Sample records for early neural tube

  1. Neural Tube Defects

    MedlinePlus

    Neural tube defects are birth defects of the brain, spine, or spinal cord. They happen in the ... that she is pregnant. The two most common neural tube defects are spina bifida and anencephaly. In ...

  2. Pathobiology and genetics of neural tube defects.

    PubMed

    Finnell, Richard H; Gould, Amy; Spiegelstein, Ofer

    2003-01-01

    Neural tube defects (NTDs), including spina bifida and anencephaly, are common congenital malformations that occur when the neural tube fails to achieve proper closure during early embryogenesis. Based on epidemiological and clinical data obtained over the last few decades, it is apparent that these multifactorial defects have a significant genetic component to their etiology that interacts with specific environmental risk factors. The purpose of this review article is to synthesize the existing literature on the genetic factors contributing to NTD risk. To date, there is evidence that closure of the mammalian neural tube initiates and fuses intermittently at four discrete locations. Disruption of this process at any of these four sites may lead to an NTD, possibly arising through closure site-specific genetic mechanisms. Candidate genes involved in neural tube closure include genes of the folate metabolic pathway, as well as those involved in folate transport. Although extensive efforts have focused on elucidating the genetic risk factors contributing to the etiology of NTDs, the population burden for these malformations remains unknown. One group at high risk for having children with NTDs is epileptic women receiving antiepileptic medications during pregnancy. Efforts to better understand the genetic factors that may contribute to their heightened risk, as well as the pathogenesis of neural tube closure defects, are reviewed herein.

  3. 21 CFR 101.79 - Health claims: Folate and neural tube defects.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... result in infant mortality or serious disability. The birth defects anencephaly and spina bifida are the... development. Because the neural tube forms and closes during early pregnancy, the defect may occur before a... pregnancy had a reduced risk of having a child with a neural tube defect. (Products containing this level of...

  4. 21 CFR 101.79 - Health claims: Folate and neural tube defects.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... result in infant mortality or serious disability. The birth defects anencephaly and spina bifida are the... development. Because the neural tube forms and closes during early pregnancy, the defect may occur before a... pregnancy had a reduced risk of having a child with a neural tube defect. (Products containing this level of...

  5. 21 CFR 101.79 - Health claims: Folate and neural tube defects.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... result in infant mortality or serious disability. The birth defects anencephaly and spina bifida are the... development. Because the neural tube forms and closes during early pregnancy, the defect may occur before a... pregnancy had a reduced risk of having a child with a neural tube defect. (Products containing this level of...

  6. Neural Tube Defects

    PubMed Central

    Greene, Nicholas D.E.; Copp, Andrew J.

    2015-01-01

    Neural tube defects (NTDs), including spina bifida and anencephaly, are severe birth defects of the central nervous system that originate during embryonic development when the neural tube fails to close completely. Human NTDs are multifactorial, with contributions from both genetic and environmental factors. The genetic basis is not yet well understood, but several nongenetic risk factors have been identified as have possibilities for prevention by maternal folic acid supplementation. Mechanisms underlying neural tube closure and NTDs may be informed by experimental models, which have revealed numerous genes whose abnormal function causes NTDs and have provided details of critical cellular and morphological events whose regulation is essential for closure. Such models also provide an opportunity to investigate potential risk factors and to develop novel preventive therapies. PMID:25032496

  7. Diabetes and apoptosis: neural crest cells and neural tube.

    PubMed

    Chappell, James H; Wang, Xiao Dan; Loeken, Mary R

    2009-12-01

    Birth defects resulting from diabetic pregnancy are associated with apoptosis of a critical mass of progenitor cells early during the formation of the affected organ(s). Insufficient expression of genes that regulate viability of the progenitor cells is responsible for the apoptosis. In particular, maternal diabetes inhibits expression of a gene, Pax3, that encodes a transcription factor which is expressed in neural crest and neuroepithelial cells. As a result of insufficient Pax3, cardiac neural crest and neuroepithelial cells undergo apoptosis by a process dependent on the p53 tumor suppressor protein. This, then provides a cellular explanation for the cardiac outflow tract and neural tube and defects induced by diabetic pregnancy.

  8. Diabetes and apoptosis: neural crest cells and neural tube

    PubMed Central

    Chappell, James H.; Dan Wang, Xiao

    2016-01-01

    Birth defects resulting from diabetic pregnancy are associated with apoptosis of a critical mass of progenitor cells early during the formation of the affected organ(s). Insufficient expression of genes that regulate viability of the progenitor cells is responsible for the apoptosis. In particular, maternal diabetes inhibits expression of a gene, Pax3, that encodes a transcription factor which is expressed in neural crest and neuroepithelial cells. As a result of insufficient Pax3, cardiac neural crest and neuroepithelial cells undergo apoptosis by a process dependent on the p53 tumor suppressor protein. This, then provides a cellular explanation for the cardiac outflow tract and neural tube and defects induced by diabetic pregnancy. PMID:19333760

  9. Insights into Metabolic Mechanisms Underlying Folate-Responsive Neural Tube Defects: A Minireview

    PubMed Central

    Beaudin, Anna E.; Stover, Patrick J.

    2015-01-01

    Neural tube defects (NTDs), including anencephaly and spina bifida, arise from the failure of neurulation during early embryonic development. Neural tube defects are common birth defects with a heterogenous and multifactorial etiology with interacting genetic and environmental risk factors. Although the mechanisms resulting in failure of neural tube closure are unknown, up to 70% of NTDs can be prevented by maternal folic acid supplementation. However, the metabolic mechanisms underlying the association between folic acid and NTD pathogenesis have not been identified. This review summarizes our current understanding of the mechanisms by which impairments in folate metabolism might ultimately lead to failure of neural tube closure, with an emphasis on untangling the relative contributions of nutritional deficiency and genetic risk factors to NTD pathogenesis. PMID:19180567

  10. NMDA Receptor Signaling Is Important for Neural Tube Formation and for Preventing Antiepileptic Drug-Induced Neural Tube Defects.

    PubMed

    Sequerra, Eduardo B; Goyal, Raman; Castro, Patricio A; Levin, Jacqueline B; Borodinsky, Laura N

    2018-05-16

    Failure of neural tube closure leads to neural tube defects (NTDs), which can have serious neurological consequences or be lethal. Use of antiepileptic drugs (AEDs) during pregnancy increases the incidence of NTDs in offspring by unknown mechanisms. Here we show that during Xenopus laevis neural tube formation, neural plate cells exhibit spontaneous calcium dynamics that are partially mediated by glutamate signaling. We demonstrate that NMDA receptors are important for the formation of the neural tube and that the loss of their function induces an increase in neural plate cell proliferation and impairs neural cell migration, which result in NTDs. We present evidence that the AED valproic acid perturbs glutamate signaling, leading to NTDs that are rescued with varied efficacy by preventing DNA synthesis, activating NMDA receptors, or recruiting the NMDA receptor target ERK1/2. These findings may prompt mechanistic identification of AEDs that do not interfere with neural tube formation. SIGNIFICANCE STATEMENT Neural tube defects are one of the most common birth defects. Clinical investigations have determined that the use of antiepileptic drugs during pregnancy increases the incidence of these defects in the offspring by unknown mechanisms. This study discovers that glutamate signaling regulates neural plate cell proliferation and oriented migration and is necessary for neural tube formation. We demonstrate that the widely used antiepileptic drug valproic acid interferes with glutamate signaling and consequently induces neural tube defects, challenging the current hypotheses arguing that they are side effects of this antiepileptic drug that cause the increased incidence of these defects. Understanding the mechanisms of neurotransmitter signaling during neural tube formation may contribute to the identification and development of antiepileptic drugs that are safer during pregnancy. Copyright © 2018 the authors 0270-6474/18/384762-12$15.00/0.

  11. Regional differences in the expression of laminin isoforms during mouse neural tube development

    PubMed Central

    Copp, Andrew J.; Carvalho, Rita; Wallace, Adam; Sorokin, Lydia; Sasaki, Takako; Greene, Nicholas D.E.; Ybot-Gonzalez, Patricia

    2013-01-01

    Many significant human birth defects originate around the time of neural tube closure or early during post-closure nervous system development. For example, failure of the neural tube to close generates anencephaly and spina bifida, faulty cell cycle progression is implicated in primary microcephaly, while defective migration of neuroblasts can lead to neuronal migration disorders such as lissencephaly. At the stage of neural tube closure, basement membranes are becoming organised around the neuroepithelium, and beneath the adjacent non-neural surface ectoderm. While there is circumstantial evidence to implicate basement membrane dynamics in neural tube and surface ectodermal development, we have an incomplete understanding of the molecular composition of basement membranes at this stage. In the present study, we examined the developing basement membranes of the mouse embryo at mid-gestation (embryonic day 9.5), with particular reference to laminin composition. We performed in situ hybridization to detect the mRNAs of all eleven individual laminin chains, and immunohistochemistry to identify which laminin chains are present in the basement membranes. From this information, we inferred the likely laminin variants and their tissues of origin: that is, whether a given basement membrane laminin is contributed by epithelium, mesenchyme, or both. Our findings reveal major differences in basement composition along the body axis, with the rostral neural tube (at mandibular arch and heart levels) exhibiting many distinct laminin variants, while the lumbar level where the neural tube is just closing shows a much simpler laminin profile. Moreover, there appears to be a marked difference in the extent to which the mesenchyme contributes laminin variants to the basement membrane, with potential contribution of several laminins rostrally, but no contribution caudally. This information paves the way towards a mechanistic analysis of basement membrane laminin function during early

  12. Cats, frogs, and snakes: early concepts of neural tube defects.

    PubMed

    Obladen, Michael

    2011-11-01

    Disturbed neurulation fascinated scientists of all times. In Egypt, anencephalic infants were venerated as animal-headed gods. Roman law required them to be killed. The medieval world held the mother responsible, either because of assumed imagination or "miswatching," or because of suspected intercourse with animals or devils. Modern embryology and teratology began with the use of the microscope by Malpighi in 1672. Details of neural tube closure were described by Koelliker in 1861 and by His in 1874. From 1822, genetic disease and familial recurrence due to insufficient nutrition were discerned and lower social class identified as a risk factor. It took a century to define the malnutrition as insufficient folate intake. The mandatory supplementation of folate in staple foods successfully reduced the incidence of neural tube defects in the United States, Australia, Canada, and Chile, but it was not adopted by most European countries.

  13. Recurrent neural tube defects, risk factors and vitamins.

    PubMed Central

    Wild, J; Read, A P; Sheppard, S; Seller, M J; Smithells, R W; Nevin, N C; Schorah, C J; Fielding, D W; Walker, S; Harris, R

    1986-01-01

    Data from our trial of periconceptional vitamin supplementation for the prevention of neural tube defects have been analysed to assess the influence of various factors on recurrence rates of neural tube defect. Our data suggest that the risk of recurrence of neural tube defect is influenced by the number of previous neural tube defects, area of residence, immediately prior miscarriage, and interpregnancy interval. None of these factors, however, contributed any significant differential risk between supplemented and unsupplemented mothers. Hence we conclude that the highly significant difference in recurrence rates of neural tube defect between supplemented and unsupplemented mothers was due to vitamin supplementation. PMID:3521496

  14. Misexpression of BRE gene in the developing chick neural tube affects neurulation and somitogenesis

    PubMed Central

    Wang, Guang; Li, Yan; Wang, Xiao-Yu; Chuai, Manli; Yeuk-Hon Chan, John; Lei, Jian; Münsterberg, Andrea; Lee, Kenneth Ka Ho; Yang, Xuesong

    2015-01-01

    The brain and reproductive expression (BRE) gene is expressed in numerous adult tissues and especially in the nervous and reproductive systems. However, little is known about BRE expression in the developing embryo or about its role in embryonic development. In this study, we used in situ hybridization to reveal the spatiotemporal expression pattern for BRE in chick embryo during development. To determine the importance of BRE in neurogenesis, we overexpressed BRE and also silenced BRE expression specifically in the neural tube. We established that overexpressing BRE in the neural tube indirectly accelerated Pax7+ somite development and directly increased HNK-1+ neural crest cell (NCC) migration and TuJ-1+ neurite outgrowth. These altered morphogenetic processes were associated with changes in the cell cycle of NCCs and neural tube cells. The inverse effect was obtained when BRE expression was silenced in the neural tube. We also determined that BMP4 and Shh expression in the neural tube was affected by misexpression of BRE. This provides a possible mechanism for how altering BRE expression was able to affect somitogenesis, neurogenesis, and NCC migration. In summary, our results demonstrate that BRE plays an important role in regulating neurogenesis and indirectly somite differentiation during early chick embryo development. PMID:25568339

  15. Unjoined primary and secondary neural tubes: junctional neural tube defect, a new form of spinal dysraphism caused by disturbance of junctional neurulation.

    PubMed

    Eibach, Sebastian; Moes, Greg; Hou, Yong Jin; Zovickian, John; Pang, Dachling

    2017-10-01

    Primary and secondary neurulation are the two known processes that form the central neuraxis of vertebrates. Human phenotypes of neural tube defects (NTDs) mostly fall into two corresponding categories consistent with the two types of developmental sequence: primary NTD features an open skin defect, an exposed, unclosed neural plate (hence an open neural tube defect, or ONTD), and an unformed or poorly formed secondary neural tube, and secondary NTD with no skin abnormality (hence a closed NTD) and a malformed conus caudal to a well-developed primary neural tube. We encountered three cases of a previously unrecorded form of spinal dysraphism in which the primary and secondary neural tubes are individually formed but are physically separated far apart and functionally disconnected from each other. One patient was operated on, in whom both the lumbosacral spinal cord from primary neurulation and the conus from secondary neurulation are each anatomically complete and endowed with functioning segmental motor roots tested by intraoperative triggered electromyography and direct spinal cord stimulation. The remarkable feature is that the two neural tubes are unjoined except by a functionally inert, probably non-neural band. The developmental error of this peculiar malformation probably occurs during the critical transition between the end of primary and the beginning of secondary neurulation, in a stage aptly called junctional neurulation. We describe the current knowledge concerning junctional neurulation and speculate on the embryogenesis of this new class of spinal dysraphism, which we call junctional neural tube defect.

  16. Single-site neural tube closure in human embryos revisited.

    PubMed

    de Bakker, Bernadette S; Driessen, Stan; Boukens, Bastiaan J D; van den Hoff, Maurice J B; Oostra, Roelof-Jan

    2017-10-01

    Since the multi-site closure theory was first proposed in 1991 as explanation for the preferential localizations of neural tube defects, the closure of the neural tube has been debated. Although the multi-site closure theory is much cited in clinical literature, single-site closure is most apparent in literature concerning embryology. Inspired by Victor Hamburgers (1900-2001) statement that "our real teacher has been and still is the embryo, who is, incidentally, the only teacher who is always right", we decided to critically review both theories of neural tube closure. To verify the theories of closure, we studied serial histological sections of 10 mouse embryos between 8.5 and 9.5 days of gestation and 18 human embryos of the Carnegie collection between Carnegie stage 9 (19-21 days) and 13 (28-32 days). Neural tube closure was histologically defined by the neuroepithelial remodeling of the two adjoining neural fold tips in the midline. We did not observe multiple fusion sites in neither mouse nor human embryos. A meta-analysis of case reports on neural tube defects showed that defects can occur at any level of the neural axis. Our data indicate that the human neural tube fuses at a single site and, therefore, we propose to reinstate the single-site closure theory for neural tube closure. We showed that neural tube defects are not restricted to a specific location, thereby refuting the reasoning underlying the multi-site closure theory. Clin. Anat. 30:988-999, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Isolation and culture of neural crest cells from embryonic murine neural tube.

    PubMed

    Pfaltzgraff, Elise R; Mundell, Nathan A; Labosky, Patricia A

    2012-06-02

    The embryonic neural crest (NC) is a multipotent progenitor population that originates at the dorsal aspect of the neural tube, undergoes an epithelial to mesenchymal transition (EMT) and migrates throughout the embryo, giving rise to diverse cell types. NC also has the unique ability to influence the differentiation and maturation of target organs. When explanted in vitro, NC progenitors undergo self-renewal, migrate and differentiate into a variety of tissue types including neurons, glia, smooth muscle cells, cartilage and bone. NC multipotency was first described from explants of the avian neural tube. In vitro isolation of NC cells facilitates the study of NC dynamics including proliferation, migration, and multipotency. Further work in the avian and rat systems demonstrated that explanted NC cells retain their NC potential when transplanted back into the embryo. Because these inherent cellular properties are preserved in explanted NC progenitors, the neural tube explant assay provides an attractive option for studying the NC in vitro. To attain a better understanding of the mammalian NC, many methods have been employed to isolate NC populations. NC-derived progenitors can be cultured from post-migratory locations in both the embryo and adult to study the dynamics of post-migratory NC progenitors, however isolation of NC progenitors as they emigrate from the neural tube provides optimal preservation of NC cell potential and migratory properties. Some protocols employ fluorescence activated cell sorting (FACS) to isolate a NC population enriched for particular progenitors. However, when starting with early stage embryos, cell numbers adequate for analyses are difficult to obtain with FACS, complicating the isolation of early NC populations from individual embryos. Here, we describe an approach that does not rely on FACS and results in an approximately 96% pure NC population based on a Wnt1-Cre activated lineage reporter. The method presented here is adapted from

  18. Isolation and Culture of Neural Crest Cells from Embryonic Murine Neural Tube

    PubMed Central

    Pfaltzgraff, Elise R.; Mundell, Nathan A.; Labosky, Patricia A.

    2012-01-01

    The embryonic neural crest (NC) is a multipotent progenitor population that originates at the dorsal aspect of the neural tube, undergoes an epithelial to mesenchymal transition (EMT) and migrates throughout the embryo, giving rise to diverse cell types 1-3. NC also has the unique ability to influence the differentiation and maturation of target organs4-6. When explanted in vitro, NC progenitors undergo self-renewal, migrate and differentiate into a variety of tissue types including neurons, glia, smooth muscle cells, cartilage and bone. NC multipotency was first described from explants of the avian neural tube7-9. In vitro isolation of NC cells facilitates the study of NC dynamics including proliferation, migration, and multipotency. Further work in the avian and rat systems demonstrated that explanted NC cells retain their NC potential when transplanted back into the embryo10-13. Because these inherent cellular properties are preserved in explanted NC progenitors, the neural tube explant assay provides an attractive option for studying the NC in vitro. To attain a better understanding of the mammalian NC, many methods have been employed to isolate NC populations. NC-derived progenitors can be cultured from post-migratory locations in both the embryo and adult to study the dynamics of post-migratory NC progenitors11,14-20, however isolation of NC progenitors as they emigrate from the neural tube provides optimal preservation of NC cell potential and migratory properties13,21,22. Some protocols employ fluorescence activated cell sorting (FACS) to isolate a NC population enriched for particular progenitors11,13,14,17. However, when starting with early stage embryos, cell numbers adequate for analyses are difficult to obtain with FACS, complicating the isolation of early NC populations from individual embryos. Here, we describe an approach that does not rely on FACS and results in an approximately 96% pure NC population based on a Wnt1-Cre activated lineage reporter

  19. Development of the posterior neural tube in human embryos.

    PubMed

    Saitsu, Hirotomo; Yamada, Shigehito; Uwabe, Chigako; Ishibashi, Makoto; Shiota, Kohei

    2004-12-01

    Development of the posterior neural tube (PNT) in human embryos is a complicated process that involves both primary and secondary neurulation. Because normal development of the PNT is not fully understood, pathogenesis of spinal neural tube defects remains elusive. To clarify the mechanism of PNT development, we histologically examined 20 human embryos around the stage of posterior neuropore closure and found that the developing PNT can be divided into three parts: 1) the most rostral region, which corresponds to the posterior part of the primary neural tube, 2) the junctional region of the primary and secondary neural tubes, and 3) the caudal region, which emerges from the neural cord. In the junctional region, the axially-condensed mesenchyme (AM) intervened between the neural plate/tube and the notochord at the stage of posterior neuropore closure, while the notochord was directly attached to the neural plate/tube in the most rostral region. A single cavity was found to be formed in the AM as the presumptive luminal surface cells were radially aligned in the junctional region prior to the formation of the neural cord. The single cavity was continuous with the central cavity of the primary neural tube. In contrast, multiple or isolated cavities were frequently observed in the caudal region of the PNT. Our observation suggests that the junctional region of the PNT is distinct from other regions in terms of the relationship with the notochord and the mode of cavitation during secondary neurulation.

  20. Chornobyl, radiation, neural tube defects, and microcephaly.

    PubMed

    Wertelecki, Wladimir; Yevtushok, Lyubov; Kuznietsov, Illia; Komov, Oleksandr; Lapchenko, Serhii; Akhmedzanova, Diana; Ostapchuk, Lyubov

    2018-06-13

    Pregnant women residing in areas impacted by the Chornobyl ionizing radiation of the Rivne Province in Ukraine have persistent higher levels of incorporated cesium-137. In these areas the neural tube defects and microcephaly rates are significantly higher than in areas with lower maternal cesium-137 incorporated levels. In two Rivne counties with populations proximal to nuclear power plants the rates of neural tube defects and microcephaly are the highest in the province. The neural tube defects rates in Rivne are persistently among the highest in Europe. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  1. Identification and characterization of secondary neural tube-derived embryonic neural stem cells in vitro.

    PubMed

    Shaker, Mohammed R; Kim, Joo Yeon; Kim, Hyun; Sun, Woong

    2015-05-15

    Secondary neurulation is an embryonic progress that gives rise to the secondary neural tube, the precursor of the lower spinal cord region. The secondary neural tube is derived from aggregated Sox2-expressing neural cells at the dorsal region of the tail bud, which eventually forms rosette or tube-like structures to give rise to neural tissues in the tail bud. We addressed whether the embryonic tail contains neural stem cells (NSCs), namely secondary NSCs (sNSCs), with the potential for self-renewal in vitro. Using in vitro neurosphere assays, neurospheres readily formed at the rosette and neural-tube levels, but less frequently at the tail bud tip level. Furthermore, we identified that sNSC-generated neurospheres were significantly smaller in size compared with cortical neurospheres. Interestingly, various cell cycle analyses revealed that this difference was not due to a reduction in the proliferation rate of NSCs, but rather the neuronal commitment of sNSCs, as sNSC-derived neurospheres contain more committed neuronal progenitor cells, even in the presence of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF). These results suggest that the higher tendency for sNSCs to spontaneously differentiate into progenitor cells may explain the limited expansion of the secondary neural tube during embryonic development.

  2. Prevention of Neural Tube Defects. ARC Q&A #101-45.

    ERIC Educational Resources Information Center

    Arc, Arlington, TX.

    This fact sheet uses a question-and-answer format to summarize issues related to the prevention of neural tube defects. Questions and answers address the following topics: what neural tube defects are and the most common types (spina bifida and anencephaly); occurrence of neural tube defects during the first month of pregnancy; the frequency of…

  3. Folate receptor 1 is necessary for neural plate cell apical constriction during Xenopus neural tube formation

    PubMed Central

    Balashova, Olga A.; Visina, Olesya

    2017-01-01

    Folate supplementation prevents up to 70% of neural tube defects (NTDs), which result from a failure of neural tube closure during embryogenesis. The elucidation of the mechanisms underlying folate action has been challenging. This study introduces Xenopus laevis as a model to determine the cellular and molecular mechanisms involved in folate action during neural tube formation. We show that knockdown of folate receptor 1 (Folr1; also known as FRα) impairs neural tube formation and leads to NTDs. Folr1 knockdown in neural plate cells only is necessary and sufficient to induce NTDs. Folr1-deficient neural plate cells fail to constrict, resulting in widening of the neural plate midline and defective neural tube closure. Pharmacological inhibition of folate action by methotrexate during neurulation induces NTDs by inhibiting folate interaction with its uptake systems. Our findings support a model in which the folate receptor interacts with cell adhesion molecules, thus regulating the apical cell membrane remodeling and cytoskeletal dynamics necessary for neural plate folding. Further studies in this organism could unveil novel cellular and molecular events mediated by folate and lead to new ways of preventing NTDs. PMID:28255006

  4. Shared molecular networks in orofacial and neural tube development.

    PubMed

    Kousa, Youssef A; Mansour, Tamer A; Seada, Haitham; Matoo, Samaneh; Schutte, Brian C

    2017-01-30

    Single genetic variants can affect multiple tissues during development. Thus it is possible that disruption of shared gene regulatory networks might underlie syndromic presentations. In this study, we explore this idea through examination of two critical developmental programs that control orofacial and neural tube development and identify shared regulatory factors and networks. Identification of these networks has the potential to yield additional candidate genes for poorly understood developmental disorders and assist in modeling and perhaps managing risk factors to prevent morbidly and mortality. We reviewed the literature to identify genes common between orofacial and neural tube defects and development. We then conducted a bioinformatic analysis to identify shared molecular targets and pathways in the development of these tissues. Finally, we examine publicly available RNA-Seq data to identify which of these genes are expressed in both tissues during development. We identify common regulatory factors in orofacial and neural tube development. Pathway enrichment analysis shows that folate, cancer and hedgehog signaling pathways are shared in neural tube and orofacial development. Developing neural tissues differentially express mouse exencephaly and cleft palate genes, whereas developing orofacial tissues were enriched for both clefting and neural tube defect genes. These data suggest that key developmental factors and pathways are shared between orofacial and neural tube defects. We conclude that it might be most beneficial to focus on common regulatory factors and pathways to better understand pathology and develop preventative measures for these birth defects. Birth Defects Research 109:169-179, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Maternal vitamin B12 status and risk of neural tube defects in a population with high neural tube defect prevalence and no folic Acid fortification.

    PubMed

    Molloy, Anne M; Kirke, Peadar N; Troendle, James F; Burke, Helen; Sutton, Marie; Brody, Lawrence C; Scott, John M; Mills, James L

    2009-03-01

    Folic acid fortification has reduced neural tube defect prevalence by 50% to 70%. It is unlikely that fortification levels will be increased to reduce neural tube defect prevalence further. Therefore, it is important to identify other modifiable risk factors. Vitamin B(12) is metabolically related to folate; moreover, previous studies have found low B(12) status in mothers of children affected by neural tube defect. Our objective was to quantify the effect of low B(12) status on neural tube defect risk in a high-prevalence, unfortified population. We assessed pregnancy vitamin B(12) status concentrations in blood samples taken at an average of 15 weeks' gestation from 3 independent nested case-control groups of Irish women within population-based cohorts, at a time when vitamin supplementation or food fortification was rare. Group 1 blood samples were from 95 women during a neural tube defect-affected pregnancy and 265 control subjects. Group 2 included blood samples from 107 women who had a previous neural tube defect birth but whose current pregnancy was not affected and 414 control subjects. Group 3 samples were from 76 women during an affected pregnancy and 222 control subjects. Mothers of children affected by neural tube defect had significantly lower B(12) status. In all 3 groups those in the lowest B(12) quartiles, compared with the highest, had between two and threefold higher adjusted odds ratios for being the mother of a child affected by neural tube defect. Pregnancy blood B(12) concentrations of <250 ng/L were associated with the highest risks. Deficient or inadequate maternal vitamin B(12) status is associated with a significantly increased risk for neural tube defects. We suggest that women have vitamin B(12) levels of >300 ng/L (221 pmol/L) before becoming pregnant. Improving B(12) status beyond this level may afford a further reduction in risk, but this is uncertain.

  6. [Folic acid: Primary prevention of neural tube defects. Literature Review].

    PubMed

    Llamas Centeno, M J; Miguélez Lago, C

    2016-03-01

    Neural tube defects (NTD) are the most common congenital malformations of the nervous system, they have a multifactorial etiology, are caused by exposure to chemical, physical or biological toxic agents, factors deficiency, diabetes, obesity, hyperthermia, genetic alterations and unknown causes. Some of these factors are associated with malnutrition by interfering with the folic acid metabolic pathway, the vitamin responsible for neural tube closure. Its deficit produce anomalies that can cause abortions, stillbirths or newborn serious injuries that cause disability, impaired quality of life and require expensive treatments to try to alleviate in some way the alterations produced in the embryo. Folic acid deficiency is considered the ultimate cause of the production of neural tube defects, it is clear the reduction in the incidence of Espina Bifida after administration of folic acid before conception, this leads us to want to further study the action of folic acid and its application in the primary prevention of neural tube defects. More than 40 countries have made the fortification of flour with folate, achieving encouraging data of decrease in the prevalence of neural tube defects. This paper attempts to make a literature review, which clarify the current situation and future of the prevention of neural tube defects.

  7. The effects of levetiracetam on neural tube development in the early stage of chick embryos.

    PubMed

    Guvenc, Yahya; Dalgic, Ali; Billur, Deniz; Karaoglu, Derya; Aydin, Sevim; Daglioglu, Ergun; Ozdol, Cagatay; Nacar, Osman Arikan; Yildirim, Ali Erdem; Belen, Deniz

    2013-01-01

    This study aimed to investigate the effects of a new generation antiepileptic agent, levetiracetam, on the neural tube development in a chick embryo model that corresponds to the first month of vertebral development in mammals. Forty-five Atabey® breed fertilized chicken eggs with no specific pathogens were randomly divided into 5 groups. All of the eggs were incubated at 37.8±2°C and 60±5 % relative humidity in an incubator. Group A was control group. The other eggs were applied physiological saline and drugs at a volume of 10 μL by the in ovo method at the 28th hour of the incubation period. Group B was given distilled water; Group C, physiological saline; Group D, Levetiracetam (L8668) at a dose equivalent to the treatment dose for humans (10 mg/ kg), and Group E, Levetiracetam (L8668) at a dose of 10 times the treatment dose. The embryos in all of the groups were removed from the shells at the 48th hour and morphologically and histologically evaluated. Of the 45 embryos incubated, neural tubes of 41 were closed and the embryos displayed normal development. Levetiracetam, at a dose equivalent to human treatment dose and 10 times the treatment dose, was shown not to cause neural tube defects in chick embryos.

  8. Neural tube closure depends on expression of Grainyhead-like 3 in multiple tissues.

    PubMed

    De Castro, Sandra C P; Hirst, Caroline S; Savery, Dawn; Rolo, Ana; Lickert, Heiko; Andersen, Bogi; Copp, Andrew J; Greene, Nicholas D E

    2018-03-15

    Failure of neural tube closure leads to neural tube defects (NTDs), common congenital abnormalities in humans. Among the genes whose loss of function causes NTDs in mice, Grainyhead-like3 (Grhl3) is essential for spinal neural tube closure, with null mutants exhibiting fully penetrant spina bifida. During spinal neurulation Grhl3 is initially expressed in the surface (non-neural) ectoderm, subsequently in the neuroepithelial component of the neural folds and at the node-streak border, and finally in the hindgut endoderm. Here, we show that endoderm-specific knockout of Grhl3 causes late-arising spinal NTDs, preceded by increased ventral curvature of the caudal region which was shown previously to suppress closure of the spinal neural folds. This finding supports the hypothesis that diminished Grhl3 expression in the hindgut is the cause of spinal NTDs in the curly tail, carrying a hypomorphic Grhl3 allele. Complete loss of Grhl3 function produces a more severe phenotype in which closure fails earlier in neurulation, before the stage of onset of expression in the hindgut of wild-type embryos. This implicates additional tissues and NTD mechanisms in Grhl3 null embryos. Conditional knockout of Grhl3 in the neural plate and node-streak border has minimal effect on closure, suggesting that abnormal function of surface ectoderm, where Grhl3 transcripts are first detected, is primarily responsible for early failure of spinal neurulation in Grhl3 null embryos. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Neural tube and other developmental anomalies in the guinea pig following maternal hyperthermia during early neural tube development.

    PubMed

    Cawdell-Smith, J; Upfold, J; Edwards, M; Smith, M

    1992-01-01

    Guinea pigs were exposed to hyperthermia for 1 hr once or twice on day 11, 12, 13, or 14 (E11-E14) of pregnancy. The mean rectal temperatures were elevated by 3.4 degrees C-4.0 degrees C. This treatment resulted in a marked elevation of rates of resorption and developmental defects in embryos examined at day E23. The defects observed were those affecting the neural tube (NTD) (exencephaly, encephaloceles, and microphthalmia), kyphosis/scoliosis, branchial arch defects, and pericardial edema. Embryos with NTD and kyphosis/scoliosis have not been found among newborn guinea pigs to date following maternal heat exposure on days E12-E14. It appears that embryos with these defects are filtered out by resorption or abortion by days E30-E35.

  10. The Relationship of Aluminium and Silver to Neural Tube Defects; a Case Control

    PubMed Central

    Ramírez-Altamirano, María de Jesús; Fenton-Navarro, Patricia; Sivet-Chiñas, Elvira; Harp-Iturribarria, Flor de María; Martínez-Cruz, Ruth; Cruz, Pedro Hernández; Cruz, Margarito Martínez; Pérez-Campos, Eduardo

    2012-01-01

    Objective The purpose of this study was to identify the relationship of neurotoxic inorganic elements in the hair of patients with the diagnosis of Neural Tube Defects. Our initial hypothesis was that neurotoxic inorganic elements were associated with Neural Tube Defects. Methods Twenty-three samples of hair from newborns were obtained from the General Hospital, “Aurelio Valdivieso” in the city of Oaxaca, Mexico. The study group included 8 newborn infants with neural tube pathology. The control group was composed of 15 newborns without this pathology. The presence of inorganic elements in the hair samples was determined by inductively-coupled plasma spectroscopy (spectroscopic emission of the plasma). Findings The population of newborns with Neural Tube Defects showed significantly higher values of the following elements than the control group: Aluminium, Neural Tube Defects 152.77±51.06 µg/g, control group 76.24±27.89 µg/g; Silver, Neural Tube Defects 1.45±0.76, control group 0.25±0.53 µg/g; Potassium, Neural Tube Defects 553.87±77.91 µg/g, control group 341.13±205.90 µg/g. Association was found at 75 percentile between aluminium plus silver, aluminium plus potassium, silver plus potassium, and potassium plus sodium. Conclusion In the hair of newborns with Neural Tube Defects, the following metals were increased: aluminium, silver. Given the neurotoxicity of the same, and association of Neural Tube Defects with aluminum and silver, one may infer that they may be participating as factors in the development of Neural Tube Defects. PMID:23400307

  11. Prevention of neural tube defects with folic acid: The Chinese experience.

    PubMed

    Ren, Ai-Guo

    2015-08-08

    Neural tube defects (NTDs) are a group of congenital malformations of the central nervous system that are caused by the closure failure of the embryonic neural tube by the 28(th) day of conception. Anencephaly and spina bifida are the two major subtypes. Fetuses with anencephaly are often stillborn or electively aborted due to prenatal diagnosis, or they die shortly after birth. Most infants with spina bifida are live-born and, with proper surgical treatment, can survive into adulthood. However, these children often have life-long physical disabilities. China has one of the highest prevalence of NTDs in the world. Inadequate dietary folate intake is believed to be the main cause of the cluster. Unlike many other countries that use staple fortification with folic acid as the public health strategy to prevent NTDs, the Chinese government provides all women who have a rural household registration and who plan to become pregnant with folic acid supplements, free of charge, through a nation-wide program started in 2009. Two to three years after the initiation of the program, the folic acid supplementation rate increased to 85% in the areas of the highest NTD prevalence. The mean plasma folate level of women during early and mid-pregnancy doubled the level before the program was introduced. However, most women began taking folic acid supplements when they knew that they were pregnant. This is too late for the protection of the embryonic neural tube. In a post-program survey of the women who reported folic acid supplementation, less than a quarter of the women began taking supplements prior to pregnancy, indicating that the remaining three quarters of the fetuses remained unprotected during the time of neural tube formation. Therefore, staple food fortification with folic acid should be considered as a priority in the prevention of NTDs.

  12. Transcriptomic profile analysis of mouse neural tube development by RNA-Seq.

    PubMed

    Yu, Juan; Mu, Jianbing; Guo, Qian; Yang, Lihong; Zhang, Juan; Liu, Zhizhen; Yu, Baofeng; Zhang, Ting; Xie, Jun

    2017-09-01

    The neural tube is the primordium of the central nervous system (CNS) in which its development is not entirely clear. Understanding the cellular and molecular basis of neural tube development could, therefore, provide vital clues to the mechanism of neural tube defects (NTDs). Here, we investigated the gene expression profiles of three different time points (embryonic day (E) 8.5, 9.5 and 10.5) of mouse neural tube by using RNA-seq approach. About 391 differentially expressed genes (DEGs) were screened during mouse neural tube development, including 45 DEGs involved in CNS development, among which Bmp2, Ascl1, Olig2, Lhx1, Wnt7b and Eomes might play the important roles. Of 45 DEGs, Foxp2, Eomes, Hoxb3, Gpr56, Hap1, Nkx2-1, Sez6l2, Wnt7b, Tbx20, Nfib, Cntn1 and Dcx had different isoforms, and the opposite expression pattern of different isoforms was observed for Gpr56, Nkx2-1 and Sez6l2. In addition, alternative splicing, such as mutually exclusive exon, retained intron, skipped exon and alternative 3' splice site was identified in 10 neural related differentially splicing genes, including Ngrn, Ddr1, Dctn1, Dnmt3b, Ect2, Map2, Mbnl1, Meis2, Vcan and App. Moreover, seven neural splicing factors, such as Nova1/2, nSR100/Srrm4, Elavl3/4, Celf3 and Rbfox1 were differentially expressed during mouse neural tube development. Interestingly, nine DEGs identified above were dysregulated in retinoic acid-induced NTDs model, indicating the possible important role of these genes in NTDs. Taken together, our study provides more comprehensive information on mouse neural tube development, which might provide new insights on NTDs occurrence. © 2017 IUBMB Life, 69(9):706-719, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  13. Neural Tube Defects, Folic Acid and Methylation

    PubMed Central

    Imbard, Apolline; Benoist, Jean-François; Blom, Henk J.

    2013-01-01

    Neural tube defects (NTDs) are common complex congenital malformations resulting from failure of the neural tube closure during embryogenesis. It is established that folic acid supplementation decreases the prevalence of NTDs, which has led to national public health policies regarding folic acid. To date, animal studies have not provided sufficient information to establish the metabolic and/or genomic mechanism(s) underlying human folic acid responsiveness in NTDs. However, several lines of evidence suggest that not only folates but also choline, B12 and methylation metabolisms are involved in NTDs. Decreased B12 vitamin and increased total choline or homocysteine in maternal blood have been shown to be associated with increased NTDs risk. Several polymorphisms of genes involved in these pathways have also been implicated in risk of development of NTDs. This raises the question whether supplementation with B12 vitamin, betaine or other methylation donors in addition to folic acid periconceptional supplementation will further reduce NTD risk. The objective of this article is to review the role of methylation metabolism in the onset of neural tube defects. PMID:24048206

  14. The role of retinoic acid in the morphogenesis of the neural tube.

    PubMed

    Wilson, L; Gale, E; Maden, M

    2003-10-01

    We have examined the role of the signalling molecule, retinoic acid, in the process of neurulation and the subsequent growth and differentiation of the central nervous system using quail embryos that have developed in the absence of retinoic acid. Such retinoic acid-free embryos undergo abnormal neural tube formation in terms of its shape and structure, but the embryos do not display spina bifida or exencephaly. The neural tubes have a wider floor plate, a thicker roof plate and a different dorsoventral shape. Phalloidin staining and electron microscopy revealed alterations in the actin filaments and the junctional complexes of the cell layer lining the lumen. Initially the neural tubes proliferated at the same rate as normal, but later the proliferation rate declined drastically and neuronal differentiation was highly deficient. There were very few motoneurons extending neurites into the periphery, and within the neural tube axon trajectories were chaotic. These results reveal several functions for retinoic acid in the morphogenesis and growth of the neural tube, many of which can be explained by defective notochord signalling, but they do not suggest that this molecule plays a role in neural tube closure.

  15. Apparent prevention of neural tube defects by periconceptional vitamin supplementation.

    PubMed Central

    Smithells, R W; Sheppard, S; Schorah, C J; Seller, M J; Nevin, N C; Harris, R; Read, A P; Fielding, D W

    1981-01-01

    An earlier preliminary paper is expanded. Women who had given birth to one or more infants with a neural tube defect were recruited into a trial of per conceptional vitamin supplementation. Two hundred mothers attending five centres were fully supplemented (FS), 50 were partially supplemented (PS), and 300 were unsupplemented (US). Neural tube defect recurrences in the study pregnancies were 1 (0.5%), in FS, none in PS, and 13 (4%) in US mothers. The difference in outcome between FS and US mothers is significant. The most likely explanation is that supplementation has prevented some neural tube defects, but further studies are needed. PMID:7332338

  16. Opioid Use and Neural Tube Defects

    MedlinePlus

    ... CDC.gov . Error processing SSI file Key Findings: Opioid Use and Neural Tube Defects Recommend on Facebook ... new study that looked at the use of opioids during pregnancy and their relationship to having a ...

  17. Slit/Robo1 signaling regulates neural tube development by balancing neuroepithelial cell proliferation and differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Guang; Li, Yan; Wang, Xiao-yu

    2013-05-01

    Formation of the neural tube is the morphological hallmark for development of the embryonic central nervous system (CNS). Therefore, neural tube development is a crucial step in the neurulation process. Slit/Robo signaling was initially identified as a chemo-repellent that regulated axon growth cone elongation, but its role in controlling neural tube development is currently unknown. To address this issue, we investigated Slit/Robo1 signaling in the development of chick neCollege of Life Sciences Biocentre, University of Dundee, Dundee DD1 5EH, UKural tube and transgenic mice over-expressing Slit2. We disrupted Slit/Robo1 signaling by injecting R5 monoclonal antibodies into HH10 neural tubes tomore » block the Robo1 receptor. This inhibited the normal development of the ventral body curvature and caused the spinal cord to curl up into a S-shape. Next, Slit/Robo1 signaling on one half-side of the chick embryo neural tube was disturbed by electroporation in ovo. We found that the morphology of the neural tube was dramatically abnormal after we interfered with Slit/Robo1 signaling. Furthermore, we established that silencing Robo1 inhibited cell proliferation while over-expressing Robo1 enhanced cell proliferation. We also investigated the effects of altering Slit/Robo1 expression on Sonic Hedgehog (Shh) and Pax7 expression in the developing neural tube. We demonstrated that over-expressing Robo1 down-regulated Shh expression in the ventral neural tube and resulted in the production of fewer HNK-1{sup +} migrating neural crest cells (NCCs). In addition, Robo1 over-expression enhanced Pax7 expression in the dorsal neural tube and increased the number of Slug{sup +} pre-migratory NCCs. Conversely, silencing Robo1 expression resulted in an enhanced Shh expression and more HNK-1{sup +} migrating NCCs but reduced Pax7 expression and fewer Slug{sup +} pre-migratory NCCs were observed. In conclusion, we propose that Slit/Robo1 signaling is involved in regulating neural tube

  18. hmmr mediates anterior neural tube closure and morphogenesis in the frog Xenopus.

    PubMed

    Prager, Angela; Hagenlocher, Cathrin; Ott, Tim; Schambony, Alexandra; Feistel, Kerstin

    2017-10-01

    Development of the central nervous system requires orchestration of morphogenetic processes which drive elevation and apposition of the neural folds and their fusion into a neural tube. The newly formed tube gives rise to the brain in anterior regions and continues to develop into the spinal cord posteriorly. Conspicuous differences between the anterior and posterior neural tube become visible already during neural tube closure (NTC). Planar cell polarity (PCP)-mediated convergent extension (CE) movements are restricted to the posterior neural plate, i.e. hindbrain and spinal cord, where they propagate neural fold apposition. The lack of CE in the anterior neural plate correlates with a much slower mode of neural fold apposition anteriorly. The morphogenetic processes driving anterior NTC have not been addressed in detail. Here, we report a novel role for the breast cancer susceptibility gene and microtubule (MT) binding protein Hmmr (Hyaluronan-mediated motility receptor, RHAMM) in anterior neurulation and forebrain development in Xenopus laevis. Loss of hmmr function resulted in a lack of telencephalic hemisphere separation, arising from defective roof plate formation, which in turn was caused by impaired neural tissue narrowing. hmmr regulated polarization of neural cells, a function which was dependent on the MT binding domains. hmmr cooperated with the core PCP component vangl2 in regulating cell polarity and neural morphogenesis. Disrupted cell polarization and elongation in hmmr and vangl2 morphants prevented radial intercalation (RI), a cell behavior essential for neural morphogenesis. Our results pinpoint a novel role of hmmr in anterior neural development and support the notion that RI is a major driving force for anterior neurulation and forebrain morphogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Reconstitution of a Patterned Neural Tube from Single Mouse Embryonic Stem Cells.

    PubMed

    Ishihara, Keisuke; Ranga, Adrian; Lutolf, Matthias P; Tanaka, Elly M; Meinhardt, Andrea

    2017-01-01

    The recapitulation of tissue development and patterning in three-dimensional (3D) culture is an important dimension of stem cell research. Here, we describe a 3D culture protocol in which single mouse ES cells embedded in Matrigel under neural induction conditions clonally form a lumen containing, oval-shaped epithelial structure within 3 days. By Day 7 an apicobasally polarized neuroepithelium with uniformly dorsal cell identity forms. Treatment with retinoic acid at Day 2 results in posteriorization and self-organization of dorsal-ventral neural tube patterning. Neural tube organoid growth is also supported by pure laminin gels as well as poly(ethylene glycol) (PEG)-based artificial extracellular matrix hydrogels, which can be fine-tuned for key microenvironment characteristics. The rapid generation of a simple, patterned tissue in well-defined culture conditions makes the neural tube organoid a tractable model for studying neural stem cell self-organization.

  20. Mechanics of neurulation: From classical to current perspectives on the physical mechanics that shape, fold, and form the neural tube.

    PubMed

    Vijayraghavan, Deepthi S; Davidson, Lance A

    2017-01-30

    Neural tube defects arise from mechanical failures in the process of neurulation. At the most fundamental level, formation of the neural tube relies on coordinated, complex tissue movements that mechanically transform the flat neural epithelium into a lumenized epithelial tube (Davidson, 2012). The nature of this mechanical transformation has mystified embryologists, geneticists, and clinicians for more than 100 years. Early embryologists pondered the physical mechanisms that guide this transformation. Detailed observations of cell and tissue movements as well as experimental embryological manipulations allowed researchers to generate and test elementary hypotheses of the intrinsic and extrinsic forces acting on the neural tissue. Current research has turned toward understanding the molecular mechanisms underlying neurulation. Genetic and molecular perturbation have identified a multitude of subcellular components that correlate with cell behaviors and tissue movements during neural tube formation. In this review, we focus on methods and conceptual frameworks that have been applied to the study of amphibian neurulation that can be used to determine how molecular and physical mechanisms are integrated and responsible for neurulation. We will describe how qualitative descriptions and quantitative measurements of strain, force generation, and tissue material properties as well as simulations can be used to understand how embryos use morphogenetic programs to drive neurulation. Birth Defects Research 109:153-168, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Mechanical roles of apical constriction, cell elongation, and cell migration during neural tube formation in Xenopus.

    PubMed

    Inoue, Yasuhiro; Suzuki, Makoto; Watanabe, Tadashi; Yasue, Naoko; Tateo, Itsuki; Adachi, Taiji; Ueno, Naoto

    2016-12-01

    Neural tube closure is an important and necessary process during the development of the central nervous system. The formation of the neural tube structure from a flat sheet of neural epithelium requires several cell morphogenetic events and tissue dynamics to account for the mechanics of tissue deformation. Cell elongation changes cuboidal cells into columnar cells, and apical constriction then causes them to adopt apically narrow, wedge-like shapes. In addition, the neural plate in Xenopus is stratified, and the non-neural cells in the deep layer (deep cells) pull the overlying superficial cells, eventually bringing the two layers of cells to the midline. Thus, neural tube closure appears to be a complex event in which these three physical events are considered to play key mechanical roles. To test whether these three physical events are mechanically sufficient to drive neural tube formation, we employed a three-dimensional vertex model and used it to simulate the process of neural tube closure. The results suggest that apical constriction cued the bending of the neural plate by pursing the circumference of the apical surface of the neural cells. Neural cell elongation in concert with apical constriction further narrowed the apical surface of the cells and drove the rapid folding of the neural plate, but was insufficient for complete neural tube closure. Migration of the deep cells provided the additional tissue deformation necessary for closure. To validate the model, apical constriction and cell elongation were inhibited in Xenopus laevis embryos. The resulting cell and tissue shapes resembled the corresponding simulation results.

  2. Cutaneous vascular anomalies associated with neural tube defects: nomenclature and pathology revisited.

    PubMed

    Maugans, Todd; Sheridan, Rachel M; Adams, Denise; Gupta, Anita

    2011-07-01

    Lumbosacral cutaneous vascular anomalies associated with neural tube defects are frequently described in the literature as "hemangiomas." The classification system for pediatric vascular anomalies developed by the International Society for the Study of Vascular Anomalies provides a framework to accurately diagnose these lesions. To apply this classification to vascular cutaneous anomalies overlying myelodysplasias. A retrospective analysis of patients with neural tube defects and lumbosacral cutaneous vascular lesions was performed. All eligible patients had detailed histopathologic analysis of skin and spinal cord/placode lesions. Clinical and radiologic features were analyzed. Conventional histology and GLUT-1 immunostaining were performed to differentiate infantile capillary hemangiomas from capillary vascular malformations. Ten cases with cutaneous lesions associated with neural tube defects were reviewed. Five lesions were diagnosed as infantile capillary hemangiomas based upon histology and positive GLUT-1 endothelial reactivity. These lesions had a strong association with dermal sinus tracts. No reoperations were required for residual intraspinal vascular lesions, and overlying cutaneous vascular anomalies involuted with time. The remaining 5 lesions were diagnosed as capillary malformations. These occurred with both open and closed neural tube defects, did not involute, and demonstrated enlargement and darkening due to vascular congestion. The International Society for the Study of Vascular Anomalies scheme should be used to describe the cutaneous vascular lesions associated with neural tube defects: infantile capillary hemangiomas and capillary malformations. We advocate that these lesions be described as "vascular anomalies" or "stains" pending accurate diagnosis by clinical, histological, and immunohistochemical evaluations.

  3. Air Pollution, Neighbourhood Socioeconomic Factors and Neural Tube Defects in the San Joaquin Valley of California

    PubMed Central

    Padula, Amy M.; Yang, Wei; Carmichael, Suzan L.; Tager, Ira B.; Lurmann, Frederick; Hammond, S. Katharine; Shaw, Gary M.

    2015-01-01

    Background Environmental pollutants and neighbourhood socioeconomic factors have been associated with neural tube defects, but the potential impact of interaction between ambient air pollution and neighbourhood socioeconomic factors on the risks of neural tube defects is not well understood. Methods We used data from the California Center of the National Birth Defects Study and the Children’s Health and Air Pollution Study to investigate whether associations between air pollutant exposure in early gestation and neural tube defects were modified by neighbourhood socioeconomic factors in the San Joaquin Valley of California, 1997–2006. Five pollutant exposures, three outcomes and 9 neighbourhood socioeconomic factors were included for a total of 135 investigated associations. Estimates were adjusted for maternal race-ethnicity, education and multivitamin use. Results We present below odds ratios that exclude 1 and a chi-square test of homogeneity p-value of <0.05. We observed increased odds of spina bifida comparing the highest to lowest quartile of particulate matter <10 micrometres (PM10) among those living in a neighbourhood with: a) median household income of less than $30,000 per year (OR 5.1, 95% CI 1.7, 15.3); b) more than 20% living below the federal poverty level (OR 2.6, 95% CI 1.1, 6.0); and c) more than 30% with less than or equal to a high school education (OR 3.2, 95% CI 1.4, 7.4). The ORs were not statistically significant among those higher SES neighbourhoods. Conclusions Our results demonstrate effect modification by neighbourhood socioeconomic factors in the association of particulate matter and neural tube defects in California. PMID:26443985

  4. Air Pollution, Neighbourhood Socioeconomic Factors, and Neural Tube Defects in the San Joaquin Valley of California.

    PubMed

    Padula, Amy M; Yang, Wei; Carmichael, Suzan L; Tager, Ira B; Lurmann, Frederick; Hammond, S Katharine; Shaw, Gary M

    2015-11-01

    Environmental pollutants and neighbourhood socioeconomic factors have been associated with neural tube defects, but the potential impact of interaction between ambient air pollution and neighbourhood socioeconomic factors on the risks of neural tube defects is not well understood. We used data from the California Center of the National Birth Defects Study and the Children's Health and Air Pollution Study to investigate whether associations between air pollutant exposure in early gestation and neural tube defects were modified by neighbourhood socioeconomic factors in the San Joaquin Valley of California, 1997-2006. There were 5 pollutant exposures, 3 outcomes, and 9 neighbourhood socioeconomic factors included for a total of 135 investigated associations. Estimates were adjusted for maternal race-ethnicity, education, and multivitamin use. We present below odds ratios (ORs) that exclude 1 and a chi-square test of homogeneity P-value of <0.05. We observed increased odds of spina bifida comparing the highest to lowest quartile of particulate matter <10 μm (PM10 ) among those living in a neighbourhood with: (i) median household income of less than $30 000 per year [OR 5.1, 95% confidence interval (CI) 1.7, 15.3]; (ii) more than 20% living below the federal poverty level (OR 2.6, 95% CI 1.1, 6.0); and (iii) more than 30% with less than or equal to a high school education (OR 3.2, 95% CI 1.4, 7.4). The ORs were not statistically significant among those higher socioeconomic status (SES) neighbourhoods. Our results demonstrate effect modification by neighbourhood socioeconomic factors in the association of particulate matter and neural tube defects in California. © 2015 John Wiley & Sons Ltd.

  5. Coordinating cell and tissue behavior during zebrafish neural tube morphogenesis.

    PubMed

    Araya, Claudio; Ward, Laura C; Girdler, Gemma C; Miranda, Miguel

    2016-03-01

    The development of a vertebrate neural epithelium with well-organized apico-basal polarity and a central lumen is essential for its proper function. However, how this polarity is established during embryonic development and the potential influence of surrounding signals and tissues on such organization has remained less understood. In recent years the combined superior transparency and genetics of the zebrafish embryo has allowed for in vivo visualization and quantification of the cellular and molecular dynamics that govern neural tube structure. Here, we discuss recent studies revealing how co-ordinated cell-cell interactions coupled with adjacent tissue dynamics are critical to regulate final neural tissue architecture. Furthermore, new findings show how the spatial regulation and timing of orientated cell division is key in defining precise lumen formation at the tissue midline. In addition, we compare zebrafish neurulation with that of amniotes and amphibians in an attempt to understand the conserved cellular mechanisms driving neurulation and resolve the apparent differences among animals. Zebrafish neurulation not only offers fundamental insights into early vertebrate brain development but also the opportunity to explore in vivo cell and tissue dynamics during complex three-dimensional animal morphogenesis. © 2015 Wiley Periodicals, Inc.

  6. Flexible deep brain neural probes based on a parylene tube structure

    NASA Astrophysics Data System (ADS)

    Zhao, Zhiguo; Kim, Eric; Luo, Hao; Zhang, Jinsheng; Xu, Yong

    2018-01-01

    Most microfabricated neural probes have limited shank length, which prevents them from reaching many deep brain structures. This paper reports deep brain neural probes with ultra-long penetrating shanks based on a simple but novel parylene tube structure. The mechanical strength of the parylene tube shank is temporarily enhanced during implantation by inserting a metal wire. The metal wire can be removed after implantation, making the implanted probe very flexible and thus minimizing the stress caused by micromotions of brain tissues. Optogenetic stimulation and chemical delivery capabilities can be potentially integrated by taking advantage of the tube structure. Single-shank prototypes with a shank length of 18.2 mm have been developed. The microfabrication process comprises of deep reactive ion etching (DRIE) of silicon, parylene conformal coating/refilling, and XeF2 isotropic silicon etching. In addition to bench-top insertion characterization, the functionality of developed probes has been preliminarily demonstrated by implanting into the amygdala of a rat and recording neural signals.

  7. Expression of p53/HGF/c-met/STAT3 signal in fetuses with neural tube defects.

    PubMed

    Trovato, Maria; D'Armiento, Maria; Lavra, Luca; Ulivieri, Alessandra; Dominici, Roberto; Vitarelli, Enrica; Grosso, Maddalena; Vecchione, Raffaella; Barresi, Gaetano; Sciacchitano, Salvatore

    2007-02-01

    Neural tube defects (NTD) are morphogenetic alterations due to a defective closure of neural tube. Hepatocyte growth factor (HGF)/c-met system plays a role in morphogenesis of nervous system, lung, and kidney. HGF/c-met morphogenetic effects are mediated by signal transducers and activators of transcription (STAT)3 and both HGF and c-met genes are regulated from p53. The aim of our study was to analyze mRNA and protein expressions of p53, HGF, c-met, and STAT3 in fetuses with NTD. By reverse transcriptase-polymerase chain reaction and immunohistochemistry, we analyzed neural tissues from four NTD fetuses and the corresponding non-malformed lungs, kidneys and placentas. We found a reduced mRNA expression of HGF/c-met/STAT3 pathway, in the malformed nervous systems and placentas. The reduced expression of this pathway correlated with the absence of p53 in all these samples. On the contrary, detectable expression levels of p53, HGF, c-met, and STAT3 were observed in non-malformed lungs and kidneys obtained from the same fetuses. Comparable results were obtained by immunohistochemistry, with the exception of p53, which was undetected in all fetal tissues. In conclusion, in NTD fetuses, both the defective neural tube tissue and the placenta have a reduction in all components of the p53/HGF/c-met/STAT3 cascade. This raises the possibility of using the suppression of these genes for early diagnosis of NTD especially on chorionic villus sampling.

  8. Effects of the popular food additive sodium benzoate on neural tube development in the chicken embryo.

    PubMed

    Emon, Selin Tural; Orakdogen, Metin; Uslu, Serap; Somay, Hakan

    2015-01-01

    Many more additives have been introduced with the development of processed foods. Neural tube defects are congenital malformations of the central nervous system. More than 300 000 children are born with neural tube defects every year and surviving children remain disabled for life. Sodium benzoate is used intensively in our daily lives. We therefore aimed to evaluate the effects of sodium benzoate on neural tube defects in chicken embryos. Fertile, specific pathogen-free eggs were used. The study was conducted on five groups. After 30 hours of incubation, the eggs were opened under 4x optical magnification. The embryonic disc was identified and sodium benzoate solution was injected. Eggs were closed with sterile adhesive strips and incubation was continued till the end of the 72nd hour. All eggs were then reopened and embryos were dissected from embryonic membranes and evaluated histopathologically. We found that the development of all embryos was consistent with the stage. We detected neural tube obstruction in one embryo. Neural tube defects were not detected in any embryos. This study showed that sodium benzoate as one of the widely used food preservatives has no effect to neural tube defect development in chicken embryos even at high doses.

  9. Biphasic influence of Miz1 on neural crest development by regulating cell survival and apical adhesion complex formation in the developing neural tube

    PubMed Central

    Kerosuo, Laura; Bronner, Marianne E.

    2014-01-01

    Myc interacting zinc finger protein-1 (Miz1) is a transcription factor known to regulate cell cycle– and cell adhesion–related genes in cancer. Here we show that Miz1 also plays a critical role in neural crest development. In the chick, Miz1 is expressed throughout the neural plate and closing neural tube. Its morpholino-mediated knockdown affects neural crest precursor survival, leading to reduction of neural plate border and neural crest specifier genes Msx-1, Pax7, FoxD3, and Sox10. Of interest, Miz1 loss also causes marked reduction of adhesion molecules (N-cadherin, cadherin6B, and α1-catenin) with a concomitant increase of E-cadherin in the neural folds, likely leading to delayed and decreased neural crest emigration. Conversely, Miz1 overexpression results in up-regulation of cadherin6B and FoxD3 expression in the neural folds/neural tube, leading to premature neural crest emigration and increased number of migratory crest cells. Although Miz1 loss effects cell survival and proliferation throughout the neural plate, the neural progenitor marker Sox2 was unaffected, suggesting a neural crest–selective effect. The results suggest that Miz1 is important not only for survival of neural crest precursors, but also for maintenance of integrity of the neural folds and tube, via correct formation of the apical adhesion complex therein. PMID:24307680

  10. Neural Tube Defects and Maternal Folate Intake Among Pregnancies Conceived After Folic Acid Fortification in the United States

    PubMed Central

    Mosley, Bridget S.; Cleves, Mario A.; Siega-Riz, Anna Maria; Shaw, Gary M.; Canfield, Mark A.; Waller, D. Kim; Werler, Martha M.

    2009-01-01

    Rates of neural tube defects have decreased since folic acid fortification of the food supply in the United States. The authors’ objective was to evaluate the associations between neural tube defects and maternal folic acid intake among pregnancies conceived after fortification. This is a multicenter, case-control study that uses data from the National Birth Defects Prevention Study, 1998–2003. Logistic regression was used to compute crude and adjusted odds ratios between cases and controls assessing maternal periconceptional use of folic acid and intake of dietary folic acid. Among 180 anencephalic cases, 385 spina bifida cases, and 3, 963 controls, 21.1%, 25.2%, and 26.1%, respectively, reported periconceptional use of folic acid supplements. Periconceptional supplement use did not reduce the risk of having a pregnancy affected by a neural tube defect. Maternal intake of dietary folate was not significantly associated with neural tube defects. In this study conducted among pregnancies conceived after mandatory folic acid fortification, the authors found little evidence of an association between neural tube defects and maternal folic acid intake. A possible explanation is that folic acid fortification reduced the occurrence of folic acid-sensitive neural tube defects. Further investigation is warranted to possibly identify women who remain at increased risk of preventable neural tube defects. PMID:18953063

  11. Preventing neural tube defects in Europe: a missed opportunity.

    PubMed

    Busby, Araceli; Abramsky, Lenore; Dolk, Helen; Armstrong, Ben; Addor, Marie-Claude; Anneren, Goran; Armstrong, Nicola; Baguette, Andre; Barisic, Ingeborg; Berghold, Andrea; Bianca, Sebastiano; Braz, Paula; Calzolari, Elisa; Christiansen, Marianne; Cocchi, Guido; Daltveit, Anne Kjersti; De Walle, Hermien; Edwards, Grace; Gatt, Miriam; Gener, Blanca; Gillerot, Yves; Gjergja, Romana; Goujard, Janine; Haeusler, Martin; Latos-Bielenska, Anna; McDonnell, Robert; Neville, Amanda; Olars, Birgitta; Portillo, Isabel; Ritvanen, Annukka; Robert-Gnansia, Elizabeth; Rösch, Christine; Scarano, Gioacchino; Steinbicker, Volker

    2005-01-01

    Each year, more than 4500 pregnancies in the European Union are affected by neural tube defects (NTD). Unambiguous evidence of the effectiveness of periconceptional folic acid in preventing the majority of neural tube defects has been available since 1991. We report on trends in the total prevalence of neural tube defects up to 2002, in the context of a survey in 18 European countries of periconceptional folic acid supplementation (PFAS) policies and their implementation. EUROCAT is a network of population-based registries in Europe collaborating in the epidemiological surveillance of congenital anomalies. Representatives from 18 participating countries provided information about policy, health education campaigns and surveys of PFAS uptake. The yearly total prevalence of neural tube defects including livebirths, stillbirths and terminations of pregnancy was calculated from 1980 to 2002 for 34 registries, with UK and Ireland estimated separately from the rest of Europe. A meta-analysis of changes in NTD total prevalence between 1989-1991 and 2000-2002 according to PFAS policy was undertaken for 24 registries. By 2005, 13 countries had a government recommendation that women planning a pregnancy should take 0.4mg folic acid supplement daily, accompanied in 7 countries by government-led health education initiatives. In the UK and Ireland, countries with PFAS policy, there was a 30% decline in NTD total prevalence (95% CI 16-42%) but it was difficult to distinguish this from the pre-existing strong decline. In other European countries with PFAS policy, there was virtually no decline in NTD total prevalence whether a policy was in place by 1999 (2%, 95% CI 28% reduction to 32% increase) or not (8%, 95% CI 26% reduction to 16% increase). The potential for preventing NTDs by periconceptional folic acid supplementation is still far from being fulfilled in Europe. Only a public health policy including folic acid fortification of staple foods is likely to result in large

  12. Retinoic acid-induced lumbosacral neural tube defects: myeloschisis and hamartoma.

    PubMed

    Cai, WeiSong; Zhao, HongYu; Guo, JunBin; Li, Yong; Yuan, ZhengWei; Wang, WeiLin

    2007-05-01

    To observe the morphological features of the lumbosacral neural tube defects (NTDs) induced by all-trans retinoic acid (atRA) and to explore the pathogenesis of these defects. Rat embryos with lumbosacral NTDs were obtained by treating pregnant rats with administration of atRA. Rat embryos were obtained by cesarean. Fetuses were sectioned and stained with hematoxylin-eosin (H&E). Relevant structures including caudal neural tube were examined. In the atRA-treated rats, about 48% embryos showed lumbosacral NTDs. There appeared a dorsally and rostrally situated, neural-plate-like structure (myeloschisis) and a ventrally and caudally located cell mass containing multiple canals (hamartoma) in the lumbosacral NTDs induced by atRA. Retinoic acid could disturb the notochord and tail bud development in the process of primary and secondary neurulation in rat embryos, which cause lumbosacral NTDs including myeloschisis and hamartoma. The morphology is very similar to that happens in humans.

  13. Effects of choline on sodium arsenite-induced neural tube defects in chick embryos.

    PubMed

    Song, Ge; Cui, Yi; Han, Zhong-Ji; Xia, Hong-Fei; Ma, Xu

    2012-12-01

    Arsenic passes through the placenta and accumulates in the neuroepithelium of embryo, whereby inducing congenital malformations such as neural tube defects (NTDs) in animals. Choline (CHO), a methyl-rich nutrient, functions as a methyl donor to participate in methyl group metabolism. Arsenic methylation has been regarded as a detoxification process and choline (CHO) is the major source of methyl-groups. However, whether CHO intake reverses the abnormal embryo development induced by sodium arsenite (SA) and the relationship between CHO intake and arsenite-induced NTDs are still unclear. In this study, we used chick embryos as animal model to investigate the effects of SA and CHO supplementation on the early development of nervous system. Our results showed that the administration of SA led to reduction in embryo viability, embryo body weight and extraembryonic vascular area, accompanied by a significantly increased incidence of the failed closure of the caudal end of the neural tube. CHO, at low dose (25 μg/μL), reversed the decrease in embryo viability and the increase in the failed closure of the caudal end of the neural tube, which were induced by SA. In addition, CHO (25 μg/μL) inhibited not only the SA-induced cell apoptosis by up-regulating Bcl-2 level, but also the global DNA methylation by increasing the expressions of DNMT1 and DNMT3a. However, less significant difference was found between the embryos co-treated with SA and CHO (50 μg/μL) and the ones treated with SA alone. Taken together, these findings suggest that low dose CHO could protect chick embryos from arsenite-induced NTDs by a possible mechanism related to the methyl metabolism. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Maternal diet modulates the risk for neural tube defects in a mouse model of diabetic pregnancy

    PubMed Central

    Kappen, Claudia; Kruger, Claudia; MacGowan, Jacalyn; Salbaum, J. Michael

    2010-01-01

    Pregnancies complicated by maternal diabetes have long been known to carry a higher risk for congenital malformations, such as neural tube defects. Using the FVB inbred mouse strain and the Streptozotocin-induced diabetes model, we tested whether the incidence of neural tube defects in diabetic pregnancies can be modulated by maternal diet. In a comparison of two commercial mouse diets, which are considered nutritionally replete, we found that maternal consumption of the unfavorable diet was associated with a more than three-fold higher rate of neural tube defects. Our results demonstrate that maternal diet can act as a modifier of the risk for abnormal development in high-risk pregnancies, and provide support for the possibility that neural tube defects in human diabetic pregnancies might be preventable by optimized maternal nutrition. PMID:20868740

  15. Presence of the 5,10-methylenetetrahydrofolate reductase C677T mutation in Puerto Rican patients with neural tube defects.

    PubMed

    García-Fragoso, Lourdes; García-García, Inés; de la Vega, Alberto; Renta, Jessicca; Cadilla, Carmen L

    2002-01-01

    Folic acid supplementation can reduce the incidence of neural tube defects. The first reported genetic risk factor for neural tube defects is a C677T mutation in the 5,10-methylenetetrahydrofolate reductase gene, resulting in decreased activity of the enzyme. We examined the enzyme mutation role of methylenetetrahydrofolate reductase in the etiology of neural tube defects in our population. The study group consisted of 204 Puerto Rican individuals including 37 pregnant females with a prenatal diagnosis of neural tube defects in their fetuses, 31 newborns, 36 fathers, and 100 healthy adults. The prevalence of the C677T mutation was examined. Homozygosity for the alanine to valine substitution (TT) was observed in 9% of the controls and 19% of the mothers with children with neural tube defects. Our results indicate that the presence of the T allele at the methylenetetrahydrofolate reductase 677 position may increase the risk of giving birth to an infant with a neural tube defect.

  16. An FGF3-BMP Signaling Axis Regulates Caudal Neural Tube Closure, Neural Crest Specification and Anterior-Posterior Axis Extension

    PubMed Central

    Anderson, Matthew J.; Schimmang, Thomas; Lewandoski, Mark

    2016-01-01

    During vertebrate axis extension, adjacent tissue layers undergo profound morphological changes: within the neuroepithelium, neural tube closure and neural crest formation are occurring, while within the paraxial mesoderm somites are segmenting from the presomitic mesoderm (PSM). Little is known about the signals between these tissues that regulate their coordinated morphogenesis. Here, we analyze the posterior axis truncation of mouse Fgf3 null homozygotes and demonstrate that the earliest role of PSM-derived FGF3 is to regulate BMP signals in the adjacent neuroepithelium. FGF3 loss causes elevated BMP signals leading to increased neuroepithelium proliferation, delay in neural tube closure and premature neural crest specification. We demonstrate that elevated BMP4 depletes PSM progenitors in vitro, phenocopying the Fgf3 mutant, suggesting that excessive BMP signals cause the Fgf3 axis defect. To test this in vivo we increased BMP signaling in Fgf3 mutants by removing one copy of Noggin, which encodes a BMP antagonist. In such mutants, all parameters of the Fgf3 phenotype were exacerbated: neural tube closure delay, premature neural crest specification, and premature axis termination. Conversely, genetically decreasing BMP signaling in Fgf3 mutants, via loss of BMP receptor activity, alleviates morphological defects. Aberrant apoptosis is observed in the Fgf3 mutant tailbud. However, we demonstrate that cell death does not cause the Fgf3 phenotype: blocking apoptosis via deletion of pro-apoptotic genes surprisingly increases all Fgf3 defects including causing spina bifida. We demonstrate that this counterintuitive consequence of blocking apoptosis is caused by the increased survival of BMP-producing cells in the neuroepithelium. Thus, we show that FGF3 in the caudal vertebrate embryo regulates BMP signaling in the neuroepithelium, which in turn regulates neural tube closure, neural crest specification and axis termination. Uncovering this FGF3-BMP signaling axis is

  17. Maternal use of folic acid supplements and infant risk of neural tube defects in Norway 1999-2013.

    PubMed

    Gildestad, Trude; Øyen, Nina; Klungsøyr, Kari; Nilsen, Roy Miodini; Daltveit, Anne Kjersti; Vollset, Stein Emil

    2016-08-01

    Like most European countries, Norway has refrained from mandatory food fortification with folic acid to reduce the number of neural tube defects. We explored the role of folic acid and multivitamin supplements in the prevention of neural tube defects among newborn infants. We used data from the Medical Birth Registry of Norway, 1999-2013. A total of 528,220 women had 880,568 pregnancies resulting in 896,674 live- and stillborn infants, of whom 270 had neural tube defects. Relative risks were estimated with log-binomial regression. From 1999 to 2013, intake of folic acid supplements increased from 4.8% to 27.4%. Vitamin supplement use was more frequent in older, married or cohabiting women and those with lower parity, as well as women who did not smoke during pregnancy. The overall adjusted relative risk of infant neural tube defects associated with maternal vitamin intake before pregnancy relative to no intake was 0.76 (95% confidence interval: 0.53-1.10). When we divided our study period in two (1999-2005 and 2006-2013), we found a significantly reduced risk of neural tube defects overall by vitamin use in the second time period, but not in the first: adjusted relative risk 0.54 (95% confidence interval: 0.31-0.91) and 1.02 (95% confidence interval: 0.63-1.65), respectively. OVER THE FULL STUDY PERIOD, WE FOUND NO STATISTICALLY SIGNIFICANT ASSOCIATION BETWEEN VITAMIN USE AND NEURAL TUBE DEFECTS OVERALL HOWEVER, VITAMIN USE WAS ASSOCIATED WITH A SIGNIFICANTLY LOWER RISK OF NEURAL TUBE DEFECTS IN THE SECOND HALF OF THE STUDY PERIOD, 2006-2013. © 2016 the Nordic Societies of Public Health.

  18. Modeling Anterior Development in Mice: Diet as Modulator of Risk for Neural Tube Defects

    PubMed Central

    Kappen, Claudia

    2014-01-01

    Head morphogenesis is a complex process that is controlled by multiple signaling centers. The most common defects of cranial development are craniofacial defects, such as cleft lip and cleft palate, and neural tube defects, such as anencephaly and encephalocoele in humans. More than 400 genes that contribute to proper neural tube closure have been identified in experimental animals, but only very few causative gene mutations have been identified in humans, supporting the notion that environmental influences are critical. The intrauterine environment is influenced by maternal nutrition, and hence, maternal diet can modulate the risk for cranial and neural tube defects. This article reviews recent progress toward a better understanding of nutrients during pregnancy, with particular focus on mouse models for defective neural tube closure. At least four major patterns of nutrient responses are apparent, suggesting that multiple pathways are involved in the response, and likely in the underlying pathogenesis of the defects. Folic acid has been the most widely studied nutrient, and the diverse responses of the mouse models to folic acid supplementation indicate that folic acid is not universally beneficial, but that the effect is dependent on genetic configuration. If this is the case for other nutrients as well, efforts to prevent neural tube defects with nutritional supplementation may need to become more specifically targeted than previously appreciated. Mouse models are indispensable for a better understanding of nutrient–gene interactions in normal pregnancies, as well as in those affected by metabolic diseases, such as diabetes and obesity. PMID:24124024

  19. Neural tube defects in Waardenburg syndrome: A case report and review of the literature.

    PubMed

    Hart, Joseph; Miriyala, Kalpana

    2017-09-01

    Waardenburg syndrome type 1 (WS1) is an autosomal dominant genetic condition characterized by sensorineural deafness and pigment abnormalities, and is caused by variants in the PAX3 homeodomain. PAX3 variants have been associated with severe neural tube defects in mice and humans, but the frequency and clinical manifestations of this symptom remain largely unexplored in humans. Consequently, the role of PAX3 in human neural tube formation remains a study of interest, for clinical as well as research purposes. Though the association between spina bifida and WS1 is now well-documented, no study has attempted to characterize the range of spina bifida phenotypes seen in WS. Spina bifida encompasses several diagnoses with a wide scope of clinical severity, ranging from spina bifida occulta to myelomeningocele. We present a patient with Waardenburg syndrome type 1 caused by a novel missense variant in PAX3, presenting with myelomeningocele, Arnold-Chiari malformation, and hydrocephalus at birth. Additionally, we review 32 total cases of neural tube defects associated with WS. Including this report, there have been 15 published cases of myelomeningocele, 10 cases of unspecified spina bifida, 3 cases of sacral dimples, 0 cases of meningocele, and 4 cases of miscellaneous other neural tube defects. Though the true frequency of each phenotype cannot be determined from this collection of cases, these results demonstrate that Waardenburg syndrome type 1 carries a notable risk of severe neural tube defects, which has implications in prenatal and genetic counseling. © 2017 Wiley Periodicals, Inc.

  20. Professor John Scott, folate and neural tube defects.

    PubMed

    Hoffbrand, A Victor

    2014-02-01

    John Scott (1940-2013) was born in Dublin where he was to spend the rest of his career, both as an undergraduate and subsequently Professor of Biochemistry and Nutrition at Trinity College. His research with the talented group of scientists and clinicians that he led has had a substantial impact on our understanding of folate metabolism, mechanisms of its catabolism and deficiency. His research established the leading theory of folate involvement with vitamin B12 in the pathogenesis of vitamin B12 neuropathy. He helped to establish the normal daily intake of folate and the increased requirements needed either in food or as a supplement before and during pregnancy to prevent neural tube defects. He also suggested a dietary supplement of vitamin B12 before and during pregnancy to reduce the risk of neural tube defects. It would be an appropriate epitaph if fortification of food with folic acid became mandatory in the UK and Ireland, as it is in over 70 other countries. © 2013 John Wiley & Sons Ltd.

  1. Evaluation of the cranial base in amnion rupture sequence involving the anterior neural tube: implications regarding recurrence risk.

    PubMed

    Jones, Kenneth Lyons; Robinson, Luther K; Benirschke, Kurt

    2006-09-01

    Amniotic bands can cause disruption of the cranial end of the developing fetus, leading in some cases to a neural tube closure defect. Although recurrence for unaffected parents of an affected child with a defect in which the neural tube closed normally but was subsequently disrupted by amniotic bands is negligible; for a primary defect in closure of the neural tube to which amnion has subsequently adhered, recurrence risk is 1.7%. In that primary defects of neural tube closure are characterized by typical abnormalities of the base of the skull, evaluation of the cranial base in such fetuses provides an approach for making a distinction between these 2 mechanisms. This distinction has implications regarding recurrence risk. The skull base of 2 fetuses with amnion rupture sequence involving the cranial end of the neural tube were compared to that of 1 fetus with anencephaly as well as that of a structurally normal fetus. The skulls were cleaned, fixed in 10% formalin, recleaned, and then exposed to 10% KOH solution. After washing and recleaning, the skulls were exposed to hydrogen peroxide for bleaching and photography. Despite involvement of the anterior neural tube in both fetuses with amnion rupture sequence, in Case 3 the cranial base was normal while in Case 4 the cranial base was similar to that seen in anencephaly. This technique provides a method for determining the developmental pathogenesis of anterior neural tube defects in cases of amnion rupture sequence. As such, it provides information that can be used to counsel parents of affected children with respect to recurrence risk.

  2. Optimal serum and red blood cell folate concentrations in women of reproductive age for prevention of neural tube defects: World Health Organization guidelines.

    PubMed

    Cordero, Amy M; Crider, Krista S; Rogers, Lisa M; Cannon, Michael J; Berry, R J

    2015-04-24

    Neural tube defects (NTDs) such as spina bifida, anencephaly, and encephalocele are serious birth defects of the brain and spine that occur during the first month of pregnancy when the neural tube fails to close completely. Randomized controlled trials and observational studies have shown that adequate daily consumption of folic acid before and during early pregnancy considerably reduces the risk for NTDs. The U.S. Public Health Service recommends that women capable of becoming pregnant consume 400 µg of folic acid daily for NTD prevention. Furthermore, fortification of staple foods (e.g., wheat flour) with folic acid has decreased folate-sensitive NTD prevalence in multiple settings and is a highly cost-effective intervention.

  3. Epidemiology of neural tube defects in Saudi Arabia.

    PubMed

    AlShail, Essam; De Vol, Edward; Yassen, Ahsan; Elgamal, Essam A

    2014-12-01

    To evaluate the distribution and pattern of neural tube defects in Saudi Arabia by creating a hospital based registry. All cases registered in the King Faisal Specialist Hospital and Research Center (KFSH&RC) neural tube defect (NTD) registry since it was established in October 2000 until December 2012 were studied through active surveillance comprising a registrar who collects NTD information by reviewing the patient's medical records, and interviewing patient's families. The total number of patients registered from October 2000 to December 2012 was 718 patients. There were more females (417, 58%) than males (301, 42%). Of 620 mothers who underwent antenatal ultrasonography; 392 (63%) were diagnosed at birth, and 204 (33%) were diagnosed with antenatal hydrocephalus. In our registry sample, most mothers (95%) did not take folic acid 3 months prior to pregnancy, and 76% did not take folic acid during the 3 months after conception with the affected child. Only 5% received folic acid prior to conception. The KFSH&RC-NTD registry has met its objectives as a source of data that may significantly contribute to the prevention of NTDs, and improving quality of care for NTD patients through active publication of registry findings and management approaches.

  4. Birth Prevalence of Neural Tube Defects and Orofacial Clefts in India: A Systematic Review and Meta-Analysis

    PubMed Central

    Allagh, Komal Preet; Shamanna, B. R.; Murthy, Gudlavalleti V. S.; Ness, Andy R.; Doyle, Pat; Neogi, Sutapa B.; Pant, Hira B.

    2015-01-01

    Background In the last two decades, India has witnessed a substantial decrease in infant mortality attributed to infectious disease and malnutrition. However, the mortality attributed to birth defects remains constant. Studies on the prevalence of birth defects such as neural tube defects and orofacial clefts in India have reported inconsistent results. Therefore, we conducted a systematic review of observational studies to document the birth prevalence of neural tube defects and orofacial clefts. Methods A comprehensive literature search for observational studies was conducted in MEDLINE and EMBASE databases using key MeSH terms (neural tube defects OR cleft lip OR cleft palate AND Prevalence AND India). Two reviewers independently reviewed the retrieved studies, and studies satisfying the eligibility were included. The quality of included studies was assessed using selected criteria from STROBE statement. Results The overall pooled birth prevalence (random effect) of neural tube defects in India is 4.5 per 1000 total births (95% CI 4.2 to 4.9). The overall pooled birth prevalence (random effect) of orofacial clefts is 1.3 per 1000 total births (95% CI 1.1 to 1.5). Subgroup analyses were performed by region, time period, consanguinity, and gender of newborn. Conclusion The overall prevalence of neural tube defects from India is high compared to other regions of the world, while that of orofacial clefts is similar to other countries. The majority of studies included in the review were hospital based. The quality of these studies ranged from low to moderate. Further well-designed, high quality community-based observational studies are needed to accurately estimate the burden of neural tube defects and orofacial clefts in India. PMID:25768737

  5. Increased nuclear sphingoid base-1-phosphates and HDAC inhibition after fumonisin and FTY720-treatment: the link between epigenomic modifications and neural tube defects?

    USDA-ARS?s Scientific Manuscript database

    Introduction: Fumonisin B1 (FB1) is a mycotoxin produced by a common fungal contaminant of corn. Ingestion of FB1-contaminated food during early pregnancy is associated with increased risk for neural tube defects (NTDs). FB1 inhibits the enzyme ceramide synthase in de novo sphingolipid biosynthes...

  6. Perturbations in choline metabolism cause neural tube defects in mouse embryos in vitro.

    PubMed

    Fisher, Melanie C; Zeisel, Steven H; Mar, Mei-Heng; Sadler, Thomas W

    2002-04-01

    A role for choline during early stages of mammalian embryogenesis has not been established, although recent studies show that inhibitors of choline uptake and metabolism, 2-dimethylaminoethanol (DMAE), and 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine (ET-18-OCH3), produce neural tube defects in mouse embryos grown in vitro. To determine potential mechanisms responsible for these abnormalities, choline metabolism in the presence or absence of these inhibitors was evaluated in cultured, neurulating mouse embryos by using chromatographic techniques. Results showed that 90%-95% of 14C-choline was incorporated into phosphocholine and phosphatidylcholine (PtdCho), which was metabolized to sphingomyelin. Choline was oxidized to betaine, and betaine homocysteine methyltransferase was expressed. Acetylcholine was synthesized in yolk sacs, but 70 kDa choline acetyltransferase was undetectable by immunoblot. DMAE reduced embryonic choline uptake and inhibited phosphocholine, PtdCho, phosphatidylethanolamine (PtdEtn), and sphingomyelin synthesis. ET-18-OCH3 also inhibited PtdCho synthesis. In embryos and yolk sacs incubated with 3H-ethanolamine, 95% of recovered label was PtdEtn, but PtdEtn was not converted to PtdCho, which suggested that phosphatidylethanolamine methyltransferase (PeMT) activity was absent. In ET-18-OCH3 treated yolk sacs, PtdEtn was increased, but PtdCho was still not generated through PeMT. Results suggest that endogenous PtdCho synthesis is important during neurulation and that perturbed choline metabolism contributes to neural tube defects produced by DMAE and ET-18-OCH3.

  7. Neural tube defects – recent advances, unsolved questions and controversies

    PubMed Central

    Copp, Andrew J.; Stanier, Philip; Greene, Nicholas D. E.

    2014-01-01

    Neural tube defects (NTDs) are severe congenital malformations affecting around 1 in every 1000 pregnancies. Here we review recent advances and currently unsolved issues in the NTD field. An innovation in clinical management has come from the demonstration that closure of open spina bifida lesions in utero can diminish neurological dysfunction in children. Primary prevention by folic acid has been enhanced through introduction of mandatory food fortification in some countries, although not yet in UK. Genetic predisposition comprises the majority of NTD risk, and genes that regulate folate one-carbon metabolism and planar cell polarity have been strongly implicated. The sequence of human neural tube closure events remains controversial, but study of mouse NTD models shows that anencephaly, open spina bifida and craniorachischisis result from failure of primary neurulation, while skin-covered spinal dysraphism results from defective secondary neurulation. Other ‘NTD’ malformations, such as encephalocele, are likely to be post-neurulation disorders. PMID:23790957

  8. A comparison of neural tube defects identified by two independent routine recording systems for congenital malformations in Northern Ireland.

    PubMed

    Nevin, N C; McDonald, J R; Walby, A L

    1978-12-01

    The efficiency of two systems for recording congenital malformations has been compared; one system, the Registrar General's Congenital Malformation Notification, is based on registering all malformed infants, and the other, the Child Health System, records all births. In Northern Ireland for three years [1974--1976], using multiple sources of ascertainment, a total of 686 infants with neural tube defects was identified among 79 783 live and stillbirths. The incidence for all neural tube defects in 8 60 per 1 000 births. The Registrar General's Congenital Malformation Notification System identified 83.6% whereas the Child Health System identified only 63.3% of all neural tube defects. Both systems together identified 86.2% of all neural tube defects. The two systems are suitable for monitoring of malformations and the addition of information from the Genetic Counselling Clinics would enhance the data for epidemiological studies.

  9. Fumonisins, Tortillas and Neural Tube Defects: Untangling a Complex Issue

    USDA-ARS?s Scientific Manuscript database

    Fumonisin mycotoxins are found in corn and corn-based foods. Fumonisin B1 (FB1), the most common, disrupts sphingolipid metabolism thereby causing species-specific diseases in animals that include cancer in rodents and (birth) neural tube defects (NTD) in LM/Bc mice. Fumonisins’ affect on human heal...

  10. Regional neural tube closure defined by the Grainy head-like transcription factors.

    PubMed

    Rifat, Yeliz; Parekh, Vishwas; Wilanowski, Tomasz; Hislop, Nikki R; Auden, Alana; Ting, Stephen B; Cunningham, John M; Jane, Stephen M

    2010-09-15

    Primary neurulation in mammals has been defined by distinct anatomical closure sites, at the hindbrain/cervical spine (closure 1), forebrain/midbrain boundary (closure 2), and rostral end of the forebrain (closure 3). Zones of neurulation have also been characterized by morphologic differences in neural fold elevation, with non-neural ectoderm-induced formation of paired dorso-lateral hinge points (DLHP) essential for neural tube closure in the cranial and lower spinal cord regions, and notochord-induced bending at the median hinge point (MHP) sufficient for closure in the upper spinal region. Here we identify a unifying molecular basis for these observations based on the function of the non-neural ectoderm-specific Grainy head-like genes in mice. Using a gene-targeting approach we show that deletion of Grhl2 results in failed closure 3, with mutants exhibiting a split-face malformation and exencephaly, associated with failure of neuro-epithelial folding at the DLHP. Loss of Grhl3 alone defines a distinct lower spinal closure defect, also with defective DLHP formation. The two genes contribute equally to closure 2, where only Grhl gene dosage is limiting. Combined deletion of Grhl2 and Grhl3 induces severe rostral and caudal neural tube defects, but DLHP-independent closure 1 proceeds normally in the upper spinal region. These findings provide a molecular basis for non-neural ectoderm mediated formation of the DLHP that is critical for complete neuraxis closure. (c) 2010 Elsevier Inc. All rights reserved.

  11. Spread prediction model of continuous steel tube based on BP neural network

    NASA Astrophysics Data System (ADS)

    Zhai, Jian-wei; Yu, Hui; Zou, Hai-bei; Wang, San-zhong; Liu, Li-gang

    2017-07-01

    According to the geometric pass of roll and technological parameters of three-roller continuous mandrel rolling mill in a factory, a finite element model is established to simulate the continuous rolling process of seamless steel tube, and the reliability of finite element model is verified by comparing with the simulation results and actual results of rolling force, wall thickness and outer diameter of the tube. The effect of roller reduction, roller rotation speed and blooming temperature on the spread rule is studied. Based on BP(Back Propagation) neural network technology, a spread prediction model of continuous rolling tube is established for training wall thickness coefficient and spread coefficient of the continuous rolling tube, and the rapid and accurate prediction of continuous rolling tube size is realized.

  12. An amphioxus Msx gene expressed predominantly in the dorsal neural tube.

    PubMed

    Sharman, A C; Shimeld, S M; Holland, P W

    1999-04-01

    Genomic and cDNA clones of an Msx class homeobox gene were isolated from amphioxus (Branchiostoma floridae). The gene, AmphiMsx, is expressed in the neural plate from late gastrulation; in later embryos it is expressed in dorsal cells of the neural tube, excluding anterior and posterior regions, in an irregular reiterated pattern. There is transient expression in dorsal cells within somites, reminiscent of migrating neural crest cells of vertebrates. In larvae, mRNA is detected in two patches of anterior ectoderm proposed to be placodes. Evolutionary analyses show there is little phylogenetic information in Msx protein sequences; however, it is likely that duplication of Msx genes occurred in the vertebrate lineage.

  13. Are concentrations of alkaline earth elements in maternal hair associated with risk of neural tube defects?

    PubMed

    Li, Zhenjiang; Wang, Bin; Huo, Wenhua; Liu, Yingying; Zhu, Yibing; Xie, Jing; Li, Zhiwen; Ren, Aiguo

    2017-12-31

    The relationship between maternal intake of alkaline earth elements (AEEs) during the period of neural tube closure and the risk of neural tube defects (NTDs) is still unclear. We propose that AEE deficiency during the early period of pregnancy is associated with an elevated risk of NTDs in the offspring. In this study, we recruited 191 women with NTD-affected pregnancies (cases) and 261 women who delivered healthy infants (controls). The concentrations of four AEEs (Ca, Mg, Sr, Ba) in maternal hair sections that grew during early pregnancy were analyzed. Information on the dietary habits of the mothers was also collected by questionnaire. Higher concentrations of the four AEEs in hair had protective effects against the risk of total NTDs, with odds ratios with 95% confidence interval (comparing groups separated by each median level) of 0.44 (0.28-0.68) for Mg, 0.56 (0.36-0.87) for Ca, 0.45 (0.28-0.70) for Sr, and 0.41 (0.26-0.65) for Ba. Significant negative dose-response trends were identified for the relationships between the four AEE concentrations in maternal hair and the risks of anencephaly and spina bifida, but not for encephalocele. The frequencies of maternal consumption of fresh green vegetables, fresh fruit, and meat or fish were positively correlated with the concentrations of AEEs in hair. We concluded that the maternal intake of AEEs may play an important role in preventing NTD formation in offspring, and that this intake is related to maternal dietary habits of consuming fresh green vegetables, fresh fruit, and fish or meat. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. The murine homeobox gene Msx-3 shows highly restricted expression in the developing neural tube.

    PubMed

    Shimeld, S M; McKay, I J; Sharpe, P T

    1996-04-01

    The mouse homeobox-genes Msx-1 and Msx-2 are expressed in several areas of the developing embryo, including the neural tube, neural crest, facial processes and limb buds. Here we report the characterisation of a third mouse Msx gene, which we designate Msx-3. The embryonic expression of Msx-3 was found to differ from that of Msx-1 and -2 in that it was confined to the dorsal neural tube. In embryos with 5-8 somites a segmental pattern of expression was observed in the hindbrain, with rhombomeres 3 and 5 lacking Msx-3 while other rhombomeres expressed Msx-3. This pattern was transient, however, such that in embryos with 18 or more somites expression was continuous throughout the dorsal hindbrain and anterior dorsal spinal cord. Differentiation of dorsal cell types in the neural tube can be induced by addition of members of the Tgf-beta family. Additionally, Msx-1 and -2 have been shown to be activated by addition of the Tgf-beta family member Bmp-4. To determine if Bmp-4 could activate Msx-3, we incubated embryonic hindbrain explants with exogenous Bmp-4. The dorsal expression of Msx-3 was seen to expand into more ventral regions of the neurectoderm in Bmp-4-treated cultures, implying that Bmp-4 may be able to mimic an in vivo signal that induces Msx-3.

  15. [Clinical epidemiological study of neural tube defects classified according to the five sites of closure].

    PubMed

    Sanchis Calvo, A; Martínez- Frías, M

    2001-02-01

    To identify the frequency at birth of neural tube defects (NTD) in the Spanish population. NTDs were considered as a whole as well as according to the different sites of closure failure, following the theory of multisite closure of the neural tube. To analyze the epidemiological characteristics of the different sites. Data derived from the Spanish Collaborative Study of Congenital Malformations (ECEMC), from April 1976 to March 1995. Among the 1,222,698 live births during this period, 784 infants had NTD were controlled. Among these, 784 infants had NTD. The prevalence of NTD in our population was 1.01 per 1,000 births, a frequency which is considered medium-to low. Only 5.74% of the NTD were of known etiology: 2.17% were genic, 1.27% were chromosomic and 2.29% were environmental. Excluding NTD of genetic etiology, whether genic or chromosomic, most of the remaining were isolated defects (multifactorial) and 16.78% multiple malformations. Site 1, where the closure of the neural tube starts, represented 24% of all the affected sites. However, more than 50% of the NTDs corresponded to closure failure at the junction of two sites. As in other populations with a low prevalence of NTD at birth, the prevalence of these defects in our population showed a trend to decrease with time, due to the possibility of interrupting gestation after prenatal diagnosis. All the NTD could be classified according to the theory of multisite closure of the neural tube, including 13 cases with several noncontiguous affected sites. Two types of NTD were observed: in the first, closure failed to occur and in the second, two closures failed to meet.

  16. Angiogenesis within the developing mouse neural tube is dependent on sonic hedgehog signaling: possible roles of motor neurons.

    PubMed

    Nagase, Takashi; Nagase, Miki; Yoshimura, Kotaro; Fujita, Toshiro; Koshima, Isao

    2005-06-01

    Embryonic morphogenesis of vascular and nervous systems is tightly coordinated, and recent studies revealed that some neurogenetic factors such as Sonic hedgehog (Shh) also exhibit angiogenetic potential. Vascularization within the developing mouse neural tube depends on vessel sprouting from the surrounding vascular plexus. Previous studies implicated possible roles of VEGF/Flk-1 and Angiopoietin-1(Ang-1)/Tie-2 signaling as candidate molecules functioning in this process. Examining gene expressions of these factors at embryonic day (E) 9.5 and 10.5, we unexpectedly found that both VEGF and Ang-1 were expressed in the motor neurons in the ventral neural tube. The motor neurons were indeed located in the close vicinity of the infiltrating vessels, suggesting involvement of motor neurons in the sprouting. To substantiate this possibility, we inhibited induction of the motor neurons in the cultured mouse embryos by cyclopamine, a Shh signaling blocker. The vessel sprouting was dramatically impaired by inhibition of Shh signaling, together with nearly complete loss of the motor neurons. Expression of Ang-1, but not VEGF, within the neural tube was remarkably reduced in the cyclopamine treated embryos. These results suggest that the neural tube angiogenesis is dependent on Shh signaling, and mediated, at least in part, by the Ang-1 positive motor neurons.

  17. Novel association of VACTERL, neural tube defect and crossed renal ectopia: sonic hedgehog signaling: a point of coherence?

    PubMed

    Vaze, Dhananjay; Mahalik, Santosh; Rao, Katragadda L N

    2012-12-01

    The present case report describes two patients with a novel combination of VACTERL (vertebral, anorectal, cardiac, tracheoesophageal, renal, limb), neural tube defect and crossed renal ectopia. Though cases of VACTERL associated with crossed renal ectopia have been described, the present case report is the first to describe its combination with neural tube defect. The cases reported here are significant because central nervous system manifestations are scarce in VACTERL syndrome. The role of sonic hedgehog pathway has been proposed in VACTERL association and neural tube defects. Axial Sonic hedgehog signaling has also been implicated in the mediolateral positioning of the renal parenchyma. With this knowledge, the etiopathogenesis of this novel combination is discussed to highlight the role of sonic hedgehog signaling as a point of coherence. © 2011 The Authors. Congenital Anomalies © 2011 Japanese Teratology Society.

  18. Prediction of friction factor of pure water flowing inside vertical smooth and microfin tubes by using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Çebi, A.; Akdoğan, E.; Celen, A.; Dalkilic, A. S.

    2017-02-01

    An artificial neural network (ANN) model of friction factor in smooth and microfin tubes under heating, cooling and isothermal conditions was developed in this study. Data used in ANN was taken from a vertically positioned heat exchanger experimental setup. Multi-layered feed-forward neural network with backpropagation algorithm, radial basis function networks and hybrid PSO-neural network algorithm were applied to the database. Inputs were the ratio of cross sectional flow area to hydraulic diameter, experimental condition number depending on isothermal, heating, or cooling conditions and mass flow rate while the friction factor was the output of the constructed system. It was observed that such neural network based system could effectively predict the friction factor values of the flows regardless of their tube types. A dependency analysis to determine the strongest parameter that affected the network and database was also performed and tube geometry was found to be the strongest parameter of all as a result of analysis.

  19. Atg7-Mediated Autophagy Is Involved in the Neural Crest Cell Generation in Chick Embryo.

    PubMed

    Wang, Guang; Chen, En-Ni; Liang, Chang; Liang, Jianxin; Gao, Lin-Rui; Chuai, Manli; Münsterberg, Andrea; Bao, Yongping; Cao, Liu; Yang, Xuesong

    2018-04-01

    Autophagy plays a very important role in numerous physiological and pathological events. However, it still remains unclear whether Atg7-induced autophagy is involved in the regulation of neural crest cell production. In this study, we found the co-location of Atg7 and Pax7 + neural crest cells in early chick embryo development. Upregulation of Atg7 with unilateral transfection of full-length Atg7 increased Pax7 + and HNK-1 + cephalic and trunk neural crest cell numbers compared to either Control-GFP transfection or opposite neural tubes, suggesting that Atg7 over-expression in neural tubes could enhance the production of neural crest cells. BMP4 in situ hybridization and p-Smad1/5/8 immunofluorescent staining demonstrated that upregulation of Atg7 in neural tubes suppressed the BMP4/Smad signaling, which is considered to promote the delamination of neural crest cells. Interestingly, upregulation of Atg7 in neural tubes could significantly accelerate cell progression into the S phase, implying that Atg7 modulates cell cycle progression. However, β-catenin expression was not significantly altered. Finally, we demonstrated that upregulation of the Atg7 gene could activate autophagy as did Atg8. We have also observed that similar phenotypes, such as more HNK-1 + neural crest cells in the unilateral Atg8 transfection side of neural tubes, and the transfection with full-length Atg8-GFP certainly promote the numbers of BrdU + neural crest cells in comparison to the GFP control. Taken together, we reveal that Atg7-induced autophagy is involved in regulating the production of neural crest cells in early chick embryos through the modification of the cell cycle.

  20. Periconceptional folic acid prevents miscarriage in Irish families with neural tube defects.

    PubMed

    Byrne, J

    2011-03-01

    Miscarriages occur to excess in sibships with neural tube defects (NTDs) and among maternal versus paternal relatives in NTD families. Folic acid prevents most NTDs. Its potential to prevent miscarriages has been controversial. We evaluated the relationship of maternal line and periconceptional folic acid with miscarriage. First cousins in Irish families with NTDs were interviewed about pregnancy outcomes and the health of their offspring. Miscarriages were not more frequent among pregnancies of maternal versus paternal first cousins. Folic acid intake during early pregnancy significantly reduced the risk of miscarriage from 15.7 to 9.6%, for an adjusted odds ratio of 0.37 (95% confidence interval 0.19, 0.72, p = 0.005). Folic acid during pregnancy was associated with a reduction of approximately 60% in miscarriages. Miscarriages are common-one in every eight pregnancies in this study. If incorporated into pre-pregnancy counseling, these results could have significant public health impact.

  1. Neural tube defects in Costa Rica, 1987-2012: origins and development of birth defect surveillance and folic acid fortification.

    PubMed

    Barboza-Argüello, María de la Paz; Umaña-Solís, Lila M; Azofeifa, Alejandro; Valencia, Diana; Flores, Alina L; Rodríguez-Aguilar, Sara; Alfaro-Calvo, Thelma; Mulinare, Joseph

    2015-03-01

    Our aim was to provide a descriptive overview of how the birth defects surveillance and folic acid fortification programs were implemented in Costa Rica-through the establishment of the Registry Center for Congenital Anomalies (Centro de Registro de Enfermedades Congénitas-CREC), and fortification legislation mandates. We estimated the overall prevalence of neural tube defects (i.e., spina bifida, anencephaly and encephalocele) before and after fortification captured by CREC. Prevalence was calculated by dividing the total number of infants born with neural tube defects by the total number of live births in the country (1987-2012).A total of 1,170 newborns with neural tube defects were identified from 1987 to 2012 (1992-1995 data excluded); 628 were identified during the baseline pre-fortification period (1987-1991; 1996-1998); 191 during the fortification period (1999-2002); and 351 during the post-fortification time period (2003-2012). The overall prevalence of neural tube defects decreased from 9.8 per 10,000 live-births (95 % CI 9.1-10.5) for the pre-fortification period to 4.8 per 10,000 live births (95 % CI 4.3-5.3) for the post-fortification period. Results indicate a statistically significant (P < 0.05) decrease of 51 % in the prevalence of neural tube defects from the pre-fortification period to the post-fortification period. Folic acid fortification via several basic food sources has shown to be a successful public health intervention for Costa Rica. Costa Rica's experience can serve as an example for other countries seeking to develop and strengthen both their birth defects surveillance and fortification programs.

  2. From the Cover: Exposing Imidacloprid Interferes With Neurogenesis Through Impacting on Chick Neural Tube Cell Survival.

    PubMed

    Liu, Meng; Wang, Guang; Zhang, Shi-Yao; Zhong, Shan; Qi, Guo-Long; Wang, Chao-Jie; Chuai, Manli; Lee, Kenneth Ka Ho; Lu, Da-Xiang; Yang, Xuesong

    2016-09-01

    As a neonicotinoid pesticide, imidacloprid is widely used to control insects in agriculture and fleas on domestic animals. However, it is not known whether imidacloprid exposure negatively affects neurogenesis during embryonic development. In this study, using a chick embryo model, we investigated the effects of imidacloprid exposure on neurogenesis at the earliest stage and during late-stage embryo development. Exposing HH0 chick embryos to imidacloprid in EC culture caused neural tube defects (NTDs) and neuronal differentiation dysplasia as determined by NF/Tuj1 labeling. Furthermore, we found that F-actin accumulation on the apical side of the neural tube was suppressed by exposure to imidacloprid, and the expression of BMP4 and Shh on the dorsal and ventral sides of the neural tubes, respectively, were also reduced, which in turn affects the dorsolateral hinge points during bending of the neural plate. In addition, exposure to imidacloprid reduced cell proliferation and increased cell apoptosis, as determined by pHIS3 labeling and TUNEL staining, respectively, also contributing to the malformation. We obtained similar results in late-stage embryos exposed to imidacloprid. Finally, a bioinformatics analysis was employed to determine which genes identified in this study were involved in NTDs. The experimental evidence and bioinformatics analysis suggested that imidacloprid exposure during chick embryo development could increase the risk of NTDs and neural dysplasia. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Epidemiologic and Genetic Aspects of Spina Bifida and Other Neural Tube Defects

    ERIC Educational Resources Information Center

    Au, Kit Sing; Ashley-Koch, Allison; Northrup, Hope

    2010-01-01

    The worldwide incidence of neural tube defects (NTDs) ranges from 1.0 to 10.0 per 1,000 births with almost equal frequencies between two major categories: anencephaly and spina bifida (SB). Epidemiological studies have provided valuable insight for (a) researchers to identify nongenetic and genetic factors contributing to etiology, (b) public…

  4. Cellular basis of neuroepithelial bending during mouse spinal neural tube closure

    PubMed Central

    McShane, Suzanne G.; Molè, Matteo A.; Savery, Dawn; Greene, Nicholas D. E; Tam, Patrick P.L.; Copp, Andrew J.

    2015-01-01

    Summary Bending of the neural plate at paired dorsolateral hinge points (DLHPs) is required for neural tube closure in the spinal region of the mouse embryo. As a step towards understanding the morphogenetic mechanism of DLHP development, we examined variations in neural plate cellular architecture and proliferation during closure. Neuroepithelial cells within the median hinge point (MHP) contain nuclei that are mainly basally located and undergo relatively slow proliferation, with a 7 h cell cycle length. In contrast, cells in the dorsolateral neuroepithelium, including the DLHP, exhibit nuclei distributed throughout the apico-basal axis and undergo rapid proliferation, with a 4 h cell cycle length. As the neural folds elevate, cell numbers increase to a greater extent in the dorsolateral neural plate that contacts the surface ectoderm, compared with the more ventromedial neural plate where cells contact paraxial mesoderm and notochord. This marked increase in dorsolateral cell number cannot be accounted for solely on the basis of enhanced cell proliferation in this region. We hypothesised that neuroepithelial cells may translocate in a ventral-to-dorsal direction as DLHP formation occurs, and this was confirmed by vital cell labelling in cultured embryos. The translocation of cells into the neural fold, together with its more rapid cell proliferation, leads to an increase in cell density dorsolaterally compared with the more ventromedial neural plate. These findings suggest a model in which DLHP formation may proceed through ‘buckling’ of the neuroepithelium at a dorso-ventral boundary marked by a change in cell-packing density. PMID:26079577

  5. Neural Tube Defects in Costa Rica, 1987–2012: Origins and Development of Birth Defect Surveillance and Folic Acid Fortification

    PubMed Central

    de la Paz Barboza-Argüello, María; Umaña-Solís, Lila M.; Azofeifa, Alejandro; Valencia, Diana; Flores, Alina L.; Rodríguez-Aguilar, Sara; Alfaro-Calvo, Thelma; Mulinare, Joseph

    2015-01-01

    Our aim was to provide a descriptive overview of how the birth defects surveillance and folic acid fortification programs were implemented in Costa Rica—through the establishment of the Registry Center for Congenital Anomalies (Centro de Registro de Enfermedades Congénitas—CREC), and fortification legislation mandates. We estimated the overall prevalence of neural tube defects (i.e., spina bifida, anencephaly and encephalocele) before and after fortification captured by CREC. Prevalence was calculated by dividing the total number of infants born with neural tube defects by the total number of live births in the country (1987–2012).A total of 1,170 newborns with neural tube defects were identified from 1987 to 2012 (1992–1995 data excluded); 628 were identified during the baseline pre-fortification period (1987–1991; 1996–1998); 191 during the fortification period (1999–2002); and 351 during the post-fortification time period (2003–2012). The overall prevalence of neural tube defects decreased from 9.8 per 10,000 live-births (95 % CI 9.1–10.5) for the pre-fortification period to 4.8 per 10,000 live births (95 % CI 4.3–5.3) for the post–fortification period. Results indicate a statistically significant (P < 0.05) decrease of 51 % in the prevalence of neural tube defects from the pre-fortification period to the post-fortification period. Folic acid fortification via several basic food sources has shown to be a successful public health intervention for Costa Rica. Costa Rica’s experience can serve as an example for other countries seeking to develop and strengthen both their birth defects surveillance and fortification programs. PMID:24952876

  6. Neural tube defects – disorders of neurulation and related embryonic processes

    PubMed Central

    Copp, Andrew J.; Greene, Nicholas D. E.

    2014-01-01

    Neural tube defects (NTDs) are severe congenital malformations affecting 1 in every 1000 pregnancies. ‘Open’ NTDs result from failure of primary neurulation as seen in anencephaly, myelomeningocele (open spina bifida) and craniorachischisis. Degeneration of the persistently open neural tube in utero leads to loss of neurological function below the lesion level. ‘Closed’ NTDs are skin-covered disorders of spinal cord structure, ranging from asymptomatic spina bifida occulta to severe spinal cord tethering, and usually traceable to disruption of secondary neurulation. ‘Herniation’ NTDs are those in which meninges, with or without brain or spinal cord tissue, become exteriorised through a pathological opening in the skull or vertebral column (e.g. encephalocele and meningocele). NTDs have multifactorial etiology, with genes and environmental factors interacting to determine individual risk of malformation. While over 200 mutant genes cause open NTDs in mice, much less is known about the genetic causation of human NTDs. Recent evidence has implicated genes of the planar cell polarity signalling pathway in a proportion of cases. The embryonic development of NTDs is complex, with diverse cellular and molecular mechanisms operating at different levels of the body axis. Molecular regulatory events include the BMP and Sonic hedgehog pathways which have been implicated in control of neural plate bending. Primary prevention of NTDs has been implemented clinically following the demonstration that folic acid, when taken as a peri-conceptional supplement, can prevent many cases. Not all NTDs respond to folic acid, however, and adjunct therapies are required for prevention of this folic acid-resistant category. PMID:24009034

  7. Imidacloprid Exposure Suppresses Neural Crest Cells Generation during Early Chick Embryo Development.

    PubMed

    Wang, Chao-Jie; Wang, Guang; Wang, Xiao-Yu; Liu, Meng; Chuai, Manli; Lee, Kenneth Ka Ho; He, Xiao-Song; Lu, Da-Xiang; Yang, Xuesong

    2016-06-15

    Imidacloprid is a neonicotinoid pesticide that is widely used in the control pests found on crops and fleas on pets. However, it is still unclear whether imidacloprid exposure could affect early embryo development-despite some studies having been conducted on the gametes. In this study, we demonstrated that imidacloprid exposure could lead to abnormal craniofacial osteogenesis in the developing chick embryo. Cranial neural crest cells (NCCs) are the progenitor cells of the chick cranial skull. We found that the imidacloprid exposure retards the development of gastrulating chick embryos. HNK-1, PAX7, and Ap-2α immunohistological stainings indicated that cranial NCCs generation was inhibited after imidacloprid exposure. Double immunofluorescent staining (Ap-2α and PHIS3 or PAX7 and c-Caspase3) revealed that imidacloprid exposure inhibited both NCC proliferation and apoptosis. In addition, it inhibited NCCs production by repressing Msx1 and BMP4 expression in the developing neural tube and by altering expression of EMT-related adhesion molecules (Cad6B, E-Cadherin, and N-cadherin) in the developing neural crests. We also determined that imidacloprid exposure suppressed cranial NCCs migration and their ability to differentiate. In sum, we have provided experimental evidence that imidacloprid exposure during embryogenesis disrupts NCCs development, which in turn causes defective cranial bone development.

  8. Secondary neurulation: Fate-mapping and gene manipulation of the neural tube in tail bud.

    PubMed

    Shimokita, Eisuke; Takahashi, Yoshiko

    2011-04-01

    The body tail is a characteristic trait of vertebrates, which endows the animals with a variety of locomotive functions. During embryogenesis, the tail develops from the tail bud, where neural and mesodermal tissues make a major contribution. The neural tube in the tail bud develops by the process known as secondary neurulation (SN), where mesenchymal cells undergo epithelialization and tubulogenesis. These processes contrast with the well known primary neurulation, which is achieved by invagination of an epithelial cell sheet. In this study we have identified the origin of SN-undergoing cells, which is located caudo-medially to Hensen's node of early chicken embryo. This region is distinctly fate-mapped from tail-forming mesoderm. The identification of the presumptive SN region has allowed us to target this region with exogenous genes using in ovo electroporation techniques. The SN-transgenesis has further enabled an exploration of molecular mechanisms underlying mesenchymal-to-epithelial transition during SN, where activity levels of Cdc42 and Rac1 are critical. This is the first demonstration of molecular and cellular analyses of SN, which can be performed at a high resolution separately from tail-forming mesoderm. © 2011 The Authors. Journal compilation © 2011 Japanese Society of Developmental Biologists.

  9. Transcriptional response of Hoxb genes to retinoid signalling is regionally restricted along the neural tube rostrocaudal axis.

    PubMed

    Carucci, Nicoletta; Cacci, Emanuele; Nisi, Paola S; Licursi, Valerio; Paul, Yu-Lee; Biagioni, Stefano; Negri, Rodolfo; Rugg-Gunn, Peter J; Lupo, Giuseppe

    2017-04-01

    During vertebrate neural development, positional information is largely specified by extracellular morphogens. Their distribution, however, is very dynamic due to the multiple roles played by the same signals in the developing and adult neural tissue. This suggests that neural progenitors are able to modify their competence to respond to morphogen signalling and autonomously maintain positional identities after their initial specification. In this work, we take advantage of in vitro culture systems of mouse neural stem/progenitor cells (NSPCs) to show that NSPCs isolated from rostral or caudal regions of the mouse neural tube are differentially responsive to retinoic acid (RA), a pivotal morphogen for the specification of posterior neural fates. Hoxb genes are among the best known RA direct targets in the neural tissue, yet we found that RA could promote their transcription only in caudal but not in rostral NSPCs. Correlating with these effects, key RA-responsive regulatory regions in the Hoxb cluster displayed opposite enrichment of activating or repressing histone marks in rostral and caudal NSPCs. Finally, RA was able to strengthen Hoxb chromatin activation in caudal NSPCs, but was ineffective on the repressed Hoxb chromatin of rostral NSPCs. These results suggest that the response of NSPCs to morphogen signalling across the rostrocaudal axis of the neural tube may be gated by the epigenetic configuration of target patterning genes, allowing long-term maintenance of intrinsic positional values in spite of continuously changing extrinsic signals.

  10. Metabolite Profiling of Whole Murine Embryos Reveals Metabolic Perturbations Associated with Maternal Valproate-Induced Neural Tube Closure Defects

    PubMed Central

    Akimova, Darya; Wlodarczyk, Bogdan J.; Lin, Ying; Ross, M. Elizabeth; Finnell, Richard H.; Chen, Qiuying; Gross, Steven S.

    2016-01-01

    Background Valproic Acid (VPA) is prescribed therapeutically for multiple conditions, including epilepsy. When taken during pregnancy, VPA is teratogenic, increasing the risk of several birth and developmental defects including neural tube defects (NTDs). The mechanism by which VPA causes NTDs remains controversial and how VPA interacts with folic acid, a vitamin commonly recommended for the prevention of NTDs, remains uncertain. We sought to address both questions by applying untargeted metabolite profiling analysis to neural tube closure stage mouse embryos. Methods Pregnant SWV dams on either a 2ppm or 10ppm folic acid (FA) supplemented diet were injected with a single dose of VPA on gestational day E8.5. On day E9.5, the mouse embryos were collected and evaluated for neural tube closure status. LC/MS metabolomics analysis was performed to compare metabolite profiles of NTD-affected VPA-exposed whole mouse embryos to profiles from embryos that underwent normal neural tube closure from control dams. Results NTDs were observed in all embryos from VPA-treated dams and penetrance was not diminished by dietary folic acid supplementation. The most profound metabolic perturbations were found in the 10ppm FA VPA-exposed mouse embryos, compared to the other three treatment groups. Affected metabolites included amino acids, nucleobases and related phosphorylated nucleotides, lipids, and carnitines. Conclusions Maternal VPA treatment markedly perturbed purine and pyrimidine metabolism in E9.5 embryos. In combination with a high folic acid diet, VPA treatment resulted in gross metabolic changes, likely caused by a multiplicity of mechanisms, including an apparent disruption of mitochondrial beta-oxidation. PMID:27860192

  11. Deep Convolutional Neural Networks for Endotracheal Tube Position and X-ray Image Classification: Challenges and Opportunities.

    PubMed

    Lakhani, Paras

    2017-08-01

    The goal of this study is to evaluate the efficacy of deep convolutional neural networks (DCNNs) in differentiating subtle, intermediate, and more obvious image differences in radiography. Three different datasets were created, which included presence/absence of the endotracheal (ET) tube (n = 300), low/normal position of the ET tube (n = 300), and chest/abdominal radiographs (n = 120). The datasets were split into training, validation, and test. Both untrained and pre-trained deep neural networks were employed, including AlexNet and GoogLeNet classifiers, using the Caffe framework. Data augmentation was performed for the presence/absence and low/normal ET tube datasets. Receiver operating characteristic (ROC), area under the curves (AUC), and 95% confidence intervals were calculated. Statistical differences of the AUCs were determined using a non-parametric approach. The pre-trained AlexNet and GoogLeNet classifiers had perfect accuracy (AUC 1.00) in differentiating chest vs. abdominal radiographs, using only 45 training cases. For more difficult datasets, including the presence/absence and low/normal position endotracheal tubes, more training cases, pre-trained networks, and data-augmentation approaches were helpful to increase accuracy. The best-performing network for classifying presence vs. absence of an ET tube was still very accurate with an AUC of 0.99. However, for the most difficult dataset, such as low vs. normal position of the endotracheal tube, DCNNs did not perform as well, but achieved a reasonable AUC of 0.81.

  12. Genetic, chromosomal, and syndromic causes of neural tube defects.

    PubMed

    Seidahmed, Mohammed Z; Abdelbasit, Omer B; Shaheed, Meeralebbae M; Alhussein, Khalid A; Miqdad, Abeer M; Samadi, Abdulmohsen S; Khalil, Mohammed I; Al-Mardawi, Elham; Salih, Mustafa A

    2014-12-01

    To ascertain the incidence, and describe the various forms of neural tube defects (NTDs) due to genetic, chromosomal, and syndromic causes. We carried out a retrospective analysis of data retrieved from the medical records of newborn infants admitted to the Neonatal Intensive Care Unit with NTDs and their mothers spanning 14 years (1996-2009) at the Security Forces Hospital, Riyadh, Saudi Arabia. The cases were ascertained by a perinatologist, neonatologist, geneticist, radiologist, and neurologist. The literature was reviewed via a MEDLINE search. Only liveborn babies were included. Permission from the Educational Committee at the Security Forces Hospital was obtained prior to the collection of data. Out of 103 infants with NTDs admitted during this period, 20 (19.4%) were found to have an underlying genetic syndromic, chromosomal and/or other anomalies. There were 5 cases of Meckel-Gruber syndrome, 2 Joubert syndrome, one Waardenburg syndrome, one Walker-Warburg syndrome, 2 chromosomal disorders, 2 caudal regression, one amniotic band disruption sequence, one associated with omphalocele, one with diaphragmatic hernia, and 4 with multiple congenital anomalies. There is a high rate of underlying genetic syndromic and/or chromosomal causes of NTDs in the Saudi Arabian population due to the high consanguinity rate. Identification of such association can lead to more accurate provisions of genetic counseling to the family including preimplantation genetic diagnosis or early termination of pregnancies associated with lethal conditions.

  13. Neural tube defects in Malaysia: data from the Malaysian National Neonatal Registry.

    PubMed

    Boo, Nem-Yun; Cheah, Irene G S; Thong, Meow-Keong

    2013-10-01

    This study aimed to determine the prevalence and early outcome of neural tube defects (NTDs) in Malaysia. This prospective study included all neonates with NTDs (spina bifida, anencephaly, encephalocoele) born in 2009 in 32 Malaysian hospitals in the Malaysian National Neonatal Network. The prevalence of NTDs was 0.42 per 1000 live births, being highest among the indigenous people of Sarawak (1.09 per 1000 live births) and lowest among Malaysians of Chinese descent (0.09 per 1000 live births). The most common type of NTDs was anencephaly (0.19 per 1000 live births), followed by spina bifida (0.11 per 1000 live births) and encephalocoele (0.07 per 1000 live births). Majority of the infants with anencephaly (94.5%, n = 51), 45.8% (n = 11) with encephalocoele and 9.5% (n = 4) with spina bifida died. The median duration of hospital stay was 4 (range: 0-161) days. NTDs were common in Malaysia. Mortality was high. Long-term monitoring of NTD prevalence following folic fortification of food is recommended.

  14. A mutation in the tuft mouse disrupts TET1 activity and alters the expression of genes that are crucial for neural tube closure.

    PubMed

    Fong, Keith S K; Hufnagel, Robert B; Khadka, Vedbar S; Corley, Michael J; Maunakea, Alika K; Fogelgren, Ben; Ahmed, Zubair M; Lozanoff, Scott

    2016-05-01

    Genetic variations affecting neural tube closure along the head result in malformations of the face and brain. Neural tube defects (NTDs) are among the most common birth defects in humans. We previously reported a mouse mutant called tuft that arose spontaneously in our wild-type 3H1 colony. Adult tuft mice present midline craniofacial malformations with or without an anterior cephalocele. In addition, affected embryos presented neural tube closure defects resulting in insufficient closure of the anterior neuropore or exencephaly. Here, through whole-genome sequencing, we identified a nonsense mutation in the Tet1 gene, which encodes a methylcytosine dioxygenase (TET1), co-segregating with the tuft phenotype. This mutation resulted in premature termination that disrupts the catalytic domain that is involved in the demethylation of cytosine. We detected a significant loss of TET enzyme activity in the heads of tuft embryos that were homozygous for the mutation and had NTDs. RNA-Seq transcriptome analysis indicated that multiple gene pathways associated with neural tube closure were dysregulated in tuft embryo heads. Among them, the expressions of Cecr2, Epha7 and Grhl2 were significantly reduced in some embryos presenting neural tube closure defects, whereas one or more components of the non-canonical WNT signaling pathway mediating planar cell polarity and convergent extension were affected in others. We further show that the recombinant mutant TET1 protein was capable of entering the nucleus and affected the expression of endogenous Grhl2 in IMCD-3 (inner medullary collecting duct) cells. These results indicate that TET1 is an epigenetic determinant for regulating genes that are crucial to closure of the anterior neural tube and its mutation has implications to craniofacial development, as presented by the tuft mouse. © 2016. Published by The Company of Biologists Ltd.

  15. The Neural Border: Induction, Specification and Maturation of the territory that generates Neural Crest cells.

    PubMed

    Pla, Patrick; Monsoro-Burq, Anne H

    2018-05-28

    The neural crest is induced at the edge between the neural plate and the nonneural ectoderm, in an area called the neural (plate) border, during gastrulation and neurulation. In recent years, many studies have explored how this domain is patterned, and how the neural crest is induced within this territory, that also participates to the prospective dorsal neural tube, the dorsalmost nonneural ectoderm, as well as placode derivatives in the anterior area. This review highlights the tissue interactions, the cell-cell signaling and the molecular mechanisms involved in this dynamic spatiotemporal patterning, resulting in the induction of the premigratory neural crest. Collectively, these studies allow building a complex neural border and early neural crest gene regulatory network, mostly composed by transcriptional regulations but also, more recently, including novel signaling interactions. Copyright © 2018. Published by Elsevier Inc.

  16. Artificial Neural Networks-Based Software for Measuring Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters.

    PubMed

    Liu, Zhijian; Liu, Kejun; Li, Hao; Zhang, Xinyu; Jin, Guangya; Cheng, Kewei

    2015-01-01

    Measurements of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, conventional measurement requires expensive detection devices and undergoes a series of complicated procedures. To simplify the measurement and reduce the cost, software based on artificial neural networks for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters was developed. Using multilayer feed-forward neural networks with back-propagation algorithm, we developed and tested our program on the basis of 915 measured samples of water-in-glass evacuated tube solar water heaters. This artificial neural networks-based software program automatically obtained accurate heat collection rate and heat loss coefficient using simply "portable test instruments" acquired parameters, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, angle between tubes and ground and final temperature. Our results show that this software (on both personal computer and Android platforms) is efficient and convenient to predict the heat collection rate and heat loss coefficient due to it slow root mean square errors in prediction. The software now can be downloaded from http://t.cn/RLPKF08.

  17. Artificial Neural Networks-Based Software for Measuring Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters

    PubMed Central

    Liu, Zhijian; Liu, Kejun; Li, Hao; Zhang, Xinyu; Jin, Guangya; Cheng, Kewei

    2015-01-01

    Measurements of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, conventional measurement requires expensive detection devices and undergoes a series of complicated procedures. To simplify the measurement and reduce the cost, software based on artificial neural networks for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters was developed. Using multilayer feed-forward neural networks with back-propagation algorithm, we developed and tested our program on the basis of 915measuredsamples of water-in-glass evacuated tube solar water heaters. This artificial neural networks-based software program automatically obtained accurate heat collection rateand heat loss coefficient using simply "portable test instruments" acquired parameters, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, angle between tubes and ground and final temperature. Our results show that this software (on both personal computer and Android platforms) is efficient and convenient to predict the heat collection rate and heat loss coefficient due to it slow root mean square errors in prediction. The software now can be downloaded from http://t.cn/RLPKF08. PMID:26624613

  18. [Early warning on measles through the neural networks].

    PubMed

    Yu, Bin; Ding, Chun; Wei, Shan-bo; Chen, Bang-hua; Liu, Pu-lin; Luo, Tong-yong; Wang, Jia-gang; Pan, Zhi-wei; Lu, Jun-an

    2011-01-01

    To discuss the effects on early warning of measles, using the neural networks. Based on the available data through monthly and weekly reports on measles from January 1986 to August 2006 in Wuhan city. The modal was developed using the neural networks to predict and analyze the prevalence and incidence of measles. When the dynamic time series modal was established with back propagation (BP) networks consisting of two layers, if p was assigned as 9, the convergence speed was acceptable and the correlation coefficient was equal to 0.85. It was more acceptable for monthly forecasting the specific value, but better for weekly forecasting the classification under probabilistic neural networks (PNN). When data was big enough to serve the purpose, it seemed more feasible for early warning using the two-layer BP networks. However, when data was not enough, then PNN could be used for the purpose of prediction. This method seemed feasible to be used in the system for early warning.

  19. [Difficulties of the methods for studying environmental exposure and neural tube defects].

    PubMed

    Borja-Aburto, V H; Bermúdez-Castro, O; Lacasaña-Navarro, M; Kuri, P; Bustamante-Montes, P; Torres-Meza, V

    1999-01-01

    To discuss the attitudes in the assessment of environmental exposures as risk factors associated with neural tube defects, and to present the main risk factors studied to date. Environmental exposures have been suggested to have a roll in the genesis of birth defects. However, studies conducted in human populations have found difficulties in the design and conduction to show such an association for neural tube defects (anencephaly, espina bifida and encephalocele) because of problems raised from: a) the frequency measures used to compare time trends and communities, b) the classification of heterogeneous malformations, c) the inclusion of maternal, paternal and fetal factors as an integrated process and, d) the assessment of environmental exposures. Hypothetically both maternal and paternal environmental exposures can produce damage before and after conception by direct action on the embryo and the fetus-placenta complex. Therefore, in the assessment of environmental exposures we need to take into account: a) both paternal and maternal exposures; b) the critical exposure period, three months before conception for paternal exposures and one month around the conceptional period for maternal exposures; c) quantitatively evaluate environmental exposures when possible, avoiding a dichotomous classification; d) the use of biological markers of exposure is highly recommended as well as markers of genetic susceptibility.

  20. Genetic, chromosomal, and syndromic causes of neural tube defects

    PubMed Central

    Seidahmed, Mohammed Z.; Abdelbasit, Omer B.; Shaheed, Meeralebbae M.; Alhussein, Khalid A.; Miqdad, Abeer M.; Samadi, Abdulmohsen S.; Khalil, Mohammed I.; Al-Mardawi, Elham; Salih, Mustafa A.

    2014-01-01

    Objective: To ascertain the incidence, and describe the various forms of neural tube defects (NTDs) due to genetic, chromosomal, and syndromic causes. Methods: We carried out a retrospective analysis of data retrieved from the medical records of newborn infants admitted to the Neonatal Intensive Care Unit with NTDs and their mothers spanning 14 years (1996-2009) at the Security Forces Hospital, Riyadh, Saudi Arabia. The cases were ascertained by a perinatologist, neonatologist, geneticist, radiologist, and neurologist. The literature was reviewed via a MEDLINE search. Only liveborn babies were included. Permission from the Educational Committee at the Security Forces Hospital was obtained prior to the collection of data. Results: Out of 103 infants with NTDs admitted during this period, 20 (19.4%) were found to have an underlying genetic syndromic, chromosomal and/or other anomalies. There were 5 cases of Meckel-Gruber syndrome, 2 Joubert syndrome, one Waardenburg syndrome, one Walker-Warburg syndrome, 2 chromosomal disorders, 2 caudal regression, one amniotic band disruption sequence, one associated with omphalocele, one with diaphragmatic hernia, and 4 with multiple congenital anomalies. Conclusions: There is a high rate of underlying genetic syndromic and/or chromosomal causes of NTDs in the Saudi Arabian population due to the high consanguinity rate. Identification of such association can lead to more accurate provisions of genetic counseling to the family including preimplantation genetic diagnosis or early termination of pregnancies associated with lethal conditions. PMID:25551112

  1. Genomic DNA Hypomethylation Is Associated with Neural Tube Defects Induced by Methotrexate Inhibition of Folate Metabolism

    PubMed Central

    Wang, Xiuwei; Guan, Zhen; Chen, Yan; Dong, Yanting; Niu, Yuhu; Wang, Jianhua; Zhang, Ting; Niu, Bo

    2015-01-01

    DNA methylation is thought to be involved in the etiology of neural tube defects (NTDs). However, the exact mechanism between DNA methylation and NTDs remains unclear. Herein, we investigated the change of methylation in mouse model of NTDs associated with folate dysmetabolism by use of ultraperformance liquid chromatography tandem mass spectrometry (UPLC/MS/MS), liquid chromatography-electrospray ionization tandem mass spectrometry (LC-MS/MS), microarray, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and Real time quantitative PCR. Results showed that NTD neural tube tissues had lower concentrations of 5-methyltetrahydrofolate (5-MeTHF, P = 0.005), 5-formyltetrahydrofolate (5-FoTHF, P = 0.040), S-adenosylmethionine (SAM, P = 0.004) and higher concentrations of folic acid (P = 0.041), homocysteine (Hcy, P = 0.006) and S-adenosylhomocysteine (SAH, P = 0.045) compared to control. Methylation levels of genomic DNA decreased significantly in the embryonic neural tube tissue of NTD samples. 132 differentially methylated regions (35 low methylated regions and 97 high methylated regions) were selected by microarray. Two genes (Siah1b, Prkx) in Wnt signal pathway demonstrated lower methylated regions (peak) and higher expression in NTDs (P<0.05; P<0.05). Results suggest that DNA hypomethylation was one of the possible epigenetic variations correlated with the occurrence of NTDs induced by folate dysmetabolism and that Siah1b, Prkx in Wnt pathway may be candidate genes for NTDs. PMID:25822193

  2. Folate and epigenetic mechanisms in neural tube development and defects.

    PubMed

    Meethal, Sivan Vadakkadath; Hogan, Kirk J; Mayanil, Chandra S; Iskandar, Bermans J

    2013-09-01

    Multiple genetic and epigenetic factors involved in central nervous system (CNS) development influence the incidence of neural tube defects (NTDs). The beneficial effect of periconceptional folic acid on NTD prevention denotes a vital role for the single-carbon biochemical pathway in NTD genesis. Indeed, NTDs are associated with polymorphisms in a diversity of genes that encode folate pathway enzymes. Recent evidence suggests that CNS development and function, and consequently NTDs, are also associated with epigenetic mechanisms, many of which participate in the folate cycle and its input and output pathways. We provide an overview with select examples drawn from the authors' research.

  3. Is MSAFP still a useful test for detecting open neural tube defects and ventral wall defects in the era of first-trimester and early second-trimester fetal anatomical ultrasounds?

    PubMed

    Roman, Ashley S; Gupta, Simi; Fox, Nathan S; Saltzman, Daniel; Klauser, Chad K; Rebarber, Andrei

    2015-01-01

    To evaluate whether maternal serum α-fetoprotein (MSAFP) improves the detection rate for open neural tube defects (ONTDs) and ventral wall defects (VWD) in patients undergoing first-trimester and early second-trimester fetal anatomical survey. A cohort of women undergoing screening between 2005 and 2012 was identified. All patients were offered an ultrasound at between 11 weeks and 13 weeks and 6 days of gestational age for nuchal translucency/fetal anatomy followed by an early second-trimester ultrasound at between 15 weeks and 17 weeks and 6 days of gestational age for fetal anatomy and MSAFP screening. All cases of ONTD and VWD were identified via query of billing and reporting software. Sensitivity and specificity for detection of ONTD/VWD were calculated, and groups were compared using the Fisher exact test, with p < 0.05 as significance. A total of 23,790 women met the criteria for inclusion. Overall, 15 cases of ONTD and 17 cases of VWD were identified; 100% of cases were diagnosed by ultrasound prior to 18 weeks' gestation; none were diagnosed via MSAFP screening (p < 0.001). First-trimester and early second-trimester ultrasound had 100% sensitivity and 100% specificity for diagnosing ONTD/VWD. Ultrasound for fetal anatomy during the first and early second trimester detected 100% of ONTD/VWD in our population. MSAFP is not useful as a screening tool for ONTD and VWD in the setting of this ultrasound screening protocol. © 2014 S. Karger AG, Basel.

  4. Alteration of gene expression by alcohol exposure at early neurulation.

    PubMed

    Zhou, Feng C; Zhao, Qianqian; Liu, Yunlong; Goodlett, Charles R; Liang, Tiebing; McClintick, Jeanette N; Edenberg, Howard J; Li, Lang

    2011-02-21

    We have previously demonstrated that alcohol exposure at early neurulation induces growth retardation, neural tube abnormalities, and alteration of DNA methylation. To explore the global gene expression changes which may underline these developmental defects, microarray analyses were performed in a whole embryo mouse culture model that allows control over alcohol and embryonic variables. Alcohol caused teratogenesis in brain, heart, forelimb, and optic vesicle; a subset of the embryos also showed cranial neural tube defects. In microarray analysis (accession number GSM9545), adopting hypothesis-driven Gene Set Enrichment Analysis (GSEA) informatics and intersection analysis of two independent experiments, we found that there was a collective reduction in expression of neural specification genes (neurogenin, Sox5, Bhlhe22), neural growth factor genes [Igf1, Efemp1, Klf10 (Tieg), and Edil3], and alteration of genes involved in cell growth, apoptosis, histone variants, eye and heart development. There was also a reduction of retinol binding protein 1 (Rbp1), and de novo expression of aldehyde dehydrogenase 1B1 (Aldh1B1). Remarkably, four key hematopoiesis genes (glycophorin A, adducin 2, beta-2 microglobulin, and ceruloplasmin) were absent after alcohol treatment, and histone variant genes were reduced. The down-regulation of the neurospecification and the neurotrophic genes were further confirmed by quantitative RT-PCR. Furthermore, the gene expression profile demonstrated distinct subgroups which corresponded with two distinct alcohol-related neural tube phenotypes: an open (ALC-NTO) and a closed neural tube (ALC-NTC). Further, the epidermal growth factor signaling pathway and histone variants were specifically altered in ALC-NTO, and a greater number of neurotrophic/growth factor genes were down-regulated in the ALC-NTO than in the ALC-NTC embryos. This study revealed a set of genes vulnerable to alcohol exposure and genes that were associated with neural tube

  5. Immediate Tube Feeding after Percutaneous Endoscopic Gastrostomy: Early Return to Goal Tube Feeds without Added Complications.

    PubMed

    Lamb, Laura C; Jayaraman, Vijay; Montgomery, Stephanie C; Umer, Affan; Shapiro, David S; Feeney, James M

    2017-02-01

    Percutaneous endoscopic gastrostomy (PEG) is frequently performed for delivery of nonoral enteral nutrition (EN) in critically ill patients. Tube-based supplement initiation is often delayed for a variety of reasons despite evidence that EN interruption results in worse outcomes. To determine if early initiation of EN after PEG placement is safe and well-tolerated in critically ill patients and if early initiation of EN results in more goal-accomplished days of EN. A retrospective chart review of patients who underwent PEG and at least 24 hours of EN. Patients were stratified according to time to tube- feed initiation: immediate (< one hour), early (one to four hours), and late (four to 24 hours). 'Ihe three groups were similar with respect to demographics, comorbidities, and 30-day mortality. Sixty-one percent of patients in the immediate group were advanced to the previously-met goal EN rates compared to 24% and 18% in the early and delayed groups, respectively (P < .0001). Immediate reinitiation of nonoral EN after PEG procedure is safe and is associated with reaching goal nutrition faster.

  6. Neurological outcomes by mode of delivery for fetuses with open neural tube defects: A systematic review and meta-analysis.

    PubMed

    Tolcher, Mary C; Shazly, Sherif A; Shamshirsaz, Alireza A; Whitehead, William E; Espinoza, Jimmy; Vidaeff, Alex C; Belfort, Michael A; Nassr, Ahmed A

    2018-06-20

    Controversy exists regarding the optimal mode of delivery for fetuses with open neural tube defects. To compare neurological outcomes among infants with open neural tube defects who underwent vaginal compared to caesarean delivery. Electronic databases MEDLINE, EMBASE, Scopus, and Clinicaltrials. gov were searched from inception to November 2017. Eligible studies included observational or randomised studies comparing vaginal and caesarean delivery in pregnancies with fetal open neural tube defects who did not undergo prenatal repair. Two reviewers independently reviewed abstracts and full text articles. Outcomes were compared between vaginal and caesarean delivery and prelabour caesarean versus labour. The primary outcome was motor-anatomic level difference. Secondary outcomes included shunt requirement, sac disruption, meningitis, and ambulation at 2 years. Meta-analysis was performed and mean difference or odds ratios with 95% confidence interval calculated. Of 201 abstracts identified in the primary search, 9 studies (672 women) met eligibility criteria. Comparing vaginal and caesarean delivery, there was no significant difference in motor-anatomic level difference (mean difference -0.10, 95% CI -0.58-0.38; I 2 =57%). The vaginal delivery group was less likely to require a shunt or have sac disruption (OR 0.37, 95% CI 0.14-0.95 and OR 0.46, 95% CI 0.23-0.90, respectively). Comparisons by prelabour caesarean versus labour showed no significant difference in motor-anatomic level difference (OR 1.29, 95% CI -0.63-3.21) or ambulation at 2 years (OR 2.13, 95% CI 0.35-13.12). Caesarean delivery was not associated with improved neurological outcomes among fetuses with open neural tube defects. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Kif11 dependent cell cycle progression in radial glial cells is required for proper neurogenesis in the zebrafish neural tube

    PubMed Central

    Johnson, Kimberly; Moriarty, Chelsea; Tania, Nessy; Ortman, Alissa; DiPietrantonio, Kristina; Edens, Brittany; Eisenman, Jean; Ok, Deborah; Krikorian, Sarah; Barragan, Jessica; Gole, Christophe; Barresi, Michael J.F.

    2014-01-01

    Radial glia serve as the resident neural stem cells in the embryonic vertebrate nervous system, and their proliferation must be tightly regulated to generate the correct number of neuronal and glial cell progeny in the neural tube. During a forward genetic screen, we recently identified a zebrafish mutant in the kif11 loci that displayed a significant increase in radial glial cell bodies at the ventricular zone of the spinal cord. Kif11, also known as Eg5, is a kinesin-related, plus-end directed motor protein responsible for stabilizing and separating the bipolar mitotic spindle. We show here that Gfap+ radial glial cells express kif11 in the ventricular zone and floor plate. Loss of Kif11 by mutation or pharmacological inhibition with S-trityl-L-cysteine (STLC) results in monoastral spindle formation in radial glial cells, which is characteristic of mitotic arrest. We show that M-phase radial glia accumulate over time at the ventricular zone in kif11 mutants and STLC treated embryos. Mathematical modeling of the radial glial accumulation in kif11 mutants not only confirmed an ~226x delay in mitotic exit (likely a mitotic arrest), but also predicted two modes of increased cell death. These modeling predictions were supported by an increase in the apoptosis marker, anti-activated Caspase-3, which was also found to be inversely proportional to a decrease in cell proliferation. In addition, treatment with STLC at different stages of neural development uncovered two critical periods that most significantly require Kif11 function for stem cell progression through mitosis. We also show that loss of Kif11 function causes specific reductions in oligodendroglia and secondary interneurons and motorneurons, suggesting these later born populations require proper radial glia division. Despite these alterations to cell cycle dynamics, survival, and neurogenesis, we document unchanged cell densities within the neural tube in kif11 mutants, suggesting that a mechanism of

  8. Management of Labor and Delivery After Fetoscopic Repair of an Open Neural Tube Defect.

    PubMed

    Kohn, Jaden R; Rao, Vibha; Sellner, Allison A; Sharhan, Dina; Espinoza, Jimmy; Shamshirsaz, Alireza A; Whitehead, William E; Belfort, Michael A; Sanz Cortes, Magdalena

    2018-06-01

    To report labor, delivery, and neonatal outcomes in a cohort of women delivering neonates who had undergone fetoscopic neural tube defect repair. We conducted a retrospective cohort study from April 2014 to January 2018. All patients met Management of Myelomeningocele Study eligibility criteria. We included patients with completed second-trimester fetoscopic neural tube defect repair (laparotomy, uterine exteriorization, and minimally invasive access through two or three uterine ports) followed by standardized management of labor and delivery at our institution. Outcomes included rates of vaginal delivery, term delivery, and intrapartum cesarean delivery as well as obstetric and neonatal outcomes after oxytocin. Complications of interest included preterm prelabor rupture of membranes, chorioamnionitis, uterine dehiscence or rupture, 5-minute Apgar score less than 7, and neonatal acidosis (umbilical artery pH less than 7.15). Thirty-four patients had fetoscopic repair, followed by 17 vaginal deliveries (50%, 95% CI 32-68%). Median gestational age was 38 1/7 weeks at vaginal delivery (range 26 0/7-40 2/7 weeks of gestation) and 37 1/7 weeks of gestation at cesarean delivery (range 25 5/7-40 5/7 weeks of gestation); 62% of deliveries occurred at term. Eight patients had prelabor cesarean delivery: three nonurgent and five urgent (for nonreassuring fetal heart tracings). Twenty-six patients labored; six were induced and 20 labored spontaneously. Of the latter, five were augmented. Of 26 laboring patients, 17 delivered vaginally and nine underwent urgent cesarean delivery (35%, 95% CI 17-56%; seven nonreassuring fetal heart tracings and two breech). There were no cases of uterine rupture or dehiscence. Most (94%, 95% CI 80-99%) had normal 5-minute Apgar scores; one neonate (3%, 95% CI 0-15%) had acidosis but normal Apgar scores. Our data regarding trial of labor, use of low-dose oxytocin, and vaginal delivery after prenatal fetoscopic neural tube defect repair are

  9. Rodent Zic Genes in Neural Network Wiring.

    PubMed

    Herrera, Eloísa

    2018-01-01

    The formation of the nervous system is a multistep process that yields a mature brain. Failure in any of the steps of this process may cause brain malfunction. In the early stages of embryonic development, neural progenitors quickly proliferate and then, at a specific moment, differentiate into neurons or glia. Once they become postmitotic neurons, they migrate to their final destinations and begin to extend their axons to connect with other neurons, sometimes located in quite distant regions, to establish different neural circuits. During the last decade, it has become evident that Zic genes, in addition to playing important roles in early development (e.g., gastrulation and neural tube closure), are involved in different processes of late brain development, such as neuronal migration, axon guidance, and refinement of axon terminals. ZIC proteins are therefore essential for the proper wiring and connectivity of the brain. In this chapter, we review our current knowledge of the role of Zic genes in the late stages of neural circuit formation.

  10. Function of FEZF1 during early neural differentiation of human embryonic stem cells.

    PubMed

    Liu, Xin; Su, Pei; Lu, Lisha; Feng, Zicen; Wang, Hongtao; Zhou, Jiaxi

    2018-01-01

    The understanding of the mechanism underlying human neural development has been hampered due to lack of a cellular system and complicated ethical issues. Human embryonic stem cells (hESCs) provide an invaluable model for dissecting human development because of unlimited self-renewal and the capacity to differentiate into nearly all cell types in the human body. In this study, using a chemical defined neural induction protocol and molecular profiling, we identified Fez family zinc finger 1 (FEZF1) as a potential regulator of early human neural development. FEZF1 is rapidly up-regulated during neural differentiation in hESCs and expressed before PAX6, a well-established marker of early human neural induction. We generated FEZF1-knockout H1 hESC lines using CRISPR-CAS9 technology and found that depletion of FEZF1 abrogates neural differentiation of hESCs. Moreover, loss of FEZF1 impairs the pluripotency exit of hESCs during neural specification, which partially explains the neural induction defect caused by FEZF1 deletion. However, enforced expression of FEZF1 itself fails to drive neural differentiation in hESCs, suggesting that FEZF1 is necessary but not sufficient for neural differentiation from hESCs. Taken together, our findings identify one of the earliest regulators expressed upon neural induction and provide insight into early neural development in human.

  11. Spontaneous neural tube defects in splotch mice supplemented with selected micronutrients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wlodarczyk, Bogdan J.; Tang, Louisa S.; Triplett, Aleata

    Splotch (Sp/Sp) mice homozygous for a mutation in the Pax3 gene inevitably present with neural tube defects (NTDs), along with other associated congenital anomalies. The affected mutant embryos usually die by gestation days (E) 12-13. In the present study, the effect of modifier genes from a new genetic background (CXL-Sp) and periconceptional supplementation with selected micronutrients (folic acid, 5-formyltetrahydrofolate, 5-methyltetrahydrofolate, methionine, myoinositol, thiamine, thymidine, and {alpha}-tocopherol) was determined with respect to the incidence of NTDs. In order to explore how different exposure parameters (time, dose, and route of compound administration) modulate the beneficial effects of micronutrient supplementation, female mice receivedmore » either short- or long-term nutrient supplements via enteral or parenteral routes. Embryos were collected on E12.5 and examined for the presence of anterior or posterior NTDs. Additionally, whole mount in situ hybridization studies were conducted in order to reveal/confirm normal expression patterns of the Pax3 gene during neurulation in the wild-type and Sp/Sp homozygous mutant mouse embryos utilized in this study. A strong Pax3 signal was demonstrated in CXL-Sp embryos during neural tube closure (E9.5 to E10.5). The intensity and spatial pattern of expression were similar to other Splotch mutant mice. Of all the micronutrients tested, only supplementation with folic acid or 5-methyltetrahydrofolate rescued the normal phenotype in Sp/Sp embryos. When the folate supplementation dose was increased to 200 mg/kg in the diet, the incidence of rescued splotch homozygotes reached 30%; however, this was accompanied by six-fold increased resorption rate.« less

  12. [Prevention of neural tube defects. An important health and social problem].

    PubMed

    Czochańska, J; Lech, M

    1998-01-01

    Central neural system congenital malformations in the form of neural tube defects (ntd) belong to the most common diseases leading to very serious childrens' disability and mortality. As it has been calculated, the number of children affected with ntd, delivered in Poland every year is in the range of 800-1150. Children with encephalocele participate in this number in app. 50%. As it has been found, morbidity and mortality caused by the ntd remain high and stable in Poland for the last 20 years. In the view of very limited possibilities of the treatment offered by health services, prophylactic measures remain the best methods for limitation of the problem. The primary prevention of ntd was discovered in late seventies. It has been found that folic acid added to the diet of women in the reproductive age reduced number of children born with ntd by 70%. Authors present the Programme of Primary Prevention of ntd in Poland. This Programme has been incorporated in the National Programme of Health for the Nation 1996-2005.

  13. Intergenerational neural mediators of early-life anxious temperament.

    PubMed

    Fox, Andrew S; Oler, Jonathan A; Shackman, Alexander J; Shelton, Steven E; Raveendran, Muthuswamy; McKay, D Reese; Converse, Alexander K; Alexander, Andrew; Davidson, Richard J; Blangero, John; Rogers, Jeffrey; Kalin, Ned H

    2015-07-21

    Understanding the heritability of neural systems linked to psychopathology is not sufficient to implicate them as intergenerational neural mediators. By closely examining how individual differences in neural phenotypes and psychopathology cosegregate as they fall through the family tree, we can identify the brain systems that underlie the parent-to-child transmission of psychopathology. Although research has identified genes and neural circuits that contribute to the risk of developing anxiety and depression, the specific neural systems that mediate the inborn risk for these debilitating disorders remain unknown. In a sample of 592 young rhesus monkeys that are part of an extended multigenerational pedigree, we demonstrate that metabolism within a tripartite prefrontal-limbic-midbrain circuit mediates some of the inborn risk for developing anxiety and depression. Importantly, although brain volume is highly heritable early in life, it is brain metabolism-not brain structure-that is the critical intermediary between genetics and the childhood risk to develop stress-related psychopathology.

  14. Systems biological approach to investigate the lack of familial link between Down's Syndrome & Neural Tube Disorders.

    PubMed

    Ragunath, Pk; Abhinand, Pa

    2013-01-01

    Systems Biology involves the study of the interactions of biological systems and ultimately their functions. Down's syndrome (DS) is one of the most common genetic disorders which are caused by complete, or occasionally partial, triplication of chromosome 21, characterized by cognitive and language dysfunction coupled with sensory and neuromotor deficits. Neural Tube Disorders (NTDs) are a group of congenital malformations of the central nervous system and neighboring structures related to defective neural tube closure during the first trimester of pregnancy usually occurring between days 18-29 of gestation. Several studies in the past have provided considerable evidence that abnormal folate and methyl metabolism are associated with onset of DS & NTDs. There is a possible common etiological pathway for both NTDs and Down's syndrome. But, various research studies over the years have indicated very little evidence for familial link between the two disorders. Our research aimed at the gene expression profiling of microarray datasets pertaining to the two disorders to identify genes whose expression levels are significantly altered in these conditions. The genes which were 1.5 fold unregulated and having a p-value <0.05 were filtered out and gene interaction network were constructed for both NTDs and DS. The top ranked dense clique for both the disorders were recognized and over representation analysis was carried out for each of the constituent genes. The comprehensive manual analysis of these genes yields a hypothetical understanding of the lack of familial link between DS and NTDs. There were no genes involved with folic acid present in the dense cliques. Only - CBL, EGFR genes were commonly present, which makes the allelic variants of these genes - good candidates for future studies regarding the familial link between DS and NTDs. NTD - Neural Tube Disorders, DS - Down's Syndrome, MTHFR - Methylenetetrahydrofolate reductase, MTRR- 5 - methyltetrahydrofolate

  15. Kif11 dependent cell cycle progression in radial glial cells is required for proper neurogenesis in the zebrafish neural tube.

    PubMed

    Johnson, Kimberly; Moriarty, Chelsea; Tania, Nessy; Ortman, Alissa; DiPietrantonio, Kristina; Edens, Brittany; Eisenman, Jean; Ok, Deborah; Krikorian, Sarah; Barragan, Jessica; Golé, Christophe; Barresi, Michael J F

    2014-03-01

    Radial glia serve as the resident neural stem cells in the embryonic vertebrate nervous system, and their proliferation must be tightly regulated to generate the correct number of neuronal and glial cell progeny in the neural tube. During a forward genetic screen, we recently identified a zebrafish mutant in the kif11 loci that displayed a significant increase in radial glial cell bodies at the ventricular zone of the spinal cord. Kif11, also known as Eg5, is a kinesin-related, plus-end directed motor protein responsible for stabilizing and separating the bipolar mitotic spindle. We show here that Gfap+ radial glial cells express kif11 in the ventricular zone and floor plate. Loss of Kif11 by mutation or pharmacological inhibition with S-trityl-L-cysteine (STLC) results in monoastral spindle formation in radial glial cells, which is characteristic of mitotic arrest. We show that M-phase radial glia accumulate over time at the ventricular zone in kif11 mutants and STLC treated embryos. Mathematical modeling of the radial glial accumulation in kif11 mutants not only confirmed an ~226× delay in mitotic exit (likely a mitotic arrest), but also predicted two modes of increased cell death. These modeling predictions were supported by an increase in the apoptosis marker, anti-activated Caspase-3, which was also found to be inversely proportional to a decrease in cell proliferation. In addition, treatment with STLC at different stages of neural development uncovered two critical periods that most significantly require Kif11 function for stem cell progression through mitosis. We also show that loss of Kif11 function causes specific reductions in oligodendroglia and secondary interneurons and motorneurons, suggesting these later born populations require proper radial glia division. Despite these alterations to cell cycle dynamics, survival, and neurogenesis, we document unchanged cell densities within the neural tube in kif11 mutants, suggesting that a mechanism of

  16. Fumonisin as a possible contributing factor to neural tube defects in populations consuming large amounts of maize

    USDA-ARS?s Scientific Manuscript database

    Fumonisin B1 (FB) is an inhibitor of sphingolipid (SL) biosynthesis and folate transport and can induce neural tube defects (NTD) in mice. NTD incidence is high in countries where maize is a dietary staple and FB exposure is likely. In Guatemala the incidence of FB in maize has been well documented ...

  17. Molecular regionalization of the developing amphioxus neural tube challenges major partitions of the vertebrate brain.

    PubMed

    Albuixech-Crespo, Beatriz; López-Blanch, Laura; Burguera, Demian; Maeso, Ignacio; Sánchez-Arrones, Luisa; Moreno-Bravo, Juan Antonio; Somorjai, Ildiko; Pascual-Anaya, Juan; Puelles, Eduardo; Bovolenta, Paola; Garcia-Fernàndez, Jordi; Puelles, Luis; Irimia, Manuel; Ferran, José Luis

    2017-04-01

    All vertebrate brains develop following a common Bauplan defined by anteroposterior (AP) and dorsoventral (DV) subdivisions, characterized by largely conserved differential expression of gene markers. However, it is still unclear how this Bauplan originated during evolution. We studied the relative expression of 48 genes with key roles in vertebrate neural patterning in a representative amphioxus embryonic stage. Unlike nonchordates, amphioxus develops its central nervous system (CNS) from a neural plate that is homologous to that of vertebrates, allowing direct topological comparisons. The resulting genoarchitectonic model revealed that the amphioxus incipient neural tube is unexpectedly complex, consisting of several AP and DV molecular partitions. Strikingly, comparison with vertebrates indicates that the vertebrate thalamus, pretectum, and midbrain domains jointly correspond to a single amphioxus region, which we termed Di-Mesencephalic primordium (DiMes). This suggests that these domains have a common developmental and evolutionary origin, as supported by functional experiments manipulating secondary organizers in zebrafish and mice.

  18. Molecular regionalization of the developing amphioxus neural tube challenges major partitions of the vertebrate brain

    PubMed Central

    Albuixech-Crespo, Beatriz; Maeso, Ignacio; Sánchez-Arrones, Luisa; Moreno-Bravo, Juan Antonio; Somorjai, Ildiko; Pascual-Anaya, Juan; Puelles, Eduardo; Bovolenta, Paola; Garcia-Fernàndez, Jordi; Puelles, Luis; Ferran, José Luis

    2017-01-01

    All vertebrate brains develop following a common Bauplan defined by anteroposterior (AP) and dorsoventral (DV) subdivisions, characterized by largely conserved differential expression of gene markers. However, it is still unclear how this Bauplan originated during evolution. We studied the relative expression of 48 genes with key roles in vertebrate neural patterning in a representative amphioxus embryonic stage. Unlike nonchordates, amphioxus develops its central nervous system (CNS) from a neural plate that is homologous to that of vertebrates, allowing direct topological comparisons. The resulting genoarchitectonic model revealed that the amphioxus incipient neural tube is unexpectedly complex, consisting of several AP and DV molecular partitions. Strikingly, comparison with vertebrates indicates that the vertebrate thalamus, pretectum, and midbrain domains jointly correspond to a single amphioxus region, which we termed Di-Mesencephalic primordium (DiMes). This suggests that these domains have a common developmental and evolutionary origin, as supported by functional experiments manipulating secondary organizers in zebrafish and mice. PMID:28422959

  19. DNA methylation analysis of Homeobox genes implicates HOXB7 hypomethylation as risk factor for neural tube defects

    PubMed Central

    Rochtus, Anne; Izzi, Benedetta; Vangeel, Elise; Louwette, Sophie; Wittevrongel, Christine; Lambrechts, Diether; Moreau, Yves; Winand, Raf; Verpoorten, Carla; Jansen, Katrien; Van Geet, Chris; Freson, Kathleen

    2015-01-01

    Neural tube defects (NTDs) are common birth defects of complex etiology. Though family- and population-based studies have confirmed a genetic component, the responsible genes for NTDs are still largely unknown. Based on the hypothesis that folic acid prevents NTDs by stimulating methylation reactions, epigenetic factors, such as DNA methylation, are predicted to be involved in NTDs. Homeobox (HOX) genes play a role in spinal cord development and are tightly regulated in a spatiotemporal and collinear manner, partly by epigenetic modifications. We have quantified DNA methylation for the different HOX genes by subtracting values from a genome-wide methylation analysis using leukocyte DNA from 10 myelomeningocele (MMC) patients and 6 healthy controls. From the 1575 CpGs profiled for the 4 HOX clusters, 26 CpGs were differentially methylated (P-value < 0.05; β-difference > 0.05) between MMC patients and controls. Seventy-seven percent of these CpGs were located in the HOXA and HOXB clusters, with the most profound difference for 3 CpGs within the HOXB7 gene body. A validation case-control study including 83 MMC patients and 30 unrelated healthy controls confirmed a significant association between MMC and HOXB7 hypomethylation (-14.4%; 95% CI: 11.9–16.9%; P-value < 0.0001) independent of the MTHFR 667C>T genotype. Significant HOXB7 hypomethylation was also present in 12 unaffected siblings, each related to a MMC patient, suggestive of an epigenetic change induced by the mother. The inclusion of a neural tube formation model using zebrafish showed that Hoxb7a overexpression but not depletion resulted in deformed body axes with dysmorphic neural tube formation. Our results implicate HOXB7 hypomethylation as risk factor for NTDs and highlight the importance for future genome-wide DNA methylation analyses without preselecting candidate pathways. PMID:25565354

  20. Use of Family History Information for Neural Tube Defect Prevention: Integration into State-Based Recurrence Prevention Programs

    ERIC Educational Resources Information Center

    Green, Ridgely Fisk; Ehrhardt, Joan; Ruttenber, Margaret F.; Olney, Richard S.

    2011-01-01

    A family history of neural tube defects (NTDs) can increase the risk of a pregnancy affected by an NTD. Periconceptional folic acid use decreases this risk. Purpose: Our objective was to determine whether second-degree relatives of NTD-affected children showed differences in folic acid use compared with the general population and to provide them…

  1. Endoscopic third ventriculostomy with/without choroid plexus cauterization for hydrocephalus due to hemorrhage, infection, Dandy-Walker malformation, and neural tube defect: a meta-analysis.

    PubMed

    Zandian, Anthony; Haffner, Matthew; Johnson, James; Rozzelle, Curtis J; Tubbs, R Shane; Loukas, Marios

    2014-04-01

    Endoscopic third ventriculostomy (ETV) is a viable alternative to CSF shunting in hydrocephalic patients and is used with varying degrees of success dependent on age and etiology. The purpose of this meta-analysis is to analyze data on ETV and ETV/CPC (choroid plexus cauterization) outcomes in hopes of providing a clear understanding of their limitations in patients with hydrocephalus due to hemorrhage, infection, Dandy-Walker malformation, or neural tube disorders. An extensive PubMed search dating back 11 years was performed on primary ETV or ETV/CPC procedures for hydrocephalus due to infection, hemorrhage, neural tube defects, and Dandy-Walker malformation. ETV success was defined as no intraoperative or post-operative complications and no need for revision surgery at follow-up. Ten studies were identified for analysis. The data represent 534 patients undergoing primary ETV and 167 patients undergoing primary ETV/CPC. The ETV group reached a 55 % success rate, while the ETV/CPC group reached a 67 % success rate. Success rates of ETV alone for hydrocephalus due to infection, neural tube defects, and intraventricular hemorrhage reached 54, 55, and 57 %, respectively. 84 % success was found in patients older than 2 years of age and 52 % success in patients less than 2 years of age. ETV is a valid treatment for hydrocephalus of any etiology. There exists a small difference in success rates between infection, hemorrhage, and neural tube disorders, though not enough to discount ETV for these etiologies. Initial data utilizing ETV/CPC are promising, and additional studies will need to be done to verify such results.

  2. Early Removal of Drainage Tube after Fast-Track Primary Total Knee Arthroplasty.

    PubMed

    Zhang, Shaoyun; Xu, Bin; Huang, Qiang; Yao, Huan; Xie, Jinwei; Pei, Fuxing

    2017-07-01

    There is no consensus as to whether drainage tube should be used and how long it should remain in use after primary total knee arthroplasty (TKA). As fast-track (FT) program has been implemented in TKA, whether drainage tube could be removed early, and the ideal timing for removal after FT primary TKA has been a new topic. The purpose of this prospective cohort study was to evaluate the safety and feasibility of early removal of drainage tube when FT program was implemented in primary TKA. A total of 101 patients undergoing FT primary TKA were prospectively allocated into three groups. Patients in group A (31 patients) indwelled wound drainage tube for 6 hours after surgery while group B (34 patients) for 12 hours and group C (36 patients) for 18 hours. The knee circumference, resting and moving visual analogue score (VAS), hemoglobin (Hb), hematocrit, white blood count (WBC), erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), interleukin-6 (IL-6), the volume of blood loss and drainage, and postoperative length of stay (LOS) among three groups were recorded and compared. There was no statistically significant difference in the volume of total and hidden blood loss among three groups ( p  > 0.05), but as the time of drainage prolonged, total volume of drainage and dominant blood loss increased gradually ( p  < 0.01). The knee circumference, the mean of resting and moving VAS, Hb, WBC, ESR, CRP, and IL-6 of three groups were similar preoperatively and on postoperative day 1 and 3 ( p  > 0.05), the decrease of Hb in the perioperative period and postoperative LOS as well. Early removal of wound drainage tube could drain the hematocele and reduce the risk of infection, and it doesn't increase the sense of pain, inflammatory reaction, limb swelling, and total blood loss. It's safe and feasible to remove the drainage tube within 6 to 12 hours after FT primary TKA. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  3. Epidemiology, prenatal management, and prevention of neural tube defects

    PubMed Central

    Salih, Mustafa A.; Murshid, Waleed R.; Seidahmed, Mohammed Z.

    2014-01-01

    This review article discusses the epidemiology, risk factors, prenatal screening, diagnosis, prevention potentials, and epidemiologic impact of neural tube defects (NTDs). The average incidence of NTDs is 1/1000 births, with a marked geographic variation. In the developed countries, the incidence of NTDs has fallen over recent decades. However, it still remains high in the less-developed countries in Latin America, Africa, the Middle East, Asia, and the Far East (>1 to 11/1000 births). Recognized NTDs risks include maternal diabetes, obesity, lower socioeconomic status, hyperthermia, and exposure to certain teratogens during the periconceptional period. Periconceptional folic acid supplementation decreased the prevalence of NTDs by 50-70%, and an obligatory folic acid fortification of food was adopted in several countries to reach women with unplanned pregnancies and those facing social deprivation. Prevention of NTDs can be accelerated if more, especially low income countries, adopted fortification of the staple food in their communities. PMID:25551106

  4. Aneuploidy among prenatally detected neural tube defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hume, R.F. Jr.; Lampinen, J.; Martin, L.S.

    We have reported previously a 10% aneuploidy detection rate among 39 cases of fetal neural tube defects (NTD). Subsequently we amassed an additional experience of over 17,000 prenatal diagnosis cases over a 5-year period. During this period 106 cases of NTDs were identified; 44 with anencephaly, 62 with open spina bifida. The average maternal age of this population with NTDs was 29 years (15-40); 6 patients declined amniocentesis. Six of 100 cytogenetic studies were aneuploid; on anencephalic fetus had inherited a maternal marker chromosome, and 5 NTD cases had trisomy 18. The average maternal age of the aneuploid cases wasmore » 21 (19-40); 3 were 35 years or older. Four of 5 trisomy 18 cases had multiple congenital anomalies (MCA). The overall aneuploidy detection rate in our cohort was 5-6, while aneuploidy occurred in 2% of the isolated NTD cases, and 24% of the MCA cases. Combining the earlier experience, 4/39 aneuploidy (2 trisomy 18, 4p+, del 13q) yields an aneuploidy detection frequency of 10/145 (7%), of which most (7/10) had trisomy 18. These data support fetal karyotyping for accurate diagnosis, prognosis, and recurrence-risk counseling. 5 refs., 2 tabs.« less

  5. Dishevelled 2 is essential for cardiac outflow tract development, somite segmentation and neural tube closure.

    PubMed

    Hamblet, Natasha S; Lijam, Nardos; Ruiz-Lozano, Pilar; Wang, Jianbo; Yang, Yasheng; Luo, Zhenge; Mei, Lin; Chien, Kenneth R; Sussman, Daniel J; Wynshaw-Boris, Anthony

    2002-12-01

    The murine dishevelled 2 (Dvl2) gene is an ortholog of the Drosophila segment polarity gene Dishevelled, a member of the highly conserved Wingless/Wnt developmental pathway. Dvl2-deficient mice were produced to determine the role of Dvl2 in mammalian development. Mice containing null mutations in Dvl2 present with 50% lethality in both inbred 129S6 and in a hybrid 129S6-NIH Black Swiss background because of severe cardiovascular outflow tract defects, including double outlet right ventricle, transposition of the great arteries and persistent truncus arteriosis. The majority of the surviving Dvl2(-/-) mice were female, suggesting that penetrance was influenced by sex. Expression of Pitx2 and plexin A2 was attenuated in Dvl2 null mutants, suggesting a defect in cardiac neural crest development during outflow tract formation. In addition, approximately 90% of Dvl2(-/-) mice have vertebral and rib malformations that affect the proximal as well as the distal parts of the ribs. These skeletal abnormalities were more pronounced in mice deficient for both Dvl1 and Dvl2. Somite differentiation markers used to analyze Dvl2(-/-) and Dvl1(-/-);Dvl2(-/-) mutant embryos revealed mildly aberrant expression of Uncx4.1, delta 1 and myogenin, suggesting defects in somite segmentation. Finally, 2-3% of Dvl2(-/-) embryos displayed thoracic spina bifida, while virtually all Dvl1/2 double mutant embryos displayed craniorachishisis, a completely open neural tube from the midbrain to the tail. Thus, Dvl2 is essential for normal cardiac morphogenesis, somite segmentation and neural tube closure, and there is functional redundancy between Dvl1 and Dvl2 in some phenotypes.

  6. Regulation of cell protrusions by small GTPases during fusion of the neural folds

    PubMed Central

    Rolo, Ana; Savery, Dawn; Escuin, Sarah; de Castro, Sandra C; Armer, Hannah EJ; Munro, Peter MG; Molè, Matteo A; Greene, Nicholas DE; Copp, Andrew J

    2016-01-01

    Epithelial fusion is a crucial process in embryonic development, and its failure underlies several clinically important birth defects. For example, failure of neural fold fusion during neurulation leads to open neural tube defects including spina bifida. Using mouse embryos, we show that cell protrusions emanating from the apposed neural fold tips, at the interface between the neuroepithelium and the surface ectoderm, are required for completion of neural tube closure. By genetically ablating the cytoskeletal regulators Rac1 or Cdc42 in the dorsal neuroepithelium, or in the surface ectoderm, we show that these protrusions originate from surface ectodermal cells and that Rac1 is necessary for the formation of membrane ruffles which typify late closure stages, whereas Cdc42 is required for the predominance of filopodia in early neurulation. This study provides evidence for the essential role and molecular regulation of membrane protrusions prior to fusion of a key organ primordium in mammalian development. DOI: http://dx.doi.org/10.7554/eLife.13273.001 PMID:27114066

  7. Amphioxus and lamprey AP-2 genes: implications for neural crest evolution and migration patterns

    NASA Technical Reports Server (NTRS)

    Meulemans, Daniel; Bronner-Fraser, Marianne

    2002-01-01

    The neural crest is a uniquely vertebrate cell type present in the most basal vertebrates, but not in cephalochordates. We have studied differences in regulation of the neural crest marker AP-2 across two evolutionary transitions: invertebrate to vertebrate, and agnathan to gnathostome. Isolation and comparison of amphioxus, lamprey and axolotl AP-2 reveals its extensive expansion in the vertebrate dorsal neural tube and pharyngeal arches, implying co-option of AP-2 genes by neural crest cells early in vertebrate evolution. Expression in non-neural ectoderm is a conserved feature in amphioxus and vertebrates, suggesting an ancient role for AP-2 genes in this tissue. There is also common expression in subsets of ventrolateral neurons in the anterior neural tube, consistent with a primitive role in brain development. Comparison of AP-2 expression in axolotl and lamprey suggests an elaboration of cranial neural crest patterning in gnathostomes. However, migration of AP-2-expressing neural crest cells medial to the pharyngeal arch mesoderm appears to be a primitive feature retained in all vertebrates. Because AP-2 has essential roles in cranial neural crest differentiation and proliferation, the co-option of AP-2 by neural crest cells in the vertebrate lineage was a potentially crucial event in vertebrate evolution.

  8. Periconceptional maternal fever, folic acid intake, and the risk for neural tube defects.

    PubMed

    Kerr, Stephen M; Parker, Samantha E; Mitchell, Allen A; Tinker, Sarah C; Werler, Martha M

    2017-12-01

    Previous studies have shown an association between maternal fever in early pregnancy and neural tube defects (NTDs) such as spina bifida. Periconceptional folic acid intake has been shown to reduce the risk of these outcomes. Using data from the Slone Epidemiology Center Birth Defects Study (1998-2015), we examined the impact of folic acid on the relationship between maternal fever in the periconceptional period (28 days before and after the last menstrual period) and NTDs. Logistic regression models were used to calculate adjusted odds ratios (ORs) and 95% confidence intervals (CIs). Mothers of 375 cases and 8247 nonmalformed controls were included. We observed an elevated risk for NTDs for fever in the periconceptional period (OR: 2.4; 95% CI: 1.5-4.0). This association was weaker for mothers who reported consuming the recommended amount of folic acid (≥400 μg per day; OR: 1.8; 95% CI: 0.8-4.0) than mothers with low folic acid intake (<400 μg per day; OR: 4.2; 95% CI: 2.2-8.2). Our data support an association between maternal periconceptional fever and an increased risk for NTDs and also provide evidence that this association was attenuated for mothers who reported consuming folic acid at recommended levels in the periconceptional period. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. The effect of flurbiprofen on the development of anencephaly in early stage chicken embryos.

    PubMed

    Özeren, Ersin; Er, Uygur; Güvenç, Yahya; Demirci, Adnan; Arıkök, Ata Türker; Şenveli, Engin; Ergün, Rüçhan Behzat

    2015-04-01

    The study investigated the effect of flurbiprofen on the development of anencephaly in early stage chicken embryos. We looked at four groups with a total of 36 embryos. There was a control group, a normal saline group, a normal-dose group and a high-dose group with ten, ten, eight and eight eggs with embryo respectively. Two embryos in the control group, studied with light microscopy at 48 h, were consistent with 28-29 hours' incubation in the Hamburger-Hamilton System. They had open neural tubes. The other embryos in this group were considered normal. One embryo in the normal saline group was on the occlusion stage at 48 h. One embryo showed an open neural tube. They were compatible with 28-29 hours' incubation in the Hamburger-Hamilton system. The remaining eight embryos showed normal development. In the normal dose group, one embryo showed underdevelopment of the embryonic disc and the embryo was dead. In four embryos, the neural tubes were open. One cranial malformation was found that was complicated with anencephaly in one embryo. In two embryos the neural tubes were closed, as they showed normal development, and they reached their expected stages according to the Hamburger-Hamilton classification. There was no malformation or growth retardation. Four experimental embryos were anencephalic in the high dose group, and three embryos had open neural tubes. One embryo exhibited both anencephaly and a neural tube closure defect. None of the embryos in this group showed normal development. Even the usual therapeutic doses of flurbiprofen increased the risk of neural tube defect. Flurbiprofen was found to significantly increase the risk of anencephaly. The provision of improved technical materials and studies with larger sample sizes will reveal the stage of morphological disruption during the development of embryos.

  10. Evidence for increased SOX3 dosage as a risk factor for X-linked hypopituitarism and neural tube defects.

    PubMed

    Bauters, Marijke; Frints, Suzanna G; Van Esch, Hilde; Spruijt, Liesbeth; Baldewijns, Marcella M; de Die-Smulders, Christine E M; Fryns, Jean-Pierre; Marynen, Peter; Froyen, Guy

    2014-08-01

    Genomic duplications of varying lengths at Xq26-q27 involving SOX3 have been described in families with X-linked hypopituitarism. Using array-CGH we detected a 1.1 Mb microduplication at Xq27 in a large family with three males suffering from X-linked hypopituitarism. The duplication was mapped from 138.7 to 139.8 Mb, harboring only two annotated genes, SOX3 and ATP11C, and was shown to be a direct tandem copy number gain. Unexpectedly, the microduplication did not fully segregate with the disease in this family suggesting that SOX3 duplications have variable penetrance for X-linked hypopituitarism. In the same family, a female fetus presenting with a neural tube defect was also shown to carry the SOX3 copy number gain. Since we also demonstrated increased SOX3 mRNA levels in amnion cells derived from an unrelated t(X;22)(q27;q11) female fetus with spina bifida, we propose that increased levels of SOX3 could be a risk factor for neural tube defects. © 2014 Wiley Periodicals, Inc.

  11. Finding the genetic mechanisms of folate deficiency and neural tube defects-Leaving no stone unturned.

    PubMed

    Au, Kit Sing; Findley, Tina O; Northrup, Hope

    2017-11-01

    Neural tube defects (NTDs) occur secondary to failed closure of the neural tube between the third and fourth weeks of gestation. The worldwide incidence ranges from 0.3 to 200 per 10,000 births with the United States of American NTD incidence at around 3-6.3 per 10,000 dependent on race and socioeconomic background. Human NTD incidence has fallen by 35-50% in North America due to mandatory folic acid fortification of enriched cereal grain products since 1998. The US Food and Drug Administration has approved the folic acid fortification of corn masa flour with the goal to further reduce the incidence of NTDs, especially among individuals who are Hispanic. However, the genetic mechanisms determining who will benefit most from folate enrichment of the diet remains unclear despite volumes of literature published on studies of association of genes with functions related to folate metabolism and risk of human NTDs. The advances in omics technologies provides hypothesis-free tools to interrogate every single gene within the genome of NTD affected individuals to discover pathogenic variants and methylation targets throughout the affected genome. By identifying genes with expression regulated by presence of folate through transcriptome profiling studies, the genetic mechanisms leading to human NTDs due to folate deficiency may begin to be more efficiently revealed. © 2017 Wiley Periodicals, Inc.

  12. Genetics of human neural tube defects

    PubMed Central

    Greene, Nicholas D.E.; Stanier, Philip; Copp, Andrew J.

    2009-01-01

    Neural tube defects (NTDs) are common, severe congenital malformations whose causation involves multiple genes and environmental factors. Although more than 200 genes are known to cause NTDs in mice, there has been rather limited progress in delineating the molecular basis underlying most human NTDs. Numerous genetic studies have been carried out to investigate candidate genes in cohorts of patients, with particular reference to those that participate in folate one-carbon metabolism. Although the homocysteine remethylation gene MTHFR has emerged as a risk factor in some human populations, few other consistent findings have resulted from this approach. Similarly, attention focused on the human homologues of mouse NTD genes has contributed only limited positive findings to date, although an emerging association between genes of the non-canonical Wnt (planar cell polarity) pathway and NTDs provides candidates for future studies. Priorities for the next phase of this research include: (i) larger studies that are sufficiently powered to detect significant associations with relatively minor risk factors; (ii) analysis of multiple candidate genes in groups of well-genotyped individuals to detect possible gene–gene interactions; (iii) use of high throughput genomic technology to evaluate the role of copy number variants and to detect ‘private’ and regulatory mutations, neither of which have been studied to date; (iv) detailed analysis of patient samples stratified by phenotype to enable, for example, hypothesis-driven testing of candidates genes in groups of NTDs with specific defects of folate metabolism, or in groups of fetuses with well-defined phenotypes such as craniorachischisis. PMID:19808787

  13. Inositol for prevention of neural tube defects: a pilot randomised controlled trial - CORRIGENDUM

    PubMed Central

    Greene, Nicholas D. E.; Leung, Kit-Yi; Gay, Victoria; Burren, Katie; Mills, Kevin; Chitty, Lyn S.; Copp, Andrew J.

    2016-01-01

    Although peri-conceptional folic acid (FA) supplementation can prevent a proportion of neural tube defects (NTDs), there is increasing evidence that many NTDs are FA non-responsive. The vitamin-like molecule inositol may offer a novel approach to preventing FA-non-responsive NTDs. Inositol prevented NTDs in a genetic mouse model, and was well tolerated by women in a small study of NTD recurrence. In the present study, we report the Prevention of Neural Tube Defects by Inositol (PONTI) pilot study designed to gain further experience of inositol usage in human pregnancy as a preliminary trial to a future large-scale controlled trial to evaluate efficacy of inositol in NTD prevention. Study subjects were UK women with a previous NTD pregnancy who planned to become pregnant again. Of 117 women who made contact, ninety-nine proved eligible and forty-seven agreed to be randomised (double-blind) to peri-conceptional supplementation with inositol plus FA or placebo plus FA. In total, thirty-three randomised pregnancies produced one NTD recurrence in the placebo plus FA group (n 19) and no recurrences in the inositol plus FA group (n 14). Of fifty-two women who declined randomisation, the peri-conceptional supplementation regimen and outcomes of twenty-four further pregnancies were documented. Two NTDs recurred, both in women who took only FA in their next pregnancy. No adverse pregnancy events were associated with inositol supplementation. The findings of the PONTI pilot study encourage a large-scale controlled trial of inositol for NTD prevention, but indicate the need for a careful study design in view of the unwillingness of many high-risk women to be randomised. PMID:26917444

  14. Inositol for the prevention of neural tube defects: a pilot randomised controlled trial.

    PubMed

    Greene, Nicholas D E; Leung, Kit-Yi; Gay, Victoria; Burren, Katie; Mills, Kevin; Chitty, Lyn S; Copp, Andrew J

    2016-03-28

    Although peri-conceptional folic acid (FA) supplementation can prevent a proportion of neural tube defects (NTD), there is increasing evidence that many NTD are FA non-responsive. The vitamin-like molecule inositol may offer a novel approach to preventing FA-non-responsive NTD. Inositol prevented NTD in a genetic mouse model, and was well tolerated by women in a small study of NTD recurrence. In the present study, we report the Prevention of Neural Tube Defects by Inositol (PONTI) pilot study designed to gain further experience of inositol usage in human pregnancy as a preliminary trial to a future large-scale controlled trial to evaluate efficacy of inositol in NTD prevention. Study subjects were UK women with a previous NTD pregnancy who planned to become pregnant again. Of 117 women who made contact, ninety-nine proved eligible and forty-seven agreed to be randomised (double-blind) to peri-conceptional supplementation with inositol plus FA or placebo plus FA. In total, thirty-three randomised pregnancies produced one NTD recurrence in the placebo plus FA group (n 19) and no recurrences in the inositol plus FA group (n 14). Of fifty-two women who declined randomisation, the peri-conceptional supplementation regimen and outcomes of twenty-two further pregnancies were documented. Two NTD recurred, both in women who took only FA in their next pregnancy. No adverse pregnancy events were associated with inositol supplementation. The findings of the PONTI pilot study encourage a large-scale controlled trial of inositol for NTD prevention, but indicate the need for a careful study design in view of the unwillingness of many high-risk women to be randomised.

  15. Beta-Actin Is Required for Proper Mouse Neural Crest Ontogeny

    PubMed Central

    Tondeleir, Davina; Noelanders, Rivka; Bakkali, Karima; Ampe, Christophe

    2014-01-01

    The mouse genome consists of six functional actin genes of which the expression patterns are temporally and spatially regulated during development and in the adult organism. Deletion of beta-actin in mouse is lethal during embryonic development, although there is compensatory expression of other actin isoforms. This suggests different isoform specific functions and, more in particular, an important function for beta-actin during early mammalian development. We here report a role for beta-actin during neural crest ontogeny. Although beta-actin null neural crest cells show expression of neural crest markers, less cells delaminate and their migration arrests shortly after. These phenotypes were associated with elevated apoptosis levels in neural crest cells, whereas proliferation levels were unchanged. Specifically the pre-migratory neural crest cells displayed higher levels of apoptosis, suggesting increased apoptosis in the neural tube accounts for the decreased amount of migrating neural crest cells seen in the beta-actin null embryos. These cells additionally displayed a lack of membrane bound N-cadherin and dramatic decrease in cadherin-11 expression which was more pronounced in the pre-migratory neural crest population, potentially indicating linkage between the cadherin-11 expression and apoptosis. By inhibiting ROCK ex vivo, the knockout neural crest cells regained migratory capacity and cadherin-11 expression was upregulated. We conclude that the presence of beta-actin is vital for survival, specifically of pre-migratory neural crest cells, their proper emigration from the neural tube and their subsequent migration. Furthermore, the absence of beta-actin affects cadherin-11 and N-cadherin function, which could partly be alleviated by ROCK inhibition, situating the Rho-ROCK signaling in a feedback loop with cadherin-11. PMID:24409333

  16. A case of junctional neural tube defect associated with a lipoma of the filum terminale: a new subtype of junctional neural tube defect?

    PubMed

    Florea, Simona Mihaela; Faure, Alice; Brunel, Hervé; Girard, Nadine; Scavarda, Didier

    2018-06-01

    The embryological development of the central nervous system takes place during the neurulation process, which includes primary and secondary neurulation. A new form of dysraphism, named junctional neural tube defect (JNTD), was recently reported, with only 4 cases described in the literature. The authors report a fifth case of JNTD. This 5-year-old boy, who had been operated on during his 1st month of life for a uretero-rectal fistula, was referred for evaluation of possible spinal dysraphism. He had urinary incontinence, clubfeet, and a history of delayed walking ability. MRI showed a spinal cord divided in two, with an upper segment ending at the T-11 level and a lower segment at the L5-S1 level, with a thickened filum terminale. The JNTDs represent a recently classified dysraphism caused by an error during junctional neurulation. The authors suggest that their patient should be included in this category as the fifth case reported in the literature and note that this would be the first reported case of JNTD in association with a lipomatous filum terminale.

  17. Maternal occupation and the risk of neural tube defects in offspring.

    PubMed

    Kim, Jihye; Langlois, Peter H; Mitchell, Laura E; Agopian, A J

    2017-07-19

    We evaluated the association between maternal occupation and the risk of neural tube defects (NTDs) in offspring. Data for 491 nonsyndromic cases were obtained from the Texas Birth Defects Registry for deliveries between 1999 and 2009. We randomly selected 2,291 controls among all live births in Texas during this time. Maternal occupations were classified using automated software and manual assignment. Multivariable logistic regression analyses were used to examine the relationship between maternal occupation and risk for any NTD, adjusting for maternal race/ethnicity, any diabetes, and maternal body mass index. These analyses were repeated for spina bifida specifically. Some maternal occupations, particularly those related to business/finance, health care practice, and cleaning/maintenance, were significantly associated with increased risk of spina bifida and/or any NTD. Further research is needed to identify the specific occupational exposures related to NTD risk.

  18. A carapace-like bony 'body tube' in an early triassic marine reptile and the onset of marine tetrapod predation.

    PubMed

    Chen, Xiao-hong; Motani, Ryosuke; Cheng, Long; Jiang, Da-yong; Rieppel, Olivier

    2014-01-01

    Parahupehsuchus longus is a new species of marine reptile from the Lower Triassic of Yuan'an County, Hubei Province, China. It is unique among vertebrates for having a body wall that is completely surrounded by a bony tube, about 50 cm long and 6.5 cm deep, comprising overlapping ribs and gastralia. This tube and bony ossicles on the back are best interpreted as anti-predatory features, suggesting that there was predation pressure upon marine tetrapods in the Early Triassic. There is at least one sauropterygian that is sufficiently large to feed on Parahupehsuchus in the Nanzhang-Yuan'an fauna, together with six more species of potential prey marine reptiles with various degrees of body protection. Modern predators of marine tetrapods belong to the highest trophic levels in the marine ecosystem but such predators did not always exist through geologic time. The indication of marine-tetrapod feeding in the Nanzhang-Yuan'an fauna suggests that such a trophic level emerged for the first time in the Early Triassic. The recovery from the end-Permian extinction probably proceeded faster than traditionally thought for marine predators. Parahupehsuchus has superficially turtle-like features, namely expanded ribs without intercostal space, very short transverse processes, and a dorsal outgrowth from the neural spine. However, these features are structurally different from their turtle counterparts. Phylogeny suggests that they are convergent with the condition in turtles, which has a fundamentally different body plan that involves the folding of the body wall. Expanded ribs without intercostal space evolved at least twice and probably even more among reptiles.

  19. Elk3 is essential for the progression from progenitor to definitive neural crest cell

    PubMed Central

    Rogers, Crystal D.; Phillips, Jacquelyn L.; Bronner, Marianne E.

    2013-01-01

    Elk3/Net/Sap2 (here referred to as Elk3) is an Ets ternary complex transcriptional repressor known for its involvement in angiogenesis during embryonic development. Although Elk3 is expressed in various tissues, additional roles for the protein outside of vasculature development have yet to be reported. Here, we characterize the early spatiotemporal expression pattern of Elk3 in the avian embryo using whole mount in situ hybridization and quantitative RT-PCR and examine the effects of its loss of function on neural crest development. At early stages, Elk3 is expressed in the head folds, head mesenchyme, intersomitic vessels, and migratory cranial neural crest (NC) cells. Loss of the Elk3 protein results in the retention of Pax7+ precursors in the dorsal neural tube that fail to upregulate neural crest specifier genes, FoxD3, Sox10 and Snail2, resulting in embryos with severe migration defects. The results putatively place Elk3 downstream of neural plate border genes, but upstream of neural crest specifier genes in the neural crest gene regulatory network (NC-GRN), suggesting that it is critical for the progression from progenitor to definitive neural crest cell. PMID:23266330

  20. Frizzled 1 and frizzled 2 genes function in palate, ventricular septum and neural tube closure: general implications for tissue fusion processes

    PubMed Central

    Yu, Huimin; Smallwood, Philip M.; Wang, Yanshu; Vidaltamayo, Roman; Reed, Randall; Nathans, Jeremy

    2010-01-01

    The closure of an open anatomical structure by the directed growth and fusion of two tissue masses is a recurrent theme in mammalian embryology, and this process plays an integral role in the development of the palate, ventricular septum, neural tube, urethra, diaphragm and eye. In mice, targeted mutations of the genes encoding frizzled 1 (Fz1) and frizzled 2 (Fz2) show that these highly homologous integral membrane receptors play an essential and partially redundant role in closure of the palate and ventricular septum, and in the correct positioning of the cardiac outflow tract. When combined with a mutant allele of the planar cell polarity gene Vangl2 (Vangl2Lp), Fz1 and/or Fz2 mutations also cause defects in neural tube closure and misorientation of inner ear sensory hair cells. These observations indicate that frizzled signaling is involved in diverse tissue closure processes, defects in which account for some of the most common congenital anomalies in humans. PMID:20940229

  1. The let-7 microRNA target gene, Mlin41/Trim71 is required for mouse embryonic survival and neural tube closure

    PubMed Central

    Schulman, Betsy R. Maller; Liang, Xianping; Stahlhut, Carlos; DelConte, Casey; Stefani, Giovanni; Slack, Frank J.

    2010-01-01

    In the nematode Caenorhabditis elegans, the let-7 microRNA (miRNA) controls the timing of key developmental events and terminal differentiation in part by directly regulating lin-41. C. elegans lin-41 mutants display precocious cell cycle exit and terminal differentiation of epidermal skin cells. lin-41 orthologues are found in more complex organisms including both mice and humans, but their roles are not known. We generated Mlin41 mouse mutants to ascertain a functional role for Mlin41. Strong loss of function Mlin41 gene-trap mutants demonstrated a striking neural tube closure defect during development, and embryonic lethality. Like C. elegans lin-41, Mlin41 also appears to be regulated by the let-7 and mir-125 miRNAs. Since Mlin41 is required for neural tube closure and survival it points to human lin-41 (HLIN41/TRIM71) as a potential human development and disease gene. PMID:19098426

  2. Regulating the dorsal neural tube expression of Ptf1a through a distal 3' enhancer.

    PubMed

    Mona, Bishakha; Avila, John M; Meredith, David M; Kollipara, Rahul K; Johnson, Jane E

    2016-10-01

    Generating the correct balance of inhibitory and excitatory neurons in a neural network is essential for normal functioning of a nervous system. The neural network in the dorsal spinal cord functions in somatosensation where it modulates and relays sensory information from the periphery. PTF1A is a key transcriptional regulator present in a specific subset of neural progenitor cells in the dorsal spinal cord, cerebellum and retina that functions to specify an inhibitory neuronal fate while suppressing excitatory neuronal fates. Thus, the regulation of Ptf1a expression is critical for determining mechanisms controlling neuronal diversity in these regions of the nervous system. Here we identify a sequence conserved, tissue-specific enhancer located 10.8kb 3' of the Ptf1a coding region that is sufficient to direct expression to dorsal neural tube progenitors that give rise to neurons in the dorsal spinal cord in chick and mouse. DNA binding motifs for Paired homeodomain (Pd-HD) and zinc finger (ZF) transcription factors are required for enhancer activity. Mutations in these sequences implicate the Pd-HD motif for activator function and the ZF motif for repressor function. Although no repressor transcription factor was identified, both PAX6 and SOX3 can increase enhancer activity in reporter assays. Thus, Ptf1a is regulated by active and repressive inputs integrated through multiple sequence elements within a highly conserved sequence downstream of the Ptf1a gene. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Mitochondrial metabolism in early neural fate and its relevance for neuronal disease modeling.

    PubMed

    Lorenz, Carmen; Prigione, Alessandro

    2017-12-01

    Modulation of energy metabolism is emerging as a key aspect associated with cell fate transition. The establishment of a correct metabolic program is particularly relevant for neural cells given their high bioenergetic requirements. Accordingly, diseases of the nervous system commonly involve mitochondrial impairment. Recent studies in animals and in neural derivatives of human pluripotent stem cells (PSCs) highlighted the importance of mitochondrial metabolism for neural fate decisions in health and disease. The mitochondria-based metabolic program of early neurogenesis suggests that PSC-derived neural stem cells (NSCs) may be used for modeling neurological disorders. Understanding how metabolic programming is orchestrated during neural commitment may provide important information for the development of therapies against conditions affecting neural functions, including aging and mitochondrial disorders. Copyright © 2017. Published by Elsevier Ltd.

  4. Angiogenesis in the Developing Spinal Cord: Blood Vessel Exclusion from Neural Progenitor Region Is Mediated by VEGF and Its Antagonists

    PubMed Central

    Takahashi, Teruaki; Takase, Yuta; Yoshino, Takashi; Saito, Daisuke; Tadokoro, Ryosuke; Takahashi, Yoshiko

    2015-01-01

    Blood vessels in the central nervous system supply a considerable amount of oxygen via intricate vascular networks. We studied how the initial vasculature of the spinal cord is formed in avian (chicken and quail) embryos. Vascular formation in the spinal cord starts by the ingression of intra-neural vascular plexus (INVP) from the peri-neural vascular plexus (PNVP) that envelops the neural tube. At the ventral region of the PNVP, the INVP grows dorsally in the neural tube, and we observed that these vessels followed the defined path at the interface between the medially positioned and undifferentiated neural progenitor zone and the laterally positioned differentiated zone. When the interface between these two zones was experimentally displaced, INVP faithfully followed a newly formed interface, suggesting that the growth path of the INVP is determined by surrounding neural cells. The progenitor zone expressed mRNA of vascular endothelial growth factor-A whereas its receptor VEGFR2 and FLT-1 (VEGFR1), a decoy for VEGF, were expressed in INVP. By manipulating the neural tube with either VEGF or the soluble form of FLT-1, we found that INVP grew in a VEGF-dependent manner, where VEGF signals appear to be fine-tuned by counteractions with anti-angiogenic activities including FLT-1 and possibly semaphorins. These results suggest that the stereotypic patterning of early INVP is achieved by interactions between these vessels and their surrounding neural cells, where VEGF and its antagonists play important roles. PMID:25585380

  5. Dietary intake of choline and neural tube defects in Mexican Americans.

    PubMed

    Lavery, Amy M; Brender, Jean D; Zhao, Hongwei; Sweeney, Anne; Felkner, Marilyn; Suarez, Lucina; Canfield, Mark A

    2014-06-01

    Low maternal intake of dietary choline and betaine (a choline derivative) has recently been investigated as a possible risk factor for neural tube defects (NTDs). This case-control study examined the NTD risk associated with choline and betaine in 409 Mexican-American women who gave birth during 1995 to 2000 in the 14-county border region of Texas. Using data from the food frequency questionnaire and the lowest quartiles of intake as the reference categories, a protective association was suggested between higher intakes of choline and betaine and NTD risk although the 95% confidence intervals for all risk estimates included 1.0. For choline intake in the second, third, and fourth quartiles, adjusted odds ratios were 1.2, 0.80, and 0.89, respectively. Betaine appeared more protective with odds ratios of 0.62, 0.73, and 0.61, respectively, for the second, third, and fourth quartiles of intake. Study findings suggest that dietary betaine may help to prevent NTDs. © 2014 Wiley Periodicals, Inc.

  6. Small GTPase R-Ras participates in neural tube formation in zebrafish embryonic spinal cord.

    PubMed

    Ohata, Shinya; Uga, Hideko; Okamoto, Hitoshi; Katada, Toshiaki

    2018-06-27

    Ras related (R-Ras), a small GTPase, is involved in the maintenance of apico-basal polarity in neuroepithelial cells of the zebrafish hindbrain, axonal collapse in cultured murine hippocampal neurons, and maturation of blood vessels in adult mice. However, the role of R-Ras in neural tube formation remains unknown. Using antisense morpholino oligonucleotides (AMOs), we found that in the spinal cord of zebrafish embryos, the lumen was formed bilaterally in rras morphants, whereas it was formed at the midline in control embryos. As AMO can cause off-target effects, we generated rras mutant zebrafish lines using CRISPR/Cas9 technology. Although these rras mutant embryos did not have a bilateral lumen in the spinal cord, the following findings suggest that the phenotype is unlikely due to an off-target effect of rras AMO: 1) The rras morphant phenotype was rescued by an injection of AMO-resistant rras mRNA, and 2) a bilaterally segregated spinal cord was not observed in rras mutant embryos injected with rras AMO. The results suggest that the function of other ras family genes may be redundant in rras mutants. Previous research reported a bilaterally formed lumen in the spinal cord of zebrafish embryos with a mutation in a planar cell polarity (PCP) gene, van gogh-like 2 (vangl2). In the present study, in cultured cells, R-Ras was co-immunoprecipitated with Vangl2 but not with another PCP regulator, Pricke1. Interestingly, the interaction between R-Ras and Vangl2 was stronger in guanine-nucleotide free point mutants of R-Ras than in wild-type or constitutively active (GTP-bound) forms of R-Ras. R-Ras may regulate neural tube formation in cooperation with Vangl2 in the developing zebrafish spinal cord. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Id expression in amphioxus and lamprey highlights the role of gene cooption during neural crest evolution

    NASA Technical Reports Server (NTRS)

    Meulemans, Daniel; McCauley, David; Bronner-Fraser, Marianne

    2003-01-01

    Neural crest cells are unique to vertebrates and generate many of the adult structures that differentiate them from their closest invertebrate relatives, the cephalochordates. Id genes are robust markers of neural crest cells at all stages of development. We compared Id gene expression in amphioxus and lamprey to ask if cephalochordates deploy Id genes at the neural plate border and dorsal neural tube in a manner similar to vertebrates. Furthermore, we examined whether Id expression in these cells is a basal vertebrate trait or a derived feature of gnathostomes. We found that while expression of Id genes in the mesoderm and endoderm is conserved between amphioxus and vertebrates, expression in the lateral neural plate border and dorsal neural tube is a vertebrate novelty. Furthermore, expression of lamprey Id implies that recruitment of Id genes to these cells occurred very early in the vertebrate lineage. Based on expression in amphioxus we postulate that Id cooption conferred sensory cell progenitor-like properties upon the lateral neurectoderm, and pharyngeal mesoderm-like properties upon cranial neural crest. Amphioxus Id expression is also consistent with homology between the anterior neurectoderm of amphioxus and the presumptive placodal ectoderm of vertebrates. These observations support the idea that neural crest evolution was driven in large part by cooption of multipurpose transcriptional regulators from other tissues and cell types.

  8. Dual labeling of neural crest cells and blood vessels within chicken embryos using Chick(GFP) neural tube grafting and carbocyanine dye DiI injection.

    PubMed

    Delalande, Jean-Marie; Thapar, Nikhil; Burns, Alan J

    2015-05-28

    All developing organs need to be connected to both the nervous system (for sensory and motor control) as well as the vascular system (for gas exchange, fluid and nutrient supply). Consequently both the nervous and vascular systems develop alongside each other and share striking similarities in their branching architecture. Here we report embryonic manipulations that allow us to study the simultaneous development of neural crest-derived nervous tissue (in this case the enteric nervous system), and the vascular system. This is achieved by generating chicken chimeras via transplantation of discrete segments of the neural tube, and associated neural crest, combined with vascular DiI injection in the same embryo. Our method uses transgenic chick(GFP) embryos for intraspecies grafting, making the transplant technique more powerful than the classical quail-chick interspecies grafting protocol used with great effect since the 1970s. Chick(GFP)-chick intraspecies grafting facilitates imaging of transplanted cells and their projections in intact tissues, and eliminates any potential bias in cell development linked to species differences. This method takes full advantage of the ease of access of the avian embryo (compared with other vertebrate embryos) to study the co-development of the enteric nervous system and the vascular system.

  9. Dual Labeling of Neural Crest Cells and Blood Vessels Within Chicken Embryos Using ChickGFP Neural Tube Grafting and Carbocyanine Dye DiI Injection

    PubMed Central

    Delalande, Jean-Marie; Thapar, Nikhil; Burns, Alan J.

    2015-01-01

    All developing organs need to be connected to both the nervous system (for sensory and motor control) as well as the vascular system (for gas exchange, fluid and nutrient supply). Consequently both the nervous and vascular systems develop alongside each other and share striking similarities in their branching architecture. Here we report embryonic manipulations that allow us to study the simultaneous development of neural crest-derived nervous tissue (in this case the enteric nervous system), and the vascular system. This is achieved by generating chicken chimeras via transplantation of discrete segments of the neural tube, and associated neural crest, combined with vascular DiI injection in the same embryo. Our method uses transgenic chickGFP embryos for intraspecies grafting, making the transplant technique more powerful than the classical quail-chick interspecies grafting protocol used with great effect since the 1970s. ChickGFP-chick intraspecies grafting facilitates imaging of transplanted cells and their projections in intact tissues, and eliminates any potential bias in cell development linked to species differences. This method takes full advantage of the ease of access of the avian embryo (compared with other vertebrate embryos) to study the co-development of the enteric nervous system and the vascular system. PMID:26065540

  10. Self-organization of neural tissue architectures from pluripotent stem cells.

    PubMed

    Karus, Michael; Blaess, Sandra; Brüstle, Oliver

    2014-08-15

    Despite being a subject of intensive research, the mechanisms underlying the formation of neural tissue architectures during development of the central nervous system remain largely enigmatic. So far, studies into neural pattern formation have been restricted mainly to animal experiments. With the advent of pluripotent stem cells it has become possible to explore early steps of nervous system development in vitro. These studies have unraveled a remarkable propensity of primitive neural cells to self-organize into primitive patterns such as neural tube-like rosettes in vitro. Data from more advanced 3D culture systems indicate that this intrinsic propensity for self-organization can even extend to the formation of complex architectures such as a multilayered cortical neuroepithelium or an entire optic cup. These novel experimental paradigms not only demonstrate the enormous self-organization capacity of neural stem cells, they also provide exciting prospects for studying the earliest steps of human neural tissue development and the pathogenesis of brain malformations in reductionist in vitro paradigms. © 2014 Wiley Periodicals, Inc.

  11. Emergence and migration of trunk neural crest cells in a snake, the California Kingsnake (Lampropeltis getula californiae)

    PubMed Central

    2010-01-01

    Background The neural crest is a group of multipotent cells that emerges after an epithelial-to-mesenchymal transition from the dorsal neural tube early during development. These cells then migrate throughout the embryo, giving rise to a wide variety derivatives including the peripheral nervous system, craniofacial skeleton, pigment cells, and endocrine organs. While much is known about neural crest cells in mammals, birds, amphibians and fish, relatively little is known about their development in non-avian reptiles like snakes and lizards. Results In this study, we show for the first time ever trunk neural crest migration in a snake by labeling it with DiI and immunofluorescence. As in birds and mammals, we find that early migrating trunk neural crest cells use both a ventromedial pathway and an inter-somitic pathway in the snake. However, unlike birds and mammals, we also observed large numbers of late migrating neural crest cells utilizing the inter-somitic pathway in snake. Conclusions We found that while trunk neural crest migration in snakes is very similar to that of other amniotes, the inter-somitic pathway is used more extensively by late-migrating trunk neural crest cells in snake. PMID:20482793

  12. Emergence and migration of trunk neural crest cells in a snake, the California Kingsnake (Lampropeltis getula californiae).

    PubMed

    Reyes, Michelle; Zandberg, Katrina; Desmawati, Iska; de Bellard, Maria E

    2010-05-18

    The neural crest is a group of multipotent cells that emerges after an epithelial-to-mesenchymal transition from the dorsal neural tube early during development. These cells then migrate throughout the embryo, giving rise to a wide variety derivatives including the peripheral nervous system, craniofacial skeleton, pigment cells, and endocrine organs. While much is known about neural crest cells in mammals, birds, amphibians and fish, relatively little is known about their development in non-avian reptiles like snakes and lizards. In this study, we show for the first time ever trunk neural crest migration in a snake by labeling it with DiI and immunofluorescence. As in birds and mammals, we find that early migrating trunk neural crest cells use both a ventromedial pathway and an inter-somitic pathway in the snake. However, unlike birds and mammals, we also observed large numbers of late migrating neural crest cells utilizing the inter-somitic pathway in snake. We found that while trunk neural crest migration in snakes is very similar to that of other amniotes, the inter-somitic pathway is used more extensively by late-migrating trunk neural crest cells in snake.

  13. Early chest tube removal after coronary artery bypass graft surgery.

    PubMed

    Mirmohammad-Sadeghi, Mohsen; Etesampour, Ali; Gharipour, Mojgan; Shariat, Zeinab; Nilforoush, Peyman; Saeidi, Mahmoud; Mackie, Mahsa; Sadeghi, Fatemeh Mirmohamad

    2009-12-01

    There is no clear data about the optimum time for chest tube removal after coronary artery bypass surgery. The aim of this study was to assess the impact of the chest tube removal time following coronary artery bypass grafting surgery on the clinical outcome of the patients. An analysis of data from 307 patients was performed. The patients were randomized into two groups: in group 1 (N=107) chest tubes were removed within the first 24 hours after surgery, whereas in group 2 (N=200), chest tubes were removed in the second 24 hours after surgery. Demographics, lactate and pH at the beginning, during and after the operation, creatinine, left ventricular ejection fraction, inotropic drugs administration, length of ICU stay, and mortality data were collected. Respiratory rate and pain level was assessed. In these surgeries, the mean± standard deviation for the aortic clamping time was 49.18±17.59 minutes and cardiopulmonary bypass time was 78.39±25.12 minutes. The amount of heparin consumed by the second group was higher (P <0.001) which could be considered as an important factor in increasing the drainage time after the surgery (P =0.047). The pain level evaluated 24 hours post-operation was lower in the first group, and the difference in the pain level between the 2 groups evaluated 30 hours post-operation was significant (P=0.016). The mean time of intensive care unit stay was longer in the second group but it was not statistically significant. Early extracting of chest tubes after coronary artery bypass graft surgery when there is no significant drainage can lead to pain reduction and consuming oxygen is an effective measure after surgery toward healing; it doesn't increase the risk of creation of plural effusion and pericardial effusion.

  14. Slit and semaphorin signaling governed by Islet transcription factors positions motor neuron somata within the neural tube

    PubMed Central

    Lee, Hojae; Kim, Minkyung; Kim, Namhee; Macfarlan, Todd; Pfaff, Samuel L.; Mastick, Grant S.; Song, Mi-Ryoung

    2015-01-01

    Motor neurons send out axons to peripheral muscles while their cell bodies remain in the ventral spinal cord. The unique configuration of motor neurons spanning the border between the CNS and PNS has been explained by structural barriers such as boundary cap (BC) cells, basal lamina and radial glia. However, mechanisms in motor neurons that retain their position have not been addressed yet. Here we demonstrate that the Islet1 (Isl1) and Islet2 (Isl2) transcription factors, which are essential for acquisition of motor neuron identity, also contribute to restrict motor neurons within the neural tube. In mice that lack both Isl1 and Isl2, large numbers of motor neurons exited the neural tube, even prior to the appearance of BC cells at the ventral exit points. Transcriptional profiling of motor neurons derived from Isl1 null embryonic stem cells revealed that transcripts of major genes involved in repulsive mechanisms were misregulated. Particularly, expression of Neuropilin1 (Npr1) and Slit2 mRNA was diminished in Islet mutant mice, and these could be target genes of the Islet proteins. Consistent with this mechanism, Robo and Slit mutations in mice and knockdown of Npr1 and Slit2 in chick embryos caused motor neurons to migrate to the periphery. Together, our study suggests that Islet genes engage Robo-Slit and Neuropilin-Semaphorin signaling in motor neurons to retain motor somata within the CNS. PMID:25843547

  15. Neural mirroring and social interaction: Motor system involvement during action observation relates to early peer cooperation.

    PubMed

    Endedijk, H M; Meyer, M; Bekkering, H; Cillessen, A H N; Hunnius, S

    2017-04-01

    Whether we hand over objects to someone, play a team sport, or make music together, social interaction often involves interpersonal action coordination, both during instances of cooperation and entrainment. Neural mirroring is thought to play a crucial role in processing other's actions and is therefore considered important for social interaction. Still, to date, it is unknown whether interindividual differences in neural mirroring play a role in interpersonal coordination during different instances of social interaction. A relation between neural mirroring and interpersonal coordination has particularly relevant implications for early childhood, since successful early interaction with peers is predictive of a more favorable social development. We examined the relation between neural mirroring and children's interpersonal coordination during peer interaction using EEG and longitudinal behavioral data. Results showed that 4-year-old children with higher levels of motor system involvement during action observation (as indicated by lower beta-power) were more successful in early peer cooperation. This is the first evidence for a relation between motor system involvement during action observation and interpersonal coordination during other instances of social interaction. The findings suggest that interindividual differences in neural mirroring are related to interpersonal coordination and thus successful social interaction. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Prevention of valproic acid-induced neural tube defects by sildenafil citrate.

    PubMed

    Tiboni, Gian Mario; Ponzano, Adalisa

    2015-08-15

    This study was undertaken to test the effects of sildenafil citrate (SC), a type 5 phosphodiesterase inhibitor, on valproic acid (VPA)-induced teratogenesis. On gestation day (GD) 8, ICR (CD-1) mice were treated by gastric intubation with SC at 0 (vehicle), 1.0, 2.5, 5.0 or 10mg/kg. One hour later, animals received a teratogenic dose of VPA (600mg/kg) or vehicle. Developmental endpoints were evaluated near the end of gestation. Twenty-eighth percent of fetuses exposed to VPA had neural tube defects (exencephaly). Pretreatment with SC at 2.5, 5.0 or 10mg/kg significantly reduced the rate of VPA-induced exencephaly to 15.9%, 13.7%, and 10.0%, respectively. Axial skeletal defects were observed in 75.8% of VPA-exposed fetuses. Pre-treatment with SC at 10mg/kg, but not at lower doses, significantly decreased the rate of skeletally affected fetuses to 61.6%. These results show that SC, which prolongs nitric oxide (NO) signaling action protects from VPA-induced teratogenesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Syndromes, disorders and maternal risk factors associated with neural tube defects (I).

    PubMed

    Chen, Chih-Ping

    2008-03-01

    Fetuses with neural tube defects (NTDs) may be associated with syndromes, disorders, and maternal risk factors. This article provides a comprehensive review of syndromes, disorders, and maternal risk factors associated with NTDs, such as acrocallosal syndrome, autosomal dominant brachydactyly-clinodactyly syndrome, Manouvrier syndrome, short rib-polydactyly syndrome, Disorganization ( Ds )-like human malformations, isolated hemihyperplasia, X-linked NTDs, meroanencephaly, schisis association, diprosopus, fetal valproate syndrome, DiGeorge syndrome/velocardiofacial syndrome, Waardenburg syndrome, folic acid antagonists, diabetes mellitus, and obesity. NTDs associated with syndromes, disorders, and maternal risk factors are a rare but important cause of NTDs. The recurrence risk and the preventive effect of maternal folic acid intake in NTDs associated with syndromes, disorders, and maternal risk factors may be different from those of non-syndromic multifactorial NTDs. Perinatal identification of NTDs should alert one to the syndromes, disorders, and maternal risk factors associated with NTDs, and prompt a thorough etiologic investigation and genetic counseling.

  18. Early discharge with tube feeding at home for preterm infants is associated with longer duration of breast feeding.

    PubMed

    Meerlo-Habing, Z E; Kosters-Boes, E A; Klip, H; Brand, P L P

    2009-07-01

    Mothers of preterm infants are more likely to discontinue breast feeding early than mothers of term infants. We evaluated the effect of early discharge with tube feeding of preterm infants under close supervision by paediatric nurse specialists on the duration of breast feeding. Case-control study. Medium/high-care neonatal unit of a large district general hospital. Preterm infants (<37 weeks' gestational age). Early discharge with tube feeding under close supervision by paediatric nurse specialists or regular follow-up of preterm infants discharged with oral feeding. Duration of breast feeding assessed by telephone interview 6 months after birth. There were 50 preterm infants in the early discharge group and 78 in the control group. Mothers in the early discharge group continued to breast feed longer than mothers in the control group (log rank test, p = 0.028). Four months after discharge, 63% of preterm infants in the control group were fed formula compared to 36% in the early discharge group (95% CI for difference 9% to 43%, p = 0.04). The relative risk of breast feeding cessation 6 months after birth in the early discharge group compared to the control group was 0.63 (95% CI 0.41 to 0.96). After adjustment for smoking, gestational age and birth weight, this relative risk was 0.67 (95% CI 0.43 to 1.05). Close supervision and follow-up by paediatric nurse specialists of preterm infants discharged early with tube feeding appears to increase duration of breast feeding. A randomised controlled trial to confirm these findings is warranted.

  19. Development of a neural network for early detection of renal osteodystrophy

    NASA Astrophysics Data System (ADS)

    Cheng, Shirley N.; Chan, Heang-Ping; Adler, Ronald; Niklason, Loren T.; Chang, Chair-Li

    1991-07-01

    Bone erosion presenting as subperiosteal resorption on the phalanges of the hand is an early manifestation of hyperparathyroidism associated with chronic renal failure. At present, the diagnosis is made by trained radiologists through visual inspection of hand radiographs. In this study, a neural network is being developed to assess the feasibility of computer-aided detection of these changes. A two-pass approach is adopted. The digitized image is first compressed by a Laplacian pyramid compact code. The first neural network locates the region of interest using vertical projections along the phalanges and then the horizontal projections across the phalanges. A second neural network is used to classify texture variations of trabecular patterns in the region using a concurrence matrix as the input to a two-dimensional sensor layer to detect the degree of associated osteopenia. Preliminary results demonstrate the feasibility of this approach.

  20. Elevated nuclear and cytoplasmic FTY720-phosphate in mouse embryonic fibroblasts suggests the potential for multiple mechanisms in FTY720-induced neural tube defects

    USDA-ARS?s Scientific Manuscript database

    FTY720 (fingolimod) is an FDA-approved drug to treat relapsing remitting multiple sclerosis. FTY720 treatment in pregnant inbred LM/Bc mice results in approximately 60% of embryos having a neural tube defect (NTD). Sphingosine kinases (Sphk1, Sphk2) phosphorylate FTY720 in vivo to form the bioactive...

  1. Arsenate-induced maternal glucose intolerance and neural tube defects in a mouse model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Denise S.; Wlodarczyk, Bogdan J.; Mitchell, Laura E.

    Background: Epidemiological studies have linked environmental arsenic (As) exposure to increased type 2 diabetes risk. Periconceptional hyperglycemia is a significant risk factor for neural tube defects (NTDs), the second most common structural birth defect. A suspected teratogen, arsenic (As) induces NTDs in laboratory animals. Objectives: We investigated whether maternal glucose homeostasis disruption was responsible for arsenate-induced NTDs in a well-established dosing regimen used in studies of arsenic's teratogenicity in early neurodevelopment. Methods: We evaluated maternal intraperitoneal (IP) exposure to As 9.6 mg/kg (as sodium arsenate) in LM/Bc/Fnn mice for teratogenicity and disruption of maternal plasma glucose and insulin levels. Selectedmore » compounds (insulin pellet, sodium selenate (SS), N-acetyl cysteine (NAC), L-methionine (L-Met), N-tert-Butyl-{alpha}-phenylnitrone (PBN)) were investigated for their potential to mitigate arsenate's effects. Results: Arsenate caused significant glucose elevation during an IP glucose tolerance test (IPGTT). Insulin levels were not different between arsenate and control dams before (arsenate, 0.55 ng/dl; control, 0.48 ng/dl) or after glucose challenge (arsenate, 1.09 ng/dl; control, 0.81 ng/dl). HOMA-IR index was higher for arsenate (3.9) vs control (2.5) dams (p = 0.0260). Arsenate caused NTDs (100%, p < 0.0001). Insulin pellet and NAC were the most successful rescue agents, reducing NTD rates to 45% and 35%. Conclusions: IPGTT, insulin assay, and HOMA-IR results suggest a modest failure of glucose stimulated insulin secretion and insulin resistance characteristic of glucose intolerance. Insulin's success in preventing arsenate-induced NTDs provides evidence that these arsenate-induced NTDs are secondary to elevated maternal glucose. The NAC rescue, which did not restore maternal glucose or insulin levels, suggests oxidative disruption plays a role.« less

  2. Unique stigmatic hairs and pollen-tube growth within the stigmatic cell wall in the early-divergent angiosperm family Hydatellaceae

    PubMed Central

    Prychid, Christina J.; Sokoloff, Dmitry D.; Remizowa, Margarita V.; Tuckett, Renee E.; Yadav, Shrirang R.; Rudall, Paula J.

    2011-01-01

    Background and Aims The ultrastructure of the pollen tubes and the unusual multicellular stigmatic hairs of Trithuria, the sole genus of Hydatellaceae, are described in the context of comparative studies of stigmatic and transmitting tissue in other early-divergent angiosperms. Methods Scanning and transmission electron microscopy and immunocytochemistry are used to study the structure and composition of both mature and immature stigmatic hair cells and pollen-tube growth in Trithuria. Key Results Trithuria possesses a dry-type stigma. Pollen tubes grow within the cell walls of the long multicellular stigmatic hairs. Immunocytochemistry results suggest that arabinogalactan proteins are involved in attracting the pollen tubes through the stigmatic cuticle. Most tubes grow along the hair axis towards its base, but some grow towards the hair apex, suggesting that pollen tubes are guided by both physical constraints such as microfibril orientation and the presence of binding factors such as unesterified pectins and adhesive proteins. Conclusions The presence of a dry-type stigma in Trithuria supports the hypothesis that this condition is ancestral in angiosperms. Each multicellular stigmatic hair of Hydatellaceae is morphologically homologous with a stigmatic papilla of other angiosperms, but functions as an independent stigma and style. This unusual combination of factors makes Hydatellaceae a useful model for comparative studies of pollen-tube growth in early angiosperms. PMID:21320877

  3. Metacognition in Early Phase Psychosis: Toward Understanding Neural Substrates

    PubMed Central

    Vohs, Jenifer L.; Hummer, Tom A.; Yung, Matthew G.; Francis, Michael M.; Lysaker, Paul H.; Breier, Alan

    2015-01-01

    Individuals in the early phases of psychotic illness have disturbed metacognitive capacity, which has been linked to a number of poor outcomes. Little is known, however, about the neural systems associated with metacognition in this population. The purpose of this study was to elucidate the neuroanatomical correlates of metacognition. We anticipated that higher levels of metacognition may be dependent upon gray matter density (GMD) of regions within the prefrontal cortex. Examining whole-brain structure in 25 individuals with early phase psychosis, we found positive correlations between increased medial prefrontal cortex and ventral striatum GMD and higher metacognition. These findings represent an important step in understanding the path through which the biological correlates of psychotic illness may culminate into poor metacognition and, ultimately, disrupted functioning. Such a path will serve to validate and promote metacognition as a viable treatment target in early phase psychosis. PMID:26132568

  4. Modulation of nuclear factor-κB signaling and reduction of neural tube defects by quercetin-3-glucoside in embryos of diabetic mice.

    PubMed

    Tan, Chengyu; Meng, Fantong; Reece, E Albert; Zhao, Zhiyong

    2018-05-04

    Diabetes mellitus in early pregnancy increases the risk of birth defects in infants. Maternal hyperglycemia stimulates the expression of nitric oxide (NO) synthase 2 (NOS2), which can be regulated by transcription factors of the nuclear factor-κB (NF-κB) family. Increases in reactive nitrogen species (RNS) generate intracellular stress conditions, including nitrosative, oxidative, and endoplasmic reticulum (ER) stresses, and trigger programmed cell death (or apoptosis) in the neural folds, resulting in neural tube defects (NTDs) in the embryo. Inhibiting NOS2 can reduce NTDs; however, the underlying mechanisms require further delineation. Targeting NOS2 and associated nitrosative stress using naturally occurring phytochemicals is a potential approach to preventing birth defects in diabetic pregnancies. This study aims to investigate the effect of quercetin-3-glucoside (Q3G), a polyphenol flavonoid found in fruit, in reducing maternal diabetes-induced NTDs in an animal model, and to delineate the molecular mechanisms underlying Q3G action in regulating NOS2 expression. Female mice (C57BL/6) were induced to develop diabetes using streptozotocin before pregnancy. Diabetic pregnant mice were administered Q3G (100 mg/kg) daily via gavage feeding, introduction of drug to the stomach directly via a feeding needle, during neurulation from embryonic (E) day 6.5 to E9.5. After treatment, E10.5 embryos were collected and examined for the presence of NTDs and apoptosis in the neural tube. Expression of Nos2 and superoxide dismutase 1 (Sod1; an antioxidative enzyme) was quantified using Western blot assay. Nitrosative, oxidative, and endoplasmic reticulum (ER) stress conditions were assessed using specific biomarkers. Expression and posttranslational modification of factors in the NF-κB system were investigated. Treatment with Q3G (suspended in water) significantly decreased NTD rate (24.7%) and apoptosis in the embryos of diabetic mice, compared with those in the water

  5. Air pollution, neighborhood acculturation factors, and neural tube defects among Hispanic women in California.

    PubMed

    Padula, Amy M; Yang, Wei; Carmichael, Suzan L; Lurmann, Frederick; Balmes, John; Hammond, S Katharine; Shaw, Gary M

    2017-04-03

    Neural tube defects (NTDs) are one of the most common types of birth defects. Environmental pollutants and acculturation have been associated with NTDs independently. The potential effect modification of acculturation in the relationship between ambient air pollution and risks of NTDs is not well understood. We investigated whether associations between traffic-related air pollutant exposure in early gestation and NTDs, and more specifically spina bifida, were modified by individual and neighborhood acculturation factors among 139 cases and 466 controls born in the San Joaquin Valley of California, 1997 to 2006. Five criteria pollutant exposures in tertiles, two outcomes, and seven neighborhood acculturation factors from the U.S. Census at the block group level were included for a total of 280 investigated associations. Estimates were adjusted for maternal education and multivitamin use in the first 2 months of pregnancy. Additional analyses were stratified by nativity. Increased odds of NTDs were observed for individuals who had high exposures to carbon monoxide, nitrogen oxide, or nitrogen dioxide and lived in neighborhoods that were more acculturated. Conversely, there were increased odds of NTDs for those who had high prenatal exposure to PM 10 and lived in neighborhoods that were less acculturated. The results of spina bifida alone were generally stronger in magnitude. When stratified by individual nativity (U.S.- vs. foreign-born), carbon monoxide, nitrogen oxide, and nitrogen dioxide were more strongly associated with NTDs among U.S.-born Hispanic mothers. Neighborhood acculturation factors were modifiers of the relationship between air pollution and NTDs in California, though not in a consistent direction for all pollutants. Birth Defects Research 109:403-422, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Air Pollution, Neighborhood Acculturation Factors, and Neural Tube Defects Among Hispanic Women in California

    PubMed Central

    Padula, Amy M.; Yang, Wei; Carmichael, Suzan L.; Lurmann, Frederick; Balmes, John; Hammond, S. Katharine; Shaw, Gary M.

    2017-01-01

    Background Neural tube defects (NTDs) are one of the most common types of birth defects. Environmental pollutants and acculturation have been associated with NTDs independently. The potential effect modification of acculturation in the relationship between ambient air pollution and risks of NTDs is not well understood. Methods We investigated whether associations between traffic-related air pollutant exposure in early gestation and NTDs, and more specifically spina bifida, were modified by individual and neighborhood acculturation factors among 139 cases and 466 controls born in the San Joaquin Valley of California, 1997 to 2006. Five criteria pollutant exposures in tertiles, two outcomes, and seven neighborhood acculturation factors from the U.S. Census at the block group level were included for a total of 280 investigated associations. Estimates were adjusted for maternal education and multivitamin use in the first 2 months of pregnancy. Additional analyses were stratified by nativity. Results Increased odds of NTDs were observed for individuals who had high exposures to carbon monoxide, nitrogen oxide, or nitrogen dioxide and lived in neighborhoods that were more acculturated. Conversely, there were increased odds of NTDs for those who had high prenatal exposure to PM10 and lived in neighborhoods that were less acculturated. The results of spina bifida alone were generally stronger in magnitude. When stratified by individual nativity (U.S.- vs. foreign-born), carbon monoxide, nitrogen oxide, and nitrogen dioxide were more strongly associated with NTDs among U.S.-born Hispanic mothers. Conclusion Neighborhood acculturation factors were modifiers of the relationship between air pollution and NTDs in California, though not in a consistent direction for all pollutants. PMID:28398703

  7. Robo signaling regulates the production of cranial neural crest cells.

    PubMed

    Li, Yan; Zhang, Xiao-Tan; Wang, Xiao-Yu; Wang, Guang; Chuai, Manli; Münsterberg, Andrea; Yang, Xuesong

    2017-12-01

    Slit/Robo signaling plays an important role in the guidance of developing neurons in developing embryos. However, it remains obscure whether and how Slit/Robo signaling is involved in the production of cranial neural crest cells. In this study, we examined Robo1 deficient mice to reveal developmental defects of mouse cranial frontal and parietal bones, which are derivatives of cranial neural crest cells. Therefore, we determined the production of HNK1 + cranial neural crest cells in early chick embryo development after knock-down (KD) of Robo1 expression. Detection of markers for pre-migratory and migratory neural crest cells, PAX7 and AP-2α, showed that production of both was affected by Robo1 KD. In addition, we found that the transcription factor slug is responsible for the aberrant delamination/EMT of cranial neural crest cells induced by Robo1 KD, which also led to elevated expression of E- and N-Cadherin. N-Cadherin expression was enhanced when blocking FGF signaling with dominant-negative FGFR1 in half of the neural tube. Taken together, we show that Slit/Robo signaling influences the delamination/EMT of cranial neural crest cells, which is required for cranial bone development. Copyright © 2017. Published by Elsevier Inc.

  8. Early removal of urethral catheter with suprapubic tube drainage versus urethral catheter drainage alone after robot-assisted laparoscopic radical prostatectomy.

    PubMed

    Prasad, Sandip M; Large, Michael C; Patel, Amit R; Famakinwa, Olufenwa; Galocy, R Matthew; Karrison, Theodore; Shalhav, Arieh L; Zagaja, Gregory P

    2014-07-01

    Retrospective single institution data suggest that postoperative pain after robot-assisted laparoscopic radical prostatectomy is decreased by early removal of the urethral catheter with suprapubic tube drainage. In a randomized patient population we determined whether suprapubic tube drainage with early urethral catheter removal would improve postoperative pain compared with urethral catheter drainage alone. Men with a body mass index of less than 40 kg/m(2) who had newly diagnosed prostate cancer and elected robot-assisted laparoscopic radical prostatectomy were included in analysis. Block randomization by surgeon was used and randomization assignment was done after completing the urethrovesical anastomosis. In patients assigned to suprapubic tube drainage the urethral catheter was removed on postoperative day 1 and all catheters were removed on postoperative day 7. Visual analog pain scale and satisfaction questionnaires were administered on postoperative days 0, 1 and 7. A total of 29 patients were randomized to the urethral catheter vs 29 to the suprapubic tube plus early urethral catheter removal at the time of interim futility analysis. Mean visual analog pain scale scores did not differ between the groups at any time point and a similar percent of patients cited the catheter as the greatest bother with nonsignificant differences in treatment related satisfaction. Complications during postoperative week 1 did not vary between the groups. Based on interim results the trial was terminated due to lack of effect. Patients randomized to suprapubic tube vs urethral catheter drainage for the week after prostatectomy had similar pain, catheter related bother and treatment related satisfaction in the perioperative period. We no longer routinely offer suprapubic tube drainage with early urethral catheter removal at our institution. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  9. WDR62 Regulates Early Neural and Glial Progenitor Specification of Human Pluripotent Stem Cells

    PubMed Central

    Alshawaf, Abdullah J.; Antonic, Ana; Skafidas, Efstratios

    2017-01-01

    Mutations in WD40-repeat protein 62 (WDR62) are commonly associated with primary microcephaly and other developmental cortical malformations. We used human pluripotent stem cells (hPSC) to examine WDR62 function during human neural differentiation and model early stages of human corticogenesis. Neurospheres lacking WDR62 expression showed decreased expression of intermediate progenitor marker, TBR2, and also glial marker, S100β. In contrast, inhibition of c-Jun N-terminal kinase (JNK) signalling during hPSC neural differentiation induced upregulation of WDR62 with a corresponding increase in neural and glial progenitor markers, PAX6 and EAAT1, respectively. These findings may signify a role of WDR62 in specifying intermediate neural and glial progenitors during human pluripotent stem cell differentiation. PMID:28690640

  10. Neural Bases of Language Switching in High and Early Proficient Bilinguals

    ERIC Educational Resources Information Center

    Garbin, G.; Costa, A.; Sanjuan, A.; Forn, C.; Rodriguez-Pujadas, A.; Ventura, N.; Belloch, V.; Hernandez, M.; Avila, C.

    2011-01-01

    The left inferior frontal cortex, the caudate and the anterior cingulate have been proposed as the neural origin of language switching, but most of the studies were conducted in low proficient bilinguals. In the present study, we investigated brain areas involved in language switching in a sample of 19 early, high-proficient Spanish-Catalan…

  11. Syndromes, disorders and maternal risk factors associated with neural tube defects (VII).

    PubMed

    Chen, Chih-Ping

    2008-09-01

    Neural tube defects (NTDs) may be associated with syndromes, disorders and maternal risk factors. This article provides a comprehensive review of the syndromes, disorders and maternal risk factors associated with NTDs, including DK phocomelia syndrome (von Voss-Cherstvoy syndrome), Siegel-Bartlet syndrome, fetal warfarin syndrome, craniotelencephalic dysplasia, Czeizel-Losonci syndrome, maternal cocaine abuse, Weissenbacher- Zweymller syndrome, parietal foramina (cranium bifidum), Apert syndrome, craniomicromelic syndrome, XXagonadism with multiple dysraphic lesions including omphalocele and NTDs, Fryns microphthalmia syndrome, Gershoni-Baruch syndrome, PHAVER syndrome, periconceptional vitamin B6 deficiency, and autosomal dominant Dandy-Walker malformation with occipital cephalocele. NTDs associated with these syndromes, disorders and maternal risk factors are a rare but important cause of NTDs. The recurrence risk and the preventive effect of maternal folic acid intake in NTDs associated with syndromes, disorders and maternal risk factors may be different from those of nonsyndromic multifactorial NTDs. Perinatal diagnosis of NTDs should alert doctors to the syndromes, disorders and maternal risk factors associated with NTDs, and prompt thorough etiologic investigation and genetic counseling.

  12. Interaction between Maternal and Paternal SHMT1 C1420T Predisposes to Neural Tube Defects in the Fetus: Evidence from Case-Control and Family-Based Triad Approaches.

    PubMed

    K Rebekah, Prasoona; Tella, Sunitha; Buragadda, Srinadh; Tiruvatturu, Muni Kumari; Akka, Jyothy

    2017-04-14

    Neural tube defects (NTDs) are caused by the failure of neural tube formation which occurs during early embryonic development. NTDs are the most severe and leading cause of fetal mortality. Serine hydroxymethyl transferase (SHMT1) provides one-carbon units necessary for embryogenesis and defects in one-carbon production result in specific pathological conditions during pregnancy. The present study is aimed to evaluate the association of SHMT1 C1420T with NTD risk in the fetus using fetal, maternal and paternal groups by applying both case-control and family-based triad approaches. A total of 924 subjects including 124 NTD case-parent trios (n = 124 × 3 = 372) and 184 healthy control-parent trios (n = 184 × 3 = 552) from Telangana State, South India were analyzed. DNA from umbilical cord tissues and parental blood samples were extracted, and genotyped by polymerase chain reaction-restriction fragment length polymorphism. Statistical analysis used were SPSS, parent-of-origin effect (POE) analysis. Case-control study design demonstrated fetuses with homozygous variant genotype (TT) to be at risk toward spina bifida subtype (p = 0.022). Among parents, fathers with TT genotype were associated with anencephaly (p = 0.018) and spina bifida subtypes (p = 0.027) in the offspring. Of interest, maternal-paternal-offspring genotype incompatibility revealed maternal CT genotype in combination with paternal TT genotype increased risk for NTDs in the fetus (CTxTT = TT; p = 0.021). Family-based parent-of-origin effect linkage analysis revealed significant maternal over-transmission of variant allele to NTD fetuses (p < 0.01). The present study, using both case-control and family-based triad approach is the first report to demonstrate parental association of SHMT1 C1420T variant in conferring NTD risk in the fetus. Birth Defects Research, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Interaction between Maternal and Paternal SHMT1 C1420T Predisposes to Neural Tube Defects in the Fetus: Evidence from Case-Control and Family-Based Triad Approaches.

    PubMed

    K Rebekah, Prasoona; Tella, Sunitha; Buragadda, Srinadh; Tiruvatturu, Muni Kumari; Akka, Jyothy

    2017-07-17

    Neural tube defects (NTDs) are caused by the failure of neural tube formation which occurs during early embryonic development. NTDs are the most severe and leading cause of fetal mortality. Serine hydroxymethyl transferase (SHMT1) provides one-carbon units necessary for embryogenesis and defects in one-carbon production result in specific pathological conditions during pregnancy. The present study is aimed to evaluate the association of SHMT1 C1420T with NTD risk in the fetus using fetal, maternal and paternal groups by applying both case-control and family-based triad approaches. A total of 924 subjects including 124 NTD case-parent trios (n = 124 × 3 = 372) and 184 healthy control-parent trios (n = 184 × 3 = 552) from Telangana State, South India were analyzed. DNA from umbilical cord tissues and parental blood samples were extracted, and genotyped by polymerase chain reaction-restriction fragment length polymorphism. Statistical analysis used were SPSS, parent-of-origin effect (POE) analysis. Case-control study design demonstrated fetuses with homozygous variant genotype (TT) to be at risk toward spina bifida subtype (p = 0.022). Among parents, fathers with TT genotype were associated with anencephaly (p = 0.018) and spina bifida subtypes (p = 0.027) in the offspring. Of interest, maternal-paternal-offspring genotype incompatibility revealed maternal CT genotype in combination with paternal TT genotype increased risk for NTDs in the fetus (CTxTT = TT; p = 0.021). Family-based parent-of-origin effect linkage analysis revealed significant maternal over-transmission of variant allele to NTD fetuses (p < 0.01). The present study, using both case-control and family-based triad approach is the first report to demonstrate parental association of SHMT1 C1420T variant in conferring NTD risk in the fetus. Birth Defects Research 109:1020-1029, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Nutrition, One-Carbon Metabolism and Neural Tube Defects: A Review

    PubMed Central

    Li, Kelei; Wahlqvist, Mark L.; Li, Duo

    2016-01-01

    Neural tube defects (NTDs) are a group of severe congenital malformations, induced by the combined effects of genes and the environment. The most valuable finding so far has been the protective effect of folic acid supplementation against NTDs. However, many women do not take folic acid supplements until they are pregnant, which is too late to prevent NTDs effectively. Long-term intake of folic acid–fortified food is a good choice to solve this problem, and mandatory folic acid fortification should be further promoted, especially in Europe, Asia and Africa. Vitamin B2, vitamin B-6, vitamin B-12, choline, betaine and n-3 polyunsaturated fatty acids (PUFAs) can also reduce the NTD risk by interacting with the one-carbon metabolism pathway. This suggest that multivitamin B combined with choline, betaine and n-3 PUFAs supplementation may have a better protective effect against NTDs than folic acid alone. Genetic polymorphisms involved in one-carbon metabolism are associated with NTD risk, and gene screening for women of childbearing age prior to pregnancy may help prevent NTDs induced by the risk allele. In addition, the consumption of alcohol, tea and coffee, and low intakes of fruit and vegetable are also associated with the increased risk of NTDs, and should be avoided by women of childbearing age. PMID:27886045

  15. Neural differentiation of caudal cell mass (secondary neurulation) in chick embryos: Hamburger and Hamilton Stages 16-45.

    PubMed

    Yang, Hee-Jin; Wang, Kyu-Chang; Chi, Je G; Lee, Myung-Sook; Lee, Yun-Jin; Kim, Seung-Ki; Cho, Byung-Kyu

    2003-04-14

    In an attempt to understand the events in the secondary neurulation in embryonic stage, we investigated morphological changes in the tail bud of normal developing chick embryos. Hamburger and Hamilton stage 16-45 embryos were harvested and processed for light microscopic studies. The secondary neural tube is formed by aggregation of the caudal cell mass. Cells are arranged into a cord-like mass (medullary cord), which is continuous with the primary neural tube. Multiple small cavities develop in the medullary cord, and these cavities coalesce into one single lumen. The process of coalescence is completed by stage 35, and the whole neural tube is transformed into one tube with a single continuous lumen. At this stage, the terminal portion of the neural tube is bulged dorsally. Thereafter, the caudal portion of the neural tube regresses, and the proximal portion develops into normal spinal cord. Transient occlusion of the central canal was observed at stage 40 in one sample. The sequence of events elucidated in this study can be used as base-line data for experiments concerning congenital malformations involving secondary neurulation.

  16. Neural Tube Defects In Mice Exposed To Tap Water

    PubMed Central

    Mallela, Murali K; Werre, Stephen R; Hrubec, Terry C

    2010-01-01

    In May of 2006 we suddenly began to observe neural tube defects (NTDs) in embryos of untreated control mice. We hypothesized the mice were being exposed unknowingly to a teratogenic agent and investigated the cause. Our results suggested that NTDs were not resulting from bedding material, feed, strain or source of the mice. Additionally, mice were negative for routine and comprehensive screens of pathogens. To further test whether the NTDs resulted from infectious or genetic cause localized to our facility, we obtained three strains of timed pregnant mice from commercial suppliers located in 4 different states. All strains and sources of mice arrived in our laboratory with NTDs, implying that commercially available mice were possibly exposed to a teratogen prior to purchase. Our investigation eventually concluded that exposure to tap water was causing the NTDs. The incidence of NTDs was greatest in purchased mice provided tap water and lowest in purchased mice provided distilled deionized water (DDI). Providing mice DDI water for two generations (F2-DDI) eliminated the NTDs. When F2-DDI mice were provided tap water from three different urban areas prior to breeding, their offspring again developed NTDs. Increased length of exposure to tap water significantly increased the incidence of NTDs. These results indicate that a contaminant in municipal tap water is likely causing NTDs in mice. The unknown teratogen appears to have a wide geographic distribution but has not yet been identified. Water analysis is currently underway to identify candidate contaminants that might be responsible for the malformations. PMID:20549630

  17. Dynamic transcriptional signature and cell fate analysis reveals plasticity of individual neural plate border cells

    PubMed Central

    Roellig, Daniela; Tan-Cabugao, Johanna; Esaian, Sevan; Bronner, Marianne E

    2017-01-01

    The ‘neural plate border’ of vertebrate embryos contains precursors of neural crest and placode cells, both defining vertebrate characteristics. How these lineages segregate from neural and epidermal fates has been a matter of debate. We address this by performing a fine-scale quantitative temporal analysis of transcription factor expression in the neural plate border of chick embryos. The results reveal significant overlap of transcription factors characteristic of multiple lineages in individual border cells from gastrula through neurula stages. Cell fate analysis using a Sox2 (neural) enhancer reveals that cells that are initially Sox2+ cells can contribute not only to neural tube but also to neural crest and epidermis. Moreover, modulating levels of Sox2 or Pax7 alters the apportionment of neural tube versus neural crest fates. Our results resolve a long-standing question and suggest that many individual border cells maintain ability to contribute to multiple ectodermal lineages until or beyond neural tube closure. DOI: http://dx.doi.org/10.7554/eLife.21620.001 PMID:28355135

  18. Early adversity and neural correlates of executive function: implications for academic adjustment.

    PubMed

    McDermott, Jennifer M; Westerlund, Alissa; Zeanah, Charles H; Nelson, Charles A; Fox, Nathan A

    2012-02-15

    Early adversity can negatively impact the development of cognitive functions, although little is known about whether such effects can be remediated later in life. The current study examined one facet of executive functioning - inhibitory control - among children who experienced institutional care and explored the impact of a foster care intervention within the context of the Bucharest Early Intervention Project (BEIP). Specifically, a go/nogo task was administered when children were eight years old and behavioral and event-related potential (ERP) measures were collected. Results revealed that children assigned to care as usual (i.e. institutional care) were less accurate and exhibited slower neural responses compared to children assigned to the foster care intervention and children who had never been institutionalized. However, children in both the care as usual and foster care groups exhibited diminished attention processing of nogo cues as assessed via P300 amplitude. Foster care children also showed differential reactivity between correct and error responses via the error-related negativity (ERN) as compared to children in the care as usual group. Combined, the results highlight perturbations in neural sources of behavioral and attention problems among children experiencing early adversity. Potential implications for academic adjustment in at risk children are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Socioeconomic disadvantage and neural development from infancy through early childhood

    PubMed Central

    Chin-Lun Hung, Galen; Hahn, Jill; Alamiri, Bibi; Buka, Stephen L; Goldstein, Jill M; Laird, Nan; Nelson, Charles A; Smoller, Jordan W; Gilman, Stephen E

    2015-01-01

    Background: Early social experiences are believed to shape neurodevelopment, with potentially lifelong consequences. Yet minimal evidence exists regarding the role of the social environment on children’s neural functioning, a core domain of neurodevelopment. Methods: We analysed data from 36 443 participants in the United States Collaborative Perinatal Project, a socioeconomically diverse pregnancy cohort conducted between 1959 and 1974. Study outcomes included: physician (neurologist or paediatrician)-rated neurological abnormality neonatally and thereafter at 4 months and 1 and 7 years; indicators of neurological hard signs and soft signs; and indicators of autonomic nervous system function. Results: Children born to socioeconomically disadvantaged parents were more likely to exhibit neurological abnormalities at 4 months [odds ratio (OR) = 1.20; 95% confidence interval (CI) = 1.06, 1.37], 1 year (OR = 1.35; CI = 1.17, 1.56), and 7 years (OR = 1.67; CI = 1.48, 1.89), and more likely to exhibit neurological hard signs (OR = 1.39; CI = 1.10, 1.76), soft signs (OR = 1.26; CI = 1.09, 1.45) and autonomic nervous system dysfunctions at 7 years. Pregnancy and delivery complications, themselves associated with socioeconomic disadvantage, did not account for the higher risks of neurological abnormalities among disadvantaged children. Conclusions: Parental socioeconomic disadvantage was, independently from pregnancy and delivery complications, associated with abnormal child neural development during the first 7 years of life. These findings reinforce the importance of the early environment for neurodevelopment generally, and expand knowledge regarding the domains of neurodevelopment affected by environmental conditions. Further work is needed to determine the mechanisms linking socioeconomic disadvantage with children’s neural functioning, the timing of such mechanisms and their potential reversibility. PMID:26675752

  20. Neural competition as a developmental process: Early hemispheric specialization for word processing delays specialization for face processing

    PubMed Central

    Li, Su; Lee, Kang; Zhao, Jing; Yang, Zhi; He, Sheng; Weng, Xuchu

    2013-01-01

    Little is known about the impact of learning to read on early neural development for word processing and its collateral effects on neural development in non-word domains. Here, we examined the effect of early exposure to reading on neural responses to both word and face processing in preschool children with the use of the Event Related Potential (ERP) methodology. We specifically linked children’s reading experience (indexed by their sight vocabulary) to two major neural markers: the amplitude differences between the left and right N170 on the bilateral posterior scalp sites and the hemispheric spectrum power differences in the γ band on the same scalp sites. The results showed that the left-lateralization of both the word N170 and the spectrum power in the γ band were significantly positively related to vocabulary. In contrast, vocabulary and the word left-lateralization both had a strong negative direct effect on the face right-lateralization. Also, vocabulary negatively correlated with the right-lateralized face spectrum power in the γ band even after the effects of age and the word spectrum power were partialled out. The present study provides direct evidence regarding the role of reading experience in the neural specialization of word and face processing above and beyond the effect of maturation. The present findings taken together suggest that the neural development of visual word processing competes with that of face processing before the process of neural specialization has been consolidated. PMID:23462239

  1. Ethanol-induced impairment of polyamine homeostasis – A potential cause of neural tube defect and intrauterine growth restriction in fetal alcohol syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haghighi Poodeh, Saeid, E-mail: saeid.haghighi@oulu.fi; Medical Research Center, Oulu University Hospital, Oulu; Alhonen, Leena

    Highlights: • Polyamine pools in embryonic and extraembryonic tissues are developmentally regulated. • Alcohol administration perturbs polyamine levels in the tissues with various patterns. • Total absence of polyamines in the embryo head at 9.5 dpc is critical for development. • The deficiency is associated with reduction in endothelial cell sprouting in the head. • Retarded migration of neural crest cells may cause development of neural tube defect. - Abstract: Introduction: Polyamines play a fundamental role during embryogenesis by regulating cell growth and proliferation and by interacting with RNA, DNA and protein. The polyamine pools are regulated by metabolism andmore » uptake from exogenous sources. The use of certain inhibitors of polyamine synthesis causes similar defects to those seen in alcohol exposure e.g. retarded embryo growth and endothelial cell sprouting. Methods: CD-1 mice received two intraperitoneal injections of 3 g/kg ethanol at 4 h intervals 8.75 days post coitum (dpc). The fetal head, trunk, yolk sac and placenta were collected at 9.5 and 12.5 dpc and polyamine concentrations were determined. Results: No measurable quantity of polyamines could be detected in the embryo head at 9.5 dpc, 12 h after ethanol exposure. Putrescine was not detectable in the trunk of the embryo at that time, whereas polyamines in yolk sac and placenta were at control level. Polyamine deficiency was associated with slow cell growth, reduction in endothelial cell sprouting, an altered pattern of blood vessel network formation and consequently retarded migration of neural crest cells and growth restriction. Discussion: Our results indicate that the polyamine pools in embryonic and extraembryonic tissues are developmentally regulated. Alcohol administration, at the critical stage, perturbs polyamine levels with various patterns, depending on the tissue and its developmental stage. The total absence of polyamines in the embryo head at 9.5 dpc may explain

  2. Artificial Neural Network-Based Early-Age Concrete Strength Monitoring Using Dynamic Response Signals.

    PubMed

    Kim, Junkyeong; Lee, Chaggil; Park, Seunghee

    2017-06-07

    Concrete is one of the most common materials used to construct a variety of civil infrastructures. However, since concrete might be susceptible to brittle fracture, it is essential to confirm the strength of concrete at the early-age stage of the curing process to prevent unexpected collapse. To address this issue, this study proposes a novel method to estimate the early-age strength of concrete, by integrating an artificial neural network algorithm with a dynamic response measurement of the concrete material. The dynamic response signals of the concrete, including both electromechanical impedances and guided ultrasonic waves, are obtained from an embedded piezoelectric sensor module. The cross-correlation coefficient of the electromechanical impedance signals and the amplitude of the guided ultrasonic wave signals are selected to quantify the variation in dynamic responses according to the strength of the concrete. Furthermore, an artificial neural network algorithm is used to verify a relationship between the variation in dynamic response signals and concrete strength. The results of an experimental study confirm that the proposed approach can be effectively applied to estimate the strength of concrete material from the early-age stage of the curing process.

  3. Artificial Neural Network-Based Early-Age Concrete Strength Monitoring Using Dynamic Response Signals

    PubMed Central

    Kim, Junkyeong; Lee, Chaggil; Park, Seunghee

    2017-01-01

    Concrete is one of the most common materials used to construct a variety of civil infrastructures. However, since concrete might be susceptible to brittle fracture, it is essential to confirm the strength of concrete at the early-age stage of the curing process to prevent unexpected collapse. To address this issue, this study proposes a novel method to estimate the early-age strength of concrete, by integrating an artificial neural network algorithm with a dynamic response measurement of the concrete material. The dynamic response signals of the concrete, including both electromechanical impedances and guided ultrasonic waves, are obtained from an embedded piezoelectric sensor module. The cross-correlation coefficient of the electromechanical impedance signals and the amplitude of the guided ultrasonic wave signals are selected to quantify the variation in dynamic responses according to the strength of the concrete. Furthermore, an artificial neural network algorithm is used to verify a relationship between the variation in dynamic response signals and concrete strength. The results of an experimental study confirm that the proposed approach can be effectively applied to estimate the strength of concrete material from the early-age stage of the curing process. PMID:28590456

  4. Morphogenesis of the mouse neural plate depends on distinct roles of cofilin 1 in apical and basal epithelial domains

    PubMed Central

    Grego-Bessa, Joaquim; Hildebrand, Jeffrey; Anderson, Kathryn V.

    2015-01-01

    The genetic control of mammalian epithelial polarity and dynamics can be studied in vivo at cellular resolution during morphogenesis of the mouse neural tube. The mouse neural plate is a simple epithelium that is transformed into a columnar pseudostratified tube over the course of ∼24 h. Apical F-actin is known to be important for neural tube closure, but the precise roles of actin dynamics in the neural epithelium are not known. To determine how the organization of the neural epithelium and neural tube closure are affected when actin dynamics are blocked, we examined the cellular basis of the neural tube closure defect in mouse mutants that lack the actin-severing protein cofilin 1 (CFL1). Although apical localization of the adherens junctions, the Par complex, the Crumbs complex and SHROOM3 is normal in the mutants, CFL1 has at least two distinct functions in the apical and basal domains of the neural plate. Apically, in the absence of CFL1 myosin light chain does not become phosphorylated, indicating that CFL1 is required for the activation of apical actomyosin required for neural tube closure. On the basal side of the neural plate, loss of CFL1 has the opposite effect on myosin: excess F-actin and myosin accumulate and the ectopic myosin light chain is phosphorylated. The basal accumulation of F-actin is associated with the assembly of ectopic basal tight junctions and focal disruptions of the basement membrane, which eventually lead to a breakdown of epithelial organization. PMID:25742799

  5. Learning representations for the early detection of sepsis with deep neural networks.

    PubMed

    Kam, Hye Jin; Kim, Ha Young

    2017-10-01

    Sepsis is one of the leading causes of death in intensive care unit patients. Early detection of sepsis is vital because mortality increases as the sepsis stage worsens. This study aimed to develop detection models for the early stage of sepsis using deep learning methodologies, and to compare the feasibility and performance of the new deep learning methodology with those of the regression method with conventional temporal feature extraction. Study group selection adhered to the InSight model. The results of the deep learning-based models and the InSight model were compared. With deep feedforward networks, the area under the ROC curve (AUC) of the models were 0.887 and 0.915 for the InSight and the new feature sets, respectively. For the model with the combined feature set, the AUC was the same as that of the basic feature set (0.915). For the long short-term memory model, only the basic feature set was applied and the AUC improved to 0.929 compared with the existing 0.887 of the InSight model. The contributions of this paper can be summarized in three ways: (i) improved performance without feature extraction using domain knowledge, (ii) verification of feature extraction capability of deep neural networks through comparison with reference features, and (iii) improved performance with feedforward neural networks using long short-term memory, a neural network architecture that can learn sequential patterns. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Early diagnosis and multidisciplinary care reduce the hospitalization time and duration of tube feeding and prevent early obesity in PWS infants.

    PubMed

    Bacheré, N; Diene, G; Delagnes, V; Molinas, C; Moulin, P; Tauber, M

    2008-01-01

    To describe and evaluate the impact of very early diagnosis and multidisciplinary care on the evolution and care of infants presenting with Prader-Willi syndrome (PWS). 19 infants diagnosed with PWS before the second month of life were followed by a multidisciplinary team. Median age at the time of analysis was 3.1 years [range 0.4-6.5]. The data were compared with data collected in 1997 from 113 questionnaires filled out by members of the French PWS Association. The patients from this latter data set were 12.0 years [range 4 months to 41 years] at the time of analysis, with a median age of 36 months at diagnosis. The duration of their hospitalization time was significantly reduced from 30.0 [range 0-670] to 21 [range 0-90] days (p = 0.043). The duration of gastric tube feeding was significantly reduced from 30.5 [range 0-427] to 15 [range 0-60] days (p = 0.017). Growth hormone treatment was started at a mean age of 1.9 +/- 0.5 years in 10 infants and L-thyroxine in 6 infants. Only 1 infant became obese at 2.5 years. Early diagnosis combined with multidisciplinary care decreases the hospitalization time, duration of gastric tube feeding and prevents early obesity in PWS infants. (c) 2007 S. Karger AG, Basel.

  7. Dynamic methylation and expression of Oct4 in early neural stem cells

    PubMed Central

    Lee, Shih-Han; Jeyapalan, Jennie N; Appleby, Vanessa; Mohamed Noor, Dzul Azri; Sottile, Virginie; Scotting, Paul J

    2010-01-01

    Neural stem cells are a multipotent population of tissue-specific stem cells with a broad but limited differentiation potential. However, recent studies have shown that over-expression of the pluripotency gene, Oct4, alone is sufficient to initiate a process by which these can form ‘induced pluripotent stem cells’ (iPS cells) with the same broad potential as embryonic stem cells. This led us to examine the expression of Oct4 in endogenous neural stem cells, as data regarding its expression in neural stem cells in vivo are contradictory and incomplete. In this study we have therefore analysed the expression of Oct4 and other genes associated with pluripotency throughout development of the mouse CNS and in neural stem cells grown in vitro. We find that Oct4 is still expressed in the CNS by E8.5, but that this expression declines rapidly until it is undetectable by E15.5. This decline is coincident with the gradual methylation of the Oct4 promoter and proximal enhancer. Immunostaining suggests that the Oct4 protein is predominantly cytoplasmic in location. We also found that neural stem cells from all ages expressed the pluripotency associated genes, Sox2, c-Myc, Klf4 and Nanog. These data provide an explanation for the varying behaviour of cells from the early neuroepithelium at different stages of development. The expression of these genes also provides an indication of why Oct4 alone is sufficient to induce iPS formation in neural stem cells at later stages. PMID:20646110

  8. Dynamic methylation and expression of Oct4 in early neural stem cells.

    PubMed

    Lee, Shih-Han; Jeyapalan, Jennie N; Appleby, Vanessa; Mohamed Noor, Dzul Azri; Sottile, Virginie; Scotting, Paul J

    2010-09-01

    Neural stem cells are a multipotent population of tissue-specific stem cells with a broad but limited differentiation potential. However, recent studies have shown that over-expression of the pluripotency gene, Oct4, alone is sufficient to initiate a process by which these can form 'induced pluripotent stem cells' (iPS cells) with the same broad potential as embryonic stem cells. This led us to examine the expression of Oct4 in endogenous neural stem cells, as data regarding its expression in neural stem cells in vivo are contradictory and incomplete. In this study we have therefore analysed the expression of Oct4 and other genes associated with pluripotency throughout development of the mouse CNS and in neural stem cells grown in vitro. We find that Oct4 is still expressed in the CNS by E8.5, but that this expression declines rapidly until it is undetectable by E15.5. This decline is coincident with the gradual methylation of the Oct4 promoter and proximal enhancer. Immunostaining suggests that the Oct4 protein is predominantly cytoplasmic in location. We also found that neural stem cells from all ages expressed the pluripotency associated genes, Sox2, c-Myc, Klf4 and Nanog. These data provide an explanation for the varying behaviour of cells from the early neuroepithelium at different stages of development. The expression of these genes also provides an indication of why Oct4 alone is sufficient to induce iPS formation in neural stem cells at later stages.

  9. [Role of the small intestinal decompression tube and Gastrografin in the treatment of early postoperative inflammatory small bowel obstruction].

    PubMed

    Li, Wei; Li, Zhixia; An, Dali; Liu, Jing; Zhang, Xiaohu

    2014-03-01

    To evaluate the role of the small intestinal decompression tube (SIDT) and Gastrografin in the treatment of early postoperative inflammatory small bowel obstruction (EPISBO). Twelve patients presented EPISBO after abdominal surgery in our department from April 2011 to July 2012. Initially, nasogastric tube decompression and other conventional conservative treatment were administrated. After 14 days, obstruction symptom improvement was not obvious, then the SIDT was used. At the same time, Gastrografin was injected into the small bowel through the SIDT in order to demonstrate the site of obstruction of small bowel and its efficacy. In 11 patients after this management, obstruction symptoms disappeared, bowel function recovered within 3 weeks, and oral feeding occurred gradually. Another patient did not pass flatus after 4 weeks and was reoperated. After postoperative follow-up of 6 months, no case relapsed with intestinal obstruction. For severe and long course of early postoperative inflammatory intestinal obstruction, intestinal decompression tube plus Gastrografin is safe and effective, and can avoid unnecessary reoperation.

  10. Aldose reductase is implicated in high glucose-induced oxidative stress in mouse embryonic neural stem cells.

    PubMed

    Fu, Jiang; Tay, S S W; Ling, E A; Dheen, S T

    2007-11-01

    Oxidative stress caused by hyperglycemia is one of the key factors responsible for maternal diabetes-induced congenital malformations, including neural tube defects in embryos. However, mechanisms by which maternal diabetes induces oxidative stress during neurulation are not clear. The present study was aimed to investigate whether high glucose induces oxidative stress in neural stem cells (NSCs), which compose the neural tube during development. We also investigated the mechanism by which high glucose disturbs the growth and survival of NSCs in vitro. NSCs were exposed to physiological d-glucose concentration (PG, 5 mmol/L), PG with l-glucose (25 mmol/L), or high d-glucose concentration (HG, 30 or 45 mmol/l). HG induced reactive oxygen species production and mRNA expression of aldose reductase (AR), which catalyzes the glucose reduction through polyol pathway, in NSCs. Expression of glucose transporter 1 (Glut1) mRNA and protein which regulates glucose uptake in NSCs was increased at early stage (24 h) and became down-regulated at late stage (72 h) of exposure to HG. Inhibition of AR by fidarestat, an AR inhibitor, decreased the oxidative stress, restored the cell viability and proliferation, and reduced apoptotic cell death in NSCs exposed to HG. Moreover, inhibition of AR attenuated the down-regulation of Glut1 expression in NSCs exposed to HG for 72 h. These results suggest that the activation of polyol pathway plays a role in the induction of oxidative stress which alters Glut1 expression and cell cycle in NSCs exposed to HG, thereby resulting in abnormal patterning of the neural tube in embryos of diabetic pregnancy.

  11. Fairness influences early signatures of reward-related neural processing.

    PubMed

    Massi, Bart; Luhmann, Christian C

    2015-12-01

    Many humans exhibit a strong preference for fairness during decision-making. Although there is evidence that social factors influence reward-related and affective neural processing, it is unclear if this effect is mediated by compulsory outcome evaluation processes or results from slower deliberate cognition. Here we show that the feedback-related negativity (FRN) and late positive potential (LPP), two signatures of early hedonic processing, are modulated by the fairness of rewards during a passive rating task. We find that unfair payouts elicit larger FRNs than fair payouts, whereas fair payouts elicit larger LPPs than unfair payouts. This is true both in the time-domain, where the FRN and LPP are related, and in the time-frequency domain, where the two signals are largely independent. Ultimately, this work demonstrates that fairness affects the early stages of reward and affective processing, suggesting a common biological mechanism for social and personal reward evaluation.

  12. Girls' challenging social experiences in early adolescence predict neural response to rewards and depressive symptoms.

    PubMed

    Casement, Melynda D; Guyer, Amanda E; Hipwell, Alison E; McAloon, Rose L; Hoffmann, Amy M; Keenan, Kathryn E; Forbes, Erika E

    2014-04-01

    Developmental models of psychopathology posit that exposure to social stressors may confer risk for depression in adolescent girls by disrupting neural reward circuitry. The current study tested this hypothesis by examining the relationship between early adolescent social stressors and later neural reward processing and depressive symptoms. Participants were 120 girls from an ongoing longitudinal study of precursors to depression across adolescent development. Low parental warmth, peer victimization, and depressive symptoms were assessed when the girls were 11 and 12 years old, and participants completed a monetary reward guessing fMRI task and assessment of depressive symptoms at age 16. Results indicate that low parental warmth was associated with increased response to potential rewards in the medial prefrontal cortex (mPFC), striatum, and amygdala, whereas peer victimization was associated with decreased response to potential rewards in the mPFC. Furthermore, concurrent depressive symptoms were associated with increased reward anticipation response in mPFC and striatal regions that were also associated with early adolescent psychosocial stressors, with mPFC and striatal response mediating the association between social stressors and depressive symptoms. These findings are consistent with developmental models that emphasize the adverse impact of early psychosocial stressors on neural reward processing and risk for depression in adolescence. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Neural competition as a developmental process: early hemispheric specialization for word processing delays specialization for face processing.

    PubMed

    Li, Su; Lee, Kang; Zhao, Jing; Yang, Zhi; He, Sheng; Weng, Xuchu

    2013-04-01

    Little is known about the impact of learning to read on early neural development for word processing and its collateral effects on neural development in non-word domains. Here, we examined the effect of early exposure to reading on neural responses to both word and face processing in preschool children with the use of the Event Related Potential (ERP) methodology. We specifically linked children's reading experience (indexed by their sight vocabulary) to two major neural markers: the amplitude differences between the left and right N170 on the bilateral posterior scalp sites and the hemispheric spectrum power differences in the γ band on the same scalp sites. The results showed that the left-lateralization of both the word N170 and the spectrum power in the γ band were significantly positively related to vocabulary. In contrast, vocabulary and the word left-lateralization both had a strong negative direct effect on the face right-lateralization. Also, vocabulary negatively correlated with the right-lateralized face spectrum power in the γ band even after the effects of age and the word spectrum power were partialled out. The present study provides direct evidence regarding the role of reading experience in the neural specialization of word and face processing above and beyond the effect of maturation. The present findings taken together suggest that the neural development of visual word processing competes with that of face processing before the process of neural specialization has been consolidated. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Multispectral fluorescence imaging of human ovarian and Fallopian tube tissue for early stage cancer detection

    NASA Astrophysics Data System (ADS)

    Tate, Tyler; Baggett, Brenda; Rice, Photini; Watson, Jennifer; Orsinger, Gabe; Nymeyer, Ariel C.; Welge, Weston A.; Keenan, Molly; Saboda, Kathylynn; Roe, Denise J.; Hatch, Kenneth; Chambers, Setsuko; Black, John; Utzinger, Urs; Barton, Jennifer

    2015-03-01

    With early detection, five year survival rates for ovarian cancer are over 90%, yet no effective early screening method exists. Emerging consensus suggests that perhaps over 50% of the most lethal form of the disease, high grade serous ovarian cancer, originates in the Fallopian tube. Cancer changes molecular concentrations of various endogenous fluorophores. Using specific excitation wavelengths and emissions bands on a Multispectral Fluorescence Imaging (MFI) system, spatial and spectral data over a wide field of view can be collected from endogenous fluorophores. Wavelength specific reflectance images provide additional information to normalize for tissue geometry and blood absorption. Ratiometric combination of the images may create high contrast between neighboring normal and abnormal tissue. Twenty-six women undergoing oophorectomy or debulking surgery consented the use of surgical discard tissue samples for MFI imaging. Forty-nine pieces of ovarian tissue and thirty-two pieces of Fallopian tube tissue were collected and imaged with excitation wavelengths between 280 nm and 550 nm. After imaging, each tissue sample was fixed, sectioned and HE stained for pathological evaluation. Comparison of mean intensity values between normal, benign, and cancerous tissue demonstrate a general trend of increased fluorescence of benign tissue and decreased fluorescence of cancerous tissue when compared to normal tissue. The predictive capabilities of the mean intensity measurements are tested using multinomial logistic regression and quadratic discriminant analysis. Adaption of the system for in vivo Fallopian tube and ovary endoscopic imaging is possible and is briefly described.

  15. High glucose alters the expression of genes involved in proliferation and cell-fate specification of embryonic neural stem cells.

    PubMed

    Fu, J; Tay, S S W; Ling, E A; Dheen, S T

    2006-05-01

    Maternal diabetes induces neural tube defects during embryogenesis. Since the neural tube is derived from neural stem cells (NSCs), it is hypothesised that in diabetic pregnancy neural tube defects result from altered expression of developmental control genes, leading to abnormal proliferation and cell-fate choice of NSCs. Cell viability, proliferation index and apoptosis of NSCs and differentiated cells from mice exposed to physiological or high glucose concentration medium were examined by a tetrazolium salt assay, 5-bromo-2'-deoxyuridine incorporation, terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling and immunocytochemistry. Expression of developmental genes, including sonic hedgehog (Shh), bone morphogenetic protein 4 (Bmp4), neurogenin 1/2 (Neurog1/2), achaete-scute complex-like 1 (Ascl1), oligodendrocyte transcription factor 1 (Olig1), oligodendrocyte lineage transcription factor 2 (Olig2), hairy and enhancer of split 1/5 (Hes1/5) and delta-like 1 (Dll1), was analysed by real-time RT-PCR. Proliferation index and neuronal specification in the forebrain of embryos at embryonic day 11.5 were examined histologically. High glucose decreased the proliferation of NSCs and differentiated cells. The incidence of apoptosis was increased in NSCs treated with high glucose, but not in the differentiated cells. High glucose also accelerated neuronal and glial differentiation from NSCs. The decreased proliferation index and early differentiation of neurons were evident in the telencephalon of embryos derived from diabetic mice. Exposure to high glucose altered the mRNA expression levels of Shh, Bmp4, Neurog1/2, Ascl1, Hes1, Dll1 and Olig1 in NSCs and Shh, Dll1, Neurog1/2 and Hes5 in differentiated cells. The changes in proliferation and differentiation of NSCs exposed to high glucose are associated with altered expression of genes that are involved in cell-cycle progression and cell-fate specification during neurulation. These changes may form the

  16. Ablation of proliferating neural stem cells during early life is sufficient to reduce adult hippocampal neurogenesis.

    PubMed

    Youssef, Mary; Krish, Varsha S; Kirshenbaum, Greer S; Atsak, Piray; Lass, Tamara J; Lieberman, Sophie R; Leonardo, E David; Dranovsky, Alex

    2018-05-09

    Environmental exposures during early life, but not during adolescence or adulthood, lead to persistent reductions in neurogenesis in the adult hippocampal dentate gyrus (DG). The mechanisms by which early life exposures lead to long-term deficits in neurogenesis remain unclear. Here, we investigated whether targeted ablation of dividing neural stem cells during early life is sufficient to produce long-term decreases in DG neurogenesis. Having previously found that the stem cell lineage is resistant to long-term effects of transient ablation of dividing stem cells during adolescence or adulthood (Kirshenbaum et al., 2014), we used a similar pharmacogenetic approach to target dividing neural stem cells for elimination during early life periods sensitive to environmental insults. We then assessed the Nestin stem cell lineage in adulthood. We found that the adult neural stem cell reservoir was depleted following ablation during the first postnatal week, when stem cells were highly proliferative, but not during the third postnatal week, when stem cells were more quiescent. Remarkably, ablating proliferating stem cells during either the first or third postnatal week led to reduced adult neurogenesis out of proportion to the changes in the stem cell pool, indicating a disruption of the stem cell function or niche following stem cell ablation in early life. These results highlight the first three postnatal weeks as a series of sensitive periods during which elimination of dividing stem cells leads to lasting alterations in adult DG neurogenesis and stem cell function. These findings contribute to our understanding of the relationship between DG development and adult neurogenesis, as well as suggest a possible mechanism by which early life experiences may lead to lasting deficits in adult hippocampal neurogenesis. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  17. Folic acid awareness among female college students: neural tube defects prevention.

    PubMed

    Kari, Jameela A; Bardisi, Ekhlas S; Baitalmal, Rabaa M; Ageely, Ghofran A

    2008-12-01

    To investigate the level of awareness among female college students on the importance of preconception folic acid supplementation in preventing neural tube defects (NTDs). We have also studied their response after educating them. This is a questionnaire-based study. Five hundreds questionnaires were distributed to the female students of the 3 colleges, namely, Humanities, Sciences, and Health in Jeddah, Kingdom of Saudi Arabia in April 2008. The questions included an enquiry on their knowledge regarding the importance of folic acid preconception, and if they will implement what they learned after listening to lectures, delivered by the 4th year medical students, who were trained and supervised by the faculty members of the King Abdul-Aziz University. Two hundred and seventeen questionnaires were filled, and returned (43.4%). Mean age +/- SD was 20.96 +/- 2.25 years. Almost 88% were not aware of the importance of folic acid in preventing NTDs. After listening to the lecture, 82.9% thought that they will surely use folic acid preconception, and 98.6% will relay the important message about the importance of folic acid to others. There is a need to increase the awareness of the importance of folic acid among females' childbearing age. Medical students' involvement in educating college students was an effective way to increase their awareness. Similar educating programs are required, in order to reduce the high incidence of NTDs.

  18. Neural crest contributions to the lamprey head

    NASA Technical Reports Server (NTRS)

    McCauley, David W.; Bronner-Fraser, Marianne

    2003-01-01

    The neural crest is a vertebrate-specific cell population that contributes to the facial skeleton and other derivatives. We have performed focal DiI injection into the cranial neural tube of the developing lamprey in order to follow the migratory pathways of discrete groups of cells from origin to destination and to compare neural crest migratory pathways in a basal vertebrate to those of gnathostomes. The results show that the general pathways of cranial neural crest migration are conserved throughout the vertebrates, with cells migrating in streams analogous to the mandibular and hyoid streams. Caudal branchial neural crest cells migrate ventrally as a sheet of cells from the hindbrain and super-pharyngeal region of the neural tube and form a cylinder surrounding a core of mesoderm in each pharyngeal arch, similar to that seen in zebrafish and axolotl. In addition to these similarities, we also uncovered important differences. Migration into the presumptive caudal branchial arches of the lamprey involves both rostral and caudal movements of neural crest cells that have not been described in gnathostomes, suggesting that barriers that constrain rostrocaudal movement of cranial neural crest cells may have arisen after the agnathan/gnathostome split. Accordingly, neural crest cells from a single axial level contributed to multiple arches and there was extensive mixing between populations. There was no apparent filling of neural crest derivatives in a ventral-to-dorsal order, as has been observed in higher vertebrates, nor did we find evidence of a neural crest contribution to cranial sensory ganglia. These results suggest that migratory constraints and additional neural crest derivatives arose later in gnathostome evolution.

  19. Behavioral and neural plasticity caused by early social experiences: the case of the honeybee

    PubMed Central

    Arenas, Andrés; Ramírez, Gabriela P.; Balbuena, María Sol; Farina, Walter M.

    2013-01-01

    Cognitive experiences during the early stages of life play an important role in shaping future behavior. Behavioral and neural long-term changes after early sensory and associative experiences have been recently reported in the honeybee. This invertebrate is an excellent model for assessing the role of precocious experiences on later behavior due to its extraordinarily tuned division of labor based on age polyethism. These studies are mainly focused on the role and importance of experiences occurred during the first days of the adult lifespan, their impact on foraging decisions, and their contribution to coordinate food gathering. Odor-rewarded experiences during the first days of honeybee adulthood alter the responsiveness to sucrose, making young hive bees more sensitive to assess gustatory features about the nectar brought back to the hive and affecting the dynamic of the food transfers and the propagation of food-related information within the colony. Early olfactory experiences lead to stable and long-term associative memories that can be successfully recalled after many days, even at foraging ages. Also they improve memorizing of new associative learning events later in life. The establishment of early memories promotes stable reorganization of the olfactory circuits inducing structural and functional changes in the antennal lobe (AL). Early rewarded experiences have relevant consequences at the social level too, biasing dance and trophallaxis partner choice and affecting recruitment. Here, we revised recent results in bees' physiology, behavior, and sociobiology to depict how the early experiences affect their cognition abilities and neural-related circuits. PMID:23986708

  20. Socioeconomic disadvantage and neural development from infancy through early childhood.

    PubMed

    Chin-Lun Hung, Galen; Hahn, Jill; Alamiri, Bibi; Buka, Stephen L; Goldstein, Jill M; Laird, Nan; Nelson, Charles A; Smoller, Jordan W; Gilman, Stephen E

    2015-12-01

    Early social experiences are believed to shape neurodevelopment, with potentially lifelong consequences. Yet minimal evidence exists regarding the role of the social environment on children's neural functioning, a core domain of neurodevelopment. We analysed data from 36 443 participants in the United States Collaborative Perinatal Project, a socioeconomically diverse pregnancy cohort conducted between 1959 and 1974. Study outcomes included: physician (neurologist or paediatrician)-rated neurological abnormality neonatally and thereafter at 4 months and 1 and 7 years; indicators of neurological hard signs and soft signs; and indicators of autonomic nervous system function. Children born to socioeconomically disadvantaged parents were more likely to exhibit neurological abnormalities at 4 months [odds ratio (OR) = 1.20; 95% confidence interval (CI) = 1.06, 1.37], 1 year (OR = 1.35; CI = 1.17, 1.56), and 7 years (OR = 1.67; CI = 1.48, 1.89), and more likely to exhibit neurological hard signs (OR = 1.39; CI = 1.10, 1.76), soft signs (OR = 1.26; CI = 1.09, 1.45) and autonomic nervous system dysfunctions at 7 years. Pregnancy and delivery complications, themselves associated with socioeconomic disadvantage, did not account for the higher risks of neurological abnormalities among disadvantaged children. Parental socioeconomic disadvantage was, independently from pregnancy and delivery complications, associated with abnormal child neural development during the first 7 years of life. These findings reinforce the importance of the early environment for neurodevelopment generally, and expand knowledge regarding the domains of neurodevelopment affected by environmental conditions. Further work is needed to determine the mechanisms linking socioeconomic disadvantage with children's neural functioning, the timing of such mechanisms and their potential reversibility. Published by Oxford University Press on behalf of the International

  1. 3D silicon neural probe with integrated optical fibers for optogenetic modulation.

    PubMed

    Kim, Eric G R; Tu, Hongen; Luo, Hao; Liu, Bin; Bao, Shaowen; Zhang, Jinsheng; Xu, Yong

    2015-07-21

    Optogenetics is a powerful modality for neural modulation that can be useful for a wide array of biomedical studies. Penetrating microelectrode arrays provide a means of recording neural signals with high spatial resolution. It is highly desirable to integrate optics with neural probes to allow for functional study of neural tissue by optogenetics. In this paper, we report the development of a novel 3D neural probe coupled simply and robustly to optical fibers using a hollow parylene tube structure. The device shanks are hollow tubes with rigid silicon tips, allowing the insertion and encasement of optical fibers within the shanks. The position of the fiber tip can be precisely controlled relative to the electrodes on the shank by inherent design features. Preliminary in vivo rat studies indicate that these devices are capable of optogenetic modulation simultaneously with 3D neural signal recording.

  2. Notochord-derived Shh concentrates in close association with the apically positioned basal body in neural target cells and forms a dynamic gradient during neural patterning.

    PubMed

    Chamberlain, Chester E; Jeong, Juhee; Guo, Chaoshe; Allen, Benjamin L; McMahon, Andrew P

    2008-03-01

    Sonic hedgehog (Shh) ligand secreted by the notochord induces distinct ventral cell identities in the adjacent neural tube by a concentration-dependent mechanism. To study this process, we genetically engineered mice that produce bioactive, fluorescently labeled Shh from the endogenous locus. We show that Shh ligand concentrates in close association with the apically positioned basal body of neural target cells, forming a dynamic, punctate gradient in the ventral neural tube. Both ligand lipidation and target field response influence the gradient profile, but not the ability of Shh to concentrate around the basal body. Further, subcellular analysis suggests that Shh from the notochord might traffic into the neural target field by means of an apical-to-basal-oriented microtubule scaffold. This study, in which we directly observe, measure, localize and modify notochord-derived Shh ligand in the context of neural patterning, provides several new insights into mechanisms of Shh morphogen action.

  3. Early Parenting Moderates the Association between Parental Depression and Neural Reactivity to Rewards and Losses in Offspring.

    PubMed

    Kujawa, Autumn; Proudfit, Greg H; Laptook, Rebecca; Klein, Daniel N

    2015-07-01

    Children of parents with depression exhibit neural abnormalities in reward processing. Examining contributions of parenting could provide insight into the development of these abnormalities and to the etiology of depression. We evaluated whether early parenting moderates the effects of parental depression on a neural measure of reward and loss processing in mid-late childhood. Parenting was assessed when children were preschoolers. At age nine, children completed an event-related potential assessment and the feedback negativity (FN) was measured following rewards and losses ( N =344). Maternal authoritative parenting moderated the effect of maternal depression; among offspring of mothers with histories of depression, low authoritative parenting predicted a blunted FN. Observed maternal positive parenting interacted with paternal depression in a comparable manner, indicating that maternal parenting may buffer the effects of paternal depression. Early parenting may be important in shaping the neural systems involved in reward processing among children at high risk for depression.

  4. Early Parenting Moderates the Association between Parental Depression and Neural Reactivity to Rewards and Losses in Offspring

    PubMed Central

    Kujawa, Autumn; Proudfit, Greg H.; Laptook, Rebecca; Klein, Daniel N.

    2014-01-01

    Children of parents with depression exhibit neural abnormalities in reward processing. Examining contributions of parenting could provide insight into the development of these abnormalities and to the etiology of depression. We evaluated whether early parenting moderates the effects of parental depression on a neural measure of reward and loss processing in mid-late childhood. Parenting was assessed when children were preschoolers. At age nine, children completed an event-related potential assessment and the feedback negativity (FN) was measured following rewards and losses (N=344). Maternal authoritative parenting moderated the effect of maternal depression; among offspring of mothers with histories of depression, low authoritative parenting predicted a blunted FN. Observed maternal positive parenting interacted with paternal depression in a comparable manner, indicating that maternal parenting may buffer the effects of paternal depression. Early parenting may be important in shaping the neural systems involved in reward processing among children at high risk for depression. PMID:26167423

  5. Low carbohydrate diets may increase risk of neural tube defects.

    PubMed

    Desrosiers, Tania A; Siega-Riz, Anna Maria; Mosley, Bridget S; Meyer, Robert E

    2018-01-25

    Folic acid fortification significantly reduced the prevalence of neural tube defects (NTDs) in the United States. The popularity of "low carb" diets raises concern that women who intentionally avoid carbohydrates, thereby consuming fewer fortified foods, may not have adequate dietary intake of folic acid. To assess the association between carbohydrate intake and NTDs, we analyzed data from the National Birth Defects Prevention Study from 1,740 mothers of infants, stillbirths, and terminations with anencephaly or spina bifida (cases), and 9,545 mothers of live born infants without a birth defect (controls) conceived between 1998 and 2011. Carbohydrate and folic acid intake before conception were estimated from food frequency questionnaire responses. Restricted carbohydrate intake was defined as ≤5th percentile among controls. Odds ratios were estimated with logistic regression and adjusted for maternal race/ethnicity, education, alcohol use, folic acid supplement use, study center, and caloric intake. Mean dietary intake of folic acid among women with restricted carbohydrate intake was less than half that of other women (p < .01), and women with restricted carbohydrate intake were slightly more likely to have an infant with an NTD (AOR = 1.30, 95% CI: 1.02, 1.67). This is the first study to examine the association between carbohydrate intake and NTDs among pregnancies conceived postfortification. We found that women with restricted carbohydrate intake were 30% more likely to have an infant with anencephaly or spina bifida. However, more research is needed to understand the pathways by which restricted carbohydrate intake might increase the risk of NTDs. © 2018 Wiley Periodicals, Inc.

  6. Depicting mass flow rate of R134a /LPG refrigerant through straight and helical coiled adiabatic capillary tubes of vapor compression refrigeration system using artificial neural network approach

    NASA Astrophysics Data System (ADS)

    Gill, Jatinder; Singh, Jagdev

    2018-07-01

    In this work, an experimental investigation is carried out with R134a and LPG refrigerant mixture for depicting mass flow rate through straight and helical coil adiabatic capillary tubes in a vapor compression refrigeration system. Various experiments were conducted under steady-state conditions, by changing capillary tube length, inner diameter, coil diameter and degree of subcooling. The results showed that mass flow rate through helical coil capillary tube was found lower than straight capillary tube by about 5-16%. Dimensionless correlation and Artificial Neural Network (ANN) models were developed to predict mass flow rate. It was found that dimensionless correlation and ANN model predictions agreed well with experimental results and brought out an absolute fraction of variance of 0.961 and 0.988, root mean square error of 0.489 and 0.275 and mean absolute percentage error of 4.75% and 2.31% respectively. The results suggested that ANN model shows better statistical prediction than dimensionless correlation model.

  7. PSO/ACO algorithm-based risk assessment of human neural tube defects in Heshun County, China.

    PubMed

    Liao, Yi Lan; Wang, Jin Feng; Wu, Ji Lei; Wang, Jiao Jiao; Zheng, Xiao Ying

    2012-10-01

    To develop a new technique for assessing the risk of birth defects, which are a major cause of infant mortality and disability in many parts of the world. The region of interest in this study was Heshun County, the county in China with the highest rate of neural tube defects (NTDs). A hybrid particle swarm optimization/ant colony optimization (PSO/ACO) algorithm was used to quantify the probability of NTDs occurring at villages with no births. The hybrid PSO/ACO algorithm is a form of artificial intelligence adapted for hierarchical classification. It is a powerful technique for modeling complex problems involving impacts of causes. The algorithm was easy to apply, with the accuracy of the results being 69.5%±7.02% at the 95% confidence level. The proposed method is simple to apply, has acceptable fault tolerance, and greatly enhances the accuracy of calculations. Copyright © 2012 The Editorial Board of Biomedical and Environmental Sciences. Published by Elsevier B.V. All rights reserved.

  8. The development of the neural crest in the human

    PubMed Central

    O’Rahilly, Ronan; Müller, Fabiola

    2007-01-01

    The first systematic account of the neural crest in the human has been prepared after an investigation of 185 serially sectioned staged embryos, aided by graphic reconstructions. As many as fourteen named topographical subdivisions of the crest were identified and eight of them give origin to ganglia (Table 2). Significant findings in the human include the following. (1) An indication of mesencephalic neural crest is discernible already at stage 9, and trigeminal, facial, and postotic components can be detected at stage 10. (2) Crest was not observed at the level of diencephalon 2. Although pre-otic crest from the neural folds is at first continuous (stage 10), crest-free zones are soon observable (stage 11) in Rh.1, 3, and 5. (3) Emigration of cranial neural crest from the neural folds at the neurosomatic junction begins before closure of the rostral neuropore, and later crest cells do not accumulate above the neural tube. (4) The trigeminal, facial, glossopharyngeal and vagal ganglia, which develop from crest that emigrates before the neural folds have fused, continue to receive contributions from the roof plate of the neural tube after fusion of the folds. (5) The nasal crest and the terminalis-vomeronasal complex are the last components of the cranial crest to appear (at stage 13) and they persist longer. (6) The optic, mesencephalic, isthmic, accessory, and hypoglossal crest do not form ganglia. Cervical ganglion 1 is separated early from the neural crest and is not a Froriep ganglion. (7) The cranial ganglia derived from neural crest show a specific relationship to individual neuromeres, and rhombomeres are better landmarks than the otic primordium, which descends during stages 9–14. (8) Epipharyngeal placodes of the pharyngeal arches contribute to cranial ganglia, although that of arch 1 is not typical. (9) The neural crest from rhombomeres 6 and 7 that migrates to pharyngeal arch 3 and from there rostrad to the truncus arteriosus at stage 12 is identified

  9. Mediterranean diet, folic acid, and neural tube defects.

    PubMed

    Fischer, Maximilian; Stronati, Mauro; Lanari, Marcello

    2017-08-17

    The Mediterranean diet has been for a very long time the basis of food habits all over the countries of the Mediterranean basin, originally founded on rural models and low consumption of meat products and high-fat/high-processed foods. However, in the modern era, the traditional Mediterranean diet pattern is now progressively eroding due to the widespread dissemination of the Western-type economy, life-style, technology-driven culture, as well as the globalisation of food production, availability and consumption, with consequent homogenisation of food culture and behaviours. This transition process may affect many situations, including pregnancy and offspring's health. The problem of the diet during pregnancy and the proper intake of nutrients are nowadays a very current topic, arousing much debate. The Mediterranean dietary pattern, in particular, has been associated with the highest risk reduction of major congenital anomalies, like the heterogeneous class of neural tube defects (NTDs). NTDs constitute a major health burden (0.5-2/1000 pregnancies worldwide) and still remain a preventable cause of still birth, neonatal and infant death, or significant lifelong disabilities. Many studies support the finding that appropriate folate levels during pregnancy may confer protection against these diseases. In 1991 one randomised controlled trial (RCT) demonstrated for the first time that periconceptional supplementation of folic acid is able to prevent the recurrence of NTDs, finding confirmed by many other subsequent studies. Anyway, the high rate of unplanned/unintended pregnancies and births and other issues hindering the achievement of adequate folate levels in women in childbearing age, induced the US government and many other countries to institute mandatory food fortification with folic acid. The actual strategy adopted by European Countries (including Italy) suggests that women take 0,4 mg folic acid/die before conception. The main question is which intervention

  10. Neural transcription factors bias cleavage stage blastomeres to give rise to neural ectoderm

    PubMed Central

    Gaur, Shailly; Mandelbaum, Max; Herold, Mona; Majumdar, Himani Datta; Neilson, Karen M.; Maynard, Thomas M.; Mood, Kathy; Daar, Ira O.; Moody, Sally A.

    2016-01-01

    The decision by embryonic ectoderm to give rise to epidermal versus neural derivatives is the result of signaling events during blastula and gastrula stages. However, there also is evidence in Xenopus that cleavage stage blastomeres contain maternally derived molecules that bias them toward a neural fate. We used a blastomere explant culture assay to test whether maternally deposited transcription factors bias 16-cell blastomere precursors of epidermal or neural ectoderm to express early zygotic neural genes in the absence of gastrulation interactions or exogenously supplied signaling factors. We found that Foxd4l1, Zic2, Gmnn and Sox11 each induced explants made from ventral, epidermis-producing blastomeres to express early neural genes, and that at least some of the Foxd4l1 and Zic2 activity is required at cleavage stages. Similarly, providing extra Foxd4l1 or Zic2 to explants made from dorsal, neural plate-producing blastomeres significantly increased expression of early neural genes, whereas knocking down either significantly reduced them. These results show that maternally delivered transcription factors bias cleavage stage blastomeres to a neural fate. We demonstrate that mouse and human homologues of Foxd4l1 have similar functional domains compared to the frog protein, as well as conserved transcriptional activities when expressed in Xenopus embryos and blastomere explants. PMID:27092474

  11. E-nose based rapid prediction of early mouldy grain using probabilistic neural networks

    PubMed Central

    Ying, Xiaoguo; Liu, Wei; Hui, Guohua; Fu, Jun

    2015-01-01

    In this paper, early mouldy grain rapid prediction method using probabilistic neural network (PNN) and electronic nose (e-nose) was studied. E-nose responses to rice, red bean, and oat samples with different qualities were measured and recorded. E-nose data was analyzed using principal component analysis (PCA), back propagation (BP) network, and PNN, respectively. Results indicated that PCA and BP network could not clearly discriminate grain samples with different mouldy status and showed poor predicting accuracy. PNN showed satisfying discriminating abilities to grain samples with an accuracy of 93.75%. E-nose combined with PNN is effective for early mouldy grain prediction. PMID:25714125

  12. AmphiPax3/7, an amphioxus paired box gene: insights into chordate myogenesis, neurogenesis, and the possible evolutionary precursor of definitive vertebrate neural crest.

    PubMed

    Holland, L Z; Schubert, M; Kozmik, Z; Holland, N D

    1999-01-01

    Amphioxus probably has only a single gene (AmphiPax3/7) in the Pax3/7 subfamily. Like its vertebrate homologs (Pax3 and Pax7), amphioxus AmphiPax3/7 is probably involved in specifying the axial musculature and muscularized notochord. During nervous system development, AmphiPax3/7 is first expressed in bilateral anteroposterior stripes along the edges of the neural plate. This early neural expression may be comparable to the transcription of Pax3 and Pax7 in some of the anterior neural crest cells of vertebrates. Previous studies by others and ourselves have demonstrated that several genes homologous to genetic markers for vertebrate neural crest are expressed along the neural plate-epidermis boundary in embryos of tunicates and amphioxus. Taken together, the early neural expression patterns of AmphiPax3/7 and other neural crest markers of amphioxus and tunicates suggest that cell populations that eventually gave rise to definitive vertebrate neural crest may have been present in ancestral invertebrate chordates. During later neurogenesis in amphioxus, AmphiPax3/7, like its vertebrate homologs, is expressed dorsally and dorsolaterally in the neural tube and may be involved in dorsoventral patterning. However, unlike its vertebrate homologs, AmphiPax3/7 is expressed only at the anterior end of the central nervous system instead of along much of the neuraxis; this amphioxus pattern may represent the loss of a primitive chordate character.

  13. Fetoscopic Open Neural Tube Defect Repair: Development and Refinement of a Two-Port, Carbon Dioxide Insufflation Technique.

    PubMed

    Belfort, Michael A; Whitehead, William E; Shamshirsaz, Alireza A; Bateni, Zhoobin H; Olutoye, Oluyinka O; Olutoye, Olutoyin A; Mann, David G; Espinoza, Jimmy; Williams, Erin; Lee, Timothy C; Keswani, Sundeep G; Ayres, Nancy; Cassady, Christopher I; Mehollin-Ray, Amy R; Sanz Cortes, Magdalena; Carreras, Elena; Peiro, Jose L; Ruano, Rodrigo; Cass, Darrell L

    2017-04-01

    To describe development of a two-port fetoscopic technique for spina bifida repair in the exteriorized, carbon dioxide-filled uterus and report early results of two cohorts of patients: the first 15 treated with an iterative technique and the latter 13 with a standardized technique. This was a retrospective cohort study (2014-2016). All patients met Management of Myelomeningocele Study selection criteria. The intraoperative approach was iterative in the first 15 patients and was then standardized. Obstetric, maternal, fetal, and early neonatal outcomes were compared. Standard parametric and nonparametric tests were used as appropriate. Data for 28 patients (22 endoscopic only, four hybrid, two abandoned) are reported, but only those with a complete fetoscopic repair were analyzed (iterative technique [n=10] compared with standardized technique [n=12]). Maternal demographics and gestational age (median [range]) at fetal surgery (25.4 [22.9-25.9] compared with 24.8 [24-25.6] weeks) were similar, but delivery occurred at 35.9 (26-39) weeks of gestation with the iterative technique compared with 39 (35.9-40) weeks of gestation with the standardized technique (P<.01). Duration of surgery (267 [107-434] compared with 246 [206-333] minutes), complication rates, preterm prelabor rupture of membranes rates (4/12 [33%] compared with 1/10 [10%]), and vaginal delivery rates (5/12 [42%] compared with 6/10 [60%]) were not statistically different in the iterative and standardized techniques, respectively. In 6 of 12 (50%) compared with 1 of 10 (10%), respectively (P=.07), there was leakage of cerebrospinal fluid from the repair site at birth. Management of Myelomeningocele Study criteria for hydrocephalus-death at discharge were met in 9 of 12 (75%) and 3 of 10 (30%), respectively, and 7 of 12 (58%) compared with 2 of 10 (20%) have been treated for hydrocephalus to date. These latter differences were not statistically significant. Fetoscopic open neural tube defect repair does

  14. Periconceptional nutrient intakes and risks of neural tube defects in California.

    PubMed

    Carmichael, Suzan L; Yang, Wei; Shaw, Gary M

    2010-08-01

    This study investigated the association of neural tube defects (NTDs) with maternal periconceptional intake of folic acid-containing supplements and dietary nutrients, including folate, among deliveries that occurred after folic acid fortification in selected California counties. The population-based case-control study included fetuses and live born infants with spina bifida (189) or anencephaly (141) and 625 nonmalformed, live born controls delivered from 1999 to 2003. Mothers reported supplement use during telephone interviews, which included a 107-item food frequency questionnaire. For dietary nutrients, intakes <25th, 25th to <75th (reference), and > or =75th percentile were compared, based on control distributions. After adjustment for potential confounders, any versus no supplement intake resulted in ORs of 0.8 (95% CI, 0.5-1.3) for anencephaly and 0.8 (95% CI, 0.6-1.2) for spina bifida. After stratification by maternal intake of vitamin supplements, most factors in the glycemic pathway were not associated with either NTD, with the exception of low levels of fructose and glucose that were significantly associated with anencephaly. Some nutrients that contribute to one-carbon metabolism showed lowered risks (folate, riboflavin, vitamins B(6) and B(12)); others did not (choline, methionine, zinc). Antioxidant nutrients tended to be associated with lowered risks (vitamins C, E, A, beta-carotene, lutein). Mothers' intake of vitamin supplements was modestly if at all associated with a lowered risk of NTDs. Dietary intake of several nutrients contributing to one-carbon metabolism and oxidative stress were associated with reduced NTD risk.

  15. Sip1 mediates an E-cadherin-to-N-cadherin switch during cranial neural crest EMT

    PubMed Central

    Rogers, Crystal D.; Saxena, Ankur

    2013-01-01

    The neural crest, an embryonic stem cell population, initially resides within the dorsal neural tube but subsequently undergoes an epithelial-to-mesenchymal transition (EMT) to commence migration. Although neural crest and cancer EMTs are morphologically similar, little is known regarding conservation of their underlying molecular mechanisms. We report that Sip1, which is involved in cancer EMT, plays a critical role in promoting the neural crest cell transition to a mesenchymal state. Sip1 transcripts are expressed in premigratory/migrating crest cells. After Sip1 loss, the neural crest specifier gene FoxD3 was abnormally retained in the dorsal neuroepithelium, whereas Sox10, which is normally required for emigration, was diminished. Subsequently, clumps of adherent neural crest cells remained adjacent to the neural tube and aberrantly expressed E-cadherin while lacking N-cadherin. These findings demonstrate two distinct phases of neural crest EMT, detachment and mesenchymalization, with the latter involving a novel requirement for Sip1 in regulation of cadherin expression during completion of neural crest EMT. PMID:24297751

  16. The roof plate boundary is a bi-directional organiser of dorsal neural tube and choroid plexus development.

    PubMed

    Broom, Emma R; Gilthorpe, Jonathan D; Butts, Thomas; Campo-Paysaa, Florent; Wingate, Richard J T

    2012-11-01

    The roof plate is a signalling centre positioned at the dorsal midline of the central nervous system and generates dorsalising morphogenic signals along the length of the neuraxis. Within cranial ventricles, the roof plate gives rise to choroid plexus, which regulates the internal environment of the developing and adult brain and spinal cord via the secretion of cerebrospinal fluid. Using the fourth ventricle as our model, we show that the organiser properties of the roof plate are determined by its boundaries with the adjacent neuroepithelium. Through a combination of in ovo transplantation, co-culture and electroporation techniques in chick embryos between embryonic days 3 and 6, we demonstrate that organiser properties are maintained by interactions between the non-neural roof plate and the neural rhombic lip. At the molecular level, this interaction is mediated by Delta-Notch signalling and upregulation of the chick homologue of Hes1: chairy2. Gain- and loss-of-function approaches reveal that cdelta1 is both necessary and sufficient for organiser function. Our results also demonstrate that while chairy2 is specifically required for the maintenance of the organiser, its ectopic expression is not sufficient to recapitulate organiser properties. Expression of atonal1 in the rhombic lip adjacent at the roof plate boundary is acutely dependent on both boundary cell interactions and Delta-Notch signalling. Correspondingly, the roof plate boundary organiser also signals to the roof plate itself to specify the expression of early choroid plexus markers. Thus, the roof plate boundary organiser signals bi-directionally to acutely coordinate the development of adjacent neural and non-neural tissues.

  17. Neural Basis of Brain Dysfunction Produced by Early Sleep Problems.

    PubMed

    Kohyama, Jun

    2016-01-29

    There is a wealth of evidence that disrupted sleep and circadian rhythms, which are common in modern society even during the early stages of life, have unfavorable effects on brain function. Altered brain function can cause problem behaviors later in life, such as truancy from or dropping out of school, quitting employment, and committing suicide. In this review, we discuss findings from several large cohort studies together with recent results of a cohort study using the marshmallow test, which was first introduced in the 1960s. This test assessed the ability of four-year-olds to delay gratification and showed how this ability correlated with success later in life. The role of the serotonergic system in sleep and how this role changes with age are also discussed. The serotonergic system is involved in reward processing and interactions with the dorsal striatum, ventral striatum, and the prefrontal cortex are thought to comprise the neural basis for behavioral patterns that are affected by the quantity, quality, and timing of sleep early in life.

  18. Abnormal neural precursor cell regulation in the early postnatal Fragile X mouse hippocampus.

    PubMed

    Sourial, Mary; Doering, Laurie C

    2017-07-01

    The regulation of neural precursor cells (NPCs) is indispensable for a properly functioning brain. Abnormalities in NPC proliferation, differentiation, survival, or integration have been linked to various neurological diseases including Fragile X syndrome. Yet, no studies have examined NPCs from the early postnatal Fragile X mouse hippocampus despite the importance of this developmental time point, which marks the highest expression level of FMRP, the protein missing in Fragile X, in the rodent hippocampus and is when hippocampal NPCs have migrated to the dentate gyrus (DG) to give rise to lifelong neurogenesis. In this study, we examined NPCs from the early postnatal hippocampus and DG of Fragile X mice (Fmr1-KO). Immunocytochemistry on neurospheres showed increased Nestin expression and decreased Ki67 expression, which collectively indicated aberrant NPC biology. Intriguingly, flow cytometric analysis of the expression of the antigens CD15, CD24, CD133, GLAST, and PSA-NCAM showed a decreased proportion of neural stem cells (GLAST + CD15 + CD133 + ) and an increased proportion of neuroblasts (PSA-NCAM + CD15 + ) in the DG of P7 Fmr1-KO mice. This was mirrored by lower expression levels of Nestin and the mitotic marker phospho-histone H3 in vivo in the P9 hippocampus, as well as a decreased proportion of cells in the G 2 /M phases of the P7 DG. Thus, the absence of FMRP leads to fewer actively cycling NPCs, coinciding with a decrease in neural stem cells and an increase in neuroblasts. Together, these results show the importance of FMRP in the developing hippocampal formation and suggest abnormalities in cell cycle regulation in Fragile X. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  19. Selective and Efficient Neural Coding of Communication Signals Depends on Early Acoustic and Social Environment

    PubMed Central

    Amin, Noopur; Gastpar, Michael; Theunissen, Frédéric E.

    2013-01-01

    Previous research has shown that postnatal exposure to simple, synthetic sounds can affect the sound representation in the auditory cortex as reflected by changes in the tonotopic map or other relatively simple tuning properties, such as AM tuning. However, their functional implications for neural processing in the generation of ethologically-based perception remain unexplored. Here we examined the effects of noise-rearing and social isolation on the neural processing of communication sounds such as species-specific song, in the primary auditory cortex analog of adult zebra finches. Our electrophysiological recordings reveal that neural tuning to simple frequency-based synthetic sounds is initially established in all the laminae independent of patterned acoustic experience; however, we provide the first evidence that early exposure to patterned sound statistics, such as those found in native sounds, is required for the subsequent emergence of neural selectivity for complex vocalizations and for shaping neural spiking precision in superficial and deep cortical laminae, and for creating efficient neural representations of song and a less redundant ensemble code in all the laminae. Our study also provides the first causal evidence for ‘sparse coding’, such that when the statistics of the stimuli were changed during rearing, as in noise-rearing, that the sparse or optimal representation for species-specific vocalizations disappeared. Taken together, these results imply that a layer-specific differential development of the auditory cortex requires patterned acoustic input, and a specialized and robust sensory representation of complex communication sounds in the auditory cortex requires a rich acoustic and social environment. PMID:23630587

  20. Assessment of the developmental totipotency of neural cells in the cerebral cortex of mouse embryo by nuclear transfer

    PubMed Central

    Yamazaki, Yukiko; Makino, Hatsune; Hamaguchi-Hamada, Kayoko; Hamada, Shun; Sugino, Hidehiko; Kawase, Eihachiro; Miyata, Takaki; Ogawa, Masaharu; Yanagimachi, Ryuzo; Yagi, Takeshi

    2001-01-01

    When neural cells were collected from the entire cerebral cortex of developing mouse fetuses (15.5–17.5 days postcoitum) and their nuclei were transferred into enucleated oocytes, 5.5% of the reconstructed oocytes developed into normal offspring. This success rate was the highest among all previous mouse cloning experiments that used somatic cells. Forty-four percent of live embryos at 10.5 days postcoitum were morphologically normal when premature and early-postmitotic neural cells from the ventricular side of the cortex were used. In contrast, the majority (95%) of embryos were morphologically abnormal (including structural abnormalities in the neural tube) when postmitotic-differentiated neurons from the pial side of the cortex were used for cloning. Whereas 4.3% of embryos cloned with ventricular-side cells developed into healthy offspring, only 0.5% of those cloned with differentiated neurons in the pial side did so. These facts seem to suggest that the nuclei of neural cells in advanced stages of differentiation had lost their developmental totipotency. The underlying mechanism for this developmental limitation could be somatic DNA rearrangements in differentiating neural cells. PMID:11698647

  1. Deep Convolutional Neural Network-Based Early Automated Detection of Diabetic Retinopathy Using Fundus Image.

    PubMed

    Xu, Kele; Feng, Dawei; Mi, Haibo

    2017-11-23

    The automatic detection of diabetic retinopathy is of vital importance, as it is the main cause of irreversible vision loss in the working-age population in the developed world. The early detection of diabetic retinopathy occurrence can be very helpful for clinical treatment; although several different feature extraction approaches have been proposed, the classification task for retinal images is still tedious even for those trained clinicians. Recently, deep convolutional neural networks have manifested superior performance in image classification compared to previous handcrafted feature-based image classification methods. Thus, in this paper, we explored the use of deep convolutional neural network methodology for the automatic classification of diabetic retinopathy using color fundus image, and obtained an accuracy of 94.5% on our dataset, outperforming the results obtained by using classical approaches.

  2. Semiconductor Nanomembrane Tubes: Three-Dimensional Confinement for Controlled Neurite Outgrowth

    PubMed Central

    Yu, Minrui; Huang, Yu; Ballweg, Jason; Shin, Hyuncheol; Huang, Minghuang; Savage, Donald E.; Lagally, Max G.; Dent, Erik W.; Blick, Robert H.; Williams, Justin C.

    2013-01-01

    In many neural culture studies, neurite migration on a flat, open surface does not reflect the three-dimensional (3D) microenvironment in vivo. With that in mind, we fabricated arrays of semiconductor tubes using strained silicon (Si) and germanium (Ge) nanomembranes and employed them as a cell culture substrate for primary cortical neurons. Our experiments show that the SiGe substrate and the tube fabrication process are biologically viable for neuron cells. We also observe that neurons are attracted by the tube topography, even in the absence of adhesion factors, and can be guided to pass through the tubes during outgrowth. Coupled with selective seeding of individual neurons close to the tube opening, growth within a tube can be limited to a single axon. Furthermore, the tube feature resembles the natural myelin, both physically and electrically, and it is possible to control the tube diameter to be close to that of an axon, providing a confined 3D contact with the axon membrane and potentially insulating it from the extracellular solution. PMID:21366271

  3. Clinical outcomes of endoscopic submucosal dissection for early gastric cancer in remnant stomach or gastric tube.

    PubMed

    Nishide, N; Ono, H; Kakushima, N; Takizawa, K; Tanaka, M; Matsubayashi, H; Yamaguchi, Y

    2012-06-01

    Little information exists regarding the optimal treatment of early gastric cancer (EGC) in a remnant stomach or gastric tube. The aim of this study was to assess the feasibility and clinical outcomes of endoscopic submucosal dissection (ESD) for EGC in a remnant stomach and gastric tube. Between September 2002 and December 2009, ESD was performed in 62 lesions in 59 patients with EGC in a remnant stomach (48 lesions) or gastric tube (14 lesions). Clinicopathological data were retrieved retrospectively to assess the en bloc resection rate, complications, and outcomes. Treatment results were assessed according to the indications for endoscopic resection, and were compared with those of ESD performed in a whole stomach during the same study period. The en bloc resection rates for lesions within the standard and expanded indication were 100 % and 93 %, respectively. Postoperative bleeding occurred in five patients (8 %). The perforation rate was significantly higher (18 %, 11 /62) than that of ESD in a whole stomach (5 %, 69 /1479). Among the perforation cases, eight lesions involved the anastomotic site or stump line, and ulcerative changes were observed in five lesions. The 3-year overall survival rate was 85 %, with eight deaths due to other causes and no deaths from gastric cancer. A high en bloc resection rate was achieved by ESD for EGC in a remnant stomach or gastric tube; however, this procedure is still technically demanding due to the high complication rate of perforation. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Histone deacetylase 1 and 2 are essential for murine neural crest proliferation, pharyngeal arch development, and craniofacial morphogenesis.

    PubMed

    Milstone, Zachary J; Lawson, Grace; Trivedi, Chinmay M

    2017-12-01

    Craniofacial anomalies involve defective pharyngeal arch development and neural crest function. Copy number variation at 1p35, containing histone deacetylase 1 (Hdac1), or 6q21-22, containing Hdac2, are implicated in patients with craniofacial defects, suggesting an important role in guiding neural crest development. However, the roles of Hdac1 and Hdac2 within neural crest cells remain unknown. The neural crest and its derivatives express both Hdac1 and Hdac2 during early murine development. Ablation of Hdac1 and Hdac2 within murine neural crest progenitor cells cause severe hemorrhage, atrophic pharyngeal arches, defective head morphogenesis, and complete embryonic lethality. Embryos lacking Hdac1 and Hdac2 in the neural crest exhibit decreased proliferation and increased apoptosis in both the neural tube and the first pharyngeal arch. Mechanistically, loss of Hdac1 and Hdac2 upregulates cyclin-dependent kinase inhibitors Cdkn1a, Cdkn1b, Cdkn1c, Cdkn2b, Cdkn2c, and Tp53 within the first pharyngeal arch. Our results show that Hdac1 and Hdac2 function redundantly within the neural crest to regulate proliferation and the development of the pharyngeal arches by means of repression of cyclin-dependent kinase inhibitors. Developmental Dynamics 246:1015-1026, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. White spotting phenotype induced by targeted REST disruption during neural crest specification to a melanocyte cell lineage.

    PubMed

    Aoki, Hitomi; Hara, Akira; Kunisada, Takahiro

    2015-05-01

    Neural crest cells (NCCs) emerge from the dorsal region of the neural tube of vertebrate embryos and have the pluripotency to differentiate into both neuronal and non-neuronal lineages including melanocytes. Rest, also known as NRSF (neuro-restrictive silencer factor), is a regulator of neuronal development and function and suggested to be involved in the lineage specification of NCCs. However, further investigations of Rest gene functions in vivo have been hampered by the fact that Rest null mice show early embryonic lethality. To investigate the function of Rest in NCC development, we recently established NCC-specific Rest conditional knockout (CKO) mice and observed their neonatal death. Here, we have established viable heterozygous NCC-specific Rest CKO mice to analyze the function of Rest in an NCC-derived melanocyte cell lineage and found that the white spotting phenotype was associated with the reduction in the number of melanoblasts in the embryonic skin. The Rest deletion induced after the specification to melanocytes did not reduce the number of melanoblasts; therefore, the expression of REST during the early neural crest specification stage was necessary for the normal development of melanoblasts to cover all of the skin. © 2015 The Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.

  6. Inositol- and folate-resistant neural tube defects in mice lacking the epithelial-specific factor Grhl-3.

    PubMed

    Ting, Stephen B; Wilanowski, Tomasz; Auden, Alana; Hall, Mark; Voss, Anne K; Thomas, Tim; Parekh, Vishwas; Cunningham, John M; Jane, Stephen M

    2003-12-01

    The neural tube defects (NTDs) spina bifida and anencephaly are widely prevalent severe birth defects. The mouse mutant curly tail (ct/ct) has served as a model of NTDs for 50 years, even though the responsible genetic defect remained unrecognized. Here we show by gene targeting, mapping and genetic complementation studies that a mouse homolog of the Drosophila grainyhead (grh) gene, grainyhead-like-3 (Grhl3), is a compelling candidate for the gene underlying the curly tail phenotype. The NTDs in Grhl3-null mice are more severe than those in the curly tail strain, as the Grhl3 alleles in ct/ct mice are hypomorphic. Spina bifida in ct/ct mice is folate resistant, but its incidence can be markedly reduced by maternal inositol supplementation periconceptually. The NTDs in Grhl3-/- embryos are also folate resistant, but unlike those in ct/ct mice, they are resistant to inositol. These findings suggest that residual Grhl3 expression in ct/ct mice may be required for inositol rescue of folate-resistant NTDs.

  7. Management of abnormal serum markers in the absence of aneuploidy or neural tube defects

    PubMed Central

    Schnettler, William T.; Hacker, Michele R.; Barber, Rachel E.; Rana, Sarosh

    2013-01-01

    Objective Few guidelines address the management of pregnancies complicated by abnormal maternal serum analytes (MSAs) in the absence of aneuploidy or neural tube defects (NTDs). Our objective was to gather preliminary data regarding current opinions and management strategies among perinatologists in the US. Methods This survey of Maternal Fetal Medicine (MFM) physicians and fellows used a secure electronic web-based data capture tool. Results A total of 545 potential participants were contacted, and 136 (25%) responded. The majority were experienced academic physicians with robust practices. Nearly all (97.7%) respondents reported a belief in an association between abnormal MSAs and adverse pregnancy outcomes other than aneuploidy or NTDs. Plasma protein A (PAPP-A) and α-fetoprotein (AFP) were most often chosen as markers demonstrating a strong association with adverse outcomes. Most (86.9%) respondents acknowledged that abnormal MSAs influenced their counseling approach, and the majority (80.1%) offered additional ultrasound examinations. Nearly half started at 28 weeks and almost one-third at 32 weeks. Respondents acknowledging a relevant protocol in their hospital or practice were more likely to offer additional antenatal testing (p = 0.01). Conclusions Although most perinatologists were in agreement regarding the association of MSAs with adverse pregnancy outcomes, a lack of consensus exists regarding management strategies. PMID:22372385

  8. The roof plate boundary is a bi-directional organiser of dorsal neural tube and choroid plexus development

    PubMed Central

    Broom, Emma R.; Gilthorpe, Jonathan D.; Butts, Thomas; Campo-Paysaa, Florent; Wingate, Richard J. T.

    2012-01-01

    The roof plate is a signalling centre positioned at the dorsal midline of the central nervous system and generates dorsalising morphogenic signals along the length of the neuraxis. Within cranial ventricles, the roof plate gives rise to choroid plexus, which regulates the internal environment of the developing and adult brain and spinal cord via the secretion of cerebrospinal fluid. Using the fourth ventricle as our model, we show that the organiser properties of the roof plate are determined by its boundaries with the adjacent neuroepithelium. Through a combination of in ovo transplantation, co-culture and electroporation techniques in chick embryos between embryonic days 3 and 6, we demonstrate that organiser properties are maintained by interactions between the non-neural roof plate and the neural rhombic lip. At the molecular level, this interaction is mediated by Delta-Notch signalling and upregulation of the chick homologue of Hes1: chairy2. Gain- and loss-of-function approaches reveal that cdelta1 is both necessary and sufficient for organiser function. Our results also demonstrate that while chairy2 is specifically required for the maintenance of the organiser, its ectopic expression is not sufficient to recapitulate organiser properties. Expression of atonal1 in the rhombic lip adjacent at the roof plate boundary is acutely dependent on both boundary cell interactions and Delta-Notch signalling. Correspondingly, the roof plate boundary organiser also signals to the roof plate itself to specify the expression of early choroid plexus markers. Thus, the roof plate boundary organiser signals bi-directionally to acutely coordinate the development of adjacent neural and non-neural tissues. PMID:23052907

  9. Neural correlates of audiotactile phonetic processing in early-blind readers: an fMRI study.

    PubMed

    Pishnamazi, Morteza; Nojaba, Yasaman; Ganjgahi, Habib; Amousoltani, Asie; Oghabian, Mohammad Ali

    2016-05-01

    Reading is a multisensory function that relies on arbitrary associations between auditory speech sounds and symbols from a second modality. Studies of bimodal phonetic perception have mostly investigated the integration of visual letters and speech sounds. Blind readers perform an analogous task by using tactile Braille letters instead of visual letters. The neural underpinnings of audiotactile phonetic processing have not been studied before. We used functional magnetic resonance imaging to reveal the neural correlates of audiotactile phonetic processing in 16 early-blind Braille readers. Braille letters and corresponding speech sounds were presented in unimodal, and congruent/incongruent bimodal configurations. We also used a behavioral task to measure the speed of blind readers in identifying letters presented via tactile and/or auditory modalities. Reaction times for tactile stimuli were faster. The reaction times for bimodal stimuli were equal to those for the slower auditory-only stimuli. fMRI analyses revealed the convergence of unimodal auditory and unimodal tactile responses in areas of the right precentral gyrus and bilateral crus I of the cerebellum. The left and right planum temporale fulfilled the 'max criterion' for bimodal integration, but activities of these areas were not sensitive to the phonetical congruency between sounds and Braille letters. Nevertheless, congruency effects were found in regions of frontal lobe and cerebellum. Our findings suggest that, unlike sighted readers who are assumed to have amodal phonetic representations, blind readers probably process letters and sounds separately. We discuss that this distinction might be due to mal-development of multisensory neural circuits in early blinds or it might be due to inherent differences between Braille and print reading mechanisms.

  10. Comprehensive Cell-specific Protein Analysis in Early and Late Pollen Development from Diploid Microsporocytes to Pollen Tube Growth*

    PubMed Central

    Ischebeck, Till; Valledor, Luis; Lyon, David; Gingl, Stephanie; Nagler, Matthias; Meijón, Mónica; Egelhofer, Volker; Weckwerth, Wolfram

    2014-01-01

    Pollen development in angiosperms is one of the most important processes controlling plant reproduction and thus productivity. At the same time, pollen development is highly sensitive to environmental fluctuations, including temperature, drought, and nutrition. Therefore, pollen biology is a major focus in applied studies and breeding approaches for improving plant productivity in a globally changing climate. The most accessible developmental stages of pollen are the mature pollen and the pollen tubes, and these are thus most frequently analyzed. To reveal a complete quantitative proteome map, we additionally addressed the very early stages, analyzing eight stages of tobacco pollen development: diploid microsporocytes, meiosis, tetrads, microspores, polarized microspores, bipolar pollen, desiccated pollen, and pollen tubes. A protocol for the isolation of the early stages was established. Proteins were extracted and analyzed by means of a new gel LC-MS fractionation protocol. In total, 3817 protein groups were identified. Quantitative analysis was performed based on peptide count. Exceedingly stage-specific differential protein regulation was observed during the conversion from the sporophytic to the gametophytic proteome. A map of highly specialized functionality for the different stages could be revealed from the metabolic activity and pronounced differentiation of proteasomal and ribosomal protein complex composition up to protective mechanisms such as high levels of heat shock proteins in the very early stages of development. PMID:24078888

  11. Comprehensive cell-specific protein analysis in early and late pollen development from diploid microsporocytes to pollen tube growth.

    PubMed

    Ischebeck, Till; Valledor, Luis; Lyon, David; Gingl, Stephanie; Nagler, Matthias; Meijón, Mónica; Egelhofer, Volker; Weckwerth, Wolfram

    2014-01-01

    Pollen development in angiosperms is one of the most important processes controlling plant reproduction and thus productivity. At the same time, pollen development is highly sensitive to environmental fluctuations, including temperature, drought, and nutrition. Therefore, pollen biology is a major focus in applied studies and breeding approaches for improving plant productivity in a globally changing climate. The most accessible developmental stages of pollen are the mature pollen and the pollen tubes, and these are thus most frequently analyzed. To reveal a complete quantitative proteome map, we additionally addressed the very early stages, analyzing eight stages of tobacco pollen development: diploid microsporocytes, meiosis, tetrads, microspores, polarized microspores, bipolar pollen, desiccated pollen, and pollen tubes. A protocol for the isolation of the early stages was established. Proteins were extracted and analyzed by means of a new gel LC-MS fractionation protocol. In total, 3817 protein groups were identified. Quantitative analysis was performed based on peptide count. Exceedingly stage-specific differential protein regulation was observed during the conversion from the sporophytic to the gametophytic proteome. A map of highly specialized functionality for the different stages could be revealed from the metabolic activity and pronounced differentiation of proteasomal and ribosomal protein complex composition up to protective mechanisms such as high levels of heat shock proteins in the very early stages of development.

  12. From disability to ability: comprehensive rehabilitation providing a holistic functional improvement in a child with neglected neural tube defect.

    PubMed

    Mishra, Kriti; Siddharth, V

    2017-09-25

    Neural Tube defects are one of the most common congenital disorders, presenting in a paediatric rehabilitation set-up. With its wide spectrum of clinical presentation and possible complications, the condition can significantly impact an individual's functional capacity and quality of life. The condition also affects the family of the child leaving them with a lifelong impairment to cope up with. Through this 16-year-old child, we shed light on the effects of providing rehabilitation, even at a later stage and its benefits. We also get a glimpse of difficulties in availing rehabilitation services in developing countries and the need to reach out many more neglected children like him with good functional abilities. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  13. Development of teeth in chick embryos after mouse neural crest transplantations.

    PubMed

    Mitsiadis, Thimios A; Chéraud, Yvonnick; Sharpe, Paul; Fontaine-Pérus, Josiane

    2003-05-27

    Teeth were lost in birds 70-80 million years ago. Current thinking holds that it is the avian cranial neural crest-derived mesenchyme that has lost odontogenic capacity, whereas the oral epithelium retains the signaling properties required to induce odontogenesis. To investigate the odontogenic capacity of ectomesenchyme, we have used neural tube transplantations from mice to chick embryos to replace the chick neural crest cell populations with mouse neural crest cells. The mouse/chick chimeras obtained show evidence of tooth formation showing that avian oral epithelium is able to induce a nonavian developmental program in mouse neural crest-derived mesenchymal cells.

  14. Tissue-Specific Methylation of Long Interspersed Nucleotide Element-1 of Homo Sapiens (L1Hs) During Human Embryogenesis and Roles in Neural Tube Defects.

    PubMed

    Wang, L; Chang, S; Guan, J; Shangguan, S; Lu, X; Wang, Z; Wu, L; Zou, J; Zhao, H; Bao, Y; Qiu, Z; Niu, B; Zhang, T

    2015-01-01

    Epigenetic regulation of long interspersed nucleotide element-1 (LINE-1) retrotransposition events plays crucial roles during early development. Previously we showed that LINE-1 hypomethylation in neuronal tissues is associated with pathogenesis of neural tube defect (NTD). Herein, we further evaluated LINE-1 Homo sapiens (L1Hs) methylation in tissues derived from three germ layers of stillborn NTD fetuses, to define patterns of tissue specific methylation and site-specific hypomethylation at CpG sites within an L1Hs promoter region. Stable, tissue-specific L1Hs methylation patterns throughout three germ layer lineages of the fetus, placenta, and maternal peripheral blood were observed. Samples from maternal peripheral blood exhibited the highest level of L1Hs methylation (64.95%) and that from placenta showed the lowest (26.82%). Between samples from NTDs and controls, decrease in L1Hs methylation was only significant in NTD-affected brain tissue at 7.35%, especially in females (8.98%). L1Hs hypomethylation in NTDs was also associated with a significant increase in expression level of an L1Hs-encoded transcript in females (r = -0.846, p = 0.004). This could be due to genomic DNA instability and alternation in chromatins accessibility resulted from abnormal L1Hs hypomethylation, as showed in this study with HCT-15 cells treated with methylation inhibitor 5-Aza.

  15. Confocal microlaparoscope for imaging the fallopian tube

    NASA Astrophysics Data System (ADS)

    Wu, Tzu-Yu; Rouse, Andrew R.; Chambers, Setsuko K.; Hatch, Kenneth D.; Gmitro, Arthur F.

    2014-11-01

    Recent evidence suggests that ovarian cancer can originate in the fallopian tube. Unlike many other cancers, poor access to the ovary and fallopian tubes has limited the ability to study the progression of this deadly disease and to diagnosis it during the early stage when it is most amenable to therapy. A rigid confocal microlaparoscope system designed to image the epithelial surface of the ovary in vivo was previously reported. A new confocal microlaparoscope with an articulating distal tip has been developed to enable in vivo access to human fallopian tubes. The new microlaparoscope is compatible with 5-mm trocars and includes a 2.2-mm-diameter articulating distal tip consisting of a bare fiber bundle and an automated dye delivery system for fluorescence confocal imaging. This small articulating device should enable the confocal microlaparoscope to image early stage ovarian cancer arising inside the fallopian tube. Ex vivo images of animal tissue and human fallopian tube using the new articulating device are presented along with in vivo imaging results using the rigid confocal microlaparoscope system.

  16. PSD-95 is post-transcriptionally repressed during early neural development by PTBP1 and PTBP2.

    PubMed

    Zheng, Sika; Gray, Erin E; Chawla, Geetanjali; Porse, Bo Torben; O'Dell, Thomas J; Black, Douglas L

    2012-01-15

    Postsynaptic density protein 95 (PSD-95) is essential for synaptic maturation and plasticity. Although its synaptic regulation has been widely studied, the control of PSD-95 cellular expression is not understood. We found that Psd-95 was controlled post-transcriptionally during neural development. Psd-95 was transcribed early in mouse embryonic brain, but most of its product transcripts were degraded. The polypyrimidine tract binding proteins PTBP1 and PTBP2 repressed Psd-95 (also known as Dlg4) exon 18 splicing, leading to premature translation termination and nonsense-mediated mRNA decay. The loss of first PTBP1 and then of PTBP2 during embryonic development allowed splicing of exon 18 and expression of PSD-95 late in neuronal maturation. Re-expression of PTBP1 or PTBP2 in differentiated neurons inhibited PSD-95 expression and impaired the development of glutamatergic synapses. Thus, expression of PSD-95 during early neural development is controlled at the RNA level by two PTB proteins whose sequential downregulation is necessary for synapse maturation.

  17. MTHFD1 polymorphism as maternal risk for neural tube defects: a meta-analysis.

    PubMed

    Zheng, Jinyu; Lu, Xiaocheng; Liu, Hao; Zhao, Penglai; Li, Kai; Li, Lixin

    2015-04-01

    Recently, the association between methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) G1958A polymorphism and neural tube defects (NTD) susceptibility has been widely investigated; however, the results remained inconclusive. Hence, we conducted a meta-analysis to evaluate the effect of MTHFD1 G1958A polymorphism on NTD. The relative literatures were identified by search of the electronic databases PubMed, MEDLINE, and EMBASE. The extracted data were statistically analyzed, and pooled odds ratios (ORs) with 95 % confidence intervals (CIs) were calculated to estimate the association strength using Stata version 11.0 software. Finally, ten studies met our inclusion criteria, including 2,132/4,082 in NTD infants and controls; 1,402/3,136 in mothers with NTD offspring and controls; and 993/2,879 in fathers with NTD offspring and controls. This meta-analysis showed that, compared with the mothers with GG genotype, the women with AA genotype had an increased risk of NTD in their offspring, with OR values and 95 % CI at 1.39 (1.16-1.68), p < 0.001. Interestingly, fathers with AG genotype had a significant decreased risk of NTD offspring (OR = 0.79, 95 % CI = 0.66-0.94, p = 0.009). However, there was no significant association between the MTHFD1 G1958A polymorphism in NTD patients and the risk of NTD. In conclusion, the present meta-analysis provided evidence of the association between maternal MTHFD1 G1958A polymorphism and NTD susceptibility.

  18. Gastrostomy Tube Use after Transoral Robotic Surgery for Oropharyngeal Cancer

    PubMed Central

    Al-khudari, Samer; Bendix, Scott; Lindholm, Jamie; Simmerman, Erin; Hall, Francis; Ghanem, Tamer

    2013-01-01

    Objective. To evaluate factors that influence gastrostomy tube (g-tube) use after transoral robotic surgery (TORS) for oropharyngeal (OP) cancer. Study Design/Methods. Retrospective review of TORS patients with OP cancer. G-tube presence was recorded before and after surgery at followup. Kaplan-Meier and Cox hazards model evaluated effects of early (T1 and T2) and advanced (T3, T4) disease, adjuvant therapy, and free flap reconstruction on g-tube use. Results. Sixteen patients had tonsillar cancer and 13 tongue base cancer. Of 22 patients who underwent TORS as primary therapy, 17 had T1 T2 stage and five T3 T4 stage. Seven underwent salvage therapy (four T1 T2 and three T3 T4). Nine underwent robotic-assisted inset free flap reconstruction. Seventeen received adjuvant therapy. Four groups were compared: primary early disease (PED) T1 and T2 tumors, primary early disease with adjunctive therapy (PEDAT), primary advanced disease (PAD) T3 and T4 tumors, and salvage therapy. Within the first year of treatment, 0% PED, 44% PEDAT, 40% PAD, and 57% salvage patients required a g-tube. Fourteen patients had a temporary nasoenteric tube (48.3%) postoperatively, and 10 required a g-tube (34.5%) within the first year. Four of 22 (18.2%) with TORS as primary treatment were g-tube dependent at one year and had received adjuvant therapy. Conclusion. PED can be managed without a g-tube after TORS. Similar feeding tube rates were found for PEDAT and PAD patients. Salvage patients have a high rate of g-tube need after TORS. PMID:23936676

  19. HNK-1 immunoreactivity during early morphogenesis of the head region in a nonmodel vertebrate, crocodile embryo

    NASA Astrophysics Data System (ADS)

    Kundrát, Martin

    2008-11-01

    The present study examines HNK-1 immunoidentification of a population of the neural crest (NC) during early head morphogenesis in the nonmodel vertebrate, the crocodile ( Crocodylus niloticus) embryos. Although HNK-1 is not an exclusive NC marker among vertebrates, temporospatial immunoreactive patterns found in the crocodile are almost consistent with NC patterns derived from gene expression studies known in birds (the closest living relatives of crocodiles) and mammals. In contrast to birds, the HNK-1 epitope is immunoreactive in NC cells at the neural fold level in crocodile embryos and therefore provides sufficient base to assess early migratory events of the cephalic NC. I found that crocodile NC forms three classic migratory pathways in the head: mandibular, hyoid, and branchial. Further, I demonstrate that, besides this classic phenotype, there is also a forebrain-derived migratory population, which consolidates into a premandibular stream in the crocodile. In contrast to the closely related chick model, crocodilian premandibular and mandibular NC cells arise from the open neural tube suggesting that species-specific heterochronic behavior of NC may be involved in the formation of different vertebrate facial phenotypes.

  20. A pilot study on the association between rare earth elements in maternal hair and the risk of neural tube defects in north China.

    PubMed

    Huo, Wenhua; Zhu, Yibing; Li, Zhenjiang; Pang, Yiming; Wang, Bin; Li, Zhiwen

    2017-07-01

    Rare earth elements (REEs) have many applications in industry, agriculture, and medicine, resulting in occupational and environmental exposure and concerns regarding REE-associated health effects. However, few epidemiological studies have examined the adverse effects of REEs on pregnancy outcomes. Therefore, this study examined the relationship between the REE concentrations in maternal hair growing during early pregnancy and the risk of neural tube defects (NTDs) in offspring. We included 191 women with NTD-affected pregnancies (cases) and 261 women delivering healthy infants (controls). The cases were divided into three subtypes: anencephaly, spina bifida, and encephalocele. Four REEs in maternal hair were analyzed by inductively coupled plasma-mass spectrometry: lanthanum (La), cerium (Ce), praseodymium (Pr), and neodymium (Nd). A questionnaire was used to collect information about maternal sociodemographic characteristics and dietary habits. The median concentrations of Ce and Pr in the NTD group were higher than those in the control group, whereas there were no significant differences for La and Nd. The adjusted odds ratios (ORs) for the four REE concentrations above the median in the case groups were not significantly > 1. An increasing frequency of the consumption of beans or bean products and fresh fruit was negatively correlated with the four REE concentrations. Our results did not suggest that the concentrations of REEs in maternal hair were associated with the risk of NTDs or any subtype of NTDs in the general population. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Hepatocyte growth factor/scatter factor-MET signaling in neural crest-derived melanocyte development.

    PubMed

    Kos, L; Aronzon, A; Takayama, H; Maina, F; Ponzetto, C; Merlino, G; Pavan, W

    1999-02-01

    The mechanisms governing development of neural crest-derived melanocytes, and how alterations in these pathways lead to hypopigmentation disorders, are not completely understood. Hepatocyte growth factor/scatter factor (HGF/SF) signaling through the tyrosine-kinase receptor, MET, is capable of promoting the proliferation, increasing the motility, and maintaining high tyrosinase activity and melanin synthesis of melanocytes in vitro. In addition, transgenic mice that ubiquitously overexpress HGF/SF demonstrate hyperpigmentation in the skin and leptomenigenes and develop melanomas. To investigate whether HGF/ SF-MET signaling is involved in the development of neural crest-derived melanocytes, transgenic embryos, ubiquitously overexpressing HGF/SF, were analyzed. In HGF/SF transgenic embryos, the distribution of melanoblasts along the characteristic migratory pathway was not affected. However, additional ectopically localized melanoblasts were also observed in the dorsal root ganglia and neural tube, as early as 11.5 days post coitus (p.c.). We utilized an in vitro neural crest culture assay to further explore the role of HGF/SF-MET signaling in neural crest development. HGF/SF added to neural crest cultures increased melanoblast number, permitted differentiation into pigmented melanocytes, promoted melanoblast survival, and could replace mast-cell growth factor/Steel factor (MGF) in explant cultures. To examine whether HGF/SF-MET signaling is required for the proper development of melanocytes, embryos with a targeted Met null mutation (Met-/-) were analysed. In Met-/- embryos, melanoblast number and location were not overtly affected up to 14 days p.c. These results demonstrate that HGF/SF-MET signaling influences, but is not required for, the initial development of neural crest-derived melanocytes in vivo and in vitro.

  2. Deep Recurrent Neural Networks for seizure detection and early seizure detection systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talathi, S. S.

    Epilepsy is common neurological diseases, affecting about 0.6-0.8 % of world population. Epileptic patients suffer from chronic unprovoked seizures, which can result in broad spectrum of debilitating medical and social consequences. Since seizures, in general, occur infrequently and are unpredictable, automated seizure detection systems are recommended to screen for seizures during long-term electroencephalogram (EEG) recordings. In addition, systems for early seizure detection can lead to the development of new types of intervention systems that are designed to control or shorten the duration of seizure events. In this article, we investigate the utility of recurrent neural networks (RNNs) in designing seizuremore » detection and early seizure detection systems. We propose a deep learning framework via the use of Gated Recurrent Unit (GRU) RNNs for seizure detection. We use publicly available data in order to evaluate our method and demonstrate very promising evaluation results with overall accuracy close to 100 %. We also systematically investigate the application of our method for early seizure warning systems. Our method can detect about 98% of seizure events within the first 5 seconds of the overall epileptic seizure duration.« less

  3. When does mass screening for open neural tube defects in low-risk pregnancies result in cost savings?

    PubMed Central

    Tosi, L L; Detsky, A S; Roye, D P; Morden, M L

    1987-01-01

    Using a decision analysis model, we estimated the savings that might be derived from a mass prenatal screening program aimed at detecting open neural tube defects (NTDs) in low-risk pregnancies. Our baseline analysis showed that screening v. no screening could be expected to save approximately $8 per pregnancy given a cost of $7.50 for the maternal serum alpha-feto-protein (MSAFP) test and a cost of $42,507 for hospital and rehabilitation services for the first 10 years of life for a child with spina bifida. When a more liberal estimate of the costs of caring for such a child was used, the savings with the screening program were more substantial. We performed extensive sensitivity analyses, which showed that the savings were somewhat sensitive to the cost of the MSAFP test and highly sensitive to the specificity (but not the sensitivity) of the test. A screening program for NTDs in low-risk pregnancies may result in substantial savings in direct health care costs if the screening protocol is followed rigorously and efficiently. PMID:2433011

  4. Blastomere biopsy influences epigenetic reprogramming during early embryo development, which impacts neural development and function in resulting mice.

    PubMed

    Wu, Yibo; Lv, Zhuo; Yang, Yang; Dong, Guoying; Yu, Yang; Cui, Yiqiang; Tong, Man; Wang, Liu; Zhou, Zuomin; Zhu, Hui; Zhou, Qi; Sha, Jiahao

    2014-05-01

    Blastomere biopsy is used in preimplantation genetic diagnosis; however, the long-term implications on the offspring are poorly characterized. We previously reported a high risk of memory defects in adult biopsied mice. Here, we assessed nervous function of aged biopsied mice and further investigated the mechanism of neural impairment after biopsy. We found that aged biopsied mice had poorer spatial learning ability, increased neuron degeneration, and altered expression of proteins involved in neural degeneration or dysfunction in the brain compared to aged control mice. Furthermore, the MeDIP assay indicated a genome-wide low methylation in the brains of adult biopsied mice when compared to the controls, and most of the genes containing differentially methylated loci in promoter regions were associated with neural disorders. When we further compared the genomic DNA methylation profiles of 7.5-days postconception (dpc) embryos between the biopsy and control group, we found the whole genome low methylation in the biopsied group, suggesting that blastomere biopsy was an obstacle to de novo methylation during early embryo development. Further analysis on mRNA profiles of 4.5-dpc embryos indicated that reduced expression of de novo methylation genes in biopsied embryos may impact de novo methylation. In conclusion, we demonstrate an abnormal neural development and function in mice generated after blastomere biopsy. The impaired epigenetic reprogramming during early embryo development may be the latent mechanism contributing to the impairment of the nervous system in the biopsied mice, which results in a hypomethylation status in their brains.

  5. Selective Roles of Normal and Mutant Huntingtin in Neural Induction and Early Neurogenesis

    PubMed Central

    Nguyen, Giang D.; Gokhan, Solen; Molero, Aldrin E.; Mehler, Mark F.

    2013-01-01

    Huntington's disease (HD) is a neurodegenerative disorder caused by abnormal polyglutamine expansion in the amino-terminal end of the huntingtin protein (Htt) and characterized by progressive striatal and cortical pathology. Previous reports have shown that Htt is essential for embryogenesis, and a recent study by our group revealed that the pathogenic form of Htt (mHtt) causes impairments in multiple stages of striatal development. In this study, we have examined whether HD-associated striatal developmental deficits are reflective of earlier maturational alterations occurring at the time of neurulation by assessing differential roles of Htt and mHtt during neural induction and early neurogenesis using an in vitro mouse embryonic stem cell (ESC) clonal assay system. We demonstrated that the loss of Htt in ESCs (KO ESCs) severely disrupts the specification of primitive and definitive neural stem cells (pNSCs, dNSCs, respectively) during the process of neural induction. In addition, clonally derived KO pNSCs and dNSCs displayed impaired proliferative potential, enhanced cell death and altered multi-lineage potential. Conversely, as observed in HD knock-in ESCs (Q111 ESCs), mHtt enhanced the number and size of pNSC clones, which exhibited enhanced proliferative potential and precocious neuronal differentiation. The transition from Q111 pNSCs to fibroblast growth factor 2 (FGF2)-responsive dNSCs was marked by potentiation in the number of dNSCs and altered proliferative potential. The multi-lineage potential of Q111 dNSCs was also enhanced with precocious neurogenesis and oligodendrocyte progenitor elaboration. The generation of Q111 epidermal growth factor (EGF)-responsive dNSCs was also compromised, whereas their multi-lineage potential was unaltered. These abnormalities in neural induction were associated with differential alterations in the expression profiles of Notch, Hes1 and Hes5. These cumulative observations indicate that Htt is required for multiple stages

  6. Characterization of Early Cortical Neural Network ...

    EPA Pesticide Factsheets

    We examined the development of neural network activity using microelectrode array (MEA) recordings made in multi-well MEA plates (mwMEAs) over the first 12 days in vitro (DIV). In primary cortical cultures made from postnatal rats, action potential spiking activity was essentially absent on DIV 2 and developed rapidly between DIV 5 and 12. Spiking activity was primarily sporadic and unorganized at early DIV, and became progressively more organized with time in culture, with bursting parameters, synchrony and network bursting increasing between DIV 5 and 12. We selected 12 features to describe network activity and principal components analysis using these features demonstrated a general segregation of data by age at both the well and plate levels. Using a combination of random forest classifiers and Support Vector Machines, we demonstrated that 4 features (CV of within burst ISI, CV of IBI, network spike rate and burst rate) were sufficient to predict the age (either DIV 5, 7, 9 or 12) of each well recording with >65% accuracy. When restricting the classification problem to a binary decision, we found that classification improved dramatically, e.g. 95% accuracy for discriminating DIV 5 vs DIV 12 wells. Further, we present a novel resampling approach to determine the number of wells that might be needed for conducting comparisons of different treatments using mwMEA plates. Overall, these results demonstrate that network development on mwMEA plates is similar to

  7. In ovo electroporation of miRNA-based plasmids in the developing neural tube and assessment of phenotypes by DiI injection in open-book preparations.

    PubMed

    Wilson, Nicole H; Stoeckli, Esther T

    2012-10-16

    Commissural dI1 neurons have been extensively studied to elucidate the mechanisms underlying axon guidance during development(1,2). These neurons are located in the dorsal spinal cord and send their axons along stereotyped trajectories. Commissural axons initially project ventrally towards and then across the floorplate. After crossing the midline, these axons make a sharp rostral turn and project longitudinally towards the brain. Each of these steps is regulated by the coordinated activities of attractive and repulsive guidance cues. The correct interpretation of these cues is crucial to the guidance of axons along their demarcated pathway. Thus, the physiological contribution of a particular molecule to commissural axon guidance is ideally investigated in the context of the living embryo. Accordingly, gene knockdown in vivo must be precisely controlled in order to carefully distinguish axon guidance activities of genes that may play multiple roles during development. Here, we describe a method to knockdown gene expression in the chicken neural tube in a cell type-specific, traceable manner. We use novel plasmid vectors(3) harboring cell type-specific promoters/enhancers that drive the expression of a fluorescent protein marker, followed directly by a miR30-RNAi transcript(4) (located within the 3'-UTR of the cDNA encoding the fluorescent protein) (Figure 1). When electroporated into the developing neural tube, these vectors elicit efficient downregulation of gene expression and express bright fluorescent marker proteins to enable direct tracing of the cells experiencing knockdown(3). Mixing different RNAi vectors prior to electroporation allows the simultaneous knockdown of two or more genes in independent regions of the spinal cord. This permits complex cellular and molecular interactions to be examined during development, in a manner that is fast, simple, precise and inexpensive. In combination with DiI tracing of commissural axon trajectories in open

  8. The SCL gene specifies haemangioblast development from early mesoderm.

    PubMed

    Gering, M; Rodaway, A R; Göttgens, B; Patient, R K; Green, A R

    1998-07-15

    The SCL gene encodes a basic helix-loop-helix (bHLH) transcription factor that is essential for the development of all haematopoietic lineages. SCL is also expressed in endothelial cells, but its function is not essential for specification of endothelial progenitors and the role of SCL in endothelial development is obscure. We isolated the zebrafish SCL homologue and show that it was co-expressed in early mesoderm with markers of haematopoietic, endothelial and pronephric progenitors. Ectopic expression of SCL mRNA in zebrafish embryos resulted in overproduction of common haematopoietic and endothelial precursors, perturbation of vasculogenesis and concomitant loss of pronephric duct and somitic tissue. Notochord and neural tube formation were unaffected. These results provide the first evidence that SCL specifies formation of haemangioblasts, the proposed common precursor of blood and endothelial lineages. Our data also underline the striking similarities between the role of SCL in haematopoiesis/vasculogenesis and the function of other bHLH proteins in muscle and neural development.

  9. Drinking water treatment is not associated with an observed increase in neural tube defects in mice

    PubMed Central

    Melin, Vanessa E.; Johnstone, David W.; Etzkorn, Felicia A.

    2018-01-01

    Disinfection by-products (DBPs) arise when natural organic matter in source water reacts with disinfectants used in the water treatment process. Studies have suggested an association between DBPs and birth defects. Neural tube defects (NTDs) in embryos of untreated control mice were first observed in-house in May 2006 and have continued to date. The source of the NTD-inducing agent was previously determined to be a component of drinking water. Tap water samples from a variety of sources were analyzed for trihalomethanes (THMs) to determine if they were causing the malformations. NTDs were observed in CD-1 mice provided with treated and untreated surface water. Occurrence of NTDs varied by water source and treatment regimens. THMs were detected in tap water derived from surface water but not detected in tap water derived from a groundwater source. THMs were absent in untreated river water and laboratory purified waters, yet the percentage of NTDs in untreated river water were similar to the treated water counterpart. These findings indicate that THMs were not the primary cause of NTDs in the mice since the occurrence of NTDs was unrelated to drinking water disinfection. PMID:24497082

  10. Indoor air pollution and neural tube defects: effect modification by maternal genes.

    PubMed

    Wang, Linlin; Li, Zhiwen; Jin, Lei; Li, Kai; Yuan, Yue; Fu, Yunting; Zhang, Yali; Ye, Rongwei; Ren, Aiguo

    2014-09-01

    Gene-environment interactions have been implicated in the development of neural tube defects (NTDs). We conducted a case-control study to investigate (1) the association of aryl hydrocarbon receptor (AHR) genetic variants and phase I metabolic enzymes with the risk of NTDs and (2) the interaction of these variants with maternal exposure to indoor air pollution from smoking and coal combustion or with placental polycyclic aromatic hydrocarbons (PAHs). Blood samples were collected from 534 mothers of fetuses or newborns with NTDs and 534 control mothers who had healthy term newborns and were assayed for 12 polymorphisms in the AHR and cytochrome P450 (CYP) genes. Information on maternal exposure was collected, and placental levels of PAHs were analyzed. Maternal exposure to indoor air pollution was associated with an increased NTD risk. However, no increased NTD risk was observed for individual genetic variants. For mothers with the CYP1B1 rs2855658 GG variant, exposure to indoor air pollution led to a dose-response relationship for NTD risk, with odds ratios (ORs) of 3.0 (95% confidence interval = 1.6-5.7) and 8.1 (3.8-17) for medium and high levels of exposure, respectively. For mothers with GA or AA genotypes, this trend was less apparent. Placental PAHs were associated with an increased risk of NTDs, with an OR of 16 (3.3-75) for high levels compared with low levels of exposure among mothers with the GG genotype; there was no association for mothers with GA or AA genotypes. The CYP1B1 variant modifies the effect of indoor air pollution on NTD risk.

  11. Neural Tube Defects and Maternal Biomarkers of Folate, Homocysteine, and Glutathione Metabolism

    PubMed Central

    Zhao, Weizhi; Mosley, Bridget S.; Cleves, Mario A.; Melnyk, Stepan; James, S. Jill; Hobbs, Charlotte A.

    2010-01-01

    Background Alterations in maternal folate and homocysteine metabolism are associated with neural tube defects (NTDs). The role that specific micronutrients and metabolites play in the causal pathway leading to NTDs is not fully understood. Methods We conducted a case-control study to investigate the association between NTDs and maternal alterations in plasma micronutrients and metabolites in two metabolic pathways, the methionine remethylation and glutathione transsulfuration. Biomarkers were measured in a population-based sample of women who had NTD-affected pregnancies (n = 43) and a control group of women who had a pregnancy unaffected by a birth defect (n = 160). Plasma concentrations of folate, Vitamin B12, Vitamin B6, methionine, S-adenosylmethionine (SAM), s- adenosylhomocysteine (SAH), adenosine, homocysteine, cysteine, and reduced and oxidized glutathione were compared between cases and controls after adjusting for lifestyle and sociodemographic factors. Results Women with NTD-affected pregnancies had significantly higher plasma concentrations of SAH (29.12 vs. 23.13 nmol/L, P = 0.0011), adenosine (0.323 vs. 0.255 μmol/L, P = 0.0269), homocysteine (9.40 vs. 7.56 μmol/L, P < 0.001), and oxidized glutathione (0.379 vs. 0.262μmol/L, P = 0.0001), but lower plasma SAM concentration (78.99 vs. 83.16 nmol/L, P = 0.0172) than controls. This metabolic profile is consistent with reduced methylation capacity and increased oxidative stress in women with affected pregnancies. Conclusions Increased maternal oxidative stress and decreased methylation capacity may contribute to the occurrence of NTDs. Further analysis of relevant genetic and environmental factors is required to define the basis for these observed alterations. PMID:16575882

  12. Do neural tube defects lead to structural alterations in the human bladder?

    PubMed

    Pazos, Helena M F; Lobo, Márcio Luiz de P; Costa, Waldemar S; Sampaio, Francisco J B; Cardoso, Luis Eduardo M; Favorito, Luciano Alves

    2011-05-01

    Anencephaly is the most severe neural tube defect in human fetuses. The objective of this paper is to analyze the structure of the bladder in anencephalic human fetuses. We studied 40 bladders of normal human fetuses (20 male and 20 female, aged 14 to 23 WPC) and 12 bladders of anencephalic fetuses (5 male and 7 female, aged 18 to 22 WPC). The bladders were removed and processed by routine histological techniques. Stereological analysis of collagen, elastic system fibers and smooth muscle was performed in sections. Data were expressed as volumetric density (Vv-%). The images were captured with Olympus BX51 microscopy and Olympus DP70 camera. The stereological analysis was done using the software Image Pro and Image J. For biochemical analysis, samples were fixed in acetone, and collagen concentrations were expressed as micrograms of hydroxyproline per mg of dry tissue. Means were statistically compared using the unpaired t-test (p<0.05). We observed a significant increase (p<0.0001) in the Vv of collagen in the bladders of anencephalic fetuses (69.71%) when compared to normal fetuses (52.74%), and a significant decrease (p<0.0001) in the Vv of smooth muscle cells in the bladders of anencephalic fetuses (23.96%) when compared to normal fetuses (38.35%). The biochemical analyses showed a higher concentration of total collagen in the bladders of anencephalic fetuses (37354 µg/mg) when compared to normal fetuses (48117 µg/mg, p<0.02). The structural alterations of the bladder found in this study may suggest the existence of functional alterations in the bladder of anencephalic human fetuses.

  13. Variation in the schedules of somite and neural development in frogs

    PubMed Central

    Sáenz-Ponce, Natalia; Mitgutsch, Christian; del Pino, Eugenia M.

    2012-01-01

    The timing of notochord, somite, and neural development was analyzed in the embryos of six different frog species, which have been divided into two groups, according to their developmental speed. Rapid developing species investigated were Xenopus laevis (Pipidae), Engystomops coloradorum, and Engystomops randi (Leiuperidae). The slow developers were Epipedobates machalilla and Epipedobates tricolor (Dendrobatidae) and Gastrotheca riobambae (Hemiphractidae). Blastopore closure, notochord formation, somite development, neural tube closure, and the formation of cranial neural crest cell-streams were detected by light and scanning electron microscopy and by immuno-histochemical detection of somite and neural crest marker proteins. The data were analyzed using event pairing to determine common developmental aspects and their relationship to life-history traits. In embryos of rapidly developing frogs, elongation of the notochord occurred earlier relative to the time point of blastopore closure in comparison with slowly developing species. The development of cranial neural crest cell-streams relative to somite formation is accelerated in rapidly developing frogs, and it is delayed in slowly developing frogs. The timing of neural tube closure seemed to be temporally uncoupled with somite formation. We propose that these changes are achieved through differential timing of developmental modules that begin with the elongation of the notochord during gastrulation in the rapidly developing species. The differences might be related to the necessity of developing a free-living tadpole quickly in rapid developers. PMID:23184997

  14. Cre-driver lines used for genetic fate mapping of neural crest cells in the mouse: An overview.

    PubMed

    Debbache, Julien; Parfejevs, Vadims; Sommer, Lukas

    2018-04-19

    The neural crest is one of the embryonic structures with the broadest developmental potential in vertebrates. Morphologically, neural crest cells emerge during neurulation in the dorsal folds of the neural tube before undergoing an epithelial-to-mesenchymal transition (EMT), delaminating from the neural tube, and migrating to multiple sites in the growing embryo. Neural crest cells generate cell types as diverse as peripheral neurons and glia, melanocytes, and so-called mesectodermal derivatives that include craniofacial bone and cartilage and smooth muscle cells in cardiovascular structures. In mice, the fate of neural crest cells has been determined mainly by means of transgenesis and genome editing technologies. The most frequently used method relies on the Cre-loxP system, in which expression of Cre-recombinase in neural crest cells or their derivatives genetically enables the expression of a Cre-reporter allele, thus permanently marking neural crest-derived cells. Here, we provide an overview of the Cre-driver lines used in the field and discuss to what extent these lines allow precise neural crest stage and lineage-specific fate mapping. © 2018 The Authors Genesis: The Journal of Genetics and Development Published by Wiley Periodicals, Inc.

  15. Witnessing peer rejection during early adolescence: Neural correlates of empathy for experiences of social exclusion

    PubMed Central

    Masten, Carrie L.; Eisenberger, Naomi I.; Pfeifer, Jennifer H.; Dapretto, Mirella

    2010-01-01

    Neuroimaging studies with adults have begun to reveal the neural bases of empathy; however, this research has focused on empathy for physical pain, rather than empathy for negative social experiences. Moreover, this work has not examined adolescents who may frequently witness and empathize with others who experience negative social experiences like peer rejection. Here, we examined neural activity among early adolescents observing social exclusion compared to observing inclusion, and how this activity related to both trait empathy and subsequent prosocial behavior. Participants were scanned while they observed an individual whom they believed was being socially excluded. At least one day prior to the scan they reported their trait empathy, and following the scan they wrote emails to the excluded victim that were rated for prosocial behavior (e.g., helping, comforting). Observing exclusion compared to inclusion activated regions involved in mentalizing (i.e., dorsomedial prefrontal cortex; DMPFC), particularly among highly empathic individuals. Additionally, individuals who displayed more activity in affective, pain-related regions during observed exclusion compared to inclusion subsequently wrote more prosocial emails to excluded victims. Overall findings suggest that when early adolescents witness social exclusion in their daily lives, some may actually ‘feel the pain’ of the victims and act more prosocially toward them as a result. PMID:20602283

  16. Emotional sounds modulate early neural processing of emotional pictures

    PubMed Central

    Gerdes, Antje B. M.; Wieser, Matthias J.; Bublatzky, Florian; Kusay, Anita; Plichta, Michael M.; Alpers, Georg W.

    2013-01-01

    In our natural environment, emotional information is conveyed by converging visual and auditory information; multimodal integration is of utmost importance. In the laboratory, however, emotion researchers have mostly focused on the examination of unimodal stimuli. Few existing studies on multimodal emotion processing have focused on human communication such as the integration of facial and vocal expressions. Extending the concept of multimodality, the current study examines how the neural processing of emotional pictures is influenced by simultaneously presented sounds. Twenty pleasant, unpleasant, and neutral pictures of complex scenes were presented to 22 healthy participants. On the critical trials these pictures were paired with pleasant, unpleasant, and neutral sounds. Sound presentation started 500 ms before picture onset and each stimulus presentation lasted for 2 s. EEG was recorded from 64 channels and ERP analyses focused on the picture onset. In addition, valence and arousal ratings were obtained. Previous findings for the neural processing of emotional pictures were replicated. Specifically, unpleasant compared to neutral pictures were associated with an increased parietal P200 and a more pronounced centroparietal late positive potential (LPP), independent of the accompanying sound valence. For audiovisual stimulation, increased parietal P100 and P200 were found in response to all pictures which were accompanied by unpleasant or pleasant sounds compared to pictures with neutral sounds. Most importantly, incongruent audiovisual pairs of unpleasant pictures and pleasant sounds enhanced parietal P100 and P200 compared to pairings with congruent sounds. Taken together, the present findings indicate that emotional sounds modulate early stages of visual processing and, therefore, provide an avenue by which multimodal experience may enhance perception. PMID:24151476

  17. Occlusive ligature and standardized fenestration of a Baerveldt tube with and without antimetabolites for early postoperative intraocular pressure control.

    PubMed

    Trible, J R; Brown, D B

    1998-12-01

    To determine the effectiveness of a surgical modification for a nonvalved aqueous tube shunt in controlling intraocular pressure (IOP) in the early postoperative period. The effect of antimetabolite use on IOP also was studied. A retrospective study of consecutive patients who underwent modified Baerveldt 350-mm2 implant with varied, nonrandomized, exposure to antimetabolites. Fifty-one eyes of 46 patients with uncontrolled glaucoma were examined. Identical surgical modification of a Baerveldt 350-mm2 tube was performed in all cases and consisted of placement of an occlusive 7-0 polyglactin suture just anterior to the plate followed by a through-and-through penetration of the tube just anterior to the occlusive ligature with a standardized 15 degrees blade. Seventeen eyes were not exposed to antimetabolite, while 2 groups of 17 eyes had 3 minutes' episcleral exposure to either 5-fluorouracil 50 mg/ml or mitomycin C 0.4 mg/ml at the location corresponding to the fenestration. The Tenon's layer and conjunctiva were not exposed because of concerns regarding conjunctival erosion over the device. Intraocular pressure and number of antiglaucoma medications required were analyzed. For the group, mean IOP before surgery and on postoperative days 1, 4, 10, 21, 42, 63, 84, and 112 was (in millimeters of mercury) 34.6, 20.1, 17.0, 17.2, 22.0, 17.3, 18.7, 17.4, and 15.6, respectively. There was an elevation of IOP at day 21 relative to fibrotic blockage of the fenestration before suture autolysis. This was temporized with antiglaucoma medication until suture autolysis occurred or treated with laser suture lysis (8 eyes). On day 1, hypotony occurred in 3 (6%) eyes whereas IOP greater than 30 mmHg was observed in 13 (26%) eyes. By day 10, the frequency had decreased to one (2.1 %) eye and three (6.4%) eyes, respectively. The use of antimetabolites did not result in lower IOP or less medication needed for any group at any interval (analysis of variance). This modification of a

  18. WNT/β-catenin signaling mediates human neural crest induction via a pre-neural border intermediate.

    PubMed

    Leung, Alan W; Murdoch, Barbara; Salem, Ahmed F; Prasad, Maneeshi S; Gomez, Gustavo A; García-Castro, Martín I

    2016-02-01

    Neural crest (NC) cells arise early in vertebrate development, migrate extensively and contribute to a diverse array of ectodermal and mesenchymal derivatives. Previous models of NC formation suggested derivation from neuralized ectoderm, via meso-ectodermal, or neural-non-neural ectoderm interactions. Recent studies using bird and amphibian embryos suggest an earlier origin of NC, independent of neural and mesodermal tissues. Here, we set out to generate a model in which to decipher signaling and tissue interactions involved in human NC induction. Our novel human embryonic stem cell (ESC)-based model yields high proportions of multipotent NC cells (expressing SOX10, PAX7 and TFAP2A) in 5 days. We demonstrate a crucial role for WNT/β-catenin signaling in launching NC development, while blocking placodal and surface ectoderm fates. We provide evidence of the delicate temporal effects of BMP and FGF signaling, and find that NC development is separable from neural and/or mesodermal contributions. We further substantiate the notion of a neural-independent origin of NC through PAX6 expression and knockdown studies. Finally, we identify a novel pre-neural border state characterized by early WNT/β-catenin signaling targets that displays distinct responses to BMP and FGF signaling from the traditional neural border genes. In summary, our work provides a fast and efficient protocol for human NC differentiation under signaling constraints similar to those identified in vivo in model organisms, and strengthens a framework for neural crest ontogeny that is separable from neural and mesodermal fates. © 2016. Published by The Company of Biologists Ltd.

  19. Confocal microlaparoscope for imaging the fallopian tube

    NASA Astrophysics Data System (ADS)

    Wu, Tzu-Yu; Schafer, Rachel; Rouse, Andrew R.; Gmitro, Arthur F.

    2012-02-01

    Recent evidence suggests that epithelial ovarian cancer may originate in the fimbriated end of the fallopian tube1. Unlike many other cancers, poor access to the ovary and fallopian tubes has limited the ability to study the progression of this deadly disease and to diagnosis it during the early stage when it is most amenable to therapy. We have previously reported on a rigid confocal microlaparoscope system that is currently undergoing a clinical trial to image the epithelial surface of the ovary2. In order to gain in vivo access to the fallopian tubes we have developed a new confocal microlaparoscope with an articulating distal tip. The new instrument builds upon the technology developed for the existing confocal microlaparoscope. It has an ergonomic handle fabricated by a rapid prototyping printer. While maintaining compatibility with a 5 mm trocar, the articulating distal tip of the instrument consists of a 2.2 mm diameter bare fiber bundle catheter with automated dye delivery for fluorescence imaging. This small and flexible catheter design should enable the confocal microlaparoscope to image early stage ovarian cancer arising inside the fallopian tube. Early ex vivo mages of human fallopian tube and in vivo imaging results from recent open surgeries using the rigid confocal microlaparoscope system are presented. Ex vivo images from animal models using the new articulating bare fiber system are also presented. These high quality images collected by the new flexible system are similar in quality to those obtained from the epithelial surface of ovaries with the rigid clinical confocal microlaparoscope.

  20. Shaping Early Reorganization of Neural Networks Promotes Motor Function after Stroke

    PubMed Central

    Volz, L. J.; Rehme, A. K.; Michely, J.; Nettekoven, C.; Eickhoff, S. B.; Fink, G. R.; Grefkes, C.

    2016-01-01

    Neural plasticity is a major factor driving cortical reorganization after stroke. We here tested whether repetitively enhancing motor cortex plasticity by means of intermittent theta-burst stimulation (iTBS) prior to physiotherapy might promote recovery of function early after stroke. Functional magnetic resonance imaging (fMRI) was used to elucidate underlying neural mechanisms. Twenty-six hospitalized, first-ever stroke patients (time since stroke: 1–16 days) with hand motor deficits were enrolled in a sham-controlled design and pseudo-randomized into 2 groups. iTBS was administered prior to physiotherapy on 5 consecutive days either over ipsilesional primary motor cortex (M1-stimulation group) or parieto-occipital vertex (control-stimulation group). Hand motor function, cortical excitability, and resting-state fMRI were assessed 1 day prior to the first stimulation and 1 day after the last stimulation. Recovery of grip strength was significantly stronger in the M1-stimulation compared to the control-stimulation group. Higher levels of motor network connectivity were associated with better motor outcome. Consistently, control-stimulated patients featured a decrease in intra- and interhemispheric connectivity of the motor network, which was absent in the M1-stimulation group. Hence, adding iTBS to prime physiotherapy in recovering stroke patients seems to interfere with motor network degradation, possibly reflecting alleviation of post-stroke diaschisis. PMID:26980614

  1. Alcohol exposure alters DNA methylation profiles in mouse embryos at early neurulation

    PubMed Central

    Liu, Yunlong; Balaraman, Yokesh; Wang, Guohua; Nephew, Kenneth P.; Zhou, Feng C.

    2009-01-01

    Alcohol exposure during development can cause variable neurofacial deficit and growth retardation known as fetal alcohol spectrum disorders (FASD). The mechanism underlying FASD is not fully understood. However, alcohol, which is known to affect methyl donor metabolism, may induce aberrant epigenetic changes contributing to FASD. Using a tightly controlled whole-embryo culture, we investigated the effect of alcohol exposure (88 mM) at early embryonic neurulation on genome-wide DNA methylation and gene expression in the C57BL/6 mouse. The DNA methylation landscape around promoter CpG islands at early mouse development was analyzed using MeDIP (methylated DNA immunoprecipitation) coupled with microarray (MeDIP-chip). At early neurulation, genes associated with high CpG promoters (HCP) had a lower ratio of methylation but a greater ratio of expression. Alcohol-induced alterations in DNA methylation were observed, particularly in genes on chromosomes 7, 10 and X; remarkably, a >10 fold increase in the number of genes with increased methylation on chromosomes 10 and X was observed in alcohol-exposed embryos with a neural tube defect phenotype compared to embryos without a neural tube defect. Significant changes in methylation were seen in imprinted genes, genes known to play roles in cell cycle, growth, apoptosis, cancer, and in a large number of genes associated with olfaction. Altered methylation was associated with significant (p < 0.01) changes in expression for 84 genes. Sequenom EpiTYPER DNA methylation analysis was used for validation of the MeDIP-chip data. Increased methylation of genes known to play a role in metabolism (Cyp4f13) and decreased methylation of genes associated with development (Nlgn3, Elavl2, Sox21 and Sim1), imprinting (Igf2r) and chromatin (Hist1h3d) was confirmed. In a mouse model for FASD, we show for the first time that alcohol exposure during early neurulation can induce aberrant changes in DNA methylation patterns with associated changes

  2. Alcohol exposure alters DNA methylation profiles in mouse embryos at early neurulation.

    PubMed

    Liu, Yunlong; Balaraman, Yokesh; Wang, Guohua; Nephew, Kenneth P; Zhou, Feng C

    2009-10-01

    Alcohol exposure during development can cause variable neurofacial deficit and growth retardation known as fetal alcohol spectrum disorders (FASD). The mechanism underlying FASD is not fully understood. However, alcohol, which is known to affect methyl donor metabolism, may induce aberrant epigenetic changes contributing to FASD. Using a tightly controlled whole-embryo culture, we investigated the effect of alcohol exposure (88mM) at early embryonic neurulation on genome-wide DNA methylation and gene expression in the C57BL/6 mouse. The DNA methylation landscape around promoter CpG islands at early mouse development was analyzed using MeDIP (methylated DNA immunoprecipitation) coupled with microarray (MeDIP-chip). At early neurulation, genes associated with high CpG promoters (HCP) had a lower ratio of methylation but a greater ratio of expression. Alcohol-induced alterations in DNA methylation were observed, particularly in genes on chromosomes 7, 10, and X; remarkably, a >10 fold increase in the number of genes with increased methylation on chromosomes 10 and X was observed in alcohol-exposed embryos with a neural tube defect phenotype compared to embryos without a neural tube defect. Significant changes in methylation were seen in imprinted genes, genes known to play roles in cell cycle, growth, apoptosis, cancer, and in a large number of genes associated with olfaction. Altered methylation was associated with significant (p<0.01) changes in expression for 84 genes. Sequenom EpiTYPER DNA methylation analysis was used for validation of the MeDIP-chip data. Increased methylation of genes known to play a role in metabolism (Cyp4f13) and decreased methylation of genes associated with development (Nlgn3, Elavl2, Sox21 and Sim1), imprinting (Igf2r) and chromatin (Hist1h3d) was confirmed. In a mouse model for FASD, we show for the first time that alcohol exposure during early neurulation can induce aberrant changes in DNA methylation patterns with associated changes in

  3. Changes in neural circuitry associated with depression at pre-clinical, pre-motor and early motor phases of Parkinson's disease.

    PubMed

    Borgonovo, Janina; Allende-Castro, Camilo; Laliena, Almudena; Guerrero, Néstor; Silva, Hernán; Concha, Miguel L

    2017-02-01

    Although Parkinson's Disease (PD) is mostly considered a motor disorder, it can present at early stages as a non-motor pathology. Among the non-motor clinical manifestations, depression shows a high prevalence and can be one of the first clinical signs to appear, even a decade before the onset of motor symptoms. Here, we review the evidence of early dysfunction in neural circuitry associated with depression in the context of PD, focusing on pre-clinical, pre-motor and early motor phases of the disease. In the pre-clinical phase, structural and functional changes in the substantia nigra, basal ganglia and limbic structures are already observed. Some of these changes are linked to motor compensation mechanisms while others correspond to pathological processes common to PD and depression and thus could underlie the appearance of depressive symptoms during the pre-motor phase. Studies of the early motor phase (less than five years post diagnosis) reveal an association between the extent of damage in different monoaminergic systems and the appearance of emotional disorders. We propose that the limbic loop of the basal ganglia and the lateral habenula play key roles in the early genesis of depression in PD. Alterations in the neural circuitry linked with emotional control might be sensitive markers of the ongoing neurodegenerative process and thus may serve to facilitate an early diagnosis of this disease. To take advantage of this, we need to improve the clinical criteria and develop biomarkers to identify depression, which could be used to determine individuals at risk to develop PD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Screen for Slit/Robo signaling in trunk neural cells reveals new players.

    PubMed

    Martinez, Darwin; Zuhdi, Nora; Reyes, Michelle; Ortega, Blanca; Giovannone, Dion; Lee, Vivian M; de Bellard, Maria Elena

    2018-06-01

    Slits ligands and their Robo receptors are involved in quite disparate cell signaling pathways that include axon guidance, cell proliferation, cell motility and angiogenesis. Neural crest cells emerge by delamination from neural cells in the dorsal neural tube, and give rise to various components of the peripheral nervous system in vertebrates. It is well established that these cells change from a non-migratory to a highly migratory state allowing them to reach distant regions before they differentiate. However, but the mechanism controlling this delamination and subsequent migration are still not fully understood. The repulsive Slit ligand family members, have been classified also as true tumor suppressor molecules. The present study explored in further detail what possible Slit/Robo signals are at play in the trunk neural cells and neural crest cells by carrying out a microarray after Slit2 gain of function in trunk neural tubes. We found that in addition to molecules known to be downstream of Slit/Robo signaling, there were a large set of molecules known to be important in maintaining cells in non-motile, epithelia phenotype. Furthermore, we found new molecules previously not associated with Slit/Robo signaling: cell proliferation markers, Ankyrins and RAB intracellular transporters. Our findings suggest that neural crest cells use and array of different Slit/Robo pathways during their transformation from non-motile to highly motile cells. Copyright © 2018. Published by Elsevier B.V.

  5. Recent advances in neural dust: towards a neural interface platform.

    PubMed

    Neely, Ryan M; Piech, David K; Santacruz, Samantha R; Maharbiz, Michel M; Carmena, Jose M

    2018-06-01

    The neural dust platform uses ultrasonic power and communication to enable a scalable, wireless, and batteryless system for interfacing with the nervous system. Ultrasound offers several advantages over alternative wireless approaches, including a safe method for powering and communicating with sub mm-sized devices implanted deep in tissue. Early studies demonstrated that neural dust motes could wirelessly transmit high-fidelity electrophysiological data in vivo, and that theoretically, this system could be miniaturized well below the mm-scale. Future developments are focused on further minimization of the platform, better encapsulation methods as a path towards truly chronic neural interfaces, improved delivery mechanisms, stimulation capabilities, and finally refinements to enable deployment of neural dust in the central nervous system. Copyright © 2017. Published by Elsevier Ltd.

  6. Early detection of epilepsy seizures based on a weightless neural network.

    PubMed

    de Aguiar, Kleber; Franca, Felipe M G; Barbosa, Valmir C; Teixeira, Cesar A D

    2015-08-01

    This work introduces a new methodology for the early detection of epileptic seizure based on the WiSARD weightless neural network model and a new approach in terms of preprocessing the electroencephalogram (EEG) data. WiSARD has, among other advantages, the capacity of perform the training phase in a very fast way. This speed in training is due to the fact that WiSARD's neurons work like Random Access Memories (RAM) addressed by input patterns. Promising results were obtained in the anticipation of seizure onsets in four representative patients from the European Database on Epilepsy (EPILEPSIAE). The proposed seizure early detection WNN architecture was explored by varying the detection anticipation (δ) in the 2 to 30 seconds interval, and by adopting 2 and 3 seconds as the width of the Sliding Observation Window (SOW) input. While in the most challenging patient (A) one obtained accuracies from 99.57% (δ=2s; SOW=3s) to 72.56% (δ=30s; SOW=2s), patient D seizures could be detected in the 99.77% (δ=2s; SOW=2s) to 99.93% (δ=30s; SOW=3s) accuracy interval.

  7. Risk factors for neural tube defects in Riyadh City, Saudi Arabia: Case-control study.

    PubMed

    Salih, Mustafa A M; Murshid, Waleed R; Mohamed, Ashry Gad; Ignacio, Lena C; de Jesus, Julie E; Baabbad, Rubana; El Bushra, Hassan M

    2014-01-01

    Both genetic and non-genetic environmental factors are involved in the etiology of neural tube defects (NTD) which affect 0.5-2/1000 pregnancies worldwide. This study aimed to explore the risk factors for the development of NTD in Saudi population, and highlight identifiable and preventable causes. Similar studies are scarce in similar populations ofthe Arabian Peninsula and North Africa. This is an unmatched concurrent case-control study including NTD cases born at King Khalid University Hospital, Riyadh during a 4-year period (2002-2006). The case-control study included 25 cases and 125 controls (case: control ratio of 1:5). Years of formal education, employment, household environment (including availability of air conditioning) and rate of parental consanguinity did not differ between mothers of cases and controls. Significantly higher proportion of mothers of cases had history of stillbirth compared to control mothers (16% vs 4.1%, P=0.02). Also family history of hydrocephalus and congenital anomalies were more prevalent in cases than controls (P values=0.0000 and 0.003, respectively). There was significant protective effect of periconceptional folic acid consumption both prior to conception (OR 0.02, 95% CI 0.00-0.07) and during the first 6 weeks of conception (OR 0.13, 95% CI 0.04-0.39). Further research, including a larger cohort, is required to enable ascertainment of gene-nutrient and gene environment interactions associated with NTD in Saudi Arabia.

  8. Developing effective campaign messages to prevent neural tube defects: a qualitative assessment of women's reactions to advertising concepts.

    PubMed

    Massi Lindsey, Lisa L; Silk, Kami J; Von Friederichs-Fitzwater, Marlene M; Hamner, Heather C; Prue, Christine E; Boster, Franklin J

    2009-03-01

    The incidence of neural tube defects (NTDs), serious birth defects of the brain and spine that affect approximately 3,000 pregnancies in the United States each year, can be reduced by 50-70% with daily periconceptional consumption of the B vitamin folic acid. Two studies were designed to assess college women's reactions to and perceptions of potential campaign advertising concepts derived from preproduction formative research to increase folic acid consumption through the use of a daily multivitamin. Study one assessed draft advertising concepts in eight focus groups (N = 71) composed of college-enrolled women in four cities geographically dispersed across the United States. Based on study one results, the concepts were revised and reassessed in study two with a different sample (eight focus groups; N = 73) of college women in the same four cities. Results indicated that participants generally responded favorably to concepts in each of the two studies, and provided insight into individual concepts to increase their overall appeal and effectiveness. The specific findings and implications of these results are discussed.

  9. Technical and early outcomes of Ivor Lewis minimally invasive oesophagectomy for gastric tube construction in the thoracic cavity

    PubMed Central

    Wu, Weibing; Zhu, Quan; Chen, Liang; Liu, Jinyuan

    2014-01-01

    OBJECTIVES Ivor Lewis minimally invasive oesophagectomy (ILMIE) is a complex surgery aiming to remove an oesophageal tumour and to create a new gastric tube in the abdomen. The objective was to assess the technical and early outcomes of ILMIE for gastric tube construction in the thoracic cavity. METHODS A retrospective analysis was conducted in 25 middle or lower oesophageal cancer patients treated with ILMIE between August and December 2012. A gastric tube was constructed in the thoracic cavity in all patients. The gastric tube and the oesophagus were anastomosed using a circular stapler. Clinical data (age, gender, pathological pattern and TNM stage), surgical data (operation time, intraoperative blood loss and intraoperative complications) and follow-up data (postoperative complications, length of stay, thoracic tube drainage time and time before eating) were assessed. RESULTS The mean age was 61 ± 8 years. Sixteen patients were male and 9 were female. Oesophageal cancer was located in the middle oesophagus in 5 cases and in the lower oesophagus in 20. No conversion to open surgery was performed. The mean operative time and intraoperative blood loss were 320 ± 63 min and 137 ± 95 ml, respectively. A mean of 2.4 ± 0.5 linear stapler cartridges was used per patient. A mean of 14.6 ± 5.4 lymph nodes was dissected per patient. Postoperative hospital stay was 13.2 ± 2.4 days. Intraoperative and postoperative complications occurred in 12% (3 of 25) and 20% (5 of 25) of patients, respectively, including 1 case of anastomotic fistula. The patients were followed up for a mean of 3.5 ± 1.2 months, and there was no relapse or death. CONCLUSIONS The construction of a gastric tube through the thoracic cavity using ILMIE is feasible and safe in patients with middle or lower oesophageal cancer. However, longer follow-up and larger sample sizes are needed to evaluate the oncological efficacy. PMID:24144805

  10. Anomalous Development of Brain Structure and Function in Spina Bifida Myelomeningocele

    ERIC Educational Resources Information Center

    Juranek, Jenifer; Salman, Michael S.

    2010-01-01

    Spina bifida myelomeningocele (SBM) is a specific type of neural tube defect whereby the open neural tube at the level of the spinal cord alters brain development during early stages of gestation. Some structural anomalies are virtually unique to individuals with SBM, including a complex pattern of cerebellar dysplasia known as the Chiari II…

  11. Folate status in women of reproductive age as basis of neural tube defect risk assessment.

    PubMed

    Bailey, Lynn B; Hausman, Dorothy B

    2018-02-01

    Reliable folate status data for women of reproductive age (WRA) to assess global risk for neural tube defects (NTDs) are needed. We focus on a recent recommendation by the World Health Organization that a specific "optimal" red blood cell (RBC) folate concentration be used as the sole indicator of NTD risk within a population and discuss how to best apply this guidance to reach the goal of assessing NTD risk globally. We also emphasize the importance of using the microbiologic assay (MBA) as the most reliable assay for obtaining comparable results for RBC folate concentration across time and countries, the need for harmonization of the MBA through use of consistent key reagents and procedures within laboratories, and the requirement to apply assay-matched cutoffs for folate deficiency and insufficiency. To estimate NTD risk globally, the ideal scenario would be to have country-specific population-based surveys of RBC folate in WRA determined utilizing a harmonized MBA, as was done in recent studies in Guatemala and Belize. We conclude with guidance on next steps to best navigate the road map toward the goal of generating reliable folate status data on which to assess NTD risk in WRA in low- and middle-income countries. © 2017 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.

  12. Myo-inositol soft gel capsules may prevent the risk of coffee-induced neural tube defects.

    PubMed

    De Grazia, Sara; Carlomagno, Gianfranco; Unfer, Vittorio; Cavalli, Pietro

    2012-09-01

    Neural tube defects (NTDs) are classified as folate sensitive (about 70%) and folate resistant (about 30%); although folic acid is able to prevent the former, several data have shown that inositol may prevent the latter. It has recently been proposed that coffee intake might represent a risk factor for NTD, likely by interfering with the inositol signaling. In the present study, we tested the hypothesis that, beside affecting the inositol signaling pathway, coffee also interferes with inositol absorption. In order to evaluate coffee possible negative effects on inositol gastrointestinal absorption, a single-dose bioavailability trial was conducted. Pharmacokinetics (PK) parameters of myo-inositol (MI) powder and MI soft gelatin capsules swallowed with water and with a single 'espresso' were compared. PK profiles were obtained by analysis of MI plasma concentration, and the respective MI bioavailability was compared. Myo-inositol powder administration was negatively affected by coffee intake, thus suggesting an additional explanation to the interference between inositol deficiency and coffee consumption. On the contrary, the concomitant single 'espresso' consumption did not affect MI absorption following MI soft gelatin capsules administration. Furthermore, it was observed that MI soft gelatin capsule administration resulted in improved bioavailability compared to the MI powder form. Myo-inositol soft gelatin capsules should be considered for the preventive treatment of NTDs in folate-resistant subjects due to their higher bioavailability and to the capability to reduce espresso interference.

  13. Levels of Polycyclic Aromatic Hydrocarbons in Maternal Serum and Risk of Neural Tube Defects in Offspring

    PubMed Central

    2015-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants, and have been reported to be a risk factor for human neural tube defects (NTDs). We investigated the relationship between PAH concentrations in maternal serum and NTD risk in offspring using a case-control study design, and explored the link between PAH concentrations to household energy usage characteristics and life styles. One hundred and seventeen women who had NTD-affected pregnancies (cases) and 121 women who delivered healthy infants (controls) were recruited in Northern China. Maternal blood samples were collected at pregnancy termination or at delivery. Twenty-seven PAHs were measured by gas chromatography–mass spectrometry. The concentrations of 13 individual PAHs detected were significantly higher in the cases than in the controls. Clear dose–response relationships between concentrations of most individual PAHs and the risk of total NTDs or subtypes were observed, even when potential covariates were adjusted for. High-molecular-weight PAHs (H-PAHs) showed higher risk than low-molecular-weight PAHs (L-PAHs). No associations between PAH concentrations and indoor life styles and energy usage characteristics were observed. It was concluded that maternal exposure to PAHs was associated with an increased risk of NTDs, and H-PAHs overall posed a higher risk for NTDs than L-PAHs. PMID:25488567

  14. Downregulation of ribosome biogenesis during early forebrain development

    PubMed Central

    Chau, Kevin F; Shannon, Morgan L; Fame, Ryann M; Fonseca, Erin; Mullan, Hillary; Johnson, Matthew B; Sendamarai, Anoop K; Springel, Mark W; Laurent, Benoit

    2018-01-01

    Forebrain precursor cells are dynamic during early brain development, yet the underlying molecular changes remain elusive. We observed major differences in transcriptional signatures of precursor cells from mouse forebrain at embryonic days E8.5 vs. E10.5 (before vs. after neural tube closure). Genes encoding protein biosynthetic machinery were strongly downregulated at E10.5. This was matched by decreases in ribosome biogenesis and protein synthesis, together with age-related changes in proteomic content of the adjacent fluids. Notably, c-MYC expression and mTOR pathway signaling were also decreased at E10.5, providing potential drivers for the effects on ribosome biogenesis and protein synthesis. Interference with c-MYC at E8.5 prematurely decreased ribosome biogenesis, while persistent c-MYC expression in cortical progenitors increased transcription of protein biosynthetic machinery and enhanced ribosome biogenesis, as well as enhanced progenitor proliferation leading to subsequent macrocephaly. These findings indicate large, coordinated changes in molecular machinery of forebrain precursors during early brain development. PMID:29745900

  15. Preliminary research on eddy current bobbin quantitative test for heat exchange tube in nuclear power plant

    NASA Astrophysics Data System (ADS)

    Qi, Pan; Shao, Wenbin; Liao, Shusheng

    2016-02-01

    For quantitative defects detection research on heat transfer tube in nuclear power plants (NPP), two parts of work are carried out based on the crack as the main research objects. (1) Production optimization of calibration tube. Firstly, ASME, RSEM and homemade crack calibration tubes are applied to quantitatively analyze the defects depth on other designed crack test tubes, and then the judgment with quantitative results under crack calibration tube with more accuracy is given. Base on that, weight analysis of influence factors for crack depth quantitative test such as crack orientation, length, volume and so on can be undertaken, which will optimize manufacture technology of calibration tubes. (2) Quantitative optimization of crack depth. Neural network model with multi-calibration curve adopted to optimize natural crack test depth generated in in-service tubes shows preliminary ability to improve quantitative accuracy.

  16. Resolution of lava tubes with ground penetrating radar: preliminary results from the TubeX project

    NASA Astrophysics Data System (ADS)

    Esmaeili, S.; Kruse, S.; Garry, W. B.; Whelley, P.; Young, K.; Jazayeri, S.; Bell, E.; Paylor, R.

    2017-12-01

    As early as the mid 1970's it was postulated that planetary tubes or caves on other planetary bodies (i.e., the Moon or Mars) could provide safe havens for human crews, protect life and shield equipment from harmful radiation, rapidly fluctuating surface temperatures, and even meteorite impacts. What is not clear, however, are the exploration methods necessary to evaluate a potential tube-rich environment to locate suitable tubes suitable for human habitation. We seek to address this knowledge gap using a suite of instruments to detect and document tubes in a terrestrial analog study at Lava Beds National Monument, California, USA. Here we describe the results of ground penetrating radar (GPR) profiles and light detection and ranging (LiDAR) scans. Surveys were conducted from the surface and within four lava tubes (Hercules Leg, Skull, Valentine and, Indian Well Caves) with varying flow composition, shape, and complexity. Results are shown across segments of these tubes where the tubes are <1 m to ranging > 10 m in height and the ceilings are 1 - 10 m below the surface. The GPR profiles over the tubes are, as expected, complex, due to scattering from fractures in roof material and three-dimensional heterogeneities. Point clouds derived from the LiDAR scans of both the interior and exterior of the lava tubes provide precise positioning of the tube geometry and depth of the ceiling and floor with respect to the surface topography. GPR profiles over LiDAR-mapped tube cross-sections are presented and compared against synthetic models of radar response to the measured geometry. This comparison will help to better understand the origins of characteristic features in the radar profiles. We seek to identify the optimal data processing and migration approaches to aid lava tube exploration of planetary surfaces.

  17. Primary prevention of neural-tube defects and some other congenital abnormalities by folic acid and multivitamins: history, missed opportunity and tasks

    PubMed Central

    Bártfai, Zoltán; Bánhidy, Ferenc

    2011-01-01

    The history of intervention trials of periconception folic acid with multivitamin and folic acid supplementation in women has shown a recent breakthrough in the primary prevention of structural birth defects, namely neural-tube defects and some other congenital abnormalities. Recently, some studies have demonstrated the efficacy of this new method in reducing congenital abnormalities with specific origin; for example, in the offspring of diabetic and epileptic mothers, and in pregnancy with high fever. The benefits and drawbacks of four possible uses of periconception folate/folic acid and multivitamin supplementation are discussed: we believe there has been a missed opportunity to implement this preventive approach in medical practice. The four methods are as follows: (i) dietary intake of folate and other vitamins, (ii) periconception folic acid/multivitamin supplementation, (iii) food fortification with folic acid, and (iv) the combination of oral contraceptives with 6S-5-methytetrahydrofolate (‘folate’). PMID:25083211

  18. Early life stress accelerates behavioral and neural maturation of the hippocampus in male mice.

    PubMed

    Bath, K; Manzano-Nieves, G; Goodwill, H

    2016-06-01

    Early life stress (ELS) increases the risk for later cognitive and emotional dysfunction. ELS is known to truncate neural development through effects on suppressing cell birth, increasing cell death, and altering neuronal morphology, effects that have been associated with behavioral profiles indicative of precocious maturation. However, how earlier silencing of growth drives accelerated behavioral maturation has remained puzzling. Here, we test the novel hypothesis that, ELS drives a switch from growth to maturation to accelerate neural and behavioral development. To test this, we used a mouse model of ELS, fragmented maternal care, and a cross-sectional dense sampling approach focusing on hippocampus and measured effects of ELS on the ontogeny of behavioral development and biomarkers of neural maturation. Consistent with previous work, ELS was associated with an earlier developmental decline in expression of markers of cell proliferation (Ki-67) and differentiation (doublecortin). However, ELS also led to a precocious arrival of Parvalbumin-positive cells, led to an earlier switch in NMDA receptor subunit expression (marker of synaptic maturity), and was associated with an earlier rise in myelin basic protein expression (key component of the myelin sheath). In addition, in a contextual fear-conditioning task, ELS accelerated the timed developmental suppression of contextual fear. Together, these data provide support for the hypothesis that ELS serves to switch neurodevelopment from processes of growth to maturation and promotes accelerated development of some forms of emotional learning. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Calculation of the Pitot tube correction factor for Newtonian and non-Newtonian fluids.

    PubMed

    Etemad, S Gh; Thibault, J; Hashemabadi, S H

    2003-10-01

    This paper presents the numerical investigation performed to calculate the correction factor for Pitot tubes. The purely viscous non-Newtonian fluids with the power-law model constitutive equation were considered. It was shown that the power-law index, the Reynolds number, and the distance between the impact and static tubes have a major influence on the Pitot tube correction factor. The problem was solved for a wide range of these parameters. It was shown that employing Bernoulli's equation could lead to large errors, which depend on the magnitude of the kinetic energy and energy friction loss terms. A neural network model was used to correlate the correction factor of a Pitot tube as a function of these three parameters. This correlation is valid for most Newtonian, pseudoplastic, and dilatant fluids at low Reynolds number.

  20. Artificial-neural-network-based failure detection and isolation

    NASA Astrophysics Data System (ADS)

    Sadok, Mokhtar; Gharsalli, Imed; Alouani, Ali T.

    1998-03-01

    This paper presents the design of a systematic failure detection and isolation system that uses the concept of failure sensitive variables (FSV) and artificial neural networks (ANN). The proposed approach was applied to tube leak detection in a utility boiler system. Results of the experimental testing are presented in the paper.

  1. Neural Progenitors Adopt Specific Identities by Directly Repressing All Alternative Progenitor Transcriptional Programs.

    PubMed

    Kutejova, Eva; Sasai, Noriaki; Shah, Ankita; Gouti, Mina; Briscoe, James

    2016-03-21

    In the vertebrate neural tube, a morphogen-induced transcriptional network produces multiple molecularly distinct progenitor domains, each generating different neuronal subtypes. Using an in vitro differentiation system, we defined gene expression signatures of distinct progenitor populations and identified direct gene-regulatory inputs corresponding to locations of specific transcription factor binding. Combined with targeted perturbations of the network, this revealed a mechanism in which a progenitor identity is installed by active repression of the entire transcriptional programs of other neural progenitor fates. In the ventral neural tube, sonic hedgehog (Shh) signaling, together with broadly expressed transcriptional activators, concurrently activates the gene expression programs of several domains. The specific outcome is selected by repressive input provided by Shh-induced transcription factors that act as the key nodes in the network, enabling progenitors to adopt a single definitive identity from several initially permitted options. Together, the data suggest design principles relevant to many developing tissues. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Early neural disruption and auditory processing outcomes in rodent models: implications for developmental language disability

    PubMed Central

    Fitch, R. Holly; Alexander, Michelle L.; Threlkeld, Steven W.

    2013-01-01

    Most researchers in the field of neural plasticity are familiar with the “Kennard Principle,” which purports a positive relationship between age at brain injury and severity of subsequent deficits (plateauing in adulthood). As an example, a child with left hemispherectomy can recover seemingly normal language, while an adult with focal injury to sub-regions of left temporal and/or frontal cortex can suffer dramatic and permanent language loss. Here we present data regarding the impact of early brain injury in rat models as a function of type and timing, measuring long-term behavioral outcomes via auditory discrimination tasks varying in temporal demand. These tasks were created to model (in rodents) aspects of human sensory processing that may correlate—both developmentally and functionally—with typical and atypical language. We found that bilateral focal lesions to the cortical plate in rats during active neuronal migration led to worse auditory outcomes than comparable lesions induced after cortical migration was complete. Conversely, unilateral hypoxic-ischemic (HI) injuries (similar to those seen in premature infants and term infants with birth complications) led to permanent auditory processing deficits when induced at a neurodevelopmental point comparable to human “term,” but only transient deficits (undetectable in adulthood) when induced in a “preterm” window. Convergent evidence suggests that regardless of when or how disruption of early neural development occurs, the consequences may be particularly deleterious to rapid auditory processing (RAP) outcomes when they trigger developmental alterations that extend into subcortical structures (i.e., lower sensory processing stations). Collective findings hold implications for the study of behavioral outcomes following early brain injury as well as genetic/environmental disruption, and are relevant to our understanding of the neurologic risk factors underlying developmental language disability in

  3. Neural tube defects in Latin America and the impact of fortification: a literature review

    PubMed Central

    Rosenthal, Jorge; Casas, Jessica; Taren, Douglas; Alverson, Clinton J; Flores, Alina; Frias, Jaime

    2015-01-01

    Objective Data on the prevalence of birth defects and neural tube defects (NTD) in Latin America are limited. The present review summarizes NTD prevalence and time trends in Latin American countries and compares pre- and post-fortification periods to assess the impact of folic acid fortification in these countries. Design We carried out a literature review of studies and institutional reports published between 1990 and 2010 that contained information on NTD prevalence in Latin America. Results NTD prevalence in Latin American countries varied from 0.2 to 9.6 per 1000 live births and was influenced by methods of ascertainment. Time trends from Bogota, Costa Rica, Dominican Republic, Guatemala City, México and Puerto Rico showed average annual declines of 2.5% to 21.8%. Pre- and post-fortification comparisons were available for Argentina, Brazil, Chile, Costa Rica, Puerto Rico and México. The aggregate percentage decline in NTD prevalence ranged from 33% to 59%. Conclusions The present publication is the first to review data on time trends and the impact of folic acid fortification on NTD prevalence in Latin America. Reported NTD prevalence varied markedly by geographic region and in some areas of Latin America was among the lowest in the world, while in other areas it was among the highest. For countries with available information, time trends showed significant declines in NTD prevalence and these declines were greater in countries where folic acid fortification of staples reached the majority of the population at risk, such as Chile and Costa Rica. PMID:23464652

  4. An experimental study on neural crest migration in Barbus conchonius (Cyprinidae, Teleostei), with special reference to the origin of the enteroendocrine cells.

    PubMed

    Lamers, C H; Rombout, J W; Timmermans, L P

    1981-04-01

    A neural crest transplantation technique is described for fish. As in other classes of vertebrates, two pathways of neural crest migration can be distinguished: a lateroventral pathway between somites and ectoderm, and a medioventral pathway between somites and neural tube/notochord. In this paper evidence is presented for a neural crest origin of spinal ganglion cells and pigment cells, and indication for such an origin is obtained for sympathetic and enteric ganglion cells and for cells that are probably homologues to adrenomedullary and paraganglion cells in the future kidney area. The destiny of neural crest cells near the developing lateral-line sense organs is discussed. When grafted into the yolk, neural crest cells or neural tube cells appear to differentiate into 'periblast cells'; this suggests a highly activating influence of the yolk. Many neural crest cells are found around the urinary ducts and, when grafted below the notochord, even within the urinary duct epithelium. These neural crest cells do not invade the gut epithelium, even when grafted adjacent to the developing gut. Consequently enteroendocrine cells in fish are not likely to have a trunk- or rhombencephalic neural crest origin. Another possible origin of these cells will be proposed.

  5. Giant lung abscess treated by tube thoracostomy.

    PubMed

    Mengoli, L

    1985-08-01

    Pulmonary resection is the recommended treatment for large lung abscesses that do not respond to medical management. Tube thoracostomy, effective in the past, has been used less and less in recent years. Personal experience with three patients and a review of the literature led me to the following conclusions: In the treatment of a lung abscess 8 cm or larger, tube thoracostomy is an effective form of drainage, is probably safer than pulmonary resection, and may yield a superior result. Rather than being reserved as a desperation measure for poor risk patients, tube thoracostomy should be considered early in the hospital course.

  6. Neural Correlates of Natural Human Echolocation in Early and Late Blind Echolocation Experts

    PubMed Central

    Thaler, Lore; Arnott, Stephen R.; Goodale, Melvyn A.

    2011-01-01

    Background A small number of blind people are adept at echolocating silent objects simply by producing mouth clicks and listening to the returning echoes. Yet the neural architecture underlying this type of aid-free human echolocation has not been investigated. To tackle this question, we recruited echolocation experts, one early- and one late-blind, and measured functional brain activity in each of them while they listened to their own echolocation sounds. Results When we compared brain activity for sounds that contained both clicks and the returning echoes with brain activity for control sounds that did not contain the echoes, but were otherwise acoustically matched, we found activity in calcarine cortex in both individuals. Importantly, for the same comparison, we did not observe a difference in activity in auditory cortex. In the early-blind, but not the late-blind participant, we also found that the calcarine activity was greater for echoes reflected from surfaces located in contralateral space. Finally, in both individuals, we found activation in middle temporal and nearby cortical regions when they listened to echoes reflected from moving targets. Conclusions These findings suggest that processing of click-echoes recruits brain regions typically devoted to vision rather than audition in both early and late blind echolocation experts. PMID:21633496

  7. Feeding tube replacement: not always that simple!

    PubMed Central

    Lederman, Alex; Coelho da Rocha, Ricardo Frank; Lourenção, Rodrigo Montenegro

    2015-01-01

    Although surgical gastrostomy is not a technically troublesome surgery, the procedure may be accompanied by unfavorable outcomes. Most complications occur early in the post-operative period and include feeding tube dislodgment, stomal infection, peritonitis, and pneumonia. The authors report the case of an 83-year-old man who underwent a surgical gastrostomy because of a swallowing disorder after an ischemic stroke. Nine months after the procedure, the feeding tube dislodged and a new tube was inserted with a certain delay and with some difficulty, causing a false path and consequently an intrabdominal abscess after diet infusion. The outcome was fatal. The authors call attention for meticulous care with the insertion of feeding tubes and advise the performance of imaging control to assure its precise positioning. PMID:26484325

  8. Traveling-Wave Tubes

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.

    1998-01-01

    The traveling-wave tube (TWT) is a vacuum device invented in the early 1940's used for amplification at microwave frequencies. Amplification is attained by surrendering kinetic energy from an electron beam to a radio frequency (RF) electromagnetic wave. The demand for vacuum devices has been decreased largely by the advent of solid-state devices. However, although solid state devices have replaced vacuum devices in many areas, there are still many applications such as radar, electronic countermeasures and satellite communications, that require operating characteristics such as high power (Watts to Megawatts), high frequency (below 1 GHz to over 100 GHz) and large bandwidth that only vacuum devices can provide. Vacuum devices are also deemed irreplaceable in the music industry where musicians treasure their tube-based amplifiers claiming that the solid-state and digital counterparts could never provide the same "warmth" (3). The term traveling-wave tube includes both fast-wave and slow-wave devices. This article will concentrate on slow-wave devices as the vast majority of TWTs in operation fall into this category.

  9. Temperament and Parenting Styles in Early Childhood Differentially Influence Neural Response to Peer Evaluation in Adolescence.

    PubMed

    Guyer, Amanda E; Jarcho, Johanna M; Pérez-Edgar, Koraly; Degnan, Kathryn A; Pine, Daniel S; Fox, Nathan A; Nelson, Eric E

    2015-07-01

    Behavioral inhibition (BI) is a temperament characterized by social reticence and withdrawal from unfamiliar or novel contexts and conveys risk for social anxiety disorder. Developmental outcomes associated with this temperament can be influenced by children's caregiving context. The convergence of a child's temperamental disposition and rearing environment is ultimately expressed at both the behavioral and neural levels in emotional and cognitive response patterns to social challenges. The present study used functional neuroimaging to assess the moderating effects of different parenting styles on neural response to peer rejection in two groups of adolescents characterized by their early childhood temperament (M(age) = 17.89 years, N = 39, 17 males, 22 females; 18 with BI; 21 without BI). The moderating effects of authoritarian and authoritative parenting styles were examined in three brain regions linked with social anxiety: ventrolateral prefrontal cortex (vlPFC), striatum, and amygdala. In youth characterized with BI in childhood, but not in those without BI, diminished responses to peer rejection in vlPFC were associated with higher levels of authoritarian parenting. In contrast, all youth showed decreased caudate response to peer rejection at higher levels of authoritative parenting. These findings indicate that BI in early life relates to greater neurobiological sensitivity to variance in parenting styles, particularly harsh parenting, in late adolescence. These results are discussed in relation to biopsychosocial models of development.

  10. Temperament and Parenting Styles in Early Childhood Differentially Influence Neural Response to Peer Evaluation in Adolescence

    PubMed Central

    Guyer, Amanda E.; Jarcho, Johanna M.; Pérez-Edgar, Koraly; Degnan, Kathryn A.; Pine, Daniel S.; Fox, Nathan A.; Nelson, Eric E.

    2015-01-01

    Behavioral inhibition (BI) is a temperament characterized by social reticence and withdrawal from unfamiliar or novel contexts and conveys risk for social anxiety disorder. Developmental outcomes associated with this temperament can be influenced by children’s caregiving context. The convergence of a child’s temperamental disposition and rearing environment is ultimately expressed at both the behavioral and neural levels in emotional and cognitive response patterns to social challenges. The present study used functional neuroimaging to assess the moderating effects of different parenting styles on neural response to peer rejection in two groups of adolescents characterized by their early childhood temperament (Mage = 17.89 years, N= 39, 17 males, 22 females; 18 with BI; 21 without BI). The moderating effects of authoritarian and authoritative parenting styles were examined in three brain regions linked with social anxiety: ventrolateral prefrontal cortex (vlPFC), striatum, and amygdala. In youth characterized with BI in childhood, but not in those without BI, diminished responses to peer rejection in vlPFC were associated with higher levels of authoritarian parenting. In contrast, all youth showed decreased caudate response to peer rejection at higher levels of authoritative parenting. These findings indicate that BI in early life relates to greater neurobiological sensitivity to variance in parenting styles, particularly harsh parenting, in late adolescence. These results are discussed in relation to biopsychosocial models of development. PMID:25588884

  11. Tube-in-tube thermophotovoltaic generator

    DOEpatents

    Ashcroft, J.; Campbell, B.; DePoy, D.

    1998-06-30

    A thermophotovoltaic device includes at least one thermal radiator tube, a cooling tube concentrically disposed within each thermal radiator tube and an array of thermophotovoltaic cells disposed on the exterior surface of the cooling tube. A shell having a first end and a second end surrounds the thermal radiator tube. Inner and outer tubesheets, each having an aperture corresponding to each cooling tube, are located at each end of the shell. The thermal radiator tube extends within the shell between the inner tubesheets. The cooling tube extends within the shell through the corresponding apertures of the two inner tubesheets to the corresponding apertures of the two outer tubesheets. A plurality of the thermal radiator tubes can be arranged in a staggered or an in-line configuration within the shell. 8 figs.

  12. Tube-in-tube thermophotovoltaic generator

    DOEpatents

    Ashcroft, John; Campbell, Brian; DePoy, David

    1998-01-01

    A thermophotovoltaic device includes at least one thermal radiator tube, a cooling tube concentrically disposed within each thermal radiator tube and an array of thermophotovoltaic cells disposed on the exterior surface of the cooling tube. A shell having a first end and a second end surrounds the thermal radiator tube. Inner and outer tubesheets, each having an aperture corresponding to each cooling tube, are located at each end of the shell. The thermal radiator tube extends within the shell between the inner tubesheets. The cooling tube extends within the shell through the corresponding apertures of the two inner tubesheets to the corresponding apertures of the two outer tubesheets. A plurality of the thermal radiator tubes can be arranged in a staggered or an in-line configuration within the shell.

  13. Mapping of Courtship Behavior-Induced Neural Activity in the Thoracic Ganglia of Silkmoth Bombyx mori by an Immediate Early Gene, Hr38.

    PubMed

    Morishita, Koudai; Iwami, Masafumi; Kiya, Taketoshi

    2018-06-01

    In the central nervous system of insects, motor patterns are generated in the thoracic ganglia under the control of brain, where sensory information is integrated and behavioral decisions are made. Previously, we established neural activity-mapping methods using an immediate early gene, BmHr38, as a neural activity marker in the brain of male silkmoth Bombyx mori. In the present study, to gain insights into neural mechanisms of motor-pattern generation in the thoracic ganglia, we investigated expression of BmHr38 in response to sex pheromone-induced courtship behavior. Levels of BmHr38 expression were strongly correlated between the brain and thoracic ganglia, suggesting that neural activity in the thoracic ganglia is tightly controlled by the brain. In situ hybridization of BmHr38 revealed that 20-30% of thoracic neurons are activated by courtship behavior. Using serial sections, we constructed a comprehensive map of courtship behaviorinduced activity in the thoracic ganglia. These results provide important clues into how complex courtship behavior is generated in the neural circuits of thoracic ganglia.

  14. msh/Msx gene family in neural development.

    PubMed

    Ramos, Casto; Robert, Benoît

    2005-11-01

    The involvement of Msx homeobox genes in skull and tooth formation has received a great deal of attention. Recent studies also indicate a role for the msh/Msx gene family in development of the nervous system. In this article, we discuss the functions of these transcription factors in neural-tissue organogenesis. We will deal mainly with the interactions of the Drosophila muscle segment homeobox (msh) gene with other homeobox genes and the repressive cascade that leads to neuroectoderm patterning; the role of Msx genes in neural-crest induction, focusing especially on the differences between lower and higher vertebrates; their implication in patterning of the vertebrate neural tube, particularly in diencephalon midline formation. Finally, we will examine the distinct activities of Msx1, Msx2 and Msx3 genes during neurogenesis, taking into account their relationships with signalling molecules such as BMP.

  15. LRP2 gene variants and their haplotypes strongly influence the risk of developing neural tube defects in the fetus: a family-triad study from South India.

    PubMed

    K, Rebekah Prasoona; T, Sunitha; B, Srinadh; T, Muni Kumari; A, Jyothy

    2018-05-04

    Neural tube defects (NTDs) are the leading cause of infant deaths worldwide. Lipoprotein related receptor 2 (LRP2) has been shown to play a crucial role in neural tube development in mouse models. However, the role of LRP2 gene in the development of human NTDs is not yet known. In view of this, family-based triad approach has been followed considering 924 subjects comprising 124 NTD case-parent trios and 184 control-parent trios diagnosed at Institute of Genetics and Hospital for Genetic Diseases, Hyderabad. Blood and tissue samples were genotyped for rs3755166 (-G759A) and rs2544390 (C835T) variants of LRP2 gene for their association with NTDs. Assessment of maternal-paternal genotype incompatibility risk for NTD revealed 3.77-folds risk with a combination of maternal GA and paternal GG genotypes (GAxGG = GA,p < 0.001), while CT genotypes of both the parents showed 4.19-folds risk for NTDs (CTxCT = CT,p = 0.009). Haplotype analysis revealed significant risk of maternal A-T (OR = 4.48,p < 0.001) and paternal G-T haplotypes (OR = 5.22,p < 0.001) for NTD development. Further, linkage analysis for parent-of-origin effects (POE) also revealed significant transmission of maternal 'A' allele (OR = 2.33,p = 0.028) and paternal 'T' allele (OR = 6.00,p = 0.016) to NTDs. Analysis of serum folate and active-B12 levels revealed significant association with LRP2 gene variants in the causation of NTDs. In conclusion, the present family-based triad study provides the first report on association of LRP2 gene variants with human NTDs.

  16. Mammalian Target of Rapamycin: Its Role in Early Neural Development and in Adult and Aged Brain Function

    PubMed Central

    Garza-Lombó, Carla; Gonsebatt, María E.

    2016-01-01

    The kinase mammalian target of rapamycin (mTOR) integrates signals triggered by energy, stress, oxygen levels, and growth factors. It regulates ribosome biogenesis, mRNA translation, nutrient metabolism, and autophagy. mTOR participates in various functions of the brain, such as synaptic plasticity, adult neurogenesis, memory, and learning. mTOR is present during early neural development and participates in axon and dendrite development, neuron differentiation, and gliogenesis, among other processes. Furthermore, mTOR has been shown to modulate lifespan in multiple organisms. This protein is an important energy sensor that is present throughout our lifetime its role must be precisely described in order to develop therapeutic strategies and prevent diseases of the central nervous system. The aim of this review is to present our current understanding of the functions of mTOR in neural development, the adult brain and aging. PMID:27378854

  17. Describing the Prevalence of Neural Tube Defects Worldwide: A Systematic Literature Review.

    PubMed

    Zaganjor, Ibrahim; Sekkarie, Ahlia; Tsang, Becky L; Williams, Jennifer; Razzaghi, Hilda; Mulinare, Joseph; Sniezek, Joseph E; Cannon, Michael J; Rosenthal, Jorge

    2016-01-01

    Folate-sensitive neural tube defects (NTDs) are an important, preventable cause of morbidity and mortality worldwide. There is a need to describe the current global burden of NTDs and identify gaps in available NTD data. We conducted a systematic review and searched multiple databases for NTD prevalence estimates and abstracted data from peer-reviewed literature, birth defects surveillance registries, and reports published between January 1990 and July 2014 that had greater than 5,000 births and were not solely based on mortality data. We classified countries according to World Health Organization (WHO) regions and World Bank income classifications. The initial search yielded 11,614 results; after systematic review we identified 160 full text manuscripts and reports that met the inclusion criteria. Data came from 75 countries. Coverage by WHO region varied in completeness (i.e., % of countries reporting) as follows: African (17%), Eastern Mediterranean (57%), European (49%), Americas (43%), South-East Asian (36%), and Western Pacific (33%). The reported NTD prevalence ranges and medians for each region were: African (5.2-75.4; 11.7 per 10,000 births), Eastern Mediterranean (2.1-124.1; 21.9 per 10,000 births), European (1.3-35.9; 9.0 per 10,000 births), Americas (3.3-27.9; 11.5 per 10,000 births), South-East Asian (1.9-66.2; 15.8 per 10,000 births), and Western Pacific (0.3-199.4; 6.9 per 10,000 births). The presence of a registry or surveillance system for NTDs increased with country income level: low income (0%), lower-middle income (25%), upper-middle income (70%), and high income (91%). Many WHO member states (120/194) did not have any data on NTD prevalence. Where data are collected, prevalence estimates vary widely. These findings highlight the need for greater NTD surveillance efforts, especially in lower-income countries. NTDs are an important public health problem that can be prevented with folic acid supplementation and fortification of staple foods.

  18. Describing the Prevalence of Neural Tube Defects Worldwide: A Systematic Literature Review

    PubMed Central

    Zaganjor, Ibrahim; Sekkarie, Ahlia; Tsang, Becky L.; Williams, Jennifer; Razzaghi, Hilda; Mulinare, Joseph; Sniezek, Joseph E.; Cannon, Michael J.; Rosenthal, Jorge

    2016-01-01

    Background Folate-sensitive neural tube defects (NTDs) are an important, preventable cause of morbidity and mortality worldwide. There is a need to describe the current global burden of NTDs and identify gaps in available NTD data. Methods and Findings We conducted a systematic review and searched multiple databases for NTD prevalence estimates and abstracted data from peer-reviewed literature, birth defects surveillance registries, and reports published between January 1990 and July 2014 that had greater than 5,000 births and were not solely based on mortality data. We classified countries according to World Health Organization (WHO) regions and World Bank income classifications. The initial search yielded 11,614 results; after systematic review we identified 160 full text manuscripts and reports that met the inclusion criteria. Data came from 75 countries. Coverage by WHO region varied in completeness (i.e., % of countries reporting) as follows: African (17%), Eastern Mediterranean (57%), European (49%), Americas (43%), South-East Asian (36%), and Western Pacific (33%). The reported NTD prevalence ranges and medians for each region were: African (5.2–75.4; 11.7 per 10,000 births), Eastern Mediterranean (2.1–124.1; 21.9 per 10,000 births), European (1.3–35.9; 9.0 per 10,000 births), Americas (3.3–27.9; 11.5 per 10,000 births), South-East Asian (1.9–66.2; 15.8 per 10,000 births), and Western Pacific (0.3–199.4; 6.9 per 10,000 births). The presence of a registry or surveillance system for NTDs increased with country income level: low income (0%), lower-middle income (25%), upper-middle income (70%), and high income (91%). Conclusions Many WHO member states (120/194) did not have any data on NTD prevalence. Where data are collected, prevalence estimates vary widely. These findings highlight the need for greater NTD surveillance efforts, especially in lower-income countries. NTDs are an important public health problem that can be prevented with folic acid

  19. Derivation and Expansion Using Only Small Molecules of Human Neural Progenitors for Neurodegenerative Disease Modeling

    PubMed Central

    Reinhardt, Peter; Glatza, Michael; Hemmer, Kathrin; Tsytsyura, Yaroslav; Thiel, Cora S.; Höing, Susanne; Moritz, Sören; Parga, Juan A.; Wagner, Lydia; Bruder, Jan M.; Wu, Guangming; Schmid, Benjamin; Röpke, Albrecht; Klingauf, Jürgen; Schwamborn, Jens C.; Gasser, Thomas; Schöler, Hans R.; Sterneckert, Jared

    2013-01-01

    Phenotypic drug discovery requires billions of cells for high-throughput screening (HTS) campaigns. Because up to several million different small molecules will be tested in a single HTS campaign, even small variability within the cell populations for screening could easily invalidate an entire campaign. Neurodegenerative assays are particularly challenging because neurons are post-mitotic and cannot be expanded for implementation in HTS. Therefore, HTS for neuroprotective compounds requires a cell type that is robustly expandable and able to differentiate into all of the neuronal subtypes involved in disease pathogenesis. Here, we report the derivation and propagation using only small molecules of human neural progenitor cells (small molecule neural precursor cells; smNPCs). smNPCs are robust, exhibit immortal expansion, and do not require cumbersome manual culture and selection steps. We demonstrate that smNPCs have the potential to clonally and efficiently differentiate into neural tube lineages, including motor neurons (MNs) and midbrain dopaminergic neurons (mDANs) as well as neural crest lineages, including peripheral neurons and mesenchymal cells. These properties are so far only matched by pluripotent stem cells. Finally, to demonstrate the usefulness of smNPCs we show that mDANs differentiated from smNPCs with LRRK2 G2019S are more susceptible to apoptosis in the presence of oxidative stress compared to wild-type. Therefore, smNPCs are a powerful biological tool with properties that are optimal for large-scale disease modeling, phenotypic screening, and studies of early human development. PMID:23533608

  20. Neural Differentiation of Embryonic Stem Cells In Vitro: A Road Map to Neurogenesis in the Embryo

    PubMed Central

    Abranches, Elsa; Silva, Margarida; Pradier, Laurent; Schulz, Herbert; Hummel, Oliver; Henrique, Domingos; Bekman, Evguenia

    2009-01-01

    Background The in vitro generation of neurons from embryonic stem (ES) cells is a promising approach to produce cells suitable for neural tissue repair and cell-based replacement therapies of the nervous system. Available methods to promote ES cell differentiation towards neural lineages attempt to replicate, in different ways, the multistep process of embryonic neural development. However, to achieve this aim in an efficient and reproducible way, a better knowledge of the cellular and molecular events that are involved in the process, from the initial specification of neuroepithelial progenitors to their terminal differentiation into neurons and glial cells, is required. Methodology/Principal Findings In this work, we characterize the main stages and transitions that occur when ES cells are driven into a neural fate, using an adherent monolayer culture system. We established improved conditions to routinely produce highly homogeneous cultures of neuroepithelial progenitors, which organize into neural tube-like rosettes when they acquire competence for neuronal production. Within rosettes, neuroepithelial progenitors display morphological and functional characteristics of their embryonic counterparts, namely, apico-basal polarity, active Notch signalling, and proper timing of production of neurons and glia. In order to characterize the global gene activity correlated with each particular stage of neural development, the full transcriptome of different cell populations that arise during the in vitro differentiation protocol was determined by microarray analysis. By using embryo-oriented criteria to cluster the differentially expressed genes, we define five gene expression signatures that correlate with successive stages in the path from ES cells to neurons. These include a gene signature for a primitive ectoderm-like stage that appears after ES cells enter differentiation, and three gene signatures for subsequent stages of neural progenitor development, from an

  1. Gastric band tubing-related complication during pregnancy.

    PubMed

    Ongso, Yuni F; Beh, Han N

    2017-11-01

    In the past few decades, laparoscopic adjustable gastric banding is one of the most common bariatric procedures performed to treat morbid obesity. Device-related complication such as connection-tubing problem is rare. Here we present a case of gastric band tubing complication during pregnancy. This case illustrates the need to maintain high index of suspicion of gastric band device-related complication during pregnancy and early referral for bariatric surgical assessment is recommended.

  2. Gastric band tubing-related complication during pregnancy

    PubMed Central

    Beh, Han N

    2017-01-01

    Abstract In the past few decades, laparoscopic adjustable gastric banding is one of the most common bariatric procedures performed to treat morbid obesity. Device-related complication such as connection-tubing problem is rare. Here we present a case of gastric band tubing complication during pregnancy. This case illustrates the need to maintain high index of suspicion of gastric band device-related complication during pregnancy and early referral for bariatric surgical assessment is recommended. PMID:29218217

  3. Early perception and structural identity: neural implementation

    NASA Astrophysics Data System (ADS)

    Ligomenides, Panos A.

    1992-03-01

    It is suggested that there exists a minimal set of rules for the perceptual composition of the unending variety of spatio-temporal patterns in our perceptual world. Driven by perceptual discernment of "sudden change" and "unexpectedness", these rules specify conditions (such as co-linearity and virtual continuation) for perceptual grouping and for recursive compositions of perceptual "modalities" and "signatures". Beginning with a smallset of primitive perceptual elements, selected contextually at some relevant level of abstraction, perceptual compositions can graduate to an unlimited variety of spatiotemporal signatures, scenes and activities. Local discernible elements, often perceptually ambiguous by themselves, may be integrated into spatiotemporal compositions, which generate unambiguous perceptual separations between "figure" and "ground". The definition of computational algorithms for the effective instantiation of the rules of perceptual grouping remains a principal problem. In this paper we present our approach for solving the problem of perceptual recognition within the confines of one-D variational profiles. More specifically, concerning "early" (pre-attentive) recognition, we define the "structural identity of a k-norm, k ∈ K,"--SkID--as a tool for discerning and locating the instantiation of spatiotemporal objects or events. The SkID profile also serves a s a reference coordinate framework for the "perceptual focusing of attention" and the eventual assessment of resemblance. Neural network implementations of pre-attentive and attentive recognition are also discussed briefly. Our principles are exemplified by application to one-D perceptual profiles, which allows simplicity of definitions and of the rules of perceptual composition.

  4. Lava Tube Seismicity at Kilauea

    NASA Astrophysics Data System (ADS)

    Hoblitt, R. P.; Battaglia, J.; Kauahikaua, J. P.; Okubo, P. G.

    2002-12-01

    We have begun to collect seismic data on lava tubes at Kilauea volcano in an effort to develop a real-time method for monitoring lava tube flux. Utilizing seismometers whose responses collectively vary from about 1 Hz to 1000 Hz, we find that most tube signals range between about 1 to 150 Hz, though some sites exhibit transient signals that range upward to several hundred Hz or more. Part of the lower frequency band--perhaps 1-10 Hz--may be volcanic tremor from Pu`u `O`o, the source of the lava flowing in the tubes. We attribute the higher frequencies to flowing lava, though wind noise and helicopter noise complicate interpretation. At a given site, both the amplitude and frequency spectrum change with time. We strongly suspect that at least some of the changes are related to changes in lava velocity and/or lava flux. Our strongest evidence that the part of the spectrum greater than 10 Hz contains velocity/flux information is that the signal amplitude of this band decreased by about 90 percent when the independently measured VLF (Very Low Frequency) tube flux decreased from about 300,000 m3/day in early February, 2002 to less than 5,000 m3/day in late August. Qualitative field observations of this tube system are in agreement with the VLF measurements.

  5. Effects of task demands on the early neural processing of fearful and happy facial expressions

    PubMed Central

    Itier, Roxane J.; Neath-Tavares, Karly N.

    2017-01-01

    Task demands shape how we process environmental stimuli but their impact on the early neural processing of facial expressions remains unclear. In a within-subject design, ERPs were recorded to the same fearful, happy and neutral facial expressions presented during a gender discrimination, an explicit emotion discrimination and an oddball detection tasks, the most studied tasks in the field. Using an eye tracker, fixation on the face nose was enforced using a gaze-contingent presentation. Task demands modulated amplitudes from 200–350ms at occipito-temporal sites spanning the EPN component. Amplitudes were more negative for fearful than neutral expressions starting on N170 from 150–350ms, with a temporo-occipital distribution, whereas no clear effect of happy expressions was seen. Task and emotion effects never interacted in any time window or for the ERP components analyzed (P1, N170, EPN). Thus, whether emotion is explicitly discriminated or irrelevant for the task at hand, neural correlates of fearful and happy facial expressions seem immune to these task demands during the first 350ms of visual processing. PMID:28315309

  6. A zinc finger protein Zfp521 directs neural differentiation and beyond

    PubMed Central

    2011-01-01

    Neural induction is largely considered a default process, whereas little is known about intrinsic factors that drive neural differentiation. Kamiya and colleagues now demonstrate that a transcription factor, Zfp521, is capable of directing embryonic stem (ES) cells into neural progenitors. They discovered that Zfp521 transcripts were enriched in early neural lineage of ES cell differentiation. Forced expression of Zfp521 turned ES cells into neural progenitors in culture conditions that would normally inhibit neural differentiation. Zfp521 was expressed in mouse embryos during gastrulation. The protein was shown to associate with a co-activator p300 and directly induce expression of early neural genes. Knockdown of the Zfp521 by shRNA halted cells at the epiblast stage and suppressed neural differentiation. Zfp521 is a nuclear protein with 30 Krüppel-like zinc fingers mediating multiple protein-protein interactions, and regulates transcription in diverse tissues and organs. The protein promotes proliferation, delays differentiation and reduces apoptosis. The findings by Kamiya and colleagues that Zfp521 directs and sustains early neural differentiation now opens up a series of studies to investigate roles of Zfp521 in stem cells and brain development of mice and men. PMID:21539723

  7. Supplement use and other characteristics among pregnant women with a previous pregnancy affected by a neural tube defect - United States, 1997-2009.

    PubMed

    Arth, Annelise; Tinker, Sarah; Moore, Cynthia; Canfield, Mark; Agopian, Aj; Reefhuis, Jennita

    2015-01-16

    Neural tube defects (NTDs) include anomalies of the brain (anencephaly and encephalocele) and spine (spina bifida). Even with ongoing mandatory folic acid fortification of enriched cereal grain products, the U.S. Preventive Services Task Force recommends that women of childbearing potential consume a daily supplement containing 400 µg-800 µg of folic acid. Women with a prior NTD-affected pregnancy have an increased risk for having another NTD-affected pregnancy, and if they are planning another pregnancy, the recommendation is that they consume high-dosage folic acid supplements (4.0 mg/day) beginning ≥4 weeks before conception and continuing through the first 12 weeks of pregnancy. To learn whether folic acid supplementation (from multivitamins or single- ingredient supplements) was commonly used during pregnancy by women with a previous NTD-affected pregnancy, supplement use was assessed among a convenience sample of women with a previous NTD-affected pregnancy who participated in the National Birth Defects Prevention Study (NBDPS), a case-control study of major birth defects in the United States. Characteristics of women who previously had an NTD-affected pregnancy and whose index pregnancy (pregnancy included in NBDPS) was either affected by an NTD (N = 17) (i.e., recurrence-cases) or resulted in a live-born infant without a major birth defect (N = 10) (i.e., recurrence-controls) were assessed. Taking a supplement that included folic acid was more common among recurrence-control mothers (80%) than recurrence-case mothers (35%). The recommendation that women should take folic acid supplements just before and during early pregnancy is not being followed by many women and offers an opportunity for NTD prevention, especially among women who are at a higher risk because they have had a previous pregnancy affected by an NTD.

  8. Enhanced expression of FNDC5 in human embryonic stem cell-derived neural cells along with relevant embryonic neural tissues.

    PubMed

    Ghahrizjani, Fatemeh Ahmadi; Ghaedi, Kamran; Salamian, Ahmad; Tanhaei, Somayeh; Nejati, Alireza Shoaraye; Salehi, Hossein; Nabiuni, Mohammad; Baharvand, Hossein; Nasr-Esfahani, Mohammad Hossein

    2015-02-25

    Availability of human embryonic stem cells (hESCs) has enhanced the capability of basic and clinical research in the context of human neural differentiation. Derivation of neural progenitor (NP) cells from hESCs facilitates the process of human embryonic development through the generation of neuronal subtypes. We have recently indicated that fibronectin type III domain containing 5 protein (FNDC5) expression is required for appropriate neural differentiation of mouse embryonic stem cells (mESCs). Bioinformatics analyses have shown the presence of three isoforms for human FNDC5 mRNA. To differentiate which isoform of FNDC5 is involved in the process of human neural differentiation, we have used hESCs as an in vitro model for neural differentiation by retinoic acid (RA) induction. The hESC line, Royan H5, was differentiated into a neural lineage in defined adherent culture treated by RA and basic fibroblast growth factor (bFGF). We collected all cell types that included hESCs, rosette structures, and neural cells in an attempt to assess the expression of FNDC5 isoforms. There was a contiguous increase in all three FNDC5 isoforms during the neural differentiation process. Furthermore, the highest level of expression of the isoforms was significantly observed in neural cells compared to hESCs and the rosette structures known as neural precursor cells (NPCs). High expression levels of FNDC5 in human fetal brain and spinal cord tissues have suggested the involvement of this gene in neural tube development. Additional research is necessary to determine the major function of FDNC5 in this process. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Molecular and cellular mechanisms underlying neural tube defects in the loop-tail mutant mouse.

    PubMed

    Gravel, Michel; Iliescu, Alexandra; Horth, Cynthia; Apuzzo, Sergio; Gros, Philippe

    2010-04-27

    Loop-tail (Lp) mice show a very severe neural tube defect (craniorachischisis) caused by mutations in the Vangl2 gene (D255E, S464N). Mammalian Vangl1 and Vangl2 are membrane proteins that play critical roles in development such as establishment of planar cell polarity (PCP) in epithelial layers and convergent extension movements during neurogenesis and cardiogenesis. Vangl proteins are thought to assemble with other PCP proteins (Dvl, Pk) to form membrane-bound PCP signaling complexes that provide polarity information to the cell. In the present study, we show that Vangl1 is expressed exclusively at the plasma membrane of transfected MDCK cells, where it is targeted to the basolateral membrane. Experiments with an inserted exofacial HA epitope indicate that the segment delimited by the predicted transmembrane domains 1 and 2 is exposed to the extracellular milieu. Comparative studies of the Lp-associated pathogenic mutation D255E indicate that the targeting of the mutant variant at the plasma membrane is greatly reduced; the mutant variant is predominantly retained intracellularly in endoplasmic reticulum (ER) vesicles colocalizing with the ER marker calreticulin. In addition, the D255E variant shows drastically reduced stability with a half-life of approximately 2 h, compared to >9 h for its wild type counterpart and is rapidly degraded in a proteasome-dependent and MG132 sensitive pathway. These findings highlight a critical role for D255 for normal folding and processing of Vangl proteins, with highly conservative substitutions not tolerated at that site. Our study provide an experimental framework for the analysis of human VANGL mutations recently identified in familial and sporadic cases of spina bifida.

  10. Ambient and Dosed Exposure to Quaternary Ammonium Disinfectants Causes Neural Tube Defects in Rodents

    PubMed Central

    Hrubec, Terry C.; Melin, Vanessa E.; Shea, Caroline S.; Ferguson, Elizabeth E.; Garofola, Craig; Repine, Claire M.; Chapman, Tyler W.; Patel, Hiral R.; Razvi, Reza M.; Sugrue, Jesse E.; Potineni, Haritha; Magnin-Bissel, Geraldine; Hunt, Patricia A.

    2018-01-01

    Background Quaternary ammonium compounds are a large class of chemicals used for their antimicrobial and antistatic properties. Two common quaternary ammonium compounds, alkyldimethylbenzyl ammonium chloride (ADBAC) and didecyldimethyl ammonium chloride (DDAC), are combined in common cleaners and disinfectants. Introduction of a cleaner containing ADBAC+DDAC in the vivarium caused neural tube defects (NTDs) in mice and rats. Methods To further evaluate this finding, male and female mice were dosed in the feed at 60 or 120 mg/kg/day, or by oral gavage at 7.5, 15, or 30 mg/kg ADBAC+DDAC. Mice also received ambient exposure to ADBAC+DDAC from the disinfectant used in the mouse room. Embryos were evaluated on gestational day 10 for NTDs, and fetuses were evaluated on gestational day 18 for gross and skeletal malformations. Results We found increased NTDs with exposure to ADBAC+DDAC in both rats and mice. The NTDs persisted for two generations after cessation of exposure. Notably, male exposure alone was sufficient to cause NTDs. Equally significant, ambient exposure from disinfectant use in the vivarium, influenced the levels of NTDs to a greater extent than oral dosing. No gross or significant axial skeletal malformations were observed in late gestation fetuses. Placental abnormalities and late gestation fetal deaths were increased at 120 mg/kg/day, which might explain the lack of malformations observed in late gestation fetuses. Conclusion These results demonstrate that ADBAC+DDAC in combination are teratogenic to rodents. Given the increased use of these disinfectants, further evaluation of their safety in humans and their contribution to health and disease is essential. PMID:28618200

  11. Intelligent Space Tube Optimization for speeding ground water remedial design.

    PubMed

    Kalwij, Ineke M; Peralta, Richard C

    2008-01-01

    An innovative Intelligent Space Tube Optimization (ISTO) two-stage approach facilitates solving complex nonlinear flow and contaminant transport management problems. It reduces computational effort of designing optimal ground water remediation systems and strategies for an assumed set of wells. ISTO's stage 1 defines an adaptive mobile space tube that lengthens toward the optimal solution. The space tube has overlapping multidimensional subspaces. Stage 1 generates several strategies within the space tube, trains neural surrogate simulators (NSS) using the limited space tube data, and optimizes using an advanced genetic algorithm (AGA) with NSS. Stage 1 speeds evaluating assumed well locations and combinations. For a large complex plume of solvents and explosives, ISTO stage 1 reaches within 10% of the optimal solution 25% faster than an efficient AGA coupled with comprehensive tabu search (AGCT) does by itself. ISTO input parameters include space tube radius and number of strategies used to train NSS per cycle. Larger radii can speed convergence to optimality for optimizations that achieve it but might increase the number of optimizations reaching it. ISTO stage 2 automatically refines the NSS-AGA stage 1 optimal strategy using heuristic optimization (we used AGCT), without using NSS surrogates. Stage 2 explores the entire solution space. ISTO is applicable for many heuristic optimization settings in which the numerical simulator is computationally intensive, and one would like to reduce that burden.

  12. Fitting PMT Responses with an Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Kemmerer, William; Niculescu, Gabriel

    2017-09-01

    Correctly modeling the low light responce of photodetectors such as photomultiplier tubes (PMT) is crucial for the operation of particle detection relying on the Cherenkov effect. The Gas Ring Imaging Cherenkov (GRINCH) in the SuperBigBite Spectrometer (SBS) at Jefferson Lab will rely on an array of 510 29 mm 9125B PMTs. To select the tubes for this array, more than 900 were tested and their low-light response function was fitted. An Artificial Neural Network was defined and trained to extract the relevant PMT parameters without carrying out a detailed fir of the ADC spectrum. These results will be discussed here. NSF.

  13. Questioning the wisdom of tubeless percutaneous nephrolithotomy (PCNL): a prospective randomized controlled study of early tube removal vs tubeless PCNL.

    PubMed

    Mishra, Shashikant; Sabnis, Ravindra B; Kurien, Abraham; Ganpule, Arvind; Muthu, Veeramani; Desai, Mahesh

    2010-10-01

    To establish the efficacy of early removal of a nephrostomy tube after percutaneous nephrolithotomy (PCNL), to challenge the wisdom of tubeless PCNL, as we hypothesized that it would result in a shorter hospital stay, comparable benefit and safety, while maintaining the option of check nephroscopy ensuring far superior stone clearance. In all, 22 patients were prospectively randomized equally into two groups, group 1 (early nephrostomy removal) or group 2 (tubeless) during a 1-month study period. Inclusion criteria for the study were: a simple stone of <3 cm, no significant bleeding, no perforation, single-tract access and 'on-table' complete stone clearance. In group 1, a 20 F nephrostomy, 6 F retrograde ureteric catheter and a Foley catheter were used, while in group 2 only a 6 F retrograde ureteric catheter and Foley catheter were placed at the end of the procedure. Computed tomography (CT) with no contrast medium was done on the first morning after surgery before removing all catheters/tubes, and patients discharged subsequently. The variables assessed were stone clearance, hospital stay, analgesic requirement, postoperative complications and auxiliary procedures. The mean (SD) stone bulk was similar between the groups, at 2737 (946.9) and 2934.2 (2090.7) µL, respectively. Despite an on-table complete clearance, clearance assessed by CT was nine of 11 vs eight of 11 in groups 1 and 2, respectively. CT showed a 6 mm stone in one patient in group 1, while the remaining patients had stones of <4 mm. The mean (SD) analgesic requirement, haemoglobin decrease, urine leak and hospital stay in the two groups were 72.7 (51.8) vs 68.2 (46.2) mg of tramadol (P= 0.25), 1.6 (0.7) vs 1.6 (0.9) g/dL (P= 0.39), 13.9 (6.3) vs 7.1 (14.2) h (P= 0.018) and 72.8 (2.1) vs 70.2 (18.5) h (P= 0.09), respectively. Complications noted were early haematuria in none vs three (P= 0.21), urinoma none vs one, and fever in two vs one, respectively; one patient in group 1 required a check

  14. Dietary folate, but not choline, modifies neural tube defect risk in Shmt1 knockout mice.

    PubMed

    Beaudin, Anna E; Abarinov, Elena V; Malysheva, Olga; Perry, Cheryll A; Caudill, Marie; Stover, Patrick J

    2012-01-01

    Low dietary choline intake has been proposed to increase the risk of neural tube defects (NTDs) in human populations. Mice with reduced Shmt1 expression exhibit a higher frequency of NTDs when placed on a folate- and choline-deficient diet and may represent a model of human NTDs. The individual contribution of dietary folate and choline deficiency to NTD incidence in this mouse model is not known. To dissociate the effects of dietary folate and choline deficiency on Shmt1-related NTD sensitivity, we determined NTD incidence in embryos from Shmt1-null dams fed diets deficient in either folate or choline. Shmt1(+/+) and Shmt1(-/-) dams were maintained on a standard AIN93G diet (Dyets), an AIN93G diet lacking folate (FD), or an AIN93G diet lacking choline (CD). Virgin Shmt1(+/+) and Shmt1(-/-) dams were crossed with Shmt1(+/-) males, and embryos were examined for the presence of NTDs at embryonic day (E) 11.5 or E12.5. Exencephaly was observed only in Shmt1(-/-) embryos isolated from dams maintained on the FD diet (P = 0.004). Approximately 33% of Shmt1(-/-)embryos (n = 18) isolated from dams maintained on the FD diet exhibited exencephaly. NTDs were not observed in any embryos isolated from dams maintained on the CD (n = 100) or control (n = 152) diets or in any Shmt1(+/+) (n = 78) or Shmt1(+/-) embryos (n = 182). Maternal folate deficiency alone is sufficient to induce NTDs in response to embryonic Shmt1 disruption.

  15. MYCN induces neuroblastoma in primary neural crest cells.

    PubMed

    Olsen, R R; Otero, J H; García-López, J; Wallace, K; Finkelstein, D; Rehg, J E; Yin, Z; Wang, Y-D; Freeman, K W

    2017-08-31

    Neuroblastoma (NBL) is an embryonal cancer of the sympathetic nervous system (SNS), which causes 15% of pediatric cancer deaths. High-risk NBL is characterized by N-Myc amplification and segmental chromosomal gains and losses. Owing to limited disease models, the etiology of NBL is largely unknown, including both the cell of origin and the majority of oncogenic drivers. We have established a novel system for studying NBL based on the transformation of neural crest cells (NCCs), the progenitor cells of the SNS, isolated from mouse embryonic day 9.5 trunk neural tube explants. Based on pathology and gene expression analysis, we report the first successful transformation of wild-type NCCs into NBL by enforced expression of N-Myc, to generate phenotypically and molecularly accurate tumors that closely model human MYCN-amplified NBL. Using comparative genomic hybridization, we found that NCC-derived NBL tumors acquired copy number gains and losses that are syntenic to those observed in human MYCN-amplified NBL including 17q gain, 2p gain and loss of 1p36. When p53-compromised NCCs were transformed with N-Myc, we generated primitive neuroectodermal tumors with divergent differentiation including osteosarcoma. These subcutaneous tumors were metastatic to regional lymph nodes, liver and lung. Our novel experimental approach accurately models human NBL and establishes a new system with potential to study early stages of NBL oncogenesis, to functionally assess NBL oncogenic drivers and to characterize NBL metastasis.

  16. MYCN induces neuroblastoma in primary neural crest cells

    PubMed Central

    Olsen, R R; Otero, J H; García-López, J; Wallace, K; Finkelstein, D; Rehg, J E; Yin, Z; Wang, Y-D; Freeman, K W

    2017-01-01

    Neuroblastoma (NBL) is an embryonal cancer of the sympathetic nervous system (SNS), which causes 15% of pediatric cancer deaths. High-risk NBL is characterized by N-Myc amplification and segmental chromosomal gains and losses. Owing to limited disease models, the etiology of NBL is largely unknown, including both the cell of origin and the majority of oncogenic drivers. We have established a novel system for studying NBL based on the transformation of neural crest cells (NCCs), the progenitor cells of the SNS, isolated from mouse embryonic day 9.5 trunk neural tube explants. Based on pathology and gene expression analysis, we report the first successful transformation of wild-type NCCs into NBL by enforced expression of N-Myc, to generate phenotypically and molecularly accurate tumors that closely model human MYCN-amplified NBL. Using comparative genomic hybridization, we found that NCC-derived NBL tumors acquired copy number gains and losses that are syntenic to those observed in human MYCN-amplified NBL including 17q gain, 2p gain and loss of 1p36. When p53-compromised NCCs were transformed with N-Myc, we generated primitive neuroectodermal tumors with divergent differentiation including osteosarcoma. These subcutaneous tumors were metastatic to regional lymph nodes, liver and lung. Our novel experimental approach accurately models human NBL and establishes a new system with potential to study early stages of NBL oncogenesis, to functionally assess NBL oncogenic drivers and to characterize NBL metastasis. PMID:28459463

  17. Chondroitin sulfate effects on neural stem cell differentiation.

    PubMed

    Canning, David R; Brelsford, Natalie R; Lovett, Neil W

    2016-01-01

    We have investigated the role chondroitin sulfate has on cell interactions during neural plate formation in the early chick embryo. Using tissue culture isolates from the prospective neural plate, we have measured neural gene expression profiles associated with neural stem cell differentiation. Removal of chondroitin sulfate from stage 4 neural plate tissue leads to altered associations of N-cadherin-positive neural progenitors and causes changes in the normal sequence of neural marker gene expression. Absence of chondroitin sulfate in the neural plate leads to reduced Sox2 expression and is accompanied by an increase in the expression of anterior markers of neural regionalization. Results obtained in this study suggest that the presence of chondroitin sulfate in the anterior chick embryo is instrumental in maintaining cells in the neural precursor state.

  18. Clinical tube weaning supported by hunger provocation in fully-tube-fed children.

    PubMed

    Hartdorff, Caroline M; Kneepkens, C M Frank; Stok-Akerboom, Anita M; van Dijk-Lokkart, Elisabeth M; Engels, Michelle A H; Kindermann, Angelika

    2015-04-01

    Children with congenital malformations, mental retardation, and complex early medical history frequently have feeding problems. Although tube feeding is effective in providing the necessary energy and nutrients, it decreases the child's motivation to eat and may lead to oral aversion. In this study, we sought to confirm our previous results, showing that a multidisciplinary clinical hunger provocation program may lead to quick resumption of oral feeding. In a crossover study, 22 children of 9 to 24 months of age who were fully dependent on tube feeding were randomly assigned to one of two groups: group A, intervention group (2-week multidisciplinary clinical hunger provocation program); and group B, control group (4-week outpatient treatment by the same multidisciplinary team). Patients failing one treatment were reassigned to the other treatment group. Primary outcome measures were at least 75% orally fed at the conclusion of the intervention and fully orally fed and gaining weight 6 months after the intervention. In group A, 9/11 patients were successfully weaned from tube feeding (2 failures: 1 developed ulcerative colitis, 1 drop-out). In group B, only 1 patient was weaned successfully; 10/11 were reassigned to the clinical hunger provocation program, all being weaned successfully. Six months after the intervention, 1 patient had to resume tube feeding. In total, in the control group, 1/11 (9%) was weaned successfully as compared with 18/21 (86%) in the hunger provocation group (P < 0.001). Multidisciplinary clinical hunger provocation is an effective short-term intervention for weaning young children from tube feeding.

  19. A targeted sequencing panel identifies rare damaging variants in multiple genes in the cranial neural tube defect, anencephaly

    PubMed Central

    Cullup, T.; Boustred, C.; James, C.; Docker, J.; English, C.; Lench, N.; Copp, A.J.; Moore, G.E.; Greene, N.D.E.; Stanier, P.

    2018-01-01

    Neural tube defects (NTDs) affecting the brain (anencephaly) are lethal before or at birth, whereas lower spinal defects (spina bifida) may lead to lifelong neurological handicap. Collectively, NTDs rank among the most common birth defects worldwide. This study focuses on anencephaly, which despite having a similar frequency to spina bifida and being the most common type of NTD observed in mouse models, has had more limited inclusion in genetic studies. A genetic influence is strongly implicated in determining risk of NTDs and a molecular diagnosis is of fundamental importance to families both in terms of understanding the origin of the condition and for managing future pregnancies. Here we used a custom panel of 191 NTD candidate genes to screen 90 patients with cranial NTDs (n = 85 anencephaly and n = 5 craniorachischisis) with a targeted exome sequencing platform. After filtering and comparing to our in‐house control exome database (N = 509), we identified 397 rare variants (minor allele frequency, MAF < 1%), 21 of which were previously unreported and predicted damaging. This included 1 frameshift (PDGFRA), 2 stop‐gained (MAT1A; NOS2) and 18 missense variations. Together with evidence for oligogenic inheritance, this study provides new information on the possible genetic causation of anencephaly. PMID:29205322

  20. Genetic algorithm for neural networks optimization

    NASA Astrophysics Data System (ADS)

    Setyawati, Bina R.; Creese, Robert C.; Sahirman, Sidharta

    2004-11-01

    This paper examines the forecasting performance of multi-layer feed forward neural networks in modeling a particular foreign exchange rates, i.e. Japanese Yen/US Dollar. The effects of two learning methods, Back Propagation and Genetic Algorithm, in which the neural network topology and other parameters fixed, were investigated. The early results indicate that the application of this hybrid system seems to be well suited for the forecasting of foreign exchange rates. The Neural Networks and Genetic Algorithm were programmed using MATLAB«.

  1. Review: the role of neural crest cells in the endocrine system.

    PubMed

    Adams, Meghan Sara; Bronner-Fraser, Marianne

    2009-01-01

    The neural crest is a pluripotent population of cells that arises at the junction of the neural tube and the dorsal ectoderm. These highly migratory cells form diverse derivatives including neurons and glia of the sensory, sympathetic, and enteric nervous systems, melanocytes, and the bones, cartilage, and connective tissues of the face. The neural crest has long been associated with the endocrine system, although not always correctly. According to current understanding, neural crest cells give rise to the chromaffin cells of the adrenal medulla, chief cells of the extra-adrenal paraganglia, and thyroid C cells. The endocrine tumors that correspond to these cell types are pheochromocytomas, extra-adrenal paragangliomas, and medullary thyroid carcinomas. Although controversies concerning embryological origin appear to have mostly been resolved, questions persist concerning the pathobiology of each tumor type and its basis in neural crest embryology. Here we present a brief history of the work on neural crest development, both in general and in application to the endocrine system. In particular, we present findings related to the plasticity and pluripotency of neural crest cells as well as a discussion of several different neural crest tumors in the endocrine system.

  2. Neural decoding of collective wisdom with multi-brain computing.

    PubMed

    Eckstein, Miguel P; Das, Koel; Pham, Binh T; Peterson, Matthew F; Abbey, Craig K; Sy, Jocelyn L; Giesbrecht, Barry

    2012-01-02

    Group decisions and even aggregation of multiple opinions lead to greater decision accuracy, a phenomenon known as collective wisdom. Little is known about the neural basis of collective wisdom and whether its benefits arise in late decision stages or in early sensory coding. Here, we use electroencephalography and multi-brain computing with twenty humans making perceptual decisions to show that combining neural activity across brains increases decision accuracy paralleling the improvements shown by aggregating the observers' opinions. Although the largest gains result from an optimal linear combination of neural decision variables across brains, a simpler neural majority decision rule, ubiquitous in human behavior, results in substantial benefits. In contrast, an extreme neural response rule, akin to a group following the most extreme opinion, results in the least improvement with group size. Analyses controlling for number of electrodes and time-points while increasing number of brains demonstrate unique benefits arising from integrating neural activity across different brains. The benefits of multi-brain integration are present in neural activity as early as 200 ms after stimulus presentation in lateral occipital sites and no additional benefits arise in decision related neural activity. Sensory-related neural activity can predict collective choices reached by aggregating individual opinions, voting results, and decision confidence as accurately as neural activity related to decision components. Estimation of the potential for the collective to execute fast decisions by combining information across numerous brains, a strategy prevalent in many animals, shows large time-savings. Together, the findings suggest that for perceptual decisions the neural activity supporting collective wisdom and decisions arises in early sensory stages and that many properties of collective cognition are explainable by the neural coding of information across multiple brains. Finally

  3. Pricing and hedging derivative securities with neural networks: Bayesian regularization, early stopping, and bagging.

    PubMed

    Gençay, R; Qi, M

    2001-01-01

    We study the effectiveness of cross validation, Bayesian regularization, early stopping, and bagging to mitigate overfitting and improving generalization for pricing and hedging derivative securities with daily S&P 500 index daily call options from January 1988 to December 1993. Our results indicate that Bayesian regularization can generate significantly smaller pricing and delta-hedging errors than the baseline neural-network (NN) model and the Black-Scholes model for some years. While early stopping does not affect the pricing errors, it significantly reduces the hedging error (HE) in four of the six years we investigated. Although computationally most demanding, bagging seems to provide the most accurate pricing and delta hedging. Furthermore, the standard deviation of the MSPE of bagging is far less than that of the baseline model in all six years, and the standard deviation of the average HE of bagging is far less than that of the baseline model in five out of six years. We conclude that they be used at least in cases when no appropriate hints are available.

  4. Myogenic specification in somites: induction by axial structures.

    PubMed

    Buffinger, N; Stockdale, F E

    1994-06-01

    Specification of the myogenic phenotype in somites was examined in the early chick embryo using organotypic explant cultures stained with monoclonal antibodies to myosin heavy chain. It was found that myogenic specification (formation of muscle fibers in explants of somites or segmental plates cultured alone) does not occur until Hamburger and Hamilton stage 11 (12-14 somites). At this stage, only the somites in the rostral half of the embryo are myogenically specified. By Hamburger and Hamilton stage 12 (15-17 somites), the three most caudal somites were not specified to be myogenic while most or all of the more rostral somites are specified to myogenesis. Somites from older embryos (stage 13-15, 18-26 somites) showed the same pattern of myogenic specification--all but the three most caudal somites were specified. We investigated the effects of the axial structures, the notochord and neural tube, on myogenic specification. Both the notochord and neural tube were able to induce myogenesis in unspecified somites. In contrast, the neural tube, but not the notochord, was able to induce myogenesis in explants of segmental plate, a structure which is not myogenic when cultured alone. When explants of specified somites were stained with antibodies to slow or fast MyHC, it was found that myofiber diversity (fast and fast slow fibers) was established very early in development (as early as Hamburger and Hamilton stage 11). We also found fiber diversity in explants of unspecified somites (the three most caudal somites from stage 11 to 15) when they were recombined with notochord or neural tube. We conclude that myogenic specification in the embryo results in diverse fiber types and is an inductive process which is mediated by factors produced by the neural tube and notochord.

  5. Tauroursodeoxycholic Acid Enhances Mitochondrial Biogenesis, Neural Stem Cell Pool, and Early Neurogenesis in Adult Rats.

    PubMed

    Soares, Rita; Ribeiro, Filipa F; Xapelli, Sara; Genebra, Tânia; Ribeiro, Maria F; Sebastião, Ana M; Rodrigues, Cecília M P; Solá, Susana

    2018-05-01

    Although neurogenesis occurs in restricted regions of the adult mammalian brain, neural stem cells (NSCs) produce very few neurons during ageing or after injury. We have recently discovered that the endogenous bile acid tauroursodeoxycholic acid (TUDCA), a strong inhibitor of mitochondrial apoptosis and a neuroprotective in animal models of neurodegenerative disorders, also enhances NSC proliferation, self-renewal, and neuronal conversion by improving mitochondrial integrity and function of NSCs. In the present study, we explore the effect of TUDCA on regulation of NSC fate in neurogenic niches, the subventricular zone (SVZ) of the lateral ventricles and the hippocampal dentate gyrus (DG), using rat postnatal neurospheres and adult rats exposed to the bile acid. TUDCA significantly induced NSC proliferation, self-renewal, and neural differentiation in the SVZ, without affecting DG-derived NSCs. More importantly, expression levels of mitochondrial biogenesis-related proteins and mitochondrial antioxidant responses were significantly increased by TUDCA in SVZ-derived NSCs. Finally, intracerebroventricular administration of TUDCA in adult rats markedly enhanced both NSC proliferation and early differentiation in SVZ regions, corroborating in vitro data. Collectively, our results highlight a potential novel role for TUDCA in neurologic disorders associated with SVZ niche deterioration and impaired neurogenesis.

  6. Effects of task demands on the early neural processing of fearful and happy facial expressions.

    PubMed

    Itier, Roxane J; Neath-Tavares, Karly N

    2017-05-15

    Task demands shape how we process environmental stimuli but their impact on the early neural processing of facial expressions remains unclear. In a within-subject design, ERPs were recorded to the same fearful, happy and neutral facial expressions presented during a gender discrimination, an explicit emotion discrimination and an oddball detection tasks, the most studied tasks in the field. Using an eye tracker, fixation on the face nose was enforced using a gaze-contingent presentation. Task demands modulated amplitudes from 200 to 350ms at occipito-temporal sites spanning the EPN component. Amplitudes were more negative for fearful than neutral expressions starting on N170 from 150 to 350ms, with a temporo-occipital distribution, whereas no clear effect of happy expressions was seen. Task and emotion effects never interacted in any time window or for the ERP components analyzed (P1, N170, EPN). Thus, whether emotion is explicitly discriminated or irrelevant for the task at hand, neural correlates of fearful and happy facial expressions seem immune to these task demands during the first 350ms of visual processing. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The Effects of GABAergic Polarity Changes on Episodic Neural Network Activity in Developing Neural Systems.

    PubMed

    Blanco, Wilfredo; Bertram, Richard; Tabak, Joël

    2017-01-01

    Early in development, neural systems have primarily excitatory coupling, where even GABAergic synapses are excitatory. Many of these systems exhibit spontaneous episodes of activity that have been characterized through both experimental and computational studies. As development progress the neural system goes through many changes, including synaptic remodeling, intrinsic plasticity in the ion channel expression, and a transformation of GABAergic synapses from excitatory to inhibitory. What effect each of these, and other, changes have on the network behavior is hard to know from experimental studies since they all happen in parallel. One advantage of a computational approach is that one has the ability to study developmental changes in isolation. Here, we examine the effects of GABAergic synapse polarity change on the spontaneous activity of both a mean field and a neural network model that has both glutamatergic and GABAergic coupling, representative of a developing neural network. We find some intuitive behavioral changes as the GABAergic neurons go from excitatory to inhibitory, shared by both models, such as a decrease in the duration of episodes. We also find some paradoxical changes in the activity that are only present in the neural network model. In particular, we find that during early development the inter-episode durations become longer on average, while later in development they become shorter. In addressing this unexpected finding, we uncover a priming effect that is particularly important for a small subset of neurons, called the "intermediate neurons." We characterize these neurons and demonstrate why they are crucial to episode initiation, and why the paradoxical behavioral change result from priming of these neurons. The study illustrates how even arguably the simplest of developmental changes that occurs in neural systems can present non-intuitive behaviors. It also makes predictions about neural network behavioral changes that occur during

  8. Types of neural guides and using nanotechnology for peripheral nerve reconstruction

    PubMed Central

    Biazar, Esmaeil; Khorasani, MT; Montazeri, Naser; Pourshamsian, Khalil; Daliri, Morteza; T, Mostafa Rezaei; B, Mahmoud Jabarvand; Khoshzaban, Ahad; K, Saeed Heidari; Jafarpour, Mostafa; Roviemiab, Ziba

    2010-01-01

    Peripheral nerve injuries can lead to lifetime loss of function and permanent disfigurement. Different methods, such as conventional allograft procedures and use of biologic tubes present problems when used for damaged peripheral nerve reconstruction. Designed scaffolds comprised of natural and synthetic materials are now widely used in the reconstruction of damaged tissues. Utilization of absorbable and nonabsorbable synthetic and natural polymers with unique characteristics can be an appropriate solution to repair damaged nerve tissues. Polymeric nanofibrous scaffolds with properties similar to neural structures can be more effective in the reconstruction process. Better cell adhesion and migration, more guiding of axons, and structural features, such as porosity, provide a clearer role for nanofibers in the restoration of neural tissues. In this paper, basic concepts of peripheral nerve injury, types of artificial and natural guides, and methods to improve the performance of tubes, such as orientation, nanotechnology applications for nerve reconstruction, fibers and nanofibers, electrospinning methods, and their application in peripheral nerve reconstruction are reviewed. PMID:21042546

  9. A protocol of early aggressive acceleration of tube feeding increases ileus without perceptible benefit in severely burned patients.

    PubMed

    Kesey, Jennifer; Dissanaike, Sharmila

    2013-01-01

    Optimal nutrition is essential to the recovery of burned patients. The authors evaluated the efficacy of an aggressive nutrition delivery protocol. The following protocol was implemented: initiation of tube feeds within 4 hours, acceleration to goal rate within 8 hours, and tolerance of gastric residual volumes of 400 ml. Patients on the protocol formed the study group whereas patients admitted immediately before implementation served as controls for a study period of 7 days after admission. Outcome variables included ileus, prokinetic medication use, intensive care unit and overall length of stay, ventilator days and mortality. Variables were compared using bivariate analysis. The 42 study subjects and 34 controls were similar at baseline. Time to initiation was similar (6.8 vs 9.4 hours; P = .226), however, goal rate was achieved much sooner in the study group (11.2 vs 20.9 hours; P < .001). Number of hours spent at goal was different on days 1 and 2 (6.62 vs 2.74, P = .003 and 17.24 vs 13.18, P = .032) with no difference thereafter. Residual volumes in the study group were higher from day 2 onward, and remained increased throughout the study period (401 vs 234 ml average; P = .449). Clinical ileus was much more common in the study group (8 cases vs 1, P = .037). There was no difference in length of stay or mortality. The protocol was successfully implemented and resulted in early achievement of goal tube feed rates. However, this resulted in tube feed intolerance as manifested by more cases of clinical ileus.

  10. Plasma folate levels in early to mid pregnancy after a nation-wide folic acid supplementation program in areas with high and low prevalence of neural tube defects in China.

    PubMed

    Liu, Jufen; Gao, Lili; Zhang, Yali; Jin, Lei; Li, Zhiwen; Zhang, Le; Meng, Qinqin; Ye, Rongwei; Wang, Linlin; Ren, Aiguo

    2015-06-01

    Folic acid supplementation is recommended for all women of child-bearing age to prevent neural tube defects (NTDs). A nation-wide folic acid supplementation program was implemented in rural areas of China since 2009; however, changes in plasma folate levels in pregnant women were unknown. A cross-sectional survey was conducted in 2011 to 2012, with 1736 pregnant women enrolled, and results were compared with a previous survey in 2002 to 2004. A microbiological method was used to determine plasma folate levels. Preprogram and postprogram median plasma folate concentrations were compared while stratified by prevalence of NTDs and residence. In the high NTD prevalence population, plasma folate concentration increased to 33.4 (18.7, 58.4) nmol/L in the postprogram sample, which is 2.9 times of the preprogram. In the low NTD prevalence population, plasma folate increased to 67.9 (44.5, 101.9) nmol/L, which is 1.9 times of the preprogram. Gaps remained in plasma folate levels with respect to prevalence of NTDs and residence. Folic acid supplementation has a strong impact on plasma folate concentrations. Earlier supplementation (before the last menstrual period), increased supplementation frequency and more total days of supplementation were associated with a higher plasma folate concentration as demonstrated in both the high- and low-prevalence populations. Plasma folate levels among pregnant Chinese women increased dramatically after the nation-wide folic acid supplementation program in both rural and urban areas, and in populations of high and low NTD prevalence. The nation-wide program should have a component to ensure that supplementation begins before pregnancy. © 2015 Wiley Periodicals, Inc.

  11. Protective tubes for sodium heated water tubes

    DOEpatents

    Essebaggers, Jan

    1979-01-01

    A heat exchanger in which water tubes are heated by liquid sodium which minimizes the results of accidental contact between the water and the sodium caused by failure of one or more of the water tubes. A cylindrical protective tube envelopes each water tube and the sodium flows axially in the annular spaces between the protective tubes and the water tubes.

  12. Detection of anti-streptococcal, antienolase, and anti-neural antibodies in subjects with early-onset psychiatric disorders.

    PubMed

    Nicolini, Humberto; López, Yaumara; Genis-Mendoza, Alma D; Manrique, Viana; Lopez-Canovas, Lilia; Niubo, Esperanza; Hernández, Lázaro; Bobes, María A; Riverón, Ana M; López-Casamichana, Mavil; Flores, Julio; Lanzagorta, Nuria; De la Fuente-Sandoval, Camilo; Santana, Daniel

    2015-01-01

    Infection with group A Streptococcus (StrepA) can cause post-infectious sequelae, including a spectrum of childhood-onset obsessive-compulsive (OCD) and tic disorders with autoimmune origin (PANDAS, Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcal Infections). Until now, no single immunological test has been designed that unequivocally diagnoses these disorders. In this study, we assessed the detection of serum antibodies against human brain enolase (AE), neural tissue (AN) and Streptococcus (AS) as a laboratory tool for the diagnosis of early-onset psychiatric disorders. Serum antibodies against human brain enolase, total brain proteins, and total proteins from StrepA were detected by ELISA in 37 patients with a presumptive diagnosis of PANDAS and in 12 healthy subjects from Mexico and Cuba. The antibody titers against human brain enolase (AE) and Streptococcal proteins (AS) were higher in patients than in control subjects (t-student, tAE=-2.17, P=0.035; tAS=-2.68, P=0.01, n=12 and 37/group, df=47, significance level 0.05), while the neural antibody titers did not differ between the two groups (P(t)=0.05). The number of subjects (titers> meancontrol + CI95) with simultaneous seropositivity to all three antibodies was higher in the patient group (51.4%) than in the control group (8.3%) group (X2=5.27, P=0.022, df=1, n=49). The simultaneous detection of all three of these antibodies could provide valuable information for the etiologic diagnosis of individuals with early-onset obsessive-compulsive disorders associated with streptococcal infection and, consequently, for prescribing suitable therapy.

  13. The science of neural interface systems.

    PubMed

    Hatsopoulos, Nicholas G; Donoghue, John P

    2009-01-01

    The ultimate goal of neural interface research is to create links between the nervous system and the outside world either by stimulating or by recording from neural tissue to treat or assist people with sensory, motor, or other disabilities of neural function. Although electrical stimulation systems have already reached widespread clinical application, neural interfaces that record neural signals to decipher movement intentions are only now beginning to develop into clinically viable systems to help paralyzed people. We begin by reviewing state-of-the-art research and early-stage clinical recording systems and focus on systems that record single-unit action potentials. We then address the potential for neural interface research to enhance basic scientific understanding of brain function by offering unique insights in neural coding and representation, plasticity, brain-behavior relations, and the neurobiology of disease. Finally, we discuss technical and scientific challenges faced by these systems before they are widely adopted by severely motor-disabled patients.

  14. Estimating the burden of neural tube defects in low– and middle–income countries

    PubMed Central

    Lo, Annie; Polšek, Dora; Sidhu, Simrita

    2014-01-01

    Background To provide an estimate for the burden of neural tube defects (NTD) in low– and middle–income countries (LMIC) and explore potential public health policies that may be implemented. Although effective interventions are available to prevent NTD, there is still considerable childhood morbidity and mortality present in LMIC. Methods A search of Medline, EMBASE, Global Health Library and PubMed identified 37 relevant studies that provided estimates of the burden of NTD in LMIC. Information on burden of total NTD and specific NTD types was separated according to the denominator into two groups: (i) estimates based on the number of live births only; and (ii) live births, stillbirths and terminations. The data was then extracted and analysed. Results The search retrieved NTD burden from 18 countries in 6 WHO regions. The overall burden calculated using the median from studies based on livebirths was 1.67/1000 (IQR = 0.98–3.49) for total NTD burden, 1.13/1000 (IQR = 0.75–1.73) for spina bifida, 0.25/1000 (IQR = 0.08–1.07) for anencephaly and 0.15/1000 (IQR = 0.08–0.23) for encephalocele. Corresponding estimates based on all pregnancies resulting in live births, still births and terminations were 2.55/1000 (IQR = 1.56–3.91) for total NTD burden, 1.04/1000 (IQR = 0.67–2.48) for spina bifida, 1.03/1000 (IQR = 0.67–1.60) for anencephaly and 0.21 (IQR = 0.16–0.28) for encephalocele. This translates into about 190 000neonates who are born each year with NTD in LMIC. Conclusion Limited available data on NTD in LMIC indicates the need for additional research that would improve the estimated burden of NTD and recommend suitable aid policies through maternal education on folic acid supplementation or food fortification. PMID:24976961

  15. The Relationship between Early Neural Responses to Emotional Faces at Age 3 and Later Autism and Anxiety Symptoms in Adolescents with Autism

    ERIC Educational Resources Information Center

    Neuhaus, Emily; Jones, Emily J. H.; Barnes, Karen; Sterling, Lindsey; Estes, Annette; Munson, Jeff; Dawson, Geraldine; Webb, Sara J.

    2016-01-01

    Both autism spectrum (ASD) and anxiety disorders are associated with atypical neural and attentional responses to emotional faces, differing in affective face processing from typically developing peers. Within a longitudinal study of children with ASD (23 male, 3 female), we hypothesized that early ERPs to emotional faces would predict concurrent…

  16. Neural Dynamics of Multiple Object Processing in Mild Cognitive Impairment and Alzheimer's Disease: Future Early Diagnostic Biomarkers?

    PubMed

    Bagattini, Chiara; Mazza, Veronica; Panizza, Laura; Ferrari, Clarissa; Bonomini, Cristina; Brignani, Debora

    2017-01-01

    The aim of this study was to investigate the behavioral and electrophysiological dynamics of multiple object processing (MOP) in mild cognitive impairment (MCI) and Alzheimer's disease (AD), and to test whether its neural signatures may represent reliable diagnostic biomarkers. Behavioral performance and event-related potentials [N2pc and contralateral delay activity (CDA)] were measured in AD, MCI, and healthy controls during a MOP task, which consisted in enumerating a variable number of targets presented among distractors. AD patients showed an overall decline in accuracy for both small and large target quantities, whereas in MCI patients, only enumeration of large quantities was impaired. N2pc, a neural marker of attentive individuation, was spared in both AD and MCI patients. In contrast, CDA, which indexes visual short term memory abilities, was altered in both groups of patients, with a non-linear pattern of amplitude modulation along the continuum of the disease: a reduction in AD and an increase in MCI. These results indicate that AD pathology shows a progressive decline in MOP, which is associated to the decay of visual short-term memory mechanisms. Crucially, CDA may be considered as a useful neural signature both to distinguish between healthy and pathological aging and to characterize the different stages along the AD continuum, possibly becoming a reliable candidate for an early diagnostic biomarker of AD pathology.

  17. Estimates of global and regional prevalence of neural tube defects for 2015: a systematic analysis.

    PubMed

    Blencowe, Hannah; Kancherla, Vijaya; Moorthie, Sowmiya; Darlison, Matthew W; Modell, Bernadette

    2018-02-01

    Neural tube defects (NTDs) are associated with substantial mortality, morbidity, disability, and psychological and economic costs. Many are preventable with folic acid, and access to appropriate services for those affected can improve survival and quality of life. We used a compartmental model to estimate global and regional birth prevalence of NTDs (live births, stillbirths, and elective terminations of pregnancy) and subsequent under-5 mortality. Data were identified through web-based reviews of birth defect registry databases and systematic literature reviews. Meta-analyses were undertaken where appropriate. For 2015, our model estimated 260,100 (uncertainty interval (UI): 213,800-322,000) NTD-affected birth outcomes worldwide (prevalence 18.6 (15.3-23.0)/10,000 live births). Approximately 50% of cases were elective terminations of pregnancy for fetal anomalies (UI: 59,300 (47,900-74,500)) or stillbirths (57,800 (UI: 35,000-88,600)). Of NTD-affected live births, 117,900 (∼75%) (UI: 105,500-186,600) resulted in under-5 deaths. Our systematic review showed a paucity of high-quality data in the regions of the world with the highest burden. Despite knowledge about prevention, NTDs remain highly prevalent worldwide. Lack of surveillance and incomplete ascertainment of affected pregnancies make NTDs invisible to policy makers. Improved surveillance of all adverse outcomes is needed to improve the robustness of total NTD prevalence estimation, evaluate effectiveness of prevention through folic acid fortification, and improve outcomes through care and rehabilitation. © 2018 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals Inc. on behalf of New York Academy of Sciences.

  18. Exposure to Fumonisins and the Occurrence of Neural Tube Defects along the Texas–Mexico Border

    PubMed Central

    Missmer, Stacey A.; Suarez, Lucina; Felkner, Marilyn; Wang, Elaine; Merrill, Alfred H.; Rothman, Kenneth J.; Hendricks, Katherine A.

    2006-01-01

    Along the Texas–Mexico border, the prevalence of neural tube defects (NTDs) among Mexican-American women doubled during 1990–1991. The human outbreak began during the same crop year as epizootics attributed to exposure to fumonisin, a mycotoxin that often contaminates corn. Because Mexican Americans in Texas consume large quantities of corn, primarily in the form of tortillas, they may be exposed to high levels of fumonisins. We examined whether or not maternal exposure to fumonisins increases the risk of NTDs in offspring using a population-based case–control study. We estimated fumonisin exposure from a postpartum sphinganine:sphingosine (sa:so) ratio, a biomarker for fumonisin exposure measured in maternal serum, and from maternal recall of periconceptional corn tortilla intake. After adjusting for confounders, moderate (301–400) compared with low (≤ 100) consumption of tortillas during the first trimester was associated with increased odds ratios (ORs) of having an NTD-affected pregnancy (OR = 2.4; 95% confidence interval, 1.1–5.3). No increased risks were observed at intakes higher than 400 tortillas (OR = 0.8 for 401–800, OR = 1.0 for > 800). Based on the postpartum sa:so ratio, increasing levels of fumonisin exposure were associated with increasing ORs for NTD occurrences, except for the highest exposure category (sa:so > 0.35). Our findings suggest that fumonisin exposure increases the risk of NTD, proportionate to dose, up to a threshold level, at which point fetal death may be more likely to occur. These results also call for population studies that can more directly measure individual fumonisin intakes and assess effects on the developing embryo. PMID:16451860

  19. Neural Correlates of Motor Learning, Transfer of Learning, and Learning to Learn

    PubMed Central

    Seidler, Rachael D.

    2009-01-01

    Recent studies on the neural bases of sensorimotor adaptation demonstrate that the cerebellar and striatal thalamocortical pathways contribute to early learning. Transfer of learning involves a reduction in the contribution of early learning networks, and increased reliance on the cerebellum. The neural correlates of learning to learn remain to be determined, but likely involve enhanced functioning of general aspects of early learning. PMID:20016293

  20. Slits Affect the Timely Migration of Neural Crest Cells via Robo Receptor

    PubMed Central

    Giovannone, Dion; Reyes, Michelle; Reyes, Rachel; Correa, Lisa; Martinez, Darwin; Ra, Hannah; Gomez, Gustavo; Kaiser, Josh; Ma, Le; Stein, Mary-Pat; de Bellard, Maria Elena

    2013-01-01

    SUMMARY Background Neural crest cells emerge by delamination from the dorsal neural tube and give rise to various components of the peripheral nervous system in vertebrate embryos. These cells change from non-motile into highly motile cells migrating to distant areas before further differentiation. Mechanisms controlling delamination and subsequent migration of neural crest cells are not fully understood. Slit2, a chemorepellant for axonal guidance that repels and stimulates motility of trunk neural crest cells away from the gut has recently been suggested to be a tumor suppressor molecule. The goal of this study was to further investigate the role of Slit2 in trunk neural crest cell migration by constitutive expression in neural crest cells. Results We found that Slit gain-of-function significantly impaired neural crest cell migration while Slit loss-of-function favored migration. In addition, we observed that the distribution of key cytoskeletal markers was disrupted in both gain and loss of function instances. Conclusions These findings suggest that Slit molecules might be involved in the processes that allow neural crest cells to begin migration and transitioning to a mesenchymal type. PMID:22689303

  1. Zebrafish narrowminded suggests a genetic link between formation of neural crest and primary sensory neurons

    PubMed Central

    Bruk Artinger, Kristin; Chitnis, Ajay B.; Mercola, Mark; Driever, Wolfgang

    2014-01-01

    SUMMARY In the developing vertebrate nervous system, both neural crest and sensory neurons form at the boundary between non-neural ectoderm and the neural plate. From an in situ hybridization based expression analysis screen, we have identified a novel zebrafish mutation, narrowminded (nrd), which reduces the number of early neural crest cells and eliminates Rohon-Beard (RB) sensory neurons. Mosaic analysis has shown that the mutation acts cell autonomously suggesting that nrd is involved in either the reception or interpretation of signals at the lateral neural plate boundary. Characterization of the mutant phenotype indicates that nrd is required for a primary wave of neural crest cell formation during which progenitors generate both RB sensory neurons and neural crest cells. Moreover, the early deficit in neural crest cells in nrd homozygotes is compensated later in development. Thus, we propose that a later wave can compensate for the loss of early neural crest cells but, interestingly, not the RB sensory neurons. We discuss the implications of these findings for the possibility that RB sensory neurons and neural crest cells share a common evolutionary origin. PMID:10457007

  2. Chest tube management following pulmonary lobectomy: change of protocol results in fewer air leaks.

    PubMed

    Bertholet, Joost W M; Joosten, Joris J A; Keemers-Gels, Mariël E; van den Wildenberg, Frits J H; Barendregt, Wouter B

    2011-01-01

    Much controversy exists regarding the management of chest tubes following pulmonary lobectomy. The objective of this study was to analyse the effect of a new chest tube management protocol on clinical features, such as postoperative air leak, drain characteristics, 30-day postoperative complications and length of hospital stay. We retrospectively analysed 133 patients who underwent pulmonary lobectomy, from January 2005 to December 2008. A new chest tube protocol was introduced on 1 January 2007 and included placement of a single chest tube and early conversion to water seal. The chest tube was removed when air leak had resolved and (non-chylous) fluid drainage was <400 ml/day. The results of patients in the old (n=68) and the new protocol (n=65) were compared. In the new protocol group the median duration of air leak and duration of chest tube drainage declined significantly. Also the length of hospital stay decreased significantly to a median of eight days. The number of reinterventions and 30-day morbidity and mortality rates did not differ significantly. Our data suggest that placement of a single chest tube and early conversion to water seal decreases the duration of air leak and chest tube drainage and length of hospital stay.

  3. A homeobox gene involved in node, notochord and neural plate formation of chick embryos.

    PubMed

    Stein, S; Kessel, M

    1995-01-01

    We have isolated a chicken cDNA clone, Cnot, resembling in sequence and expression pattern the Xenopus homeobox gene Xnot. The major, early transcription domains of Cnot are the node, the notochord and prenodal and postnodal neural plate caudal from the prospective hindbrain level. All these cell populations appear to be descendants of the Cnot-expressing cells of the node, suggesting a cell lineage relationship. After the onset of somitogenesis, a second, independent expression domain appears in the neural folds at the prospective mid- and forebrain levels, and further transcripts are found in the epiphysis, the ventral diencephalon, the preoral gut and the limb buds. Transplantation of nodes from extended streak embryos leads to the formation of ectopic notochords, which express Cnot in the typical, cranially decreasing gradient. Transplantation of young nodes to young hosts has previously been described to induce secondary embryos. We observed that secondary chick embryos express Cnot in node derived, notochord-like structures and in the anterior neural plate, similar to the domains seen in primary embryos. However, expression was absent from the posterior neural plate, which in the induction experiments is excluded from the node lineage. This finding corroborates our initial conclusion about a cell lineage relationship between node, notochord, and neural plate defined by Cnot expression. The midline mesoderm of vertebrate embryos consists of two tissues, the prechordal mesoderm and the notochord. The anterior notochord, the head process, may represent an intermediate form. The transition from prechordal to chordal mesoderm can be followed by the expression of the two marker homeobox genes goosecoid and Cnot, first in the primitive streak, and then in the head process. We suggest that expression of goosecoid or Cnot is involved in the specification of a prechordal or notochordal identity, respectively. A transition from goosecoid to Cnot expression may proceed

  4. Neuronal patterning of the tubular collar cord is highly conserved among enteropneusts but dissimilar to the chordate neural tube.

    PubMed

    Kaul-Strehlow, Sabrina; Urata, Makoto; Praher, Daniela; Wanninger, Andreas

    2017-08-01

    A tubular nervous system is present in the deuterostome groups Chordata (cephalochordates, tunicates, vertebrates) and in the non-chordate Enteropneusta. However, the worm-shaped enteropneusts possess a less complex nervous system featuring only a short hollow neural tube, whereby homology to its chordate counterpart remains elusive. Since the majority of data on enteropneusts stem from the harrimaniid Saccoglossus kowalevskii, putative interspecific variations remain undetected resulting in an unreliable ground pattern that impedes homology assessments. In order to complement the missing data from another enteropneust family, we investigated expression of key neuronal patterning genes in the ptychoderid Balanoglossus misakiensis. The collar cord of B. misakiensis shows anterior Six3/6 and posterior Otx + Engrailed expression, in a region corresponding to the chordate brain. Neuronal Nk2.1/Nk2.2 expression is absent. Interestingly, we found median Dlx and lateral Pax6 expression domains, i.e., a condition that is reversed compared to chordates. Comparative analyses reveal that adult nervous system patterning is highly conserved among the enteropneust families Harrimaniidae, Spengelidae and Ptychoderidae. BmiDlx and BmiPax6 have no corresponding expression domains in the chordate brain, which may be indicative of independent acquisition of a tubular nervous system in Enteropneusta and Chordata.

  5. Early warning of illegal development for protected areas by integrating cellular automata with neural networks.

    PubMed

    Li, Xia; Lao, Chunhua; Liu, Yilun; Liu, Xiaoping; Chen, Yimin; Li, Shaoying; Ai, Bing; He, Zijian

    2013-11-30

    Ecological security has become a major issue under fast urbanization in China. As the first two cities in this country, Shenzhen and Dongguan issued the ordinance of Eco-designated Line of Control (ELC) to "wire" ecologically important areas for strict protection in 2005 and 2009 respectively. Early warning systems (EWS) are a useful tool for assisting the implementation ELC. In this study, a multi-model approach is proposed for the early warning of illegal development by integrating cellular automata (CA) and artificial neural networks (ANN). The objective is to prevent the ecological risks or catastrophe caused by such development at an early stage. The integrated model is calibrated by using the empirical information from both remote sensing and handheld GPS (global positioning systems). The MAR indicator which is the ratio of missing alarms to all the warnings is proposed for better assessment of the model performance. It is found that the fast urban development has caused significant threats to natural-area protection in the study area. The integration of CA, ANN and GPS provides a powerful tool for describing and predicting illegal development which is in highly non-linear and fragmented forms. The comparison shows that this multi-model approach has much better performances than the single-model approach for the early warning. Compared with the single models of CA and ANN, this integrated multi-model can improve the value of MAR by 65.48% and 5.17% respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Ectopic cross-talk between thyroid and retinoic acid signaling: A possible etiology for spinal neural tube defects.

    PubMed

    Li, Huili; Bai, Baoling; Zhang, Qin; Bao, Yihua; Guo, Jin; Chen, Shuyuan; Miao, Chunyue; Liu, Xiaozhen; Zhang, Ting

    2015-12-01

    Previous studies have highlighted the connections between neural tube defects (NTDs) and both thyroid hormones (TH) and vitamin A. However, whether the two hormonal signaling pathways interact in NTDs has remained unclear. We measured the expression levels of TH signaling genes in human fetuses with spinal NTDs associated with maternal hyperthyroidism as well as levels of retinoic acid (RA) signaling genes in mouse fetuses exposed to an overdose of RA using NanoString or real-time PCR on spinal cord tissues. Interactions between the two signaling pathways were detected by ChIP assays. The data revealed attenuated DIO2/DIO3 switching in fetuses with NTDs born to hyperthyroid mothers. The promoters of the RA signaling genes CRABP1 and RARB were ectopically occupied by increased RXRG and RXRB but displayed decreased levels of inhibitory histone modifications, suggesting that elevated TH signaling abnormally stimulates RA signaling genes. Conversely, in the mouse model, the observed decrease in Dio3 expression could be explained by increased levels of inhibitory histone modifications in the Dio3 promoter region, suggesting that overactive RA signaling may ectopically derepress TH signaling. This study thus raises in vivo a possible abnormal cross-promotion between two different hormonal signals through their common RXRs and the subsequent recruitment of histone modifications, prompting further investigation into their involvement in the etiology of spinal NTDs. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Maternal dietary nitrate intake and risk of neural tube defects: A systematic review and dose-response meta-analysis.

    PubMed

    Kakavandi, Nader Rahimi; Hasanvand, Amin; Ghazi-Khansari, Mahmoud; Sezavar, Ahmad Habibian; Nabizadeh, Hassan; Parohan, Mohammad

    2018-05-12

    Despite growing evidence for the potential teratogenicity of nitrate, knowledge about the dose-response relationship of dietary nitrate intake and risk of specific birth defects such as neural tube defects (NTDs) is limited. Therefore, the aim of this meta-analysis was to synthesize the knowledge about the dose-response relation between maternal dietary nitrate intake and the risk of NTDs. We conducted a systematic search in PubMed, ISI Web of Science and Scopus up to February 2018 for observational studies. Risk ratios (RRs) and 95% confidence intervals (95% CI) were calculated using a random-effects model for highest versus lowest intake categories. The linear and non-linear relationships between nitrate intake and risk of NTDs were also investigated. Overall, 5 studies were included in the meta-analyses. No association was observed between nitrate intake and NTDs risk in high versus low intake (RR: 1.33; 95% CI: 0.89-1.99, p = 0.158) and linear dose-response (RR: 1.03; 95% CI: 0.99-1.07, p = 0.141) meta-analysis. However, there were positive relationships between nitrate intake and risk of NTDs in non-linear (p non-linearity <0.05) model. Findings from this dose-response meta-analysis indicate that maternal nitrate intake higher than ∼3 mg/day is positively associated with NTDs risk. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. A targeted sequencing panel identifies rare damaging variants in multiple genes in the cranial neural tube defect, anencephaly.

    PubMed

    Ishida, M; Cullup, T; Boustred, C; James, C; Docker, J; English, C; Lench, N; Copp, A J; Moore, G E; Greene, N D E; Stanier, P

    2018-04-01

    Neural tube defects (NTDs) affecting the brain (anencephaly) are lethal before or at birth, whereas lower spinal defects (spina bifida) may lead to lifelong neurological handicap. Collectively, NTDs rank among the most common birth defects worldwide. This study focuses on anencephaly, which despite having a similar frequency to spina bifida and being the most common type of NTD observed in mouse models, has had more limited inclusion in genetic studies. A genetic influence is strongly implicated in determining risk of NTDs and a molecular diagnosis is of fundamental importance to families both in terms of understanding the origin of the condition and for managing future pregnancies. Here we used a custom panel of 191 NTD candidate genes to screen 90 patients with cranial NTDs (n = 85 anencephaly and n = 5 craniorachischisis) with a targeted exome sequencing platform. After filtering and comparing to our in-house control exome database (N = 509), we identified 397 rare variants (minor allele frequency, MAF < 1%), 21 of which were previously unreported and predicted damaging. This included 1 frameshift (PDGFRA), 2 stop-gained (MAT1A; NOS2) and 18 missense variations. Together with evidence for oligogenic inheritance, this study provides new information on the possible genetic causation of anencephaly. © 2017 The Authors. Clinical Genetics published by John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Recognition of early stage thigmotaxis in Morris water maze test with convolutional neural network.

    PubMed

    Higaki, Akinori; Mogi, Masaki; Iwanami, Jun; Min, Li-Juan; Bai, Hui-Yu; Shan, Bao-Shuai; Kan-No, Harumi; Ikeda, Shuntaro; Higaki, Jitsuo; Horiuchi, Masatsugu

    2018-01-01

    The Morris water maze test (MWM) is a useful tool to evaluate rodents' spatial learning and memory, but the outcome is susceptible to various experimental conditions. Thigmotaxis is a commonly observed behavioral pattern which is thought to be related to anxiety or fear. This behavior is associated with prolonged escape latency, but the impact of its frequency in the early stage on the final outcome is not clearly understood. We analyzed swim path trajectories in male C57BL/6 mice with or without bilateral common carotid artery stenosis (BCAS) treatment. There was no significant difference in the frequencies of particular types of trajectories according to ischemic brain surgery. The mouse groups with thigmotaxis showed significantly prolonged escape latency and lower cognitive score on day 5 compared to those without thigmotaxis. As the next step, we made a convolutional neural network (CNN) model to recognize the swim path trajectories. Our model could distinguish thigmotaxis from other trajectories with 96% accuracy and specificity as high as 0.98. These results suggest that thigmotaxis in the early training stage is a predictive factor for impaired performance in MWM, and machine learning can detect such behavior easily and automatically.

  10. The scaffold protein Nde1 safeguards the brain genome during S phase of early neural progenitor differentiation

    PubMed Central

    Houlihan, Shauna L; Feng, Yuanyi

    2014-01-01

    Successfully completing the S phase of each cell cycle ensures genome integrity. Impediment of DNA replication can lead to DNA damage and genomic disorders. In this study, we show a novel function for NDE1, whose mutations cause brain developmental disorders, in safeguarding the genome through S phase during early steps of neural progenitor fate restrictive differentiation. Nde1 mutant neural progenitors showed catastrophic DNA double strand breaks concurrent with the DNA replication. This evoked DNA damage responses, led to the activation of p53-dependent apoptosis, and resulted in the reduction of neurons in cortical layer II/III. We discovered a nuclear pool of Nde1, identified the interaction of Nde1 with cohesin and its associated chromatin remodeler, and showed that stalled DNA replication in Nde1 mutants specifically occurred in mid-late S phase at heterochromatin domains. These findings suggest that NDE1-mediated heterochromatin replication is indispensible for neuronal differentiation, and that the loss of NDE1 function may lead to genomic neurological disorders. DOI: http://dx.doi.org/10.7554/eLife.03297.001 PMID:25245017

  11. Early driver fatigue detection from electroencephalography signals using artificial neural networks.

    PubMed

    King, L M; Nguyen, H T; Lal, S K L

    2006-01-01

    This paper describes a driver fatigue detection system using an artificial neural network (ANN). Using electroencephalogram (EEG) data sampled from 20 professional truck drivers and 35 non professional drivers, the time domain data are processed into alpha, beta, delta and theta bands and then presented to the neural network to detect the onset of driver fatigue. The neural network uses a training optimization technique called the magnified gradient function (MGF). This technique reduces the time required for training by modifying the standard back propagation (SBP) algorithm. The MGF is shown to classify professional driver fatigue with 81.49% accuracy (80.53% sensitivity, 82.44% specificity) and non-professional driver fatigue with 83.06% accuracy (84.04% sensitivity and 82.08% specificity).

  12. Hypoxia promotes production of neural crest cells in the embryonic head.

    PubMed

    Scully, Deirdre; Keane, Eleanor; Batt, Emily; Karunakaran, Priyadarssini; Higgins, Debra F; Itasaki, Nobue

    2016-05-15

    Hypoxia is encountered in either pathological or physiological conditions, the latter of which is seen in amniote embryos prior to the commencement of a functional blood circulation. During the hypoxic stage, a large number of neural crest cells arise from the head neural tube by epithelial-to-mesenchymal transition (EMT). As EMT-like cancer dissemination can be promoted by hypoxia, we investigated whether hypoxia contributes to embryonic EMT. Using chick embryos, we show that the hypoxic cellular response, mediated by hypoxia-inducible factor (HIF)-1α, is required to produce a sufficient number of neural crest cells. Among the genes that are involved in neural crest cell development, some genes are more sensitive to hypoxia than others, demonstrating that the effect of hypoxia is gene specific. Once blood circulation becomes fully functional, the embryonic head no longer produces neural crest cells in vivo, despite the capability to do so in a hypoxia-mimicking condition in vitro, suggesting that the oxygen supply helps to stop emigration of neural crest cells in the head. These results highlight the importance of hypoxia in normal embryonic development. © 2016. Published by The Company of Biologists Ltd.

  13. Risk factors associated with neural tube defects in infants referred to western Iranian obstetrical centers; 2013–2014

    PubMed Central

    Zaheri, Farzaneh; Ranaie, Fariba; Shahoei, Roonak; Hasheminasab, Leila; Roshani, Daem

    2017-01-01

    Background Neural tubes defects (NTDs) are known to be the second most prevalent congenital disorder worldwide whose risk factors have not been explicitly addressed yet. Aim To determine the risk factors affecting NTDs among infants who referred to obstetrical centers in Kurdistan, a western province of Iran. Methods This prospective case-control study was conducted in the form of prospective case-control. Sample population included all women (27,153 cases) who referred to obstetrical centers in Kurdistan for either delivery or abortion during 2013 and 2014. Inclusion criterion was the presence of a known NTD in infants, and exclusion criterion was the reluctance of patients to participate in the study. Accordingly, 46 cases participated in the study as the case group, and 138 cases (three times higher than case group) were selected to be the control group. Case and control groups were matched in terms of the number of pregnancies and place of birth. The variables investigated in the present study were as follows: age, occupation, BMI, abortion history, family relation with husband, fetus’ sex, number of twins, history of previous children with NTD, receiving prenatal surveillance, consumption of folic acid and multivitamins, smoking, alcohol drinking, passive smoking, and suffering from such diseases as epilepsy and diabetes. Data were analyzed using various statistical tests, including chi-square, Fishers’ exact test, multiple logistic regression analysis using SPSS version 20. In the study group, inclusion criteria included all women who had an infant with tube defects that their total number was 46 individuals. In the control group inclusion criteria included mothers with healthy infants who were similar to the study group in terms of birth place and frequency of pregnancy. Results The results of the present study demonstrated that prenatal surveillance (p<0.002), multivitamin consumption (p<0.001), history of having a child with NTD (p<0.001), alcohol

  14. Use of PLGA 90:10 scaffolds enriched with in vitro-differentiated neural cells for repairing rat sciatic nerve defects.

    PubMed

    Luís, Ana L; Rodrigues, Jorge M; Geuna, Stefano; Amado, Sandra; Shirosaki, Yuki; Lee, Jennifer M; Fregnan, Federica; Lopes, Maria A; Veloso, Antonio P; Ferreira, Antonio J; Santos, Jose D; Armada-Da-silva, Paulo A S; Varejão, Artur S P; Maurício, Ana Colette

    2008-06-01

    Poly(lactic-co-glycolic acid) (PLGA) nerve tube guides, made of a novel proportion (90:10) of the two polymers, poly(L-lactide): poly(glycolide) and covered with a neural cell line differentiated in vitro, were tested in vivo for promoting nerve regeneration across a 10-mm gap of the rat sciatic nerve. Before in vivo testing, the PLGA 90:10 tubes were tested in vitro for water uptake and mass loss and compared with collagen sheets. The water uptake of the PLGA tubes was lower, and the mass loss was more rapid and higher than those of the collagen sheets when immersed in phosphate-buffered saline (PBS) solution. The pH values of immersing PBS did not change after soaking the collagen sheets and showed to be around 7.4. On the other hand, the pH values of PBS after soaking PLGA tubes decreased gradually during 10 days reaching values around 3.5. For the in vivo testing, 22 Sasco Sprague adult rats were divided into four groups--group 1: gap not reconstructed; group 2: gap reconstructed using an autologous nerve graft; group 3: gap reconstructed with PLGA 90:10 tube guides; group 4: gap reconstructed with PLGA 90:10 tube guides covered with neural cells differentiated in vitro. Motor and sensory functional recovery was evaluated throughout a healing period of 20 weeks using sciatic functional index, static sciatic index, extensor postural thrust, withdrawal reflex latency, and ankle kinematics. Stereological analysis was carried out on regenerated nerve fibers. Both motor and sensory functions improved significantly in the three experimental nerve repair groups, although the rate and extent of recovery was significantly higher in the group where the gap was reconstructed using the autologous graft. The presence of neural cells covering the inside of the PLGA tube guides did not make any difference in the functional recovery. By contrast, morphometric analysis showed that the introduction of N1E-115 cells inside PLGA 90:10 tube guides led to a significant lower number

  15. Tube support

    DOEpatents

    Mullinax, Jerry L.

    1988-01-01

    A tube support for supporting horizontal tubes from an inclined vertical support tube passing between the horizontal tubes. A support button is welded to the vertical support tube. Two clamping bars or plates, the lower edges of one bearing on the support button, are removably bolted to the inclined vertical tube. The clamping bars provide upper and lower surface support for the horizontal tubes.

  16. Tapered pulse tube for pulse tube refrigerators

    DOEpatents

    Swift, Gregory W.; Olson, Jeffrey R.

    1999-01-01

    Thermal insulation of the pulse tube in a pulse-tube refrigerator is maintained by optimally varying the radius of the pulse tube to suppress convective heat loss from mass flux streaming in the pulse tube. A simple cone with an optimum taper angle will often provide sufficient improvement. Alternatively, the pulse tube radius r as a function of axial position x can be shaped with r(x) such that streaming is optimally suppressed at each x.

  17. TUBE TESTER

    DOEpatents

    Gittings, H.T. Jr.; Kalbach, J.F.

    1958-01-14

    This patent relates to tube testing, and in particular describes a tube tester for automatic testing of a number of vacuum tubes while in service and as frequently as may be desired. In it broadest aspects the tube tester compares a particular tube with a standard tube tarough a difference amplifier. An unbalanced condition in the circuit of the latter produced by excessive deviation of the tube in its characteristics from standard actuates a switch mechanism stopping the testing cycle and indicating the defective tube.

  18. Early life conditions that impact song learning in male zebra finches also impact neural and behavioral responses to song in females.

    PubMed

    Sewall, Kendra B; Anderson, Rindy C; Soha, Jill A; Peters, Susan; Nowicki, Stephen

    2018-04-20

    Early life stressors can impair song in songbirds by negatively impacting brain development and subsequent learning. Even in species in which only males sing, early life stressors might also impact female behavior and its underlying neural mechanisms, but fewer studies have examined this possibility. We manipulated brood size in zebra finches to simultaneously examine the effects of developmental stress on male song learning and female behavioral and neural response to song. Although adult male HVC volume was unaffected, we found that males from larger broods imitated tutor song less accurately. In females, early condition did not affect the direction of song preference: all females preferred tutor song over unfamiliar song in an operant test. However, treatment did affect the magnitude of behavioral response to song: females from larger broods responded less during song preference trials. This difference in activity level did not reflect boldness per se, as a separate measure of this trait did not differ with brood size. Additionally, in females we found a treatment effect on expression of the immediate early gene ZENK in response to tutor song in brain regions involved in song perception (dNCM) and social motivation (LSc.vl, BSTm, TnA), but not in a region implicated in song memory (CMM). These results are consistent with the hypothesis that developmental stressors that impair song learning in male zebra finches also influence perceptual and/or motivational processes in females. However, our results suggest that the learning of tutor song by females is robust to disturbance by developmental stress. © 2018 Wiley Periodicals, Inc. Develop Neurobiol, 2018. © 2018 Wiley Periodicals, Inc.

  19. Texture control of zircaloy tubing during tube reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagai, N.; Kakuma, T.; Fujita, K.

    1982-01-01

    Seven batches of Zircaloy-2 nuclear fuel cladding tubes with different textures were processed from tube shells of the same size, by different reduction routes, using pilger and 3-roll mills. Based on the texture data of these tubes, the texture control of Zircaloy tubing, the texture gradient across the wall, and the texture change during annealing were studied. The deformation texture of Zicaloy-2 tubing was dependent on the tool's curvature and was independent of the dimensions of the mother tubes. The different slopes of texture gradients were observed between the tubing of higher strain ration and that of lower strain ratio.

  20. Animal models for studying neural crest development: is the mouse different?

    PubMed

    Barriga, Elias H; Trainor, Paul A; Bronner, Marianne; Mayor, Roberto

    2015-05-01

    The neural crest is a uniquely vertebrate cell type and has been well studied in a number of model systems. Zebrafish, Xenopus and chick embryos largely show consistent requirements for specific genes in early steps of neural crest development. By contrast, knockouts of homologous genes in the mouse often do not exhibit comparable early neural crest phenotypes. In this Spotlight article, we discuss these species-specific differences, suggest possible explanations for the divergent phenotypes in mouse and urge the community to consider these issues and the need for further research in complementary systems. © 2015. Published by The Company of Biologists Ltd.

  1. Style morphology and pollen tube pathway.

    PubMed

    Gotelli, M M; Lattar, E C; Zini, L M; Galati, B G

    2017-12-01

    The style morphology and anatomy vary among different species. Three basic types are: open, closed, and semi-closed. Cells involved in the pollen tube pathway in the different types of styles present abundant endoplasmic reticulum, dictyosomes, mitochondria, and ribosomes. These secretory characteristics are related to the secretion where pollen tube grows. This secretion can be represented by the substances either in the canal or in the intercellular matrix or in the cell wall. Most studies suggest that pollen tubes only grow through the secretion of the canal in open styles. However, some species present pollen tubes that penetrate the epithelial cells of the canal, or grow through the middle lamella between these cells and subepithelial cells. In species with a closed style, a pathway is provided by the presence of an extracellular matrix, or by the thickened cell walls of the stylar transmitting tissue. There are reports in some species where pollen tubes can also penetrate the transmitting tissue cells and continue their growth through the cell lumen. In this review, we define subtypes of styles according to the path of the pollen tube. Style types were mapped on an angiosperm phylogenetic tree following the maximum parsimony principle. In line with this, it could be hypothesized that: the open style appeared in the early divergent angiosperms; the closed type of style originated in Asparagales, Poales, and Eudicots; and the semi-closed style appeared in Rosids, Ericales, and Gentianales. The open style seems to have been lost in core Eudicots, with reversions in some Rosids and Asterids.

  2. Neural activity during natural viewing of Sesame Street statistically predicts test scores in early childhood.

    PubMed

    Cantlon, Jessica F; Li, Rosa

    2013-01-01

    It is not currently possible to measure the real-world thought process that a child has while observing an actual school lesson. However, if it could be done, children's neural processes would presumably be predictive of what they know. Such neural measures would shed new light on children's real-world thought. Toward that goal, this study examines neural processes that are evoked naturalistically, during educational television viewing. Children and adults all watched the same Sesame Street video during functional magnetic resonance imaging (fMRI). Whole-brain intersubject correlations between the neural timeseries from each child and a group of adults were used to derive maps of "neural maturity" for children. Neural maturity in the intraparietal sulcus (IPS), a region with a known role in basic numerical cognition, predicted children's formal mathematics abilities. In contrast, neural maturity in Broca's area correlated with children's verbal abilities, consistent with prior language research. Our data show that children's neural responses while watching complex real-world stimuli predict their cognitive abilities in a content-specific manner. This more ecologically natural paradigm, combined with the novel measure of "neural maturity," provides a new method for studying real-world mathematics development in the brain.

  3. A temperature-sensitive mutation in the nodal-related gene cyclops reveals that the floor plate is induced during gastrulation in zebrafish.

    PubMed

    Tian, Jing; Yam, Caleb; Balasundaram, Gayathri; Wang, Hui; Gore, Aniket; Sampath, Karuna

    2003-07-01

    The floor plate, a specialized group of cells in the ventral midline of the neural tube of vertebrates, plays crucial roles in patterning the central nervous system. Recent work from zebrafish, chick, chick-quail chimeras and mice to investigate the development of the floor plate have led to several models of floor-plate induction. One model suggests that the floor plate is formed by inductive signalling from the notochord to the overlying neural tube. The induction is thought to be mediated by notochord-derived Sonic hedgehog (Shh), a secreted protein, and requires direct cellular contact between the notochord and the neural tube. Another model proposes a role for the organizer in generating midline precursor cells that produce floor plate cells independent of notochord specification, and proposes that floor plate specification occurs early, during gastrulation. We describe a temperature-sensitive mutation that affects the zebrafish Nodal-related secreted signalling factor, Cyclops, and use it to address the issue of when the floor plate is induced in zebrafish. Zebrafish cyclops regulates the expression of shh in the ventral neural tube. Although null mutations in cyclops result in the lack of the medial floor plate, embryos homozygous for the temperature-sensitive mutation have floor plate cells at the permissive temperature and lack floor plate cells at the restrictive temperature. We use this mutant allele in temperature shift-up and shift-down experiments to answer a central question pertaining to the timing of vertebrate floor plate induction. Abrogation of Cyc/Nodal signalling in the temperature-sensitive mutant embryos at various stages indicates that the floor plate in zebrafish is induced early in development, during gastrulation. In addition, continuous Cyclops signalling is required through gastrulation for a complete ventral neural tube throughout the length of the neuraxis. Finally, by modulation of Nodal signalling levels in mutants and in ectopic

  4. Chromatic characterization of a three-channel colorimeter using back-propagation neural networks

    NASA Astrophysics Data System (ADS)

    Pardo, P. J.; Pérez, A. L.; Suero, M. I.

    2004-09-01

    This work describes a method for the chromatic characterization of a three-channel colorimeter of recent design and construction dedicated to color vision research. The colorimeter consists of two fixed monochromators and a third monochromator interchangeable with a cathode ray tube or any other external light source. Back-propagation neural networks were used for the chromatic characterization to establish the relationship between each monochromator's input parameters and the tristimulus values of each chromatic stimulus generated. The results showed the effectiveness of this type of neural-network-based system for the chromatic characterization of the stimuli produced by any monochromator.

  5. Effect of timing and method of enteral tube feeding for dysphagic stroke patients (FOOD): a multicentre randomised controlled trial.

    PubMed

    Dennis, M S; Lewis, S C; Warlow, C

    Undernutrition is common in patients admitted with stroke. We aimed to establish whether the timing and route of enteral tube feeding after stroke affected patients' outcomes at 6 months. The FOOD trials consist of three pragmatic multicentre randomised controlled trials, two of which included dysphagic stroke patients. In one trial, patients enrolled within 7 days of admission were randomly allocated to early enteral tube feeding or no tube feeding for more than 7 days (early versus avoid). In the other, patients were allocated percutaneous endoscopic gastrostomy (PEG) or nasogastric feeding. The primary outcome was death or poor outcome at 6 months. Analysis was by intention to treat. Between Nov 1, 1996, and July 31, 2003, 859 patients were enrolled by 83 hospitals in 15 countries into the early versus avoid trial. Early tube feeding was associated with an absolute reduction in risk of death of 5.8% (95% CI -0.8 to 12.5, p=0.09) and a reduction in death or poor outcome of 1.2% (-4.2 to 6.6, p=0.7). In the PEG versus nasogastric tube trial, 321 patients were enrolled by 47 hospitals in 11 countries. PEG feeding was associated with an absolute increase in risk of death of 1.0% (-10.0 to 11.9, p=0.9) and an increased risk of death or poor outcome of 7.8% (0.0 to 15.5, p=0.05). Early tube feeding might reduce case fatality, but at the expense of increasing the proportion surviving with poor outcome. Our data do not support a policy of early initiation of PEG feeding in dysphagic stroke patients.

  6. Phenotypic chemical screening using a zebrafish neural crest EMT reporter identifies retinoic acid as an inhibitor of epithelial morphogenesis

    PubMed Central

    Jimenez, Laura; Wang, Jindong; Morrison, Monique A.; Whatcott, Clifford; Soh, Katherine K.; Warner, Steven; Bearss, David; Jette, Cicely A.; Stewart, Rodney A.

    2016-01-01

    ABSTRACT The epithelial-to-mesenchymal transition (EMT) is a highly conserved morphogenetic program essential for embryogenesis, regeneration and cancer metastasis. In cancer cells, EMT also triggers cellular reprogramming and chemoresistance, which underlie disease relapse and decreased survival. Hence, identifying compounds that block EMT is essential to prevent or eradicate disseminated tumor cells. Here, we establish a whole-animal-based EMT reporter in zebrafish for rapid drug screening, called Tg(snai1b:GFP), which labels epithelial cells undergoing EMT to produce sox10-positive neural crest (NC) cells. Time-lapse and lineage analysis of Tg(snai1b:GFP) embryos reveal that cranial NC cells delaminate from two regions: an early population delaminates adjacent to the neural plate, whereas a later population delaminates from within the dorsal neural tube. Treating Tg(snai1b:GFP) embryos with candidate small-molecule EMT-inhibiting compounds identified TP-0903, a multi-kinase inhibitor that blocked cranial NC cell delamination in both the lateral and medial populations. RNA sequencing (RNA-Seq) analysis and chemical rescue experiments show that TP-0903 acts through stimulating retinoic acid (RA) biosynthesis and RA-dependent transcription. These studies identify TP-0903 as a new therapeutic for activating RA in vivo and raise the possibility that RA-dependent inhibition of EMT contributes to its prior success in eliminating disseminated cancer cells. PMID:26794130

  7. Tube bundle system

    PubMed Central

    Marchewka, W.; Mohamed, K.; Addis, J.; Karnack, F.

    2015-01-01

    A tube bundle system (TBS) is a mechanical system for continuously drawing gas samples through tubes from multiple monitoring points located in an underground coal mine. The gas samples are drawn via vacuum pump to the surface and are typically analyzed for oxygen, methane, carbon dioxide and carbon monoxide. Results of the gas analyses are displayed and recorded for further analysis. Trends in the composition of the mine atmosphere, such as increasing methane or carbon monoxide concentration, can be detected early, permitting rapid intervention that prevents problems, such as a potentially explosive atmosphere behind seals, fire or spontaneous combustion. TBS is a well-developed technology and has been used in coal mines around the world for more than 50 years. Most longwall coal mines in Australia deploy a TBS, usually with 30 to 40 monitoring points as part of their atmospheric monitoring. The primary uses of a TBS are detecting spontaneous combustion and maintaining sealed areas inert. The TBS might also provide mine atmosphere gas composition data after a catastrophe occurs in an underground mine, if the sampling tubes are not damaged. TBSs are not an alternative to statutory gas and ventilation airflow monitoring by electronic sensors or people; rather, they are an option to consider in an overall mine atmosphere monitoring strategy. This paper describes the hardware, software and operation of a TBS and presents one example of typical data from a longwall coal mine PMID:26306052

  8. 3D integrated HYDRA simulations of hohlraums including fill tubes

    NASA Astrophysics Data System (ADS)

    Marinak, M. M.; Milovich, J.; Hammel, B. A.; Macphee, A. G.; Smalyuk, V. A.; Kerbel, G. D.; Sepke, S.; Patel, M. V.

    2017-10-01

    Measurements of fill tube perturbations from hydro growth radiography (HGR) experiments on the National Ignition Facility show spoke perturbations in the ablator radiating from the base of the tube. These correspond to the shadow of the 10 μm diameter glass fill tube cast by hot spots at early time. We present 3D integrated HYDRA simulations of these experiments which include the fill tube. Meshing techniques are described which were employed to resolve the fill tube structure and associated perturbations in the simulations. We examine the extent to which the specific illumination geometry necessary to accommodate a backlighter in the HGR experiment contributes to the spoke pattern. Simulations presented include high resolution calculations run on the Trinity machine operated by the Alliance for Computing at Extreme Scale (ACES) partnership. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  9. Evolutionary origins of pectin methylesterase genes associated with novel aspects of angiosperm pollen tube walls.

    PubMed

    Wallace, Simon; Williams, Joseph H

    2017-06-03

    The early evolution of angiosperms was marked by a number of innovations of the reproductive cycle including an accelerated fertilization process involving faster transport of sperm to the egg via a pollen tube. Fast pollen tube growth rates in angiosperms are accompanied by a hard shank-soft tip pollen tube morphology. A critical actor in that morphology is the wall-embedded enzyme pectin methylesterase (PME), which in type II PMEs is accompanied by a co-transcribed inhibitor, PMEI. PMEs convert the esterified pectic tip wall to a stiffer state in the subapical flank by pectin de-esterification. It is hypothesized that rapid and precise targeting of PME activity was gained with the origin of type II genes, which are derived and have only expanded since the origin of vascular plants. Pollen-active PMEs have yet to be reported in early-divergent angiosperms or gymnosperms. Gene expression studies in Nymphaea odorata found transcripts from four type II VGD1-like and 16 type I AtPPME1-like homologs that were more abundant in pollen and pollen tubes than in vegetative tissues. The near full-length coding sequence of one type II PME (NoPMEII-1) included at least one PMEI domain. The identification of possible VGD1 homologs in an early-diverging angiosperm suggests that the refined control of PMEs that mediate de-esterification of pectins near pollen tube tips is a conserved feature across angiosperms. The recruitment of type II PMEs into a pollen tube elongation role in angiosperms may represent a key evolutionary step in the development of faster growing pollen tubes. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Adverse early life environment increases hippocampal microglia abundance in conjunction with decreased neural stem cells in juvenile mice.

    PubMed

    Cohen, Susan; Ke, Xingrao; Liu, Qiuli; Fu, Qi; Majnik, Amber; Lane, Robert

    2016-12-01

    Adverse maternal lifestyle resulting in adverse early life environment (AELE) increases risks for neuropsychiatric disorders in offspring. Neuropsychiatric disorders are associated with impaired neurogenesis and neuro-inflammation in the hippocampus (HP). Microglia are neuro-inflammatory cells in the brain that regulate neurogenesis via toll-like receptors (TLR). TLR-9 is implicated in neurogenesis inhibition and is responsible for stress-related inflammatory responses. We hypothesized that AELE would increase microglia cell count and increase TLR-9 expression in juvenile mouse HP. These increases in microglia cell count and TLR-9 expression would be associated with decrease neural stem cell count and neuronal cell count. We developed a mouse model of AELE combining Western diet and a stress environment. Stress environment consisted of random change from embryonic day 13 (E13) to E17 as well as static change in maternal environment from E13 to postnatal day 21(P21). At P21, we measured hippocampal cell numbers of microglia, neural stem cell and neuron, as well as hippocampal TLR-9 expression. AELE significantly increased total microglia number and TLR-9 expression in the hippocampus. Concurrently, AELE significantly decreased neural stem cell and neuronal numbers. AELE increased the neuro-inflammatory cellular response in the juvenile HP. We speculate that increased neuro-inflammatory responses may contribute to impaired neurogenesis seen in this model. Copyright © 2016 ISDN. Published by Elsevier Ltd. All rights reserved.

  11. Do early neural correlates of visual consciousness show the oblique effect? A binocular rivalry and event-related potential study.

    PubMed

    Jack, Bradley N; Roeber, Urte; O'Shea, Robert P

    2017-01-01

    When dissimilar images are presented one to each eye, we do not see both images; rather, we see one at a time, alternating unpredictably. This is called binocular rivalry, and it has recently been used to study brain processes that correlate with visual consciousness, because perception changes without any change in the sensory input. Such studies have used various types of images, but the most popular have been gratings: sets of bright and dark lines of orthogonal orientations presented one to each eye. We studied whether using cardinal rival gratings (vertical, 0°, and horizontal, 90°) versus oblique rival gratings (left-oblique, -45°, and right-oblique, 45°) influences early neural correlates of visual consciousness, because of the oblique effect: the tendency for visual performance to be greater for cardinal gratings than for oblique gratings. Participants viewed rival gratings and pressed keys indicating which of the two gratings they perceived, was dominant. Next, we changed one of the gratings to match the grating shown to the other eye, yielding binocular fusion. Participants perceived the rivalry-to-fusion change to the dominant grating and not to the other, suppressed grating. Using event-related potentials (ERPs), we found neural correlates of visual consciousness at the P1 for both sets of gratings, as well as at the P1-N1 for oblique gratings, and we found a neural correlate of the oblique effect at the N1, but only for perceived changes. These results show that the P1 is the earliest neural activity associated with visual consciousness and that visual consciousness might be necessary to elicit the oblique effect.

  12. Investigation on Two-Stage 300 HZ Pulse Tube Cryocooler

    NASA Astrophysics Data System (ADS)

    Cai, H. K.; Yang, L. W.; Hong, G. T.; Luo, E. C.; Zhou, Y.

    2010-04-01

    In the past few years, ultra-high frequency pulse tube cryocoolers are becoming a research hotspot for their portability and compactness in aerospace and aviation applications. For preliminary research, a two-stage pulse tube cryocooler working at 300 Hz driven by a thermoacoustic engine is established to investigate the problems due to ultra high frequency, and several results have been derived in our early reports. In order to study the effect of thermal penetration depth, this paper presents the cooler adopting copper mesh as the regenerator, and comparison with stainless steel mesh is given. In addition, the influence of inertance tube on the lowest possible cooler temperature is also tested. Finally, we discuss the improvement for getting a lower temperature.

  13. Neural abnormalities in early-onset and adolescence-onset conduct disorder.

    PubMed

    Passamonti, Luca; Fairchild, Graeme; Goodyer, Ian M; Hurford, Georgina; Hagan, Cindy C; Rowe, James B; Calder, Andrew J

    2010-07-01

    Conduct disorder (CD) is characterized by severe antisocial behavior that emerges in childhood (early-onset CD [EO-CD]) or adolescence (adolescence-onset CD [AO-CD]). Early-onset CD is proposed to have a neurodevelopmental basis, whereas AO-CD is thought to emerge owing to social mimicry of deviant peers. However, this developmental taxonomic theory is debated after reports of neuropsychological impairments in both CD subtypes. A critical, although unaddressed, issue is whether these subtypes present similar or distinct neurophysiological profiles. Hence, we investigated neurophysiological responses to emotional and neutral faces in regions associated with antisocial behavior (ie, the amygdala, ventromedial prefrontal cortex, insula, and orbitofrontal cortex) in individuals with EO-CD and AO-CD and in healthy control subjects. To investigate whether EO-CD and AO-CD subjects show neurophysiological abnormalities. Case-control study. Government research institute, university department. Seventy-five male adolescents and young adults aged 16 to 21 years, including 27 with EO-CD, 25 with AO-CD, and 23 healthy controls. Main Outcome Measure Neural activations measured by functional magnetic resonance imaging while participants viewed angry, sad, and neutral faces. Comparing angry vs neutral faces, participants with both CD subtypes displayed reduced responses in regions associated with antisocial behavior compared with controls; differences between the CD subtypes were not significant. Comparing each expression with fixation baseline revealed an abnormal (increased) amygdala response to neutral but not angry faces in both groups of CD relative to controls. For sad vs neutral faces, reduced amygdala activation was observed in EO-CD relative to AO-CD and control participants. Comparing each expression with fixation revealed hypoactive amygdala responses to sadness in individuals with EO-CD relative to AO-CD participants and controls. These findings were not accounted for

  14. Large-scale generation of human iPSC-derived neural stem cells/early neural progenitor cells and their neuronal differentiation.

    PubMed

    D'Aiuto, Leonardo; Zhi, Yun; Kumar Das, Dhanjit; Wilcox, Madeleine R; Johnson, Jon W; McClain, Lora; MacDonald, Matthew L; Di Maio, Roberto; Schurdak, Mark E; Piazza, Paolo; Viggiano, Luigi; Sweet, Robert; Kinchington, Paul R; Bhattacharjee, Ayantika G; Yolken, Robert; Nimgaonka, Vishwajit L; Nimgaonkar, Vishwajit L

    2014-01-01

    Induced pluripotent stem cell (iPSC)-based technologies offer an unprecedented opportunity to perform high-throughput screening of novel drugs for neurological and neurodegenerative diseases. Such screenings require a robust and scalable method for generating large numbers of mature, differentiated neuronal cells. Currently available methods based on differentiation of embryoid bodies (EBs) or directed differentiation of adherent culture systems are either expensive or are not scalable. We developed a protocol for large-scale generation of neuronal stem cells (NSCs)/early neural progenitor cells (eNPCs) and their differentiation into neurons. Our scalable protocol allows robust and cost-effective generation of NSCs/eNPCs from iPSCs. Following culture in neurobasal medium supplemented with B27 and BDNF, NSCs/eNPCs differentiate predominantly into vesicular glutamate transporter 1 (VGLUT1) positive neurons. Targeted mass spectrometry analysis demonstrates that iPSC-derived neurons express ligand-gated channels and other synaptic proteins and whole-cell patch-clamp experiments indicate that these channels are functional. The robust and cost-effective differentiation protocol described here for large-scale generation of NSCs/eNPCs and their differentiation into neurons paves the way for automated high-throughput screening of drugs for neurological and neurodegenerative diseases.

  15. Simultaneous determination of sixteen metabolites related to neural tube defects in maternal serum by liquid chromatography coupling with electrospray tandem mass spectrometry.

    PubMed

    Liang, Xiao-Ping; Liang, Qiong-Lin; Xia, Jian-Fei; Wang, Yong; Hu, Ping; Wang, Yi-Ming; Zheng, Xiao-Ying; Zhang, Ting; Luo, Guo-An

    2009-06-15

    Disturbances in maternal folate, homocysteine, and glutathione metabolism have been reported to be associated with neural tube defects (NTDs). However, the role played by specific components in the metabolic pathways leading to NTDs remains unclear. Thus an analytical method for simultaneous measurement of sixteen compounds involved in such three metabolic pathways by high performance liquid chromatography-tandem mass spectrometry was developed. The use of hydrophilic chromatography column improved the separation of polar analytes and the detection mode of multiple-reaction monitoring (MRM) enhanced the specificity and sensitivity so as to achieve simultaneous determination of three class of metabolites which have much variance in polarity and contents. The influence of parameters such as temperature, pH, flow rate on the performance of the analytes were studied to get an optimal condition. The method was validated for its linearity, accuracy, and precision, and also used for the analysis of serum samples of NTDs-affected pregnancies and normal women. The result showed that the present method is sensitive and reliable for simultaneous determination of as many as sixteen interesting metabolites which may provide a new means to study the underlying mechanism of NTDs as well as to discover new potential biomarkers.

  16. Attentional states influence early neural responses associated with motivational processes: local vs. global attentional scope and N1 amplitude to appetitive stimuli.

    PubMed

    Gable, Philip A; Harmon-Jones, Eddie

    2011-05-01

    Positive affects vary in the degree with which they are associated with approach motivation, the drive to approach an object or a goal. High approach-motivated positive affects cause a narrowing of attention, whereas low approach-motivated positive affects causes a broadening of attention. The current study was designed to extend this work by examining whether the relationship between motivation and attentional bias was bi-directional. Specifically, the experiment investigated whether a manipulated local attentional scope would cause greater approach motivational processing than a global attentional scope as measured by neural processes as early as 100 ms. As compared to a global attentional scope, a local attentional scope caused greater neural processing associated with approach motivation as measured by the N1 to appetitive pictures. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. YouTube as a source of information on mouth (oral) cancer.

    PubMed

    Hassona, Y; Taimeh, D; Marahleh, A; Scully, C

    2016-04-01

    We examined the content of YouTube(™) videos on mouth (oral) cancer and evaluated their usefulness in promoting early detection of oral cancer. A systematic search of YouTube(™) for videos containing information on mouth cancer was conducted using the keywords 'mouth cancer' and 'oral cancer'. Demographics of videos, including type, source, length, and viewers' interaction, were evaluated, and three researchers independently assessed the videos for usefulness in promoting early detection of oral cancer. A total of 188 YouTube(™) videos (152 patient-oriented educational videos and 36 testimonial videos) were analyzed. The overall usefulness score ranged from 0 to 10 (mean = 3.56 ± 2.44). The most useful videos ranked late on the viewing list, and there was no significant correlation between video usefulness and viewing rate, viewers' interaction, and video length. Videos uploaded by individual users were less useful compared with videos uploaded by professional organizations or by healthcare professionals. Healthcare professionals, academic institutions, and professional organizations have a responsibility for improving the content of YouTube(™) about mouth cancer by uploading useful videos, and directing patients to reliable information sources. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Early Neural Markers of Implicit Attitudes: N170 Modulated by Intergroup and Evaluative Contexts in IAT.

    PubMed

    Ibáñez, Agustín; Gleichgerrcht, Ezequiel; Hurtado, Esteban; González, Ramiro; Haye, Andrés; Manes, Facundo F

    2010-01-01

    The Implicit Association Test (IAT) is the most popular measure to evaluate implicit attitudes. Nevertheless, its neural correlates are not yet fully understood. We examined event related potentials (ERPs) in response to face- and word processing while indigenous and non-indigenous participants performed an IAT displaying faces (ingroup and outgroup members) and words (positive and negative valence) as targets of category judgments. The N170 component was modulated by valence of words and by ingroup/outgroup face categorization. Contextual effects (face-words implicitly associated in the task) had an influence on the N170 amplitude modulation. On the one hand, in face categorization, right N170 showed differences according to the association between social categories of faces and affective valence of words. On the other, in word categorization, left N170 presented a similar modulation when the task implied a negative-valence associated with ingroup faces. Only indigenous participants showed a significant IAT effect and N170 differences. Our results demonstrate an early ERP blending of stimuli processing with both intergroup and evaluative contexts, suggesting an integration of contextual information related to intergroup attitudes during the early stages of word and face processing. To our knowledge, this is the first report of early ERPs during an ethnicity IAT, opening a new branch of exchange between social neuroscience and social psychology of attitudes.

  19. Neural crest cells: from developmental biology to clinical interventions.

    PubMed

    Noisa, Parinya; Raivio, Taneli

    2014-09-01

    Neural crest cells are multipotent cells, which are specified in embryonic ectoderm in the border of neural plate and epiderm during early development by interconnection of extrinsic stimuli and intrinsic factors. Neural crest cells are capable of differentiating into various somatic cell types, including melanocytes, craniofacial cartilage and bone, smooth muscle, and peripheral nervous cells, which supports their promise for cell therapy. In this work, we provide a comprehensive review of wide aspects of neural crest cells from their developmental biology to applicability in medical research. We provide a simplified model of neural crest cell development and highlight the key external stimuli and intrinsic regulators that determine the neural crest cell fate. Defects of neural crest cell development leading to several human disorders are also mentioned, with the emphasis of using human induced pluripotent stem cells to model neurocristopathic syndromes. © 2014 Wiley Periodicals, Inc.

  20. Association between titanium and silver concentrations in maternal hair and risk of neural tube defects in offspring: A case-control study in north China.

    PubMed

    Li, Zhenjiang; Huo, Wenhua; Li, Zhiwen; Wang, Bin; Zhang, Jingxu; Ren, Aiguo

    2016-12-01

    Increasing uses of titanium and silver in various products raise concerns for their potential adverse effects on pregnancy outcomes. We aimed to examine the associations between titanium and silver concentrations in maternal hair growing during the periconception period and the risk of neural tube defects (NTDs) in offspring. Our case-control study recruited 191 women with NTD-affected pregnancies and 261 women delivering healthy infants. Metal concentrations in maternal hair were measured by inductively coupled plasma-mass spectrometry. The adjusted odds ratios (AOR) of titanium concentration above the median were 1.46 (95% confidence interval (CI), 0.99-2.13) for total NTDs and 2.10 (95% CI, 1.12-3.94) for anencephaly, while OR of silver wasn't statistically significant. Titanium concentration was positively correlated with consumptions of vegetables and fruits. Maternal exposure to titanium during the periconception period was associated with an increased NTD risk in offspring, which may be partly mediated through maternal dietary habits. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Maternal choline concentrations during pregnancy and choline-related genetic variants as risk factors for neural tube defects.

    PubMed

    Mills, James L; Fan, Ruzong; Brody, Lawrence C; Liu, Aiyi; Ueland, Per M; Wang, Yifan; Kirke, Peadar N; Shane, Barry; Molloy, Anne M

    2014-10-01

    Low maternal choline intake and blood concentration may be risk factors for having a child with a neural tube defect (NTD); however, the data are inconsistent. This is an important question to resolve because choline, if taken periconceptionally, might add to the protective effect currently being achieved by folic acid. We examined the relation between NTDs, choline status, and genetic polymorphisms reported to influence de novo choline synthesis to investigate claims that taking choline periconceptionally could reduce NTD rates. Two study groups of pregnant women were investigated: women who had a current NTD-affected pregnancy (AP; n = 71) and unaffected controls (n = 214) and women who had an NTD in another pregnancy but not in the current pregnancy [nonaffected pregnancy (NAP); n = 98] and unaffected controls (n = 386). Blood samples to measure betaine and total choline concentrations and single nucleotide polymorphisms related to choline metabolism were collected at their first prenatal visit. Mean (±SD) plasma total choline concentrations in the AP (2.8 ± 1.0 mmol/L) and control (2.9 ± 0.9 mmol/L) groups did not differ significantly. Betaine concentrations were not significantly different between the 2 groups. Total choline and betaine in the NAP group did not differ from controls. Cases were significantly more likely to have the G allele of phosphatidylethanolamine-N-methyltransferase (PEMT; V175M, +5465 G>A) rs7946 (P = 0.02). Our results indicate that maternal betaine and choline concentrations are not strongly associated with NTD risk. The association between PEMT rs7946 and NTDs requires confirmation. The addition of choline to folic acid supplements may not further reduce NTD risk. © 2014 American Society for Nutrition.

  2. Commentary: Elucidating the Neural Correlates of Early Childhood Memory

    ERIC Educational Resources Information Center

    Mullally, Sinead L.

    2015-01-01

    Both episodic memory and the key neural structure believed to support it, namely the hippocampus, are believed to undergo protracted periods of postnatal developmental. Critically however, the hippocampus is comprised of distinct subfields and circuits, and these circuits appear to mature at different rates (Lavenex and Banta Lavenex, 2013).…

  3. Raytheon Stirling/pulse Tube Cryocooler Development

    NASA Astrophysics Data System (ADS)

    Kirkconnell, C. S.; Hon, R. C.; Kesler, C. H.; Roberts, T.

    2008-03-01

    The first generation flight-design Stirling/pulse tube "hybrid" two-stage cryocooler has entered initial performance and environmental testing. The status and early results of the testing are presented. Numerous improvements have been implemented as compared to the preceding brassboard versions to improve performance, extend life, and enhance launch survivability. This has largely been accomplished by incorporating successful flight-design features from the Raytheon Stirling one-stage cryocooler product line. These design improvements are described. In parallel with these mechanical cryocooler development efforts, a third generation electronics module is being developed that will support hybrid Stirling/pulse tube and Stirling cryocoolers. Improvements relative to the second generation design relate to improved radiation hardness, reduced parts count, and improved vibration cancellation capability. Progress on the electronics is also presented.

  4. Enteral tube feeding for cystic fibrosis.

    PubMed

    Conway, S P; Morton, A; Wolfe, S

    2008-04-16

    Enteral tube feeding is routinely used in many cystic fibrosis centres when weight for height percentage is less than 85%, when there has been weight loss for longer than a two-month period or when there has been no weight gain for two to three months (under five years old) or for six months (over five years old). To examine the evidence that in people with cystic fibrosis supplemental enteral tube feeding improves nutritional status, respiratory function, and quality of life without significant adverse effects. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register which comprises references identified from comprehensive electronic database searches and handsearches of relevant journals and abstract books of conference proceedings. We also contacted the companies that market enteral feeds and reviewed their databases. Date of the most recent search of the Group's Cystic Fibrosis Trials Register: November 2007. All randomised controlled trials comparing supplemental enteral tube feeding for one month or longer with no specific intervention in people with cystic fibrosis. Thirteen trials were identified by the search; however, none were eligible for inclusion in this review. There are no trials included in this review. Supplemental enteral tube feeding is widely used throughout the world to improve nutritional status in people with cystic fibrosis. The methods mostly used, nasogastric or gastrostomy feeding, are invasive, expensive, and may have a negative effect on self-esteem and body image. Reported use of enteral tube feeding suggests that it results in nutritional and respiratory improvement and it is disappointing that their efficacy has not been fully assessed by randomised controlled trials. With the more frequent recommendations to use enteral tube feeding as an early rather than a late intervention, this systematic review identifies the need for a multicentre, randomised controlled trial assessing both efficacy and possible

  5. SELDI-TOF-MS proteomic profiling of serum, urine, and amniotic fluid in neural tube defects.

    PubMed

    Liu, Zhenjiang; Yuan, Zhengwei; Zhao, Qun

    2014-01-01

    Neural tube defects (NTDs) are common birth defects, whose specific biomarkers are needed. The purpose of this pilot study is to determine whether protein profiling in NTD-mothers differ from normal controls using SELDI-TOF-MS. ProteinChip Biomarker System was used to evaluate 82 maternal serum samples, 78 urine samples and 76 amniotic fluid samples. The validity of classification tree was then challenged with a blind test set including another 20 NTD-mothers and 18 controls in serum samples, and another 19 NTD-mothers and 17 controls in urine samples, and another 20 NTD-mothers and 17 controls in amniotic fluid samples. Eight proteins detected in serum samples were up-regulated and four proteins were down-regulated in the NTD group. Four proteins detected in urine samples were up-regulated and one protein was down-regulated in the NTD group. Six proteins detected in amniotic fluid samples were up-regulated and one protein was down-regulated in the NTD group. The classification tree for serum samples separated NTDs from healthy individuals, achieving a sensitivity of 91% and a specificity of 97% in the training set, and achieving a sensitivity of 90% and a specificity of 97% and a positive predictive value of 95% in the test set. The classification tree for urine samples separated NTDs from controls, achieving a sensitivity of 95% and a specificity of 94% in the training set, and achieving a sensitivity of 89% and a specificity of 82% and a positive predictive value of 85% in the test set. The classification tree for amniotic fluid samples separated NTDs from controls, achieving a sensitivity of 93% and a specificity of 89% in the training set, and achieving a sensitivity of 90% and a specificity of 88% and a positive predictive value of 90% in the test set. These suggest that SELDI-TOF-MS is an additional method for NTDs pregnancies detection.

  6. Identifying environmental risk factors for human neural tube defects before and after folic acid supplementation

    PubMed Central

    Liao, Yilan; Wang, Jinfeng; Li, Xinhu; Guo, Yaoqin; Zheng, Xiaoying

    2009-01-01

    Background Birth defects are a major cause of infant mortality and disability in many parts of the world. Neural tube defects (NTDs) are one of the most common types of birth defects. In 2001, the Chinese population and family planning commission initiated a national intervention program for the prevention of birth defects. A key step in the program was the introduction of folic acid supplementation. Of interest in the present study was to determine whether folic acid supplementation has the same protective effect on NTDs under various geographical and socioeconomic conditions within the Chinese population and the nature in which the influence of environmental factors varied after folic acid supplementation. Methods In this study, Heshun was selected as the region of interest as a surrogate for helping to answer some of the questions raised in this study on the impact of the intervention program. Spatial filtering in combination with GIS software was used to detect annual potential clusters from 1998 to 2005 in Heshun, and Kruskal-wallis test and multivariate regression were applied to identify the environmental risk factors for NTDs among various regions. Results In 1998, a significant (p < 0.100) NTDs cluster was detected in the west of Heshun. After folic acid supplementation, the significant clusters gradually moved from west to east. However, during the study period, most of the clusters appeared in the middle region of Heshun where more than 95 percent of the coal mines of Heshun are located. For the analysis, buffer regions of the coal mine zone were built in a GIS environment. It was found that the correlations between environmental risk factors and NTDs vary among the buffer regions. Conclusion This suggests that the government needs to adapt the intervention measures according to local conditions. More attention needs to be paid to the poor and to people living in areas near coal mines. PMID:19835574

  7. Assembly and remodeling of the fibrillar fibronectin extracellular matrix during gastrulation and neurulation in Xenopus laevis.

    PubMed

    Davidson, Lance A; Keller, Raymond; DeSimone, Douglas W

    2004-12-01

    Fibronectin, a major component of the extracellular matrix is critical for processes of cell traction and cell motility. Whole-mount confocal imaging of the three-dimensional architecture of the extracellular matrix is used to describe dynamic assembly and remodeling of fibronectin fibrils during gastrulation and neurulation in the early frog embryo. As previously reported, fibrils first appear under the prospective ectoderm. We describe here the first evidence for regulated assembly of fibrils along the somitic mesoderm/endoderm boundary as well as at the notochord/somitic mesoderm boundary and clearing of fibrils from the dorsal and ventral surfaces of the notochord that occurs over the course of a few hours. As gastrulation proceeds, fibrils are restored to the dorsal surface of the notochord, where the notochord contacts the prospective floor plate. As the neural folds form, fibrils are again remodeled as deep neural plate cells move medially. The process of neural tube closure leaves a region of the ectoderm overlying the neural crest transiently bare of fibrils. Fibrils are assembled surrounding the dorsal surface of the neural tube as the neural tube lumen is restored. Copyright (c) 2004 Wiley-Liss, Inc.

  8. Feature extraction in MFL signals of machined defects in steel tubes

    NASA Astrophysics Data System (ADS)

    Perazzo, R.; Pignotti, A.; Reich, S.; Stickar, P.

    2001-04-01

    Thirty defects of various shapes were machined on the external and internal wall surfaces of a 177 mm diameter ferromagnetic steel pipe. MFL signals were digitized and recorded at a frequency of 4 Khz. Various magnetizing currents and relative tube-probe velocities of the order of 2m/s were used. The identification of the location of the defect by a principal component/neural network analysis of the signal is shown to be more effective than the standard procedure of classification based on the average signal frequency.

  9. Spectrum of prenatally detected central nervous system malformations: Neural tube defects continue to be the leading foetal malformation.

    PubMed

    Siddesh, Anjurani; Gupta, Geetika; Sharan, Ram; Agarwal, Meenal; Phadke, Shubha R

    2017-04-01

    Prenatal diagnosis of malformations is an important method of prevention and control of congenital anomalies with poor prognosis. Central nervous system (CNS) malformations amongst these are the most common. The information about the prevalence and spectrum of prenatally detected malformations is crucial for genetic counselling and policymaking for population-based preventive programmes. The objective of this study was to study the spectrum of prenatally detected CNS malformations and their association with chromosomal abnormalities and autopsy findings. This retrospective study was conducted in a tertiary care hospital in north India from January 2007 to December 2013. The details of cases with prenatally detected CNS malformations were collected and were related with the foetal chromosomal analysis and autopsy findings. Amongst 6044 prenatal ultrasonographic examinations performed; 768 (12.7%) had structural malformations and 243 (31.6%) had CNS malformations. Neural tube defects (NTDs) accounted for 52.3 per cent of CNS malformations and 16.5 per cent of all malformations. The other major groups of prenatally detected CNS malformations were ventriculomegaly and midline anomalies. Chromosomal abnormalities were detected in 8.2 per cent of the 73 cases studied. Foetal autopsy findings were available for 48 foetuses. Foetal autopsy identified additional findings in eight foetuses and the aetiological diagnosis changed in two of them (4.2%). Amongst prenatally detected malformations, CNS malformations were common. NTD, which largely is a preventable anomaly, continued to be the most common group. Moreover, 60 per cent of malformations were diagnosed after 20 weeks, posing legal issues. Chromosomal analysis and foetal autopsy are essential for genetic counselling based on aetiological diagnosis.

  10. Thymidylate synthase repeat polymorphisms and risk of neural tube defects in a population from the northern United Kingdom.

    PubMed

    Wilding, Craig S; Relton, Caroline L; Sutton, Matthew J; Jonas, Pat A; Lynch, Sally-Ann; Tawn, E Janet; Burn, John

    2004-07-01

    A 28-bp repeat polymorphism in the 5'UTR of the thymidylate synthase (TYMS) gene represents a candidate risk factor for neural tube defects (NTDs) due to involvement in folate-dependent homocysteine metabolism. Non-Hispanic, white, U.S. citizens carrying at least one 2x 28-bp repeat allele have recently been shown to be at a four-fold increased risk of spina bifida (SB). We investigated the association between this polymorphism and risk of NTD in families affected by NTDs and controls from the northern United Kingdom (UK). PCR was performed on genomic DNA extracted from blood or mouth swabs of family members affected by NTDs (mothers, fathers, and cases), and unaffected controls (mothers and infants) to determine the number of 28-bp repeat units within the promoter region of TYMS. Case-control and TDT analyses of the influence of TYMS genotype on risk of NTD, or NTD pregnancy, were conducted. Odds ratio (OR) analysis indicated that individuals carrying the 2x 28-bp repeat allele either in homozygous or heterozygous form, are not at increased risk of NTDs, or of having an NTD affected pregnancy. Control population allele frequencies are seen to be markedly different between the U.S. controls and those in this study. TYMS polymorphism appears to be not universally associated with NTD risk across Caucasian samples. The elevated risk of spina bifida in U.S. samples appears to be driven by an unusually low risk allele (2x 28 bp) frequency in control samples. Family based (TDT) testing of U.S. samples is therefore advocated.

  11. High Glucose Inhibits Neural Stem Cell Differentiation Through Oxidative Stress and Endoplasmic Reticulum Stress.

    PubMed

    Chen, Xi; Shen, Wei-Bin; Yang, Penghua; Dong, Daoyin; Sun, Winny; Yang, Peixin

    2018-06-01

    Maternal diabetes induces neural tube defects by suppressing neurogenesis in the developing neuroepithelium. Our recent study further revealed that high glucose inhibited embryonic stem cell differentiation into neural lineage cells. However, the mechanism whereby high glucose suppresses neural differentiation is unclear. To investigate whether high glucose-induced oxidative stress and endoplasmic reticulum (ER) stress lead to the inhibition of neural differentiation, the effect of high glucose on neural stem cell (the C17.2 cell line) differentiation was examined. Neural stem cells were cultured in normal glucose (5 mM) or high glucose (25 mM) differentiation medium for 3, 5, and 7 days. High glucose suppressed neural stem cell differentiation by significantly decreasing the expression of the neuron marker Tuj1 and the glial cell marker GFAP and the numbers of Tuj1 + and GFAP + cells. The antioxidant enzyme superoxide dismutase mimetic Tempol reversed high glucose-decreased Tuj1 and GFAP expression and restored the numbers of neurons and glial cells differentiated from neural stem cells. Hydrogen peroxide treatment imitated the inhibitory effect of high glucose on neural stem cell differentiation. Both high glucose and hydrogen peroxide triggered ER stress, whereas Tempol blocked high glucose-induced ER stress. The ER stress inhibitor, 4-phenylbutyrate, abolished the inhibition of high glucose or hydrogen peroxide on neural stem cell differentiation. Thus, oxidative stress and its resultant ER stress mediate the inhibitory effect of high glucose on neural stem cell differentiation.

  12. Evolution of the VEGF-regulated vascular network from a neural guidance system.

    PubMed

    Ponnambalam, Sreenivasan; Alberghina, Mario

    2011-06-01

    The vascular network is closely linked to the neural system, and an interdependence is displayed in healthy and in pathophysiological responses. How has close apposition of two such functionally different systems occurred? Here, we present a hypothesis for the evolution of the vascular network from an ancestral neural guidance system. Biological cornerstones of this hypothesis are the vascular endothelial growth factor (VEGF) protein family and cognate receptors. The primary sequences of such proteins are conserved from invertebrates, such as worms and flies that lack discernible vascular systems compared to mammals, but all these systems have sophisticated neuronal wiring involving such molecules. Ancestral VEGFs and receptors (VEGFRs) could have been used to develop and maintain the nervous system in primitive eukaryotes. During evolution, the demands of increased morphological complexity required systems for transporting molecules and cells, i.e., biological conductive tubes. We propose that the VEGF-VEGFR axis was subverted by evolution to mediate the formation of biological tubes necessary for transport of fluids, e.g., blood. Increasingly, there is evidence that aberrant VEGF-mediated responses are also linked to neuronal dysfunctions ranging from motor neuron disease, stroke, Parkinson's disease, Alzheimer's disease, ischemic brain disease, epilepsy, multiple sclerosis, and neuronal repair after injury, as well as common vascular diseases (e.g., retinal disease). Manipulation and correction of the VEGF response in different neural tissues could be an effective strategy to treat different neurological diseases.

  13. The heart tube forms and elongates through dynamic cell rearrangement coordinated with foregut extension.

    PubMed

    Kidokoro, Hinako; Yonei-Tamura, Sayuri; Tamura, Koji; Schoenwolf, Gary C; Saijoh, Yukio

    2018-03-29

    In the initiation of cardiogenesis, the heart primordia transform from bilateral flat sheets of mesoderm into an elongated midline tube. Here, we discover that this rapid architectural change is driven by actomyosin-based oriented cell rearrangement and resulting dynamic tissue reshaping (convergent extension, CE). By labeling clusters of cells spanning the entire heart primordia, we show that the heart primordia converge toward the midline to form a narrow tube, while extending perpendicularly to rapidly lengthen it. Our data for the first time visualize the process of early heart tube formation from both the medial (second) and lateral (first) heart fields, revealing that both fields form the early heart tube by essentially the same mechanism. Additionally, the adjacent endoderm coordinately forms the foregut through previously unrecognized movements that parallel those of the heart mesoderm and elongates by CE. In conclusion, our data illustrate how initially two-dimensional flat primordia rapidly change their shapes and construct the three-dimensional morphology of emerging organs in coordination with neighboring morphogenesis. © 2018. Published by The Company of Biologists Ltd.

  14. Neural Crossroads in the Hematopoietic Stem Cell Niche.

    PubMed

    Agarwala, Sobhika; Tamplin, Owen J

    2018-05-29

    The hematopoietic stem cell (HSC) niche supports steady-state hematopoiesis and responds to changing needs during stress and disease. The nervous system is an important regulator of the niche, and its influence is established early in development when stem cells are specified. Most research has focused on direct innervation of the niche, however recent findings show there are different modes of neural control, including globally by the central nervous system (CNS) and hormone release, locally by neural crest-derived mesenchymal stem cells, and intrinsically by hematopoietic cells that express neural receptors and neurotransmitters. Dysregulation between neural and hematopoietic systems can contribute to disease, however new therapeutic opportunities may be found among neuroregulator drugs repurposed to support hematopoiesis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Determination of tube-to-tube support interaction characteristics. [PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haslinger, K.H.

    Tube-to-tube support interaction characteristics were determined on a multi-span tube geometry representative of the hot-leg side of the C-E, System 80 steam generator design. Results will become input for an autoclave type wear test program on steam generator tubes, performed by Kraftwerk Union (KWU). Correlation of test data reported here with similar data obtained from the wear tests will be performed in an attempt to make predictions about the long-term fretting behavior of steam generator tubes.

  16. Proposal of a model of mammalian neural induction

    PubMed Central

    Levine, Ariel J.; Brivanlou, Ali H.

    2009-01-01

    How does the vertebrate embryo make a nervous system? This complex question has been at the center of developmental biology for many years. The earliest step in this process – the induction of neural tissue – is intimately linked to patterning of the entire early embryo, and the molecular and embryological basis these processes are beginning to emerge. Here, we analyze classic and cutting-edge findings on neural induction in the mouse. We find that data from genetics, tissue explants, tissue grafting, and molecular marker expression support a coherent framework for mammalian neural induction. In this model, the gastrula organizer of the mouse embryo inhibits BMP signaling to allow neural tissue to form as a default fate – in the absence of instructive signals. The first neural tissue induced is anterior and subsequent neural tissue is posteriorized to form the midbrain, hindbrain, and spinal cord. The anterior visceral endoderm protects the pre-specified anterior neural fate from similar posteriorization, allowing formation of forebrain. This model is very similar to the default model of neural induction in the frog, thus bridging the evolutionary gap between amphibians and mammals. PMID:17585896

  17. Alternate tube plugging criteria for steam generator tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cueto-Felgueroso, C.; Aparicio, C.B.

    1997-02-01

    The tubing of the Steam Generators constitutes more than half of the reactor coolant pressure boundary. Specific requirements governing the maintenance of steam generator tubes integrity are set in Plant Technical Specifications and in Section XI of the ASME Boiler and Pressure Vessel Code. The operating experience of Steam Generator tubes of PWR plants has shown the existence of some types of degradatory processes. Every one of these has an specific cause and affects one or more zones of the tubes. In the case of Spanish Power Plants, and depending on the particular Plant considered, they should be mentioned themore » Primary Water Stress Corrosion Cracking (PWSCC) at the roll transition zone (RTZ), the Outside Diameter Stress Corrosion Cracking (ODSCC) at the Tube Support Plate (TSP) intersections and the fretting with the Anti-Vibration Bars (AVBs) or with the Support Plates in the preheater zone. The In-Service Inspections by Eddy Currents constitutes the standard method for assuring the SG tubes integrity and they permit the monitoring of the defects during the service life of the plant. When the degradation reaches a determined limit, called the plugging limit, the SG tube must be either repaired or retired from service by plugging. Customarily, the plugging limit is related to the depth of the defect. Such depth is typically 40% of the wall thickness of the tube and is applicable to any type of defect in the tube. In its origin, that limit was established for tubes thinned by wastage, which was the predominant degradation in the seventies. The application of this criterion for axial crack-like defects, as, for instance, those due to PWSCC in the roll transition zone, has lead to an excessive and unnecessary number of tubes being plugged. This has lead to the development of defect specific plugging criteria. Examples of the application of such criteria are discussed in the article.« less

  18. Mood-Stabilizing Anticonvulsants, Spina Bifida, and Folate Supplementation: Commentary.

    PubMed

    Patel, Neil; Viguera, Adele C; Baldessarini, Ross J

    2018-02-01

    High risks of neural tube defects and other teratogenic effects are associated with exposure in early pregnancy to some anticonvulsants, including in women with bipolar disorder. Based on a semistructured review of recent literature, we summarized findings pertaining to this topic. Valproate and carbamazepine are commonly used empirically (off-label) for putative long-term mood-stabilizing effects. Both anticonvulsants have high risks of teratogenic effects during pregnancy. Risks of neural tube defects (especially spina bifida) and other major malformations are especially great with valproate and can arise even before pregnancy is diagnosed. Standard supplementation of folic acid during pregnancy can reduce risk of spontaneous spina bifida, but not that associated with valproate or carbamazepine. In contrast, lamotrigine has regulatory approval for long-term use in bipolar disorder and appears not to have teratogenic effects in humans. Lack of protective effects against anticonvulsant-associated neural tube defects by folic acid supplements in anticipation of and during pregnancy is not widely recognized. This limitation and high risks of neural tube and other major teratogenic effects, especially of valproate, indicate the need for great caution in the use of valproate and carbamazepine to treat bipolar disorder in women of child-bearing age.

  19. Nurse and patient factors that influence nursing time in chest tube management early after open heart surgery: A descriptive, correlational study.

    PubMed

    Cook, Myra; Idzior, Laura; Bena, James F; Albert, Nancy M

    2017-10-01

    Determine nurse characteristics and patient factors that affect nurses' time in managing chest tubes in the first 24-hours of critical-care stay. Prospective, descriptive. Cardiovascular critical-care nurses and post-operative heart surgery patients with chest tubes were enrolled from a single center in Ohio. Nurses completed case report forms about themselves, comfort and time in managing chest tubes, chest tube placement and management factors. Analysis included correlational and comparative statistics; Bonferroni corrections were applied, as appropriate. Of 29 nurses, 86.2% were very comfortable managing chest tubes and oozing/non-secure dressings, but only 41.4% were very comfortable managing clogged chest tubes. Of 364 patients, mean age was 63.1 (±12.3) years and 36% had previous heart surgery. Total minutes of chest tube management was higher with≥3 chest tubes, tube size <28 French, and when both mediastinal and pleural tubes were present (all p<0.001). In the first 4-hours, time spent on chest tubes was higher when patients had previous cardiac surgeries (p≤0.002), heart failure (p<0.001), preoperative anticoagulant medications (p=0.031) and reoperation for postoperative bleeding/tamponade (p=0.005). Time to manage chest tubes can be anticipated by patient characteristics. Nurse comfort with chest tube-related tasks affected time spent on chest tube management. Published by Elsevier Ltd.

  20. Modified endotracheal tube: emergency alternative to paediatric tracheostomy tube.

    PubMed

    Kurien, M; Raviraj, R; Mathew, J; Kaliaperumal, I; Ninan, S

    2011-07-01

    In an emergency, the non-availability of a conventional paediatric tracheostomy tube is a therapeutic challenge for the attending surgeon. To describe a simple alternative to a paediatric tracheostomy tube for use in an emergency situation. Case report of a 14-year-old boy who developed tracheomalacia following partial cricotracheal resection for subglottic stenosis. As a suitably sized tracheostomy tube (with a long narrow segment) was not available, an endotracheal tube was modified and used successfully. Details of the modification, and a relevant literature review, are also discussed. In the paediatric age group, when an appropriately sized tracheostomy tube is not available, a modified endotracheal tube is a simple temporary alternative; this may be especially useful in an emergency.

  1. Long-term influence of recurrent acute otitis media on neural involuntary attention switching in 2-year-old children.

    PubMed

    Haapala, Sini; Niemitalo-Haapola, Elina; Raappana, Antti; Kujala, Tiia; Suominen, Kalervo; Jansson-Verkasalo, Eira; Kujala, Teija

    2016-01-04

    A large group of young children are exposed to repetitive middle ear infections but the effects of the fluctuating hearing sensations on immature central auditory system are not fully understood. The present study investigated the consequences of early childhood recurrent acute otitis media (RAOM) on involuntary auditory attention switching. By utilizing auditory event-related potentials, neural mechanisms of involuntary attention were studied in 22-26 month-old children (N = 18) who had had an early childhood RAOM and healthy controls (N = 19). The earlier and later phase of the P3a (eP3a and lP3a) and the late negativity (LN) were measured for embedded novel sounds in the passive multi-feature paradigm with repeating standard and deviant syllable stimuli. The children with RAOM had tympanostomy tubes inserted and all the children in both study groups had to have clinically healthy ears at the time of the measurement assessed by an otolaryngologist. The results showed that lP3a amplitude diminished less from frontal to central and parietal areas in the children with RAOM than the controls. This might reflect an immature control of involuntary attention switch. Furthermore, the LN latency was longer in children with RAOM than in the controls, which suggests delayed reorientation of attention in RAOM. The lP3a and LN responses are affected in toddlers who have had a RAOM even when their ears are healthy. This suggests detrimental long-term effects of RAOM on the neural mechanisms of involuntary attention.

  2. Neural Networks for Flight Control

    NASA Technical Reports Server (NTRS)

    Jorgensen, Charles C.

    1996-01-01

    Neural networks are being developed at NASA Ames Research Center to permit real-time adaptive control of time varying nonlinear systems, enhance the fault-tolerance of mission hardware, and permit online system reconfiguration. In general, the problem of controlling time varying nonlinear systems with unknown structures has not been solved. Adaptive neural control techniques show considerable promise and are being applied to technical challenges including automated docking of spacecraft, dynamic balancing of the space station centrifuge, online reconfiguration of damaged aircraft, and reducing cost of new air and spacecraft designs. Our experiences have shown that neural network algorithms solved certain problems that conventional control methods have been unable to effectively address. These include damage mitigation in nonlinear reconfiguration flight control, early performance estimation of new aircraft designs, compensation for damaged planetary mission hardware by using redundant manipulator capability, and space sensor platform stabilization. This presentation explored these developments in the context of neural network control theory. The discussion began with an overview of why neural control has proven attractive for NASA application domains. The more important issues in control system development were then discussed with references to significant technical advances in the literature. Examples of how these methods have been applied were given, followed by projections of emerging application needs and directions.

  3. Dynamical information encoding in neural adaptation.

    PubMed

    Luozheng Li; Wenhao Zhang; Yuanyuan Mi; Dahui Wang; Xiaohan Lin; Si Wu

    2016-08-01

    Adaptation refers to the general phenomenon that a neural system dynamically adjusts its response property according to the statistics of external inputs. In response to a prolonged constant stimulation, neuronal firing rates always first increase dramatically at the onset of the stimulation; and afterwards, they decrease rapidly to a low level close to background activity. This attenuation of neural activity seems to be contradictory to our experience that we can still sense the stimulus after the neural system is adapted. Thus, it prompts a question: where is the stimulus information encoded during the adaptation? Here, we investigate a computational model in which the neural system employs a dynamical encoding strategy during the neural adaptation: at the early stage of the adaptation, the stimulus information is mainly encoded in the strong independent firings; and as time goes on, the information is shifted into the weak but concerted responses of neurons. We find that short-term plasticity, a general feature of synapses, provides a natural mechanism to achieve this goal. Furthermore, we demonstrate that with balanced excitatory and inhibitory inputs, this correlation-based information can be read out efficiently. The implications of this study on our understanding of neural information encoding are discussed.

  4. The long reach of early adversity: Parenting, stress, and neural pathways to antisocial behavior in adulthood.

    PubMed

    Gard, Arianna M; Waller, Rebecca; Shaw, Daniel S; Forbes, Erika E; Hariri, Ahmad R; Hyde, Luke W

    2017-10-01

    Early life adversities including harsh parenting, maternal depression, neighborhood deprivation, and low family economic resources are more prevalent in low-income urban environments and are potent predictors of psychopathology, including, for boys, antisocial behavior (AB). However, little research has examined how these stressful experiences alter later neural function. Moreover, identifying genetic markers of greater susceptibility to adversity is critical to understanding biopsychosocial pathways from early adversity to later psychopathology. Within a sample of 310 low-income boys followed from age 1.5 to 20, multimethod assessments of adversities were examined at age 2 and age 12. At age 20, amygdala reactivity to emotional facial expressions was assessed using fMRI, and symptoms of Antisocial Personality Disorder were assessed via structured clinical interview. Genetic variability in cortisol signaling ( CRHR1 ) was examined as a moderator of pathways to amygdala reactivity. Observed parenting and neighborhood deprivation at age 2 each uniquely predicted amygdala reactivity to emotional faces at age 20 over and above other adversities measured at multiple developmental periods. Harsher parenting and greater neighborhood deprivation in toddlerhood predicted clinically-significant symptoms of AB via less amygdala reactivity to fearful facial expressions and this pathway was moderated by genetic variation in CRHR1 . These results elucidate a pathway linking early adversity to less amygdala reactivity to social signals of interpersonal distress 18 years later, which in turn increased risk for serious AB. Moreover, these findings suggest a genetic marker of youth more susceptible to adversity.

  5. Characterization of the Trunk Neural Crest in the bamboo shark, Chiloscyllium punctatum

    PubMed Central

    Juarez, Marilyn; Reyes, Michelle; Coleman, Tiffany; Rotenstein, Lisa; Sao, Sothy; Martinez, Darwin; Jones, Matthew; Mackelprang, Rachel; de Bellard, Maria Elena

    2013-01-01

    The neural crest is a population of mesenchymal cells that after migrating from the neural tube give rise to a structures and cell-types: jaw, part of the peripheral ganglia and melanocytes. Although much is known about neural crest development in jawed vertebrates, a clear picture of trunk neural crest development for elasmobranchs is yet to be developed. Here we present a detailed study of trunk neural crest development in the bamboo shark, Chiloscyllium punctatum. Vital labeling with DiI and in situ hybridization using cloned Sox8 and Sox9 probes demonstrated that trunk neural crest cells follow a pattern similar to the migratory paths already described in zebrafish and amphibians. We found shark trunk neural crest along the rostral side of the somites, the ventromedial pathway, branchial arches, gut, sensory ganglia and nerves. Interestingly, Chiloscyllium punctatum Sox8 and Sox9 sequences aligned with vertebrate SoxE genes, but appeared to be more ancient than the corresponding vertebrate paralogs. The expression of these two SoxE genes in trunk neural crest cells, especially Sox9, matched the Sox10 migratory patterns observed in teleosts. Interestingly, we observed DiI cells and Sox9 labeling along the lateral line, suggesting that in C. punctatum, glial cells in the lateral line are likely of neural crest origin. Though this has been observed in other vertebrates, we are the first to show that the pattern is present in cartilaginous fishes. These findings demonstrate that trunk neural crest cell development in Chiloscyllium punctatum follows the same highly conserved migratory pattern observed in jawed vertebrates PMID:23640803

  6. Severe complications caused by dissolution of latex with consequent self-disintegration of esophageal plastic tubes.

    PubMed

    Löser, C

    2000-09-01

    A case of decisive material degeneration of an esophageal Celestin tube is described: a 50-year-old man with adenocarcinoma of the distal esophagus received a Celestin tube for palliative endoscopic treatment and 8 months later presented with suddenly occurring complete dysphagia. Dissolution of the latex layer in the proximal as well as the distal part of the tube had caused self-disintegration of the Celestin tube and had liberated the monofilament nylon coil which completely obstructed the lumen of the tube. Endoscopic tube removal was only possible by careful attachment of a balloon catheter and peroral extraction after insufflation with contrast medium up to 5 atm. A Medline-based review of the literature revealed different but predominantly severe complications (perforation, hemorrhage, obstruction, and peritonitis) based on material fatigue of the latex layer in esophageal Celestin tubes. At least 6 months after placement of a Celestin tube, regular fluoroscopic controls should be performed to detect early disintegration of the tube. Indication for the placement of Celestin tubes in patients with benign esophageal strictures and longer life expectancy should be assessed very critically.

  7. Early neural activation during facial affect processing in adolescents with Autism Spectrum Disorder.

    PubMed

    Leung, Rachel C; Pang, Elizabeth W; Cassel, Daniel; Brian, Jessica A; Smith, Mary Lou; Taylor, Margot J

    2015-01-01

    Impaired social interaction is one of the hallmarks of Autism Spectrum Disorder (ASD). Emotional faces are arguably the most critical visual social stimuli and the ability to perceive, recognize, and interpret emotions is central to social interaction and communication, and subsequently healthy social development. However, our understanding of the neural and cognitive mechanisms underlying emotional face processing in adolescents with ASD is limited. We recruited 48 adolescents, 24 with high functioning ASD and 24 typically developing controls. Participants completed an implicit emotional face processing task in the MEG. We examined spatiotemporal differences in neural activation between the groups during implicit angry and happy face processing. While there were no differences in response latencies between groups across emotions, adolescents with ASD had lower accuracy on the implicit emotional face processing task when the trials included angry faces. MEG data showed atypical neural activity in adolescents with ASD during angry and happy face processing, which included atypical activity in the insula, anterior and posterior cingulate and temporal and orbitofrontal regions. Our findings demonstrate differences in neural activity during happy and angry face processing between adolescents with and without ASD. These differences in activation in social cognitive regions may index the difficulties in face processing and in comprehension of social reward and punishment in the ASD group. Thus, our results suggest that atypical neural activation contributes to impaired affect processing, and thus social cognition, in adolescents with ASD.

  8. GenSo-EWS: a novel neural-fuzzy based early warning system for predicting bank failures.

    PubMed

    Tung, W L; Quek, C; Cheng, P

    2004-05-01

    Bank failure prediction is an important issue for the regulators of the banking industries. The collapse and failure of a bank could trigger an adverse financial repercussion and generate negative impacts such as a massive bail out cost for the failing bank and loss of confidence from the investors and depositors. Very often, bank failures are due to financial distress. Hence, it is desirable to have an early warning system (EWS) that identifies potential bank failure or high-risk banks through the traits of financial distress. Various traditional statistical models have been employed to study bank failures [J Finance 1 (1975) 21; J Banking Finance 1 (1977) 249; J Banking Finance 10 (1986) 511; J Banking Finance 19 (1995) 1073]. However, these models do not have the capability to identify the characteristics of financial distress and thus function as black boxes. This paper proposes the use of a new neural fuzzy system [Foundations of neuro-fuzzy systems, 1997], namely the Generic Self-organising Fuzzy Neural Network (GenSoFNN) [IEEE Trans Neural Networks 13 (2002c) 1075] based on the compositional rule of inference (CRI) [Commun ACM 37 (1975) 77], as an alternative to predict banking failure. The CRI based GenSoFNN neural fuzzy network, henceforth denoted as GenSoFNN-CRI(S), functions as an EWS and is able to identify the inherent traits of financial distress based on financial covariates (features) derived from publicly available financial statements. The interaction between the selected features is captured in the form of highly intuitive IF-THEN fuzzy rules. Such easily comprehensible rules provide insights into the possible characteristics of financial distress and form the knowledge base for a highly desired EWS that aids bank regulation. The performance of the GenSoFNN-CRI(S) network is subsequently benchmarked against that of the Cox's proportional hazards model [J Banking Finance 10 (1986) 511; J Banking Finance 19 (1995) 1073], the multi

  9. Effects of Korean red ginseng extracts on neural tube defects and impairment of social interaction induced by prenatal exposure to valproic acid.

    PubMed

    Kim, Pitna; Park, Jin Hee; Kwon, Kyoung Ja; Kim, Ki Chan; Kim, Hee Jin; Lee, Jong Min; Kim, Hahn Young; Han, Seol-Heui; Shin, Chan Young

    2013-01-01

    Ginseng is one of the most widely used medicinal plants, which belongs to the genus Panax. Compared to uncured white ginseng, red ginseng has been generally regarded to produce superior pharmacological effects with lesser side/adverse effects, which made it popular in a variety of formulation from tea to oriental medicine. Using the prenatal valproic acid (VPA)-injection model of autism spectrum disorder (ASD) in rats, which produces social impairrment and altered seizure susceptibility as in human ASD patients as well as mild neural tube defects like crooked tail phenotype, we examined whether chronic administration of red ginseng extract may rescue the social impairment and crooked tail phenotype in prenatally VPA-exposed rat offspring. VPA-induced impairment in social interactions tested using sociability and social preference paradigms as well as crooked tail phenotypes were significantly improved by administration of Korean red ginseng (KRG) in a dose dependent manner. Rat offspring prenatally exposed to VPA showed higher sensitivity to electric shock seizure and increased locomotor activity in open-field test. KRG treatment reversed abnormal locomotor activity and sensitivity to electric shock to control level. These results suggest that KRG may modulate neurobehavioral and structural organization of nervous system adversely affected by prenatal exposure to VPA. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Successful late management of spontaneous esophageal rupture using T-tube mediastinoabdominal drainage.

    PubMed

    Ojima, H; Kuwano, H; Sasaki, S; Fujisawa, T; Ishibashi, Y

    2001-08-01

    Spontaneous esophageal rupture is extremely rare, and early symptoms of the disease are similar to those of emergency diseases of the chest and abdomen. The diagnosis and treatments are often delayed, resulting in an unfavorable outcome in some cases. We performed improved T-tube drainage for spontaneous esophageal rupture in 5 patients between 1995 and 1999. Our improved method was a modified procedure of the reported method of Abbott et al, as follows: a T-tube was inserted into the esophagus. A separate stab incision was made in the abdominal wall, and the long limb of the T-tube was brought out through this incision ensuring that the course of the T-tube intra-abdominally was short and straight, with some slack to allow for postoperative abdominal distension. An advantage of this method was that it facilitated healing of the fistula after removal of the T-tube. All patients were treated with a satisfactory outcome. This improved T-tube drainage was technically very easy and safe method for spontaneous esophageal rupture in severe cases.

  11. Systematic review and meta-analysis of initial management of pneumothorax in adults: Intercostal tube drainage versus other invasive methods

    PubMed Central

    Park, Incheol; Kim, Kyung Hwan; Park, Junseok; Shin, Dong Wun

    2017-01-01

    Objectives The ideal invasive management as initial approach for pneumothorax (PTX) is still under debate. The purpose of this systematic review and meta-analysis was to examine the evidence for the effectiveness of intercostal tube drainage and other various invasive methods as the initial approach to all subtypes of PTX in adults. Methods Three databases were searched from inception to May 29, 2016: MEDLINE, EMBASE, and the Cochrane CENTRAL. Randomised controlled trials that evaluated intercostal tube drainage as the control and various invasive methods as the intervention for the initial approach to PTX in adults were included. The primary outcome was the early success rate of each method, and the risk ratios (RRs) were used for an effect size measure. The secondary outcomes were recurrence rate, hospitalization rate, hospital stay, and complications. Results Seven studies met our inclusion criteria. Interventions were aspiration in six studies and catheterization connected to a one-way valve in one study. Meta-analyses were conducted for early success rate, recurrence rate, hospitalization rate, and hospital stay. Aspiration was inferior to intercostal tube drainage in terms of early success rate (RR = 0.82, confidence interval [CI] = 0.72 to 0.95, I2 = 0%). While aspiration and intercostal tube drainage showed no significant difference in the recurrence rate (RR = 0.84, CI = 0.57 to 1.23, I2 = 0%), aspiration had shorter hospital stay than intercostal tube drainage (mean difference = -1.73, CI = -2.33 to -1.13, I2 = 0%). Aspiration had lower hospitalization rate than intercostal tube drainage, but marked heterogeneity was present (RR = 0.38, CI = 0.19 to 0.76, I2 = 85%). Conclusion Aspiration was inferior to intercostal tube drainage in terms of early resolution, but it had shorter hospital stay. The recurrence rate of aspiration and intercostal tube drainage did not differ significantly. The efficacy of catheterization connected to a one-way valve was

  12. Systematic review and meta-analysis of initial management of pneumothorax in adults: Intercostal tube drainage versus other invasive methods.

    PubMed

    Kim, Min Joung; Park, Incheol; Park, Joon Min; Kim, Kyung Hwan; Park, Junseok; Shin, Dong Wun

    2017-01-01

    The ideal invasive management as initial approach for pneumothorax (PTX) is still under debate. The purpose of this systematic review and meta-analysis was to examine the evidence for the effectiveness of intercostal tube drainage and other various invasive methods as the initial approach to all subtypes of PTX in adults. Three databases were searched from inception to May 29, 2016: MEDLINE, EMBASE, and the Cochrane CENTRAL. Randomised controlled trials that evaluated intercostal tube drainage as the control and various invasive methods as the intervention for the initial approach to PTX in adults were included. The primary outcome was the early success rate of each method, and the risk ratios (RRs) were used for an effect size measure. The secondary outcomes were recurrence rate, hospitalization rate, hospital stay, and complications. Seven studies met our inclusion criteria. Interventions were aspiration in six studies and catheterization connected to a one-way valve in one study. Meta-analyses were conducted for early success rate, recurrence rate, hospitalization rate, and hospital stay. Aspiration was inferior to intercostal tube drainage in terms of early success rate (RR = 0.82, confidence interval [CI] = 0.72 to 0.95, I2 = 0%). While aspiration and intercostal tube drainage showed no significant difference in the recurrence rate (RR = 0.84, CI = 0.57 to 1.23, I2 = 0%), aspiration had shorter hospital stay than intercostal tube drainage (mean difference = -1.73, CI = -2.33 to -1.13, I2 = 0%). Aspiration had lower hospitalization rate than intercostal tube drainage, but marked heterogeneity was present (RR = 0.38, CI = 0.19 to 0.76, I2 = 85%). Aspiration was inferior to intercostal tube drainage in terms of early resolution, but it had shorter hospital stay. The recurrence rate of aspiration and intercostal tube drainage did not differ significantly. The efficacy of catheterization connected to a one-way valve was inconclusive because of the small number of

  13. Elastic Stability of Concentric Tube Robots: A Stability Measure and Design Test

    PubMed Central

    Gilbert, Hunter B.; Hendrick, Richard J.; Webster, Robert J.

    2016-01-01

    Concentric tube robots are needle-sized manipulators which have been investigated for use in minimally invasive surgeries. It was noted early in the development of these devices that elastic energy storage can lead to rapid snapping motion for designs with moderate to high tube curvatures. Substantial progress has recently been made in the concentric tube robot community in designing snap-free robots, planning stable paths, and characterizing conditions that result in snapping for specific classes of concentric tube robots. However, a general measure for how stable a given robot configuration is has yet to be proposed. In this paper, we use bifurcation and elastic stability theory to provide such a measure, as well as to produce a test for determining whether a given design is snap-free (i.e. whether snapping can occur anywhere in the unloaded robot’s workspace). These results are useful in designing, planning motions for, and controlling concentric tube robots with high curvatures. PMID:27042170

  14. Elastic Stability of Concentric Tube Robots: A Stability Measure and Design Test.

    PubMed

    Gilbert, Hunter B; Hendrick, Richard J; Webster, Robert J

    2016-02-01

    Concentric tube robots are needle-sized manipulators which have been investigated for use in minimally invasive surgeries. It was noted early in the development of these devices that elastic energy storage can lead to rapid snapping motion for designs with moderate to high tube curvatures. Substantial progress has recently been made in the concentric tube robot community in designing snap-free robots, planning stable paths, and characterizing conditions that result in snapping for specific classes of concentric tube robots. However, a general measure for how stable a given robot configuration is has yet to be proposed. In this paper, we use bifurcation and elastic stability theory to provide such a measure, as well as to produce a test for determining whether a given design is snap-free (i.e. whether snapping can occur anywhere in the unloaded robot's workspace). These results are useful in designing, planning motions for, and controlling concentric tube robots with high curvatures.

  15. Bi-Parental Care Contributes to Sexually Dimorphic Neural Cell Genesis in the Adult Mammalian Brain

    PubMed Central

    Mak, Gloria K.; Antle, Michael C.; Dyck, Richard H.; Weiss, Samuel

    2013-01-01

    Early life events can modulate brain development to produce persistent physiological and behavioural phenotypes that are transmissible across generations. However, whether neural precursor cells are altered by early life events, to produce persistent and transmissible behavioural changes, is unknown. Here, we show that bi-parental care, in early life, increases neural cell genesis in the adult rodent brain in a sexually dimorphic manner. Bi-parentally raised male mice display enhanced adult dentate gyrus neurogenesis, which improves hippocampal neurogenesis-dependent learning and memory. Female mice display enhanced adult white matter oligodendrocyte production, which increases proficiency in bilateral motor coordination and preference for social investigation. Surprisingly, single parent-raised male and female offspring, whose fathers and mothers received bi-parental care, respectively, display a similar enhancement in adult neural cell genesis and phenotypic behaviour. Therefore, neural plasticity and behavioural effects due to bi-parental care persist throughout life and are transmitted to the next generation. PMID:23650527

  16. Gastric Tube Reconstruction with Superdrainage Using Indocyanine Green Fluorescence During Esophagectomy

    PubMed Central

    KITAGAWA, HIROYUKI; NAMIKAWA, TSUTOMU; IWABU, JUN; HANAZAKI, KAZUHIRO

    2017-01-01

    We report a case of gastric tube reconstruction with superdrainage using indocyanine green fluorescence during esophagectomy for esophageal cancer. A 53-year-old man with a history of early esophageal cancer treated with endoscopic mucosal dissection experienced esophageal cancer recurrence. There was no evidence of lymph node involvement or distant metastasis on computed tomography; therefore, we performed thoracoscopic esophagectomy. After thoracoscopic esophagectomy, we created a gastric tube. When pulling up the gastric tube through the post-mediastinum route, a root of the right gastroepiploic vein was injured. We subsequently performed superdrainage to avoid congestion of the gastric tube with omental vein and pre-tracheal vein anastomosis at the neck, and confirmed venous flow using the indocyanine green fluorescence method. No postoperative anastomotic leakage was observed, and the patient was discharged 22 days after surgery. Thus, we recommend the indocyanine green fluorescence method in cases involving superdrainage during esophagectomy. PMID:28882975

  17. Maternal choline concentrations during pregnancy and choline-related genetic variants as risk factors for neural tube defects123

    PubMed Central

    Mills, James L; Fan, Ruzong; Brody, Lawrence C; Liu, Aiyi; Ueland, Per M; Wang, Yifan; Kirke, Peadar N; Shane, Barry; Molloy, Anne M

    2014-01-01

    Background: Low maternal choline intake and blood concentration may be risk factors for having a child with a neural tube defect (NTD); however, the data are inconsistent. This is an important question to resolve because choline, if taken periconceptionally, might add to the protective effect currently being achieved by folic acid. Objective: We examined the relation between NTDs, choline status, and genetic polymorphisms reported to influence de novo choline synthesis to investigate claims that taking choline periconceptionally could reduce NTD rates. Design: Two study groups of pregnant women were investigated: women who had a current NTD-affected pregnancy (AP; n = 71) and unaffected controls (n = 214) and women who had an NTD in another pregnancy but not in the current pregnancy [nonaffected pregnancy (NAP); n = 98] and unaffected controls (n = 386). Blood samples to measure betaine and total choline concentrations and single nucleotide polymorphisms related to choline metabolism were collected at their first prenatal visit. Results: Mean (±SD) plasma total choline concentrations in the AP (2.8 ± 1.0 mmol/L) and control (2.9 ± 0.9 mmol/L) groups did not differ significantly. Betaine concentrations were not significantly different between the 2 groups. Total choline and betaine in the NAP group did not differ from controls. Cases were significantly more likely to have the G allele of phosphatidylethanolamine-N-methyltransferase (PEMT; V175M, +5465 G>A) rs7946 (P = 0.02). Conclusions: Our results indicate that maternal betaine and choline concentrations are not strongly associated with NTD risk. The association between PEMT rs7946 and NTDs requires confirmation. The addition of choline to folic acid supplements may not further reduce NTD risk. PMID:25240073

  18. Two Pore Channel 2 Differentially Modulates Neural Differentiation of Mouse Embryonic Stem Cells

    PubMed Central

    Zhang, Zhe-Hao; Lu, Ying-Ying; Yue, Jianbo

    2013-01-01

    Nicotinic acid adenine dinucleotide phosphate (NAADP) is an endogenous Ca2+ mobilizing nucleotide presented in various species. NAADP mobilizes Ca2+ from acidic organelles through two pore channel 2 (TPC2) in many cell types and it has been previously shown that NAADP can potently induce neuronal differentiation in PC12 cells. Here we examined the role of TPC2 signaling in the neural differentiation of mouse embryonic stem (ES) cells. We found that the expression of TPC2 was markedly decreased during the initial ES cell entry into neural progenitors, and the levels of TPC2 gradually rebounded during the late stages of neurogenesis. Correspondingly, TPC2 knockdown accelerated mouse ES cell differentiation into neural progenitors but inhibited these neural progenitors from committing to neurons. Overexpression of TPC2, on the other hand, inhibited mouse ES cell from entering the early neural lineage. Interestingly, TPC2 knockdown had no effect on the differentiation of astrocytes and oligodendrocytes of mouse ES cells. Taken together, our data indicate that TPC2 signaling plays a temporal and differential role in modulating the neural lineage entry of mouse ES cells, in that TPC2 signaling inhibits ES cell entry to early neural progenitors, but is required for late neuronal differentiation. PMID:23776607

  19. Program Specificity for Ptf1a in Pancreas versus Neural Tube Development Correlates with Distinct Collaborating Cofactors and Chromatin Accessibility

    PubMed Central

    Meredith, David M.; Borromeo, Mark D.; Deering, Tye G.; Casey, Bradford H.; Savage, Trisha K.; Mayer, Paul R.; Hoang, Chinh; Tung, Kuang-Chi; Kumar, Manonmani; Shen, Chengcheng; Swift, Galvin H.

    2013-01-01

    The lineage-specific basic helix-loop-helix transcription factor Ptf1a is a critical driver for development of both the pancreas and nervous system. How one transcription factor controls diverse programs of gene expression is a fundamental question in developmental biology. To uncover molecular strategies for the program-specific functions of Ptf1a, we identified bound genomic regions in vivo during development of both tissues. Most regions bound by Ptf1a are specific to each tissue, lie near genes needed for proper formation of each tissue, and coincide with regions of open chromatin. The specificity of Ptf1a binding is encoded in the DNA surrounding the Ptf1a-bound sites, because these regions are sufficient to direct tissue-restricted reporter expression in transgenic mice. Fox and Sox factors were identified as potential lineage-specific modifiers of Ptf1a binding, since binding motifs for these factors are enriched in Ptf1a-bound regions in pancreas and neural tube, respectively. Of the Fox factors expressed during pancreatic development, Foxa2 plays a major role. Indeed, Ptf1a and Foxa2 colocalize in embryonic pancreatic chromatin and can act synergistically in cell transfection assays. Together, these findings indicate that lineage-specific chromatin landscapes likely constrain the DNA binding of Ptf1a, and they identify Fox and Sox gene families as part of this process. PMID:23754747

  20. In vivo laser-based imaging of the human fallopian tube for future cancer detection

    NASA Astrophysics Data System (ADS)

    Seibel, Eric J.; Melville, C. David; Johnston, Richard S.; Gong, Yuanzheng; Agnew, Kathy; Chiang, Seine; Swisher, Elizabeth M.

    2015-03-01

    Inherited mutations in BRCA1 and BRCA2 lead to 20-50% lifetime risk of ovarian, tubal, or peritoneal carcinoma. Clinical recommendations for women with these genetic mutations include the prophylactic removal of ovaries and fallopian tubes by age 40 after child-bearing. Recent findings suggest that many presumed ovarian or peritoneal carcinomas arise in fallopian tube epithelium. Although survival rate is <90% when ovarian cancer is detected early (Stage_I), 70% of women have advanced disease (Stage_III/IV) at presentation when survival is less than 30%. Over the years, effective early detection of ovarian cancer has remained elusive, possibly because screening techniques have mistakenly focused on the ovary as origin of ovarian carcinoma. Unlike ovaries, the fallopian tubes are amenable to direct visual imaging without invasive surgery, using access through the cervix. To develop future screening protocols, we investigated using our 1.2- mm diameter, forward-viewing, scanning fiber endoscope (SFE) to image luminal surfaces of the fallopian tube before laparoscopic surgical removal. Three anesthetized human subjects participated in our protocol development which eventually led to 70-80% of the length of fallopian tubes being imaged in scanning reflectance, using red (632nm), green (532nm), and blue (442nm) laser light. A hysteroscope with saline uterine distention was used to locate the tubal ostia. To facilitate passage of the SFE through the interstitial portion of the fallopian tube, an introducer catheter was inserted 1- cm through each ostia. During insertion, saline was flushed to reduce friction and provide clearer viewing. This is likely the first high-resolution intraluminal visualization of fallopian tubes.

  1. Mediator Med23 deficiency enhances neural differentiation of murine embryonic stem cells through modulating BMP signaling.

    PubMed

    Zhu, Wanqu; Yao, Xiao; Liang, Yan; Liang, Dan; Song, Lu; Jing, Naihe; Li, Jinsong; Wang, Gang

    2015-02-01

    Unraveling the mechanisms underlying early neural differentiation of embryonic stem cells (ESCs) is crucial to developing cell-based therapies of neurodegenerative diseases. Neural fate acquisition is proposed to be controlled by a 'default' mechanism, for which the molecular regulation is not well understood. In this study, we investigated the functional roles of Mediator Med23 in pluripotency and lineage commitment of murine ESCs. Unexpectedly, we found that, despite the largely unchanged pluripotency and self-renewal of ESCs, Med23 depletion rendered the cells prone to neural differentiation in different differentiation assays. Knockdown of two other Mediator subunits, Med1 and Med15, did not alter the neural differentiation of ESCs. Med15 knockdown selectively inhibited endoderm differentiation, suggesting the specificity of cell fate control by distinctive Mediator subunits. Gene profiling revealed that Med23 depletion attenuated BMP signaling in ESCs. Mechanistically, MED23 modulated Bmp4 expression by controlling the activity of ETS1, which is involved in Bmp4 promoter-enhancer communication. Interestingly, med23 knockdown in zebrafish embryos also enhanced neural development at early embryogenesis, which could be reversed by co-injection of bmp4 mRNA. Taken together, our study reveals an intrinsic, restrictive role of MED23 in early neural development, thus providing new molecular insights for neural fate determination. © 2015. Published by The Company of Biologists Ltd.

  2. Aberrant differentiation of the axially condensed tail bud mesenchyme in human embryos with lumbosacral myeloschisis.

    PubMed

    Saitsu, Hirotomo; Yamada, Shigehito; Uwabe, Chigako; Ishibashi, Makoto; Shiota, Kohei

    2007-03-01

    Development of the posterior neural tube (PNT) in human embryos is a complicated process that involves both primary and secondary neurulation. Recently, we histologically examined 20 human embryos around the stage of posterior neuropore closure and found that the axially condensed mesenchyme (AM) intervened between the neural plate/tube and the notochord in the junctional region of the primary and secondary neural tubes. The AM appeared to be incorporated into the most ventral part of the primary neural tube, and no cavity was observed in the AM. In this study, we report three cases of human embryos with myeloschisis in which the open primary neural tube and the closed secondary neural tube overlap dorsoventrally. In all three cases, part of the closed neural tube was located ventrally to the open neural tube in the lumbosacral region. The open and closed neural tubes appeared to be part of the primary and the AM-derived secondary neural tubes, respectively. Thus, these findings suggest that, in those embryos with myeloschisis, the AM may not be incorporated into the ventral part of the primary neural tube but aberrantly differentiate into the secondary neural tube containing cavities, leading to dorsoventral overlapping of the primary and secondary neural tubes. The aberrant differentiation of the AM in embryos with lumbosacral myeloschisis suggests that the AM plays some roles in normal as well as abnormal development of the human posterior neural tube.

  3. Comparison of complication rates in dogs with nasoesophageal versus nasogastric feeding tubes.

    PubMed

    Yu, Melissa K; Freeman, Lisa M; Heinze, Cailin R; Parker, Valerie J; Linder, Deborah E

    2013-01-01

    To compare complication rates between nasoesophageal (NE) and nasogastric (NG) feeding tubes in dogs. Retrospective study. University referral veterinary hospital. A total of 46 dogs that were fed through a NE (n = 28) or NG (n = 18) tube between January 2007 and December 2011 and that also had either thoracic radiography or computed tomography performed so that location of the distal tip of the tube in either the esophagus or stomach could be confirmed. None. The medical record of each eligible case was reviewed and data recorded included signalment, underlying disease, body weight, body condition score, medications, duration of feeding, diet used, and complications observed (ie, vomiting, regurgitation, diarrhea, early tube removal, clogged tube, epistaxis, pulmonary aspiration, hyperglycemia, and refeeding syndrome). Dogs with NE tubes were significantly younger than dogs with NG tubes (P = 0.03) but there were no other significant differences in signalment, underlying disease, medications, duration of anorexia, percent of resting energy requirement achieved, or change in weight during tube feeding. There also was no significant difference between the NE and NG groups for any of the recorded complications. Significantly fewer dogs in the NE group died or were euthanized (3/28) compared to the NG group (7/18; P = 0.02) but outcome was not associated with age, underlying disease, or any of the recorded tube complications. This study did not identify a difference in complication rate between NE and NG feeding tubes in dogs. Additional studies are required to determine the optimal terminal location of feeding tubes in dogs. © Veterinary Emergency and Critical Care Society 2013.

  4. Flow Pattern Identification of Horizontal Two-Phase Refrigerant Flow Using Neural Networks

    DTIC Science & Technology

    2015-12-31

    AFRL-RQ-WP-TP-2016-0079 FLOW PATTERN IDENTIFICATION OF HORIZONTAL TWO-PHASE REFRIGERANT FLOW USING NEURAL NETWORKS (POSTPRINT) Abdeel J...Journal Article Postprint 01 October 2013 – 22 June 2015 4. TITLE AND SUBTITLE FLOW PATTERN IDENTIFICATION OF HORIZONTAL TWO-PHASE REFRIGERANT FLOW USING...networks were used to automatically identify two-phase flow patterns for refrigerant R-134a flowing in a horizontal tube. In laboratory experiments

  5. Heat tube device

    NASA Technical Reports Server (NTRS)

    Khattar, Mukesh K. (Inventor)

    1990-01-01

    The present invention discloses a heat tube device through which a working fluid can be circulated to transfer heat to air in a conventional air conditioning system. The heat tube device is disposable about a conventional cooling coil of the air conditioning system and includes a plurality of substantially U-shaped tubes connected to a support structure. The support structure includes members for allowing the heat tube device to be readily positioned about the cooling coil. An actuatable adjustment device is connected to the U-shaped tubes for allowing, upon actuation thereof, for the heat tubes to be simultaneously rotated relative to the cooling coil for allowing the heat transfer from the heat tube device to air in the air conditioning system to be selectively varied.

  6. Pulse tube cooler having 1/4 wavelength resonator tube instead of reservoir

    NASA Technical Reports Server (NTRS)

    Gedeon, David R. (Inventor)

    2008-01-01

    An improved pulse tube cooler having a resonator tube connected in place of a compliance volume or reservoir. The resonator tube has a length substantially equal to an integer multiple of 1/4 wavelength of an acoustic wave in the working gas within the resonator tube at its operating frequency, temperature and pressure. Preferably, the resonator tube is formed integrally with the inertance tube as a single, integral tube with a length approximately 1/2 of that wavelength. Also preferably, the integral tube is spaced outwardly from and coiled around the connection of the regenerator to the pulse tube at a cold region of the cooler and the turns of the coil are thermally bonded together to improve heat conduction through the coil.

  7. Artificial odor discrimination system using electronic nose and neural networks for the identification of urinary tract infection.

    PubMed

    Kodogiannis, Vassilis S; Lygouras, John N; Tarczynski, Andrzej; Chowdrey, Hardial S

    2008-11-01

    Current clinical diagnostics are based on biochemical, immunological, or microbiological methods. However, these methods are operator dependent, time-consuming, expensive, and require special skills, and are therefore, not suitable for point-of-care testing. Recent developments in gas-sensing technology and pattern recognition methods make electronic nose technology an interesting alternative for medical point-of-care devices. An electronic nose has been used to detect urinary tract infection from 45 suspected cases that were sent for analysis in a U.K. Public Health Registry. These samples were analyzed by incubation in a volatile generation test tube system for 4-5 h. Two issues are being addressed, including the implementation of an advanced neural network, based on a modified expectation maximization scheme that incorporates a dynamic structure methodology and the concept of a fusion of multiple classifiers dedicated to specific feature parameters. This study has shown the potential for early detection of microbial contaminants in urine samples using electronic nose technology.

  8. Gastric Tube Reconstruction with Superdrainage Using Indocyanine Green Fluorescence During Esophagectomy.

    PubMed

    Kitagawa, Hiroyuki; Namikawa, Tsutomu; Iwabu, Jun; Hanazaki, Kazuhiro

    2017-01-01

    We report a case of gastric tube reconstruction with superdrainage using indocyanine green fluorescence during esophagectomy for esophageal cancer. A 53-year-old man with a history of early esophageal cancer treated with endoscopic mucosal dissection experienced esophageal cancer recurrence. There was no evidence of lymph node involvement or distant metastasis on computed tomography; therefore, we performed thoracoscopic esophagectomy. After thoracoscopic esophagectomy, we created a gastric tube. When pulling up the gastric tube through the post-mediastinum route, a root of the right gastroepiploic vein was injured. We subsequently performed superdrainage to avoid congestion of the gastric tube with omental vein and pre-tracheal vein anastomosis at the neck, and confirmed venous flow using the indocyanine green fluorescence method. No postoperative anastomotic leakage was observed, and the patient was discharged 22 days after surgery. Thus, we recommend the indocyanine green fluorescence method in cases involving superdrainage during esophagectomy. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  9. Organotypic three-dimensional culture model of mesenchymal and epithelial cells to examine tissue fusion events.

    EPA Science Inventory

    Tissue fusion during early mammalian development requires coordination of multiple cell types, the extracellular matrix, and complex signaling pathways. Fusion events during processes including heart development, neural tube closure, and palatal fusion are dependent on signaling ...

  10. Improvement of pump tubes for gas guns and shock tube drivers

    NASA Technical Reports Server (NTRS)

    Bogdanoff, D. W.

    1990-01-01

    In a pump tube, a gas is mechanically compressed, producing very high pressures and sound speeds. The intensely heated gas produced in such a tube can be used to drive light gas guns and shock tubes. Three concepts are presented that have the potential to allow substantial reductions in the size and mass of the pump tube to be achieved. The first concept involves the use of one or more diaphragms in the pump tube, thus replacing a single compression process by multiple, successive compressions. The second concept involves a radical reduction in the length-to-diameter ratio of the pump tube and the pump tube piston. The third concept involves shock heating of the working gas by high explosives in a cyclindrical geometry reusable device. Preliminary design analyses are performed on all three concepts and they appear to be quite feasible. Reductions in the length and mass of the pump tube by factors up to about 11 and about 7, respectively, are predicted, relative to a benchmark conventional pump tube.

  11. The progamic phase of an early-divergent angiosperm, Annona cherimola (Annonaceae)

    PubMed Central

    Lora, J.; Hormaza, J. I.; Herrero, M.

    2010-01-01

    Background and Aims Recent studies of reproductive biology in ancient angiosperm lineages are beginning to shed light on the early evolution of flowering plants, but comparative studies are restricted by fragmented and meagre species representation in these angiosperm clades. In the present study, the progamic phase, from pollination to fertilization, is characterized in Annona cherimola, which is a member of the Annonaceae, the largest extant family among early-divergent angiosperms. Beside interest due to its phylogenetic position, this species is also an ancient crop with a clear niche for expansion in subtropical climates. Methods The kinetics of the reproductive process was established following controlled pollinations and sequential fixation. Gynoecium anatomy, pollen tube pathway, embryo sac and early post-fertilization events were characterized histochemically. Key Results A plesiomorphic gynoecium with a semi-open carpel shows a continuous secretory papillar surface along the carpel margins, which run from the stigma down to the obturator in the ovary. The pollen grains germinate in the stigma and compete in the stigma-style interface to reach the narrow secretory area that lines the margins of the semi-open stylar canal and is able to host just one to three pollen tubes. The embryo sac has eight nuclei and is well provisioned with large starch grains that are used during early cellular endosperm development. Conclusions A plesiomorphic simple gynoecium hosts a simple pollen–pistil interaction, based on a support–control system of pollen tube growth. Support is provided through basipetal secretory activity in the cells that line the pollen tube pathway. Spatial constraints, favouring pollen tube competition, are mediated by a dramatic reduction in the secretory surface available for pollen tube growth at the stigma–style interface. This extramural pollen tube competition contrasts with the intrastylar competition predominant in more recently derived

  12. Evaluation of machine learning tools for inspection of steam generator tube structures using pulsed eddy current

    NASA Astrophysics Data System (ADS)

    Buck, J. A.; Underhill, P. R.; Morelli, J.; Krause, T. W.

    2017-02-01

    Degradation of nuclear steam generator (SG) tubes and support structures can result in a loss of reactor efficiency. Regular in-service inspection, by conventional eddy current testing (ECT), permits detection of cracks, measurement of wall loss, and identification of other SG tube degradation modes. However, ECT is challenged by overlapping degradation modes such as might occur for SG tube fretting accompanied by tube off-set within a corroding ferromagnetic support structure. Pulsed eddy current (PEC) is an emerging technology examined here for inspection of Alloy-800 SG tubes and associated carbon steel drilled support structures. Support structure hole size was varied to simulate uniform corrosion, while SG tube was off-set relative to hole axis. PEC measurements were performed using a single driver with an 8 pick-up coil configuration in the presence of flat-bottom rectangular frets as an overlapping degradation mode. A modified principal component analysis (MPCA) was performed on the time-voltage data in order to reduce data dimensionality. The MPCA scores were then used to train a support vector machine (SVM) that simultaneously targeted four independent parameters associated with; support structure hole size, tube off-centering in two dimensions and fret depth. The support vector machine was trained, tested, and validated on experimental data. Results were compared with a previously developed artificial neural network (ANN) trained on the same data. Estimates of tube position showed comparable results between the two machine learning tools. However, the ANN produced better estimates of hole inner diameter and fret depth. The better results from ANN analysis was attributed to challenges associated with the SVM when non-constant variance is present in the data.

  13. The non-canonical Wnt-PCP pathway shapes the mouse caudal neural plate.

    PubMed

    López-Escobar, Beatriz; Caro-Vega, José Manuel; Vijayraghavan, Deepthi S; Plageman, Timothy F; Sanchez-Alcazar, José A; Moreno, Roberto Carlos; Savery, Dawn; Márquez-Rivas, Javier; Davidson, Lance A; Ybot-González, Patricia

    2018-05-08

    The last stage of neural tube (NT) formation involves closure of the caudal neural plate (NP), an embryonic structure formed by neuromesodermal progenitors and newly differentiated cells that becomes incorporated into the NT. Here, we show in mouse that, as cell specification progresses, neuromesodermal progenitors and their progeny undergo significant changes in shape prior to their incorporation into the NT. The caudo-rostral progression towards differentiation is coupled to a gradual reliance on a unique combination of complex mechanisms that drive tissue folding, involving pulses of apical actomyosin contraction and planar polarised cell rearrangements, all of which are regulated by the Wnt-PCP pathway. Indeed, when this pathway is disrupted, either chemically or genetically, the polarisation and morphology of cells within the entire caudal NP is disturbed, producing delays in NT closure. The most severe disruptions of this pathway prevent caudal NT closure and result in spina bifida. In addition, a decrease in Vangl2 gene dosage also appears to promote more rapid progression towards a neural fate, but not the specification of more neural cells. © 2018. Published by The Company of Biologists Ltd.

  14. Composite Pulse Tube

    NASA Technical Reports Server (NTRS)

    Martin, Jerry L.; Cloyd, Jason H.

    2007-01-01

    A modification of the design of the pulse tube in a pulse-tube cryocooler reduces axial thermal conductance while preserving radial thermal conductance. It is desirable to minimize axial thermal conductance in the pulse-tube wall to minimize leakage of heat between the warm and cold ends of the pulse tube. At the same time, it is desirable to maximize radial thermal conductance at the cold end of the pulse tube to ensure adequate thermal contact between (1) a heat exchanger in the form of a stack of copper screens inside the pulse tube at the cold end and (2) the remainder of the cold tip, which is the object to which the heat load is applied and from which heat must be removed. The modified design yields a low-heat-leak pulse tube that can be easily integrated with a cold tip. A typical pulse tube of prior design is either a thin-walled metal tube or a metal tube with a nonmetallic lining. It is desirable that the outer surface of a pulse tube be cylindrical (in contradistinction to tapered) to simplify the design of a regenerator that is also part of the cryocooler. Under some conditions, it is desirable to taper the inner surface of the pulse tube to reduce acoustic streaming. The combination of a cylindrical outer surface and a tapered inner surface can lead to unacceptably large axial conduction if the pulse tube is made entirely of metal. Making the pulse-tube wall of a nonmetallic, lowthermal- conductivity material would not solve the problem because the wall would not afford the needed thermal contact for the stack of screens in the cold end. The modified design calls for fabricating the pulse tube in two parts: a longer, nonmetallic part that is tapered on the inside and cylindrical on the outside and a shorter, metallic part that is cylindrical on both the inside and the outside. The nonmetallic part can be made from G-10 fiberglass-reinforced epoxy or other low-thermal-conductivity, cryogenically compatible material. The metallic part must have high

  15. Tube thoracostomy; chest tube implantation and follow up

    PubMed Central

    Kuhajda, Ivan; Zarogoulidis, Konstantinos; Kougioumtzi, Ioanna; Huang, Haidong; Li, Qiang; Dryllis, Georgios; Kioumis, Ioannis; Pitsiou, Georgia; Machairiotis, Nikolaos; Katsikogiannis, Nikolaos; Papaiwannou, Antonis; Lampaki, Sofia; Papaiwannou, Antonis; Zaric, Bojan; Branislav, Perin; Porpodis, Konstantinos

    2014-01-01

    Pneumothorax is an urgent medical situation that requires urgent treatment. We can divide this entity based on the etiology to primary and secondary. Chest tube implantation can be performed either in the upper chest wall or lower. Both thoracic surgeons and pulmonary physicians can place a chest tube with minimal invasive techniques. In our current work, we will demonstrate chest tube implantation to locations, methodology and tools. PMID:25337405

  16. Association of neural tube defects in children of mothers with MTHFR 677TT genotype and abnormal carbohydrate metabolism risk: a case-control study.

    PubMed

    Cadenas-Benitez, N M; Yanes-Sosa, F; Gonzalez-Meneses, A; Cerrillos, L; Acosta, D; Praena-Fernandez, J M; Neth, O; Gomez de Terreros, I; Ybot-González, P

    2014-03-26

    Abnormalities in maternal folate and carbohydrate metabolism have both been shown to induce neural tube defects (NTD) in humans and animal models. However, the relationship between these two factors in the development of NTDs remains unclear. Data from mothers of children with spina bifida seen at the Unidad de Espina Bífida del Hospital Infantil Virgen del Rocío (case group) were compared to mothers of healthy children with no NTD (control group) who were randomly selected from patients seen at the outpatient ward in the same hospital. There were 25 individuals in the case group and 41 in the control group. Analysis of genotypes for the methylenetetrahydrofolate reductase (MTHFR) 677CT polymorphism in women with or without risk factors for abnormal carbohydrate metabolism revealed that mothers who were homozygous for the MTHFR 677TT polymorphism and at risk of abnormal carbohydrate metabolism were more likely to have offspring with spina bifida and high levels of homocysteine, compared to the control group. The increased incidence of NTDs in mothers homozygous for the MTHFR 677TT polymorphism and at risk of abnormal carbohydrate metabolism stresses the need for careful metabolic screening in pregnant women, and, if necessary, determination of the MTHFR 677CT genotype in those mothers at risk of developing abnormal carbohydrate metabolism.

  17. Evidence of compositional and ultrastructural shifts during the development of calcareous tubes in the biofouling tubeworm, Hydroides elegans.

    PubMed

    Chan, Vera Bin San; Vinn, Olev; Li, Chaoyi; Lu, Xingwen; Kudryavtsev, Anatoliy B; Schopf, J William; Shih, Kaimin; Zhang, Tong; Thiyagarajan, Vengatesen

    2015-03-01

    The serpulid tubeworm, Hydroides elegans, is an ecologically and economically important species whose biology has been fairly well studied, especially in the context of larval development and settlement on man-made objects (biofouling). Nevertheless, ontogenetic changes associated with calcareous tube composition and structures have not yet been studied. Here, the ultrastructure and composition of the calcareous tubes built by H. elegans was examined in the three early calcifying juvenile stages and in the adult using XRD, FTIR, ICP-OES, SEM and Raman spectroscopy. Ontogenetic shifts in carbonate mineralogy were observed, for example, juvenile tubes contained more amorphous calcium carbonate and were predominantly aragonitic whereas adult tubes were bimineralic with considerably more calcite. The mineral composition gradually shifted during the tube development as shown by a decrease in Sr/Ca and an increase of Mg/Ca ratios with the tubeworm's age. The inner tube layer contained calcite, whereas the outer layer contained aragonite. Similarly, the tube complexity in terms of ultrastructure was associated with development. The sequential appearance of unoriented ultrastructures followed by oriented ultrastructures may reflect the evolutionary history of serpulid tube biominerals. As aragonitic structures are more susceptible to dissolution under ocean acidification (OA) conditions but are more difficult to be removed by anti-fouling treatments, the early developmental stages of the tubeworms may be vulnerable to OA but act as the important target for biofouling control. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. The Nedd4 binding protein 3 is required for anterior neural development in Xenopus laevis.

    PubMed

    Kiem, Lena-Maria; Dietmann, Petra; Linnemann, Alexander; Schmeisser, Michael J; Kühl, Susanne J

    2017-03-01

    The Fezzin family member Nedd4-binding protein 3 (N4BP3) is known to regulate axonal and dendritic branching. Here, we show that n4bp3 is expressed in the neural tissue of the early Xenopus laevis embryo including the eye, the brain and neural crest cells. Knockdown of N4bp3 in the Xenopus anterior neural tissue results in severe developmental impairment of the eye, the brain and neural crest derived cranial cartilage structures. Moreover, we demonstrate that N4bp3 depletion leads to a significant reduction of both eye and brain specific marker genes and reduced neural crest cell migration. Finally, we demonstrate an impact of N4bp3 deficiency on cell apoptosis and proliferation. Our studies indicate that N4bp3 is required for early anterior neural development of vertebrates. This is in line with a study implicating that genetic disruption of N4BP3 in humans might be related to neurodevelopmental disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Telescoping tube assembly

    NASA Technical Reports Server (NTRS)

    Sturm, Albert J. (Inventor); Marrinan, Thomas E. (Inventor)

    1995-01-01

    An extensible and retractable telescoping tube positions test devices that inspect large stationary objects. The tube has three dimensional adjustment capabilities and is vertically suspended from a frame. The tube sections are independently supported with each section comprising U-shaped housing secured to a thicker support plate. Guide mechanisms preferably mounted only to the thicker plates guide each tube section parallel to a reference axis with improved accuracy so that the position of the remote end of the telescoping tube is precisely known.

  20. Genetics Home Reference: spondylocostal dysostosis

    MedlinePlus

    ... spina bifida and a brain abnormality called a Chiari malformation. Although breathing problems can be fatal early in ... Resources MedlinePlus (6 links) Encyclopedia: Scoliosis Health Topic: Chiari Malformation Health Topic: Neural Tube Defects Health Topic: Scoliosis ...

  1. The Ca2+-induced methyltransferase xPRMT1b controls neural fate in amphibian embryo.

    PubMed

    Batut, Julie; Vandel, Laurence; Leclerc, Catherine; Daguzan, Christiane; Moreau, Marc; Néant, Isabelle

    2005-10-18

    We have previously shown that an increase in intracellular Ca2+ is both necessary and sufficient to commit ectoderm to a neural fate in Xenopus embryos. However, the relationship between this Ca2+ increase and the expression of early neural genes has yet to be defined. Using a subtractive cDNA library between untreated and caffeine-treated animal caps, i.e., control ectoderm and ectoderm induced toward a neural fate by a release of Ca2+, we have isolated the arginine N-methyltransferase, xPRMT1b, a Ca2+-induced target gene, which plays a pivotal role in this process. First, we show in embryo and in animal cap that xPRMT1b expression is Ca2+-regulated. Second, overexpression of xPRMT1b induces the expression of early neural genes such as Zic3. Finally, in the whole embryo, antisense approach with morpholino oligonucleotide against xPRMT1b impairs neural development and in animal caps blocks the expression of neural markers induced by a release of internal Ca2+. Our results implicate an instructive role of an enzyme, an arginine methyltransferase protein, in the embryonic choice of determination between epidermal and neural fate. The results presented provide insights by which a Ca2+ increase induces neural fate.

  2. Bender/Coiler for Tubing

    NASA Technical Reports Server (NTRS)

    Stoltzfus, J. M.

    1983-01-01

    Easy-to-use tool makes coils of tubing. Tubing to be bend clamped with stop post. Die positioned snugly against tubing. Operator turns handle to slide die along tubing, pushing tubing into spiral groove on mandrel.

  3. Investigation on the Inertance Tubes of Pulse Tube Cryocooler Without Reservoir

    NASA Astrophysics Data System (ADS)

    Liu, Y. J.; Yang, L. W.; Liang, J. T.; Hong, G. T.

    2010-04-01

    Phase angle is of vital importance for high-efficiency pulse tube cryocoolers (PTCs). Inertance tube as the main phase shifter is useful for the PTCs to obtain appropriate phase angle. Experiments of inertance tube without reservoir under variable frequency, variable length and diameter of inertance tube and variable pressure amplitude are investigated respectively. In addition, the authors used DeltaEC, a computer program to predict the performance of low-amplitude thermoacoustic engines, to simulate the effects of inertance tube without reservoir. According to the comparison of experiments and theoretical simulations, DeltaEC method is feasible and effective to direct and improve the design of inertance tubes.

  4. Kaumana lava tube

    NASA Technical Reports Server (NTRS)

    Greeley, R.

    1974-01-01

    The entrance to Kaumana Lava Tube is in a picnic ground next to Highway 20 (Kaumana Drive) about 6.5 km southwest of Hilo. The area is passed on the way to the Kona Coast via the Saddle Road and is identified by a Hawaii Visitors Bureau sign. Although it is not the largest lava tube in the islands, Kaumana Lava Tube is an interesting geological formation, displaying many of the features typical of lava tube interiors. It is accessible, relatively easy to walk through, and is in an excellent state of preservation. The tube developed in a historic lava flow (1881, from Mauna Loa), and many aspects of lava tube activity are observed.

  5. A method for early diagnosis and treatment of intrathoracic esophageal anastomotic leakage: prophylactic placement of a drainage tube adjacent to the anastomosis.

    PubMed

    Tang, Hua; Xue, Lei; Hong, Jiang; Tao, Xiandong; Xu, Zhifei; Wu, Bin

    2012-04-01

    Anastomotic leakage is a severe complication after esophagectomy, which results in high mortality and morbidity. In this study, we will preset a drainage tube adjacent to the anastomosis and evaluate its effect in the diagnosis and treatment of anastomotic leakage. We undertook a retrospective review of 414 patients who underwent partial esophageal resection or cardia resection with intrathoracic esophagogastric anastomosis. The patients were divided into two groups (Tube group and no-tube group) according to whether a drainage tube was placed adjacent to the anastomotic stoma during the surgical procedure. The leakage rate, time to diagnosis, time to flush, time to recovery, and patient outcome were analyzed. The leakage rate in the tube group was 5.35% (6/112) while it was 3.64% (11/302) in the no-tube group. The total mortality among patients with anastomotic leakage was 29.41%. In the tube group, all the patients were definitively diagnosed the same day on which suspicion of leakage occurs while the patients in the no-tube group required further examination to diagnose. In the no-tube group, the patients required placement of a drainage tube with the help of computed tomography or ultrasonic examination while there was no need for further procedures in the tube group. The days to flush and recovery in the tube group were 23.4 ± 5.94 and 32.2 ± 10.84, respectively, while, in the no-tube group, it was 80.71 ± 48.41 and 98.14 ± 56.24 (P < 0.05). In conclusion, prophylactic implantation of a drainage tube adjacent to the esophageal anastomosis is a good method for rapid diagnosis and treatment of leakage.

  6. An amphioxus winged helix/forkhead gene, AmphiFoxD: insights into vertebrate neural crest evolution

    NASA Technical Reports Server (NTRS)

    Yu, Jr-Kai; Holland, Nicholas D.; Holland, Linda Z.

    2002-01-01

    During amphioxus development, the neural plate is bordered by cells expressing many genes with homologs involved in vertebrate neural crest induction. However, these amphioxus cells evidently lack additional genetic programs for the cell delaminations, migrations, and differentiations characterizing definitive vertebrate neural crest. We characterize an amphioxus winged helix/forkhead gene (AmphiFoxD) closely related to vertebrate FoxD genes. Phylogenetic analysis indicates that the AmphiFoxD is basal to vertebrate FoxD1, FoxD2, FoxD3, FoxD4, and FoxD5. One of these vertebrate genes (FoxD3) consistently marks neural crest during development. Early in amphioxus development, AmphiFoxD is expressed medially in the anterior neural plate as well as in axial (notochordal) and paraxial mesoderm; later, the gene is expressed in the somites, notochord, cerebral vesicle (diencephalon), and hindgut endoderm. However, there is never any expression in cells bordering the neural plate. We speculate that an AmphiFoxD homolog in the common ancestor of amphioxus and vertebrates was involved in histogenic processes in the mesoderm (evagination and delamination of the somites and notochord); then, in the early vertebrates, descendant paralogs of this gene began functioning in the presumptive neural crest bordering the neural plate to help make possible the delaminations and cell migrations that characterize definitive vertebrate neural crest. Copyright 2002 Wiley-Liss, Inc.

  7. Developmental evolution of flowering plant pollen tube cell walls: callose synthase (CalS) gene expression patterns

    PubMed Central

    2011-01-01

    Background A number of innovations underlie the origin of rapid reproductive cycles in angiosperms. A critical early step involved the modification of an ancestrally short and slow-growing pollen tube for faster and longer distance transport of sperm to egg. Associated with this shift are the predominantly callose (1,3-β-glucan) walls and septae (callose plugs) of angiosperm pollen tubes. Callose synthesis is mediated by callose synthase (CalS). Of 12 CalS gene family members in Arabidopsis, only one (CalS5) has been directly linked to pollen tube callose. CalS5 orthologues are present in several monocot and eudicot genomes, but little is known about the evolutionary origin of CalS5 or what its ancestral function may have been. Results We investigated expression of CalS in pollen and pollen tubes of selected non-flowering seed plants (gymnosperms) and angiosperms within lineages that diverged below the monocot/eudicot node. First, we determined the nearly full length coding sequence of a CalS5 orthologue from Cabomba caroliniana (CcCalS5) (Nymphaeales). Semi-quantitative RT-PCR demonstrated low CcCalS5 expression within several vegetative tissues, but strong expression in mature pollen. CalS transcripts were detected in pollen tubes of several species within Nymphaeales and Austrobaileyales, and comparative analyses with a phylogenetically diverse group of sequenced genomes indicated homology to CalS5. We also report in silico evidence of a putative CalS5 orthologue from Amborella. Among gymnosperms, CalS5 transcripts were recovered from germinating pollen of Gnetum and Ginkgo, but a novel CalS paralog was instead amplified from germinating pollen of Pinus taeda. Conclusion The finding that CalS5 is the predominant callose synthase in pollen tubes of both early-diverging and model system angiosperms is an indicator of the homology of their novel callosic pollen tube walls and callose plugs. The data suggest that CalS5 had transient expression and pollen

  8. Multiple tube premixing device

    DOEpatents

    Uhm, Jong Ho; Naidu, Balachandar; Ziminksy, Willy Steve; Kraemer, Gilbert Otto; Yilmaz, Ertan; Lacy, Benjamin; Stevenson, Christian; Felling, David

    2013-08-13

    The present application provides a premixer for a combustor. The premixer may include a fuel plenum with a number of fuel tubes and a burner tube with a number of air tubes. The fuel tubes extend about the air tubes.

  9. Multiple tube premixing device

    DOEpatents

    Uhm, Jong Ho; Varatharajan, Balachandar; Ziminsky, Willy Steve; Kraemer, Gilbert Otto; Yilmaz, Ertan; Lacy, Benjamin; Stevenson, Christian; Felling, David

    2012-12-11

    The present application provides a premixer for a combustor. The premixer may include a fuel plenum with a number of fuel tubes and a burner tube with a number of air tubes. The fuel tubes extend about the air tubes.

  10. Interaction between the SLC19A1 gene and maternal first trimester fever on offspring neural tube defects.

    PubMed

    Pei, Lijun; Zhu, Huiping; Ye, Rongwei; Wu, Jilei; Liu, Jianmeng; Ren, Aiguo; Li, Zhiwen; Zheng, Xiaoying

    2015-01-01

    Many studies have indicated that the reduced folate carrier gene (SLC19A1) is associated with an increased risk of neural tube defects (NTDs). However, the interaction between the SLC19A1 gene variant and maternal fever exposure and NTD risk remains unknown. The aim of this study was to investigate whether the risk for NTDs was influenced by the interactions between the SLC19A1 (rs1051266) variant and maternal first trimester fever. We investigated the potential interaction between maternal first trimester fever and maternal or offspring SLC19A1 polymorphism through a population-based case-control study. One hundred and four nuclear families with NTDs and 100 control families with nonmal newborns were included in the study. SLC19A1 polymorphism was determined using polymerase chain reaction-restricted fragment length polymorphism. Mothers who had the GG/GA genotype and first trimester fever had an elevated risk of NTDs (adjusted odds ratio, 11.73; 95% confidence interval, 3.02-45.58) as compared to absence of maternal first trimester fever and AA genotype after adjusting for maternal education, paternal education, and age, and had a significant interactive coefficient (γ = 3.17) between maternal GG/GA genotype and first trimester fever. However, there was no interaction between offspring's GG/GA genotype and maternal first trimester fever (the interactive coefficient γ = 0.97) after adjusting for confounding factors. Our findings suggested that the risk of NTDs was potentially influenced by a gene-environment interaction between maternal SLC19A1 rs1051266 GG/GA genotype and first trimester fever. Maternal GG/GA genotype may strengthen the effect of maternal fever exposure on NTD risk in this Chinese population. © 2014 Wiley Periodicals, Inc.

  11. Decline of neural tube defects cases after a folic acid campaign in Nuevo León, México.

    PubMed

    Martínez de Villarreal, Laura; Pérez, Jesús Z Villarreal; Vázquez, Patricia Arredondo; Herrera, Ricardo Hernández; Campos, Ma Del Roble Velazco; López, Roberto Ambriz; Ramírez, José Luis Herrera; Sánchez, Jesús Manuel Yañez; Villarreal, Juan José Morales; Garza, Manuel Treviño; Limón, Adriana; López, Abel Guzmán; Bárcenas, Mario; García, Juan Ramón Cepeda; Domínguez, Andrés Sánchez; Nuñez, Rogelio Hernández; Ayala, Jorge Luis García; Martínez, Jorge Garza; González, Mario Tijerina; Alvarez, Carlos García; Castro, Roberto Negrete

    2002-11-01

    Nuevo León is a state in northeastern Mexico, near the border of Texas. Mean mortality rate from 1996-98 due to anencephaly cases was 0.6/1,000. In 1999 a surveillance program for the registry and prevention of neural tube defects (NTD) cases was initiated. Cases were obtained from hospitals and OB-GYN clinics by immediate notification, death certificates, or fetal death registries. Only isolated cases of NTD were included. In August 1999 a folic acid campaign was initiated with the free distribution of the vitamin to low-income women with a recommendation to take a 5.0-mg pill once a week. Number of cases and rates from 1999 to 2001 were compared (chi(2) test). After 2 years there has been a significant reduction in the number of cases and rates. In 1999 there were 95 NTD cases and in the years 2000 and 2001 there were only 59 and 55 respectively (P < 0.001). NTD rate decreased from 1.04/1,000 in 1999 to 0.58/1,000 in 2001. Anencephaly and spina bifida rates decreased from 0.55/1,000 to 0.29/1,000 and from 0.47/1,000 to 0.22/1,000 respectively, from 1999-2001. Decrease of female cases was higher than male cases for both phenotypes. After 2 years there was a 50% decrease in the incidence of anencephaly and spina bifida cases with a significant reduction of infant mortality and disability. These results encourage us to propose the use of a single tablet of 5.0-mg of folic acid per week as an alternative to supplementation on a daily basis. Copyright 2002 Wiley-Liss, Inc.

  12. Early life social stress induced changes in depression and anxiety associated neural pathways which are correlated with impaired maternal care.

    PubMed

    Murgatroyd, Christopher A; Peña, Catherine J; Podda, Giovanni; Nestler, Eric J; Nephew, Benjamin C

    2015-08-01

    Exposures to various types of early life stress can be robust predictors of the development of psychiatric disorders, including depression and anxiety. The objective of the current study was to investigate the roles of the translationally relevant targets of central vasopressin, oxytocin, ghrelin, orexin, glucocorticoid, and the brain-derived neurotrophic factor (BDNF) pathway in an early chronic social stress (ECSS) based rodent model of postpartum depression and anxiety. The present study reports novel changes in gene expression and extracellular signal related kinase (ERK) protein levels in the brains of ECSS exposed rat dams that display previously reported depressed maternal care and increased maternal anxiety. Decreases in oxytocin, orexin, and ERK proteins, increases in ghrelin receptor, glucocorticoid and mineralocorticoid receptor mRNA levels, and bidirectional changes in vasopressin underscore related work on the adverse long-term effects of early life stress on neural activity and plasticity, maternal behavior, responses to stress, and depression and anxiety-related behavior. The differences in gene and protein expression and robust correlations between expression and maternal care and anxiety support increased focus on these targets in animal and clinical studies of the adverse effects of early life stress, especially those focusing on depression and anxiety in mothers and the transgenerational effects of these disorders on offspring. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. [A Case of Removable Self-Expandable Metallic Stent(SEMS)Placement for Gastric Tube Stenosis after Esophageal Cancer Resection].

    PubMed

    Yoshikawa, Yukihiro; Yoshikawa, Masato; Kawabata, Ryohei; Yoshida, Yuta; Kawada, Masahiro; Yasuyama, Akinobu; Watase, Chikashi; Koga, Chikato; Hitora, Toshiki; Murakami, Masahiro; Hirota, Masaki; Ikenaga, Masakazu; Shimizu, Junzo; Hasegawa, Junichi

    2015-11-01

    A 68-year-old man underwent esophagectomy for early esophageal cancer. Postoperative upper gastrointestinal series and esophagogastroduodenoscopy showed gastric tube stenosis. To improve passage, a removable self-expandable metallic stent (SEMS) was placed across the stenotic lesion. Two weeks later, the stent was removed, and passage through the gastric tube improved. The patient has no symptoms of stenosis. A removable SEMS could be an option for the treatment of gastric tube stenosis after esophagectomy.

  14. Torsion Tests of Tubes

    NASA Technical Reports Server (NTRS)

    Stang, Ambrose H; Ramberg, Walter; Back, Goldie

    1937-01-01

    This report presents the results of tests of 63 chromium-molybdenum steel tubes and 102 17st aluminum-alloy tubes of various sizes and lengths made to study the dependence of the torsional strength on both the dimensions of the tube and the physical properties of the tube material. Three types of failure are found to be important for sizes of tubes frequently used in aircraft construction: (1) failure by plastic shear, in which the tube material reached its yield strength before the critical torque was reached; (2) failure by elastic two-lobe buckling, which depended only on the elastic properties of the tube material and the dimensions of the tube; and (3) failure by a combination of (1) and (2) that is, by buckling taking place after some yielding of the tube material.

  15. Application of neural networks to software quality modeling of a very large telecommunications system.

    PubMed

    Khoshgoftaar, T M; Allen, E B; Hudepohl, J P; Aud, S J

    1997-01-01

    Society relies on telecommunications to such an extent that telecommunications software must have high reliability. Enhanced measurement for early risk assessment of latent defects (EMERALD) is a joint project of Nortel and Bell Canada for improving the reliability of telecommunications software products. This paper reports a case study of neural-network modeling techniques developed for the EMERALD system. The resulting neural network is currently in the prototype testing phase at Nortel. Neural-network models can be used to identify fault-prone modules for extra attention early in development, and thus reduce the risk of operational problems with those modules. We modeled a subset of modules representing over seven million lines of code from a very large telecommunications software system. The set consisted of those modules reused with changes from the previous release. The dependent variable was membership in the class of fault-prone modules. The independent variables were principal components of nine measures of software design attributes. We compared the neural-network model with a nonparametric discriminant model and found the neural-network model had better predictive accuracy.

  16. Maternal Use of Weight Loss Products and the Risk of Neural Tube Defects in Offspring: A Systematic Literature Review.

    PubMed

    Hoang, Thanh T; Agopian, A J; Mitchell, Laura E

    2018-01-15

    Several studies have assessed potential associations between use of weight loss products in the periconceptional period and neural tube defects (NTDs). However, the individual studies are inconclusive and there has not been a systematic review of this literature. We conducted a systematic search, using Ovid MEDLINE and PubMed, to identify studies that evaluated the association between products used for weight loss and the risk of NTDs. Because many studies of birth defects only evaluate a composite birth defect outcome, we evaluated studies that defined the outcome as "any major birth defect" or as NTDs. We abstracted data on study design, exposure definition, outcome definition, covariates and effect size estimates from each article that met our inclusion criteria. For studies that evaluated a composite birth defect outcome, we also abstracted the number of NTD cases included in the composite outcome. We used a modified version of the Newcastle-Ottawa Scale to assess the quality of each article. We screened 865 citations and identified nine articles that met our inclusion criteria. The majority of studies reported positive associations between maternal use of weight loss products and birth defects (overall and NTDs). However, there were few significant associations and there was considerable heterogeneity in the specific exposures assessed across the nine studies. Our systematic review of weight loss products and NTDs indicates that the literature on this topic is sparse. Because several studies reported modest, positive associations between risk and use of weight loss products, additional studies are warranted. Birth Defects Research 110:48-55, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Antagonism between the transcription factors NANOG and OTX2 specifies rostral or caudal cell fate during neural patterning transition.

    PubMed

    Su, Zhenghui; Zhang, Yanqi; Liao, Baojian; Zhong, Xiaofen; Chen, Xin; Wang, Haitao; Guo, Yiping; Shan, Yongli; Wang, Lihui; Pan, Guangjin

    2018-03-23

    During neurogenesis, neural patterning is a critical step during which neural progenitor cells differentiate into neurons with distinct functions. However, the molecular determinants that regulate neural patterning remain poorly understood. Here we optimized the "dual SMAD inhibition" method to specifically promote differentiation of human pluripotent stem cells (hPSCs) into forebrain and hindbrain neural progenitor cells along the rostral-caudal axis. We report that neural patterning determination occurs at the very early stage in this differentiation. Undifferentiated hPSCs expressed basal levels of the transcription factor orthodenticle homeobox 2 (OTX2) that dominantly drove hPSCs into the "default" rostral fate at the beginning of differentiation. Inhibition of glycogen synthase kinase 3β (GSK3β) through CHIR99021 application sustained transient expression of the transcription factor NANOG at early differentiation stages through Wnt signaling. Wnt signaling and NANOG antagonized OTX2 and, in the later stages of differentiation, switched the default rostral cell fate to the caudal one. Our findings have uncovered a mutual antagonism between NANOG and OTX2 underlying cell fate decisions during neural patterning, critical for the regulation of early neural development in humans. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Sporophytic control of pollen tube growth and guidance in maize.

    PubMed

    Lausser, Andreas; Kliwer, Irina; Srilunchang, Kanok-orn; Dresselhaus, Thomas

    2010-03-01

    Pollen tube germination, growth, and guidance (progamic phase) culminating in sperm discharge is a multi-stage process including complex interactions between the male gametophyte as well as sporophytic tissues and the female gametophyte (embryo sac), respectively. Inter- and intra-specific crossing barriers in maize and Tripsacum have been studied and a precise description of progamic pollen tube development in maize is reported here. It was found that pollen germination and initial tube growth are rather unspecific, but an early, first crossing barrier was detected before arrival at the transmitting tract. Pollination of maize silks with Tripsacum pollen and incompatible pollination of Ga1s/Ga1s-maize silks with ga1-maize pollen revealed another two incompatibility barriers, namely transmitting tract mistargeting and insufficient growth support. Attraction and growth support by the transmitting tract seem to play key roles for progamic pollen tube growth. After leaving transmitting tracts, pollen tubes have to navigate across the ovule in the ovular cavity. Pollination of an embryo sac-less maize RNAi-line allowed the role of the female gametophyte for pollen tube guidance to be determined in maize. It was found that female gametophyte controlled guidance is restricted to a small region around the micropyle, approximately 50-100 microm in diameter. This area is comparable to the area of influence of previously described ZmEA1-based short-range female gametophyte signalling. In conclusion, the progamic phase is almost completely under sporophytic control in maize.

  19. Sporophytic control of pollen tube growth and guidance in maize

    PubMed Central

    Lausser, Andreas; Kliwer, Irina; Srilunchang, Kanok-orn; Dresselhaus, Thomas

    2010-01-01

    Pollen tube germination, growth, and guidance (progamic phase) culminating in sperm discharge is a multi-stage process including complex interactions between the male gametophyte as well as sporophytic tissues and the female gametophyte (embryo sac), respectively. Inter- and intra-specific crossing barriers in maize and Tripsacum have been studied and a precise description of progamic pollen tube development in maize is reported here. It was found that pollen germination and initial tube growth are rather unspecific, but an early, first crossing barrier was detected before arrival at the transmitting tract. Pollination of maize silks with Tripsacum pollen and incompatible pollination of Ga1s/Ga1s-maize silks with ga1-maize pollen revealed another two incompatibility barriers, namely transmitting tract mistargeting and insufficient growth support. Attraction and growth support by the transmitting tract seem to play key roles for progamic pollen tube growth. After leaving transmitting tracts, pollen tubes have to navigate across the ovule in the ovular cavity. Pollination of an embryo sac-less maize RNAi-line allowed the role of the female gametophyte for pollen tube guidance to be determined in maize. It was found that female gametophyte controlled guidance is restricted to a small region around the micropyle, approximately 50–100 μm in diameter. This area is comparable to the area of influence of previously described ZmEA1-based short-range female gametophyte signalling. In conclusion, the progamic phase is almost completely under sporophytic control in maize. PMID:19926683

  20. Dynamic Encoding of Acoustic Features in Neural Responses to Continuous Speech.

    PubMed

    Khalighinejad, Bahar; Cruzatto da Silva, Guilherme; Mesgarani, Nima

    2017-02-22

    Humans are unique in their ability to communicate using spoken language. However, it remains unclear how the speech signal is transformed and represented in the brain at different stages of the auditory pathway. In this study, we characterized electroencephalography responses to continuous speech by obtaining the time-locked responses to phoneme instances (phoneme-related potential). We showed that responses to different phoneme categories are organized by phonetic features. We found that each instance of a phoneme in continuous speech produces multiple distinguishable neural responses occurring as early as 50 ms and as late as 400 ms after the phoneme onset. Comparing the patterns of phoneme similarity in the neural responses and the acoustic signals confirms a repetitive appearance of acoustic distinctions of phonemes in the neural data. Analysis of the phonetic and speaker information in neural activations revealed that different time intervals jointly encode the acoustic similarity of both phonetic and speaker categories. These findings provide evidence for a dynamic neural transformation of low-level speech features as they propagate along the auditory pathway, and form an empirical framework to study the representational changes in learning, attention, and speech disorders. SIGNIFICANCE STATEMENT We characterized the properties of evoked neural responses to phoneme instances in continuous speech. We show that each instance of a phoneme in continuous speech produces several observable neural responses at different times occurring as early as 50 ms and as late as 400 ms after the phoneme onset. Each temporal event explicitly encodes the acoustic similarity of phonemes, and linguistic and nonlinguistic information are best represented at different time intervals. Finally, we show a joint encoding of phonetic and speaker information, where the neural representation of speakers is dependent on phoneme category. These findings provide compelling new evidence for

  1. REPRODUCTIVE AND DEVELOPMENTAL TOXICITY OF ARSENIC IN RODENTS: A REVIEW

    EPA Science Inventory

    Arsenic is a recognized reproductive toxicant in humans and induces malformations, especially neural tube defects, in laboratory animals. Early studies showed that murine malformations occurred only when a high dose of inorganic arsenic was given by intravenous or intraperitoneal...

  2. Glycoconjugate distribution in early human notochord and axial mesenchyme.

    PubMed

    Götz, W; Quondamatteo, F

    2001-02-01

    Glycosylation patterns of cells and tissues give insights into spatially and temporally regulated developmental processes and can be detected histochemically using plant lectins with specific affinities for sugar moieties. The early development of the vertebral column in man is a process which has never been investigated by lectin histochemistry. Therefore, we studied binding of several lectins (AIA, Con A, GSA II, LFA, LTA, PNA, RCA I, SBA, SNA, WGA) in formaldehyde-fixed sections of the axial mesenchyme of 5 human embryos in Carnegie stages 12-15. During these developmental stages, an unsegmented mesenchyme covers the notochord. Staining patterns did not show striking temporal variations except for SBA which stained the cranial axial mesenchyme only in the early stage 12 embryo and for PNA, of which the staining intensity in the mesenchyme decreased with age. The notochord appeared as a highly glycosylated tissue. Carbohydrates detected may correspond to adhesion molecules or to secreted substances like proteoglycans or proteins which could play an inductive role, for example, for the neural tube. The axial perinotochordal unsegmented mesenchyme showed strong PNA binding. Therefore, its function as a PNA-positive "barrier" tissue is discussed. The endoderm of the primitive gut showed a lectin-binding pattern that was similar to that of the notochord, which may correlate with interactions between these tissues during earlier developmental stages.

  3. Heat exchanger tube mounts

    DOEpatents

    Wolowodiuk, W.; Anelli, J.; Dawson, B.E.

    1974-01-01

    A heat exchanger in which tubes are secured to a tube sheet by internal bore welding is described. The tubes may be moved into place in preparation for welding with comparatively little trouble. A number of segmented tube support plates are provided which allow a considerable portion of each of the tubes to be moved laterally after the end thereof has been positioned in preparation for internal bore welding to the tube sheet. (auth)

  4. Predicate calculus for an architecture of multiple neural networks

    NASA Astrophysics Data System (ADS)

    Consoli, Robert H.

    1990-08-01

    Future projects with neural networks will require multiple individual network components. Current efforts along these lines are ad hoc. This paper relates the neural network to a classical device and derives a multi-part architecture from that model. Further it provides a Predicate Calculus variant for describing the location and nature of the trainings and suggests Resolution Refutation as a method for determining the performance of the system as well as the location of needed trainings for specific proofs. 2. THE NEURAL NETWORK AND A CLASSICAL DEVICE Recently investigators have been making reports about architectures of multiple neural networksL234. These efforts are appearing at an early stage in neural network investigations they are characterized by architectures suggested directly by the problem space. Touretzky and Hinton suggest an architecture for processing logical statements1 the design of this architecture arises from the syntax of a restricted class of logical expressions and exhibits syntactic limitations. In similar fashion a multiple neural netword arises out of a control problem2 from the sequence learning problem3 and from the domain of machine learning. 4 But a general theory of multiple neural devices is missing. More general attempts to relate single or multiple neural networks to classical computing devices are not common although an attempt is made to relate single neural devices to a Turing machines and Sun et a!. develop a multiple neural architecture that performs pattern classification.

  5. Multi-tube arrangement for combustor and method of making the multi-tube arrangement

    DOEpatents

    Ziminsky, Willy Steve [Simpsonville, SC

    2012-07-31

    A fuel injector tube includes a one piece, unitary, polygonal tube having an inlet end and an outlet end. The fuel injector tube further includes a fuel passage extending from the inlet end to the outlet end along a longitudinal axis of the polygonal tube, a plurality of air passages extending from the inlet end to the outlet end and surrounding the fuel passage, and a plurality of fuel holes. Each fuel hole connects an air passage with the fuel passage. The inlet end of the polygonal tube is formed into a fuel tube. A fuel injector includes a plurality of fuel injector tubes and a plate. The plurality of fuel tubes are connected to the plate adjacent the inlet ends of the plurality of fuel injector tubes.

  6. Integration and long distance axonal regeneration in the central nervous system from transplanted primitive neural stem cells.

    PubMed

    Zhao, Jiagang; Sun, Woong; Cho, Hyo Min; Ouyang, Hong; Li, Wenlin; Lin, Ying; Do, Jiun; Zhang, Liangfang; Ding, Sheng; Liu, Yizhi; Lu, Paul; Zhang, Kang

    2013-01-04

    Spinal cord injury (SCI) results in devastating motor and sensory deficits secondary to disrupted neuronal circuits and poor regenerative potential. Efforts to promote regeneration through cell extrinsic and intrinsic manipulations have met with limited success. Stem cells represent an as yet unrealized therapy in SCI. Recently, we identified novel culture methods to induce and maintain primitive neural stem cells (pNSCs) from human embryonic stem cells. We tested whether transplanted human pNSCs can integrate into the CNS of the developing chick neural tube and injured adult rat spinal cord. Following injection of pNSCs into the developing chick CNS, pNSCs integrated into the dorsal aspects of the neural tube, forming cell clusters that spontaneously differentiated into neurons. Furthermore, following transplantation of pNSCs into the lesioned rat spinal cord, grafted pNSCs survived, differentiated into neurons, and extended long distance axons through the scar tissue at the graft-host interface and into the host spinal cord to form terminal-like structures near host spinal neurons. Together, these findings suggest that pNSCs derived from human embryonic stem cells differentiate into neuronal cell types with the potential to extend axons that associate with circuits of the CNS and, more importantly, provide new insights into CNS integration and axonal regeneration, offering hope for repair in SCI.

  7. 49 CFR 230.61 - Arch tubes, water bar tubes, circulators and thermic siphons.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Arch tubes, water bar tubes, circulators and... MAINTENANCE STANDARDS Boilers and Appurtenances Washing Boilers § 230.61 Arch tubes, water bar tubes... water bar tubes shall thoroughly be cleaned mechanically, washed, and inspected. Circulators and thermic...

  8. Regulation of Msx genes by a Bmp gradient is essential for neural crest specification.

    PubMed

    Tribulo, Celeste; Aybar, Manuel J; Nguyen, Vu H; Mullins, Mary C; Mayor, Roberto

    2003-12-01

    There is evidence in Xenopus and zebrafish embryos that the neural crest/neural folds are specified at the border of the neural plate by a precise threshold concentration of a Bmp gradient. In order to understand the molecular mechanism by which a gradient of Bmp is able to specify the neural crest, we analyzed how the expression of Bmp targets, the Msx genes, is regulated and the role that Msx genes has in neural crest specification. As Msx genes are directly downstream of Bmp, we analyzed Msx gene expression after experimental modification in the level of Bmp activity by grafting a bead soaked with noggin into Xenopus embryos, by expressing in the ectoderm a dominant-negative Bmp4 or Bmp receptor in Xenopus and zebrafish embryos, and also through Bmp pathway component mutants in the zebrafish. All the results show that a reduction in the level of Bmp activity leads to an increase in the expression of Msx genes in the neural plate border. Interestingly, by reaching different levels of Bmp activity in animal cap ectoderm, we show that a specific concentration of Bmp induces msx1 expression to a level similar to that required to induce neural crest. Our results indicate that an intermediate level of Bmp activity specifies the expression of Msx genes in the neural fold region. In addition, we have analyzed the role that msx1 plays on neural crest specification. As msx1 has a role in dorsoventral pattering, we have carried out conditional gain- and loss-of-function experiments using different msx1 constructs fused to a glucocorticoid receptor element to avoid an early effect of this factor. We show that msx1 expression is able to induce all other early neural crest markers tested (snail, slug, foxd3) at the time of neural crest specification. Furthermore, the expression of a dominant negative of Msx genes leads to the inhibition of all the neural crest markers analyzed. It has been previously shown that snail is one of the earliest genes acting in the neural crest

  9. Excess Imidacloprid Exposure Causes the Heart Tube Malformation of Chick Embryos.

    PubMed

    Gao, Lin-Rui; Li, Shuai; Zhang, Jing; Liang, Chang; Chen, En-Ni; Zhang, Shi-Yao; Chuai, Manli; Bao, Yong-Ping; Wang, Guang; Yang, Xuesong

    2016-11-30

    As a neonicotinoid pesticide, imidacloprid is widely used to control sucking insects on agricultural planting and fleas on domestic animals. However, the extent to which imidacloprid exposure has an influence on cardiogensis in early embryogenesis is still poorly understood. In vertebrates, the heart is the first organ to be formed. In this study, to address whether imidacloprid exposure affects early heart development, the early chick embryo has been used as an experimental model because of its accessibility at its early developmental stage. The results demonstrate that exposure of the early chick embryo to imidacloprid caused malformation of heart tube. Furthermore, the data reveal that down-regulation of GATA4, NKX2.5, and BMP4 and up-regulation of Wnt3a led to aberrant cardiomyocyte differentiation. In addition, imidacloprid exposure interfered with basement membrane breakdown, E-cadherin/laminin expression, and mesoderm formation during the epithelial-mesenchymal transition (EMT) in gastrula chick embryos. Finally, the DiI-labeled cell migration trajectory indicated that imidacloprid restricted the cell migration of cardiac progenitors to primary heart field in gastrula chick embryos. A similar observation was also obtained from the cell migration assay of scratch wounds in vitro. Additionally, imidacloprid exposure negatively affected the cytoskeleton structure and expression of corresponding adhesion molecules. Taken together, these results reveal that the improper EMT, cardiac progenitor migration, and differentiation are responsible for imidacloprid exposure-induced malformation of heart tube during chick embryo development.

  10. Hox Genes: Choreographers in Neural Development, Architects of Circuit Organization

    PubMed Central

    Philippidou, Polyxeni; Dasen, Jeremy S.

    2013-01-01

    Summary The neural circuits governing vital behaviors, such as respiration and locomotion, are comprised of discrete neuronal populations residing within the brainstem and spinal cord. Work over the past decade has provided a fairly comprehensive understanding of the developmental pathways that determine the identity of major neuronal classes within the neural tube. However, the steps through which neurons acquire the subtype diversities necessary for their incorporation into a particular circuit are still poorly defined. Studies on the specification of motor neurons indicate that the large family of Hox transcription factors has a key role in generating the subtypes required for selective muscle innervation. There is also emerging evidence that Hox genes function in multiple neuronal classes to shape synaptic specificity during development, suggesting a broader role in circuit assembly. This review highlights the functions and mechanisms of Hox gene networks, and their multifaceted roles during neuronal specification and connectivity. PMID:24094100

  11. Neural attention and evaluative responses to gay and lesbian couples.

    PubMed

    Dickter, Cheryl L; Forestell, Catherine A; Mulder, Blakely E

    2015-01-01

    The goal of the current study was to examine whether differential neural attentional capture and evaluative responses for out-group homosexual relative to in-group heterosexual targets occur during social categorization. To this end, 36 heterosexual participants were presented with pictures of heterosexual and homosexual couples in a picture-viewing task that was designed to assess implicit levels of discomfort toward homosexuality and explicit evaluations of pleasantness toward the images. Neural activity in the form of electroencephalogram was recorded during the presentation of the pictures, and event-related potentials resulting from these stimuli were examined. Participants also completed questionnaires that assessed the degree to which they socialized with gays and lesbians. Results demonstrated that relative to straight couples, larger P2 amplitude was observed in response to gay but not to lesbian couples. However, both gay and lesbian couples yielded a larger late positive potential than straight couples. Moreover, the degree to which participants differentially directed early neural attention to out-group lesbian versus in-group straight couples was related to their familiarity with homosexual individuals. This work, which provides an initial understanding of the neural underpinnings of attention toward homosexual couples, suggests that differences in the processing of sexual orientation can occur as early as 200 ms and may be moderated by familiarity.

  12. Neural correlates of early-closure garden-path processing: Effects of prosody and plausibility.

    PubMed

    den Ouden, Dirk-Bart; Dickey, Michael Walsh; Anderson, Catherine; Christianson, Kiel

    2016-01-01

    Functional magnetic resonance imaging (fMRI) was used to investigate neural correlates of early-closure garden-path sentence processing and use of extrasyntactic information to resolve temporary syntactic ambiguities. Sixteen participants performed an auditory picture verification task on sentences presented with natural versus flat intonation. Stimuli included sentences in which the garden-path interpretation was plausible, implausible because of a late pragmatic cue, or implausible because of a semantic mismatch between an optionally transitive verb and the following noun. Natural sentence intonation was correlated with left-hemisphere temporal activation, but also with activation that suggests the allocation of more resources to interpretation when natural prosody is provided. Garden-path processing was associated with upregulation in bilateral inferior parietal and right-hemisphere dorsolateral prefrontal and inferior frontal cortex, while differences between the strength and type of plausibility cues were also reflected in activation patterns. Region of interest (ROI) analyses in regions associated with complex syntactic processing are consistent with a role for posterior temporal cortex supporting access to verb argument structure. Furthermore, ROI analyses within left-hemisphere inferior frontal gyrus suggest a division of labour, with the anterior-ventral part primarily involved in syntactic-semantic mismatch detection, the central part supporting structural reanalysis, and the posterior-dorsal part showing a general structural complexity effect.

  13. Neural representation of form-contingent color filling-in in the early visual cortex.

    PubMed

    Hong, Sang Wook; Tong, Frank

    2017-11-01

    Perceptual filling-in exemplifies the constructive nature of visual processing. Color, a prominent surface property of visual objects, can appear to spread to neighboring areas that lack any color. We investigated cortical responses to a color filling-in illusion that effectively dissociates perceived color from the retinal input (van Lier, Vergeer, & Anstis, 2009). Observers adapted to a star-shaped stimulus with alternating red- and cyan-colored points to elicit a complementary afterimage. By presenting an achromatic outline that enclosed one of the two afterimage colors, perceptual filling-in of that color was induced in the unadapted central region. Visual cortical activity was monitored with fMRI, and analyzed using multivariate pattern analysis. Activity patterns in early visual areas (V1-V4) reliably distinguished between the two color-induced filled-in conditions, but only higher extrastriate visual areas showed the predicted correspondence with color perception. Activity patterns allowed for reliable generalization between filled-in colors and physical presentations of perceptually matched colors in areas V3 and V4, but not in earlier visual areas. These findings suggest that the perception of filled-in surface color likely requires more extensive processing by extrastriate visual areas, in order for the neural representation of surface color to become aligned with perceptually matched real colors.

  14. Neuroimaging Studies of Normal Brain Development and Their Relevance for Understanding Childhood Neuropsychiatric Disorders

    ERIC Educational Resources Information Center

    Marsh, Rachel; Gerber, Andrew J.; Peterson, Bradley S.

    2008-01-01

    Neuroimaging findings which identify normal brain development trajectories are presented. Results show that early brain development begins with the neural tube formation and ends with myelintation. How disturbances in brain development patterns are related to childhood psychiatric disorders is examined.

  15. Magnitude of Neural Tube Defects and Associated Risk Factors at Three Teaching Hospitals in Addis Ababa, Ethiopia.

    PubMed

    Gedefaw, Abel; Teklu, Sisay; Tadesse, Birkneh Tilahun

    2018-01-01

    There is scarcity of data on prevalence of neural tube defects (NTDs) in lower-income countries. Local data are important to understand the real burden of the problem and explore risk factors to design and implement preventive approaches. This study aimed to determine prevalence and risk factors of NTDs. A hospital-based cross-sectional and unmatched case-control study was conducted at three teaching hospitals of Addis Ababa University. NTDs were defined as cases of anencephaly, spina bifida, and encephalocele based on ICD-10 criteria. The prevalence of NTDs was calculated per 10,000 births for both birth and total prevalence. During seven months, we observed 55 cases of NTDs out of 8677 births after 28 weeks of gestation-birth prevalence of 63.4 per 10,000 births (95% confidence interval (CI), 51-77). A total of 115 cases were medically terminated after 12 weeks of gestation. Fifty-six of these terminations (48.7%) were due to NTDs. Thus, total prevalence of NTDs after 12 weeks' gestation is 126 per 10,000 births (95% CI, 100-150). Planned pregnancy (adjusted odds ratio (aOR), 0.47; 95% CI, 0.24-0.92), male sex (aOR, 0.56; 95% CI, 0.33-0.94), normal or underweight body mass index (aOR, 0.49; 95%, 0.29-0.95), and taking folic acid or multivitamins during first trimester (aOR, 0.47; 95%, 0.23-0.95) were protective of NTDs. However, annual cash family income less than $1,300 USD (aOR, 2.5; 95%, 1.2-5.5), $1,300-1,800 USD (aOR, 2.8; 95%, 1.3-5.8), and $1,801-2,700 USD (aOR, 2.6; 95%, 1.2-5.8) was found to be risk factors compared to income greater than $2,700 USD. The prevalence of NTDs was found to be high in this setting. Comprehensive preventive strategies focused on identified risk factors should be urgently established. More studies on prevention strategies, including folic acid supplementations, should be conducted in the setting.

  16. Reduced-vibration tube array

    DOEpatents

    Bruck, Gerald J.; Bartolomeo, Daniel R.

    2004-07-20

    A reduced-vibration tube array is disclosed. The array includes a plurality of tubes in a fixed arrangement and a plurality of damping members positioned within the tubes. The damping members include contoured interface regions characterized by bracing points that selectively contact the inner surface of an associated tube. Each interface region is sized and shaped in accordance with the associated tube, so that the damping member bracing points are spaced apart a vibration-reducing distance from the associated tube inner surfaces at equilibrium. During operation, mechanical interaction between the bracing points and the tube inner surfaces reduces vibration by a damage-reducing degree. In one embodiment, the interface regions are serpentine shaped. In another embodiment, the interface regions are helical in shape. The interface regions may be simultaneously helical and serpentine in shape. The damping members may be fixed within the associated tubes, and damping member may be customized several interference regions having attributes chosen in accordance with desired flow characteristics and associated tube properties.

  17. Electronic versus traditional chest tube drainage following lobectomy: a randomized trial.

    PubMed

    Lijkendijk, Marike; Licht, Peter B; Neckelmann, Kirsten

    2015-12-01

    Electronic drainage systems have shown superiority compared with traditional (water seal) drainage systems following lung resections, but the number of studies is limited. As part of a medico-technical evaluation, before change of practice to electronic drainage systems for routine thoracic surgery, we conducted a randomized controlled trial (RCT) investigating chest tube duration and length of hospitalization. Patients undergoing lobectomy were included in a prospective open label RCT. A strict algorithm was designed for early chest tube removal, and this decision was delegated to staff nurses. Data were analysed by Cox proportional hazard regression model adjusting for lung function, gender, age, BMI, video-assisted thoracic surgery (VATS) or open surgery and presence of incomplete fissure or pleural adhesions. Time was distinguished as possible (optimal) and actual time for chest tube removal, as well as length of hospitalization. A total of 105 patients were randomized. We found no significant difference between the electronic group and traditional group in optimal chest tube duration (HR = 0.83; 95% CI: 0.55-1.25; P = 0.367), actual chest tube duration (HR = 0.84; 95% CI: 0.55-1.26; P = 0.397) or length of hospital stay (HR = 0.91; 95% CI: 0.59-1.39; P = 0.651). No chest tubes had to be reinserted. Presence of pleural adhesions or an incomplete fissure was a significant predictor of chest tube duration (HR = 1.72; 95% CI: 1.15-2.77; P = 0.014). Electronic drainage systems did not reduce chest tube duration or length of hospitalization significantly compared with traditional water seal drainage when a strict algorithm for chest tube removal was used. This algorithm allowed delegation of chest tube removal to staff nurses, and in some patients chest tubes could be removed safely on the day of surgery. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  18. CELL SEGREGATION, MIXING, AND TISSUE PATTERN IN THE SPINAL CORD OF THE XENOPUS LAEVIS NEURULA

    PubMed Central

    Davidson, Lance A.; Keller, Raymond E.

    2014-01-01

    Background During Xenopus laevis neurulation, neural ectodermal cells of the spinal cord are patterned at the same time that they intercalate mediolaterally and radially, moving within and between two cell layers. Curious if these rearrangements disrupt early cell identities, we lineage-traced cells in each layer from neural plate stages to the closed neural tube, and used in situ hybridization to assay gene expression in the moving cells. Results Our biotin- and fluorescent labeling of deep and superficial cells reveals that mediolateral intercalation does not disrupt cell cohorts, in other words it is conservative. However, outside the midline notoplate, later radial intercalation does displace superficial cells dorsoventrally, radically disrupting cell cohorts. The tube roof is composed almost exclusively of superficial cells, including some displaced from ventral positions; gene expression in these displaced cells must now be surveyed further. Superficial cells also flank the tube’s floor, which is, itself, almost exclusively composed of deep cells. Conclusions Our data provide: 1) a fate map of superficial- and deep-cell positions within the Xenopus neural tube, 2) the paths taken to these positions, and 3) preliminary evidence of re-patterning in cells carried out of one environment and into another, during neural morphogenesis. PMID:23813905

  19. Observation of "YouTube" Language Learning Videos ("YouTube" LLVS)

    ERIC Educational Resources Information Center

    Alhamami, Munassir

    2013-01-01

    This paper navigates into the "YouTube" website as one of the most usable online tools to learn languages these days. The paper focuses on two issues in creating "YouTube" language learning videos: pedagogy and technology. After observing the existing "YouTube" LLVs, the study presents a novel rubric that is directed…

  20. Occludin as a functional marker of vascular endothelial cells on tube-forming activity.

    PubMed

    Kanayasu-Toyoda, Toshie; Ishii-Watabe, Akiko; Kikuchi, Yutaka; Kitagawa, Hiroko; Suzuki, Hiroko; Tamura, Hiroomi; Tada, Minoru; Suzuki, Takuo; Mizuguchi, Hiroyuki; Yamaguchi, Teruhide

    2018-02-01

    Cell therapy using endothelial progenitor cells (EPCs) is a promising strategy for the treatment of ischemic diseases. Two types of EPCs have been identified: early EPCs and late EPCs. Late EPCs are able to form tube structure by themselves, and have a high proliferative ability. The functional marker(s) of late EPCs, which relate to their therapeutic potential, have not been fully elucidated. Here we compared the gene expression profiles of several human cord blood derived late EPC lines which exhibit different tube formation activity, and we observed that the expression of occludin (OCLN) in these lines correlated with the tube formation ability, suggesting that OCLN is a candidate functional marker of late EPCs. When OCLN was knocked down by transfecting siRNA, the tube formation on Matrigel, the S phase + G 2 /M phase in the cell cycle, and the spheroid-based sprouting of late EPCs were markedly reduced, suggesting the critical role of OCLN in tube formation, sprouting, and proliferation. These results indicated that OCLN plays a novel role in neovascularization and angiogenesis. © 2017 Wiley Periodicals, Inc.

  1. LKB1 signaling in cephalic neural crest cells is essential for vertebrate head development.

    PubMed

    Creuzet, Sophie E; Viallet, Jean P; Ghawitian, Maya; Torch, Sakina; Thélu, Jacques; Alrajeh, Moussab; Radu, Anca G; Bouvard, Daniel; Costagliola, Floriane; Borgne, Maïlys Le; Buchet-Poyau, Karine; Aznar, Nicolas; Buschlen, Sylvie; Hosoya, Hiroshi; Thibert, Chantal; Billaud, Marc

    2016-10-15

    Head development in vertebrates proceeds through a series of elaborate patterning mechanisms and cell-cell interactions involving cephalic neural crest cells (CNCC). These cells undergo extensive migration along stereotypical paths after their separation from the dorsal margins of the neural tube and they give rise to most of the craniofacial skeleton. Here, we report that the silencing of the LKB1 tumor suppressor affects the delamination of pre-migratory CNCC from the neural primordium as well as their polarization and survival, thus resulting in severe facial and brain defects. We further show that LKB1-mediated effects on the development of CNCC involve the sequential activation of the AMP-activated protein kinase (AMPK), the Rho-dependent kinase (ROCK) and the actin-based motor protein myosin II. Collectively, these results establish that the complex morphogenetic processes governing head formation critically depends on the activation of the LKB1 signaling network in CNCC. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Multipotent Caudal Neural Progenitors Derived from Human Pluripotent Stem Cells That Give Rise to Lineages of the Central and Peripheral Nervous System

    PubMed Central

    Hasegawa, Kouichi; Menheniott, Trevelyan; Rollo, Ben; Zhang, Dongcheng; Hough, Shelley; Alshawaf, Abdullah; Febbraro, Fabia; Ighaniyan, Samiramis; Leung, Jessie; Elliott, David A.; Newgreen, Donald F.; Pera, Martin F.

    2015-01-01

    Abstract The caudal neural plate is a distinct region of the embryo that gives rise to major progenitor lineages of the developing central and peripheral nervous system, including neural crest and floor plate cells. We show that dual inhibition of the glycogen synthase kinase 3β and activin/nodal pathways by small molecules differentiate human pluripotent stem cells (hPSCs) directly into a preneuroepithelial progenitor population we named “caudal neural progenitors” (CNPs). CNPs coexpress caudal neural plate and mesoderm markers, and, share high similarities to embryonic caudal neural plate cells in their lineage differentiation potential. Exposure of CNPs to BMP2/4, sonic hedgehog, or FGF2 signaling efficiently directs their fate to neural crest/roof plate cells, floor plate cells, and caudally specified neuroepithelial cells, respectively. Neural crest derived from CNPs differentiated to neural crest derivatives and demonstrated extensive migratory properties in vivo. Importantly, we also determined the key extrinsic factors specifying CNPs from human embryonic stem cell include FGF8, canonical WNT, and IGF1. Our studies are the first to identify a multipotent neural progenitor derived from hPSCs, that is the precursor for major neural lineages of the embryonic caudal neural tube. Stem Cells 2015;33:1759–1770 PMID:25753817

  3. Balloon dilatation of the Eustachian tube: postoperative validation of patient satisfaction.

    PubMed

    Bast, F; Frank, A; Schrom, T

    2013-01-01

    The Eustachian tube is responsible for ventilation, protection and drainage of the middle ear. Dysfunction of the Eustachian tube can lead to impairments ranging from inadequate pressure equalisation in the middle ear and pneumatised mastoid process to cholesteatoma. Conventional surgical interventions for chronic tube dysfunction have not brought resounding clinical success. However, the 'Bielefelder Balloon dilatation' constitutes a new and, judging from early results, very effective treatment for chronic tube dysfunction. Proof of the efficacy of the surgical procedures is provided by objective clinical factors, but for quality assurance, the assessment of the subjective quality of life of patients must also be taken into account. To measure health-related quality of life, standardised questionnaires are used which have been tested for reliability, validity and sensitivity. A total of 30 patients were included in the study. The patient survey was conducted retrospectively, and validation of patient satisfaction was carried out with the Glasgow Benefit Inventory (GBI). GBI analysis revealed significant improvements in the total score as well as in general and physical health. The Bielefelder Balloon dilatation is a new and safe treatment for chronic tube dysfunction, which had a significant positive influence on the postoperative quality of life of our patient cohort. © 2014 S. Karger AG, Basel.

  4. Progranulin haploinsufficiency causes biphasic social dominance abnormalities in the tube test.

    PubMed

    Arrant, A E; Filiano, A J; Warmus, B A; Hall, A M; Roberson, E D

    2016-07-01

    Loss-of-function mutations in progranulin (GRN) are a major autosomal dominant cause of frontotemporal dementia (FTD), a neurodegenerative disorder in which social behavior is disrupted. Progranulin-insufficient mice, both Grn(+/-) and Grn(-/-) , are used as models of FTD due to GRN mutations, with Grn(+/-) mice mimicking the progranulin haploinsufficiency of FTD patients with GRN mutations. Grn(+/-) mice have increased social dominance in the tube test at 6 months of age, although this phenotype has not been reported in Grn(-/-) mice. In this study, we investigated how the tube test phenotype of progranulin-insufficient mice changes with age, determined its robustness under several testing conditions, and explored the associated cellular mechanisms. We observed biphasic social dominance abnormalities in Grn(+/-) mice: at 6-8 months, Grn(+/-) mice were more dominant than wild-type littermates, while after 9 months of age, Grn(+/-) mice were less dominant. In contrast, Grn(-/-) mice did not exhibit abnormal social dominance, suggesting that progranulin haploinsufficiency has distinct effects from complete progranulin deficiency. The biphasic tube test phenotype of Grn(+/-) mice was associated with abnormal cellular signaling and neuronal morphology in the amygdala and prefrontal cortex. At 6-9 months, Grn(+/-) mice exhibited increased mTORC2/Akt signaling in the amygdala and enhanced dendritic arbors in the basomedial amygdala, and at 9-16 months Grn(+/-) mice exhibited diminished basal dendritic arbors in the prelimbic cortex. These data show a progressive change in tube test dominance in Grn(+/-) mice and highlight potential underlying mechanisms by which progranulin insufficiency may disrupt social behavior. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  5. High school music classes enhance the neural processing of speech.

    PubMed

    Tierney, Adam; Krizman, Jennifer; Skoe, Erika; Johnston, Kathleen; Kraus, Nina

    2013-01-01

    Should music be a priority in public education? One argument for teaching music in school is that private music instruction relates to enhanced language abilities and neural function. However, the directionality of this relationship is unclear and it is unknown whether school-based music training can produce these enhancements. Here we show that 2 years of group music classes in high school enhance the neural encoding of speech. To tease apart the relationships between music and neural function, we tested high school students participating in either music or fitness-based training. These groups were matched at the onset of training on neural timing, reading ability, and IQ. Auditory brainstem responses were collected to a synthesized speech sound presented in background noise. After 2 years of training, the neural responses of the music training group were earlier than at pre-training, while the neural timing of students in the fitness training group was unchanged. These results represent the strongest evidence to date that in-school music education can cause enhanced speech encoding. The neural benefits of musical training are, therefore, not limited to expensive private instruction early in childhood but can be elicited by cost-effective group instruction during adolescence.

  6. A developmental perspective on the neural bases of human empathy.

    PubMed

    Tousignant, Béatrice; Eugène, Fanny; Jackson, Philip L

    2017-08-01

    While empathy has been widely studied in philosophical and psychological literatures, recent advances in social neuroscience have shed light on the neural correlates of this complex interpersonal phenomenon. In this review, we provide an overview of brain imaging studies that have investigated the neural substrates of human empathy. Based on existing models of the functional architecture of empathy, we review evidence of the neural underpinnings of each main component, as well as their development from infancy. Although early precursors of affective sharing and self-other distinction appear to be present from birth, recent findings also suggest that even higher-order components of empathy such as perspective-taking and emotion regulation demonstrate signs of development during infancy. This merging of developmental and social neuroscience literature thus supports the view that ontogenic development of empathy is rooted in early infancy, well before the emergence of verbal abilities. With age, the refinement of top-down mechanisms may foster more appropriate empathic responses, thus promoting greater altruistic motivation and prosocial behaviors. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. SoxB1-driven transcriptional network underlies neural-specific interpretation of morphogen signals.

    PubMed

    Oosterveen, Tony; Kurdija, Sanja; Ensterö, Mats; Uhde, Christopher W; Bergsland, Maria; Sandberg, Magnus; Sandberg, Rickard; Muhr, Jonas; Ericson, Johan

    2013-04-30

    The reiterative deployment of a small cadre of morphogen signals underlies patterning and growth of most tissues during embyogenesis, but how such inductive events result in tissue-specific responses remains poorly understood. By characterizing cis-regulatory modules (CRMs) associated with genes regulated by Sonic hedgehog (Shh), retinoids, or bone morphogenetic proteins in the CNS, we provide evidence that the neural-specific interpretation of morphogen signaling reflects a direct integration of these pathways with SoxB1 proteins at the CRM level. Moreover, expression of SoxB1 proteins in the limb bud confers on mesodermal cells the potential to activate neural-specific target genes upon Shh, retinoid, or bone morphogenetic protein signaling, and the collocation of binding sites for SoxB1 and morphogen-mediatory transcription factors in CRMs faithfully predicts neural-specific gene activity. Thus, an unexpectedly simple transcriptional paradigm appears to conceptually explain the neural-specific interpretation of pleiotropic signaling during vertebrate development. Importantly, genes induced in a SoxB1-dependent manner appear to constitute repressive gene regulatory networks that are directly interlinked at the CRM level to constrain the regional expression of patterning genes. Accordingly, not only does the topology of SoxB1-driven gene regulatory networks provide a tissue-specific mode of gene activation, but it also determines the spatial expression pattern of target genes within the developing neural tube.

  8. Evaluation of the tightness of contact between 
limbal sclera tunnel and tube following Ahmed 
glaucoma valve implantation.

    PubMed

    Holló, Gábor; Naghizadeh, Farzaneh

    2013-01-01

    To investigate whether the tightness of contact between the tube and the limbal sclera tunnel can be evaluated with high-magnification anterior segment optical coherence tomography (OCT) imaging following Ahmed glaucoma valve implantation. Tightness between the tube and the limbal sclera tunnel was investigated with the CAM-L cornea lens adapter of the Optovue Fourier-domain OCT (RTVue-OCT) for 21 uncomplicated Ahmed glaucoma valves implanted in 20 eyes of 19 patients with glaucoma. Nineteen valves were implanted 4 to 124 months earlier (late postoperative cases) and 2 valves 1 day prior to the imaging (early postoperative cases). All valves were introduced into the anterior chamber via a limbal sclera tunnel. The limbal intratunnel part of the tube was successfully imaged in all but 2 cases where an additional full-thickness sclera patch was used. In 14 cases, the contact was tight without tube compression. In 
5 cases, the tube was partially compressed but remained open in the limbal sclera tunnel, and redilated behind the limbus. No case with loose contact or peritubular filtration was seen. The posterior run of the tube was successfully imaged in all 19 cases without a full-thickness sclera patch. High-magnification imaging with the CAM- L anterior segment adapter of the RTVue-OCT allows detailed examination of the limbal insertion area of tubes in both the early and late postoperative periods. Therefore this method may potentially be applied for detection of complications related to tube insertion after glaucoma drainage device surgery.

  9. Neural Predictors of Visuomotor Adaptation Rate and Multi-Day Savings

    NASA Technical Reports Server (NTRS)

    Cassady, Kaitlin; Ruitenberg, Marit; Koppelmans, Vincent; Reuter-Lorenz, Patricia; De Dios, Yiri; Gadd, Nichole; Wood, Scott; Riascos Castenada, Roy; Kofman, Igor; Bloomberg, Jacob; hide

    2017-01-01

    Recent studies of sensorimotor adaptation have found that individual differences in task-based functional brain activation are associated with the rate of adaptation and savings at subsequent sessions. However, few studies to date have investigated offline neural predictors of adaptation and multi-day savings. In the present study, we explore whether individual differences in the rate of visuomotor adaptation and multi-day savings are associated with differences in resting state functional connectivity and gray matter volume. Thirty-four participants performed a manual adaptation task during two separate test sessions, on average 9 days apart. We found that resting state functional connectivity strength between sensorimotor, anterior cingulate, and temporoparietal areas of the brain was a significant predictor of adaptation rate during the early, cognitive phase of practice. In contrast, default mode network functional connectivity strength was found to predict late adaptation rate and savings on day two, which suggests that these behaviors may rely on overlapping processes. We also found that gray matter volume in temporoparietal and occipital regions was a significant predictor of early learning, whereas gray matter volume in superior posterior regions of the cerebellum was a significant predictor of late adaptation. The results from this study suggest that offline neural predictors of early adaptation facilitate the cognitive mechanisms of sensorimotor adaptation, with support from by the involvement of temporoparietal and cingulate networks. In contrast, the neural predictors of late adaptation and savings, including the default mode network and the cerebellum, likely support the storage and modification of newly acquired sensorimotor representations. These findings provide novel insights into the neural processes associated with individual differences in sensorimotor adaptation.

  10. Modelling collective cell migration of neural crest

    PubMed Central

    Szabó, András; Mayor, Roberto

    2016-01-01

    Collective cell migration has emerged in the recent decade as an important phenomenon in cell and developmental biology and can be defined as the coordinated and cooperative movement of groups of cells. Most studies concentrate on tightly connected epithelial tissues, even though collective migration does not require a constant physical contact. Movement of mesenchymal cells is more independent, making their emergent collective behaviour less intuitive and therefore lending importance to computational modelling. Here we focus on such modelling efforts that aim to understand the collective migration of neural crest cells, a mesenchymal embryonic population that migrates large distances as a group during early vertebrate development. By comparing different models of neural crest migration, we emphasize the similarity and complementary nature of these approaches and suggest a future direction for the field. The principles derived from neural crest modelling could aid understanding the collective migration of other mesenchymal cell types. PMID:27085004

  11. Heat-shrink plastic tubing seals joints in glass tubing

    NASA Technical Reports Server (NTRS)

    Del Duca, B.; Downey, A.

    1968-01-01

    Small units of standard glass apparatus held together by short lengths of transparent heat-shrinkable polyolefin tubing. The tubing is shrunk over glass O-ring type connectors having O-rings but no lubricant.

  12. Deletion of OTX2 in neural ectoderm delays anterior pituitary development

    PubMed Central

    Mortensen, Amanda H.; Schade, Vanessa; Lamonerie, Thomas; Camper, Sally A.

    2015-01-01

    OTX2 is a homeodomain transcription factor that is necessary for normal head development in mouse and man. Heterozygosity for loss-of-function alleles causes an incompletely penetrant, haploinsufficiency disorder. Affected individuals exhibit a spectrum of features that range from developmental defects in eye and/or pituitary development to acephaly. To investigate the mechanism underlying the pituitary defects, we used different cre lines to inactivate Otx2 in early head development and in the prospective anterior and posterior lobes. Mice homozygous for Otx2 deficiency in early head development and pituitary oral ectoderm exhibit craniofacial defects and pituitary gland dysmorphology, but normal pituitary cell specification. The morphological defects mimic those observed in humans and mice with OTX2 heterozygous mutations. Mice homozygous for Otx2 deficiency in the pituitary neural ectoderm exhibited altered patterning of gene expression and ablation of FGF signaling. The posterior pituitary lobe and stalk, which normally arise from neural ectoderm, were extremely hypoplastic. Otx2 expression was intact in Rathke's pouch, the precursor to the anterior lobe, but the anterior lobe was hypoplastic. The lack of FGF signaling from the neural ectoderm was sufficient to impair anterior lobe growth, but not the differentiation of hormone-producing cells. This study demonstrates that Otx2 expression in the neural ectoderm is important intrinsically for the development of the posterior lobe and pituitary stalk, and it has significant extrinsic effects on anterior pituitary growth. Otx2 expression early in head development is important for establishing normal craniofacial features including development of the brain, eyes and pituitary gland. PMID:25315894

  13. The association of ambient air pollution and traffic exposures with selected congenital anomalies in the San Joaquin Valley of California.

    PubMed

    Padula, Amy M; Tager, Ira B; Carmichael, Suzan L; Hammond, S Katharine; Lurmann, Frederick; Shaw, Gary M

    2013-05-15

    Congenital anomalies are a leading cause of infant mortality and are important contributors to subsequent morbidity. Studies suggest associations between environmental contaminants and some anomalies, although evidence is limited. We aimed to investigate whether ambient air pollutant and traffic exposures in early gestation contribute to the risk of selected congenital anomalies in the San Joaquin Valley of California, 1997-2006. Seven exposures and 5 outcomes were included for a total of 35 investigated associations. We observed increased odds of neural tube defects when comparing the highest with the lowest quartile of exposure for several pollutants after adjusting for maternal race/ethnicity, education, and multivitamin use. The adjusted odds ratio for neural tube defects among those with the highest carbon monoxide exposure was 1.9 (95% confidence interval: 1.1, 3.2) compared with those with the lowest exposure, and there was a monotonic exposure-response across quartiles. The highest quartile of nitrogen oxide exposure was associated with neural tube defects (adjusted odds ratio = 1.8, 95% confidence interval: 1.1, 2.8). The adjusted odds ratio for the highest quartile of nitrogen dioxide exposure was 1.7 (95% confidence interval: 1.1, 2.7). Ozone was associated with decreased odds of neural tube defects. Our results extend the limited body of evidence regarding air pollution exposure and adverse birth outcomes.

  14. The Association of Ambient Air Pollution and Traffic Exposures With Selected Congenital Anomalies in the San Joaquin Valley of California

    PubMed Central

    Padula, Amy M.; Tager, Ira B.; Carmichael, Suzan L.; Hammond, S. Katharine; Lurmann, Frederick; Shaw, Gary M.

    2013-01-01

    Congenital anomalies are a leading cause of infant mortality and are important contributors to subsequent morbidity. Studies suggest associations between environmental contaminants and some anomalies, although evidence is limited. We aimed to investigate whether ambient air pollutant and traffic exposures in early gestation contribute to the risk of selected congenital anomalies in the San Joaquin Valley of California, 1997–2006. Seven exposures and 5 outcomes were included for a total of 35 investigated associations. We observed increased odds of neural tube defects when comparing the highest with the lowest quartile of exposure for several pollutants after adjusting for maternal race/ethnicity, education, and multivitamin use. The adjusted odds ratio for neural tube defects among those with the highest carbon monoxide exposure was 1.9 (95% confidence interval: 1.1, 3.2) compared with those with the lowest exposure, and there was a monotonic exposure-response across quartiles. The highest quartile of nitrogen oxide exposure was associated with neural tube defects (adjusted odds ratio = 1.8, 95% confidence interval: 1.1, 2.8). The adjusted odds ratio for the highest quartile of nitrogen dioxide exposure was 1.7 (95% confidence interval: 1.1, 2.7). Ozone was associated with decreased odds of neural tube defects. Our results extend the limited body of evidence regarding air pollution exposure and adverse birth outcomes. PMID:23538941

  15. Study on automatic ECT data evaluation by using neural network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komatsu, H.; Matsumoto, Y.; Badics, Z.

    1994-12-31

    At the in--service inspection of the steam generator (SG) tubings in Pressurized Water Reactor (PWR) plant, eddy current testing (ECT) has been widely used at each outage. At present, ECT data evaluation is mainly performed by ECT data analyst, therefore it has the following problems. Only ECT signal configuration on the impedance trajectory is used in the evaluation. It is an enormous time consuming process. The evaluation result is influenced by the ability and experience of the analyst. Especially, it is difficult to identify the true defect signal hidden in background signals such as lift--off noise and deposit signals. Inmore » this work, the authors performed the study on the possibility of the application of neural network to ECT data evaluation. It was demonstrated that the neural network proved to be effective to identify the nature of defect, by selecting several optimum input parameters to categorize the raw ECT signals.« less

  16. Nasoenteral feeding tube placement by nurses using an electromagnetic guidance system (with video).

    PubMed

    Mathus-Vliegen, Elisabeth M H; Duflou, Ann; Spanier, Marcel B W; Fockens, Paul

    2010-04-01

    The early institution of feeding in patients who need postpyloric feeding tubes is often hampered by a limited availability of endoscopists experienced in safe tube positioning. To test the feasibility of having nurses place postpyloric feeding tubes by using a universal path finding system device. Prospective study. Academic hospital. The success rate and learning curve of a senior nurse placing postpyloric feeding tubes in 50 patients was studied, followed by a study in 160 patients on the success rates and learning curves of 4 inexperienced nurses instructed by the senior nurse. Finally, the success rate of postpyloric feeding tube placement by the senior nurse in 50 critically ill patients was investigated. Postpyloric feeding tube positioning by nurses using an electromagnetic universal path-finding system device enabling them to follow the path of the tip of the feeding tube on a monitor screen. Success was defined by postpyloric positioning of the feeding tube. The ultimate aim was to reach at least the duodenojejunal flexure. In the first part, the senior nurse was successful in 72% of cases. There was a clear learning curve. In the second part, the 4 newly instructed nurses had a success rate of 89.4% without an evident learning curve. In the third part, successful feeding tube positioning was achieved in 78% of critically ill patients. Of the 217 successfully positioned tubes, 74% reached at least the duodenojejunal flexure. In half of the unsuccessful cases, an explanation for the failure was found at endoscopy. No complications were seen. The generalization to less-specialized hospitals should be investigated. Postpyloric positioning of feeding tubes by nurses at the bedside without endoscopy is feasible and safe. Nurses may take over some of the tasks of doctors in a time of high endoscopic needs. Copyright 2010 American Society for Gastrointestinal Endoscopy. Published by Mosby, Inc. All rights reserved.

  17. Estimate of the potential impact of folic acid fortification of corn masa flour on the prevention of neural tube defects.

    PubMed

    Tinker, Sarah C; Devine, Owen; Mai, Cara; Hamner, Heather C; Reefhuis, Jennita; Gilboa, Suzanne M; Dowling, Nicole F; Honein, Margaret A

    2013-10-01

    Hispanics in the US have a higher prevalence of neural tube defect (NTD) -affected pregnancies than non-Hispanic whites, and lower median total folic acid (FA) intake. FA fortification of corn masa flour (CMF) is a policy-level intervention for NTD prevention; however, the impact on NTD prevalence has not been estimated. We developed a model to estimate the percentage reduction in prevalence of spina bifida and anencephaly (NTDs) that could occur with FA fortification of CMF. Model inputs included estimates of the percentage reduction in United States NTD prevalence attributed to FA fortification of enriched cereal grain products (1995-1996 vs. 1998-2002), the increase in median FA intake after enriched cereal grain product fortification, and the estimated increase in median FA intake that could occur with CMF fortification at the same level as enriched cereal grain products (140 μg/100 g). We used Monte Carlo simulation to quantify uncertainty. We stratified analyses by racial/ethnic group and rounded results to the nearest 10. We estimated CMF fortification could prevent 30 Hispanic infants from having spina bifida (95% uncertainty interval: 0, 80) and 10 infants from having anencephaly (95% uncertainty interval: 0, 40) annually. The estimated impact among non-Hispanic whites and blacks was smaller. CMF fortification with FA could prevent from 0 to 120 infants, with the most likely value of approximately 40, from having spina bifida or anencephaly among Hispanics, the population most likely to benefit from the proposed intervention. While this estimated reduction is unlikely to be discernible using current birth defect surveillance methods, it still suggests an important benefit to the target population. Copyright © 2013 Wiley Periodicals, Inc.

  18. Neighborhood Deprivation and Risk of Congenital Heart Defects, Neural Tube Defects and Orofacial Clefts: A Systematic Review and Meta-Analysis

    PubMed Central

    Deguen, Séverine; Kihal, Wahida; Jeanjean, Maxime; Padilla, Cindy; Zmirou-Navier, Denis

    2016-01-01

    Background We conducted this systematic review and meta-analysis to address the open question of a possible association between the socioeconomic level of the neighborhoods in which pregnant women live and the risk of Congenital Heart Defects (CHDs), Neural Tube Defects (NTDs) and OroFacial Clefts (OFCs). Methods We searched MEDLINE from its inception to December 20th, 2015 for case-control, cohort and ecological studies assessing the association between neighborhood socioeconomic level and the risk of CHDs, NTDs and the specific phenotypes Cleft Lip with or without Cleft Palate (CLP) and Cleft Palate (CP). Study-specific risk estimates were pooled according to random-effect and fixed-effect models. Results Out of 245 references, a total of seven case-control studies, two cohort studies and two ecological studies were assessed in the systematic review; all studies were enrolled in the meta-analysis with the exception of the two cohort studies. No significant association has been revealed between CHDs or NTDs and neighborhood deprivation index. For CLP phenotype subgroups, we found a significantly higher rate in deprived neighborhoods (Odds Ratios (OR) = 1.22, 95% CI: 1.10, 1.36) whereas this was not significant for CP phenotype subgroups (OR = 1.20, 95%CI: 0.89, 1.61). Conclusion In spite of the small number of epidemiological studies included in the present literature review, our findings suggest that neighborhood socioeconomic level where mothers live is associated only with an increased risk of CLP phenotype subgroups. This finding has methodological limitations that impede the formulation of firm conclusions, and further investigations should confirm this association. PMID:27783616

  19. Auditory-neurophysiological responses to speech during early childhood: Effects of background noise

    PubMed Central

    White-Schwoch, Travis; Davies, Evan C.; Thompson, Elaine C.; Carr, Kali Woodruff; Nicol, Trent; Bradlow, Ann R.; Kraus, Nina

    2015-01-01

    Early childhood is a critical period of auditory learning, during which children are constantly mapping sounds to meaning. But learning rarely occurs under ideal listening conditions—children are forced to listen against a relentless din. This background noise degrades the neural coding of these critical sounds, in turn interfering with auditory learning. Despite the importance of robust and reliable auditory processing during early childhood, little is known about the neurophysiology underlying speech processing in children so young. To better understand the physiological constraints these adverse listening scenarios impose on speech sound coding during early childhood, auditory-neurophysiological responses were elicited to a consonant-vowel syllable in quiet and background noise in a cohort of typically-developing preschoolers (ages 3–5 yr). Overall, responses were degraded in noise: they were smaller, less stable across trials, slower, and there was poorer coding of spectral content and the temporal envelope. These effects were exacerbated in response to the consonant transition relative to the vowel, suggesting that the neural coding of spectrotemporally-dynamic speech features is more tenuous in noise than the coding of static features—even in children this young. Neural coding of speech temporal fine structure, however, was more resilient to the addition of background noise than coding of temporal envelope information. Taken together, these results demonstrate that noise places a neurophysiological constraint on speech processing during early childhood by causing a breakdown in neural processing of speech acoustics. These results may explain why some listeners have inordinate difficulties understanding speech in noise. Speech-elicited auditory-neurophysiological responses offer objective insight into listening skills during early childhood by reflecting the integrity of neural coding in quiet and noise; this paper documents typical response properties

  20. Estimation and optimization of thermal performance of evacuated tube solar collector system

    NASA Astrophysics Data System (ADS)

    Dikmen, Erkan; Ayaz, Mahir; Ezen, H. Hüseyin; Küçüksille, Ecir U.; Şahin, Arzu Şencan

    2014-05-01

    In this study, artificial neural networks (ANNs) and adaptive neuro-fuzzy (ANFIS) in order to predict the thermal performance of evacuated tube solar collector system have been used. The experimental data for the training and testing of the networks were used. The results of ANN are compared with ANFIS in which the same data sets are used. The R2-value for the thermal performance values of collector is 0.811914 which can be considered as satisfactory. The results obtained when unknown data were presented to the networks are satisfactory and indicate that the proposed method can successfully be used for the prediction of the thermal performance of evacuated tube solar collectors. In addition, new formulations obtained from ANN are presented for the calculation of the thermal performance. The advantages of this approaches compared to the conventional methods are speed, simplicity, and the capacity of the network to learn from examples. In addition, genetic algorithm (GA) was used to maximize the thermal performance of the system. The optimum working conditions of the system were determined by the GA.