect on central target responses or a measurable effect on orientation-dependent surround suppression. Suppression of the V1 fMRI response by parallel surrounds was stronger than predicted from psychophysics but showed a better match to previous electrophysiological reports.

  10. Automated scoring of regional lung perfusion in children from contrast enhanced 3D MRI

    NASA Astrophysics Data System (ADS)

    Heimann, Tobias; Eichinger, Monika; Bauman, Grzegorz; Bischoff, Arved; Puderbach, Michael; Meinzer, Hans-Peter

    2012-03-01

    MRI perfusion images give information about regional lung function and can be used to detect pulmonary pathologies in cystic fibrosis (CF) children. However, manual assessment of the percentage of pathologic tissue in defined lung subvolumes features large inter- and intra-observer variation, making it difficult to determine disease progression consistently. We present an automated method to calculate a regional score for this purpose. First, lungs are located based on thresholding and morphological operations. Second, statistical shape models of left and right children's lungs are initialized at the determined locations and used to precisely segment morphological images. Segmentation results are transferred to perfusion maps and employed as masks to calculate perfusion statistics. An automated threshold to determine pathologic tissue is calculated and used to determine accurate regional scores. We evaluated the method on 10 MRI images and achieved an average surface distance of less than 1.5 mm compared to manual reference segmentations. Pathologic tissue was detected correctly in 9 cases. The approach seems suitable for detecting early signs of CF and monitoring response to therapy.

  11. MRI and MRS alterations in the preclinical phase of murine prion disease: association with neuropathological and behavioural changes.

    PubMed

    Broom, Kerry A; Anthony, Daniel C; Lowe, John P; Griffin, Julian L; Scott, Helen; Blamire, Andrew M; Styles, Peter; Perry, V Hugh; Sibson, Nicola R

    2007-06-01

    Prion diseases are fatal chronic neurodegenerative diseases. Previous qualitative magnetic resonance imaging (MRI) and spectroscopy (MRS) studies report conflicting results in the symptomatic stages of the disease, but little work has been carried out during the earlier stages of the disease. Here we have used the murine ME7 model of prion disease to quantitatively investigate MRI and MRS changes during the period prior to the onset of overt clinical signs (20+ weeks) and have correlated these with pathological and behavioural abnormalities. Using in vivo MRI, at the later stages of the preclinical period (18 weeks) the diffusion of tissue water was significantly reduced, coinciding with significant microglial activation and behavioural hyperactivity. Using in vivo MRS, we found early (12 weeks) decreases in the ratio of N-acetyl aspartate to both choline (NAA/Cho) and creatine (NAA/Cr) in the thalamus and hippocampus, which were associated with early behavioural deficits. Ex vivo MRS of brain extracts confirmed and extended these findings, showing early (8-12 weeks) decreases in both the neuronal metabolites NAA and glutamate, and the metabolic metabolites lactate and glucose. Increases in the glial metabolite myo-inositol were observed at later stages when microglial and astrocyte activation is substantial. These changes in MRI and MRS signals, which precede overt clinical signs of disease, could provide insights into the pathogenesis of this disease and may enable early detection of pathology.

  12. Localization of cortical primary motor area of the hand using navigated transcranial magnetic stimulation, BOLD and arterial spin labeling fMRI.

    PubMed

    Kallioniemi, Elisa; Pitkänen, Minna; Könönen, Mervi; Vanninen, Ritva; Julkunen, Petro

    2016-11-01

    Although the relationship between neuronavigated transcranial magnetic stimulation (nTMS) and functional magnetic resonance imaging (fMRI) has been widely studied in motor mapping, it is unknown how the motor response type or the choice of motor task affect this relationship. Centers of gravity (CoGs) and response maxima were measured with blood-oxygen-level dependent (BOLD) and arterial spin labeling (ASL) fMRI during motor tasks against nTMS CoGs and response maxima, which were mapped with motor evoked potentials (MEPs) and silent periods (SPs). No differences in motor representations (CoGs and response maxima) were observed in lateral-medial direction (p=0.265). fMRI methods localized the motor representation more posterior than nTMS (p<0.001). This was not affected by the BOLD fMRI motor task (p>0.999) nor nTMS response type (p>0.999). ASL fMRI maxima did not differ from the nTMS nor BOLD fMRI CoGs (p≥0.070), but the ASL CoG was deeper in comparison to other methods (p≤0.042). The BOLD fMRI motor task did not influence the depth of the motor representation (p≥0.745). The median Euclidean distances between the nTMS and fMRI motor representations varied between 7.7mm and 14.5mm and did not differ between the methods (F≤1.23, p≥0.318). The relationship between fMRI and nTMS mapped excitatory (MEP) and inhibitory (SP) responses, and whether the choice of motor task affects this relationship, have not been studied before. The congruence between fMRI and nTMS is good. The choice of nTMS motor response type nor BOLD fMRI motor task had no effect on this relationship. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Early stage response problem for post-disaster incidents

    NASA Astrophysics Data System (ADS)

    Kim, Sungwoo; Shin, Youngchul; Lee, Gyu M.; Moon, Ilkyeong

    2018-07-01

    Research on evacuation plans for reducing damages and casualties has been conducted to advise defenders against threats. However, despite the attention given to the research in the past, emergency response management, designed to neutralize hazards, has been undermined since planners frequently fail to apprehend the complexities and contexts of the emergency situation. Therefore, this study considers a response problem with unique characteristics for the duration of the emergency. An early stage response problem is identified to find the optimal routing and scheduling plan for responders to prevent further hazards. Due to the complexity of the proposed mathematical model, two algorithms are developed. Data from a high-rise building, called Central City in Seoul, Korea, are used to evaluate the algorithms. Results show that the proposed algorithms can procure near-optimal solutions within a reasonable time.

  14. Changes in spontaneous brain activity in early Parkinson's disease.

    PubMed

    Yang, Hong; Zhou, Xiaohong Joe; Zhang, Min-Ming; Zheng, Xu-Ning; Zhao, Yi-Lei; Wang, Jue

    2013-08-09

    Resting state brain activity can provide valuable insights into the pathophysiology of Parkinson's disease (PD). The purpose of the present study was (a) to investigate abnormal spontaneous neuronal activity in early PD patients using resting-state functional MRI (fMRI) with a regional homogeneity (ReHo) method and (b) to demonstrate the potential of using changes in abnormal spontaneous neuronal activity for monitoring the progression of PD during its early stages. Seventeen early PD patients were assessed with the Unified Parkinson's Disease Rating Scale (UPDRS), the Hoehn and Yahr disability scale and the Mini-mental State Examination (MMSE) were compared with seventeen gender- and age-matched healthy controls. All subjects underwent MRI scans using a 1.5T General Electric Signa Excite II scanner. The MRI scan protocol included whole-brain volumetric imaging using a 3D inversion recovery prepared (IR-Prep) fast spoiled gradient-echo pulse sequence and 2D multi-slice (22 axial slices covering the whole brain) resting-state fMRI using an echo planar imaging (EPI) sequence. Images were analyzed in SPM5 together with a ReHo algorithm using the in-house software program REST. A corrected threshold of p<0.05 was determined by AlphaSim and used in statistical analysis. Compared with the healthy controls, the early PD group showed significantly increased ReHo in a number of brain regions, including the left cerebellum, left parietal lobe, right middle temporal lobe, right sub-thalamic nucleus areas, right superior frontal gyrus, middle frontal gyrus (MFG), right inferior parietal lobe (IPL), right precuneus lobe, left MFG and left IPL. Additionally, significantly reduced ReHo was also observed in the early PD patients in the following brain regions: the left putamen, left inferior frontal gyrus, right hippocampus, right anterior cingulum, and bilateral lingual gyrus. Moreover, in PD patients, ReHo in the left putamen was negatively correlated with the UPDRS scores (r=-0

  15. Optimized breast MRI functional tumor volume as a biomarker of recurrence-free survival following neoadjuvant chemotherapy.

    PubMed

    Jafri, Nazia F; Newitt, David C; Kornak, John; Esserman, Laura J; Joe, Bonnie N; Hylton, Nola M

    2014-08-01

    To evaluate optimal contrast kinetics thresholds for measuring functional tumor volume (FTV) by breast magnetic resonance imaging (MRI) for assessment of recurrence-free survival (RFS). In this Institutional Review Board (IRB)-approved retrospective study of 64 patients (ages 29-72, median age of 48.6) undergoing neoadjuvant chemotherapy (NACT) for breast cancer, all patients underwent pre-MRI1 and postchemotherapy MRI4 of the breast. Tumor was defined as voxels meeting thresholds for early percent enhancement (PEthresh) and early-to-late signal enhancement ratio (SERthresh); and FTV (PEthresh, SERthresh) by summing all voxels meeting threshold criteria and minimum connectivity requirements. Ranges of PEthresh from 50% to 220% and SERthresh from 0.0 to 2.0 were evaluated. A Cox proportional hazard model determined associations between change in FTV over treatment and RFS at different PE and SER thresholds. The plot of hazard ratios for change in FTV from MRI1 to MRI4 showed a broad peak with the maximum hazard ratio and highest significance occurring at PE threshold of 70% and SER threshold of 1.0 (hazard ratio = 8.71, 95% confidence interval 2.86-25.5, P < 0.00015), indicating optimal model fit. Enhancement thresholds affect the ability of MRI tumor volume to predict RFS. The value is robust over a wide range of thresholds, supporting the use of FTV as a biomarker. © 2013 Wiley Periodicals, Inc.

  16. Quantitative Multi-Parametric Magnetic Resonance Imaging of Tumor Response to Photodynamic Therapy.

    PubMed

    Schreurs, Tom J L; Hectors, Stefanie J; Jacobs, Igor; Grüll, Holger; Nicolay, Klaas; Strijkers, Gustav J

    2016-01-01

    The aim of this study was to characterize response to photodynamic therapy (PDT) in a mouse cancer model using a multi-parametric quantitative MRI protocol and to identify MR parameters as potential biomarkers for early assessment of treatment outcome. CT26.WT colon carcinoma tumors were grown subcutaneously in the hind limb of BALB/c mice. Therapy consisted of intravenous injection of the photosensitizer Bremachlorin, followed by 10 min laser illumination (200 mW/cm2) of the tumor 6 h post injection. MRI at 7 T was performed at baseline, directly after PDT, as well as at 24 h, and 72 h. Tumor relaxation time constants (T1 and T2) and apparent diffusion coefficient (ADC) were quantified at each time point. Additionally, Gd-DOTA dynamic contrast-enhanced (DCE) MRI was performed to estimate transfer constants (Ktrans) and volume fractions of the extravascular extracellular space (ve) using standard Tofts-Kermode tracer kinetic modeling. At the end of the experiment, tumor viability was characterized by histology using NADH-diaphorase staining. The therapy induced extensive cell death in the tumor and resulted in significant reduction in tumor growth, as compared to untreated controls. Tumor T1 and T2 relaxation times remained unchanged up to 24 h, but decreased at 72 h after treatment. Tumor ADC values significantly increased at 24 h and 72 h. DCE-MRI derived tracer kinetic parameters displayed an early response to the treatment. Directly after PDT complete vascular shutdown was observed in large parts of the tumors and reduced uptake (decreased Ktrans) in remaining tumor tissue. At 24 h, contrast uptake in most tumors was essentially absent. Out of 5 animals that were monitored for 2 weeks after treatment, 3 had tumor recurrence, in locations that showed strong contrast uptake at 72 h. DCE-MRI is an effective tool for visualization of vascular effects directly after PDT. Endogenous contrast parameters T1, T2, and ADC, measured at 24 to 72 h after PDT, are also

  17. Assessment of the extent of pituitary macroadenomas resection in immediate postoperative MRI.

    PubMed

    Taberner López, E; Vañó Molina, M; Calatayud Gregori, J; Jornet Sanz, M; Jornet Fayos, J; Pastor Del Campo, A; Caño Gómez, A; Mollá Olmos, E

    To evaluate if it is possible to determine the extent of pituitary macroadenomas resection in the immediate postoperative pituitary magnetic resonance imaging (MRI). MRI of patient with pituitary macroadenomas from January 2010 until October 2014 were reviewed. Those patients who had diagnostic MRI, immediate post-surgical MRI and at least one MRI control were included. We evaluate if the findings between the immediate postsurgical MRI and the subsequent MRI were concordant. Cases which didn't have evolutionary controls and those who were reoperation for recurrence were excluded. The degree of tumor resection was divided into groups: total resection, partial resection and doubtful. All MRI studies were performed on a1.5T machine following the same protocol sequences for all cases. One morphological part, a dynamic contrast iv and late contrast part. Of the 73 cases included, immediate postoperative pituitary MRI was interpreted as total resection in 38 cases and tumoral rest in 28 cases, uncertainty among rest or inflammatory changes in 7 cases. Follow- up MRI identified 41 cases total resection and tumoral rest in 32. Sensitivity and specificity of 0.78 and 0.82 and positive and negative predictive value (PPV and NPV) 0.89 and 0.89 respectively were calculated. Immediate post-surgery pituitary MRI is useful for assessing the degree of tumor resection and is a good predictor of the final degree of real resection compared with the following MRI studies. It allows us to decide the most appropriate treatment at an early stage. Copyright © 2017 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. The association between cortisol and the BOLD response in male adolescents undergoing fMRI.

    PubMed

    Keulers, Esther H H; Stiers, Peter; Nicolson, Nancy A; Jolles, Jelle

    2015-02-19

    MRI participation has been shown to induce subjective and neuroendocrine stress reactions. A recent aging study showed that cortisol levels during fMRI have an age-dependent effect on cognitive performance and brain functioning. The present study examined whether this age-specific influence of cortisol on behavioral and brain activation levels also applies to adolescence. Salivary cortisol as well as subjective experienced anxiety were assessed during the practice session, at home, and before, during and after the fMRI session in young versus old male adolescents. Cortisol levels were enhanced pre-imaging relative to during and post-imaging in both age groups, suggesting anticipatory stress and anxiety. Overall, a negative correlation was found between cortisol output during the fMRI experiment and brain activation magnitude during performance of a gambling task. In young but not in old adolescents, higher cortisol output was related to stronger deactivation of clusters in the anterior and posterior cingulate cortex. In old but not in young adolescents, a negative correlation was found between cortisol and activation in the inferior parietal and in the superior frontal cortex. In sum, cortisol increased the deactivation of several brain areas, although the location of the affected areas in the brain was age-dependent. The present findings suggest that cortisol output during fMRI should be considered as confounder and integrated in analyzing developmental changes in brain activation during adolescence. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Efficacy of VX-509 (decernotinib) in combination with a disease-modifying antirheumatic drug in patients with rheumatoid arthritis: clinical and MRI findings.

    PubMed

    Genovese, Mark C; Yang, Fang; Østergaard, Mikkel; Kinnman, Nils

    2016-11-01

    To assess early effects on joint structures of VX-509 in combination with stable disease-modifying antirheumatic drug (DMARD) therapy using MRI in adults with rheumatoid arthritis (RA). This phase II, placebo-controlled, double-blind, dose-ranging study randomised patients with RA and inadequate DMARD response to VX-509 100 mg (n=11), 200 mg (n=10) or 300 mg (n=10) or placebo (n=12) once daily for 12 weeks. Outcome measures included American College of Rheumatology score (ACR20; improvement of ≥20%) and disease activity score (DAS28) using C reactive protein (CRP), and the RA MRI scoring (RAMRIS) system. ACR20 response at week 12 was 63.6%, 60.0% and 60.0% in the VX-509 100-mg, 200-mg and 300-mg groups, respectively, compared with 25.0% in the placebo group. DAS28-CRP scores decreased in a dose-dependent manner with increasing VX-509 doses. Decreases in RAMRIS synovitis scores were significantly different from placebo for all VX-509 doses (p<0.01) and for RAMRIS osteitis scores (p<0.01) for VX-509 300 mg. Treatment was generally well tolerated. VX-509 plus a DMARD reduced the signs and symptoms of RA in patients with an inadequate response to a DMARD alone. MRI responses were detected at week 12. Treatment was generally well tolerated. NCT01754935; results. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  20. Arsenic and Immune Response to Infection During Pregnancy and Early Life.

    PubMed

    Attreed, Sarah E; Navas-Acien, Ana; Heaney, Christopher D

    2017-06-01

    Arsenic, a known carcinogen and developmental toxicant, is a major threat to global health. While the contribution of arsenic exposure to chronic diseases and adverse pregnancy and birth outcomes is recognized, its ability to impair critical functions of humoral and cell-mediated immunity-including the specific mechanisms in humans-is not well understood. Arsenic has been shown to increase risk of infectious diseases that have significant health implications during pregnancy and early life. Here, we review the latest research on the mechanisms of arsenic-related immune response alterations that could underlie arsenic-associated increased risk of infection during the vulnerable periods of pregnancy and early life. The latest evidence points to alteration of antibody production and transplacental transfer as well as failure of T helper cells to produce IL-2 and proliferate. Critical areas for future research include the effects of arsenic exposure during pregnancy and early life on immune responses to natural infection and the immunogenicity and efficacy of vaccines.

  1. Arm MRI scan

    MedlinePlus

    ... MRI and often available in the emergency room. Alternative Names MRI - arm; Wrist MRI; MRI - wrist; Elbow ... any medical emergency or for the diagnosis or treatment of any medical condition. A licensed physician should ...

  2. Spatial scale and distribution of neurovascular signals underlying decoding of orientation and eye of origin from fMRI data

    PubMed Central

    Harrison, Charlotte; Jackson, Jade; Oh, Seung-Mock; Zeringyte, Vaida

    2016-01-01

    Multivariate pattern analysis of functional magnetic resonance imaging (fMRI) data is widely used, yet the spatial scales and origin of neurovascular signals underlying such analyses remain unclear. We compared decoding performance for stimulus orientation and eye of origin from fMRI measurements in human visual cortex with predictions based on the columnar organization of each feature and estimated the spatial scales of patterns driving decoding. Both orientation and eye of origin could be decoded significantly above chance in early visual areas (V1–V3). Contrary to predictions based on a columnar origin of response biases, decoding performance for eye of origin in V2 and V3 was not significantly lower than that in V1, nor did decoding performance for orientation and eye of origin differ significantly. Instead, response biases for both features showed large-scale organization, evident as a radial bias for orientation, and a nasotemporal bias for eye preference. To determine whether these patterns could drive classification, we quantified the effect on classification performance of binning voxels according to visual field position. Consistent with large-scale biases driving classification, binning by polar angle yielded significantly better decoding performance for orientation than random binning in V1–V3. Similarly, binning by hemifield significantly improved decoding performance for eye of origin. Patterns of orientation and eye preference bias in V2 and V3 showed a substantial degree of spatial correlation with the corresponding patterns in V1, suggesting that response biases in these areas originate in V1. Together, these findings indicate that multivariate classification results need not reflect the underlying columnar organization of neuronal response selectivities in early visual areas. NEW & NOTEWORTHY Large-scale response biases can account for decoding of orientation and eye of origin in human early visual areas V1–V3. For eye of origin this pattern

  3. Can early host responses to mycobacterial infection predict eventual disease outcomes?

    PubMed

    de Silva, Kumudika; Begg, Douglas J; Plain, Karren M; Purdie, Auriol C; Kawaji, Satoko; Dhand, Navneet K; Whittington, Richard J

    2013-11-01

    Diagnostic tests used for Johne's disease in sheep either have poor sensitivity and specificity or only detect disease in later stages of infection. Predicting which of the infected sheep are likely to become infectious later in life is currently not feasible and continues to be a major hindrance in disease control. We conducted this longitudinal study to investigate if a suite of diagnostic tests conducted in Mycobacterium avium subspecies paratuberculosis (MAP) exposed lambs at 4 months post infection can accurately predict their clinical status at 12 months post infection. We tracked cellular and humoral responses and quantity of MAP shedding for up to 12 months post challenge in 20 controls and 37 exposed sheep. Infection was defined at necropsy by tissue culture and disease spectrum by lesion type. Data were analysed using univariable and multivariable logistic regression models and a subset of variables from the earliest period post inoculation (4 months) was selected for predicting disease outcomes later on (12 months). Sensitivity and specificity of tests and their combinations in series and parallel were determined. Early elevation in faecal MAP DNA quantity and a lower interferon gamma (IFNγ) response were significantly associated with sheep becoming infectious as well as progressing to severe disease. Conversely, early low faecal MAP DNA and higher interleukin-10 responses were significantly associated with an exposed animal developing protective immunity. Combination of early elevated faecal MAP DNA or lower IFNγ response had the highest sensitivity (75%) and specificity (81%) for identifying sheep that would become infectious. Collectively, these results highlight the potential for combined test interpretation to aid in the early prediction of sheep susceptibility to MAP infection. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Combination of rs-fMRI and sMRI Data to Discriminate Autism Spectrum Disorders in Young Children Using Deep Belief Network.

    PubMed

    Akhavan Aghdam, Maryam; Sharifi, Arash; Pedram, Mir Mohsen

    2018-05-07

    In recent years, the use of advanced magnetic resonance (MR) imaging methods such as functional magnetic resonance imaging (fMRI) and structural magnetic resonance imaging (sMRI) has recorded a great increase in neuropsychiatric disorders. Deep learning is a branch of machine learning that is increasingly being used for applications of medical image analysis such as computer-aided diagnosis. In a bid to classify and represent learning tasks, this study utilized one of the most powerful deep learning algorithms (deep belief network (DBN)) for the combination of data from Autism Brain Imaging Data Exchange I and II (ABIDE I and ABIDE II) datasets. The DBN was employed so as to focus on the combination of resting-state fMRI (rs-fMRI), gray matter (GM), and white matter (WM) data. This was done based on the brain regions that were defined using the automated anatomical labeling (AAL), in order to classify autism spectrum disorders (ASDs) from typical controls (TCs). Since the diagnosis of ASD is much more effective at an early age, only 185 individuals (116 ASD and 69 TC) ranging in age from 5 to 10 years were included in this analysis. In contrast, the proposed method is used to exploit the latent or abstract high-level features inside rs-fMRI and sMRI data while the old methods consider only the simple low-level features extracted from neuroimages. Moreover, combining multiple data types and increasing the depth of DBN can improve classification accuracy. In this study, the best combination comprised rs-fMRI, GM, and WM for DBN of depth 3 with 65.56% accuracy (sensitivity = 84%, specificity = 32.96%, F1 score = 74.76%) obtained via 10-fold cross-validation. This result outperforms previously presented methods on ABIDE I dataset.

  5. Negative affective spillover from daily events predicts early response to cognitive therapy for depression.

    PubMed

    Cohen, Lawrence H; Gunthert, Kathleen C; Butler, Andrew C; Parrish, Brendt P; Wenze, Susan J; Beck, Judith S

    2008-12-01

    This study evaluated the predictive role of depressed outpatients' (N = 62) affective reactivity to daily stressors in their rates of improvement in cognitive therapy (CT). For 1 week before treatment, patients completed nightly electronic diaries that assessed daily stressors and negative affect (NA). The authors used multilevel modeling to compute each patient's within-day relationship between daily stressors and daily NA (within-day reactivity), as well as the relationship between daily stressors and next-day NA (next-day reactivity; affective spillover). In growth model analyses, the authors evaluated the predictive role of patients' NA reactivity in their early (Sessions 1-4) and late (Sessions 5-12) response to CT. Within-day NA reactivity did not predict early or late response to CT. However, next-day reactivity predicted early response to CT, such that patients who had greater NA spillover in response to negative events had a slower rate of symptom change during the first 4 sessions. Affective spillover did not influence later response to CT. The findings suggest that depressed patients who have difficulty bouncing back the next day from their NA reactions to a relative increase in daily negative events will respond less quickly to the early sessions of CT.

  6. fMRI Evidence of ‘Mirror’ Responses to Geometric Shapes

    PubMed Central

    Press, Clare; Catmur, Caroline; Cook, Richard; Widmann, Hannah; Heyes, Cecilia; Bird, Geoffrey

    2012-01-01

    Mirror neurons may be a genetic adaptation for social interaction [1]. Alternatively, the associative hypothesis [2], [3] proposes that the development of mirror neurons is driven by sensorimotor learning, and that, given suitable experience, mirror neurons will respond to any stimulus. This hypothesis was tested using fMRI adaptation to index populations of cells with mirror properties. After sensorimotor training, where geometric shapes were paired with hand actions, BOLD response was measured while human participants experienced runs of events in which shape observation alternated with action execution or observation. Adaptation from shapes to action execution, and critically, observation, occurred in ventral premotor cortex (PMv) and inferior parietal lobule (IPL). Adaptation from shapes to execution indicates that neuronal populations responding to the shapes had motor properties, while adaptation to observation demonstrates that these populations had mirror properties. These results indicate that sensorimotor training induced populations of cells with mirror properties in PMv and IPL to respond to the observation of arbitrary shapes. They suggest that the mirror system has not been shaped by evolution to respond in a mirror fashion to biological actions; instead, its development is mediated by stimulus-general processes of learning within a system adapted for visuomotor control. PMID:23251653

  7. Effect of intra-articular administration of superparamagnetic iron oxide nanoparticles (SPIONs) for MRI assessment of the cartilage barrier in a large animal model

    PubMed Central

    Hall, Sarah; Xia, Xin-Rui; Schwarz, Tobias

    2017-01-01

    Early diagnosis of cartilage disease at a time when changes are limited to depletion of extracellular matrix components represents an important diagnostic target to reduce patient morbidity. This report is to present proof of concept for nanoparticle dependent cartilage barrier imaging in a large animal model including the use of clinical magnetic resonance imaging (MRI). Conditioned (following matrix depletion) and unconditioned porcine metacarpophalangeal cartilage was evaluated on the basis of fluorophore conjugated 30 nm and 80 nm spherical gold nanoparticle permeation and multiphoton laser scanning and bright field microscopy after autometallographic particle enhancement. Consequently, conditioned and unconditioned joints underwent MRI pre- and post-injection with 12 nm superparamagnetic iron oxide nanoparticles (SPIONs) to evaluate particle permeation in the context of matrix depletion and use of a clinical 1.5 Tesla MRI scanner. To gauge the potential pro-inflammatory effect of intra-articular nanoparticle delivery co-cultures of equine synovium and cartilage tissue were exposed to an escalating dose of SPIONs and IL-6, IL-10, IFN-γ and PGE2 were assessed in culture media. The chemotactic potential of growth media samples was subsequently assessed in transwell migration assays on isolated equine neutrophils. Results demonstrate an increase in MRI signal following conditioning of porcine joints which suggests that nanoparticle dependent compositional cartilage imaging is feasible. Tissue culture and neutrophil migration assays highlight a dose dependent inflammatory response following SPION exposure which at the imaging dose investigated was not different from controls. The preliminary safety and imaging data support the continued investigation of nanoparticle dependent compositional cartilage imaging. To our knowledge, this is the first report in using SPIONs as intra-articular MRI contrast agent for studying cartilage barrier function, which could

  8. Distinct BOLD fMRI Responses of Capsaicin-Induced Thermal Sensation Reveal Pain-Related Brain Activation in Nonhuman Primates

    PubMed Central

    Asad, Abu Bakar Ali; Seah, Stephanie; Baumgartner, Richard; Feng, Dai; Jensen, Andres; Manigbas, Elaine; Henry, Brian; Houghton, Andrea; Evelhoch, Jeffrey L.; Derbyshire, Stuart W. G.; Chin, Chih-Liang

    2016-01-01

    Background Approximately 20% of the adult population suffer from chronic pain that is not adequately treated by current therapies, highlighting a great need for improved treatment options. To develop effective analgesics, experimental human and animal models of pain are critical. Topically/intra-dermally applied capsaicin induces hyperalgesia and allodynia to thermal and tactile stimuli that mimics chronic pain and is a useful translation from preclinical research to clinical investigation. Many behavioral and self-report studies of pain have exploited the use of the capsaicin pain model, but objective biomarker correlates of the capsaicin augmented nociceptive response in nonhuman primates remains to be explored. Methodology Here we establish an aversive capsaicin-induced fMRI model using non-noxious heat stimuli in Cynomolgus monkeys (n = 8). BOLD fMRI data were collected during thermal challenge (ON:20 s/42°C; OFF:40 s/35°C, 4-cycle) at baseline and 30 min post-capsaicin (0.1 mg, topical, forearm) application. Tail withdrawal behavioral studies were also conducted in the same animals using 42°C or 48°C water bath pre- and post- capsaicin application (0.1 mg, subcutaneous, tail). Principal Findings Group comparisons between pre- and post-capsaicin application revealed significant BOLD signal increases in brain regions associated with the ‘pain matrix’, including somatosensory, frontal, and cingulate cortices, as well as the cerebellum (paired t-test, p<0.02, n = 8), while no significant change was found after the vehicle application. The tail withdrawal behavioral study demonstrated a significant main effect of temperature and a trend towards capsaicin induced reduction of latency at both temperatures. Conclusions These findings provide insights into the specific brain regions involved with aversive, ‘pain-like’, responses in a nonhuman primate model. Future studies may employ both behavioral and fMRI measures as translational biomarkers to gain

  9. Early life social stress and resting state functional connectivity in postpartum rat anterior cingulate circuits.

    PubMed

    Nephew, Benjamin C; Febo, Marcelo; Huang, Wei; Colon-Perez, Luis M; Payne, Laurellee; Poirier, Guillaume L; Greene, Owen; King, Jean A

    2018-03-15

    Continued development and refinement of resting state functional connectivity (RSFC) fMRI techniques in both animal and clinical studies has enhanced our comprehension of the adverse effects of stress on psychiatric health. The objective of the current study was to assess both maternal behavior and resting state functional connectivity (RSFC) changes in these animals when they were dams caring for their own young. It was hypothesized that ECSS exposed dams would express depressed maternal care and exhibit similar (same networks), yet different specific changes in RSFC (different individual nuclei) than reported when they were adult females. We have developed an ethologically relevant transgenerational model of the role of chronic social stress (CSS) in the etiology of postpartum depression and anxiety. Initial fMRI investigation of the CSS model indicates that early life exposure to CSS (ECSS) induces long term changes in functional connectivity in adult nulliparous female F1 offspring. ECSS in F1 dams resulted in depressed maternal care specifically during early lactation, consistent with previous CSS studies, and induced changes in functional connectivity in regions associated with sensory processing, maternal and emotional responsiveness, memory, and the reward pathway, with robust changes in anterior cingulate circuits. The sample sizes for the fMRI groups were low, limiting statistical power. This behavioral and functional neuroanatomical foundation can now be used to enhance our understanding of the neural etiology of early life stress associated disorders and test preventative measures and treatments for stress related disorders. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Differential Hemodynamic Response in Affective Circuitry with Aging: An fMRI Study of Novelty, Valence, and Arousal

    PubMed Central

    Moriguchi, Yoshiya; Negreira, Alyson; Weierich, Mariann; Dautoff, Rebecca; Dickerson, Bradford C.; Wright, Christopher I.; Barrett, Lisa Feldman

    2011-01-01

    Emerging evidence indicates that stimulus novelty is affectively potent and reliably engages the amygdala and other portions of the affective workspace in the brain. Using fMRI, we examined whether novel stimuli remain affectively salient across the lifespan, and therefore, whether novelty processing—a potentially survival-relevant function—is preserved with aging. Nineteen young and 22 older healthy adults were scanned during observing novel and familiar affective pictures while estimating their own subjectively experienced aroused levels. We investigated age-related difference of magnitude of activation, hemodynamic time course, and functional connectivity of BOLD responses in the amygdala. Although there were no age-related differences in the peak response of the amygdala to novelty, older individuals showed a narrower, sharper (i.e., “peakier”) hemodynamic time course in response to novel stimuli, as well as decreased connectivity between the left amygdala and the affective areas including orbito-frontal regions. These findings have relevance for understanding age-related differences in memory and affect regulation. PMID:20521849

  11. Potential of PET-MRI for imaging of non-oncologic musculoskeletal disease.

    PubMed

    Kogan, Feliks; Fan, Audrey P; Gold, Garry E

    2016-12-01

    Early detection of musculoskeletal disease leads to improved therapies and patient outcomes, and would benefit greatly from imaging at the cellular and molecular level. As it becomes clear that assessment of multiple tissues and functional processes are often necessary to study the complex pathogenesis of musculoskeletal disorders, the role of multi-modality molecular imaging becomes increasingly important. New positron emission tomography-magnetic resonance imaging (PET-MRI) systems offer to combine high-resolution MRI with simultaneous molecular information from PET to study the multifaceted processes involved in numerous musculoskeletal disorders. In this article, we aim to outline the potential clinical utility of hybrid PET-MRI to these non-oncologic musculoskeletal diseases. We summarize current applications of PET molecular imaging in osteoarthritis (OA), rheumatoid arthritis (RA), metabolic bone diseases and neuropathic peripheral pain. Advanced MRI approaches that reveal biochemical and functional information offer complementary assessment in soft tissues. Additionally, we discuss technical considerations for hybrid PET-MR imaging including MR attenuation correction, workflow, radiation dose, and quantification.

  12. Comparing the effects of tofacitinib, methotrexate and the combination, on bone marrow oedema, synovitis and bone erosion in methotrexate-naive, early active rheumatoid arthritis: results of an exploratory randomised MRI study incorporating semiquantitative and quantitative techniques.

    PubMed

    Conaghan, Philip G; Østergaard, Mikkel; Bowes, Michael A; Wu, Chunying; Fuerst, Thomas; van der Heijde, Désirée; Irazoque-Palazuelos, Fedra; Soto-Raices, Oscar; Hrycaj, Pawel; Xie, Zhiyong; Zhang, Richard; Wyman, Bradley T; Bradley, John D; Soma, Koshika; Wilkinson, Bethanie

    2016-06-01

    To explore the effects of tofacitinib-an oral Janus kinase inhibitor for the treatment of rheumatoid arthritis (RA)-with or without methotrexate (MTX), on MRI endpoints in MTX-naive adult patients with early active RA and synovitis in an index wrist or hand. In this exploratory, phase 2, randomised, double-blind, parallel-group study, patients received tofacitinib 10 mg twice daily + MTX, tofacitinib 10 mg twice daily + placebo (tofacitinib monotherapy), or MTX + placebo (MTX monotherapy), for 1 year. MRI endpoints (Outcome Measures in Rheumatology Clinical Trials RA MRI score (RAMRIS), quantitative RAMRIS (RAMRIQ) and dynamic contrast-enhanced (DCE) MRI) were assessed using a mixed-effect model for repeated measures. Treatment differences with p<0.05 (vs MTX monotherapy) were considered significant. In total, 109 patients were randomised and treated. Treatment differences in RAMRIS bone marrow oedema (BME) at month 6 were -1.55 (90% CI -2.52 to -0.58) for tofacitinib + MTX and -1.74 (-2.72 to -0.76) for tofacitinib monotherapy (both p<0.01 vs MTX monotherapy). Numerical improvements in RAMRIS synovitis at month 3 were -0.63 (-1.58 to 0.31) for tofacitinib + MTX and -0.52 (-1.46 to 0.41) for tofacitinib monotherapy (both p>0.05 vs MTX monotherapy). Treatment differences in RAMRIQ synovitis were statistically significant at month 3, consistent with DCE MRI findings. Less deterioration of RAMRIS and RAMRIQ erosive damage was seen at months 6 and 12 in both tofacitinib groups versus MTX monotherapy. These results provide consistent evidence using three different MRI technologies that tofacitinib treatment leads to early reduction of inflammation and inhibits progression of structural damage. NCT01164579. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  13. Very Early Brain Damage Leads to Remodeling of the Working Memory System in Adulthood: A Combined fMRI/Tractography Study

    PubMed Central

    Karolis, Vyacheslav; Caldinelli, Chiara; Brittain, Philip J.; Kroll, Jasmin; Rodríguez-Toscano, Elisa; Tesse, Marcello; Colquhoun, Matthew; Howes, Oliver; Dell'Acqua, Flavio; Thiebaut de Schotten, Michel; Murray, Robin M.; Williams, Steven C.R.; Nosarti, Chiara

    2015-01-01

    The human brain can adapt to overcome injury even years after an initial insult. One hypothesis states that early brain injury survivors, by taking advantage of critical periods of high plasticity during childhood, should recover more successfully than those who suffer injury later in life. This hypothesis has been challenged by recent studies showing worse cognitive outcome in individuals with early brain injury, compared with individuals with later brain injury, with working memory particularly affected. We invited individuals who suffered perinatal brain injury (PBI) for an fMRI/diffusion MRI tractography study of working memory and hypothesized that, 30 years after the initial injury, working memory deficits in the PBI group would remain, despite compensatory activation in areas outside the typical working memory network. Furthermore we hypothesized that the amount of functional reorganization would be related to the level of injury to the dorsal cingulum tract, which connects medial frontal and parietal working memory structures. We found that adults who suffered PBI did not significantly differ from controls in working memory performance. They exhibited less activation in classic frontoparietal working memory areas and a relative overactivation of bilateral perisylvian cortex compared with controls. Structurally, the dorsal cingulum volume and hindrance-modulated orientational anisotropy was significantly reduced in the PBI group. Furthermore there was uniquely in the PBI group a significant negative correlation between the volume of this tract and activation in the bilateral perisylvian cortex and a positive correlation between this activation and task performance. This provides the first evidence of compensatory plasticity of the working memory network following PBI. SIGNIFICANCE STATEMENT Here we used the example of perinatal brain injury (PBI) associated with very preterm birth to study the brain's ability to adapt to injury sustained early in life. In

  14. A Window into the Brain: Advances in Psychiatric fMRI

    PubMed Central

    Zhan, Xiaoyan

    2015-01-01

    Functional magnetic resonance imaging (fMRI) plays a key role in modern psychiatric research. It provides a means to assay differences in brain systems that underlie psychiatric illness, treatment response, and properties of brain structure and function that convey risk factor for mental diseases. Here we review recent advances in fMRI methods in general use and progress made in understanding the neural basis of mental illness. Drawing on concepts and findings from psychiatric fMRI, we propose that mental illness may not be associated with abnormalities in specific local regions but rather corresponds to variation in the overall organization of functional communication throughout the brain network. Future research may need to integrate neuroimaging information drawn from different analysis methods and delineate spatial and temporal patterns of brain responses that are specific to certain types of psychiatric disorders. PMID:26413531

  15. Progression from Vegetative to Minimally Conscious State Is Associated with Changes in Brain Neural Response to Passive Tasks: A Longitudinal Single-Case Functional MRI Study.

    PubMed

    Tomaiuolo, Francesco; Cecchetti, Luca; Gibson, Raechelle M; Logi, Fiammetta; Owen, Adrian M; Malasoma, Franco; Cozza, Sabino; Pietrini, Pietro; Ricciardi, Emiliano

    2016-07-01

    Functional magnetic resonance imaging (fMRI) may be adopted as a complementary tool for bedside observation in the disorders of consciousness (DOC). However, the diagnostic value of this technique is still debated because of the lack of accuracy in determining levels of consciousness within a single patient. Recently, Giacino and colleagues (2014) hypothesized that a longitudinal fMRI evaluation may provide a more informative assessment in the detection of residual awareness. The aim of this study was to measure the correspondence between clinically defined level of awareness and neural responses within a single DOC patient. We used a follow-up fMRI design in combination with a passive speech-processing task. Patient's consciousness was measured through time by using the Coma Recovery Scale. The patient progressed from a vegetative state (VS) to a minimally conscious state (MCS). Patient's task-related neural responses mirrored the clinical change from a VS to an MCS. Specifically, while in an MCS, but not a VS, the patient showed a selective recruitment of the left angular gyrus when he listened to a native speech narrative, as compared to the reverse presentation of the same stimulus. Furthermore, the patient showed an increased response in the language-related brain network and a greater deactivation in the default mode network following his progression to an MCS. Our findings indicate that longitudinal assessment of brain responses to passive stimuli can contribute to the definition of the clinical status in individual patients with DOC and represents an adequate counterpart of the bedside assessment during the diagnostic decision-making process. (JINS, 2016, 22, 620-630).

  16. [From Brownian motion to mind imaging: diffusion MRI].

    PubMed

    Le Bihan, Denis

    2006-11-01

    The success of diffusion MRI, which was introduced in the mid 1980s is deeply rooted in the powerful concept that during their random, diffusion-driven movements water molecules probe tissue structure at a microscopic scale well beyond the usual image resolution. The observation of these movements thus provides valuable information on the structure and the geometric organization of tissues. The most successful application of diffusion MRI has been in brain ischemia, following the discovery that water diffusion drops at a very early stage of the ischemic event. Diffusion MRI provides some patients with the opportunity to receive suitable treatment at a very acute stage when brain tissue might still be salvageable. On the other hand, diffusion is modulated by the spatial orientation of large bundles of myelinated axons running in parallel through in brain white matter. This feature can be exploited to map out the orientation in space of the white matter tracks and to visualize the connections between different parts of the brain on an individual basis. Furthermore, recent data suggest that diffusion MRI may also be used to visualize rapid dynamic tissue changes, such as neuronal swelling, associated with cortical activation, offering a new and direct approach to brain functional imaging.

  17. Antiemesis effect and brain fMRI response of gastric electrical stimulation with different parameters in dogs.

    PubMed

    Yu, X; Tu, L; Lei, P; Song, J; Xu, H; Hou, X

    2014-07-01

    The aims of this study were to investigate the effect of gastric electrical stimulation (GES) with different parameters on emesis induced by apomorphine, and possible center mechanisms by brain functional magnetic resonance imaging (fMRI). Six dogs implanted with electrodes on gastric serosa were used in this study. Part 1: Apomorphine was injected in the control session and GES sessions. GESs with different parameters were applied in GES session. Gastric slow waves and emesis and behaviors suggestive of nausea were recorded in each session. Part 2: Each dog was anesthetized and given GESs with different parameters or sham stimulation for 15 min after baseline (5 min), respectively. The location of cerebral activation induced by GES was investigated by fMRI. Apomorphine induced emesis and behaviors suggestive of nausea, and gastric dysrhythmia. The emesis frequency in control session was 5.5 ± 0.99, and symptoms score was 22.17 ± 1.01. GES with short pulse and long pulse could not improve emesis and symptoms induced by apomorphine. The emesis frequency (4.5 ± 0.76 in short pulse and 6.33 ± 1.05 in long pulse) and symptoms scores had no significant difference compared to control session (each p > 0.05). GES with trains of short pulse reduced emesis time frequency (3.83 ± 0.7, p = 0.042 vs control) and symptoms score (p = 0.037 vs control) obviously. Brain fMRI showed that GES with short pulse and long pulse activated brain stem region, and trains of short pulse made amygdala and occipital lobe activation. Apomorphine induced emesis and gastric dysrhythmia. GES with trains of short pulses relieves emetic responses through activation of amygdala region. © 2014 John Wiley & Sons Ltd.

  18. Extraction of temporal information in functional MRI

    NASA Astrophysics Data System (ADS)

    Singh, M.; Sungkarat, W.; Jeong, Jeong-Won; Zhou, Yongxia

    2002-10-01

    The temporal resolution of functional MRI (fMRI) is limited by the shape of the haemodynamic response function (hrf) and the vascular architecture underlying the activated regions. Typically, the temporal resolution of fMRI is on the order of 1 s. We have developed a new data processing approach to extract temporal information on a pixel-by-pixel basis at the level of 100 ms from fMRI data. Instead of correlating or fitting the time-course of each pixel to a single reference function, which is the common practice in fMRI, we correlate each pixel's time-course to a series of reference functions that are shifted with respect to each other by 100 ms. The reference function yielding the highest correlation coefficient for a pixel is then used as a time marker for that pixel. A Monte Carlo simulation and experimental study of this approach were performed to estimate the temporal resolution as a function of signal-to-noise ratio (SNR) in the time-course of a pixel. Assuming a known and stationary hrf, the simulation and experimental studies suggest a lower limit in the temporal resolution of approximately 100 ms at an SNR of 3. The multireference function approach was also applied to extract timing information from an event-related motor movement study where the subjects flexed a finger on cue. The event was repeated 19 times with the event's presentation staggered to yield an approximately 100-ms temporal sampling of the haemodynamic response over the entire presentation cycle. The timing differences among different regions of the brain activated by the motor task were clearly visualized and quantified by this method. The results suggest that it is possible to achieve a temporal resolution of /spl sim/200 ms in practice with this approach.

  19. Altered spinal cord activity during sexual stimulation in women with SCI: a pilot fMRI study.

    PubMed

    Alexander, Marcalee; Kozyrev, Natalie; Figley, Chase R; Richards, J Scott

    2017-01-01

    The objective of this study was to assess the feasibility of the use of functional magnetic resonance imaging (fMRI) to evaluate the spinal activation during sexual response of the thoracic, lumbar and sacral spinal cord. This is a laboratory-based pilot study in human females at a University-based medical center in the United States. In three healthy spinal cord injury (SCI) females, spinal cord activations during sexual audiovisual stimulation (alone), genital self-stimulation (alone) and simultaneous audiovisual and genital self-stimulation (combined) were assessed and then compared with each subjects' remaining sensory and motor function. Spinal fMRI responses of the intermediolateral columns were found during audiovisual stimulation in both subjects with incomplete injuries, but they were not observed in the subject with a complete injury. Moreover, sacral responses to combined stimulation differed greatly between the subjects with complete and incomplete injuries. These results not only provide the first in vivo documentation of spinal fMRI responses associated with sexual arousal in women with SCIs, but also suggest that spinal cord fMRI is capable of distinguishing between injury subtypes. Therefore, although there are certain limitations associated with fMRI during sexual stimulation (for example, movement artifacts, an artificially controlled environment and so), these findings demonstrate the potential utility of incorporating spinal cord fMRI in future research to evaluate the impact of specific patterns of SCI on sexual responses and/or the effects of treatment.

  20. Protracted development of executive and mnemonic brain systems underlying working memory in adolescence: A longitudinal fMRI study.

    PubMed

    Simmonds, Daniel J; Hallquist, Michael N; Luna, Beatriz

    2017-08-15

    Working memory (WM), the ability to hold information on-line to guide planned behavior, improves through adolescence in parallel with continued maturation of critical brain systems supporting cognitive control. Initial developmental neuroimaging studies with one or two timepoints have provided important though varied results limiting our understanding of which and how neural systems change during this transition into mature WM. In this study, we leverage functional magnetic resonance imaging (fMRI) longitudinal data spanning up to 9 years in 129 normally developing individuals to identify which systems demonstrate growth changes that accompany improvements in WM performance. We used a memory guided saccade task that allowed us to probe encoding, pure maintenance, and retrieval neural processes of WM. Consistent with prior research, we found that WM performance continued to improve into the early 20's. fMRI region of interest (ROI) analyses revealed developmental (1) increases in sensorimotor-related (encoding/retrieval) activity in visual cortex from childhood through early adulthood that were associated with WM accuracy and (2) decreases in sustained (maintenance) activity in executive regions from childhood through mid-adolescence that were associated with response latency in childhood and early adolescence. Together these results provide compelling evidence that underlying the maturation of WM is a transition from reliance on executive systems to specialized regions related to the domain of mnemonic requirements of the task leading to optimal performance. Copyright © 2017. Published by Elsevier Inc.

  1. Semantic processing and response inhibition.

    PubMed

    Chiang, Hsueh-Sheng; Motes, Michael A; Mudar, Raksha A; Rao, Neena K; Mansinghani, Sethesh; Brier, Matthew R; Maguire, Mandy J; Kraut, Michael A; Hart, John

    2013-11-13

    The present study examined functional MRI (fMRI) BOLD signal changes in response to object categorization during response selection and inhibition. Young adults (N=16) completed a Go/NoGo task with varying object categorization requirements while fMRI data were recorded. Response inhibition elicited increased signal change in various brain regions, including medial frontal areas, compared with response selection. BOLD signal in an area within the right angular gyrus was increased when higher-order categorization was mandated. In addition, signal change during response inhibition varied with categorization requirements in the left inferior temporal gyrus (lIT). lIT-mediated response inhibition when inhibiting the response only required lower-order categorization, but lIT mediated both response selection and inhibition when selecting and inhibiting the response required higher-order categorization. The findings characterized mechanisms mediating response inhibition associated with semantic object categorization in the 'what' visual object memory system.

  2. Current whole-body MRI applications in the neurofibromatoses: NF1, NF2, and schwannomatosis.

    PubMed

    Ahlawat, Shivani; Fayad, Laura M; Khan, Muhammad Shayan; Bredella, Miriam A; Harris, Gordon J; Evans, D Gareth; Farschtschi, Said; Jacobs, Michael A; Chhabra, Avneesh; Salamon, Johannes M; Wenzel, Ralph; Mautner, Victor F; Dombi, Eva; Cai, Wenli; Plotkin, Scott R; Blakeley, Jaishri O

    2016-08-16

    The Response Evaluation in Neurofibromatosis and Schwannomatosis (REiNS) International Collaboration Whole-Body MRI (WB-MRI) Working Group reviewed the existing literature on WB-MRI, an emerging technology for assessing disease in patients with neurofibromatosis type 1 (NF1), neurofibromatosis type 2 (NF2), and schwannomatosis (SWN), to recommend optimal image acquisition and analysis methods to enable WB-MRI as an endpoint in NF clinical trials. A systematic process was used to review all published data about WB-MRI in NF syndromes to assess diagnostic accuracy, feasibility and reproducibility, and data about specific techniques for assessment of tumor burden, characterization of neoplasms, and response to therapy. WB-MRI at 1.5T or 3.0T is feasible for image acquisition. Short tau inversion recovery (STIR) sequence is used in all investigations to date, suggesting consensus about the utility of this sequence for detection of WB tumor burden in people with NF. There are insufficient data to support a consensus statement about the optimal imaging planes (axial vs coronal) or 2D vs 3D approaches. Functional imaging, although used in some NF studies, has not been systematically applied or evaluated. There are no comparative studies between regional vs WB-MRI or evaluations of WB-MRI reproducibility. WB-MRI is feasible for identifying tumors using both 1.5T and 3.0T systems. The STIR sequence is a core sequence. Additional investigation is needed to define the optimal approach for volumetric analysis, the reproducibility of WB-MRI in NF, and the diagnostic performance of WB-MRI vs regional MRI. © 2016 American Academy of Neurology.

  3. Activation of the cerebellar cortex and the dentate nucleus in a prism adaptation fMRI study.

    PubMed

    Küper, Michael; Wünnemann, Meret J S; Thürling, Markus; Stefanescu, Roxana M; Maderwald, Stefan; Elles, Hans G; Göricke, Sophia; Ladd, Mark E; Timmann, Dagmar

    2014-04-01

    During prism adaptation two types of learning processes can be distinguished. First, fast strategic motor control responses are predominant in the early course of prism adaptation to achieve rapid error correction within few trials. Second, slower spatial realignment occurs among the misaligned visual and proprioceptive sensorimotor coordinate system. The aim of the present ultra-highfield (7T) functional magnetic resonance imaging (fMRI) study was to explore cerebellar cortical and dentate nucleus activation during the course of prism adaptation in relation to a similar visuomotor task without prism exposure. Nineteen young healthy participants were included into the study. Recently developed normalization procedures were applied for the cerebellar cortex and the dentate nucleus. By means of subtraction analysis (early prism adaptation > visuomotor, early prism adaptation > late prism adaptation) we identified ipsilateral activation associated with strategic motor control responses within the posterior cerebellar cortex (lobules VIII and IX) and the ventro-caudal dentate nucleus. During the late phase of adaptation we observed pronounced activation of posterior parts of lobule VI, although subtraction analyses (late prism adaptation > visuomotor) remained negative. These results are in good accordance with the concept of a representation of non-motor functions, here strategic control, within the ventro-caudal dentate nucleus. Copyright © 2013 Wiley Periodicals, Inc.

  4. The first study on therapeutic efficacies of a vascular disrupting agent CA4P among primary hepatocellular carcinomas with a full spectrum of differentiation and vascularity: Correlation of MRI-microangiography-histopathology in rats.

    PubMed

    Liu, Yewei; De Keyzer, Frederik; Wang, Yixing; Wang, Fengna; Feng, Yuanbo; Chen, Feng; Yu, Jie; Liu, Jianjun; Song, Shaoli; Swinnen, Johan; Bormans, Guy; Oyen, Raymond; Huang, Gang; Ni, Yicheng

    2018-04-29

    To better inform the next clinical trials of vascular disrupting agent Combretastatin-A4-phosphate (CA4P) in patients with hepatic malignancies, this preclinical study aimed at evaluating CA4P therapeutic efficacy in rats with primary hepatocellular carcinomas (HCCs) of a full spectrum of differentiation and vascularity by magnetic resonance imaging (MRI), microangiography and histopathology. Ninety-six HCCs were raised in 25 rats by diethylnitrosamine gavage. Tumor growth was monitored by T2-/T1-weighted-MRI (T2WI, T1WI) using a 3.0T scanner. Early vascular response and later intratumoral necrosis were detected by dynamic-contrast-enhanced (DCE) MRI and diffusion-weighted-imaging (DWI) before, 1h and 12h after CA4P iv-administration. In-vivo MRI-findings were validated by postmortem-techniques. Multi-parametric MRI revealed rapid CA4P-induced tumor vascular shutdown within 1h, followed by variable intratumoral necrosis at 12h. Tumor volumes decreased by 10% at 1h (P<0.05), but resumed at 12h. Correlations of semi-quantitative DCE parameter initial-area-under-the-gadolinium-curve (IAUGC30) with histopathology proved partial vascular closure and compensational reopening (P<0.05). The higher grades of vascularity prevented those residual tumor tissues from CA4P-caused ischemic necrosis. By histopathology using a 4-scale cellular-differentiation criteria and a 4-grade tumor-vascularity classification, percentage of CA4P-induced necrosis negatively correlated with HCC differentiation (r=-0.404, P<0.001) and tumor vascularity (r=-0.370, P<0.001). Ordinal-logistic-regression helped to predict early tumor responses to CA4P in terms of tumoral differentiation and vascularity. This study demonstrated that CA4P could induce vascular shutdown in primary HCCs within 1h, resulting in various degrees of tumor necrosis at 12h. MRI as a real-time imaging biomarker may help to define tumor vascularity and differentiation and further to predict CA4P therapeutic outcomes. This

  5. WE-FG-202-11: Longitudinal Diffusion MRI for Treatment Assessment of Sarcoma Patients with Pre-Operative Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Y; Cao, M; Kamrava, M

    Purpose: Diffusion weighted MRI (DWI) is a promising imaging technique for early prediction of tumor response to radiation therapy. A recently proposed longitudinal DWI strategy using a Co-60 MRI guided RT system (MRIgRT) may bring functional MRI guided adaptive radiation therapy closer to clinical utility. We report our preliminary results of using this longitudinal DWI approach performed on the MRIgRT system for predicting the response of sarcoma patient to preop RT. Methods: Three sarcoma patients who underwent fractionated IMRT were recruited in this study. For all three patients DWI images were acquired immediately following his/her treatment. For each imaging session,more » ten slices were acquired interleaved with the b values covering the gross tumor volume (GTV). The diffusion images were processed to obtain the ADC maps using standard exponential fitting for each voxel. Regions of interest were drawn in the tumor on the diffusion images based on each patient’s clinical GTV contours. Each patient subsequently underwent surgery and the tumor necrosis score was available from standard pathology. The ADC values for each patient were compared to the necrosis scores to assess the predictive value of our longitudinal DWI for tumor response. Results: Each patient underwent 3 to 5 diffusion MRI scans depending on their treatment length. Patient 1 had a relatively unchanged ADC during the course of RT and a necrosis score of 30% at surgery. For patient 2, the mean ADC values decreased from 1.56 × 10-3 to 1.12 × 10-3 mm2/s and the patient’s necrosis score was less than 10%. Patient 3 had a slight increase in the ADC values from 0.59 × 10-3 to 0.71 × 10-3 mm2/s and patient’s necrosis score was 50%. Conclusion: Based on limited data from 3 patients, our longitudinal changes in tumor ADC assessed using the MRIgRT system correlated well with pathology results.« less

  6. Active pain coping is associated with the response in real-time fMRI neurofeedback during pain.

    PubMed

    Emmert, Kirsten; Breimhorst, Markus; Bauermann, Thomas; Birklein, Frank; Rebhorn, Cora; Van De Ville, Dimitri; Haller, Sven

    2017-06-01

    Real-time functional magnetic resonance imaging (rt-fMRI) neurofeedback is used as a tool to gain voluntary control of activity in various brain regions. Little emphasis has been put on the influence of cognitive and personality traits on neurofeedback efficacy and baseline activity. Here, we assessed the effect of individual pain coping on rt-fMRI neurofeedback during heat-induced pain. Twenty-eight healthy subjects completed the Coping Strategies Questionnaire (CSQ) prior to scanning. The first part of the fMRI experiment identified target regions using painful heat stimulation. Then, subjects were asked to down-regulate the pain target brain region during four neurofeedback runs with painful heat stimulation. Functional MRI analysis included correlation analysis between fMRI activation and pain ratings as well as CSQ ratings. At the behavioral level, the active pain coping (first principal component of CSQ) was correlated with pain ratings during neurofeedback. Concerning neuroimaging, pain sensitive regions were negatively correlated with pain coping. During neurofeedback, the pain coping was positively correlated with activation in the anterior cingulate cortex, prefrontal cortex, hippocampus and visual cortex. Thermode temperature was negatively correlated with anterior insula and dorsolateral prefrontal cortex activation. In conclusion, self-reported pain coping mechanisms and pain sensitivity are a source of variance during rt-fMRI neurofeedback possibly explaining variations in regulation success. In particular, active coping seems to be associated with successful pain regulation.

  7. Computer-Aided Detection of Prostate Cancer with MRI: Technology and Applications

    PubMed Central

    Liu, Lizhi; Tian, Zhiqiang; Zhang, Zhenfeng; Fei, Baowei

    2016-01-01

    One in six men will develop prostate cancer in his life time. Early detection and accurate diagnosis of the disease can improve cancer survival and reduce treatment costs. Recently, imaging of prostate cancer has greatly advanced since the introduction of multi-parametric magnetic resonance imaging (mp-MRI). Mp-MRI consists of T2-weighted sequences combined with functional sequences including dynamic contrast-enhanced MRI, diffusion-weighted MRI, and MR spectroscopy imaging. Due to the big data and variations in imaging sequences, detection can be affected by multiple factors such as observer variability and visibility and complexity of the lesions. In order to improve quantitative assessment of the disease, various computer-aided detection systems have been designed to help radiologists in their clinical practice. This review paper presents an overview of literatures on computer-aided detection of prostate cancer with mp-MRI, which include the technology and its applications. The aim of the survey is threefold: an introduction for those new to the field, an overview for those working in the field, and a reference for those searching for literature on a specific application. PMID:27133005

  8. Computer-aided Detection of Prostate Cancer with MRI: Technology and Applications.

    PubMed

    Liu, Lizhi; Tian, Zhiqiang; Zhang, Zhenfeng; Fei, Baowei

    2016-08-01

    One in six men will develop prostate cancer in his lifetime. Early detection and accurate diagnosis of the disease can improve cancer survival and reduce treatment costs. Recently, imaging of prostate cancer has greatly advanced since the introduction of multiparametric magnetic resonance imaging (mp-MRI). Mp-MRI consists of T2-weighted sequences combined with functional sequences including dynamic contrast-enhanced MRI, diffusion-weighted MRI, and magnetic resonance spectroscopy imaging. Because of the big data and variations in imaging sequences, detection can be affected by multiple factors such as observer variability and visibility and complexity of the lesions. To improve quantitative assessment of the disease, various computer-aided detection systems have been designed to help radiologists in their clinical practice. This review paper presents an overview of literatures on computer-aided detection of prostate cancer with mp-MRI, which include the technology and its applications. The aim of the survey is threefold: an introduction for those new to the field, an overview for those working in the field, and a reference for those searching for literature on a specific application. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  9. Plasma-Sprayed Titanium Patterns for Enhancing Early Cell Responses

    NASA Astrophysics Data System (ADS)

    Shi, Yunqi; Xie, Youtao; Pan, Houhua; Zheng, Xuebin; Huang, Liping; Ji, Fang; Li, Kai

    2016-06-01

    Titanium coating has been widely used as a biocompatible metal in biomedical applications. However, the early cell responses and long-term fixation of titanium implants are not satisfied. To obviate these defects, in this paper, micro-post arrays with various widths (150-1000 μm) and intervals (100-300 μm) were fabricated on the titanium substrate by template-assisted plasma spraying technology. In vitro cell culture experiments showed that MC3T3-E1 cells exhibited significantly higher osteogenic differentiation as well as slightly improved adhesion and proliferation on the micro-patterned coatings compared with the traditional one. The cell number on the pattern with 1000 µm width reached 130% after 6 days of incubation, and the expressions of osteopontin (OPN) as well as osteocalcin (OC) were doubled. No obvious difference was found in cell adhesion on various size patterns. The present micro-patterned coatings proposed a new modification method for the traditional plasma spraying technology to enhance the early cell responses and convenience for the bone in-growth.

  10. Intersession reliability of fMRI activation for heat pain and motor tasks

    PubMed Central

    Quiton, Raimi L.; Keaser, Michael L.; Zhuo, Jiachen; Gullapalli, Rao P.; Greenspan, Joel D.

    2014-01-01

    As the practice of conducting longitudinal fMRI studies to assess mechanisms of pain-reducing interventions becomes more common, there is a great need to assess the test–retest reliability of the pain-related BOLD fMRI signal across repeated sessions. This study quantitatively evaluated the reliability of heat pain-related BOLD fMRI brain responses in healthy volunteers across 3 sessions conducted on separate days using two measures: (1) intraclass correlation coefficients (ICC) calculated based on signal amplitude and (2) spatial overlap. The ICC analysis of pain-related BOLD fMRI responses showed fair-to-moderate intersession reliability in brain areas regarded as part of the cortical pain network. Areas with the highest intersession reliability based on the ICC analysis included the anterior midcingulate cortex, anterior insula, and second somatosensory cortex. Areas with the lowest intersession reliability based on the ICC analysis also showed low spatial reliability; these regions included pregenual anterior cingulate cortex, primary somatosensory cortex, and posterior insula. Thus, this study found regional differences in pain-related BOLD fMRI response reliability, which may provide useful information to guide longitudinal pain studies. A simple motor task (finger-thumb opposition) was performed by the same subjects in the same sessions as the painful heat stimuli were delivered. Intersession reliability of fMRI activation in cortical motor areas was comparable to previously published findings for both spatial overlap and ICC measures, providing support for the validity of the analytical approach used to assess intersession reliability of pain-related fMRI activation. A secondary finding of this study is that the use of standard ICC alone as a measure of reliability may not be sufficient, as the underlying variance structure of an fMRI dataset can result in inappropriately high ICC values; a method to eliminate these false positive results was used in this

  11. Early and long term anamnestic response to HBV booster dose among fully vaccinated Egyptian children during infancy.

    PubMed

    Salama, Iman I; Sami, Samia M; Said, Zeinab N; Salama, Somaia I; Rabah, Thanaa M; Abdel-Latif, Ghada A; Elmosalami, Dalia M; Saleh, Rehan M; Abdel Mohsin, Aida M; Metwally, Ammal M; Hassanin, Amal I; Emam, Hanaa M; Hemida, Samia A; Elserougy, Safaa M; Shaaban, Fatma A; Fouad, Walaa A; Mohsen, Amira; El-Sayed, Manal H

    2018-04-05

    To evaluate early and long term anamnestic response to a booster dose of HBV vaccine among non-seroprotected children. A national community based project was carried out on 3600 children aged 9 months to 16 years, fully vaccinated during infancy. They were recruited from 6 governorates representing Egypt. It revealed that 1535 children (42.8%) had non sero-protective anti-HBs (<10 IU/L) and were HBsAg or anti-HBc negative. A challenging dose of 10 μg of mono-valent Euvax HBV vaccine was given to 1121/1535 children. Quantitative assessment of anti-HBs was performed to detect early (2-4 weeks) and long term (one year) anamnestic responses. Early anamnestic response developed among 967/1070 children (90.3%).Children having detectable anti-HBs (1-9 IU/L) significantly developed early anamnestic response (90%) compared to 85% with undetectable anti-HBs (<1 IU/L), P < 0.001. Multiple logistic analysis revealed that undetectable anti-HBs, living in rural residence and children aged 15-16 years were the most significant predicting risk factors for the absence of early anamnestic response (<10 IU/L), with AOR 2.7, 2.7 & 4.7 respectively. After one year, long term anamnestic response was absent among 15% of children who previously showed early response. Poor early anamnestic response and undetectable pre-booster anti-HBs were the significant predicting risk factors for absent long term anamnestic response, with AOR 18.7 & 2.7 respectively. Immunological memory for HBV vaccine outlasts the presence of anti- HBs and HBV vaccination program provides effective long term protection even in children showing waning or undetectable concentrations of anti-HBs. This signifies no need for a booster dose especially to healthy children. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. TH-A-BRF-11: Image Intensity Non-Uniformities Between MRI Simulation and Diagnostic MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paulson, E

    2014-06-15

    Purpose: MRI simulation for MRI-based radiotherapy demands that patients be setup in treatment position, which frequently involves use of alternative radiofrequency (RF) coil configurations to accommodate immobilized patients. However, alternative RF coil geometries may exacerbate image intensity non-uniformities (IINU) beyond those observed in diagnostic MRI, which may challenge image segmentation and registration accuracy as well as confound studies assessing radiotherapy response when MR simulation images are used as baselines for evaluation. The goal of this work was to determine whether differences in IINU exist between MR simulation and diagnostic MR images. Methods: ACR-MRI phantom images were acquired at 3T usingmore » a spin-echo sequence (TE/TR:20/500ms, rBW:62.5kHz, TH/skip:5/5mm). MR simulation images were obtained by wrapping two flexible phased-array RF coils around the phantom. Diagnostic MR images were obtained by placing the phantom into a commercial phased-array head coil. Pre-scan normalization was enabled in both cases. Images were transferred offline and corrected for IINU using the MNI N3 algorithm. Coefficients of variation (CV=σ/μ) were calculated for each slice. Wilcoxon matched-pairs and Mann-Whitney tests compared CV values between original and N3 images and between MR simulation and diagnostic MR images. Results: Significant differences in CV were detected between original and N3 images in both MRI simulation and diagnostic MRI groups (p=0.010, p=0.010). In addition, significant differences in CV were detected between original MR simulation and original and N3 diagnostic MR images (p=0.0256, p=0.0016). However, no significant differences in CV were detected between N3 MR simulation images and original or N3 diagnostic MR images, demonstrating the importance of correcting MR simulation images beyond pre-scan normalization prior to use in radiotherapy. Conclusions: Alternative RF coil configurations used in MRI simulation can Result in

  13. Use of hepatobiliary phase images in Gd-EOB-DTPA-enhanced MRI of breast cancer hepatic metastasis to predict response to chemotherapy.

    PubMed

    Lee, Hyun Ji; Lee, Chang Hee; Kim, Jeong Woo; Park, Yang Shin; Lee, Jongmee; Kim, Kyeong Ah

    To determine the prognostic value of Gd-EOB-DTPA MRI findings of liver metastasis from breast cancer. 29 metastatic lesions from 12 breast cancer patients who received chemotherapy were retrospectively reviewed. We evaluated hepatobiliary phase of the lesions and classified them as a "target" or "non-target" appearance. The relationship of appearance or SI ratio with tumor response was analyzed. A non-target appearance was more frequent in disease control group than in non-control group [14/18 (77.8%) vs. 4/18 (22.2%)], and it was associated with a better response [p=0.048]. HBP analysis may be useful to predict the response to chemotherapy and survival. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. The Reasons behind Early Adolescents' Responses to Peer Victimization

    ERIC Educational Resources Information Center

    Bellmore, Amy; Chen, Wei-Ting; Rischall, Emily

    2013-01-01

    Victims of school-based peer harassment face a range of risks including psycho-social, physical, and academic harm. The aim of the present study was to examine the behavioral coping responses used by early adolescents when they face peer victimization. To meet this aim, 216 sixth grade students (55% girls) from two urban middle schools and 254…

  15. A Framework for Providing Culturally Responsive Early Intervention Services

    ERIC Educational Resources Information Center

    Bradshaw, Wendy

    2013-01-01

    The purpose of this article is to provide a framework that offers a way for early intervention (EI) service providers to better meet the needs of the culturally diverse children and families they serve. This framework was created to organize existing research and literature on cultural responsiveness in a way that fit the unique context of EI. The…

  16. Patterns of response and relapse in primary CNS lymphomas after first-line chemotherapy: imaging analysis of the ANOCEF-GOELAMS prospective randomized trial

    PubMed Central

    Tabouret, Emeline; Houillier, Caroline; Martin-Duverneuil, Nadine; Blonski, Marie; Soussain, Carole; Ghesquières, Herve; Houot, Roch; Larrieu, Delphine; Soubeyran, Pierre; Gressin, Remy; Gyan, Emmanuel; Chinot, Olivier; Taillandier, Luc; Choquet, Sylvain; Alentorn, Agusti; Leclercq, Delphine; Omuro, Antonio; Tanguy, Marie-Laure

    2017-01-01

    Abstract Background. Our aim was to review MRI characteristics of patients with primary CNS lymphoma (PCNSL) enrolled in a randomized phase II trial and to evaluate their potential prognostic value and patterns of relapse, including T2 fluid attenuated inversion recovery (FLAIR) MRI abnormalities. Methods. Neuroimaging findings in 85 patients with PCNSL enrolled in a prospective trial were reviewed blinded to outcomes. MRI characteristics and responses according to International PCNSL Collaborative Group (IPCG) criteria were correlated with progression-free survival (PFS) and overall survival (OS). Results. Multivariate analysis showed that objective response at 2 months (P < .001) and at end of treatment (P = .015) were predictors of prolonged OS. Infratentorial location (P = .008) and large (>11.4 cm3) enhancing tumor volume (P = .006) were associated with poor OS and PFS, respectively. Ratio of change in product of largest diameters at early MRI evaluation but not timing of complete response achievement (early vs delayed) was prognostic for OS. Sixty-nine patients relapsed. Relapse in the brain (n = 52) involved an initial enhancing site, a different site, or both in 46%, 40%, and 14% of patients, respectively. At baseline, non-enhancing T2-FLAIR hypersignal lesions distant from the enhancing tumor site were detected in 18 patients. These lesions markedly decreased (>50%) in 16 patients after chemotherapy, supporting their neoplastic nature. Of these patients, 10/18 relapsed, half (n = 5) in the initially non-enhancing T2-FLAIR lesions. Conclusions. Baseline tumor size and infratentorial localization are of prognostic value in PCNSL. Our findings provide evidence that non-enhancing FLAIR abnormalities may add to overall tumor burden, suggesting that response criteria should be refined to incorporate evaluation of T2-weighted/FLAIR sequences. PMID:27994065

  17. Toward an MRI-based method to measure non-uniform cartilage deformation: an MRI-cyclic loading apparatus system and steady-state cyclic displacement of articular cartilage under compressive loading.

    PubMed

    Neu, C P; Hull, M L

    2003-04-01

    Recent magnetic resonance imaging (MRI) techniques have shown potential for measuring non-uniform deformations throughout the volume (i.e. three-dimensional (3D) deformations) in small orthopedic tissues such as articular cartilage. However, to analyze cartilage deformation using MRI techniques, a system is required which can construct images from multiple acquisitions of MRI signals from the cartilage in both the underformed and deformed states. The objectives of the work reported in this article were to 1) design an apparatus that could apply highly repeatable cyclic compressive loads of 400 N and operate in the bore of an MRI scanner, 2) demonstrate that the apparatus and MRI scanner can be successfully integrated to observe 3D deformations in a phantom material, 3) use the apparatus to determine the load cycle necessary to achieve a steady-state deformation response in normal bovine articular cartilage samples using a flat-surfaced and nonporous indentor in unconfined compression. Composed of electronic and pneumatic components, the apparatus regulated pressure to a double-acting pneumatic cylinder so that (1) load-controlled compression cycles were applied to cartilage samples immersed in a saline bath, (2) loading and recovery periods within a cycle varied in time duration, and (3) load magnitude varied so that the stress applied to cartilage samples was within typical physiological ranges. In addition the apparatus allowed gating for MR image acquisition, and operation within the bore of an MRI scanner without creating image artifacts. The apparatus demonstrated high repeatability in load application with a standard deviation of 1.8% of the mean 400 N load applied. When the apparatus was integrated with an MRI scanner programmed with appropriate pulse sequences, images of a phantom material in both the underformed and deformed states were constructed by assembling data acquired through multiple signal acquisitions. Additionally, the number of cycles to reach

  18. Arsenic and Immune Response to Infection During Pregnancy and Early Life

    PubMed Central

    Attreed, Sarah E.; Navas-Acien, Ana

    2017-01-01

    Purpose of Review Arsenic, a known carcinogen and developmental toxicant, is a major threat to global health. While the contribution of arsenic exposure to chronic diseases and adverse pregnancy and birth outcomes is recognized, its ability to impair critical functions of humoral and cell-mediated immunity—including the specific mechanisms in humans—is not well understood. Arsenic has been shown to increase risk of infectious diseases that have significant health implications during pregnancy and early life. Here, we review the latest research on the mechanisms of arsenic-related immune response alterations that could underlie arsenic-associated increased risk of infection during the vulnerable periods of pregnancy and early life. Recent Findings The latest evidence points to alteration of antibody production and transplacental transfer as well as failure of T helper cells to produce IL-2 and proliferate. Summary Critical areas for future research include the effects of arsenic exposure during pregnancy and early life on immune responses to natural infection and the immunogenicity and efficacy of vaccines. PMID:28488132

  19. Artificial Neural Network-Based Early-Age Concrete Strength Monitoring Using Dynamic Response Signals.

    PubMed

    Kim, Junkyeong; Lee, Chaggil; Park, Seunghee

    2017-06-07

    Concrete is one of the most common materials used to construct a variety of civil infrastructures. However, since concrete might be susceptible to brittle fracture, it is essential to confirm the strength of concrete at the early-age stage of the curing process to prevent unexpected collapse. To address this issue, this study proposes a novel method to estimate the early-age strength of concrete, by integrating an artificial neural network algorithm with a dynamic response measurement of the concrete material. The dynamic response signals of the concrete, including both electromechanical impedances and guided ultrasonic waves, are obtained from an embedded piezoelectric sensor module. The cross-correlation coefficient of the electromechanical impedance signals and the amplitude of the guided ultrasonic wave signals are selected to quantify the variation in dynamic responses according to the strength of the concrete. Furthermore, an artificial neural network algorithm is used to verify a relationship between the variation in dynamic response signals and concrete strength. The results of an experimental study confirm that the proposed approach can be effectively applied to estimate the strength of concrete material from the early-age stage of the curing process.

  20. Artificial Neural Network-Based Early-Age Concrete Strength Monitoring Using Dynamic Response Signals

    PubMed Central

    Kim, Junkyeong; Lee, Chaggil; Park, Seunghee

    2017-01-01

    Concrete is one of the most common materials used to construct a variety of civil infrastructures. However, since concrete might be susceptible to brittle fracture, it is essential to confirm the strength of concrete at the early-age stage of the curing process to prevent unexpected collapse. To address this issue, this study proposes a novel method to estimate the early-age strength of concrete, by integrating an artificial neural network algorithm with a dynamic response measurement of the concrete material. The dynamic response signals of the concrete, including both electromechanical impedances and guided ultrasonic waves, are obtained from an embedded piezoelectric sensor module. The cross-correlation coefficient of the electromechanical impedance signals and the amplitude of the guided ultrasonic wave signals are selected to quantify the variation in dynamic responses according to the strength of the concrete. Furthermore, an artificial neural network algorithm is used to verify a relationship between the variation in dynamic response signals and concrete strength. The results of an experimental study confirm that the proposed approach can be effectively applied to estimate the strength of concrete material from the early-age stage of the curing process. PMID:28590456

  1. Synchronized delta oscillations correlate with the resting-state functional MRI signal

    PubMed Central

    Lu, Hanbing; Zuo, Yantao; Gu, Hong; Waltz, James A.; Zhan, Wang; Scholl, Clara A.; Rea, William; Yang, Yihong; Stein, Elliot A.

    2007-01-01

    Synchronized low-frequency spontaneous fluctuations of the functional MRI (fMRI) signal have recently been applied to investigate large-scale neuronal networks of the brain in the absence of specific task instructions. However, the underlying neural mechanisms of these fluctuations remain largely unknown. To this end, electrophysiological recordings and resting-state fMRI measurements were conducted in α-chloralose-anesthetized rats. Using a seed-voxel analysis strategy, region-specific, anesthetic dose-dependent fMRI resting-state functional connectivity was detected in bilateral primary somatosensory cortex (S1FL) of the resting brain. Cortical electroencephalographic signals were also recorded from bilateral S1FL; a visual cortex locus served as a control site. Results demonstrate that, unlike the evoked fMRI response that correlates with power changes in the γ bands, the resting-state fMRI signal correlates with the power coherence in low-frequency bands, particularly the δ band. These data indicate that hemodynamic fMRI signal differentially registers specific electrical oscillatory frequency band activity, suggesting that fMRI may be able to distinguish the ongoing from the evoked activity of the brain. PMID:17991778

  2. Biocompatible, Biodegradable, and Enzymatic-Cleavable MRI Contrast Agents for Early Detection of Bone Metastatic Breast cancer

    DTIC Science & Technology

    2013-04-01

    metastasis from breast cancer. The proposed imaging agent is consist of bone targeting moiety of Asp8 and MRI imaging moiety of DOTA (Gd) with a cathepsin K...the Gd chelator of DOTA . Asp8 has a high affinity for bone mineral and has been used as bone-targeting moiety in molecular therapeutics.(1-6) The use...findings in literature.(4, 7, 17) To obtain imaging agents for MRI studies, the above mentioned peptides were allowed to react with DOTA -NHS

  3. A Metal-Free Method for Producing MRI Contrast at Amyloid-Beta

    PubMed Central

    Hilt, Silvia; Tang, Tang; Walton, Jeffrey H.; Budamagunta, Madhu; Maezawa, Izumi; Kálai, Tamás; Hideg, Kálmán; Singh, Vikrant; Wulff, Heike; Gong, Qizhi; Jin, Lee-Way; Louie, Angelique; Voss, John C.

    2017-01-01

    Alzheimer’s disease (AD) is characterized by depositions of the amyloid-β (Aβ) peptide in the brain. The disease process develops over decades, with substantial neurological loss occurring before a clinical diagnosis of dementia can be rendered. It is therefore imperative to develop methods that permit early detection and monitoring of disease progression. In addition, the multifactorial pathogenesis of AD has identified several potential avenues for AD intervention. Thus, evaluation of therapeutic candidates over lengthy trial periods also demands a practical, noninvasive method for measuring Aβ in the brain. Magnetic resonance imaging (MRI) is the obvious choice for such measurements, but contrast enhancement for Aβ has only been achieved using Gd(III)-based agents. There is great interest in gadolinium-free methods to image the brain. In this study, we provide the first demonstration that a nitroxide-based small-molecule produces MRI contrast in brain specimens with elevated levels of Aβ. The molecule is comprised of a fluorene (a molecule with high affinity for Aβ) and a nitroxide spin label (a paramagnetic MRI contrast species). Labeling of brain specimens with the spin-labeled fluorene produces negative contrast in samples from AD model mice whereas no negative contrast is seen in specimens harvested from wild-type mice. Injection of SLF into live mice resulted in good brain penetration, with the compound able to generate contrast 24-hr post injection. These results provide a proof of concept method that can be used for early, noninvasive, gadolinium-free detection of amyloid plaques by magnetic resonance imaging (MRI). PMID:27911291

  4. MRI-negative refractory partial epilepsy: role for diffusion tensor imaging in high field MRI.

    PubMed

    Chen, Qin; Lui, Su; Li, Chun-Xiao; Jiang, Li-Jun; Ou-Yang, Luo; Tang, He-Han; Shang, Hui-Fang; Huang, Xiao-Qi; Gong, Qi-Yong; Zhou, Dong

    2008-07-01

    Our aim is to use the high field MR scanner (3T) to verify whether diffusion tensor imaging (DTI) could help in locating the epileptogenic zone in patients with MRI-negative refractory partial epilepsy. Fifteen patients with refractory partial epilepsy who had normal conventional MRI, and 40 healthy volunteers were recruited for the study. DTI was performed on a 3T MR scanner, individual maps of mean diffusivity (MD) and fractional anisotropy (FA) were calculated, and Voxel-Based Analysis (VBA) was performed for individual comparison between patients and controls. Voxel-based analysis revealed significant MD increase in variant regions in 13 patients. The electroclinical seizure localization was concurred to seven patients. No patient exhibited regions of significant decreased MD. Regions of significant reduced FA were observed in five patients, with two of these concurring with electroclinical seizure localization. Two patients had regions of significant increase in FA, which were distinct from electroclinical seizure localization. Our study's results revealed that DTI is a responsive neuroradiologic technique that provides information about the epileptogenic areas in patients with MRI-negative refractory partial epilepsy. This technique may also helpful in pre-surgical evaluation.

  5. Consequences of an Early PSA Response to Enzalutamide Treatment for Japanese Patients with Metastatic Castration-resistant Prostate Cancer.

    PubMed

    Kato, Haruo; Furuya, Yosuke; Miyazawa, Yoshiyuki; Miyao, Takeshi; Syuto, Takahiro; Nomura, Masashi; Sekine, Yoshitaka; Koike, Hidekazu; Matsui, Hiroshi; Shibata, Yasuhiro; Ito, Kazuto; Suzuki, Kazuhiro

    2016-11-01

    Recent studies have shown that an early prostate-specific antigen (PSA) response to androgen receptor (AR)-targeting agents in metastatic castration-resistant prostate cancer (mCRPC) is associated with a better prognosis. We analyzed early PSA response to enzalutamide and oncological outcomes to study their prognostic significance in the Japanese population. Fifty-one patients with mCRPC (26 of pre-docetaxel and 25 of post-docetaxel status) were treated with enzalutamide. The PSA progression-free survival (PFS), radiographic PFS (rPFS) and overall survival (OS) were assessed. The association of rPFS and OS in patients with an early PSA response at 4 weeks after commencement of enzalutamide was studied. Early PSA responses were significantly associated with a longer rPFS (median of 47.9 vs. 20.1 weeks, p<0.001, in patients exhibiting a 50% PSA response; median of 40.9 vs. 20.1 weeks, p=0.016, in patients exhibiting a 30% PSA response). OS was also significantly associated with an early PSA response (p=0.002 for patients exhibiting a 50% PSA response, p=0.003 for patients exhibiting a 30% PSA response). Multivariate analysis showed that the predictors of a 50% PSA response were an interval to mCRPC and a docetaxel treatment history, while the predictor of a 30% PSA response was a docetaxel treatment history. Furthermore, a 50% PSA response was independently prognostic of rPFS. An early PSA response to enzalutamide was significantly associated with a longer rPFS and OS. This information will aid in the management of patients treated with enzalutamide. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  6. Brain functional BOLD perturbation modelling for forward fMRI and inverse mapping

    PubMed Central

    Robinson, Jennifer; Calhoun, Vince

    2018-01-01

    Purpose To computationally separate dynamic brain functional BOLD responses from static background in a brain functional activity for forward fMRI signal analysis and inverse mapping. Methods A brain functional activity is represented in terms of magnetic source by a perturbation model: χ = χ0 +δχ, with δχ for BOLD magnetic perturbations and χ0 for background. A brain fMRI experiment produces a timeseries of complex-valued images (T2* images), whereby we extract the BOLD phase signals (denoted by δP) by a complex division. By solving an inverse problem, we reconstruct the BOLD δχ dataset from the δP dataset, and the brain χ distribution from a (unwrapped) T2* phase image. Given a 4D dataset of task BOLD fMRI, we implement brain functional mapping by temporal correlation analysis. Results Through a high-field (7T) and high-resolution (0.5mm in plane) task fMRI experiment, we demonstrated in detail the BOLD perturbation model for fMRI phase signal separation (P + δP) and reconstructing intrinsic brain magnetic source (χ and δχ). We also provided to a low-field (3T) and low-resolution (2mm) task fMRI experiment in support of single-subject fMRI study. Our experiments show that the δχ-depicted functional map reveals bidirectional BOLD χ perturbations during the task performance. Conclusions The BOLD perturbation model allows us to separate fMRI phase signal (by complex division) and to perform inverse mapping for pure BOLD δχ reconstruction for intrinsic functional χ mapping. The full brain χ reconstruction (from unwrapped fMRI phase) provides a new brain tissue image that allows to scrutinize the brain tissue idiosyncrasy for the pure BOLD δχ response through an automatic function/structure co-localization. PMID:29351339

  7. Enhancing early child care quality and learning for toddlers at risk: the responsive early childhood program.

    PubMed

    Landry, Susan H; Zucker, Tricia A; Taylor, Heather B; Swank, Paul R; Williams, Jeffrey M; Assel, Michael; Crawford, April; Huang, Weihua; Clancy-Menchetti, Jeanine; Lonigan, Christopher J; Phillips, Beth M; Eisenberg, Nancy; Spinrad, Tracy L; de Villiers, Jill; de Villiers, Peter; Barnes, Marcia; Starkey, Prentice; Klein, Alice

    2014-02-01

    Despite reports of positive effects of high-quality child care, few experimental studies have examined the process of improving low-quality center-based care for toddler-age children. In this article, we report intervention effects on child care teachers' behaviors and children's social, emotional, behavioral, early literacy, language, and math outcomes as well as the teacher-child relationship. The intervention targeted the use of a set of responsive teacher practices, derived from attachment and sociocultural theories, and a comprehensive curriculum. Sixty-five childcare classrooms serving low-income 2- and 3-year-old children were randomized into 3 conditions: business-as-usual control, Responsive Early Childhood Curriculum (RECC), and RECC plus explicit social-emotional classroom activities (RECC+). Classroom observations showed greater gains for RECC and RECC+ teachers' responsive practices including helping children manage their behavior, establishing a predictable schedule, and use of cognitively stimulating activities (e.g., shared book reading) compared with controls; however, teacher behaviors did not differ for focal areas such as sensitivity and positive discipline supports. Child assessments demonstrated that children in the interventions outperformed controls in areas of social and emotional development, although children's performance in control and intervention groups was similar for cognitive skills (language, literacy, and math). Results support the positive impact of responsive teachers and environments providing appropriate support for toddlers' social and emotional development. Possible explanations for the absence of systematic differences in children's cognitive skills are considered, including implications for practice and future research targeting low-income toddlers.

  8. Machine learning for predicting the response of breast cancer to neoadjuvant chemotherapy

    PubMed Central

    Mani, Subramani; Chen, Yukun; Li, Xia; Arlinghaus, Lori; Chakravarthy, A Bapsi; Abramson, Vandana; Bhave, Sandeep R; Levy, Mia A; Xu, Hua; Yankeelov, Thomas E

    2013-01-01

    Objective To employ machine learning methods to predict the eventual therapeutic response of breast cancer patients after a single cycle of neoadjuvant chemotherapy (NAC). Materials and methods Quantitative dynamic contrast-enhanced MRI and diffusion-weighted MRI data were acquired on 28 patients before and after one cycle of NAC. A total of 118 semiquantitative and quantitative parameters were derived from these data and combined with 11 clinical variables. We used Bayesian logistic regression in combination with feature selection using a machine learning framework for predictive model building. Results The best predictive models using feature selection obtained an area under the curve of 0.86 and an accuracy of 0.86, with a sensitivity of 0.88 and a specificity of 0.82. Discussion With the numerous options for NAC available, development of a method to predict response early in the course of therapy is needed. Unfortunately, by the time most patients are found not to be responding, their disease may no longer be surgically resectable, and this situation could be avoided by the development of techniques to assess response earlier in the treatment regimen. The method outlined here is one possible solution to this important clinical problem. Conclusions Predictive modeling approaches based on machine learning using readily available clinical and quantitative MRI data show promise in distinguishing breast cancer responders from non-responders after the first cycle of NAC. PMID:23616206

  9. Development of the Complex General Linear Model in the Fourier Domain: Application to fMRI Multiple Input-Output Evoked Responses for Single Subjects

    PubMed Central

    Rio, Daniel E.; Rawlings, Robert R.; Woltz, Lawrence A.; Gilman, Jodi; Hommer, Daniel W.

    2013-01-01

    A linear time-invariant model based on statistical time series analysis in the Fourier domain for single subjects is further developed and applied to functional MRI (fMRI) blood-oxygen level-dependent (BOLD) multivariate data. This methodology was originally developed to analyze multiple stimulus input evoked response BOLD data. However, to analyze clinical data generated using a repeated measures experimental design, the model has been extended to handle multivariate time series data and demonstrated on control and alcoholic subjects taken from data previously analyzed in the temporal domain. Analysis of BOLD data is typically carried out in the time domain where the data has a high temporal correlation. These analyses generally employ parametric models of the hemodynamic response function (HRF) where prewhitening of the data is attempted using autoregressive (AR) models for the noise. However, this data can be analyzed in the Fourier domain. Here, assumptions made on the noise structure are less restrictive, and hypothesis tests can be constructed based on voxel-specific nonparametric estimates of the hemodynamic transfer function (HRF in the Fourier domain). This is especially important for experimental designs involving multiple states (either stimulus or drug induced) that may alter the form of the response function. PMID:23840281

  10. Development of the complex general linear model in the Fourier domain: application to fMRI multiple input-output evoked responses for single subjects.

    PubMed

    Rio, Daniel E; Rawlings, Robert R; Woltz, Lawrence A; Gilman, Jodi; Hommer, Daniel W

    2013-01-01

    A linear time-invariant model based on statistical time series analysis in the Fourier domain for single subjects is further developed and applied to functional MRI (fMRI) blood-oxygen level-dependent (BOLD) multivariate data. This methodology was originally developed to analyze multiple stimulus input evoked response BOLD data. However, to analyze clinical data generated using a repeated measures experimental design, the model has been extended to handle multivariate time series data and demonstrated on control and alcoholic subjects taken from data previously analyzed in the temporal domain. Analysis of BOLD data is typically carried out in the time domain where the data has a high temporal correlation. These analyses generally employ parametric models of the hemodynamic response function (HRF) where prewhitening of the data is attempted using autoregressive (AR) models for the noise. However, this data can be analyzed in the Fourier domain. Here, assumptions made on the noise structure are less restrictive, and hypothesis tests can be constructed based on voxel-specific nonparametric estimates of the hemodynamic transfer function (HRF in the Fourier domain). This is especially important for experimental designs involving multiple states (either stimulus or drug induced) that may alter the form of the response function.

  11. The power of using functional fMRI on small rodents to study brain pharmacology and disease

    PubMed Central

    Jonckers, Elisabeth; Shah, Disha; Hamaide, Julie; Verhoye, Marleen; Van der Linden, Annemie

    2015-01-01

    Functional magnetic resonance imaging (fMRI) is an excellent tool to study the effect of pharmacological modulations on brain function in a non-invasive and longitudinal manner. We introduce several blood oxygenation level dependent (BOLD) fMRI techniques, including resting state (rsfMRI), stimulus-evoked (st-fMRI), and pharmacological MRI (phMRI). Respectively, these techniques permit the assessment of functional connectivity during rest as well as brain activation triggered by sensory stimulation and/or a pharmacological challenge. The first part of this review describes the physiological basis of BOLD fMRI and the hemodynamic response on which the MRI contrast is based. Specific emphasis goes to possible effects of anesthesia and the animal’s physiological conditions on neural activity and the hemodynamic response. The second part of this review describes applications of the aforementioned techniques in pharmacologically induced, as well as in traumatic and transgenic disease models and illustrates how multiple fMRI methods can be applied successfully to evaluate different aspects of a specific disorder. For example, fMRI techniques can be used to pinpoint the neural substrate of a disease beyond previously defined hypothesis-driven regions-of-interest. In addition, fMRI techniques allow one to dissect how specific modifications (e.g., treatment, lesion etc.) modulate the functioning of specific brain areas (st-fMRI, phMRI) and how functional connectivity (rsfMRI) between several brain regions is affected, both in acute and extended time frames. Furthermore, fMRI techniques can be used to assess/explore the efficacy of novel treatments in depth, both in fundamental research as well as in preclinical settings. In conclusion, by describing several exemplary studies, we aim to highlight the advantages of functional MRI in exploring the acute and long-term effects of pharmacological substances and/or pathology on brain functioning along with several methodological

  12. Evaluation of focal cartilage lesions of the knee using MRI T2 mapping and delayed Gadolinium Enhanced MRI of Cartilage (dGEMRIC).

    PubMed

    Årøen, Asbjørn; Brøgger, Helga; Røtterud, Jan Harald; Sivertsen, Einar Andreas; Engebretsen, Lars; Risberg, May Arna

    2016-02-11

    Assessment of degenerative changes of the cartilage is important in knee cartilage repair surgery. Magnetic Resonance Imaging (MRI) T2 mapping and delayed Gadolinium Enhanced MRI of Cartilage (dGEMRIC) are able to detect early degenerative changes. The hypothesis of the study was that cartilage surrounding a focal cartilage lesion in the knee does not possess degenerative changes. Twenty-eight consecutive patients included in a randomized controlled trial on cartilage repair were evaluated using MRI T2 mapping and dGEMRIC before cartilage treatment was initiated. Inclusion was based on disabling knee problems (Lysholm score of ≤ 75) due to an arthroscopically verified focal femoral condyle cartilage lesion. Furthermore, no major malalignments or knee ligament injuries were accepted. Mean patient age was 33 ± 9.6 years, and the mean duration of knee symptoms was 49 ± 60 months. The MRI T2 mapping and the dGEMRIC measurements were performed at three standardized regions of interest (ROIs) at the medial and lateral femoral condyle, avoiding the cartilage lesion The MRI T2 mapping of the cartilage did not demonstrate significant differences between condyles with or without cartilage lesions. The dGEMRIC results did not show significantly lower values of the affected condyle compared with the opposite condyle and the contra-lateral knee in any of the ROIs. The intraclass correlation coefficient (ICC) of the dGEMRIC readings was 0.882. The MRI T2 mapping and the dGEMRIC confirmed the arthroscopic findings that normal articular cartilage surrounded the cartilage lesion, reflecting normal variation in articular cartilage quality. NCT00885729 , registered April 17 2009.

  13. MRI of the lung: state of the art.

    PubMed

    Wielpütz, Mark; Kauczor, Hans-Ulrich

    2012-01-01

    Magnetic resonance imaging (MRI) of the lung is technically challenging due to the low proton density and fast signal decay of the lung parenchyma itself. Additional challenges consist of tissue loss, hyperinflation, and hypoxic hypoperfusion, e.g., in emphysema, a so-called "minus-pathology". However, pathological changes resulting in an increase of tissue ("plus-pathology"), such as atelectases, nodules, infiltrates, mucus, or pleural effusion, are easily depicted with high diagnostic accuracy. Although MRI is inferior or at best equal to multi-detector computed tomography (MDCT) for the detection of subtle morphological features, MRI now offers an increasing spectrum of functional imaging techniques such as perfusion assessment and measurement of ventilation and respiratory mechanics that are superior to what is possible with MDCT. Without putting patients at risk with ionizing radiation, repeated examinations allow for the evaluation of the course of lung disease and monitoring of the therapeutic response through quantitative imaging, providing a level of functional detail that cannot be obtained by any other single imaging modality. As such, MRI will likely be used for clinical applications beyond morphological imaging for many lung diseases. In this article, we review the technical aspects and protocol suggestions for chest MRI and discuss the role of MRI in the evaluation of nodules and masses, airway disease, respiratory mechanics, ventilation, perfusion and hemodynamics, and pulmonary vasculature.

  14. An fMRI investigation of responses to peer rejection in adolescents with autism spectrum disorders.

    PubMed

    Masten, Carrie L; Colich, Natalie L; Rudie, Jeffrey D; Bookheimer, Susan Y; Eisenberger, Naomi I; Dapretto, Mirella

    2011-07-01

    Peer rejection is particularly pervasive among adolescents with autism spectrum disorders (ASD). However, how adolescents with ASD differ from typically developing adolescents in their responses to peer rejection is poorly understood. The goal of the current investigation was to examine neural responses to peer exclusion among adolescents with ASD compared to typically developing adolescents. Nineteen adolescents with ASD and 17 typically developing controls underwent fMRI as they were ostensibly excluded by peers during an online game called Cyberball. Afterwards, participants reported their distress about the exclusion. Compared to typically developing adolescents, those with ASD displayed less activity in regions previously linked with the distressing aspect of peer exclusion, including the subgenual anterior cingulate and anterior insula, as well as less activity in regions previously linked with the regulation of distress responses during peer exclusion, including the ventrolateral prefrontal cortex and ventral striatum. Interestingly, however, both groups self-reported equivalent levels of distress. This suggests that adolescents with ASD may engage in differential processing of social experiences at the neural level, but be equally aware of, and concerned about, peer rejection. Overall, these findings contribute new insights about how this population may differentially experience negative social events in their daily lives.

  15. An fMRI investigation of responses to peer rejection in adolescents with autism spectrum disorders

    PubMed Central

    Masten, Carrie L.; Colich, Natalie L.; Rudie, Jeffrey D.; Bookheimer, Susan Y.; Eisenberger, Naomi I.; Dapretto, Mirella

    2011-01-01

    Peer rejection is particularly pervasive among adolescents with autism spectrum disorders (ASD). However, how adolescents with ASD differ from typically developing adolescents in their responses to peer rejection is poorly understood. The goal of the current investigation was to examine neural responses to peer exclusion among adolescents with ASD compared to typically developing adolescents. Nineteen adolescents with ASD and 17 typically developing controls underwent fMRI as they were ostensibly excluded by peers during an online game called Cyberball. Afterwards, participants reported their distress about the exclusion. Compared to typically developing adolescents, those with ASD displayed less activity in regions previously linked with the distressing aspect of peer exclusion, including the subgenual anterior cingulate and anterior insula, as well as less activity in regions previously linked with the regulation of distress responses during peer exclusion, including the ventrolateral prefrontal cortex and ventral striatum. Interestingly, however, both groups self-reported equivalent levels of distress. This suggests that adolescents with ASD may engage in differential processing of social experiences at the neural level, but be equally aware of, and concerned about, peer rejection. Overall, these findings contribute new insights about how this population may differentially experience negative social events in their daily lives. PMID:22318914

  16. Altered neural activation during prepotent response inhibition in breast cancer survivors treated with chemotherapy: an fMRI study.

    PubMed

    Kam, Julia W Y; Boyd, Lara A; Hsu, Chun L; Liu-Ambrose, Teresa; Handy, Todd C; Lim, Howard J; Hayden, Sherri; Campbell, Kristin L

    2016-09-01

    While impairments in executive functions have been reported in breast cancer survivors (BCS) who have undergone adjuvant chemotherapy, only a limited number of functional neuroimaging studies have associated alterations in cerebral activity with executive functions deficits in BCS. Using fMRI, the current study assessed the neural basis underlying a specific facet of executive function, namely prepotent response inhibition. 12 BCS who self-reported cognitive problems up to 3 years following cancer treatment and 12 female healthy comparisons (HC) performed the Stroop task. We compared their neural activation between the incongruent and neutral experimental conditions. Relative to the HC group, BCS showed lower blood-oxygen level dependent signal in several frontal regions, including the anterior cingulate cortex, a region critical for response inhibition. Our data indicates reduced neural activation in BCS during a prepotent response inhibition task, providing support for the prevailing notion of neural alterations observed in BCS treated with chemotherapy.

  17. Capturing early signs of deterioration: the dutch-early-nurse-worry-indicator-score and its value in the Rapid Response System.

    PubMed

    Douw, Gooske; Huisman-de Waal, Getty; van Zanten, Arthur R H; van der Hoeven, Johannes G; Schoonhoven, Lisette

    2017-09-01

    To determine the predictive value of individual and combined dutch-early-nurse-worry-indicator-score indicators at various Early Warning Score levels, differentiating between Early Warning Scores reaching the trigger threshold to call a rapid response team and Early Warning Score levels not reaching this point. Dutch-early-nurse-worry-indicator-score comprises nine indicators underlying nurses' 'worry' about a patient's condition. All indicators independently show significant association with unplanned intensive care/high dependency unit admission or unexpected mortality. Prediction of this outcome improved by adding the dutch-early-nurse-worry-indicator-score indicators to an Early Warning Score based on vital signs. An observational cohort study was conducted on three surgical wards in a tertiary university-affiliated teaching hospital. Included were surgical, native-speaking, adult patients. Nurses scored presence of 'worry' and/or dutch-early-nurse-worry-indicator-score indicators every shift or when worried. Vital signs were measured according to the prevailing protocol. Unplanned intensive care/high dependency unit admission or unexpected mortality was the composite endpoint. Percentages of 'worry' and dutch-early-nurse-worry-indicator-score indicators were calculated at various Early Warning Score levels in control and event groups. Entering all dutch-early-nurse-worry-indicator-score indicators in a multiple logistic regression analysis, we calculated a weighted score and calculated sensitivity, specificity, positive predicted value and negative predicted value for each possible total score. In 3522 patients, 102 (2·9%) had an unplanned intensive care/high dependency unit admissions (n = 97) or unexpected mortality (n = 5). Patients with such events and only slightly changed vital signs had significantly higher percentages of 'worry' and dutch-early-nurse-worry-indicator-score indicators expressed than patients in the control group. Increasing number

  18. Response to Therapy Following Retreatment of Serofast Early Syphilis Patients With Benzathine Penicillin

    PubMed Central

    Seña, Arlene C.; Wolff, Mark; Behets, Frieda; Van Damme, Kathleen; Martin, David H.; Leone, Peter; McNeil, Linda; Hook, Edward W.

    2013-01-01

    Persistent nontreponemal titers after treatment are common among patients with early syphilis. We retreated 82 human immunodeficiency virus–negative early syphilis participants who were serofast at 6 months using benzathine penicillin. Only 27% exhibited serological response after retreatment and after an additional 6 months of follow-up. PMID:23118269

  19. Longitudinal changes in MRI markers in a reversible unilateral ureteral obstruction mouse model: preliminary experience.

    PubMed

    Haque, Muhammad E; Franklin, Tammy; Bokhary, Ujala; Mathew, Liby; Hack, Bradley K; Chang, Anthony; Puri, Tipu S; Prasad, Pottumarthi V

    2014-04-01

    To evaluate longitudinal changes in renal oxygenation and diffusion measurements in a model of reversible unilateral ureteral obstruction (rUUO) which has been shown to induce chronic renal functional deficits in a strain dependent way. C57BL/6 mice show higher degree of functional deficit compared with BALB/c mice. Because hypoxia and development of fibrosis are associated with chronic kidney diseases and are responsible for progression, we hypothesized that MRI measurements would be able to monitor the longitudinal changes in this model and will show strain dependent differences in response. Here blood oxygenation level dependent (BOLD) and diffusion MRI measurements were performed at three time points over a 30 day period in mice with rUUO. The studies were performed on a 4.7T scanner with the mice anesthetized with isoflurane before UUO, 2 and 28 days postrelease of 6 days of obstruction. We found at the early time point (∼2 days after releasing the obstruction), the relative oxygenation in C57Bl/6 mice were lower compared with BALB/c. Diffusion measurements were lower at this time point and reached statistical significance in BALB/c These methods may prove valuable in better understanding the natural progression of kidney diseases and in evaluating novel interventions to limit progression. Copyright © 2013 Wiley Periodicals, Inc.

  20. Unexpected recovery of function after severe traumatic brain injury: the limits of early neuroimaging-based outcome prediction.

    PubMed

    Edlow, Brian L; Giacino, Joseph T; Hirschberg, Ronald E; Gerrard, Jason; Wu, Ona; Hochberg, Leigh R

    2013-12-01

    Prognostication in the early stage of traumatic coma is a common challenge in the neuro-intensive care unit. We report the unexpected recovery of functional milestones (i.e., consciousness, communication, and community reintegration) in a 19-year-old man who sustained a severe traumatic brain injury. The early magnetic resonance imaging (MRI) findings, at the time, suggested a poor prognosis. During the first year of the patient's recovery, MRI with diffusion tensor imaging and T2*-weighted imaging was performed on day 8 (coma), day 44 (minimally conscious state), day 198 (post-traumatic confusional state), and day 366 (community reintegration). Mean apparent diffusion coefficient (ADC) and fractional anisotropy values in the corpus callosum, cerebral hemispheric white matter, and thalamus were compared with clinical assessments using the Disability Rating Scale (DRS). Extensive diffusion restriction in the corpus callosum and bihemispheric white matter was observed on day 8, with ADC values in a range typically associated with neurotoxic injury (230-400 × 10(-6 )mm(2)/s). T2*-weighted MRI revealed widespread hemorrhagic axonal injury in the cerebral hemispheres, corpus callosum, and brainstem. Despite the presence of severe axonal injury on early MRI, the patient regained the ability to communicate and perform activities of daily living independently at 1 year post-injury (DRS = 8). MRI data should be interpreted with caution when prognosticating for patients in traumatic coma. Recovery of consciousness and community reintegration are possible even when extensive traumatic axonal injury is demonstrated by early MRI.

  1. Application of probabilistically weighted graphs to image-based diagnosis of Alzheimer's disease using diffusion MRI

    NASA Astrophysics Data System (ADS)

    Maryam, Syeda; McCrackin, Laura; Crowley, Mark; Rathi, Yogesh; Michailovich, Oleg

    2017-03-01

    The world's aging population has given rise to an increasing awareness towards neurodegenerative disorders, including Alzheimers Disease (AD). Treatment options for AD are currently limited, but it is believed that future success depends on our ability to detect the onset of the disease in its early stages. The most frequently used tools for this include neuropsychological assessments, along with genetic, proteomic, and image-based diagnosis. Recently, the applicability of Diffusion Magnetic Resonance Imaging (dMRI) analysis for early diagnosis of AD has also been reported. The sensitivity of dMRI to the microstructural organization of cerebral tissue makes it particularly well-suited to detecting changes which are known to occur in the early stages of AD. Existing dMRI approaches can be divided into two broad categories: region-based and tract-based. In this work, we propose a new approach, which extends region-based approaches to the simultaneous characterization of multiple brain regions. Given a predefined set of features derived from dMRI data, we compute the probabilistic distances between different brain regions and treat the resulting connectivity pattern as an undirected, fully-connected graph. The characteristics of this graph are then used as markers to discriminate between AD subjects and normal controls (NC). Although in this preliminary work we omit subjects in the prodromal stage of AD, mild cognitive impairment (MCI), our method demonstrates perfect separability between AD and NC subject groups with substantial margin, and thus holds promise for fine-grained stratification of NC, MCI and AD populations.

  2. Positron emission tomography (PET) and magnetic resonance imaging (MRI) for the assessment of axillary lymph node metastases in early breast cancer: systematic review and economic evaluation.

    PubMed

    Cooper, K L; Meng, Y; Harnan, S; Ward, S E; Fitzgerald, P; Papaioannou, D; Wyld, L; Ingram, C; Wilkinson, I D; Lorenz, E

    2011-01-01

    Breast cancer is the most common type of cancer in women. Evaluation of axillary lymph node metastases is important for breast cancer staging and treatment planning. To evaluate the diagnostic accuracy, cost-effectiveness and effect on patient outcomes of positron emission tomography (PET), with or without computed tomography (CT), and magnetic resonance imaging (MRI) in the evaluation of axillary lymph node metastases in patients with newly diagnosed early-stage breast cancer. A systematic review of literature and an economic evaluation were carried out. Key databases (including MEDLINE, EMBASE and nine others) plus research registers and conference proceedings were searched for relevant studies up to April 2009. A decision-analytical model was developed to determine cost-effectiveness in the UK. One reviewer assessed titles and abstracts of studies identified by the search strategy, obtained the full text of relevant papers and screened them against inclusion criteria. Data from included studies were extracted by one reviewer using a standardised data extraction form and checked by a second reviewer. Discrepancies were resolved by discussion. Quality of included studies was assessed using the quality assessment of diagnostic accuracy studies (QUADAS) checklist, applied by one reviewer and checked by a second. Forty-five citations relating to 35 studies were included in the clinical effectiveness review: 26 studies of PET and nine studies of MRI. Two studies were included in the cost-effectiveness review: one of PET and one of MRI. Of the seven studies evaluating PET/CT (n = 862), the mean sensitivity was 56% [95% confidence interval (CI) 44% to 67%] and mean specificity 96% (95% CI 90% to 99%). Of the 19 studies evaluating PET only (n = 1729), the mean sensitivity was 66% (95% CI 50% to 79%) and mean specificity 93% (95% CI 89% to 96%). PET performed less well for small metastases; the mean sensitivity was 11% (95% CI 5% to 22%) for micrometastases (≤ 2 mm

  3. Lunate chondromalacia: evaluation of routine MRI sequences.

    PubMed

    Bordalo-Rodrigues, Marcelo; Schweitzer, Mark; Bergin, Diane; Culp, Randall; Barakat, Mohamed S

    2005-05-01

    Chondromalacia is a commonly encountered abnormality at arthroscopy and may be responsible for significant clinical symptoms and disability. In the wrist, the most common location for chondromalacia is the lunate bone. Consequently, we sought to study the accuracy of clinical MRI in the assessment of lunate articular cartilage. MR images of 34 patients who underwent arthroscopy and had an MRI examination within 1 month of surgery were evaluated by two reviewers for the presence and location of lunate cartilage defects and subchondral edema. Lunate cartilage defects were seen on MRI in 10 of the 13 patients with chondromalacia, but these defects were also incorrectly noted in three of 21 of patients without chondromalacia. The visible locations for cartilage defects were the ulnar aspect of the proximal lunate bone (n = 3), radial aspect of the proximal lunate bone (n = 4), ulnar aspect of the distal lunate bone (n = 2), and radial aspect of the distal lunate bone (n = 1). Subchondral marrow edema was observed in six of the 10 patients with chondromalacia seen on MRI; in all six patients, the edema was seen in the same quadrant as the cartilage defect. Marrow edema was detected in one patient without chondromalacia. We conclude that lunate chondromalacia can be accurately assessed using routine MRI sequences, although there are occasional false-positive interpretations.

  4. Magnetic Resonance Imaging Assessment of Squamous Cell Carcinoma of the Anal Canal Before and After Chemoradiation: Can MRI Predict for Eventual Clinical Outcome?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goh, Vicky, E-mail: vicky.goh@stricklandscanner.org.u; Gollub, Frank K.; Liaw, Jonathan

    2010-11-01

    Purpose: To describe the MRI appearances of squamous cell carcinoma of the anal canal before and after chemoradiation and to assess whether MRI features predict for clinical outcome. Methods and Materials: Thirty-five patients (15 male, 20 female; mean age 60.8 years) with histologically proven squamous cell cancer of the anal canal underwent MRI before and 6-8 weeks after definitive chemoradiation. Images were reviewed retrospectively by two radiologists in consensus blinded to clinical outcome: tumor size, signal intensity, extent, and TNM stage were recorded. Following treatment, patients were defined as responders by T and N downstaging and Response Evaluation Criteria inmore » Solid Tumors (RECIST). Final clinical outcome was determined by imaging and case note review: patients were divided into (1) disease-free and (2) with relapse and compared using appropriate univariate methods to identify imaging predictors; statistical significance was at 5%. Results: The majority of tumors were {<=}T2 (23/35; 65.7%) and N0 (21/35; 60%), mean size 3.75cm, and hyperintense (++ to +++, 24/35 patients; 68%). Following chemoradiation, there was a size reduction in all cases (mean 73.3%) and a reduction in signal intensity in 26/35 patients (74.2%). The majority of patients were classified as responders (26/35 (74.2%) patients by T and N downstaging; and 30/35 (85.7%) patients by RECIST). At a median follow-up of 33.5 months, 25 patients (71.4%) remained disease-free; 10 patients (28.6%) had locoregional or metastatic disease. Univariate analysis showed that no individual MRI features were predictive of eventual outcome. Conclusion: Early assessment of response by MRI at 6-8 weeks is unhelpful in predicting future clinical outcome.« less

  5. Multiparametric MRI Assessment of Human Articular Cartilage Degeneration: Correlation with Quantitative Histology and Mechanical Properties

    PubMed Central

    Rautiainen, Jari; Nissi, Mikko J.; Salo, Elli-Noora; Tiitu, Virpi; Finnilä, Mikko A.J.; Aho, Olli-Matti; Saarakkala, Simo; Lehenkari, Petri; Ellermann, Jutta; Nieminen, Miika T.

    2014-01-01

    Purpose To evaluate the sensitivity of quantitative MRI techniques (T1, T1,Gd, T2, continous wave (CW) T1ρ dispersion, adiabatic T1ρ, adiabatic T2ρ, RAFF and inversion-prepared magnetization transfer (MT)) for assessment of human articular cartilage with varying degrees of natural degeneration. Methods Osteochondral samples (n = 14) were obtained from the tibial plateaus of patients undergoing total knee replacement. MRI of the specimens was performed at 9.4 T and the relaxation time maps were evaluated in the cartilage zones. For reference, quantitative histology, OARSI grading and biomechanical measurements were performed and correlated with MRI findings. Results All MRI parameters, except T1,Gd, showed statistically significant differences in tangential and full-thickness ROIs between early and advanced osteoarthritis (OA) groups, as classified by OARSI grading. CW-T1ρ showed significant dispersion in all ROIs and featured classical laminar structure of cartilage with spin-lock powers below 1000 Hz. Adiabatic T1ρ, T2ρ, CW-T1ρ, MT and RAFF correlated strongly with OARSI grade and biomechanical parameters. Conclusion MRI parameters were able to differentiate between early and advanced OA. Furthermore, rotating frame methods, namely adiabatic T1ρ, adiabatic T2ρ, CW-T1ρ and RAFF, as well as MT experiment correlated strongly with biomechanical parameters and OARSI grade, suggesting high sensitivity of the parameters for cartilage degeneration. PMID:25104181

  6. Early Peritoneal Immune Response during Echinococcus granulosus Establishment Displays a Biphasic Behavior

    PubMed Central

    Mourglia-Ettlin, Gustavo; Marqués, Juan Martín; Chabalgoity, José Alejandro; Dematteis, Sylvia

    2011-01-01

    Background Cystic echinococcosis is a worldwide distributed helminth zoonosis caused by the larval stage of Echinococcus granulosus. Human secondary cystic echinococcosis is caused by dissemination of protoscoleces after accidental rupture of fertile cysts and is due to protoscoleces ability to develop into new metacestodes. In the experimental model of secondary cystic echinococcosis mice react against protoscoleces producing inefficient immune responses, allowing parasites to develop into cysts. Although the chronic phase of infection has been analyzed in depth, early immune responses at the site of infection establishment, e.g., peritoneal cavity, have not been well studied. Because during early stages of infection parasites are thought to be more susceptible to immune attack, this work focused on the study of cellular and molecular events triggered early in the peritoneal cavity of infected mice. Principal Findings Data obtained showed disparate behaviors among subpopulations within the peritoneal lymphoid compartment. Regarding B cells, there is an active molecular process of plasma cell differentiation accompanied by significant local production of specific IgM and IgG2b antibodies. In addition, peritoneal NK cells showed a rapid increase with a significant percentage of activated cells. Peritoneal T cells showed a substantial increase, with predominance in CD4+ T lymphocytes. There was also a local increase in Treg cells. Finally, cytokine response showed local biphasic kinetics: an early predominant induction of Th1-type cytokines (IFN-γ, IL-2 and IL-15), followed by a shift toward a Th2-type profile (IL-4, IL-5, IL-6, IL-10 and IL-13). Conclusions Results reported here open new ways to investigate the involvement of immune effectors players in E. granulosus establishment, and also in the sequential promotion of Th1- toward Th2-type responses in experimental secondary cystic echinococcosis. These data would be relevant for designing rational therapies

  7. Early life adversity influences stress response association with smoking relapse.

    PubMed

    al'Absi, Mustafa; Lemieux, Andrine; Westra, Ruth; Allen, Sharon

    2017-11-01

    We examined the hypothesis that stress-related blunting of cortisol in smokers is particularly pronounced in those with a history of severe life adversity. The two aims of this study were first to examine hormonal, craving, and withdrawal symptoms during ad libitum smoking and after the first 24 h of abstinence in smokers who experienced high or low levels of adversity. Second, we sought to examine the relationship between adversity and hypothalamic-pituitary-adrenal (HPA) hormones to predict relapse during the first month of a smoking cessation attempt. Hormonal and self-report measures were collected from 103 smokers (49 women) during ad libitum smoking and after the first 24 h of abstinence. HPA hormones were measured during baseline rest and in response to acute stress in both conditions. All smokers were interested in smoking cessation, and we prospectively used stress response measures to predict relapse during the first 4 weeks of the smoking cessation attempt. The results showed that high adversity was associated with higher distress and smoking withdrawal symptoms. High level of early life adversity was associated with elevated HPA activity, which was found in both salivary and plasma cortisol. Enhanced adrenocorticotropic hormone (ACTH) stress response was evident in high-adversity but not in low-adversity relapsers. This study demonstrated that early life adversity is associated with stress-related HPA responses. The study also demonstrated that, among smokers who experienced a high level of life adversity, heightened ACTH and cortisol responses were linked with increased risk for smoking relapse.

  8. SU-C-17A-05: Quantification of Intra-Fraction Motion of Breast Tumors Using Cine-MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heijst, T van; Philippens, M; Bongard, D van den

    2014-06-01

    Purpose: Magnetic resonance imaging (MRI) enables direct characterization of intra-fraction motion ofbreast tumors, due to high softtissue contrast and geometric accuracy. The purpose is to analyzethis motion in early-stage breast-cancer patients using pre-operative supine cine-MRI. Methods: MRI was performed in 12 female early-stage breast-cancer patients on a 1.5-T Ingenia (Philips)wide-bore scanner in supine radiotherapy (RT) position, prior to breast-conserving surgery. Twotwodimensional (2D) T2-weighted balanced fast-field echo (cine-MRI) sequences were added tothe RT protocol, oriented through the tumor. They were alternately acquired in the transverse andsagittal planes, every 0.3 s during 1 min. A radiation oncologist delineated gross target volumes(GTVs) onmore » 3D contrast-enhanced MRI. Clinical target volumes (CTV = GTV + 15 mm isotropic)were generated and transferred onto the fifth time-slice of the time-series, to which subsequents lices were registered using a non-rigid Bspline algorithm; delineations were transformed accordingly. To evaluate intra-fraction CTV motion, deformation fields between the transformed delineations were derived to acquire the distance ensuring 95% surface coverage during scanning(P95%), for all in-plane directions: anteriorposterior (AP), left-right (LR), and caudal-cranial(CC). Information on LR was derived from transverse scans, CC from sagittal scans, AP fromboth sets. Results: Time-series with registration errors - induced by motion artifacts - were excluded by visual inspection. For our analysis, 11 transverse, and 8 sagittal time-series were taken into account. Themedian P95% calculated in AP (19 series), CC (8), and LR (11) was 1.8 mm (range: 0.9–4.8), 1.7mm (0.8–3.6), and 1.0 mm (0.6–3.5), respectively. Conclusion: Intra-fraction motion analysis of breast tumors was achieved using cine-MRI. These first results show that in supine RT position, motion amplitudes are limited. This information can be used for

  9. Primate Brain Anatomy: New Volumetric MRI Measurements for Neuroanatomical Studies.

    PubMed

    Navarrete, Ana F; Blezer, Erwin L A; Pagnotta, Murillo; de Viet, Elizabeth S M; Todorov, Orlin S; Lindenfors, Patrik; Laland, Kevin N; Reader, Simon M

    2018-06-12

    Since the publication of the primate brain volumetric dataset of Stephan and colleagues in the early 1980s, no major new comparative datasets covering multiple brain regions and a large number of primate species have become available. However, technological and other advances in the last two decades, particularly magnetic resonance imaging (MRI) and the creation of institutions devoted to the collection and preservation of rare brain specimens, provide opportunities to rectify this situation. Here, we present a new dataset including brain region volumetric measurements of 39 species, including 20 species not previously available in the literature, with measurements of 16 brain areas. These volumes were extracted from MRI of 46 brains of 38 species from the Netherlands Institute of Neuroscience Primate Brain Bank, scanned at high resolution with a 9.4-T scanner, plus a further 7 donated MRI of 4 primate species. Partial measurements were made on an additional 8 brains of 5 species. We make the dataset and MRI scans available online in the hope that they will be of value to researchers conducting comparative studies of primate evolution. © 2018 S. Karger AG, Basel.

  10. A receptor-based model for dopamine-induced fMRI signal

    PubMed Central

    Mandeville, Joseph. B.; Sander, Christin Y. M.; Jenkins, Bruce G.; Hooker, Jacob M.; Catana, Ciprian; Vanduffel, Wim; Alpert, Nathaniel M.; Rosen, Bruce R.; Normandin, Marc D.

    2013-01-01

    This report describes a multi-receptor physiological model of the fMRI temporal response and signal magnitude evoked by drugs that elevate synaptic dopamine in basal ganglia. The model is formulated as a summation of dopamine’s effects at D1-like and D2-like receptor families, which produce functional excitation and inhibition, respectively, as measured by molecular indicators like adenylate cyclase or neuroimaging techniques like fMRI. Functional effects within the model are described in terms of relative changes in receptor occupancies scaled by receptor densities and neuro-vascular coupling constants. Using literature parameters, the model reconciles many discrepant observations and interpretations of pre-clinical data. Additionally, we present data showing that amphetamine stimulation produces fMRI inhibition at low doses and a biphasic response at higher doses in the basal ganglia of non-human primates (NHP), in agreement with model predictions based upon the respective levels of evoked dopamine. Because information about dopamine release is required to inform the fMRI model, we simultaneously acquired PET 11C-raclopride data in several studies to evaluate the relationship between raclopride displacement and assumptions about dopamine release. At high levels of dopamine release, results suggest that refinements of the model will be required to consistently describe the PET and fMRI data. Overall, the remarkable success of the model in describing a wide range of preclinical fMRI data indicate that this approach will be useful for guiding the design and analysis of basic science and clinical investigations and for interpreting the functional consequences of dopaminergic stimulation in normal subjects and in populations with dopaminergic neuroadaptations. PMID:23466936

  11. Early host response in the mammary gland after experimental Streptococcus uberis challenge in heifers.

    PubMed

    de Greeff, Astrid; Zadoks, Ruth; Ruuls, Lisette; Toussaint, Mathilda; Nguyen, Thi Kim Anh; Downing, Alison; Rebel, Johanna; Stockhofe-Zurwieden, Norbert; Smith, Hilde

    2013-06-01

    Streptococcus uberis is a highly prevalent causative agent of bovine mastitis, which leads to large economic losses in the dairy industry. The aim of this study was to examine the host response during acute inflammation after experimental challenge with capsulated Strep. uberis. Gene expression in response to Strep. uberis was compared between infected and control quarters in 3 animals. All quarters (n=16) were sampled at 16 different locations. Microarray data showed that 239 genes were differentially expressed between infected and control quarters. No differences in gene expression were observed between the different locations. Microarray data were confirmed for several genes using quantitative PCR analysis. Genes differentially expressed due to early Strep. uberis mastitis represented several stages of the process of infection: (1) pathogen recognition; (2) chemoattraction of neutrophils; (3) tissue repair mechanisms; and (4) bactericidal activity. Three different pathogen recognition genes were induced: ficolins, lipopolysaccharide binding protein, and toll-like receptor 2. Calgranulins were found to be the most strongly upregulated genes during early inflammation. By histology and immunohistochemistry, we demonstrated that changes in gene expression in response to Strep. uberis were induced both in infiltrating somatic milk cells and in mammary epithelial cells, demonstrating that the latter cell type plays a role in milk production as well as immune responsiveness. Given the rapid development of inflammation or mastitis after infection, early diagnosis of (Strep. uberis) mastitis is required for prevention of disease and spread of the pathogen. Insight into host responses could help to design immunomodulatory therapies to dampen inflammation after (early) diagnosis of Strep. uberis mastitis. Future research should focus on development of these early diagnostics and immunomodulatory components for mastitis treatment. Copyright © 2013 American Dairy Science

  12. MRI evaluation and functional assessment of brain injury after hypoxic ischemia in neonatal mice.

    PubMed

    Adén, Ulrika; Dahlberg, Viktoria; Fredholm, Bertil B; Lai, Li-Ju; Chen, Zhengguan; Bjelke, Börje

    2002-05-01

    Severe perinatal asphyxia is an important cause of brain injury in the newborn infant. We examined early events after hypoxic ischemia (HI) in the 7-day-old mouse brain by MRI and related them to long-term functional effects and histopathology in the same animals at 4 to 5 weeks of age. HI was induced in 7-day-old CD1 mice by exposure to 8% oxygen for 30 minutes after occlusion of the left common carotid artery. The resulting unilateral focal lesion was evaluated in vivo by MRI (T2 maps and apparent diffusion coefficient maps) at 3, 6, and 24 hours and 5 days after hypoxia. Locomotion and sensorimotor function were analyzed after 3 weeks. Four weeks after HI, the mice were killed, and cresyl violet-stained brain sections were examined morphologically. A decrease in apparent diffusion coefficient values in cortex on the affected side was found at 3 hours after HI. T2 values were significantly increased after 6 hours and remained so for 5 days. Maximal size of the lesion was attained at 3 to 6 hours after HI and declined thereafter. Animals with MRI-detected lesions had decreased forward locomotion, performed worse than controls in the beam-walking test, and showed a unilateral hypotrophy in the cresyl violet-stained brain sections 4 weeks later. The temporal progression of the damage after HI in 7-day-old mice differs from that of the adult brain as judged by MRI. The early lesions detected by MRI were related to functional impairments for these mice in near-adult life.

  13. Pelvis MRI scan

    MedlinePlus

    ... and most often available in the emergency room. Alternative Names MRI - pelvis; MRI - hips; Pelvic MRI with ... any medical emergency or for the diagnosis or treatment of any medical condition. A licensed physician should ...

  14. Genetic and Diagnostic Biomarker Development in ASD Toddlers Using Resting State Functional MRI

    DTIC Science & Technology

    2016-09-01

    networks during resting states. Autism spectrum disorder (ASD) begins prenatal, and early maldevelopment is present in many sites and systems that mediate...molecular and genomic evidence indicates autism spectrum disorder (ASD) begins prenatally, most likely by or before the late second trimester 10-15 as...ages 3 to 4 years. 2. KEYWORDS Autism spectrum disorder, ASD, early brain development, intrinsic functional brain networks, fMRI, infants, toddlers

  15. Genetic and Diagnostic Biomarker Development in ASD Toddlers Using Resting State Functional MRI

    DTIC Science & Technology

    2017-11-01

    and activation-based fMRI from the Courchesne lab report the presence of structural and functional abnormality in these structures by ages 1 to 2...young ages. With this invaluable resource, we will identify early developmental patterns of intrinsic functional network abnormalities in ASD infants...all infants and toddlers, analyses also investigate whether there may be subtypes of abnormal intrinsic connectivity patterns based on early clinical

  16. PET/MRI of metabolic activity in osteoarthritis: A feasibility study.

    PubMed

    Kogan, Feliks; Fan, Audrey P; McWalter, Emily J; Oei, Edwin H G; Quon, Andrew; Gold, Garry E

    2017-06-01

    To evaluate positron emission tomography / magnetic resonance imaging (PET/MRI) knee imaging to detect and characterize osseous metabolic abnormalities and correlate PET radiotracer uptake with osseous abnormalities and cartilage degeneration observed on MRI. Both knees of 22 subjects with knee pain or injury were scanned at one timepoint, without gadolinium, on a hybrid 3.0T PET-MRI system following injection of 18 F-fluoride or 18 F-fluorodeoxyglucose (FDG). A musculoskeletal radiologist identified volumes of interest (VOIs) around bone abnormalities on MR images and scored bone marrow lesions (BMLs) and osteophytes using a MOAKS scoring system. Cartilage appearance adjacent to bone abnormalities was graded with MRI-modified Outerbridge classifications. On PET standardized uptake values (SUV) maps, VOIs with SUV greater than 5 times the SUV in normal-appearing bone were identified as high-uptake VOI (VOI High ). Differences in 18 F-fluoride uptake between bone abnormalities, BML, and osteophyte grades and adjacent cartilage grades on MRI were identified using Mann-Whitney U-tests. SUV max in all subchondral bone lesions (BML, osteophytes, sclerosis) was significantly higher than that of normal-appearing bone on MRI (P < 0.001 for all). Of the 172 high-uptake regions on 18 F-fluoride PET, 63 (37%) corresponded to normal-appearing subchondral bone on MRI. Furthermore, many small grade 1 osteophytes (40 of 82 [49%]), often described as the earliest signs of osteoarthritis (OA), did not show high uptake. Lastly, PET SUV max in subchondral bone adjacent to grade 0 cartilage was significantly lower compared to that of grades 1-2 (P < 0.05) and grades 3-4 cartilage (P < 0.001). PET/MRI can simultaneously assess multiple early metabolic and morphologic markers of knee OA across multiple tissues in the joint. Our findings suggest that PET/MR may detect metabolic abnormalities in subchondral bone, which appear normal on MRI. 2 Technical Efficacy: Stage 1 J. MAGN. RESON

  17. The Impact of Early Substance Use Disorder Treatment Response on Treatment Outcomes Among Pregnant Women With Primary Opioid Use.

    PubMed

    Tuten, Michelle; Fitzsimons, Heather; Hochheimer, Martin; Jones, Hendree E; Chisolm, Margaret S

    2018-03-13

    This study examined the impact of early patient response on treatment utilization and substance use among pregnant participants enrolled in substance use disorder (SUD) treatment. Treatment responders (TRs) and treatment nonresponders (TNRs) were compared on pretreatment and treatment measures. Regression models predicted treatment utilization and substance use. TR participants attended more treatment and had lower rates of substance use relative to TNR participants. Regression models for treatment utilization and substance use were significant. Maternal estimated gestational age (EGA) and baseline cocaine use were negatively associated with treatment attendance. Medication-assisted treatment, early treatment response, and baseline SUD treatment were positively associated with treatment attendance. Maternal EGA was negatively associated with counseling attendance; early treatment response was positively associated with counseling attendance. Predictors of any substance use at 1 month were maternal education, EGA, early treatment nonresponse, and baseline cocaine use. The single predictor of any substance use at 2 months was early treatment nonresponse. Predictors of opioid use at 1 month were maternal education, EGA, early treatment nonresponse, and baseline SUD treatment. Predictors of opioid use at 2 months were early treatment nonresponse, and baseline cocaine and marijuana use. Predictors of cocaine use at 1 month were early treatment nonresponse, baseline cocaine use, and baseline SUD treatment. Predictors of cocaine use at 2 months were early treatment nonresponse and baseline cocaine use. Early treatment response predicts more favorable maternal treatment utilization and substance use outcomes. Treatment providers should implement interventions to maximize patient early response to treatment.

  18. A Comparison of Responsive Interventions on Kindergarteners' Early Reading Achievement

    ERIC Educational Resources Information Center

    Little, Mary E.; Rawlinson, D'Ann; Simmons, Deborah C.; Kim, Minjung; Kwok, Oi-man; Hagan-Burke, Shanna; Simmons, Leslie E.; Fogarty, Melissa; Oslund, Eric; Coyne, Michael D.

    2012-01-01

    This study compared the effects of Tier 2 reading interventions that operated in response-to-intervention contexts. Kindergarten children (N = 90) who were identified as at risk for reading difficulties were stratified by school and randomly assigned to receive (a) Early Reading Intervention (ERI; Pearson/Scott Foresman, 2004) modified in response…

  19. Cerebral microbleeds, cognitive impairment, and MRI in patients with diabetes mellitus.

    PubMed

    Zhou, Hong; Yang, Juan; Xie, Peihan; Dong, Yulan; You, Yong; Liu, Jincai

    2017-07-01

    Cerebral microbleeds (CMBs), a typical imaging manifestation marker of sporadic cerebral small vessel disease, play a critical role in vascular cognitive impairment, which is often accompanied by diabetes mellitus (DM). Hence, CMBs may, in part, be responsible for the occurrence and development of cognitive impairment in patients with diabetes. Novel magnetic resonance imaging (MRI) sequences, such as susceptibility-weighted imaging and T2*-weighted gradient-echo, have the capability of noninvasively revealing CMBs in the brain. Moreover, a correlation between CMBs and cognitive impairment in patients with diabetes has been suggested in applications of functional MRI (fMRI). Since pathological changes in the brain occur prior to observable decline in cognitive function, neuroimaging may help predict the progression of cognitive impairment in diabetic patients. In this article, we review the detection of CMBs using MRI in diabetic patients exhibiting cognitive impairment. Future studies should emphasize the development and establishment of a novel MRI protocol, including fMRI, for diabetic patients with cognitive impairment to detect CMBs. A reliable MRI protocol would also be helpful in understanding the pathological mechanisms of cognitive impairment in this important patient population. Copyright © 2017. Published by Elsevier B.V.

  20. Reduced empathic responses for sexually objectified women: An fMRI investigation.

    PubMed

    Cogoni, Carlotta; Carnaghi, Andrea; Silani, Giorgia

    2018-02-01

    Sexual objectification is a widespread phenomenon characterized by a focus on the individual's physical appearance over his/her mental state. This has been associated with negative social consequences, as objectified individuals are judged to be less human, competent, and moral. Moreover, behavioral responses toward the person change as a function of the degree of the perceived sexual objectification. In the present study, we investigated how behavioral and neural representations of other social pain are modulated by the degree of sexual objectification of the target. Using a within-subject fMRI design, we found reduced empathic feelings for positive (but not negative) emotions toward sexually objectified women as compared to non-objectified (personalized) women when witnessing their participation to a ball-tossing game. At the brain level, empathy for social exclusion of personalized women recruited areas coding the affective component of pain (i.e., anterior insula and cingulate cortex), the somatosensory components of pain (i.e., posterior insula and secondary somatosensory cortex) together with the mentalizing network (i.e., middle frontal cortex) to a greater extent than for the sexually objectified women. This diminished empathy is discussed in light of the gender-based violence that is afflicting the modern society. Copyright © 2017 Elsevier Ltd. All rights reserved.