Sample records for early paleozoic rocks

  1. Biostratigraphy and petrography of upper Paleozoic rocks of Sierra Las Pintas, northern Baja California

    NASA Astrophysics Data System (ADS)

    Navas-Parejo, Pilar; Lara-Peña, R. Aaron; Torres-Martínez, Miguel Angel; Martini, Michelangelo

    2018-07-01

    A transported crinoid fauna is herein described for the first time in the Paleozoic succession cropping out in the Sierra Las Pintas, northern Baja California, northwestern Mexico. The fossil association includes Heterostelechus texanus Moore and Jeffords, Preptopremnum laeve? Moore and Jeffords, and Mooreanteris perforatus Moore and Jeffords, which indicates a Middle Pennsylvanian-early Permian time-averaged age. The studied area corresponds with the northernmost outcrop of definitely late Paleozoic deep-water facies in northwestern Mexico and the southern United States. Petrographic analyses indicate that the studied metasandstones were primarily derived from high-grade metamorphic rocks and from a shallow-water platform environment dominated by crinoid meadows. These results allow the correlation of the studied metasedimentary rocks with the Carboniferous Rancho Nuevo Formation of the Sonora allochthon, which crops out in central Sonora. The Sonora allochthon includes an Early Ordovician-Late Pennsylvanian sedimentary succession that was deposited in the oceanic basin located south of the Laurentian craton. Therefore, upper Paleozoic metasedimentary rocks of the Sierra Las Pintas were deposited along the same continental margin of Laurentia as those rocks in the Sonora allochthon, and were mostly derived from metamorphic rocks of the continental craton and by the typical Carboniferous encrinites, which characterize the shallow-water rocks of central and northern Sonora.

  2. Paleozoic intrusive rocks from the Dunhuang tectonic belt, NW China: Constraints on the tectonic evolution of the southernmost Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Sun, Yong; Diwu, Chunrong; Zhu, Tao; Ao, Wenhao; Zhang, Hong; Yan, Jianghao

    2017-05-01

    The Dunhuang tectonic belt (DTB) is of great importance for understanding the tectonic evolution of the southernmost Central Asian Orogenic Belt (CAOB). In this study, the temporal-spatial distribution, petrogenesis and tectonic setting of the Paleozoic representative intrusive rocks from the DTB were systematically investigated to discuss crustal evolution history and tectonic regime of the DTB during Paleozoic. Our results reveal that the Paleozoic magmatism within the DTB can be broadly divided into two distinct episodes of early Paleozoic and late Paleozoic. The early Paleozoic intrusive rocks, represented by a suite metaluminous-slight peraluminous and medium- to high-K calc-alkaline I-type granitoids crystallized at Silurian (ca. 430-410 Ma), are predominantly distributed along the northern part of the DTB. They were probably produced with mineral assemblage of eclogite or garnet + amphibole + rutile in the residue, and were derived from magma mixing source of depleted mantle materials with various proportions of Archean-Mesoproterozoic continental crust. The late Paleozoic intrusive rocks can be further subdivided into two stages of late Devonian stage (ca. 370-360 Ma) and middle Carboniferous stage (ca. 335-315 Ma). The former stage is predominated by metaluminous to slight peraluminous and low-K tholeiite to high-K calc-alkaline I-type granitic rocks distributed in the central part of the DTB. They were also generated with mineral assemblage of amphibolite- to eclogite-facies in the residue, and originated from magma source of depleted mantle materials mixed with different degrees of old continental crust. The later stage is represented by adakite and alkali-rich granite exposed in the southern part of the DTB. The alkali-rich granites studied in this paper were possibly produced with mineral assemblage of granulite-facies in the residue and were generated by partial melting of thickened lower continental crust. Zircon Hf isotopes and field distribution of

  3. Geochronology and geochemistry of early Paleozoic igneous rocks of the Lesser Xing'an Range, NE China: Implications for the tectonic evolution of the eastern Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-wei; Xu, Wen-liang; Pei, Fu-ping; Wang, Feng; Guo, Peng

    2016-09-01

    This paper presents new zircon U-Pb, Hf isotope, and whole-rock major and trace element data for early Paleozoic igneous rocks of the Lesser Xing'an Range, NE China, in order to constrain the early Paleozoic tectonic evolution of the eastern Central Asian Orogenic Belt (CAOB). Zircon U-Pb dating indicates that early Paleozoic magmatic events within the northern Songnen-Zhangguangcai Range Massif (SZM) can be subdivided into four stages: Middle Cambrian ( 505 Ma), Late Cambrian ( 490 Ma), Early-Middle Ordovician ( 470 Ma), and Late Ordovician (460-450 Ma). The Middle Cambrian monzogranites are K-rich, weakly to strongly peraluminous, and characterized by pronounced heavy rare earth element (HREE) depletions, high Sr/Y ratios, low Y concentrations, low primary zircon εHf(t) values (- 6.79 to - 1.09), and ancient two-stage model (TDM2) ages (1901-1534 Ma). These results indicate derivation from partial melting of thickened ancient crustal materials that formed during the amalgamation of the northern SZM and the northern Jiamusi Massif (JM). The Late Cambrian monzonite, quartz monzonite, and monzogranite units are chemically similar to A-type granites, and contain zircons with εHf(t) values of - 2.59 to + 1.78 and TDM2 ages of 1625-1348 Ma. We infer that these rocks formed from primary magmas generated by partial melting of Mesoproterozoic accreted lower crustal materials in a post-collisional extensional environment. The Early-Middle Ordovician quartz monzodiorite, quartz monzonite, monzogranite, and rhyolite units are calc-alkaline, relatively enriched in light REEs (LREEs) and large ion lithophile elements (LILEs; e.g., Rb, Th, and U), depleted in HREEs and high field strength elements (HFSEs; e.g., Nb, Ta, and Ti), and contain zircons with εHf(t) values of - 7.33 to + 4.98, indicative of formation in an active continental margin setting. The Late Ordovician alkali-feldspar granite and rhyolite units have A-type granite affinities that suggest they formed in an

  4. Origin and tectonic evolution of early Paleozoic arc terranes abutting the northern margin of North China Craton

    NASA Astrophysics Data System (ADS)

    Zhou, Hao; Pei, Fu-Ping; Zhang, Ying; Zhou, Zhong-Biao; Xu, Wen-Liang; Wang, Zhi-Wei; Cao, Hua-Hua; Yang, Chuan

    2017-12-01

    The origin and tectonic evolution of the early Paleozoic arc terranes abutting the northern margin of the North China Craton (NCC) are widely debated. This paper presents detrital zircon U-Pb and Hf isotopic data of early Paleozoic strata in the Zhangjiatun arc terrane of central Jilin Province, northeast (NE) China, and compares them with the Bainaimiao and Jiangyu arc terranes abutting the northern margin of the NCC. Detrital zircons from early Paleozoic strata in three arc terranes exhibit comparable age groupings of 539-430, 1250-577, and 2800-1600 Ma. The Paleoproterozoic to Neoarchean ages and Hf isotopic composition of the detrital zircons imply the existence of the Precambrian fragments beneath the arc terranes. Given the evidences from geology, igneous rocks, and detrital zircons, we proposed that the early Paleozoic arc terranes abutting the northern margin of the NCC are a united arc terrane including the exotic Precambrian fragments, and these fragments shared a common evolutionary history from Neoproterozoic to early-middle Paleozoic.

  5. Early Paleozoic subduction initiation volcanism of the Iwatsubodani Formation, Hida Gaien belt, Southwest Japan

    NASA Astrophysics Data System (ADS)

    Tsukada, Kazuhiro; Yamamoto, Koshi; Gantumur, Onon; Nuramkhaan, Manchuk

    2017-06-01

    In placing Japanese tectonics in an Asian context, variation in the Paleozoic geological environment is a significant issue. This paper investigates the geochemistry of the lower Paleozoic basalt formation (Iwatsubodani Formation) in the Hida Gaien belt, Japan, to consider its tectonic setting. This formation includes the following two types of rock in ascending order: basalt A with sub-ophitic texture and basalt B with porphyritic texture. Basalt A has a high and uniform FeO*/MgO ratio, moderate TiO2, high V, and low Ti/V. The HFSE and REE are nearly the same as those in MORB, and all the data points to basalt A being the "MORB-like fore-arc tholeiitic basalt (FAB)" reported, for example, from the Izu-Bonin-Mariana arc. By contrast, basalt B has a low FeO*/MgO ratio, low TiO2, and low V and Ti/V. It has an LREE-enriched trend and a distinct negative Nb anomaly in the MORB-normalized multi-element pattern and a moderately high LREE/HREE. All these factors suggest that basalt B is calc-alkaline basalt. It is known that FAB is erupted at the earliest stage of arc formation—namely, subduction initiation—and that boninitic/tholeiitic/calc-alkaline volcanism follows at the supra-subduction zone (SSZ). Thus, the occurrence of basalts A (FAB) and B (calc-alkaline rock) is strong evidence of early Paleozoic arc-formation initiation at an SSZ. Evidence for an early Paleozoic SSZ arc is also recognized from the Oeyama, Hayachine-Miyamori, and Sergeevka ophiolites. Hence, both these ophiolites and the Iwatsubodani Formation probably coexisted in a primitive SSZ system in the early Paleozoic.

  6. Geochronology and geochemistry of early Paleozoic intrusive rocks from the Khanka Massif in the Russian Far East: Petrogenesis and tectonic implications

    NASA Astrophysics Data System (ADS)

    Xu, Ting; Xu, Wen-Liang; Wang, Feng; Ge, Wen-Chun; Sorokin, A. A.

    2018-02-01

    This paper presents new geochronological and geochemical data for early Paleozoic intrusive rocks from the Khanka Massif in the Russian Far East, with the aim of elucidating the Paleozoic evolution and tectonic attributes of the Khanka Massif. New U-Pb zircon data indicate that early Paleozoic magmatism within the Khanka Massif can be subdivided into at least four stages: 502, 492, 462-445, and 430 Ma. The 502 Ma pyroxene diorites contain 58.28-59.64 wt% SiO2, 2.84-3.69 wt% MgO, and relatively high Cr and Ni contents. Negative εHf(t) values (- 1.8 to - 0.4), along with other geochemical data, indicate that the primary magma was derived from partial melting of mafic lower crust with the addition of mantle material. The 492 Ma syenogranites have high SiO2 and K2O contents, and show positive Eu anomalies, indicating the primary magma was generated by partial melting of lower crust at relatively low pressure. The 445 Ma Na-rich trondhjemites display high Sr/Y ratios and positive εHf(t) values (+ 1.8 to + 3.9), indicating the primary magma was generated by partial melting of thickened hydrous mafic crust. The 430 Ma granitoids have high SiO2 and K2O contents, zircon εHf(t) values of - 5.4 to + 5.8, and two-stage model ages of 1757-1045 Ma, suggesting the primary magma was produced by partial melting of heterogeneous Proterozoic lower crustal material. The geochemistry of these early Paleozoic intrusive assemblages indicates their formation in an active continental margin setting associated with the subduction of a paleo-oceanic plate beneath the Khanka Massif. The εHf(t) values show an increasingly negative trend with increasing latitude, revealing a lateral heterogeneity of the lower crust beneath the Khanka Massif. Regional comparisons of the magmatic events indicate that the Khanka Massif in the Russian Far East has a tectonic affinity to the Songnen-Zhangguangcai Range Massif rather than the adjacent Jiamusi Massif.

  7. Late Paleozoic orogeny in Alaska's Farewell terrane

    USGS Publications Warehouse

    Bradley, D.C.; Dumoulin, Julie A.; Layer, P.; Sunderlin, D.; Roeske, S.; McClelland, B.; Harris, A.G.; Abbott, G.; Bundtzen, T.; Kusky, T.

    2003-01-01

    Evidence is presented for a previously unrecognized late Paleozoic orogeny in two parts of Alaska's Farewell terrane, an event that has not entered into published scenarios for the assembly of Alaska. The Farewell terrane was long regarded as a piece of the early Paleozoic passive margin of western Canada, but is now thought, instead, to have lain between the Siberian and Laurentian (North American) cratons during the early Paleozoic. Evidence for a late Paleozoic orogeny comes from two belts located 100-200 km apart. In the northern belt, metamorphic rocks dated at 284-285 Ma (three 40Ar/39Ar white-mica plateau ages) provide the main evidence for orogeny. The metamorphic rocks are interpreted as part of the hinterland of a late Paleozoic mountain belt, which we name the Browns Fork orogen. In the southern belt, thick accumulations of Pennsylvanian-Permian conglomerate and sandstone provide the main evidence for orogeny. These strata are interpreted as the eroded and deformed remnants of a late Paleozoic foreland basin, which we name the Dall Basin. We suggest that the Browns Fork orogen and Dall Basin comprise a matched pair formed during collision between the Farewell terrane and rocks to the west. The colliding object is largely buried beneath Late Cretaceous flysch to the west of the Farewell terrane, but may have included parts of the so-called Innoko terrane. The late Paleozoic convergent plate boundary represented by the Browns Fork orogen likely connected with other zones of plate convergence now located in Russia, elsewhere in Alaska, and in western Canada. Published by Elsevier B.V.

  8. Early Paleozoic tectonic reconstruction of Iran: Tales from detrital zircon geochronology

    NASA Astrophysics Data System (ADS)

    Moghadam, Hadi Shafaii; Li, Xian-Hua; Griffin, William L.; Stern, Robert J.; Thomsen, Tonny B.; Meinhold, Guido; Aharipour, Reza; O'Reilly, Suzanne Y.

    2017-01-01

    In this study we use detrital zircons to probe the Early Paleozoic history of NE Iran and evaluate the link between sediment sources and Gondwanan pre-Cadomian, Cadomian and younger events. U-Pb zircon ages and Hf isotopic compositions are reported for detrital zircons from Ordovician and Early Devonian sedimentary rocks from NE Iran. These clastic rocks are dominated by zircons with major age populations at 2.5 Ga, 0.8-0.6 Ga, 0.5 Ga and 0.5-0.4 Ga as well as a minor broad peak at 1.0 Ga. The source of 2.5 Ga detrital zircons is enigmatic; they may have been supplied from the Saharan Metacraton (or West African Craton) to the southwest or Afghanistan-Tarim to the east. The detrital zircons with age populations at 0.8-0.6 Ga probably originated from Cryogenian-Ediacaran juvenile igneous rocks of the Arabian-Nubian Shield; this inference is supported by their juvenile Hf isotopes, although some negative εHf (t) values suggest that other sources (such as the West African Craton) were also involved. The age peak at ca 0.5 Ga correlates with Cadomian magmatism reported from Iranian basement and elsewhere in north Gondwana. The variable εHf (t) values of Cadomian detrital zircons, resembling the εHf (t) values of zircons in magmatic Cadomian rocks from Iran and Taurides (Turkey), suggest an Andean-type margin and the involvement of reworked older crust in the generation of the magmatic rocks. The youngest age population at 0.5-0.4 Ga is interpreted to represent Gondwana rifting and the opening of Paleotethys, which probably started in Late Cambrian-Ordovician time. A combination of U-Pb dating and Hf-isotope data from Iran, Turkey and North Gondwana confirms that Iran and Turkey were parts of Gondwana at least until late Paleozoic time.

  9. Early Paleozoic magmatic events in the eastern Klamath Mountains, northern California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallin, E.T.; Mattinson, J.M.; Potter, A.W.

    1988-02-01

    New U-Pb zircon ages for nine samples of tonalite and pegmatitic trondhjemite from the Trinity ophiolite and associated melange reveal a complex history of magmatic activity extending back into the earliest Cambrian, much older than previously believed. Earlier investigations, based on limited data, recognized lower Paleozoic crustal elements in the eastern Klamath terrane (EKT) ranging in age from Middle Ordovician to Early to Middle Devonian. The new work in the Yreka-Callahan area of the EKT confirms the Ordovician (440-475 Ma) and younger ages, but reveals for the first time the presence of tonalitic rocks that crystallized during a narrow timemore » interval at about 565-570 Ma. The authors also recognize younger, Late Silurian magmatism at 412 Ma. In the context of available mapping, these ages indicate that the Trinity ophiolite is broadly polygenetic because parts of it yield crystallization ages that span approximately 150 m.y. Superjacent dismembered units of probable early Paleozoic age may be tectonostratigraphically equivalent to the Sierra City melange in the northern Sierra Nevada.« less

  10. Early Paleozoic paleogeography of the northern Gondwana margin: new evidence for Ordovician-Silurian glaciation

    NASA Astrophysics Data System (ADS)

    Semtner, A.-K.; Klitzsch, E.

    1994-12-01

    During the Early Paleozoic, transgressions and the distribution of sedimentary facies on the northern Gondwana margin were controlled by a regional NNW-SSE to almost north-south striking structural relief. In Early Silurian times, a eustatic highstand enabled the sea to reach its maximum southward extent. The counterclockwise rotation of Gondwana during the Cambrian and Early Ordovician caused the northern Gondwana margin to shift from intertropical to southern polar latitudes in Ordovician times. Glacial and periglacial deposits are reported from many localities in Morocco, Algeria, Niger, Libya, Chad, Sudan, Jordan and Saudi Arabia. The Late Ordovician glaciation phase was followed by a period of a major glacioeustatic sea-level rise in the Early Silurian due to the retreat of the ice-cap. As a consequence of the decreasing water circulation in the basin centers (Central Arabia, Murzuk- and Ghadames basins), highly bituminous euxinic shales were deposited. These shales are considered to be the main source rock of Paleozoic oil and gas deposits in parts of Saudi Arabia, Libya and Algeria. The following regression in the southern parts of the Early Silurian sea was probably caused by a second glacial advance, which was mainly restricted to areas in Chad, Sudan and Niger. Evidence for glacial activity and fluvioglacial sedimentation is available from rocks overlying the basal Silurian shale in north-east Chad and north-west Sudan. The Early Silurian ice advance is considered to be responsible for the termination of euxinic shale deposition in the basin centers.

  11. Tectono-thermal Evolution of the Lower Paleozoic Petroleum Source Rocks in the Southern Lublin Trough: Implications for Shale Gas Exploration from Maturity Modelling

    NASA Astrophysics Data System (ADS)

    Botor, Dariusz

    2018-03-01

    The Lower Paleozoic basins of eastern Poland have recently been the focus of intensive exploration for shale gas. In the Lublin Basin potential unconventional play is related to Lower Silurian source rocks. In order to assess petroleum charge history of these shale gas reservoirs, 1-D maturity modeling has been performed. In the Łopiennik IG-1 well, which is the only well that penetrated Lower Paleozoic strata in the study area, the uniform vitrinite reflectance values within the Paleozoic section are interpreted as being mainly the result of higher heat flow in the Late Carboniferous to Early Permian times and 3500 m thick overburden eroded due to the Variscan inversion. Moreover, our model has been supported by zircon helium and apatite fission track dating. The Lower Paleozoic strata in the study area reached maximum temperature in the Late Carboniferous time. Accomplished tectono-thermal model allowed establishing that petroleum generation in the Lower Silurian source rocks developed mainly in the Devonian - Carboniferous period. Whereas, during Mesozoic burial, hydrocarbon generation processes did not develop again. This has negative influence on potential durability of shale gas reservoirs.

  12. Early paleozoic gabbro-amphibolites in the structure of the Bureya Terrane (eastern part of the Central Asian Fold Belt): First geochronological data and tectonic position

    NASA Astrophysics Data System (ADS)

    Smirnov, Yu. V.; Sorokin, A. A.; Kudryashov, N. M.

    2012-07-01

    Resulting from U-Pb geochronological study, it has been found that the gabbro-amphibolites composing the Bureya (Turan) Terrane in the eastern part of the Central Asian Fold Belt are Early Paleozoic (Early Ordovician; 455 ± 1.5 Ma) in age rather than Late Proterozoic as was believed earlier. The gabbro-amphibolites and associated metabasalts are close to tholeiites of the intraoceanic island arcs in terms of the geochemical properties. It is suggested that the tectonic block composed of these rocks was initially a seafloor fragment that divided the Bureya and Argun terranes in the Early Paleozoic and was later tectonically incorporated into the modern structure of the Bureya Terrane as a result of Late Paleozoic and Mesozoic events.

  13. Geochronology and geochemistry of late Paleozoic-early Mesozoic igneous rocks of the Erguna Massif, NE China: Implications for the early evolution of the Mongol-Okhotsk tectonic regime

    NASA Astrophysics Data System (ADS)

    Li, Yu; Xu, Wen-Liang; Wang, Feng; Tang, Jie; Zhao, Shuo; Guo, Peng

    2017-08-01

    We undertook geochemical and geochronological studies on late Paleozoic-early Mesozoic igneous rocks from the Erguna Massif with the aim of constraining the early evolution of the Mongol-Okhotsk tectonic regime. Zircon crystals from nine representative samples are euhedral-subhedral, display oscillatory growth zoning, and have Th/U values of 0.14-6.48, indicating a magmatic origin. U-Pb dating of zircon using SIMS and LA-ICP-MS indicates that these igneous rocks formed during the Late Devonian (∼365 Ma), late Carboniferous (∼303 Ma), late Permian (∼256 Ma), and Early-Middle Triassic (246-238 Ma). The Late Devonian rhyolites, together with coeval A-type granites, formed in an extensional environment related to the northwestwards subduction of the Heihe-Nenjiang oceanic plate. Their positive εHf(t) values (+8.4 to +14.4) and Hf two-stage model ages (TDM2 = 444-827 Ma) indicate they were derived from a newly accreted continental crustal source. The late Carboniferous granodiorites are geochemically similar to adakites, and their εHf(t) values (+10.4 to +12.3) and Hf two-stage model ages (TDM2 = 500-607 Ma) suggest they were sourced from thickened juvenile lower crustal material, this thickening may be related to the amalgamation of the Erguna-Xing'an and Songnen-Zhangguangcai Range massifs. Rocks of the late Permian to Middle Triassic suite comprise high-K calc-alkaline monzonites, quartz monzonites, granodiorites, and monzogranites. These rocks are relatively enriched in light rare earth elements and large ion lithophile elements, and depleted in heavy rare earth elements and high field strength elements. They were emplaced, together with coeval porphyry-type ore deposits, along an active continental margin where the Mongol-Okhotsk oceanic plate was subducting beneath the Erguna Massif.

  14. Geochemistry and chronology of the early Paleozoic diorites and granites in the Huangtupo volcanogenic massive sulfide (VMS) deposit, Eastern Tianshan, NW China: Implications for petrogenesis and geodynamic setting

    NASA Astrophysics Data System (ADS)

    Zheng, Jiahao; Chai, Fengmei; Feng, Wanyi; Yang, Fuquan; Shen, Ping

    2018-03-01

    The Eastern Tianshan orogen contains many late Paleozoic porphyry Cu and magmatic Cu-Ni deposits. Recent studies demonstrate that several early Paleozoic volcanogenic massive sulfide (VMS) Cu-polymetallic and porphyry Cu deposits were discovered in the northern part of Eastern Tianshan. This study presents zircon U-Pb, whole-rock geochemical, and Sr-Nd isotopic data for granites and diorites from the Huangtupo VMS Cu-Zn deposit, northern part of the Eastern Tianshan. Our results can provide constraints on the genesis of intermediate and felsic intrusions as well as early Paleozoic geodynamic setting of the northern part of Eastern Tianshan. LA-ICP-MS zircon U-Pb analyses suggest that the granites and diorites were formed at 435 ± 2 Ma and 440 ± 2 Ma, respectively. Geochemical characteristics suggest that the Huangtupo granites and diorites are metaluminous rocks, exhibiting typical subduction-related features such as enrichment in LILE and LREE and depletion in HFSE. The diorites have moderate Mg#, positive εNd(t) values (+6.4 to +7.3), and young Nd model ages, indicative of a depleted mantle origin. The granites exhibit mineral assemblages and geochemical characteristics of I-type granites, and they have positive εNd(t) values (+6.7 to +10.2) and young Nd model ages, suggesting a juvenile crust origin. The early Paleozoic VMS Cu-polymetallic and porphyry Cu deposits in the northern part of Eastern Tianshan were genetically related. The formation of the early Paleozoic magmatic rocks as well as VMS and porphyry Cu deposits in the northern part of Eastern Tianshan was due to a southward subduction of the Junggar oceanic plate.

  15. Paleomagnetism of Early Paleozoic Rocks from the de Long Archipelago and Tectonics of the New Siberian Islands Terrane

    NASA Astrophysics Data System (ADS)

    Metelkin, D. V.; Chernova, A. I.; Matushkin, N. Y.; Vernikovskiy, V. A.

    2017-12-01

    The De Long archipelago is located to the north of the Anjou archipelago as a part of a large group between the Laptev Sea and the East Siberian Sea - the New Siberian Islands and consists of Jeannette Island, Bennett Island and Henrietta Island. These islands have been shown to be part of a single continental terrane, whose tectonic history was independent of other continental masses at least since the Ordovician. Paleomagnetic and precise geological data for the De Long archipelago were absent until recently. Only in 2013 special international field trips to the De Long Islands could be organized and geological, isotope-geochronological and paleomagnetic studies were carried out.On Jeannette Island a volcanic-sedimentary sequence intruded by mafic dikes was described. The age of these dikes is more likely Early Ordovician, close to 480 Ma, as evidenced by the results of our 40Ar/39Ar and paleomagnetic investigations of the dolerites as well as the result from detrital zircons in the host rocks published before. On Bennett Island, there are widespread Cambrian-Ordovician mainly terrigenous rocks. Paleomagnetic results from these rocks characterize the paleogeographic position of the De Long archipelago at 465 Ma and perhaps at 530 Ma, although there is no evidence for the primary origin of magnetization for the latter. On Henrietta Island the Early Cambrian volcanic-sedimentary section was investigated. A paleomagnetic pole for 520 Ma was obtained and confirmed by new 40Ar/39Ar results. Adding to our previous paleomagnetic data for the Anjou archipelago the extended variant of the apparent polar wander path for the New Siberian Island terrane was created. The established paleolatitudes define its location in the equatorial and subtropical zone no higher than 40 degrees during the Early Paleozoic. Because there are no good confirmations for true polarity and related geographic hemisphere we present two possibilities for tectonic reconstruction. But both these

  16. Facies patterns and conodont biogeography in Arctic Alaska and the Canadian Arctic Islands: Evidence against juxtaposition of these areas during early Paleozoic time

    USGS Publications Warehouse

    Dumoulin, Julie A.; Harris, A.G.; Bradley, D.C.; De Freitas, T. A.

    2000-01-01

    Differences in lithofacies and biofacies suggest that lower Paleozoic rocks now exposed in Arctic Alaska and the Canadian Arctic Islands did not form as part of a single depositional system. Lithologic contrasts are noted in shallow- and deep-water strata and are especially marked in Ordovician and Silurian rocks. A widespread intraplatform basin of Early and Middle Ordovician age in northern Alaska has no counterpart in the Canadian Arctic, and the regional drowning and backstepping of the Silurian shelf margin in Canada has no known parallel in northern Alaska. Lower Paleozoic basinal facies in northern Alaska are chiefly siliciclastic, whereas resedimented carbonates are volumetrically important in Canada. Micro- and macrofossil assemblages from northern Alaska contain elements typical of both Siberian and Laurentian biotic provinces; coeval Canadian Arctic assemblages contain Laurentian forms but lack Siberian species. Siberian affinities in northern Alaskan biotas persist from at least Middle Cambrian through Mississippian time and appear to decrease in intensity from present-day west to east. Our lithologic and biogeographic data are most compatible with the hypothesis that northern Alaska-Chukotka formed a discrete tectonic block situated between Siberia and Laurentia in early Paleozoic time. If Arctic Alaska was juxtaposed with the Canadian Arctic prior to opening of the Canada basin, biotic constraints suggest that such juxtaposition took place no earlier than late Paleozoic time.

  17. Paleozoic to early Cenozoic cooling and exhumation of the basement underlying the eastern Puna plateau margin prior to plateau growth

    NASA Astrophysics Data System (ADS)

    Insel, N.; Grove, M.; Haschke, M.; Barnes, J. B.; Schmitt, A. K.; Strecker, M. R.

    2012-12-01

    Constraining the pre-Neogene history of the Puna plateau is crucial for establishing the initial conditions that attended the early stage evolution of the southern extent of the Andean plateau. We apply high- to low-temperature thermochronology data from plutonic rocks in northwestern Argentina to quantify the Paleozoic, Mesozoic and early Tertiary cooling history of the Andean crust. U-Pb crystallization ages of zircons indicate that pluton intrusion occurred during the early mid-Ordovician (490-470 Ma) and the late Jurassic (160-150 Ma). Lower-temperature cooling histories from 40Ar/39Ar analyses of K-feldspar vary substantially. Basement rocks underlying the western Puna resided at temperatures below 200°C (<6 km depth) since the Devonian (˜400 Ma). In contrast, basement rocks underlying the southeastern Puna were hotter (˜200-300°C) throughout the Paleozoic and Jurassic and cooled to temperatures of <200°C by ˜120 Ma. The southeastern Puna basement records a rapid cooling phase coeval with active extension of the Cretaceous Salta rift at ˜160-100 Ma that we associate with tectonic faulting and lithospheric thinning. The northeastern Puna experienced protracted cooling until the late Cretaceous with temperatures <200°C during the Paleocene. Higher cooling rates between 78 and 55 Ma are associated with thermal subsidence during the postrift stage of the Salta rift and/or shortening-related flexural subsidence. Accelerated cooling and deformation during the Eocene was focused within a narrow zone along the eastern Puna/Eastern Cordillera transition that coincides with Paleozoic/Mesozoic structural and thermal boundaries. Our results constrain regional erosion-induced cooling throughout the Cenozoic to have been less than ˜150°C, which implies total Cenozoic denudation of <6-4 km.

  18. Collision of the Tacheng block with the Mayile-Barleik-Tangbale accretionary complex in Western Junggar, NW China: Implication for Early-Middle Paleozoic architecture of the western Altaids

    NASA Astrophysics Data System (ADS)

    Zhang, Ji'en; Xiao, Wenjiao; Luo, Jun; Chen, Yichao; Windley, Brian F.; Song, Dongfang; Han, Chunming; Safonova, Inna

    2018-06-01

    Western Junggar in NW China, located to the southeast of the Boshchekul-Chingiz (BC) Range and to the north of the Chu-Balkhash-Yili microcontinent (CBY), played a key role in the architectural development of the western Altaids. However, the mutual tectonic relationships have been poorly constrained. In this paper, we present detailed mapping, field structural geology, and geochemical data from the Barleik-Mayile-Tangbale Complex (BMTC) in Western Junggar. The Complex is divisible into Zones I, II and III, which are mainly composed of Cambrian-Silurian rocks. Zone I contains pillow lava, siliceous shale, chert, coral-bearing limestone, sandstone and purple mudstone. Zone II consists of basaltic lava, siliceous shale, chert, sandstone and mudstone. Zone III is characterized by basalt, chert, sandstone and mudstone. These rocks represent imbricated ocean plate stratigraphy, which have been either tectonically juxtaposed by thrusting or form a mélange with a block-in-matrix structure. All these relationships suggest that the BMTC is an Early-Middle Paleozoic accretionary complex in the eastern extension of the BC Range. These Early Paleozoic oceanic rocks were thrust onto Silurian sediments forming imbricate thrust stacks that are unconformably overlain by Devonian limestone, conglomerate and sandstone containing fossils of brachiopoda, crinoidea, bryozoa, and plant stems and leaves. The tectonic vergence of overturned folds in cherts, drag-related curved cleavages and σ-type structures on the main thrust surface suggests top-to-the-NW transport. Moreover, the positive εNd(t) values of volcanic rocks from the Tacan-1 drill-core, and the positive εHf(t) values and post-Cambrian ages of detrital zircons from Silurian and Devonian strata to the south of the Tacheng block indicate that its basement is a depleted and juvenile lithosphere. And there was a radial outward transition from coral-bearing shallow marine (shelf) to deep ocean (pelagic) environments, and from

  19. Reconstruction of an early Paleozoic continental margin based on the nature of protoliths in the Nome Complex, Seward Peninsula, Alaska

    USGS Publications Warehouse

    Till, Alison B.; Dumoulin, Julie A.; Ayuso, Robert A.; Aleinikoff, John N.; Amato, Jeffrey M.; Slack, John F.; Shanks, W.C. Pat

    2014-01-01

    The Nome Complex is a large metamorphic unit that sits along the southern boundary of the Arctic Alaska–Chukotka terrane, the largest of several micro continental fragments of uncertain origin located between the Siberian and Laurentian cratons. The Arctic Alaska–Chukotka terrane moved into its present position during the Mesozoic; its Mesozoic and older movements are central to reconstruction of Arctic tectonic history. Accurate representation of the Arctic Alaska–Chukotka terrane in reconstructions of Late Proterozoic and early Paleozoic paleogeography is hampered by the paucity of information available. Most of the Late Proterozoic to Paleozoic rocks in the Alaska–Chukotka terrane were penetratively deformed and recrystallized during the Mesozoic deformational events; primary features and relationships have been obliterated, and age control is sparse. We use a variety of geochemical, geochronologic, paleontologic, and geologic tools to read through penetrative deformation and reconstruct the protolith sequence of part of the Arctic Alaska–Chukotka terrane, the Nome Complex. We confirm that the protoliths of the Nome Complex were part of the same Late Proterozoic to Devonian continental margin as weakly deformed rocks in the southern and central part of the terrane, the Brooks Range. We show that the protoliths of the Nome Complex represent a carbonate platform (and related rocks) that underwent incipient rifting, probably during the Ordovician, and that the carbonate platform was overrun by an influx of siliciclastic detritus during the Devonian. During early phases of the transition to siliciclastic deposition, restricted basins formed that were the site of sedimentary exhalative base-metal sulfide deposition. Finally, we propose that most of the basement on which the largely Paleozoic sedimentary protolith was deposited was subducted during the Mesozoic.

  20. Paleozoic and Mesozoic deformations in the central Sierra Nevada, California

    USGS Publications Warehouse

    Nokleberg, Warren J.; Kistler, Ronald Wayne

    1980-01-01

    Analysis of structural and stratigraphic data indicates that several periods of regional deformation, consisting of combined folding, faulting, cataclasis, and regional metamorphism, occurred throughout the central Sierra Nevada during Paleozoic and Mesozoic time. The oldest regional deformation occurred alono northward trends during the Devonian and Mississippian periods in most roof pendants containing lower Paleozoic metasedimentary rocks at the center and along the crest of the range. This deformation is expressed in some roof pendants by an angular unconformity separating older thrice-deformed from younger twice-deformed Paleozoic metasedimentary rocks. The first Mesozoic deformation, which consisted of uplift and erosion and was accompanied by the onset of Andean-type volcanism during the Permian and Triassic, is expressed by an angular unconformity in several roof pendants from the Saddlebag Lake to the Mount Morrison areas. This unconformity is defined by Permian and Triassic andesitic to rhyolitic metavolcanic rocks unconformably overlying more intensely deformed Pennsylvanian, Permian(?), and older metasedimentary rocks. A later regional deformation occurred during the Triassic along N. 20?_30? W. trends in Permian and Triassic metavolcanic rocks of the Saddlebag Lake and Mount Dana roof pendants, in upper Paleozoic rocks of the Pine Creek roof pendant, and in the Calaveras Formation of the western metamorphic belt; the roof pendants are crosscut by Upper Triassic granitic rocks of the Lee Vining intrusive epoch. A still later period of Early and Middle Jurassic regional deformation occurred along N. 30?-60? E. trends in upper Paleozoic rocks of the Calaveras Formation of the western metamorphic belt. A further period of deformation was the Late Jurassic Nevadan orogeny, which occurred along N. 20?_40? W. trends in Upper Jurassic rocks of the western metamorphic belt that are crosscut by Upper Jurassic granitic rocks of the Yosemite intrusive epoch

  1. The Timan-Pechora Basin province of northwest Arctic Russia; Domanik, Paleozoic total petroleum system

    USGS Publications Warehouse

    Lindquist, Sandra J.

    1999-01-01

    The Domanik-Paleozoic oil-prone total petroleum system covers most of the Timan-Pechora Basin Province of northwestern Arctic Russia. It contains nearly 20 BBOE ultimate recoverable reserves (66% oil). West of the province is the early Precambrian Eastern European craton margin. The province itself was the site of periodic Paleozoic tectonic events, culminating with the Hercynian Uralian orogeny along its eastern border. The stratigraphic record is dominated by Paleozoic platform and shelf-edge carbonates succeeded by Upper Permian to Triassic molasse siliciclastics that are locally present in depressions. Upper Devonian (Frasnian), deep marine shale and limestone source rocks ? with typically 5 wt % total organic carbon ? by middle Mesozoic time had generated hydrocarbons that migrated into reservoirs ranging in age from Ordovician to Triassic but most focused in Devonian and Permian rocks. Carboniferous structural inversions of old aulacogen borders, and Hercynian (Permian) to Early Cimmerian (Late Triassic to Early Jurassic) orogenic compression not only impacted depositional patterns, but also created and subsequently modified numerous structural traps within the province.

  2. Conodonts of the western Paleozoic and Triassic belt, Klamath Mountains, California and Oregon

    USGS Publications Warehouse

    Irwin, William P.; Wardlaw, Bruce R.; Kaplan, T.A.

    1983-01-01

    Conodonts were extracted from 32 samples of limestone and 5 samples of chert obtained from the Western Paleozoic and Triassic belt of the Klamath Mountains province. Triassic conodonts were found in 17 samples, and late Paleozoic conodonts in 7 samples. Conodonts of the remaining 13 samples cannot be dated more closely than early or middle Paleozoic through Triassic. The late Paleozoic conodonts are restricted to the North Fork and Hayfork terranes. The Hayfork terrane also contains Early, Middle, and Late Triassic conodonts; mostly Neogondolella. Conodonts from samples of the Rattlesnake Creek terrane and the northern undivided part of the belt are all Late Triassic and are generally Epigondolella. The conodont data support the concept that many of the limestone bodies are olistoliths or tectonic blocks in melange. Color alteration of the conodonts indicates that the rocks of the Western Paleozoic and Triassic belt have been heated to temperatures between 300 degrees and 500 degrees C during regional tectonism.

  3. Strontium Isotopic Composition of Paleozoic Carbonate Rocks in the Nevada Test Site Vicinity, Clark, Lincoln, and Nye Counties, Nevada and Inyo County, California.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James B. Paces; Zell E. Peterman; Kiyoto Futa

    2007-08-07

    Ground water moving through permeable Paleozoic carbonate rocks represents the most likely pathway for migration of radioactive contaminants from nuclear weapons testing at the Nevada Test Site, Nye County, Nevada. The strontium isotopic composition (87Sr/86Sr) of ground water offers a useful means of testing hydrochemical models of regional flow involving advection and reaction. However, reaction models require knowledge of 87Sr/86Sr data for carbonate rock in the Nevada Test Site vicinity, which is scarce. To fill this data gap, samples of core or cuttings were selected from 22 boreholes at depth intervals from which water samples had been obtained previously aroundmore » the Nevada Test Site at Yucca Flat, Frenchman Flat, Rainier Mesa, and Mercury Valley. Dilute acid leachates of these samples were analyzed for a suite of major- and trace-element concentrations (MgO, CaO, SiO2, Al2O3, MnO, Rb, Sr, Th, and U) as well as for 87Sr/86Sr. Also presented are unpublished analyses of 114 Paleozoic carbonate samples from outcrops, road cuts, or underground sites in the Funeral Mountains, Bare Mountain, Striped Hills, Specter Range, Spring Mountains, and ranges east of the Nevada Test Site measured in the early 1990's. These data originally were collected to evaluate the potential for economic mineral deposition at the potential high-level radioactive waste repository site at Yucca Mountain and adjacent areas (Peterman and others, 1994). Samples were analyzed for a suite of trace elements (Rb, Sr, Zr, Ba, La, and Ce) in bulk-rock powders, and 87Sr/86Sr in partial digestions of carbonate rock using dilute acid or total digestions of silicate-rich rocks. Pre-Tertiary core samples from two boreholes in the central or western part of the Nevada Test Site also were analyzed. Data are presented in tables and summarized in graphs; however, no attempt is made to interpret results with respect to ground-water flow paths in this report. Present-day 87Sr/86Sr values are compared

  4. Strontium Isotopic Composition of Paleozoic Carbonate Rocks in the Nevada Test Site Vicinity, Clark, Lincoln, and Nye Counties, Nevada, and Inyo County, California

    USGS Publications Warehouse

    Paces, James B.; Peterman, Zell E.; Futo, Kiyoto; Oliver, Thomas A.; Marshall, Brian D.

    2007-01-01

    Ground water moving through permeable Paleozoic carbonate rocks represents the most likely pathway for migration of radioactive contaminants from nuclear weapons testing at the Nevada Test Site, Nye County, Nevada. The strontium isotopic composition (87Sr/86Sr) of ground water offers a useful means of testing hydrochemical models of regional flow involving advection and reaction. However, reaction models require knowledge of 87Sr/86Sr data for carbonate rock in the Nevada Test Site vicinity, which is scarce. To fill this data gap, samples of core or cuttings were selected from 22 boreholes at depth intervals from which water samples had been obtained previously around the Nevada Test Site at Yucca Flat, Frenchman Flat, Rainier Mesa, and Mercury Valley. Dilute acid leachates of these samples were analyzed for a suite of major- and trace-element concentrations (MgO, CaO, SiO2, Al2O3, MnO, Rb, Sr, Th, and U) as well as for 87Sr/86Sr. Also presented are unpublished analyses of 114 Paleozoic carbonate samples from outcrops, road cuts, or underground sites in the Funeral Mountains, Bare Mountain, Striped Hills, Specter Range, Spring Mountains, and ranges east of the Nevada Test Site measured in the early 1990's. These data originally were collected to evaluate the potential for economic mineral deposition at the potential high-level radioactive waste repository site at Yucca Mountain and adjacent areas (Peterman and others, 1994). Samples were analyzed for a suite of trace elements (Rb, Sr, Zr, Ba, La, and Ce) in bulk-rock powders, and 87Sr/86Sr in partial digestions of carbonate rock using dilute acid or total digestions of silicate-rich rocks. Pre-Tertiary core samples from two boreholes in the central or western part of the Nevada Test Site also were analyzed. Data are presented in tables and summarized in graphs; however, no attempt is made to interpret results with respect to ground-water flow paths in this report. Present-day 87Sr/86Sr values are compared to values

  5. Devonian post-orogenic extension-related volcano-sedimentary rocks in the northern margin of the Tibetan Plateau, NW China: Implications for the Paleozoic tectonic transition in the North Qaidam Orogen

    NASA Astrophysics Data System (ADS)

    Qin, Yu; Feng, Qiao; Chen, Gang; Chen, Yan; Zou, Kaizhen; Liu, Qian; Jiao, Qianqian; Zhou, Dingwu; Pan, Lihui; Gao, Jindong

    2018-05-01

    The Maoniushan Formation in the northern part of the North Qaidam Orogen (NQO), NW China, contains key information on a Paleozoic change in tectonic setting of the NQO from compression to extension. Here, new zircon U-Pb, petrological, and sedimentological data for the lower molasse sequence of the Maoniushan Formation are used to constrain the timing of this tectonic transition. Detrital zircons yield U-Pb ages of 3.3-0.4 Ga with major populations at 0.53-0.4, 1.0-0.56, 2.5-1.0, and 3.3-2.5 Ga. The maximum depositional age of the Maoniushan Formation is well constrained by a youngest detrital zircon age of ∼409 Ma. Comparing these dates with geochronological data for the region indicates that Proterozoic-Paleozoic zircons were derived mainly from the NQO as well as the Oulongbuluk and Qaidam blocks, whereas Archean zircons were probably derived from the Oulongbuluk Block and the Tarim Craton. The ∼924, ∼463, and ∼439 Ma tectonothermal events recorded in this region indicate that the NQO was involved in the early Neoproterozoic assembly of Rodinia and early Paleozoic microcontinental convergence. A regional angular unconformity between Devonian and pre-Devonian strata within the NQO suggests a period of strong mountain building between the Oulongbuluk and Qaidam blocks during the Silurian, whereas an Early Devonian post-orogenic molasse, evidence of extensional collapse, and Middle to Late Devonian bimodal volcanic rocks and Carboniferous marine carbonate rocks clearly reflect long-lived tectonic extension. Based on these results and the regional geology, we suggest that the Devonian volcano-sedimentary rocks within the NQO were formed in a post-orogenic extensional setting similar to that of the East Kunlun Orogen, indicating that a major tectonic transition from compression to extension in these two orogens probably commenced in the Early Devonian.

  6. Geophysical modeling of the structural relationships between the Precambrian Reading Prong rocks and the Paleozoic sedimentary sequence, Easton quadrangle, PA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, D.M.; Malinconico, L.L. Jr.

    1993-03-01

    This project involves the geophysical modeling of the structural relationships between the Precambrian Reading Prong rocks and the Paleozoic sedimentary cover rocks near Easton, Pennsylvania. The Precambrian rocks have generally been assumed to have been emplaced on the Paleozoic sequence along a shallow thrust fault. However, at present time the attitude of the faults bordering the Precambrian terranes are all very steeply dipping. This was explained by the subsequent folding of the whole sequence during later orogenic activity. The objective of this work is to determine the attitude and depth of the fault contact between the Precambrian crystalline rocks andmore » the Paleozoic sedimentary rocks. A series of traverses (each separated by approximately one mile) were established perpendicular to the strike of the Precambrian rocks. Along each traverse both gravity and magnetic readings were taken at 0.2 kilometer intervals. The data were reduced and presented as profiles and contour maps. Both the magnetic and gravity data show positive anomalies that correlate spatially with the location of the Precambrian rocks. The gravity data have a long wavelength regional trend increasing to the north with a shorter wavelength anomaly of 2 milligals which coincides with the Precambrian rocks. The magnetic data have a single positive anomaly of almost 1,000 gammas which also coincides with the Precambrian terrane. These data will now be used to develop two dimensional density and susceptibility models of the area. From these models, the thickness of each formation and the structural relationships between them, as well as the attitude and depth of the fault contact will be determined.« less

  7. Paleozoic-Mesozoic boundary in the Berry Creek Quadrangle, northwestern Sierra Nevada, California

    USGS Publications Warehouse

    Hietanen, Anna Martta

    1977-01-01

    Structural and petrologic studies in the Berry Creek quadrangle at the north end of the western metamorphic belt of the Sierra Nevada have yielded new information that helps in distinguishing between the chemically similar Paleozoic and Mesozoic rocks. The distinguishing features are structural and textural and result from different degrees of deformation. Most Paleozoic rocks are strongly deformed and thoroughly recrystallized. Phenocrysts in meta volcanic rocks are granulated and drawn out into lenses that have sutured outlines. In contrast, the phenocrysts in the Mesozoic metavolcanic rocks show well-preserved straight crystal faces, are only slightly or not at all granulated, and contain fewer mineral inclusions than do those in the Paleozoic rocks. The groundmass in the Paleozoic rocks is recrystallized to a fairly coarse grained albite-epidote-amphibole-chlorite rock, whereas in the Mesozoic rocks the groundmass is a very fine grained feltlike mesh with only spotty occurrence of well-recrystallized finegrained albite-epidote-chlorite-actinolite rock. Primary minerals, such as augite, are locally preserved in the Mesozoic rocks but are altered to a mixture of amphibole, chlorite, and epidote in the Paleozoic rocks. In the contact aureoles of the plutons, and within the Big Bend fault zone, which crosses the area parallel to the structural trends, all rocks are thoroughly recrystallized and strongly deformed. Identification of the Paleozoic and Mesozoic rocks in these parts of the area was based on the continuity of the rock units in the field and on gradual changes in microscopic textures toward the plutons.

  8. Early Paleozoic tectonic reactivation of the Shaoxing-Jiangshan fault zone: Structural and geochronological constraints from the Chencai domain, South China

    NASA Astrophysics Data System (ADS)

    Sun, Hanshen; Li, Jianhua; Zhang, Yueqiao; Dong, Shuwen; Xin, Yujia; Yu, Yingqi

    2018-05-01

    The Shaoxing-Jiangshan fault zone (SJFZ), as a fundamental Neoproterozoic block boundary that separates the Yangtze Block from the Cathaysia Block, is the key to understanding the evolution of South China from Neoproterozoic block amalgamation to early Paleozoic crustal reworking. New structural observations coupled with geochronological ages from the Chencai domain indicate that intense ductile deformation and metamorphism along the SJFZ occurred at ∼460-420 Ma, in response to the early Paleozoic orogeny in South China. To the east of the SJFZ, the deformation involves widespread generations of NE-striking foliation, intrafolial folds, and local development of sinistral-oblique shear zones. The shearing deformation occurred under amphibolite facies conditions at temperatures of >550 °C (locally even >650 °C). To the west of the SJFZ, the deformation corresponds to sinistral-oblique shearing along NE-striking, steep-dipping zones under greenschist facies conditions at temperatures of 400-500 °C. These deformation styles, as typical mid-crustal expressions of continental reworking, reflect tectonic reactivation of the pre-existing, deeply rooted Neoproterozoic block boundary in the early Paleozoic. We infer that the tectonic reactivation, possibly induced by oblique underthrusting of north Cathaysia, facilitated ductile shearing and burial metamorphic reactions, giving rise to the high-strain zones and high-grade metamorphic rocks. With respect to pre-existing mechanical weakness, our work highlights the role of tectonic reactivation of early structures in localizing later deformation before it propagates into yet undeformed domains.

  9. Evidence for Late-Paleozoic brine migration in Cambrian carbonate rocks of the central and southern Appalachians: Implications for Mississippi Valley-type sulfide mineralization

    USGS Publications Warehouse

    Hearn, P.P.; Sutter, J.F.; Belkin, H.E.

    1987-01-01

    Many Lower Paleozoic limestones and dolostones in the Valley and Ridge province of the central and southern Appalachians contain 10 to 25 weight percent authigenic potassium feldspar. This was considered to be a product of early diagenesis, however, 40Ar 39Ar analyses of overgrowths on detrital K-feldspar in Cambrian carbonate rocks from Pennsylvania, Maryland, Virginia, and Tennessee yield Late Carboniferous-Early Permian ages (278-322 Ma). Simple mass balance calculations suggest that the feldspar could not have formed isochemically, but required the flux of multiple pore volumes of fluid through the rocks, reflecting regional fluid migration events during the Late-Paleozoic Alleghanian orogeny. Microthermometric measurements of fluid inclusions in overgrowths on detrital K-feldspar and quartz grains from unmineralized rocks throughout the study area indicate homogenization temperatures from 100?? to 200??C and freezing point depressions of -14?? to -18.5??C (18-21 wt.% NaCl equiv). The apparent similarity of these fluids to fluid inclusions in ore and gangue minerals of nearby Mississippi Valley-type (MVT) deposits suggests that the regional occurrences of authigenic K-feldspar and MVT mineralization may be genetically related. This hypothesis is supported by the discovery of authigenic K-feldspar intergrown with sphalerite in several mines of the Mascot-Jefferson City District, E. Tennessee. Regional potassic alteration in unmineralized carbonate rocks and localized occurrences of MVT mineralization are both explainable by a gravity-driven flow model, in which deep brines migrate towards the basin margin under a hydraulic gradient established during the Alleghanian orogeny. The authigenic K-feldspar may reflect the loss of K during disequilibrium cooling of the ascending brines. MVT deposits are probably localized manifestations of the same migrating fluids, occurring where the necessary physical and chemical traps are present. ?? 1987.

  10. Geology of Paleozoic Rocks in the Upper Colorado River Basin in Arizona, Colorado, New Mexico, Utah, and Wyoming, Excluding the San Juan Basin

    USGS Publications Warehouse

    Geldon, Arthur L.

    2003-01-01

    The geology of the Paleozoic rocks in the Upper Colorado River Basin in Arizona, Colorado, New Mexico, Utah, and Wyoming, was studied as part of the U.S. Geological Survey's Regional Aquifer-System Analysis Program to provide support for hydrogeological interpretations. The study area is segmented by numerous uplifts and basins caused by folding and faulting that have recurred repeatedly from Precambrian to Cenozoic time. Paleozoic rocks in the study area are 0-18,000 feet thick. They are underlain by Precambrian igneous, metamorphic, and sedimentary rocks and are overlain in most of the area by Triassic formations composed mostly of shale. The overlying Mesozoic and Tertiary rocks are 0-27,000 feet thick. All Paleozoic systems except the Silurian are represented in the region. The Paleozoic rocks are divisible into 11 hydrogeologic units. The basal hydrogeologic unit consisting of Paleozoic rocks, the Flathead aquifer, predominantly is composed of Lower to Upper Cambrian sandstone and quartzite. The aquifer is 0-800 feet thick and is overlain gradationally to unconformably by formations of Cambrian to Mississippian age. The Gros Ventre confining unit consists of Middle to Upper Cambrian shale with subordinate carbonate rocks and sandstone. The confining unit is 0-1,100 feet thick and is overlain gradationally to unconformably by formations of Cambrian to Mississippian age. The Bighom aquifer consists of Middle Cambrian to Upper Ordovician limestone and dolomite with subordinate shale and sandstone. The aquifer is 0-3,000 feet thick and is overlain unconformably by Devonian and Mississipplan rocks. The Elbert-Parting confining unit consists of Lower Devonian to Lower Mississippian limestone, dolomite, sandstone, quartzite, shale, and anhydrite. It is 0-700 feet thick and is overlain conformably to unconformably by Upper Devonian and Mississippian rocks. The Madison aquifer consists of two zones of distinctly different lithology. The lower (Redwall-Leadville) zone

  11. Carboniferous - Early Permian magmatic evolution of the Bogda Range (Xinjiang, NW China): Implications for the Late Paleozoic accretionary tectonics of the SW Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Wali, Guzalnur; Wang, Bo; Cluzel, Dominique; Zhong, Linglin

    2018-03-01

    The Late Paleozoic magmatic evolution of the Bogda Range (Chinese North Tianshan) is important for understanding the accretionary history of the Central Asian Orogenic Belt. We investigated the Carboniferous and Lower Permian volcanic and sedimentary sequences of the Daheyan section, southern Bogda Range, and present new zircon U-Pb ages and whole-rock geochemical data for the volcanic rocks. One Carboniferous rhyolite is dated at 298 ± 8 Ma; a Permian basalt yielded many Proterozoic zircon xenocrysts, and its maximum age (∼297 Ma) is constrained by the detrital zircon ages of the sandstone that stratigraphically underlies it. These volcanic rocks belong to calc-alkaline series. We further synthesize previous geochronological, geochemical and isotopic data of magmatic and sedimentary rocks in the Bogda Range. The available data indicate that the magmatism occurred continuously from 350 Ma to 280 Ma. A comprehensive analysis allows us to propose that: (1) the Carboniferous to Early Permian magmatic rocks of the Bogda Range generally show consistent arc-type features; (2) increasing mantle input through time suggests intra-arc extension in a supra-subduction zone; (3) the localized occurrence of Early Permian alkaline pillow basalts and deep water sediments close to the major shear zone advocate a transtensional crustal thinning during the transition from Carboniferous convergence to Early Permian transcurrent tectonics; (4) occurrence of a large number of Proterozoic zircon xenocrysts in the Late Paleozoic magmatic rocks, and Proterozoic detrital zircons in the coeval clastic sediments suggest a continental or transitional basement of the Bogda Arc; (5) subduction in the Bogda area terminated prior to the deposition of Middle Permian terrestrial sediments.

  12. Paleozoic subduction complex and Paleozoic-Mesozoic island-arc volcano-plutonic assemblages in the northern Sierra terrane

    USGS Publications Warehouse

    Hanson, Richard E.; Girty, Gary H.; Harwood, David S.; Schweickert, Richard A.

    2000-01-01

    This field trip provides an overview of the stratigraphic and structural evolution of the northern Sierra terrane, which forms a significant part of the wall rocks on the western side of the later Mesozoic Sierra Nevada batholith in California. The terrane consists of a pre-Late Devonian subduction complex (Shoo Fly Complex) overlain by submarine arc-related deposits that record the evolution of three separate island-arc systems in the Late Sevonian-Early Mississippian, Permian, and Late Triassic-Jurassic. The two Paleozoic are packages and the underlying Shoo Fly Complex have an important bearing on plate-tectonic processes affecting the convergent margin outboard of the Paleozoic Cordilleran miogeocline, although their original paleogeographic relations to North America are controversial. The third arc package represents an overlap assemblage that ties the terrane to North America by the Late Triassic and helps constrain the nature and timing of Mesozoic orogenesis. Several of the field-trip stops examine the record of pre-Late Devonian subduction contained in the Shoo Fly Complex, as well as the paleovolcanology of the overlying Devonian to Jurassic arc rocks. Excellent glaciated exposures provide the opportunity to study a cross section through a tilted Devonian volcano-plutonic association. Additional stops focus on plutonic rocks emplaced during the Middle Jurassic arc magmatism in the terrane, and during the main pulse of Cretaceous magmatism in the Sierra Nevada batholith to the east.

  13. Identifying Early Paleozoic tectonic relations in a region affected by post-Taconian transcurrent faulting, an example from the PA-DE Piedmont

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alcock, J.; Wagner, M.E.; Srogi, L.A.

    1993-03-01

    Post-Taconian transcurrent faulting in the Appalachian Piedmont presents a significant problem to workers attempting to reconstruct the Early Paleozoic tectonic history. One solution to the problem is to identify blocks that lie between zones of transcurrent faulting and that retain the Early Paleozoic arrangement of litho-tectonic units. The authors propose that a comparison of metamorphic histories of different units can be used to recognize blocks of this type. The Wilmington Complex (WC) arc terrane, the pre-Taconian Laurentian margin rocks (LM) exposed in basement-cored massifs, and the Wissahickon Group metapelites (WS) that lie between them are three litho-tectonic units in themore » PA-DE Piedmont that comprise a block assembled in the Early Paleozoic. Evidence supporting this interpretation includes: (1) Metamorphic and lithologic differences across the WC-WS contact and detailed geologic mapping of the contact that suggest thrusting of the WC onto the WS; (2) A metamorphic gradient in the WS with highest grade, including spinel-cordierite migmatites, adjacent to the WC indicating that peak metamorphism of the WS resulted from heating by the WC; (3) A metamorphic discontinuity at the WS-LM contact, evidence for emplacement of the WS onto the LM after WS peak metamorphism; (4) A correlation of mineral assemblage in the Cockeysville Marble of the LM with distance from the WS indicating that peak metamorphism of the LM occurred after emplacement of the WS; and (5) Early Paleozoic lower intercept zircon ages for the LM that are interpreted to date Taconian regional metamorphism. Analysis of metamorphism and its timing relative to thrusting suggest that the WS was associated with the WC before the WS was emplaced onto the LM during the Taconian. It follows that these units form a block that has not been significantly disrupted by later transcurrent shear.« less

  14. Shoshonitic- and adakitic magmatism of the Early Paleozoic age in the Western Kunlun orogenic belt, NW China: Implications for the early evolution of the northwestern Tibetan plateau

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Hattori, Keiko; Liu, Jianguo; Song, Yue; Gao, Yongbao; Zhang, Han

    2017-08-01

    The Western Kunlun orogenic belt in the northwestern margin of the Tibetan plateau contains two magmatic belts; early Paleozoic belt in the northern part of Western Kunlun Terrane (WKT), and early Mesozoic belt in the southern part of WKT. Both formed from northward subduction of the Paleo-Tethys. The early Paleozoic belt contains large Datong and Qiukesu igneous complexes and many smaller plutons. The Datong complex is mainly composed of dark-colored porphyritic syenite and monzonite with minor light-colored dykes of granite and monzonite. The dark-colored rocks are characterized by moderate SiO2 (58.2-69.3 wt.%), and high Al2O3 (15.3-17.1 wt.%), total alkali (Na2O + K2O = 8.07-10.2 wt.%) and ratios of K2O/Na2O (0.77-1.83). They plot in "shoshonite" field, and show high abundances of LILE including LREE ((La/Yb)n = 15.4-26.2; mean 20.2) with pronounced negative anomalies of Nb-Ta-P-Ti in normalized trace elemental patterns and weak negative anomalies of Eu (δEu = 2Eun/(Smn + Gdn) = 0.68-0.80). The light-colored rocks contain slightly higher concentrations of SiO2 (60.3-72.0 wt.%), similar Al2O3 (14.7-17.6 wt.%), and slightly lower total alkalis (6.57-9.14 wt.%) than dark-colored rocks. They show adakitic geochemical signatures with low Y (5.80-17.2 ppm) and Yb (0.63-1.59 ppm), and high Sr/Y (> 40). U-Pb zircon dating indicates that shoshonitic rocks and adakitic dykes formed at 444 Ma to 443 Ma, and a separate small adakitic plug at 462 Ma. The mean εHf(t) values of zircon range from - 1.6 to - 0.94 (n = 14) with TDM2 of 1.5 Ga for shoshonitic rocks and εHf(t) values from - 1.8 to + 0.72 (n = 12) with TDM2 of 1.4 to 1.5 Ga for adakitic rocks. Shoshonitic rocks show initial 87Sr/86Sr and εNd(t) of 0.7092-0.7100 and - 3.9 to - 3.2, respectively, and adakitic rocks yield initial 87Sr/86Sr and εNd(t) of 0.7099-0.7134 and - 3.6 to - 3.1, respectively. Similar Sr, Nd, and Hf isotope compositions for the shoshonitic and adakitic rocks suggest similar ancient rocks

  15. Late Paleozoic magmatism in South China: Oceanic subduction or intracontinental orogeny?

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Yu, J.; Zhao, G.

    2013-12-01

    The significant late Paleozoic magmatism has been widely recognized in the East Asian Blocks, which sheds a light on the assembly and break-up of the Pangea supercontinent. As one of major components in East Asia, however, the South China Block (SCB) does not have much late Paleozoic magmatism recognized. Here we report a gneissic granite intrusion in northeastern Fujian Province, eastern SCB. It is a S-type granite characterized by high K2O and Al2O3, and low SiO2 and Na2O with a high A/CNK ratio of 1.22. Zircons with stubby morphology from this gneissic granite yield 206Pb/238U ages ranging from 326 Ma to 301 Ma with a weighted average age of 313×4 Ma, and negative epsilonHf(t) values from -8.35 to -1.74 with two-stage Hf model ages of 1.43 to 1.84 Ga. This S-type granite was probably originated from late Paleoproterozoic crust during an intracontinental orogeny, not under oceanic subduction. Integrated with previous results on the paleogeographic reconstruction of the SCB, the nature of Paleozoic basins, Early Permian volcanism and U-Pb-Hf isotope of detrital zircons from the late Paleozoic to early Mesozoic sedimentary rocks, our data support a late Paleozoic orogeny in the SCB, which may have included Late Carboniferous (340-310 Ma) compressive episode and Early Permian (287-270 Ma) post-orogenic or intraplate extensive episode. Our interpretation is consistent with the late Paleozoic orogenic events recognized in other Pangea microcontinents, and thus provides a window for the reconstruction of Pangea. Acknowledgements: NSFC (41190070, 41190075)

  16. Assessment of Paleozoic terrane accretion along the southern central Andes using detrital zircon geochronology

    NASA Astrophysics Data System (ADS)

    McKenzie, R.; Horton, B. K.; Fuentes, F.; Fosdick, J. C.; Capaldi, T.; Stockli, D. F.; Alvarado, P. M.

    2015-12-01

    Two distinct Paleozoic terranes known as Cuyania and Chilenia occupy the southern central Andes of Argentina and Chile. Because the proposed terrane boundaries coincide with major structural elements of the modern Andean system at 30-36°S, it is important to understand their origins and potential role in guiding later Andean deformation. The Cuyania terrane of western Argentina encompasses the Precordillera (PC) and a thick-skinned thrust block of the western Sierras Pampeanas, persisting southward to the San Rafael Basin (SRB). Although recently challenged, Cuyania has been long considered a piece of southern Laurentia that rifted away during the early Cambrian and collided with the Argentine margin during the Ordovician. Chilenia is situated west of Cuyania and includes the Frontal Cordillera (FC) and Andean magmatic arc. This less-studied terrane was potentially accreted during an enigmatic Devonian orogenic event. We present new detrital zircon U-Pb age data from siliciclastic sedimentary rocks that span the entire Paleozoic to Triassic from the FC, PC, and SRB. Cambrian rocks of the PC exhibit similar zircon age distributions with prominent ~1.4 and subordinate ~1.1 Ga populations, which are distinct from other Paleozoic strata. Plutonic rocks with these ages are common in southern Laurentia, whereas ~1.4 Ga zircons are uncommon in South American age distributions. This supports a Laurentian origin for Cuyania in isolation from Argentina during the Cambrian. Upper Paleozoic strata from the PC, FC, and SRB all yield similar age data suggesting shared provenance across the proposed Cuyania-Chilenia suture. Age distributions also notably lack Devonian-age grains. The regional paucity of Devonian plutonic rocks and detrital zircon casts doubt on a possible arc system between these terranes at this time, a key requisite for the mid-Paleozoic transfer and accretion of Chilenia to the Argentine margin. Collectively, these data question the precise boundaries of the

  17. Late Paleozoic transpression in Buenos Aires and northeast Patagonia ranges, Argentina

    NASA Astrophysics Data System (ADS)

    Rossello, E. A.; Massabie, A. C.; López-Gamundí, O. R.; Cobbold, P. R.; Gapais, D.

    1997-12-01

    Paleozoic sediments are present in three regions in eastern central Argentina: (1) the Sierras Australes of Buenos Aires, (2) Sierras Septentrionales of Buenos Aires and (3) Northeast Patagonia. All of these deposits share a common deformational imprint imparted by late Paleozoic Gondwanan deformation. Exposures of these rocks are scattered, variably deformed, and isolated by younger sediments deposited in basins related to the Mesozoic through Tertiary opening of the South Atlantic such as the offshore Colorado Basin. The Sierras Australes of Buenos Aires outcrops are the best preserved. They are mostly located along the Sierras Australes foldbelt, with minor outliers distributed in the adjacent Claromec-basin. The Tunas Formation (early-early late? Permian) is the uppermost unit of the Pillahuincó Group (late Carboniferous-Permian) and is crucial to the understanding of the tectono-sedimentary evolution of the region during the late Paleozoic. The underlying units of the Pillahuincó Group (Sauce Grande, Piedra Azul and Bonete Formations) exhibit a depositional and compositional history characterized by glaciomarine sedimentation and postglacial transgression. They are also characterized by rather uniform quartz-rich compositions indicative of a cratonic provenance from the La Plata craton to the NE. In contrast, the sandstone-rich Tunas Formation has low quartz contents, and abundant volcanic and metasedimentary fragments; paleocurrents are consistently from the SW. Glassrich tuffs are interbedded with sandstone in the upper half of the Tunas Formation. The age of the deformation in the Sierras Australes is Permian and early-middle Triassic. This is based on metamorphic events indicated by formation of illite at 282 ± 3 Ma, 273 ± 8 Ma, 265 ± 3 Ma, and 260 ± 3 Ma ( {K}/{Ar} illite) in the Silurian Curamalal Group. Evidence of syntectonic magmatism is provided by a radiometric date of 245 ± 12 Ma ( {K}/{Ar} hornblende) for the López Lecube Granite

  18. Early Paleozoic tectonics for the New Siberian Islands terrane (Eastern Arctic)

    NASA Astrophysics Data System (ADS)

    Metelkin, D. V.; Chernova, A. I.; Vernikovsky, V. A.; Matushkin, N. Yu.

    2017-11-01

    The New Siberian Islands archipelago is one of the few research objects accessible for direct study on the eastern Arctic shelf. There are several models that have different interpretations of the Paleozoic tectonic history and the structural affinity of the New Siberian Islands terrane. Some infer a direct relationship with the passive continental margin of the Siberian paleocontinent. Others connect it with the marginal basins of Baltica and Laurentia, or the Chukotka-Alaska microplate. Our paleomagnetic investigation led us to create an apparent polar wander path for the early Paleozoic interval of geological history. Based on it we can conclude that the New Siberian Islands terrane could not have been a part of these continental plates. This study considers the possible tectonic scenarios of the Paleozoic history of the Earth, presents and discusses the corresponding global reconstructions describing the paleogeography and probable mutual kinematics of the terranes of the Eastern Arctic.

  19. Late Proterozoic-Paleozoic evolution of the Arctic Alaska-Chukotka terrane based on U-Pb igneous and detrital zircon ages: Implications for Neoproterozoic paleogeographic reconstructions

    USGS Publications Warehouse

    Amato, J.M.; Toro, J.; Miller, E.L.; Gehrels, G.E.; Farmer, G.L.; Gottlieb, E.S.; Till, A.B.

    2009-01-01

    The Seward Peninsula of northwestern Alaska is part of the Arctic Alaska-Chukotka terrane, a crustal fragment exotic to western Laurentia with an uncertain origin and pre-Mesozoic evolution. U-Pb zircon geochronology on deformed igneous rocks reveals a previously unknown intermediate-felsic volcanic event at 870 Ma, coeval with rift-related magmatism associated with early breakup of eastern Rodinia. Orthogneiss bodies on Seward Peninsula yielded numerous 680 Ma U-Pb ages. The Arctic Alaska-Chukotka terrane has pre-Neoproterozoic basement based on Mesoproterozoic Nd model ages from both 870 Ma and 680 Ma igneous rocks, and detrital zircon ages between 2.0 and 1.0 Ga in overlying cover rocks. Small-volume magmatism occurred in Devonian time, based on U-Pb dating of granitic rocks. U-Pb dating of detrital zircons in 12 samples of metamorphosed Paleozoic siliciclastic cover rocks to this basement indicates that the dominant zircon age populations in the 934 zircons analyzed are found in the range 700-540 Ma, with prominent peaks at 720-660 Ma, 620-590 Ma, 560-510 Ma, 485 Ma, and 440-400 Ma. Devonian- and Pennsylvanian-age peaks are present in the samples with the youngest detrital zircons. These data show that the Seward Peninsula is exotic to western Laurentia because of the abundance of Neoproterozoic detrital zircons, which are rare or absent in Lower Paleozoic Cordilleran continental shelf rocks. Maximum depositional ages inferred from the youngest detrital age peaks include latest Proterozoic-Early Cambrian, Cambrian, Ordovician, Silurian, Devonian, and Pennsylvanian. These maximum depositional ages overlap with conodont ages reported from fossiliferous carbonate rocks on Seward Peninsula. The distinctive features of the Arctic Alaska-Chukotka terrane include Neoproterozoic felsic magmatic rocks intruding 2.0-1.1 Ga crust overlain by Paleozoic carbonate rocks and Paleozoic siliciclastic rocks with Neoproterozoic detrital zircons. The Neoproterozoic ages are

  20. Clastic rocks associated with the Midcontinent rift system in Iowa

    USGS Publications Warehouse

    Anderson, Raymond R.; McKay, Robert M.

    1997-01-01

    The Middle Proterozoic Midcontinent Rift System (MRS) of North America is a failed rift that formed in response to region-wide stresses about 1,100 Ma. In Iowa, the MRS is buried beneath 2,200?3,500 ft of Paleozoic and Mesozoic sedimentary rocks and Quaternary glaciogenic deposits. An extremely large volume of sediments was deposited within basins associated with the rift at several stages during its development. Although the uplift of a rift-axial horst resulted in the erosional removal of most of these clastic rocks from the central region of the MRS in Iowa, thick sequences are preserved in a series of horst-bounding basins. Recent studies incorporating petrographic analysis, geophysical modeling, and other analytical procedures have led to the establishment of a preliminary stratigraphy for these clastic rocks and interpretations of basin geometries. This information has allowed the refinement of existing theories and history of MRS formation in Iowa. Additionally, drill samples previously interpreted as indicating the existence of early Paleozoic basins overlying the Proterozoic MRS basins were re-examined. Samples previously interpreted as deep-lying Paleozoic rocks are now known to have caved from upper levels of the drillhole and were out of stratigraphic position. No deep Paleozoic basins exist in this area. These investigations led to the development of petrographic parameters useful in differentiating the Proterozoic MRS Red clastics from Paleozoic clastic rocks having similar lithologies.

  1. Depositional systems and stratigraphy of Paleozoic and Lower Mesozoic rocks in outcrop, Tassili region, southwest Algeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hertig, S.P.; Tye, R.S.; Coffield, D.Q.

    1991-08-01

    Paleozoic to Lower Mesozoic strata of the southeastern Algerian Tassili are traditionally subdivided by regionally extensive unconformities such as the Pan African, Taconic, Caledonian, and Hercynian. Using outcrop data from southeastern Algeria, this classic approach is modified by reinterpreting the genesis of these unconformities and rock sequences. Five prominent sequences, defined within the Paleozoic and lower Mesozoic section, usually consist of a succession of lowstand, transgressive, and highstand system tracts separated by sequence boundaries or transgressive surfaces. The Pan-African, Taconic, Caledonian, and Hercynian unconformities are sequence boundaries. Important sequence boundaries also occur within the Ordovician and Silurian sections. These sequencesmore » correlate with subsurface data in the Illizi basin and provide a framework for renewed exploration in the subsurface of the Algerian Sahara, where more than 30 billion bbl of recoverable oil and oil equivalent have been generated and trapped.« less

  2. Natural fault and fracture network versus anisotropy in the Lower Paleozoic rocks of Pomerania (Poland)

    NASA Astrophysics Data System (ADS)

    Haluch, Anna; Rybak-Ostrowska, Barbara; Konon, Andrzej

    2017-04-01

    Knowledge of the anisotropy of rock fabric, geometry and distribution of the natural fault and fracture network play a crucial role in the exploration for unconventional hydrocarbon recourses. Lower Paleozoic rocks from Pomerania within the Polish part of Peri-Baltic Basin, as prospective sequences, can be considered a laboratory for analysis of fault and fracture arrangement in relation to the mineral composition of the host rocks. A microstructural study of core samples from five boreholes in Pomerania indicate that the Silurian succession in the study area is predominantly composed of claystones and mudstones interbedded with thin layers of tuffites. Intervals with a high content of detrital quartz or diagenetic silica also occur. Most of the Silurian deposits are abundant in pyrite framboids forming layers or isolated small concretions. Early diagenetic carbonate concretions are also present. The direction and distribution of natural faults and fractures have resulted not only from paleostress. Preliminary study reveals that the fault and fracture arrangement is related to the mechanical properties of the host rocks that depend on their fabric and mineralogical composition: subvertical fractures in mudstones and limestones show steeper dips than those within the more clayey intervals; bedding-parallel fractures occur within organic-rich claystones and along the boundaries between different lithologies; tuffites and radiolaria-bearing siliceous mudstones are more brittle and show denser nets of fractures or wider mineral apertures; and, fracture refraction is observed at competence contrast or around spherical concretions. The fault and fracture mineralization itself is prone to the heterogenity of the rock profile. Thus, fractures infilled with calcite occur in all types of the studied rocks, but mineral growth is syntaxial within marly mudstones because of chemical uniformity, and antitaxial within sillicous mudstones. Fractures infilled with quartz are

  3. Water table in rocks of Cenozoic and Paleozoic age, 1980, Yucca Flat, Nevada Test Site, Nevada

    USGS Publications Warehouse

    Doty, G.C.; Thordarson, William

    1983-01-01

    The water table at Yucca Flat, Nevada Test Site, Nevada, occurs in rocks of Paleozoic age and in tuffs and alluvium of Cenozoic age and ranges in altitude from about 2,425 feet to about 3,500 feet. The configuration of the water table is depicted by contours with intervals of 25 to 500 feet. Control for the map consists of water-level information from 61 drill holes, whose locations and age of geologic units penetrated are shown by symbols on the map. (USGS)

  4. Hydrologic properties and ground-water flow systems of the Paleozoic rocks in the upper Colorado River basin in Arizona, Colorado, New Mexico, Utah, and Wyoming, excluding the San Juan Basin

    USGS Publications Warehouse

    Geldon, Arthur L.

    2003-01-01

    The hydrologic properties and ground-water flow systems of Paleozoic sedimentary rocks in the Upper Colorado River Basin were investigated under the Regional Aquifer-System Analysis (RASA) program of the U.S. Geological Survey in anticipation of the development of water supplies from bedrock aquifers to fulfill the region's growing water demands. The study area, in parts of Arizona, Colorado, New Mexico, Utah, and Wyoming, covers about 100,000 square miles. It includes parts of four physiographic provinces--the Middle Rocky Mountains, Wyoming Basin, Southern Rocky Mountains, and Colorado Plateaus. A variety of landforms, including mountains, plateaus, mesas, cuestas, plains, badlands, and canyons, are present. Altitudes range from 3,100 to 14,500 feet. Precipitation is distributed orographically and ranges from less than 6 inches per year at lower altitudes to more than 60 inches per year in some mountainous areas. Most of the infrequent precipitation at altitudes of less than 6,000 feet is consumed by evapotranspiration. The Colorado and Green Rivers are the principal streams: the 1964-82 average discharge of the Colorado River where it leaves the Upper Colorado River Basin is 12,170 cubic feet per second (a decrease of 5,680 cubic feet per second since construction of Glen Canyon Dam in 1963). On the basis of their predominant lithologic and hydrologic properties, the Paleozoic rocks are classified into four aquifers and three confining units. The Flathead aquifer, Gros Ventre confining unit, Bighorn aquifer, Elbert-Parting confining unit, and Madison aquifer (Redwall-Leadville and Darwin-Humbug zones) make up the Four Corners aquifer system. A thick sequence, composed mostly of Mississippian and Pennsylvanian shale, anhydrite, halite, and carbonate rocks--the Four Corners confining unit (Belden-Molas and Paradox-Eagle Valley subunits)--overlies the Four Corners aquifer system in most areas and inhibits vertical ground-water flow between the Four Corners aquifer

  5. Tectonic transition associated with Kazakhstan Orocline in the Late Paleozoic: magmatic archives of western Chinese Tianshan

    NASA Astrophysics Data System (ADS)

    Cai, Keda

    2016-04-01

    Kazakhstan accretionary system was a principle component of the Central Asian Orogenic Belt (CAOB) that is one of the largest accretionary orogens on earth. The Kazakhstan composite continent could have been established in the Early Paleozoic by the Kazakhstan accretionary system in the form of progressively amalgamations of diverse tectonic units, such as continental ribbon, accretionary prim, oceanic remnant and arc material. Subsequently, the composite continent was bended to form a spectacular U-shaped architecture that probably occurred in the Late Paleozoic. The western Chinese Tianshan is situated on the south wing of the Kazakhstan Orocline, featured by extensive magmatim, intense deformation and voluminous mineralization. Our new geochronological and geochemical data suggest a noticeable magmatic gap between Late Devonian and Early carboniferous and contrasting magma sources of these magmatic rocks. The significant shifts correspond to the tectonic transition from terrane amalgamation to mountain bending in the Early Paleozoic. This study was financially supported by the Major Basic Research Project of the Ministry of Science and Technology of China (2014CB448000), Xinjiang outstanding youth scientific grant (2013711003) and the Talent Awards to KDC from the China Government under the 1000 Talent Plan.

  6. Biostratigraphy and structure of paleozoic host rocks and their relationship to Carlin-type gold deposits in the Jerritt Canyon mining district, Nevada

    USGS Publications Warehouse

    Peters, S.G.; Armstrong, A.K.; Harris, A.G.; Oscarson, R.L.; Noble, P.J.

    2003-01-01

    The Jerritt Canyon mining district in the northern Independence Range, northern Nevada, contains multiple, nearly horizontal, thrust masses of platform carbonate rocks that are exposed in a series of north- to northeast-elongated, tectonic windows through rocks of the Roberts Mountains allochthon. The Roberts Mountains allochthon was emplaced during the Late Devonian to Early Mississippian Antler orogeny. These thrust masses contain structurally and stratigraphically controlled Carlin-type gold deposits. The gold deposits are hosted in tectonically truncated units of the Silurian to Devonian Hanson Creek and Roberts Mountains Formations that lie within structural slices of an Eastern assemblage of Cambrian to Devonian carbonate rocks. In addition, these multiply thrust-faulted and folded host rocks are structurally interleaved with Mississippian siliciclastic rocks and are overlain structurally by Cambrian to Devonian siliciclastic units of the Roberts Mountains allochthon. All sedimentary rocks were involved in thrusting, high-angle faulting, and folding, and some of these events indicate substantial late Paleozoic and/or Mesozoic regional shortening. Early Pennsylvanian and late Eocene dikes also intrude the sedimentary rocks. These rocks all were uplifted into a northeast-trending range by subsequent late Cenozoic Basin and Range faulting. Eocene sedimentary and volcanic rocks flank part of the range. Pathways of hydrothermal fluid flow and locations of Carlin-type gold orebodies in the Jerritt Canyon mining district were controlled by structural and host-rock geometries within specific lithologies of the stacked thrust masses of Eastern assemblage rocks. The gold deposits are most common proximal to intersections of northeast-striking faults, northwest-striking dikes, and thrust planes that lie adjacent to permeable stratigraphic horizons. The host stratigraphic units include carbonate sequences that contained primary intercrystalline permeability, which

  7. Paleozoic sedimentary rocks in the Red Dog Zn-Pb-Ag district and vicinity, western Brooks Range, Alaska: provenance, deposition, and metallogenic significance

    USGS Publications Warehouse

    Slack, John F.; Dumoulin, Julie A.; Schmidt, J.M.; Young, L.E.; Rombach, Cameron

    2004-01-01

    The distribution and composition of Paleozoic strata in the western Brooks Range may have played a fundamental role in Zn-Pb mineralization of the Red Dog district. In our model, deposition and early lithification of biogenic chert and bedded siliceous rocks in the upper part of the Kuna Formation served as a regional hydrologic seal, acting as a cap rock to heat and hydrothermal fluids during Late Mississippian base-metal mineralization. Equally important was the iron-poor composition of black shales of the Kuna Formation (i.e., low Fe/Ti ratios), which limited synsedimentary pyrite formation in precursor sediments, resulting in significant H2S production in pore waters through the interaction of aqueous sulfate with abundant organic matter. This H2S may have been critical to the subsurface deposition of the huge quantities of Zn and Pb in the district. On the basis of this model, we propose that low Fe/Ti and S/C ratios in black shale sequences are potential basin-scale exploration guides for giant sediment-hosted, stratiform Zn-Pb-Ag deposits.

  8. Paleomagnetism and alteration of lower Paleozoic rocks and Precambrian basement in the SHADS No. 4 drill core, Oklahoma

    NASA Astrophysics Data System (ADS)

    Evans, S. C.; Hamilton, M.; Hardwick, J.; Terrell, C.; Elmore, R. D.

    2017-12-01

    The chacterization of the lower Paleozoic sedimentary rock and the underlying Precambrian basement in northern Oklahoma is currently the subject of research to better understand induced seismicity in Oklahoma. We are investigating approximately 140 meters of igneous basement and over 300 meters of Ordovician Arbuckle Group carbonates and underlying sandstone in the Amoco SHADS No. 4 drill core from Rogers Co., Oklahoma, to better understand the nature, origin, and timing of fluid alteration and the relationship between fluid flow in the Arbuckle Group and the basement. Preliminary attempts to orient the core using the viscous remanent magnetization (VRM) method were unsuccessful, probably due to a steep drilling-induced component. The dolomitized Arbuckle Group contains a characteristic remanent magnetization (ChRM) with shallow inclinations (-5°) and variable declinations that, based on unblocking temperatures, is interpreted to reside in magnetite. This ChRM is interpreted as a chemical remanent magnetization (CRM) acquired in the Permian based on the shallow inclinations. The CRM could be related to hydrothermal fluids which migrated into the rocks in the late Paleozoic, as other studies in northern Oklahoma have reported. The Arbuckle Group dolomites are porous and extensively altered and consist of several generations of dolomite, including baroque dolomite. The basement rock is andesitic to trachytic ignimbrite that exhibits extensive alteration. There are many near-vertical fractures mineralized with epidote that are cross cut by calcite-filled fractures. Anisotropy of magnetic susceptibility (AMS) measurements indicate an oblate fabric in the top of the basement and the overlying sandstones. At greater depths, the AMS is variable and may include both alteration and primary fabrics. Demagnetization of the basement rocks is in the initial stages. We are currently investigating if and how far the alteration in the Arbuckle Group extended into the basement

  9. Two possibilities for New Siberian Islands terrane tectonic history during the Early Paleozoic based on paleomagnetic data

    NASA Astrophysics Data System (ADS)

    Metelkin, Dmitry V.; Chernova, Anna I.; Vernikovsky, Valery A.; Matushkin, Nikolay Yu.

    2017-04-01

    The New Siberian Islands (NSI), located in the East Siberian Sea in the junction region of various structural elements, are a key target for deciphering the tectonic evolution of the Eastern Arctic. In recent years, we went on several expeditions and gathered an extensive geological material for this territory. Among other things, we could prove that the basement of the De Long and Anjou archipelagos structures is Precambrian and the overlying Paleozoic sections formed within the same terrane. The form of the boundaries of the NSI terrane are actively debated and are probably continued from the Lyakhovsky islands in the south-west to the southern parts of the submerged Mendeleev Ridge, for which there is increasing evidence of continental crust. Today there are several models that interpret the Paleozoic-Mesozoic tectonic history and structural affiliation of the NSI terrane. Some propose that the Paleozoic sedimentary section formed in a passive margin setting of the Siberian paleocontinent. Others compare its history with marginal basins of the Baltica and Laurentia continents or consider the NSI terrane as an element of the Chukotka-Alaska microplate. These models are mainly based on results of paleobiogeographical and lithological-facies analyses, including explanations of probable sources for detrital zircons. Our paleomagnetic research on sedimentary, volcanogenic-sedimentary and igneous rocks of the Anjou (Kotelny and Bel'kovsky islands) and De Long (Bennett, Jeannette and Henrietta islands) archipelagos let us calculate an apparent polar wander path for the early Paleozoic interval of geological history, which allows us to conclude that the NSI terrane could not have been a part of the continental plates listed above, but rather had active tectonic boundaries with them. Our paleomagnetic data indicate that the NSI terrane drifted slowly and steadily in the tropical and subtropical regions no higher than 40 degrees. However, the main uncertainty for the

  10. Lithostratigraphic, conodont, and other faunal links between lower Paleozoic strata in northern and central Alaska and northeastern Russia

    USGS Publications Warehouse

    Dumoulin, Julie A.; Harris, Anita G.; Gagiev, Mussa; Bradley, Dwight C.; Repetski, John E.

    2002-01-01

    Lower Paleozoic platform carbonate strata in northern Alaska (parts of the Arctic Alaska, York, and Seward terranes; herein called the North Alaska carbonate platform) and central Alaska (Farewell terrane) share distinctive lithologic and faunal features, and may have formed on a single continental fragment situated between Siberia and Laurentia. Sedimentary successions in northern and central Alaska overlie Late Proterozoic metamorphosed basement; contain Late Proterozoic ooid-rich dolostones, Middle Cambrian outer shelf deposits, and Ordovician, Silurian, and Devonian shallow-water platform facies, and include fossils of both Siberian and Laurentian biotic provinces. The presence in the Alaskan terranes of Siberian forms not seen in wellstudied cratonal margin sequences of western Laurentia implies that the Alaskan rocks were not attached to Laurentia during the early Paleozoic.The Siberian cratonal succession includes Archean basement, Ordovician shallow-water siliciclastic rocks, and Upper Silurian–Devonian evaporites, none of which have counterparts in the Alaskan successions, and contains only a few of the Laurentian conodonts that occur in Alaska. Thus we conclude that the lower Paleozoic platform successions of northern and central Alaska were not part of the Siberian craton during their deposition, but may have formed on a crustal fragment rifted away from Siberia during the Late Proterozoic. The Alaskan strata have more similarities to coeval rocks in some peri-Siberian terranes of northeastern Russia (Kotelny, Chukotka, and Omulevka). Lithologic ties between northern Alaska, the Farewell terrane, and the peri-Siberian terranes diminish after the Middle Devonian, but Siberian afµnities in northern and central Alaskan biotas persist into the late Paleozoic.

  11. Reworked crustal of early Paleozoic WuYi Orogen revealed by receiver function data

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Duan, Y.; Tian, X.; Zhao, Y.

    2017-12-01

    Intraplate orogenic belt, which occurs at the rigid and undeformable plate interiors, is a distinct new type of orogen rather than an interplate or plate marginal orogenic belt, whose deformation occurs exclusively at plate margins. Therefore, intraplate orogenic belts are the most obvious exception to the plate-tectonic paradigm, they are uncommon in Earth's history. The early Paleozoic Wuyi orogen in South China is one of the few examples of intraplate orogen, and is a key to understanding the process of intraplate orogenesis and global early Paleozoic geodynamics. In this study, we select teleseismic records from 45 mobile linear seismic stations deployed in Wuyi Mountain and 58 permanent stations setting in Jiangxi and Fujian provinces, from January 2011 to December 2012, and calculate the crustal thickness and average crustal Vp/Vs ratio using the H-κ stacking method. The main results include the following: 1) the crustal average Poission's ratio shows an increase tendency from land to sea, the interior of Wuyi orogen belt with an low ration less than 0.23, and the coastline with high ration which is up to 0.28, which indicate a very heterogeneous crustal structure and composition in Wuyi orogen and coast belt. 2) the crustal thickness ranges 28-34 km and shows a tendency of thinning from inland to coast in the region of SE China margin, which maight mean the eastern Eurasia lithospheric is extension and thinning induced by the subducted paleo-Pacific slab. To conclusion, we assume that Wuyi orogen experienced upper crustal thickening, lower crust and lithosphere delamination during the early Paleozoic orogeny, and lithosphere extension in Mesozoic. This research is founded by the Natural Science Foundation of China (41174052 and 41604048).

  12. Eclogite-facies metamorphism in impure marble from north Qaidam orogenic belt: Geodynamic implications for early Paleozoic continental-arc collision

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Xu, Rongke; Schertl, Hans-Peter; Zheng, Youye

    2018-06-01

    In the North Qaidam ultrahigh-pressure (UHP) metamorphic belt, impure marble and interbedded eclogite represent a particular sedimentary provenance and tectonic setting, which have important implications for a controversial problem - the dynamic evolution of early Paleozoic subduction-collision complexes. In this contribution, detailed field work, mineral chemistry, and whole-rock geochemistry are presented for impure marble to provide the first direct evidence for the recycling of carbonate sediments under ultrahigh-pressures during subduction and collision in the Yuka terrane, in the North Qaidam UHP metamorphic belt. According to conventional geothermobarometry, pre-peak subduction to 0.8-1.3 GPa/485-569 °C was followed by peak UHP metamorphism at 2.5-3.3 GPa/567-754 °C and cooling to amphibolite facies conditions at 0.6-0.7 GPa/571-589 °C. U-Pb dating of zircons from impure marble reveals a large group with ages ranging from 441 to 458 Ma (peak at 450 Ma), a smaller group ranging from 770 to 1000 Ma (peak at 780 Ma), and minor >1.8 Ga zircon aged ca. 430 Ma UHP metamorphism. The youngest detrital zircons suggest a maximum depositional age of ca. 442 Ma and a burial rate of ca. 1.0-1.1 cm/yr when combined with P-T conditions and UHP metamorphic age. The REE and trace element patterns of impure marble with positive Sr and U anomalies, negative high field strength elements (Nb, Ta, Zr, Hf, and Ti), and Ce anomalies imply that the marble had a marine limestone precursor. Impure marble intercalated with micaschist and eclogite was similar to limestone and siltstone protoliths deposited in continental fore-arc or arc setting with basic volcanic activity. Therefore, the Yuka terrane most likely evolved in a continental island arc setting during the Paleozoic. These data suggest that metasediments were derived from a mixture of Proterozoic continental crust and juvenile early Paleozoic oceanic and/or island arc crust. In addition, their protoliths were likely

  13. Precambrian Continent Arctida: A New Kinematic Reconstruction of Late Precambrian - Early Paleozoic Arctida U Europe (baltia) Collision

    NASA Astrophysics Data System (ADS)

    Borisova, T. P.; Guertseva, M. V.; Egorov, A. Ju.; Kononov, M. V.; Kouznetsov, N. B.

    In according to L.P.Zonenshain and L.M.Natapov (1988, 1990), different size conti- nental blocks locating at the margins and inside of present-day Arctic ocean composed the hypothetical early Paleozoic paleocontinent Arctida. The blocks are Kara block (north part of Taymir peninsula, Severnaja Zemlja archipelago and Franz Joseph Land archipelago), north part of Alaska (northward Bruks ridge), Chukchi block, Novosi- birsky block (Novosibirskiye islands together their shelves), several fragments north- ward to the Innuitian orogen (north parts of Peary Land and Ellesmere Island), and Lomonosov ridgeSs block. In the previous kinematic reconstruction it was believed that Arctida as a whole collided with north flanks of Laurentia (Innuitian margin) and Europe (Baltia, Barentsia margin) in middle Paleozoic time. Later, the Arctida (been a fragment of supercontinent Pangea) was fragmented due to a spreading in the Arctic ocean and north part of Atlantic ocean in late Mesozoic and Cenozoic times. Then ArctidaSs fragments were accreted to the Eurasia and North America conti- nents. During the last decade "AEROGEOLOGIA" company has been gathered new data (geologic, stratigraphical, paleomagnetic, and others) of Russian Arctic sector and Svalbard. The data were summarized into "Paleogeographical Atlas for the Rus- sian Arctic sector and Svalbard from Vendian to Jurassic times" (see Abstact SE1.04, ID-NR: EGS02-A-02453). An analyzing of the maps for Vend and Cambrian times allows us to reconsider a few stages of kinematic scenario of late Precambrian - early Paleozoic Arctida U Europe collision. 1) Old interpretation: Arctida was considered as an isolated paleocontinent during early Paleozoic time. New interpretation: during the early Paleozoic Arctida together Europe (Baltia) were assembled into a paleo- continent named us Arcteurope. This conclusion is based on excellent coincidence of Paleozoic paleomagnetic poles of the Kara block (which is a part of Arctida) and Europe

  14. Exotic island arc Paleozoic terranes on the eastern margin of Gondwana: Geochemical whole rock and zircon U-Pb-Hf isotope evidence from Barry Station, New South Wales, Australia

    NASA Astrophysics Data System (ADS)

    Manton, Ryan J.; Buckman, Solomon; Nutman, Allen P.; Bennett, Vickie C.

    2017-08-01

    Early Paleozoic intra-oceanic terranes crop out along the Peel-Manning Fault System, in the southern New England Orogen, NSW Australia. These are the Cambrian ophiolitic Weraerai terrane and the Siluro-Devonian island arc Gamilaroi terrane. There has been debate whether these terranes formed at the Gondwana margin or if they are intra-oceanic, and were accreted to Gondwana later in the Paleozoic. Major-trace-REE elemental data indicate Weraerai terrane formed in a supra-subduction environment. Rare zircons extracted from Weraerai terrane gabbro-plagiogranite suites at Barry Station yield a U-Pb zircon date of 504.9 ± 3.5 Ma with initial εHf values of + 11.1 indicating a juvenile source. Amphibole-bearing felsic dykes and net-vein complexes are also found within the gabbro with a U-Pb zircon date of 503.2 ± 5.7 Ma and initial εHf values of + 11.6. These are coeval in age with their host rocks and we propose they represent partial melts of the mafic crust during the circulation of seawater. The Gamilaroi trondhjemites of prehnite-pumpellyite-greenschist metamorphic grade terrane yielded very few zircons with an age of 413 ± 8.7 Ma. Zircon initial εHf values range from + 5.0 to + 2.9, indicating an input from an evolved crustal source, unlike the purely oceanic Weraerai terrane. Gamilaroi terrane trondhjemites are enriched in LREE have low K2O and K2O/Na2O ratios and strong negative Nb anomalies consistent with supra-subduction zone environments. Multiple subduction zones may well have existed within the Panthalassa Ocean during the early-mid Paleozoic with the Weraerai-Gamilaroi being accreted onto the Gondwanan margin during the latest Devonian.

  15. The distribution, geochronology and geochemistry of early Paleozoic granitoid plutons in the North Altun orogenic belt, NW China: Implications for the petrogenesis and tectonic evolution

    NASA Astrophysics Data System (ADS)

    Meng, Ling-Tong; Chen, Bai-Lin; Zhao, Ni-Na; Wu, Yu; Zhang, Wen-Gao; He, Jiang-Tao; Wang, Bin; Han, Mei-Mei

    2017-01-01

    Abundant early Paleozoic granitoid plutons are widely distributed in the North Altun orogenic belt. These rocks provide clues to the tectonic evolution of the North Altun orogenic belt and adjacent areas. In this paper, we report an integrated study of petrological features, U-Pb zircon dating, in situ zircon Hf isotope and whole-rock geochemical compositions for the Abei, 4337 Highland and Kaladawan Plutons from north to south in the North Altun orogenic belt. The dating yielded magma crystallization ages of 514 Ma for the Abei Pluton, 494 Ma for the 4337 Highland Pluton and 480-460 Ma for the Kaladawan Pluton, suggesting that they are all products of oceanic slab subduction because of the age constraint. The Abei monzogranites derived from the recycle of Paleoproterozoic continental crust under low-pressure and high-temperature conditions are products of subduction initiation. The 4337 Highland granodiorites have some adakitic geochemical signatures and are sourced from partial melting of thickened mafic lower continental crust. The Kaladawan quartz diorites are produced by partial melting of mantle wedge according to the positive εHf(t) values, and the Kaladawan monzogranite-syenogranite are derived from partial melting of Neoproterozoic continental crust mixing the juvenile underplated mafic material from the depleted mantle. These results, together with existing data, provide significant information about the evolution history of oceanic crust subduction during the 520-460 Ma. The initiation of subduction occurred during 520-500 Ma with formation of Abei Pluton; subsequent transition from steep-angle to flat-slab subduction at ca.500 Ma due to the arrival of buoyant oceanic plateaus, which induces the formation of 4337 Highland Pluton. With ongoing subduction, the steep-angle subduction system is reestablished to cause the formation of 480-460 Ma Kaladawan Pluton. Meanwhile, it is this model that account for the temporal-spatial distribution of these early

  16. Stratigraphy of Slick Rock district and vicinity, San Miguel and Dolores Counties, Colorado

    USGS Publications Warehouse

    Shawe, Daniel R.; Simmons, George C.; Archbold, Norbert L.

    1968-01-01

    The Slick Rock district covers about 570 square miles in western San Miguel and Dolores Counties, in southwestern Colorado. It is at the south edge of the salt-anticline region of southwestern Colorado and southeastern Utah and of the Uravan mineral belt.Deposition of Paleozoic sedimentary rocks in the district and vicinity was principally controlled by development of the Paradox Basin, and of Mesozoic rocks by development of a depositional basin farther west. The Paleozoic rocks generally are thickest at the northeast side of the Paradox Basin in a northwest- trending trough which seems to be a wide graben in Precambrian igneous and metamorphic basement rocks; Mesozoic rocks generally thicken westward and southwestward from the district.Sedimentary rocks rest on a Precambrian basement consisting of a variety of rocks, including granite and amphibolite. The surface of the Precambrian rocks is irregular and generally more than 2,000 feet below sea level and 7,000-11,000 feet below the ground surface. In the northern part of the district the Precambrian surface plunges abruptly northeastward into the trough occupying the northeast side of the Paradox Basin, and in the southern part it sags in a narrow northeasterly oriented trough. Deepening of both troughs, or crustal deformation in their vicinity, influenced sedimentation during much of late Paleozoic and Mesozoic time.The maximum total thickness of sedimentary rocks underlying the district is 13,000 feet, and prior to extensive erosion in the late Tertiary and the Quaternary it may have been as much as about 18,000 feet. The lower 5,000 feet or more of the sequence of sedimentary rocks consists of arenaceous strata of early Paleozoic age overlain by dominantly marine carbonate rocks and evaporite beds interbedded with lesser amounts of clastic sediments of late Paleozoic age. Overlying these rocks is about 4,500 feet of terrestrial clastic sediments, dominantly sandstone with lesser amounts of shale, mudstone

  17. A New Model of the Early Paleozoic Tectonics and Evolutionary History in the Northern Qinling, China

    NASA Astrophysics Data System (ADS)

    Dong, Yunpeng; Zhang, Guowei; Yang, Zhao; Qu, Hongjun; Liu, Xiaoming

    2010-05-01

    The Qinling Orogenic Belt extends from the Qinling Mountains in the west to the Dabie Mountains in the east. It lies between the North China and South China Blocks, and is bounded on the north by the Lushan fault and on the south by the Mianlue-Bashan-Xiangguang fault (Zhang et al., 2000). The Qinling Orogenic Belt itself is divided into the North and South Qinling Terranes by the Shangdan suture zone. Although the Shangdan zone is thought to represent the major suture separating the two blocks, there still exists debate about the timing and mechanism of convergence between these two blocks. For instance, some authors suggested an Early Paleozoic collision between the North China Block and South China Block (Ren et al., 1991; Kroner et al., 1993; Zhai et al., 1998). Others postulated left-lateral strike-slip faulting along the Shangdan suture at ca. 315 Ma and inferred a pre-Devonian collision between the two blocks (Mattauer et al., 1985; Xu et al., 1988). Geochemistry of fine-grained sediments in the Qinling Mountains was used to argue for a Silurian-Devonian collision (Gao et al., 1995). A Late Triassic collision has also been proposed (Sengor, 1985; Hsu et al., 1987; Wang et al., 1989), based on the formation of ultrahigh-pressure metamorphic rocks in the easternmost part of the Qinling Orogenic Belt at ~230 Ma (e.g., Li et al., 1993; Ames et al., 1996). Paleomagnetic data favor a Late Triassic-Middle Jurassic amalgamation of the North China and South China Blocks (Zhao and Coe, 1987; Enkin et al., 1992). It is clear that most authors thought that the Qinling Mountains are a collisional orogen, even they have different methods about the timing of the orogeny. Based on new detailed investigations, we propose a new model of the Early Paleozoic Tectonics and Evolutionary History between the North China and South China Blocks along the Shangdan Suture. The Shangdan suture is marked by a great number of ophiolites, island-arc volcanic rocks and other related rock

  18. The main features of the Uralian Paleozoic magmatism and the epioceanic nature of the orogen

    NASA Astrophysics Data System (ADS)

    Fershtater, G. B.

    2013-02-01

    The 2000 km Uralian Paleozoic orogen is situated on the western flank of the Uralo-Mongolian folded belt. It is characterized by an abundant variety of magmatic rocks and related ore deposits. Uralian Paleozoic magmatism is entirely subduction-related. It is proposed that the Uralian orogen represents a cold mobile belt in which the mantle temperature was 200 to 500 °C cooler than in the adjacent areas; a situation which is similar to the modern West Pacific Triangle Zone including Indonesia, the Philippine Islands, and southern Asia. During the course of the geological evolution of the Uralian orogen, the nature of the magmatism has changed from basic rocks of indisputable mantle origin (460-390 Ma) to mantle-crust gabbro-granitic complexes (370-315 Ma) followed by pure crustal granite magmatism (290-250 Ma). This order in rock type and age reflects the evolution of Paleozoic magmatic complexes from the beginning of subduction to the final stages of the orogen development.

  19. A comparative study of diversification events: the early Paleozoic versus the Mesozoic

    NASA Technical Reports Server (NTRS)

    Erwin, D. H.; Valentine, J. W.; Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)

    1987-01-01

    We compare two major long-term diversifications of marine animal families that began during periods of low diversity but produced strikingly different numbers of phyla, classes, and orders. The first is the early-Paleozoic diversification (late Vendian-Ordovician; 182 MY duration) and the other the Mesozoic phase of the post-Paleozoic diversification (183 MY duration). The earlier diversification was associated with a great burst of morphological invention producing many phyla, classes, and orders and displaying high per taxon rates of family origination. The later diversification lacked novel morphologies recognized as phyla and classes, produced fewer orders, and displayed lower per taxon rates of family appearances. The chief difference between the diversifications appears to be that the earlier one proceeded from relatively narrow portions of adaptive space, whereas the latter proceeded from species widely scattered among adaptive zones and representing a variety of body plans. This difference is believed to explain the major differences in the products of these great radiations. Our data support those models that hold that evolutionary opportunity is a major factor in the outcome of evolutionary processes.

  20. A- and I-type metagranites from the North Shahrekord Metamorphic Complex, Iran: Evidence for Early Paleozoic post-collisional magmatism

    NASA Astrophysics Data System (ADS)

    Badr, Afsaneh; Davoudian, Ali Reza; Shabanian, Nahid; Azizi, Hossein; Asahara, Yoshihiro; Neubauer, Franz; Dong, Yunpeng; Yamamoto, Koshi

    2018-02-01

    The North Shahrekord Metamorphic Complex (NSMC) of the central Sanandaj-Sirjan Zone (SaSZ) consists of metagranitoid bodies, which were metamorphosed within high pressure-low temperature conditions. Whole rock chemistry shows relatively high amounts of SiO2 (65-77 wt%) and Al2O3 (12-15 wt%), low amounts of Nb, P, Sr, Ti, a high ratio of Ga/Al (4-9) and a negative Eu anomaly. The chemical compositions of metagranites are reasonably similar to A- and I-type granites. U-Pb zircon ages of three samples of metagranites indicate that crystallization of the granites occurred at 521.6 ± 9.1 to 513.5 ± 8.5 Ma, Middle Cambrian. The initial 87Sr/86Sr and 143Nd/144Nd ratios of samples vary from 0.7057-0.7239 and 0.511801-0.511890, respectively. High initial 87Sr/86Sr ratios and low εNd(t) values (- 3.39 to - 1.07) associated with high ratios of 206Pb/204Pb(t) = 17.8557-18.8045, 207Pb/204Pb(t) = 15.6721-15.7220, and 208Pb/204Pb(t) = 37.7490-38.4468 infer a significant contribution of continental crust in generating the source magma of the metagranite bodies. The results reveal that the metagranites were mainly produced through mixing of basaltic melts with components similar to metasedimentary sources. The new results show that crystallization of the metagranites occurred in Early Paleozoic times and much earlier than break-up and drifting of the SaSZ from the Arabian plate, suggesting that the metagranites were mainly produced in the western Iran after the closure of the Proto-Tethys Ocean. This model is consistent with the previously suggested models for formation of an Early Paleozoic granitoid belt along the northern rim of Gondwana.

  1. Stratigraphy of lower to middle Paleozoic rocks of northern Nevada and the Antler orogeny

    USGS Publications Warehouse

    Ketner, Keith B.

    2013-01-01

    Commonly accepted concepts concerning the lower Paleozoic stratigraphy of northern Nevada are based on the assumption that the deep-water aspects of Ordovician to Devonian siliceous strata are due to their origin in a distant oceanic environment, and their presence where we find them is due to tectonic emplacement by the Roberts Mountains thrust. The concept adopted here is based on the assumption that their deep-water aspects are the result of sea-level rise in the Cambrian, and all of the Paleozoic strata in northern Nevada are indigenous to that area. The lower part of the Cambrian consists mainly of shallow-water cross-bedded sands derived from the craton. The upper part of the Cambrian, and part of the Ordovician, consists mainly of deep-water carbonate clastics carried by turbidity currents from the carbonate shelf in eastern Nevada, newly constructed as a result of sea-level rise. Ordovician to mid-Devonian strata are relatively deep-water siliceous deposits, which are the western facies assemblage. The basal contact of this assemblage on autochthonous Cambrian rocks is exposed in three mountain ranges and is clearly depositional in all three. The western facies assemblage can be divided into distinct stratigraphic units of regional extent. Many stratigraphic details can be explained simply by known changes in sea level. Upper Devonian to Mississippian strata are locally and westerly derived orogenic clastic beds deposited disconformably on the western facies assemblage. This disconformity, clearly exposed in 10 mountain ranges, indicates regional uplift and erosion of the western facies assemblage and absence of local deformation. The disconformity represents the Antler orogeny.

  2. Paleozoic Assemblage of the Northern Sierra Terrane: New Geochronology And Geochemical Data From the Stitching Late Devonian - Early Carboniferous Bowman Lake Batholith, and Associated Rocks

    NASA Astrophysics Data System (ADS)

    Powerman, V.; Hanson, R. E.; Girty, G.; Tretiakov, A.

    2016-12-01

    Previous study (Grove et al., 2008) of detrital zircon ages and the timing of magmatism within the Northern Sierra terrane (NST) suggest that it is exotic relative to western Laurentia, and link it to the Paleozoic Arctic Realm, Baltica and Caledonides. NST is a composite terrane in the North America Cordillera, consisting of four distinct allochthons, thrusted upon each other. As a first step towards the understanding of the origin and tectonic development of the NST we have undertaken the SHRIMP-RG U-Pb zircon dating of the rocks from granites, granodiorites, trondhjemites, tonalites and hypabyssal intrusions, composing the Bowman Lake batholith. The batholith stitches the allochthons of the NST and its crystallization age signifies the timing of juxtaposition SHRIMP-RG analyses from 14 samples yielded an age range of ca. 352-369 Ma, which overlaps the Devonian-Mississipian boundary and constrains the minimum age for amalgamation. Additionally, we have acquired multiple XRF data, favoring the island arc provenance of the Bowman Lake batholith Batholith. Previously proposed ties between NST and Robert Mountains allochthon seem unlikely because the latter was accreted onto the western miogeocline of Laurentia during the Late Dev.-Early Miss. while the NST was most probably still situated within the Arctic Realm. This work has been supported by the grant #14.Z50.31.0017 of the Government of the Russian Federation and by the Russian Foundation for Basic Research grant #15-55-10055. We are grateful to Stanford-USGS SHRIMP-RG center, and personally to Marty Grove and Elizabeth Miller.

  3. Paleozoic carbonate buildup (reef) inventory, central and southeastern Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isaacson, P.E.

    1987-08-01

    Knowledge of central and southeastern Idaho's Paleozoic rocks to date suggest that three styles of buildup (reef) complexes occur in Late Devonian, Mississippian, and Pennsylvanian-Permian time. The Late Devonian Jefferson Formation has stromatoporoid and coral (both rugosan and tabulate) organisms effecting a buildup in the Grandview Canyon vicinity; Early Mississippian Waulsortian-type mud mounds occur in the Lodgepole formation of southeastern Idaho; there are Late Mississippian Waulsortian-type mounds in the Surrett Canyon Formation of the Lost River Range; and cyclic Pennsylvanian-Permian algal and hydrozoan buildups occur in the Juniper gulch Member of the Snaky Canyon Formation in the Arco Hills andmore » Lemhi Range. Late Devonian (Frasnian) carbonates of the Jefferson formation show buildup development on deep ramp sediments.« less

  4. Paleozoic strata of the Dyckman Mountain area, northeastern Medfra quadrangle, Alaska: A section in Geologic studies in Alaska by the U.S. Geological Survey, 1998

    USGS Publications Warehouse

    Dumoulin, Julie A.; Bradley, Dwight C.; Harris, Anita G.

    2000-01-01

    Paleozoic rocks in the Dyckman Mountain area (northeastern Medfra quadrangle; Farewell terrane) include both shallowand deep-water lithologies deposited on and adjacent to a carbonate platform. Shallow-water strata, which were recognized by earlier workers but not previously studied in detail, consist of algal-laminated micrite and skeletal-peloidal wackestone, packstone, and lesser grainstone. These rocks are, at least in part, of Early and (or) Middle Devonian age but locally could be as old as Silurian; they accumulated in shallow subtidal to intertidal settings with periodically restricted water circulation. Deepwater facies, reported here for the first time, are thin, locally graded beds of micrite and calcisiltite and subordinate thick to massive beds of lime grainstone and conglomerate. Conodonts indicate an age of Silurian to Middle Devonian; the most tightly dated intervals are early Late Silurian (early to middle Ludlow). These strata formed as hemipelagic deposits, turbidites, and debris flows derived from shallow-water lithologies of the Nixon Fork subterrane. Rocks in the Dyckman Mountain area are part of a broader facies belt that is transitional between the Nixon Fork carbonate platform to the west and deeper water, basinal lithologies (Minchumina “terrane”) to the east. Transitional facies patterns are complex because of Paleozoic shifts in the position of the platform margin, Mesozoic shortening, and Late Cretaceous-Tertiary disruption by strike-slip faulting.

  5. Paleozoic and mesozoic evolution of East-Central California

    USGS Publications Warehouse

    Stevens, C.H.; Stone, P.; Dunne, G.C.; Greene, D.C.; Walker, J.D.; Swanson, B.J.

    1997-01-01

    East-central California, which encompasses an area located on the westernmost part of sialic North America, contains a well-preserved record of Paleozoic and Mesozoic tectonic events that reflect the evolving nature of the Cordilleran plate margin to the west. After the plate margin was formed by continental rifting in the Neoproterozoic, sediments comprising the Cordilleran miogeocline began to accumulate on the subsiding passive margin. In east-central California, sedimentation did not keep pace with subsidence, resulting in backstepping of a series of successive carbonate platforms throughout the early and middle Paleozoic. This phase of miogeoclinal development was brought to a close by the Late Devonian-Early Mississippian Antler orogeny, during the final phase of which oceanic rocks were emplaced onto the continental margin. Subsequent Late Mississippian-Pennsylvanian faulting and apparent reorientation of the carbonate platform margin are interpreted to have been associated with truncation of the continental plate on a sinistral transform fault zone. In the Early Permian, contractional deformation in east-central California led to the development of a narrow, uplifted thrust belt flanked by marine basins in which thick sequences of deep-water strata accumulated. A second episode of contractional deformation in late Early Permian to earliest Triassic time widened and further uplifted the thrust belt and produced the recently identified Inyo Crest thrust, which here is correlated with the regionally significant Last Chance thrust. In the Late Permian, about the time of the second contractional episode, extensional faulting created shallow sedimentary basins in the southern Inyo Mountains. In the El Paso Mountains to the south, deformation and plutonism record the onset of subduction and arc magmatism in late Early Permian to earliest Triassic time along this part of the margin. Tectonism had ceased in most of east-central California by middle to late Early

  6. Archean inheritance in zircon from late Paleozoic granites from the Avalon zone of southeastern New England: an African connection

    USGS Publications Warehouse

    Zartman, R.E.; Don, Hermes O.

    1987-01-01

    In southeastern New England the Narragansett Pier Granite locally intrudes Carboniferous metasedimentary rocks of the Narragansett basin, and yields a monazite UPb Permian emplacement age of 273 ?? 2 Ma. Zircon from the Narragansett Pier Granite contains a minor but detectable amount of an older, inherited component, and shows modern loss of lead. Zircon from the late-stage, aplitic Westerly Granite exhibits a more pronounced lead inheritance -permitting the inherited component to be identified as Late Archean. Such old relict zircon has not been previously recognized in Proterozoic to Paleozoic igneous rocks in New England, and may be restricted to late Paleozoic rocks of the Avalon zone. We suggest that the Archean crustal component reflects an African connection, in which old Archean crust was underplated to the Avalon zone microplate in the late Paleozoic during collision of Gondwanaland with Avalonia. ?? 1987.

  7. Inventory of Neoproterozoic and Paleozoic strata in Sonora, Mexico

    USGS Publications Warehouse

    Stewart, John H.; Poole, Forrest G.

    2002-01-01

    This compilation is an inventory of all known outcrops of Neoproterozoic and Paleozoic strata in Sonora, Mexico. We have not attempted an interpretation of the regional stratigraphic or structural setting of the strata. Brief summaries of the stratigraphic setting of the Sonora rocks are given in Poole and Hayes (1971), Rangin (1978), Stewart and others (1984, 1990), and Poole and Madrid (1986; 1988b). More specific information on the setting of strata of specific ages are given by Stewart and others (2002) for the Neoproterozoic and Cambrian; by Poole and others (1995a) for Ordovician shelf strata; by Poole and others (1995b) for Ordovician deep-water openbasin strata; by Poole and others (1997, 1998, 2000a) for Silurian strata; and by Poole and others (2000a) for Mississippian strata. Other reports that discuss regional aspects of Paleozoic stratigraphy include López-Ramos (1982), Peiffer-Rangin, (1979, 1988), Pérez-Ramos (1992), and Stewart and others (1997, 1999a). Structurally, the major Paleozoic feature of Sonora is the Sonora allochthon, consisting of deep-water (eugeoclinal) strata emplaced in the Permian over shelf (miogeoclinal) deposits (Poole and others, 1995a,b; Poole and Perry, 1997; 1998). The emplacement structure is generally considered to be a major Permian continental margin thrust fault that emplaced the deep-water rocks northward over shelf (miogeoclinal) deposits. An alternate interpretation has been presented by Stewart and others (2002). He proposed that the emplacement of the Sonora allochthon was along a major Permian transpressional structure that was primarily a strike-slip fault with only a minor thrust component . The Mojave-Sonora megashear has been proposed to disrupt Neoproterozoic and Paleozoic trends in Sonora. This feature is a hypothetical, left-lateral, northwest-striking fault extending across northern Sonora and the southwestern United States (Silver and Anderson, 1974; Anderson and Schmidt, 1983). It is proposed to have

  8. Lower Paleozoic Through Archean Detrital Zircon Ages From Metasedimentary Rocks of the Nome Group, Seward Peninsula, Alaska

    NASA Astrophysics Data System (ADS)

    Amato, J. M.; Miller, E. L.; Gehrels, G.

    2003-12-01

    Metamorphic rocks of Seward Peninsula have been divided into two groups based on their metamorphic grade and history: The Nome Group and the Kigluaik Group. Although it is sometime been assumed that the higher structural position of the Nome Group versus the Kigluaik Group indicates the Kigluaik Group is older, this relationship and the age of the protoliths of these rocks has never been well-established. The Nome Group includes (delete the) lower grade blueschist and greenschist facies rocks which are widespread across the Seward Peninsula (delete) Rock types include pelitic schist, more mafic chlorite-white mica-albite schist, marble, quartzite, and metabasite. An early metamorphic event (pre-120 Ma) occurred at high pressure and relatively low temperature, and is everywhere overprinted by younger deformation and greenschist facies Rare eclogite facies assemblages are preserved in metabasites, and garnet-glaucophane in some of the pelitic schists. The Kigluaik Group includes upper greenschist to granulite facies rocks that are exposed in the core of a gneiss dome. They record a younger event (~91 Ma) that occurred at higher temperatures and resulted in partial thermal overprinting of the Nome Group and upper greenschist to granulite facies assemblages forming in the Kigluaik Group. The Kigluaik Group and equivalent rocks in the Bendeleben and Darby Mountains represent at least in part similar protoliths to many of the units in the Nome Group (Till and Dumoulin, 1994). The boundary between the rocks of the Nome Group and those clearly affected by the second metamorphic event is placed arbitrarily at the "Biotite-in" isograd along the flanks of the gneiss dome. In order to assess the protolith ages and source rock ages for these units, detrital zircon ages were obtained from three samples from the Nome Group, with Kigluaik Group ages forthcoming. LA-MC-ICPMS U/Pb isotope analysis was used for dating. Two samples were collected from the western Kigluaik Mountains

  9. Shifting locus of carbonate sedimentation and the trajectory of Paleozoic pCO2

    NASA Astrophysics Data System (ADS)

    Husson, J. M.; Peters, S. E.

    2016-12-01

    The burial of calcium carbonate is a determinant of planetary habitability, dictated by CO2 input to the surface environment and rates of chemical weathering. An important source of CO2 is the metamorphism of carbon-bearing sediments, which is responsive to the locus of sedimentation. For example, deep sea sediments are prone to recycling as sea floor is consumed at convergent margins; by contrast, sediments deposited on continental crust can be stable for billions of years.The predominant feature in the empirical sedimentary rock record, as measured by Macrostrat (https://macrostrat.org) and global geological syntheses, is a step-wise increase in continental sedimentation at the Neoproterozoic-Paleozoic transition. Although early Paleozoic carbonate volumes are sufficient to account for a CO2 flux 5x greater than present, Proterozoic continental burial fluxes were likely below the modern estimate. This observation implies that most carbonate sedimentation in the Proterozoic took place on the deep sea floor. The establishment of persistent, widespread continental flooding during the Paleozoic shifted the locus of carbonate sedimentation to continental interiors. A major implication of this shift is that CO2 flux declined during the Paleozoic as carbonate-laden Precambrian seafloor was metamorphosed and recycled. This prediction is consistent with independent proxy records and our model for Phanerozoic carbonate burial. An important corollary is that as carbonate-rich Precambrian seafloor was progressively destroyed, the carbonate content of deep sea sediments decreased concordantly because Paleozoic continents effectively captured global alkalinity fluxes. This process culminated near the Permian/Triassic, with metamorphic CO2 flux at a Phanerozoic minimum and the global ocean uniquely unbuffered against acidification. Such a condition could enhance the environmental effects of transient CO2 injections. Because the mid-Mesozoic appearance of pelagic calcifiers and

  10. Carbonate rocks of the Seward Peninsula, Alaska: Their correlation and paleogeographic significance

    USGS Publications Warehouse

    Dumoulin, Julie A.; Harris, Alta; Repetski, John E.

    2014-01-01

    Paleozoic carbonate strata deposited in shallow platform to off-platform settings occur across the Seward Peninsula and range from unmetamorphosed Ordovician–Devonian(?) rocks of the York succession in the west to highly deformed and metamorphosed Cambrian–Devonian units of the Nome Complex in the east. Faunal and lithologic correlations indicate that early Paleozoic strata in the two areas formed as part of a single carbonate platform. The York succession makes up part of the York terrane and consists of Ordovician, lesser Silurian, and limited, possibly Devonian rocks. Shallow-water facies predominate, but subordinate graptolitic shale and calcareous turbidites accumulated in deeper water, intraplatform basin environments, chiefly during the Middle Ordovician. Lower Ordovician strata are mainly lime mudstone and peloid-intraclast grainstone deposited in a deepening upward regime; noncarbonate detritus is abundant in lower parts of the section. Upper Ordovician and Silurian rocks include carbonate mudstone, skeletal wackestone, and coral-stromatoporoid biostromes that are commonly dolomitic and accumulated in warm, shallow to very shallow settings with locally restricted circulation. The rest of the York terrane is mainly Ordovician and older, variously deformed and metamorphosed carbonate and siliciclastic rocks intruded by early Cambrian (and younger?) metagabbros. Older (Neoproterozoic–Cambrian) parts of these units are chiefly turbidites and may have been basement for the carbonate platform facies of the York succession; younger, shallow- and deep-water strata likely represent previously unrecognized parts of the York succession and its offshore equivalents. Intensely deformed and altered Mississippian carbonate strata crop out in a small area at the western edge of the terrane. Metacarbonate rocks form all or part of several units within the blueschist- and greenschist-facies Nome Complex. The Layered sequence includes mafic meta¬igneous rocks and

  11. The Implementation of 2-D Resistivity Method in Verifying Paleozoic Aquifer Properties at Bukit Chondong, Perlis (Malaysia)

    NASA Astrophysics Data System (ADS)

    Maslinda, Umi; Nordiana, M. M.; Bery, A. A.; Afiq Saharudin, Muhamad; Hisham, Hazrul; Taqiuddin, Z. M.; Sulaiman, Nabila; Nur Amalina, M. K. A.; Nordiana, A. N.

    2017-04-01

    The research was conducted using 2-D resistivity in verifying Paleozoic aquifer. Since most geologic materials behave as electrical insulators, surface measurements of earth resistivity are controlled by the electrolytic ability of interstitial water. The subsurface distribution of water is controlled by the porosity of the formations. The study area is at Bukit Chondong, Beseri, Perlis. Bukit Chondong is made of sedimentary rock which mostly is sandstone. Bukit Chondong is from uppermost of the Kubang Pasu Formation that represented by a thick unit of grey mudstone interbedded with sandstone. The Kubang Pasu Formation was influenced by shallow marine during the early age. Paleocurrent and fossils traces were found on the mudstone at the study area. The area is suspected to be a Paleozoic aquifer because the sandstone can be a productive aquifer with diffuse flow. The water movement in sandstone is through the fractures and joints. Most of the water stores and transmits in sandstone. The interbedded sandstone and mudstone is one of the aquifer characteristic. Sandstone and mudstone are water-bearing rocks and low-permeable rocks respectively. The data was processed according to the geological information of the study area since there was an outcrop. The study area have low resistivity value which both sandstone and mudstone give less than 800 Ohm-m due to the water content (Sulphide and clay).

  12. Rock Slope Design Criteria

    DOT National Transportation Integrated Search

    2010-06-01

    Based on the stratigraphy and the type of slope stability problems, the flat lying, Paleozoic age, sedimentary : rocks of Ohio were divided into three design units: 1) competent rock design unit consisting of sandstones, limestones, : and siltstones ...

  13. Petrophysics and hydrocarbon potential of Paleozoic rocks in Kuwait

    NASA Astrophysics Data System (ADS)

    Abdullah, Fowzia; Shaaban, Fouad; Khalaf, Fikry; Bahaman, Fatma; Akbar, Bibi; Al-Khamiss, Awatif

    2017-10-01

    Well logs from nine deep exploratory and development wells in Kuwaiti oil fields have been used to study petrophysical characteristics and their effect on the reservoir quality of the subsurface Paleozoic Khuff and Unayzah formations. Petrophysical log data have been calibrated with core analysis available at some intervals. The study indicates a complex lithological facies of the Khuff Formation that is composed mainly of dolomite and anhydrite interbeds with dispersed argillaceous materials and few limestone intercalations. This facies greatly lowered the formation matrix porosity and permeability index. The porosity is fully saturated with water, which is reflected by the low resistivity logs responses, except at some intervals where few hydrocarbon shows are recorded. The impermeable anhydrites, massive (low-permeability) carbonate rock and shale at the lower part of the formation combine to form intraformational seals for the clastic reservoirs of the underlying Unayzah Formation. By contrast, the log interpretation revealed clastic lithological nature of the Unayzah Formation with cycles of conglomerate, sandstone, siltstone, mudstone and shales. The recorded argillaceous materials are mainly of disseminated habit, which control, for some extent, the matrix porosity, that ranges from 2% to 15% with water saturation ranges from 65% to 100%. Cementation, dissolution, compaction and clay mineral authigenesis are the most significant diagenetic processes affecting the reservoir quality. Calibration with the available core analysis at some intervals of the formation indicates that the siliciclastic sequence is a fluvial with more than one climatic cycle changes from humid, semi-arid to arid condition and displays the impact of both physical and chemical diagenesis. In general, the study revealed that the Unyazah Formation has a better reservoir quality than the Khuff Formation and possible gas bearing zones.

  14. A model for the evolution of the Earth's mantle structure since the Early Paleozoic

    NASA Astrophysics Data System (ADS)

    Zhang, Nan; Zhong, Shijie; Leng, Wei; Li, Zheng-Xiang

    2010-06-01

    Seismic tomography studies indicate that the Earth's mantle structure is characterized by African and Pacific seismically slow velocity anomalies (i.e., superplumes) and circum-Pacific seismically fast anomalies (i.e., a globally spherical harmonic degree 2 structure). However, the cause for and time evolution of the African and Pacific superplumes and the degree 2 mantle structure remain poorly understood with two competing proposals. First, the African and Pacific superplumes have remained largely unchanged for at least the last 300 Myr and possibly much longer. Second, the African superplume is formed sometime after the formation of Pangea (i.e., at 330 Ma) and the mantle in the African hemisphere is predominated by cold downwelling structures before and during the assembly of Pangea, while the Pacific superplume has been stable for the Pangea supercontinent cycle (i.e., globally a degree 1 structure before the Pangea formation). Here, we construct a proxy model of plate motions for the African hemisphere for the last 450 Myr since the Early Paleozoic using the paleogeographic reconstruction of continents constrained by paleomagnetic and geological observations. Coupled with assumed oceanic plate motions for the Pacific hemisphere, this proxy model for the plate motion history is used as time-dependent surface boundary condition in three-dimensional spherical models of thermochemical mantle convection to study the evolution of mantle structure, particularly the African mantle structure, since the Early Paleozoic. Our model calculations reproduce well the present-day mantle structure including the African and Pacific superplumes and generally support the second proposal with a dynamic cause for the superplume structure. Our results suggest that while the mantle in the African hemisphere before the assembly of Pangea is predominated by the cold downwelling structure resulting from plate convergence between Gondwana and Laurussia, it is unlikely that the bulk of

  15. Early Paleozoic development of the Maine-Quebec boundary Mountains region

    USGS Publications Warehouse

    Gerbi, C.C.; Johnson, S.E.; Aleinikoff, J.N.; Bedard, J.H.; Dunning, G.R.; Fanning, C.M.

    2006-01-01

    Pre-Silurian bedrock units played key roles in the early Paleozoic history of the Maine-Quebec Appalachians. These units represent peri-Laurentian material whose collision with the craton deformed the Neoproteozoic passive margin and initiated the Appalachian mountain-building cycle. We present new field, petrological, geochronological, and geochemical data to support the following interpretations related to these units. (1) The Boil Mountain Complex and Jim Pond Formation do not represent part of a coherent ophiolite. (2) Gabbro and tonalite of the Boil Mountain Complex intruded the Chain Lakes massif at ca. 477 Ma. (3) The Skinner pluton, an arc-related granodiorite, intruded the Chain Lakes massif at ca. 472 Ma. (4) The Attean pluton, with a reconfirmed age of ca. 443 Ma, is unrelated to Early Ordovician orogenesis. (5) The most likely timing for the juxtaposition of the Jim Pond Formation and the Boil Mountain Complex was during regional Devonian deformation. These interpretations suggest that the Boundary Mountains were once part of a series of arcs extending at least from central New England through Newfoundland. ?? 2006 NRC Canada.

  16. Paleoclimatic and paleomagnetic constraints on the Paleozoic reconstructions of south China, north China and Tarim

    NASA Astrophysics Data System (ADS)

    Shangyou, Nie

    1991-10-01

    Paleomagnetic and paleoclimatic data provide the most useful latitudinal constraints for plate reconstructions. Distributions through the Paleozoic of five types of climatically sensitive sediments (coals, evaporites, reefs, dolomites and limestones) for south China, north China and Tarim are shown on 15 maps that include 1578 reliable data points. These paleoclimatic data agree reasonably well with available paleomagnetic directions, although significant divergence between the two exists for the Early Paleozoic. These data indicate the following: (1) South China was in low latitudes during the entire Paleozoic, with a subtropical position in the Cambrian. (2) North China also remained near the equator in the Early and Late Paleozoic, except for the Ordovian and the Late Permian when extensive evaporites suggest slightly higher latitudinal positions, while its Middle Paleozoic position is uncertain due to the missing stratigraphie record. (3) In south China, local tectonics appears to have played a dominant role in determining paleogeography and therefore marine sedimentation, especially after the Late Ordovician-Early Silurian, because the areal coverage of marine sediments through time is distinctly different from what would be expected from published global sea-level curves. (4) Paleoclimatic and paleomagnetic data are compatible with biogeographic data which suggest that south China was part of eastern Gondwana in the Early Paleozoic, but was widely separated from Gondwana in the Late Paleozoic, and the split between the two probably happened in the Devonian, giving rise to a major break-up unconformity in central south China.

  17. Quantitative models for aggregate: some types and examples from Oklahoma carbonate rocks

    USGS Publications Warehouse

    Bliss, James D.

    1999-01-01

    Evaluation of data for three engineering variable--absorption, bulk specific gravity, and freeze-thaw durability (350 cycles)--was made for quarries in carbonate rocks in Oklahoma that supply aggregate. It was found that lower Palrozoic carbonate rocks (Cambrian through Devonian) are likely to make a better quality aggregate than upper Paleozoic (Mississippian to Permian) carbonate rocks. In addition, freeze-thaw durability can be forecast from absorption and is exemplary for lower Paleozoic carbonate rocks.

  18. The genesis of early Carboniferous adakitic rocks at the southern margin of the Alxa Block, North China

    NASA Astrophysics Data System (ADS)

    Xue, Shuo; Ling, Ming-Xing; Liu, Yu-Long; Zhang, Hong; Sun, Weidong

    2017-05-01

    Adakite is a highly debated petrologic term that was originally proposed to describe igneous rocks formed by slab melting. Subsequent studies reported other ways to generate adakitic signatures such as the melting of mafic lower continental crust and fractional crystallization of basaltic magma. We studied adakitic rocks from the Taohuala Mountain at the southern margin of the Alxa Block, North China. These rocks are characterized by high Sr concentrations (300-450 ppm), high Sr/Y (20-75 ppm) and (La/Yb)N (25-67 ppm) ratios, and low Y (< 18 ppm) and Yb (< 1.9 ppm) concentrations, which are typical of adakite. The distribution of these data on a Sr/Y versus (La/Yb)N discrimination diagram, combined with their high (87Sr/86Sr)i ratios (0.7113-0.7131) and low εNd(t) (- 15.8 to - 16.8) and εHf(t) (- 18 to - 10) values of zircon, indicates that the adakitic rocks formed by partial melting of thickened continental crust. U-Pb dating of zircons using LA-ICP-MS yields an early Carboniferous age of 330 ± 5 Ma. The ages and spatial distribution of magmatic rocks indicate that the Paleo-Asian oceanic crust subducted towards the Alxa Block in the late Paleozoic. Subsequently, northward slab rollback occurred during the Carboniferous. Therefore, we propose that the adakitic rocks from the Taohuala Mountain formed by partial melting of previously thickened lower continental crust, induced by the upwelling of asthenospheric mantle during slab rollback.

  19. Precious metals associated with Late Cretaceous-early Tertiary igneous rocks of southwestern Alaska

    USGS Publications Warehouse

    Bundtzen, Thomas K.; Miller, Marti L.; Goldfarb, Richard J.; Miller, Lance D.

    1997-01-01

    Placer gold and precious metal-bearing lode deposits of southwestern Alaska lie within a region 550 by 350 km, herein referred to as the Kuskokwim mineral belt. This mineral belt has yielded 100,240 kg (3.22 Moz) of gold, 12, 813 kg (412,000 oz) of silver, 1,377,412 kg (39,960 flasks) of mercury, and modest amounts of antimony and tungsten derived primarily from the late Cretaceous-early Tertiary igneous complexes of four major types: (1) alkali-calcic, comagmatic volcanic-plutonic complexes and isolated plutons, (2) calc-alkaline, meta-aluminous reduced plutons, (3) peraluminous alaskite or granite-porphyry sills and dike swarms, and (4) andesite-rhyolite subaerial volcanic rocks.About 80 percent of the 77 to 52 Ma intrusive and volcanic rocks intrude or overlie the middle to Upper Cretaceous Kuskokwim Group sedimentary and volcanic rocks, as well as the Paleozoic-Mesozoic rocks of the Nixon Fork, Innoko, Goodnews, and Ruby preaccretionary terranes.The major precious metal-bearing deposit types related to Late Cretaceous-early Tertiary igneous complexes of the Kuskokwim mineral belt are subdivided as follows: (1) plutonic-hosted copper-gold polymetallic stockwork, skarn, and vein deposits, (2) peraluminous granite-porphory-hosted gold polymetallic deposits, (3) plutonic-related, boron-enriched silver-tin polymetallic breccia pipes and replacement deposits, (4) gold and silver mineralization in epithermal systems, and (5) gold polymetallic heavy mineral placer deposits. Ten deposits genetically related to Late Cretaceous-early Tertiary intrusions contain minimum, inferred reserves amounting to 162,572 kg (5.23 Moz) of gold, 201,015 kg (6.46 Moz) silver, 12,160 metric tons (t) of tin, and 28,088 t of copper.The lodes occur in veins, stockworks, breccia pipes, and replacement deposits that formed in epithermal to mesothermal temperature-pressure conditions. Fluid inclusion, isotopic age, mineral assemblage, alteration assemblage, and structural data indicate that

  20. Underpressure in Mesozoic and Paleozoic rock units in the Midcontinent of the United States

    USGS Publications Warehouse

    Nelson, Philip H.; Gianoutsos, Nicholas J.; Drake, Ronald

    2015-01-01

    Potentiometric surfaces for Paleozoic strata, based on water well levels and selected drill-stem tests, reveal the control on hydraulic head exerted by outcrops in eastern Kansas and Oklahoma. From outcrop in the east, the westward climb of hydraulic head is much less than that of the land surface, with heads falling so far below land surface that the pressure:depth ratio in eastern Colorado is less than 5.7 kPa/m (0.25 psi/ft). Permian evaporites separate the Paleozoic hydrogeologic units from a Lower Cretaceous (Dakota Group) aquifer, and a highly saline brine plume pervading Paleozoic units in central Kansas and Oklahoma is attributed to dissolution of Permian halite. Underpressure also exists in the Lower Cretaceous hydrogeologic unit in the Denver Basin, which is hydrologically separate from the Paleozoic units. The data used to construct the seven potentiometric surfaces were also used to construct seven maps of pressure:depth ratio. These latter maps are a function of the differences among hydraulic head, land-surface elevation, and formation elevation. As a consequence, maps of pressure:depth ratio reflect the interplay of three topologies that evolved independently with time. As underpressure developed, gas migrated in response to the changing pressure regime, most notably filling the Hugoton gas field in southwestern Kansas. The timing of underpressure development was determined by the timing of outcrop exposure and tilting of the Great Plains. Explorationists in western Kansas and eastern Colorado should not be surprised if a reservoir is underpressured; rather, they should be surprised if it is not.

  1. Jurassic cooling ages in Paleozoic to early Mesozoic granitoids of northeastern Patagonia: 40Ar/39Ar, 40K-40Ar mica and U-Pb zircon evidence

    NASA Astrophysics Data System (ADS)

    Martínez Dopico, Carmen I.; Tohver, Eric; López de Luchi, Mónica G.; Wemmer, Klaus; Rapalini, Augusto E.; Cawood, Peter A.

    2017-10-01

    Patagonia during the Early Jurassic (Sinemurian-Pliensbachian) was responsible for the partial (re)exhumation of the mid-crustal Paleozoic basement along reactivated discrete NE-SW to ENE-WSW lineaments and the resetting of isotopic systems. These new thermochronological data indicate that Early Permian magmatic rocks of the Nahuel Niyeu block were below 300 °C for ca. 20 Ma prior to the onset of the main magmatic episode of the Late Permian to Triassic igneous and metaigneous rocks of the Yaminué block.

  2. A-type granitoid in Hasansalaran complex, northwestern Iran: Evidence for extensional tectonic regime in northern Gondwana in the Late Paleozoic

    NASA Astrophysics Data System (ADS)

    Azizi, Hossein; Kazemi, Tahmineh; Asahara, Yoshihiro

    2017-07-01

    The Hasansalaran plutonic complex is one of the main intrusive bodies with a wide range of granite, monzonite, diorite and syenite that crop out in northwest Iran. This body includes Paleozoic granitoids that are surrounded and cut by Cretaceous granitoids. Zircon U-Pb age dating shows that the crystallization of this body occurred at 360 Ma ago in the Early Carboniferous. Whole rock compositions of the investigated intrusive body, show high contents of Ga (11.1-76.3 ppm), Zr (73.5-1280 ppm), Zn (43.7-358 ppm), Y(17.9-177 ppm), enrichment of rare earth elements (REEs) together with high Ga/Al ratios and a strong Eu negative anomaly, fairly consistent with typical A-type signature. The low εNd(t = 360 Ma) value (< + 3) and high variation of 87Sr/86Sr(initial) ratios are evidence of the role of the continental component for the evolution of A-type granitoids in the Hasansalaran area. Because of the high contents of Ta, Yb, Nb and Y, all samples are plotted in the within-plate tectonic regime without interfering oceanic released fluids in the subduction zone. These high Nb content rocks (37.2-342 ppm without one sample) are classified as A1-type granitoids. Based on the distribution of A1- and A2-type granitoids in the Late Paleozoic in northwest Iran, the existence of some gabbroic rocks with tholeiitic to alkali composition and a long gap for magmatic activities in the area from 550 to 360 Ma (approximately 180 my.a.) between the Zagros and Tabriz faults, we suggest a new thematic model for evolution of northwest Iran in the Late Paleozoic. Based on our model, the upwelling of a mantle plume, probably due to the proto-Tethys oceanic rollback activity beneath northern Gondwana, had a crucial role in the uplifting of the continental crust and resulted in the crystallization of A-type granitoids with some gabbroic rocks in northwest Iran.

  3. Petrology and geochemistry of meta-ultramafic rocks in the Paleozoic Granjeno Schist, northeastern Mexico: Remnants of Pangaea ocean floor

    NASA Astrophysics Data System (ADS)

    Torres-Sánchez, Sonia Alejandra; Augustsson, Carita; Jenchen, Uwe; Rafael Barboza-Gudiño, J.; Alemán Gallardo, Eduardo; Ramírez Fernández, Juan Alonso; Torres-Sánchez, Darío; Abratis, Michael

    2017-08-01

    The Granjeno Schist is a meta-volcanosedimentary upper Paleozoic complex in northeastern Mexico. We suggest different tectonic settings for metamorphism of its serpentinite and talc-bearing rocks based on petrographic and geochemical compositions. According to the REE ratios (LaN/YbN = 0.51 -20.0 and LaN/SmN = 0.72-9.1) and the enrichment in the highly incompatible elements Cs (0.1 ppm), U (2.8 ppm), and Zr (60 ppm) as well as depletion in Ba (1 - 15 ppm), Sr (1 -184 ppm), Pb (0.1 -14 ppm), and Ce (0.1 -1.9 ppm) the rocks have mid-ocean ridge and subduction zones characteristics. The serpentinite contains Al-chromite, ferrian chromite and magnetite. The Al-chromite is characterized by Cr# of 0.48 to 0.55 suggesting a MORB origin, and Cr# of 0.93 to 1.00 for the ferrian chromite indicates a prograde metamorphism. We propose at least two serpentinization stages of lithospheric mantle for the ultramafic rock of the Granjeno Schist, (1) a first in an ocean-floor environment at sub-greenschist to greenschist facies conditions and (2) later a serpentinization phase related to the progressive replacement of spinel by ferrian chromite and magnetite at greenschist to low amphibolite facies conditions during regional metamorphism. The second serpentinization phase took place in an active continental margin during the Pennsylvanian. We propose that the origin of the ultramafic rocks is related to an obduction and accretional event at the western margin of Pangea.

  4. Executive summary--2002 assessment of undiscovered oil and gas resources in the San Juan Basin Province, exclusive of Paleozoic rocks, New Mexico and Colorado: Chapter 1 in Total petroleum systems and geologic assessment of undiscovered oil and gas resources in the San Juan Basin Province, exclusive of Paleozoic rocks, New Mexico and Colorado

    USGS Publications Warehouse

    ,

    2013-01-01

    In 2002, the U.S. Geological Survey (USGS) estimated undiscovered oil and gas resources that have the potential for additions to reserves in the San Juan Basin Province (5022), New Mexico and Colorado (fig. 1). Paleozoic rocks were not appraised. The last oil and gas assessment for the province was in 1995 (Gautier and others, 1996). There are several important differences between the 1995 and 2002 assessments. The area assessed is smaller than that in the 1995 assessment. This assessment of undiscovered hydrocarbon resources in the San Juan Basin Province also used a slightly different approach in the assessment, and hence a number of the plays defined in the 1995 assessment are addressed differently in this report. After 1995, the USGS has applied a total petroleum system (TPS) concept to oil and gas basin assessments. The TPS approach incorporates knowledge of the source rocks, reservoir rocks, migration pathways, and time of generation and expulsion of hydrocarbons; thus the assessments are geologically based. Each TPS is subdivided into one or more assessment units, usually defined by a unique set of reservoir rocks, but which have in common the same source rock. Four TPSs and 14 assessment units were geologically evaluated, and for 13 units, the undiscovered oil and gas resources were quantitatively assessed.

  5. Petrogenesis of the Pd-rich intrusion at Salt Chuck, Prince of Wales island: an early Paleozoic Alaskan-type ultramafic body

    USGS Publications Warehouse

    Loney, R.A.; Himmelberg, G.R.

    1992-01-01

    The early Paleozoic Salt Chuck intrusion has petrographic and chemical characteristics that are similar to those of Cretaceous Alaskan-type ultramafic-mafic bodies. The intrusion is markedly discordant to the structure of the early Paleozoic Descon Formation, in which it has produced a rather indistinct contact aureole a few meters wide. Mineral assemblages, sequence of crystallization, and mineral chemistry suggest that the intrusion crystallized under low pressures (~2 kbar) with oxidation conditions near those of the NNO buffer, from a hydrous, silica-saturated, orthopyroxene-normative parental magma. The Salt Chuck deposit was probably formed by a two-stage process: 1) a stage of magmatic crystallization in which the sulfides and PGE accumulated in a disseminated manner in cumulus deposits, possibly largely in the gabbro, and 2) a later magmatic-hydrothermal stage during which the sulfides and PGE were remobilized and concentrated in veins and fracture-fillings. In this model, the source of the sulfides and PGE was the magma that produced the Salt Chuck intrusion. -from Authors

  6. Petrogenesis of granitoids and associated xenoliths in the early Paleozoic Baoxu and Enping plutons, South China: Implications for the evolution of the Wuyi-Yunkai intracontinental orogen

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Huang, Xiao-Long; Sun, Min; He, Peng-Li

    2018-05-01

    The early Paleozoic Wuyi-Yunkai orogen was associated with extensive felsic magmatic activities and the orogenic core was mainly distributed in the Yunkai and Wugong domains located in the western Cathaysia block and in the Wuyi domain located in the central part of the Cathaysia block. In order to investigate the evolution of the Wuyi-Yunkai orogen, elemental and Sr-Nd isotopic analyses were performed for granites from the Baoxu pluton in the Yunkai domain and from the Enping pluton in the central part of the Cathaysia block. The Baoxu pluton consists of biotite granite with abundant xenoliths of gneissic granite, granodiorite and diorite, and the Enping pluton is mainly composed of massive granodiorite. Biotite granites (441 ± 5 Ma) and gneissic granite xenolith (443 ± 4 Ma) of the Baoxu pluton are all weakly peraluminous (A/CNK = 1.05-1.10). They show high Sr/Y and La/Yb ratios and have negative bulk-rock εNd(t) values (-7.0 to -4.4), which are similar to coeval gneissic S-type granites in the Yunkai domain and were probably derived from dehydration melting of a sedimentary source with garnet residue in the source. Granodiorites (429 ± 3 Ma) from Enping and granodiorite xenolith (442 ± 4 Ma) from Baoxu are metaluminous and have REE patterns with enriched light REE and flat middle to heavy REE, possibly generated by the dehydration melting of an igneous basement at middle to lower crustal level. Diorite xenolith from Baoxu is ultrapotassic (K2O = 4.9 wt%), has high contents of MgO (7.0 wt%), Cr (379 ppm) and Ni (171 ppm) and shows pronounced negative Nb, Ta and Ti anomalies. This xenolith also has negative εNd(t) value (-3.6) and low Rb/Ba and high Ba/Sr ratios, and is thus interpreted to be derived from an enriched lithospheric mantle with the breakdown of phlogopite. Early Paleozoic I- and S-type granites in the Wuyi-Yunkai orogen mostly have negative εNd(t) values and do not have juvenile components, consistent with genesis by an intracontinental

  7. Rock Slope Design Criteria : Executive Summary Report

    DOT National Transportation Integrated Search

    2010-06-01

    Based on the stratigraphy and the type of slope stability problems, the flat lying, Paleozoic age, sedimentary rocks of Ohio were divided into three design units: 1) competent rock design unit consisting of sandstones, limestones, and siltstones that...

  8. Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Liu, Yongjiang; Li, Weimin; Feng, Zhiqiang; Neubauer, Franz

    2017-04-01

    The Central Asian Orogenic Belt (CAOB) is the largest accretionary orogen in the world, which is responsible for considerable Phanerozoic juvenile crustal growth. The NE China and its adjacent areas compose the eastern segment of the CAOB, which is a key area for providing important evidence of the CAOB evolution and understanding the NE Asian tectonics. The eastern segment of the CAOB is composed tectonically of four micro-blocks and four sutures, i.e. Erguna block (EB), Xing'an block (XB), Songliao-Xilinhot block (SXB), Jiamusi block (JB), Xinlin-Xiguitu suture (XXS), Heihe-Hegenshan suture (HHS), Mudanjiang-Yilan suture (MYS) and Solonker-Xar Moron-Changchun-Yanji suture (SXCYS). The EB and XB were amalgamated by westward subduction, oceanic island accretions and final collision in ca. 500 Ma. The XB and SXB were amalgamated by subduction-related Early Paleozoic marginal arc, Late Paleozoic marginal arc and final collision in the late Early Carboniferous to early Late Carboniferous. The JB probably had been attached to the SXB in the Early Paleozoic, but broken apart from the SXB in the Triassic and collided back in the Jurassic. The closure of Paleo-Asian Ocean had experienced a long continue/episodic subduction-accretion processes on margins of the NCC to the south and the SXB to the north from the Early to Late Paleozoic. The final closure happened along the SXCYS, from west Solonker, Sonid Youqi, Kedanshan (Keshenketengqi), Xar Moron River through Songliao Basin via Kailu, Tongliao, Horqin Zuoyizhongqi, Changchun, to the east Panshi, Huadian, Dunhua, Yanji, with a scissors style closure in time from the Late Permian-Early Triassic in the west to the Late Permian-Middle Triassic in the east. The amalgamated blocks should compose a united micro-continent, named as Jiamusi-Mongolia Block (JMB) after Early Carboniferous, which bounded by Mongo-Okhotsk suture to the northwest, Solonker-Xar Moron-Changchun suture to the south and the eastern margin of JB to the

  9. Paleozoic Hydrocarbon-Seep Limestones

    NASA Astrophysics Data System (ADS)

    Peckmann, J.

    2007-12-01

    To date, five Paleozoic hydrocarbon-seep limestones have been recognized based on carbonate fabrics, associated fauna, and stable carbon isotopes. These are the Middle Devonian Hollard Mound from the Antiatlas of Morocco [1], Late Devonian limestone lenses with the dimerelloid brachiopod Dzieduszyckia from the Western Meseta of Morocco [2], Middle Mississippian limestones with the dimerelloid brachiopod Ibergirhynchia from the Harz Mountains of Germany [3], Early Pennsylvanian limestones from the Tantes Mound in the High Pyrenees of France [4], and Late Pennsylvanian limestone lenses from the Ganigobis Shale Member of southern Namibia [5]. Among these examples, the composition of seepage fluids varied substantially as inferred from delta C-13 values of early diagenetic carbonate phases. Delta C-13 values as low as -50 per mil from the Tantes Mound and -51 per mil from the Ganigobis limestones reveal seepage of biogenic methane, whereas values of -12 per mil from limestones with Dzieduszyckia associated with abundant pyrobitumen agree with oil seepage. Intermediate delta C-13 values of carbonate cements from the Hollard Mound and Ibergirhynchia deposits probably reflect seepage of thermogenic methane. It is presently very difficult to assess the faunal evolution at seeps in the Paleozoic based on the limited number of examples. Two of the known seeps were typified by extremely abundant rhynchonellide brachiopods of the superfamily Dimerelloidea. Bivalve mollusks and tubeworms were abundant at two of the known Paleozoic seep sites; one was dominated by bivalve mollusks (Hollard Mound, Middle Devonian), another was dominated by tubeworms (Ganigobis Shale Member, Late Pennsylvanian). The tubeworms from these two deposits are interpreted to represent vestimentiferan worms, based on studies of the taphonomy of modern vestimentiferans. However, this interpretation is in conflict with the estimated evolutionary age of vestimentiferans based on molecular clock methods

  10. The petrogenesis of sodic granites in the Niujuanzi area and constraints on the Paleozoic tectonic evolution of the Beishan region, NW China

    NASA Astrophysics Data System (ADS)

    Yu, Jiyuan; Guo, Lin; Li, Jianxing; Li, Yanguang; Smithies, Robert H.; Wingate, Michael T. D.; Meng, Yong; Chen, Shefa

    2016-07-01

    Ordovician to Devonian sodic granites dominate the newly recognized Luotuojuan composite granite in the Lebaquan-Luotuojuan-Niujuanzi region of Beishan, along the southern margin of the Central Asian Orogenic Belt in NW China. The granites include sodic (K2O/Na2O > 0.5) tonalites with low Y (< 7 ppm), Yb (< 0.7 ppm), high Sr/Y (> 68) that formed during at least two events at c. 435 and c. 370-360 Ma. Their compositions are consistent with high-pressure melting of basaltic crust, although relatively non-radiogenic Nd isotope compositions (εNd(t) + 0.9) require some crustal assimilation. The interpretation that these granites reflect melts of a subducted slab (i.e. adakite) is supported by independent local and regional geological evidence for an oceanic subduction-accretion setting, including a long history of calc-alkaline magmatism and the identification of a series of early Paleozoic ophiolite belts. Other sodic granites forming the Luotuojuan composite granite are mainly quartz-diorite and granodiorite formed between c. 391 and c. 360 Ma. These rocks are not adakites, having Sr concentrations and Sr/Y ratios too low and Y and Yb concentrations too high. They are low- to medium-K calc-alkaline rocks more typical of magmas derived through melting in a subduction modified mantle wedge. Compositional changes from sodic to potassic granites, over time frames consistent with subduction processes, suggest at least two separate cycles, or pulses, of hot subduction in the Lebaquan-Luotuojuan-Niujuanzi region. Although early Paleozoic adakites have been inferred to exist elsewhere in the Beishan region, many of the reported adakitic rocks have compositions inconsistent with melting of subducted oceanic lithosphere and so tectonic interpretation of hot subduction might not be valid in these cases. A study of regional granite data also shows not only that adakite magmatism does not extend into the Permian but that if subduction-accretion processes extended into the late

  11. On the temporal evolution of long-wavelength mantle structure of the Earth since the early Paleozoic

    NASA Astrophysics Data System (ADS)

    Zhong, Shijie; Rudolph, Maxwell L.

    2015-05-01

    The seismic structure of the Earth's lower mantle is characterized by a dominantly degree-2 pattern with the African and Pacific large low shear velocity provinces (i.e., LLSVP) that are separated by circum-Pacific seismically fast anomalies. It is important to understand the origin of such a degree-2 mantle structure and its temporal evolution. In this study, we investigated the effects of plate motion history and mantle viscosity on the temporal evolution of the lower mantle structure since the early Paleozoic by formulating 3-D spherical shell models of thermochemical convection. For convection models with realistic mantle viscosity and no initial structure, it takes about ˜50 Myr to develop dominantly degree-2 lower mantle structure using the published plate motion models for the last either 120 Ma or 250 Ma. However, it takes longer time to develop the mantle structure for more viscous mantle. While the circum-Pangea subduction in plate motion history models promotes the formation of degree-2 mantle structure, the published pre-Pangea plate motions before 330 Ma produce relatively cold lower mantle in the African hemisphere and significant degree-1 structure in the early Pangea (˜300 Ma) or later times, even if the lower mantle has an initially degree-2 structure and a viscosity as high as 1023 Pas. This suggests that the African LLSVP may not be stationary since the early Paleozoic. With the published plate motion models and lower mantle viscosity of 1022 Pas, our mantle convection models suggest that the present-day degree-2 mantle structure may have largely been formed by ˜200 Ma.

  12. Unroofing history of Late Paleozoic magmatic arcs within the ``Turan Plate'' (Tuarkyr, Turkmenistan)

    NASA Astrophysics Data System (ADS)

    Garzanti, E.; Gaetani, M.

    2002-07-01

    Stratigraphic, sedimentologic and petrographic data collected on the Kizilkaya sedimentary succession (Western Turkmenistan) demonstrate that the "Turan Plate" consists in fact of an amalgamation of Late Paleozoic to Triassic continental microblocks separated by ocean sutures. In the Kizilkaya area, an ophiolitic sequence including pyroxenite, gabbro, pillow basalt and chert, interpreted as the oceanic crust of a back-arc or intra-arc basin, is tectonically juxtaposed against volcaniclastic redbeds documenting penecontemporaneous felsic arc magmatism (Amanbulak Group). A collisional event took place around ?mid-Carboniferous times, when oceanic rocks underwent greenschist-facies metamorphism and a thick volcaniclastic wedge, with pyroclastic rocks interbedded in the lower part, accumulated (Kizilkaya Formation). The climax of orogenic activity is testified by arid fanglomerates shed from the rapid unroofing of a continental arc sequence, including Middle-Upper Devonian back-reef carbonates and cherts, and the underlying metamorphic and granitoid basement rocks (Yashmu Formation). After a short period of relative quiescence, renewed tectonic activity is indicated by a conglomeratic sequence documenting erosion of a sedimentary and metasedimentary succession including chert, sandstone, slate and a few carbonates. A final stage of rhyolitic magmatism took place during rapid unroofing of granitoid basement rocks (Kizildag Formation). Such a complex sequence of events recorded by the Kizilkaya episutural basin succession documents the stepwise assemblage of magmatic arcs and continental fragments to form the Turan microblock collage during the Late Paleozoic. Evolution of detrital modes is compatible with that predicted for juvenile to accreted and unroofed crustal blocks. The deposition of braidplain lithic arkoses in earliest Triassic time indicates that strong subsidence continued after the end of the volcanic activity, possibly in retroarc foreland basin settings

  13. Geochronological framework of the early Paleozoic Bainaimiao Cu-Mo-Au deposit, NE China, and its tectonic implications

    NASA Astrophysics Data System (ADS)

    Zhou, Zhen-Hua; Mao, Jing-Wen; Ma, Xing-Hua; Che, He-Wei; Ou'yang, He-Gen; Gao, Xu

    2017-08-01

    The Bainaimiao Cu-Mo-Au deposit of NE China is an important ore deposit in the middle section of the northern margin of the North China Craton. The early Paleozoic Bainaimiao Group is the main ore-hosting rock. The mineralization at the deposit shows features of porphyry alteration and late-stage orogenesis and transformation. Zircon LA-ICP-MS U-Pb age data indicate that the ages of the Third and Fifth formations of the Bainaimiao Group are 492.7 ± 2.9 Ma (MSWD = 0.53) and 488.9 ± 3.1 Ma (MSWD = 0.92), respectively. The age of quartz diorite that intrudes the Bainaimiao Group is 459.3 ± 6.4 Ma (MSWD = 2.20). Molybdenite samples from massive Cu-Mo-bearing ores and quartz veins in the southern ore belt yield a Re-Os isochron age of 438.2 ± 2.7 Ma (MSWD = 0.16), which is consistent with the Re-Os isochron age of molybdenite in the northern ore belt, implying that the two ore belts belong to the same mineralization system. Muscovite from a post-magmatic Cu-Mo-bearing quartz-calcite vein yields an Ar-Ar isochron age of 422.5 ± 3.9 Ma (MSWD = 0.64) with an initial 40Ar/36Ar ratio of 286 ± 21. The well-defined plateau age of the muscovite is 422.4 ± 2.6 Ma (MSWD = 0.05), which represents the time of the post-magmatic orogenic transformation event. Based on our new age data and previous findings, we propose that the Bainaimiao Cu-Mo-Au deposit formed in an active continental margin setting and experienced four stages of ore mineralization: (1) a Late Cambrian-Middle Ordovician volcanic-sedimentary stage; (2) a Late Ordovician porphyry mineralization stage; (3) a Late Silurian regional metamorphism stage; and (4) an orogenic transformation stage. Subhedral and euhedral Paleoproterozoic (2402-1810 Ma) inherited zircons indicate that the Bainaimiao Group has a tectonic affinity with the North China Craton. The Central Asian Orogenic Belt, which is closely related to the complex closure of the Paleo-Asian Ocean, is favorable for prospecting for Paleozoic porphyry Cu

  14. Total petroleum systems and geologic assessment of undiscovered oil and gas resources in the San Juan Basin Province, exclusive of Paleozoic rocks, New Mexico and Colorado

    USGS Publications Warehouse

    ,

    2013-01-01

    In 2002, the U.S. Geological Survey (USGS) estimated undiscovered oil and gas resources that have the potential for additions to reserves in the San Juan Basin Province, New Mexico and Colorado. Paleozoic rocks were not appraised. The last oil and gas assessment for the province was in 1995. There are several important differences between the 1995 and 2002 assessments. The area assessed is smaller than that in the 1995 assessment. This assessment of undiscovered hydrocarbon resources in the San Juan Basin Province also used a slightly different approach in the assessment, and hence a number of the plays defined in the 1995 assessment are addressed differently in this report. After 1995, the USGS has applied a total petroleum system (TPS) concept to oil and gas basin assessments. The TPS approach incorporates knowledge of the source rocks, reservoir rocks, migration pathways, and time of generation and expulsion of hydrocarbons; thus the assessments are geologically based. Each TPS is subdivided into one or more assessment units, usually defined by a unique set of reservoir rocks, but which have in common the same source rock. Four TPSs and 14 assessment units were geologically evaluated, and for 13 units, the undiscovered oil and gas resources were quantitatively assessed.

  15. North American Paleozoic land snails with a summary of other Paleozoic nonmarine snails

    USGS Publications Warehouse

    Solem, Alan; Yochelson, Ellis Leon

    1979-01-01

    Land snails from the Paleozoic of North America are known from the coal fields of eastern Canada, from the Dunkard basin west of the Allegheny Mountains, and from the western margin of the Illinois basin. The earliest finds were made about 125 years ago; essentially no new information has been recorded for a century. Large collections of Anthracopupa from the Dunkard basin sparked inquiry into the land snails from the other two areas. Studies using the SEM (scanning electron microscope) have provided considerable insight into microdetails of shell structure, which allow systematic assignment of these gastropods. All may be assigned to extant families, except one, for which insufficient material allows only superfamily assignment. The prosobranch Dawsonella is confirmed as being a terrestrial neritacean gastropod. To date, it is known only from the upper Middle Pennsylvanian of Illinois and Indiana. All the other Paleozoic land snails are stylommatophoran pulmonates; their current classification as nonmarine cyclophoraceans is not correct. Restudy of material from the Joggins section of Nova Scotia indicates that representatives of two ordinal groups of pulmonates appeared simultaneously in upper Lower Pennsylvanian strata; the oldest land prosobranch is found in only very slightly younger rocks. Zonites (Conulus) priscus is reassigned to the new genus Protodiscus in the extant family Discidae. Dendropupa is placed within the family Enidae, Anthraaopupa is placed in the family Tornatellinidae, and 'Pupa' bigsbii is assigned to the superfamily Pupillacea. All four of these family-level taxa are diverse and belong to two orders within the superorder Stylommatophora, heretofore considered a derived rather than an ancestral stock. Anthracopupa ohioensis Whitfield is a highly variable species, and two other species Naticopsis (?) diminuta and A.(?) dunkardona, both named by Stauffer and Schroyer, are placed in synonymy with it. To obtain taxonomic data to support the

  16. Age and provenance constraints on seismically-determined crustal layers beneath the Paleozoic southern Central Asian Orogen, Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Jian, Ping; Kröner, Alfred; Shi, Yuruo; Zhang, Wei; Liu, Yaran; Windley, Brian F.; Jahn, Bor-ming; Zhang, Liqao; Liu, Dunyi

    2016-06-01

    We present 110 ages and 51 in-situ δ18O values for zircon xenocrysts from a post-99 Ma intraplate basaltic rock suite hosted in a subduction-accretion complex of the southern Central Asian Orogenic Belt in order to constrain a seismic profile across the Paleozoic Southern Orogen of Inner Mongolia and the northern margin of the North China Craton. Two zircon populations are recognized, namely a Phanerozoic group of 70 zircons comprising granitoid-derived (ca. 431-99 Ma; n = 31; peak at 256 Ma), meta-granitoid-derived (ca. 449-113 Ma; n = 24; peak at 251 Ma) and gabbro-derived (436-242 Ma; n = 15; peaks at 264 and 244 Ma) grains. Each textural type is characterized by a distinct zircon oxygen isotope composition and is thus endowed with a genetic connotation. The Precambrian population (2605-741 Ma; n = 40) exhibits a prominent age peak at 2520 Ma (granulite-facies metamorphism) and four small peaks at ca. 1900, 1600, and 800 Ma. Our new data, together with literature zircon ages, significantly constrain models of three seismically-determined deep crustal layers beneath the fossil subduction zone-forearc along the active northern margin of the North China Craton, namely: (1) an upper arc crust of early to mid-Paleozoic age, intruded by a major Permian-Triassic composite granitoid-gabbroic pluton (8-20 km depth); (2) a middle crust, predominantly consisting of mid-Meso- to Neoproterozoic felsic and mafic gneisses; and (3) a lower crust composed predominantly of late Archean granulite-facies rocks. We conclude that the Paleozoic orogenic crust is limited to the upper crustal level, and the middle to lower crust has a North China Craton affinity. Furthermore, integrating our data with surface geological, petrological and geochronological constraints, we present a new conceptual model of orogenic uplift, lithospheric delamination and crustal underthrusting for this key ocean-continent convergent margin.

  17. Paleozoic oil/gas shale reservoirs in southern Tunisia: An overview

    NASA Astrophysics Data System (ADS)

    Soua, Mohamed

    2014-12-01

    During these last years, considerable attention has been given to unconventional oil and gas shale in northern Africa where the most productive Paleozoic basins are located (e.g. Berkine, Illizi, Kufra, Murzuk, Tindouf, Ahnet, Oued Mya, Mouydir, etc.). In most petroleum systems, which characterize these basins, the Silurian played the main role in hydrocarbon generation with two main 'hot' shale levels distributed in different locations (basins) and their deposition was restricted to the Rhuddanian (Lllandovery: early Silurian) and the Ludlow-Pridoli (late Silurian). A third major hot shale level had been identified in the Frasnian (Upper Devonian). Southern Tunisia is characterized by three main Paleozoic sedimentary basins, which are from North to South, the southern Chotts, Jeffara and Berkine Basin. They are separated by a major roughly E-W trending lower Paleozoic structural high, which encompass the Mehrez-Oued Hamous uplift to the West (Algeria) and the Nefusa uplift to the East (Libya), passing by the Touggourt-Talemzane-PGA-Bou Namcha (TTPB) structure close to southern Tunisia. The forementioned major source rocks in southern Tunisia are defined by hot shales with elevated Gamma ray values often exceeding 1400 API (in Hayatt-1 well), deposited in deep water environments during short lived (c. 2 Ma) periods of anoxia. In the course of this review, thickness, distribution and maturity maps have been established for each hot shale level using data for more than 70 wells located in both Tunisia and Algeria. Mineralogical modeling was achieved using Spectral Gamma Ray data (U, Th, K), SopectroLith logs (to acquire data for Fe, Si and Ti) and Elemental Capture Spectroscopy (ECS). The latter technique provided data for quartz, pyrite, carbonate, clay and Sulfur. In addition to this, the Gamma Ray (GR), Neutron Porosity (ΦN), deep Resistivity (Rt) and Bulk Density (ρb) logs were used to model bulk mineralogy and lithology. Biostratigraphic and complete

  18. Metamorphic facies map of Southeastern Alaska; distribution, facies, and ages of regionally metamorphosed rocks

    USGS Publications Warehouse

    Dusel-Bacon, Cynthia; Brew, D.A.; Douglass, S.L.

    1996-01-01

    Nearly all of the bedrock in Southeastern Alaska has been metamorphosed, much of it under medium-grade conditions during metamorphic episodes that were associated with widespread plutonism. The oldest metamorphisms affected probable arc rocks near southern Prince of Wales Island and occurred during early and middle Paleozoic orogenies. The predominant period of metamorphism and associated plutonism occurred during Early Cretaceous to early Tertiary time and resulted in the development of the Coast plutonic-metamorphic complex that extends along the inboard half of Southeastern Alaska. Middle Tertiary regional thermal metamorphism affected a large part of Baranof Island.

  19. Land plants, weathering, and Paleozoic climatic evolution

    NASA Astrophysics Data System (ADS)

    Goddéris, Yves; Maffre, Pierre; Donnadieu, Yannick; Carretier, Sébastien

    2017-04-01

    At the end of the Paleozoic, the Earth plunged into the longest and most severe glaciation of the Phanerozoic eon (Montanez et al., 2013). The triggers for this event (called the Late Paleozoic Ice Age, LPIA) are still debated. Based on field observations and laboratory experiments showing that CO2 consumption by rock weathering is enhanced by the presence of plants, the onset of the LPIA has been related to the colonization of the continents by vascular plants in the latest Devonian. By releasing organic acids, concentrating respired CO2 in the soil, and by mechanically breaking rocks with their roots, land plants may have increased the weatherability of the continental surfaces. The "greening" of the continents may also have contributed to an enhanced burial of organic carbon in continental sedimentary basins, assuming that lignin decomposers have not yet evolved (Berner, 2004). As a consequence, CO2 went down, setting the conditions for the onset of the LPIA. This scenario is now widely accepted in the scientific community, and reinforces the feeling that biotic evolutionary steps are main drivers of the long-term climatic evolution. Although appealing, this scenario suffers from some weaknesses. The timing of the continent colonization by vascular plants was achieved in the late Devonian, several tens of million years before the onset of the LPIA (Davies and Gibling, 2013). Second, lignin decomposer fungi were present at the beginning of the Carboniferous, 360 million years ago while the LPIA started around 340-330 Ma (Nelsen et al., 2016). Land plants have also decreased the continental albedo, warming the Earth surface and promoting runoff. Weathering was thus facilitated and CO2 went down. Yet, temperature may have stayed constant, the albedo change compensating for the CO2 fall (Le Hir et al., 2010). From a modelling point of view, the effect of land plants on CO2 consumption by rock weathering is accounted for by forcing the weatherability of the

  20. Geochemical evidence for Paleozoic crustal growth and tectonic conversion in the Northern Beishan Orogenic Belt, southern Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Yuan, Yu; Zong, Keqing; He, Zhenyu; Klemd, Reiner; Jiang, Hongying; Zhang, Wen; Liu, Yongsheng; Hu, Zhaochu; Zhang, Zeming

    2018-03-01

    The Beishan Orogenic Belt is located in the central southernmost part of the Central Asian Orogenic Belt (CAOB), which plays a key role in understanding the formation and evolution of the CAOB. Granitoids are the documents of crustal and tectonic evolution in orogenic belts. However, little is known regarding the petrogenesis and geodynamic setting of the widely distributed Paleozoic granitoids in the Northern Beishan Orogenic Belt (NBOB). The present study reveals significant differences concerning the petrogenesis and tectonic setting of early and late Paleozoic granitoids from the NBOB. The early Paleozoic granitoids from the 446-430 Ma Hongliuxia granite complex of the Mazongshan unit and the 466-428 Ma Shibanjing complex of the Hanshan unit show classic I-type granite affinities as revealed by the relative enrichment of LILEs and LREEs, pronounced depletions of Nb, Ta and Ti and the abundant presence of hornblende. Furthermore, they are characterized by strongly variable zircon εHf(t) values between - 16.7 and + 12.8 and evolved plagioclase Sr isotopic compositions of 0.7145-0.7253, indicating the involvement of both juvenile and ancient continental crust in the magma source. Thus, we propose that the early Paleozoic granitoids in the NBOB were generated in a subduction-related continental arc setting. In contrast, the late Paleozoic 330-281 Ma granitoids from the Shuangjingzi complex of the Hanshan unit exhibit positive zircon εHf(t) values between + 5.8 and + 13.2 and relatively depleted plagioclase Sr isotopic compositions of 0.7037-0.7072, indicating that they were mainly formed by remelting of juvenile crust. Thus, an intra-plate extensional setting is proposed to have occurred during formation of the late Paleozoic granitoids. Therefore, between the early and late Paleozoic, the magma sources of the NBOB granitoids converted from the reworking of both juvenile and ancient crusts during a subduction-induced compressional setting to the remelting of

  1. The Boundary of Tectonic Units of the South China Continent in the Meso-Neoproterozoic - Early Paleozoic: Insights from Integrated Geophysical Study

    NASA Astrophysics Data System (ADS)

    Guo, L.; Gao, R.; Meng, X.; Zhang, J.; Wang, H.; Liu, Y.

    2013-12-01

    The South China continent (SCC), located in the transition zone of the Eurasia, India and Pacific plates, formed in the Meso-Neoproterozoic by collision of the Yangtze block and the Cathaysia block. However, the boundaries of the two blocks before the late Paleozoic (from Meso-Neoproterozoic to early Paleozoic) remain debated in the literature due to strong and complex tectonic and magmatic activities since then. The south of Jiangnan archicontinent is covered mostly by the thick strata since the late Paleozoic, the surface of which is widely covered by the vegetation. And the regional tectonic deformation is extremely complicated with few basal outcrops. For decades, a variety of geophysical detections have been performed in the SCC for understanding the deep structure and tectonic evolution, including deep seismic sounding (DSS) profiles, magnetotelluric sounding (MT) profiles, gravity and magnetic surveys and a small amount of deep seismic reflection profiles. However, due to the limitations of resolution and accuracy of the observed geophysical data in the past, especially short of the deep seismic reflection profiles to reveal fine lithosphere structure, different scientists presented various views on the division of tectonic units in the SCC. In quite recent years, the SinoProbe-02 project launched a long profile of geophysical detections across the two blocks in the SCC, including deep seismic reflection, DSS, MT, and broadband seismic observation, the resolution and accuracy of which had been improved greatly. These newly data will benefit better understanding the deep structure and tectonic evolution of the SCC. Here, we assembled high-resolution Bouguer gravity anomalies and aeromagnetic anomalies data in the SCC. The magnetic data were reduced to the pole by used a varying magnetic inclinations algorithm. We then performed anomaly separation and multi-scales lineation structure analysis on the gravity and RTP magnetic data, and then did 3D fusion

  2. The Juchatengo complex: an upper-level ophiolite assemblage of late Paleozoic age in Oaxaca, southern Mexico

    NASA Astrophysics Data System (ADS)

    Grajales-Nishimura, José Manuel; Ramos-Arias, Mario Alfredo; Solari, Luigi; Murillo-Muñetón, Gustavo; Centeno-García, Elena; Schaaf, Peter; Torres-Vargas, Ricardo

    2018-04-01

    The Juchatengo complex (JC) suite is located between the Proterozoic Oaxacan complex to the north and the Xolapa complex to the south, and was amalgamated by late Paleozoic magmatism. It consists of mafic and sedimentary rocks that have oceanic affinities, with internal pseudostratigraphic, structural and metamorphic characteristics, which resemble a typical upper-level ophiolite assemblage. New U-Pb zircon and previous hornblende K-Ar analyses yield ages of ca. 291-313 Ma (U-Pb) for plagiogranites and ca. 282-277 Ma for tonalites intruding the entire sequence, including pelagic sediments at the top, with a maximum deposition age of ca. 278 Ma and noteworthy local provenance. These data constrain the age of the JC to the Late Pennsylvanian-Early Permian period. Hf isotopic analyses obtained from zircons in the JC plagiogranite and tonalite show that they come from a similar primitive mantle source (176Hf/177Hf: 0.282539-0.283091; ƐHf(t): + 3.2 to + 15.0). ƐHf(t) values from near 0 to - 2.8 in the tonalites indicate a contribution from the continental crust. Trace elements and REE patterns in whole rock and zircons point to a primitive mantle source for differentiated mafic, plagiogranite dykes and tonalitic plutons. Geochronological and geochemical data address the generation of new oceanic crust above the subduction zone, probably in a backarc setting. In this tectonic scenario, the JC ophiolite originated due to the convergence of the paleo-Pacific plate below the already integrated Oaxacan and Acatlán complexes in western Pangea. The dextral displacement places the deformation in a transtensional regime during the late Paleozoic age.

  3. Sedimentary rocks of the coast of Liberia

    USGS Publications Warehouse

    White, Richard William

    1969-01-01

    Two basins containing sedimentary rocks o# probable Cretaceous age have been recognized near the coast of Liberia in the area between Monrovia and Buchanan; geophysical evidence suggests that similar though larger basins exist on the adjacent continental shelf. The oldest sedimentary unit recognized, the Paynesville Sandstone of possible early to middle Paleozoic age, is intruded by dikes and sills of diabase of early Jurassic age and lies unconformably on crystalline rocks of late Precambrian age. Dips in the Paynesville Sandstone define a structural basin centered south of Roberts International Airport (formerly called Roberts Field) about 25 miles east of Monrovla. Wackes and conglomerates of Cretaceous age, herein named the Farmington River Formation, unconformably overlie the Paynesville Sandstone and constitute the sedimentary fill in the Roberts basin. The Bassa basin lies to the southeast of the Roberts basin and is separated from it by an upwarp of crystalline rocks. The basin is occupied by wackes and conglomerates of the Farmington River Formation, which apparently lie directly on the crystalline basement. Both basins are bounded on the northeast by northwest-trending dip-slip faults. The best potential for petroleum deposits that exists in Liberia is beneath the adjacent continental shelf and slope. Geophysical exploration and drilling will be required to evaluate this potential.

  4. Textural and Rb-Sr isotopic evidence for late Paleozoic mylonitization within the Honey Hill fault zone southeastern Connecticut

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Hara, K.D.; Gromet, L.P.

    A petrographic and Rb-Sr isotopic study of rocks within and near the Honey Hill fault zone places important constraints on its history of movement. Rb-Sr apparent ages for micas and plagioclase from these rocks have been reset and range from Permian to Triassic, considerably younger than the minimum stratigraphic age (Ordovician) of the rocks studied or of Acadian (Devonian) regional metamorphism. Permian Rb-Sr ages of dynamically recrystallized muscovite date the development of mylonite fabric. An older age is precluded by the excellent preservation of unrecovered quartz, which indicates that these rocks did not experience temperatures high enough to anneal quartzmore » or thermally reset Rb-Sr isotopic systems in muscovite since the time of mylonitization. Metamorphic mineral assemblages and mineral apparent ages in rocks north of the fault zone indicate recrystallization under similar upper greenschist-lower amphibolite grade conditions during Permian to Triassic time. Collectively these results indicate that the Honey Hill fault zone was active during the Late Paleozoic and that ductile deformation and metamorphism associated with the Alleghanian orogeny extend well into southern Connecticut. An Alleghanian age for mylonitization within the Honey Hill fault zone suggests it should be considered as a possible site for the major Late Paleozoic strike-slip displacements inferred from paleomagnetic studies for parts of coastal New England and maritime Canada.« less

  5. The Cannery Formation--Devonian to Early Permian arc-marginal deposits within the Alexander Terrane, Southeastern Alaska

    USGS Publications Warehouse

    Karl, Susan M.; Layer, Paul W.; Harris, Anita G.; Haeussler, Peter J.; Murchey, Benita L.

    2011-01-01

    cherts on both Admiralty and Kupreanof Islands contain radiolarians as young as Permian, the age of the Cannery Formation is herein extended to Late Devonian through early Permian, to include the early Permian rocks exposed in its type locality. The Cannery Formation is folded and faulted, and its stratigraphic thickness is unknown but inferred to be several hundred meters. The Cannery Formation represents an extended period of marine deposition in moderately deep water, with slow rates of deposition and limited clastic input during Devonian through Pennsylvanian time and increasing argillaceous, volcaniclastic, and bioclastic input during the Permian. The Cannery Formation comprises upper Paleozoic rocks in the Alexander terrane of southeastern Alaska. In the pre-Permian upper Paleozoic, the tectonic setting of the Alexander terrane consisted of two or more evolved oceanic arcs. The lower Permian section is represented by a distinctive suite of rocks in the Alexander terrane, which includes sedimentary and volcanic rocks containing early Permian fossils, metamorphosed rocks with early Permian cooling ages, and intrusive rocks with early Permian cooling ages, that form discrete northwest-trending belts. After restoration of 180 km of dextral displacement of the Chilkat-Chichagof block on the Chatham Strait Fault, these belts consist, from northeast to southwest, of (1) bedded chert, siliceous argillite, volcaniclastic turbidites, pillow basalt, and limestone of the Cannery Formation and the Porcupine Slate of Gilbert and others (1987); (2) greenschist-facies Paleozoic metasedimentary and metavolcanic rocks that have Permian cooling ages; (3) silty limestone and calcareous argillite interbedded with pillow basalt and volcaniclastic rocks of the Halleck Formation and the William Henry Bay area; and (4) intermediate-composition and syenitic plutons. These belts correspond to components of an accretionary complex, contemporary metamorphic rocks, forearc-basin deposits,

  6. A New Paleozoic Symmoriiformes (Chondrichthyes) from the Late Carboniferous of Kansas (USA) and Cladistic Analysis of Early Chondrichthyans

    PubMed Central

    Pradel, Alan; Tafforeau, Paul; Maisey, John G.; Janvier, Philippe

    2011-01-01

    Background The relationships of cartilaginous fishes are discussed in the light of well preserved three-dimensional Paleozoic specimens. There is no consensus to date on the interrelationship of Paleozoic chondrichthyans, although three main phylogenetic hypotheses exist in the current literature: 1. the Paleozoic shark-like chondrichthyans, such as the Symmoriiformes, are grouped along with the modern sharks (neoselachians) into a clade which is sister group of holocephalans; 2. the Symmoriiformes are related to holocephalans, whereas the other Paleozoic shark-like chondrichthyans are related to neoselachians; 3. many Paleozoic shark-like chondrichthyans, such as the Symmoriiformes, are stem chondrichthyans, whereas stem and crown holocephalans are sister group to the stem and crown neoselachians in a crown-chondrichthyan clade. This third hypothesis was proposed recently, based mainly on dental characters. Methodology/Principal Findings On the basis of two well preserved chondrichthyan neurocrania from the Late Carboniferous of Kansas, USA, we describe here a new species of Symmoriiformes, Kawichthys moodiei gen. et sp. nov., which was investigated by means of computerized X-ray synchrotron microtomography. We present a new phylogenetic analysis based on neurocranial characters, which supports the third hypothesis and corroborates the hypothesis that crown-group chondrichthyans (Holocephali+Neoselachii) form a tightly-knit group within the chondrichthyan total group, by providing additional, non dental characters. Conclusions/Significance Our results highlight the importance of new well preserved Paleozoic fossils and new techniques of observation, and suggest that a new look at the synapomorphies of the crown-group chondrichthyans would be worthwhile in terms of understanding the adaptive significance of phylogenetically important characters. PMID:21980367

  7. A new paleozoic Symmoriiformes (Chondrichthyes) from the late Carboniferous of Kansas (USA) and cladistic analysis of early chondrichthyans.

    PubMed

    Pradel, Alan; Tafforeau, Paul; Maisey, John G; Janvier, Philippe

    2011-01-01

    The relationships of cartilaginous fishes are discussed in the light of well preserved three-dimensional Paleozoic specimens. There is no consensus to date on the interrelationship of Paleozoic chondrichthyans, although three main phylogenetic hypotheses exist in the current literature: 1. the Paleozoic shark-like chondrichthyans, such as the Symmoriiformes, are grouped along with the modern sharks (neoselachians) into a clade which is sister group of holocephalans; 2. the Symmoriiformes are related to holocephalans, whereas the other Paleozoic shark-like chondrichthyans are related to neoselachians; 3. many Paleozoic shark-like chondrichthyans, such as the Symmoriiformes, are stem chondrichthyans, whereas stem and crown holocephalans are sister group to the stem and crown neoselachians in a crown-chondrichthyan clade. This third hypothesis was proposed recently, based mainly on dental characters. On the basis of two well preserved chondrichthyan neurocrania from the Late Carboniferous of Kansas, USA, we describe here a new species of Symmoriiformes, Kawichthys moodiei gen. et sp. nov., which was investigated by means of computerized X-ray synchrotron microtomography. We present a new phylogenetic analysis based on neurocranial characters, which supports the third hypothesis and corroborates the hypothesis that crown-group chondrichthyans (Holocephali+Neoselachii) form a tightly-knit group within the chondrichthyan total group, by providing additional, non dental characters. Our results highlight the importance of new well preserved Paleozoic fossils and new techniques of observation, and suggest that a new look at the synapomorphies of the crown-group chondrichthyans would be worthwhile in terms of understanding the adaptive significance of phylogenetically important characters.

  8. The global record of local iron geochemical data from Proterozoic through Paleozoic basins

    NASA Astrophysics Data System (ADS)

    Sperling, E. A.; Wolock, C.; Johnston, D. T.; Knoll, A. H.

    2013-12-01

    Iron-based redox proxies represent one of the most mature tools available to sedimentary geochemists. These techniques, which benefit from decades of refinement, are based on the fact that rocks deposited under anoxic conditions tend to be enriched in highly-reactive iron. However, there are myriad local controls on the development of anoxia, and no local section is an exemplar for the global ocean. The global signal must thus be determined using techniques like those developed to solve an analogous problem in paleobiology: the inference of global diversity patterns through time from faunas seen in local stratigraphic sections. Here we analyze a dataset of over 4000 iron speciation measurements (including over 600 de novo analyses) to better understand redox changes from the Proterozoic through the Paleozoic Era. Preliminary database analyses yield interesting observations. We find that although anoxic water columns in the middle Proterozoic were dominantly ferruginous, there was a statistical tendency towards euxinia not seen in early Neoproterozoic or Ediacaran data. Also, we find that in the Neoproterozoic oceans, oxic depositional environments-the likely home for early animals-have exceptionally low pyrite contents, and by inference low levels of porewater sulfide. This runs contrary to notions of sulfide stress on early metazoans. Finally, the current database of iron speciation data does not support an Ediacaran or Cambrian oxygenation event. This conclusion is of course only as sharp as the ability of the Fe-proxy database to track dissolved oxygen and does not rule out the possibility of a small-magnitude change in oxygen. It does suggest, however, that if changing pO2 facilitated animal diversification it did so by a limited rise past critical ecological thresholds, such as seen in the modern Oxygen Minimum Zones benthos. Oxygen increase to modern levels thus becomes a Paleozoic problem, and one in need of better sampling if a database approach is to be

  9. Late paleozoic base and precious metal deposits, East Tianshan, Xinjiang, China: Characteristics and geodynamic setting

    USGS Publications Warehouse

    Mao, J.; Goldfarb, R.J.; Wang, Y.; Hart, C.J.; Wang, Z.; Yang, J.

    2005-01-01

    The East Tianshan is a remote Gobi area located in eastern Xinjiang, northwestern China. In the past several years, a number of gold, porphyry copper, and Fe(-Cu) and Cu-Ag-Pb-Zn skarn deposits have been discovered there and are attracting exploration interest. The East Tianshan is located between the Junggar block to the north and early Paleozoic terranes of the Middle Tianshan to the south. It is part of a Hercynian orogen with three distinct E-W-trending tectonic belts: the Devonian-Early Carboniferous Tousuquan-Dananhu island arc on the north and the Carboniferous Aqishan - Yamansu rift basin to the south, which are separated by rocks of the Kanggurtag shear zone. The porphyry deposits, dated at 322 Ma, are related to the late evolutionary stages of a subduction-related oceanic or continental margin arc. In contrast, the skarn, gold, and magmatic Ni-Cu deposits are associated with post-collisional tectonics at ca. 290-270 Ma. These Late Carboniferous - Early Permian deposits are associated with large-scale emplacement and eruption of magmas possibly caused by lithosphere delamination and rifting within the East Tianshan.

  10. Late Paleozoic tectonics of the Solonker Zone in the Wuliji area, Inner Mongolia, China: Insights from stratigraphic sequence, chronology, and sandstone geochemistry

    NASA Astrophysics Data System (ADS)

    Shi, Guanzhong; Song, Guangzeng; Wang, Hua; Huang, Chuanyan; Zhang, Lidong; Tang, Jianrong

    2016-09-01

    The geology in the Wuliji area (including the Enger Us and Quagan Qulu areas) is important for understanding the Late Paleozoic tectonics of the Solonker Zone. Ultramafic/mafic rocks in the Enger Us area, previously interpreted as an ophiolitic suture, are actually lava flows and sills in a Permian turbiditic sequence and a small body of fault breccia containing serpentinite. Subduction zone features, such as accretionary complexes, magmatic arc volcanics or LP/HP metamorphism are absent. Early Permian N-MORB mafic rocks and Late Permian radiolarian cherts accompanied by turbidites and tuffeous rocks indicate a deep water setting. In the Quagan Qulu area, outcrops of the Late Carboniferous to Permian Amushan Formation are composed of volcano-sedimenary rocks and guyot-like reef limestone along with a Late Permian volcano-sedimentary unit. A dacite lava in the Late Permian volcano-sedimentary unit yields a zircon U-Pb age of 254 Ma. The gabbros in the Quagan Qulu area are intruded into the Amushan Formation and caused contact metamorphism of country rocks. Sandstones in the Upper Member of the Amushan Formation contain detrital clasts of volcanic fragments and mineral clasts of crystalline basement rocks (i.e. biotite, muscovite and garnet). Geochemical analysis of volcaniclastic sandstones shows a magmatic affinity to both continental island arc (CIA) and active continental margin (ACM) tectonic settings. A Late Permian incipient rift setting is suggested by analyzing the lithostratigraphic sequence and related magmatism in the Wuliji area. The volcano-sedimentary rocks in the Wuliji area experienced a nearly N-S shortening that was probably related to the Early Mesozoic nearly N-S compression well developed in other areas close to the Wuliji area.

  11. Late Paleozoic tectonic evolution of the Central Asian Orogenic Belt: Constraints from multiple arc-basin systems in Altai-Junggar area, NW China

    NASA Astrophysics Data System (ADS)

    Li, D.

    2015-12-01

    In this study, we report results from integrated geological, geophysical and geochemical investigations on the Wulungu Depression of the Junggar Basin to understand the Late Paleozoic continental growth of the Junggar area and its amalgamation history with the Altai terrane, within the broad tectonic evolution of the Altai-Junggar area. Based on seismic and borehole data, the Wulungu Depression can be divided into two NW-trending tectonic units by southward thrust faults. The Suosuoquan Sag is composed of gray basaltic andesite, andesite, tuff, tuffaceous sandstone and tuffite, and the overlying Early Carboniferous volcano-sedimentary sequence with lava gushes and marine sediments from a proximal juvenile provenance, compared to the andesite in the Hongyan High. The SIMS Zircon U-Pb ages for andesites from Late Paleozoic strata indicate that these volcanics in Suosuoquan Sag and Hongyan High erupted at 376.3Ma and 313.4Ma, respectively. Most of the intermediate-mafic volcanic rocks exhibit calc-alkaline affinity, low initial 87Sr/86Sr and positive ɛNd(t) and ɛHf(t) values. Furthermore, these rocks have high Th/Yb and low Ce/Pb and La/Yb ratios as well as variable Ba/Th and Ba/La ratios. These features imply that the rocks were derived from partial melting of a mantle wedge metasomatized by subduction-related components in an island arc setting. The basin filling pattern and the distribution of island arc-type volcanics and their zircon Hf model ages with the eruptive time suggest that the Wulungu Depression represents an island arc-basin system with the development of a Carboniferous retro-arc basin. The gravity and magnetic anomaly data suggest that Altai-Junggar area incorporates three arc-basin belts from north to south: the Karamaili-Luliang-Darbut, Yemaquan-Wulungu, and Dulate-Fuhai-Saur. The recognition of the Wulungu arc-basin system demonstrates that the northern Junggar area is built by amalgamation of multiple Paleozoic linear arcs and accretionary

  12. Rocks of the early lunar crust

    NASA Technical Reports Server (NTRS)

    James, O. B.

    1980-01-01

    Data are summarized which suggest a model for the early evolution of the lunar crust. According to the model, during the final stages of accretion, the outer part of the moon melted to form a magma ocean approximately 300 km deep. This ocean fractionated to form mafic and ultramafic cumulates at depth and an overlying anorthositic crust made up of ferroan anorthosites. Subsequent partial melting in the primitive mantle underlying the crystallized magma ocean produced melts which segregated, moved upward, intruded the primordial crust, and crystallized to form layered plutons consisting of Mg-rich plutonic rocks. Intense impact bombardment at the lunar surface mixed and melted the rocks of the two suites to form a thick layer of granulated debris, granulitic breccias, and impact-melt rocks.

  13. "Taconic" arc magmatism in the central Brooks Range, Alaska: New U-Pb zircon geochronology and Hf isotopic data from the lower Paleozoic Apoon assemblage of the Doonerak fenster

    NASA Astrophysics Data System (ADS)

    Strauss, J. V.; Hoiland, C. W.; Ward, W.; Johnson, B.; McClelland, W.

    2015-12-01

    The Doonerak fenster in the central Brooks Range, AK, exposes an important package of early Paleozoic volcanic and sedimentary rocks called the Apoon assemblage, which are generally interpreted as para-autochthonous basement to the Mesozoic-Cenozoic Brookian fold-thrust belt. Recognition in the 1970's of a major pre-Mississippian unconformity within the window led to correlations between Doonerak and the North Slope (sub-) terrane of the Arctic Alaska Chukotka microplate (AACM); however, the presence of arc-affinity volcanism and the apparent lack of pre-Mississippian deformation in the Apoon assemblage makes this link tenuous and complicates Paleozoic tectonic reconstructions of the AACM. Previous age constraints on the Apoon assemblage are limited to a handful of Middle Cambrian-Silurian paleontological collections and five K-Ar and 40Ar/39Ar hornblende ages from mafic dikes ranging from ~380-520 Ma. We conducted U-Pb geochronologic and Hf isotopic analyses on igneous and sedimentary zircon from the Apoon assemblage to test Paleozoic links with the North Slope and to assess the tectonic and paleogeographic setting of the Doonerak region. U-Pb analyses on detrital zircon from Apoon rocks yield a spectrum of unimodal and polymodal age populations, including prominent age groups of ca. 420-490, 960-1250, 1380­-1500, 1750-1945, and 2650-2830 Ma. Hf isotopic data from the ca. 410-490 Ma age population are generally juvenile (~7-10 ɛHf), implying a distinct lack of crustal assimilation during Ordovician-Silurian Doonerak arc magmatism despite its proximity to a cratonic source terrane as indicated by an abundance of Archean and Proterozoic zircon in the interbedded siliciclastic strata. These data are in stark contrast to geochronological data from the non-Laurentian portions of the AACM, highlighting a prominent tectonic boundary between Laurentian- and Baltic-affinity rocks at the Doonerak window and implying a link to "Taconic"-age arc magmatism documented along

  14. The distribution and tectonic framework of Late Paleozoic volcanoes in the Junggar basin and its adjacent area, NW China

    NASA Astrophysics Data System (ADS)

    Mao, X.; Li, J. H.

    2012-04-01

    We analyse the distribution and characteristics of 145 late Paleozoic volcanoes in north Xinjiang, NW China, including 32 volcanoes on the edge of the Junggar basin. These volcanoes are clustered and can be divided into calderas, volcanic domes, and volcanic necks. There are also 85 volcanoes inside the Junggar basin, which are dominantly distributed in the Ke-Bai fractured zone of the northwestern margin of Junggar Basin, 4 depressions (Dongdaohaizi Depression, Dishuiquan Depression, Sannan Depression and Wucaiwan Depression) and 7 uplifts (Baijiahai uplift, Beisantai uplift, Dibei uplift, Dinan uplift, Sangequan uplift, Shixi uplift and Xiayan uplift). The volcanoes inside the basin are principally controlled by Hercynian Fault Systems, along NE and nearly EW trending faults and most developed in the interjunctions of the faults. The long modification by late-stage weathering and leaching made the volcanoes difficult to identify. Remaining volcanic landforms, changing trends of the volcanic lithofacies and the typical volcanic rock, such as the crypto- explosive breccia, are the typical marks of the late Paleozoic volcanoes in the field; and the concealed volcanic edifices are identified by the techniques of seismic identification, such as seismic slicing, analysis of the attribute and tectonic trend plane. The ages of the volcanic rocks are focused on from 340 Ma to 320Ma and from 300 Ma to 295 Ma, corresponding to the subducting periods of West Junggar and East Junggar. From early Carboniferous to late Carboniferous, the volcanic activities in Junggar Basin and its adjacent areas show a variation trend from undersea to continental, from deep water to shallow water and from continental margin to intracontinental.

  15. Paleozoic Orogens of Mexico and the Laurentia-Gondwana Connections: an Update

    NASA Astrophysics Data System (ADS)

    Ortega-Gutierrez, F.

    2009-05-01

    include the swift of the Acatlan Complex from Iapetus to Rheic scenarios, and the apparent continuation of the Ouachita belt across northern Mexico into south central Sonora, rather than displaced eastwards along the legendary Mojave-Sonora megashear. And yet, poorly known suture-related lithotectonic associations of Paleozoic metamorphic rocks and arc granitoids that underlie the eastern margin of Mexico, have not been explained by existing models dealing with the Appalachian-Mexico-Gondwanan connections.

  16. Mantle contribution and tectonic transition in the Aqishan-Yamansu Belt, Eastern Tianshan, NW China: Insights from geochronology and geochemistry of Early Carboniferous to Early Permian felsic intrusions

    NASA Astrophysics Data System (ADS)

    Du, Long; Long, Xiaoping; Yuan, Chao; Zhang, Yunying; Huang, Zongying; Wang, Xinyu; Yang, Yueheng

    2018-04-01

    Late Paleozoic is a key period for the accretion and collision of the southern Central Asian Orogenic Belt (CAOB). Here, we present new zircon U-Pb ages, whole-rock geochemistry and Sr-Nd isotopic compositions for four Late Paleozoic felsic plutons in Eastern Tianshan (or Tienshan in some literatures) in order to constrain the tectonic evolution of the southern CAOB. The granodioritic pluton and its dioritic enclaves were synchronously formed in the Early Carboniferous (336 ± 3 Ma and 335 ± 2 Ma, respectively). These rocks are depleted in Nb, Ta and Ti, and enriched in Rb, Ba, Th and U related to the primitive mantle, which show typical features of arc rocks. They both have similar Sr-Nd isotopic ratios to those granitic rocks from the eastern Central Tianshan Block and have the latest Mesoproterozoic two stage Nd model ages (TDM2) (1111-1195 Ma for the granodioritic pluton and 1104-1108 Ma for the enclaves, respectively), indicating that their source magmas may have been derived from the Mesoproterozoic crust. The albitophyric pluton was also emplaced in the Early Carboniferous (333 ± 3 Ma). Rocks of this pluton have similar εNd(t) values (-0.69 to -0.37) and TDM2 ages (1135-1161 Ma) to those of the granodioritic rocks, suggest similar crustal source for both types of rocks. In contrast, the K-feldspar granitic and monzonitic plutons were emplaced in the Early Permian (292 ± 3 Ma and 281 ± 2 Ma, respectively). Samples of the K-feldspar granitic pluton have high K2O + Na2O, FeO/MgO, Ga/Al, HFSE (e.g., Zr and Hf) and low CaO, Sr and Ba, exhibiting characteristics of A2-type granites, which probably emplaced in a post-collisional extension environment. They have higher εNd(t) values (+2.77 to +3.27) and more juvenile TDM2 ages (799-841 Ma) than the Early Carboniferous plutons, suggesting that they were derived from relatively younger crustal sources. The monzonitic granites are metaluminous to weakly peraluminous with A/CNK ranging from 0.93 to 1.05, and have

  17. Detrital Zircon Signature of Proterozoic Metasedimentary Rocks of the Pearya Terrane, Northern Ellesmere Island: Implications for Terrane Stratigraphy and Circum-Arctic Terrane Correlations

    NASA Astrophysics Data System (ADS)

    Malone, S. J.; McClelland, W.

    2012-12-01

    The Pearya Terrane, currently recognized as the only exotic terrane in the Canadian Arctic margin, includes early Tonian metaigneous rocks and a sequence of sedimentary rocks ranging from Proterozoic shallow marine to Silurian arc-accretionary units. Succession II (Trettin, 1987) of the Pearya Terrane represents variably metamorphosed metasedimentary rocks of presumed Neoproterozoic to early Ordocician age. These units are structurally juxtaposed with earliest Neoproterozoic orthogneiss of Succession I and the overlaying sedimentary rocks of the Paleozoic section. Detrital zircon age spectra from seven samples of Neoproterozoic meta-sedimentary rocks define three groups on the basis of dominant age peaks and the age of the youngest peaks. Group I, representing three quartzite samples, contains young zircon age peaks at c. 1050 Ma with numerous c. 1100 Ma to 1800 Ma peaks. Detrital zircon spectra from Group I correlate closely with data from the latest Mesoproterozoic Brennevinsfjorden Group of Northeastern Svalbard, suggesting that the base of Succession II may be older than the Succession I orthogneiss, and that the contact between them is tectonic. Group II is defined by a dominant c. 970 Ma age peak that overlaps with ages determined for basement orthogneiss units and indicates that local sedimentary sources, possibly relating to Tonian igneous activity, dominated. Group III displays a similar pattern of c. 1000 Ma to 1800 Ma age peaks to Group I, but contains a small population of c. 600 Ma to 700 Ma grains that are likely sourced from elements of the Timanide orogen and/or the Arctic Alaska-Chukotka (AAC) microplate. The ubiquitous Mesoproterozoic ages suggest extensive sediment input from the Grenville-Svegonorwegian domains of Laurentia and Baltica, either directly or by sediment recycling. This is consistent with detrital zircon datasets from other North Atlantic-Arctic Caledonide terranes, reinforcing stratigraphic links between the Pearya Terrane

  18. Paleozoic tectonics of the Ouachita Orogen through Nd isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gleason, J.D.; Patchett, P.J.; Dickinson, W.R.

    1992-01-01

    A combined isotopic and trace-element study of the Late Paleozoic Ouachita Orogenic belt has the following goals: (1) define changing provenance of Ouachita sedimentary systems throughout the Paleozoic; (2) constrain sources feeding into the Ouachita flysch trough during the Late Paleozoic; (3) isolate the geochemical signature of proposed colliding terranes to the south; (4) build a data base to compare with possible Ouachita System equivalents in Mexico. The ultimate aim is to constrain the tectonic setting of the southern margin of North America during the Paleozoic, with particular emphasis on collisional events leading to the final suturing of Pangea. Ndmore » isotopic data identify 3 distinct groups: (1) Ordovician passive margin sequence; (2) Carboniferous proto-flysch (Stanley Fm.), main flysch (Jackfork and Atoka Fms.) and molasse (foreland Atoka Fm.); (3) Mississippian ash-flow tuffs. The authors interpret the Ordovician signature to be essentially all craton-derived, whereas the Carboniferous signature reflects mixed sources from the craton plus orogenic sources to the east and possibly the south, including the evolving Appalachian Orogen. The proposed southern source is revealed by the tuffs to be too old and evolved to be a juvenile island arc terrane. They interpret the tuffs to have been erupted in a continental margin arc-type setting. Surprisingly, the foreland molasse sequence is indistinguishable from the main trough flysch sequence, suggesting the Ouachita trough and the craton were both inundated with sediment of a single homogenized isotopic signature during the Late Carboniferous. The possibility that Carboniferous-type sedimentary dispersal patterns began as early as the Silurian has important implications for the tectonics and paleogeography of the evolving Appalachian-Ouachita Orogenic System.« less

  19. Workshop on Pristine Highlands Rocks and the early History of the Moon

    NASA Technical Reports Server (NTRS)

    Longhi, J. (Editor); Ryder, G. (Editor)

    1983-01-01

    Oxide composition of the Moon, evidence for an initially totally molten Moon, geophysical contraints on lunar composition, random sampling of a layered intrusion, lunar highland rocks, early evolution of the Moon, mineralogy and petrology of the pristine rocks, relationship of the pristine nonmore rocks to the highlands soils and breccias, ferroan anorthositic norite, early lunar igneous history, compositional variation in ferroan anosthosites, a lunar magma ocean, deposits of lunar pristine rocks, lunar and planetary compositions and early fractionation in the solar nebula, Moon composition models, petrogenesis in a Moon with a chondritic refractory lithophile pattern, a terrestrial analog of lunar ilmenite bearing camulates, and the lunar magma ocean are summarized.

  20. Zircon U-Pb ages and Hf isotopes for the Diablillos Intrusive Complex, Southern Puna, Argentina: Crustal evolution of the Lower Paleozoic Orogen, Southwestern Gondwana margin

    NASA Astrophysics Data System (ADS)

    Ortiz, Agustín; Hauser, Natalia; Becchio, Raúl; Suzaño, Néstor; Nieves, Alexis; Sola, Alfonso; Pimentel, Marcio; Reimold, Wolf

    2017-12-01

    The evolution of the rocks of the Lower Paleozoic Orogen in Puna, at the Southwestern Gondwana margin, has been widely debated. In particular, the scarce amount of geological and geochemical data available for the Diablillos Intrusive Complex, Eastern Magmatic Belt, Southern Puna, require a further study for new evidence towards the understanding of sources, magmatic processes and emplacement of magmas, in order to better comprehend the crustal evolution in this setting. We present new combined U-Pb and Hf isotope analyses on zircon by LA-MC-ICP-MS from monzogranite, granodiorite and diorite rocks of the Diablillos Intrusive Complex. We obtained 206Pb/238U concordant weighted average ages of 517 ± 3 Ma and 515 ± 6 Ma for the monzogranite and diorite, respectively, and a concordant age of 521 ± 4 Ma for the granodiorite. These ages permit to constrain the climax of magmatic activity in the Diablillos Complex around ∼515-520 Ma, while the emplacement of the complex took place between ∼540 Ma and 490 Ma (representing a ca. 50 Ma magmatic event). Major and trace element data, initial 87Sr/86Sr values varying from 0.70446 to 0.71278, positive and negative ɛNd(t) values between +2.5 and -4, as well as ɛHf(t) for zircon data between + 3 and -3 indicate that the analyzed samples represent contaminated magmas. The ɛHf(t) and the ɛNd(t) values for this complex specify that these rocks are derived from interaction of a dominant Mesoproterozoic crystalline and/or a metasedimentary source and juvenile mantle-derived magmas, with a TDM model age range of ∼1.2-1.5 Ga, with later reworking during lower Paleozoic times. The combined data obtained in this contribution together with previous data, allow us to suggest that the formation of the Eastern Magmatic Belt of the Puna was part of a long-lived magmatic event during Early Paleozoic times. Whereby the granitoids of the Eastern Magmatic Belt formed through intra-crustal recycling at an active continental margin, with

  1. Geology of the Harpers Ferry Quadrangle, Virginia, Maryland, and West Virginia

    USGS Publications Warehouse

    Southworth, Scott; Brezinski, David K.

    1996-01-01

    The Harpers Ferry quadrangle covers a portion of the northeast-plunging Blue Ridge-South Mountain anticlinorium, a west-verging allochthonous fold complex of the late Paleozoic Alleghanian orogeny. The core of the anticlinorium consists of high-grade paragneisses and granitic gneisses that are related to the Grenville orogeny. These rocks are intruded by Late Proterozoic metadiabase and metarhyolite dikes and are unconformably overlain by Late Proterozoic metasedimentary rocks of the Swift Run Formation and metavolcanic rocks of the Catoctin Formation, which accumulated during continental rifting of Laurentia (native North America) that resulted in the opening of the Iapetus Ocean. Lower Cambrian metasedimentary rocks of the Loudoun, Weverton, Harpers, and Antietam Formations and carbonate rocks of the Tomstown Formation were deposited in the rift-to-drift transition as the early Paleozoic passive continental margin evolved. The Short Hill fault is an early Paleozoic normal fault that was contractionally reactivated as a thrust fault and folded in the late Paleozoic. The Keedysville detachment is a folded thrust fault at the contact of the Antietam and Tomstown Formations. Late Paleozoic shear zones and thrust faults are common. These rocks were deformed and metamorphosed to greenschist-facies during the formation of the anticlinorium. The Alleghanian deformation was accompanied by a main fold phase and a regional penetrative axial plane cleavage, which was followed by a minor fold phase with crenulation cleavage. Early Jurassic diabase dikes transected the anticlinorium during Mesozoic continental rifting that resulted in the opening of the Atlantic Ocean. Cenozoic deposits that overlie the bedrock include bedrock landslides, terraces, colluvium, and alluvium.

  2. The evolution of Phanerozoic seawater - Isotope paleothermometry finds consensus on Early Paleozoic warmth and constant seawater δ18O

    NASA Astrophysics Data System (ADS)

    Grossman, E. L.; Henkes, G. A.; Passey, B. H.; Shenton, B.; Yancey, T. E.; Perez-Huerta, A.

    2015-12-01

    Evolution of metazoan life is closely linked to the Phanerozoic evolution of ocean temperatures and chemistry. Oxygen isotopic evidence for early Phanerozoic paleotemperatures has been equivocal, with decreasing δ18O values with age being interpreted as warmer early oceans, decreasing seawater δ18O with age, or increasing diagenetic alteration in older samples. Here we compare an updated compilation of oxygen isotope data for carbonate and phosphate fossils and microfossils (Grossman, 2012, Geol. Time Scale, Elsevier, 195-220) with a compilation of new and existing clumped isotope data. Importantly, these data are curated based on sample preservation with special consideration given to screening techniques, and tectonic and burial history. Burial history is critical in the preservation of carbonate clumped isotope temperatures in particular, which can undergo reordering in the solid state. We use a model derived for reordering kinetics (Henkes et al., 2014, Geochim. Cosmochim. Acta 139:362-382) to screen clumped isotope data for the effects of solid-state burial alteration. With minor but significant exceptions (Late Cretaceous, Early Triassic), average δ18O values (4 m.y. window, 2 m.y. steps) for post-Devonian brachiopods, belemnites, and foraminifera, representing tropical-subtropical surface ocean conditions, yield average isotopic temperatures below 30°C (assuming a seawater δ18O value [ -1‰ VSMOW] of an "ice-free" world). In contrast, Ordovician to Devonian data show sustained temperatures of 35-40°C. Likewise, isotopic paleotemperatures from conodont apatite, known to be resistant to isotopic exchange, follow the same pattern. Clumped isotope data derived from Paleozoic brachiopod shells that experienced minimal burial (< 100 °C) and <1% reordering according to the taxon-specific clumped isotope reordering model yield typical temperatures of 25-30°C for the Carboniferous, and 35-40°C for the Ordovician-Silurian. Inserting clumped temperatures and

  3. Thermal maturation and petroleum source rocks in Forest City and Salina basins, mid-continent, U. S. A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newell, K.D.; Watney, W.L.; Hatch, J.R.

    1986-05-01

    Shales in the Middle Ordovician Simpson Group are probably the source rocks for a geochemically distinct group of lower pristane and low phytane oils produced along the axis of the Forest City basin, a shallow cratonic Paleozoic basin. These oils, termed Ordovician-type oils, occur in some fields in the southern portion of the adjacent Salina basin. Maturation modeling by time-temperature index (TTI) calculations indicate that maturation of both basins was minimal during the early Paleozoic. The rate of maturation significantly increased during the Pennsylvanian because of rapid regional subsidence in response to the downwarping of the nearby Anadarko basin. Whenmore » estimated thicknesses of eroded Pennsylvanian, Permian, and Cretaceous strata are considered, both basins remain relatively shallow, with maximum basement burial probably not exceeding 2 km. According to maturation modeling and regional structure mapping, the axes of both basins should contain Simpson rocks in the early stages of oil generation. The probability of finding commercial accumulations of Ordovician-type oil along the northwest-southeast trending axis of the Salina basin will decrease in a northwestward direction because of (1) westward thinning of the Simpson Group, and (2) lesser maturation due to lower geothermal gradients and shallower paleoburial depths. The optimum localities for finding fields of Ordovician-type oil in the southern Salina basin will be in down-plunge closures on anticlines that have drainage areas near the basin axis.« less

  4. Geologic framework of the Mississippian Barnett Shale, Barnett-Paleozoic total petroleum system, Bend arch-Fort Worth Basin, Texas

    USGS Publications Warehouse

    Pollastro, R.M.; Jarvie, D.M.; Hill, R.J.; Adams, C.W.

    2007-01-01

    This article describes the primary geologic characteristics and criteria of the Barnett Shale and Barnett-Paleozoic total petroleum system (TPS) of the Fort Worth Basin used to define two geographic areas of the Barnett Shale for petroleum resource assessment. From these two areas, referred to as "assessment units," the U.S. Geological Survey estimated a mean volume of about 26 tcf of undiscovered, technically recoverable hydrocarbon gas in the Barnett Shale. The Mississippian Barnett Shale is the primary source rock for oil and gas produced from Paleozoic reservoir rocks in the Bend arch-Fort Worth Basin area and is also one of the most significant gas-producing formations in Texas. Subsurface mapping from well logs and commercial databases and petroleum geochemistry demonstrate that the Barnett Shale is organic rich and thermally mature for hydrocarbon generation over most of the Bend arch-Fort Worth Basin area. In the northeastern and structurally deepest part of the Fort Worth Basin adjacent to the Muenster arch, the formation is more than 1000 ft (305 m) thick and interbedded with thick limestone units; westward, it thins rapidly over the Mississippian Chappel shelf to only a few tens of feet. The Barnett-Paleozoic TPS is identified where thermally mature Barnett Shale has generated large volumes of hydrocarbons and is (1) contained within the Barnett Shale unconventional continuous accumulation and (2) expelled and distributed among numerous conventional clastic- and carbonate-rock reservoirs of Paleozoic age. Vitrinite reflectance (Ro) measurements show little correlation with present-day burial depth. Contours of equal Ro values measured from Barnett Shale and typing of produced hydrocarbons indicate significant uplift and erosion. Furthermore, the thermal history of the formation was enhanced by hydrothermal events along the Ouachita thrust front and Mineral Wells-Newark East fault system. Stratigraphy and thermal maturity define two gas

  5. Paleomagnetic and Geochronologic Data from Central Asia: Inferences for Early Paleozoic Tectonic Evolution and Timing of Worldwide Glacial Events

    NASA Astrophysics Data System (ADS)

    Gregory, L. C.; Meert, J. G.; Levashova, N.; Grice, W. C.; Gibsher, A.; Rybanin, A.

    2007-12-01

    The Neoproterozoic to early Paleozoic Ural-Mongol belt that runs through Central Asia is crucial for determining the enigmatic amalgamation of microcontinents that make up the Eurasian subcontinent. Two unique models have been proposed for the evolution of Ural-Mongol belt. One involves a complex assemblage of cratonic blocks that have collided and rifted apart during diachronous opening and closing of Neoproterozoic to Devonian aged ocean basins. The opposing model of Sengor and Natal"in proposes a long-standing volcanic arc system that connected Central Asian blocks with the Baltica continent. The Aktau-Mointy and Dzabkhan microcontinents in Kazakhstan and Central Mongolia make up the central section of the Ural-Mongol belt, and both contain glacial sequences characteristic of the hypothesized snowball earth event. These worldwide glaciations are currently under considerable debate, and paleomagnetic data from these microcontients are a useful contribution to the snowball controversy. We have sampled volcanic and sedimentary sequences in Central Mongolia, Kazakhstan and Kyrgyzstan for paleomagnetic and geochronologic study. U-Pb data, 13C curves and abundant fossil records place age constraints on sequences that contain glacial deposits of the hypothesized snowball earth events. Carbonates in the Zavkhan Basin in Mongolia are likely remagnetized, but fossil evidence within the sequence suggests a readjusted age control on two glacial events that were previously labeled as Sturtian and Marinoan. U-Pb ages from both Kazakhstan and Mongolian volcanic sequences imply a similar evolution history of the areas as part of the Ural-Mongol fold belt, and these ages paired with paleomagnetic and 13C records have important tectonic implications. We will present these data in order to place better constraints on the Precambrian to early Paleozoic tectonic evolution of Central Asia and the timing of glacial events recorded in the area.

  6. Stratiform zinc-lead mineralization in Nasina assemblage rocks of the Yukon-Tanana Upland in east-central Alaska

    USGS Publications Warehouse

    Dusel-Bacon, Cynthia; Bressler, Jason R.; Takaoka, Hidetoshi; Mortensen, James K.; Oliver, Douglas H.; Leventhal, Joel S.; Newberry, Rainer J.; Bundtzen, Thomas K.

    1998-01-01

    The Yukon-Tanana Upland of east-central Alaska and Yukon comprises thrust sheets of ductilely deformed metasedimentary and metaigneous rocks of uncertain age and origin that are overlain by klippen of weakly metamorphosed oceanic rocks of the Seventymile-Slide Mountain terrane, and intruded by post-kinematic Early Jurassic, Cretaceous and Tertiary granitoids. Metamorphosed continental margin strata in the Yukon-Tanana Upland of east-central Alaska are thought to be correlative, on the basis of stratigraphic similarities and sparse Mississippian U-Pb zircon and fossil ages (Mortensen, 1992), with middle Paleozoic metasedimentary and metavolcanic rocks in the eastern Alaska Range and in western and southeastern Yukon. Furthermore, rocks in the northern Yukon-Tanana Upland may correlate across the Tintina fault with unmetamorphosed counterparts in the Selwyn Basin (Murphy and Abbott, 1995). Volcanic-hosted (VMS) and sedimentary exhalative (sedex) massive sulfide occurrences are widely reported for these other areas (green-colored unit of fig. 1) but, as yet, have not been documented in the Alaskan part of the Yukon-Tanana Upland. Recent discoveries of VMS deposits in Devono-Mississippian metavolcanic rocks in the Finlayson Lake area of southeastern Yukon (Hunt, 1997) have increased the potential for finding VMS deposits in rocks of similar lithology and age in the Yukon-Tanana Upland of Alaska. Restoration of 450 km of early Tertiary dextral movement along the Tintina fault juxtaposes these two areas.

  7. The Chara-Sina dyke swarm in the structure of the Middle Paleozoic Vilyui rift system (Siberian Craton)

    NASA Astrophysics Data System (ADS)

    Kiselev, A. I.; Konstantinov, K. M.; Yarmolyuk, V. V.; Ivanov, A. V.

    2016-11-01

    The formation of the Vilyui rift system in the eastern Siberian Craton was finished with breakdown of the continent and formation of its eastern margin. A characteristic feature of this rift system is the radial distribution of dyke swarms of basic rocks. This peculiarity allows us to relate it to the breaking processes above the mantle plume, the center of which was located in the region overlain in the modern structure by the foreland of the Verkhoyan folded-thrust belt. The Chara-Sina dyke swarm is the southern part of a large area of Middle Paleozoic basaltic magmatism in the eastern Siberian Craton. The OIB-like geochemical characteristics of dolerite allow us to suggest that the melting substrate for Middle Paleozoic basaltic magmatism was represented by a relatively homogeneous, mid-depleted mantle of the plume with geochemical parameters similar to those of OIB.

  8. Experimental Study on the Coupling Mechanism of Early-strength Backfill and Rock

    NASA Astrophysics Data System (ADS)

    Wang, Mingxu

    2017-11-01

    In order to study the interaction mechanism between the ore rock and backfill at the early stage, paraffin is chosen as the cementing agent. Based on the damage mechanics and fractal theory, the interaction mechanism between the ore rock and backfill is characterized by the relevant tests on the complex of proportioned ore rock and backfill with resistance strain gauge, crack propagation, microscopic imaging and AE. The experimental results showed that: 1) Through the axial loading test, compared with the early strength of the cemented filling and paraffin mechanical deformation characteristics, the stress and strain curves of the two had a common linear deformation law, while in the early strength of the filling elastic capacity strong, with a certain degree of resilience. 2) The bearing capacity of the backfill was weak, but the deformation ability was strong. During the bearing process, the deformation of the upper load was mainly caused by the ore rock, which leaded to the damage of the rock. 3) The distribution of AE points during the co-carrying of the filling and the ore rock was monitored by the acoustic emission instrument. The damage occurred mainly in the contact zone between the backfill and the ore rock zone. The corresponding AE point distribution also validated the crack happening.

  9. Petrogenesis and tectonic implications of the Early Paleozoic granites in the western segment of the North Qilian orogenic belt, China

    NASA Astrophysics Data System (ADS)

    Wang, Nan; Wu, Cai-Lai; Lei, Min; Chen, Hong-Jie

    2018-07-01

    Early Paleozoic granitic magmatism in the North Qilian orogenic belt records a complete Wilson cycle and provides critical geological clues for unraveling the regional tectonic history. In this study, we report the results of zircon U-Pb ages, Hf isotopic analysis and systematic whole-rock geochemical data for the Late Ordovician Hongliuhe granite and Early Silurian Qingshan monzogranite in the western segment of the North Qilian orogenic belt to constrain their emplacement ages, petrogenesis, and regional evolution history. U-Pb dating reveals that the Hongliuhe granite was emplaced around 453-452 Ma, and the Qingshan monzogranite was emplaced about 440-438 Ma. A geochemical study shows that the two granites belong to the calc-alkaline to high-K calc-alkaline series. The Hongliuhe granite shows adakitic and peraluminous features, while the Qingshan monzogranite belongs to metaluminous to weak peraluminous granites. Zircons in the Hongliuhe granite show εHf(t) values ranging from -15.1 to +11.7 with two-stage Hf model ages (tDM2) of 687-2398 Ma, whereas zircons in the Qingshan monzogranite show εHf(t) values ranging from +5.7 to +11.0 with two-stage Hf model ages from 814 to 1057 Ma. The geochemical characteristics indicate that the Hongliuhe granite was a transitional I/S-type granite and was generated from a thickened lower crust with the addition of minor Paleo- to Mesoproterozoic crustal materials, which left a rutile + garnet + pyroxene ± plagioclase residue. The Qingshan monzogranite formed from the partial melting of mafic crust with minor mantle-derived materials, and the fractionation of Ti-bearing phases, apatite and pyroxene occurred during the magma's evolution, which left an amphibole and plagioclase residue. We infer that the Hongliuhe granite formed during the northward subduction of the North Qilian Ocean, while the Qingshan monzogranite was generated during the post-collision stage between the Qilian and Alxa blocks. This observation indicates

  10. Pacing of Paleozoic macroevolutionary rates by Milankovitch grand cycles.

    PubMed

    Crampton, James S; Meyers, Stephen R; Cooper, Roger A; Sadler, Peter M; Foote, Michael; Harte, David

    2018-05-29

    Periodic fluctuations in past biodiversity, speciation, and extinction have been proposed, with extremely long periods ranging from 26 to 62 million years, although forcing mechanisms remain speculative. In contrast, well-understood periodic Milankovitch climate forcing represents a viable driver for macroevolutionary fluctuations, although little evidence for such fluctuation exists except during the Late Cenozoic. The reality, magnitude, and drivers of periodic fluctuations in macroevolutionary rates are of interest given long-standing debate surrounding the relative roles of intrinsic biotic interactions vs. extrinsic environmental factors as drivers of biodiversity change. Here, we show that, over a time span of 60 million years, between 9 and 16% of the variance in biological turnover (i.e., speciation probability plus species extinction probability) in a major Early Paleozoic zooplankton group, the graptoloids, can be explained by long-period astronomical cycles (Milankovitch "grand cycles") associated with Earth's orbital eccentricity (2.6 million years) and obliquity (1.3 million years). These grand cycles modulate climate variability, alternating times of relative stability in the environment with times of maximum volatility. We infer that these cycles influenced graptolite speciation and extinction through climate-driven changes to oceanic circulation and structure. Our results confirm the existence of Milankovitch grand cycles in the Early Paleozoic Era and show that known processes related to the mechanics of the Solar System were shaping marine macroevolutionary rates comparatively early in the history of complex life. We present an application of hidden Markov models to macroevolutionary time series and protocols for the evaluation of statistical significance in spectral analysis.

  11. Integrated interpretation of geophysical data of the Paleozoic structure in the northwestern part of the Siljan Ring impact crater, central Sweden

    NASA Astrophysics Data System (ADS)

    Muhamad, Harbe; Juhlin, Christopher; Malehmir, Alireza; Sopher, Daniel

    2018-01-01

    The Siljan Ring impact structure is the largest known impact structure in Europe and is Late Devonian in age. It contains a central uplift that is about 20-30 km in diameter and is surrounded by a ring-shaped depression. The Siljan area is one of the few areas in Sweden where the Paleozoic sequence has not been completely eroded, making it an important location for investigation of the geological and tectonic history of Baltica during the Paleozoic. The Paleozoic strata in this area also provide insight into the complex deformation processes associated with the impact. In this study we focus on the northwestern part of the Siljan Ring, close to the town of Orsa, with the main objective of characterizing the subsurface Paleozoic succession and uppermost Precambrian crystalline rocks along a series of seismic reflection profiles, some of which have not previously been published. We combine these seismic data with gravity and magnetic data and seismic traveltime tomography results to produce an integrated interpretation of the subsurface in the area. Our interpretation shows that the Paleozoic sequence in this area is of a relatively constant thickness, with a total thickness typically between 300 and 500 m. Faulting appears to be predominantly extensional, which we interpret to have occurred during the modification stage of the impact. Furthermore, based on the geophysical data in this area, we interpret that the impact related deformation to differ in magnitude and style from other parts of the Siljan Ring.

  12. The Myszkow porphyry copper-molybdenum deposit, Poland

    USGS Publications Warehouse

    Chaffee, M.A.; Eppinger, R.G.; Lason, K.; Slosarz, J.; Podemski, M.

    1994-01-01

    The porphyry copper-molybdenum deposit at Myszkow, south-central Poland, lies in the Cracow-Silesian orogenic belt, in the vicinity of a Paleozoic boundary between two tectonic plates. The deposit is hosted in a complex that includes early Paleozoic metasedimentary rocks intruded in the late Paleozoic by a predominantly granodioritic pluton. This deposit exhibits many features that are typical of porphyry copper deposits associated with calc-alkaline intrusive rocks, including ore- and alteration-mineral suites, zoning of ore and alteration minerals, fluid-inclusion chemistry, tectonic setting, and structural style of veining. Unusual features of the Myszkow deposit include high concentrations of tungsten and the late Paleozoic (Variscan) age. -Authors

  13. Intrusive rocks of the Holden and Lucerne quadrangles, Washington; the relation of depth zones, composition, textures, and emplacement of plutons

    USGS Publications Warehouse

    Cater, Fred W.

    1982-01-01

    The core of the northern Cascade Range in Washington consists of Precambrian and upper Paleozoic metamorphic rocks cut by numerous plutons, ranging in age from early Triassic to Miocene. The older plutons have been eroded to catazonal depths, whereas subvolcanic rocks are exposed in the youngest plutons. The Holden and Lucerne quadrangles span a -sizeable and representative part of this core. The oldest of the formations mapped in these quadrangles is the Swakane Biotite Gneiss, which was shown on the quadrangle maps as Cretaceous and older in age. The Swakane has yielded a middle Paleozoic metamorphic age, and also contains evidence of zircon inherited from some parent material more than 1,650 m.y. old. In this report, the Swakane is assigned an early Paleozoic or older age. It consists mostly of biotite gneiss, but interlayered with it are scattered layers and lenses of hornblende schist and gneiss, clinozoisite-epidote gneiss, and quartzite. Thickness of the Swakane is many thousands of meters, and the base is not exposed. The biotite gneiss is probably derived from a pile of siliceous volcanic rocks containing scattered sedimentary beds and basalt flows. Overlying the Swakane is a thick sequence of eugeosynclinal upper Paleozoic rocks metamorphosed to amphibolite grade. The sequence includes quartzite and thin layers of marble, hornblende schist and gneiss, graphitic schist, and smaller amounts of schist and gneiss of widely varying compositions. The layers have been tightly and complexly folded, and, in places, probably had been thrust over the overlying Swakane prior to metamorphism. Youngest of the supracrustal rocks in the area are shale, arkosic sandstone, and conglomerate of the Paleocene Swauk Formation. These rocks are preserved in the Chiwaukum graben, a major structural element of the region. Of uncertain age, but possibly as old as any of the intrusive rocks in the area, are small masses of ultramafic rocks, now almost completely altered to

  14. Polygenetic Karsted Hardground Omission Surfaces in Lower Silurian Neritic Limestones: a Signature of Early Paleozoic Calcite Seas

    NASA Astrophysics Data System (ADS)

    James, Noel P.; Desrochers, André; Kyser, Kurt T.

    2015-04-01

    Exquisitely preserved and well-exposed rocky paleoshoreline omission surfaces in Lower Silurian Chicotte Formation limestones on Anticosti Island, Quebec, are interpreted to be the product of combined marine and meteoric diagenesis. The different omission features include; 1) planar erosional bedding tops, 2) scalloped erosional surfaces, 3) knobs, ridges, and swales at bedding contacts, and 4) paleoscarps. An interpretation is proposed that relates specific omission surface styles to different diagenetic-depositional processes that took place in separate terrestrial-peritidal-shallow neritic zones. Such processes were linked to fluctuations in relative sea level with specific zones of diagenesis such as; 1) karst corrosion, 2) peritidal erosion, 3) subtidal seawater flushing and cementation, and 4) shallow subtidal deposition. Most surfaces are interpreted to have been the result of initial extensive shallow-water synsedimentary lithification that were, as sea level fell, altered by exposure and subaerial corrosion, only to be buried by sediments as sea level rose again. This succession was repeated several times resulting in a suite of recurring polyphase omission surfaces through many meters of stratigraphic section. Synsedimentary cloudy marine cements are well preserved and are thus interpreted to have been calcitic originally. Aragonite components are rare and thought to have to have been dissolved just below the Silurian seafloor. Large molluscs that survived such seafloor removal were nonetheless leached and the resultant megamoulds were filled with synsedimentary calcite cement. These Silurian inner neritic-strandline omission surfaces are temporally unique. They are part of a suite of marine omission surfaces that are mostly found in early Paleozoic neritic carbonate sedimentary rocks. These karsted hardgrounds formed during a calcite-sea time of elevated marine carbonate saturation and extensive marine cement precipitation. The contemporaneous greenhouse

  15. A Cambrian mixed carbonate-siliciclastic platform in SW Gondwana: evidence from the Western Sierras Pampeanas (Argentina) and implications for the early Paleozoic paleogeography of the proto-Andean margin

    NASA Astrophysics Data System (ADS)

    Ramacciotti, Carlos D.; Casquet, César; Baldo, Edgardo G.; Galindo, Carmen; Pankhurst, Robert J.; Verdecchia, Sebastián O.; Rapela, Carlos W.; Fanning, Mark

    2018-05-01

    The Western Sierras Pampeanas (WSP) of Argentina record a protracted geological history from the Mesoproterozoic assembly of the Rodinia supercontinent to the early Paleozoic tectonic evolution of SW Gondwana. Two well-known orogenies took place at the proto-Andean margin of Gondwana in the Cambrian and the Ordovician, i.e., the Pampean (545-520 Ma) and Famatinian (490-440 Ma) orogenies, respectively. Between them, an extensive continental platform was developed, where mixed carbonate-siliciclastic sedimentation occurred. This platform was later involved in the Famatinian orogeny when it underwent penetrative deformation and metamorphism. The platform apparently extended from Patagonia to northwestern Argentina and the Eastern Sierras Pampeanas, and has probable equivalents in SW Africa, Peru, and Bolivia. The WSP record the outer (deepest) part of the platform, where carbonates were deposited in addition to siliciclastic sediments. Detrital zircon U-Pb SHRIMP ages from clastic metasedimentary successions and Sr-isotope compositions of marbles from the WSP suggest depositional ages between ca. 525 and 490 Ma. The detrital zircon age patterns further suggest that clastic sedimentation took place in two stages. The first was sourced mainly from re-working of the underlying Neoproterozoic metasedimentary rocks and the uplifted core of the early Cambrian Pampean orogen, without input from the Paleoproterozoic Río de la Plata craton. Sediments of the second stage resulted from the erosion of the still emerged Pampean belt and the Neoproterozoic Brasiliano orogen in the NE with some contribution from the Río de la Plata craton. An important conclusion is that the WSP basement was already part of SW Gondwana in the early Cambrian, and not part of the exotic Precordillera/Cuyania terrane, as was previously thought.

  16. A Systems Approach to Identifying Exploration and Development Opportunities in the Illinois Basin: Digital Portifolio of Plays in Underexplored Lower Paleozoic Rocks [Part 1 of 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seyler, Beverly; Harris, David; Keith, Brian

    2008-06-30

    This study examined petroleum occurrence in Ordovician, Silurian and Devonian reservoirs in the Illinois Basin. Results from this project show that there is excellent potential for additional discovery of petroleum reservoirs in these formations. Numerous exploration targets and exploration strategies were identified that can be used to increase production from these underexplored strata. Some of the challenges to exploration of deeper strata include the lack of subsurface data, lack of understanding of regional facies changes, lack of understanding the role of diagenetic alteration in developing reservoir porosity and permeability, the shifting of structural closures with depth, overlooking potential producing horizons,more » and under utilization of 3D seismic techniques. This study has shown many areas are prospective for additional discoveries in lower Paleozoic strata in the Illinois Basin. This project implemented a systematic basin analysis approach that is expected to encourage exploration for petroleum in lower Paleozoic rocks of the Illinois Basin. The study has compiled and presented a broad base of information and knowledge needed by independent oil companies to pursue the development of exploration prospects in overlooked, deeper play horizons in the Illinois Basin. Available geologic data relevant for the exploration and development of petroleum reservoirs in the Illinois Basin was analyzed and assimilated into a coherent, easily accessible digital play portfolio. The primary focus of this project was on case studies of existing reservoirs in Devonian, Silurian, and Ordovician strata and the application of knowledge gained to future exploration and development in these underexplored strata of the Illinois Basin. In addition, a review of published reports and exploration in the New Albany Shale Group, a Devonian black shale source rock, in Illinois was completed due to the recent increased interest in Devonian black shales across the United States

  17. Experimental acidification of Little Rock Lake (Wisconsin): fish research approach and early responses.

    PubMed

    Swenson, W A; McCormick, J H; Simonson, T D; Jensen, K M; Eaton, J G

    1989-01-01

    One goal of research at Little Rock Lake, Wisconsin, is to enhance understanding of lake acidification effects on warm- and cool-water fishery resources. The Little Rock Lake fish assemblage is characteristic of many acid sensitive waters in North America and is dominated by yellow perch (Percidae) and sunfishes (Centrarchidae). Analyses of reproduction, early survival and growth rates in the field were designed around the differing reproductive modes of these taxa. Complementary laboratory research on early life stages was conducted to assist in isolating direct effect mechanisms and to determine the reliability of laboratory results in predicting field response. Preliminary findings suggest that lake acidification to pH 5.6 has not influenced reproductive activity of the four most abundant fish species. However, the field results suggest that year-class failure of rock bass (Ambloplites rupestris) may be occurring due to reduced survival of early life stages. Reduced growth and food conversion efficiency of Age 0 largemouth bass (Micropterus salmoides) is also suggested. The laboratory bioassays indicate rock bass is the most acid-sensitive Little Rock Lake species tested. However, rock bass fry survival was not significantly affected until pH was reduced from 5.6 to 5.0.

  18. The Paleozoic ichthyofauna of the Amazonas and Parnaíba basins, Brazil

    NASA Astrophysics Data System (ADS)

    Figueroa, Rodrigo Tinoco; Machado, Deusana Maria da Costa

    2018-03-01

    The Brazilian Paleozoic ichthyofauna from the Parnaíba and Amazonas basins regard a sparsely known diversity, including chondrichthyans and acanthodians, besides some osteichthyan remains. This work proposes a revision of the fossil material from these two sedimentary basins and synthesizes the morphological aspect of such material trying to understand the influences of those fossils to the paleontology of the region, comparing the Brazilian fossils with other gondwanan faunas. The Brazilian Paleozoic fish fauna shows great resemblance to those of Bolivia, especially during the Devonian. Many of the Acanthodian spines from the Manacapuru Formation (Amazonas Basin), and the Pimenteira Formation (Parnaíba Basin), are comparable to the taxa found in Bolivia. The lack of more Placoderm remains in the Brazilian outcrops is similar to the low diversity of this group in Bolivia, when compared to other South American and Euramerican localities. The most diverse Brazilian ichthyofauna is encountered in the Permian Pedra de Fogo Formation where numerous chondrichthyans and 'paleopterygians' remains are found, together with dipnoans and actinistians. Despite the apparent lack of more representative Paleozoic ichthyofaunas in Brazil, the available material that ranges from Lower Devonian to early Permian from Brazil bears important taxa that could address valuable taxonomic and biogeographic informations.

  19. Age and tectonic setting of Mesozoic metavolcanic and metasedimentary rocks, northern White Mountains, California

    NASA Astrophysics Data System (ADS)

    Hanson, R. Brooks; Saleeby, Jason B.; Fates, D. Gilbert

    1987-11-01

    Mesozoic metavolcanic and metasedimentary rocks in the northern White Mountains, eastern California and western Nevada, are separated from lower Paleozoic and Precambrian rocks by Jurassic and Cretaceous plutons. The large stratigraphic hiatus across the plutons is called the Barcroft structural break. Recent mapping and new U/Pb zircon ages of 154 +3/-1 Ma and 137 ±1 Ma. from an ash-flow tuff and a hypabyssal intrusion, respectively, indicate that part of the Mesozoic section and the Barcroft structural break are younger than the 160 165 Ma Barcroft Granodiorite, in contrast to previous interpretations. The Barcroft Granodiorite has been thrust westward over most of the Mesozoic section. It is everywhere in fault contact with overturned metasedimentary rocks on the west side of the range, rocks which were previously thought to be upright and the oldest part of the Mesozoic section. The McAfee Creek Granite, which has a 100 ±1 Ma U/Pb zircon age, postdates thrusting; therefore, the Barcroft structural break is primarily Early Cretaceous in age. *Present addresses: Hanson—Department of Mineral Sciences, Smithsonian Institution, Washington, D.C. 20560; Fates—Dames & Moore, 455 S. Figueroa Street, Suite 3504, Los Angeles, California 90074

  20. Paleozoic and Paleoproterozoic Zircon in Igneous Xenoliths Assimilated at Redoubt Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Bacon, C. R.; Vazquez, J. A.; Wooden, J. L.

    2010-12-01

    Historically active Redoubt Volcano is a basalt-to-dacite cone constructed upon the Jurassic-early Tertiary Alaska-Aleutian Range batholith. New SHRIMP-RG U-Pb age and trace-element concentration results for zircons from gabbroic xenoliths and crystal-rich andesitic mush from a late Pleistocene pyroclastic deposit indicate that ~310 Ma and ~1865 Ma igneous rocks underlie Redoubt at depth. Two gabbros have sharply terminated prismatic zircons that yield ages of ~310 Ma. Zircons from a crystal mush sample are overwhelmingly ~1865 Ma and appear rounded due to incomplete dissolution. Binary plots of element concentrations or ratios show clustering of data for ~310-Ma grains and markedly coherent trends for ~1865-Ma grains; e.g., ~310-Ma grains have higher Eu/Eu* than most of the ~1865-Ma grains, the majority of which form a narrow band of decreasing Eu/Eu* with increasing Hf content which suggests that ~1865-Ma zircons come from igneous source rocks. It is very unlikely that detrital zircons from a metasedimentary rock would have this level of homogeneity in age and composition. One gabbro contains abundant ~1865 Ma igneous zircons, ~300-310 Ma fluid-precipitated zircons characterized by very low U and Th concentrations and Th/U ratios, and uncommon ~100 Ma zircons. We propose that (1) ~310 Ma gabbro xenoliths from Redoubt Volcano belong to the same family of plutons dated by Aleinikoff et al. (USGS Circular 1016, 1988) and Gardner et al. (Geology, 1988) located ≥500 km to the northeast in basement rocks of the Wrangellia and Alexander terranes and (2) ~1865 Ma zircons are inherited from igneous rock, potentially from a continental fragment that possibly correlates with the Fort Simpson terrane or Great Bear magmatic zone of the Wopmay Orogen of northwestern Laurentia. Possibly, elements of these Paleoproterozoic terranes intersected the Paleozoic North American continental margin where they may have formed a component of the basement to the Wrangellia

  1. Reported middle Paleozoic fossils and new geochronological data from the southern and central Appalachians: Disposable outrageous hypothesis or justification for major revision of tectonic history

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatcher, R.D. Jr.

    Recently published interpretations of fossil fragments from the Walden Creek Group (Ocoee Supergroup) suggesting that these rocks are middle Paleozoic (Devonian to Early Carboniferous), and new geochronological data that yield late Paleozoic age dates on rocks and major faults in the Blue Ridge and piedmont, if taken alone, would permit speculation that most of the deformation and metamorphism affecting this part of the orogen is Alleghanian. The two Ordovician clastic wedges (Sevier, Llanvirn, and Martinsburg, Caradoc-Ashgill) and the Carboniferous-Permian wedge(s), along with many radiometric ages on plutons, indicate uplift and sediment dispersal from the interior of the southern and centralmore » Appalachians (SCA) that may have resulted from Taconian and Alleghanian deformation. Combining the reproducible fossil evidence, including that from Alabama and a recently discovered crinoid fragment from the upper part of the Murphy belt sequence, with the most current geochronological data requires that peak metamorphism and penetrative deformation be at least Devonian or younger at the southwestern end of the orogen, and Late Ordovician or younger in the Carolinas and northern Georgia. Zircon ages reported from large thrust and dextral strike-slip faults bounding the Pine Mountain window indicate all of the faults there may be Alleghanian, except the younger sinistral Mesozoic faults, and requires that both metamorphism and penetrative deformation there also be Alleghanian. As in New England, the southern Appalachian Alleghanian metamorphic core is now known to be much more extensive. The older data require that the Taconian and perhaps the Acadian orogenies were significant events in the SCA, but these new data reconfirm the dominance of Alleghanian continent-continent collision processes here.« less

  2. Mesozoic contractile and extensional structures in the Boyer Gap area, northern Dome Rock Mountains, Arizona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boettcher, S.S.

    1993-04-01

    Mesozoic polyphase contractile and superposed ductile extensional structures affect Proterozoic augen gneiss, Paleozoic metasedimentary rocks, and Jurassic granitoids in the Boyer Gap area of the northern Dome Rock Mtns, W-central Arizona. The nappe-style contractile structures are preserved in the footwall of the Tyson Thrust shear zone, which is one of the structurally lowest thrust faults in the E-trending Jurassic and Cretaceous Maria fold and thrust belt. Contractile deformation preceded emplacement of Late Cretaceous granite (ca 80 Ma, U-Pb zircon) and some may be older than variably deformed Late Jurassic leucogranite. Specifically, detailed structural mapping reveals the presence of a km-scalemore » antiformal syncline that apparently formed as a result of superposition of tight to isoclinal, south-facing folds on an earlier, north-facing recumbent fold. The stratigraphic sequence of metamorphosed Paleozoic cratonal strata is largely intact in the northern Dome Rock Mtns, such that overturned and upright stratigraphic units can be distinguished. A third phase of folding in the Boyer Gap area is distinguished by intersection lineations that are folded obliquely across the hinges of open to tight, sheath folds. The axial planes of the sheet folds are subparallel to the mylonitic foliation in top-to-the-northeast extensional shear zones. The timing of ductile extensional structures in the northern Dome Rock is constrained by [sup 40]Ar/[sup 39]Ar isochron ages of 56 Ma and 48 Ma on biotite from mylonitic rocks in both the hanging wall and footwall of the Tyson Thrust shear zone. The two early phases of folding are the dominant mechanism by which shortening was accommodated in the Boyer Gap area, as opposed to deformation along discrete thrust faults with large offset. All of the ductile extensional structures are spectacularly displayed at an outcrop scale but are not of sufficient magnitude to obliterate the km-scale Mesozoic polyphase contractile

  3. Lead isotope compositions of Late Cretaceous and early Tertiary igneous rocks and sulfide minerals in Arizona: Implications for the sources of plutons and metals in porphyry copper deposits

    USGS Publications Warehouse

    Bouse, R.M.; Ruiz, J.; Titley, S.R.; Tosdal, R.M.; Wooden, J.L.

    1999-01-01

    lower model Th/U. These Pb isotope differences are inferred to result from differences in their respective post-1.7 Ga magmatic histories. Throughout Arizona, Pb isotope compositions of Late Cretaceous and early Tertiary plutons and associated sulfide minerals are distinct from those of Jurassic plutons and also middle Tertiary igneous rocks and sulfide minerals. These differences most likely reflect changes in tectonic setting and magmatic sources. Within Late Cretaceous and early Tertiary igneous complexes that host economic porphyry copper deposits, there is commonly a decrease in Pb isotope composition from older to younger plutons. This decrease in Pb isotope values with time suggests an increasing involvement of crust with lower U/Pb than average crust in the source(s) of Late Cretaceous and early Tertiary magmas. Lead isotope compositions of the youngest porphyries in the igneous complexes are similar to those in most sulfide minerals within the associated porphyry copper deposit. This Pb isotope similarity argues for a genetic link between them. However, not all Pb in the sulfide minerals in porphyry copper deposits is magmatically derived. Some sulfide minerals, particularly those that are late stage, or distal to the main orebody, or in Proterozoic or Paleozoic rocks, have elevated Pb isotope compositions displaced toward the gross average Pb isotope composition of the local country rocks. The more radiogenic isotopic compositions argue for a contribution of Pb from those rocks at the site of ore deposition. Combining the Pb isotope data with available geochemical, isotopic, and petrologic data suggests derivation of the young porphyry copper-related plutons, most of their Pb, and other metals from a hybridized lower continental crustal source. Because of the likely involvement of subduction-related mantle-derived basaltic magma in the hybridized lower crustal source, an indiscernible mantle contribution is probable in the porphyry magmas. Clearly, in addition

  4. Late-paleozoic granitoid complexes of the southwest Primorye: geochemistry, age and typification

    NASA Astrophysics Data System (ADS)

    Veldemar, A. A.; Vovna, G. M.

    2017-12-01

    The article presents the first data of geochemical studies of the Late Permian granitoids of the Gamov Complex located in the southwestern part of the Voznesenskiy terrane. The purpose of the study was to identify the main geochemical features of the Late Paleozoic granitoids of the southwestern Primorye, which in the future will allow us to draw conclusions about the petrogenesis of these granitoids. Elemental analysis of 20 samples was carried out, conducted statistical and mathematical processing of the data, have been constructed representative diagrams and graphs for this group of rocks. Elemental analysis was performed by atomic emission (ICP-AES) and inductively-coupled-plasma (ICP-MS) mass spectrometry, at the Analytical Center FEGI FEB RAS.

  5. Geologic map and upper Paleozoic stratigraphy of the Marble Canyon area, Cottonwood Canyon quadrangle, Death Valley National Park, Inyo County, California

    USGS Publications Warehouse

    Stone, Paul; Stevens, Calvin H.; Belasky, Paul; Montañez, Isabel P.; Martin, Lauren G.; Wardlaw, Bruce R.; Sandberg, Charles A.; Wan, Elmira; Olson, Holly A.; Priest, Susan S.

    2014-01-01

    This geologic map and pamphlet focus on the stratigraphy, depositional history, and paleogeographic significance of upper Paleozoic rocks exposed in the Marble Canyon area in Death Valley National Park, California. Bedrock exposed in this area is composed of Mississippian to lower Permian (Cisuralian) marine sedimentary rocks and the Jurassic Hunter Mountain Quartz Monzonite. These units are overlain by Tertiary and Quaternary nonmarine sedimentary deposits that include a previously unrecognized tuff to which we tentatively assign an age of late middle Miocene (~12 Ma) based on tephrochronologic analysis, in addition to the previously recognized Pliocene tuff of Mesquite Spring. Mississippian and Pennsylvanian rocks in the Marble Canyon area represent deposition on the western continental shelf of North America. Mississippian limestone units in the area (Tin Mountain, Stone Canyon, and Santa Rosa Hills Limestones) accumulated on the outer part of a broad carbonate platform that extended southwest across Nevada into east-central California. Carbonate sedimentation was interrupted by a major eustatic sea-level fall that has been interpreted to record the onset of late Paleozoic glaciation in southern Gondwana. Following a brief period of Late Mississippian clastic sedimentation (Indian Springs Formation), a rise in eustatic sea level led to establishment of a new carbonate platform that covered most of the area previously occupied by the Mississippian platform. The Pennsylvanian Bird Spring Formation at Marble Canyon makes up the outer platform component of ten third-order (1 to 5 m.y. duration) stratigraphic sequences recently defined for the regional platform succession. The regional paleogeography was fundamentally changed by major tectonic activity along the continental margin beginning in middle early Permian time. As a result, the Pennsylvanian carbonate shelf at Marble Canyon subsided and was disconformably overlain by lower Permian units (Osborne Canyon and

  6. Geochemistry, geochronology, and Sr-Nd isotopic compositions of Permian volcanic rocks in the northern margin of the North China Block: implications for the tectonic setting of the southeastern Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Ji, Zejia; Zhang, Zhicheng; Chen, Yan; Li, Ke; Yang, Jinfu; Qian, Xiaoyan

    2018-02-01

    The southeastern part of the Central Asian Orogenic Belt (CAOB), which records the collision of the North China Block (NCB) with the South Mongolian microcontinent, is a key area for reconstructing the tectonic history of the CAOB. Controversy persists regarding the timing of the final structural amalgamation of the region; therefore, it remains unclear whether the Late Paleozoic thick volcanic successions were generated in a subduction or post-orogenic environment. Redefining the age of the formation and analyzing the geochemical compositions of these volcanic rocks can provide clues regarding the regional tectonic evolution during the Late Paleozoic and place constraints on the closure time of the Paleo-Asian Ocean. In this study, we present geochemical, geochronologic, and Sr-Nd isotopic data for 29 volcanic rock samples from the Elitu Formation in Xianghuangqi, central Inner Mongolia. The Elitu volcanic rocks have latest early-to-middle Permian ages between 272 and 268 Ma. Most of the mafic-intermediate and felsic rocks show K-normal and high-K calc-alkaline characteristics. Melting is considered to be due to large scale upwelling of the metasomatic lithospheric mantle and different degrees of melting of the thickened lower crust. The northern margin of the NCB, which represents the southeastern boundary of the CAOB, records transtensional and, subsequently, extensional tectonics associated with late Carboniferous to middle Permian volcanic activity.

  7. Late Paleozoic paleolatitude and paleogeography of the Midland basin, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, D.A.; Golonka, J.; Reid, A.M.

    1992-04-01

    During the Late Pennsylvanian through Early Permian, the Midland basin was located in the low latitudes. In the Desmoinesian (Strawn), the basin was astride the equator; during the Missourian (Canyon), the center of the basin had migrated northward so it was located at 1-2N latitude. In the Virgilian (Cisco), the basin center was located around 2-4N latitude, and by the Wolfcampian, it was positioned at around 4-6N latitude. From the Desmoinesian (312 Ma) through the Missourian (306 Ma), the relative motion of the basin was 63NE. Later during the Virgilian (298 Ma) to Wolfcampian (280 Ma), the direction of motionmore » was 24NE. This change in motion reflects a major tectonic event, occurring between the Missourian and Virgilian, that greatly modifed the movement of the Laurentian (North American) plate. At that time, Laurentia had collided with Gondwana and become part of the supercontinent Pangea. Throughout the late Paleozoic, Laurentia was rotated so the Midland basin was oriented 43{degree} northeast from its current setting. Late Paleozoic paleogeography and paleolatitude controlled the direction of prevailing winds and ocean currents, thereby influencing the distribution of carbonate facies in the Midland basin. Present prevailing winds and ocean currents have been shown to have a major impact on modern carbonate sedimentation and facies distribution in Belize, the Bahamas and Turks, and Caicos. A clearer understanding of how late Paleozoic latitude and geography affected sedimentation helps explain and predict the distribution of carbonates throughout the Midland basin.« less

  8. Synthesis of late Paleozoic and Mesozoic eolian deposits of the Western Interior of the United States

    USGS Publications Warehouse

    Blakey, R.C.; Peterson, F.; Kocurek, G.

    1988-01-01

    Late Paleozoic and Mesozoic eolian deposits include rock units that were deposited in ergs (eolian sand seas), erg margins and dune fields. They form an important part of Middle Pennsylvanian through Upper Jurassic sedimentary rocks across the Western Interior of the United States. These sedimentary rock units comprise approximately three dozen major eolian-bearing sequences and several smaller ones. Isopach and facies maps and accompanying cross sections indicate that most eolian units display varied geometry and complex facies relations to adjacent non-eolian rocks. Paleozoic erg deposits are widespread from Montana to Arizona and include Pennsylvanian formations (Weber, Tensleep, Casper and Quadrant Sandstones) chiefly in the Northern and Central Rocky Mountains with some deposits (Hermosa and Supai Groups) on the Colorado Plateau. Lower Permian (Wolfcampian) erg deposits (Weber, Tensleep, Casper, Minnelusa, Ingleside, Cedar Mesa, Elephant Canyon, Queantoweap and Esplanade Formations) are more widespread and thicken into the central Colorado Plateau. Middle Permian (Leonardian I) erg deposits (De Chelly and Schnebly Hill Formations) are distributed across the southern Colorado Plateau on the north edge of the Holbrook basin. Leonardian II erg deposits (Coconino and Glorieta Sandstones) are slightly more widespread on the southern Colorado Plateau. Leonardian III erg deposits formed adjacent to the Toroweap-Kaibab sea in Utah and Arizona (Coconino and White Rim Sandstones) and in north-central Colorado (Lyons Sandstone). Recognized Triassic eolian deposits include major erg deposits in the Jelm Formation of central Colorado-Wyoming and smaller eolian deposits in the Rock Point Member of the Wingate Sandstone and upper Dolores Formation, both of the Four Corners region. None of these have as yet received a modern or thorough study. Jurassic deposits of eolian origin extend from the Black Hills to the southern Cordilleran arc terrain. Lower Jurassic intervals

  9. Criteria for the recognition and correlation of sandstone units in the Precambrian and Paleozoic-Mesozoic clastic sequence in the near east

    NASA Astrophysics Data System (ADS)

    Weissbrod, T.; Perath, I.

    A systematic study of the Precambrian and Paleozoic-Mesozoic clastic sequences (Nubian Sandstone) in Israel and Sinai, and a comparative analysis of its stratigraphy in neighbouring countries, has shown that besides the conventional criteria of subdivision (lithology, field appearance, photogeological features, fossil content), additional criteria can be applied, which singly or in mutual conjuction enable the recognition of widespread units and boundaries. These criteria show lateral constancy, and recurrence of a similar vertical sequence over great distances, and are therefore acceptable for the identification of synchronous, region-wide sedimentary units (and consequently, major unconformities). They also enable, once the units are established, to identify detached (not in situ) samples, samples from isolated or discontinous outcrops, borehole material or archive material. The following rock properties were tested and found to be usefuls in stratigraphic interpretation, throughout large distribution areas of the clastic sequence: Landscape, which is basically the response of a particular textural-chemic al aggregate to atmospheric weathering. Characteristic outcrop feature — styles of roundness or massivity, fissuring or fliatin, slope profile, bedding — express a basic uniformity of these platform-type clastics. Colors are often stratigraphically constant over hundreds of kilometers, through various climates and topographies, and express some intrinsic unity of the rock bodies. Grain size and sorting, when cross-plotted, enable to differentiate existing unit. The method requires the analysis of representative numbers of samples. Vertical trends of median grain size and sorting show reversals, typically across unconformities. Feldstar content diminishes from 15-50% in Precambrian-Paleozoic rocks to a mere 5% or less in Mesozoic sandstones — a distinctive regionwide time trend. Dominance of certain feldstar types characterizes Precambrian and Paleozoic

  10. Geology and porphyry copper-type alteration-mineralization of igneous rocks at the Christmas Mine, Gila County, Arizona

    USGS Publications Warehouse

    Koski, Randolph A.

    1979-01-01

    The Christmas copper deposit, located in southern Gila County, Arizona, is part of the major porphyry copper province of southwestern North America. Although Christmas is known for skarn deposits in Paleozoic carbonate rocks, ore-grade porphyry-type copper mineralization also occurs in a composite granodioritic intrusive complex and adjacent mafic volcanic country rocks. This study considers the nature, distribution, and genesis of alteration-mineralization in the igneous rock environment at Christmas. At the southeast end of the Dripping Spring Mountains, the Pennsylvanian Naco Limestone is unconformably overlain by the Cretaceous Williamson Canyon Volcanics, a westward-thinning sequence of basaltic volcanic breccia and lava flows, and subordinate clastic sedimentary rocks. Paleozoic and Mesozoic strata are intruded by Laramide-age dikes, sills, and small stocks of hornblende andesite porphyry and hornblende rhyodacite porphyry, and the mineralized Christmas intrusive complex. Rocks of the elongate Christmas stock, intruded along an east-northeast-trending fracture zone, are grouped into early, veined quartz diorite (Dark Phase), biotite granodiorite porphyry (Light Phase), and granodiorite; and late, unveined dacite porphyry and granodiorite porphyry. Biotite rhyodacite porphyry dikes extending east and west from the vicinity of the stock are probably coeval with biotite granodiorite porphyry. Accumulated normal displacement of approximately 1 km along the northwest-trending Christmas-Joker fault system has juxtaposed contrasting levels (lower, intrusive-carbonate rock environment and upper, intrusive-volcanic rock environment) within the porphyry copper system. K-Ar age determinations and whole-rock chemical analyses of the major intrusive rock types indicate that Laramide calc-alkaline magmatism and ore deposition at Christmas evolved over an extended period from within the Late Cretaceous (~75-80 m.y. ago) to early Paleocene (~63-61 m.y. ago). The sequence of

  11. Assessment of Appalachian Basin Oil and Gas Resources: Utica-Lower Paleozoic Total Petroleum System

    USGS Publications Warehouse

    Ryder, Robert T.

    2008-01-01

    The Utica-Lower Paleozoic Total Petroleum System (TPS) is an important TPS identified in the 2002 U.S. Geological Survey (USGS) assessment of undiscovered, technically recoverable oil and gas resources in the Appalachian basin province (Milici and others, 2003). The TPS is named for the Upper Ordovician Utica Shale, which is the primary source rock, and for multiple lower Paleozoic sandstone and carbonate units that are the important reservoirs. Upper Cambrian through Upper Silurian petroleum-bearing strata that constitute the Utica-Lower Paleozoic TPS thicken eastward from about 2,700 ft at the western margin of the Appalachian basin to about 12,000 ft at the thrust-faulted eastern margin of the Appalachian basin. The Utica-Lower Paleozoic TPS covers approximately 170,000 mi2 of the Appalachian basin from northeastern Tennessee to southeastern New York and from central Ohio to eastern West Virginia. The boundary of the TPS is defined by the following geologic features: (1) the northern boundary (from central Ontario to northeastern New York) extends along the outcrop limit of the Utica Shale-Trenton Limestone; (2) the northeastern boundary (from southeastern New York, through southeastern Pennsylvania-western Maryland-easternmost West Virginia, to northern Virginia) extends along the eastern limit of the Utica Shale-Trenton Limestone in the thrust-faulted eastern margin of the Appalachian basin; (3) the southeastern boundary (from west-central and southwestern Virginia to eastern Tennessee) extends along the eastern limit of the Trenton Limestone in the thrust-faulted eastern margin of the Appalachian basin; (4) the southwestern boundary (from eastern Tennessee, through eastern Kentucky, to southwestern Ohio) extends along the approximate facies change from the Trenton Limestone with thin black shale interbeds (on the east) to the equivalent Lexington Limestone without black shale interbeds (on the west); (5) the northern part of the boundary in southwestern Ohio

  12. Revisions to the original extent of the Devonian Shale-Middle and Upper Paleozoic Total Petroleum System

    USGS Publications Warehouse

    Enomoto, Catherine B.; Rouse, William A.; Trippi, Michael H.; Higley, Debra K.

    2016-04-11

    Technically recoverable undiscovered hydrocarbon resources in continuous accumulations are present in Upper Devonian and Lower Mississippian strata in the Appalachian Basin Petroleum Province. The province includes parts of New York, Pennsylvania, Ohio, Maryland, West Virginia, Virginia, Kentucky, Tennessee, Georgia, and Alabama. The Upper Devonian and Lower Mississippian strata are part of the previously defined Devonian Shale-Middle and Upper Paleozoic Total Petroleum System (TPS) that extends from New York to Tennessee. This publication presents a revision to the extent of the Devonian Shale-Middle and Upper Paleozoic TPS. The most significant modification to the maximum extent of the Devonian Shale-Middle and Upper Paleozoic TPS is to the south and southwest, adding areas in Tennessee, Georgia, Alabama, and Mississippi where Devonian strata, including potential petroleum source rocks, are present in the subsurface up to the outcrop. The Middle to Upper Devonian Chattanooga Shale extends from southeastern Kentucky to Alabama and eastern Mississippi. Production from Devonian shale has been established in the Appalachian fold and thrust belt of northeastern Alabama. Exploratory drilling has encountered Middle to Upper Devonian strata containing organic-rich shale in west-central Alabama. The areas added to the TPS are located in the Valley and Ridge, Interior Low Plateaus, and Appalachian Plateaus physiographic provinces, including the portion of the Appalachian fold and thrust belt buried beneath Cretaceous and younger sediments that were deposited on the U.S. Gulf Coastal Plain.

  13. Geochemistry of Early Paleozoic boninites from the Central Qilian block, Northwest China: Constraints on petrogenesis and back-arc basin development

    NASA Astrophysics Data System (ADS)

    Gao, Zhong; Zhang, Hong-Fei; Yang, He; Luo, Bi-Ji; Guo, Liang; Xu, Wang-Chun; Pan, Fa-Bin

    2018-06-01

    Early Paleozoic boninites occur in the Central Qilian orogenic belt, Northwest China. Their petrogenesis provides insights into lithosphere process and tectonic evolution of the Qilian block. In this paper, we carry out a study of geochronological, geochemical and Sr-Nd isotopic compositions for the Early Paleozoic boninites in the Lajishan area of the Central Qilian block. The Lajishan boninites (∼483 Ma) have high Al2O3/TiO2 (36.7-64.7) and CaO/TiO2 (31.1-49.6) ratios, and high MgO (7.86-10.47 wt%), Cr (439-599 ppm) and Ni (104-130 ppm) contents, indicating that the boninites result from a refractory mantle source. They are depleted in high field-strength elements (HFSE) and enriched in large ion lithophile elements (LILE), coupled with slightly high initial 87Sr/86Sr values of 0.7059-0.7074 and low εNd(t) values of -1.05 to +2.66, indicating that the mantle source was metasomatized by subducted slab-derived components. We found that an assemblage of low-Ca group and high-Ca group boninites occurred in the Lajishan belt. The high-Ca group boninites were derived from relatively fertile mantle with slightly higher melting degree, whereas the low-Ca group boninites were generated by partial melting of more refractory mantle wedge peridotites with slightly lower melting degree. The assemblage of low-Ca group and high-Ca group boninites reveals that the low-Ca group boninites were generated by the further melting of the more refractory mantle source after the segregation of the high-Ca group boninitic magmas in response to the back-arc basin opening. In the light of reported boninites worldwide, a diagram of Zr/Y vs. CaO/Al2O3 is used to identify boninites in fore-arc and back-arc regions. We suggest that the Lajishan boninites represent the products of back-arc basin development in response to the northward subduction of the Qaidam-West Qinling ocean slab.

  14. The First Results of Study of Hydrocarbon Biomarkers and Hydrocarbons of a Diamond-like Structure in the Riphean, Vendian, and Lower Cambrian Rocks of the Katanga Saddle

    NASA Astrophysics Data System (ADS)

    Gordadze, G. N.; Kerimov, V. Yu.; Gaiduk, A. V.; Giruts, M. V.; Lobusev, M. A.; Serov, S. G.; Kuznetsov, N. B.; Romanyuk, T. V.

    2018-02-01

    The results of geochemical study of samples from Riphean-Lower Paleozoic rocks enriched in organic matter (the rocks most likely parental for oil) from the southern part of the Siberian Platform are reported.

  15. Stratigraphy and paleogeographic significance of a Late Pennsylvanian to Early Permian channeled slope sequence in the Darwin Basin, southern Darwin Hills, east-central California

    USGS Publications Warehouse

    Stevens, Calvin H.; Stone, Paul; Magginetti, Robert T.; Ritter, Scott M.

    2015-01-01

    The complex stratigraphy of late Paleozoic rocks in the southern Darwin Hills consists of regionally extensive Mississippian and Early to Middle Pennsylvanian rocks overlain by latest Pennsylvanian to Early Permian rocks, herein called the Darwin Hills sequence. Deposition of this latter sequence marked the beginning of the Darwin Basin. In Mississippian time, a carbonate platform prograded westward over slightly older slope deposits. In the Late Mississippian this platform was exposed to erosion and siliciclastic sediments were deposited. In Early to Middle Pennsylvanian time the area subsided, forming a west-facing ramp that was subjected to deformation and erosion in Middle or early Late Pennsylvanian time. Later this area was tilted westward and deep-water sediments were deposited on this slope. In latest Pennsylvanian to earliest Permian time, a major channel was cut through the older Pennsylvanian rocks and into the Upper Mississippian strata. This channel was gradually filled with increasingly finer grained, deep-water sediment as the area evolved into a basin floor by Early Permian (Sakmarian) time. Expansion of the Darwin Basin in Artinskian time led to a second phase of deposition represented by strata of the regionally extensive Darwin Canyon Formation. The geology in this small area thus documents tectonic events occurring during the early development of the Darwin Basin.

  16. An exhumed Late Paleozoic canyon in the rocky mountains

    USGS Publications Warehouse

    Soreghan, G.S.; Sweet, D.E.; Marra, K.R.; Eble, C.F.; Soreghan, M.J.; Elmore, R.D.; Kaplan, S.A.; Blum, M.D.

    2007-01-01

    Landscapes are thought to be youthful, particularly those of active orogenic belts. Unaweep Canyon in the Colorado Rocky Mountains, a large gorge drained by two opposite-flowing creeks, is an exception. Its origin has long been enigmatic, but new data indicate that it is an exhumed late Paleozoic landform. Its survival within a region of profound late Paleozoic orogenesis demands a reassessment of tectonic models for the Ancestral Rocky Mountains, and its form and genesis have significant implications for understanding late Paleozoic equatorial climate. This discovery highlights the utility of paleogeomorphology as a tectonic and climatic indicator. ?? 2007 by The University of Chicago. All rights reserved.

  17. The Early Mesozoic volcanic arc of western North America in northeastern Mexico

    NASA Astrophysics Data System (ADS)

    Barboza-Gudiño, José Rafael; Orozco-Esquivel, María Teresa; Gómez-Anguiano, Martín; Zavala-Monsiváis, Aurora

    2008-02-01

    Volcanic successions underlying clastic and carbonate marine rocks of the Oxfordian-Kimmeridgian Zuloaga Group in northeastern Mexico have been attributed to magmatic arcs of Permo-Triassic and Early Jurassic ages. This work provides stratigraphic, petrographic geochronological, and geochemical data to characterize pre-Oxfordian volcanic rocks outcropping in seven localities in northeastern Mexico. Field observations show that the volcanic units overlie Paleozoic metamorphic rocks (Granjeno schist) or Triassic marine strata (Zacatecas Formation) and intrude Triassic redbeds or are partly interbedded with Lower Jurassic redbeds (Huizachal Group). The volcanic rocks include rhyolitic and rhyodacitic domes and dikes, basaltic to andesitic lava flows and breccias, and andesitic to rhyolitic pyroclastic rocks, including breccias, lapilli, and ashflow tuffs that range from welded to unwelded. Lower-Middle Jurassic ages (U/Pb in zircon) have been reported from only two studied localities (Huizachal Valley, Sierra de Catorce), and other reported ages (Ar/Ar and K-Ar in whole-rock or feldspar) are often reset. This work reports a new U/Pb age in zircon that confirms a Lower Jurassic (193 Ma) age for volcanic rocks exposed in the Aramberri area. The major and trace element contents of samples from the seven localities are typical of calc-alkaline, subduction-related rocks. The new geochronological and geochemical data, coupled with the lithological features and stratigraphic positions, indicate volcanic rocks are part of a continental arc, similar to that represented by the Lower-Middle Jurassic Nazas Formation of Durango and northern Zacatecas. On that basis, the studied volcanic sequences are assigned to the Early Jurassic volcanic arc of western North America.

  18. Chondrites isp. Indicating Late Paleozoic Atmospheric Anoxia in Eastern Peninsular India

    PubMed Central

    Bhattacharya, Biplab; Banerjee, Sudipto

    2014-01-01

    Rhythmic sandstone-mudstone-coal succession of the Barakar Formation (early Permian) manifests a transition from lower braided-fluvial to upper tide-wave influenced, estuarine setting. Monospecific assemblage of marine trace fossil Chondrites isp. in contemporaneous claystone beds in the upper Barakar succession from two Gondwana basins (namely, the Raniganj Basin and the Talchir Basin) in eastern peninsular India signifies predominant marine incursion during end early Permian. Monospecific Chondrites ichnoassemblage in different sedimentary horizons in geographically wide apart (~400 km) areas demarcates multiple short-spanned phases of anoxia in eastern India. Such anoxia is interpreted as intermittent falls in oxygen level in an overall decreasing atmospheric oxygenation within the late Paleozoic global oxygen-carbon dioxide fluctuations. PMID:24616628

  19. Neoproterozoic-Early Paleozoic Peri-Pacific Accretionary Evolution of the Mongolian Collage System: Insights From Geochemical and U-Pb Zircon Data From the Ordovician Sedimentary Wedge in the Mongolian Altai

    NASA Astrophysics Data System (ADS)

    Jiang, Y. D.; Schulmann, K.; Kröner, A.; Sun, M.; Lexa, O.; Janoušek, V.; Buriánek, D.; Yuan, C.; Hanžl, P.

    2017-11-01

    Neoproterozoic to early Paleozoic accretionary processes of the Central Asian Orogenic Belt have been evaluated so far mainly using the geology of ophiolites and/or magmatic arcs. Thus, the knowledge of the nature and evolution of associated sedimentary prisms remains fragmentary. We carried out an integrated geological, geochemical, and zircon U-Pb geochronological study on a giant Ordovician metasedimentary succession of the Mongolian Altai Mountains. This succession is characterized by dominant terrigenous components mixed with volcanogenic material. It is chemically immature, compositionally analogous to graywacke, and marked by significant input of felsic to intermediate arc components, pointing to an active continental margin depositional setting. Detrital zircon U-Pb ages suggest a source dominated by products of early Paleozoic magmatism prevailing during the Cambrian-Ordovician and culminating at circa 500 Ma. We propose that the Ordovician succession forms an "Altai sedimentary wedge," the evolution of which can be linked to the geodynamics of the margins of the Mongolian Precambrian Zavhan-Baydrag blocks. This involved subduction reversal from southward subduction of a passive continental margin (Early Cambrian) to the development of the "Ikh-Mongol Magmatic Arc System" and the giant Altai sedimentary wedge above a north dipping subduction zone (Late Cambrian-Ordovician). Such a dynamic process resembles the tectonic evolution of the peri-Pacific accretionary Terra Australis Orogen. A new model reconciling the Baikalian metamorphic belt along the southern Siberian Craton with peri-Pacific Altai accretionary systems fringing the Mongolian microcontinents is proposed to explain the Cambro-Ordovician geodynamic evolution of the Mongolian collage system.

  20. Lower paleozoic of Baltic Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haselton, T.M.; Surlyk, F.

    The Baltic Sea offers a new and exciting petroleum play in northwestern Europe. The Kaliningrad province in the Soviet Union, which borders the Baltic Sea to the east, contains an estimated 3.5 billion bbl of recoverable oil from lower Paleozoic sandstones. To the south, in Poland, oil and gas fields are present along a trend that projects offshore into the Baltic. Two recent Petrobaltic wells in the southern Baltic have tested hydrocarbons from lower Paleozoic sandstone. Minor production comes from Ordovician reefs on the Swedish island of Gotland in the western Baltic. The Baltic synclise, which began subsiding in themore » late Precambrian, is a depression in the East European platform. Strate dip gently to the south where the Baltic Synclise terminates against a structurally complex border zone. Depth to the metamorphosed Precambrian basement is up to 4,000 m. Overlying basement is 200-300 m of upper Precambrian arkosic sandstone. The Lower Cambrian consists of shallow marine quartzites. During Middle and Late Camnbrian, restricted circulation resulted in anoxic conditions and the deposition of Alum shale. The Lower Ordovician consists of quartzites and shale. The Upper Ordovician includes sandstones and algal reefs. The Silurian contains marginal carbonates and shales. For the last 25 years, exploration in northwest Europe has concentrated on well-known Permian sandstone, Jurassic sandstone, and Cretaceous chalk plays. Extrapolation of trends known and exploited in eastern Europe could open an entirely new oil province in the lower Paleozoic in the Baltic.« less

  1. Provenance of Carboniferous sedimentary rocks in the northern margin of Dabie Mountains, central China and the tectonic significance: constraints from trace elements, mineral chemistry and SHRIMP dating of zircons

    NASA Astrophysics Data System (ADS)

    Li, Renwei; Li, Shuangying; Jin, Fuquan; Wan, Yusheng; Zhang, Shukun

    2004-04-01

    A suite of slightly metamorphosed Carboniferous sedimentary strata occurs in the northern margin of the Dabie Mountains, central China. It consists, in ascending order, of the upper Huayuanqiang Formation (C 1), the Yangshan Formation (C 1), the Daorenchong Formation (C 1-2), the most widely distributed Huyoufang Formation (C 2) and the Yangxiaozhuang Formation (C 2). The provenance of the Carboniferous sedimentary rocks is constrained by the integration of trace elements, detrital mineral chemistry and sensitive high resolution ion microprobe (SHRIMP) dating of detrital zircons, which can help to understand the connection between the provenance and the Paleozoic tectonic evolution of the Qinling-Dabie Orogen. The trace element compositions indicate that the source terrain was probably a continental island arc. Detrital tourmalines were mainly derived from aluminous and Al-poor metapelites and metapsammites, and some are sourced from Li-poor granitoids, pegmatites and aplites. Detrital garnets, found only in the uppermost Huyoufang Formation, are almandine and Mn-almandine garnets, indicating probable sources mainly from garnetiferous schists, and partly from granitoid rocks. The detrital white K-micas are muscovitic in the Huayuanqiang, Daorenchong and Huyoufang Formations, and phengitic with Si contents (p.f.u.) from 3.20 up to max. 3.47-3.53 in the uppermost Huyoufang and the Yangxiaozhuang Formations, a meta-sedimentary source. Major components in the detrital zircon age structure for the Huyoufang Formation range from 506 to 363 Ma, centering on ˜400 and ˜480 Ma, which is characteristic of the Qinling and Erlangping Groups in the Qinling and Tongbai Mountains, central China. Evidently, the major source of the Carboniferous sedimentary rocks in the northern margin of Dabie Mountains was from the southern margin of the Sino-Korean Craton represented by the Qinling and Erlangping Groups. The source area was an island-arc system during the Early Paleozoic that

  2. Pristine Igneous Rocks and the Early Differentiation of Planetary Materials

    NASA Technical Reports Server (NTRS)

    Warren, Paul H.

    1998-01-01

    Our studies are highly interdisciplinary, but are focused on the processes and products of early planetary and asteroidal differentiation, especially the genesis of the ancient lunar crust. Most of the accessible lunar crust consists of materials hybridized by impact-mixing. Rare pristine (unmixed) samples reflect the original genetic diversity of the early crust. We studied the relative importance of internally generated melt (including the putative magma ocean) versus large impact melts in early lunar magmatism, through both sample analysis and physical modeling. Other topics under investigation included: lunar and SNC (martian?) meteorites; igneous meteorites in general; impact breccias, especially metal-rich Apollo samples and polymict eucrites; effects of regolith/megaregolith insulation on thermal evolution and geochronology; and planetary bulk compositions and origins. We investigated the theoretical petrology of impact melts, especially those formed in large masses, such as the unejected parts of the melts of the largest lunar and terrestrial impact basins. We developed constraints on several key effects that variations in melting/displacement ratio (a strong function of both crater size and planetary g) have on impact melt petrology. Modeling results indicate that the impact melt-derived rock in the sampled, megaregolith part of the Moon is probably material that was ejected from deeper average levels than the non-impact-melted material (fragmental breccias and unbrecciated pristine rocks). In the largest lunar impacts, most of the impact melt is of mantle origin and avoids ejection from the crater, while most of the crust, and virtually all of the impact-melted crust, in the area of the crater is ejected. We investigated numerous extraordinary meteorites and Apollo rocks, emphasizing pristine rocks, siderophile and volatile trace elements, and the identification of primary partial melts, as opposed to partial cumulates. Apollo 15 sample 15434,28 is an

  3. Variscan orogeny in the Black Sea region

    NASA Astrophysics Data System (ADS)

    Okay, Aral I.; Topuz, Gültekin

    2017-03-01

    Two Gondwana-derived Paleozoic belts rim the Archean/Paleoproterozoic nucleus of the East European Platform in the Black Sea region. In the north is a belt of Paleozoic passive-margin-type sedimentary rocks, which extends from Moesia to the Istanbul Zone and to parts of the Scythian Platform (the MOIS Block). This belt constituted the south-facing continental margin of the Laurussia during the Late Paleozoic. This margin was deformed during the Carboniferous by folding and thrusting and forms the Variscan foreland. In the south is a belt of metamorphic and granitic rocks, which extends from the Balkanides through Strandja, Sakarya to the Caucasus (BASSAC Block). The protoliths of the metamorphic rocks are predominantly late Neoproterozoic granites and Paleozoic sedimentary and igneous rocks, which were deformed and metamorphosed during the Early Carboniferous. There are also minor eclogites and serpentinites, mostly confined to the northern margin of the BASSAC Block. Typical metamorphism is of low pressure-high temperature type and occurred during the Early Carboniferous (Visean, 340-330 Ma) coevally with that observed in the Central Europe. Volumetrically, more than half of the crystalline belt is made up of Carboniferous-earliest Permian (335-294 Ma) granites. The type of metamorphism, its concurrent nature over 1800 km length of the BASSAC Block and voluminous acidic magmatism suggest that the thermal event probably occurred in the deep levels of a continental magmatic arc. The BASSAC arc collided with Laurussia in the mid-Carboniferous leading to the foreland deformation. The ensuing uplift in the Permian resulted in the deposition of continental red beds, which are associated with acidic magmatic rocks observed over the foreland as well as over the BASSAC Block. In the Black Sea region, there was no terminal collision of Laurussia with Gondwana during the Late Paleozoic and the Laurussia margin continued to face the Paleo-Tethyan ocean in the south.

  4. Late Jurassic - Early Cretaceous convergent margins of Northeastern Asia with Northwestern Pacific and Proto-Arctic oceans

    NASA Astrophysics Data System (ADS)

    Sokolov, Sergey; Luchitskaya, Marina; Tuchkova, Marianna; Moiseev, Artem; Ledneva, Galina

    2013-04-01

    Continental margin of Northeastern Asia includes many island arc terranes that differ in age and tectonic position. Two convergent margins are reconstructed for Late Jurassic - Early Cretaceous time: Uda-Murgal and Alazeya - Oloy island arc systems. A long tectonic zone composed of Upper Jurassic to Lower Cretaceous volcanic and sedimentary rocks is recognized along the Asian continent margin from the Mongol-Okhotsk thrust-fold belt on the south to the Chukotka Peninsula on the north. This belt represents the Uda-Murgal arc, which was developed along the convergent margin between Northeastern Asia and Northwestern Meso-Pacific. Several segments are identified in this arc based upon the volcanic and sedimentary rock assemblages, their respective compositions and basement structures. The southern and central parts of the Uda-Murgal island arc system were a continental margin belt with heterogeneous basement represented by metamorphic rocks of the Siberian craton, the Verkhoyansk terrigenous complex of Siberian passive margin and the Koni-Taigonos late Paleozoic to early Mesozoic island arc with accreted oceanic terranes. At the present day latitude of the Pekulney and Chukotka segments there was an ensimatic island arc with relicts of the South Anyui oceanic basin in backarc basin. Alazeya-Oloy island arc systems consists of Paleozoic and Mesozoic complexes that belong to the convergent margin between Northeastern Asia and Proto-Artic Ocean. It separated structures of the North American and Siberian continents. The Siberian margin was active whereas the North American margin was passive. The Late Jurassic was characterized by termination of a spreading in the Proto-Arctic Ocean and transformation of the latter into the closing South Anyui turbidite basin. In the beginning the oceanic lithosphere and then the Chukotka microcontinent had been subducted beneath the Alazeya-Oloy volcanic belt

  5. Oceanic crust within the paleozoic Granjeno Schist, northeastern Mexico. Remnants of the Rheic and paleo-Pacific Ocean.

    NASA Astrophysics Data System (ADS)

    Torres Sanchez, Sonia Alejandra; Augustsson, Carita; Rafael Barboza Gudiño, Jose; Jenchen, Uwe; Torres Sanchez, Dario; Aleman Gallardo, Eduardo; Abratis, Michael

    2015-04-01

    Late Paleozoic metamorphic rocks in Mexico are related to the Laurentia-Gondwana collision in Carboniferous time, during Pangaea amalgamation. Vestiges of the Mexican Paleozoic continental configuration are present in the Granjeno Schist, the metamorphic basement of the Sierra Madre Oriental. Field work and petrographic analysis reveal that the Granjeno Schist comprises metamorphic rocks with both sedimentary (psammite, pelite, turbidite, conglomerate, black shale) and igneous (tuff, lava flows, pillow lava and ultramafic bodies) protoliths. The chlorite geothermometer and the presence of phengite in the metasedimentary units as well as 40Ar/39Ar ages on metavolcanic and metaultramafic rocks indicate that the Granjeno Schist was metamorphosed under sub-greenschist to greenschist facies with temperatures ranging from 250-345°C with 2.5 kbar during Carboniferous time (330±30 Ma). The presence of metabasalt, metacumulate, serpentinite and talc bodies suggests an oceanic tectonic setting for the evolution of the Granjeno Schist. Serpetinite rocks have mesh, granular and ribbon textures which indicate recrystallization and metasomatic events. The serpentinite rocks are enriched in the very large incompatible elements Cs, U, and Zr and depleted in Ba, Sr, Pb, Zr and Ce. Normalized REE patterns (LaN/YbN = 0.51 - 19.95 and LaN/SmN = 0.72 - 9.08) of the serpentinite and talc/soapstone are characteristic of peridotite from both suprasubduction and mid-ocean ridge zones. Serpentinite from the Granjeno Schist have spinel content which can reveal different stages of evolution in host serpentinite. The composition of chromite indicates that they belong to podiform chromite that may have crystallized from mid-ocean ridge magma. Al-chromite in the serpentinite is characterized by #Cr 0.48 to 0.55, which indicates a depleted mantle source affected by 17 to 18% of partial melting. The ferritchromite has #Cr values of 0.93 to 1.00 which indicates a metamorphic origin. Our study

  6. Hydrothermal zebra dolomite in the Great Basin, Nevada--attributes and relation to Paleozoic stratigraphy, tectonics, and ore deposits

    USGS Publications Warehouse

    Diehl, S.F.; Hofstra, A.H.; Koenig, A.E.; Emsbo, P.; Christiansen, W.; Johnson, Chad

    2010-01-01

    In other parts of the world, previous workers have shown that sparry dolomite in carbonate rocks may be produced by the generation and movement of hot basinal brines in response to arid paleoclimates and tectonism, and that some of these brines served as the transport medium for metals fixed in Mississippi Valley-type (MVT) and sedimentary exhalative (Sedex) deposits of Zn, Pb, Ag, Au, or barite. Numerous occurrences of hydrothermal zebra dolomite (HZD), comprised of alternating layers of dark replacement and light void-filling sparry or saddle dolomite, are present in Paleozoic platform and slope carbonate rocks on the eastern side of the Great Basin physiographic province. Locally, it is associated with mineral deposits of barite, Ag-Pb-Zn, and Au. In this paper the spatial distribution of HZD occurrences, their stratigraphic position, morphological characteristics, textures and zoning, and chemical and stable isotopic compositions were determined to improve understanding of their age, origin, and relation to dolostone, ore deposits, and the tectonic evolution of the Great Basin. In northern and central Nevada, HZD is coeval and cogenetic with Late Devonian and Early Mississippian Sedex Au, Zn, and barite deposits and may be related to Late Ordovician Sedex barite deposits. In southern Nevada and southwest California, it is cogenetic with small MVT Ag-Pb-Zn deposits in rocks as young as Early Mississippian. Over Paleozoic time, the Great Basin was at equatorial paleolatitudes with episodes of arid paleoclimates. Several occurrences of HZD are crosscut by Mesozoic or Cenozoic intrusions, and some host younger pluton-related polymetallic replacement and Carlin-type gold deposits. The distribution of HZD in space (carbonate platform, margin, and slope) and stratigraphy (Late Neoproterozoic Ediacaran-Mississippian) roughly parallels that of dolostone and both are prevalent in Devonian strata. Stratabound HZD is best developed in Ediacaran and Cambrian units, whereas

  7. Devonian paleomagnetism of the North Tien Shan: Implications for the middle-Late Paleozoic paleogeography of Eurasia

    NASA Astrophysics Data System (ADS)

    Levashova, Natalia M.; Mikolaichuk, Alexander V.; McCausland, Philip J. A.; Bazhenov, Mikhail L.; Van der Voo, Rob

    2007-05-01

    The Ural-Mongol belt (UMB), between Siberia, Baltica and Tarim, is widely recognized as the locus of Asia's main growth during the Paleozoic, but its evolution remains highly controversial, as illustrated by the disparate paleogeographic models published in the last decade. One of the largest tectonic units of the UMB is the Kokchetav-North Tien Shan Domain (KNTD) that stretches from Tarim in the south nearly to the West Siberian Basin. The KNTD comprises several Precambrian microcontinents and numerous remnants of Early Paleozoic island arcs, marginal basins and accretionary complexes. In Late Ordovician time, all these structures had amalgamated into a single contiguous domain. Its paleogeographic position is of crucial importance for elucidating the Paleozoic evolution of the UMB in general and of the Urals in particular. The Aral Formation, located in Kyrgyzstan in the southern part of the KNTD, consists of a thick Upper Devonian (Frasnian) basalt-andesite sequence. Paleomagnetic data show a dual-polarity characteristic component (Dec/Inc = 286° / + 56°, α95 = 9°, k = 21, N = 15 sites). The primary origin of this magnetization is confirmed by a positive test on intraformational conglomerates. We combine this result with other Paleozoic data from the KNTD and show its latitudinal motion from the Late Ordovician to the end of the Paleozoic. The observed paleolatitudes are found to agree well with the values extrapolated from Baltica to a common reference point (42.5°N, 73°E) in our sampling area for the entire interval; hence coherent motion of the KNTD and Baltica is strongly indicated for most of the Paleozoic. This finding contradicts most published models of the UMB evolution, where the KNTD is separated from Baltica by a rather wide Ural Ocean containing one or more major plate boundaries. An exception is the model of Şengör and Natal'in [A.M.C. Şengör, B.A. Natal'in, Paleotectonics of Asia: fragments of a synthesis, in: A. Yin and M. Harrison (eds

  8. Geochemical Characteristics of Granitoids in southwest Tianshan: Four Stages for Geodynamic Evolution of the Southwest Tianshan Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Zhu, Y.

    2016-12-01

    Paleozoic intrusive rocks widely exposed in the west Tianshan orogenic belt provides key to understand the geodynamic evolution of the central Asian orogenic belt. A synthesis involving the data for Chinese Yili-central Tianshan and southwest Tianshan and comparison of Kyrgyz Tianshan with a broader dataset including zircon U-Pb ages, zircon Hf isotopic composition, major and trace elements for Paleozoic intrusions are presented to classify the Paleozoic intrusive rocks in four categories which corresponding to subduction of the Terskey Ocean, initial subduction stage of South Tianshan Ocean (STO), major subduction stage of the STO, and collisional to post-collisional stages. The subduction of the Terskey Oceanic crust finally caused the closure of the Terskey Ocean and the opening of the South Tianshan back-arc basin. The development of the Southwest Tianshan back-arc basin formed the STO, which subducted under the Yili-central Tianshan during early Silurian to early Carboniferous, and consequently formed huge arc magmatic rocks. Both the Silurian and early Carboniferous intrusions showing arc geochemical characteristics were derived from partial melting of juvenile arc-derived rocks with involvement of old continental crust. The STO finally closed by the end of early Carboniferous. Afterwards, geodynamic setting changed from convergence to extensional during late Carboniferous to early Permian periods. There is a significant geodynamic change from convergence to extension during late Carboniferous to early Permian, which may be resulted from breakoff of the subducted slab (Fig. 1). Such processes caused upwelling of asthenosphere and triggered partial melting of continental crust, as evidenced by emplacement of voluminous granitic rocks. References: An F, et al, 2013. Journal of Asian Earth Sciences, 78: 100-113; Zhu YF, 2011. Ore Geology Reviews, 40: 108-121; Zhu YF, et al, 2009. Geological Society, London, 166: 1085-1099; Zhu YF et al, 2016. Journal of Earth

  9. Plutonism in the central part of the Sierra Nevada Batholith, California

    USGS Publications Warehouse

    Bateman, Paul C.

    1992-01-01

    The Sierra Nevada batholith comprises the plutonic rocks of Mesozoic age that underlie most of the Sierra Nevada, a magnificent mountain range that originated in the Cenozoic by the westward tilting of a huge block of the Earth's crust. Scattered intrusions west of the batholith in the western metamorphic belt of the Sierra Nevada and east of the Sierra Nevada in the Benton Range and the White and Inyo Mountains are satellitic to but not strictly parts of the Sierra Nevada batholith. Nevertheless, all the plutonic rocks are related in origin. The batholith lies along the west edge of the Paleozoic North American craton, and Paleozoic and early Mesozoic oceanic crust underlies its western margin. It was emplaced in strongly deformed but weakly metamorphosed strata ranging in age from Proterozoic to Cretaceous. Sedimentary rocks of Proterozoic and Paleozoic age crop out east of the batholith in the White and Inyo Mountains, and metamorphosed sedimentary and volcanic rocks of Paleozoic and Mesozoic age crop out west of the batholith in the western metamorphic belt. A few large and many small, generally elongate remnants of metamorphic rocks lie within the batholith. Sparse fossils from metasedimentary rocks and isotopic ages for metavolcanic rocks indicate that the metamorphic rocks in the remnants range in age from Early Cambrian to Early Cretaceous. Within the map area (the Mariposa 1 0 by 2 0 quadrangle), the bedding, cleavage, and axial surfaces of folds generally trend about N. 35 0 W., parallel to the long axis of the Sierra Nevada. The country rocks comprise strongly deformed but generally coherent sequences; however, some units in the western metamorphic belt may partly consist of melanges. Most sequences are in contact with other sequences, at least for short distances, but some sequences within the batholith are bounded on one or more sides by plutonic rocks. Proterozoic and Paleozoic sedimentary strata east of the Sierra Nevada and Paleozoic strata in

  10. Ages and origin of felsic rocks from the Eastern Erenhot ophiolitic complex, southeastern Central Asian Orogenic Belt, Inner Mongolia China

    NASA Astrophysics Data System (ADS)

    Yang, Jinfu; Zhang, Zhicheng; Chen, Yan; Yu, Haifei; Qian, Xiaoyan

    2017-08-01

    The Central Asian Orogenic Belt (CAOB) is known for its massive Phanerozoic generation of juvenile crust. The tectonic evolution of the CAOB during the late Paleozoic era is still debated. The Eastern Erenhot ophiolite complex (EOC) has been recognized as one of the numerous late Paleozoic ophiolitic blocks in the southeastern part of the CAOB. Zircon U-Pb dating on rhyolite and plagiogranite from the EOC yielded a tight range of ages from 360 to 348 Ma, indicating that the complex formed in the early Carboniferous. The primitive mantle-normalized spider diagram of rhyolites (εNd(t) values of +6.8 and +7) and basalts almost overlaps. Such rhyolites may have been derived from partial melting of juvenile basaltic rocks during the initial opening of the Erenhot-Hegenshan oceanic basin. All of the plagiogranites exhibit similar trace element behaviours of High Field-Strength Elements, such as U, Zr and Hf, and Large Ion Lithophile Elements, such as Ba and Rb, to these of gabbros. These plagiogranites were considered products of episodes of partial melting of hydrous gabbros during ocean floor spreading. We conclude that the northern subduction of the Paleo-Asian Ocean stopped before 360 Ma and the southeastern CAOB experienced extension during the late Paleozoic era. The Erenhot-Hegenshan Ocean, which is comparable to the present Red Sea, originated from syn-collisional crustal thickening, subsequent lithosphere extension, and upwelling of the asthenosphere during orogenic quiescence with an age of 20 Ma.

  11. Geology, distribution, and classification of gold deposits in the western Qinling belt, central China

    USGS Publications Warehouse

    Mao, J.; Qiu, Yumin; Goldfarb, R.J.; Zhang, Z.; Garwin, S.; Fengshou, R.

    2002-01-01

    Gold deposits of the western Qinling belt occur within the western part of the Qinling-Dabie-Sulu orogen, which is located between the Precambrian North China and Yangtze cratons and east of the Songpan-Ganzi basin. The early Paleozoic to early Mesozoic orogen can be divided into northern, central, and southern zones, separated by the Shangdan and Lixian-Shanyang thrust fault systems. The northern zone consists of an early Paleozoic arc accreted to the North China craton by ca. 450 Ma. The central zone, which contains numerous orogenic gold deposits, is dominated by clastic rocks formed in a late Paleozoic basin between the converging cratonic blocks. The southern zone is characterized by the easternmost exposure of Triassic sedimentary rocks of the Songpan-Ganzi basin. These Early to Late Triassic turbidities, in part calcareous, of the immense Songpan-Ganzi basin also border the western Qinling belt to the west. Carlinlike gold deposits are abundant (1) along a westward extension of the southern zone defined by a window of early Paleozoic clastic rocks extending into the basin, and (2) within the easternmost margin of the basinal rocks to the south of the extension, and in adjacent cover rocks of the Yangtze craton. Triassic and Early Jurassic synkinematic granitoids are widespread across the western Qinling belt, as well as in the Songpan-Ganzi basin. Orogenic lode gold deposits along brittle-ductile shear zones occur within greenschist-facies, highly deformed, Devonian and younger clastic rocks of the central zone. Mainly coarse-grained gold, along with pyrite, pyrrhotite, arsenopyrite, and minor base metal sulfides, occur in networks of quartz veinlets, brecciated wall rock, and are dissminated in altered wall rock. Isotopic dates suggest that the deposits formed during the Late Triassic to Middle Jurassic as the leading edge of the Yangtze craton was thrust beneath rocks of the western Qinling belt. Many gold-bearing placers are distributed along the river

  12. A paleozoic pangaea.

    PubMed

    Boucot, A J; Gray, J

    1983-11-11

    Paleozoic paleogeographies should be consistent with all available, reliable data. However, comparison of three different Devonian paleogeographies that are based largely or wholly on the data of remanent magnetism show them to be inconsistent in many regards. When these three paleogeographies are provided with possible ocean surface current circulation patterns, and have added to them lithofacies and biogeographic data, they also are shown to be inconsistent with such data. A pangaeic reconstruction positioned in the Southern Hemisphere permits the lithofacies and biogeographical data to be reconciled in a plausible manner.

  13. Tectonics of Antarctica

    USGS Publications Warehouse

    Hamilton, W.

    1967-01-01

    Antarctica consists of large and wholly continental east Antarctica and smaller west Antarctica which would form large and small islands, even after isostatic rebound, if its ice cap were melted. Most of east Antarctica is a Precambrian Shield, in much of which charnockites are characteristic. The high Transantarctic Mountains, along the Ross and Weddell Seas, largely follow a geosyncline of Upper Precambrian sedimentary rocks that were deformed, metamorphosed and intruded by granitic rocks during Late Cambrian or Early Ordovician time. The rocks of the orogen were peneplained, then covered by thin and mostly continental Devonian-Jurassic sediments, which were intruded by Jurassic diabase sheets and overlain by plateau-forming tholeiites. Late Cenozoic doming and block-faulting have raised the present high mountains. Northeastern Victoria Land, the end of the Transantarctic Mountains south of New Zealand, preserves part of a Middle Paleozoic orogen. Clastic strata laid unconformably upon the Lower Paleozoic plutonic complex were metamorphosed at low grade, highly deformed and intruded by Late Devonian or Early Carboniferous granodiorites. The overlying Triassic continental sedimentary rocks have been broadly folded and normal-faulted. Interior west Antarctica is composed of miogeosynclinal clastic and subordinate carbonate rocks which span the Paleozoic Era and which were deformed, metamorphosed at generally low grade, and intruded by granitic rocks during Early Mesozoic time and possibly during other times also. Patterns of orogenic belts, if systematic, cannot yet be defined; but fragmentation and rotation of crustal blocks by oroclinal folding and strike-slip faulting can be suggested. The Ellsworth Mountains, for example, consist of Cambrian-Permian metasedimentary rocks that strike northward toward the noncorrelative and latitudinally striking Mesozoic terrane of the Antarctic Peninsula in one direction and southward toward that of the Lower Paleozoic: terrane

  14. Late Mesozoic and possible early Tertiary accretion in western Washington State: the Helena-Haystack melange and the Darrington- Devils Mountain fault zone

    USGS Publications Warehouse

    Tabor, R.W.

    1994-01-01

    The Helena-Haystack melange (HH melange) and coincident Darrington-Devils Mountain fault zone (DDMFZ) in northwestern Washington separate two terranes, the northwest Cascade System (NWCS) and the western and eastern melange belts (WEMB). The two terranes of Paleozoic and Mesozoic rocks superficially resemble each other but record considerable differences in structural and metamorphic history. The HH melange is a serpentinite-matrix melange containing blocks of adjacent terranes but also exotic blocks. The HH melange must have formed between early Cretaceous and late middle Eocene time, because it contains tectonic clasts of early Cretaceous Shuksan Greenschist and is overlain by late middle Eocene sedimentary and volcanic rocks. The possible continuation of the DDMFZ to the northwest as the San Juan and the West Coast faults on Vancouver Island suggests that the structure has had a major role in the emplacement of all the westernmost terranes in the Pacific Northwest. -from Author

  15. Paleogeography of the upper Paleozoic basins of southern South America: An overview

    NASA Astrophysics Data System (ADS)

    Limarino, Carlos O.; Spalletti, Luis A.

    2006-12-01

    The paleogeographic evolution of Late Paleozoic basins located in southern South America is addressed. Three major types of basins are recognized: infracratonic or intraplate, arc-related, and retroarc. Intraplate basins (i.e., Paraná, Chaco-Paraná, Sauce Grande-Colorado, and La Golondrina) are floored by continental or quasi-continental crust, with low or moderate subsidence rates and limited magmatic and tectonic activity. Arc-related basins (northern and central Chile, Navidad-Arizaro, Río Blanco, and Calingasta-Uspallata basins and depocenters along Chilean Patagonia) show a very complex tectonic history, widespread magmatic activity, high subsidence rates, and in some cases metamorphism of Late Paleozoic sediments. An intermediate situation corresponds to the retroarc basins (eastern Madre de Dios, Tarija, Paganzo, and Tepuel-Genoa), which lack extensive magmatism and metamorphism but in which coeval tectonism and sedimentation rates were likely more important than those in the intraplate region. According to the stratigraphic distribution of Late Paleozoic sediments, regional-scale discontinuities, and sedimentation pattern changes, five major paleogeographic stages are proposed. The lowermost is restricted to the proto-Pacific and retroarc basins, corresponds to the Mississippian (stage 1), and is characterized by shallow marine and transitional siliciclastic sediments. During stage 2 (Early Pennsylvanian), glacial-postglacial sequences dominated the infracratonic (or intraplate) and retroarc basins, and terrigenous shallow marine sediments prevailed in arc-related basins. Stage 3 (Late Pennsylvanian-Early Cisuralian) shows the maximum extension of glacial-postglacial sediments in the Paraná and Sauce Grande-Colorado basins (intraplate region), whereas fluvial deposits interfingering with thin intervals of shallow marine sediments prevailed in the retroarc basins. To the west, arc-related basins were dominated by coastal to deep marine conditions

  16. The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration

    PubMed Central

    Scott, Andrew C.; Glasspool, Ian J.

    2006-01-01

    By comparing Silurian through end Permian [≈250 million years (Myr)] charcoal abundance with contemporaneous macroecological changes in vegetation and climate we aim to demonstrate that long-term variations in fire occurrence and fire system diversification are related to fluctuations in Late Paleozoic atmospheric oxygen concentration. Charcoal, a proxy for fire, occurs in the fossil record from the Late Silurian (≈420 Myr) to the present. Its presence at any interval in the fossil record is already taken to constrain atmospheric oxygen within the range of 13% to 35% (the “fire window”). Herein, we observe that, as predicted, atmospheric oxygen levels rise from ≈13% in the Late Devonian to ≈30% in the Late Permian so, too, fires progressively occur in an increasing diversity of ecosystems. Sequentially, data of note include: the occurrence of charcoal in the Late Silurian/Early Devonian, indicating the burning of a diminutive, dominantly rhyniophytoid vegetation; an apparent paucity of charcoal in the Middle to Late Devonian that coincides with a predicted atmospheric oxygen low; and the subsequent diversification of fire systems throughout the remainder of the Late Paleozoic. First, fires become widespread during the Early Mississippian, they then become commonplace in mire systems in the Middle Mississippian; in the Pennsylvanian they are first recorded in upland settings and finally, based on coal petrology, become extremely important in many Permian mire settings. These trends conform well to changes in atmospheric oxygen concentration, as predicted by modeling, and indicate oxygen levels are a significant control on long-term fire occurrence. PMID:16832054

  17. Early Cretaceous bimodal volcanic rocks in the southern Lhasa terrane, south Tibet: Age, petrogenesis and tectonic implications

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Ding, Lin; Liu, Zhi-Chao; Zhang, Li-Yun; Yue, Ya-Hui

    2017-01-01

    Limited geochronological and geochemical data from Early Cretaceous igneous rocks of the Gangdese Belt have resulted in a dispute regarding the subduction history of Neo-Tethyan Ocean. To approach this issue, we performed detailed in-situ zircon U-Pb and Hf isotopic, whole-rock elemental and Sr-Nd isotopic analyses on Late Mesozoic volcanic rocks exposed in the Liqiongda area, southern Lhasa terrane. These volcanic rocks are calc-alkaline series, dominated by basalts, basaltic andesites, and subordinate rhyolites, with a bimodal suite. The LA-ICPMS zircon U-Pb dating results of the basaltic andesites and rhyolites indicate that these volcanic rocks erupted during the Early Cretaceous (137-130 Ma). The basaltic rocks are high-alumina (average > 17 wt.%), enriched in large ion lithophile elements (LILEs) and light rare earth elements (LREEs), and depleted in high field strength elements (HFSEs), showing subduction-related characteristics. They display highly positive zircon εHf(t) values (+ 10.0 to + 16.3) and whole-rock εNd(t) values (+ 5.38 to + 7.47). The silicic suite is characterized by low Al2O3 (< 15.4 wt.%), Mg# (< 40), and TiO2 (< 0.3 wt.%) abundances; enriched and variable concentrations of LILEs and REEs; and strongly negative Eu anomalies (Eu/Eu* = 0.08-0.19), as well as depleted Hf isotopic compositions (εHf(t) = + 4.9 to + 16.4) and Nd isotopic compositions (εNd(t) = + 5.26 to + 6.71). Consequently, we envision a process of basaltic magmas similar to that of MORB extracted from a source metasomatized by slab-derived components for the petrogenesis of mafic rocks, whereas the subsequent mafic magma underplating triggered partial melting of the juvenile crust to generate acidic magma. Our results confirm the presence of Early Cretaceous volcanism in the southern Lhasa terrane. Combined with the distribution of the contemporary magmatism, deformation style, and sedimentary characteristics in the Lhasa terrane, we favor the suggestion that the Neo

  18. Provenance of Jurassic sediments in the Hefei Basin, east-central China and the contribution of high-pressure and ultrahigh-pressure metamorphic rocks from the Dabie Shan

    NASA Astrophysics Data System (ADS)

    Li, Renwei; Wan, Yusheng; Cheng, Zhenyu; Zhou, Jianxiong; Li, Shuangying; Jin, Fuquan; Meng, Qingren; Li, Zhong; Jiang, Maosheng

    2005-03-01

    The provenance of the Jurassic sediments in the Hefei Basin is constrained by compositions of the detrital K-white micas and garnets, and SHRIMP dating of the detrital zircons, which can help to understand the evolution and to reconstruct the paleogeographic distribution of HP-UHP rocks in the Jurassic Dabie Shan. (1) For the oldest Mesozoic sediments at the bottom of the Fanghushan Formation ( J1), the predominance of the early Paleozoic and Luliang (1700-1900 Ma) zircons indicates a major source from the North China Block. However, Neoproterozoic zircons as the major component in other Jurassic sediments indicate that the source rocks were mainly derived from the exhumed Yangtze Block in the Dabie Shan. (2) The co-occurrence of high-Si phengites and Triassic zircons provides stratigraphic evidence that the first exposure of the UHP rocks at the Earth's surface in the Dabie Shan occurred in the Early Jurassic during deposition of the Fanghushan Formation. (3) From the east to the west of the Hefei Basin, there is a spatial variation in the compositions for detrital micas and garnets, and in the U-Pb ages of detrital zircons. Evidently, HP-UHP rocks were widely distributed at outcrop in the eastern Dabie Shan. In contrast, they were less important in the western Dabie Shan during the Jurassic.

  19. Palaeomagnetism and geochemistry of Early Palaeozoic rocks of the Barrandian (Teplé-Barrandian Unit, Bohemian Massif): palaeotectonic implications

    NASA Astrophysics Data System (ADS)

    Patočka, F.; Pruner, P.; Štorch, P.

    The Barrandian area (the Teplá-Barrandian unit, Bohemian Massif) provided palaeomagnetic results on Early Palaeozoic rocks and chemical data on siliciclastic sediments of both Middle Cambrian and Early Ordovician to Middle Devonian sedimentary sequences; an outcoming interpretation defined source areas of clastic material and palaeotectonic settings of the siliciclastic rock deposition. The siliciclastic rocks of the earliest Palaeozoic sedimentation cycle, deposited in the Cambrian Příbram-Jince Basin of the Barrandian, were derived from an early Cadomian volcanic island arc developed on Neoproterozoic oceanic lithosphere and accreted to a Cadomian active margin of northwestern Gondwana. Inversion of relief terminated the Cambrian sedimentation, and a successory Prague Basin subsided nearby since Tremadocian. Source area of the Ordovician and Early Silurian shallow-marine siliciclastic sediments corresponded to progressively dissected crust of continental arc/active continental margin type of Cadomian age. Since Late Ordovician onwards both synsedimentary within-plate basic volcanics and older sediments had been contributing in recognizable proportions to the siliciclastic rocks. The siliciclastic sedimentation was replaced by deposition of carbonate rocks throughout late Early Silurian to Early Devonian period of withdrawal of the Cadomian clastic material source. Above the carbonates an early Givetian flysch-like siliciclastic suite completed sedimentation in the Barrandian. In times between Middle Cambrian and Early/Middle Devonian boundary interval an extensional tectonic setting prevailed in the Teplá-Barrandian unit. The extensional regime was related to Early Palaeozoic large-scale fragmentation of the Cadomian belt of northwestern Gondwana and origin of Armorican microcontinent assemblage. The Teplá-Barrandian unit was also engaged in a peri-equatorially oriented drift of Armorican microcontinent assemblage throughout the Early Palaeozoic: respective

  20. Evidence for a Battle Mountain-Eureka crustal fault zone, north-central Nevada, and its relation to Neoproterozoic-Early Paleozoic continental breakup

    USGS Publications Warehouse

    Grauch, V.J.S.; Rodriguez, B.D.; Bankey, V.; Wooden, J.L.

    2003-01-01

    Combined evidence from gravity, radiogenic isotope, and magnetotelluric (MT) data indicates a crustal fault zone that coincides with the northwest-trending Battle Mountain-Eureka (BME) mineral trend in north-central Nevada, USA. The BME crustal fault zone likely originated during Neoproterozoic-Early Paleozoic rifting of the continent and had a large influence on subsequent tectonic events, such as emplacement of allochthons and episodic deformation, magmatism, and mineralization throughout the Phanerozoic. MT models show the fault zone is about 10 km wide, 130-km long, and extends from 1 to 5 km below the surface to deep crustal levels. Isotope data and gravity models imply the fault zone separates crust of fundamentally different character. Geophysical evidence for such a long-lived structure, likely inherited from continental breakup, defies conventional wisdom that structures this old have been destroyed by Cenozoic extensional processes. Moreover, the coincidence with the alignment of mineral deposits supports the assertion by many economic geologists that these alignments are indicators of buried regional structures.

  1. Blueschist metamorphism and its tectonic implication of Late Paleozoic-Early Mesozoic metabasites in the mélange zones, central Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Zhang, Jinrui; Wei, Chunjing; Chu, Hang

    2015-01-01

    Blueschists in central Inner Mongolia are distributed as layers and blocks in mélanges including the southern zone in Ondor Sum area and the northern zone in Manghete and Naomuhunni areas. They have been attributed to the subduction of Early Paleozoic oceanic crust. Blueschists from Ondor Sum and Naomuhunni are characterized by occurrence of sodic amphibole coexisting with epidote, albite, chlorite, calcic amphibole (in Ondor Sum) and muscovite (in Naomuhunni). Blueschists in Manghete contain porphyroblastic albite with inclusions of garnet and epidote in a matrix dominated by calcic-sodic amphibole, epidote, chlorite, albite and muscovite. Phase equilibria modeling for three blueschist samples using pseudosection suggest that the AlM2 contents in sodic amphibole can be used as a good barometer in the limited assemblage involving sodic amphibole + actinolite + epidote + chlorite + albite + quartz under pressures <4-6 kbar, while this barometer is largely influenced by temperature and bulk Fe2O3 contents in the actinolite-absent assemblage sodic amphibole + epidote + chlorite + albite + quartz of higher pressure and the AlM2 contents are not pressure-controlled in the albite-absent assemblage sodic amphibole + epidote + chlorite + quartz under pressures > 7-10 kbar. In the sodic amphibole-bearing assemblages, the NaM4 contents in sodic amphibole mainly decrease as temperature rises, being a potential thermometry. The calculated pseudosections constrain the P-T conditions of blueschists to be 3.2-4.2 kbar/355-415 °C in Ondor Sum, 8.2-9.0 kbar/455 °C-495 °C in Manghete and 6.6-8.1 kbar/420-470 °C in Naomuhunni. These P-T estimates indicate a rather high geothermal gradient of 18-25 °C/km for the blueschist metamorphism, being of intermediate P/T facies series. Available zircon U-Pb age data suggests that the protoliths of blueschists were formed later than Late Paleozoic-Early Mesozoic and metamorphosed soon afterwards. An alternative interpretation for the

  2. Isotopic and chemical studies of early crustal metasedimentary rocks

    NASA Technical Reports Server (NTRS)

    Jacobsen, Stein B.

    1988-01-01

    The aim, within the bounds of the Early Crustal Genesis Project, was the isotopic and chemical study of selected early crustal meta-sedimentary rocks. Western Australia was chosen as the first field area to examine, as the Yilgarn and Pilbara Blocks comprise one of the largest and most varied Precambrian terranes. Furthermore, the Western Gneiss Terrane (on the western flank of the Yilgarn Block) and the Pilbara Block are both non-greenstone in character; these types of terrane were relatively neglected, but are of great significance in the understanding of early crustal meta-sediments. The meta-sediments of aluminous or peraluminous character, commonly also enriched in Mg and/or Fe relative to the more common pelitic meta-sediments, and at many locations, deficient in one or more of the elements Ca, N, and K, were initially chosen.

  3. Paleozoic shale gas resources in the Sichuan Basin, China

    USGS Publications Warehouse

    Potter, Christopher J.

    2018-01-01

    The Sichuan Basin, China, is commonly considered to contain the world’s most abundant shale gas resources. Although its Paleozoic marine shales share many basic characteristics with successful United States gas shales, numerous geologic uncertainties exist, and Sichuan Basin shale gas production is nascent. Gas retention was likely compromised by the age of the shale reservoirs, multiple uplifts and orogenies, and migration pathways along unconformities. High thermal maturities raise questions about gas storage potential in lower Paleozoic shales. Given these uncertainties, a new look at Sichuan Basin shale gas resources is advantageous. As part of a systematic effort to quantitatively assess continuous oil and gas resources in priority basins worldwide, the US Geological Survey (USGS) completed an assessment of Paleozoic shale gas in the Sichuan Basin in 2015. Three organic-rich marine Paleozoic shale intervals meet the USGS geologic criteria for quantitative assessment of shale gas resources: the lower Cambrian Qiongzhusi Formation, the uppermost Ordovician Wufeng through lowermost Silurian Longmaxi Formations (currently producing shale gas), and the upper Permian Longtan and Dalong Formations. This study defined geologically based assessment units and calculated probabilistic distributions of technically recoverable shale gas resources using the USGS well productivity–based method. For six assessment units evaluated in 2015, the USGS estimated a mean value of 23.9 tcf (677 billion cubic meters) of undiscovered, technically recoverable shale gas. This result is considerably lower than volumes calculated in previous shale gas assessments of the Sichuan Basin, highlighting a need for caution in this geologically challenging setting.

  4. K-Ar geochronology of basement rocks on the northern flank of the Huancabama deflection, Ecuador

    USGS Publications Warehouse

    Feininger, Tomas; Silberman, M.L.

    1982-01-01

    The Huancabamba deflection, a major Andean orocline located at the Ecuador-Peru border, constitutes an important geologic boundary on the Pacific coast of South America. Crust to the north of the deflection is oceanic and the basement is composed of basic igneous rocks of Cretaceous age, whereas crust to the south is continental and felsic rocks of Precambrian to Cretaceous age make up the basement. The northern flank of the Huancabamba Deflection in El Oro Province, Ecuador, is underlain by Precambrian polymetamorphic basic rocks of the Piedras Group; shale, siltstone, sandstone, and their metamorphosed equivalents in the Tahuin Group (in part of Devonian age); concordant syntectonic granitic rocks; quartz diorite and alaskite of the Maroabeli pluton; a protrusion of serpentinized harzburgite that contains a large inclusion of blueschist-facies metamorphic rocks, the Raspas Formation, and metamorphic rocks north of the La Palma fault. Biotite from gneiss of the Tahuin Group yields a Late Triassic K-Ar age (210 ? 8 m.y.). This is interpreted as an uplift age and is consistent with a regional metamorphism of Paleozoic age. A nearby sample from the Piedras Group that yielded a hornblende K-Ar age of 196 ? 8 m.y. was affected by the same metamorphic event. Biotite from quartz diorite of the mesozonal Maroabeli pluton yields a Late Triassic age (214 ? 6 m.y.) which is interpreted as an uplift age which may be only slightly younger than the age of magmatic crystallization. Emplacement of the pluton may postdate regional metamorphism of the Tahuin Group. Phengite from politic schist of the Raspas Formation yields an Early Cretaceous K-Ar age (132 ? 5 m.y.). This age is believed to date the isostatic rise of the encasing serpentinized harzburgite as movement along a subjacent subduction zone ceased, and it is synchronous with the age of the youngest lavas of a coeval volcanic arc in eastern Ecuador. A Late Cretaceous K-Ar age (74.4 ? 1.1 m.y.) from hornblende in

  5. Maps showing geology, structure, and geophysics of the central Black Hills, South Dakota

    USGS Publications Warehouse

    Redden, Jack A.; DeWitt, Ed

    2008-01-01

    This 1:100,000-scale digital geologic map details the complex Early Proterozoic granitic rocks, Early Proterozoic supracrustal metamorphic rocks, and Archean crystalline basement of the Black Hills. The granitic rocks host pegmatite deposits renowned for their feldspar, mica, spodumene, and beryl. The supracrustal rocks host the Homestake gold mine, which produced more than 40 million ounces of gold over a 125-year lifetime. The map documents the Laramide deformation of Paleozoic and Mesozoic cover rocks; and shows the distribution of Laramide plutonic rocks associated with precious-metals deposits. Four 1:300,000-scale maps summarize Laramide structures; Early Proterozoic structures; aeromagnetic anomalies; and gravity anomalies. Three 1:500,000-scale maps show geophysical interpretations of buried Early Proterozoic to Archean rocks in western South Dakota and eastern Wyoming.

  6. Provenance analysis of the Late Paleozoic sedimentary rocks in the Xilinhot Terrane, NE China, and their tectonic implications

    NASA Astrophysics Data System (ADS)

    Han, Jie; Zhou, Jian-Bo; Wilde, Simon A.; Song, Min-Chun

    2017-08-01

    The Xilinhot Terrane is located in the eastern segment of the Central Asian Orogenic Belt in NE China, and is a key to a hotly debated issue on the Paleozoic tectonic evolution of this giant progenic belt. To constrain the tectonic evolution of the Xilinhot Terrane in the Late Paleozoic, we undertook zircon U-Pb dating and geochemical analyses of the Zhesi and Benbatu formations in the Suolun and Xi Ujimqin areas in the Xilinhot Terrane. Samples of the Benbatu Formation yield detrital zircon U-Pb ages ranging from 2659 Ma to 316 Ma, with four age populations at: 2659-1826 Ma, 1719-963 Ma, 590-402 Ma, and 396-316 Ma, whereas samples from the Zhesi Formation yield detrital zircon U-Pb ages ranging from 1967 Ma to 250 Ma, with four age populations at: 1967-1278 Ma, 971-693 Ma, 561-403 Ma, and 399-250 Ma. The age groups of both the Benbatu and Zhesi formations in the Xilinhot Terrane are similar to those in other parts of the Central Asian Orogenic Belt (CAOB). This evidence indicates that the Xilinhot Terrane is a microcontinent, and not an accretionary complex as previously thought. Furthermore, the youngest zircon grains in the Benbatu and Zhesi formations yield weighted mean 206Pb/238U ages of 322 ± 12 Ma (MSDW = 0.12, n = 4) and 257 ± 2.8 Ma (MSDW = 1.6, n = 8), respectively. Combined with fossil data, our new data suggest that the Benbatu and Zhesi formations in the Xilinhot Terrane were possibly deposited at ∼322 Ma and ∼257 Ma, respectively. Based on the provenance of the Carboniferous-Permian sandstones came from the blocks of NE China, we speculate that the Xilinhot Terrane is the western part of the Songliao block.

  7. Geologic Map of Baranof Island, southeastern Alaska

    USGS Publications Warehouse

    Karl, Susan M.; Haeussler, Peter J.; Himmelberg, Glen R.; Zumsteg, Cathy L.; Layer, Paul W.; Friedman, Richard M.; Roeske, Sarah M.; Snee, Lawrence W.

    2015-01-01

    This map updates the geology of Baranof Island based on fieldwork, petrographic analyses, paleontologic ages, and isotopic ages. These new data provide constraints on depositional and metamorphic ages of lithostratigraphic rock units and the timing of structures that separate them. Kinematic analyses and thermobarometric calculations provide insights on the regional tectonic processes that affected the rocks on Baranof Island. The rocks on Baranof Island are components of a Paleozoic to Early Tertiary oceanic volcanic arc complex, including sedimentary and volcanic rocks that were deposited on and adjacent to the arc complex, deformed, and accreted. The arc complex consists of greenschist to amphibolite facies Paleozoic metavolcanic and metasedimentary rocks overlain by lower-grade Triassic metasedimentary and metavolcanic rocks and intruded by Jurassic calc-alkaline plutons. The Paleozoic rocks correlate well in age and lithology with rocks of the Sicker and Buttle Lake Groups of the Wrangellia terrane on Vancouver Island and differ from rocks of the Skolai Group that constitute basement to type-Wrangellia in the Wrangell Mountains. The Jurassic intrusive rocks are correlative with plutons that intrude the Wrangellia terrane on Vancouver Island but are lacking in the Wrangell Mountains. The rocks accreted beneath the arc complex are referred to as the Baranof Accretionary Complex in this report and are correlated with the Chugach Accretionary Complex of southern and southeastern Alaska and with the Pacific Rim Complex on Vancouver Island. Stratigraphic correlations between upper- and lower-plate rocks on Baranof Island and western Chichagof Island with rocks on Haida Gwaii and Vancouver Island, in addition to correlative ages of intrusive rocks and restorations of the Fairweather-Queen Charlotte, Chatham Strait, and Peril Strait Faults that define the Baranof-Chichagof block, suggest Baranof Island was near Vancouver Island at the time of initiation of arc

  8. Relict zircon U-Pb age and O isotope evidence for reworking of Neoproterozoic crustal rocks in the origin of Triassic S-type granites in South China

    NASA Astrophysics Data System (ADS)

    Gao, Peng; Zheng, Yong-Fei; Chen, Yi-Xiang; Zhao, Zi-Fu; Xia, Xiao-Ping

    2018-02-01

    Granites derived from partial melting of sedimentary rocks are generally characterized by high δ18O values and abundant relict zircons. Such relict zircons are valuable in tracing the source rocks of granites and the history of crustal anatexis. Here we report in-situ U-Pb ages, O isotopes and trace elements in zircons from Triassic granites in the Zhuguangshan and Jiuzhou regions, which are located in the Nanling Range and the Darongshan area, respectively, in South China. Zircon U-Pb dating yields magma crystallization ages of 236 ± 2 Ma for the Zhuguangshan granites and 246 ± 2 Ma to 252 ± 3 Ma for the Jiuzhou granites. The Triassic syn-magmatic zircons are characterized by high δ18O values of 10.1-11.9‰ in Zhuguangshan and 8.5-13.5‰ in Jiuzhou. The relict zircons show a wide range of U-Pb ages from 315 to 2185 Ma in Zhuguangshan and from 304 to 3121 Ma in Jiuzhou. Nevertheless, a dominant age peak of 700-1000 Ma is prominent in both occurrences, demonstrating that their source rocks were dominated by detrital sediments weathered from Neoproterozoic magmatic rocks. Taking previous results for regional granites together, Neoproterozoic relict zircons show δ18O values in a small range from 5 to 8‰ for the Nanling granites but a large range from 5 to 11‰ for the Darongshan granites. In addition, relict zircons of Paleozoic U-Pb age occur in the two granitic plutons. They exhibit consistently high δ18O values similar to the Triassic syn-magmatic zircons in the host granites. These Paleozoic relict zircons are interpreted as the peritectic product during transient melting of the metasedimentary rocks in response to the intracontinental orogenesis in South China. Therefore, the relict zircons of Neoproterozoic age are directly inherited from the source rocks of S-type granites, and those of Paleozoic age record the transient melting of metasedimentary rocks before intensive melting for granitic magmatism in the Triassic.

  9. The Neoproterozoic-Paleozoic Arctic Margins: early stages of geodynamic evolution and plate reconstructions

    NASA Astrophysics Data System (ADS)

    Vernikovsky, V. A.; Metelkin, D. V.; Vernikovskaya, A. E.; Matushkin, N. Yu.; Lobkovsky, L. I.; Shipilov, E. V.

    2012-04-01

    Available data on the existence of Precambrian metamorphic complexes among the main structures of the Arctic led to the suggestion that a large continental mass existed between Laurentia, Baltica and Siberia - an Arctic continent, more often called Arctida (Zonenshain, Natapov, 1987). It is inferred that as an independent continental mass Arctida was formed after the breakup of Rodinia, and in general it can have a pre-Grenvillian (including Grenvillian) basement age. The breakup of this mass and the collision of its fragments with adjacent cratons led to the formation of heterochronous collisional systems. Arctida probably included the Kara, Novosibirsk, Alaska-Chukotka blocks, the blocks of northern Alaska and the submerged Lomonosov Ridge, small fragments of the Inuit fold belt in the north of Greenland and the Canadian archipelago, the structures of the Svalbard and maybe the Timan-Pechora plates. However the inner structure of this paleocontinent, the mutual configuration of the blocks and its evolution in the Neoproterozoic-Paleozoic is still a matter of discussion. The most accurate way of solving these issues is by using paleomagnetic data, but those are nonexistent for most of the defined blocks. Reliable paleomagnetic determinations for the Neoproterozoic-Paleozoic time interval we are concerned with are available only for fragments of an island arc from Central Taimyr, which are 960 m.y. old (Vernikovsky et al., 2011) and for which the paleomagnetic pole is very close to the pole of Siberia from (Pavlov et al., 2002), and of the Kara microcontinent. This includes three paleomagnetic poles for 500, 450 and 420 Ma (Metelkin et al., 2000; Metelkin et al., 2005). It is those data that made up the basis of the presented paleotectonic reconstructions along with an extensive paleomagnetic database for the cratons of Laurentia, Baltica, Siberia and Gondwana. The paleogeographic position of the cratons is corrected (within the confidence levels for the

  10. Stratigraphy and Mesozoic–Cenozoic tectonic history of northern Sierra Los Ajos and adjacent areas, Sonora, Mexico

    USGS Publications Warehouse

    Page, William R.; Gray, Floyd; Iriondo, Alexander; Miggins, Daniel P.; Blodgett, Robert B.; Maldonado, Florian; Miller, Robert J.

    2010-01-01

    Geologic mapping in the northern Sierra Los Ajos reveals new stratigraphic and structural data relevant to deciphering the Mesozoic–Cenozoic tectonic evolution of the range. The northern Sierra Los Ajos is cored by Proterozoic, Cambrian, Devonian, Mississippian, and Pennsylvanian strata, equivalent respectively to the Pinal Schist, Bolsa Quartzite and Abrigo Limestone, Martin Formation, Escabrosa Limestone, and Horquilla Limestone. The Proterozoic–Paleozoic sequence is mantled by Upper Cretaceous rocks partly equivalent to the Fort Crittenden and Salero Formations in Arizona, and the Cabullona Group in Sonora, Mexico.Absence of the Upper Jurassic–Lower Cretaceous Bisbee Group below the Upper Cretaceous rocks and above the Proterozoic–Paleozoic rocks indicates that the Sierra Los Ajos was part of the Cananea high, a topographic highland during the Late Jurassic and Early Cretaceous. Deposition of Upper Cretaceous rocks directly on Paleozoic and Proterozoic rocks indicates that the Sierra Los Ajos area had subsided as part of the Laramide Cabullona basin during Late Cretaceous time. Basal beds of the Upper Cretaceous sequence are clast-supported conglomerate composed locally of basement (Paleozoic) clasts. The conglomerate represents erosion of Paleozoic basement in the Sierra Los Ajos area coincident with development of the Cabullona basin.The present-day Sierra Los Ajos reaches elevations of greater than 2600 m, and was uplifted during Tertiary basin-and-range extension. Upper Cretaceous rocks are exposed at higher elevations in the northern Sierra Los Ajos and represent an uplifted part of the inverted Cabullona basin. Tertiary uplift of the Sierra Los Ajos was largely accommodated by vertical movement along the north-to-northwest-striking Sierra Los Ajos fault zone flanking the west side of the range. This fault zone structurally controls the configuration of the headwaters of the San Pedro River basin, an important bi-national water resource in the US

  11. Detrital zircons from phanerozoic rocks of the Songliao Block, NE China: Evidence and tectonic implications

    NASA Astrophysics Data System (ADS)

    Zhou, Jian-Bo; Wilde, Simon A.; Zhang, Xing-Zhou; Liu, Fu-Lai; Liu, Jian-Hui

    2012-03-01

    Rocks that crop out in the northern part of the Songliao Block are mainly consist of high-grade metamorphic gneiss, Paleozoic strata and Mesozoic granites. They are essentially similar to rocks reported from beneath the Songliao Basin that occupies the majority of the Songliao Block. Four samples of Paleozoic metasedimentary rocks from Tieli in the north-eastern part of the Songliao Block yield detrital zircon U-Pb ages ranging from 2690 to 501 Ma, with four age populations at: 2071-2690 Ma, with a peak at 2585 Ma; 1776-1997 Ma, with a peak at 1890 Ma; 719-991 Ma, with a peak at 800 Ma; and 501-592 Ma, with a peak at 518 Ma. These are similar to age populations in other parts of the Central Asian Orogenic Belt (CAOB), although sediments from the Songliao Block contain more abundant Archean and Proterozoic detrital zircons than the neighboring Jiamusi-Khanka Block to the east and Xing'an Block to the west. This may indicate that rocks of this age comprise a minor component of the Songliao Block. The Pan-African zircon ages from the Songliao Block, taken together with ˜500 Ma magmatic and high-grade metamorphic zircons obtained from the nearby Erguna, Xing'an and Jiamusi-Khanka blocks, indicate that Pan-African events affected all blocks of the CAOB in NE China. This suggests that these blocks not only share a common basement, but that they had a common history. An extensive Late Pan-African (˜500 Ma) orogenic terrane thus occupies much of the CAOB in NE China.

  12. Sequential filling of a late paleozoic foreland basin

    USGS Publications Warehouse

    Mars', J. C.; Thomas, W.A.

    1999-01-01

    Through the use of an extensive data base of geophysical well logs, parasequence-scale subdivisions within a late Paleozoic synorogenic clastic wedge resolve cycles of sequential subsidence of a foreland basin, sediment progradation, subsidence of a carbonate shelf edge, diachronously subsiding discrete depositional centers, and basinwide transgression. Although temporal resolution of biostratigraphic markers is less precise in Paleozoic successions than in younger basins, parasequence-scale subdivisions provide more detailed resolution within marker-defined units in Paleozoic strata. As an example, the late Paleozoic Black Warrior basin in the foreland of the Ouachita thrust belt is filled with a synorogenic clastic wedge, the lower part of which intertongues with the fringe of a cratonic carbonate facie??s in the distal part of the basin. The stratal geometry of one tongue of the carbonate facie??s (lower tongue of Bangor Limestone) defines a ramp that grades basinward into a thin black shale. An overlying tongue of the synorogenic clastic wedge (lower tongue of Parkwood Formation) consists of cyclic delta and delta-front deposits, in which parasequences are defined by marine-flooding surfaces above coarsening- and shallow ing-upward successions of mudstone and sandstone. Within the lower Parkwood tongue, two genetic stratigraphie sequences (A and B) are defined by parasequence offlap and downlap patterns and are bounded at the tops by basinwide maximum-flooding surfaces. The distribution of parasequences within sequences A and B indicates two cycles of sequential subsidence (deepening) and progradation, suggesting subsidence during thrust advance and progradation during thrust quiescence. Parasequence stacking in sequences A and B also indicates diachronous differential tectonic subsidence of two discrete depositional centers within the basin. The uppermost sequence (C) includes reworked sandstones and an overlying shallow-marine limestone, a vertical succession

  13. Two contrasting late Paleozoic magmatic episodes in the northwestern Chinese Tianshan Belt, NW China: Implication for tectonic transition from plate convergence to intra-plate adjustment during accretionary orogenesis

    NASA Astrophysics Data System (ADS)

    Wang, Xiangsong; Cai, Keda; Sun, Min; Xiao, Wenjiao; Xia, Xiaoping; Wan, Bo; Bao, Zihe; Wang, Yannan

    2018-03-01

    Late Carboniferous to Early Permian is a critical period for the final amalgamation of the Central Asian Orogenic Belt (CAOB). However, as most of the accreted terranes of the CAOB are unclear in tectonic nature and origin, the timing and processes of their mutual amalgamation have been poorly constrained. To understand assembly of the West Junggar Terrane with the Yili Block, a suite of the late Paleozoic magmatic rocks, including ignimbrite, rhyolite and granite, in northwestern Chinese Tianshan Belt were studied for their petrogenesis and tectonic implications. Our new results of secondary ion mass spectrometry (SIMS) zircon U-Pb dating reveal two separate magmatic episodes, ca. 300 Ma volcanism (ignimbrite and rhyolite) and ca. 288 Ma plutonsim (biotite granite). Geochemically, for the ca. 300 Ma volcanism, the ignimbrites have low SiO2 (65.8-71.5 wt.%) and Mg# (6-13) values, and exhibit arc affinity with significantly enriched in large ion lithophile elements (LILE) and depleted in high field strength elements (HFSE) such as Nb, Ta and Ti. The whole-rock εNd(t) and zircon εHf(t) values range from +6.9 to +7.0 and +9.9 to +14.1 respectively, indicating a juvenile basaltic lower crustal origin. Rhyolites have slightly high SiO2 (72.7-74.0 wt.%) and K2O (3.86-4.53 wt.%) contents, high zircon δ18O (11.67-13.23‰) values, and low whole-rock εNd(t) (+2.9 to +3.8) and zircon εHf(t) (+2.8 to +10.0) values, which may suggest sediment involvements during magma generation. In contrast, for the ca. 288 Ma plutonism, the biotite granites have obviously higher SiO2 (74.7-75.5 wt.%) contents and whole-rock εNd(t) (+7.7 to +8.8), zircon εHf(t) (+9.8 to +12.7), and lower zircon δ18O (5.99-6.84‰) values, than those of the ca. 300 Ma volcanic rocks, which are consistent with signatures of juvenile magma source. According to our estimates of zircon saturation temperatures, together with their contrasting genesis, we attribute the formation of ca. 300 Ma high

  14. Rifting along the northern Gondwana margin and the evolution of the Rheic Ocean: A Devonian age for the El Castillo volcanic rocks (Salamanca, Central Iberian Zone)

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Alonso, G.; Murphy, J. B.; Fernández-Suárez, J.; Hamilton, M. A.

    2008-12-01

    Exposures of volcanic rocks (El Castillo) in the Central Iberian Zone near Salamanca, Spain, are representative of Paleozoic volcanic activity along the northern Gondwanan passive margin. Alkaline basalts and mafic volcaniclastic rocks of this sequence are structurally preserved in the core of the Variscan-Tamames Syncline. On the basis of the occurrence of graptolite fossils in immediately underlying strata, the El Castillo volcanics traditionally have been regarded as Lower Silurian in age. In contrast, most Paleozoic volcanic units in western Iberia are rift-related mafic to felsic rocks emplaced during the Late Cambrian-Early Ordovician, and are attributed to the opening of the Rheic Ocean. We present new zircon U-Pb TIMS data from a mafic volcaniclastic rock within the El Castillo unit. These data yield a near-concordant, upper intercept age of 394.7 ± 1.4 Ma that is interpreted to reflect a Middle Devonian (Emsian-Eifelian) age for the magmatism, demonstrating that the El Castillo volcanic rocks are separated from underlying lower Silurian strata by an unconformity. The U-Pb age is coeval with a widespread extensional event in Iberia preserved in the form of a generalized paraconformity surface described in most of the Iberian Variscan realm. However, in the inner part of the Gondwanan platform, the Cantabrian Zone underwent a major, coeval increase in subsidence and the generation of sedimentary troughs. From this perspective, the eruption age reported here probably represents a discrete phase of incipient rifting along the southern flank of the Rheic Ocean. Paleogeographic reconstructions indicate that this rifting event was coeval with widespread orogeny and ridge subduction along the conjugate northern flank of the Rheic Ocean, the so called Acadian "orogeny". We speculate that ridge subduction resulted in geodynamic coupling of the northern and southern flanks of the Rheic Ocean, and that the extension along the southern flank of the Rheic Ocean is a

  15. Supra-subduction zone extensional magmatism in Vermont and adjacent Quebec: Implications for early Paleozoic Appalachian tectonics

    USGS Publications Warehouse

    Kim, J.; Coish, R.; Evans, M.; Dick, G.

    2003-01-01

    Metadiabasic intrusions of the Mount Norris Intrusive Suite occur in fault-bounded lithotectonic packages containing Stowe, Moretown, and Cram Hill Formation lithologies in the northern Vermont Rowe-Hawley belt, a proposed Ordovician arc-trench gap above an east-dipping subduction zone. Rocks of the Mount Norris Intrusive Suite are characteristically massive and weakly foliated, have chilled margins, contain xenoliths, and have sharp contacts that both crosscut and are parallel to early structural fabrics in the host metasedimentary rocks. Although the mineral assemblage of the Mount Norris Intrusive Suite is albite + actinolite + epidote + chlorite + calcite + quartz, intergrowths of albite + actinolite are probably pseudomorphs after plagioclase + clinopyroxene. The metadiabases are subalkaline, tholeiitic, hypabyssal basalts with preserved ophitic texture. A backarc-basin tectonic setting for the intrusive suite is suggested by its LREE (light rare earth element) enrichment, negative Nb-Ta anomalies, and Ta/Yb vs. Th/Yb trends. Although no direct isotopic age data are available, the intrusions are broadly Ordovician because their contacts are clearly folded by the earliest Acadian (Silurian-Devonian) folds. Field evidence and geochemical data suggest compelling along-strike correlations with the Coburn Hill Volcanics of northern Vermont and the Bolton Igneous Group of southern Quebec. Isotopic and stratigraphic age constraints for the Bolton Igneous Group bracket these backarc magmas to the 477-458 Ma interval. A tectonic model that begins with east-dipping subduction and progresses to outboard west-dipping subduction after a syncollisional polarity reversal best explains the intrusion of deformed metamorphosed metasedimentary rocks by backarc magmas.

  16. Early Paleozoic dioritic and granitic plutons in the Eastern Tianshan Orogenic Belt, NW China: Constraints on the initiation of a magmatic arc in the southern Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Du, Long; Long, Xiaoping; Yuan, Chao; Zhang, Yunying; Huang, Zongying; Sun, Min; Zhao, Guochun; Xiao, Wenjiao

    2018-03-01

    Early Paleozoic dioritic and granitic plutons in the Eastern Tianshan Orogenic Belt (ETOB) have been studied in order to constraint the initiation of a magmatic arc formed in this region. Zircon U-Pb dating indicates that two dioritic plutons in the northern ETOB were generated in the Late Ordovician (452 ± 4 Ma) and the Early Silurian (442 ± 3 Ma), respectively. Diorites from the two plutons are characterized by enrichments in large ion lithophile elements (LILE) and highly incompatible elements, with depletions in high field strength elements (HSFE) displaying typical geochemical features of a subduction-related origin. They have positive εNd(t) values (+5.08-+6.58), relatively young Nd model ages (TDM = 0.71-1.08 Ga), with Ta/Yb (0.05-0.09) and Nb/Ta ratios (12.06-15.19) similar to those of depleted mantle, suggesting a juvenile mantle origin. Their high Ba/La (13.3-35.9), low Th/Yb (0.72-2.02), and relatively low Ce/Th (4.57-14.7) and Ba/Th (47.8-235) ratios indicate that these diorites were probably produced by partial melting of a depleted mantle wedge metasomatized by both subducted sediment-derived melts and slab-derived aqueous fluids. Zircon U-Pb dating of a granitic pluton in the northern ETOB yielded a Late Ordovician intrusion age of 447 ± 5 Ma. Granites from this pluton show calc-alkaline compositions with geochemical characteristics of I-type granites. They also show positive εNd(t) values (+6.49-+6.95) and young Nd model ages (TDM = 0.69-0.87 Ga), indicating that the granites were most likely derived from juvenile lower crust. Our new dating results on the dioritic and granitic plutons suggest that arc-type magmatism in the northern ETOB began prior to or at the Late Ordovician (452-442 Ma). In addition, north-dipping subduction of the Kangguertage oceanic lithosphere may account for the arc-type magmatism and the geodynamic process of the ETOB in the Early Paleozoic.

  17. The potential source of lead in the Permian Kupferschiefer bed of Europe and some selected Paleozoic mineral deposits in the Federal Republic of Germany

    USGS Publications Warehouse

    Wedepohl, K.H.; Delevaux, M.H.; Doe, B.R.

    1978-01-01

    New lead isotopic compositions have been measured for Paleozoic bedded and vein ore deposits of Europe by the high precision thermal emission (triple filament) technique. Eleven samples have been analyzed from the Upper Permian Kupferschiefer bed with representatives from Poland to England, three samples from the Middle Devonian Rammelsberg deposit and one from the Middle Devonian Meggen deposit, both of which are conformable ore lenses and are in the Federal Republic of Germany (FRG); and also two vein deposits from the FRG were analyzed, from Ramsbeck in Devonian host rocks and from Grund in Carboniferous host rocks. For Kupferschiefer bed samples from Germany, the mineralization is of variable lead isotopic composition and appears to have been derived about 250 m.y. ago from 1700 m.y. old sources, or detritus of this age, in Paleozoic sedimentary rocks. Samples from England, Holland, and Poland have different isotopic characteristics from the German samples, indicative of significantly different source material (perhaps older). The isotopic variability of the samples from the Kupferschiefer bed in Germany probably favors the lead containing waters coming from shoreward (where poor mixing is to be expected) rather than basinward (where better mixing is likely) directions. The data thus support the interpretation of the metal source already given by Wedepohl in 1964. Data on samples from Rammelsberg and Meggen tend to be slightly less radiogenic than for the Kupferschiefer, about the amount expected if the leads were all derived from the same source material but 100 to 150 m.y. apart in time. The vein galena from Ramsbeck is similar to that from Rammelsberg conformable ore lenses, both in rocks of Devonian age; vein galena from Grund in Upper Carboniferous country rocks is similar to some bedded Kupferschiefer mineralization in Permian rocks, as if the lead composition was formed at about the same time and from similar source material as the bedded deposits

  18. AMA0428, A Potent Rock Inhibitor, Attenuates Early and Late Experimental Diabetic Retinopathy.

    PubMed

    Hollanders, Karolien; Hove, Inge Van; Sergeys, Jurgen; Bergen, Tine Van; Lefevere, Evy; Kindt, Nele; Castermans, Karolien; Vandewalle, Evelien; van Pelt, Jos; Moons, Lieve; Stalmans, Ingeborg

    2017-02-01

    Diabetic retinopathy (DR) is characterized by an early stage of inflammation and vessel leakage, and an advanced vasoproliferative stage. Also, neurodegeneration might play an important role in disease pathogenesis. The aim of this study was to investigate the effect of the Rho kinase (ROCK) inhibitor, AMA0428, on these processes. The response to ROCK inhibition by AMA0428 (1 µg) was studied in vivo using the murine model for streptozotocin (STZ)-induced diabetes, focusing on early non-proliferative DR features and the oxygen-induced retinopathy (OIR) model to investigate proliferative DR. Intravitreal (IVT) administration of AMA0428 was compared with murine anti-VEGF-R2 antibody (DC101, 6.2 µg) and placebo (H 2 O/PEG; 1C8). Outcome was assessed by analyzing leukostasis using fluorescein isothiocyanate coupled concanavalin A (FITC-ConA) and vessel leakage (bovine serum albumin conjugated with fluorescein isothiocyanate; FITC-BSA)/neovascularization and neurodegeneration by immunohistological approaches (hematoxylin and eosin (H&E), terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling (TUNEL), Brn3a). ELISA and Western blotting were employed to unravel the consequences of ROCK inhibition (1 µM AMA0428) on myosin phosphatase target protein (MYPT)-1 phosphorylation, endothelial nitric oxide synthase (eNOS) phosphorylation, and vascular endothelial growth factor (VEGF) levels in retinas of diabetic mice, on NF-κβ activity and ICAM-1 expression in endothelial cells (ECs). In vivo, AMA0428 significantly reduced vessel leakage and neovascularization, respectively, in the STZ and OIR model, comparable to DC101 therapy. Additionally, the ROCK inhibitor decreased neurodegeneration in both models and inhibited leukostasis by 30% (p < 0.05) in the STZ model (p < 0.05), while DC101 had no positive effect on the outcome of these latter processes. ROCK activity was upregulated in the diabetic retina and AMA0428 administration resulted in

  19. The pre-Mesozoic tectonic unit division of the Xing-Meng orogenic belt (XMOB)

    NASA Astrophysics Data System (ADS)

    Xu, Bei; Zhao, Pan

    2014-05-01

    According to the viewpoint that the paleo-Asian ocean closed by the end of early Paleozoic and extended during the late Paleozoic, a pre-Mesozoic tectonic unit division has been suggested. Five blocks and four sutures have been recognized in the pre-Devonia stage, the five blocks are called Erguna (EB), Xing'an (XB), Airgin Sum-Xilinhot (AXB), Songliao-Hunshandak (SHB) and Jiamusi (JB) blocks and four sutures, Xinlin-Xiguitu (XXS), Airgin Sum-Xilinhot-Heihe (AXHS), Ondor Sum-Jizhong-Yanji (OJYS) and Mudanjiang (MS) sutures. The EB contains the Precambrian base with the ages of 720-850Ma and ɛHf(T)=+2.5to +8.1. The XB is characterized by the Paleoproterozoic granitic gneiss with ɛHf(T)=-3.9 to -8.9. Several ages from 1150 to 1500 Ma bave been acquired in the AXB, proving presence of old block that links with Hutag Uul block in Mongolia to the west. The Paleoproterozoic (1.8-1.9Ga) and Neoproterozoic (750-850Ma) ages have been reported from southern and eastern parts of the SHB, respectively. As a small block in east margin of the XMOB, the JB outcrops magmatite and granitic gneiss bases with ages of 800-1000Ma. The XXS is marked by blueschists with zircon ages of 490-500Ma in Toudaoqiao village, ophiolites in Xiguitu County and granite with ages of about 500Ma along the northern segment of XXS. The AXHS is characterized by the early Paleozoic arc magmatic rocks with ages from 430Ma to 490Ma, mélange and the late Devonia molass basins, which indicates a northward subduction of the SHB beneath the AXB during the early-middle Paleozoic. The OJYS is composed of the early Paleozoic volcanic rocks, diorites and granites with ages of 425-475Ma, blueschists, ophiolitic mélange, the late Silurian flysch and Early-Middle Devonian molasses in western segment, granites (420-450Ma) in middle segment, and plagiogranites (443Ma) and the late Silurian molasses in eastern segment. This suture was caused by a southward subduction of the SHB beneath the North China block. The MS

  20. Closure Time of the Junggar-Balkhash Ocean: Constraints From Late Paleozoic Volcano-Sedimentary Sequences in the Barleik Mountains, West Junggar, NW China

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Han, Bao-Fu; Chen, Jia-Fu; Ren, Rong; Zheng, Bo; Wang, Zeng-Zhen; Feng, Li-Xia

    2017-12-01

    The Junggar-Balkhash Ocean was a major branch of the southern Paleo-Asian Ocean. The timing of its closure is important for understanding the history of the Central Asian Orogenic Belt. New sedimentological and geochronological data from the Late Paleozoic volcano-sedimentary sequences in the Barleik Mountains of West Junggar, NW China, help to constrain the closure time of the Junggar-Balkhash Ocean. Tielieketi Formation (Fm) is dominated by littoral sediments, but its upper glauconite-bearing sandstone is interpreted to deposit rapidly in a shallow-water shelf setting. By contrast, Heishantou Fm consists chiefly of volcanic rocks, conformably overlying or in fault contact with Tielieketi Fm. Molaoba Fm is composed of parallel-stratified fine sandstone and sandy conglomerate with graded bedding, typical of nonmarine, fluvial deposition. This formation unconformably overlies the Tielieketi and Heishantou formations and is conformably covered by Kalagang Fm characterized by a continental bimodal volcanic association. The youngest U-Pb ages of detrital zircons from sandstones and zircon U-Pb ages from volcanic rocks suggest that the Tielieketi, Heishantou, Molaoba, and Kalagang formations were deposited during the Famennian-Tournaisian, Tournaisian-early Bashkirian, Gzhelian, and Asselian-Sakmarian, respectively. The absence of upper Bashkirian to Kasimovian was likely caused by tectonic uplifting of the West Junggar terrane. This is compatible with the occurrence of coeval stitching plutons in the West Junggar and adjacent areas. The Junggar-Balkhash Ocean should be finally closed before the Gzhelian, slightly later or concurrent with that of other ocean domains of the southern Paleo-Asian Ocean.

  1. Late Paleozoic onset of subduction and exhumation at the western margin of Gondwana (Chilenia Terrane): Counterclockwise P-T paths and timing of metamorphism of deep-seated garnet-mica schist and amphibolite of Punta Sirena, Coastal Accretionary Complex, central Chile (34° S)

    NASA Astrophysics Data System (ADS)

    Hyppolito, T.; García-Casco, A.; Juliani, C.; Meira, V. T.; Hall, C.

    2014-10-01

    In this study, the Paleozoic albite-epidote-amphibolite occurring as meter-sized intercalations within garnet-mica schist at Punta Sirena beach (Pichilemu region, central Chile) is characterized for the first time. These rocks constitute an unusual exposure of subduction-related rocks within the Paleozoic Coastal Accretionary Complex of central Chile. Whereas high pressure (HP) greenschist and cofacial metasediments are the predominant rocks forming the regional metamorphic basement, the garnet-mica schist and amphibolite yield higher P-T conditions (albite-epidote amphibolite facies) and an older metamorphic age. Combining detailed mineral chemistry and textural information, P-T calculations and Ar-Ar ages, including previously published material from the Paleozoic Accretionary Complex of central Chile, we show that the garnet-mica schist and associated amphibolite (locally retrograded to greenschist) are vestiges of the earliest subducted material now forming exotic bodies within the younger HP units of the paleo-accretionary wedge. These rocks are interpreted as having been formed during the onset of subduction at the southwestern margin of Gondwana. However, we show that the garnet-mica schist formed at a slightly greater depth (ca. 40 km) than the amphibolite (ca. 30 km) along the same hot-subduction gradient developed during the onset of subduction. Both lithotypes reached their peak-P conditions at ca. 335-330 Ma and underwent near-isobaric cooling followed by cooling and decompression (i.e., counterclockwise P-T paths). The forced return flow of the garnet-mica schist from the subduction channel started at ca. 320 Ma and triggered the exhumation of fragments of shallower accreted oceanic crust (amphibolite). Cores of phengite (garnet-mica schist) and amphibole (amphibolite) grains have similar chemical compositions in both the S1 and S2 domains, indicating rotation of these grains during the transposition of the burial-related (prograde peak-T) foliation S1

  2. Paleozoic fluid history of the Michigan Basin: Evidence from dolomite geochemistry in the Middle Ordovician St. Peter Sandstone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winter, B.L.; Johnson, C.M.; Simo, J.A.

    1995-04-03

    The isotope (Sr and O) and elemental (Mg, Ca, Mn, Fe, and Sr) compositions of the various dolomites in the Middle Ordovician St. Peter Sandstone in the Michigan Basin are determined and the variations are modeled in terms of fluid-rock interaction or as mixing relations. These geochemical models, combined with the paragenetic sequence of the dolomites and late anhydrite cement, suggest the existence of at least four distinct diagenetic fluids in the St. Peter Sandstone during the paleozoic. Fluid 1 has a composition consistent with a modified older (pre-Middle Ordovician) seawater origin, which indicates that the flow path for thismore » fluid had a major upward component. This fluid resulted in the first and volumetrically most important burial dolomitization event, producing dolomite in both carbonate and quartz sandstone lithofacies in the St. Peter Sandstone. Fluid 2 has a composition consistent with a modified Middle to early Late Ordovician seawater origin, suggesting a major downward component for fluid flow. Fluid 2 produced dolomite cement in the carbonate lithofacies that postdates Fluid 1 dolomite. The composition of Fluid 3 is best interpreted to reflect a heated, deep basinal brine that had previously interacted with the K-feldspar-rich rocks near the Cambrian-Precambrian unconformity in the Michigan Basin, indicating a major upward component for fluid flow. Fluid 3 produced dolomite cement in quartz sandstone lithofacies that postdates Fluid 1 dolomite. Fluid 4 resulted in precipitation of late anhydrite in fractures. The {sup 87}Sr/{sup 86}Sr ratio of the anhydrite is consistent with Fluid 4 originating as a dilute fluid that interacted extensively with Silurian gypsum in the Michigan Basin; this indicates that the flow path of Fluid 4 had a major downward component.« less

  3. Failure of cap-rock seals as determined from mechanical stratigraphy, stress history, and tensile-failure analysis of exhumed analogs

    DOE PAGES

    Petrie, E. S.; Evans, J. P.; Bauer, S. J.

    2014-11-01

    In this study, the sedimentologic and tectonic histories of clastic cap rocks and their inherent mechanical properties control the nature of permeable fractures within them. The migration of fluid through mm- to cm-scale fracture networks can result in focused fluid flow allowing hydrocarbon production from unconventional reservoirs or compromising the seal integrity of fluid traps. To understand the nature and distribution of subsurface fluid-flow pathways through fracture networks in cap-rock seals we examine four exhumed Paleozoic and Mesozoic seal analogs in Utah. We combine these outcrop analyses with subsidence analysis, paleoloading histories, and rock-strength testing data in modified Mohr–Coulomb–Griffith analysesmore » to evaluate the effects of differential stress and rock type on fracture mode.« less

  4. Tertiary volcanic rocks and uranium in the Thomas Range and northern Drum Mountains, Juab County, Utah

    USGS Publications Warehouse

    Lindsey, David A.

    1982-01-01

    The Thomas Range and northern Drum Mountains have a history of volcanism, faulting, and mineralization that began about 42 m.y. (million years) ago. Volcanic activity and mineralization in the area can be divided into three stages according to the time-related occurrence of rock types, trace-element associations, and chemical composition of mineral deposits. Compositions of volcanic rocks changed abruptly from rhyodacite-quartz latite (42-39 m.y. ago) to rhyolite (38-32 m.y. ago) to alkali rhyolite (21 and 6-7 m.y. ago); these stages correspond to periods of chalcophile and siderophile metal mineralization, no mineralization(?), and lithophile metal mineralization, respectively. Angular unconformities record episodes of cauldron collapse and block faulting between the stages of volcanic activity and mineralization. The youngest angular unconformity formed between 21 and 7 m.y. ago during basin-and-range faulting. Early rhyodacite-quartz latite volcanism from composite volcanoes and fissures produced flows, breccias, and ash-flow tuff of the Drum Mountains Rhyodacite and Mt. Laird Tuff. Eruption of the Mt. Laird Tuff about 39 m.y. ago from an area north of Joy townsite was accompanied by collapse of the Thomas caldera. Part of the roof of the magma chamber did not collapse, or the magma was resurgent, as is indicated by porphyry dikes and plugs in the Drum Mountains. Chalcophile and siderophile metal mineralization, resulting in deposits of copper, gold, and manganese, accompanied early volcanism. Te middle stage of volcanic activity was characterized by explosive eruption of rhyolitic ash-flow tuffs and collapse of the Dugway Valley cauldron. Eruption of the Joy Tuff 38 m.y. ago was accompanied by subsidence of this cauldron and was followed by collapse and sliding of Paleozoic rocks from the west wall of the cauldron. Landslides in The Dell were covered by the Dell Tuff, erupted 32 m.y. ago from an unknown source to the east. An ash flow of the Needles Range

  5. Pennsylvanian and Early Permian paleogeography of east-central California: Implications for the shape of the continental margin and the timing of continental truncation

    NASA Astrophysics Data System (ADS)

    Stone, Paul; Stevens, Calvin H.

    1988-04-01

    Pennsylvanian and Early Permian paleogeographic features in east-central California include a southeast-trending carbonate shelf edge and turbidite basin that we infer paralleled a segment of the western margin of the North American continent. This segment of the continental margin was oblique to an adjoining segment on the north that trended southwestward across Nevada into easternmost California. We propose that the southeast-trending segment of the margin originated by tectonic truncation of the originally longer southwest-trending segment in Early or Middle Pennsylvanian to late Early Permian time, significantly earlier than a previously hypothesized Late Permian or Early Triassic continental truncation event. We interpret the truncating structure to have been a sinistral transform fault zone along which a continental fragment was removed and carried southeastward into the Caborca-Hermosillo region of northern Mexico, where it is now represented by exposures of Late Proterozoic and Paleozoic miogeoclinal rocks.

  6. Early Paleozoic high-Mg granodiorite from the Erlangping unit, North Qinling orogen, central China: Partial melting of metasomatic mantle during the initial back-arc opening

    NASA Astrophysics Data System (ADS)

    Abdallsamed, Mohammed I. M.; Wu, Yuan-Bao; Zhang, Wenxiang; Zhou, Guangyan; Wang, Hao; Yang, Saihong

    2017-09-01

    This study discussed the petrological classification, petrogenesis, and tectonic significance of early Paleozoic high-Mg granodiorite from the Erlangping unit, in the North Qinling orogen. To achieve this target, we conducted integrated investigation of in situ zircon U-Pb dating, whole-rock geochemical, as well as Sr-Nd-Hf-O isotopic compositions for the Kanfenggou pluton from the Erlangping unit. LA-ICP-MS zircon dating for the Kanfenggou samples yields U-Pb ages of 442.9 ± 6.2 and 438.0 ± 6.7 Ma, suggesting that the pluton was emplaced at ca. 440 Ma. Whole-rock geochemical compositions of the samples display intermediate SiO2 (60.48-64.67 wt%) and K2O (1.21 to 2.10 wt%), but high Al2O3 (15.44 to 16.51 wt%) and Na2O (4.01 to 4.81 wt%) contents. The granodiorite samples are characterized by elevated MgO ranging from 2.30 to 3.44 wt% and Mg# values of 53.35to 56.66, implying they are high-Mg granodiorites. They are characterized by very high Ba (524-1132 ppm) and Sr (684-980 ppm) contents, but depleted in HREE, and high (La/Yb)N ratios of 6.34 to 16.5 and slightly negative to weak positive Eu anomalies (Eu/Eu* = 0.68-1.09). These evidence that the Kanfenggou pluton belongs to the sanukitoid series. The high-Mg granodiorite samples exhibit a mantle signature with high Mg# values (53.35-56.66), Cr (45.8 to 93.3 ppm) and Ni (28.2 to 48.2 ppm) contents, but enriched in LILE, pointing to an enriched mantle source. The samples show relatively depleted radiogenic isotopic compositions with initial 87Sr/86Sr ratios varying from 0.7044 to 0.7047, εNd(t) values from 0.31 to 4.21, and zircon εHf (t) values from 7.3 to 8.3. The zircons have a mean δ18O value of 5.20 ± 0.17 ‰. Based on the trace element geochemical features, the metasomatic agent was suggested to be the fluids generated from dehydration of subducted slab. Therefore, we suggest two-stage processes for the formation of the Erlangping high-Mg granodiorites: (1) interaction between slab fluids and mantle

  7. Stratigraphic Framework of Cambrian and Ordovician Rocks in the Appalachian Basin from Sequatchie County, Tennessee, through Eastern Kentucky, to Mingo County, West Virginia

    USGS Publications Warehouse

    Ryder, Robert T.; Crangle, Robert D.; Repetski, John E.; Harris, Anita G.

    2008-01-01

    Cross section H-H' is the seventh in a series of restored cross sections constructed by the lead author to show the stratigraphic framework of Cambrian and Ordovician rocks in the Appalachian basin from Pennsylvania to Tennessee. The sections show complexly intertongued carbonate and siliciclastic lithofacies, marked thickness variations, key marker horizons, unconformities, stratigraphic nomenclature of the Cambrian and Ordovician sequence, and major faults that offset Proterozoic basement and overlying lower Paleozoic rocks. Several of the drill holes along the cross section have yielded a variety of whole and (or) fragmented conodont elements. The identifiable conodonts are used to differentiate strata of Late Cambrian, Early Ordovician, and Middle Ordovician age, and their conodont color alteration index (CAI) values are used to establish the thermal maturity of the sequence. Previous cross sections in this series are G-G', F-F', E-E', D-D', C-C', and B-B'. Many of these cross sections (B-B', C-C', D-D', and G-G') have been improved with the addition of gamma-ray log traces, converted to digital images, and made accessible on the Web.

  8. Fold-structure analysis of paleozoic rocks in the Variscan Harz Mountains (Lautenthal, Central Germany) based on laserscanning and 3D modelling

    NASA Astrophysics Data System (ADS)

    Wagner, Bianca; Leiss, Bernd; Stöpler, Ralf; Zahnow, Fabian

    2017-04-01

    Folded paleozoic sedimentary rocks of Upper Devonian to Lower Carboniferous age are very well exposed in the abandoned chert quarry of Lautenthal in the western Harz Mountains. The outcrop represents typical structures of the Rhenohercynian thrust and fold belt of the Variscan orogen and therefore allows quantitative studies for the understanding of e.g. fold mechanisms and the amount of shortening. The sequence is composed of alternating beds of cherts, shales and tuffites, which show varying thicknesses, undulating and thinning out of certain layers. Irregularly occurring lenses of greywackes are interpreted as sedimentary intrusions. The compressive deformation style is expressed by different similar and parallel fold structures at varying scales as well as small-scale reverse faults and triangle structures. An accurate mapping of the outcrop in the classical way is very challenging due to distant and unconnected outcrop parts with differing elevations and orientations. Furthermore, the visibility is limited because of nearby trees, diffuse vegetation cover and no available total view. Therefore, we used a FARO 120 3D laserscanner and Trimble GNSS device to generate a referenced and drawn to scale point cloud of the complete quarry. Based on the point cloud a geometric 3D model of prominent horizons and structural features of various sizes was constructed. Thereafter, we analyzed the structures in matters of orientation and deformation mechanisms. Finally, we applied a retrodeformation algorithm on the model to restore the original sedimentary sequence and to calculate shortening including the amount of pressure solution. Only digital mapping allows such a time-saving, accurate and especially complete 3D survey of this excellent study object. We demonstrated that such 3D-models enable spatial correlations with other complex structures cropping out in the area. Moreover, we confirmed that a structural upscaling to the 100 to 1000 m scale is much easier and much

  9. Paleozoic–early Mesozoic gold deposits of the Xinjiang Autonomous Region, northwestern China

    USGS Publications Warehouse

    Rui, Zongyao; Goldfarb, Richard J.; Qiu, Yumin; Zhou, T.; Chen, R.; Pirajno, Franco; Yun, Grace

    2002-01-01

    The late Paleozoic–early Mesozoic tectonic evolution of Xinjiang Autonomous Region, northwestern China provided a favorable geological setting for the formation of lode gold deposits along the sutures between a number of the major Eastern Asia cratonic blocks. These sutures are now represented by the Altay Shan, Tian Shan, and Kunlun Shan ranges, with the former two separated by the Junggar basin and the latter two by the immense Tarim basin. In northernmost Xinjiang, final growth of the Altaid orogen, southward from the Angara craton, is now recorded in the remote mid- to late Paleozoic Altay Shan. Accreted Early to Middle Devonian oceanic rock sequences contain typically small, precious-metal bearing Fe–Cu–Zn VMS deposits (e.g. Ashele). Orogenic gold deposits are widespread along the major Irtysh (e.g. Duyolanasayi, Saidi, Taerde, Kabenbulake, Akexike, Shaerbulake) and Tuergen–Hongshanzui (e.g. Hongshanzui) fault systems, as well as in structurally displaced terrane slivers of the western Junggar (e.g. Hatu) and eastern Junggar areas. Geological and geochronological constraints indicate a generally Late Carboniferous to Early Permian episode of gold deposition, which was coeval with the final stages of Altaid magmatism and large-scale, right-lateral translation along older terrane-bounding faults. The Tian Shan, an exceptionally gold-rich mountain range to the west in the Central Asian republics, is only beginning to be recognized for its gold potential in Xinjiang. In this easternmost part to the range, northerly- and southerly-directed subduction/accretion of early to mid-Paleozoic and mid- to late Paleozoic oceanic terranes, respectively, to the Precambrian Yili block (central Tian Shan) was associated with 400 to 250 Ma arc magmatism and Carboniferous through Early Permian gold-forming hydrothermal events. The more significant resulting deposits in the terranes of the southern Tian Shan include the Sawayaerdun orogenic deposit along the Kyrgyzstan

  10. Tectonics of the North American Cordillera near the Fortieth Parallel

    USGS Publications Warehouse

    King, P.B.

    1978-01-01

    The North American Cordillera near the Fortieth Parallel consists of the following tectonic units: 1. (A) To the east is a reactivated cratonic area, in the Southern Rocky Mountains and Colorado Plateau, in which the supracrustal rocks (Cambrian to Cretaceous) were broadly deformed during the late Cretaceous-Paleocene Laramide orogeny, and the Precambrian basement was raised in folds of wide amplitude. 2. (B) West of it is a miogeosynclinal belt, in the eastern Great Basin, in which a thick sequence of Paleozoic carbonates and related deposits was thrust eastward along low-angle faults during the middle to late Cretaceous Sevier orogeny. The miogeosyncline is the downwarped western margin of the original North American continent, and its rocks accumulated on Precambrian basement. 3. (C) Beyond is a eugeosynclinal belt, in the western Great Basin, in which Paleozoic graywackes, cherts, and volcanics were thrust easteastward along low-angle faults during several Paleozoic orogenies - the mid-Paleozoic Antler orogeny which produced the Roberts thrust on the east, and the end-Paleozoic Sonoma orogeny which produced the Golconda thrust farther west. The Paleozoic eugeosynclinal rocks accumulated on oceanic basement. They are overlapped from the west by Triassic and Jurassic shelf deposits, which pass westward into eugeosynclinal deposits. 4. (D) A volcanic island-arc belt existed on the sites of the Sierra Nevada in Paleozoic and early Mesozoic time, which produced thick bodies of sediments and volcanics. During the mid-Mesozoic Nevadan orogeny these were steeply deformed and thrust westward over subduction zones, and were intruded by granitic rocks that rose from the upper mantle to form great batholiths. 5. (E) West of the Sierra Nevada, in the Great Valley, is a great sedimentary embankment of later Mesozoic flysch or turbidite, largely younger than the supracrustal rocks of the Sierra Nevada and the Nevadan orogeny. It was formed of the erosional products of the

  11. The impact of fire on the Late Paleozoic Earth system

    PubMed Central

    Glasspool, Ian J.; Scott, Andrew C.; Waltham, David; Pronina, Natalia; Shao, Longyi

    2015-01-01

    Analyses of bulk petrographic data indicate that during the Late Paleozoic wildfires were more prevalent than at present. We propose that the development of fire systems through this interval was controlled predominantly by the elevated atmospheric oxygen concentration (p(O2)) that mass balance models predict prevailed. At higher levels of p(O2), increased fire activity would have rendered vegetation with high-moisture contents more susceptible to ignition and would have facilitated continued combustion. We argue that coal petrographic data indicate that p(O2) rather than global temperatures or climate, resulted in the increased levels of wildfire activity observed during the Late Paleozoic and can, therefore, be used to predict it. These findings are based upon analyses of charcoal volumes in multiple coals distributed across the globe and deposited during this time period, and that were then compared with similarly diverse modern peats and Cenozoic lignites and coals. Herein, we examine the environmental and ecological factors that would have impacted fire activity and we conclude that of these factors p(O2) played the largest role in promoting fires in Late Paleozoic peat-forming environments and, by inference, ecosystems generally, when compared with their prevalence in the modern world. PMID:26442069

  12. The impact of fire on the Late Paleozoic Earth system.

    PubMed

    Glasspool, Ian J; Scott, Andrew C; Waltham, David; Pronina, Natalia; Shao, Longyi

    2015-01-01

    Analyses of bulk petrographic data indicate that during the Late Paleozoic wildfires were more prevalent than at present. We propose that the development of fire systems through this interval was controlled predominantly by the elevated atmospheric oxygen concentration (p(O2)) that mass balance models predict prevailed. At higher levels of p(O2), increased fire activity would have rendered vegetation with high-moisture contents more susceptible to ignition and would have facilitated continued combustion. We argue that coal petrographic data indicate that p(O2) rather than global temperatures or climate, resulted in the increased levels of wildfire activity observed during the Late Paleozoic and can, therefore, be used to predict it. These findings are based upon analyses of charcoal volumes in multiple coals distributed across the globe and deposited during this time period, and that were then compared with similarly diverse modern peats and Cenozoic lignites and coals. Herein, we examine the environmental and ecological factors that would have impacted fire activity and we conclude that of these factors p(O2) played the largest role in promoting fires in Late Paleozoic peat-forming environments and, by inference, ecosystems generally, when compared with their prevalence in the modern world.

  13. The Inskip Formation, the Harmony Formation, and the Havallah Sequence of Northwestern Nevada - An Interrelated Paleozoic Assemblage in the Home of the Sonoma Orogeny

    USGS Publications Warehouse

    Ketner, Keith B.

    2008-01-01

    An area between the towns of Winnemucca and Battle Mountain in northwestern Nevada, termed the arkosic triangle, includes the type areas of the middle to upper Paleozoic Inskip Formation and Havallah sequence, the Upper Devonian to Mississippian Harmony Formation, the Sonoma orogeny, and the Golconda thrust. According to an extensive body of scientific literature, the Havallah sequence, a diverse assemblage of oceanic rocks, was obducted onto the continent during the latest Permian or earliest Triassic Sonoma orogeny by way of the Golconda thrust. This has been the most commonly accepted theory for half a century, often cited but rarely challenged. The tectonic roles of the Inskip and Harmony Formations have remained uncertain, and they have never been fully integrated into the accepted theory. New, and newly interpreted, data are incompatible with the accepted theory and force comprehensive stratigraphic and tectonic concepts that include the Inskip and Harmony Formations as follows: middle to upper Paleozoic strata, including the Inskip, Harmony, and Havallah, form an interrelated assemblage that was deposited in a single basin on an autochthonous sequence of Cambrian, Ordovician, and lowest Silurian strata of the outer miogeocline. Sediments composing the Upper Devonian to Permian sequence entered the basin from both sides, arkosic sands, gravel, limestone olistoliths, and other detrital components entered from the west, and quartz, quartzite, chert, and other clasts from the east. Tectonic activity was expressed as: (1) Devonian uplift and erosion of part of the outer miogeocline; (2) Late Devonian depression of the same area, forming a trough, probably fault-bounded, in which the Inskip, Harmony, and Havallah were deposited; (3) production of intraformational and extrabasinal conglomerates derived from the basinal rocks; and (4) folding or tilting of the east side of the depositional basin in the Pennsylvanian. These middle to upper Paleozoic deposits were

  14. Geochronological and sedimentological evidences of Panyangshan foreland basin for tectonic control on the Late Paleozoic plate marginal orogenic belt along the northern margin of the North China Craton

    NASA Astrophysics Data System (ADS)

    Li, Jialiang; Zhou, Zhiguang; He, Yingfu; Wang, Guosheng; Wu, Chen; Liu, Changfeng; Yao, Guang; Xu, Wentao; Zhao, Xiaoqi; Dai, Pengfei

    2017-08-01

    There is a wide support that the Inner Mongolia Palaeo-uplift on the northern margin of the North China Craton has undergone an uplifting history. However, when and how did the uplift occurred keeps controversial. Extensive field-based structural, metamorphic, geochemical, geochronological and geophysical investigations on the Inner Mongolia Palaeo-uplift, which suggested that the Inner Mongolia Palaeo-uplift was an uplifted region since the Early Precambrian or range from Late Carboniferous-Early Jurassic. The geochemical characteristics of the Late Paleozoic to Early Mesozoic intrusive rocks indicated that the Inner Mongolia Palaeo-uplift was an Andean-type continental margin that is the extensional tectonic setting. To address the spatial and temporal development of the Inner Mongolia Palaeo-uplift, we have carried out provenance analysis of Permian sedimentary rocks which collected from the Panyangshan basin along the northern margin of the North China Craton. The QFL diagram revealed a dissected arc-recycled orogenic tectonic setting. Moreover, the framework grains are abundant with feldspar (36-50%), indicating the short transport distance and unstable tectonic setting. Detrital zircon U-Pb analysis ascertained possible provenance information: the Precambrian basement ( 2490 and 1840 Ma) and continental arc magmatic action ( 279 and 295 Ma) along the northern margin of the North China Craton. The projection in rose diagrams of the mean palaeocurrent direction, revealing the SSW and SSE palaeoflow direction, also shows the provenance of the Panyangshan basin sources mainly from the Inner Mongolia Palaeo-uplift. The andesite overlying the Naobaogou Formation has yielded U-Pb age of 277.3 ± 1.4 Ma. The additional dioritic porphyry dike intruded the Naobaogou and Laowopu Formations, which has an emplacement age of 236 ± 1 Ma. The above data identify that the basin formed ranges from Early Permian to Middle Triassic (277-236 Ma). Accordingly, the Inner Mongolia

  15. Geochronological and sedimentological evidences of Panyangshan foreland basin for tectonic control on the Late Paleozoic plate marginal orogenic belt along the northern margin of the North China Craton

    NASA Astrophysics Data System (ADS)

    Li, Jialiang; Zhou, Zhiguang; He, Yingfu; Wang, Guosheng; Wu, Chen; Liu, Changfeng; Yao, Guang; Xu, Wentao; Zhao, Xiaoqi; Dai, Pengfei

    2018-06-01

    There is a wide support that the Inner Mongolia Palaeo-uplift on the northern margin of the North China Craton has undergone an uplifting history. However, when and how did the uplift occurred keeps controversial. Extensive field-based structural, metamorphic, geochemical, geochronological and geophysical investigations on the Inner Mongolia Palaeo-uplift, which suggested that the Inner Mongolia Palaeo-uplift was an uplifted region since the Early Precambrian or range from Late Carboniferous-Early Jurassic. The geochemical characteristics of the Late Paleozoic to Early Mesozoic intrusive rocks indicated that the Inner Mongolia Palaeo-uplift was an Andean-type continental margin that is the extensional tectonic setting. To address the spatial and temporal development of the Inner Mongolia Palaeo-uplift, we have carried out provenance analysis of Permian sedimentary rocks which collected from the Panyangshan basin along the northern margin of the North China Craton. The QFL diagram revealed a dissected arc-recycled orogenic tectonic setting. Moreover, the framework grains are abundant with feldspar (36-50%), indicating the short transport distance and unstable tectonic setting. Detrital zircon U-Pb analysis ascertained possible provenance information: the Precambrian basement ( 2490 and 1840 Ma) and continental arc magmatic action ( 279 and 295 Ma) along the northern margin of the North China Craton. The projection in rose diagrams of the mean palaeocurrent direction, revealing the SSW and SSE palaeoflow direction, also shows the provenance of the Panyangshan basin sources mainly from the Inner Mongolia Palaeo-uplift. The andesite overlying the Naobaogou Formation has yielded U-Pb age of 277.3 ± 1.4 Ma. The additional dioritic porphyry dike intruded the Naobaogou and Laowopu Formations, which has an emplacement age of 236 ± 1 Ma. The above data identify that the basin formed ranges from Early Permian to Middle Triassic (277-236 Ma). Accordingly, the Inner Mongolia

  16. Provenance and detrital zircon geochronologic evolution of lower Brookian foreland basin deposits of the western Brooks Range, Alaska, and implications for early Brookian tectonism

    USGS Publications Warehouse

    Moore, Thomas; O'Sullivan, Paul B.; Potter, Christopher J.; Donelick, Raymond A.

    2015-01-01

    The Upper Jurassic and Lower Cretaceous part of the Brookian sequence of northern Alaska consists of syntectonic deposits shed from the north-directed, early Brookian orogenic belt. We employ sandstone petrography, detrital zircon U-Pb age analysis, and zircon fission-track double-dating methods to investigate these deposits in a succession of thin regional thrust sheets in the western Brooks Range and in the adjacent Colville foreland basin to determine sediment provenance, sedimentary dispersal patterns, and to reconstruct the evolution of the Brookian orogen. The oldest and structurally highest deposits are allochthonous Upper Jurassic volcanic arc–derived sandstones that rest on accreted ophiolitic and/or subduction assemblage mafic igneous rocks. These strata contain a nearly unimodal Late Jurassic zircon population and are interpreted to be a fragment of a forearc basin that was emplaced onto the Brooks Range during arc-continent collision. Synorogenic deposits found at structurally lower levels contain decreasing amounts of ophiolite and arc debris, Jurassic zircons, and increasing amounts of continentally derived sedimentary detritus accompanied by broadly distributed late Paleozoic and Triassic (359–200 Ma), early Paleozoic (542–359 Ma), and Paleoproterozoic (2000–1750 Ma) zircon populations. The zircon populations display fission-track evidence of cooling during the Brookian event and evidence of an earlier episode of cooling in the late Paleozoic and Triassic. Surprisingly, there is little evidence for erosion of the continental basement of Arctic Alaska, its Paleozoic sedimentary cover, or its hinterland metamorphic rocks in early foreland basin strata at any structural and/or stratigraphic level in the western Brooks Range. Detritus from exhumation of these sources did not arrive in the foreland basin until the middle or late Albian in the central part of the Colville Basin.These observations indicate that two primary provenance areas provided

  17. Structure, stratigraphy, and petroleum geology of the Little Plain basin, northwestern Hungary

    USGS Publications Warehouse

    Mattick, R.E.; Teleki, P.G.; Phillips, R.L.; Clayton, J.L.; David, G.; Pogcsas, G.; Bardocz, B.; Simon, E.

    1996-01-01

    The basement of the Little Plain (Kisalfo??ld) basin is composed of two parts: an eastern part comprised of folded and overthrusted Triassic and Paleozoic rocks of the Pelso block (Transdanubian Central Range) compressed in the Early Cretaceous, and a western part consisting of stacked nappes of the Austroalpine zone of Paleozoic rocks, significantly metamorphosed during Cretaceous and later compression, overriding Jurassic oceanic rift-zone rocks of the Penninic zone. The evolution of the basin began in the late Karpatian-early Badenian (middle Miocene) when the eastern part of the basin began to open along conjugate sets of northeast- and northwest-trending normal faults. Neogene rocks in the study area, on the average, contain less than 0.5 wt. % total organic carbon (TOC) and, therefore, are not considered effective source rocks. Locally, however, where TOC values are as high as 3 wt. %, significant amounts of gas may have been generated and expelled. Although potential stratigraphic traps are numerous in the Neogene section, these potential traps must be downgraded because of the small amount of hydrocarbons discovered in structural traps to date. With the exception of the Cretaceous, the Mesozoic section has not been actively explored. Large anticlinal and overthrust structures involving pre-Cretaceous strata remain undrilled.

  18. Paleozoic tectonic evolution of the Dananhu-Tousuquan island arc belt, Eastern Tianshan: Constraints from the magmatism of the Yuhai porphyry Cu deposit, Xinjiang, NW China

    NASA Astrophysics Data System (ADS)

    Wang, Yunfeng; Chen, Huayong; Han, Jinsheng; Chen, Shoubo; Huang, Baoqiang; Li, Chen; Tian, Qinglei; Wang, Chao; Wu, Jianxin; Chen, Mingxia

    2018-03-01

    The Yuhai intrusions (quartz diorite, granite and pyroxene diorite) are located in the eastern part of the Dananhu-Tousuquan island arc belt of the Eastern Tianshan, and associated with the early Paleozoic porphyry Cu mineralization. LA-ICP-MS zircon U-Pb dating yielded emplacement ages of 443.5 ± 4.1 Ma for the quartz diorite, 325.4 ± 2.5 Ma for the granite, and 291 ± 3.0 Ma for the pyroxene diorite. These rocks are tholeiitic to calc-alkaline and metaluminous, with A/CNK values ranging from 0.66 to 1.10. The Silurian ore-bearing Yuhai quartz diorite is rich in LREEs and LILEs (e.g., K, Ba, Pb and Sr), and depleted in HREEs and HFSEs (e.g., Nb, Ta and Ti). These rocks are MgO-rich (1.90-3.80 wt.%; Mg# = 37-72), with high Sr/Y, La/Yb and Ba/Th ratios, positive εNd(t) (6.31-6.84) and εHf(t) (13.26-16.40), low (87Sr/86Sr)i (0.7037-0.7039), and low Nb/U and Ta/U ratios. The data suggest that the quartz diorite was generated by the partial melting of subducted juvenile oceanic slab. The oxygen fugacity (ƒO2) of the quartz diorite, calculated by zircon Ce4+/Ce3+ ratios, is higher than that of the granite and pyroxene diorite, implying that the quartz diorite was more favorable to porphyry Cu mineralization. The Carboniferous Yuhai granite reveals similar geochemical features with the quartz diorite, except for the lower Mg# (27-33), and the more elevated Th/U and Th/La ratios. Furthermore, these rocks also show high εNd(t) (5.2-5.8) and εHf(t) (11.03-14.85) values, and low (87Sr/86Sr)i (0.7036-0.7037). These features indicate that the parental magma of the granite was probably derived from a juvenile lower crust with no significant mantle component involvement. Different from the Yuhai quartz diorite and granite, the early Permian Yuhai pyroxene diorite contains low SiO2 (50.76-55.74 wt.%) and high MgO (3.96-4.33 wt.%; Mg# = 40-44). The εNd(t), εHf(t) and (87Sr/86Sr)i values of the pyroxene diorite are 5.77-6.42, 7.99-12.10 and 0.7035-0.7040, respectively. The

  19. Sodium storage in deep paleoweathering profiles beneath the Paleozoic-Triassic unconformity

    NASA Astrophysics Data System (ADS)

    Thiry, M.; Parcerisa, D.; Ricordel-Prognon, C.; Schmitt, J.-M.

    2009-04-01

    pink stage, with an increase in the amount and size of sericite and hematite inclusions. The latter causes the red coloration of the altered rocks. Regional layout Regional distribution of the alterations which affect the Carboniferous igneous and volcanic formations beneath the Jurassic sedimentary cover lead to associate these alterations to the Triassic unconformity. Besides, albitized facies show generally both topographic and regional arrangements, with more altered facies occurring in the mountain highs and in the external parts of the massifs and unaltered facies occurring in the river valleys and in the central parts of the massifs. Moreover, the haematite associated with these albitized basement rocks has been dated from Early Trias by means of paleomagnetism (Ricordel et al, 2007). From this layout and dating, it is deduced that albitization is related to the development of a deep weathering profile (up to 150 m deep) during a long-lasting exposure of the Triassic erosional unconformity (regolith). Geochemistry and paleoenvironmental setting It has to be highlighted that, this alteration may not behave like an "ordinary" weathering profile and occurred under unusual, or at least very specific, geological settings. The scale of the profiles (over 100 m depth) relates this alteration rather to a groundwater environment. The weak mobility of most chemical elements may point to a groundwater with very low outflows and deep water table. This may occur in very subdued landscape and in arid climatic conditions. It has also to be pointed that this alteration may have lasted for several 10's of Ma. Albite formation at low temperature may be envisioned consequently in alkaline, confined waters with sufficient concentrations of sodium and silica. Early attempts of modeling (Schmitt, 1994) have also indicated that a high Na+/K+ ratio is as well probably required. Petrographic data also indicate an import of sodium by the weathering solutions, without any clear enrichment

  20. Geochemistry and metamorphism of the Paleozoic metasedimentary basement of the Sierra Madre Oriental, NE Mexico. Possible paths from their depositional environment?

    NASA Astrophysics Data System (ADS)

    Torres Sanchez, Sonia Alejandra; Augustsson, Carita; Alonso Ramirez Fernandez, Juan; Rafael Barboza Gudiño, Jose; Jenchen, Uwe; Abratis, Michael

    2013-04-01

    We present depositional conditions and possible protholits for Late Paleozoic metasediment in Mexico that were related to the Laurentia-Gondwana collision in Carboniferous time, during Pangea amalgamation. The study aims to reconstruct the depositional and metamorphic evolution of the Granjeno Schist in northeastern Mexico to get a better control on the timing of subduction and collision processes involving the two supercontinents. Remnants of the Mexican Paleozoic continental configuration are present in the Granjeno Schist, the metamorphic basement of the Sierra Madre Oriental in northeastern Mexico. We apply field mapping, petrographic investigations, whole-rock and mineral chemical analysis, as well as U-Pb zircon dating of both metasedimentary and metavolcanic rocks. Field work and petrographic analysis reveal that the Granjeno Schist comprises intercalations of metamorphic rocks with both sedimentary (psammite, pelite, turbidite, conglomerate, black shale) and volcanic (tuff, lava flows, pillow lava and ultramafic bodies) protoliths. The chlorite geothermometer and the presence of phengite in the metasedimentary units as well as U-Pb zircon ages on metapsammite indicate that the Granjeno Schist was metamorphosed under sub-greenschist to greenschist facies with temperatures ranging from 250-345°C during the Carboniferous time (330±30 Ma). The geochemical composition of the metasedimentary rocks is in accordance with iron shale, wacke and quartz arenite protoliths. Some of the variations can be explained by the grain sizes (e. g., 69-74% and 78-96% SiO2 and 10-15% and 3-9% Al2O3 in metapelite and metapsammite, respectively). Our data suggest that the Granjeno Schist metasedimentary units represent a wide variety of clastic sediments derived from mixed felsic basic sources compositions (e. g., Ti/Nb 200-400). Furthermore, the trace element characteristics point to a continental island arc or active continental margin setting due to e. g., Th/Sc and Zr

  1. Quantitative Hydraulic Models Of Early Land Plants Provide Insight Into Middle Paleozoic Terrestrial Paleoenvironmental Conditions

    NASA Astrophysics Data System (ADS)

    Wilson, J. P.; Fischer, W. W.

    2010-12-01

    Fossil plants provide useful proxies of Earth’s climate because plants are closely connected, through physiology and morphology, to the environments in which they lived. Recent advances in quantitative hydraulic models of plant water transport provide new insight into the history of climate by allowing fossils to speak directly to environmental conditions based on preserved internal anatomy. We report results of a quantitative hydraulic model applied to one of the earliest terrestrial plants preserved in three dimensions, the ~396 million-year-old vascular plant Asteroxylon mackei. This model combines equations describing the rate of fluid flow through plant tissues with detailed observations of plant anatomy; this allows quantitative estimates of two critical aspects of plant function. First and foremost, results from these models quantify the supply of water to evaporative surfaces; second, results describe the ability of plant vascular systems to resist tensile damage from extreme environmental events, such as drought or frost. This approach permits quantitative comparisons of functional aspects of Asteroxylon with other extinct and extant plants, informs the quality of plant-based environmental proxies, and provides concrete data that can be input into climate models. Results indicate that despite their small size, water transport cells in Asteroxylon could supply a large volume of water to the plant's leaves--even greater than cells from some later-evolved seed plants. The smallest Asteroxylon tracheids have conductivities exceeding 0.015 m^2 / MPa * s, whereas Paleozoic conifer tracheids do not reach this threshold until they are three times wider. However, this increase in conductivity came at the cost of little to no adaptations for transport safety, placing the plant’s vegetative organs in jeopardy during drought events. Analysis of the thickness-to-span ratio of Asteroxylon’s tracheids suggests that environmental conditions of reduced relative

  2. Three stages in the Late Paleozoic to Triassic magmatism of southwestern Gondwana, and the relationships with the volcanogenic events in coeval basins

    NASA Astrophysics Data System (ADS)

    Sato, Ana María; Llambías, Eduardo J.; Basei, Miguel A. S.; Castro, Carlos E.

    2015-11-01

    The intermediate to acid Choiyoi Magmatic Province is the most conspicuous feature along the Late Paleozic continental margin of southwestern Gondwana, and is generally regarded as the possible source for the widespread ash fall deposits interlayered with sedimentary sequences in the adjacent Gondwana basins. The Choiyoi magmatism is geologically constrained between the early Permian San Rafael orogenic phase and the Triassic extensional Huarpica phase in the region of Argentine Frontal Cordillera, Precordillera and San Rafael Block. In order to better assess the Choiyoi magmatism in Argentine Frontal Cordillera, we obtained 6 new LA-ICPMS U-Pb ages between 278.8 ± 3.4 Ma and 252.5 ± 1.9 Ma from plutonic rocks of the Colangüil Batholith and an associated volcanic rock. The global analysis of age data compiled from Chilean and Argentine Late Paleozoic to Triassic outcrops allows us to identify three stages of magmatism: (1) pre-Choiyoi orogenic magmatism, (2) Choiyoi magmatism (286-247 Ma), and (3) post-Choiyoi magmatism related to extensional tectonics. In the Choiyoi stage is there an eastward shift and expansion of the magmatism to the southeast, covering an extensive region that defines the Choiyoi magmatic province. On the basis of comparison with the ages from volcanogenic levels identified in the coeval Gondwana basins, we propose: (a) The pre-Choiyoi volcanism from the Paganzo basin (320-296 Ma) probably has a local source in addition to the Frontal Cordillera region. (b) The pre-Choiyoi and Choiyoi events identified in the Paraná basin (304-275 Ma) are likely to have their source in the Chilean Precordillera. (c) The early stage of the Choiyoi magmatism found in the Sauce Grande basin (284-281 Ma) may have come from the adjacent Las Matras to Chadileuvú blocks. (d) The pre-Choiyoi and Choiyoi events in the Karoo basins (302-253 Ma) include the longest Choiyoi interval, and as a whole bear the best resemblance to the age records along the Chilean and

  3. Early Tertiary Anaconda metamorphic core complex, southwestern Montana

    USGS Publications Warehouse

    O'Neill, J. M.; Lonn, J.D.; Lageson, D.R.; Kunk, Michael J.

    2004-01-01

    A sinuous zone of gently southeast-dipping low-angle Tertiary normal faults is exposed for 100 km along the eastern margins of the Anaconda and Flint Creek ranges in southwest Montana. Faults in the zone variously place Mesoproterozoic through Paleozoic sedimentary rocks on younger Tertiary granitic rocks or on sedimentary rocks older than the overlying detached rocks. Lower plate rocks are lineated and mylonitic at the main fault and, below the mylonitic front, are cut by mylonitic mesoscopic to microscopic shear zones. The upper plate consists of an imbricate stack of younger-on-older sedimentary rocks that are locally mylonitic at the main, lowermost detachment fault but are characteristically strongly brecciated or broken. Kinematic indicators in the lineated mylonite indicate tectonic transport to the east-southeast. Syntectonic sedimentary breccia and coarse conglomerate derived solely from upper plate rocks were deposited locally on top of hanging-wall rocks in low-lying areas between fault blocks and breccia zones. Muscovite occurs locally as mica fish in mylonitic quartzites at or near the main detachment. The 40Ar/39Ar age spectrum obtained from muscovite in one mylonitic quartzite yielded an age of 47.2 + 0.14 Ma, interpreted to be the age of mylonitization. The fault zone is interpreted as a detachment fault that bounds a metamorphic core complex, here termed the Anaconda metamorphic core complex, similar in age and character to the Bitterroot mylonite that bounds the Bitterroot metamorphic core complex along the Idaho-Montana state line 100 km to the west. The Bitterroot and Anaconda core complexes are likely components of a continuous, tectonically integrated system. Recognition of this core complex expands the region of known early Tertiary brittle-ductile crustal extension eastward into areas of profound Late Cretaceous contractile deformation characterized by complex structural interactions between the overthrust belt and Laramide basement uplifts

  4. Structure and Evolution of the Central Andes of Peru

    NASA Astrophysics Data System (ADS)

    Gonzalez, L.; Pfiffner, O. A.

    2009-04-01

    Three major units make up the Andes in Peru: (1) The Western Cordillera consists of the Cretaceous Coastal Batholith intruding Jurassic to Cretaceous volcaniclastics (Casma group) in the west, and a fold-and-thrust belt of Mesozoic sediments in the east. Eocene and Miocene volcanics (Calipuy group and equivalents) overly all of these rock types. (2) The Central Highland contains a folded Paleozoic-Mesozoic sedimentary sequence overlain by thick Quaternary deposits. A major fault puts Neoproterozoic basement rocks of the Eastern Cordillera next to these units. (3) In the Eastern Cordillera, Late Paleozoic clastic successions unconformably overly folded Early Paleozoic sediments and a Neoproterozoic basement in the east. Permian (locally Triassic) granitoids intruded these units and were affected by folding and thrusting. In the core of the Eastern Cordillera, Early Cretaceous overly Early or Late Paleozoic strata. To the west, a thrust belt of Paleozoic to Cenozoic strata forms the transition to the foreland of the Brasilian shield. The most external part of this thrust belt involves Pliocene sediments and is referred to as Subandine zone. The Coastal Batholith is internally undeformed. The adjacent fold-and-thrust belt to the east is characterized by tight, nearly isoclinal upright folds with amplitudes of up to 1000 m. At the surface only Cretaceous rocks are observed. Using balancing techniques, a detachment horizon at the base of the Lowermost Cretaceous (Goyallarisquizga group - Oyon Formation) can be proposed. Further east, folds are more open, asymmetric and east verging, Jurassic sediments appear in the cores of the anticlines. The abrupt change in style from upright tight folding in the west to more open folding in the east is explained by a primary difference in the depositional sequence, most probably associated with synsedimentary faulting. The overlying volcanics of the Calipuy group and equivalents are, in turn, only slightly folded. In the Northern

  5. Preliminary model of the pre-Tertiary basement rocks beneath Yucca Flat, Nevada Test Site, Nevada, based on analysis of gravity and magnetic data

    USGS Publications Warehouse

    Phelps, Geoffrey A.; McKee, Edwin H.; Sweetkind, D.; Langenheim, V.E.

    2000-01-01

    The Environmental Restoration Program of the U.S. Department of Energy, Nevada Operations Office, was developed to investigate the possible consequences to the environment of 40 years of nuclear testing on the Nevada Test Site. The majority of the tests were detonated underground, introducing contaminants into the ground-water system (Laczniak and others, 1996). An understanding of the ground-water flow paths is necessary to evaluate the extent of ground-water contamination. This report provides information specific to Yucca Flat on the Nevada Test Site. Critical to understanding the ground-water flow beneath Yucca Flat is an understanding of the subsurface geology, particularly the structure and distribution of the pre-Tertiary rocks, which comprise both the major regional aquifer and aquitard sequences (Winograd and Thordarson, 1975; Laczniak and others, 1996). Because the pre-Tertiary rocks are not exposed at the surface of Yucca Flat their distribution must be determined through well logs and less direct geophysical methods such as potential field studies. In previous studies (Phelps and others, 1999; Phelps and Mckee, 1999) developed a model of the basement surface of the Paleozoic rocks beneath Yucca Flat and a series of normal faults that create topographic relief on the basement surface. In this study the basement rocks and structure of Yucca Flat are examined in more detail using the basement gravity anomaly derived from the isostatic gravity inversion model of Phelps and others (1999) and high-resolution magnetic data, as part of an effort to gain a better understanding of the Paleozoic rocks beneath Yucca Flat in support of groundwater modeling.

  6. Detrital zircon ages in Korean mid-Paleozoic meta-sandstones (Imjingang Belt and Taean Formation): Constraints on tectonic and depositional setting, source regions and possible affinity with Chinese terranes

    NASA Astrophysics Data System (ADS)

    Han, Seokyoung; de Jong, Koen; Yi, Keewook

    2017-08-01

    Sensitive High-Resolution Ion Microprobe (SHRIMP) U-Th-Pb isotopic data of detrital zircons from mature, quartz-rich meta-sandstones are used to constrain possible tectonic affinities and source regions of the rhythmically layered and graded-bedded series in the Yeoncheon Complex (Imjingang Belt) and the correlative Taean Formation. These metamorphic marine turbidite sequences presently occur along the Paleoproterozoic (1.93-1.83 Ga) Gyeonggi Massif, central Korea's main high-grade metamorphic gneiss terrane. Yet, detrital zircons yielded highly similar multimodal age spectra with peaks that do not match the age repartition in these basement rocks, as late (1.9-1.8 Ga) and earliest (∼ 2.5 Ga) Paleoproterozoic detrital modes are subordinate but, in contrast, Paleozoic (440-425 Ma) and Neoproterozoic (980-920 Ma) spikes are prominent, yet the basement essentially lacks lithologies with such ages. The youngest concordant zircon ages in each sample are: 378, 394 and 423 Ma. The maturity of the meta-sandstones and the general roundness of zircons of magmatic signature, irrespective of their age, suggest that sediments underwent considerable transport from source to sink, and possibly important weathering and recycling, which may have filtered out irradiation-weakened metamorphic zircon grains. In combination with these isotopic data, presence of a low-angle ductile fault contact between the Yeoncheon Complex and the Taean Formation and the underlying mylonitized Precambrian basement implies that they are in tectonic contact and do not have a stratigraphic relationship, as often assumed. Consequently, in all likelihood, both meta-sedimentary formations: (1) are at least of early Late Devonian age, (2) received much of their detritus from distant (reworked) Silurian-Devonian and Early Neoproterozoic magmatic sources, not present in the Gyeonggi Massif, (3) and not from Paleoproterozoic crystalline rocks of this massif, or other Korean Precambrian basement terranes, and

  7. Early trace of life from 3.95 Ga sedimentary rocks in Labrador, Canada

    NASA Astrophysics Data System (ADS)

    Tashiro, Takayuki; Ishida, Akizumi; Hori, Masako; Igisu, Motoko; Koike, Mizuho; Méjean, Pauline; Takahata, Naoto; Sano, Yuji; Komiya, Tsuyoshi

    2017-09-01

    The vestiges of life in Eoarchean rocks have the potential to elucidate the origin of life. However, gathering evidence from many terrains is not always possible, and biogenic graphite has thus far been found only in the 3.7-3.8 Ga (gigayears ago) Isua supracrustal belt. Here we present the total organic carbon contents and carbon isotope values of graphite (δ13Corg) and carbonate (δ13Ccarb) in the oldest metasedimentary rocks from northern Labrador. Some pelitic rocks have low δ13Corg values of -28.2, comparable to the lowest value in younger rocks. The consistency between crystallization temperatures of the graphite and metamorphic temperature of the host rocks establishes that the graphite does not originate from later contamination. A clear correlation between the δ13Corg values and metamorphic grade indicates that variations in the δ13Corg values are due to metamorphism, and that the pre-metamorphic value was lower than the minimum value. We concluded that the large fractionation between the δ13Ccarb and δ13Corg values, up to 25‰, indicates the oldest evidence of organisms greater than 3.95 Ga. The discovery of the biogenic graphite enables geochemical study of the biogenic materials themselves, and will provide insight into early life not only on Earth but also on other planets.

  8. Early trace of life from 3.95 Ga sedimentary rocks in Labrador, Canada.

    PubMed

    Tashiro, Takayuki; Ishida, Akizumi; Hori, Masako; Igisu, Motoko; Koike, Mizuho; Méjean, Pauline; Takahata, Naoto; Sano, Yuji; Komiya, Tsuyoshi

    2017-09-27

    The vestiges of life in Eoarchean rocks have the potential to elucidate the origin of life. However, gathering evidence from many terrains is not always possible, and biogenic graphite has thus far been found only in the 3.7-3.8 Ga (gigayears ago) Isua supracrustal belt. Here we present the total organic carbon contents and carbon isotope values of graphite (δ 13 C org ) and carbonate (δ 13 C carb ) in the oldest metasedimentary rocks from northern Labrador. Some pelitic rocks have low δ 13 C org values of -28.2, comparable to the lowest value in younger rocks. The consistency between crystallization temperatures of the graphite and metamorphic temperature of the host rocks establishes that the graphite does not originate from later contamination. A clear correlation between the δ 13 C org values and metamorphic grade indicates that variations in the δ 13 C org values are due to metamorphism, and that the pre-metamorphic value was lower than the minimum value. We concluded that the large fractionation between the δ 13 C carb and δ 13 C org values, up to 25‰, indicates the oldest evidence of organisms greater than 3.95 Ga. The discovery of the biogenic graphite enables geochemical study of the biogenic materials themselves, and will provide insight into early life not only on Earth but also on other planets.

  9. Geologic framework of pre-Cretaceous rocks in the Southern Ute Indian Reservation and adjacent areas, southwestern Colorado and northwestern New Mexico

    USGS Publications Warehouse

    Condon, Steven M.

    1992-01-01

    This report is a discussion and summary of Jurassic and older rocks in the Southern Ute Indian Reservation and adjacent areas, southwestern Colorado and northwestern New Mexico, and is based on analysis of geophysical logs and observations of outcrops. The Reservation, which is located in the northern San Juan Basin, has been the site of deposition of sediments for much of the Phanerozoic. Geologic times represented on the Reservation are the Precambrian, Cambrian, Devonian, Mississippian, Pennsylvanian, Permian, Triassic, Jurassic, Cretaceous, Tertiary, and Quaternary. Rocks of Ordovician and Silurian age have not been reported in this region. Thicknesses of pre-Cretaceous sedimentary rocks range from about 750 feet (229 meters) on the Archuleta arch, east of the Reservation, to more than 8,300 feet (2,530 meters) just northwest of the Reservation. About 5,500 feet (1,676 meters) of pre-Cretaceous sedimentary rocks occur in the central part of the Reservation, near Ignacio. At Ignacio the top of the Jurassic lies at a depth of 7,600 feet (2,316 meters) below the surface, which is composed of Tertiary rocks. As much as 2,500 feet (762 meters) of Tertiary rocks occur in the area. More than 10,000 feet (3,048 meters) of Cretaceous and younger rocks, and 15,600 feet (4,755 meters) of all Phanerozoic sedimentary rocks occur in the vicinity of the Reservation. In the early Paleozoic the area that includes the Southern Ute Reservation was on the stable western shelf of the craton. During this time sediments that compose the following shallow-marine clastic and carbonate rocks were deposited: the Upper Cambrian Ignacio Quartzite (0-150 feet; 0-46 meters), Upper Devonian Elbert Formation (50-200 feet; 15-61 meters), Upper Devonian Ouray Limestone (10-75 feet; 3-23 meters), and Mississippian Leadville Limestone (0-250 feet; 0-76 meters). Mixed carbonate and clastic deposition, which was punctuated by a unique episode of deposition of evaporite sediments, continued through

  10. Deformation of the Roberts Mountains Allochthon in north-central Nevada

    USGS Publications Warehouse

    Evans, James George; Theodore, Ted G.

    1978-01-01

    During the Antler orogeny in Late Devonian and Early Mississippian time, early and middle Paleozoic siliceous rocks, largely chert and sha1e, were thrust eastward for 90 to 160 km over coexisting carbonate rocks. Minor and major structures of two small areas of the allochthon at Battle Mountain and in the southern Tuscarora Mountains were studied in order to characterize the deformation and test the consistency of the movement plan with respect to the large eastward displacement. In the Battle Mountain area, the lower Paleozoic Scott Canyon and Valmy Formations were deformed in the Antler orogeny but were unaffected by later tectonism during late Paleozoic or early Mesozoic. In the southern Tuscarora Mountains area, the Ordovician and Silurian siliceous rocks deformed in the Antler Orogeny were deformed by later, possibly Mesozoic, folding and thrusting. Most of the minor folding visible in the allochthon is in the cheret, but proportionally more of the strain was taken up in the shale and argillite, both poorly exposed but predominant rock types. Most minor folds, concentric in form, plunge at small angles to the north-northeast and south-southwest with steeply dipping or vertical axial planes. The b-fabric axis, parallel to these folds, is identical apparently to the B-kinematic axis. The horizontal component of tectonic shortening of the allochthon, N. 70?-75? W. both in the Battle Mountain area and in the southern Tuscarora Mountains area, is therefore consistent with an eastward direction of movement of the allochthon. Folds with west- northwest trends locally present in the allochthon, may have formed in the direction of tectonic transport. In the southern Tuscarora Mountains, local strain in and below the allochthon was different from the prevailing strain in the allochthon, and tectonic shortening was locally at large angles to the accepted direction of movement of the allochthon.

  11. Paleogeographic setting of Pennsylvanian Tyler formation and relation to underlying Mississippian rocks in Montana and North Dakota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maughan, E.K.

    Pennsylvanian sedimentary rocks in the northern Rocky Mountains and in the northern Great Plains of the United States were deposited primarily on a broad marine shelf between the North American craton and the late Paleozoic continental margin in Idaho and adjacent states. The Lower Pennsylvanian (Morrowan) Tyler Formation comprises detrital sediments and some limestone beds in Montana and North Dakota that were deposited along an eastward-transgressing marine shoreline after regional uplift, warping, and faulting had resulted in an erosional unconformity on top of Mississippian strata. The Lower Pennsylvanian shoreline finally extended onto the cratonic interior in eastern North Dakota. Initialmore » Tyler sediments were deposited as a deltaic and fluviolacustrine complex succeeded by littoral deposits as the Early Pennsylvanian shoreline transgressed eastward across the shelf. The Tyler Formation is subdivided into the Stonehouse Canyon Member at the base, the Bear Gulch Member, and the Cameron Creek Member at the top.« less

  12. Naturally occurring contaminants in the Piedmont and Blue Ridge crystalline-rock aquifers and Piedmont Early Mesozoic basin siliciclastic-rock aquifers, eastern United States, 1994–2008

    USGS Publications Warehouse

    Chapman, Melinda J.; Cravotta, Charles A.; Szabo, Zoltan; Lindsay, Bruce D.

    2013-01-01

    Groundwater quality and aquifer lithologies in the Piedmont and Blue Ridge Physiographic Provinces in the eastern United States vary widely as a result of complex geologic history. Bedrock composition (mineralogy) and geochemical conditions in the aquifer directly affect the occurrence (presence in rock and groundwater) and distribution (concentration and mobility) of potential naturally occurring contaminants, such as arsenic and radionuclides, in drinking water. To evaluate potential relations between aquifer lithology and the spatial distribution of naturally occurring contaminants, the crystalline-rock aquifers of the Piedmont and Blue Ridge Physiographic Provinces and the siliciclastic-rock aquifers of the Early Mesozoic basin of the Piedmont Physiographic Province were divided into 14 lithologic groups, each having from 1 to 16 lithochemical subgroups, based on primary rock type, mineralogy, and weathering potential. Groundwater-quality data collected by the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program from 1994 through 2008 from 346 wells and springs in various hydrogeologic and land-use settings from Georgia through New Jersey were compiled and analyzed for this study. Analyses for most constituents were for filtered samples, and, thus, the compiled data consist largely of dissolved concentrations. Concentrations were compared to criteria for protection of human health, such as U.S. Environmental Protection Agency (USEPA) drinking water maximum contaminant levels and secondary maximum contaminant levels or health-based screening levels developed by the USGS NAWQA Program in cooperation with the USEPA, the New Jersey Department of Environmental Protection, and Oregon Health & Science University. Correlations among constituent concentrations, pH, and oxidation-reduction (redox) conditions were used to infer geochemical controls on constituent mobility within the aquifers. Of the 23 trace-element constituents evaluated

  13. Petrogenesis of the ∼500 Ma Fushui mafic intrusion and Early Paleozoic tectonic evolution of the Northern Qinling Belt, Central China

    NASA Astrophysics Data System (ADS)

    Shi, Yu; Pei, Xiaoli; Castillo, Paterno R.; Liu, Xijun; Ding, Haihong; Guo, Zhichao

    2017-06-01

    The Fushui mafic intrusion in the Qinling orogenic belt (QOB) is composed of meta-gabbro, meta-gabbro-diorite, diorite, and syenite. Most of these rocks are metamorphosed under the upper greenschist facies to lower amphibolite facies metamorphism. Zircon separates from eight samples have LA-ICP-MS U-Pb ages of 497-501 Ma which are taken to be the emplacement age of magmas that formed the Fushui intrusion. Most of the zircon grains exhibit negative εHf values, correspond to TDM2 model ages of late Paleoproterozoic-early Mesoproterozoic or Neoproterozoic and suggest that the mafic rocks were most probably derived from mafic melts produced by partial melting of a previously metasomatized lithospheric mantle. The intrusion is not extensively contaminated by crustal materials and most chemical compositions of rocks are not modified during the greenschist to amphibolite-facies metamorhism. Rocks from the intrusion have primitive mantle-normalized trace element patterns with significant enrichment in light-REE and large ion lithophile elements (LILE) and depletion in high field-strength elements (HFSE). On the basis of the trace element contents, the Fushui intrusion was derived from parental magmas generated by <10% partial melting of both phlogopite-lherzolite and garnet-lherzolite mantle sources. These sources are best interpreted to be in a subduction-related arc environment and have been modified by fluids released from a subducting slab. The formation of the Fushui intrusion was related to the subduction of the Paleotethyan Shangdan oceanic lithosphere at ∼500 Ma.

  14. LA-ICP-MS zircon U-Pb and muscovite K-Ar ages of basement rocks from the south arm of Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    Jaya, Asri; Nishikawa, Osamu; Hayasaka, Yasutaka

    2017-11-01

    The zircon U-Pb and muscovite K-Ar age from the Bantimala, Barru and Biru basement complexes in the South Arm of Sulawesi, Indonesia provide new information regarding the timing of magmatism, metamorphism and sedimentation in this region and have implications for the origin and evolution of the study area. The study area is at the juncture between the southeast margin of Sundaland and Bird's Head-Australia. The age of both the zircon U-Pb of detrital materials in the Bantimala Complex and the muscovite K-Ar of amphibolite in the Biru Complex fall in the Late Early Cretaceous (between 109 and 115 Ma), which is a similar age range to previous data for both the sedimentary and metamorphic rocks. The youngest detrital zircon in the schist samples from the Barru Complex fall into the Triassic in age (between 243 and 247 Ma). These age data indicate that the protolith of all three basement complexes were involved in the subduction system and metamorphosed in the late Early Cretaceous, but there are several differences in their deposition environment under and out of the influence of the late Early Cretaceous magmatism in the Bantimala and Barru Complexes, respectively. Felsic igneous activities are confirmed in the Late Cretaceous and the Eocene by the zircon U-Pb age of igneous rocks intruding or included as detrital fragments in three basement complexes. These dates are similar to those reported from the Meratus Complex of South Kalimantan. The detrital zircon age distributions of the basement rocks in the South Arm of Sulawesi display predominant Mesozoic (Cretaceous and Triassic) and Paleozoic populations with a small population of Proterozoic ages supporting the hypothesis that the West Sulawesi block originated from the region of the circum Bird's Head-Australian, namely the Inner Banda block. The absence of Jurassic zircon age population in the South Arm of Sulawesi suggests the division of the South Arm of Sulawesi from the Inner Banda block in early stage of

  15. Geologic map of the Big Delta B-2 quadrangle, east-central Alaska

    USGS Publications Warehouse

    Day, Warren C.; Aleinikoff, John N.; Roberts, Paul; Smith, Moira; Gamble, Bruce M.; Henning, Mitchell W.; Gough, Larry P.; Morath, Laurie C.

    2003-01-01

    New 1:63,360-scale geologic mapping of the Big Delta B-2 quadrangle provides important data on the structural setting and age of geologic units, as well as on the timing of gold mineralization plutonism within the Yukon-Tanana Upland of east-central Alaska. Gold exploration has remained active throughout the region in response to the discovery of the Pogo gold deposit, which lies within the northwestern part of the quadrangle near the south bank of the Goodpaster River. Geologic mapping and associated geochronological and geochemical studies by the U.S. Geological Survey (USGS) and the Alaska Department of Natural Resources, Division of Mining and Water Management, provide baseline data to help understand the regional geologic framework. Teck Cominco Limited geologists have provided the geologic mapping for the area that overlies the Pogo gold deposit as well as logistical support, which has lead to a much improved and informative product. The Yukon-Tanana Upland lies within the Tintina province in Alaska and consists of Paleozoic and possibly older(?) supracrustal rocks intruded by Paleozoic (Devonian to Mississippian) and Cretaceous plutons. The oldest rocks in the Big Delta B-2 quadrangle are Paleozoic gneisses of both plutonic and sedimentary origin. Paleozoic deformation, potentially associated with plutonism, was obscured by intense Mesozoic deformation and metamorphism. At least some of the rocks in the quadrangle underwent tectonism during the Middle Jurassic (about 188 Ma), and were subsequently deformed in an Early Cretaceous contractional event between about 130 and 116 Ma. New U-Pb SHRIMP data presented here on zircons from the Paleozoic biotite gneisses record inherited cores that range from 363 Ma to about 2,130 Ma and have rims of euhedral Early Cretaceous metamorphic overgrowths (116 +/- 4 Ma), interpreted to record recrystallization during Cretaceous west-northwest-directed thrusting and folding. U-Pb SHRIMP dating of monazite from a Paleozoic

  16. An alternative hypothesis for the mid-Paleozoic Antler orogeny in Nevada

    USGS Publications Warehouse

    Ketner, Keith B.

    2012-01-01

    A great volume of Mississippian orogenic deposits supports the concept of a mid-Paleozoic orogeny in Nevada, and the existence and timing of that event are not questioned here. The nature of the orogeny is problematic, however, and new ideas are called for. The cause of the Antler orogeny, long ascribed to plate convergence, is here attributed to left-lateral north-south strike-slip faulting in northwestern Nevada. The stratigraphic evidence originally provided in support of an associated regional thrust fault, the Roberts Mountains thrust, is now known to be invalid, and abundant, detailed map evidence testifies to post-Antler ages of virtually all large folds and thrust faults in the region. The Antler orogeny was not characterized by obduction of the Roberts Mountains allochthon; rocks composing the "allochthon" essentially were deposited in situ. Instead, the orogeny was characterized by appearance of an elongate north-northeast-trending uplift through central Nevada and by two parallel flanking depressions. The eastern depression was the Antler foreland trough, into which sediments flowed from both east and west in the Mississippian. The western depression was the Antler hinterland trough into which sediments also flowed from both east and west during the Mississippian. West of the hinterland trough, across a left-lateral strike-slip fault, an exotic landmass originally attached to the northwestern part of the North American continent was moved southward 1700 km along a strike-slip fault. An array of isolated blocks of shelf carbonate rocks, long thought to be autochthonous exposures in windows of the Roberts Mountains allochthon, is proposed here as an array of gravity-driven slide blocks dislodged from the shelf, probably initiated by the Late Devonian Alamo impact event.

  17. Distribution, facies, ages, and proposed tectonic associations of regionally metamorphosed rocks in east- and south-central Alaska

    USGS Publications Warehouse

    Dusel-Bacon, Cynthia; Csejtey, Bela; Foster, Helen L.; Doyle, Elizabeth O.; Nokleberg, Warren J.; Plafker, George

    1993-01-01

    Most of the exposed bedrock in east- and south-central Alaska has been regionally metamorphosed and deformed during Mesozoic and early Cenozoic time. All the regionally metamorphosed rocks are assigned to metamorphic-facies units on the basis of their temperature and pressure conditions and metamorphic age. North of the McKinley and Denali faults, the crystalline rocks of the Yukon- Tanana upland and central Alaska Range compose a sequence of dynamothermally metamorphosed Paleozoic and older(?) metasedimentary rocks and metamorphosed products of a Devonian and Mississippian continental-margin magmatic arc. This sequence was extensively intruded by postmetamorphic mid-Cretaceous and younger granitoids. Many metamorphic-unit boundaries in the Yukon-Tanana upland are low-angle faults that juxtapose units of differing metamorphic grade, which indicates that metamorphism predated final emplacement of the fault-bounded units. In some places, the relation of metamorphic grade across a fault is best explained by contractional faulting; in other places, it is suggestive of extensional faulting.Near the United States-Canadian border in the central Yukon- Tanana upland, metamorphism, plutonism, and thrusting occurred during a latest Triassic and Early Jurassic event that presumably resulted from the accretion of a terrane that had affinities to the Stikinia terrane onto the continental margin of North America. Elsewhere in the Yukon-Tanana upland, metamorphic rocks give predominantly late Early Cretaceous isotopic ages. These ages are interpreted to date either the timing of a subsequent Early Cretaceous episode of crustal thickening and metamorphism or, assuming that these other areas were also originally heated during the latest Triassic to Early Jurassic and remained buried, the timing of their uplift and cooling. This uplift and cooling may have resulted from extension.South of the McKinley and Denali faults and north of the Border Ranges fault system, medium

  18. Redescription of Bellerophon asiaticus Wirth (Early Triassic: Gastropoda) from China, and a survey of Triassic Bellerophontacea.

    USGS Publications Warehouse

    Yochelson, E.Y.; Yin, Hongfu

    1985-01-01

    The bilaterally symmetrical gastropod Bellerophon asiaticus Wirth is redescribed from specimens collected in Guizhou Province, PRC. The species is reassigned to Retispira, a common late Paleozoic taxon. Retispira is another example of a Paleozoic gastropod genus that crossed the era boundary. Associated pelecypods that date these Guizhou occurrences as Early Triassic are well known species in PRC and are illustrated. Both Bellerophon and Euphemites probably occur in the Early Triassic, though the quality of illustrations leaves some uncertainty; the existence of Stachella in the Triassic is more problematic. There was no dramatic reduction of the Bellerophontacea from their abundance and diversity in the Permian. It may be a general phenomenon that most late Paleozoic family-level and many generic-level taxa of gastropods were unaffected by the late Permian 'crisis'. from Authors

  19. Graphite in the Bishop Tuff and its effect on postcaldera oxygen fugacity

    USGS Publications Warehouse

    Hildreth, Edward; Ryan-Davis, Juliet; Harlow, Benjamin

    2017-01-01

    Several cubic kilometers of Paleozoic graphite-bearing argillitic country rocks are present as lithic fragments in Bishop Tuff ignimbrite and fallout. The lithics were entrained by the 650 km3 of rhyolite magma that vented during the 5- to 6-day-long, caldera-forming eruption at Long Valley, California. The caldera is floored by a 350 km2 roof plate that collapsed during the eruption and consists in large part of the Paleozoic strata that provided the abundant hornfelsed metapelitic lithic clasts in the tuff. Graphite has been identified by Raman spectroscopy, electron-dispersive spectroscopy, and X-ray diffraction as an irregularly dispersed component in the small fraction of Bishop Tuff pumice that is dark-colored. Carbon concentration has been determined in pumice, lithics, and wall rocks. Values of δ13C range from –21‰ to –29‰ Vienna Peedee Belemnite (VPDB) for pumice, lithics, and argillitic wall rocks, reflecting the biogenic origin of the reduced carbon in oxygen-limited black Paleozoic marine mudrocks. Carbonate contents, measured separately, are negligible in fresh pumice and lithics. Microprobe analyses of titanomagnetite-ilmenite pairs show that oxygen-fugacity values of numerous batches of postcaldera Early Rhyolite (750–640 ka; ~100 km3) are up to one log unit more reduced than those of the temperature–oxygen fugacity (T-fO2) array of the Bishop Tuff (767 ka), despite similar major-element compositions and Fe-Ti–oxide temperature ranges. All of the many batches of Early Rhyolite, which erupted episodically over an interval of ~125,000 years, yield the reduced fO2 values, indicating that reaction with graphite lowered magmatic fO2 after the caldera-forming eruption but before the first eruption of Early Rhyolite. It is inferred that reaction of postcaldera rhyolite magma with the reduced carbon in a great mass of subsided roof rocks lowered its fO2. It is suggested that comparable effects could have attended caldera collapse of other

  20. The potential of paleozoic nonmarine trace fossils for paleoecological interpretations

    USGS Publications Warehouse

    Maples, C.G.; Archer, A.W.

    1989-01-01

    Many Late Paleozoic environments have been interpreted as marine because of the co-occurrence of supposedly exclusively marine trace fossils. Beginning in the Late Ordovician, however, nonmarine trace-fossil diversity increased throughout the Paleozoic. This diversification of nonmarine organisms and nonmarine trace fossils was especially prevalent in Devonian and later times. Diversification of freshwater organisms is indicated by the large number of freshwater fish, arthropods, annelids and molluscs that had developed by the Carboniferous. In addition to diverse freshwater assemblages, entirely terrestrial vertebrate and invertebrate ecosystems had developed by the Devonian. This rapid diversification of freshwater and terrestrial organisms is inherently linked to development and diversification of land plants and subsequent shedding of large quantities of organic detritus in nonmarine and marginal-marine areas. Nearshore marine organisms and their larvae that are able to tolerate relatively short periods of lowered salinities will follow salt-water wedges inland during times of reduced freshwater discharge. Similarly, amphidromous marine organisms will migrate periodically inland into nonmarine environments. Undoubtedly, both of these processes were active in the Paleozoic. However, both processes are restricted to stream/distributary channels, interdistributary bays, or estuaries. Therefore, the presence of diverse trace-fossil assemblages in association with floodplain deposits is interpreted to reflect true nonmarine adaptation and diversity. Conversely, diverse trace-fossil assemblages in association with stream/distributary channel deposits, interdistributary-bay deposits, or estuarine deposits may reflect migration of salt-water wedges inland, or migration of marine organisms into freshwater environments (amphidromy), or both. ?? 1989.

  1. Peroxy defects in Rocks and H2O2 formation on the early Earth

    NASA Astrophysics Data System (ADS)

    Gray, A.; Balk, M.; Mason, P.; Freund, F.; Rothschild, L.

    2013-12-01

    An oxygen-rich atmosphere appears to have been a prerequisite for complex life to evolve on Earth and possibly elsewhere in the Universe. The question is still shrouded in uncertainty how free oxygen became available on the early Earth. Here we study processes of peroxy defects in silicate minerals which, upon weathering, generate mobilized electronic charge carriers resulting in oxygen formation in an initially anoxic subsurface environment. Reactive Oxygen Species (ROS) are precursors to molecular oxygen during this process. Due to their toxicity they may have strongly influenced the evolution of life. ROS are generated during hydrolysis of peroxy defects, which consist of pairs of oxygen anions. A second pathway for formation occurs during (bio) transformations of iron sulphide minerals. ROS are produced and consumed by intracellular and extracellular reactions of Fe, Mn, C, N, and S species. We propose that despite an overall reducing or neutral oxidation state of the macroenvironment and the absence of free O2 in the atmosphere, microorganisms on the early Earth had to cope with ROS in their microenvironments. They were thus under evolutionary pressure to develop enzymatic and other defenses against the potentially dangerous, even lethal effects of ROS and oxygen. We have investigated how oxygen might be released through weathering and test microorganisms in contact with rock surfaces. Our results show how early Life might have adapted to oxygen. Early microorganisms must have "trained" to detoxify ROS prior to the evolution of aerobic metabolism and oxygenic photosynthesis. A possible way out of this dilemma comes from a study of igneous and high-grade metamorphic rocks, whose minerals contain a small but significant fraction of oxygen anions in the valence state 1- , forming peroxy links of the type O3Si-OO-SiO3 [1, 2]. As water hydrolyzes the peroxy links hydrogen peroxide, H2O2, forms. Continued experimental discovery of H2O2 formation at rock

  2. In search of early life: Carbonate veins in Archean metamorphic rocks as potential hosts of biomarkers

    NASA Astrophysics Data System (ADS)

    Peters, Carl A.; Piazolo, Sandra; Webb, Gregory E.; Dutkiewicz, Adriana; George, Simon C.

    2016-11-01

    The detection of early life signatures using hydrocarbon biomarkers in Precambrian rocks struggles with contamination issues, unspecific biomarkers and the lack of suitable sedimentary rocks due to extensive thermal overprints. Importantly, host rocks must not have been exposed to temperatures above 250 °C as at these temperatures biomarkers are destroyed. Here we show that Archean sedimentary rocks from the Jeerinah Formation (2.63 billion yrs) and Carawine Dolomite (2.55 billion yrs) of the Pilbara Craton (Western Australia) drilled by the Agouron Institute in 2012, which previously were suggested to be suitable for biomarker studies, were metamorphosed to the greenschist facies. This is higher than previously reported. Both the mineral assemblages (carbonate, quartz, Fe-chlorite, muscovite, microcline, rutile, and pyrite with absence of illite) and chlorite geothermometry suggest that the rocks were exposed to temperatures higher than 300 °C and probably ∼400 °C, consistent with greenschist-facies metamorphism. This facies leads to the destruction of any biomarkers and explains why the extraction of hydrocarbon biomarkers from pristine drill cores has not been successful. However, we show that the rocks are cut by younger formation-specific carbonate veins containing primary oil-bearing fluid inclusions and solid bitumens. Type 1 veins in the Carawine Dolomite consist of dolomite, quartz and solid bitumen, whereas type 2 veins in the Jeerinah Formation consist of calcite. Within the veins fluid inclusion homogenisation temperatures and calcite twinning geothermometry indicate maximum temperatures of ∼200 °C for type 1 veins and ∼180 °C for type 2 veins. Type 1 veins have typical isotopic values for reprecipitated Archean sea-water carbonates, with δ13CVPDB ranging from - 3 ‰ to 0‰ and δ18OVPDB ranging from - 13 ‰ to - 7 ‰, while type 2 veins have isotopic values that are similar to hydrothermal carbonates, with δ13CVPDB ranging from - 18

  3. Sedimentary facies of the upper Cambrian (Furongian; Jiangshanian and Sunwaptan) Tunnel City Group, Upper Mississippi Valley: new insight on the old stormy debate

    USGS Publications Warehouse

    Eoff, Jennifer D.

    2014-01-01

    New data from detailed measured sections permit a comprehensive revision of the sedimentary facies of the Furongian (upper Cambrian; Jiangshanian and Sunwaptan stages) Tunnel City Group (Lone Rock Formation and Mazomanie Formation) of Wisconsin and Minnesota. Heterogeneous sandstones, comprising seven lithofacies along a depositional transect from shoreface to transitional-offshore environments, record sedimentation in a storm-dominated, shallow-marine epicontinental sea. The origin of glauconite in the Birkmose Member and Reno Member of the Lone Rock Formation was unclear, but its formation and preserved distribution are linked to inferred depositional energy rather than just net sedimentation rate. Flat-pebble conglomerate, abundant in lower Paleozoic strata, was associated with the formation of a condensed section during cratonic flooding. Hummocky cross-stratification was a valuable tool used to infer depositional settings and relative paleobathymetry, and the model describing formation of this bedform is expanded to address flow types dominant during its genesis, in particular the importance of an early unidirectional component of combined flow. The depositional model developed here for the Lone Rock Formation and Mazomanie Formation is broadly applicable to other strata common to the early Paleozoic that document sedimentation along flooded cratonic interiors or shallow shelves.

  4. Major structural controls on the distribution of pre-Tertiary rocks, Nevada Test Site vicinity, southern Nevada

    USGS Publications Warehouse

    Cole, James C.

    1997-01-01

    The lateral and vertical distributions of Proterozoic and Paleozoic sedimentary rocks in southern Nevada are the combined products of original stratigraphic relationships and post-depositional faults and folds. This map compilation shows the distribution of these pre-Tertiary rocks in the region including and surrounding the Nevada Test Site. It is based on considerable new evidence from detailed geologic mapping, biostratigraphic control, sedimentological analysis, and a review of regional map relationships.Proterozoic and Paleozoic rocks of the region record paleogeographic transitions between continental shelf depositional environments on the east and deeper-water slopefacies depositional environments on the west. Middle Devonian and Mississippian sequences, in particular, show strong lateral facies variations caused by contemporaneous changes in the western margin of North America during the Antler orogeny. Sections of rock that were originally deposited in widely separated facies localities presently lie in close proximity. These spatial relationships chiefly result from major east- and southeastdirected thrusts that deformed the region in Permian or later time.Somewhat younger contractional structures are identified within two irregular zones that traverse the region. These folds and thrusts typically verge toward the west and northwest and overprint the relatively simple pattern of the older contractional terranes. Local structural complications are significant near these younger structures due to the opposing vergence and due to irregularities in the previously folded and faulted crustal section.Structural and stratigraphic discontinuities are identified on opposing sides of two north-trending fault zones in the central part of the compilation region north of Yucca Flat. The origin and significance of these zones are enigmatic because they are largely covered by Tertiary and younger deposits. These faults most likely result from significant lateral offset

  5. Preliminary Geologic Map of the Little Piute Mountains, California; a Digital Database

    USGS Publications Warehouse

    Howard, Keith A.; Dennis, Michael L.; Karlstrom, Karl; Phelps, Geoffrey A.

    1997-01-01

    Introduction The Little Piute Mountains in the eastern Mojave Desert expose a series of folds and thrust faults involving metamorphosed Paleozoic strata (Miller and others, 1982; Stone and others, 1983). Detailed mapping of these structures was undertaken to help elucidate regional Mesozoic structural evolution. Earlier geologic maps were prepared by Cooksley (1960a,b,c,d, generalized by Bishop, 1964) and Stone and others (1983). Deformed and metamorphosed Paleozoic and Triassic rocks form a stratal succession that was originally deposited in shallow seas on the North American craton. Based on lithologic sequence the units are correlated with unmetamorphosed equivalents 200 km to the northeast in the Grand Canyon, Arizona, and 35-50 km to the west in the Marble, Ship, and Providence Mountains, California (Stone and others, 1983). The Paleozoic sequence rests nonconformably on a heterogeneous basement of polydeformed Early Proterozoic gneiss (Miller and others, 1982; Wooden and Miller, 1990). Triassic and older rocks were deformed, metamorphosed to staurolite or andalusite grade, and intruded concordantly at their base by Late Cretaceous granodiorite (Miller and others, 1982).

  6. Preliminary Geologic Map of the the Little Piute Mountains, San Bernardino County, California

    USGS Publications Warehouse

    Howard, Keith A.; Dennis, Michael L.; Karlstrom, Karl E.; Phelps, Geoffrey A.

    1995-01-01

    Introduction The Little Piute Mountains in the eastern Mojave Desert expose a series of folds and thrust faults involving metamorphosed Paleozoic strata (Miller and others, 1982; Stone and others, 1983). Detailed mapping of these structures was undertaken to help elucidate regional Mesozoic structural evolution. Earlier geologic maps were prepared by Cooksley (1960a,b,c,d, generalized by Bishop, 1964) and Stone and others (1983). Deformed and metamorphosed Paleozoic and Triassic rocks form a stratal succession that was originally deposited in shallow seas on the North American craton. Based on lithologic sequence the units are correlated with unmetamorphosed equivalents 200 km to the northeast in the Grand Canyon, Arizona, and 35-50 km to the west in the Marble, Ship, and Providence Mountains, California (Stone and others, 1983). The Paleozoic sequence rests nonconformably on a heterogeneous basement of polydeformed Early Proterozoic gneiss (Miller and others, 1982; Wooden and Miller, 1990). Triassic and older rocks were deformed, metamorphosed to staurolite or andalusite grade, and intruded concordantly at their base by Late Cretaceous granodiorite (Miller and others, 1982).

  7. Results of paleomagnetic study of Early Proterozoic rocks in the Baikal Range of the Siberian craton

    NASA Astrophysics Data System (ADS)

    Vodovozov, V. Yu.; Didenko, A. N.; Gladkochub, D. P.; Mazukabzov, A. M.; Donskaya, T. V.

    2007-10-01

    This paper presents paleomagnetic results obtained from the study of Early Proterozoic rocks in the Baikal Range of the Siberian craton, namely, the 1850 1880-Ma volcanicalstic rocks of the Akitkanskian series of the North Baikal volcanic-plutonic belt) and 1674-Ma basic dikes of the Chaya complex within the massif. The data of this work are used to reconstruct the development of the Siberian craton structure in the Early Precambrian. The projections of the inferred paleomagnetic directions onto a sphere form S (southern) and W (western) groups of vectors of characteristic magnetization components. The S group consists of three clusters representing primary magnetization components belonging to different time levels of the end of the Early Proterozoic. The W group is represented by directions associated with a metachronous magnetization probably acquired during the Riphean. Four paleomagnetic poles are obtained. Two of them that can be regarded as key poles correspond to time levels of 1875 and 1670 Ma (the Early Proterozoic). The two other poles can be used for a detailed reconstruction of the Proterozoic segment of the Siberian apparent polar wander path. The data presented in the paper indicate that the formation of the southern Siberian craton structure was accomplished at the end of the Early Proterozoic, which resulted in a synchronous motion of different blocks composing the southern flank of the craton (in particular, the Sharyzhalgai and Baikal Ranges).

  8. Water-Rock Reactions on Non-Planetary Bodies in the Early Solar System

    NASA Astrophysics Data System (ADS)

    Zolotov, M. Y.

    2005-12-01

    Reactions of aqueous fluids with rocks shortly after formation of the solar system affected the oxidation states, mineralogy, organic speciation, ice composition, and surface/atmospheric chemistry of asteroids, icy satellites of giant plants, and possibly Kuiper belt objects. Water condensed as ice in the solar nebula, was incorporated into the composition of these bodies together with rocky components represented by extremely reduced and anhydrous nebular condensates (e.g., Fe-rich metal, forsterite, low-Ca pyroxene, troilite, Ca-Mg-Al oxides, phosphides), presolar grains (SiC, graphite, diamond, Al-, Mg-, Ti-oxides) and organic compounds and polymers. Radioactive decay of short-lived radionuclides on small bodies, and accretionary heat and decay of long-lived radionuclides on large bodies provided energy to melt ice. On smaller bodies, low gravity precluded separation of water from rocks and restricted fluid dynamics. On larger bodies, water was separated from descending rocks, limiting the duration of water-rock reactions. Competitive oxidation and hydration by water affected both inorganic and organic compounds in rocks. Oxidation of minerals led to formation of ferrous silicates, magnetite, pyrrhotite, Ni sulfides, Ni-rich metal alloys, chromite, phosphates, carbonates and sulfates. Hydration caused formation of phyllosilicates (serpentine, chlorites, smectite clays, amphiboles, and micas), hydroxides, and hydrated sulfides and salts. High water/rock ratios, elevated temperatures and low pressures favored oxidation. Low temperatures supported hydration. In some icy satellites (Europa, Ganymede) high water content and hydrothermal processes during differentiation may have caused profound oxidation leading to carbonates and even sulfates. Since water was the only early oxidizing agent, the elevated oxidation state of Io implies its early aqueous history. Hydrogen was produced in all oxidation reactions and preferentially separated into the gas phase. Escape of H

  9. Accretion and exhumation at a Variscan active margin, recorded in the Saxothuringian flysch

    NASA Astrophysics Data System (ADS)

    Schäfer, J.; Neuroth, H.; Ahrendt, H.; Dörr, W.; Franke, W.

    The Saxothuringian flysch basin, on the north flank of the Central European Variscides, was fed and eventually overthrust by the northwestern, active margin of the Tepla-Barrandian terrane. Clast spectra, mineral composition and isotopic ages of detrital mica and zircon have been analyzed in order to constrain accretion and exhumation of rocks in the orogenic wedge. The earliest clastic sediments preserved are of early Famennian age (ca. 370Ma). They are exposed immediately to the NW of the suture, and belong to the par-autochthon of the foreland. Besides ultramafic (?ophiolite) material, these rocks contain clasts derived from Early Paleozoic continental slope sediments, originally deposited at the NW margin of the Saxothuringian basin. These findings, together with the paleogeographic position of the Famennian clastics debris on the northwestern passive margin, indicate that the Saxothuringian narrow ocean had been closed by that time. Microprobe analyses of detrital hornblendes suggest derivation from the ``Randamphibolit'' unit, now present in the middle part of the Saxothuringian allochthon (Münchberg nappes). Detrital zircons of metamorphic rocks formed a little earlier (ca. 380Ma) indicate rapid recycling at the tectonic front. The middle part of the flysch sequence (ca. early to middle Viséan), both in the par-autochthon and in the allochthon, contains abundant clasts of Paleozoic rocks derived from the northwestern slope and rise, together with debris of Cadomian basement, 500-Ma granitoids and 380Ma (early Variscan) crystalline rocks. All of these source rocks were still available in the youngest part of the flysch (c. middle to late Viséan), but some clasts record, in addition, accretion of the northwestern shelf. Our findings permit deduction of minimum rates of tectonic shortening well in excess of 10-30mm per year, and rates of exhumation of ca. 3mm/a, and possibly more.

  10. Paleozoic and Lower Mesozoic magmas from the eastern Klamath Mountains (North California) and the geodynamic evolution of northwestern America

    NASA Astrophysics Data System (ADS)

    Lapierre, H.; Brouxel, M.; Albarede, F.; Coulin, C.; Lecuyer, C.; Martin, P.; Mascle, G.; Rouer, O.

    1987-09-01

    The Paleozoic to Early Mesozoic geology of the eastern Klamath Mountains (N California) is characterized by three major magmatic events of Ordovician, Late Ordovician to Early Devonian, and Permo-Triassic ages. The Ordovician event is represented by a calc-alkalic island-arc sequence (Lovers Leap Butte sequence) developed in the vicinity of a continental margin. The Late Ordovician to Early Devonian event consists of the 430-480 Ma old Trinity ophiolite formed during the early development of a marginal basin, and a series of low-K tholeiitic volcanic suites (Lovers Leap Basalt—Keratophyre unit, Copley and Balaklala Formations) belonging to intraoceanic island-arcs. Finally, the Permo-Triassic event gave rise to three successives phases of volcanic activity (Nosoni, Dekkas and Bully Hill) represented by the highly differentiated basalt-to-rhyolite low-K tholeiitic series of mature island-arcs. The Permo-Triassic sediments are indicative of shallow to moderate depth in an open, warm sea. The geodynamic evolution of the eastern Klamath Mountains during Paleozoic to Early Mesozoic times is therefore constrained by the geological, petrological and geochemical features of its island-arcs and related marginal basin. A consistent plate-tectonic model is proposed for the area, consisting of six main stages: (1) development during Ordovician times of a calc-alkalic island-arc in the vicinity of a continental margin; (2) extrusion during Late Ordovician to Silurian times of a primitive basalt-andesite intraoceanic island-arc suite, which terminated with boninites, the latter suggest rifting in the fore-arc, followed by the breakup of the arc; (3) opening and development of the Trinity back-arc basin around 430-480 Ma ago; (4) eruption of the Balaklala Rhyolite either in the arc or in the fore-arc, ending in Early Devonian time with intrusion of the 400 Ma Mule Mountain stock; (5) break in volcanic activity from the Early Devonian to the Early Permian; and (6) development of

  11. Paleozoic magmatism and porphyry Cu-mineralization in an evolving tectonic setting in the North Qilian Orogenic Belt, NW China

    NASA Astrophysics Data System (ADS)

    Qiu, Kun-Feng; Deng, Jun; Taylor, Ryan D.; Song, Kai-Rui; Song, Yao-Hui; Li, Quan-Zhong; Goldfarb, Richard J.

    2016-05-01

    The NWW-striking North Qilian Orogenic Belt records the Paleozoic accretion-collision processes in NW China, and hosts Paleozoic Cu-Pb-Zn mineralization that was temporally and spatially related to the closure of the Paleo Qilian-Qinling Ocean. The Wangdian Cu deposit is located in the eastern part of the North Qilian Orogenic Belt, NW China. Copper mineralization is spatially associated with an altered early Paleozoic porphyritic granodiorite, which intruded tonalites and volcaniclastic rocks. Alteration zones surrounding the mineralization progress outward from a potassic to a feldspar-destructive phyllic assemblage. Mineralization consists mainly of quartz-sulfide stockworks and disseminated sulfides, with ore minerals chalcopyrite, pyrite, molybdenite, and minor galena and sphalerite. Gangue minerals include quartz, orthoclase, biotite, sericite, and K-feldspar. Zircon LA-ICPMS U-Pb dating of the ore-bearing porphyritic granodiorite yielded a mean 206Pb/238U age of 444.6 ± 7.8 Ma, with a group of inherited zircons yielding a mean U-Pb age of 485 ± 12 Ma, consistent with the emplacement age (485.3 ± 6.2 Ma) of the barren precursor tonalite. Rhenium and osmium analyses of molybdenite grains returned model ages of 442.9 ± 6.8 Ma and 443.3 ± 6.2 Ma, indicating mineralization was coeval with the emplacement of the host porphyritic granodiorite. Rhenium concentrations in molybdenite (208.9-213.2 ppm) suggest a mantle Re source. The tonalities are medium-K calc-alkaline. They are characterized by enrichment of light rare-earth elements (LREEs) and large-ion lithophile elements (LILEs), depletion of heavy rare-earth elements (HREEs) and high-field-strength elements (HFSEs), and minor negative Eu anomalies. They have εHf(t) values in the range of +3.6 to +11.1, with two-stage Hf model ages of 0.67-1.13 Ga, suggesting that the ca. 485 Ma barren tonalites were products of arc magmatism incorporating melts from the mantle wedge and the lithosphere. In contrast, the

  12. Sedimentary rock-hosted Au deposits of the Dian-Qian-Gui area, Guizhou, and Yunnan Provinces, and Guangxi District, China

    USGS Publications Warehouse

    Peters, S.G.; Jiazhan, H.; Zhiping, L.; Chenggui, J.

    2007-01-01

    Sedimentary rock-hosted Au deposits in the Dian-Qian-Gui area in southwest China are hosted in Paleozoic and early Mesozoic sedimentary rocks along the southwest margin of the Yangtze (South China) Precambrian craton. Most deposits have characteristics similar to Carlin-type Au deposits and are spatially associated, on a regional scale, with deposits of coal, Sb, barite, As, Tl, and Hg. Sedimentary rock-hosted Au deposits are disseminated stratabound and(or) structurally controlled. The deposits have many similar characteristics, particularly mineralogy, geochemistry, host rock, and structural control. Most deposits are associated with structural domes, stratabound breccia bodies, unconformity surfaces or intense brittle-ductile deformation zones, such as the Youjiang fault system. Typical characteristics include impure carbonate rock or calcareous and carbonaceous host rock that contains disseminated pyrite, marcasite, and arsenopyrite-usually with ??m-sized Au, commonly in As-rich rims of pyrite and in disseminations. Late realgar, orpiment, stibnite, and Hg minerals are spatially associated with earlier forming sulfide minerals. Minor base-metal sulfides, such as galena, sphalerite, chalcopyrite, and Pb-Sb-As-sulphosalts also are present. The rocks locally are silicified and altered to sericite-clay (illite). Rocks and(or) stream-sediment geochemical signatures typically include elevated concentrations of As, Sb, Hg, Tl, and Ba. A general lack of igneous rocks in the Dian-Qian-Gui area implies non-pluton-related, ore forming processes. Some deposits contain evidence that sources of the metal may have originated in carbonaceous parts of the sedimentary pile or other sedimentary or volcanic horizons. This genetic process may be associated with formation and mobilization of petroleum and Hg in the region and may also be related to As-, Au-, and Tl-bearing coal horizons. Many deposits also contain textures and features indicative of strong structural control by

  13. Early Permian Pangea `B' to Late Permian Pangea `A'

    NASA Astrophysics Data System (ADS)

    Muttoni, Giovanni; Kent, Dennis V.; Garzanti, Eduardo; Brack, Peter; Abrahamsen, Niels; Gaetani, Maurizio

    2003-10-01

    The pre-drift Wegenerian model of Pangea is almost universally accepted, but debate exists on its pre-Jurassic configuration since Ted Irving introduced Pangea 'B' by placing Gondwana farther to the east by ˜3000 km with respect to Laurasia on the basis of paleomagnetic data. New paleomagnetic data from radiometrically dated Early Permian volcanic rocks from parts of Adria that are tectonically coherent with Africa (Gondwana), integrated with published coeval data from Gondwana and Laurasia, again only from igneous rocks, fully support a Pangea 'B' configuration in the Early Permian. The use of paleomagnetic data strictly from igneous rocks excludes artifacts from sedimentary inclination error as a contributing explanation for Pangea 'B'. The ultimate option to reject Pangea 'B' is to abandon the geocentric axial dipole hypothesis by introducing a significant non-dipole (zonal octupole) component in the Late Paleozoic time-averaged geomagnetic field. We demonstrate, however, by using a dataset consisting entirely of paleomagnetic directions with low inclinations from sampling sites confined to one hemisphere from Gondwana as well as Laurasia that the effects of a zonal octupole field contribution would not explain away the paleomagnetic evidence for Pangea 'B' in the Early Permian. We therefore regard the paleomagnetic evidence for an Early Permian Pangea 'B' as robust. The transformation from Pangea 'B' to Pangea 'A' took place during the Permian because Late Permian paleomagnetic data allow a Pangea 'A' configuration. We therefore review geological evidence from the literature in support of an intra-Pangea dextral megashear system. The transformation occurred after the cooling of the Variscan mega-suture and lasted ˜20 Myr. In this interval, the Neotethys Ocean opened between India/Arabia and the Cimmerian microcontinents in the east, while widespread lithospheric wrenching and magmatism took place in the west around the Adriatic promontory. The general

  14. Influence of rock composition on the geochemistry of stream and spring waters from mountainous watersheds in the Gunnison, Uncompahgre, and Grand Mesa National Forests, Colorado

    USGS Publications Warehouse

    Miller, William Roger

    2002-01-01

    The ranges of geochemical baselines for stream and spring waters were determined and maps were constructed showing acid-neutralizing capacity and potential release of total dissolved solids for streams and spring waters for watersheds underlain by each of ten different rock composition types in the Gunnison, Uncompahgre, and Grand Mesa National Forests, Colorado (GMUG). Water samples were collected in mountainous headwater watersheds that have comparatively high precipitation and low evapotranspiration rates and that generally lack extensive ground-water reservoirs. Mountainous headwaters react quickly to changes in input of water from rain and melting snow and they are vulnerable to anthropogenic impact. Processes responsible for the control and mobility of elements in the watersheds were investigated. The geochemistry of water from the sampled watersheds in the GMUG, which are underlain by rocks that are relatively unmineralized, is compared to the geochemistry of water from the mineralized Redcloud Peak area. The water with the highest potential for release of total dissolved solids is from watersheds that are underlain by Paleozoic sedimentary rocks; that high potential is caused primarily by gypsum in those rocks. Water that has the highest acid-neutralizing capacity is from watersheds that are underlain by Paleozoic sedimentary rocks. The water from watersheds underlain by the Mancos Shale has the next highest acid-neutralizing capacity. Water that has the lowest acid-neutralizing capacity is from watersheds that are underlain by Tertiary ash-flow tuff. Tertiary sedimentary rocks containing oil shale, the Mesavede Formation containing coal, and the Mancos Shale all contain pyrite with elevated metal contents. In these mountainous head-water areas, water from watersheds underlain by these rock types is only slightly impacted by oxidation of pyrite, and over-all it is of good chemical quality. These geochemical baselines demonstrate the importance of rock

  15. Temporal and structural evolution of the Early Palæogene rocks of the Seychelles microcontinent.

    PubMed

    Shellnutt, J Gregory; Yeh, Meng-Wan; Suga, Kenshi; Lee, Tung-Yi; Lee, Hao-Yang; Lin, Te-Hsien

    2017-03-14

    The Early Palæogene Silhouette/North Island volcano-plutonic complex was emplaced during the rifting of the Seychelles microcontinent from western India. The complex is thought to have been emplaced during magnetochron C28n. However, the magnetic polarities of the rocks are almost entirely reversed and inconsistent with a normal polarity. In this study we present new in situ zircon U/Pb geochronology of the different intrusive facies of the Silhouette/North Island complex in order to address the timing of emplacement and the apparent magnetic polarity dichotomy. The rocks from Silhouette yielded weighted mean 206 Pb/ 238 U ages from 62.4 ± 0.9 Ma to 63.1 ± 0.9 Ma whereas the rocks from North Island yielded slightly younger mean ages between 60.6 ± 0.7 Ma to 61.0 ± 0.8 Ma. The secular latitudinal variation from Silhouette to North Island is consistent with the anticlockwise rotation of the Seychelles microcontinent and the measured polarities. The rocks from Silhouette were emplaced across a polarity cycle (C26r-C27n-C27r) and the rocks from North Island were emplaced entirely within a magnetic reversal (C26r). Moreover, the rocks from North Island and those from the conjugate margin of India are contemporaneous and together mark the culmination of rift-related magmatism.

  16. The Cottage Grove fault system (Illinois Basin): Late Paleozoic transpression along a Precambrian crustal boundary

    USGS Publications Warehouse

    Duchek, A.B.; McBride, J.H.; Nelson, W.J.; Leetaru, H.E.

    2004-01-01

    The Cottage Grove fault system in southern Illinois has long been interpreted as an intracratonic dextral strike-slip fault system. We investigated its structural geometry and kinematics in detail using (1) outcrop data, (2) extensive exposures in underground coal mines, (3) abundant borehole data, and (4) a network of industry seismic reflection profiles, including data reprocessed by us. Structural contour mapping delineates distinct monoclines, broad anticlines, and synclines that express Paleozoic-age deformation associated with strike slip along the fault system. As shown on seismic reflection profiles, prominent near-vertical faults that cut the entire Paleozoic section and basement-cover contact branch upward into outward-splaying, high-angle reverse faults. The master fault, sinuous along strike, is characterized along its length by an elongate anticline, ???3 km wide, that parallels the southern side of the master fault. These features signify that the overall kinematic regime was transpressional. Due to the absence of suitable piercing points, the amount of slip cannot be measured, but is constrained at less than 300 m near the ground surface. The Cottage Grove fault system apparently follows a Precambrian terrane boundary, as suggested by magnetic intensity data, the distribution of ultramafic igneous intrusions, and patterns of earthquake activity. The fault system was primarily active during the Alleghanian orogeny of Late Pennsylvanian and Early Permian time, when ultramatic igneous magma intruded along en echelon tensional fractures. ?? 2004 Geological Society of America.

  17. Formation of modern and Paleozoic stratiform barite at cold methane seeps on continental margins

    USGS Publications Warehouse

    Torres, M.E.; Bohrmann, G.; Dube, T.E.; Poole, F.G.

    2003-01-01

    Stratiform (bedded) Paleozoic barite occurs as large conformable beds within organic- and chert-rich sediments; the beds lack major sulfide minerals and are the largest and most economically significant barite deposits in the geologic record. Existing models for the origin of bedded barite fail to explain all their characteristics: the deposits display properties consistent with an exhalative origin involving fluid ascent to the seafloor, but they lack appreciable polymetallic sulfide minerals and the corresponding strontium isotopic composition to support a hydrothermal vent source. A new mechanism of barite formation, along structurally controlled sites of cold fluid seepage in continental margins, involves barite remobilization in organic-rich, highly reducing sediments, transport of barium-rich fluids, and barite precipitation at cold methane seeps. The lithologic and depositional framework of Paleozoic and cold seep barite, as well as morphological, textural, and chemical characteristics of the deposits, and associations with chemosymbiotic fauna, all support a cold seep origin for stratiform Paleozoic barite. This understanding is highly relevant to paleoceanographic and paleotectonic studies, as well as to economic geology.

  18. Exhumed subglacial landscape in Uruguay: Erosional landforms, depositional environments, and paleo-ice flow in the context of the late Paleozoic Gondwanan glaciation

    NASA Astrophysics Data System (ADS)

    Assine, Mario Luis; de Santa Ana, Héctor; Veroslavsky, Gerardo; Vesely, Fernando F.

    2018-07-01

    A well-exposed glacial surface sculpted on Precambrian crystalline basement rocks occurs below the glacial succession of the San Gregorio Formation on the eastern border of the Chaco-Parana Basin in Uruguay and was formed in the context of the late Paleozoic Gondwana Ice Age. On the glacial surface are asymmetric parallel streamlined bedrock landforms interpreted as whalebacks. The downglacier (lee-side) faces of the whalebacks have gentle slopes dipping NNW with striated and sometimes polished surfaces on crystalline rocks. These landforms are covered by 10-100-cm-thick layers of tillites and shear-laminated siltstones, suggesting glacial abrasion produced mainly by subglacial till sliding. The subglacial facies are ice-molded, and exhibit meso-scale glacial lineations such as ridges and grooves up to 30 m long and 30 cm deep. The subglacial association is directly overlain by proglacial fine-grained facies (rhythmites) with dropstones indicating a subaqueous depositional environment following ice-margin retreat. The fine-grained facies are erosively cut by a succession of sandstones with wave-generated stratification resting on a basal conglomerate. Intraformational striated surfaces, NNE-oriented, were found on four distinct bedding planes within the sandstone package and interpreted as ice keel scour marks produced by floating ice. The San Gregorio deposits are partially confined in a wide and shallow subglacial trough and the stratigraphic succession is interpreted as the record of a glacial advance-retreat cycle comparable to deglacial sequences from other late Paleozoic localities. The paleo-ice flow to the NNW indicated by subglacial lineations is parallel to that verified in the southernmost Paraná Basin located north of the study area, suggesting a paleogeographic scenario in which glaciers advanced northward into a glaciomarine environment. The proposed palaeogeography does not confirm the previous hypothesis of an ice center on the Sul

  19. Reevaluating the age of the Walden Creek Group and the kinematic evolution of the western Blue Ridge, southern Appalachians

    USGS Publications Warehouse

    Thigpen, J. Ryan; Hatcher, Robert D.; Kah, Linda C.; Repetski, John E.

    2016-01-01

    An integrated synthesis of existing datasets (detailed geologic mapping, geochronologic, paleontologic, geophysical) with new paleontologic and geochemical investigations of rocks previously interpreted as part of the Neoproterozoic Walden Creek Group in southeastern Tennessee suggest a necessary reevaluation of the kinematics and structural architecture of the Blue Ridge Foothills. The western Blue Ridge of Tennessee, North Carolina, and Georgia is composed of numerous northwest-directed early and late Paleozoic thrust sheets, which record pronounced variation in stratigraphic/structural architecture and timing of metamorphism. The detailed spatial, temporal, and kinematic relationships of these rocks have remained controversial. Two fault blocks that are structurally isolated between the Great Smoky and Miller Cove-Greenbrier thrust sheets, here designated the Maggies Mill and Citico thrust sheets, contain Late Ordovician-Devonian conodonts and stable isotope chemostratigraphic signatures consistent with a mid-Paleozoic age. Geochemical and paleontological analyses of Walden Creek Group rocks northwest and southeast of these two thrust sheets, however, are more consistent with a Late Neoproterozoic (550–545 Ma) depositional age. Consequently, the structural juxtaposition of mid-Paleozoic rocks within a demonstrably Neoproterozoic-Cambrian succession between the Great Smoky and Miller Cove-Greenbrier thrust sheets suggests that a simple foreland-propagating thrust sequence model is not applicable in the Blue Ridge Foothills. We propose that these younger rocks were deposited landward of the Ocoee Supergroup, and were subsequently plucked from the Great Smoky fault footwall as a horse, and breached through the Great Smoky thrust sheet during Alleghanian emplacement of that structure.

  20. Latest Neoproterozoic basin inversion of the Beardmore Group, central Transantarctic Mountains, Antarctica

    NASA Astrophysics Data System (ADS)

    Goodge, John W.

    1997-08-01

    Structural and age relationships in Beardmore Group rocks in the central Transantarctic Mountains of Antarctica indicate that they experienced a single deformation in latest Neoproterozoic to early Paleozoic time. New structural data contrast with earlier suggestions that Beardmore rocks record two orogenic deformations, one of the early Paleozoic Ross orogeny and a distinct earlier tectonic event of presumed Neoproterozoic age referred to as the Beardmore orogeny. In the Nimrod Glacier area, Beardmore metasedimentary rocks contain only a single set of geometrically related regional structures associated with the development of upright, large- and small-scale flexural-slip folds. Deformation of Beardmore strata involved west directed contraction of modest regional strain at relatively high crustal levels. Existing ages of detrital zircons from the Cobham and Goldie formations constrain Beardmore Group deposition to be younger than ˜600 Ma. This is significantly younger than previous age estimates and suggests that Beardmore deposition may be closely linked to a latest Neoproterozoic East Antarctic rift margin. The lack of structural evidence for polyphase deformation and the relatively young depositional age for the Beardmore Group thus raises the question of a temporally and/or technically unique Beardmore orogeny. Here I suggest that Beardmore shortening may be related to tectonic inversion of East Antarctic marginal-basin strata because of localized compression during proto-Pacific seafloor spreading. Basin inversion is but one stage in a protracted Ross tectonic cycle of rifting, tectonic inversion, subduction initiation, and development of a mature convergent continental margin during latest Neoproterozoic and early Paleozoic time. The term "Beardmore orogeny" has little meaning as an event of orogenic status, and it should be abandoned. Recognition of this latest Neoproterozoic history reinforces the view that the broader Ross orogeny was not a single event

  1. The Triassic reworking of the Yunkai massif (South China): EMP monazite and U-Pb zircon geochronologic evidence

    NASA Astrophysics Data System (ADS)

    Chen, Cheng-Hong; Liu, Yung-Hsin; Lee, Chi-Yu; Sano, Yuji; Zhou, Han-Wen; Xiang, Hua; Takahata, Naoto

    2017-01-01

    Geohistory of the Yunkai massif in South China Block is important in understanding the geodynamics for the build-up of this block during the Phanerozoic orogenies. To investigate this massif, we conduct EMP monazite and U-Pb zircon geochronological determinations on mineral inclusions and separate for seventeen samples in four groups, representing metamorphic rocks from core domain, the Gaozhou Complex (amphibolite facies, NE-striking) and the Yunkai Group (greenschist facies, NW-striking) of this massif and adjacent undeformed granites. Some EMP monazite ages are consistent with the NanoSIMS results. Monazite inclusions, mostly with long axis parallel to the cleavage of platy and elongated hosts, give distinguishable age results for NW- and NE-trending deformations at 244-236 Ma and 236-233 Ma, respectively. They also yield ages of 233-230 Ma for core domain gneissic granites and 232-229 Ma for undefomed granites. Combining U-Pb zircon ages of the same group, 245 Ma and 230 Ma are suggested to constrain the time of two phases of deformation. Aside from ubiquity of Triassic ages in studied rocks, ages of detrital monazite in the meta-sandstone match the major U-Pb zircon age clusters of the metamorphic rock that are largely concentrated at Neoproterozoic (1.0-0.9 Ga) and Early Paleozoic (444-431 Ma). Based on these geochronological data, Triassic is interpreted as representing the time for recrystallization of these host minerals on the Early Paleozoic protolith, and the also popular Neoproterozoic age is probably inherited. With this context, Yunkai massif is regarded as a strongly reactivated Triassic metamorphic terrain on an Early Paleozoic basement which had incorporated sediments with Neoproterozoic provenances. Triassic tectonic evolution of the Yunkai massif is suggested to have been controlled by converging geodynamics of the South China and Indochina Blocks as well as mafic magma emplacement related to the Emeishan large igneous province (E-LIP).

  2. Environmental trends in extinction during the Paleozoic

    NASA Technical Reports Server (NTRS)

    Sepkoski, J. John, Jr.

    1987-01-01

    Extinction intensities calculated from 505 Paleozoic marine assemblages divided among six environmental zones and 40 stratigraphic intervals indicate that whole communities exhibit increasing extinction offshore but that genera within individual taxonomic classes tend to have their highest extinction onshore. The offshore trend at the community level results from a concentration of genera in classes with low characteristic extinction rates in nearshore environments. This finding is consistent with the ecologic expectation that organisms inhabiting unpredictably fluctuating environments should suffer more extinction than counterparts living under more predictably equitable conditions.

  3. National Uranium Resource Evaluation: Newcastle Quadrangle, Wyoming and South Dakota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos, E S; Robinson, K; Geer, K A

    1982-09-01

    Uranium resources of the Newcastle 1/sup 0/x2/sup 0/ Quadrangle, Wyoming and South Dakota were evaluated to a depth of 1500 m (5000 ft) using available surface and subsurface geologic information. Many of the uranium occurrences reported in the literature and in reports of the US Atomic Energy Commission were located, sampled and described. Areas of anomalous radioactivity, interpreted from an aerial radiometric survey, were outlined. Areas favorable for uranium deposits in the subsurface were evaluated using gamma-ray logs. Based on surface and subsurface data, two areas have been delineated which are underlain by rocks deemed favorable as hosts for uraniummore » deposits. One of these is underlain by rocks that contain fluvial arkosic facies in the Wasatch and Fort Union Formations of Tertiary age; the other is underlain by rocks containing fluvial quartzose sandstone facies of the Inyan Kara Group of Early Cretaceous age. Unfavorable environments characterize all rock units of Tertiary age above the Wasatch Formation, all rock units of Cretaceous age above the Inyan Kara Group, and most rock units of Mesozoic and Paleozoic age below the Inyan Kara Group. Unfavorable environments characterize all rock units of Cretaceous age above the Inyan Kara Group, and all rock units of Mesozoic and Paleozoic age below the Inyan Kara Group.« less

  4. A new reconstruction of the Paleozoic continental margin of southwestern North America: Implications for the nature and timing of continental truncation and the possible role of the Mojave-Sonora megashear

    USGS Publications Warehouse

    Stevens, C.H.; Stone, P.; Miller, J.S.

    2005-01-01

    Data bearing on interpretations of the Paleozoic and Mesozoic paleogeography of southwestern North America are important for testing the hypothesis that the Paleozoic miogeocline in this region has been tectonically truncated, and if so, for ascertaining the time of the event and the possible role of the Mojave-Sonora megashear. Here, we present an analysis of existing and new data permitting reconstruction of the Paleozoic continental margin of southwestern North America. Significant new and recent information incorporated into this reconstruction includes (1) spatial distribution of Middle to Upper Devonian continental-margin facies belts, (2) positions of other paleogeographically significant sedimentary boundaries on the Paleozoic continental shelf, (3) distribution of Upper Permian through Upper Triassic plutonic rocks, and (4) evidence that the southern Sierra Nevada and western Mojave Desert are underlain by continental crust. After restoring the geology of western Nevada and California along known and inferred strike-slip faults, we find that the Devonian facies belts and pre-Pennsylvanian sedimentary boundaries define an arcuate, generally south-trending continental margin that appears to be truncated on the southwest. A Pennsylvanian basin, a Permian coral belt, and a belt of Upper Permian to Upper Triassic plutons stretching from Sonora, Mexico, into westernmost central Nevada, cut across the older facies belts, suggesting that truncation of the continental margin occurred in the Pennsylvanian. We postulate that the main truncating structure was a left-lateral transform fault zone that extended from the Mojave-Sonora megashear in northwestern Mexico to the Foothills Suture in California. The Caborca block of northwestern Mexico, where Devonian facies belts and pre-Pennsylvanian sedimentary boundaries like those in California have been identified, is interpreted to represent a missing fragment of the continental margin that underwent ???400 km of left

  5. U-Pb SHRIMP-RG zircon ages and Nd signature of lower Paleozoic rifting-related magmatism in the Variscan basement of the Eastern Pyrenees

    USGS Publications Warehouse

    Martinez, F.J.; Iriondo, A.; Dietsch, C.; Aleinikoff, J.N.; Peucat, J.J.; Cires, J.; Reche, J.; Capdevila, R.

    2011-01-01

    The ages of orthogneisses exposed in massifs of the Variscan chain can determine whether they are part of a pre-Neoproterozoic basement, a Neoproterozoic, Panafrican arc, or are, in fact, lower Paleozoic, and their isotopic compositions can be used to probe the nature of their source rocks, adding to the understanding of the types, distribution, and tectonic evolution of peri-Gondwanan crystalline basement. Using SHRIMP U-Pb zircon geochronology and Nd isotopic analysis, pre-Variscan metaigneous rocks from the N??ria massif in the Eastern Pyrenean axial zone and the Guilleries massif, 70km to the south, have been dated and their Nd signatures characterized. All dated orthogneisses from the N??ria massif have the same age within error, ~457Ma, including the Ribes granophyre, interpreted as a subvolcanic unit within Caradocian sediments contemporaneous with granitic magmas intruded into Cambro-Ordovician sediments at deeper levels. Orthogneisses in the Guilleries massif record essentially continuous magmatic activity during the Ordovician, beginning at the Cambro-Ordovician boundary (488??3Ma) and reaching a peak in the volume of magma in the early Late Ordovician (~460Ma). Metavolcanic rocks in the Guilleries massif were extruded at 452??4Ma and appear to have their intrusive equivalent in thin, deformed veins of granitic gneiss (451??7Ma) within metasedimentary rocks. In orthogneisses from both massifs, the cores of some zircons yield Neoproterozoic ages between ~520 and 900Ma. The age of deposition of a pre-Late Ordovician metapelite in the Guilleries massif is bracketed by the weighted average age of the youngest detrital zircon population, 582??11Ma, and the age of cross-cutting granitic veins, 451??7Ma. Older detrital zircons populations in this metapelite include Neoproterozoic (749-610Ma; n=10), Neo- to Mesoproterozoic (1.04-0.86Ga; n=7), Paleoproterozoic (2.02-1.59Ga; n=5), and Neoarchean (2.74-2.58Ga; n=3). Nd isotopic analyses of the N??ria and Guilleries

  6. Gold deposits of the northern margin of the North China craton: Multiple late Paleozoic-Mesozoic mineralizing events

    USGS Publications Warehouse

    Hart, C.J.R.; Goldfarb, R.J.; Qiu, Yumin; Snee, L.; Miller, L.D.; Miller, M.L.

    2002-01-01

    The northern margin of the North China craton is well-endowed with lode gold deposits hosting a resource of approximately 900 tonnes (t) of gold. The ???1,500-km-long region is characterized by east-trending blocks of metamorphosed Archean and Proterozoic strata that were episodically uplifted during Variscan, Indosinian, and Yanshanian deformational and magmatic events. At least 12 gold deposits from the Daqinshan, Yan-Liao (includes the Zhangjiakou, Yanshan, and Chifeng gold districts), and Changbaishan gold provinces contain resources of 20-100 t Au each. Most deposits are hosted in uplifted blocks of Precambrian metamorphic rocks, although felsic Paleozoic and Mesozoic plutons are typically proximal and host ???30% of the deposits. The lodes are characterized by sulfide-poor quartz veins in brittle structures with low base metal values and high Au:Ag ratios. Although phyllic alteration is most common, intensive alkali feldspar metasomatism characterizes the Wulashan, Dongping, and Zhongshangou deposits, but is apparently coeval with Variscan alkalic magmatism only at Wulashan. Stepwise 40Ar-39Ar geochronology on 16 samples from gangue and alteration phases, combined with unpublished SHRIMP U-Pb dates on associated granitoids, suggest that gold mineralizing events occured during Variscan, Indosinian, and Yanshanian orogenies at circa 350, 250, 200, 180, 150, and 129 Ma. However, widespread Permo-Triassic (???250 Ma) and Early Jurassic (???180 Ma) thermal events caused variable resetting of most of the white mica and K-feldspar argon spectra, as well as previously reported K-Ar determinations. Compiled and new stable isotope and fluid inclusion data show that most ??18O values for ore-stage veins range from 8 to 14???, indicating a fluid in equilibrium with the Precambrian metamorphic basement rocks; ??D values from fluid inclysions range widely from -64 to -154???, which is indicative of a local meteoric component in some veins; and highly variable ??34S data

  7. SHRIMP U-Pb evidence for a Late Silurian age of metasedimentary rocks in the Merrimack and Putnam-Nashoba terranes, eastern New England

    USGS Publications Warehouse

    Wintsch, R.P.; Aleinikoff, J.N.; Walsh, G.J.; Bothner, Wallace A.; Hussey, A.M.; Fanning, C.M.

    2007-01-01

    U-Pb ages of detrital, metamorphic, and magmatic zircon and metamorphic monazite and titanite provide evidence for the ages of deposition and metamorphism of metasedimentary rocks from the Merrimack and Putnam-Nashoba terranes of eastern New England. Rocks from these terranes are interpreted here as having been deposited in the middle Paleozoic above Neoproterozoic basement of the Gander terrane and juxtaposed by Late Paleozoic thrusting in thin, fault-bounded slices. The correlative Hebron and Berwick formations (Merrimack terrane) and Tatnic Hill Formation (Putnam-Nashoba terrane), contain detrital zircons with Mesoproterozoic, Ordovician, and Silurian age populations. On the basis of the age of the youngest detrital zircon population (???425 Ma), the Hebron, Berwick and Tatnic Hill formations are no older than Late Silurian (Wenlockian). The minimum deposition ages of the Hebron and Berwick are constrained by ages of cross-cutting plutons (414 ?? 3 and 418 ?? 2 Ma, respectively). The Tatnic Hill Formation must be older than the oldest metamorphic monazite and zircon (???407 Ma). Thus, all three of these units were deposited between ???425 and 418 Ma, probably in the Ludlovian. Age populations of detrital zircons suggest Laurentian and Ordovician arc provenance to the west. High grade metamorphism of the Tatnic Hill Formation soon after deposition probably requires that sedimentation and burial occurred in a fore-arc environment, whereas time-equivalent calcareous sediments of the Hebron and Berwick formations probably originated in a back-arc setting. In contrast to age data from the Berwick Formation, the Kittery Formation contains primarily Mesoproterozoic detrital zircons; only 2 younger grains were identified. The absence of a significant Ordovician population, in addition to paleocurrent directions from the east and structural data indicating thrusting, suggest that the Kittery was derived from peri-Gondwanan sources and deposited in the Fredericton Sea

  8. Petrology, zircon U-Pb ages, geochemistry and Sr-Nd-Hf isotopes of the Late Paleozoic gold-bearing magmatic rocks (porphyry intrusions) in Jiamante area, Northwest Tianshan: Implications for petrogenesis and mineralization

    NASA Astrophysics Data System (ADS)

    Zhang, Tongliang; Cai, Keda; Wang, Xiangsong

    2017-04-01

    A series of Cu-Au-Mo deposits distributed from east to west in the Northwestern Tianshan Orogenic Belt (NTOB), which is located in the northwestern China. The tectonic settings and associated geodynamic processes of these deposits have been disputed. This paper presents whole-rock geochemical data, in-situ U-Th-Pb ages and Sr-Nd-Hf isotopic composition for granite porphyry and quartz porphyry in the Jiamante gold deposit from the Yelimodun Basin, in the NTOB. These two type representative high potassium granitic intrusions have the LA-ICP-MS zircon U-Pb ages of 350.8±4 Ma, 351.7±3 Ma and 350.4±5 Ma, 353.9±2.5 Ma, interpreted as the crystallization ages. High contents of SiO2 ( 71.1-75.2wt.%), K2O (4.96-6.33 wt.%), Al2O3 (12.45-14.35 wt.%) and low contents of Fe2O3T (1.47-3.25 wt.%), MgO (0.3-0.5 wt.% ), and CaO (0.49-1.29wt.%), High ASI (Alumina Saturation Index, Al2O3/(CaO+Na2O+K2O)=1.37-1.80 molecular ratios) can be found in these rocks. These porphyries are enriched in both large ion lithophile and light rare earth elements, but deplet in high field strength elements and are characterized by moderately negative Eu anomalies (Eu/Eu*=0.27-0.66) and strong depletion in Ba, Nb,Ti and Sr elements. These two porphyries have negative and positive zircon ɛHf(t) (-11.6 to +6.7) values, low Mg# ratios (21.85-35.51wt%), and low Cr (3.24ppm -11.35ppm) and Ni (1.88ppm-13.41ppm) contents. The regional geological and geochemical characteristics of the Early Carboniferous rocks in the Northwestern Tianshan show that peraluminous granitoids, with hybrid Sr-Nd-Hf isotopic signatures, suggesting that their parental magmas could be derived from the subduction of Paleo-Junggar Ocean beneath the Yili Block and the sediments from the Yili Block. In combination with the compositions of the volcanic rocks and basic lavas in the region in the Early Carboniferous, we suggest that the Jiamante peraluminous granitic porphyries and quartz porphyries were generated by the interaction

  9. Late Paleozoic tectonic evolution and concentrated mineralization in Balkhash and West Junggar, western part of the Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Dong, Shuwen; Chen, Xuanhua; Chen, Zhengle

    2016-04-01

    course thermo-history of the minearl deposits from their formation in the deep to the exhumation in the surface. It reveals the arc-related granitic magmatism and the metallogeneses of skarn Cu, porphyry Cu-Mo, quartz-vein/greisen W-Mo, and orogenic Au in Late Paleozoic, the medium-temperature regional cooling in Late Paleozoic and Early Mesozoic, and the low-temperature exhumation of the deposits in Mesozoic. The timing, combined with geochemistry of granitoids, suggests a transition of tectonic environment from syn-collision and volcanic arc in Late Carboniferous to post-collision extension in Early Permian, and the concentrated mineralization of Cu, Mo, rare metals, and Au during this tectonic transition. The complete metallogenic series for the concentrated mineralization are from skarn and porphyry Cu-Mo deposits to rare metal and gold deposits. Key words: Late Paleozoic; Tectonic evolution; Concentrated mineralization; Balkhash-Junggar tectono-metallogenic belt; Central Asian Orogenic Belt

  10. Sedimentological constraints on the initial uplift of the West Bogda Mountains in Mid-Permian.

    PubMed

    Wang, Jian; Cao, Ying-Chang; Wang, Xin-Tong; Liu, Ke-Yu; Wang, Zhu-Kun; Xu, Qi-Song

    2018-01-23

    The Late Paleozoic is considered to be an important stage in the evolution of the Central Asian Orogenic Belt (CAOB). The Bogda Mountains, a northeastern branch of the Tianshan Mountains, record the complete Paleozoic history of the Tianshan orogenic belt. The tectonic and sedimentary evolution of the west Bogda area and the timing of initial uplift of the West Bogda Mountains were investigated based on detailed sedimentological study of outcrops, including lithology, sedimentary structures, rock and isotopic compositions and paleocurrent directions. At the end of the Early Permian, the West Bogda Trough was closed and an island arc was formed. The sedimentary and subsidence center of the Middle Permian inherited that of the Early Permian. The west Bogda area became an inherited catchment area, and developed a widespread shallow, deep and then shallow lacustrine succession during the Mid-Permian. At the end of the Mid-Permian, strong intracontinental collision caused the initial uplift of the West Bogda Mountains. Sedimentological evidence further confirmed that the West Bogda Mountains was a rift basin in the Carboniferous-Early Permian, and subsequently entered the Late Paleozoic large-scale intracontinental orogeny in the region.

  11. Burning experiments and late Paleozoic high O2 levels

    NASA Astrophysics Data System (ADS)

    Wildman, R.; Essenhigh, R.; Berner, R.; Hickey, L.; Wildman, C.

    2003-04-01

    The Paleozoic rise of land plants brought about increased burial of organic matter and a resulting increase in atmospheric oxygen concentrations. Levels as high as 30-35% O2 may have been reached during the Permo-Carboniferous (Berner and Canfield, 1989; Berner, 2001). However, burning experiments based solely on paper (Watson, 1978) have challenged these results, the claim being that if the oxygen made up more than 25% of the atmosphere, the frequency and intensity of forest fires would increase sufficiently to prevent the continued existence of plant life. Thus, since plants have persisted, it is possible that fires served as a negative feedback against excessive oxygen levels. An initial study of Paleozoic wildfire behavior via thermogravimetric analysis (TGA) was conducted under ambient and enriched oxygen conditions to simulate present and ancient atmospheres. The tests focused on natural fuels, specifically tree leaves and wood, tree fern fibers, and sphagnum peat-moss, simulating Permo-Carboniferous upland and swampland ecosystems, respectively. Three conclusions are: (1) enriched oxygen increases the rate of mass loss during burning; (2) fuel chemistry (cellulose vs. lignin) influences burning patterns; and (3) in geometrically heterogeneous fuels, geometry affects burning rate significantly. Both geometrically and chemically, paper resists fire poorly; thus, we found that it loses its mass at lower temperatures than forest materials and is therefore a poor proxy for Paleozoic ecosystems. Further study of Paleozoic wildfire spread behavior is currently being conducted. Fires are lit using pine dowels, which allow for reproducible fuel density. Steady-state, one-dimensional flame-spread is measured with thermocouples anchored two inches above the fuel bed. Both oxygen concentration of the air supply to the fire and moisture content of the fuels are varied, as we suspect that these are two main controls of wildfire spread. Burning fuels of varying moisture

  12. Age and source of terrigenous rocks of the turan group of the bureya terrane of the eastern part of the central Asian foldbelt: Results of geochemical (Sm-Nd) and geochronological (U-Pb LA-ICP-MS) studies

    NASA Astrophysics Data System (ADS)

    Sorokin, A. A.; Smirnov, Yu. V.; Kotov, A. B.; Kovach, V. P.

    2014-06-01

    According to Sm-Nd isotopic-geochemical studies, the t Nd(DM) of the terrigenous rocks of the Turan Group of the Bureya terrane is 1.4-1.5 Ga and their sources are Precambrian rocks and (or) younger effusive rocks, the formation of which is related to the reworking of the Late Precambrian continental crust. The U-Pb LA-ICP-MS geochronological studies indicate dominant Vendian-Cambrian (588-483 Ma) and Late Riphean (865-737 Ma) detrital zircons. Our data point to their accumulation at the beginning of the Paleozoic rather than in the Precambrian as is accepted in modern stratigraphic schemes.

  13. Preliminary report on uranium and thorium content of intrusive rocks in northeastern Washington and northern Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castor, S.B.; Berry, M.R.; Robins, J.W.

    1977-11-01

    This study delineates favorable areas for uranium resources in northeastern Washington and northern Idaho by identifying granitic rocks with relatively large amounts of uranium and (or) thorium. Results are based on analysis of 344 rock samples. Uranium analyses obtained by gamma-ray spectrometric data correlate closely with fluorometric determinations. On the basis of cumulative frequency distribution curves, more than 8 ppM equivalent uranium and more than 20 ppM equivalent thorium are considered anomalous for granitic rocks in northeastern Washington and northern Idaho. Granitic rocks anomalously high in uranium and (or) thorium are concentrated in two northeast-trending belts. The most prominent, themore » Midnite-Hall Mountain belt, includes the Midnite and Sherwood uranium mines, and two lesser but productive areas farther north. This belt follows the contact between Precambrian and Paleozoic rocks, which is also the locus of the Kootenai arc fold belt. The second belt of anomalously radioactive granitic rocks is along the Republic graben, a prominent linear structure in an area with no recorded uranium production. Anomalously radioactive granitic rocks are generally massive quartz monzonite, alaskite, or pegmatite, which contain abundant quartz and potash feldspar. They are also characterized by pink potash feldspar, commonly as large phenocrysts, and by the presence of muscovite. Several uranium and thorium minerals have been identified in these rocks. The two belts of anomalously radioactive plutons are considered favorable for uranium resources. Deposits could occur in the intrusive rocks themselves or in favorable environments in adjacent rocks. 13 figs., 2 tables.« less

  14. Late paleozoic fusulinoidean gigantism driven by atmospheric hyperoxia.

    PubMed

    Payne, Jonathan L; Groves, John R; Jost, Adam B; Nguyen, Thienan; Moffitt, Sarah E; Hill, Tessa M; Skotheim, Jan M

    2012-09-01

    Atmospheric hyperoxia, with pO(2) in excess of 30%, has long been hypothesized to account for late Paleozoic (360-250 million years ago) gigantism in numerous higher taxa. However, this hypothesis has not been evaluated statistically because comprehensive size data have not been compiled previously at sufficient temporal resolution to permit quantitative analysis. In this study, we test the hyperoxia-gigantism hypothesis by examining the fossil record of fusulinoidean foraminifers, a dramatic example of protistan gigantism with some individuals exceeding 10 cm in length and exceeding their relatives by six orders of magnitude in biovolume. We assembled and examined comprehensive regional and global, species-level datasets containing 270 and 1823 species, respectively. A statistical model of size evolution forced by atmospheric pO(2) is conclusively favored over alternative models based on random walks or a constant tendency toward size increase. Moreover, the ratios of volume to surface area in the largest fusulinoideans are consistent in magnitude and trend with a mathematical model based on oxygen transport limitation. We further validate the hyperoxia-gigantism model through an examination of modern foraminiferal species living along a measured gradient in oxygen concentration. These findings provide the first quantitative confirmation of a direct connection between Paleozoic gigantism and atmospheric hyperoxia. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  15. Source rock potential in Pakistan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raza, H.A.

    1991-03-01

    Pakistan contains two sedimentary basins: Indus in the east and Balochistan in the west. The Indus basin has received sediments from precambrian until Recent, albeit with breaks. It has been producing hydrocarbons since 1914 from three main producing regions, namely, the Potwar, Sulaisman, and Kirthar. In the Potwar, oil has been discovered in Cambrian, Permian, Jurassic, and Tertiary rocks. Potential source rocks are identified in Infra-Cambrian, Permian, Paleocene, and Eocene successions, but Paleocene/Eocene Patala Formation seems to be the main source of most of the oil. In the Sulaiman, gas has been found in Cretaceous and Tertiary; condensate in Cretaceousmore » rocks. Potential source rocks are indicated in Cretaceous, Paleocene, and Eocene successions. The Sembar Formation of Early Cretaceous age appears to be the source of gas. In the Kirthar, oil and gas have been discovered in Cretaceous and gas has been discovered in paleocene and Eocene rocks. Potential source rocks are identified in Kirthar and Ghazij formations of Eocene age in the western part. However, in the easter oil- and gas-producing Badin platform area, Union Texas has recognized the Sembar Formation of Early Cretaceous age as the only source of Cretaceous oil and gas. The Balochistan basin is part of an Early Tertiary arc-trench system. The basin is inadequately explored, and there is no oil or gas discovery so far. However, potential source rocks have been identified in Eocene, Oligocene, Miocene, and Pliocene successions based on geochemical analysis of surface samples. Mud volcanoes are present.« less

  16. Petrology of metabasic and peridotitic rocks of the Songshugou ophiolite, Qinling orogen, China

    NASA Astrophysics Data System (ADS)

    Belic, Maximilian; Hauzenberger, Christoph; Dong, Yunpeng

    2013-04-01

    unclear but probably related to the closure of the Shangdan ocean during the early Paleozoic. The financial support by Eurasia-Pacific Uninet is gratefully acknowledged. Dong, Y.P., Zhou, M.F., Zhang, G.W., Zhou, D.W., Liu, L., Zhang, Q., 2008. The Grenvillian Songshugou ophiolite in the Qinling Mountains, Central China: implications for the tectonic evolution of the Qinling orogenic belt. Journal of Asian Earth Science 32 (5-6), 325-335.

  17. Upper Paleozoic Marine Shale Characteristics and Exploration Prospects in the Northwestern Guizhong Depression, South China

    NASA Astrophysics Data System (ADS)

    Zhu, Zhenhong; Yao, Genshun; Lou, Zhanghua; Jin, Aimin; Zhu, Rong; Jin, Chong; Chen, Chao

    2018-05-01

    Multiple sets of organic-rich shales developed in the Upper Paleozoic of the northwestern Guizhong Depression in South China. However, the exploration of these shales is presently at a relatively immature stage. The Upper Paleozoic shales in the northwestern Guizhong Depression, including the Middle Devonian Luofu shale, the Nabiao shale, and the Lower Carboniferous Yanguan shale, were investigated in this study. Mineral composition analysis, organic matter analysis (including total organic carbon (TOC) content, maceral of kerogen and the vitrinite reflection (Ro)), pore characteristic analysis (including porosity and permeability, pore type identification by SEM, and pore size distribution by nitrogen sorption), methane isothermal sorption test were conducted, and the distribution and thickness of the shales were determined, Then the characteristics of the two target shales were illustrated and compared. The results show that the Upper Paleozoic shales have favorable organic matter conditions (mainly moderate to high TOC content, type I and II1 kerogen and high to over maturity), good fracability potential (brittleness index (BI) > 40%), multiple pore types, stable distribution and effective thickness, and good methane sorption capacity. Therefore, the Upper Paleozoic shales in the northern Guizhong Depression have good shale gas potential and exploration prospects. Moreover, the average TOC content, average BI, thickness of the organic-rich shale (TOC > 2.0 wt%) and the shale gas resources of the Middle Devonian shales are better than those of the Lower Carboniferous shale. The Middle Devonian shales have better shale gas potential and exploration prospects than the Lower Carboniferous shales.

  18. Paleozoic magmatism and porphyry Cu-mineralization in an evolving tectonic setting in the North Qilian Orogenic Belt, NW China

    USGS Publications Warehouse

    Qiu, Kun-Feng; Deng, Jun; Taylor, Ryan D.; Song, Kai-Rui; Song, Yao-Hui; Li, Quan-Zhong; Goldfarb, Richard J.

    2016-01-01

    The NWW-striking North Qilian Orogenic Belt records the Paleozoic accretion–collision processes in NW China, and hosts Paleozoic Cu–Pb–Zn mineralization that was temporally and spatially related to the closure of the Paleo Qilian-Qinling Ocean. The Wangdian Cu deposit is located in the eastern part of the North Qilian Orogenic Belt, NW China. Copper mineralization is spatially associated with an altered early Paleozoic porphyritic granodiorite, which intruded tonalites and volcaniclastic rocks. Alteration zones surrounding the mineralization progress outward from a potassic to a feldspar-destructive phyllic assemblage. Mineralization consists mainly of quartz-sulfide stockworks and disseminated sulfides, with ore minerals chalcopyrite, pyrite, molybdenite, and minor galena and sphalerite. Gangue minerals include quartz, orthoclase, biotite, sericite, and K-feldspar. Zircon LA-ICPMS U–Pb dating of the ore-bearing porphyritic granodiorite yielded a mean 206Pb/238U age of 444.6 ± 7.8 Ma, with a group of inherited zircons yielding a mean U–Pb age of 485 ± 12 Ma, consistent with the emplacement age (485.3 ± 6.2 Ma) of the barren precursor tonalite. Rhenium and osmium analyses of molybdenite grains returned model ages of 442.9 ± 6.8 Ma and 443.3 ± 6.2 Ma, indicating mineralization was coeval with the emplacement of the host porphyritic granodiorite. Rhenium concentrations in molybdenite (208.9–213.2 ppm) suggest a mantle Re source. The tonalities are medium-K calc-alkaline. They are characterized by enrichment of light rare-earth elements (LREEs) and large-ion lithophile elements (LILEs), depletion of heavy rare-earth elements (HREEs) and high-field-strength elements (HFSEs), and minor negative Eu anomalies. They have εHf(t) values in the range of +3.6 to +11.1, with two-stage Hf model ages of 0.67–1.13 Ga, suggesting that the ca. 485 Ma barren tonalites were products of arc magmatism incorporating melts from the mantle wedge and

  19. Continental crust melting induced by subduction initiation of the South Tianshan Ocean: Insight from the Latest Devonian granitic magmatism in the southern Yili Block, NW China

    NASA Astrophysics Data System (ADS)

    Bao, Zihe; Cai, Keda; Sun, Min; Xiao, Wenjiao; Wan, Bo; Wang, Yannan; Wang, Xiangsong; Xia, Xiaoping

    2018-03-01

    The Tianshan belt of the southwestern Central Asian Orogenic Belt was generated by Paleozoic multi-stage subduction and final closure of several extinct oceans, including the South Tianshan Ocean between the Kazakhstan-Yili and Tarim blocks. However, the subduction initiation and polarity of the South Tianshan Ocean remain issues of highly debated. This study presents new zircon U-Pb ages, geochemical compositions and Sr-Nd isotopes, as well as zircon Hf isotopic data of the Latest Devonian to Early Carboniferous granitic rocks in the Wusun Mountain of the Yili Paleozoic convergent margin, which, together with the spatial-temporal distributions of regional magmatic rocks, are applied to elucidate their petrogenesis and tectonic linkage to the northward subduction initiation of the South Tianshan Ocean. Our zircon U-Pb dating results reveal that these granites were emplaced at the time interval of 362.0 ± 1.2-360.3 ± 1.9 Ma, suggesting a marked partial melting event of the continental crust in the Latest Devonian to Early Carboniferous. These granites, based on their mineral compositions and textures, can be categorized as monzogranites and K-feldspar granites. Geochemically, both monzogranites and K-feldspar granites have characters of I-type granites with high K2O contents (4.64-4.83 wt.%), and the K-feldspar granites are highly fractionated I-type granites, while the monzogranites have features of unfractionated I-type granites. Whole-rock Sr-Nd isotopic modeling results suggest that ca. 20-40% mantle-derived magmas may be involved in magma mixing with continental crust partial melts to generate the parental magmas of the granites. The mantle-derived basaltic magmas was inferred not only to be a major component of magma mixture but also as an important heat source to fuse the continental crust in an extensional setting, which is evidenced by the high zircon saturation temperatures (713-727 °C and 760-782 °C) of the studied granites. The Latest Devonian to

  20. Erosional history of the Appalachians as recordeed in detrital zircon fission-track ages and lithic detritus in Atlantic Coastal Plain sediments

    USGS Publications Warehouse

    Naeser, C.W.; Naeser, N.D.; Edwards, Lucy E.; Weems, Robert E.; Southworth, C. Scott; Newell, Wayne L.

    2016-01-01

    Comparison of fission-track (FT) ages of detrital zircons recovered from Atlantic Coastal Plain sediments to FT ages of zircons from bedrock in source terranes in the Appalachians provides a key to understanding the provenance of the sediments and, in turn, the erosional and depositional history of the Atlantic passive margin.In Appalachian source terranes, the oldest zircon fission-track (ZFT) ages from bedrock in the western Appalachians (defined for this paper as the Appalachian Plateau, Valley and Ridge, and far western Blue Ridge) are notably older than the oldest ages from bedrock in the eastern Appalachians (Piedmont and main part of the Blue Ridge). The age difference is seen both in ZFT sample ages and in individual zircon grain ages and reflects differences in the thermotectonic history of the rocks. In the east, ZFT data indicate that the rocks cooled from temperatures high enough to partially or totally reset ZFT ages during the Paleozoic and (or) Mesozoic. The majority of the rocks are interpreted to have cooled through the ZFT closure temperature (∼235 °C) at various times during the late Paleozoic Alleghanian orogeny. In contrast, most of the rocks sampled in the western Appalachians have never been heated to temperatures high enough to totally reset their ZFT ages. Reflecting their contrasting thermotectonic histories, nearly 80 percent of the sampled western rocks yield one or more zircon grains with very old FT ages, in excess of 800 Ma; zircon grains yielding FT ages this old have not been found in rocks in the Piedmont and main part of the Blue Ridge. The ZFT data suggest that the asymmetry of zircon ages of exposed bedrock in the eastern and western Appalachians was in evidence by no later than the Early Cretaceous and probably by the Late Triassic.Detrital zircon suites from sands collected in the Atlantic Coastal Plain provide a record of detritus eroded from source terranes in the Appalachians during the Mesozoic and Cenozoic. In Virginia

  1. The Late Paleozoic magmatic evolution of the Aqishan-Yamansu belt, Eastern Tianshan: Constraints from geochronology, geochemistry and Sr-Nd-Pb-Hf isotopes of igneous rocks

    NASA Astrophysics Data System (ADS)

    Zhao, Liandang; Chen, Huayong; Zhang, Li; Zhang, Weifeng; Yang, Juntao; Yan, Xuelu

    2018-03-01

    The Aqishan-Yamansu belt in the Eastern Tianshan (Xinjiang, NW China) is an important mineralization belt. The belt mainly comprises Carboniferous volcanic, volcaniclastic and clastic rocks, and hosts many intermediate-felsic intrusions and Fe (-Cu) deposits. The biotite diorite, felsic brecciated tuff, granodiorite and syenite from the western Aqishan-Yamansu belt are newly zircon U-Pb dated to be 316.7 ± 1.4 Ma, 315.6 ± 2.6 Ma, 305.8 ± 1.9 Ma and 252.5 ± 1.4 Ma, respectively. The mafic rocks (mafic brecciated tuff and diabase porphyry) are tholeiitic to calc-alkaline series, LILE-rich (e.g., Rb, Ba and Pb), HFSE-depleted (e.g., Nb and Ta), and have high Mg#(44-60), Nb/Ta (15.0-20.0), Ba/La (>30) and Ba/Nb (>57) values/ratios, and low Th/Yb ratios (<1), probably originating from mantle wedge metasomatized by slab-derived fluids. The intermediate-felsic igneous rocks are LILE-rich, HFSE-depleted, with high Sr and Y contents showing typical of normal arc magma affinity. Moreover, the depleted εHf(t) (>2.10) and positive εNd(t) (>5.7), combined with variable Nb/Ta ratios (9.52-21.4), Y/Nb ratios (1.47-39.7) and Pb isotopes (206Pb/204Pb = 16.225-17.640, 207Pb/204Pb = 15.454-15.520, 208Pb/204Pb = 37.097-38.025) suggest that these rocks were magma mixing products between juvenile crustal-derived magmas and minor mantle-derived magmas. Combined published works with our new ages, geochemical and isotopic data, we propose that the Aqishan-Yamansu belt was an Early Carboniferous fore-arc basin during the southward subduction of the Kangguer oceanic slab beneath the Yili-Central Tianshan block. With the continuing southward subduction, the Aqishan-Yamansu fore-arc basin initiated to close, which generated the mafic and intensive intermediate-felsic magmatism associated with regional Fe (-Cu) mineralization.

  2. Phanerozoic polyphase orogenies recorded in the northeastern Okcheon Belt, Korea from SHRIMP U-Pb detrital zircon and K-Ar illite geochronologies

    NASA Astrophysics Data System (ADS)

    Jang, Yirang; Kwon, Sanghoon; Song, Yungoo; Kim, Sung Won; Kwon, Yi Kyun; Yi, Keewook

    2018-05-01

    We present the SHRIMP U-Pb detrital zircon and K-Ar illite 1Md/1M and 2M1 ages, suggesting new insight into the Phanerozoic polyphase orogenies preserved in the northeastern Okcheon Belt, Korea since the initial basin formation during Neoproterozoic rifting through several successive contractional orogens. The U-Pb detrital zircon ages from the Early Paleozoic strata of the Taebaeksan Zone suggest a Cambrian maximum deposition age, and are supported by trilobite and conodont biostratigraphy. Although the age spectra from two sedimentary groups, the Yeongwol and Taebaek Groups, show similar continuous distributions from the Late Paleoproterozoic to Early Paleozoic ages, a Grenville-age hiatus (1.3-0.9 Ga) in the continuous stratigraphic sequence from the Taebaek Group suggests the existence of different peripheral clastic sources along rifted continental margin(s). In addition, we present the K-Ar illite 1Md/1M ages of the fault gouges, which confirm fault formation/reactivation during the Late Cretaceous to Early Paleogene (ca. 82-62 Ma) and the Early Miocene (ca. 20-18 Ma). The 2M1 illite ages, at least those younger than the host rock ages, provide episodes of deformation, metamorphism and hydrothermal effects related to the tectonic events during the Devonian (ca.410 Ma) and Permo-Triassic (ca. 285-240 Ma). These results indicate that the northeastern Okcheon Belt experienced polyphase orogenic events, namely the Okcheon (Middle Paleozoic), Songrim (Late Paleozoic to Early Mesozoic), Daebo (Middle Mesozoic) and Bulguksa (Late Mesozoic to Early Cenozoic) Orogenies, reflecting the Phanerozoic tectonic evolution of the Korean Peninsula along the East Asian continental margin.

  3. Paleozoic-involving thrust array in the central Sierras Interiores (South Pyrenean Zone, Central Pyrenees): regional implications

    NASA Astrophysics Data System (ADS)

    Rodriguez, L.; Cuevas, J.; Tubía, J. M.

    2012-04-01

    This work deals with the structural evolution of the Sierras Interiores between the Tena and Aragon valleys. The Sierras Interiores is a WNW-trending mountain range that bounds the South Pyrenean Zone to the north and that is characterized by a thrust-fold system with a strong lithological control that places preferably decollements in Triassic evaporites. In the studied area of the Sierras Interiores Cenomanian limestones cover discordantly the Paleozoic rocks of the Axial Zone because there is a stratigraphic lacuna developed from Triassic to Late Cretaceous times. A simple lithostratigraphy of the study area is made up of Late Cenomanian to Early Campanian limestones with grey colour and massive aspect in landscape (170 m, Lower calcareous section), Campanian to Maastrichtian brown coloured sandstones (400-600 m, Marboré sandstones) and, finally, Paleocene light-coloured massive limestones (130-230 m), that often generate the higher topographic levels of the Sierras Interiores due to their greater resistance to erosion. Above the sedimentary sequence of the Sierras Interiores, the Jaca Basin flysch succession crops out discordantly. Based on a detailed mapping of the studied area of the Sierras Interiores, together with well and structural data of the Jaca Basin (Lanaja, 1987; Rodríguez and Cuevas, 2008) we have constructed a 12 km long NS cross section, approximately parallel to the movement direction deduced for this region (Rodríguez et al., 2011). The main structure is a thrust array made up of at least four Paleozoic-involving thrusts (the deeper thrust system) of similar thickness in a probably piggyback sequence, some of which are blind thrusts that generate fold-propagation-folds in upper levels. The higher thrust of the thrust array crops out duplicating the lower calcareous section all over the Sierras Interiores. The emplacement of the deeper thrust system generated the tightness of previous structures: south directed piggyback duplexes (the upper

  4. Preliminary source rock evaluation and hydrocarbon generation potential of the early Cretaceous subsurface shales from Shabwah sub-basin in the Sabatayn Basin, Western Yemen

    NASA Astrophysics Data System (ADS)

    Al-Matary, Adel M.; Hakimi, Mohammed Hail; Al Sofi, Sadam; Al-Nehmi, Yousif A.; Al-haj, Mohammed Ail; Al-Hmdani, Yousif A.; Al-Sarhi, Ahmed A.

    2018-06-01

    A conventional organic geochemical study has been performed on the shale samples collected from the early Cretaceous Saar Formation from the Shabwah oilfields in the Sabatayn Basin, Western Yemen. The results of this study were used to preliminary evaluate the potential source-rock of the shales in the Saar Formation. Organic matter richness, type, and petroleum generation potential of the analysed shales were assessed. Total organic carbon content and Rock- Eval pyrolysis results indicate that the shale intervals within the early Cretaceous Saar Formation have a wide variation in source rock generative potential and quality. The analysed shale samples have TOC content in the range of 0.50 and 5.12 wt% and generally can be considered as fair to good source rocks. The geochemical results of this study also indicate that the analysed shales in the Saar Formation are both oil- and gas-prone source rocks, containing Type II kerogen and mixed Types II-III gradient to Type III kerogen. This is consistent with Hydrogen Index (HI) values between 66 and 552 mg HC/g TOC. The temperature-sensitive parameters such as vitrinite reflectance (%VRo), Rock-Eval pyrolysis Tmax and PI reveal that the analysed shale samples are generally immature to early-mature for oil-window. Therefore, the organic matter has not been altered by thermal maturity thus petroleum has not yet generated. Therefore, exploration strategies should focus on the known deeper location of the Saar Formation in the Shabwah-sub-basin for predicting the kitchen area.

  5. Granitoids of different geodynamic settings of Baikal region (Russia) their geochemical evolution and origin

    NASA Astrophysics Data System (ADS)

    Antipin, Viktor; Sheptyakova, Natalia

    2016-04-01

    In the southern folded framing of the Siberian craton the granitoid magmatism of different ages involves batholiths, small low-depth intrusions and intrusion-dyke belts with diverse mineral and geochemical characteristics of rocks. Granitoid formation could be related to the Early Paleozoic collision stage and intra-plate magmatism of the Late Paleozoic age of the geologic development of Baikal area. The Early Paleozoic granitoids of Khamar-Daban Ridge and Olkhon region revealed their closeness in age and composition. They were referred to syncollision S-type formations derived from gneiss-schistose substratum of metamorphic sequences. The magmatic rocks were classified into various geochemical types comprising formations of normal Na-alkalinity (migmatites and plagiogranites), calc-alkaline and subalkaline (K-Na granitoids, granosyenites and quartz syenites) series. It is significant, that plagiomigmatites and plagiogranites in all elements repeat the shape of the chart of normalized contents marked for trend of K-Na granitoids, but at considerably lower level of concentrations of all elements. This general pattern of element distribution might indicate similar anatectic origin of both granitoid types, but from crustal substrata distinguished by composition and geochemical features. Comparative geochemical analysis pointed out that the source of melts of the Early Paleozoic granitoids of the Olkhon (505-477 Ma) and Khamar-Daban (516-490 Ma) complexes of the Baikal region could be the crustal substratum, which is obviously the criterion for their formation in the collisional geodynamic setting. Using the Late Paleozoic subalkaline magmatism proceeding at the Khamar-Daban Range (Khonzurtay pluton, 331 Ma) as an example, it was found that the formation of monzodiorite-syenite-leucogranite series was considerably contributed by the processes of hybridism and assimilation through mixing of the upper mantle basaltoid magma derived melts of granitic composition. The

  6. Suprasubduction volcanic rocks of the Char ophiolite belt, East Kazakhstan: new geochemical and first geochronological data

    NASA Astrophysics Data System (ADS)

    Safonova, Inna; Simonov, Vladimir; Seltmann, Reimar; Yamamoto, Shinji; Xiao, Wenjiao

    2016-04-01

    The Char ophiolite belt is located in the western Central Asian Orogenic Belt, a world largest accretionary orogen, which has evolved during more than 800 Ma. The Char belt formed during Kazakhstan - Siberia collision. It has been known for hosting fragments of Late Devonian-Early Carboniferous oceanic crust, MORB, OPB and OIB, of the Paleo-Asian Ocean (Safonova et al., 2012). The Char is surrounded by two Paleozoic island-arc terranes: Zharma-Saur in the west and Rudny Altai in the east, however, until recent times, no island-arc units have been found within it. We were the first to find island-arc units as tectonic sheets occurring adjacent to those consisting of oceanic rocks. In places, island-arc andesites cut oceanic basalts. The Char volcanic and subvolcanic rocks of a probable suprasubduction origin are basalt, microgabbro, dolerite, andesite, tonalite and dacite. The mafic to andesitic volcanics possessing low TiO2 (0.85 wt.%av.) and show MgO vs. major elements crystallization trends suggesting two magma series: tholeiitic and calc-alkaline. The tholeiitic varieties are less enriched in incompatible elements then the calc-alkaline ones. Two samples are high-Mg and low-Ti andesibasalts similar to boninites. The rocks possess moderately LREE enriched rare-earth element patterns and are characterized by negative Nb anomalies present on the multi-element spectra (Nb/Lapm = 0.14-0.47; Nb/Thpm = 0.7-1.6).The distribution of rare-earth elements (La/Smn = 0.8-2.3, Gd/Ybn = 0.7-1.9) and the results of geochemical modeling in the Nb-Yb system suggest high degrees of melting of a depleted harzburgite-bearing mantle source at spinel facies depths. Fractional crystallization of clinopyroxene, plagioclase and opaque minerals also affected the final composition of the volcanic rocks. Clinopyroxene monomineral thermometry indicates crystallization of melts at 1020-1180°C. Melt inclusion composition based numerical calculations show that primary melts were derived at 1350

  7. Carboniferous volcanic rocks associated with back-arc extension in the western Chinese Tianshan, NW China: Insight from temporal-spatial character, petrogenesis and tectonic significance

    NASA Astrophysics Data System (ADS)

    Su, Wenbo; Cai, Keda; Sun, Min; Wan, Bo; Wang, Xiangsong; Bao, Zihe; Xiao, Wenjiao

    2018-06-01

    The Yili-Central Tianshan Block, as a Late Paleozoic major continental silver of the Central Asian Orogenic Belt, holds a massive volume of Carboniferous volcanic rocks, occurring as subparallel magmatic belts. However, the petrogenesis and tectonic implications of these volcanic rocks remain enigmatic. This study compiled isotopic age data for mapping their temporal-spatial character, and conducted petrogenetic study of these magmatic belts, aiming to understand their tectonic implications. Our compiled dataset reveals four magmatic belts in the Yili-Central Tianshan Block, including the Keguqinshan-Tulasu belt and the Awulale belt in the north, and the Wusun Mountain belt and the Haerk-Nalati belt in the south. In addition, our new zircon U-Pb dating results define two significant Early Carboniferous eruptive events (ca. 355-350 Ma and 325 Ma) in the Wusun Mountain belt. Volcanic rocks of the early significant eruptive event (ca. 355-350 Ma) in the Wusun Mountain comprise basalt, trachy-andesite, andesite, dacite and rhyolite, which are similar to the typical rock assemblage of a continental arc. Their positive εNd(t) values (+0.3 to +1.5) and relatively high Th/Yb and Nb/Yb ratios suggest the derivation from a mantle source with additions of slab-derived components. The gabbroic dykes and rhyolites of the late volcanic event (ca. 325 Ma) form a bimodal rock association, and they show alkaline features, with relatively low Th/Yb and Th/Nb ratios, and higher positive εNd(t) values (εNd(t) = +3.3-+5.0). It is interpreted that the gabbroic dykes and rhyolites may have been derived from mantle and juvenile crustal sources, respectively. The isotopic and trace elemental variations with time elapse of the Wusun Mountain magmatic belt show an important clue for strengthening depletion of the magma sources. Considering the distinctive temporal-spatial character of the Carboniferous volcanic rocks, two separate subduction systems in the southern and northern margins of

  8. Assessment of Paleozoic shale gas resources in the Sichuan Basin of China, 2015

    USGS Publications Warehouse

    Potter, Christopher J.; Schenk, Christopher J.; Charpentier, Ronald R.; Gaswirth, Stephanie B.; Klett, Timothy R.; Leathers, Heidi M.; Brownfield, Michael E.; Mercier, Tracey J.; Tennyson, Marilyn E.; Pitman, Janet K.

    2015-10-14

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated a mean of 23.9 trillion cubic feet of technically recoverable shale gas resources in Paleozoic formations in the Sichuan Basin of China.

  9. Compilation of new and previously published geochemical and modal data for Mesoproterozoic igneous rocks of the St. Francois Mountains, southeast Missouri

    USGS Publications Warehouse

    du Bray, Edward A.; Day, Warren C.; Meighan, Corey J.

    2018-04-16

    The purpose of this report is to present recently acquired as well as previously published geochemical and modal petrographic data for igneous rocks in the St. Francois Mountains, southeast Missouri, as part of an ongoing effort to understand the regional geology and ore deposits of the Mesoproterozoic basement rocks of southeast Missouri, USA. The report includes geochemical data that is (1) newly acquired by the U.S. Geological Survey and (2) compiled from numerous sources published during the last fifty-five years. These data are required for ongoing petrogenetic investigations of these rocks. Voluminous Mesoproterozoic igneous rocks in the St. Francois Mountains of southeast Missouri constitute the basement buried beneath Paleozoic sedimentary rock that is over 600 meters thick in places. The Mesoproterozoic rocks of southeast Missouri represent a significant component of approximately 1.4 billion-year-old (Ga) igneous rocks that crop out extensively in North America along the southeast margin of Laurentia and subsequent researchers suggested that iron oxide-copper deposits in the St. Francois Mountains are genetically associated with ca. 1.4 Ga magmatism in this region. The geochemical and modal data sets described herein were compiled to support investigations concerning the tectonic setting and petrologic processes responsible for the associated magmatism.

  10. Kinderhookian (Lower Mississippian) calcareous rocks of the Howard Pass quadrangle, western Brooks Range: A section in Geologic studies in Alaska by the U.S. Geological Survey, 1995

    USGS Publications Warehouse

    Dumoulin, Julie A.; Harris, Anita G.

    1997-01-01

    Calcareous rocks of Kinderhookian (early Early Mississippian) age are widely distributed across the Howard Pass quadrangle in the western Brooks Range. Most occur in the lower part of the Lisburne Group (herein called the Rough Mountain Creek unit) and the upper part of the Endicott Group (Kayak Shale) in two sequences (Key Creek and Aniuk River) of the Endicott Mountains allochthon. Kinderhookian strata are also found in the Kelly River allochthon (Utukok Formation?) and in sections of uncertain stratigraphic affinity and structural level spatially associated with mafic volcanic rocks.Predominant Kinderhookian lithologies in the Lisburne Group are skeletal supportstone (rich in pelmatozoans, bryozoans, and brachiopods) and lesser spiculite; skeletal supportstone and calcarenite are the chief calcareous rock types in the Kayak Shale. Conodont and brachiopod faunas indicate that all of the Rough Mountain Creek unit and much of the Kayak Shale in the study area are of late Kinderhookian age. Lithologic and paleontologic data suggest that Kinderhookian strata in the Howard Pass quadrangle were deposited largely in inner- and middle-shelf settings with normal marine salinity and locally high energy. Overall, calcareous beds in the Rough Mountain Creek unit accumulated in a wider range of environments, less subject to siliciclastic input, than did calcareous beds in the Kayak, and Kinderhookian beds of both units in the Key Creek sequence formed in less diverse, somewhat shallower environments than correlative rocks in the Aniuk River sequence. Lithofacies patterns and contact relations imply that decreased siliciclastic influx, perhaps accompanied by relative sea-level rise, initiated deposition of the Rough Mountain Creek unit; relative sea-level rise and concurrent circulatory restriction most likely ended its deposition.Kinderhookian calcareous rocks in the Howard Pass quadrangle have several implications for middle Paleozoic paleogeography of the western Brooks

  11. The rise and fall of late Paleozoic trilobites of the United States

    USGS Publications Warehouse

    Brezinski, D.K.

    1999-01-01

    Based on range data and generic composition, four stages of evolution are recognized for late Paleozoic trilobites of the contiguous United States. Stage 1 occurs in the Lower Mississippian (Kinderhookian-Osagean) and is characterized by a generically diverse association of short-ranging, stenotopic species that are strongly provincial. Stage 2 species are present in the Upper Mississippian and consist of a single, eurytopic, pandemic genus, Paladin. Species of Stage 2 are much longer-ranging than those of Stage 1, and some species may have persisted for as long as 12 m.y. Stage 3 is present within Pennsylvanian and Lower Permian strata and consists initially of the eurytopic, endemic genera Sevillia and Ameura as well as the pandemic genus Ditomopyge. During the middle Pennsylvanian the very long-ranging species Ameura missouriensis and Ditomopyge scitula survived for more than 20 m.y. During the late Pennsylvanian and early Permian, a number of pandemic genera appear to have immigrated into what is now North America. Stage 4 is restricted to the Upper Permian (late Leonardian-Guadalupian) strata and is characterized by short-ranging, stenotopic, provincial genera. The main causal factor controlling the four-stage evolution of late Paleozoic trilobites of the United States is interpreted to be eustacy. Whereas Stage 1 represents an adaptive radiation developed during the Lower Mississippian inundation of North America by the Kaskaskia Sequence, Stage 2 is present in strata deposited during the regression of the Kaskaskia sea. Stage 3 was formed during the transgression and stillstand of the Absaroka Sequence and, although initially endemic, Stage 3 faunas are strongly pandemic in the end when oceanic circulation patterns were at a maximum. A mid-Leonardian sea-level drop caused the extinction of Stage 3 fauna. Sea-level rise near the end of the Leonardian and into the Guadalupian created an adaptive radiation of stentopic species of Stage 4 that quickly became

  12. Maximum sedimentation ages and provenance of metasedimentary rocks from Tinos Island, Cycladic blueschist belt, Greece

    NASA Astrophysics Data System (ADS)

    Hinsken, Tim; Bröcker, Michael; Berndt, Jasper; Gärtner, Claudia

    2016-10-01

    U-Pb zircon ages of five metasedimentary rocks from the Lower Unit on Tinos Island (Cycladic blueschist belt, Greece) document supply of detritus from various Proterozoic, Paleozoic and Mesozoic source rocks as well as post-depositional metamorphic zircon formation. Essential features of the studied zircon populations are Late Cretaceous (70-80 Ma) maximum sedimentation ages for the lithostratigraphic succession above the lowermost dolomite marble, significant contributions from Triassic to Neoproterozoic source rocks, minor influx of detritus recording Paleoproterozoic and older provenance (1.9-2.1, 2.4-2.5 and 2.7-2.8 Ga) and a lack or paucity of zircons with Mesoproterozoic ages (1.1-1.8 Ga). In combination with biostratigraphic evidence, the new dataset indicates that Late Cretaceous or younger rocks occur on top of or very close to the basal Triassic metacarbonates, suggesting a gap in the stratigraphic record near the base of the metamorphic succession. The time frame for sediment deposition is bracketed by the youngest detrital zircon ages (70-80 Ma) and metamorphic overgrowths that are related to high-pressure/low-temperature overprinting in the Eocene. This time interval possibly indicates a significant difference to the sedimentation history of the southern Cyclades, where Late Cretaceous detrital zircons have not yet been detected.

  13. Geologic Map of Prescott National Forest and the Headwaters of the Verde River, Yavapai and Coconino Counties, Arizona

    USGS Publications Warehouse

    DeWitt, Ed; Langenheim, V.E.; Force, Eric; Vance, R.K.; Lindberg, P.A.; Driscoll, R.L.

    2008-01-01

    This 1:100,000-scale digital geologic map details the complex Early Proterozoic metavolcanic and plutonic basement of north-central Arizona; shows the mildly deformed cover of Paleozoic rocks; reveals where Laramide to mid-Tertiary plutonic rocks associated with base- and precious-metals deposits are exposed; subdivides the Tertiary volcanic rocks according to chemically named units; and maps the Pliocene to Miocene fill of major basins. Associated digital files include more than 1,300 geochemical analyses of all rock units; 1,750 logs of water wells deeper than 300 feet; and interpreted logs of 300 wells that define the depth to basement in major basins. Geophysically interpreted buried features include normal faults defining previous unknown basins, mid-Tertiary intrusive rocks, and half-grabens within shallow bains.

  14. U-Pb zircon and CHIME monazite dating of granitoids and high-grade metamorphic rocks from the Eastern and Peninsular Thailand - A new report of Early Paleozoic granite

    NASA Astrophysics Data System (ADS)

    Kawakami, T.; Nakano, N.; Higashino, F.; Hokada, T.; Osanai, Y.; Yuhara, M.; Charusiri, P.; Kamikubo, H.; Yonemura, K.; Hirata, T.

    2014-07-01

    In order to understand the age and tectonic framework of Eastern to Peninsular Thailand from the viewpoint of basement (metamorphic and plutonic) geology, the LA-ICP-MS U-Pb zircon dating and the chemical Th-U-total Pb isochron method (CHIME) monazite dating were performed in the Khao Chao, Hub-Kapong to Pran Buri, and Khanom areas in Eastern to Peninsular Thailand. The LA-ICP-MS U-Pb zircon dating of the garnet-hornblende gneiss from the Khao Chao area gave 229 ± 3 Ma representing the crystallization age of the gabbro, and that of the garnet-biotite gneisses gave 193 ± 4 Ma representing the timing of an upper amphibolite facies metamorphism. The CHIME monazite dating of pelitic gneiss from the Khao Chao gneiss gave scattered result of 68 ± 22 Ma, due to low PbO content and rejuvenation of older monazite grains during another metamorphism in the Late Cretaceous to Tertiary time. The U-Pb ages of zircon from the Hua Hin gneissic granite in the Hub-Kapong to Pran Buri area scatter from 250 Ma to 170 Ma on the concordia. Granite crystallization was at 219 ± 2 Ma, followed by the sillimanite-grade regional metamorphism at 185 ± 2 Ma. Monazite in the pelitic gneiss from this area also preserves Early to Middle Jurassic metamorphism and rejuvenation by later contact metamorphism by non-foliated granite or by another fluid infiltration event in the Late Cretaceous to Tertiary time. The Khao Dat Fa granite from the Khanom area of Peninsular Thailand gave a U-Pb zircon age of 477 ± 7 Ma. This is the second oldest granite pluton ever reported from Thailand, and is a clear evidence for the Sibumasu block having a crystalline basement that was formed during the Pan-African Orogeny. The Khao Pret granite gives U-Pb zircon concordia age of 67.5 ± 1.3 Ma, which represents the timing of zircon crystallization from the granitic melt and accompanied sillimanite-grade contact metamorphism against surrounding metapelites and gneisses. Metamorphic rocks in the Doi Inthanon area

  15. A problematic early tetrapod from the Mississippian of Nevada

    USGS Publications Warehouse

    Thomson, K.S.; Shubin, N.S.; Poole, F.G.

    1998-01-01

    We report here the discovery of a new taxon of Paleozoic tetrapod from the Late Mississippian of Nevada (330-340 Ma). It has a unique vertebral column with principal centra having vertical anterior and posterior faces, ventrally incomplete accessory centra located antero-dorsally in each centrum, and enlarged presacral/sacral vertebrae. The head and pectoral girdle were not preserved but the large femur, robust pelvic girdle and enlarged sacral vertebrae possibly indicate a terrestrial mode of life. This new form significantly extends the western geographic range of known Mississippian tetrapods. It presents a mosaic of primitive and derived features, indicating that continued revision of traditional accounts of vertebral homology and the early diversifications of Paleozoic tetrapods will be necessary.

  16. Rocks Here Sequester Some of Mars Early Atmosphere

    NASA Image and Video Library

    2015-09-02

    This view combines information from two instruments on NASA's Mars Reconnaissance Orbiter to map color-coded composition over the shape of the ground in a small portion of the Nili Fossae plains region of Mars' northern hemisphere. This site is part of the largest known carbonate-rich deposit on Mars. In the color coding used for this map, green indicates a carbonate-rich composition, brown indicates olivine-rich sands, and purple indicates basaltic composition. Carbon dioxide from the atmosphere on early Mars reacted with surface rocks to form carbonate, thinning the atmosphere by sequestering the carbon in the rocks. An analysis of the amount of carbon contained in Nili Fossae plains estimated the total at no more than twice the amount of carbon in the modern atmosphere of Mars, which is mostly carbon dioxide. That is much more than in all other known carbonate on Mars, but far short of enough to explain how Mars could have had a thick enough atmosphere to keep surface water from freezing during a period when rivers were cutting extensive valley networks on the Red Planet. Other possible explanations for the change from an era with rivers to dry modern Mars are being investigated. This image covers an area approximately 1.4 miles (2.3 kilometers) wide. A scale bar indicates 500 meters (1,640 feet). The full extent of the carbonate-containing deposit in the region is at least as large as Delaware and perhaps as large as Arizona. The color coding is from data acquired by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM), in observation FRT0000C968 made on Sept. 19, 2008. The base map showing land shapes is from the High Resolution Imaging Science Experiment (HiRISE) camera. It is one product from HiRISE observation ESP_010351_2020, made July 20, 2013. http://photojournal.jpl.nasa.gov/catalog/PIA19817

  17. Reinterpretation of the stratigraphy and structure of the Rancho Las Norias area, central Sonora, Mexico

    USGS Publications Warehouse

    Page, W.R.; Harris, A.G.; Poole, F.G.; Repetski, J.E.

    2003-01-01

    New geologic mapping and fossil data in the vicinity of Rancho Las Norias, 30 km east of Hermosillo, Sonora, Mexico, show that rocks previously mapped as Precambrian instead are Paleozoic. Previous geologic maps of the Rancho Las Norias area show northeast-directed, southwest-dipping reverse or thrust faults deforming both Precambrian and Paleozoic rocks. The revised stratigraphy requires reinterpretation of some of these faults as high-angle normal or oblique-slip faults and the elimination of other faults. We agree with earlier geologic map interpretations that compressional structures have affected the Paleozoic rocks in the area, but our mapping suggests that the direction of compression is from southeast to northwest. Published by Elsevier Ltd.

  18. Rotational and accretionary evolution of the Klamath Mountains, California and Oregon, from Devonian to present time

    USGS Publications Warehouse

    Irwin, William P.; Mankinen, Edward A.

    1998-01-01

    The purpose of this report is to show graphically how the Klamath Mountains grew from a relatively small nucleus in Early Devonian time to its present size while rotating clockwise approximately 110°. This growth occurred by the addition of large tectonic slices of oceanic lithosphere, volcanic arcs, and melange during a sequence of accretionary episodes. The Klamath Mountains province consists of eight lithotectonoic units called terranes, some of which are divided into subterranes. The Eastern Klamath terrane, which was the early Paleozoic nucleus of the province, is divided into the Yreka, Trinity, and Redding subterranes. Through tectonic plate motion, usually involving subduction, the other terranes joined the early Paleozoic nucleus during seven accretionary episodes ranging in age from Early Devonian to Late Jurassic. The active terrane suture is shown for each episode by a bold black line. Much of the western boundary of the Klamath Mountains is marked by the South Fork and correlative faults along which the Klamath terranes overrode the Coast Range rocks during an eighth accretionary episode, forming the South Fork Mountain Schist in Early Cretaceous time.

  19. Petrogenesis and tectonic implications of Early Cretaceous volcanic rocks from Lingshan Island in the Sulu Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Meng, Yuanku; Santosh, M.; Li, Rihui; Xu, Yang; Hou, Fanghui

    2018-07-01

    The Dabie-Sulu orogenic belt in eastern China marks the boundary between the Yangtze Block and the North China Block. Here we investigate a suite of volcanic rocks from Lingshan Island in the Sulu belt comprising rhyolite, trachyte, trachyandesite and basaltic trachyandesite. We present petrological, geochemical and zircon Usbnd Pb ages and Hfsbnd O isotope data with a view to gain insights on the petrogenesis and tectonic implications. SHRIMP II analyses of zircon grains from the rhyolite yield 206Pb/238U age of 127.6 ± 1.3 Ma and LA-MC-ICP-MS dating show 126.3 ± 1.2 Ma and 127.3 ± 1.1 Ma, together constraining the eruption time as Early Cretaceous. LA-MC-ICP-MS analyses of zircon grains from the andesitic rocks yield 206Pb/238U ages of 129.0 ± 1.6 Ma, 129.8 ± 1.5 Ma and 130.9 ± 1.0 Ma. Geochemically, the rhyolite shows shoshonitic features with low MgO and Cr, but high Na2O + K2O. The zircon grains from these rocks yield negative εHf(t) values and low δ18O values, and these together with the presence of Neoproterozoic inherited zircons suggest that the magma source involved melting of the Yangtze crust. The andesitic rocks, including basaltic trachyandesite, trachyandesite and trachyte, show a wide range of SiO2, Mg# values, and Cr, enriched in LILE and LREE, depleted in HFSE (Nb, Ta and Ti), and have significantly negative zircon εHf(t) values, suggesting derivation from subcontinental lithosphere mantle that was metasomatized by felsic melts. Our results, integrated with those from previous studies suggest heterogeneous magma involving the mixing of mantle and crustal sources within an extensional setting in the Early Cretaceous.

  20. Geology and Ore Deposits of the Uncompahgre (Ouray) Mining District, Southwestern Colorado

    USGS Publications Warehouse

    Burbank, Wilbur Swett; Luedke, Robert G.

    2008-01-01

    The Uncompahgre mining district, part of the Ouray mining district, includes an area of about 15 square miles (mi2) on the northwestern flank of the San Juan Mountains in southwestern Colorado from which ores of gold, silver, copper, lead, and zinc have had a gross value of $14 to 15 million. Bedrock within the district ranges in age from Proterozoic to Cenozoic. The oldest or basement rocks, the Uncompahgre Formation of Proterozoic age, consist of metamorphic quartzite and slate and are exposed in a small erosional window in the southern part of the district. Overlying those rocks with a profound angular unconformity are Paleozoic marine sedimentary rocks consisting mostly of limestones and dolomites and some shale and sandstone that are assigned to the Elbert Formation and Ouray Limestone, both of Devonian age, and the Leadville Limestone of Mississippian age. These units are, in turn, overlain by rocks of marine transitional to continental origin that are assigned to the Molas and Hermosa Formations of Pennsylvanian age and the Cutler Formation of Permian age; these three formations are composed predominantly of conglomerates, sandstones, and shales that contain interbedded fossiliferous limestones within the lower two-thirds of the sequence. The overlying Mesozoic strata rest also on a pronounced angular unconformity upon the Paleozoic section. This thick Mesozoic section, of which much of the upper part was eroded before the region was covered by rocks of Tertiary age, consists of the Dolores Formation of Triassic age, the Entrada Sandstone, Wanakah Formation, and Morrison Formation all of Jurassic age, and the Dakota Sandstone and Mancos Shale of Cretaceous age. These strata dominantly consist of shales, mudstones, and sandstones and minor limestones, breccias, and conglomerates. In early Tertiary time the region was beveled by erosion and then covered by a thick deposit of volcanic rocks of mid-Tertiary age. These volcanic rocks, assigned to the San Juan

  1. Arsenic in rocks and stream sediments of the central Appalachian Basin, Kentucky

    USGS Publications Warehouse

    Tuttle, Michele L.W.; Goldhaber, Martin B.; Ruppert, Leslie F.; Hower, James C.

    2002-01-01

    Arsenic (As) enrichment in coal and stream sediments has been documented in the southern Appalachian basin (see Goldhaber and others, submitted) and is attributed to interaction of rocks and coal with metamorphic fluids generated during the Allegheny Orogeny (late Paleozoic). Similarly derived fluids are expected to affect the coal and in the Kentucky Appalachian Basin to the north as well. In addition, similar processes may have influenced the Devonian oil shale on the western margin of the basin. The major goals of this study are to determine the effect such fluids had on rocks in the Kentucky Appalachian basin (fig. 1), and to understand the geochemical processes that control trace-metal source, residence, and mobility within the basin. This report includes data presented in a poster at the USGS workshop on arsenic (February 21 and 22, 2001), new NURE stream sediment data3 , and field data from a trip in April 2001. Although data for major and minor elements and all detectable trace metals are reported in the Appendices, the narrative of this report primarily focuses on arsenic.

  2. Coupled Nd-142, Nd-143 and Hf-176 Isotopic Data from 3.6-3.9 Ga Rocks: New Constraints on the Timing of Early Terrestrial Chemical Reservoirs

    NASA Technical Reports Server (NTRS)

    Bennett, Vickie C.; Brandon, alan D.; Hiess, Joe; Nutman, Allen P.

    2007-01-01

    Increasingly precise data from a range of isotopic decay schemes, including now extinct parent isotopes, from samples of the Earth, Mars, Moon and meteorites are rapidly revising our views of early planetary differentiation. Recognising Nd-142 isotopic variations in terrestrial rocks (which can only arise from events occurring during the lifetime of now extinct Sm-146 [t(sub 1/2)=103 myr]) has been an on-going quest starting with Harper and Jacobsen. The significance of Nd-142 variations is that they unequivocally reflect early silicate differentiation processes operating in the first 500 myr of Earth history, the key time period between accretion and the beginning of the rock record. The recent establishment of the existence of Nd-142 variations in ancient Earth materials has opened a new range of questions including, how widespread is the evidence of early differentiation, how do Nd-142 compositions vary with time, rock type and geographic setting, and, combined with other types of isotopic and geochemical data, what can Nd-142 isotopic variations reveal about the timing and mechanisms of early terrestrial differentiation? To explore these questions we are determining high precision Nd-142, Nd-143 and Hf-176 isotopic compositions from the oldest well preserved (3.63- 3.87 Ga), rock suites from the extensive early Archean terranes of southwest Greenland and western Australia.

  3. Saddle-shaped reticulate Nummulites from Early Oligocene rocks of Khari area, SW Kutch, India

    NASA Astrophysics Data System (ADS)

    Sengupta, S.; Sarkar, Sampa; Mukhopadhyay, S.

    2011-04-01

    Saddle-shaped reticulate Nummulites from the Early Oligocene rocks of Khari area, SW Kutch, India is reported here for the first time. Unusual shape of this Nummulites is due to the curved nature of the coiling plane, indicating space constrained postembryonic test growth. With regular development of chambers, septa and septal filaments, the saddle-shaped Nummulites constitutes the third morphotype of N. cf. fichteli Michelotti form A. Other morphotypes of the species reported earlier include inflated lenticular and conical tests. Multiple morphotypes of N. cf. fichteli form A indicates varied test growth in response to substrate conditions. Morphological variability exhibited by N. cf. fichteli form A from Kutch and some Early Oligocene reticulate Nummulites from the Far East are comparable. This faunal suite is morphologically distinct from the contemporary reticulate Nummulites of the European localities.

  4. High-pressure/low-temperature metamorphism in the collision zone between the Chilenia and Cuyania microcontinents (western Precordillera, Argentina)

    NASA Astrophysics Data System (ADS)

    Boedo, F. L.; Willner, A. P.; Vujovich, G. I.; Massonne, H.-J.

    2016-12-01

    In central-western Argentina, an Early Paleozoic belt including mafic-ultramafic bodies, marine metasedimentary rocks and high-pressure rocks occur along the western margin of the Precordillera and in the Frontal Cordillera. First pressure-temperature estimates are presented here for low-grade rocks of the southern sector of this belt based on two metasedimentary and one metabasaltic sample from the Peñasco Formation. Peak metamorphic conditions resulted within the range of 345-395 °C and 7.0-9.3 kbar within the high-pressure greenschist facies. The corresponding low metamorphic gradient of 13 °C/km is comparable with subduction related geothermal gradients. Comparison between these results and data from other localities of the same collision zone (Guarguaraz and Colohuincul complexes) confirms a collision between Chilenia and the composite margin of western Gondwana and suggests a stronger crustal thickening in the south of the belt, causing exhumation of more deeply buried sequences. During the Early Paleozoic a long-lived marine sedimentation coupled with the intrusion of MORB-like basalts occurred along a stable margin before the collision event. This contrasts with the almost contemporaneous sedimentation registered during accretion in accretionary prism settings and additionally proves the development of a collision zone along western Precordillera and the eastern Frontal Cordillera as well as the existence of Chilenia as a separate microcontinent.

  5. Correlation of Late Precambrian and Paleozoic events in the East European platform and the adjacent paleooceanic domains

    NASA Astrophysics Data System (ADS)

    Kheraskova, T. N.; Volozh, Yu. A.; Antipov, M. P.; Bykadorov, V. A.; Sapozhnikov, R. B.

    2015-01-01

    The correlation of geological events and structure-forming processes occurring contemporaneously in the inner parts of cratons and the adjacent paleooceanic basins is discussed in order to understand the effects of these processes on sedimentation and structural rearrangements. For this purpose, a series of paleodynamic reconstructions of the Riphean, Vendian, and Paleozoic epicontinental basins of the East European Platform and zones of their transition to marginal basins of the same age once situated in the Ural, Timan, Caucasus, Scandinavian fold regions and in the Scythian-Turan Plate have been performed on the basis of the available original and published data combined with interpretation of seismic profiles. As a result, a set of structural-facies maps of this territory have been compiled for several time intervals from the Late Riphean to Early Permian.

  6. The Bolivian source rocks: Sub Andean Zone-Madre de Dios-Chaco

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moretti, I.; Montemurro, G.; Aguilera, E.

    A complete study of source rocks has been carried out in the Bolivian foothills and foreland (Sub Andean Zone, Chaco and Madre de Dios) in order to quantify the petroleum potential of the area. Besides the classical mid-Devonian source rocks (Tequeje Formation in the north, Limoncito Formation in the center and Los Monos Formation in the south), others are important: the Tomachi Formation (late Devonian) in the north and the Copacabana Formation (Upper Carboniferous-lower Permian) in the northern Sub Andean Zone. Both show an excellent potential with S{sub 2} over 50 mg HC/g and average values higher than 10 mgmore » HC/g over few hundred meters. The Latest Cretaceous Flora Formation present locally a high potential but is very thin. Almost all the source rocks matured during the Neogene due to the subsidence in the Andean foreland and in the piggyback basins, and are thus involved on the current petroleum system. Silurian and Lower Paleozoic units also contain thick shale beds, but these source rocks were mature before the Jurassic in the south of the country. In the center, the Silurian is not nowadays overmature and may play an important role. The different zones are compared based on their Source Potential Index which indicates that the richest areas are the northern Sub Andean Zone and the Madre de Dios basin with SPI greater than 10 t/m{sup 2}. Since these two areas remain almost unexplored, these results allow us to be optimistic about the possibilities for future exploration.« less

  7. Deformational history of part of the Acatlán Complex: Late Ordovician Early Silurian and Early Permian orogenesis in southern Mexico

    NASA Astrophysics Data System (ADS)

    Malone, J. R.; Nance, R. D.; Keppie, J. D.; Dostal, J.

    2002-10-01

    The Paleozoic Acatlán Complex of southern Mexico comprises polydeformed metasedimentary, granitoid, and mafic-ultramafic rocks variously interpreted as recording the closure of the Iapetus, Rheic, and Ouachitan Oceans. The complex is tectonically juxtaposed on its eastern margin against Grenville-age gneisses (Oaxacan Complex) that are unconformably overlain by Lower Paleozoic strata containing fossils of Gondwanan affinity. A thick siliciclastic unit (Chazumba and Cosoltepec Formations) at the base of the complex is considered part of a Lower Paleozoic accretionary prism with a provenance that isotopically resembles the Oaxacan Complex. This unit is tectonically overridden by a locally eclogitic mafic-ultramafic unit interpreted as a westward-obducted ophiolite, the emplacement of which was synchronous with mylonitic granitoid intrusion at ca. 440 Ma. Both units are unconformably overlain by a deformed volcano-sedimentary sequence (Tecomate Formation) attributed to a volcanic arc of presumed Devonian age. Deformed granitoids in contact with this sequence have been dated at ca. 371 (La Noria granite) and 287 Ma (Totoltepec pluton). Three phases of penetrative deformation (D 1-3) affect the Cosoltepec Formation; the last two correlate with two penetrative deformational phases that affect the Tecomate Formation. D 1 is of unknown kinematics but predates deposition of the Tecomate Formation and likely records obduction at ca. 440 Ma (Acatecan orogeny). A folded foliation in the Totoltepec pluton appears to record both deformational phases in the Tecomate Formation, bracketing D 2 and D 3 between 287 Ma and the deposition of the nonconformably overlying Leonardian Matzitzi Formation. D 2 records north-south dextral transpression and south-vergent thrusting and is attributed to the collision of Gondwana and southern Laurentia (Ouachitan orogeny) at ca. 290 Ma, the kinematics being consistent with the northward motion of Mexico that is required by most continental

  8. Possible polyphase metamorphic evolution of high grade metabasic rocks from the Songshugou ophiolite, Qinling orogen, China

    NASA Astrophysics Data System (ADS)

    Belic, Maximilian; Hauzenberger, Christoph; Dong, Yunpeng; Chen, Danling

    2014-05-01

    The Proterozoic Songshugou ophiolite consists of a series of ultrabasic and tholeitic metabasic rocks. They were emplaced as a lense shaped body into the southern margin of the Qinling Group. Isotope composition and trace element geochemistry display an E-MORB and T-MORB signature for the mafic rocks (Dong et al., 2008). Within the ophiolite sequence some rudimental fresh peridotites (dunites and harzburgites) within serpentines display low CaO (<0.39 wt.%) and Al2O3 (<0.51 wt.%) as well as high MgO (41-48 wt.%) contents, which can be classified as depleted non-fertile mantle rocks. The metabasic rocks comprise the mineral assemblage garnet, amphibole, symplectitic pyroxenes, ilmenite, apatite, ±zoisite, ±sphene and show a strong retrograde metamorphic overprint. Garnet typically contains many inclusions within the core but are nearly inclusion free at the rim. The cores have sometimes snowball textures indicating initially syndeformative growth. Albite and prehnite were found in central parts of garnet. In the outer portions, pargasitic amphibole, rutile and a bluish amphibole, probably glaukophane were found. Garnet zoning pattern clearly show a discontinous growth seen in an sudden increase in grossular and decrease in almandine components. The symplectitic pyroxenes are of diopsidic composition which enclose typically prehnite and not albite, as common in retrograde eclogitic rocks. Different stages of garnet breakdown to plagioclase and amphibole, from thin plagioclase rims surrounding the garnets to plagioclase rich pseudomorphs, can be observed in different samples. Based on symplectitic pyroxenes a high pressure metamorphic event can be concluded (Zhang, 1999). The garnet breakdown to plagioclase and the symplectites clearly indicate a rapid exhumation phase. The age of the metamorphic event is probably related to the closure of the Shangdan ocean during the early Paleozoic. It is unclear if the garnet rims grew during a later stage of the metamorphic

  9. The development of floristic provinciality during the Middle and Late Paleozoic

    USGS Publications Warehouse

    Wnuk, C.

    1996-01-01

    Phytogeographic reconstructions have been published for most Paleozoic series since the Pr??i??doli??, but there have been few attempts to synthesize this data into a comprehensive review of the characteristics and causes of the changing phytogeographic patterns for the whole Paleozoic history of the vascular flora. Existing floristic analyses have been compiled in this manuscript and the resulting data are used to reconstruct the evolution of floristic provinces since the Silurian. The earliest plant fossil records indicate that provinciality was characteristic of terrestrial vascular plant distributions right from the beginning of terrestrial colonization by vascular plants. This interpretation differs markedly from the views of many workers who still maintain that pre-Upper Carboniferous floras were uniform and cosmopolitan in distribution. Three of the four major phytogeographic units, i.e. Angara, Euramerica, and Gondwana, can be recognized in the earliest fossil floras. The fourth unit, Cathaysia, differentiated from Euramerica during the late Upper Carboniferous. Phytogeographic differentiation occurs in direct response to climatic gradients and physiographic barriers. As these gradients and barriers change, provincial boundaries expand and contract, fragment, reassemble and reassort. Phytogeographic units are dynamic through time. ?? 1996 Elsevier Science B.V. All rights reserved.

  10. Global plate boundary evolution and kinematics since the late Paleozoic

    NASA Astrophysics Data System (ADS)

    Matthews, Kara J.; Maloney, Kayla T.; Zahirovic, Sabin; Williams, Simon E.; Seton, Maria; Müller, R. Dietmar

    2016-11-01

    Many aspects of deep-time Earth System models, including mantle convection, paleoclimatology, paleobiogeography and the deep Earth carbon cycle, require high-resolution plate motion models that include the evolution of the mosaic of plate boundaries through time. We present the first continuous late Paleozoic to present-day global plate model with evolving plate boundaries, building on and extending two previously published models for the late Paleozoic (410-250 Ma) and Mesozoic-Cenozoic (230-0 Ma). We ensure continuity during the 250-230 Ma transition period between the two models, update the absolute reference frame of the Mesozoic-Cenozoic model and add a new Paleozoic reconstruction for the Baltica-derived Alexander Terrane, now accreted to western North America. This 410-0 Ma open access model provides a framework for deep-time whole Earth modelling and acts as a base for future extensions and refinement. We analyse the model in terms of the number of plates, predicted plate size distribution, plate and continental root mean square (RMS) speeds, plate velocities and trench migration through time. Overall model trends share many similarities to those for recent times, which we use as a first order benchmark against which to compare the model and identify targets for future model refinement. Except for during the period 260-160 Ma, the number of plates (16-46) and ratio of "large" plates (≥ 107.5 km2) to smaller plates ( 2.7-6.6) are fairly similar to present-day values (46 and 6.6, respectively), with lower values occurring during late Paleozoic assembly and growth of Pangea. This temporal pattern may also reflect difficulties in reconstructing small, now subducted oceanic plates further back in time, as well as whether a supercontinent is assembling or breaking up. During the 260-160 Ma timeframe the model reaches a minima in the number of plates, in contrast to what we would expect during initial Pangea breakup and thus highlighting the need for refinement

  11. Review of potential host rocks for radioactive waste disposal in the southeast United States-Southern Piedmont subregion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-10-01

    A literature study was conducted on the geology of the Southern Piedmont province in the states of Maryland, Virginia, North Carolina, South Carolina, and Georgia. The purpose was to identify geologic areas potentially suitable for containment of a repository for the long-term isolation of solidified radioactive waste. The crystalline rocks of the Southern Piedmont province range in age from Precambrian to Paleozoic, and are predominantly slates, phyllites, argillites, schists, metavolcanics, gneisses, gabbros, and granites. These rock units were classified as either favorable, potentially favorable, or unfavorable as potential study areas based on an evaluation of the geologic, hydrologic, and geotechnicalmore » characteristics. No socio-economic factors were considered. Rocks subjected to multiple periods of deformation and metamorphism, or described as highly fractured, or of limited areal extent were generally ranked as unfavorable. Potentially favorable rocks are primarily the high-grade metamorphic gneisses and granites. Sixteen areas were classified as being favorable for additional study. These areas are primarily large igneous granite plutons as follows: the Petersburg granite in Virginia; the Rolesville-Castallia, Churchland, and Landis plutons in North Carolina; the Liberty Hill, Winnsboro, and Ogden plutons in South Carolina; and the Siloam, Elberton, and six unnamed granite plutons in Georgia.« less

  12. A bibliography of Paleozoic Crustacea from 1698 to 1889, including a list of North American species and a systematic arrangement of genera

    USGS Publications Warehouse

    Vogdes, Anthony Wayne

    1890-01-01

    The sole object of this bulletin is to give a general view of the literature on the Paleozoic Crustacea and to aid students and paleontologists in their researches. It is the result of more or less constant work during the past ten years.In its compilation I have examined almost every reference before recording it; those not so examined are indicated by a star (*) following the title.For convenience, the subject-matter has been arranged as follows:Part I. List of authors, including a brief index of the genera described in each work. Part II. A catalogue of the North American Paleozoic trilobites. Part III. The non-trilobitic Paleozoic Crustacea, with a list of the species.

  13. Paleobiogeography, high-resolution stratigraphy, and the future of Paleozoic biostratigraphy: Fine-scale diachroneity of the Wenlock (Silurian) conodont Kockelella walliseri

    USGS Publications Warehouse

    Cramer, Bradley D.; Kleffner, Mark A.; Brett, Carlton E.; McLaughlin, P.I.; Jeppsson, Lennart; Munnecke, Axel; Samtleben, Christian

    2010-01-01

    The Wenlock Epoch of the Silurian Period has become one of the chronostratigraphically best-constrained intervals of the Paleozoic. The integration of multiple chronostratigraphic tools, such as conodont and graptolite biostratigraphy, sequence stratigraphy, and ??13Ccarb chemostratigraphy, has greatly improved global chronostratigraphic correlation and portions of the Wenlock can now be correlated with precision better than ??100kyr. Additionally, such detailed and integrated chronostratigraphy provides an opportunity to evaluate the fidelity of individual chronostratigraphic tools. Here, we use conodont biostratigraphy, sequence stratigraphy and carbon isotope (??13Ccarb) chemostratigraphy to demonstrate that the conodont Kockelella walliseri, an important guide fossil for middle and upper Sheinwoodian strata (lower stage of the Wenlock Series), first appears at least one full stratigraphic sequence lower in Laurentia than in Baltica. Rather than serving as a demonstration of the unreliability of conodont biostratigraphy, this example serves to demonstrate the promise of high-resolution Paleozoic stratigraphy. The temporal difference between the two first occurrences was likely less than 1million years, and although it is conceptually understood that speciation and colonization must have been non-instantaneous events, Paleozoic paleobiogeographic variability on such short timescales (tens to hundreds of kyr) traditionally has been ignored or considered to be of little practical importance. The expansion of high-resolution Paleozoic stratigraphy in the future will require robust biostratigraphic zonations that embrace the integration of multiple chronostratigraphic tools as well as the paleobiogeographic variability in ranges that they will inevitably demonstrate. In addition, a better understanding of the paleobiogeographic migration histories of marine organisms will provide a unique tool for future Paleozoic paleoceanography and paleobiology research. ?? 2010

  14. Evidence for large-magnitude, post-Eocene extension in the northern Shoshone Range, Nevada, and its implications for Carlin-type gold deposits in the lower plate of the Roberts Mountains allochthon

    USGS Publications Warehouse

    Colgan, Joseph P.; Henry, Christopher D.; John, David A.

    2014-01-01

    The northern Shoshone and Toiyabe Ranges in north-central Nevada expose numerous areas of mineralized Paleozoic rock, including major Carlin-type gold deposits at Pipeline and Cortez. Paleozoic rocks in these areas were previously interpreted to have undergone negligible postmineralization extension and tilting, but here we present new data that suggest major post-Eocene extension along west-dipping normal faults. Tertiary rocks in the northern Shoshone Range crop out in two W-NW–trending belts that locally overlie and intrude highly deformed Lower Paleozoic rocks of the Roberts Mountains allochthon. Tertiary exposures in the more extensive, northern belt were interpreted as subvertical breccia pipes (intrusions), but new field data indicate that these “pipes” consist of a 35.8 Ma densely welded dacitic ash flow tuff (informally named the tuff of Mount Lewis) interbedded with sandstones and coarse volcaniclastic deposits. Both tuff and sedimentary rocks strike N-S and dip 30° to 70° E; the steeply dipping compaction foliation in the tuffs was interpreted as subvertical flow foliation in breccia pipes. The southern belt along Mill Creek, previously mapped as undivided welded tuff, includes the tuff of Cove mine (34.4 Ma) and unit B of the Bates Mountain Tuff (30.6 Ma). These tuffs dip 30° to 50° east, suggesting that their west-dipping contacts with underlying Paleozoic rocks (previously mapped as depositional) are normal faults. Tertiary rocks in both belts were deposited on Paleozoic basement and none appear to be breccia pipes. We infer that their present east tilt is due to extension on west-dipping normal faults. Some of these faults may be the northern strands of middle Miocene (ca. 16 Ma) faults that cut and tilted the 34.0 Ma Caetano caldera ~40° east in the central Shoshone Range (

  15. Persistent and widespread occurrence of bioactive quinone pigments during post-Paleozoic crinoid diversification

    PubMed Central

    Wolkenstein, Klaus

    2015-01-01

    Secondary metabolites often play an important role in the adaptation of organisms to their environment. However, little is known about the secondary metabolites of ancient organisms and their evolutionary history. Chemical analysis of exceptionally well-preserved colored fossil crinoids and modern crinoids from the deep sea suggests that bioactive polycyclic quinones related to hypericin were, and still are, globally widespread in post-Paleozoic crinoids. The discovery of hypericinoid pigments both in fossil and in present-day representatives of the order Isocrinida indicates that the pigments remained almost unchanged since the Mesozoic, also suggesting that the original color of hypericinoid-containing ancient crinoids may have been analogous to that of their modern relatives. The persistent and widespread occurrence, spatially as well as taxonomically, of hypericinoid pigments in various orders during the adaptive radiation of post-Paleozoic crinoids suggests a general functional importance of the pigments, contributing to the evolutionary success of the Crinoidea. PMID:25730856

  16. Accretionary history of the Altai-Mongolian terrane: perspectives from granitic zircon U-Pb and Hf-isotope data

    NASA Astrophysics Data System (ADS)

    Cai, Keda; Sun, Min; Xiao, Wenjiao

    2014-05-01

    The Central Asian Orogenic Belt (CAOB) consists of many tectonic terranes with distinct origin and complicated evolutionary history. Understanding of individual block is crucial to reconstruct the geodynamic history of the gigantic accetionary collage. This study presents zircon U-Pb ages and Hf isotopes for the granitoid rocks in the Russian Altai mountain range (including Gorny Altai, Altai-Mongolian terrane and CTUS suture zone between them), in order to clarify the timing of granitic magmatism, source nature, continental crustal growth and tectonic evolution. Our dating results suggest that granitic magmatism of the Russian Altai mountain range occurred in three major episodes including 445~429 Ma, 410~360 Ma and ~241 Ma. Most of the zircons within the Paleozoic granitoids present comparable positive ɛHf(t) values and Neoproterozoic crustal model ages, which favor the interpretation that the juvenile crustal materials produced in the early stage of CAOB were probably dominant sources for the Paleozoic magmatism in the region. The inference is also supported by widespread occurrence of short-lived juvenile materials including ophiolites, seamount relics and arc assemblages in the north CAOB. Consequently, the Paleozoic massive granitic rocks maybe not represent continental crustal growth at the time when they were emplaced, but rather record reworking of relatively juvenile Proterozoic crustal rocks although mantle-derived mafic magma was possibly involved to sever as heat engine during granitic magma generation. The Early Triassic granitic intrusion may be product in an intra-plate environment, as the case of same type rocks in the adjacent areas. The positive ɛHf(t) values (1.81~7.47) and corresponding Hf model ages (0.80~1.16 Ga) together with evidence of petrology are consistent with the interpretation that the parental magma of the Triassic granitic intrusion was produced from enriched mantle-derived sources under an usually high temperature condition

  17. First data on age of metarhyolites from the Turan Group of the Bureya Terrane, eastern part of the Central Asian Foldbelt

    NASA Astrophysics Data System (ADS)

    Sorokin, A. A.; Smirnov, Yu. V.; Smirnova, Yu. N.; Kudryashov, N. M.

    2011-07-01

    The U-Pb geochronological studies showed that metarhyolites from the Turan Group of the Bureya (Turan) Terrane to the east of the Central Asian Foldbelt are Middle Cambrian (504 ± 8 Ma), not Neoproterozoic in age, as was suggested before. Metarhyolites are younger than the Early Cambrian terrigenous-carbonate sediments from this terrane characterized by the Atdabanian archaeochyatid. Considering that volcanic rocks have features of intraplate origin, it may be assumed that their formation corresponds to the breakup of the Early Paleozoic passive continental margin.

  18. Geologic map of the Mount Sherman 7.5' quadrangle, Lake and Park Counties, Colorado

    USGS Publications Warehouse

    Bohannon, Robert G.; Ruleman, Chester A.

    2013-01-01

    The Mount Sherman 7.5- minute quadrangle is located along the crest of the Mosquito Range in between Leadville and Fairplay, Colorado. There are eleven 13,000-foot peaks and one fourteener, Mount Sherman, within the quadrangle. General elevations range from 10,400–14,036 feet (3,200–4,278 meters). The western half of the quadrangle primarily consists of Proterozoic granitic rocks reverse faulted over Paleozoic sedimentary rocks during the Laramide orogeny of late Cretaceous and Paleocene time. Coeval to this contractional event, sills and laccoliths of the White porphyry group (which probably includes rocks equivalent to the Pando Porphyry) were emplaced in the surrounding country rocks. Igneous activity continued into the Late Eocene with the emplacement of the Sacramento Porphyry (about 43.9 Ma) and the Gray porphyry group (about 36.7 Ma), and as young as 29 Ma to the north within the Climax quadrangle. With the inception of the Rio Grande rift within the region, the Paleozoic sedimentary rocks and Late Cretaceous to early Oligocene igneous rocks were extensionally faulted and tilted to the east. This resulted in the present 20–30 degree dip-slope of these rocks on top of Proterozoic basement rocks within the eastern half of the quadrangle. This extensional regime has continued well into the Pliocene. Within the southwestern quadrant, suspicious lineaments, alignment of springs, and continuous, measureable escarpments provide reasonable evidence for Quaternary tectonic activity along the western flank of the range. Pleistocene glaciers have dramatically sculpted the region, providing exceptional exposure of the region’s bedrock and structure.

  19. Paleozoic evolution of active margin basins in the southern Central Andes (northwestern Argentina and northern Chile)

    NASA Astrophysics Data System (ADS)

    Bahlburg, H.; Breitkreuz, C.

    The geodynamic evolution of the Paleozoic continental margin of Gondwana in the region of the southern Central Andes is characterized by the westward progression of orogenic basin formation through time. The Ordovician basin in the northwest Argentinian Cordillera Oriental and Puna originated as an Early Ordovician back-arc basin. The contemporaneous magmatic arc of an east-dipping subduction zone was presumably located in northern Chile. In the back-arc basin, a ca. 3500 meter, fining-up volcaniclastic apron connected to the arc formed during the Arenigian. Increased subsidence in the late Arenigian allowed for the accomodation of large volumes of volcaniclastic turbidites during the Middle Ordovician. Subsidence and sedimentation were caused by the onset of collision between the para-autochthonous Arequipa Massif Terrane (AMT) and the South American margin at the Arenigian-Llanvirnian transition. This led to eastward thrusting of the arc complex over its back-arc basin and, consequently, to its transformation into a marine foreland basin. As a result of thrusting in the west, a flexural bulge formed in the east, leading to uplift and emergence of the Cordillera Oriental shelf during the Guandacol Event at the Arenigian-Llanvirnian transition. The basin fill was folded during the terminal collision of the AMT during the Oclóyic Orogeny (Ashgillian). The folded strata were intruded post-tectonically by the presumably Silurian granitoids of the "Faja Eruptiva de la Puna Oriental." The orogeny led to the formation of the positive area of the Arco Puneño. West of the Arco Puneño, a further marine basin developed during the Early Devonian, the eastern shelf of which occupied the area of the Cordillera Occidental, Depresión Preandina, and Precordillera. The corresponding deep marine turbidite basin was located in the region of the Cordillera de la Costa. Deposition continued until the basin fill was folded in the early Late Carboniferous Toco Orogeny. The basin

  20. PTt path in metamorphic rocks of the Khoy region (northwest Iran) and their tectonic significance for Cretaceous Tertiary continental collision

    NASA Astrophysics Data System (ADS)

    Azizi, H.; Moinevaziri, H.; Mohajjel, M.; Yagobpoor, A.

    2006-06-01

    Metamorphic rocks in the Khoy region are exposed between obducted ophiolites to the southwest and sedimentary rocks of Precambrian-Paleozoic age to the northeast. The Qom formation (Oligocene-Miocene) with a basal conglomerate transgressively overlies all of these rocks. The metamorphic rocks consist of both metasediments and metabasites. The metasediments are micaschist, garnet-staurolite schist and garnet-staurolite sillimanite schist with some meta-arkose, marble and quartzite. The metabasites are metamorphosed to greenschist and amphibolite facies from a basaltic and gabbroic protolith of tholeiitic and calc-alkaline rocks. Geothermobarometry based on the equivalence of minerals stability and their paragenesis in these rocks and microprobe analyses by several different methods indicate that metamorphism occurred in a temperature range between 450 and 680 °C at 5.5 and 7.5 kb pressure. Rims of minerals reveal a considerable decrease of pressure (<2 kb) and insignificant decrease of temperature. The PTt path of this metamorphism is normal. The MFG line passes above the triple junction of Al 2SiO 5 polymorphs, and the average geothermal gradient during metamorphism was from 27 to 37 °C/km, which is more concordant with the temperature regime of collision zones. We infer that crustal thickening during post-Cretaceous (possibly Eocene) collision of the Arabian plate and the Azerbaijan-Albourz block was the main factor that caused the metamorphism in the studied area.

  1. Geology of Seward Peninsula and Saint Lawrence Island

    USGS Publications Warehouse

    Till, Alison B.; Dumoulin, Julie A.

    1994-01-01

    Seward Peninsula (Fig. 1) may be divided into two geologic terranes (Fig. 2) on the basis of stratigraphy, structure, and metamorphic history. The Seward terrane, an area 150 by 150 km in the central and eastern peninsula, is dominated by Precambrian(?) and early Paleozoic blueschist-, greenschist-, and amphibolite-facies schist and marble, and intruded by three suites of granitic rocks. The York terrane, roughly 100 by 75 km, occupies western Seward Peninsula and the Bering Straits region; it is composed of Ordovician, Silurian, Devonian, Mississippian, and possibly older limestone, argillaceous limestone, dolostone, and phyllite, which are cut by a suite of Late Cretaceous tin-bearing granites. The boundary between the Seward and York terranes is poorly exposed but is thought to be a major thrust fault because of its sinuous map trace, a discontinuity in metamorphic grade, and differences in stratigraphy across the boundary (Travis Hudson, oral communication, 1984). The boundary between the Seward terrane and the Yukon-Koyukuk province to the east is complicated by vertical faults (the Kugruk fault Zone of Sainsbury, 1974) and obscured by Cretaceous and Tertiary cover.The Seward Peninsula heretofore was thought to consist largely of rocks of Precambrian age (Sainsbury, 1972, 1974, 1975; Hudson, 1977), Microfossil data, however, indicate that many of the rocks considered to be Precambrian are early Paleozoic in age (Till and others, 1986; Dumoulin and Harris, 1984; Dumoulin and Till, 1985; Till and others, 1983; Wandervoort, 1985). It is likely that Precambrian rocks are a minor part of the stratigraphy of the Seward Peninsula.

  2. Early Proterozoic crustal evolution: Geochemical and NdPb isotopic evidence from metasedimentary rocks, southwestern North America

    NASA Astrophysics Data System (ADS)

    McLennan, S. M.; Hemming, S. R.; Taylor, S. R.; Eriksson, K. A.

    1995-03-01

    Early Proterozoic (1.8-1.7 Ga) metasedimentary rocks in northern New Mexico and southern Colorado, USA, can be divided into turbidite successions (commonly volcanogenic) associated with mafic/felsic metavolcanic successions (e.g., Irving Fm.) and stable shelf quartzite-pelite successions of shallow marine origin (e.g., Hondo Gp.). Metapelites from the turbidite successions reported here have low K2O/Na2O, low Th/U (<3.0), low to moderate Th/Sc (0.1-0.6), and slight negative Eu-anomalies, although regionally, negative Eu-anomalies in such rocks are common. At the time of sedimentation (ca. 1.7-1.8 Ga), ɛNd values were in the range +3 to +7, indistinguishable from associated metavolcanic and plutonic rocks. Similarly, lead isotopic data scatter about a 1.7 Ga reference isochron. Low κ (232Th/238U) values for the Irving Formation are consistent with derivation from crustal sources similar to the southern Colorado/northern New Mexico lead isotope crustal province. These data are further consistent with a volcanic arc related origin. In contrast, stable shelf metapelites have high K2O/Na2O, variable but commonly high Th/U (2.0-7.0), moderate to high Th/Sc (0.5-1.4), and substantial negative Eu-anomalies. Although compositions are rather variable, they are typical of post-Archean shales. Neodymium isotopes are surprisingly radiogenic with ɛNd(1.7 Ga) in the range -0.2 to +4. Lead isotopic data for the least radiogenic samples also are consistent with a dominantly juvenile source and on a 207Pb/204Pb vs. 206Pb/204Pb diagram, data scatter slightly above the 1.7 Ga reference isochron, suggesting minor components of significantly older material. Lead isotopic systematics suggest that a major component of the provenance was derived from the immediately associated metavolcanic-plutonic terranes, consistent with suggestions of a first-cycle origin, but with an Archean component. Isotopic data restrict the Archean component to about 10%, on average, and no more than 25% in

  3. Geologic map of the Vail East quadrangle, Eagle County, Colorado

    USGS Publications Warehouse

    Kellogg, Karl S.; Bryant, Bruce; Redsteer, Margaret H.

    2003-01-01

    New 1:24,000-scale geologic mapping along the Interstate-70 urban corridor in western Colorado, in support of the State/USGS Cooperative Geologic Mapping Project, is contributing to a more complete understanding of the stratigraphy, structure, tectonic evolution, and hazard potential of this rapidly developing region. The 1:24,000-scale Vail East quadrangle straddles the Gore fault system, the western structural boundary of the Gore Range. The Gore fault system is a contractional structure that has been recurrently active since at least the early Paleozoic and marks the approximate eastern boundary of the Central Colorado trough, a thick late Paleozoic depocenter into which thousands of meters of clastic sediment were deposited from several uplifts, including the ancestral Front Range. The Gore fault was active during both the late Paleozoic and Upper Cretaceous-lower Tertiary (Laramide) deformations. In addition, numerous north-northwest faults that cut the crystalline rocks of the Gore Range were active during at least 5 periods, the last of which was related to Neogene uplift of the Gore Range and formation of the northern Rio Grande rift. Early Proterozoic crystalline rocks underlie the high Gore Range, north and east of the Gore fault system. These rocks consist predominantly of migmatitic biotite gneiss intruded by mostly granitic rocks of the 1.667-1.750 Ma Cross Creek batholith, part of the 1,667-1,750 Ma Routt Plutonic Suite (Tweto, 1987). Southwest of the Gore fault, a mostly gently south-dipping sequence of Pennsylvanian Mimturn Formation, as thick as 1,900 m, and the Permian and Pennsylvanian Maroon Formation (only the basal several hundred meters are exposed in the quadrangle)were shed from the ancestral Front Range and overlie a thin sequence of Devonian and Cambrian rocks. The Minturn Formation is a sequence of interlayered pink, maroon, and gray conglomerate, sandstone, shale, and marine limestone. The Maroon Formation is mostly reddish conglomerate

  4. Mineralogy of Rock Flour in Glaciated Volcanic Terrains: An Analog for a Cold and Icy Early Mars

    NASA Technical Reports Server (NTRS)

    Rampe, E. B.; Horgan, B.; Scudder, N.; Smith, R. J.; Rutledge, A. M.

    2017-01-01

    Geomorphological and mineralogical data from early Martian surfaces indicate liquid water was present on ancient Mars. The relative surface temperatures, however, remain a subject of debate. Was early Mars warm and wet or cold and icy with punctuated periods of warmth and ice melt? By characterizing the mineralogy and geochemistry of modern icy mafic terrains on Earth, we can search for these characteristics in early Martian terrains to better constrain the early Martian climate. Here, we describe the mineralogy of glacial flour in a modern glaciated volcanic terrain in Oregon, USA. We are particularly interested in secondary phases that form in these environments, and we hypothesize that poorly crystalline phases may preferentially form in these terrains because of the low temperatures and the seasonality of melt water production. A description of the mineralogy of the moraines, the composition of the amorphous materials, and the geochemistry of the glacial melt waters are presented elsewhere. Glacial flour is made up of silt- and clay-sized particles that form from the physical weathering of rock underlying a wet-based glacier as the glacier slides over it. Flour is usually transported from underneath a glacier by melt water streams. The geochemistry of glacial melt water streams has been studied extensively and has been used to infer weathering reactions within glacial systems. However, the mineralogy of these environments, especially on mafic volcanic terrains, is not well studied. Rock flour is a ubiquitous physical weathering product in glaciated terrains and, therefore, affects microbial habitats, stream and lake chemistry, and chemical weathering processes. and by studying the mineralogy of glacial flour, we can better understand geochemical and microbiological processes in subglacial and proglacial terrains.

  5. Contrasting sources of Late Paleozoic rhyolite magma in the Polish Lowlands: evidence from U-Pb ages and Hf and O isotope composition in zircon

    NASA Astrophysics Data System (ADS)

    Słodczyk, Elżbieta; Pietranik, Anna; Glynn, Sarah; Wiedenbeck, Michael; Breitkreuz, Christoph; Dhuime, Bruno

    2018-02-01

    The Polish Lowlands, located southwest of the Teisseyre-Tornquist Zone, within Trans-European Suture Zone, were affected by bimodal, but dominantly rhyolitic, magmatism during the Late Paleozoic. Thanks to the inherited zircon they contain, these rhyolitic rocks provide a direct source of information about the pre-Permian rocks underlying the Polish Lowland. This paper presents zircon U-Pb geochronology and Hf and O isotopic results from five drill core samples representing four rhyolites and one granite. Based on the ratio of inherited vs. autocrystic zircon, the rhyolites can be divided into two groups: northern rhyolites, where autocrystic zircon is more abundant and southern rhyolites, where inherited zircon dominates. We suggest that the magma sources and the processes responsible for generating high silica magmas differ between the northern and southern rhyolites. Isotopically distinct sources were available during formation of northern rhyolites, as the Hf and O isotopes in magmatic zircon differ between the two analysed localities of northern rhyolites. A mixing between magmas formed from Baltica-derived mudstone-siltstone sediments and Avalonian basement or mantle can explain the diversity between the zircon compositions from the northern localities Daszewo and Wysoka Kamieńska. Conversely, the southern rhyolites from our two localities contain zircon with similar compositions, and these units can be further correlated with results from the North East German Basin, suggesting uniform source rocks over this larger region. Based on the ages of inherited zircon and the isotopic composition of magmatic ones, we suggest that the dominant source of the southern rhyolites is Variscan foreland sediments mixed with Baltica/Avalonia-derived sediments.

  6. Geochemistry and Geochronology of the Heilongjiang Complex and Its Implications in the Late Paleozoic Tectonics of Eastern NE China

    NASA Astrophysics Data System (ADS)

    GE, M.; Zhang, J.; Liu, K.; Ling, Y.; Wang, M.; Wang, J.

    2016-12-01

    The Paleozoic to early Mesozoic tectonic framework of Northeast China, especially the Jiamusi block and its related structural belts, are highly debated. In this contribution, geochemical, geochronological and isotopic analyses were carried out on the basalts in the Heilongjiang complex to address these issues. The Heilongjiang complex defines the suture belt between the Jiamusi block and the Songliao block in Northeast China, and the blueschist is a major composition for this complex, coexisting with ultramafic rocks, amphibolite, greenschist, quartzite and mica schist. The blueschist has a mineral association of sodic amphibole, epidote, chlorite, phengite, albite and quartz with accessory phases of apatite, titanite, zircon and ilmenite. Together with the lithological association, the geochemical results present that the protoliths of the blueschist can be divided into the alkaline and tholeiitic basalts and have OIB affinities, formed in an ocean island setting, indicated by the (La/Yb) N values of 3.57 - 11.54, and the (La/Sm) N values of 0.69 - 3.64. The high and positive ɛNd (t) values of + 3.7 to +9.0, and relative enrichment in Nb and Ta show that both the alkaline and tholeiitic basalts may be derived from the asthenospheric mantle. Magmatic zircons from the blueschist in Yilan area yield a 206Pb/238U age of 281 - 288 Ma, interpreted as its protolithic age. The amphibolite from Xiachengzi area has a zircon U-Pb age of 248 ± 4 Ma, interpreted as its protolith age and has N-MORB affinities, supported by (La/Yb)N ratios of 0.60-0.89 and (La/Sm)N of 0.62-0.84, and high ɛNd (t) values ranging from + 7.8 to + 9.5, deriving from a depleted mantle source. A new 40Ar/39Ar amphibole plateau age of 195 ± 3 Ma and a youngest age of 200 Ma of the detrital zircons from Heilongjiang complex are reported to constrain the metamorphic age of the Heilongjiang complex. In addition, a huge north-south trending granitic belt generated from 174 Ma - 200 Ma has been

  7. Heating, cooling, and uplift during Tertiary time, northern Sangre de Cristo Range, Colorado ( USA).

    USGS Publications Warehouse

    Lindsay, D.A.; Andriessen, P.A.M.; Wardlaw, B.R.

    1986-01-01

    Paleozoic sedimentary rocks in a wide area of the northern Sangre de Cristo Range show effects of heating during Tertiary time. Heating is tentatively interpreted as a response to burial during Laramide folding and thrusting and also to high heat flow during Rio Grande rifting. Fission-track ages of apatite across a section of the range show that rocks cooled abruptly below 120oC, the blocking temperature for apatite, approx 19 Ma ago. Cooling was probably in response to rapid uplift and erosion of the northern Sangre de Cristo Range during early Rio Grande rifting.-from Authors

  8. Classic Rock

    ERIC Educational Resources Information Center

    Beem, Edgar Allen

    2004-01-01

    While "early college" programs designed for high-school-age students are beginning to proliferate nationwide, a small New England school has been successfully educating teens for nearly four decades. In this article, the author features Simon's Rock, a small liberal arts college located in the Great Barrington, Massachusetts, that has…

  9. Geochemistry and geochronology of the blueschist in the Heilongjiang Complex and its implications in the late Paleozoic tectonics of eastern NE China

    NASA Astrophysics Data System (ADS)

    Ge, Mao-hui; Zhang, Jin-jiang; Liu, Kai; Ling, Yi-yun; Wang, Meng; Wang, Jia-min

    2016-09-01

    The Paleozoic to early Mesozoic tectonic framework and evolution of Northeast China, especially the Jiamusi block and its related structural belts, are highly debated. In this paper, geochemical, geochronological and isotopic analyses were carried out on the blueschist in the Heilongjiang Complex to address these issues. The Heilongjiang Complex defines the suture belt between the Jiamusi block and the Songliao block in NE China, and the blueschist is a major composition for this complex, coexisting with mafic-ultramafic rocks, greenschist, quartzite and mica schist. The blueschist has a mineral association of sodic amphibole, epidote, chlorite, phengite, albite and quartz with accessory phases of apatite, titanite, zircon and ilmenite. Together with the lithological association, the major and trace element compositions present that the protoliths of the blueschist can be divided into the alkaline and tholeiitic basalts and have OIB affinities, formed in an ocean island setting, indicated by the (La/Yb) N values of 3.57 - 11.54, and the (La/Sm) N values of 0.69 - 3.64. The high and positive εNd (t) values of + 3.7 to + 9.0, and relative enrichment in Nb (vs. Th) and Ta (vs. U) show that both the alkaline and tholeiitic basalts may be derived from the asthenospheric mantle with insignificant crustal contamination. Magmatic zircons from the blueschist in Yilan area yield a 206Pb/238U age of 281 ± 3 Ma, interpreted as its protolithic age. The youngest ages of 200 Ma of the detrital zircons in the associated mica schist from Mudanjiang area place constraints on the timing of metamorphism for the blueschist. These indicate that a big ocean existed between the Jiamusi and Songliao blocks at least since the early Permian, and the blueschist formed since the late Triassic to late Jurassic by the subduction of this ocean. Such an ocean during the Permian - Jurassic is difficult to be interpreted by the tectonic evolution of the Paleo-Asian Ocean.

  10. Detrital-zircon geochronology of Paleozoic sedimentary rocks in the Hangay Hentey basin, north-central Mongolia: Implications for the tectonic evolution of the Mongol Okhotsk Ocean in central Asia

    NASA Astrophysics Data System (ADS)

    Kelty, Thomas K.; Yin, An; Dash, Batulzii; Gehrels, George E.; Ribeiro, Angela E.

    2008-04-01

    Understanding the development of the Central Asian Orogenic System (CAOS), which is the largest Phanerozoic accretionary orogen in the world, is critical to the determination of continental growth mechanisms and geological history of central Asia. A key to unraveling its geological history is to ascertain the origin and tectonic setting of the large flysch complexes that dominate the CAOS. These complexes have been variably interpreted as deep-marine deposits that were accreted onto a long-evolving arc against large continents to form a mega-accretionary complex or sediments trapped in back-arc to fore-arc basins within oceanic island-arc systems far from continents. To differentiate the above models we conducted U-Pb geochronological analyses of detrital-zircon grains from turbidites in the composite Hangay-Hentey basin of central Mongolia. This basin was divided by a Cenozoic fault system into the western and eastern sub-basins: the Hangay Basin in the west and Hentey basin in the east. This study focuses on the Hentey basin and indicates two groups of samples within this basin: (1) a southern group that were deposited after the earliest Carboniferous (˜ 339 Ma to 354 Ma) and a northern group that were deposited after the Cambrian to Neoproterozoic (˜ 504 Ma to 605 Ma). The samples from the northern part of the basin consistently contain Paleoproterozoic and Archean zircon grains that may have been derived from the Tuva-Mongol massif and/or the Siberian craton. In contrast, samples from the southern part of the basin contain only a minor component of early Paleozoic to Neoproterozoic zircon grains, which were derived from the crystalline basement bounding the Hangay-Hentey basin. Integrating all the age results from this study, we suggest that the Hangay-Hentey basin was developed between an island-arc system with a Neoproterozoic basement in the south and an Andean continental-margin arc in the north. The initiation of the southern arc occurred at or after the

  11. Detrital zircon age distribution from Devonian and Carboniferous sandstone in the Southern Variscan Fold-and-Thrust belt (Montagne Noire, French Massif Central), and their bearings on the Variscan belt evolution

    NASA Astrophysics Data System (ADS)

    Lin, Wei; Faure, Michel; Li, Xian-hua; Chu, Yang; Ji, Wenbin; Xue, Zhenhua

    2016-05-01

    In the Southern French Massif Central, the Late Paleozoic sedimentary sequences of the Montagne Noire area provide clues to decipher the successive tectonic events that occurred during the evolution of the Variscan belt. Previous sedimentological studies already demonstrated that the siliciclastic deposits were supplied from the northern part of the Massif Central. In this study, detrital zircon provenance analysis has been investigated in Early Devonian (Lochkovian) conglomerate and sandstone, and in Carboniferous (Visean to Early Serpukhovian) sandstone from the recumbent folds and the foreland basin of the Variscan Southern Massif Central in Montagne Noire. The zircon grains from all of the samples yielded U-Pb age spectra ranging from Neoarchean to Late Paleozoic with several age population peaks at 2700 Ma, 2000 Ma, 980 Ma, 750 Ma, 620 Ma, 590 Ma, 560 Ma, 480 Ma, 450 Ma, and 350 Ma. The dominant age populations concentrate on the Neoproterozoic and Paleozoic. The dominant concordant detrital zircon age populations in the Lochkovian samples, the 480-445 Ma with a statistical peak around 450 Ma, are interpreted as reflecting the rifting event that separated several continental stripes, such as Armorica, Mid-German Crystalline Rise, and Avalonia from the northern part of Gondwana. However, Ediacaran and Cambrian secondary peaks are also observed. The detrital zircons with ages at 352 - 340 Ma, with a statistical peak around 350 Ma, came from the Early Carboniferous volcanic and plutonic rocks similar to those exposed in the NE part of the French Massif Central. Moreover, some Precambrian grains recorded a more complex itinerary and may have experienced a multi-recycling history: the Archean and Proterozoic grains have been firstly deposited in Cambrian or Ordovician terrigenous rocks, and secondly re-sedimented in Devonian and/or Carboniferous formations. Another possibility is that ancient grains would be inherited grains, scavenged from an underlying but not

  12. Paleomagnetism of Devonian dykes in the northern Kola Peninsula and its bearing on the apparent polar wander path of Baltica in the Precambrian

    NASA Astrophysics Data System (ADS)

    Veselovskiy, Roman V.; Bazhenov, Mikhail L.; Arzamastsev, Andrey A.

    2016-04-01

    Mafic dykes and large alkaline and carbonatite intrusions of Middle-Late Devonian age are widespread on the Kola Peninsula in NE Fennoscandia. These magmatic rocks are well characterized with petrographic, geochemical and geochronological data but no paleomagnetic results have been reported yet. We studied dolerite dykes from the northern part of the Peninsula and isolated three paleomagnetic components in these rocks. A low-temperature component is aligned along the present-day field, while a major constituent of natural remanent magnetization is an intermediate-temperature component (Decl. = 79.6°, Inc. = 78.5°, α95 = 5,9°, N = 17 sites) that is present in most Devonian dykes but is found in some baked metamorphic rocks and Proterozoic dykes too. Finally, a primary Devonian component could be reliably isolated from two dykes only. Rock-magnetic studies point to presumably primary low-Ti titanomagnetite and/or pure magnetite as the main remanence carriers but also reveal alteration of the primary minerals and the formation of new magnetic phases. The directions of a major component differ from the Middle Paleozoic reference data for Baltica but closely match those for the 190 ± 10 Ma interval recalculated from the apparent polar wander path of the craton. We assume that this Early Jurassic component is a low-temperature overprint of chemical origin. The main impact of the new results is not to mid-Paleozoic or Early Mesozoic times but to much older epochs. Analysis of paleomagnetic data shows that the directionally similar remanences are present in objects with the ages ranging from 500 Ma to 2 Ga over entire Fennoscandia. Hence we argue that an Early Jurassic remagnetization is of regional extent but cannot link it to a certain process and a certain tectonic event. If true, this hypothesis necessitates a major revision of the APWP for Baltica over a wide time interval.

  13. Testing the limits of Paleozoic chronostratigraphic correlation via high-resolution (13Ccarb) biochemostratigraphy across the Llandovery–Wenlock (Silurian) boundary: Is a unified Phanerozoic time scale achievable?

    USGS Publications Warehouse

    Cramer, Bradley D.; Loydell, David K.; Samtleben, Christian; Munnecke, Axel; Kaljo, Dimitri; Mannik, Peep; Martma, Tonu; Jeppsson, Lennart; Kleffner, Mark A.; Barrick, James E.; Johnson, Craig A.; Emsbo, Poul; Joachimski, Michael M.; Bickert, Torsten; Saltzman, Matthew R.

    2010-01-01

    The resolution and fidelity of global chronostratigraphic correlation are direct functions of the time period under consideration. By virtue of deep-ocean cores and astrochronology, the Cenozoic and Mesozoic time scales carry error bars of a few thousand years (k.y.) to a few hundred k.y. In contrast, most of the Paleozoic time scale carries error bars of plus or minus a few million years (m.y.), and chronostratigraphic control better than ??1 m.y. is considered "high resolution." The general lack of Paleozoic abyssal sediments and paucity of orbitally tuned Paleozoic data series combined with the relative incompleteness of the Paleozoic stratigraphic record have proven historically to be such an obstacle to intercontinental chronostratigraphic correlation that resolving the Paleozoic time scale to the level achieved during the Mesozoic and Cenozoic was viewed as impractical, impossible, or both. Here, we utilize integrated graptolite, conodont, and carbonate carbon isotope (??13Ccarb) data from three paleocontinents (Baltica, Avalonia, and Laurentia) to demonstrate chronostratigraphic control for upper Llando very through middle Wenlock (Telychian-Sheinwoodian, ~436-426 Ma) strata with a resolution of a few hundred k.y. The interval surrounding the base of the Wenlock Series can now be correlated globally with precision approaching 100 k.y., but some intervals (e.g., uppermost Telychian and upper Shein-woodian) are either yet to be studied in sufficient detail or do not show sufficient biologic speciation and/or extinction or carbon isotopic features to delineate such small time slices. Although producing such resolution during the Paleozoic presents an array of challenges unique to the era, we have begun to demonstrate that erecting a Paleozoic time scale comparable to that of younger eras is achievable. ?? 2010 Geological Society of America.

  14. Petrogenesis of siliceous high-Mg series rocks as exemplified by the Early Paleoproterozoic mafic volcanic rocks of the Eastern Baltic Shield: enriched mantle versus crustal contamination

    NASA Astrophysics Data System (ADS)

    Bogina, Maria; Zlobin, Valeriy; Sharkov, Evgenii; Chistyakov, Alexeii

    2015-04-01

    The Early Paleoproterozoic stage in the Earth's evolution was marked by the initiation of global rift systems, the tectonic nature of which was determined by plume geodynamics. These processes caused the voluminous emplacement of mantle melts with the formation of dike swarms, mafic-ultramafic layered intrusions, and volcanic rocks. All these rocks are usually considered as derivatives of SHMS (siliceous high-magnesian series). Within the Eastern Baltic Shield, the SHMS volcanic rocks are localized in the domains with different crustal history: in the Vodlozero block of the Karelian craton with the oldest (Middle Archean) crust, in the Central Block of the same craton with the Neoarchean crust, and in the Kola Craton with a heterogeneous crust. At the same time, these rocks are characterized by sufficiently close geochemical characteristics: high REE fractionation ((La/Yb)N = 4.9-11.7, (La/Sm)N=2.3-3.6, (Gd/Yb)N =1.66-2.74)), LILE enrichment, negative Nb anomaly, low to moderate Ti content, and sufficiently narrow variations in Nd isotope composition from -2.0 to -0.4 epsilon units. The tectonomagmatic interpretation of these rocks was ambiguous, because such characteristics may be produced by both crustal contamination of depleted mantle melts, and by generation from a mantle source metasomatized during previous subduction event. Similar REE patterns and overlapping Nd isotope compositions indicate that the studied basaltic rocks were formed from similar sources. If crustal contamination en route to the surface would play a significant role in the formation of the studied basalts, then almost equal amounts of contaminant of similar composition are required to produce the mafic rocks with similar geochemical signatures and close Nd isotopic compositions, which is hardly possible for the rocks spaced far apart in a heterogeneous crust. This conclusion is consistent with analysis of some relations between incompatible elements and their ratios. In particular, the

  15. A First Look at Airborne Imaging Spectrometer (AIS) Data in an Area of Altered Volcanic Rocks and Carbonate Formations, Hot Creek Range, South Central Nevada

    NASA Technical Reports Server (NTRS)

    Feldman, S. C.; Taranik, J. V.; Mouat, D. A.

    1985-01-01

    Three flight lines of Airborne Imaging Spectrometer (AIS) data were collected in 128 bands between 1.2 and 2.4 microns in the Hot Creek Range, Nevada on July 25, 1984. The flight lines are underlain by hydrothermally altered and unaltered Paleozoic carbonates and Tertiary rhyolitic to latitic volcanics in the Tybo mining district. The original project objectives were to discriminate carbonate rocks from other rock types, to distinguish limestone from dolomite, and to discriminate carbonate units from each other using AIS imagery. Because of high cloud cover over the prime carbonate flight line and because of the acquisition of another flight line in altered and unaltered volcanics, the study has been extended to the discrimination of alteration products. In an area of altered and unaltered rhyolites and latites in Red Rock Canyon, altered and unaltered rock could be discriminated from each other using spectral features in the 1.16 to 2.34 micron range. The altered spectral signatures resembled montmorillonite and kaolinite. Field samples were gathered and the presence of montmorillonite was confirmed by X-ray analysis.

  16. Elemental and Sr-Nd isotopic geochemistry of Cretaceous to Early Paleogene granites and volcanic rocks in the Sikhote-Alin Orogenic Belt (Russian Far East): implications for the regional tectonic evolution

    NASA Astrophysics Data System (ADS)

    Zhao, Pan; Jahn, Bor-ming; Xu, Bei

    2017-09-01

    The Sikhote-Alin Orogenic Belt in Russian Far East is an important Late Mesozoic to Early Cenozoic accretionary orogen related to the subduction of the Paleo-Pacific Plate. This belt was generated by successive accretion of terranes made of accretionary prisms, turbidite basins and island arcs to the continental margin of northeastern Asia (represented by the Bureya-Jiamusi-Khanka Block) from Jurassic to Late Cretaceous. In order to study the tectonic and crustal evolution of this orogenic belt, we carried out zircon U-Pb dating, and whole-rock elemental and Sr-Nd isotopic analyses on granites and volcanic rocks from the Primorye region of southern Sikhote-Alin. Zircon dating revealed three episodes of granitoid emplacement: Permian, Early Cretaceous and Late Cretaceous to Early Paleogene. Felsic volcanic rocks (mainly rhyolite, dacite and ignimbrite) that overlay all tectonostratigraphic terranes were erupted during 80-57 Ma, postdating the accretionary process in the Sikhote-Alin belt. The Cretaceous-Paleogene magmatism represents the most intense tectonothermal event in the Sikhote-Alin belt. Whole-rock major and trace elemental data show arc-like affinity for granitoids and volcanic rocks, indicating that they were likely generated in a supra-subduction setting. Their initial 87Sr/86Sr ratios range from 0.7048 to 0.7114, and εNd(t) values vary from +1.7 to -3.8 (mostly < 0). Thus, the elemental and Sr-Nd isotopic data suggest that the felsic magmas were generated by partial melting of source rocks comprising mantle-derived juvenile component and recycled crustal component. In addition to the occurrence in the Sikhote-Alin orogenic belt, Cretaceous to Early Paleogene magmatic rocks are also widespread in NE China, southern Korean peninsula, Japanese islands and other areas of Russian Far East, particularly along the coastal regions of the Okhotsk and Bering Seas. These rocks constitute an extended magmatic belt along the continental margin of NE Asia. The

  17. UThPb age of Apollo 12 rock 12013

    USGS Publications Warehouse

    Tatsumoto, M.

    1970-01-01

    A UThPb isotopic study of three chips from lunar rock 12013 indicates that parental material of the intrusion breccia formed quite early in the moon's history, possibly 3.9 to 4.3 by ago. The UThPb characteristics of the rock are distinctly different from those of other Apollo 12 igneous rocks and suggest a different origin. ?? 1970.

  18. Unfolding the arc: The use of pre-orogenic constraints to assess the evolution of the Variscan belt in Western Europe

    NASA Astrophysics Data System (ADS)

    Casas, Josep M.; Brendan Murphy, J.

    2018-06-01

    We present a pre-orogenic, early Paleozoic, palinspastic reconstruction of the northern Gondwana margin that was subsequently involved in the Late Paleozoic Variscan orogeny in central and Western Europe. Our reconstruction is based on two pre-orogenic data sets, the age and distribution of Cambrian-Ordovician magmatism and the detrital zircon age signature of late Neoproterozoic-early Paleozoic clastic rocks. We obtain this reconstruction by unfolding the Ibero-Armorican arc and by restoring the movement of the large-scale dextral strike-slip faults that transect the different tectono-stratigraphic units. Our results favour an irregular shape for this part of the northern Gondwana margin with a N-S central segment linking two E-W oriented segments. The proposed reconstruction and the structural restoration of the main features of Variscan deformation is in accordance with some aspects of previously proposed structural models, such as the curved geometry of the Gondwanan margin required by the indentor model for continental collision, the role played by the large strike-slip faults in dispersing formerly juxtaposed units, and the regional-scale oroclinal folding of part of this margin during late Carboniferous-Early Permian times. The combined use of the pre-orogenic geological constraints and palinspastic restoration is a useful approach that may provide a foundation for continual refinement of reconstructions as more data become available.

  19. Hydrous parental magmas of Early to Middle Permian gabbroic intrusions in western Inner Mongolia, North China: New constraints on deep-Earth fluid cycling in the Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Pang, Chong-Jin; Wang, Xuan-Ce; Xu, Bei; Luo, Zhi-Wen; Liu, Yi-Zhi

    2017-08-01

    The role of fluids in the formation of the Permian-aged Xigedan and Mandula gabbroic intrusions in western Inner Mongolia was significant to the evolution of the Xing'an Mongolia Orogenic Belt (XMOB), and the active northern margin of the North China Craton (NCC). Secondary Ion Mass Spectroscopy (SIMS) U-Pb zircon geochronology establishes that the Xigedan gabbroic intrusion in the northern NCC was emplaced at 266 Ma, and is therefore slightly younger than the ca 280 Ma Mandula gabbroic intrusion in the XMOB. Along with their felsic counterparts, the mafic igneous intrusions record extensive bimodal magmatism along the northern NCC and in the XMOB during the Early to Middle Permian. The Mandula gabbroic rocks have low initial 87Sr/86Sr ratios (0.7040-0.7043) and positive εNd(t) (+6.2 to +7.3) and εHf(t) values (+13.4 to +14.5), resembling to those of contemporaneous Mandula basalts. These features, together with the presence of amphibole and the enrichment of large ion lithophile elements (LILE, e.g., Rb, Ba, U and Sr) and depletion of Nb-Ta suggest that the parental magmas of the Mandula mafic igneous rocks were derived from a depleted mantle source metasomatized by water-rich fluids. In contrast, the Xigedan gabbroic rocks are characterised by high 87Sr/86Sr ratios (0.7078-0.7080) and zircon δ18O values (5.84-6.61‰), but low εNd(t) (-9.3 to -10.2) and εHf(t) values (-8.76 to -8.54), indicative of a long-term enriched subcontinental lithosphere mantle source that was metasomatized by recycled, high δ18O crustal materials prior to partial melting. The high water contents (4.6-6.9 wt%) and arc-like geochemical signature (enrichment of fluid-mobile elements and depletion of Nb-Ta) of the parental magmas of the Xigedan gabbroic rocks further establish the existence of a mantle hydration event caused by fluid/melts released from hydrated recycled oceanic crust. Incompatible element modelling shows that 5-10% partial melting of an enriched mantle source by

  20. Rocks of the Columbia Hills

    USGS Publications Warehouse

    Squyres, S. W.; Arvidson, R. E.; Blaney, D.L.; Clark, B. C.; Crumpler, L.; Farrand, W. H.; Gorevan, S.; Herkenhoff, K. E.; Hurowitz, J.; Kusack, A.; McSween, H.Y.; Ming, D. W.; Morris, R.V.; Ruff, S.W.; Wang, A.; Yen, A.

    2006-01-01

    The Mars Exploration Rover Spirit has identified five distinct rock types in the Columbia Hills of Gusev crater. Clovis Class rock is a poorly sorted clastic rock that has undergone substantial aqueous alteration. We interpret it to be aqueously altered ejecta deposits formed by impacts into basaltic materials. Wishstone Class rock is also a poorly sorted clastic rock that has a distinctive chemical composition that is high in Ti and P and low in Cr. Wishstone Class rock may be pyroclastic or impact in origin. Peace Class rock is a sedimentary material composed of ultramafic sand grains cemented by significant quantities of Mg- and Ca-sulfates. Peace Class rock may have formed when water briefly saturated the ultramafic sands and evaporated to allow precipitation of the sulfates. Watchtower Class rocks are similar chemically to Wishstone Class rocks and have undergone widely varying degrees of near-isochemical aqueous alteration. They may also be ejecta deposits, formed by impacts into Wishstone-rich materials and altered by small amounts of water. Backstay Class rocks are basalt/trachybasalt lavas that were emplaced in the Columbia Hills after the other rock classes were, either as impact ejecta or by localized volcanic activity. The geologic record preserved in the rocks of the Columbia Hills reveals a period very early in Martian history in which volcanic materials were widespread, impact was a dominant process, and water was commonly present. Copyright 2006 by the American Geophysical Union.

  1. New age constraints on the palaeoenvironmental evolution of the late Paleozoic back-arc basin along the western Gondwana margin of southern Peru

    NASA Astrophysics Data System (ADS)

    Boekhout, F.; Reitsma, M. J.; Spikings, R.; Rodriguez, R.; Ulianov, A.; Gerdes, A.; Schaltegger, U.

    2018-03-01

    The tectonic evolution of the western Gondwana margin during Pangaea amalgation is recorded in variations in the Permo-Carboniferous back-arc basin sedimentation of Peru. This study provides the first radiometric age constraints on the volcanic and sedimentary sequences of south-central eastern Peru up to the western-most tip of Bolivia, and now permits the correlation of lateral facies variations to the late Paleozoic pre-Andean orogenic cycle. The two phases of Gondwanide magmatism and metamorphism at c. 315 Ma and c. 260 Ma are reflected in two major changes in this sedimentary environment. Our detrital U-Pb zircon ages demonstrate that the timing of Ambo Formation deposition corroborates the Late Mississipian age estimates. The transition from the Ambo to the Tarma Formation around the Middle Pennsylvanian Early Gondwanide Orogeny (c. 315 Ma) represents a relative deepening of the basin. Throughout the shallow marine deposits of the Tarma Formation evidence for contemporaneous volcanism becomes gradually more pronounced and culminates around 312 - 309 Ma. Continuous basin subsidence resulted in a buildup of platform carbonates of the Copacabana Formation. Our data highlights the presence of a previously unrecognized phase of deposition of mainly fluvial sandstones and localized volcanism (281-270 Ma), which we named ´Oqoruro Formation'. This sedimentary succession was previously miss-assigned to the so-called Mitu Group, which has recently been dated to start deposition in the Middle Triassic (∼245-240 Ma). The emersion of this marine basin coincides with the onset of a major plutonic pulse related to the Late Gondwanide Orogeny (c. 260). Exhumation lead to the consequent retreat of the epeiric sea to the present-day sub-Andean region, and the coeval accumulation of the fluvial Oqoruro Formation in south eastern Peru. These late Paleozoic palaeoenvironmental changes in the back-arc basins along the western Gondwana margin of southern reflect changes in

  2. Structural and kinematic evolution of the Yukon-Tanana upland tectonites, east-central Alaska: A record of late Paleozoic to Mesozoic crustal assembly

    USGS Publications Warehouse

    Hansen, V.L.; Dusel-Bacon, C.

    1998-01-01

    The Yukon-Tanana terrane, the largest tectonostratigraphic terrane in the northern North American Cordillera, is polygenetic and not a single terrane. Lineated and foliated (L-S) tectonites, which characterize the Yukon-Tanana terrane, record multiple deformations and formed at different times. We document the polyphase history recorded by L-S tectonites within the Yukon-Tanana upland, east-central Alaska. These upland tectonites compose a heterogeneous assemblage of deformed igneous and metamorphic rocks that form the Alaskan part of what has been called the Yukon-Tanana composite terrane. We build on previous kinematic data and establish the three-dimensional architecture of the upland tectonites through kinematic and structural analysis of more than 250 oriented samples, including quartz c-axis fabric analysis of 39 samples. Through this study we distinguish allochthonous tectonites from parautochthonous tectonites within the Yukon-Tanana upland. The upland tectonites define a regionally coherent stacking order: from bottom to top, they are lower plate North American parautochthonous attenuated continental margin; continentally derived marginal-basin strata; and upper plate ocean-basin and island-arc rocks, including some continental basement rocks. We delineate three major deformation events in time, space, and structural level across the upland from the United States-Canada border to Fairbanks, Alaska: (1) pre-Early Jurassic (>212 Ma) northeast-directed, apparent margin-normal contraction that affected oceanic rocks; (2) late Early to early Middle Jurassic (>188-185 Ma) northwest-directed, apparent margin-parallel contraction and imbrication that resulted in juxtaposition of the allochthonous tectonites with parautochthonous continental rocks; and (3) Early Cretaceous (135-110 Ma) southeast-directed crustal extension that resulted in exposure of the structurally deepest, parautochthonous continental rocks. The oldest event represents deformation within a west

  3. Total petroleum systems of the Bonaparte Gulf Basin area, Australia; Jurassic, Early Cretaceous-Mesozoic; Keyling, Hyland Bay-Permian; Milligans-Carboniferous, Permian

    USGS Publications Warehouse

    Bishop, M.G.

    1999-01-01

    The Bonaparte Gulf Basin Province (USGS #3910) of northern Australia contains three important hydrocarbon source-rock intervals. The oldest source-rock interval and associated reservoir rocks is the Milligans-Carboniferous, Permian petroleum system. This petroleum system is located at the southern end of Joseph Bonaparte Gulf and includes both onshore and offshore areas within a northwest to southeast trending Paleozoic rift that was initiated in the Devonian. The Milligans Formation is a Carboniferous marine shale that sources accumulations of both oil and gas in Carboniferous and Permian deltaic, marine shelf carbonate, and shallow to deep marine sandstones. The second petroleum system in the Paleozoic rift is the Keyling, Hyland Bay-Permian. Source rocks include Lower Permian Keyling Formation delta-plain coals and marginal marine shales combined with Upper Permian Hyland Bay Formation prodelta shales. These source-rock intervals provide gas and condensate for fluvial, deltaic, and shallow marine sandstone reservoirs primarily within several members of the Hyland Bay Formation. The Keyling, Hyland Bay-Permian petroleum system is located in the Joseph Bonaparte Gulf, north of the Milligans-Carboniferous, Permian petroleum system, and may extend northwest under the Vulcan graben sub-basin. The third and youngest petroleum system is the Jurassic, Early Cretaceous-Mesozoic system that is located seaward of Joseph Bonaparte Gulf on the Australian continental shelf, and trends southwest-northeast. Source-rock intervals in the Vulcan graben sub-basin include deltaic mudstones of the Middle Jurassic Plover Formation and organic-rich marine shales of the Upper Jurassic Vulcan Formation and Lower Cretaceous Echuca Shoals Formation. These intervals produce gas, oil, and condensate that accumulates in, shallow- to deep-marine sandstone reservoirs of the Challis and Vulcan Formations of Jurassic to Cretaceous age. Organic-rich, marginal marine claystones and coals of the

  4. Finding the right rocks on Mars

    NASA Astrophysics Data System (ADS)

    Hargraves, R. B.; Knudsen, J. M.; Madsen, M. B.; Bertelsen, P.

    Locating a rock on the surface of Mars that bears unambiguous evidence of the existence—prior or present—of life on that planet is, understandably, the “Holy Grail” of NASAs sample return missions. Remote recognition of such a rock on Mars will not be easy. We do know, however, that present in the Martian crust—especially in the “Southern highlands”—is rock carrying strong natural remanent magnetization (NRM). Characterization of such magnetized rock has profound implications for adding to our knowledge about the origin and early evolution of the Martian interior, lithosphere, atmosphere, and possibly even Martian life forms [Ward and Brownlee, 2000]. Moreover, it should be possible to recognize such rocks by use of a simple magnetic compass mounted on a Rover.

  5. Evolving Mantle Sources in Postcollisional Early Permian-Triassic Magmatic Rocks in the Heart of Tianshan Orogen (Western China)

    NASA Astrophysics Data System (ADS)

    Tang, Gong-Jian; Cawood, Peter A.; Wyman, Derek A.; Wang, Qiang; Zhao, Zhen-Hua

    2017-11-01

    Magmatism postdating the initiation of continental collision provides insight into the late stage evolution of orogenic belts including the composition of the contemporaneous underlying subcontinental mantle. The Awulale Mountains, in the heart of the Tianshan Orogen, display three types of postcollisional mafic magmatic rocks. (1) A medium to high K calc-alkaline mafic volcanic suite (˜280 Ma), which display low La/Yb ratios (2.2-11.8) and a wide range of ɛNd(t) values from +1.9 to +7.4. This suite of rocks was derived from melting of depleted metasomatized asthenospheric mantle followed by upper crustal contamination. (2) Mafic shoshonitic basalts (˜272 Ma), characterized by high La/Yb ratios (14.4-20.5) and more enriched isotope compositions (ɛNd(t) = +0.2 - +0.8). These rocks are considered to have been generated by melting of lithospheric mantle enriched by melts from the Tarim continental crust that was subducted beneath the Tianshan during final collisional suturing. (3) Mafic dikes (˜240 Ma), with geochemical and isotope compositions similiar to the ˜280 Ma basaltic rocks. This succession of postcollision mafic rock types suggests there were two stages of magma generation involving the sampling of different mantle sources. The first stage, which occurred in the early Permian, involved a shift from depleted asthenospheric sources to enriched lithospheric mantle. It was most likely triggered by the subduction of Tarim continental crust and thickening of the Tianshan lithospheric mantle. During the second stage, in the middle Triassic, there was a reversion to more asthenospheric sources, related to postcollision lithospheric thinning.

  6. Geophysical modeling of the northern Appalachian Brompton-Cameron, Central Maine, and Avalon terranes under the New Jersey Coastal Plain

    USGS Publications Warehouse

    Maguire, T.J.; Sheridan, R.E.; Volkert, R.A.

    2004-01-01

    A regional terrane map of the New Jersey Coastal Plain basement was constructed using seismic, drilling, gravity and magnetic data. The Brompton-Cameron and Central Maine terranes were coalesced as one volcanic island arc terrane before obducting onto Laurentian, Grenville age, continental crust in the Taconian orogeny [Rankin, D.W., 1994. Continental margin of the eastern United States: past and present. In: Speed, R.C., (Ed.), Phanerozoic Evolution of North American Continent-Ocean Transitions. DNAG Continent-Ocean Transect Volume. Geological Society of America, Boulder, Colorado, pp. 129-218]. Volcanic island-arc rocks of the Avalon terrane are in contact with Central Maine terrane rocks in southern Connecticut where the latter are overthrust onto the Brompton-Cameron terrane, which is thrust over Laurentian basement. Similarities of these allochthonous island arc terranes (Brompton-Cameron, Central Maine, Avalon) in lithology, fauna and age suggest that they are faulted segments of the margin of one major late Precambrian to early Paleozoic, high latitude peri-Gondwana island arc designated as "Avalonia", which collided with Laurentia in the early to middle Paleozoic. The Brompton Cameron, Central Maine, and Avalon terranes are projected as the basement under the eastern New Jersey Coastal Plain based on drill core samples of metamorphic rocks of active margin/magmatic arc origin. A seismic reflection profile across the New York Bight traces the gentle dipping (approximately 20 degrees) Cameron's Line Taconian suture southeast beneath allochthonous Avalon and other terranes to a 4 sec TWTT depth (approximately 9 km) where the Avalonian rocks are over Laurentian crust. Gentle up-plunge (approximately 5 degrees) projections to the southwest bring the Laurentian Grenville age basement and the drift-stage early Paleozoic cover rocks to windows in Burlington Co. at approximately 1 km depth and Cape May Co. at approximately 2 km depths. The antiformal Shellburne

  7. Geologic map of Lake Mead and surrounding regions, southern Nevada, southwestern Utah, and northwestern Arizona

    USGS Publications Warehouse

    Felger, Tracey J.; Beard, Sue

    2010-01-01

    Regional stratigraphic units and structural features of the Lake Mead region are presented as a 1:250,000 scale map, and as a Geographic Information System database. The map, which was compiled from existing geologic maps of various scales, depicts geologic units, bedding and foliation attitudes, faults and folds. Units and structural features were generalized to highlight the regional stratigraphic and tectonic aspects of the geology of the Lake Mead region. This map was prepared in support of the papers presented in this volume, Special Paper 463, as well as to facilitate future investigations in the region. Stratigraphic units exposed within the area record 1800 million years of geologic history and include Proterozoic crystalline rocks, Paleozoic and Mesozoic sedimentary rocks, Mesozoic plutonic rocks, Cenozoic volcanic and intrusive rocks, sedimentary rocks and surfi cial deposits. Following passive margin sedimentation in the Paleozoic and Mesozoic, late Mesozoic (Sevier) thrusting and Late Cretaceous and early Tertiary compression produced major folding, reverse faulting, and thrust faulting in the Basin and Range, and resulted in regional uplift and monoclinal folding in the Colorado Plateau. Cenozoic extensional deformation, accompanied by sedimentation and volcanism, resulted in large-magnitude high- and low-angle normal faulting and strike-slip faulting in the Basin and Range; on the Colorado Plateau, extension produced north-trending high-angle normal faults. The latest history includes integration of the Colorado River system, dissection, development of alluvial fans, extensive pediment surfaces, and young faulting.

  8. Remnant colloform pyrite at the haile gold deposit, South Carolina: A textural key to genesis

    USGS Publications Warehouse

    Foley, N.; Ayuso, R.A.; Seal, R.R.

    2001-01-01

    Auriferous iron sulfide-bearing deposits of the Carolina slate belt have distinctive mineralogical and textural features-traits that provide a basis to construct models of ore deposition. Our identification of paragenetically early types of pyrite, especially remnant colloform, crustiform, and layered growth textures of pyrite containing electrum and pyrrhotite, establishes unequivocally that gold mineralization was coeval with deposition of host rocks and not solely related to Paleozoic tectonic events. Ore horizons at the Haile deposit, South Carolina, contain many remnants of early pyrite: (1) fine-grained cubic pyrite disseminated along bedding; (2) fine- grained spongy, rounded masses of pyrite that may envelop or drape over pyrite cubes; (3) fragments of botryoidally and crustiform layered pyrite, and (4) pyritic infilling of vesicles and pumice. Detailed mineral chemistry by petrography, microprobe, SEM, and EDS analysis of replaced pumice and colloform structures containing both arsenic compositional banding and electrum points to coeval deposition of gold and the volcanic host rocks and, thus, confirms a syngenetic origin for the gold deposits. Early pyrite textures are present in other major deposits of the Carolina slate belt, such as Ridgeway and Barite Hill, and these provide strong evidence for models whereby the sulfide ores formed prior to tectonism. The role of Paleozoic metamorphism was to remobilize and concentrate gold and other minerals in structurally prepared sites. Recognizing the significance of paragenetically early pyrite and gold textures can play an important role in distinguishing sulfide ores that form in volcanic and sedimentary environments from those formed solely by metamorphic processes. Exploration strategies applied to the Carolina slate belt and correlative rocks in the eastern United States in the Avalonian basement will benefit from using syngenetic models for gold mineralization.

  9. Reconstruction of crustal blocks of California on the basis of initial strontium isotopic compositions of Mesozoic granitic rocks

    USGS Publications Warehouse

    Kistler, Ronald Wayne; Peterman, Zell E.

    1978-01-01

    Initial 87Sr/ 86 Sr was determined for samples of Mesozoic granitic rocks in the vicinity of the Garlock fault zone in California. These data along with similar data from the Sierra Nevada and along the San Andreas fault system permit a reconstruction of basement rocks offset by the Cenozoic lateral faulting along both the San Andreas and Garlock fault systems. The location of the line of initial 87Sr/ 86 Sr = 0.7060 can be related to the edge of the Precambrian continental crust in the western United States. Our model explains the present configuration of the edge of Precambrian continental crust as the result of two stages of rifting that occurred about 1,250 to 800 m.y. ago, during Belt sedimentation, and about 600 to 350 m.y. ago, prior to and during the development of the Cordilleran geosyncline and to left-lateral translation along a locus of disturbance identified in the central Mojave Desert. The variations in Rb, Sr, and initial 87Sr/ 86 Sr of the Mesozoic granitic rocks are interpreted as due to variations in composition and age of the source materials of the granitic rocks. The variations of Rb, Sr, and initial 87Sr/ 86 Sr in Mesozoic granitic rocks, the sedimentation history during the late Precambrian and Paleozoic, and the geographic position of loci of Mesozoic magmatism in the western United States are related to the development of the continental margin and different types of lithosphere during rifting.

  10. Sub-crop geologic map of pre-Tertiary rocks in the Yucca Flat and northern Frenchman Flat areas, Nevada Test Site, southern Nevada

    USGS Publications Warehouse

    Cole, James C.; Harris, Anita G.; Wahl, Ronald R.

    1997-01-01

    for ground water flow through pre-Tertiary rocks beneath the Yucca Flat and northern Frenchman Flat areas, and has consequences for ground water modeling and model validation. Our data indicate that the Mississippian Chainman Shale is not a laterally extensive confining unit in the western part of the basin because it is folded back onto itself by the convergent structures of the Belted Range and CP thrust systems. Early and Middle Paleozoic limestone and dolomite are present beneath most of both basins and, regardless of structural complications, are interpreted to form a laterally continuous and extensive carbonate aquifer. Structural culmination that marks the French Peak accommodation zone along the topographic divide between the two basins provides a lateral pathway through highly fractured rock between the volcanic aquifers of Yucca Flat and the regional carbonate aquifer. This pathway may accelerate the migration of ground-water contaminants introduced by underground nuclear testing toward discharge areas beyond the Nevada Test Site boundaries. Predictive three-dimensional models of hydrostratigraphic units and ground-water flow in the pre-Tertiary rocks of subsurface Yucca Flat are likely to be unrealistic due to the extreme structural complexities. The interpretation of hydrologic and geochemical data obtained from monitoring wells will be difficult to extrapolate through the flow system until more is known about the continuity of hydrostratigraphic units.

  11. Early cretaceous topographic growth of the Lhasaplano, Tibetan plateau: Constraints from the Damxung conglomerate

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Gang; Hu, Xiumian; Garzanti, Eduardo; Ji, Wei-Qiang; Liu, Zhi-Chao; Liu, Xiao-Chi; Wu, Fu-Yuan

    2017-07-01

    Constraining the timing of early topographic growth on the Tibetan plateau is critical for any models of India-Asia collision, Himalayan orogeny and subsequent plateau development in the Cenozoic. Stratigraphic, sedimentological and provenance analysis of the Lower Cretaceous red-beds of the Damxung Conglomerate provide new key information to reconstruct the paleogeography and the tectonic evolution of the Lhasa terrane at the time. The over 700-m-thick Damxung Conglomerate documents distal alluvial fan to braidplain sedimentation passing upward to proximal alluvial fan sedimentation. Deposition began near sea level, as documented by limestone beds occurring at the base of the unit. Zircon U-Pb dating of interbedded tuff layers constrain deposition age at ca. 111 Ma. Abundance of volcanic clasts, Cretaceous U-Pb ages and Hf isotopes of detrital zircons yielding mainly negative ɛHf(t) values together with paleocurrent data indicate an active volcanic source located in the North Lhasa subterrane. Pre-Mesozoic-aged zircon, recycled quartz and (meta) sedimentary rock fragments increase up-section, indicating progressive erosional exhumation of the Paleozoic sedimentary/metasedimentary basement. The Damxung Conglomerate thus records a significant uplift and unroofing stage in the source region, implying initial topographic growth on the Lhasa terrane at early Albian time. Early Cretaceous topographic growth on the Lhasa terrane is supported by the stratigraphic record in the Linzhou basin, the Xigaze forearc basin and the southern Nima basin. In contrast, marine strata in the central-western Lhasa terrane lasted until the early Cenomanian (ca. 96 Ma), indicating diachronous marine regression on the Lhasa terrane from east to west.

  12. Shahejie-Shahejie/Guantao/Wumishan and Carboniferous/Permian Coal-Paleozoic Total Petroleum Systems in the Bohaiwan Basin, China (based on geologic studies for the 2000 World Energy Assessment Project of the U.S. Geological Survey)

    USGS Publications Warehouse

    Ryder, Robert T.; Qiang, Jin; McCabe, Peter J.; Nuccio, Vito F.; Persits, Felix

    2012-01-01

    This report discusses the geologic framework and petroleum geology used to assess undiscovered petroleum resources in the Bohaiwan basin province for the 2000 World Energy Assessment Project of the U.S. Geological Survey. The Bohaiwan basin in northeastern China is the largest petroleum-producing region in China. Two total petroleum systems have been identified in the basin. The first, the Shahejie&ndashShahejie/Guantao/Wumishan Total Petroleum System, involves oil and gas generated from mature pods of lacustrine source rock that are associated with six major rift-controlled subbasins. Two assessment units are defined in this total petroleum system: (1) a Tertiary lacustrine assessment unit consisting of sandstone reservoirs interbedded with lacustrine shale source rocks, and (2) a pre-Tertiary buried hills assessment unit consisting of carbonate reservoirs that are overlain unconformably by Tertiary lacustrine shale source rocks. The second total petroleum system identified in the Bohaiwan basin is the Carboniferous/Permian Coal–Paleozoic Total Petroleum System, a hypothetical total petroleum system involving natural gas generated from multiple pods of thermally mature coal beds. Low-permeability Permian sandstones and possibly Carboniferous coal beds are the reservoir rocks. Most of the natural gas is inferred to be trapped in continuous accumulations near the center of the subbasins. This total petroleum system is largely unexplored and has good potential for undiscovered gas accumulations. One assessment unit, coal-sourced gas, is defined in this total petroleum system.

  13. The Rocks of the Columbia Hills

    NASA Technical Reports Server (NTRS)

    Squyres, Steven W.; Arvidson, Raymond E.; Blaney, Diana L.; Clark, Benton C.; Crumpler, Larry; Farrand, William H.; Gorevan, Stephen; Herkenhoff, Kenneth; Hurowitz, Joel; Kusack, Alastair; hide

    2006-01-01

    The Mars Exploration Rover Spirit has identified five distinct rock types in the Columbia Hills of Gusev crater. Clovis Class rock is a poorly-sorted clastic rock that has undergone substantial aqueous alteration. We interpret it to be aqueously-altered ejecta deposits formed by impacts into basaltic materials. Wishstone Class rock is also a poorly-sorted clastic rock that has a distinctive chemical composition that is high in Ti and P and low in Cr. Wishstone Class rock may be pyroclastic in origin. Peace Class rock is a sedimentary material composed of ultramafic sand grains cemented by significant quantities of Mg- and Ca-sulfates. Peace Class rock may have formed when water briefly saturated the ultramafic sands, and evaporated to allow precipitation of the sulfates. Watchtower Class rocks are similar chemically to Wishstone Class rocks, and have undergone widely varying degrees of near-isochemical aqueous alteration. They may also be ejecta deposits, formed by impacts into Wishstone-rich materials and altered by small amounts of water. Backstay Class rocks are basalt/trachybasalt lavas that were emplaced in the Columbia Hills after the other rock classes were, either as impact ejecta or by localized volcanic activity. The geologic record preserved in the rocks of the Columbia Hills reveals a period very early in martian history in which volcanic materials were widespread, impact was a dominant process, and water was commonly present.

  14. Ages of the Xinghuadukou Group in the Erguna Block, NE China

    NASA Astrophysics Data System (ADS)

    Liu, X.; Hou, W.

    2016-12-01

    The Xinghuadukou group is outcropped in the Erguna block (EB) of NE China, which is an important component of the eastern segment of the Central Asian Orogenic Belt (CAOB). This group was previously classified as Paleoproterozoic in age. However, recent studies reported Paleozoic ages from the meta-volcanic rocks, Paleoproterozoic to Neoarchean detrital zircon ages from the meta-sedimentary rocks and Neoproterozoic ages from the granitoids. The tectonic affinity of the EB is still debated. In order to clarify the aforementioned issues, 19 samples were collected from the Xinghuadukou group from the Mohe region in NE China. All samples underwent gneiss facies metamorphism, including two-mica granitic gneiss and quartz biotite gneiss. Based on the protolith discrimination diagram of Si—(al+fm)-(c+alk) system, 7 samples originated from sedimentary rocks and the other 12 of igneous origin. The orthogneiss samples were plotted as diorite, granodiorite and granite respectively in TAS, showing felsic character (SiO2 57% - 74%). One orthogneiss and one paragneiss samples were chosen to conduct the LA-ICP-MS U-Pb zircon age analysis. Apart from one zircon with the age of 742 Ma shows evident metamorphic rim, all zircons from the orthogneiss show euhedral to subhedral prismatic shape and typical concentric or oscillatory structure indicating the igneous origin. The concordant age of 2478±26 Ma was generated, indicating the existence of the near Archean basement of the EB. The detrital zircons from the paragneiss produced age populations cluster at 0.6, 0.8, 1.9, 2.6 and 2.7 Ga, lacking of the Grenville event age. The youngest zircon age is 395 Ma, taken as the maximum depositional age of the sedimentary protolith. According to the new data obtained, it is suggested that the Xinghuadukou group comprises the early Paleoproterozoic granite-gneiss, which proves the granitic basement of the Erguna block. The sedimentary rocks formed overlying the basement during the early

  15. Reconstructing the role of South China in Pangea and earlier supercontinents

    NASA Astrophysics Data System (ADS)

    Cawood, Peter; Zhao, Guochun; Yao, Jinlong; Wang, Wei; Xu, Yajun; Wang, Yuejun

    2017-04-01

    The history of the South China Craton and the constituent Yangtze and Cathaysia blocks is directly linked to Earth's Phanerozoic and Precambrian record of supercontinent assembly and dispersal. Exposed Archean rocks are limited to isolated fragments in the Yangtze Block and preserve a record of Meso- to Neo-Archean igneous activity, sedimentation and metamorphism associated with a period of global craton formation and stabilization that corresponds with assembly of the Kenor supercontinent/supercraton. However, there is insufficient data to link its history with other similar aged cratons. The tectonostratigraphic record in South China in the Paleoproterozoic, corresponding with assembly of Nuna, suggests that rock units in the Yangtze Block were spatially linked with northwestern Laurentia and possibly Siberia, whereas Cathaysia was joined to northern India. From the formation of Rodinia at the end of the Mesoproterozoic through to that of Pangea in the mid-Paleozoic, Cathaysia remained joined to northern India. Early Neoproterozoic supra-subduction zone magmatic arc-back arc assemblages ranging in age from 1000 Ma to 810 Ma occur within Cathaysia, along its northwestern margin, and along the southeastern margin of the Yangtze Block. These rocks provide a record of convergent plate interaction along the periphery of Rodinia, which continued along the western margin of the Yangtze Block until around 700 Ma and correlates with similar along strike subduction zone magmatism in northwest India, Seychelles and Madagascar. During final assembly of Gondwana in the early Paleozoic suturing of India-South China with the Western Australia-Mawson blocks along the Kuunga Orogen resulted in the accretion of the Sanya Block of Hainan Island with the rest of Cathaysia. The accretion of Laurussia to Gondwana in the mid-Paleozoic to form Pangea corresponds with the initiation of lithospheric extension along the northern margin of Gondwana and the separation of a number of

  16. Depositional Architecture of Late Cambrian-Early Ordovician Siliciclastic Barik Formation; Al Huqf Area, Oman

    NASA Astrophysics Data System (ADS)

    Abbasi, Iftikhar Ahmed

    2017-04-01

    Early Paleozoic siliciclastics sediments of the Haima Supergroup are subdivided into a number of formations and members based on lithological characteristics of various rock sequences. One of the distinct sandstone sequence, the Barik Formation (Late Cambrian-Early Ordovician) of the Andam Group is a major deep gas reservoir in central Oman. The sandstone bodies are prospective reservoir rocks while thick shale and clay interbeds act as effective seal. Part of the Barik Formation (lower and middle part) is exposed in isolated outcrops in Al Huqf area as interbedded multistoried sandstone, and green and red shale. The sandstone bodies are up to 2 meters thick and can be traced laterally for 300 m to over 1 km. Most of sandstone bodies show both lateral and vertical stacking. Two types of sandstone lithofacies are identified on the basis of field characteristics; a plane-bedded sandstone lithofacies capping thick red and green color shale beds, and a cross-bedded sandstone lithofacies overlying the plane-bedded sandstone defining coarsening upward sequences. The plane-bedded sandstone at places contains Cruziana ichnofacies and bivalve fragments indicating deposition by shoreface processes. Thick cross-bedded sandstone is interpreted to be deposited by the fluvial dominated deltaic processes. Load-casts, climbing ripples and flaser-bedding in siltstone and red shale indicate influence of tidal processes at times during the deposition of the formation. This paper summarizes results of a study carried out in Al Huqf area outcrops to analyze the characteristics of the sandstone-body geometry, internal architecture, provenance and diagenetic changes in the lower and middle part of the formation. The study shows build-up of a delta complex and its progradation over a broad, low-angle shelf where fluvial processes operate beside shoreface processes in a vegetation free setting. Keywords: Andam Group, Barik Formation, Ordovician sandstone, Al Huqf, Central Oman,

  17. Architecture and mineral deposit settings of the Altaid orogenic collage: a revised model

    NASA Astrophysics Data System (ADS)

    Yakubchuk, Alexander

    2004-09-01

    The Altaids are an orogenic collage of Neoproterozoic-Paleozoic rocks located in the center of Eurasia. This collage consists of only three oroclinally bent Neoproterozoic-Early Paleozoic magmatic arcs (Kipchak, Tuva-Mongol, and Mugodzhar-Rudny Altai), separated by sutures of their former backarc basins, which were stitched by new generations of overlapping magmatic arcs. In addition, the Altaids host accreted fragments of the Neoproterozoic to Early Paleozoic oceanic island chains and Neoproterozoic to Cenozoic plume-related magmatic rocks superimposed on the accreted fragments. All these assemblages host important, many world-class, Late Proterozoic to Early Mesozoic gold, copper-molybdenum, lead-zinc, nickel and other deposits of various types. In the Late Proterozoic, during breakup of the supercontinent Rodinia, the Kipchak and Tuva-Mongol magmatic arcs were rifted off Eastern Europe-Siberia and Laurentia to produce oceanic backarc basins. In the Late Ordovician, the Siberian craton began its clockwise rotation with respect to Eastern Europe and this coincides with the beginning of formation of the Mugodzhar-Rudny Altai arc behind the Kipchak arc. These earlier arcs produced mostly Cu-Pb-Zn VMS deposits, although some important intrusion-related orogenic Au deposits formed during arc-arc collision events in the Middle Cambrian and Late Ordovician. The clockwise rotation of Siberia continued through the Paleozoic until the Early Permian producing several episodes of oroclinal bending, strike-slip duplication and reorganization of the magmatic arcs to produce the overlapping Kazakh-Mongol and Zharma-Saur-Valerianov-Beltau-Kurama arcs that welded the extinct Kipchak and Tuva-Mongol arcs. This resulted in amalgamation of the western portion of the Altaid orogenic collage in the Late Paleozoic. Its eastern portion amalgamated only in the early Mesozoic and was overlapped by the Transbaikal magmatic arc, which developed in response to subduction of the oceanic crust

  18. A Temnospondyl Trackway from the Early Mesozoic of Western Gondwana and Its Implications for Basal Tetrapod Locomotion

    PubMed Central

    Marsicano, Claudia A.; Wilson, Jeffrey A.; Smith, Roger M. H.

    2014-01-01

    Background Temnospondyls are one of the earliest radiations of limbed vertebrates. Skeletal remains of more than 190 genera have been identified from late Paleozoic and early Mesozoic rocks. Paleozoic temnospondyls comprise mainly small to medium sized forms of diverse habits ranging from fully aquatic to fully terrestrial. Accordingly, their ichnological record includes tracks described from many Laurasian localities. Mesozoic temnospondyls, in contrast, include mostly medium to large aquatic or semi-aquatic forms. Exceedingly few fossil tracks or trackways have been attributed to Mesozoic temnospondyls, and as a consequence very little is known of their locomotor capabilities on land. Methodology/Principal Findings We report a ca. 200 Ma trackway, Episcopopus ventrosus, from Lesotho, southern Africa that was made by a 3.5 m-long animal. This relatively long trackway records the trackmaker dragging its body along a wet substrate using only the tips of its digits, which in the manus left characteristic drag marks. Based on detailed mapping, casting, and laser scanning of the best-preserved part of the trackway, we identified synapomorphies (e.g., tetradactyl manus, pentadactyl pes) and symplesiomorphies (e.g., absence of claws) in the Episcopopus trackway that indicate a temnospondyl trackmaker. Conclusions/Significance Our analysis shows that the Episcopopus trackmaker progressed with a sprawling posture, using a lateral-sequence walk. Its forelimbs were the major propulsive elements and there was little lateral bending of the trunk. We suggest this locomotor style, which differs dramatically from the hindlimb-driven locomotion of salamanders and other extant terrestrial tetrapods can be explained by the forwardly shifted center of mass resulting from the relatively large heads and heavily pectoral girdles of temnospondyls. PMID:25099971

  19. The Pennsylvanian-early permian bird spring carbonate shelf, Southeastern California: Fusulinid biostratigraphy, paleogeographic evolution, and tectonic implications

    USGS Publications Warehouse

    Stevens, C.H.; Stone, P.

    2007-01-01

    The Bird Spring Shelf in southeastern California, along with coeval turbidite basins to the west, records a complex history of late Paleozoic sedimentation, sea-level changes, and deformation along the western North American continental margin. We herein establish detailed correlations between deposits of the shelf and the flanking basins, which we then use to reconstruct the depositional history, paleogeography, and deformational history, including Early Permian emplacement of the regionally significant Last Chance allochthon. These correlations are based on fusulinid faunas, which are numerous both on the shelf and in the adjoining basins. Study of 69 fusulinid species representing all major fusulinid-bearing Pennsylvanian and Lower Permian limestone outcrops of the Bird Spring Shelf in southeastern California, including ten new species of the genera Triticites, Leptotriticites, Stewartina, Pseudochusenella, and Cuniculinella, forms the basis for our correlations. We group these species into six fusulinid zones that we correlate with fusulinid-bearing strata in east-central and southern Nevada, Kansas, and West Texas, and we propose some regional correlations not previously suggested. In addition, we utilize recent conodont data from these areas to correlate our Early Permian fusulinid zones with the standard Global Permian Stages, strengthening their chronostratigraphic value. Our detailed correlations between the fusulinid-bearing rocks of the Bird Spring Shelf and deep-water deposits to the northwest reveal relationships between the history of shelf sedimentation and evolution of basins closer to the continental margin. In Virgilian to early Asselian (early Wolfcampian) time (Fusulinid Zones 1 and 2), the Bird Spring Shelf was flanked on the west by the deep-water Keeler Basin in which calcareous turbidites derived from the shelf were deposited. In early Sakmarian (early middle Wolfcampian) time (Fusulinid Zone 3), the Keeler Basin deposits were uplifted and

  20. Geologic Map of the Eastern Three-Quarters of the Cuyama 30' x 60' Quadrangle, California

    USGS Publications Warehouse

    Kellogg, Karl S.; Minor, Scott A.; Cossette, Pamela M.

    2008-01-01

    The map area encompasses a large part of the western Transverse Ranges and southern Coast Ranges of southern California. The San Andreas fault (SAF) cuts the northern part of the map. The area south of the SAF, about 80 percent of the map area, encompasses several distinct tectonic blocks bounded by major thrust or reverse faults, including the Santa Ynez fault, Big Pine fault (and structurally continuous Pine Mountain fault), Tule Creek fault, Nacimiento fault, Ozena fault, Munson Creek fault, Morales fault, and Frazier Mountain Thrust System. Movement on these faults is as old as Miocene and some faults may still be active. In addition, the Paleocene Sawmill Mountain Thrust south of the SAF and the Pastoria Thrust north of the SAF place Cretaceous and older crystalline rocks above Pelona Schist (south of the SAF) and Rand Schist (north of the SAF). South of the SAF, each tectonic block contains a unique stratigraphy, reflecting either large-scale movement on bounding faults or different depositional environments within each block. On Mount Pinos and Frazier Mountain, intrusive and metamorphic rocks as old as Mesoproterozoic, but including voluminous Cretaceous granitoid rocks, underlie or are thrust above non-marine sedimentary rocks as old as Miocene. Elsewhere, marine and non-marine sedimentary rocks are as old as Cretaceous, dominated by thick sequences of both Eocene and Cretaceous marine shales and sandstones. Middle Miocene to early Oligocene volcanic rocks crop out in the Caliente Hills (part of Caliente Formation) and south of Mount Pinos (part of the Plush Ranch Formation). Fault-bounded windows of Jurassic Franciscan Complex ophiolitic rocks are evident in the southwest corner of the area. North of the SAF, marine and non-marine sedimentary rocks as old as Eocene and Miocene volcanic rocks overlie a crystalline basement complex. Basement rocks include Cretaceous intrusive rocks that range from monzogranite to diorite, and Jurassic to late Paleozoic

  1. Analysis and occurrence of C sub 26 -steranes in petroleum and source rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moldowan, J.M.; Lee, C.Y.; Gallegos, E.J.

    1991-04-01

    The C{sub 26}-steranes previously reported in oils and source rocks have been identified as 21-, 24-, and 27-norcholestanes (1A, 1B, and 1C). Various 24-norcholesterols or stanols, possible prescursors for the 24-norcholestanes, occur widely at low levels in marine invertebrates and some algae, and 24-norcholestanes occur in marine petroleums of Tertiary through Paleozoic age. There are reports of 27-norcholesterols and stanols in recent sediments, but the precursor organisms have not been identified. The natural occurrence of the 21-norcholestane structure is unprecedented. Unlike 24- and 27-norcholestane, 21-norcholestane is in low concentration or absent in immature rocks and increases substantially relative to themore » other C{sub 26}-steranes in thermally mature rocks, oils, and condensates. This suggests an origin involving thermal degradation of a higher molecuar weight steroid. The ratio of 21-norcholestane to the total C{sub 26}-steranes is shown to be an effective maturity parameter in a series of Wyoming (Phosphoria source) and California (Monterey source) oils. Molecular mechanics MM2 steric energy calculations indicate a relative stability order of 21 {much gt} 27 > 24-norcholestane for the major stereoisomers. Authentic 21-, 24-, and 27-nor-5{alpha}-cholestanes and 24- and 27-nor-5{beta}-cholestanes were synthesized and subjected to catalytic isomerization over Pd/C to yield the full suite of stereoisomers for each.« less

  2. Geochronology and geochemistry of basaltic rocks from the Sartuohai ophiolitic mélange, NW China: Implications for a Devonian mantle plume within the Junggar Ocean

    NASA Astrophysics Data System (ADS)

    Yang, Gaoxue; Li, Yongjun; Santosh, M.; Yang, Baokai; Yan, Jing; Zhang, Bing; Tong, Lili

    2012-10-01

    The West Junggar domain in NW China is a distinct tectonic unit of the Central Asian Orogenic Belt (CAOB). It is composed of Paleozoic ophiolitic mélanges, arcs and accretionary complexes. The Sartuohai ophiolitic mélange in the eastern West Junggar forms the northeastern part of the Darbut ophiolitic mélange, which contains serpentinized harzburgite, pyroxenite, dunite, cumulate, pillow lava, abyssal radiolarian chert and podiform chromite, overlain by the Early Carboniferous volcano-sedimentary rocks. In this paper we report new geochronological and geochemical data from basaltic and gabbroic blocks embedded within the Sartuohai ophiolitic mélange, to assess the possible presence of a Devonian mantle plume in the West Junggar, and evaluate the petrogenesis and implications for understanding of the Paleozoic continental accretion of CAOB. Zircon U-Pb analyses from the alkali basalt and gabbro by laser ablation inductively coupled plasma mass spectrometry yielded weighted mean ages of 375 ± 2 Ma and 368 ± 11 Ma. Geochemically, the Sartuohai ophiolitic mélange includes at least two distinct magmatic units: (1) a Late Devonian fragmented ophiolite, which were produced by ca. 2-10% spinel lherzolite partial melting in arc-related setting, and (2) contemporary alkali lavas, which were derived from 5% to 10% garnet + minor spinel lherzolite partial melting in an oceanic plateau or a seamount. Based on detailed zircon U-Pb dating and geochemical data for basalts and gabbros from the Sartuohai ophiolitic mélange, in combination with previous work, indicate a complex evolution by subduction-accretion processes from the Devonian to the Carboniferous. Furthermore, the alkali basalts from the Sartuohai ophiolitic mélange might be correlated to a Devonian mantle plume-related magmatism within the Junggar Ocean. If the plume model as proposed here is correct, it would suggest that mantle plume activity significantly contributed to the crustal growth in the CAOB.

  3. Geology and uranium deposits of the Cochetopa and Marshall Pass districts, Saguache and Gunnison counties, Colorado

    USGS Publications Warehouse

    Olson, Jerry C.

    1988-01-01

    The Cochetopa and Marshall Pass uranium districts are in Saguache and Gunnison Counties, south-central Colorado. Geologic mapping of both districts has shown that their structural history and geologic relationships have a bearing on the distribution and origin of their uranium deposits. In both districts, the principal uranium deposits are situated at the intersection of major faults with Tertiary erosion surfaces. These surfaces were buried by early Tertiary siliceous tuffs-- a likely source of the uranium. That uranium deposits are related to such unconformities in various parts of the world has been suggested by many other authors. The purpose of this study is to understand the geology of the two districts and to define a genetic model for uranium deposits that may be useful in the discovery and evaluation of uranium deposits in these and other similar geologic settings. The Cochetopa and Marshall Pass uranium districts produced nearly 1,200 metric tons of uranium oxide from 1956 to 1963. Several workings at the Los Ochos mine in the Cochetopa district, and the Pitch mine in the Marshall Pass district, accounted for about 97 percent of this production, but numerous other occurrences of uranium are known in the two districts. As a result of exploration of the Pitch deposit in the 1970's, a large open-pit mining operation began in 1978. Proterozoic rocks in both districts comprise metavolcanic, metasedimentary, and igneous units. Granitic rocks, predominantly quartz monzonitic in composition, occupy large areas. In the northwestern part of the Cochetopa district, metavolcanic and related metasedimentary rocks are of low grade (lower amphibolite facies). In the Marshall Pass district, layered metamorphic rocks are predominantly metasedimentary and are of higher (sillimanite subfacies) grade than the Cochetopa rocks. Paleozoic sedimentary rocks in the Marshall Pass district range from Late Cambrian to Pennsylvanian in age and are 700 m thick. The Paleozoic rocks

  4. Resistant tissues of modern marchantioid liverworts resemble enigmatic Early Paleozoic microfossils

    PubMed Central

    Graham, Linda E.; Wilcox, Lee W.; Cook, Martha E.; Gensel, Patricia G.

    2004-01-01

    Absence of a substantial pretracheophyte fossil record for bryophytes (otherwise predicted by molecular systematics) poses a major problem in our understanding of earliest land-plant structure. In contrast, there exist enigmatic Cambrian–Devonian microfossils (aggregations of tubes or sheets of cells or possibly a combination of both) controversially interpreted as an extinct group of early land plants known as nematophytes. We used an innovative approach to explore these issues: comparison of tube and cell-sheet microfossils with experimentally degraded modern liverworts as analogues of ancient early land plants. Lower epidermal surface tissues, including rhizoids, of Marchantia polymorpha and Conocephalum conicum were resistant to breakdown after rotting for extended periods or high-temperature acid treatment (acetolysis), suggesting fossilization potential. Cell-sheet and rhizoid remains occurred separately or together depending on the degree of body degradation. Rhizoid break-off at the lower epidermal surface left rimmed pores at the centers of cell rosettes; these were similar in structure, diameter, and distribution to pores characterizing nematophyte cell-sheet microfossils known as Cosmochlaina. The range of Marchantia rhizoid diameters overlapped that of Cosmochlaina pores. Approximately 14% of dry biomass of Marchantia vegetative thalli and 40% of gametangiophores was resistant to acetolysis. Pre- and posttreatment cell-wall autofluorescence suggested the presence of phenolic compounds that likely protect lower epidermal tissues from soil microbe attack and provide dimensional stability to gametangiophores. Our results suggest that at least some microfossils identified as nematophytes may be the remains of early marchantioid liverworts similar in some ways to modern Marchantia and Conocephalum. PMID:15263095

  5. Mysterious Roving Rocks of Racetrack Playa

    NASA Image and Video Library

    2017-12-08

    Some of the moving rocks are large. This one is about 10 inches tall. Researchers in the late 1960s and early 1970s documented the movements of one very large rock that they named Karen. (The two men named all the rocks after women.) They estimated that Karen weighed 700 pounds. Credit: NASA/GSFC/Maggie McAdam To read a feature story on the Racetrack Playa go to: www.nasa.gov/topics/earth/features/roving-rocks.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  6. Geochemical survey of the Devil's Den Roadless Area, Rutland and Windsor counties, Vermont

    USGS Publications Warehouse

    Slack, J.F.; Atelsek, P.J.; Grosz, A.E.

    1985-01-01

    The Devils Den area is named for a large undercut cliff (Dale, 1915, p. 21) developed in Precambrian basement rocks. This undercut cliff forms a broad natural cave immediately west of and below Forest Service Road 10, at the head of Mt. Tabor Brook. Another much smaller cave is present in dolomite of probable Paleozoic (Early Cambrian) age on the east side of the same road. This smaller cave apparently is of artificial origin, having been made during early mining of the dolomite (Dale, 1915, p. 21). This man-made cave is the only evidence of previous mining activity within the study area.

  7. Ages, geochemistry and tectonic implications of the Cambrian igneous rocks in the northern Great Xing'an Range, NE China

    NASA Astrophysics Data System (ADS)

    Feng, Zhiqiang; Liu, Yongjiang; Li, Yanrong; Li, Weimin; Wen, Quanbo; Liu, Binqiang; Zhou, Jianping; Zhao, Yingli

    2017-08-01

    the ocean basin between the Erguna-Xing'an and Songliao blocks. The rhyolitic tuffs contain a group of Phanerozoic zircons with εHf (t) values (-4.6 to +15.0), suggesting that the rhyolitic tuffs were derived from juvenile lower crustal material with some ancient crustal material. Coupled with our previous geochemical and isotopic studies on Early Paleozoic igneous rocks, we proposed that the collision of the Erguna and Xing'an blocks at least took place ca. 500 Ma ago, and that there exist in a westward subduction of an oceanic plate between the Eruguna-Xing'an and Songliao blocks, took place during the Early Ordovician. Up to now, there are more evidences and constraints that the northern extension location of the Xinlin-Xiguitu suture zone is located in the Jifeng-Xinglong areas.

  8. Tectonics and hydrocarbon potential of the Barents Megatrough

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baturin, D.; Vinogradov, A.; Yunov, A.

    1991-08-01

    Interpretation of geophysical data shows that the geological structure of the Eastern Barents Shelf, named Barents Megatrough (BM), extends sublongitudinally almost from the Baltic shield to the Franz Josef Land archipelago. The earth crust within the axis part of the BM is attenuated up to 28-30 km, whereas in adjacent areas its thickness exceeds 35 km. The depression is filled with of more than 15 km of Upper Paleozoic, Mesozoic, and Cenozoic sediments overlying a folded basement of probable Caledonian age. Paleozoic sediments, with exception of the Upper Permian, are composed mainly of carbonates and evaporites. Mesozoic-Cenozoic sediments are mostlymore » terrigenous. The major force in the development of the BM was due to extensional tectonics. Three rifting phases are recognizable: Late Devonian-Early Carboniferous, Early Triassic, and Jurassic-Early Cretaceous. The principal features of the geologic structure and evolution of the BM during the late Paleozoic-Mesozoic correlate well with those of the Sverdup basin, Canadian Arctic. Significant quantity of Late Jurassic-Early Cretaceous basaltic dikes and sills were intruded within Triassic sequence during the third rifting phase. This was probably the main reason for trap disruption and hydrocarbon loss from Triassic structures. Lower Jurassic and Lower Cretaceous reservoir sandstones are most probably the main future objects for oil and gas discoveries within the BM. Upper Jurassic black shales are probably the main source rocks of the BM basin, as well as excellent structural traps for hydrocarbon fluids from the underlying sediments.« less

  9. Dronning Maud Lands (East Antarctica) significance for Late Mesoproterozoic/Early Neoproterozoic supercontinent reconstructions

    NASA Astrophysics Data System (ADS)

    Jacobs, Joachim; Elburg, Marlina; Laeufer, Andreas; Kleinhanns, Ilka C.; Henjes-Kunst, Friedhelm; Estrada, Solveig; Ruppel, Antonia; Damaske, Detlef; Montero, Pilar; Bea, Fernando

    2015-04-01

    The recent study of a so far white spot on the geological map of Dronning Maud Land (DML) during the international GEA expeditions sheds new light on the significance of major tectono-metamorphic provinces of Dronning Maud Land, East Antarctica. The western part of eastern DML allows the characterization and ground-truthing of a large and mostly ice-covered area, that is geophysically distinct and which was previously interpreted as a potentially older cratonic block south of a Late Neoproterozoic/EarlyPaleozoic mobile belt, which is exposed in the Sør Rondane Mts. (SRM). SHRIMP/SIMS zircon analyses of 20 samples together with new geochemistry indicate that the exposed basement consists of a ca. 1000-900 Ma juvenile terrane that is very similar to the juvenile rocks of the SW-Terrane of the SRM, a characteristic gabbro-trondhjemite-tonalite-granite suite. However, in contrast to the southern part of the SW-Terrane, our study area shows intense crustal reworking at medium to high-grade conditions between ca. 630-520 Ma, associated with significant felsic melt production, including A-type granitoid magmatism. Therefore, the study area, and thereby the aeromagnetically distinct SE DML province does neither represent the foreland of a Late Neoproterozoic/EarlyPaleozoic mobile belt, nor a craton, as has previously been speculated. It more likely represents the westward continuation of Rayner-age crust (1000-900 Ma) that has undergone additional protracted LN/EP overprinting. We interpret the southern part of the only weakly overprinted SW-Terrane as a mega-boudin within a broad, rheologically weaker, NW-SE trending LN/EP mobile belt. Rayner-type crust likely continues further west, where it abuts along the SW-trending Forster Magnetic Anomaly. The latter is interpreted as a suture, which separates typical Grenville-age crust of the Maud Belt to the W from Rayner-age crust to the E. The study area has therefore clearly Indian affinities. Its juvenile character with a

  10. Petroleum geology and resources of the North Ustyurt Basin, Kazakhstan and Uzbekistan

    USGS Publications Warehouse

    Ulmishek, Gregory F.

    2001-01-01

    The triangular-shaped North Ustyurt basin is located between the Caspian Sea and the Aral Lake in Kazakhstan and Uzbekistan and extends offshore both on the west and east. Along all its sides, the basin is bounded by the late Paleozoic and Triassic foldbelts that are partially overlain by Jurassic and younger rocks. The basin formed on a cratonic microcontinental block that was accreted northward to the Russian craton in Visean or Early Permian time. Continental collision and deformation along the southern and eastern basin margins occurred in Early Permian time. In Late Triassic time, the basin was subjected to strong compression that resulted in intrabasinal thrusting and faulting. Jurassic-Tertiary, mostly clastic rocks several hundred meters to 5 km thick overlie an older sequence of Devonian?Middle Carboniferous carbonates, Upper Precambrian massifs and deformed Caledonian foldbelts. The Carboniferous?Lower Permian clastics, carbonates, and volca-basement is at depths from 5.5 km on the highest uplifts to 11 nics, and Upper Permian?Triassic continental clastic rocks, pri-km in the deepest depressions. marily red beds. Paleogeographic conditions of sedimentation, Three total petroleum systems are identified in the basin. the distribution of rock types, and the thicknesses of pre-Triassic Combined volumes of discovered hydrocarbons in these sysstratigraphic units are poorly known because the rocks have been tems are nearly 2.4 billion barrels of oil and 2.4 trillion cubic penetrated by only a few wells in the western and eastern basin feet of gas. Almost all of the oil reserves are in the Buzachi Arch areas. The basement probably is heterogeneous; it includes and Surrounding Areas Composite Total Petroleum System in 2 Petroleum Geology, Resources?North Ustyurt Basin, Kazakhstan and Uzbekistan the western part of the basin. Oil pools are in shallow Jurassic and Neocomian sandstone reservoirs, in structural traps. Source rocks are absent in the total petroleum

  11. Depositional environments and tectonic significance of the Wajid Sandstone of southern Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Dabbagh, Mohamed E.; Rogers, John J. W.

    The Wajid Sandstone, of probable Early Paleozoic age, rests disconformably on crystalline rocks of the southern part of the Arabian shield. Scattered outcrops extend over an area about 450 km north-south and 300 km east-west. The southern part of the formation, near the Yemen border, consists of fluvial sandstones and very minor siltstones and silty shales. The fluvial origin is demonstrated by the presence of fining-upward cycles, channels, trough cross bedding, and absence of all organic traces. The northern part of the outcrop area consists of internally homogeneous, tabular cross-bedded, horizontally bedded sandstones apparently formed in a shallow marine environment. These marine rocks contain trace fossils broadly similar to Skolithos. Abundant cross bedding in both facies of the Wajid indicates a northward transport direction, toward what is now the center of the Arabian shield. The southern part of the Arabian shield, which was cratonized about 500 to 600 Ma ago (Pan-African age), was apparently still a depositional area receiving sediments from a southern source in Early Paleozoic time. Other, older, shields also show a tendency to be areas of deposition shortly after their apparent age of stabilization, becoming sources of clastic sediments only after several hundreds of millions of years. The conversion from basin to uplifted source may indicate a prolonged process of shield maturation after initial stabilization.

  12. A superarmored lobopodian from the Cambrian of China and early disparity in the evolution of Onychophora

    PubMed Central

    Yang, Jie; Ortega-Hernández, Javier; Gerber, Sylvain; Butterfield, Nicholas J.; Hou, Jin-bo; Lan, Tian; Zhang, Xi-guang

    2015-01-01

    We describe Collinsium ciliosum from the early Cambrian Xiaoshiba Lagerstätte in South China, an armored lobopodian with a remarkable degree of limb differentiation including a pair of antenna-like appendages, six pairs of elongate setiferous limbs for suspension feeding, and nine pairs of clawed annulated legs with an anchoring function. Collinsium belongs to a highly derived clade of lobopodians within stem group Onychophora, distinguished by a substantial dorsal armature of supernumerary and biomineralized spines (Family Luolishaniidae). As demonstrated here, luolishaniids display the highest degree of limb specialization among Paleozoic lobopodians, constitute more than one-third of the overall morphological disparity of stem group Onychophora, and are substantially more disparate than crown group representatives. Despite having higher disparity and appendage complexity than other lobopodians and extant velvet worms, the specialized mode of life embodied by luolishaniids became extinct during the Early Paleozoic. Collinsium and other superarmored lobopodians exploited a unique paleoecological niche during the Cambrian explosion. PMID:26124122

  13. Neoproterozoic, Paleozoic, and Mesozoic granitoid magmatism in the Qinling Orogen, China: Constraints on orogenic process

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoxia; Wang, Tao; Zhang, Chengli

    2013-08-01

    The Qinling Orogen is one of the main orogenic belts in Asia and is characterized by multi-stage orogenic processes and the development of voluminous magmatic intrusions. The results of zircon U-Pb dating indicate that granitoid magmatism in the Qinling Orogen mainly occurred in four distinct periods: the Neoproterozoic (979-711 Ma), Paleozoic (507-400 Ma), and Early (252-185 Ma) and Late (158-100 Ma) Mesozoic. The Neoproterozoic granitic magmatism in the Qinling Orogen is represented by strongly deformed S-type granites emplaced at 979-911 Ma, weakly deformed I-type granites at 894-815 Ma, and A-type granites at 759-711 Ma. They can be interpreted as the products of respectively syn-collisional, post-collisional and extensional setting, in response to the assembly and breakup of the Rodinia supercontinent. The Paleozoic magmatism can be temporally classified into three stages of 507-470 Ma, 460-422 Ma and ˜415-400 Ma. They were genetically related to the subduction of the Shangdan Ocean and subsequent collision of the southern North China Block and the South Qinling Belt. The 507-470 Ma magmatism is spatially and temporally related to ultrahigh-pressure metamorphism in the studied area. The 460-422 Ma magmatism with an extensive development in the North Qinling Belt is characterized by I-type granitoids and originated from the lower crust with the involvement of mantle-derived magma in a collisional setting. The magmatism with the formation age of ˜415-400 Ma only occurred in the middle part of the North Qinling Belt and is dominated by I-type granitoid intrusions, and probably formed in the late-stage of a collisional setting. Early Mesozoic magmatism in the study area occurred between 252 and 185 Ma, with the cluster in 225-200 Ma. It took place predominantly in the western part of the South Qinling Belt. The 250-240 Ma I-type granitoids are of small volume and show high Sr/Y ratios, and may have been formed in a continental arc setting related to subduction

  14. Lower Paleozoic deep-water facies of the Medfra area, central Alaska: A section in Geologic studies in Alaska by the U.S. Geological Survey, 1997

    USGS Publications Warehouse

    Dumoulin, Julie A.; Bradley, Dwight C.; Harris, Anita G.; Repetski, John E.

    1999-01-01

    Deep-water facies, chiefly hemipelagic deposits and turbidites, of Cambrian through Devonian age are widely exposed in the Medfra and Mt. McKinley quadrangles. These strata include the upper part of the Telsitna Formation (Middle-Upper Ordovician) and the Paradise Fork Formation (Lower Silurian-Lower Devonian) in the Nixon Fork terrane, the East Fork Hills Formation (Upper Cambrian-Lower Devonian) in the East Fork subterrane of the Minchumina terrane, and the chert and argillite unit (Ordovician) and the argillite and quartzite unit (Silurian- Devonian? and possibly older) in the Telida subterrane of the Minchumina terrane.In the western part of the study area (Medfra quadrangle), both hemipelagic deposits and turbidites are largely calcareous and were derived from the Nixon Fork carbonate platform. East- ern exposures (Mt. McKinley quadrangle; eastern part of the Telida subterrane) contain much less carbonate; hemipelagic strata are mostly chert, and turbidites contain abundant rounded quartz and lesser plagioclase and potassium feldspar. Deep-water facies in the Medfra quadrangle correlate well with rocks of the Dillinger terrane exposed to the south (McGrath quadrangle), but coeval strata in the Mt. McKinley quadrangle are compositionally similar to rocks to the northeast (Livengood quadrangle). Petrographic data thus suggest that the Telida subterranes presently defined is an artificial construct made up of two distinct sequences of disparate provenance.Restoration of 90 and 150 km of dextral strike-slip on the Iditarod and Farewell faults, respectively, aligns the deep-water strata of the Minchumina and Dillinger terranes in a position east of the Nixon Fork carbonate platform. This restoration supports the interpretation that lower Paleozoic rocks in the Nixon Fork and Dillinger terranes, and in the western part of the Minchumina terrane (East Fork subterrane and western part of the Telida subterrane), formed along a single continental margin. Rocks in the

  15. The Las Matras tonalitic trondhjemitic pluton, central Argentina: Grenvillian-age constraints, geochemical characteristics, and regional implications

    NASA Astrophysics Data System (ADS)

    Sato, A. M.; Tickyj, H.; Llambías, E. J.; Sato, K.

    2000-12-01

    The N-S trending belt with Grenvillian-age rocks developed in central western Argentina represents the basement of an allochthonous terrane derived from Laurentia during the Early Paleozoic. The Las Matras pluton (36°46‧S, 67°07‧W) is located at the southern extension of this belt in the Las Matras Block. It consists of a low-Al tonalitic to trondhjemitic facies characteristic of an arc magmatism. Isotopic studies yielded Grenvillian Rb-Sr (1212±47 Ma) and Sm-Nd (1188±47 Ma) ages which, due to the undeformed and non-metamorphosed character of the pluton, are interpreted to represent a crystallization age of around 1200 Ma. Although this age is slightly older than available dates from other exposures of the same belt, and the undeformed feature is also distinctive for Las Matras, the depleted Sr and Nd isotopic signatures of the pluton agree with those from other magmatic rocks involved in that belt. The differences found between Las Matras and the northern exposures indicate that this belt with Grenvillian-age rocks comprises regions of non-homogeneous evolution. Although the correlation of the Lower Paleozoic platform carbonates from the sedimentary cover of the Grenvillian-age basement rocks suggests the surroundings of the Southern Grenville Province (Texas and northern Mexico) as the probable detachment site for the Argentine belt, comparison of magmatic and tectonic processes involved in these basement rocks does not indicate similar evolutions. This fact can suggest an independent evolution of the Argentine belt prior to amalgamation to the Laurentian Grenville orogen.

  16. Igneous Rocks

    NASA Astrophysics Data System (ADS)

    Doe, Bruce R.

    “Igneous Rocks was written for undergraduate geology majors who have had a year of college-level chemistry and a course in mineralogy … and for beginning graduate students. Geologists working in industry, government, or academia should find this text useful as a guide to the technical literature up to 1981 and as an overview of topics with which they have not worked but which may have unanticipated pertinence to their own projects.” So starts the preface to this textbook.As one who works part time in research on igneous rocks, especially as they relate to mineral deposits, I have been looking for such a book with this avowed purpose in a field that has a choking richness of evolving terminology and a bewildering volume of interdisciplinary literature. In addition to the standard topics of igneous petrology, the book contains a chapter on the role of igneous activity in the genesis of mineral deposits, its value to geothermal energy, and the potential of igneous rocks as an environment for nuclear waste disposal. These topics are presented rather apologetically in the preface, but the author is to be applauded for including this chapter. The apology shows just how new these interests are to petrology. Recognition is finally coming that, for example, mineral deposits are not “sports of nature,” a view held even by many economic geologists as recently as the early 1960's; instead they are perfectly ordinary geochemical features formed by perfectly ordinary geologic processes. In fact, the mineral deposits and their attendant alteration zones probably have as much to tell us about igneous rocks as the igneous rocks have to tell us about mineral deposits.

  17. Bedrock geologic map of the northern Alaska Peninsula area, southwestern Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.; Blodgett, Robert B.; Blome, Charles D.; Mohadjer, Solmaz; Preller, Cindi C.; Klimasauskas, Edward P.; Gamble, Bruce M.; Coonrad, Warren L.

    2017-03-03

    The northern Alaska Peninsula is a region of transition from the classic magmatic arc geology of the Alaska Peninsula to a Proterozoic and early Paleozoic carbonate platform and then to the poorly understood, tectonically complex sedimentary basins of southwestern Alaska. Physiographically, the region ranges from the high glaciated mountains of the Alaska-Aleutian Range to the coastal lowlands of Cook Inlet on the east and Bristol Bay on the southwest. The lower Ahklun Mountains and finger lakes on the west side of the map area show strong effects from glaciation. Structurally, a number of major faults cut the map area. Most important of these are the Bruin Bay Fault that parallels the coast of Cook Inlet, the Lake Clark Fault that cuts diagonally northeast to southwest across the eastern part of the map area, and the presently active Holitna Fault to the northwest that cuts surficial deposits.Distinctive rock packages assigned to three provinces are overlain by younger sedimentary rocks and intruded by widely dispersed latest Cretaceous and (or) early Tertiary granitic rocks. Much of the east half of the map area lies in the Alaska-Aleutian Range province; the Jurassic to Tertiary Alaska-Aleutian Range batholith and derivative Jurassic sedimentary rocks form the core of this province, which is intruded and overlain by the Aleutian magmatic arc. The Lime Hills province, the carbonate platform, occurs in the north-central part of the map area. The Paleozoic and Mesozoic Ahklun Mountains province in the western part of the map area includes abundant chert, argillite, and graywacke and lesser limestone, basalt, and tectonic mélange. The Kuskokwim Group, an Upper Cretaceous turbidite sequence, is extensively exposed and bounds all three provinces in the west-central part of the map area.

  18. Unexpected Early Triassic marine ecosystem and the rise of the Modern evolutionary fauna

    PubMed Central

    Brayard, Arnaud; Krumenacker, L. J.; Botting, Joseph P.; Jenks, James F.; Bylund, Kevin G.; Fara, Emmanuel; Vennin, Emmanuelle; Olivier, Nicolas; Goudemand, Nicolas; Saucède, Thomas; Charbonnier, Sylvain; Romano, Carlo; Doguzhaeva, Larisa; Thuy, Ben; Hautmann, Michael; Stephen, Daniel A.; Thomazo, Christophe; Escarguel, Gilles

    2017-01-01

    In the wake of the end-Permian mass extinction, the Early Triassic (~251.9 to 247 million years ago) is portrayed as an environmentally unstable interval characterized by several biotic crises and heavily depauperate marine benthic ecosystems. We describe a new fossil assemblage—the Paris Biota—from the earliest Spathian (middle Olenekian, ~250.6 million years ago) of the Bear Lake area, southeastern Idaho, USA. This highly diversified assemblage documents a remarkably complex marine ecosystem including at least seven phyla and 20 distinct metazoan orders, along with algae. Most unexpectedly, it combines early Paleozoic and middle Mesozoic taxa previously unknown from the Triassic strata, among which are primitive Cambrian-Ordovician leptomitid sponges (a 200–million year Lazarus taxon) and gladius-bearing coleoid cephalopods, a poorly documented group before the Jurassic (~50 million years after the Early Triassic). Additionally, the crinoid and ophiuroid specimens show derived anatomical characters that were thought to have evolved much later. Unlike previous works that suggested a sluggish postcrisis recovery and a low diversity for the Early Triassic benthic organisms, the unexpected composition of this exceptional assemblage points toward an early and rapid post-Permian diversification for these clades. Overall, it illustrates a phylogenetically diverse, functionally complex, and trophically multileveled marine ecosystem, from primary producers up to top predators and potential scavengers. Hence, the Paris Biota highlights the key evolutionary position of Early Triassic fossil ecosystems in the transition from the Paleozoic to the Modern marine evolutionary fauna at the dawn of the Mesozoic era. PMID:28246643

  19. Unexpected Early Triassic marine ecosystem and the rise of the Modern evolutionary fauna.

    PubMed

    Brayard, Arnaud; Krumenacker, L J; Botting, Joseph P; Jenks, James F; Bylund, Kevin G; Fara, Emmanuel; Vennin, Emmanuelle; Olivier, Nicolas; Goudemand, Nicolas; Saucède, Thomas; Charbonnier, Sylvain; Romano, Carlo; Doguzhaeva, Larisa; Thuy, Ben; Hautmann, Michael; Stephen, Daniel A; Thomazo, Christophe; Escarguel, Gilles

    2017-02-01

    In the wake of the end-Permian mass extinction, the Early Triassic (~251.9 to 247 million years ago) is portrayed as an environmentally unstable interval characterized by several biotic crises and heavily depauperate marine benthic ecosystems. We describe a new fossil assemblage-the Paris Biota-from the earliest Spathian (middle Olenekian, ~250.6 million years ago) of the Bear Lake area, southeastern Idaho, USA. This highly diversified assemblage documents a remarkably complex marine ecosystem including at least seven phyla and 20 distinct metazoan orders, along with algae. Most unexpectedly, it combines early Paleozoic and middle Mesozoic taxa previously unknown from the Triassic strata, among which are primitive Cambrian-Ordovician leptomitid sponges (a 200-million year Lazarus taxon) and gladius-bearing coleoid cephalopods, a poorly documented group before the Jurassic (~50 million years after the Early Triassic). Additionally, the crinoid and ophiuroid specimens show derived anatomical characters that were thought to have evolved much later. Unlike previous works that suggested a sluggish postcrisis recovery and a low diversity for the Early Triassic benthic organisms, the unexpected composition of this exceptional assemblage points toward an early and rapid post-Permian diversification for these clades. Overall, it illustrates a phylogenetically diverse, functionally complex, and trophically multileveled marine ecosystem, from primary producers up to top predators and potential scavengers. Hence, the Paris Biota highlights the key evolutionary position of Early Triassic fossil ecosystems in the transition from the Paleozoic to the Modern marine evolutionary fauna at the dawn of the Mesozoic era.

  20. Timing of tectonic evolution of the East Kunlun Orogen, Northern Tibet Plateau

    NASA Astrophysics Data System (ADS)

    Dong, Yunpeng

    2017-04-01

    The East Kunlun Orogen, located at the northern Tibet Plateau, represents the western segment of the Central China Orogenic Belt which was formed by amalgamation of the North China blocks and South China blocks. It is a key to understanding the formation of Eastern Asian continent as well as the evolution of the Pangea supercontinent. Based on detailed geological mapping, geochemical and geochronological investigations, the orogen is divided into three main tectonic belts, from north to south, including the Northern Qimantagh, Central Kunlun and Southern Kunlun Belts by the Qimantagh suture, Central Kunlun suture and South Kunlun fault. The Qimantagh suture is marked by the Early Paleozoic ophiolites outcropped in the Yangziquan, Wutumeiren, and Tatuo areas, which consist mainly of peridotites, gabbros, diabases and basalts. Besides, the ophiolite in the Wutumeiren is characterized by occurring anorthosite while the ophiolite in the Tatuo occurring chert. The basalts and diabases from both Yaziquan and Tatuo areas display depletion of Nb, Ta, P and Ti, and enrichment of LILE, suggesting a subduction related tectonic setting. LA-ICP-MS zircon U-Pb age of 421 Ma for the diabase represents the formation age of the Yaziquan ophiolite, while the U-Pb ages of 490 Ma and 505 Ma for gabbro and anorthosite, respectively, constrain the formation age of the Tatuo ophiolite. The basaltic rocks in the Wutumeiren area display flat distribution of HFSEs (such as Nb, Ta, K, La, Ce, Pr, Nd, Zr, Sm, Eu, Ti, Dy, Y, Yb and Lu) and slightly enrichment in LREEs, while the peridotites showing depletion in MREEs. The LA-ICP-MS zircon U-Pb age of 431 Ma for the gabbro represents the formation age of the Wutumeiren ophiolite. Together with regional geology, we suggest herewith a back-arc basin tectonic setting during ca. 505-421 Ma at least for the Qimantagh suture. The Central Kunlun suture is represented by the ophiolite in the Wutuo area, which is characterized by depletion of Nb, Ta, P

  1. Extensional Late Paleozoic deformation on the western margin of Pangea, Patlanoaya area, Acatlán Complex, southern Mexico

    NASA Astrophysics Data System (ADS)

    Ramos-Arias, M. A.; Keppie, J. D.; Ortega-Rivera, A.; Lee, J. W. K.

    2008-02-01

    New mapping in the northern part of the Paleozoic Acatlán Complex (Patlanoaya area) records several ductile shear zones and brittle faults with normal kinematics (previously thought to be thrusts). These movement zones separate a variety of units that pass structurally upwards from: (i) blueschist-eclogitic metamorphic rocks (Piaxtla Suite) and mylonitic megacrystic granites (Columpio del Diablo granite ≡ Ordovician granites elsewhere in the complex); (ii) a gently E-dipping, listric, normal shear zone with top to the east kinematic indicators that formed under upper greenschist to lower amphibolite conditions; (iii) the Middle-Late Ordovician Las Minas quartzite (upper greenschist facies psammites with minor interbedded pelites intruded by mafic dikes and a leucogranite dike from the Columpio del Diablo granite) unconformably overlain by the Otate meta-arenite (lower greenschist facies psammites and pelites): roughly temporal equivalents are the Middle-Late Ordovician Mal Paso and Ojo de Agua units (interbedded metasandstone and slate, and metapelite and mafic minor intrusions, respectively) — some of these units are intruded by the massive, 461 ± 2 Ma, Palo Liso megacrystic granite: decussate, contact metamorphic muscovite yielded a 40Ar/ 39Ar plateau age of 440 ± 4 Ma; (iv) a steeply-moderately, E-dipping normal fault; (v) latest Devonian-Middle Permian sedimentary rocks (Patlanoaya Group: here elevated from formation status). The upward decrease in metamorphic grade is paralleled by a decrease in the number of penetrative fabrics, which varies from (i) three in the Piaxtla Suite, through (ii) two in the Las Minas unit (E-trending sheath folds deformed by NE-trending, subhorizontal folds with top to the southeast asymmetry, both associated with a solution cleavage), (iii) one in the Otate, Mal Paso, and Ojo de Agua units (steeply SE-dipping, NE-SW plunging, open-close folds), to (iv) none in the Patlanoaya Group. 40Ar/ 39Ar analyses of muscovite from the

  2. A Geophysical Study in Grand Teton National Park and Vicinity, Teton County, Wyoming: With Sections on Stratigraphy and Structure and Precambrian Rocks

    USGS Publications Warehouse

    Behrendt, John Charles; Tibbetts, Benton L.; Bonini, William E.; Lavin, Peter M.; Love, J.D.; Reed, John C.

    1968-01-01

    An integrated geophysical study - comprising gravity, seismic refraction, and aeromagnetic surveys - was made of a 4,600-km2 area in Grand Teton National Park and vicinity, Wyoming, for the purpose of obtaining a better understanding of the structural relationships in the region. The Teton range is largely comprised of Precambrian crystalline rocks and layered metasedimentary gneiss, but it also includes granitic gneiss, hornblende-plagioclase gneiss, granodiorite, and pegmatite and diabase dikes. Elsewhere, the sedimentary section is thick. The presence of each system except Silurian provides a chronological history of most structures. Uplift of the Teton-Gros Ventre area began in the Late Cretaceous; most of the uplift occurred after middle Eocene time. Additional uplift of the Teton Range and downfaulting of Jackson Hole began in the late Pliocene and continues to the present. Bouguer anomalies range from -185 mgal over Precambrian rocks of the Teton Range to -240 mgal over low-density Tertiary and Cretaceous sedimentary rocks of Jackson Hole. The Teton fault (at the west edge of Jackson Hole), as shown by steep gravity gradients and seismic-refraction data, trends north-northeast away from the front of the Teton Range in the area of Jackson Lake. The Teton fault either is shallowly inclined in the Jenny Lake area, or it consists of a series of fault steps in the fault zone; it is approximately vertical in the Arizona Creek area. Seismic-refraction data can be fitted well by a three-layer gravity model with velocities of 2.45 km per sec for the Tertiary and Cretaceous rocks above the Cloverly Formation, 3.9 km per sec for the lower Mesozoic rocks, and 6.1 km per sec for the Paleozoic (limestone and dolomite) and Precambrian rocks. Gravity models computed along two seismic profiles are in good agreement (sigma=+- 2 mgal) if density contrasts with the assumed 2.67 g per cm2 Paleozoic and Precambrian rocks are assumed to be -0.35 and -0.10 g per cm2 for the 2

  3. The Grand St Bernard-Briançonnais Nappe System and the Paleozoic Inheritance of the Western Alps Unraveled by Zircon U-Pb Dating

    NASA Astrophysics Data System (ADS)

    Bergomi, M. A.; Dal Piaz, G. V.; Malusà, M. G.; Monopoli, B.; Tunesi, A.

    2017-12-01

    The continental crust involved in the Alpine orogeny was largely shaped by Paleozoic tectono-metamorphic and igneous events during oblique collision between Gondwana and Laurussia. In order to shed light on the pre-Alpine basement puzzle disrupted and reamalgamated during the Tethyan rifting and the Alpine orogeny, we provide sensitive high-resolution ion microprobe U-Pb zircon and geochemical whole rock data from selected basement units of the Grand St Bernard-Briançonnais nappe system in the Western Alps and from the Penninic and Lower Austroalpine units in the Central Alps. Zircon U-Pb ages, ranging from 459.0 ± 2.3 Ma to 279.1 ± 1.1 Ma, provide evidence of a complex evolution along the northern margin of Gondwana including Ordovician transtension, Devonian subduction, and Carboniferous-to-Permian tectonic reorganization. Original zircon U-Pb ages of 371 ± 0.9 Ma and 369.3 ± 1.5 Ma, from calc-alkaline granitoids of the Grand Nomenon and Gneiss del Monte Canale units, provide the first compelling evidence of Late Devonian orogenic magmatism in the Alps. We propose that rocks belonging to these units were originally part of the Moldanubian domain and were displaced toward the SW by Late Carboniferous strike-slip faulting. The resulting assemblage of basement units was disrupted by Permian tectonics and by Mesozoic opening of the Alpine Tethys. Remnants of the Moldanubian domain became either part of the European paleomargin (Grand Nomenon unit) or part of the Adriatic paleomargin (Gneiss del Monte Canale unit), to be finally accreted into the Alpine orogenic wedge during the Cenozoic.

  4. Thermochronologic constraints on post-Paleozoic tectonic evolution of the central Transantarctic Mountains, Antarctica

    NASA Astrophysics Data System (ADS)

    Fitzgerald, Paul G.

    1994-08-01

    Built upon the roots of a compressive orogenic belt of late Proterozoic-early Paleozoic age and once adjacent to North America, the present-day Transantarctic Mountains (TAM) represent a rift flank, resulting from episodic uplift in the Cretaceous and Cenozoic. Fault blocks are discernible in present-day topography and subglacial morphology. Fission track results give information on differential block movement (uplift and denudation) and are important in constraining models for the uplift of the range. Apatite fission track thermochronology on samples collected from the central TAM record a complex thermotectonic history for this region over the past 350 m.y. Apatite ages in the Miller Range vary from ˜250 to ˜350 Ma and are from an exhumed apatite partial annealing zone formed following cooling of Cambro-Ordovician granitoids. A period of Cretaceous denudation (≲2 km), beginning at ˜115 Ma, is recorded at Moody Nunatak on the inland side of the TAM. Near the coast, samples along the Beardmore Glacier record rapid cooling indicative of denudation initiated in the early Cenozoic (˜50 Ma). The amount of uplift ˜70 km inland of the coast in the Queen Alexandra Range since the early Cenozoic is ˜7 km, with the likelihood of an additional ˜3 km at the coast. Eastward facing topographic escarpments in the Queen Alexandra Range mark the likely position of steeply dipping normal faults, which offset the apatite ages. Apatite ages on the east side of the Beardmore Glacier mouth are generally younger (average 27 Ma) than on the west side (average 33 Ma), reflecting greater denudation. Assumptions made regarding the use of an assumed paleogeothermal gradient are tested with available geologic evidence. The fission track data neither conflict with nor confirm paleobotanical evidence from the Sirius Group in the central TAM which suggests significant surface uplift (2-3 km) of the TAM since the Pliocene. Results build upon the available fission track database along the

  5. Petrology of the Plutonic Rocks of west-central Alaska

    USGS Publications Warehouse

    Miller, Thomas P.

    1970-01-01

    alkaline rocks appears to be related to regional structural features, particularly the boundary between the Mesozoic volcanogenic province of west-central Alaska and the thrust-faulted province of metamorphic-plutonic and sedimentary rocks of Paleozoic and Precambrian age that forms the eastern Seward Peninsula. This boundary may have been a zone of structural weakness along which alkaline magma was generated. Modal and chemical trends suggest that the potassium-rich magma influenced the composition of more granitic magmas forming at higher levels. The latter may have been forming as a result of anatexis of andesite and mixing of mantle-derived mafic magma. The result is the heterogeneous assemblage of generally potassium-rich plutonic rocks that forms the west end of the Hogataza plutonic belt. The loci of magmatism in west-central Alaska shifted east in Late Cretaceous time and the eastern plutons show only local signs of potassium enrichment. They are compositionally homogeneous and differences within plutons appear due to local contamination.

  6. Basin evolution and structural reconstruction of northeastern Morocco and northwestern Algeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, S.

    1995-08-01

    The high plateau region of Morocco and northwestern Algeria contains a Permo-Triassic rift basin with over 8,000 meters of Paleozoic, Mesozoic and Tertiary sediments. The area exhibits many similarities to the prolific Triassic basins of neighboring Algeria. Previous impediments to exploration in the high plateau area focused on the inability to seismically image sub-salt, pre-Jurassic block faulted structures and the perceived lack of adequate source rocks. This study combined seismic and basin modelling techniques to decipher the pre-salt structures, interpret basin evolution, and access source rock potential. Large structural and stratigraphic features can now be discerned where Permo-Triassic block faultedmore » structures are overlain by thick Triassic-Jurassic mobile evaporate seals and sourced by underlying Paleozoic shales. Contrary to the last published reports, over 20 years ago, oil and gas generation appears to have been continuous in the Carboniferous since 350 ma. Migration directly from the Carboniferous shales to Triassic conglomerates is envisaged with adequate seals provided by the overlying Triassic-Jurassic evaporate sequence. An earlier rapid pulse of oil and gas generation between 300-340 ma from the Silurian source rocks was probably too early to have resulted in hydrocarbon accumulation in the primary Triassic targets but if reservoir is present in the Carboniferous section, then those strata may have been sourced by the Silurian shales.« less

  7. Insights on surface spalling of rock

    NASA Astrophysics Data System (ADS)

    Tarokh, Ali; Kao, Chu-Shu; Fakhimi, Ali; Labuz, Joseph F.

    2016-07-01

    Surface spalling is a complex failure phenomenon that features crack propagation and detachment of thin pieces of rock near free surfaces, particularly in brittle rock around underground excavations when large in situ stresses are involved. A surface instability apparatus was used to study failure of rock close to a free surface, and damage evolution was monitored by digital image correlation (DIC). Lateral displacement at the free face was used as the feedback signal to control the post-peak response of the specimen. DIC was implemented in order to obtain the incremental displacement fields during the spalling process. Displacement fields were computed in the early stage of loading as well as close to the peak stress. Fracture from the spalling phenomenon was revealed by incremental lateral displacement contours. The axial and lateral displacements suggested that the displacement gradient was uniform in both directions at early loading stages and as the load increased, the free-face effect started to influence the displacements, especially the lateral displacement field. A numerical approach, based on the discrete element method, was developed and validated from element testing. Damage evolution and localization observed in numerical simulations were similar to those observed in experiments. By performing simulations in two- and three-dimensions, it was revealed that the intermediate principal stress and platen-rock interfaces have important effects on simulation of surface spalling.

  8. Global deglaciation and the re-appearance of microbial matground-dominated ecosystems in the late Paleozoic of Gondwana.

    PubMed

    Buatois, L A; Netto, R G; Gabriela Mángano, M; Carmona, N B

    2013-07-01

    The extensive matgrounds in Carboniferous-Permian open-marine deposits of western Argentina constitute an anachronistic facies, because with the onset of penetrative bioturbation during the early Paleozoic microbial mats essentially disappeared from these settings. Abundant microbially induced sedimentary structures in the Argentinean deposits are coincident with the disappearance of trace and body fossils in the succession and with a landward facies shift indicative of transgressive conditions. Deposits of the Late Carboniferous-Early Permian glacial event are well developed in adjacent basins in eastern Argentina, Brazil, South Africa and Antarctica, but do not occur in the western Andean basins of Argentina. However, the deglaciation phase is indirectly recorded in the studied region by a rapid rise in sea level referred to as the Stephanian-Asselian transgression. We suggest that an unusual release of meltwater during the final deglaciation episode of the Gondwana Ice Age may have dramatically freshened peri-Gondwanan seas, impacting negatively on coastal and shallow-marine benthic faunas. Suppression of bioturbation was therefore conducive to a brief re-appearance of matground-dominated ecosystems, reminiscent of those in the precambrian. Bioturbation is essential for ecosystem performance and plays a major role in ocean and sediment geochemistry. Accordingly, the decimation of the mixed layer during deglaciation in the Gondwana basins may have altered ecosystem functioning and geochemical cycling. © 2013 John Wiley & Sons Ltd.

  9. Birth and demise of the Rheic Ocean magmatic arc(s): Combined U-Pb and Hf isotope analyses in detrital zircon from SW Iberia siliciclastic strata

    NASA Astrophysics Data System (ADS)

    Pereira, M. F.; Gutíerrez-Alonso, G.; Murphy, J. B.; Drost, K.; Gama, C.; Silva, J. B.

    2017-05-01

    Paleozoic continental reconstructions indicate that subduction of Rheic oceanic lithosphere led to collision between Laurussia and Gondwana which was a major event in the formation of the Ouachita-Appalachian-Variscan orogenic belt and the amalgamation of Pangea. However, arc systems which record Rheic Ocean subduction are poorly preserved. The preservation of Devonian detrital zircon in Late Devonian-Early Carboniferous siliciclastic rocks of SW Iberia, rather than arc-related igneous rocks indicates that direct evidence of the arc system may have been largely destroyed by erosion. Here we report in-situ detrital zircon U-Pb isotopic analyses of Late Devonian-Early Carboniferous siliciclastic rocks from the Pulo do Lobo Zone, which is a reworked Late Paleozoic suture zone located between Laurussia and Gondwana. Detrital zircon age spectra from the Pulo do Lobo Zone Frasnian formations show striking similarities, revealing a wide range of ages dominated by Neoproterozoic and Paleoproterozoic grains sourced from rocks typical of peri-Gondwanan terranes, such as Avalonia, the Meguma terrane and the Ossa-Morena Zone. Pulo do Lobo rocks also include representative populations of Mesoproterozoic and Early Silurian zircons that are typical of Avalonia and the Meguma terrane which are absent in the Ossa-Morena Zone. The Famennian-Tournaisian formations from the Pulo do Lobo Zone, however, contain more abundant Middle-Late Devonian zircon indicating the contribution from a previously unrecognized source probably related to the Rheic Ocean magmatic arc(s). The Middle-Late Devonian to Early Carboniferous zircon ages from the siliciclastic rocks of SW Iberia (South Portuguese, Pulo do Lobo and Ossa-Morena zones) have a wide range in εHfT values (- 8.2 to + 8.3) indicating the likely crystallization from magmas formed in a convergent setting. The missing Rheic Ocean arc was probably built on a Meguma/Avalonia type basement. We propose for the Pulo do Lobo Zone that the

  10. Proterozoic to Mesozoic evolution of North-West Africa and Peri-Gondwana microplates: Detrital zircon ages from Morocco and Canada

    NASA Astrophysics Data System (ADS)

    Marzoli, Andrea; Davies, Joshua H. F. L.; Youbi, Nasrrddine; Merle, Renaud; Dal Corso, Jacopo; Dunkley, Daniel J.; Fioretti, Anna Maria; Bellieni, Giuliano; Medina, Fida; Wotzlaw, Jörn-Frederik; McHone, Greg; Font, Eric; Bensalah, Mohamed Khalil

    2017-05-01

    The complex history of assemblage and disruption of continental plates surrounding the Atlantic Ocean is in part recorded by the distribution of detrital zircon ages entrained in continental sedimentary strata from Morocco (Central High Atlas and Argana basins) and Canada (Grand Manan Island, New Brunswick). Here we investigate detrital zircon from the latest Triassic (ca. 202 Ma) sedimentary strata directly underlying lava flows of the Central Atlantic magmatic province or interlayered within them. SHRIMP (Sensitive High-Resolution Ion MicroProbe) and LA-ICP-MS (Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry) U-Pb ages for zircon range from Paleozoic to Archean with a dominant Neoproterozoic peak, and significant amounts of ca. 2 Ga zircon. These ages suggest a prevailing West African (Gondwanan) provenance at all sampling sites. Notably, the Paleoproterozoic zircon population is particularly abundant in central Morocco, north of the High Atlas chain, suggesting the presence of Eburnean-aged rocks in this part of the country, which is consistent with recent geochronologic data from outcropping rocks. Minor amounts of late Mesoproterozoic and early Neoproterozoic zircon ages (ca. 1.1-0.9 Ga) in Moroccan samples are more difficult to interpret. A provenance from Avalonia or Amazonia, as proposed by previous studies is not supported by the age distributions observed here. An involvement of more distal source regions, possibly located in north-eastern Africa (Arabian Nubian Shield) would instead be possible. Paleozoic zircon ages are abundant in the Canadian sample, pointing to a significant contribution from Hercynian aged source rocks. Such a signal is nearly absent in the Moroccan samples, suggesting that zircon-bearing Hercynian granitic rocks of the Moroccan Meseta block were not yet outcropping at ca. 200 Ma. The only Moroccan samples that yield Paleozoic zircon ages are those interlayered within the CAMP lavas, suggesting an increased dismantling

  11. Detailed lithologic log of the Dow Chemical #1 B.L. Garrigan Drill Hole, Mississippi County, Arkansas

    USGS Publications Warehouse

    Collins, Donley S.; Skipp, Gary L.

    1995-01-01

    The geology and tectonic setting of the New Madrid region in southeastern Missouri has received considerable attention because of the area's high seismic activity. The largest recorded earthquakes in this area occurred in the winter of 1811-1812. These earthquakes has estimated magnitudes as large as 8.0 on the Richter scale (Johnsonton and Kanter, 1990) and affected an area of about 1 million square miles (Fuller, 1912). Today, an area of continuously high seismic activity defines the New Madrid seismic zone, which extends from northeastern Arkansas into southeastern Missouri and northwestern Tennessee. Seismicity is locally concentrated along two subsurface archers--the Blytheville and Pascola (Hildenbrand and others, 1977; Crone and others, 1985; Hildenbrand, 1985; McKeown, 1988). The Padcola arch is not pertinent to this study and, therefore will not be discusses further. The Blytheville arch is located in and is subparallel to the axis of the northeast-southwest-trending Reelfoot structural basin, which formed during early Paleozoic rifting (Ervin and McGinnis, 1975; fig. 1). The Reelfoot basin is filled with Cambrian and Ordovician sedimentary rocks (Grohskopf, 1955; Howe, 1984; Houseknevht, 1989; Collins and others, 1992) that are uncomfortably overlain by Cretacaous and Tertiary sedimentary rocks and underlain by crystalline rocks of the eastern granite-rhyolite province (see Bickford and others, 1986). The presence of some Late Proterozoic sedimentary rocks in the Reelfoot basin currently cannot be ruled out. The Dow Chemical #1 B.L. Garrigan drill hole (hereafter, Garrigan) penetrated Paleozoic rocks on the Blytheville arch. The Garrigan is locted in the Reelfoot basin in the NW1/4, NW1/4 sec. 28, T. 15 N., R. 10 E., Mississippi County, Arkansas (fig. 1) and was completed to a total depth of 12,038 ft from a ground elevation of 239 ft on April 11, 1982 (Swolfs, 1991). The Garrigan is the only reported drill hole that penetrates the subsurface Blytheville

  12. Late-Paleozoic-Mesozoic deformational and deformation related metamorphic structures of Kuznetsk-Altai region

    NASA Astrophysics Data System (ADS)

    Zinoviev, Sergei

    2014-05-01

    Kuznetsk-Altai region is a part of the Central Asian Orogenic Belt. The nature and formation mechanisms of the observed structure of Kuznetsk-Altai region are interpreted by the author as the consequence of convergence of Tuva-Mongolian and Junggar lithospheric block structures and energy of collision interaction between the blocks of crust in Late-Paleozoic-Mesozoic period. Tectonic zoning of Kuznetsk-Altai region is based on the principle of adequate description of geological medium (without methods of 'primary' state recovery). The initial indication of this convergence is the crust thickening in the zone of collision. On the surface the mechanisms of lateral compression form a regional elevation; with this elevation growth the 'mountain roots' start growing. With an approach of blocks an interblock elevation is divided into various fragments, and these fragments interact in the manner of collision. The physical expression of collision mechanisms are periodic pulses of seismic activity. The main tectonic consequence of the block convergence and collision of interblock units is formation of an ensemble of regional structures of the deformation type on the basis of previous 'pre-collision' geological substratum [Chikov et al., 2012]. This ensemble includes: 1) allochthonous and autochthonous blocks of weakly deformed substratum; 2) folded (folded-thrust) systems; 3) dynamic metamorphism zones of regional shears and main faults. Characteristic of the main structures includes: the position of sedimentary, magmatic and PT-metamorphic rocks, the degree of rock dynamometamorphism and variety rock body deformation, as well as the styles and concentrations of mechanic deformations. 1) block terranes have weakly elongated or isometric shape in plane, and they are the systems of block structures of pre-collision substratum separated by the younger zones of interblock deformations. They stand out among the main deformation systems, and the smallest are included into the

  13. Dynamic evolutionary change in post-Paleozoic echinoids and the importance of scale when interpreting changes in rates of evolution

    PubMed Central

    Hopkins, Melanie J.; Smith, Andrew B.

    2015-01-01

    How ecological and morphological diversity accrues over geological time has been much debated by paleobiologists. Evidence from the fossil record suggests that many clades reach maximal diversity early in their evolutionary history, followed by a decline in evolutionary rates as ecological space fills or due to internal constraints. Here, we apply recently developed methods for estimating rates of morphological evolution during the post-Paleozoic history of a major invertebrate clade, the Echinoidea. Contrary to expectation, rates of evolution were lowest during the initial phase of diversification following the Permo-Triassic mass extinction and increased over time. Furthermore, although several subclades show high initial rates and net decreases in rates of evolution, consistent with “early bursts” of morphological diversification, at more inclusive taxonomic levels, these bursts appear as episodic peaks. Peak rates coincided with major shifts in ecological morphology, primarily associated with innovations in feeding strategies. Despite having similar numbers of species in today’s oceans, regular echinoids have accrued far less morphological diversity than irregular echinoids due to lower intrinsic rates of morphological evolution and less morphological innovation, the latter indicative of constrained or bounded evolution. These results indicate that rates of evolution are extremely heterogenous through time and their interpretation depends on the temporal and taxonomic scale of analysis. PMID:25713369

  14. Dynamic evolutionary change in post-Paleozoic echinoids and the importance of scale when interpreting changes in rates of evolution.

    PubMed

    Hopkins, Melanie J; Smith, Andrew B

    2015-03-24

    How ecological and morphological diversity accrues over geological time has been much debated by paleobiologists. Evidence from the fossil record suggests that many clades reach maximal diversity early in their evolutionary history, followed by a decline in evolutionary rates as ecological space fills or due to internal constraints. Here, we apply recently developed methods for estimating rates of morphological evolution during the post-Paleozoic history of a major invertebrate clade, the Echinoidea. Contrary to expectation, rates of evolution were lowest during the initial phase of diversification following the Permo-Triassic mass extinction and increased over time. Furthermore, although several subclades show high initial rates and net decreases in rates of evolution, consistent with "early bursts" of morphological diversification, at more inclusive taxonomic levels, these bursts appear as episodic peaks. Peak rates coincided with major shifts in ecological morphology, primarily associated with innovations in feeding strategies. Despite having similar numbers of species in today's oceans, regular echinoids have accrued far less morphological diversity than irregular echinoids due to lower intrinsic rates of morphological evolution and less morphological innovation, the latter indicative of constrained or bounded evolution. These results indicate that rates of evolution are extremely heterogenous through time and their interpretation depends on the temporal and taxonomic scale of analysis.

  15. Scattering from Rock and Rock Outcrops

    DTIC Science & Technology

    2015-09-30

    Scattering from Rock and Rock Outcrops Derek R. Olson The Pennsylvania State University Applied Research Laboratory, P.O. Box 30 State...In terms of target detection and classification, scattering from exposed rock on the seafloor, (i.e., individual rocks and rock outcrops) presents...levels, and other statistical measures of acoustic scattering from rocks and rock outcrops is therefore critical. Unfortunately (and curiously

  16. Ogaden Basin subsidence history: Another key to the Red Sea-Gulf of Aden tectonic puzzle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pigott, J.D.; Neese, D.; Carsten, G.

    1995-08-01

    Previous work has attempted to understand the tectonic evolution of the Red Sea-Gulf of Aden region through a focus upon plate kinematics and reconstruction of plate interactions in a two dimensional sense. A significant complement to the three dimensional puzzle can be derived from a critical examination of the vertical component, tectonic subsidence analysis. By removing the isostatic contributions of sediment loading and unloading, and fluctuations in sea level, the remaining thermal-mechanical contribution to a basin`s subsidence can be determined. Such an analysis of several Ogaden Basin wells reveals multiple pulses of tectonic subsidence and uplift which correspond to far-fieldmore » tectonic activities in the Red Sea and Gulf of Aden. One of the more dramatic is a Jurassic tectonic pulse circa 145-130 m.a., and a later extensional event which correlates to a major subsidence event ubiquitous through-out the Gulf of Aden, related to Gondwana Land breakup activities. Tectonic uplift during the Tertiary coincides with early Red Sea rifting episodes. Such activities suggest the Ogaden Basin has been a relatively stable East African cratonic basin, but with heating-extension events related to nearby plate interactions. In terms of hydrocarbon generation, the use of steady state present day geothermal gradients, coupled with subsidence analysis shows that potential Paleozoic and Mesozoic source rocks initiated generation as early as the Jurassic. The generating potential of Paleozoic source rocks would only be exacerbated by later heating events. Furthermore, cooling and tectonic uplift during the Tertiary would tend to arrest on-going hydrocarbon generation for Jurassic source rocks in the Ogaden area.« less

  17. Ages and Nd, Sr isotopic systematics in the Sierran foothills ophiolite belt, CA: the Smartville and Feather River complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, H.F.; Niemeyer, S.

    1985-01-01

    Sm-Nd dating has shown the Kings-Kaweah ophiolite to be approx. 480 My old. Its Nd, Sr, and Pb isotopic compositions require an unusually old depleted mantle source. Samples from the Smartville and Feather River complexes have been analyzed in a search for similar highly depleted, early Paleozoic ophiolites in the northern foothills ophiolite belt. Six whole rocks from Smartville, encompassing representative lithologies, plus plagioclase and pyroxene mineral separates define a 183 +/- 22 My Sm-Nd isochron. This age, interpreted as the igneous age, is older than, but within error of, approx. 160 My U-Pb ages previously obtained from plagiogranite zirconmore » analyses. One diabase with unusually high Rb/Sr yields a depleted mantle Sr model age of 200 +/- 25 My, consistent with the Sm-ND age. These compositions are clearly oceanic in character but do not discriminate among possible tectonic settings for the formation of the Smartville complex. Sm-Nd data for flaser gabbros and related rocks from Feather River scatter about an approx. 230 My errorchron with element of/sub Nd/(T) = +6.3 to +8.7. Initial /sup 87/Sr//sup 86/Sr ranges from 0.7028 to 0.7031. These results indicate a complex history with initial isotopic heterogeneities and/or disturbances of the isotopic systems. If primary, the element of/sub Nd/ (T) values are somewhat low, suggesting a possible arc origin for these rocks. Neither the Smartville nor Feather R. complexes appear to be related to the Kings-Kaweah ophiolite which, so far, is unique among foothill ophiolites in having an early Paleozoic age and a clear MORB, as opposed to arc or marginal basin, isotopic signature.« less

  18. Temperature evolution and the oxygen isotope composition of Phanerozoic oceans from carbonate clumped isotope thermometry

    NASA Astrophysics Data System (ADS)

    Henkes, Gregory A.; Passey, Benjamin H.; Grossman, Ethan L.; Shenton, Brock J.; Yancey, Thomas E.; Pérez-Huerta, Alberto

    2018-05-01

    Surface temperature is among the most important parameters describing planetary climate and habitability, and yet there remains considerable debate about the temperature evolution of the Earth's oceans during the Phanerozoic Eon (541 million years ago to present), the time during which complex metazoan life radiated on Earth. Here we critically assess the emerging record of Phanerozoic ocean temperatures based on carbonate clumped isotope thermometry of fossil brachiopod and mollusk shells, and we present new data that fill important gaps in the Late Paleozoic record. We evaluate and reject the hypothesis that solid-state reordering of 13C-18O bonds has destroyed the primary clumped isotope temperature signal of most fossils during sedimentary burial at elevated temperatures. The resulting Phanerozoic record, which shows a general coupling between tropical seawater temperatures and atmospheric carbon dioxide (CO2) levels since the Paleozoic, indicates that tropical temperatures during the icehouse climate of the Carboniferous period were broadly similar to present (∼25-30 °C), and suggests that benthic metazoans were able to thrive at temperatures of 35-40 °C during intervals of the early and possibly the latest Paleozoic when CO2 levels were likely 5-10× higher than present-day values. Equally important, there is no resolvable trend in seawater oxygen isotope ratios (δ18 O) over the past ∼500 million years, indicating that the average temperature of oxygen exchange between seawater and the oceanic crust has been high (∼270 °C) since at least the early Paleozoic, which points to mid-ocean ridges as the dominant locus of water-rock interaction over the past half-billion years.

  19. Bedrock geologic and joint trend map of the Pinardville quadrangle, Hillsborough County, New Hampshire

    USGS Publications Warehouse

    Burton, William C.; Armstrong, Thomas R.

    2013-01-01

    The bedrock geology of the Pinardville quadrangle includes the Massabesic Gneiss Complex, exposed in the core of a regional northeast-trending anticlinorium, and highly deformed metasedimentary rocks of the Rangeley Formation, exposed along the northwest limb of the anticlinorium. Both formations were subjected to high-grade metamorphism and partial melting: the Rangeley during the middle Paleozoic Acadian orogeny, and the Massabesic Gneiss Complex during both the Acadian and the late Paleozoic Alleghanian orogeny. Granitoids produced during these orogenies range in age from Devonian (Spaulding Tonalite) to Permian (granite at Damon Pond), each with associated pegmatite. In the latest Paleozoic the Massabesic Gneiss Complex was uplifted with respect to the Rangeley Formation along the ductile Powder Hill fault, which also had a left-lateral component. Uplift continued into the early Mesozoic, producing the 2-kilometer-wide Campbell Hill fault zone, which is marked by northwest-dipping normal faults and dilational map-scale quartz bodies. Rare, undeformed Jurassic diabase dikes cut all older lithologies and structures. A second map is a compilation of joint orientations measured at all outcrops in the quadrangle. There is a great diversity of strike trends, with northeast perhaps being the most predominant.

  20. A study of uranium favorability of Cenozoic sedimentary rocks, Basin and Range Province, Arizona: Part I, General geology and chronology of pre-late Miocene Cenozoic sedimentary rocks

    USGS Publications Warehouse

    Scarborough, Robert Bryan; Wilt, Jan Carol

    1979-01-01

    This study focuses attention on Cenozoic sedimentary rocks in the Basin and Range Province of Arizona. The known occurrences of uranium and anomalous radioactivity in these rocks are associated with sediments that accumulated in a low energy environment characterized by fine-grained clastics, including important tuffaceous materials, and carbonate rocks. Most uranium occurrences, in these rocks appear to be stratabound. Emphasis was placed on those sedimentary materials that pre-date the late Cenozoic Basin and Range disturbance. They are deformed and crop out on pedimented range blocks and along the province interface with the Transition Zone. Three tentative age groups are recognized: Group I - Oligocene, pre-22 m.y., Group II - early Miocene - 22 m.y. - 16 m.y., and Group III - middle Miocene - 16 m.y. to 13--10 m.y. Regionally, these three groups contain both coarse to fine-grained red clastics and low energy lighter colored 'lacustrine' phases. Each of the three groups has been the object of uranium exploration. Group II, the early Miocene strata, embraces the Anderson Mine - Artillery region host rocks and also the New River - Cave Creek early Miocene beds-along the boundary with the Transition Zone. These three groups of rocks have been tectonically deformed to the extent that original basins of deposition cannot yet be reconstructed. However, they were considerably more extensive in size than the late Cenozoic basins the origin of which deformed the former. Group II rocks are judged to be of prime interest because of: (1) the development and preservation of organic matter in varying lithologies, (2) apparent contemporaneity with silicic volcanic centers, (3) influence of Precambrian crystalline rocks, and (4) relative outcrop continuity near the stable Transition Zone. The Transition Zone, especially along its boundary with the Basin and Range Province, needs additional geologic investigation, especially as regards the depositional continuity of Group II

  1. Publications - RI 2005-1 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    ; Solomon Bibliographic Reference Werdon, M.B., Stevens, D.S.P., Newberry, R.J., Szumigala, D.J., Athey, J.E ; Geochronology; Geology; Igneous Rocks; Mesozoic; Metamorphic Rocks; Nome; Nome Group; Ordovician; Paleozoic ; Plutonic Rocks; Proterozoic; Quaternary; Rb-Sr; STATEMAP Project; Seward Peninsula; Solomon Schist

  2. Late Paleozoic to Cenozoic reconstruction of the Arctic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, D.G.

    1985-04-01

    The plate tectonic evolution of the Arctic is reassessed in the context of the known histories of the North Atlantic and North Pacific Oceans, and of the tectono-stratigraphic development of the lands around the Arctic Ocean. Computer map-drawing facilities were used to provide geometrical constraints on the reconstructions, which are presented to in the form of eight palinispatic maps. Stratigraphic similarities among presently dispersed continental areas identify fragments of a former Barents plate. Collision of this plate with the Euramerican plate was the cause of the Late Devonian Ellesmerian orogeny. In later Paleozoic time, the Siberian continent also joined Pangeamore » by collision with the combined Barents and Euramerican plates along the Ural-Taymyr suture. The Mesozoic-Cenozoic history of the Arctic is concerned with the fragmentation and dispersal of the former Barents plate, as well as the accretion of new continental fragments from the Pacific.« less

  3. Late Jurassic-Early Cretaceous episodic development of the Bangong Meso-Tethyan subduction: Evidence from elemental and Sr-Nd isotopic geochemistry of arc magmatic rocks, Gaize region, central Tibet, China

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Xiu; Li, Zhi-Wu; Yang, Wen-Guang; Zhu, Li-Dong; Jin, Xin; Zhou, Xiao-Yao; Tao, Gang; Zhang, Kai-Jun

    2017-03-01

    The Bangong Meso-Tethys plays a critical role in the development of the Tethyan realm and the initial elevation of the Tibetan Plateau. However, its precise subduction polarity, and history still remain unclear. In this study, we synthesize a report for the Late Jurassic-Early Cretaceous two-phase magmatic rocks in the Gaize region at the southern margin of the Qiangtang block located in central Tibet. These rocks formed during the Late Jurassic-earliest Cretaceous (161-142 Ma) and Early Cretaceous (128-106 Ma), peaking at 146 Ma and 118 Ma, respectively. The presence of inherited zircons indicates that an Archean component exists in sediments in the shallow Qiangtang crust, and has a complex tectonomagmatic history. Geochemical and Sr-Nd isotopic data show that the two-phase magmatic rocks exhibit characteristics of arc magmatism, which are rich in large-ion incompatible elements (LIIEs), but are strongly depleted in high field strength elements (HFSEs). The Late Jurassic-earliest Cretaceous magmatic rocks mixed and mingled among mantle-derived mafic magmas, subduction-related sediments, or crustally-derived felsic melts and fluids, formed by a northward and steep subduction of the Bangong Meso-Tethys ocean crust. The magmatic gap at 142-128 Ma marks a flat subduction of the Meso-Tethys. The Early Cretaceous magmatism experienced a magma MASH (melting, assimilation, storage, and homogenization) process among mantle-derived mafic magmas, or crustally-derived felsic melts and fluids, as a result of the Meso-Tethys oceanic slab roll-back, which triggered simultaneous back-arc rifting along the southern Qiangtang block margin.

  4. Structural styles of Paleozoic intracratonic fault reactivation: A case study of the Grays Point fault zone in southeastern Missouri, USA

    USGS Publications Warehouse

    Clendenin, C.W.; Diehl, S.F.

    1999-01-01

    A pronounced, subparallel set of northeast-striking faults occurs in southeastern Missouri, but little is known about these faults because of poor exposure. The Commerce fault system is the southernmost exposed fault system in this set and has an ancestry related to Reelfoot rift extension. Recent published work indicates that this fault system has a long history of reactivation. The northeast-striking Grays Point fault zone is a segment of the Commerce fault system and is well exposed along the southeast rim of an inactive quarry. Our mapping shows that the Grays Point fault zone also has a complex history of polyphase reactivation, involving three periods of Paleozoic reactivation that occurred in Late Ordovician, Devonian, and post-Mississippian. Each period is characterized by divergent, right-lateral oblique-slip faulting. Petrographic examination of sidwall rip-out clasts in calcite-filled faults associated with the Grays Point fault zone supports a minimum of three periods of right-lateral oblique-slip. The reported observations imply that a genetic link exists between intracratonic fault reactivation and strain produced by Paleozoic orogenies affecting the eastern margin of Laurentia (North America). Interpretation of this link indicate that right-lateral oblique-slip has occurred on all of the northeast-striking faults in southeastern Missouri as a result of strain influenced by the convergence directions of the different Paleozoic orogenies.

  5. A method for the concentration of fine-grained rutile (TiO2) from sediment and sedimentary rocks by chemical leaching

    USGS Publications Warehouse

    Commeau, Judith A.; Valentine, Page C.

    1991-01-01

    Most of the sample analyzed by the method described were marine muds collected from the Gulf of Maine (Valentine and Commeau, 1990). The silt and clay fraction (up to 99 wt% of the sediment) is composed of clay minerals (chiefly illite-mica and chlorite), silt-size quartz and feldspar, and small crystals (2-12 um) of rutile and hematite. The bulk sediment samples contained an average of 2 to 3 wt percent CaCO3. Tiher samples analyzed include red and gray Carboniferous and Triassic sandstones and siltstones exposed around the Bay of Fundy region and Paleozoic sandstones, siltstones, and shales from northern Maine and New Brunswick. These rocks are probable sources for the fine-grained rutile found in the Gulf of Maine.

  6. Summary mineral resource appraisal of the Richfield 1 degree x 2 degrees Quadrangle, west-central Utah

    USGS Publications Warehouse

    Steven, Thomas August; Morris, Hal T.

    1987-01-01

    The mineral resource potential of the Richfield 1? x 2? quadrangle, Utah, has been appraised using geological, geophysical, geochemical, and remote-sensing techniques. These studies have led to many publications giving basic data and interpretations; of these, a series of 18 maps at 1:250,000 and 1:500,000 scales summarizing aspects of the geology, geophysics, geochemistry, and remote sensing is designated the CUSMAP (Conterminous United States Mineral Appraisal Program) folio. This circular uses the data shown on these maps to appraise the mineral resource potential of the quadrangle. The oldest rocks exposed in the Richfield quadrangle are small patches of Early Proterozoic (1.7 billion years old) gneiss and schist on the west side of the Mineral Mountains. These rocks presumably formed the basement on which many thousands of meters of Late Proterozoic, Paleozoic, and lower Mesozoic sedimentary strata were deposited. These rocks were deformed during the Late Cretaceous Sevier orogeny when Precambrian and Paleozoic strata in the western part of the quadrangle were thrust relatively eastward across Paleozoic and Mesozoic strata in the eastern part of the quadrangle. Late Cretaceous and early Tertiary highlands above the overthrust belt were eroded and much of the debris was deposited in broad basins east of the belt. Volcanism in Oligocene and earliest Miocene time formed an east-northeast-trending belt of calcalkalic volcanoes across the southern half of the quadrangle. In early Miocene time, the composition of the volcanic rocks changed to a bimodal assemblage of mafic rocks and high-silica alkali rhyolite that has been erupted episodically ever since. Syngenetic mineral resources developed during formation of both sedimentary and volcanic rocks. These include limestone and dolomite, silica-rich sandstone, metalliferous black shale, evaporite deposits, zeolite deposits, pumice, cinders and scoria, and evaporitic or diagenetic deposits in playa environments. Most

  7. Rock magnetic properties of sediments from Lake Sanabria and its catchment (NW Spain): paleoenvironmental implications

    NASA Astrophysics Data System (ADS)

    Larrasoaña, J. C.; Borruel, V.; Gómez-Paccard, M.; Rico, M.; Valero-Garces, B.; Moreno-Caballud, A.; Soto, R.

    2013-12-01

    Lake Sanabria is located in the NW Spanish mountains at 1000 m a.s.l., and constitutes the largest lake of glacial origin in the Iberian Peninsula. Here we present an environmental magnetic study of a Late Pleistocene-Holocene sediment core from Lake Sanabria and from different lithologies that crop out in its catchment, which includes Paleozoic plutonic, metamorphic and vulcanosedimentary rocks, and Quaternary deposits of glacial origin. This study was designed to complement sedimentologic and geochemical studies aimed at unraveling the climatic evolution of the NW Iberian Peninsula during the last deglaciation. Our results indicate that magnetite and pyrrhotite dominate the magnetic assemblage of both the sediments from the lower half of the studied sequence (25.6 - 13 cal kyr BP) deposited in a proglacial environment, and the Paleozoic rocks that make up most of the catchment of the lake. The occurrence of these minerals both in the catchment rocks and in the lake sediments indicates that sedimentation was then driven by the erosion of a glacial flour, which suffered minimal chemical transformation in response to a rapid and short routing to the lake. Sediments from the upper half of the studied sequence, accumulated after 12.4 cal kyr BP in a fluviolacustrine environment, contain magnetite and greigite. This points to a prominent role of post-depositional reductive dissolution, driven by a sharp increase in the accumulation of organic matter into the lake and the creation of anoxic conditions in the sediments, in shaping the magnetic assemblage of Holocene sediments. Pyrrhotite is stable under reducing conditions as opposed to magnetite, which is unstable. We therefore interpret that previous pedogenic processes occurred in the then deglaciated catchment of the lake were responsible for the oxidation of pyrrhotite and authigenic formation of magnetite, which survived subsequent reductive diagenesis given its initial larger concentrations. This interpretation is

  8. U-Pb Detrital Zircon Geochronologic Constraints on Depositional Age and Sediment Source Terrains of the Late Paleozoic Tepuel-Genoa Basin

    NASA Astrophysics Data System (ADS)

    Griffis, N. P.; Montanez, I. P.; Isbell, J.; Gulbranson, E. L.; Wimpenny, J.; Yin, Q. Z.; Cúneo, N. R.; Pagani, M. A.; Taboada, A. C.

    2014-12-01

    The late Paleozoic Ice Age (LPIA) is the longest-lived icehouse of the Phanerozoic and the only time a metazoan dominated and vegetated world transitioned from an icehouse climate into a greenhouse. Despite several decades of research, the timing, extent of glaciation and the location of ice centers remain unresolved, which prohibits reconstruction of ice volume. The Permo-Carboniferous sediments in the Tepuel-Genoa Basin, Patagonia contains a near complete record of sedimentation from the lower Carboniferous through lower Permian. Outsized clasts, thin pebble-rich diamictites and slumps represent the last of the late Paleozoic glacially influenced deep-water marine sediments in the Mojón de Hierro Fm. and the Paleozoic of Patagonia. U-Pb analysis of detrital zircons separated from slope sediments reveal groupings (20 myr bins, n≥5 zircons) with peak depositional ages of 420, 540 to 660 and 1040 Ma. Zircon age populations recovered from the Mojón de Hierro Fm. compare well with bedrock ages of the Deseado Massif of SE Patagonia, suggesting this may be a potential source of sediments. The maximum depositional age of the sediments is 306.05 ± 3.7 Ma (2σ) as determined by the median age of the two youngest concordant zircons that overlap in error. The youngest zircon from the analysis yields a 238U/206Pb age of 301.3 ± 4.5 Ma (2σ; MSWD = 2.3). Younger zircons from the analysis compare well with the age of granite bedrock exposed along the basin margin to the E-NE suggesting they may reflect a more proximal source. These data, which indicate a maximum age of late Carboniferous for the Mojón de Hierro Fm, provide the first geochemical constraints for the timing of final deposition of glaciomarine sediments in the Tepuel-Genoa Basin, and contributes to the biostratigraphic correlation of the late Paleozoic succession in Patagonia with other key LPIA basins that has thus far been hindered by faunal provincialism.

  9. Cambrian ophiolite complexes in the Beishan area, China, southern margin of the Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Shi, Yuruo; Zhang, Wei; Kröner, Alfred; Li, Linlin; Jian, Ping

    2018-03-01

    We present zircon ages and geochemical data for Cambrian ophiolite complexes exposed in the Beishan area at the southern margin of the Central Asian Orogenic Belt (CAOB). The complexes consist of the Xichangjing-Xiaohuangshan and Hongliuhe-Yushishan ophiolites, which both exhibit complete ophiolite stratigraphy: chert, basalt, sheeted dikes, gabbro, mafic and ultramafic cumulates and serpentinized mantle peridotites. Zircon grains of gabbro samples yielded 206Pb/238U ages of 516 ± 8, 521 ± 4, 528 ± 3 and 535 ± 6 Ma that reflect the timing of gabbro emplacement. The geochemical data of the basaltic rocks show enrichment in large-ion lithophile elements and depletion in the high field strength elements relative to normal mid-oceanic ridge basalt (NMORB) in response to aqueous fluids or melts expelled from the subducting slab. The gabbro samples have higher whole-rock initial 87Sr/86Sr ratios and lower positive εNd(t) values than NMORB. These geochemical signatures resulted from processes or conditions that are unique to subduction zones, and the ophiolites are therefore likely to have formed within a supra-subduction zone (SSZ) environment. We suggest that the Cambrian ophiolite complexes in the Beishan area formed within a SSZ setting, reflecting an early Paleozoic subduction of components of the Paleo-Central Asian Ocean and recording an early Paleozoic southward subduction event in the southern CAOB along the northern margin of the Tarim and North China Cratons.

  10. Delayed fungal evolution did not cause the Paleozoic peak in coal production.

    PubMed

    Nelsen, Matthew P; DiMichele, William A; Peters, Shanan E; Boyce, C Kevin

    2016-03-01

    Organic carbon burial plays a critical role in Earth systems, influencing atmospheric O2 and CO2 concentrations and, thereby, climate. The Carboniferous Period of the Paleozoic is so named for massive, widespread coal deposits. A widely accepted explanation for this peak in coal production is a temporal lag between the evolution of abundant lignin production in woody plants and the subsequent evolution of lignin-degrading Agaricomycetes fungi, resulting in a period when vast amounts of lignin-rich plant material accumulated. Here, we reject this evolutionary lag hypothesis, based on assessment of phylogenomic, geochemical, paleontological, and stratigraphic evidence. Lignin-degrading Agaricomycetes may have been present before the Carboniferous, and lignin degradation was likely never restricted to them and their class II peroxidases, because lignin modification is known to occur via other enzymatic mechanisms in other fungal and bacterial lineages. Furthermore, a large proportion of Carboniferous coal horizons are dominated by unlignified lycopsid periderm with equivalent coal accumulation rates continuing through several transitions between floral dominance by lignin-poor lycopsids and lignin-rich tree ferns and seed plants. Thus, biochemical composition had little relevance to coal accumulation. Throughout the fossil record, evidence of decay is pervasive in all organic matter exposed subaerially during deposition, and high coal accumulation rates have continued to the present wherever environmental conditions permit. Rather than a consequence of a temporal decoupling of evolutionary innovations between fungi and plants, Paleozoic coal abundance was likely the result of a unique combination of everwet tropical conditions and extensive depositional systems during the assembly of Pangea.

  11. Delayed fungal evolution did not cause the Paleozoic peak in coal production

    PubMed Central

    Nelsen, Matthew P.; DiMichele, William A.; Peters, Shanan E.; Boyce, C. Kevin

    2016-01-01

    Organic carbon burial plays a critical role in Earth systems, influencing atmospheric O2 and CO2 concentrations and, thereby, climate. The Carboniferous Period of the Paleozoic is so named for massive, widespread coal deposits. A widely accepted explanation for this peak in coal production is a temporal lag between the evolution of abundant lignin production in woody plants and the subsequent evolution of lignin-degrading Agaricomycetes fungi, resulting in a period when vast amounts of lignin-rich plant material accumulated. Here, we reject this evolutionary lag hypothesis, based on assessment of phylogenomic, geochemical, paleontological, and stratigraphic evidence. Lignin-degrading Agaricomycetes may have been present before the Carboniferous, and lignin degradation was likely never restricted to them and their class II peroxidases, because lignin modification is known to occur via other enzymatic mechanisms in other fungal and bacterial lineages. Furthermore, a large proportion of Carboniferous coal horizons are dominated by unlignified lycopsid periderm with equivalent coal accumulation rates continuing through several transitions between floral dominance by lignin-poor lycopsids and lignin-rich tree ferns and seed plants. Thus, biochemical composition had little relevance to coal accumulation. Throughout the fossil record, evidence of decay is pervasive in all organic matter exposed subaerially during deposition, and high coal accumulation rates have continued to the present wherever environmental conditions permit. Rather than a consequence of a temporal decoupling of evolutionary innovations between fungi and plants, Paleozoic coal abundance was likely the result of a unique combination of everwet tropical conditions and extensive depositional systems during the assembly of Pangea. PMID:26787881

  12. Bedrock geologic map of the Grafton quadrangle, Worcester County, Massachusetts

    USGS Publications Warehouse

    Walsh, Gregory J.; Aleinikoff, John N.; Dorais, Michael J.

    2011-01-01

    The bedrock geology of the 7.5-minute Grafton, Massachusetts, quadrangle consists of deformed Neoproterozoic to early Paleozoic crystalline metamorphic and intrusive igneous rocks. Neoproterozoic intrusive, metasedimentary, and metavolcanic rocks crop out in the Avalon zone, and Cambrian to Silurian intrusive, metasedimentary, and metavolcanic rocks crop out in the Nashoba zone. Rocks of the Avalon and Nashoba zones, or terranes, are separated by the Bloody Bluff fault. The bedrock geology was mapped to study the tectonic history of the area and to provide a framework for ongoing hydrogeologic characterization of the fractured bedrock of Massachusetts. This report presents mapping by G.J. Walsh, geochronology by J.N. Aleinikoff, geochemistry by M.J. Dorais, and consists of a map, text pamphlet, and GIS database. The map and text pamphlet are available in paper format or as downloadable files (see frame at right). The GIS database is available for download. The database includes contacts of bedrock geologic units, faults, outcrops, structural geologic information, and photographs.

  13. Ground-water quality in the carbonate-rock aquifer of the Great Basin, Nevada and Utah, 2003

    USGS Publications Warehouse

    Schaefer, Donald H.; Thiros, Susan A.; Rosen, Michael R.

    2005-01-01

    The carbonate-rock aquifer of the Great Basin is named for the thick sequence of Paleozoic limestone and dolomite with lesser amounts of shale, sandstone, and quartzite. It lies primarily in the eastern half of the Great Basin and includes areas of eastern Nevada and western Utah as well as the Death Valley area of California and small parts of Arizona and Idaho. The carbonate-rock aquifer is contained within the Basin and Range Principal Aquifer, one of 16 principal aquifers selected for study by the U.S. Geological Survey’s National Water- Quality Assessment Program.Water samples from 30 ground-water sites (20 in Nevada and 10 in Utah) were collected in the summer of 2003 and analyzed for major anions and cations, nutrients, trace elements, dissolved organic carbon, volatile organic compounds (VOCs), pesticides, radon, and microbiology. Water samples from selected sites also were analyzed for the isotopes oxygen-18, deuterium, and tritium to determine recharge sources and the occurrence of water recharged since the early 1950s.Primary drinking-water standards were exceeded for several inorganic constituents in 30 water samples from the carbonate-rock aquifer. The maximum contaminant level was exceeded for concentrations of dissolved antimony (6 μg/L) in one sample, arsenic (10 μg/L) in eleven samples, and thallium (2 μg/L) in one sample. Secondary drinking-water regulations were exceeded for several inorganic constituents in water samples: chloride (250 mg/L) in five samples, fluoride (2 mg/L) in two samples, iron (0.3 mg/L) in four samples, manganese (0.05 mg/L) in one sample, sulfate (250 mg/L) in three samples, and total dissolved solids (500 mg/L) in seven samples.Six different pesticides or metabolites were detected at very low concentrations in the 30 water samples. The lack of VOC detections in water sampled from most of the sites is evidence thatVOCs are not common in the carbonate-rock aquifer. Arsenic values for water range from 0.7 to 45.7

  14. Variation in 142Nd/144Nd of Archean rocks from southwest Greenland : Implications for early Earth mantle dynamics

    NASA Astrophysics Data System (ADS)

    Rizo, H.; Boyet, M.; Blichert-Toft, J.; Rosing, M.; Paquette, J. L.

    2012-04-01

    The short-lived 146Sm-142Nd chronometer (half-life = 103 Ma) has proven successful in bringing constraints on the dynamics of the early Earth mantle. Since the parent isotope, 146Sm, was extant only during the first 300 Ma of the history of the Solar System, the positive 142Nd anomalies measured in southwest Greenland Archean rocks imply that their incompatible element-depleted mantle source formed during the Hadean. Interestingly, the magnitude of these anomalies seems to decrease over time. 3.7-3.8 Ga old rocks from the Amitsoq Complex have revealed +10 to +20 ppm 142Nd anomalies [1, 2, 3, 4, 5, 6, 7], whereas younger 3.0 Ga old samples from the Ivisaartoq greenstone belt yield smaller positive anomalies, ranging from +5.5 to +8.5 ppm [8]. Thus, the chemical heterogeneities detected in the southwest Greenland mantle were formed during the first 150 Ma of Earth's history, and seem to have resisted re-mixing by mantle convection until 3.0 Ga. In this study, we investigate the evolution of the southwest Greenland mantle during the time period of 3.3-3.4 Ga. The samples analyzed come from both the ~3.3 Ga amphibolite unit and the ~3.4 Ga Ameralik basic dyke swarm from the Amitsoq Complex. Coupled Sm-Nd and Lu-Hf bulk-rock ages obtained for seven amphibolites are in good agreement (3351 ± 210 Ma and 3302 ± 260 Ma, respectively) and consistent with the minimum age found by Nutman and Friend (2009) [9] for this formation. We further obtained coherent bulk-rock 147Sm-143Nd and zircon+baddeleyite 207Pb/206Pb ages for the Ameralik dykes (3428 ± 250 Ma and 3421 ± 34 Ma, respectively), in line with ages suggested by Nielsen at al., (2002) [10] and Nutman et al., (2004) [11]. We are currently in the process of analyzing these samples for 142Nd isotopic compositions and the results will be compared with the existing southwest Greenland data in order to shed new light on the evolution and destruction of heterogeneities in the early Earth mantle. [1] Rizo et al., (2011

  15. Geology of the Andover Granite and surrounding rocks, Massachusetts

    USGS Publications Warehouse

    Castle, Robert O.

    1964-01-01

    Field and petrographic studies of the Andover Granite and surrounding rocks have afforded an opportunity for an explanation of its emplacement and crystallization. The investigation has contributed secondarily to an understanding of the geologic history of southeastern New England, particularly as it is revealed in the Lawrence, Wilmington, South Groveland, and Reading quadrangles of Massachusetts. The Andover Granite and Sharpners Pond Tonalite together comprise up to 90 percent of the Acadian(?) subalkaline intrusive series cropping out within the area of study. The subalkaline series locally invades a sequence of early to middle Paleozoic and possibly Precambrian metasedimentary and metavolcanic rocks. Much of the subalkaline series and most of the Andover Granite is confined between two prominent east-northeast trending faults or fault systems. The northern fault separates the mildly metamorphosed Middle Silurian(?) Merrimack Group on the north from a highly metamorphosed and thoroughly intruded Ordovician(?) sequence on the south. The southern 'boundary '' fault is a major structural discontinuity characterized by penetrative, diffuse shearing over a zone one-half mile or more in width. The magmatic nature of the Andover Granite is demonstrated by: (1) sharply crosscutting relationships with surrounding rocks; (2) the occurrence of tabular-shaped xenoliths whose long directions parallel the foliation within the granite and whose internal foliation trends at a high angle to that of the granite; (3) continuity with the clearly intrusive Sharpners Pond Tonalite; (4) the compositional uniformity of the granite as contrasted with the compositional diversity of the rocks it invades; (5) its modal and normative correspondence with (a) calculated norms of salic extrusives and (b) that of the ternary (granite) minimum for the system NaAlSi3O8-KAlSi3O8-SiO2. Orogenic granites, as represented by the Andover, contrast with post-orogenic granites, represented locally by

  16. Reappraisal of hydrocarbon biomarkers in Archean rocks

    PubMed Central

    French, Katherine L.; Hallmann, Christian; Hope, Janet M.; Schoon, Petra L.; Zumberge, J. Alex; Hoshino, Yosuke; Peters, Carl A.; George, Simon C.; Love, Gordon D.; Brocks, Jochen J.; Buick, Roger; Summons, Roger E.

    2015-01-01

    Hopanes and steranes found in Archean rocks have been presented as key evidence supporting the early rise of oxygenic photosynthesis and eukaryotes, but the syngeneity of these hydrocarbon biomarkers is controversial. To resolve this debate, we performed a multilaboratory study of new cores from the Pilbara Craton, Australia, that were drilled and sampled using unprecedented hydrocarbon-clean protocols. Hopanes and steranes in rock extracts and hydropyrolysates from these new cores were typically at or below our femtogram detection limit, but when they were detectable, they had total hopane (<37.9 pg per gram of rock) and total sterane (<32.9 pg per gram of rock) concentrations comparable to those measured in blanks and negative control samples. In contrast, hopanes and steranes measured in the exteriors of conventionally drilled and curated rocks of stratigraphic equivalence reach concentrations of 389.5 pg per gram of rock and 1,039 pg per gram of rock, respectively. Polycyclic aromatic hydrocarbons and diamondoids, which exceed blank concentrations, exhibit individual concentrations up to 80 ng per gram of rock in rock extracts and up to 1,000 ng per gram of rock in hydropyrolysates from the ultraclean cores. These results demonstrate that previously studied Archean samples host mixtures of biomarker contaminants and indigenous overmature hydrocarbons. Therefore, existing lipid biomarker evidence cannot be invoked to support the emergence of oxygenic photosynthesis and eukaryotes by ∼2.7 billion years ago. Although suitable Proterozoic rocks exist, no currently known Archean strata lie within the appropriate thermal maturity window for syngenetic hydrocarbon biomarker preservation, so future exploration for Archean biomarkers should screen for rocks with milder thermal histories. PMID:25918387

  17. Off-platform Silurian sequences in the Ambler River quadrangle: A section in Geologic studies in Alaska by the U.S. Geological Survey during 1987

    USGS Publications Warehouse

    Dumoulin, Julie A.; Harris, Anita G.

    1988-01-01

    Lithofacies changes in coeval upper Paleozoic rocks have been used to unravel the tectonic history of northern Alaska (for example, Mayfield and others, 1983). Conodont biostratigraphy and detailed petrologic studies are now revealing facies differences in lower Paleozoic rocks that can also be used to constrain their tectono-sedimentary framework (Dumoulin and Harris, 1987). A basic element of basin analysis is the discrimination of shallow-water shelf and platform sequences from deeper water slope and basinal deposits. This report documents several new localities of deeper water, off-platform Silurian deposits in the Ambler River quadrangle and briefly outlines some of their paleogeographic implications.

  18. Geochemistry, geochronology, and tectonic setting of Early Cretaceous volcanic rocks in the northern segment of the Tan-Lu Fault region, northeast China

    NASA Astrophysics Data System (ADS)

    Ling, Yi-Yun; Zhang, Jin-Jiang; Liu, Kai; Ge, Mao-Hui; Wang, Meng; Wang, Jia-Min

    2017-08-01

    We present new geochemical and geochronological data for volcanic and related rocks in the regions of the Jia-Yi and Dun-Mi faults, in order to constrain the late Mesozoic tectonic evolution of the northern segment of the Tan-Lu Fault. Zircon U-Pb dating shows that rhyolite and intermediate-mafic rocks along the southern part of the Jia-Yi Fault formed at 124 and 113 Ma, respectively, whereas the volcanic rocks along the northern parts of the Jia-Yi and Dun-Mi faults formed at 100 Ma. The rhyolite has an A-type granitoid affinity, with high alkalis, low MgO, Ti, and P contents, high rare earth element (REE) contents and Ga/Al ratios, enrichments in large-ion lithophile (LILEs; e.g., Rb, Th, and U) and high-field-strength element (HFSEs; e.g., Nb, Ta, Zr, and Y), and marked negative Eu anomalies. These features indicate that the rhyolites were derived from partial melting of crustal material in an extensional environment. The basaltic rocks are enriched in light REEs and LILEs (e.g., Rb, K, Th, and U), and depleted in heavy REEs, HFSEs (e.g., Nb, Ta, Ti, and P), and Sr. These geochemical characteristics indicate that these rocks are calc-alkaline basalts that formed in an intraplate extensional tectonic setting. The dacite is a medium- to high-K, calc-alkaline, I-type granite that was derived from a mixed source involving both crustal and mantle components in a magmatic arc. Therefore, the volcanic rocks along the Jia-Yi and Dun-Mi faults were formed in an extensional regime at 124-100 Ma (Early Cretaceous), and these faults were extensional strike-slip faults at this time.

  19. Relations between extensional tectonics and magmatism within the Southern Oklahoma aulacogen

    NASA Technical Reports Server (NTRS)

    Mcconnell, D. A.; Gilbert, M. C.

    1985-01-01

    Variations in the geometry, distribution and thickness of Cambrian igneous and sedimentary units within southwest Oklahoma are related to a late Proterozoic - early Paleozoic rifting event which formed the Southern Oklahoma aulacogen. These rock units are exposed in the Wichita Mountains, southwest Olkahoma, located on the northern margin of a Proterozoic basin, identified in the subsurface by COCORP reflection data. Overprinting of the Cambrian extensional event by Pennyslvanian tectonism obsured the influence of pre-existing basement structures and contrasting basement lithologies upon the initial development of the aulacogen.

  20. Intraplate mountain building in response to continent continent collision—the Ancestral Rocky Mountains (North America) and inferences drawn from the Tien Shan (Central Asia)

    NASA Astrophysics Data System (ADS)

    Dickerson, Patricia Wood

    2003-04-01

    The intraplate Ancestral Rocky Mountains of western North America extend from British Columbia, Canada, to Chihuahua, Mexico, and formed during Early Carboniferous through Early Permian time in response to continent-continent collision of Laurentia with Gondwana—the conjoined masses of Africa and South America, including Yucatán and Florida. Uplifts and flanking basins also formed within the Laurentian Midcontinent. On the Gondwanan continent, well inboard from the marginal fold belts, a counterpart structural array developed during the same period. Intraplate deformation began when full collisional plate coupling had been achieved along the continental margin; the intervening ocean had been closed and subduction had ceased—that is, the distinction between upper versus lower plates became moot. Ancestral Rockies deformation was not accompanied by volcanism. Basement shear zones that formed during Mesoproterozoic rifting of Laurentia were reactivated and exerted significant control on the locations, orientations, and modes of displacement on late Paleozoic faults. Ancestral Rocky Mountain uplifts extend as far south as Chihuahua and west Texas (28° to 33°N, 102° to 109°W) and include the Florida-Moyotes, Placer de Guadalupe-Carrizalillo, Ojinaga-Tascotal and Hueco Mountain blocks, as well as the Diablo and Central Basin Platforms. All are cored with Laurentian Proterozoic crystalline basement rocks and host correlative Paleozoic stratigraphic successions. Pre-late Paleozoic deformational, thermal, and metamorphic histories are similar as well. Southern Ancestral Rocky Mountain structures terminate along a line that trends approximately N 40°E (present coordinates), a common orientation for Mesoproterozoic extensional structures throughout southern to central North America. Continuing Tien Shan intraplate deformation (Central Asia) has created an analogous array of uplifts and basins in response to the collision of India with Eurasia, beginning in late

  1. Possible Significance of Early Paleozoic Fluctuations in Bottom Current Intensity, Northwest Iapetus Ocean

    NASA Astrophysics Data System (ADS)

    Lash, Gary G.

    1986-06-01

    Sedimentologic and geochemical characteristics of red and green deep water mudstone exposed in the central Appalachian orogen define climatically-induced fluctuations in bottom current intensity along the northwest flank of the Iapetus Ocean in Early and Middle Ordovician time. Red mudstone accumulated under the influence of moderate to vigorous bottom current velocities in oxygenated bottom water produced during climatically cool periods. Interbedded green mudstone accumulated at greater sedimentation rates, probably from turbidity currents, under the influence of reduced thermohaline circulation during global warming periods. The close association of green mudstone and carbonate turbidites of Early Ordovician (late Tremadocian to early Arenigian) age suggests that a major warming phase occurred at this time. Increasing temperatures reduced bottom current velocities and resulted in increased production of carbonate sediment and organic carbon on the carbonate platform of eastern North America. Much of the excess carbonate sediment and organic carbon was transported into deep water by turbidity currents. Although conclusive evidence is lacking, this eustatic event may reflect a climatic warming phase that followed the postulated glacio-eustatic Black Mountain event. Subsequent Middle Ordovician fluctuations in bottom current intensity recorded by thin red-green mudstone couplets probably reflect periodic growth and shrinkage of an ice cap rather than major glacial episodes.

  2. Apennine Front revisited - Diversity of Apollo 15 highland rock types

    NASA Technical Reports Server (NTRS)

    Lindstrom, Marilyn M.; Marvin, Ursula B.; Vetter, Scott K.; Shervais, John W.

    1988-01-01

    The Apollo 15 landing site is geologically the most complex of the Apollo sites, situated at a mare-highland interface within the rings of two of the last major basin-forming impacts. Few of the Apollo 15 samples are ancient highland rocks derived from the early differentiation of the moon, or impact melts from major basin impacts. Most of the samples are regolith breccias containing abundant clasts of younger volcanic mare and KREEP basalts. The early geologic evolution of the region can be understood only by examining the small fragments of highland rocks found in regolith breccias and soils. Geochemical and petrologic studies of clasts and matrices of three impact melt breccias and four regolith breccias are presented. Twelve igneous and metamorphic rocks show extreme diversity and include a new type of ferroan norite. Twenty-five samples of highland impact melt are divided into groups based on composition. These impact melts form nearly a continuum over more than an order of magnitude in REE concentrations. This continuum may result from both major basin impacts and younger local events. Highland rocks from the Apennine Front include most of the highland rock types found at all of the other sites. An extreme diversity of highland rocks is a fundamental characteristic of the Apennine Front and is a natural result of its complex geologic evolution.

  3. New Fossil Evidence on the Sister-Group of Mammals and Early Mesozoic Faunal Distributions

    NASA Astrophysics Data System (ADS)

    Shubin, Neil H.; Crompton, A. W.; Sues, Hans-Dieter; Olsen, Paul E.

    1991-03-01

    Newly discovered remains of highly advanced mammal-like reptiles (Cynodontia: Tritheledontidae) from the Early Jurassic of Nova Scotia, Canada, have revealed that aspects of the characteristic mammalian occlusal pattern are primitive. Mammals and tritheledontids share an homologous pattern of occlusion that is not seen in other cynodonts. The new tritheledontids represent the first definite record of this family from North America. The extreme similarity of North American and African tritheledontids supports the hypothesis that the global distribution of terrestrial tetrapods was homogeneous in the Early Jurassic. This Early Jurassic cosmopolitanism represents the continuation of a trend toward increased global homogeneity among terrestrial tetrapod communities that began in the late Paleozoic.

  4. Geochemistry and origin of metamorphosed mafic rocks from the Lower Paleozoic Moretown and Cram Hill Formations of North-Central Vermont: Delamination magmatism in the western New England appalachians

    USGS Publications Warehouse

    Coish, Raymond; Kim, Jonathan; Twelker, Evan; Zolkos, Scott P.; Walsh, Gregory J.

    2015-01-01

    The Moretown Formation, exposed as a north-trending unit that extends from northern Vermont to Connecticut, is located along a critical Appalachian litho-tectonic zone between the paleomargin of Laurentia and accreted oceanic terranes. Remnants of magmatic activity, in part preserved as metamorphosed mafic rocks in the Moretown Formation and the overlying Cram Hill Formation, are a key to further understanding the tectonic history of the northern Appalachians. Field relationships suggest that the metamorphosed mafic rocks might have formed during and after Taconian deformation, which occurred at ca. 470 to 460 Ma. Geochemistry indicates that the sampled metamorphosed mafic rocks were mostly basalts or basaltic andesites. The rocks have moderate TiO2 contents (1–2.5 wt %), are slightly enriched in the light-rare earth elements relative to the heavy rare earths, and have negative Nb-Ta anomalies in MORB-normalized extended rare earth element diagrams. Their chemistry is similar to compositions of basalts from western Pacific extensional basins near volcanic arcs. The metamorphosed mafic rocks of this study are similar in chemistry to both the pre-Silurian Mount Norris Intrusive Suite of northern Vermont, and also to some of Late Silurian rocks within the Lake Memphremagog Intrusive Suite, particularly the Comerford Intrusive Complex of Vermont and New Hampshire. Both suites may be represented among the samples of this study. The geochemistry of all samples indicates that parental magmas were generated in supra-subduction extensional environments during lithospheric delamination.

  5. Hydrogen Peroxide Formation and pH Changes at Rock-Water Interface during Stressing

    NASA Astrophysics Data System (ADS)

    Xie, S.; Kulahci, I.; Cyr, G.; Tregloan-Reed, J.; Balk, M.; Rothschild, L. J.; Freund, F. T.

    2008-12-01

    Common igneous and high-grade metamorphic rocks contain dormant defects, which become activated when stressed. They release electronic charge carriers, in particular defect electrons associated with O- states in a matrix of O2-. Known as 'positive holes' or pholes for short, the O- states can spread out of the stressed rock volume, travel along stress gradients over distances on the order of meters in the lab and probably over kilometers in the field. They carry a current, which can flow through meters of rock in the laboratory, probably tens of kilometers in the field. At rock-water interfaces the O- states turn into O radicals, which subtract H from H2O, forming OH- in the rock surface and PH radicals in the water. Two OH combine to H2O2. In the process the pH becomes more acidic. The discovery of H2O2 formation at rock-water interfaces as part of stress- activated currents on the tectonically active Earth may help us better understand the oxidation of the early Earth and the evolution of early Life.

  6. Timing, petrogenesis and tectonic setting of the Late Paleozoic gabbro-granodiorite-granite intrusions in the Shalazhashan of northern Alxa: Constraints on the southernmost boundary of the Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Shi, Xingjun; Wang, Tao; Zhang, Lei; Castro, Antonio; Xiao, XuChang; Tong, Ying; Zhang, Jianjun; Guo, Lei; Yang, Qidi

    2014-11-01

    The Late Paleozoic tectonic setting and location of the southernmost boundary of the Central Asian Orogenic Belt (CAOB) with respect to the Alxa Block or Alxa-North China Craton (ANCC) are debated. This paper presents new geochronological, petrological, geochemical and zircon Hf isotopic data of the Late Paleozoic intrusions from the Shalazhashan in northern Alxa and discusses the tectonic setting and boundary between the CAOB and ANCC. Using zircon U-Pb dating, intrusions can be broadly grouped as Late Carboniferous granodiorites (~ 301 Ma), Middle Permian gabbros (~ 264 Ma) and granites (~ 266 Ma) and Late Permian granodiorites, monzogranites and quartz monzodiorites (254-250 Ma). The Late Carboniferous granodiorites are slightly peraluminous and calcic. The remarkably high zircon Hf isotopes (εHf(t) = + 6-+ 10) and characteristics of high silica adakites suggest that these granodiorites were mainly derived from "hot" basaltic slab-melts of the subducted oceanic crust. The Middle Permian gabbros exhibited typical cumulate textures and were derived from the partial melting of depleted mantle. The Middle Permian granites are slightly peraluminous with high-K calc-alkaline and low εHf(t) values from - 0.9 to + 2.9. These granites were most likely derived from juvenile materials mixed with old crustal materials. The Late Permian granodiorites, monzogranites and quartz monzodiorites are characterized as metaluminous to slightly peraluminous, with variable Peacock alkali-lime index values from calc-alkalic to alkali-calcic. These rocks were mainly derived from juvenile crustal materials, as evidenced by their high εHf(t) values (+ 3.3 to + 8.9). The juvenile sources of the above intrusions in the Shalazhashan are similar to those of the granitoids from the CAOB but distinct from the granitoids within the Alxa Block. These findings suggest that the Shalazhashan Zone belongs to the CAOB rather than the Alxa Block and that its boundary with the Alxa block can be

  7. Geology of the Deep Creek area, Washington, and its regional significance

    USGS Publications Warehouse

    Yates, Robert Giertz

    1976-01-01

    This report, although primarily concerned with the stratigraphy and structure of a lead-zinc mining district in northern Stevens County, Washington, discusses and integrates the geology of the region about the Deep Creek area. Although the study centers in an area of about 200 square miles immediately south of the International Boundary, the regional background comes from: (1)the previously undescribed Northport quadrangle to the west, (2) published reports and reconnaissance of the Metaline quadrangle to the east, and (3) from published reports and maps of a 16 mile wide area that lies to the north adjacent to these three quadrangles in British Columbia. The report is divided into three parts: (1) descriptions of rocks and structures of the Deep Creek area, (2) descriptions of the regional setting of the Deep Creek area, and (3) an analysis and interpretation of the depositional and tectonic events that produced the geologic features exposed today. In the Deep Creek area surficial deposits of sand and gravel of glacial origin cover much of the consolidated rocks, which range in age from greenschist of the late Precambrlan to albite granite of the Eocene. Three broad divisions of depositional history are represented: (1) Precambrian, (2) lower Paleozoic and (3) upper Paleozoic; the record of the Mesozoic and Eocene is fragmentary. The lower Paleozoic division is the only fossil-controlled sequence; the age of the other two divisions were established by less direct methods. Both Precambrian and upper Paleozoic sequences are dominated by fine-grained detrital sediments, the Precambrian tending towards the alumina-rich and the upper Paleozoic tending towards the black shale facies with high silica. Neither sequence has more than trivial amounts of coarse clastics. Both include limestones, but in minor abundance. The lower Paleozoic sequence, on the other hand, represents a progressive change in deposition. The sequence began during the very late Precambrian with the

  8. Highly differentiated magmas linked with polymetallic mineralization: A case study from the Cuihongshan granitic intrusions, Lesser Xing'an Range, NE China

    NASA Astrophysics Data System (ADS)

    Fei, Xianghui; Zhang, Zhaochong; Cheng, Zhiguo; Santosh, M.; Jin, Ziliang; Wen, Bingbing; Li, Zixi; Xu, Lijuan

    2018-03-01

    The genetic link between granitoids and polymetallic skarn mineralization has remained equivocal. The Cuihongshan skarn-porphyry W-Mo-Pb-Zn-(Fe-Cu) deposit in the eastern part of the Central Asian Orogenic Belt provides a unique example to address this issue. The major rock types in the mine area are Early Paleozoic intrusions composed of biotite syenogranite and biotite porphyritic granite and Early Mesozoic intrusions represented by porphyritic quartz monzonite, biotite monzogranite, and porphyritic granite. The diagnostic mineralogical and geochemical features indicate that the rocks belong to A2-type granites. The Early Paleozoic suite shows zircon U-Pb ages of 501 Ma, and εHf(t) values of - 4.4 to + 2.7 and + 2.4 to + 7.6, respectively. In combination with their coherent geochemical trends, these rocks are inferred to be products of in-situ differentiation. Although the Mesozoic suite shows crystallization ages of 194-196 Ma, εHf(t) values are in the range of - 2.5 to + 7.5 for the porphyritic quartz monzonite, the - 1.8 to + 4.5 values for the monzogranite and the + 2.3 to + 8.0 range for the porphyritic granite. The porphyritic quartz monzonite displays distinct mineral assemblage and shows significant compositional gap with the other two lithofacies. In contrast, the monzogranite and porphyritic granite have similar geochemical features, and are thus inferred to be co-magmatic. Considering the high SiO2 contents, variable εHf(t) (- 4.4 to + 8.0) and εNd(t) values (- 8.4 to + 0.28) for the two suites, we infer that both episodes of granitoid magmatism resulted from partial melting of crustal materials with a mixed source containing varying proportions of juvenile and Precambrian crustal components. The Early Mesozoic porphyritic granite shows a highly evolved F-rich geochemical affinity, and experienced magma-fluid interaction. Cassiterite from the calcic skarn and the magnesian skarn that coexists with magnetite orebodies shows a mean U-Pb age of 195

  9. ROCK as a therapeutic target for ischemic stroke.

    PubMed

    Sladojevic, Nikola; Yu, Brian; Liao, James K

    2017-12-01

    Stroke is a major cause of disability and the fifth leading cause of death. Currently, the only approved acute medical treatment of ischemic stroke is tissue plasminogen activator (tPA), but its effectiveness is greatly predicated upon early administration of the drug. There is, therefore, an urgent need to find new therapeutic options for acute stroke. Areas covered: In this review, we summarize the role of Rho-associated coiled-coil containing kinase (ROCK) and its potential as a therapeutic target in stroke pathophysiology. ROCK is a major regulator of cell contractility, motility, and proliferation. Many of these ROCK-mediated processes in endothelial cells, vascular smooth muscle cells, pericytes, astrocytes, glia, neurons, leukocytes, and platelets are important in stroke pathophysiology, and the inhibition of such processes could improve stroke outcome. Expert commentary: ROCK is a potential therapeutic target for cardiovascular disease and ROCK inhibitors have already been approved for human use in Japan and China for the treatment of acute stroke. Further studies are needed to determine the role of ROCK isoforms in the pathophysiology of cerebral ischemia and whether there are further therapeutic benefits with selective ROCK inhibitors.

  10. Hydrocarbons related to early Cretaceous source rocks, reservoirs and seals, trapped in northeastern Neuqun basin, Argentina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulisano, C.; Minniti, S.; Rossi, G.

    1996-08-01

    The Jurassic-Cretaceous backarc Neuqun Basin, located in the west central part of Argentina, is currently the most prolific oil basin of the country. The primary objective of this study is to evaluate an Early Cretaceous to Tertiary petroleum system in the northeastern portion of the basin, where oil and gas occurrences (e.g., Puesto Hernandez, Chihuido de la Sierra Negra, El Trapial and Filo Morado oil fields, among others) provide 82 MMBO/yr comprising 67% of the basin oil production and 31% of Argentina. The source rocks are represented by two thick sections of basinal kerogen type I and II organic-rich shales,more » deposited during transgressive peaks (Agrio Formation), with TOC content up to 5.1%. Lowstand sandstones bodies, 10 to 100 m thick, are composed of eolian and fluvial facies with good reservoir conditions (Avil and Troncoso Sandstones). The seals are provided by the organic-rich shales resting sharply upon the Avil Sandstone and a widespread Aptian-Albian evaporitic event (Huitrin Formation) on top of the Troncoso reservoir. Tertiary structural traps (duplex anticlines) are developed in the outer foothills, whereas structural, combined and stratigraphic traps are present in the adjacent stable structural platform. Oil-to-source rock and oil-to-oil correlation by chromatographic and biomarker fingerprints, carbon isotopic composition and the geological evidences support the proposed oil system.« less

  11. Remarkable isotopic and trace element trends in potassic through sodic Cretaceous plutons of the Yukon-Koyukuk Basin, Alaska, and the nature of the lithosphere beneath the Koyukuk terrane

    USGS Publications Warehouse

    Arth, Joseph G.; Criss, Robert E.; Zmuda, Clara C.; Foley, Nora K.; Patton, W.W.; Miller, T.P.

    1989-01-01

    During the period from 110 to 80 m.y. ago, a 450-km-long magmatic belt was active along the northern margin of Yukon-Koyukuk basin and on eastern Seward Peninsula. The plutons intruded Upper Jurassic(?) and Lower Cretaceous volcanic arc rocks and Cretaceous sedimentary rocks in Yukon-Koyukuk basin and Proterozoic and lower Paleozoic continental rocks in Seward Peninsula. Within Yukon-Koyukuk basin, the plutons vary in composition from calc-alkalic plutons on the east to potassic and ultrapotassic alkalic plutons on the west. Plutons within Yukon-Koyukuk basin were analyzed for trace element and isotopic compositions in order to discern their origin and the nature of the underling lithosphere. Farthest to the east, the calc-alkalic rocks of Indian Mountain pluton are largely tonalite and sodic granodiorite, and have low Rb (average 82 ppm), high Sr (>600 ppm), high chondrite-normalized (cn) Ce/Yb (16–37), low δ18O (+6.5 to +7.1), low initial 87Sr/86Sr (SIR) (0.704), and high initial 143Nd/144Nd (NIR) (0.5126). These rocks resemble those modelled elsewhere as partial melts and subsequent fractionates of basaltic or gabbroic metaigneous rocks, and may be products of melting in the deeper parts of the Late Jurassic(?) and Early Cretaceous volcanic arc. Farthest to the west, the two ultrapotassic bodies of Selawik and Inland Lake are high in Cs (up to 93 ppm), Rb (up to 997 ppm), Sr, Ba, Th, and light rare earth elements, have high (Ce/Yb)cn (30, 27), moderate to low δ18O (+8.4, +6.9), high SIR (0.712, 0.710), and moderate NIR (0.5121–0.5122). These rocks resemble rocks of Australia and elsewhere that were modelled as melts of continental mantle that had been previously enriched in large cations. This mantle may be Paleozoic or older. The farthest west alkalic pluton of Selawik Hills is largely monzonite, quartz monzonite, and granite; has moderate Rb (average 284 ppm), high Sr (>600 ppm), high (Ce/Yb)cn (15–25), moderate δ18O (+8.3 to +8.6), high SIR (0.708

  12. An early bird from Gondwana: Paleomagnetism of Lower Permian lavas from northern Qiangtang (Tibet) and the geography of the Paleo-Tethys

    NASA Astrophysics Data System (ADS)

    Song, Peiping; Ding, Lin; Li, Zhenyu; Lippert, Peter C.; Yue, Yahui

    2017-10-01

    The origin of the northern Qiangtang block and its Late Paleozoic-Early Mesozoic drift history remain controversial, largely because paleomagnetic constraints from pre-Mesozoic units are sparse and of poor quality. In this paper, we provide a robust and well-dated paleomagnetic pole from the Lower Permian Kaixinling Group lavas on the northern Qiangtang block. This pole suggests that the northern Qiangtang block had a paleolatitude of 21.9 ± 4.7 °S at ca. 296.9 ± 1.9 Ma. These are the first volcanic-based paleomagnetic results from pre-Mesozoic rocks of the Qiangtang block that appear to average secular variation accurately enough to yield a well-determined paleolatitude estimate. This new pole corroborates the hypothesis, first noted on the basis of less rigorous paleomagnetic data, the presence of diamictites, detrital zircon provenance records, and faunal assemblages, that the northern Qiangtang block rifted away from Gondwana prior to the Permian. Previous studies have documented that the northern Qiangtang block accreted to the Tarim-North China continent by Norian time. We calculate a total northward drift of ca. 7000 km over ca. 100 myr, which corresponds to an average south-north plate velocities of ∼7.0 cm/yr. Our results do not support the conclusion that northern Qiangtang has a Laurasian affinity, nor that the central Qiangtang metamorphic belt is an in situ Paleo-Tethys suture. Our analysis, however, does not preclude paleogeographies that interpret the central Qiangtang metamorphic belt as an intra-Qiangtang suture that developed at southernly latitudes outboard of the Gondwanan margin. We emphasize that rigorous paleomagnetic data from Carboniferous units of northern Qiangtang and especially upper Paleozoic units from southern Qiangtang can test and further refine these paleogeographic interpretations.

  13. ROCK inhibition abolishes the establishment of the aquiferous system in Ephydatia muelleri (Porifera, Demospongiae).

    PubMed

    Schenkelaars, Quentin; Quintero, Omar; Hall, Chelsea; Fierro-Constain, Laura; Renard, Emmanuelle; Borchiellini, Carole; Hill, April L

    2016-04-15

    The Rho associated coiled-coil protein kinase (ROCK) plays crucial roles in development across bilaterian animals. The fact that the Rho/Rock pathway is required to initiate epithelial morphogenesis and thus to establish body plans in bilaterians makes this conserved signaling pathway key for studying the molecular mechanisms that may control early development of basally branching metazoans. The purpose of this study was to evaluate whether or not the main components of this signaling pathway exist in sponges, and if present, to investigate the possible role of the regulatory network in an early branching non-bilaterian species by evaluating ROCK function during Ephydatia muelleri development. Molecular phylogenetic analyses and protein domain predictions revealed the existence of Rho/Rock components in all studied poriferan lineages. Binding assays revealed that both Y-27632 and GSK429286A are capable of inhibiting Em-ROCK activity in vitro. Treatment with both drugs leads to impairment of growth and formation of the basal pinacoderm layer in the developing sponge. Furthermore, inhibition of Em-Rock prevents the establishment of a functional aquiferous system, including the absence of an osculum. In contrast, no effect of ROCK inhibition was observed in juvenile sponges that already possess a fully developed and functional aquiferous system. Thus, the Rho/Rock pathway appears to be essential for the proper development of the freshwater sponge, and may play a role in various cell behaviors (e.g. cell proliferation, cell adhesion and cell motility). Taken together, these data are consistent with an ancestral function of Rho/Rock signaling in playing roles in early developmental processes and may provide a new framework to study the interaction between Wnt signaling and the Rho/Rock pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. MX Siting Investigation. Geotechnical Evaluation. Detailed Aggregate Resources Study. Pahroc Study Area, Nevada.

    DTIC Science & Technology

    1981-06-05

    source is a fairly limited outcrop of calcareous sandstone classified as dolomite rock (Do). Class RBIb Sources: Pour basin-fill sources within the study...Paleozoic rocks consist of limestone, dolomite , and quartzite with interbedded sandstone and shale. These units are generally exposed along the northern...categories simplify discussion and presentation without altering the conclusions of the study. 2.2.1 Rock Units Dolomite rocks (Do) and carbonate rocks

  15. Sedimentary records on the subduction-accretion history of the Russian Altai, northwestern Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Sun, Min

    2017-04-01

    The Russian Altai, comprising the northern segment of the Altai-Mongolian terrane (AM) in the south, the Gorny Altai terrane (GA) in the north and the intervening Charysh-Terekta-Ulagan-Sayan suture zone, is a key area of the northwestern Central Asian Orogenic Belt (CAOB). A combined geochemical and detrital zircon study was conducted on the (meta-)sedimentary sequences from the Russian Altai to reveal the tectono-magmatic history of these two terranes and their amalgamation history, which in turn place constraints on the accretionary orogenesis and crustal growth in the CAOB. The Cambrian-Ordovician meta-sedimentary rocks from the northern AM are dominated by immature sediments possibly sourced from intermediate-felsic igneous rocks. Geochemical data show that the sediments were likely deposited in a continental arc-related setting. Zircons separated from these rocks are mainly 566-475 Ma and 1015-600 Ma old, comparable to the magmatic records of the Tuva-Mongolian terrane and surrounding island arcs in the western Mongolia. The similar source nature, provenance and depositional setting of these rocks to the counterparts from the Chinese Altai (i.e., the southern AM) imply that the whole AM possibly represents a coherent accretionary prism of the western Mongolia in the early Paleozoic rather than a Precambrian continental block with passive marginal deposition as previously thought. In contrast, the Cambrian to Silurian (meta-)sedimentary rocks from the GA are characterized by a unitary zircon population with ages of 640-470 Ma, which were potentially sourced from the Kuznetsk-Altai intra-oceanic island arc in the east of this terrane. The low abundance of 640-540 Ma zircons (5%) may attest that this arc was under a primitive stage in the late Neoproterozoic, when mafic igneous rocks dominated. However, the voluminous 530-470 Ma zircons (95%) suggest that this arc possibly evolved toward a mature one in the Cambrian to early Ordovician with increasing amount of

  16. Summary of the geology and resources of uranium in the San Juan Basin and adjacent region, New Mexico, Arizona, Utah, and Colorado

    USGS Publications Warehouse

    Ridgley, Jennie L.; Green, M.W.; Pierson, C.T.; Finch, W.I.; Lupe, R.D.

    1978-01-01

    The San Juan Basin and adjacent region lie predominantly in the southeastern part of the uranium-rich Colorado Plateau of New Mexico, Arizona, Utah, and Colorado. Underlying the province are rocks of the Precambrian basement complex composed mainly of igneous and metamorphic rocks; a thickness of about 3,600 meters of generally horizontal Paleozoic, Mesozoic, and Cenozoic sedimentary rocks; and a variety of Upper Cretaceous and Cenozoic igneous rocks. Sedimentary rocks of the sequence are commonly eroded and well exposed near the present basin margins where Tertiary tectonic activity has uplifted, folded, and faulted the sequence into its present geologic configuration of basins, platforms, monoclines, and other related structural features. Sedimentary rocks of Jurassic age in the southern part of the San Juan Basin contain the largest uranium deposits in the United States, and offer the promise of additional uranium deposits. Elsewhere in the basin and the adjacent Colorado Plateau, reserves and resources of uranium are known primarily in Triassic, Jurassic, and Cretaceous strata. Only scattered occurrences of uranium are known in Paleozoic

  17. Lead-alpha age determinations of granitic rocks from Alaska

    USGS Publications Warehouse

    Matzko, John J.; Jaffe, H.W.; Waring, C.L.

    1957-01-01

    Lead-alpha activity age determinations were made on zircon from seven granitic rocks of central and southeastern Alaska. The results of the age determinations indicate two periods of igneous intrusion, one about 95 million years ago, during the Cretaceous period, and another about 53 million years ago, during the early part of the Tertiary. The individual ages determined on zircon from 2 rocks from southeastern Alaska and 1 from east-central Alaska gave results of 90, 100, and 96 million years; those determined on 4 rocks from central Alaska gave results of 47, 56, 58, and 51 million years.

  18. The Red Sea Basin Province: Sudr-Nubia(!) and Maqna(!) Petroleum Systems

    USGS Publications Warehouse

    Lindquist, Sandra J.

    1999-01-01

    The Sudr-Nubia(!) oil-prone total petroleum system dominates the densely explored Gulf of Suez part of the rifted Red Sea Basin Province. Upper Cretaceous to Eocene source rocks, primarily the Senonian Sudr Formation, are organic-rich, areally uniform marine carbonates that have generated known ultimate recoverable reserves exceeding 11 BBOE. The name Nubia is used for sandstone reservoirs with a wide range of poorly constrained, pre-rift geologic ages ranging from Early Paleozoic to Early Cretaceous. Syn- and post-rift Tertiary reservoirs, especially the Kareem Formation, also contain significant reserves. Partly overlapping Sudr-Nubia(!) is the areally larger and geochemically distinct, oil-and-gas-prone Maqna(!) total petroleum system within the southern Gulf of Suez basin and the sparsely explored remaining Red Sea basin. Known ultimate recoverable reserves are 50-100 MMBOE and more than 900 MMBOE, respectively, in those areas. Both the source and reservoir rocks in this petroleum system are Tertiary, dominantly Miocene, in age. Maqna(!) has the greater potential for future resource development.

  19. A reassessment of the early archaeological record at Leang Burung 2, a Late Pleistocene rock-shelter site on the Indonesian island of Sulawesi

    PubMed Central

    Hakim, Budianto; Ramli, Muhammad; Aubert, Maxime; van den Bergh, Gerrit D.; Li, Bo; Burhan, Basran; Saiful, Andi Muhammad; Siagian, Linda; Sardi, Ratno; Jusdi, Andi; Abdullah; Mubarak, Andi Pampang; Moore, Mark W.; Roberts, Richard G.; Zhao, Jian-xin; McGahan, David; Jones, Brian G.; Perston, Yinika; Szabó, Katherine; Mahmud, M. Irfan; Westaway, Kira; Jatmiko; Saptomo, E. Wahyu; van der Kaars, Sander; Grün, Rainer; Wood, Rachel; Dodson, John

    2018-01-01

    This paper presents a reassessment of the archaeological record at Leang Burung 2, a key early human occupation site in the Late Pleistocene of Southeast Asia. Excavated originally by Ian Glover in 1975, this limestone rock-shelter in the Maros karsts of Sulawesi, Indonesia, has long held significance in our understanding of early human dispersals into ‘Wallacea’, the vast zone of oceanic islands between continental Asia and Australia. We present new stratigraphic information and dating evidence from Leang Burung 2 collected during the course of our excavations at this site in 2007 and 2011–13. Our findings suggest that the classic Late Pleistocene modern human occupation sequence identified previously at Leang Burung 2, and proposed to span around 31,000 to 19,000 conventional 14C years BP (~35–24 ka cal BP), may actually represent an amalgam of reworked archaeological materials. Sources for cultural materials of mixed ages comprise breccias from the rear wall of the rock-shelter–remnants of older, eroded deposits dated to 35–23 ka cal BP–and cultural remains of early Holocene antiquity. Below the upper levels affected by the mass loss of Late Pleistocene deposits, our deep-trench excavations uncovered evidence for an earlier hominin presence at the site. These findings include fossils of now-extinct proboscideans and other ‘megafauna’ in stratified context, as well as a cobble-based stone artifact technology comparable to that produced by late Middle Pleistocene hominins elsewhere on Sulawesi. PMID:29641524

  20. A reassessment of the early archaeological record at Leang Burung 2, a Late Pleistocene rock-shelter site on the Indonesian island of Sulawesi.

    PubMed

    Brumm, Adam; Hakim, Budianto; Ramli, Muhammad; Aubert, Maxime; van den Bergh, Gerrit D; Li, Bo; Burhan, Basran; Saiful, Andi Muhammad; Siagian, Linda; Sardi, Ratno; Jusdi, Andi; Abdullah; Mubarak, Andi Pampang; Moore, Mark W; Roberts, Richard G; Zhao, Jian-Xin; McGahan, David; Jones, Brian G; Perston, Yinika; Szabó, Katherine; Mahmud, M Irfan; Westaway, Kira; Jatmiko; Saptomo, E Wahyu; van der Kaars, Sander; Grün, Rainer; Wood, Rachel; Dodson, John; Morwood, Michael J

    2018-01-01

    This paper presents a reassessment of the archaeological record at Leang Burung 2, a key early human occupation site in the Late Pleistocene of Southeast Asia. Excavated originally by Ian Glover in 1975, this limestone rock-shelter in the Maros karsts of Sulawesi, Indonesia, has long held significance in our understanding of early human dispersals into 'Wallacea', the vast zone of oceanic islands between continental Asia and Australia. We present new stratigraphic information and dating evidence from Leang Burung 2 collected during the course of our excavations at this site in 2007 and 2011-13. Our findings suggest that the classic Late Pleistocene modern human occupation sequence identified previously at Leang Burung 2, and proposed to span around 31,000 to 19,000 conventional 14C years BP (~35-24 ka cal BP), may actually represent an amalgam of reworked archaeological materials. Sources for cultural materials of mixed ages comprise breccias from the rear wall of the rock-shelter-remnants of older, eroded deposits dated to 35-23 ka cal BP-and cultural remains of early Holocene antiquity. Below the upper levels affected by the mass loss of Late Pleistocene deposits, our deep-trench excavations uncovered evidence for an earlier hominin presence at the site. These findings include fossils of now-extinct proboscideans and other 'megafauna' in stratified context, as well as a cobble-based stone artifact technology comparable to that produced by late Middle Pleistocene hominins elsewhere on Sulawesi.

  1. From success to persistence: Identifying an evolutionary regime shift in the diverse Paleozoic aquatic arthropod group Eurypterida, driven by the Devonian biotic crisis.

    PubMed

    Lamsdell, James C; Selden, Paul A

    2017-01-01

    Mass extinctions have altered the trajectory of evolution a number of times over the Phanerozoic. During these periods of biotic upheaval a different selective regime appears to operate, although it is still unclear whether consistent survivorship rules apply across different extinction events. We compare variations in diversity and disparity across the evolutionary history of a major Paleozoic arthropod group, the Eurypterida. Using these data, we explore the group's transition from a successful, dynamic clade to a stagnant persistent lineage, pinpointing the Devonian as the period during which this evolutionary regime shift occurred. The late Devonian biotic crisis is potentially unique among the "Big Five" mass extinctions in exhibiting a drop in speciation rates rather than an increase in extinction. Our study reveals eurypterids show depressed speciation rates throughout the Devonian but no abnormal peaks in extinction. Loss of morphospace occupation is random across all Paleozoic extinction events; however, differential origination during the Devonian results in a migration and subsequent stagnation of occupied morphospace. This shift appears linked to an ecological transition from euryhaline taxa to freshwater species with low morphological diversity alongside a decrease in endemism. These results demonstrate the importance of the Devonian biotic crisis in reshaping Paleozoic ecosystems. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  2. Geochemical effects of deep-well injection of the Paradox Valley brine into Paleozoic carbonate rocks, Colorado, U.S.A.

    USGS Publications Warehouse

    Rosenbauer, R.J.; Bischoff, J.L.; Kharaka, Y.K.

    1992-01-01

    Brine seepage into the Dolores River from ground water in Paradox Valley, Colorado constitutes a major source of salt to the Colorado River. Plants are enderway to remove this source of salt by drawing down the Paradox Valley brine (PVB) and forcibly injecting it into a deep disposal well (4.8 km). Experiments were conducted to determine the effects of deep-well injection of PVB. The results show that PVB is near saturation with anhydrite at 25??C, and that heating results in anhydrite precipitation. The amount and the rate at which anhydrite forms is temperature, pressure, and substrate dependent. Paradox Valley brine heated in the presence of Precambrian rocks from the drill core produces the same amount of anhydrite as PVB heated alone, but at a greatly accelerated rate. A 30% dilution of PVB with Dolores River water completely eliminates anhydrite precipitation when the fluid is heated with the Precambrian rocks. Interaction of PVB and Leadville Limestone is characterized by dolomitization of calcite by brine Mg which releases Ca to solution. This added Ca reacts with SO4 to form increased amounts of anhydrite. A 20% dilution of PVB by Dolores River water has no effect on dolomitization and reduces the amount of anhydrite only slightly. A 65% dilution of PVB by Dolores River water still does not prevent dolomitization but does suppress anhydrite formation. Computer modeling of PVB by programs utilizing the Pitzer ion-interaction parameters is in general agreement with the experimental results. Ion-activity products calculated by both SOLMINEQ and PHRQPITZ are close to equilibrium with both anhydrite and dolomite whenever these phases are present experimentally, although the calculations over-estimate by a factor of 2 the degree of saturation. Some discrepancies in the calculated results between the two programs are due largely to differences in mineral solubility data. ?? 1992.

  3. Merging seismic and MT in Garden Valley, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Telleen, K.E.

    1986-04-01

    In the northern part of Garden Valley, Nevada, a 1978 regional seismic program encountered a large area of poor to no-reflection data. Surface geology suggested that a large high structure might underlie the valley floor, and that shallowly buried basalts were causing the poor data. The implied strongly layered structure of electrical resistivity - resistive basalt on conductive Tertiary clastics on resistive paleozoic carbonates - formed an ideal theater for the magnetotelluric method. In 1984, Conoco acquired 48 magnetotelluric sites on about a half-mile grid. These data supported the presence of a buried high block in the Paleozoic rocks andmore » allowed confident mapping of its outlines. In addition, the magnetotelluric survey showed a thin, shallowly buried resistor coextensive with the seismic no-reflection area. In 1985, a high-effort repeat of the earlier no-reflection seismic line confirmed the high block, improved the fault interpretation, and provided weak guidance on the depth of the targeted Paleozoic rocks. Because Garden Valley's Paleozoic stratigraphy differs negligibly from that at nearby Grant Canyon field, the high block constitutes an attractive prospect - possibly the first one found in Nevada due largely to magnetotelluric surveying.« less

  4. The geologic structure of part of the southern Franklin Mountains, El Paso County, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, W.R.; Julian, F.E.

    1993-02-01

    The Franklin Mountains are a west tilted fault block mountain range which extends northwards from the city of El Paso, Texas. Geologic mapping in the southern portion of the Franklin Mountains has revealed many previously unrecognized structural complexities. Three large high-angle faults define the boundaries of map. Twenty lithologic units are present in the field area, including the southernmost Precambrian meta-sedimentary rocks in the Franklin Mountains (Lanoria Quartzite and Thunderbird group conglomerates). The area is dominated by Precambrian igneous rocks and lower Paleozoic carbonates, but Cenozoic ( ) intrusions are also recognized. Thin sections and rock slabs were used tomore » describe and identify many of the lithologic units. The Franklin Mountains are often referred to as a simple fault block mountain range related to the Rio Grande Rift. Three critical regions within the study area show that these mountains contain structural complexities. In critical area one, Precambrian granites and rhyolites are structurally juxtaposed, and several faults bisecting the area affect the Precambrian/Paleozoic fault contact. Critical area two contains multiple NNW-trending faults, three sills and a possible landslide. This area also shows depositional features related to an island of Precambrian rock exposed during deposition of the lower Paleozoic rocks. Critical area three contains numerous small faults which generally trend NNE. They appear to be splays off of one of the major faults bounding the area. Cenozoic kaolinite sills and mafic intrusion have filled many of the fault zones.« less

  5. Integrated loessite-paleokarst depositional system, early Pennsylvanian Molas Formation, Paradox Basin, southwestern Colorado, U.S.A.

    NASA Astrophysics Data System (ADS)

    Evans, James E.; Reed, Jason M.

    2007-03-01

    Mississippian paleokarst served as a dust trap for the oldest known Paleozoic loessite in North America. The early Pennsylvanian Molas Formation consists of loessite facies (sorted, angular, coarse-grained quartz siltstone), infiltration facies (loess redeposited as cave sediments within paleokarst features of the underlying Mississippian Leadville Limestone), colluvium facies (loess infiltrated into colluvium surrounding paleokarst towers) and fluvial facies (siltstone-rich, fluvial channel and floodplain deposits with paleosols). The depositional system evolved from an initial phase of infiltration and colluvium facies that were spatially and temporally related to the paleokarst surface, to loessite facies that mantled the paleotopography, and to fluvial facies that were intercalated with marine-deltaic rocks of the overlying Pennsylvanian Hermosa Formation. This sequence is interpreted as a response to the modification of the dust-trapping ability of the paleokarst surface. Loess was initially eroded from the surface, transported and redeposited in the subsurface by the karst paleohydrologic system, maintaining the dust-trapping ability of the paleotopographic surface. Later, the paleotopographic surface was buried when loess accumulation rates exceeded the transport capacity of the karst paleohydrologic system. These changes could have occurred because of (1) increased dust input rates in western Pangaea, (2) rising base levels and/or (3) porosity loss due to deposition within paleokarst passageways.

  6. Volcanic rocks cored on hess rise, Western Pacific Ocean

    USGS Publications Warehouse

    Vallier, T.L.; Windom, K.E.; Seifert, K.E.; Thiede, Jorn

    1980-01-01

    Large aseismic rises and plateaus in the western Pacific include the Ontong-Java Plateau, Magellan Rise, Shatsky Rise, Mid-Pacific Mountains, and Hess Rise. These are relatively old features that rise above surrounding sea floors as bathymetric highs. Thick sequences of carbonate sediments overlie, what are believed to be, Upper Jurassic and Lower Cretaceous volcanic pedestals. We discuss here petrological and tectonic implications of data from volcanic rocks cored on Hess Rise. The data suggest that Hess Rise originated at a spreading centre in the late early Cretaceous (Aptian-Albian stages). Subsequent off-ridge volcanism in the late Albian-early Cenomanian stages built a large archipelago of oceanic islands and seamounts composed, at least in part, of alkalic rocks. The volcanic platform subsided during its northward passage through the mid-Cretaceousequatorial zone. Faulting and uplift, and possibly volcanism, occurred in the latest Cretaceous (Campanian-Maastrichtian stages). Since then, Hess Rise continued its northward movement and subsidence. Volcanic rocks from holes drilled on Hess Rise during IPOD Leg 62 (Fig. 1) are briefly described here and we relate the petrological data to the origin and evolution of that rise. These are the first volcanic rocks reported from Hess Rise. ?? 1980 Nature Publishing Group.

  7. Kilbuck terrane: Oldest known rocks in Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Box, S.E.; Moll-Stalcup, E.J.; Wooden, J.L.

    1990-12-01

    The Kilbuck terrane in southwestern Alaska is a narrow, thin crustal sliver or flake of amphibolite facies orthogneiss. The igneous protolith of this gneiss was a suite of subduction-related plutonic rocks. U-Pb data on zircons from trondhjemitic and granitic samples yield upper-intercept (igneous) ages of 2,070 {plus minus}16 and 2,040 {plus minus}74 Ma, respectively. Nd isotope data from these rocks suggest that a diorite-tonalite-trondhjemite suite ({epsilon}{sub Nd}(T) = +2.1 to +2.7; T is time of crystallization) evolved from partial melts of depleted mantle with no discernible contamination by older crust, whereas a coeval granitic pluton ({epsilon}{sub Nd}(T) = {minus}5.7) containsmore » a significant component derived from Archean crust. Orthogneisses with similar age and Nd isotope characteristics are found in the Idono complex 250 km to the north. Early Proterozoic rocks are unknown elsewhere in Alaska. However, Phanerozoic plutons cutting several continental terranes in Alaska (southern Brooks Range and Ruby, Seward, and Yukon-Tanana terranes) have Nd isotope compositions indicative of Early Proterozoic (or older) crustal components that could be correlative with rocks of the Kilbuck terrane. Rocks with similar igneous ages in cratonal North America are rare, and those few that are known have Nd isotope compositions distinct from those of the Kilbuck terrane. Conversely, provinces with Nd model ages of 2.0-2.1 Ga are characterized by extensive 1.8 Ga or younger plutonism, which is unknown in the Kilbuck terrane. At present the case for a North American parentage of the Kilbuck terrane is not compelling. The possibility that the Kilbuck terrane was displaced from provinces of similar age in other cratons (e.g., Australian, Baltic, Guiana, and west African shields), or from the poorly dated Siberian craton, cannot be excluded.« less

  8. Basement rocks of Halmahera, eastern Indonesia: Implications for the early history of the Philippine Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, R.G.N.; Ballantyne, P.

    1990-06-01

    The oldest rocks known on Halmahera, eastern Indonesia, are petrologically and chemically similar to supra-subduction ophiolites and include boninitic volcanics resembling those dredged from the Marianas forearc. The age of the ophiolitic rocks is unknown; in east Halmahera they are overlain by Late Cretaceous and Eocene volcanics and associated sediments. Similar volcanics form the basement of western Halmahera. Plutonic rocks intruding the ophiolite and associated metamorphic rocks also yield Late Cretaceous to Eocene radiometric ages. The petrology and chemistry of the igneous rocks indicate an island arc origin. These rocks are locally overlain by shallow-water Eocene limestones and all aremore » overlain unconformably by Neogene sediments. The Halmahera basement rocks have many structural, petrological, and stratigraphic similarities to submarine plateaus of the southern and northern Philippine Sea and basement terranes of the eastern Philippines. The authors suggest that these similarities indicate the existence of an extensive region of Late Cretaceous and Eocene volcanism built upon probable Mesozoic ophiolitic basement. The resultant thickened crust was later fragmented by spreading in the West Philippine Sea Central Basin and backarc spreading in the Eastern Philippine Sea. It is difficult to reconcile the present distribution of these crustal fragments with a linear arc, but equally difficult to propose a simple alternative. A proto-Philippine archipelago, with short-lived arcs separated by small oceanic basins, may be the closest modern analog. The development of younger subduction zones has been influenced by the distribution of thickened crustal fragments as they have re-amalgamated since the Miocene.« less

  9. Variations in the sterane carbon number distributions of marine source rock derived crude oils through geological time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grantham, P.J.; Wakefield, L.L.

    1988-01-01

    The analysis of the sterane data of a large set of crude oils (414) derived from marine carbonate (27) and siliciclastic source rocks (14) where influences of terrestrial or lacustrine derived organic matter can reasonably be excluded, shows that there are increases in the relative content of C/sub 28/ steranes and decreases in the relative content of C/sub 29/ steranes through geological time. There are no consistent variations in the relative content of C/sub 27/ steranes through time. With one major exception (a Proterozoic oil from Oman), Paleozoic and older crude oils are thus generally characterized by strong predominances ofmore » C/sub 29/ steranes and low relative concentrations of C/sub 28/ steranes. Significantly higher proportions of C/sub 28/ steranes and lower proportions of C/sub 29/ steranes occur in oils derived from Jurassic and Upper Cretaceous source rocks. These changes through time do not appear to reflect the chemical evolution of the sterols of one particular variety of marine organism: the increase in C/sub 28/ steranes may be related to the increased diversification of phytoplantonic assemblages in the Jurassic and Cretaceous. Possible sources of the C/sub 28/ sterols necessary for the observed changes in crude oil steranes includes diatoms, coccolithophores and dinoflagellates. Although the technique does not give an accurate means of determining the age of the source rock of a crude oil it is possible to distinguish younger crudes derived from the Upper Cretaceous and Tertiary from Palaeozoic and older crudes.« less

  10. Late Paleozoic fusulinids from Sonora, Mexcio: importance for interpretation of depositional settings, biogeography, and paleotectonics

    USGS Publications Warehouse

    Stevens, Calvin H.; Poole, Forrest G.; Amaya-Martínez, Ricardo

    2014-01-01

    Three sets of fusulinid faunas in Sonora, Mexico, discussed herein, record different depositional and paleotectonic settings along the southwestern margin of Laurentia (North America) during Pennsylvanian and Permian time. The settings include: offshelf continental rise and ocean basin (Rancho Nuevo Formation in the Sonora allochthon), shallow continental shelf (La Cueva Limestone), and foredeep basin on the continental shelf (Mina México Formation). Our data represent 41 fusulinid collections from 23 localities with each locality providing one to eight collections.Reworked fusulinids in the Middle and Upper Pennsylvanian part of the Rancho Nuevo Formation range in age from Desmoinesian into Virgilian (Moscovian-Gzhelian). Indigenous Permian fusulinids in the La Cueva Limestone range in age from middle or late Wolfcampian to middle Leonardian (late Sakmarian-late Artinskian), and reworked Permian fusulinids in the Mina México Formation range in age from early to middle Leonardian (middle-late Artinskian). Conodonts of Guadalupian age occur in some turbidites in the Mina México Formation, indicating the youngest foredeep deposit is at least Middle Permian in age. Our fusulinid collections indicate a hiatus of at least 10 m.y. between the youngest Pennsylvanian (Virgilian) rocks in the Sonora allochthon and the oldest Permian (middle Wolfcampian) rocks in the region.Most fusulinid faunas in Sonora show affinities to those of West Texas, New Mexico, and Arizona; however, some genera and species are similar to those in southeastern California. As most species are similar to those east of the southwest-trending Transcontinental arch in New Mexico and Arizona, this arch may have formed a barrier preventing large-scale migration and mixing of faunas between the southern shelf of Laurentia in northwestern Mexico and the western shelf in the southwestern United States.The Sonora allochthon, consisting of pre-Permian (Lower Ordovician to Upper Pennsylvanian) deep

  11. Abiotic and biotic responses to Milankovitch-forced megamonsoon and glacial cycles recorded in South China at the end of the Late Paleozoic Ice Age

    NASA Astrophysics Data System (ADS)

    Fang, Qiang; Wu, Huaichun; Hinnov, Linda A.; Tian, Wenqian; Wang, Xunlian; Yang, Tianshui; Li, Haiyan; Zhang, Shihong

    2018-04-01

    At the end of the Late Paleozoic Ice Age (LPIA) from late Early Permian to early Late Permian, the global climate was impacted by a prevailing megamonsoon and Gondwanan deglaciation. To better understand the abiotic and biotic responses to Milankovitch-forced climate changes during this time period, multi-element X-ray fluorescence (XRF) geochemistry analyses were conducted on 948 samples from the late Early-late Middle Permian Maokou Formation at Shangsi, South China. The Fe/Ti, S/Ti, Ba/Ti and Ca time series, which were calibrated with an existing "floating" astronomical time scale (ATS), show the entire suite of Milankovitch rhythms including 405 kyr long eccentricity, 128 and 95 kyr short eccentricity, 33 kyr obliquity and 20 kyr precession. Spectral coherency and cross-phase analysis reveals that chemical weathering (monitored by Fe/Ti) and upwelling (captured by S/Ti and Ba/Ti) are nearly antiphase in the precession band, which suggests a contrast between summer and winter monsoon intensities. Strong obliquity signal in the Ba/Ti series is proposed to derive from changes in thermohaline circulation intensity from glaciation dynamics in southern Gondwana. The abundance of foraminifer, brachiopod and ostracod faunas within the Maokou Formation were mainly controlled by the 1.1 Myr obliquity modulation cycle. The obliquity-forced high-nutrient and oxygen-depleted conditions generally produced a benthic foraminifer bloom, but threatened the brachiopod and ostracod faunas.

  12. Geochemistry, petrography, and zircon U-Pb geochronology of Paleozoic metaigneous rocks in the Mount Veta area of east-central Alaska: implications for the evolution of the westernmost part of the Yukon-Tanana terrane

    USGS Publications Warehouse

    Dusel-Bacon, Cynthia; Day, Warren C.; Aleinikoff, John N.

    2013-01-01

    We report the results of new mapping, whole-rock major, minor, and trace-element geochemistry, and petrography for metaigneous rocks from the Mount Veta area in the westernmost part of the allochthonous Yukon–Tanana terrane (YTT) in east-central Alaska. These rocks include tonalitic mylonite gneiss and mafic metaigneous rocks from the Chicken metamorphic complex and the Nasina and Fortymile River assemblages. Whole-rock trace-element data from the tonalitic gneiss, whose igneous protolith was dated by SHRIMP U–Pb zircon geochronology at 332.6 ± 5.6 Ma, indicate derivation from tholeiitic arc basalt. Whole-rock analyses of the mafic rocks suggest that greenschist-facies rocks from the Chicken metamorphic complex, a mafic metavolcanic rock from the Nasina assemblage, and an amphibolite from the Fortymile River assemblage formed as island-arc tholeiite in a back-arc setting; another Nasina assemblage greenschist has MORB geochemical characteristics, and another mafic metaigneous rock from the Fortymile River assemblage has geochemical characteristics of calc-alkaline basalt. Our geochemical results imply derivation in an arc and back-arc spreading region within the allochthonous YTT crustal fragment, as previously proposed for correlative units in other parts of the terrane. We also describe the petrography and geochemistry of a newly discovered tectonic lens of Alpine-type metaharzburgite. The metaharzburgite is interpreted to be a sliver of lithospheric mantle from beneath the Seventymile ocean basin or from sub-continental mantle lithosphere of the allochthonous YTT or the western margin of Laurentia that was tectonically emplaced within crustal rocks during closure of the Seventymile ocean basin and subsequently displaced and fragmented by faults.

  13. Neoproterozoic-Paleozoic Evolution of the Arctida Paleocontinent and Plate Reconstructions

    NASA Astrophysics Data System (ADS)

    Vernikovsky, V. A.; Metelkin, D. V.; Vernikovskaya, A. E.; Matushkin, N. Y.; Lobkovsky, L. I.; Shipilov, E. V.; Scientific Team of Arctida

    2011-12-01

    Available data on the existence of Precambrian metamorphic complexes among the main structures of the Arctic led to the suggestion that a large continental mass existed between Laurentia, Baltica and Siberia - an Arctic continent, more often called Arctida (Zonenshain, Natapov, 1987). It is inferred that as an independent continental mass Arctida was formed after the breakup of Rodinia, and in general it can have a pre-Grenvillian (including Grenvillian) basement age. The breakup of this mass and the collision of its fragments with adjacent cratons led to the formation of heterochronous collisional systems. Arctida probably included the Kara, Novosibirsk, Alaska-Chukotka blocks, the blocks of northern Alaska and the submerged Lomonosov Ridge, small fragments of the Inuit fold belt in the north of Greenland and the Canadian archipelago, the structures of the Svalbard and maybe the Timan-Pechora plates. However the inner structure of this paleocontinent, the mutual configuration of the blocks and its evolution in the Neoproterozoic-Paleozoic is still a matter of discussion. The most accurate way of solving these issues is by using paleomagnetic data, but those are nonexistent for most of the defined blocks. Reliable paleomagnetic determinations for the Neoproterozoic-Paleozoic time interval we are concerned with are available only for fragments of an island arc from Central Taimyr, which are 960 m.y. old (Vernikovsky et al., 2011) and for which the paleomagnetic pole is very close to the pole of Siberia from (Pavlov et al., 2002), and of the Kara microcontinent. This includes three paleomagnetic poles for 500, 450 and 420 Ma (Metelkin et al., 2000; Metelkin et al., 2005). It is those data that made up the basis of the presented paleotectonic reconstructions along with an extensive paleomagnetic database for the cratons of Laurentia, Baltica, Siberia and Gondwana. The paleogeographic position of the cratons is corrected (within the confidence levels for the

  14. Paleozoic mafic-intermediate intrusions (320-287 Ma) in the Kalatongke area, southern Altai, NW China: Products of protracted magmatism in a convergent tectonic setting

    NASA Astrophysics Data System (ADS)

    Qian, Zhuangzhi; Duan, Jun; Li, Chusi; Xu, Gang; Feng, Yanqing; Ren, Meng

    2018-06-01

    Numerous small mafic-intermediate intrusions are present in the Kalatongke area in the southern part of the Paleozoic Altai Orogenic Belt, NW China. Previous studies reveal that most of these intrusions were emplaced at ∼287 Ma, broadly coeval with the eruption of alkaline flood basalts at ⩽282 Ma in the Tarim Craton. The similar ages have led some researchers to believe that the Tarim flood basalts and the Kalatongke mafic-intermediate intrusions are related to the same mantle plume. New and existing geochronological and geochemical data for the mafic-intermediate intrusions in the Kalatongke area together do not support such interpretation. Most of the intrusions in this small area (4.5 × 2 km) were emplaced at ∼287 Ma but our new data reveal that older intrusive rocks with zircon U-Pb ages from 290 ± 1.5 to 320 ± 2 Ma are also present. The temporal and spatial distribution of these intrusions does not show a hotspot track as expected by the mantle plume model. The intrusive rocks have similar Nd-Hf isotope compositions (εNd = 3-9, εHf = 15-19) and are all characterized by light REE enrichments relative to heavy REE, plus pronounced negative Nb-Ta anomalies. The oldest intrusion (∼320 Ma) also shows negative Zr-Hf anomalies, which are common in arc basalts but absent in continental flood basalts. The results of mixing calculations based on Sr-Nd-Hf isotopes and selected trace elements (Th, Nb and Yb) indicate that the parental magmas for these intrusions were all enriched in Th and depleted in Nb prior to crustal contamination, similar to the magmas generated in a convergent tectonic setting from subduction to post-subduction elsewhere in the world. The results from this study remind us that temporal correlation is not a reliable tool to determine the size of a mantle plume.

  15. Climate and vegetational regime shifts in the late Paleozoic ice age earth.

    PubMed

    DiMichele, W A; Montañez, I P; Poulsen, C J; Tabor, N J

    2009-03-01

    The late Paleozoic earth experienced alternation between glacial and non-glacial climates at multiple temporal scales, accompanied by atmospheric CO2 fluctuations and global warming intervals, often attended by significant vegetational changes in equatorial latitudes of Pangaea. We assess the nature of climate-vegetation interaction during two time intervals: middle-late Pennsylvanian transition and Pennsylvanian-Permian transition, each marked by tropical warming and drying. In case study 1, there is a catastrophic intra-biomic reorganization of dominance and diversity in wetland, evergreen vegetation growing under humid climates. This represents a threshold-type change, possibly a regime shift to an alternative stable state. Case study 2 is an inter-biome dominance change in western and central Pangaea from humid wetland and seasonally dry to semi-arid vegetation. Shifts between these vegetation types had been occurring in Euramerican portions of the equatorial region throughout the late middle and late Pennsylvanian, the drier vegetation reaching persistent dominance by Early Permian. The oscillatory transition between humid and seasonally dry vegetation appears to demonstrate a threshold-like behavior but probably not repeated transitions between alternative stable states. Rather, changes in dominance in lowland equatorial regions were driven by long-term, repetitive climatic oscillations, occurring with increasing intensity, within overall shift to seasonal dryness through time. In neither case study are there clear biotic or abiotic warning signs of looming changes in vegetational composition or geographic distribution, nor is it clear that there are specific, absolute values or rates of environmental change in temperature, rainfall distribution and amount, or atmospheric composition, approach to which might indicate proximity to a terrestrial biotic-change threshold.

  16. Thermal Inertia of Rocks and Rock Populations

    NASA Technical Reports Server (NTRS)

    Golombek, M. P.; Jakosky, B. M.; Mellon, M. T.

    2001-01-01

    The effective thermal inertia of rock populations on Mars and Earth is derived from a model of effective inertia versus rock diameter. Results allow a parameterization of the effective rock inertia versus rock abundance and bulk and fine component inertia. Additional information is contained in the original extended abstract.

  17. Pb-isotopic systematics of lunar highland rocks (>3.9 Ga): Constraints on early lunar evolution

    USGS Publications Warehouse

    Premo, W.R.; Tatsumoto, M.; Misawa, K.; Nakamuka, N.; Kita, N.I.

    1999-01-01

    The present lead (Pb)-isotopic database of over 200 analyses from nearly 90 samples of non-mare basalt, lunar highland rocks (>3.9 Ga) delineate at least three isotopically distinct signatures that in some combination can be interpreted to characterize the systematics of the entire database. Two are fairly new sets of lunar data and are typical of Pb data from other solar-system objects, describing nearly linear arrays slightly above the 'geochron' values, with 207Pb/206Pb values 500). Although the age and origin of this exotic Pb is not well constrained, it is interpreted to be related to the entrapment of incompatible-element-rich (U, Th) melts within the lunar upper mantle and crust between 4.36 and 4.46 Ga (urKREEP residuum?). The latest discovered Pb signature is found only in lunar meteorites and is characterized by relatively low source ?? values between 10 and 50 at 3.9 Ga. The fact that most lunar crustal rocks (>3.9 Ga) exhibit high 207Pb/206Pb values requires that they were derived from, mixed with, or contaminated by Pb produced from early-formed, high-?? sources. The ubiquity of these U-Pb characteristics in the sample collection is probably an artifact of Apollo and Luna sampling sites, all located on the near side of the Moon, which was deeply excavated during the basin-forming event(s). However, the newest Pb-isotopic data support the idea that the Moon originally had a ?? value of ~8 to 35, slightly elevated from Earth values, and that progressive U-Pb fractionations occurred within the Moon during later stages of differentiation between 4.36 and 4.46 Ga.

  18. New Geochronology and Radiometric Age Dates Improve the Definition and Continuity of Accreted Tectonic Terranes of Northern Venezuela and the Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Baquero, M.; Mann, P.; Audemard, F. A.

    2017-12-01

    We use new and compiled geochronology and radiometric dates from the area of Venezuela to Tobago to define the following crustal provinces: 1) Guyana shield forms a sub-circular area of Pan-African rocks against which all younger terranes have collided and partially assumed its rounded shape: ages for the Guyana Shield range from >3.4 Ga to 1.8 Ga; 2) accreted Paleozoic rocks form a sub-circular, largely buried province that surround the Guiana Shield to the north and west; the El Pilar strike-slip fault forms the abrupt, northern limit of the Precambrian-Paleozoic craton in Venezuela characterized by crustal thicknesses of 40-50 km; 3) the Early to Late Cretaceous Great Arc of the Caribbean forms a continuous basement high that can be traced from northern Colombia, through the ABC Islands to La Blanquilla Island, and north along the Aves Ridge to the Greater Antilles; ages of the GAC generally are in the range of Late Cretaceous to early Eocene and have geochemistry consistent with intra-oceanic island arcs or oceanic plateau rocks with the exception of La Orchila Island with a Paleozoic intrusive age; the GAC collided from west to east with the passive margin of South America from Paleocene in western Venezuela to Plio-Pleistocene in the Trinidad area and marks the west to east passage of the Caribbean plate past the South American plate; 4) a post-GAC rifting event affected the GAC-South America suture from late Eocene to middle Miocene time in the Falcón Basin of western Venezuela with ages on intrusive and volcanic from 34 to 15.4 Ma; these ages are coeval with intrusive ages from the southernmost Lesser Antilles on Los Frailes and Los Testigos Islands and range from 35.7±2.6 to 36.4±0.5 Ma; the age of the intervening basin, the Bonaire basin, is poorly known but may be coeval with the Oligocene-Miocene extension that extended the suture zone in western Venezuela and extended the Lesser Antilles arc in early Middle Miocene time to form the Lesser Antilles

  19. Geology, geochemistry, geochronology, and economic potential of Neogene volcanic rocks in the Laguna Pedernal and Salar de Aguas Calientes segments of the Archibarca lineament, northwest Argentina

    NASA Astrophysics Data System (ADS)

    Richards, J. P.; Jourdan, F.; Creaser, R. A.; Maldonado, G.; DuFrane, S. A.

    2013-05-01

    youngest rocks in this sub-suite show the highest La/Yb ratios, and are characterized by abundant hornblende phenocrysts (not commonly seen in other rocks from the area). In the Pliocene-Pleistocene, there was a return to more typical andesite-dacite volcanism, with geochemical characteristics similar to the early-middle Miocene lavas, and are also grouped in sub-suite 1. Finally, extensional tectonics in the Quaternary led to localized outpouring of mafic (basaltic andesitic to andesitic) monogenetic lava flows and cones. One particularly large flow, the Vega Aguas Calientes lava flow, covers approximately 90 km2, and samples form two groupings, with affinities similar to the least-evolved samples from sub-suites 1 and 2 (sub-groups BA1 and BA2, respectively). Nd and Sr isotopic compositions indicate moderate to strong crustal contamination, especially in more felsic rocks, and extend from 87Sr/86Sr (0.706) and εNd (- 2.4), values typical of Central Volcanic Zone rocks, to more evolved compositions (0.709 and - 6.8, respectively) typical of large-volume ignimbrites of the Altiplano-Puna Volcanic Complex and Cerro Galán. The latter compositions are thought to be derived by extensive interaction between mantle-derived arc magmas and Paleozoic granitoid rocks that form much of the crustal column in this region. The distinctive mineralogy and geochemistry of the sub-suite 2 middle-late Miocene rhyodacitic flow-dome complexes indicate that these magmas had higher water content than both the earlier and later sub-suite 1 andesites-dacites. They were erupted during a period of tectonic quiescence following the Quechua orogenic phase, and geophysical evidence suggests that they were proximally derived from a large upper crustal magma chamber which partially collapsed to form a trap-door caldera. Strong fumarolic alteration associated with the youngest of these felsic volcanoes, Cerro Abra Grande, suggests the potential for the existence of epithermal-type mineralization within

  20. Planetary Perspective on Life on Early Mars and the Early Earth

    NASA Technical Reports Server (NTRS)

    Sleep, Norman H.; Zahnle, Kevin

    1996-01-01

    Impacts of asteroids and comets posed a major hazard to the continuous existence of early life on Mars as on the Earth. The chief danger was presented by globally distributed ejecta, which for very large impacts takes the form of transient thick rock vapor atmospheres; both planets suffered such impacts repeatedly. The exposed surface on both planets was sterilized when it was quickly heated to the temperature of condensed rock vapor by radiation and rock rain. Shallow water bodies were quickly evaporated and sterilized. Any surviving life must have been either in deep water or well below the surface.

  1. Excess lead in "rusty rock" 66095 and implications for an early lunar differentiation

    USGS Publications Warehouse

    Nunes, P.D.; Tatsumoto, M.

    1973-01-01

    Apollo 16 breccia 66095 contains a remarkably high amount of lead (15 part's per million), 85 percent of which is not supported by uranium and thorium in the rock. An acid leach experiment coupled with separate analyses of the whole rock and mineral fractions for uranium, thorium, and lead indicate that the excess lead has a lunar source and was apparently introduced about 4.0 X 109 years ago. The data also suggest that a major lunar crustal differentiation occurred about 4.47 X 109 years ago.

  2. Gold in the Black Hills, South Dakota, and how new deposits might be found

    USGS Publications Warehouse

    Norton, James Jennings

    1974-01-01

    Of the recorded production of 34,694,552 troy ounces of gold mined in South Dakota through 1971, about 90 percent has come from Precambrian ore bodies in the Homestake mine at Lead in the northern Black Hills. Most of the rest has come from ore deposited in the Deadwood Formation (Cambrian) by hydrothermal replacement during early Tertiary igneous activity. About 99 percent of the total production has been within a radius of 5 miles (8 km) of Lead. Elsewhere, prospecting has been intense, both in the Precambrian rocks, which are exposed over an area 61 by 26 miles (98 by 42 km), and in nearby Paleozoic rocks. All the known ore bodies have been found either at the surface or in subsurface workings of operating mines. Efforts to find totally new deposits have been modest and sporadic; no comprehensive and systematic program has ever been attempted. Obviously, any exploration program should be aimed at finding a new deposit resembling the Homestake in the Precambrian, but discovery in the Deadwood of a new group of ore bodies containing several hundred thousand ounces of gold would certainly be worthwhile. Evidence has long been available that the Deadwood deposits and the Homestake deposit are somehow related. Current opinion is that (1) the Homestake ore is mainly Precambrian, (2) a trivial amount of Homestake ore is Tertiary, (3)gold in Deadwood basal conglomerate is largely of placer origin, and (4) the gold of replacement deposits in the Deadwood and in other rock units came originally from sources similar to the Homestake deposit or its parent materials. Homestake ore is virtually entirely contained in a unit of iron-formation locally known as the Homestake Formation, which seemingly had more gold in the original sediments than similar rocks exposed elsewhere in the Black Hills. Gold, sulfur, and other constituents were subsequently concentrated in ore shoots in zones of dilation caused by cross folds that deformed earlier major folds. These ore shoots are in

  3. Late Leonardian plants from West Texas: The youngest Paleozoic plant megafossils in North America

    USGS Publications Warehouse

    Mamay, S.H.; Miller, J.M.; Rohr, D.M.

    1984-01-01

    Abundant Permian plant megafossils were discovered in the Del Norte Mountains of Brewster County, Trans-Pecos Texas. The flora is dominated by a new and distinctive type of gigantopteroid leaves. Marine invertebrates are closely associated, and this admixture of continental and marine fossils indicates a deltaic depositional setting, probably on the southern margin of the Permian Basin. Conodonts indicate correlation with the uppermost Leonardian Road Canyon Formation in the Glass Mountains. These are the youngest Paleozoic plant megafossils known in North America; they add an important paleontological element to the classic Permian area of this Continent.

  4. Competitive displacement among post-Paleozoic cyclostome and cheilostome bryozoans

    NASA Technical Reports Server (NTRS)

    Sepkoski, J. J. Jr; McKinney, F. K.; Lidgard, S.; Sepkoski JJ, J. r. (Principal Investigator)

    2000-01-01

    Encrusting bryozoans provide one of the few systems in the fossil record in which ecological competition can be observed directly at local scales. The macroevolutionary history of diversity of cyclostome and cheilostome bryozoans is consistent with a coupled-logistic model of clade displacement predicated on species within clades interacting competitively. The model matches observed diversity history if the model is perturbed by a mass extinction with a position and magnitude analogous to the Cretaceous/Tertiary boundary event, Although it is difficult to measure all parameters in the model from fossil data, critical factors are intrinsic rates of extinction, which can be measured. Cyclostomes maintained a rather low rate of extinction, and the model solutions predict that they would lose diversity only slowly as competitively superior species of cheilostomes diversified into their environment. Thus, the microecological record of preserved competitive interactions between cyclostome and cheilostome bryozoans and the macroevolutionary record of global diversity are consistent in regard to competition as a significant influence on diversity histories of post-Paleozoic bryozoans.

  5. Odyssey/White Rock

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These Mars Odyssey images show the 'White Rock' feature on Mars in both infrared (left) and visible (right) wavelengths. The images were acquired simultaneously on March 11, 2002. The box shows where the visible image is located in the infrared image. 'White Rock' is the unofficial name for this unusual landform that was first observed during the Mariner 9 mission in the early 1970's. The variations in brightness in the infrared image are due to differences in surface temperature, where dark is cool and bright is warm. The dramatic differences between the infrared and visible views of White Rock are the result of solar heating. The relatively bright surfaces observed at visible wavelengths reflect more solar energy than the darker surfaces, allowing them to stay cooler and thus they appear dark in the infrared image. The new thermal emission imaging system data will help to address the long standing question of whether the White Rock deposit was produced in an ancient crater lake or by dry processes of volcanic or wind deposition. The infrared image has a resolution of 100 meters (328 feet) per pixel and is 32 kilometers (20 miles) wide. The visible image has a resolution of 18 meters per pixel and is approximately 18 kilometers (11 miles) wide. The images are centered at 8.2 degrees south latitude and 24.9 degrees east longitude.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  6. Geological, petrogical and geochemical characteristics of granitoid rocks in Burma: with special reference to the associated WSn mineralization and their tectonic setting

    NASA Astrophysics Data System (ADS)

    Zaw, Khin

    The granitoid rocks in Burma extend over a distance of 1450 km from Putao, Kachin State in the north, through Mogok, Kyaukse, Yamethin and Pyinmana in the Mandalay Division, to Tavoy and Mergui areas, Tenasserim Division, in the south. The Burmese granitoids can be subdivided into three N-S trending, major belts viz. western granitoid belt, central graniotoid belt and eastern granitoid belt. The Upper Cretaceous-Lower Eocene western belt granitoids are characterized by high-level intrusions associated with porphyry Cu(Au) related, younger volcanics; these plutonic and volcanic rocks are thought to have been emplaced as a magmatic-volcanic arc (inner magmatic-volcanic arc) above an east-dipping, but westwardly migrating, subduction zone related to the prolonged plate convergence which occurred during Upper Mesozoic and Cenozoic. The central granitoid belt is characterized by mesozonal, Mostly Upper Cretaceous to Lower Eocene plutons associated with abundant pegmalites and aplites, numerous vein-type W-Sn deposits and rare co-magmatic volcanics. The country rocks are structurally deformed, metamorphic rocks of greenschist to upper amphibolite facies ranging in age as early as Upper Precambrian to Upper Paleozoic and locally of fossiliferous, metaclastic rocks (Mid Jurassic to Lower Cretaceous). Available K/Ar radiometric data indicate significant and possibly widespread thermal disturbances in the central granitoid belt during the Tertiary (mostly Miocence). In this study, the distribution, lithological, textural and structural characteristics of the central belt granitoids are reviewed, and their mineralogical, petrological, and geochemical features are presented. A brief description of W-Sn ore veins associated with these granitoid plutons is also reported. Present geological, petrological and geochemical evidences demonstrate that the W-Sn related, central belt granitoids are mostly granodiorite and granite which are commonly transformed into granitoid gneisses

  7. Orbital identification of carbonate-bearing rocks on Mars

    USGS Publications Warehouse

    Ehlmann, B.L.; Mustard, J.F.; Murchie, S.L.; Poulet, F.; Bishop, J.L.; Brown, A.J.; Calvin, W.M.; Clark, R.N.; Des Marais, D.J.; Milliken, R.E.; Roach, L.H.; Roush, T.L.; Swayze, G.A.; Wray, J.J.

    2008-01-01

    Geochemical models for Mars predict carbonate formation during aqueous alteration. Carbonate-bearing rocks had not previously been detected on Mars' surface, but Mars Reconnaissance Orbiter mapping reveals a regional rock layer with near-infrared spectral characteristics that are consistent with the presence of magnesium carbonate in the Nili Fossae region. The carbonate is closely associated with both phyllosilicate-bearing and olivine-rich rock units and probably formed during the Noachian or early Hesperian era from the alteration of olivine by either hydrothermal fluids or near-surface water. The presence of carbonate as well as accompanying clays suggests that waters were neutral to alkaline at the time of its formation and that acidic weathering, proposed to be characteristic of Hesperian Mars, did not destroy these carbonates and thus did not dominate all aqueous environments.

  8. Rock pushing and sampling under rocks on Mars

    USGS Publications Warehouse

    Moore, H.J.; Liebes, S.; Crouch, D.S.; Clark, L.V.

    1978-01-01

    Viking Lander 2 acquired samples on Mars from beneath two rocks, where living organisms and organic molecules would be protected from ultraviolet radiation. Selection of rocks to be moved was based on scientific and engineering considerations, including rock size, rock shape, burial depth, and location in a sample field. Rock locations and topography were established using the computerized interactive video-stereophotogrammetric system and plotted on vertical profiles and in plan view. Sampler commands were developed and tested on Earth using a full-size lander and surface mock-up. The use of power by the sampler motor correlates with rock movements, which were by plowing, skidding, and rolling. Provenance of the samples was determined by measurements and interpretation of pictures and positions of the sampler arm. Analytical results demonstrate that the samples were, in fact, from beneath the rocks. Results from the Gas Chromatograph-Mass Spectrometer of the Molecular Analysis experiment and the Gas Exchange instrument of the Biology experiment indicate that more adsorbed(?) water occurs in samples under rocks than in samples exposed to the sun. This is consistent with terrestrial arid environments, where more moisture occurs in near-surface soil un- der rocks than in surrounding soil because the net heat flow is toward the soil beneath the rock and the rock cap inhibits evaporation. Inorganic analyses show that samples of soil from under the rocks have significantly less iron than soil exposed to the sun. The scientific significance of analyses of samples under the rocks is only partly evaluated, but some facts are clear. Detectable quantities of martian organic molecules were not found in the sample from under a rock by the Molecular Analysis experiment. The Biology experiments did not find definitive evidence for Earth-like living organisms in their sample. Significant amounts of adsorbed water may be present in the martian regolith. The response of the soil

  9. A new U-Pb zircon age and a volcanogenic model for the early Permian Chemnitz Fossil Forest

    NASA Astrophysics Data System (ADS)

    Luthardt, Ludwig; Hofmann, Mandy; Linnemann, Ulf; Gerdes, Axel; Marko, Linda; Rößler, Ronny

    2018-04-01

    The Chemnitz Fossil Forest depicts one of the most completely preserved forest ecosystems in late Paleozoic Northern Hemisphere of tropical Pangaea. Fossil biota was preserved as a T0 taphocoenosis resulting from the instantaneous entombment by volcanic ashes of the Zeisigwald Tuff. The eruption depicts one of the late magmatic events of post-variscan rhyolitic volcanism in Central Europe. This study represents a multi-method evaluation of the pyroclastic ejecta encompassing sedimentological and (isotope) geochemical approaches to shed light on magmatic and volcanic processes, and their role in preserving the fossil assemblage. The Zeisigwald Tuff pyroclastics (ZTP) reveal a radiometric age of 291 ± 2 Ma, pointing to a late Sakmarian/early Artinskian (early Permian) stratigraphic position for the Chemnitz Fossil Forest. The initial eruption was of phreatomagmatic style producing deposits of cool, wet ashes, which deposited from pyroclastic fall out and density currents. Culmination of the eruption is reflected by massive hot and dry ignimbrites. Whole-rock geochemistry and zircon grain analysis show that pyroclastic deposits originated from a felsic, highly specialised magma, which underwent advanced fractionation, and is probably related to post-Carboniferous magmatism in the Western Erzgebirge. The ascending magma recycled old cadomic crust of the Saxo-thuringian zone, likely induced by a mantle-derived heat flow during a phase of post-variscan crustal delamination. Geochemical trends within the succession of the basal pyroclastic horizons reflect inverse zonation of the magma chamber and provide evidence for the continuous eruption and thus a simultaneous burial of the diverse ecosystem.

  10. Maps showing the distribution of uranium-deposit clusters in the Colorado Plateau uranium province

    USGS Publications Warehouse

    Finch, Warren I.

    1991-01-01

    The Colorado Palteau Uranium Province (CPUP) is defined by the distribution of uranium deposits, chiefly the sandstone-type, in upper Paleozoic and Mesozoic sedimentary rocks within the Colorado Plateau physiographic province (Granger and others, 1986).  The uranium province is bordered by widely distributed and mostly minor uranium deposits in Precambrian and Tertiary rocks and by outcrops of Tertiary extrusive and intrusive igneous rocks.  

  11. Age and position of the sedimentary basin of the Ocoee Supergroup western Blue Ridge tectonic province, southern Appalachians

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unrug, R.; Unrug, S.; Ausich, W.I.

    The stratigraphic continuity of the Ocoee Supergroup established recently allows one to extrapolate the Paleozoic age of the Walden Creek Group determined on paleontological evidence to the entire Ocoee succession. The Walden Creek Group rocks contain a fossil assemblage of fenestrate bryozoan, algal, trilobite, ostracod, brachiopod and echinozoan fragments and agglutinated foraminifer tests that indicate Silurian or younger Paleozoic age. The fossils occur in carbonate clasts in polymict conglomerates, and debris-flow breccia beds, and in olistoliths of bedded carbonate and shale, and calcarenite turbidite beds. These carbonate lithologies form a minor, but characteristic constituent of the Walden Creek Group. Fossilmore » have been found also in shale and mudstone siliciclastic lithologies of the Walden Creek Group. The fossils are fragmented and poorly preserved because of several cycles of cementation and solution in the carbonate rocks and a pervasive cleavage in the fine-grained siliciclastic rocks. Recently reported Mississippian plant fossils from the Talladega belt indicate widespread occurrence of Middle Paleozoic basins in the Western Blue Ridge. These pull-apart basins formed in the stress field generated by northward movement of Laurentia past the western margin of Gondwana after the Taconian-Famatinian collision in the Ordovician.« less

  12. Petrology and age of volcanic-arc rocks from the continental margin of the Bering Sea: implications for Early Eocene relocation of plate boundaries

    USGS Publications Warehouse

    Davis, A.S.; Pickthorn, L.-B.G.; Vallier, T.L.; Marlow, M. S.

    1989-01-01

    Eocene volcanic flow and dike rocks from the Beringian margin have arc characteristics, implying a convergent history for this region during the early Tertiary. Chemical and mineralogical compositions are similar to those of modern Aleutian-arc lavas. They also resemble volcanic-arc compositions from western mainland Alaska, although greater chemical diversity and a stronger continental influence are observed in the Alaskan mainland rocks. Early Eocene ages of 54.4-50.2 Ma for the Beringian samples are well constrained by conventional K-Ar ages of nine plagioclase separates and by concordant 40Ar/39Ar incremental heating and total-fusion experiments. A concordant U-Pb zircon age of 53 Ma for the quartz-diorite dike is in good agreement with the K-Ar data. Plate motion studies of the North Pacific Ocean indicate more northerly directed subduction prior to the Tertiary and a continuous belt of arc-type volcanism extending from Siberia, along the Beringian margin, into mainland Alaska. Around 56 Ma (chron 25-24), subduction changed to a more westerly direction and subduction-related volcanism ceased for most of mainland Alaska. The increasingly oblique angle of convergence should have ended subduction along the Beringian margin as well. However, consistent ages of 54-50 Ma indicate a final pulse in arc-type magmatism during this period of plate adjustment. -from Authors

  13. Productivity Contribution of Paleozoic Woodlands to the Formation of Shale-Hosted Massive Sulfide Deposits in the Iberian Pyrite Belt (Tharsis, Spain)

    NASA Astrophysics Data System (ADS)

    Fernández-Remolar, David C.; Harir, Mourad; Carrizo, Daniel; Schmitt-Kopplin, Philippe; Amils, Ricardo

    2018-03-01

    The geological materials produced during catastrophic and destructive events are an essential source of paleobiological knowledge. The paleobiological information recorded by such events can be rich in information on the size, diversity, and structure of paleocommunities. In this regard, the geobiological study of late Devonian organic matter sampled in Tharsis (Iberian Pyrite Belt) provided some new insights into a Paleozoic woodland community, which was recorded as massive sulfides and black shale deposits affected by a catastrophic event. Sample analysis using TOF-SIMS (Time of Flight Secondary Ion Mass Spectrometer), and complemented by GC/MS (Gas Chromatrograph/Mass Spectrometer) identified organic compounds showing a very distinct distribution in the rock. While phytochemical compounds occur homogeneously in the sample matrix that is composed of black shale, the microbial-derived organics are more abundant in the sulfide nodules. The cooccurrence of sulfur bacteria compounds and the overwhelming presence of phytochemicals provide support for the hypothesis that the formation of the massive sulfides resulted from a high rate of vegetal debris production and its oxidation through sulfate reduction under suboxic to anoxic conditions. A continuous supply of iron from hydrothermal activity coupled with microbial activity was strictly necessary to produce this massive orebody. A rough estimate of the woodland biomass was made possible by accounting for the microbial sulfur production activity recorded in the metallic sulfide. As a result, the biomass size of the late Devonian woodland community was comparable to modern woodlands like the Amazon or Congo rainforests.

  14. Total Petroleum Systems of the North Carpathian Province of Poland, Ukraine, Czech Republic, and Austria

    USGS Publications Warehouse

    Pawlewicz, Mark

    2006-01-01

    Three total petroleum systems were identified in the North Carpathian Province (4047) that includes parts of Poland, Ukraine, Austria, and the Czech Republic. They are the Isotopically Light Gas Total Petroleum System, the Mesozoic-Paleogene Composite Total Petroleum System, and the Paleozoic Composite Total Petroleum System. The Foreland Basin Assessment Unit of the Isotopically Light Gas Total Petroleum System is wholly contained within the shallow sedimentary rocks of Neogene molasse in the Carpathian foredeep. The biogenic gas is generated locally as the result of bacterial activity on dispersed organic matter. Migration is also believed to be local, and gas is believed to be trapped in shallow stratigraphic traps. The Mesozoic-Paleogene Composite Total Petroleum System, which includes the Deformed Belt Assessment Unit, is structurally complex, and source rocks, reservoirs, and seals are juxtaposed in such a way that a single stratigraphic section is insufficient to describe the geology. The Menilite Shale, an organic-rich rock widespread throughout the Carpathian region, is the main hydrocarbon source rock. Other Jurassic to Cretaceous formations also contribute to oil and gas in the overthrust zone in Poland and Ukraine but in smaller amounts, because those formations are more localized than the Menilite Shale. The Paleozoic Composite Total Petroleum System is defined on the basis of the suspected source rock for two oil or gas fields in western Poland. The Paleozoic Reservoirs Assessment Unit encompasses Devonian organic-rich shale believed to be a source of deep gas within the total petroleum system. East of this field is a Paleozoic oil accumulation whose source is uncertain; however, it possesses geochemical similarities to oil generated by Upper Carboniferous coals. The undiscovered resources in the North Carpathian Province are, at the mean, 4.61 trillion cubic feet of gas and 359 million barrels of oil. Many favorable parts of the province have been

  15. Silurian extension in the Upper Connecticut Valley, United States and the origin of middle Paleozoic basins in the Québec embayment

    USGS Publications Warehouse

    Rankin, D.W.; Coish, R.A.; Tucker, R.D.; Peng, Z.X.; Wilson, S.A.; Rouff, A.A.

    2007-01-01

    Pre-Silurian strata of the Bronson Hill arch (BHA) in the Upper Connecticut Valley, NH-VT are host to the latest Ludlow Comerford Intrusive Suite consisting, east to west, of a mafic dike swarm with sheeted dikes, and an intrusive complex. The rocks are mostly mafic but with compositions ranging from gabbro to leucocratic tonalite. The suite is truncated on the west by the Monroe fault, a late Acadian thrust that carries rocks of the BHA westward over Silurian-Devonian strata of the Connecticut Valley-Gaspe?? trough (CVGT). Dikes intrude folded strata with a pre-intrusion metamorphic fabric (Taconian?) but they experienced Acadian deformation. Twenty fractions of zircon and baddeleyite from three sample sites of gabbrodiorite spanning nearly 40 km yield a weighted 207Pb/206Pb age of 419 ?? 1 Ma. Greenschist-facies dikes, sampled over a strike distance of 35 km, were tholeiitic basalts formed by partial melting of asthenospheric mantle, with little or no influence from mantle or crustal lithosphere. The dike chemistry is similar to mid-ocean ridge, within-plate, and back-arc basin basalts. Parent magmas originated in the asthenosphere and were erupted through severely thinned lithosphere adjacent to the CVGT. Extensive middle Paleozoic basins in the internides of the Appalachian orogen are restricted to the Que??bec embayment of the Laurentian rifted margin, and include the CVGT and the Central Maine trough (CMT), separated from the BHA by a Silurian tectonic hinge. The NE-trending Comerford intrusions parallel the CVGT, CMT, and the tectonic hinge, and indicate NW-SE extension. During post-Taconian convergence, the irregular margins of composite Laurentia and Avalon permitted continued collision in Newfoundland (St. Lawrence promontory) and coeval extension in the Que??bec embayment. Extension may be related to hinge retreat of the northwest directed Brunswick subduction complex and rise of the asthenosphere following slab break-off. An alternative hypothesis is

  16. Identification of remagnetization processes in Paleozoic sedimentary rocks of the northeast Rhenish Massif in Germany by K-Ar dating and REE tracing of authigenic illite and Fe oxides

    NASA Astrophysics Data System (ADS)

    Zwing, A.; Clauer, N.; Liewig, N.; Bachtadse, V.

    2009-06-01

    This study combines mineralogical, chemical (rare earth elemental (REE)) and isotopic (K-Ar) data of clay minerals as well as chemical compositions (major and REE) of Fe oxide leachates from remagnetized Palaeozoic sedimentary rocks from NE Rhenish Massif in Germany, for which the causes of remagnetization are not yet clear. The dominant carrier of the syntectonic, pervasive Carboniferous magnetization is magnetite. The Middle Devonian clastic rocks record an illitization event at 348 ± 7 Ma probably connected to a major magmatic event in the Mid-German Crystalline Rise, whereas a second illitization episode at 324 ± 3 Ma is coeval to the northward migrating deformation through the Rhenish Massif, being only detected in Upper Devonian and Lower Carboniferous rocks. The age of that younger illitization is not significantly different from that of the remagnetization, which, however, is not restricted to the upper part of the orogenic belt, but affects also the Middle Devonian strata. The REE patterns of the Fe-enriched leachates support two mineralization episodes with varied oxidation-reduction conditions outlined by varied Eu and Ce anomalies. This is not compatible with a unique, pervasive migration of orogenic fluids on a regional scale to explain the remagnetization in the studied region. While clay diagenesis and remagnetization are time-equivalent in Upper Devonian and Lower Carboniferous rocks, they are not so in Middle Devonian rocks. Transformation of smectite into illite cannot, therefore, account for the growth of associated authigenic magnetite, which must have been triggered by a different process. Since remagnetization and deformation ages are similar, the mechanism could relate to local physical conditions such as pressure solution and changing pore fluid pressure due to tectonic stress as well as to chemical conditions such as changing composition of the pore fluids.

  17. Catagenesis of organic matter of oil source rocks in Upper Paleozoic coal formation of the Bohai Gulf basin (eastern China)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, R.X.; Li, Y.Z.; Gao, Y.W.

    2007-05-15

    The Bohai Gulf basin is the largest petroliferous basin in China. Its Carboniferous-Permian deposits are thick (on the average, ca. 600 m) and occur as deeply as 5000 m. Coal and carbonaceous shale of the Carboniferous Taiyuan Formation formed in inshore plain swamps. Their main hydrocarbon-generating macerals are fluorescent vitrinite, exinite, alginite, etc. Coal and carbonaceous shale of the Permian Shanxi Formation were deposited in delta-alluvial plain. Their main hydrocarbon-generating macerals are vitrinite, exinite, etc. The carbonaceous rocks of these formations are characterized by a high thermal maturity, with the vitrinite reflectance R{sub 0} > 2.0%. The Bohai Gulf basinmore » has been poorly explored so far, but it is highly promising for natural gas.« less

  18. The Impact of Developmental Factors on Stereotypic Rocking of Children with Visual Impairment.

    ERIC Educational Resources Information Center

    McHugh, Elaine; Lieberman, Lauren

    2003-01-01

    Of 52 children (ages 9-19) with visual impairments who attended a sports camp, 15 demonstrated stereotypic rocking currently or in the past. Children most likely to rock were those with retinopathy of prematurity who underwent lengthy hospital stays and multiple surgeries early in life and who were blind from birth. (Contains references.)…

  19. Geology of the Payette National Forest and vicinity, west-central Idaho

    USGS Publications Warehouse

    Lund, Karen

    2005-01-01

    Before the Late Cretaceous, the eastern and western parts of the geologically complex Payette National Forest, as divided by the Salmon River suture, had fundamentally different geologic histories. The eastern part is underlain by Mesoproterozoic to Cambrian(?) rocks of the Laurentian (Precambrian North American) continent. Thick Mesopro-terozoic units, which are at least in part equivalent in age to the Belt Supergroup of northern Idaho and western Montana, underwent Mesoproterozoic metamorphic and deformational events, including intrusion of Mesoproterozoic plutons. Dur-ing the Neoproterozoic to early Paleozoic, the western edge of Laurentia was rifted. This event included magmatism and resulted in deposition of rift-related Neoproterozoic to Lower Cambrian(?) volcanic and sedimentary rocks above Mesopro-terozoic rocks. The western part of the forest is underlain by upper Paleozoic to lower Mesozoic island-arc volcanic and sedimentary rocks. These rocks comprise four recognized island-arc terranes that were amalgamated and intruded by intermediate-composition plutons, probably in the Late Juras-sic and Early Cretaceous, and then sutured to Laurentia along the Salmon River suture in the Late Cretaceous. The Salmon River suture formed as a right-lateral, transpressive fault. The metamorphic grade and structural complexity of the rocks increase toward the suture from both sides, and geochemical signatures in crosscutting plutonic rocks abruptly differ across the crustal boundary. Having been reactivated by younger structures, the Salmon River suture forms a north-trending topographic depression along Long Valley, through McCall, to the Goose Creek and French Creek drainages. During the last stages of metamorphism and deformation related to the suture event, voluminous plutons of the Idaho batholith were intruded east of the suture. An older plutonic series is intermediate in composition and preserved as elon-gated and deformed bodies near the suture and as parts of

  20. Geologic map of the west half of the Blythe 30' by 60' quadrangle, Riverside County, California and La Paz County, Arizona

    USGS Publications Warehouse

    Stone, Paul

    2006-01-01

    The Blythe 30' by 60' quadrangle is located along the Colorado River between southeastern California and western Arizona. This map depicts the geology of the west half of the Blythe quadrangle, which is mostly in California. The map area is a desert terrain consisting of mountain ranges surrounded by extensive alluvial fans and plains, including the flood plain of the Colorado River which covers the easternmost part of the area. Mountainous parts of the area, including the Big Maria, Little Maria, Riverside, McCoy, and Mule Mountains, consist of structurally complex rocks that range in age from Proterozoic to Miocene. Proterozoic gneiss and granite are overlain by Paleozoic to Early Jurassic metasedimentary rocks (mostly marble, quartzite, and schist) that are lithostratigraphically similar to coeval formations of the Colorado Plateau region to the east. The Paleozoic to Jurassic strata were deposited on the tectonically stable North American craton. These rocks are overlain by metamorphosed Jurassic volcanic rocks and are intruded by Jurassic plutonic rocks that represent part of a regionally extensive, northwest-trending magmatic arc. The overlying McCoy Mountains Formation, a very thick sequence of weakly metamorphosed sandstone and conglomerate of Jurassic(?) and Cretaceous age, accumulated in a rapidly subsiding depositional basin south of an east-trending belt of deformation and east of the north-trending Cretaceous Cordilleran magmatic arc. The McCoy Mountains Formation and older rocks were deformed, metamorphosed, and locally intruded by plutonic rocks in the Late Cretaceous. In Oligocene(?) to Miocene time, sedimentary and minor volcanic deposits accumulated locally, and the area was deformed by faulting. Tertiary rocks and their Proterozoic basement in the Riverside and northeastern Big Maria Mountains are in the upper plate of a low-angle normal (detachment) fault that lies within a region of major Early to Middle Miocene crustal extension. Surficial

  1. The Lewis thrust fault and related structures in the Disturbed Belt, northwestern Montana

    USGS Publications Warehouse

    Mudge, Melville Rhodes; Earhart, Robert L.

    1980-01-01

    The classical Lewis thrust fault in Glacier National Park has now been mapped 125 km south of the park to Steamboat Mountain, where the trace dies out in folded middle Paleozoic rocks. The known length of the fault is 452 km, extending northward from Steamboat Mountain to a point 225 km into Canada, where the fault also dies out in Paleozoic rocks. At the south end, the surface expression of the Lewis thrust begins in a shear zone in folded Mississippian rocks. To the north, the thrust progressively cuts downsection into Proterozoic Y (Belt) rocks near Glacier National Park. Displacement on the Lewis plate increases northward from approximately 3 km on an easterly trending hinge line at the West Fork of the Sun River to a postulated 65 km at the southern edge of the park, where the stratigraphic throw is about 6,500 m. Present data indicate the thrust formed during very late Paleocene to very early Eocene time. The Lewis thrust and related structures, the Hoadley thrust and the Continental Divide syncline, probably formed concurrently under the same stress field. The northern limit of the trace of the Hoadley thrust is within the lower portion of the Lewis plate, about 28 km north of where the Lewis thrust develops, and the Hoadley extends for at least 125 km to the south. Displacement of the Hoadley increases southward from about 1 km at the hinge line to an inferred 70 km near its known southern extent. If our inference is correct, the Hoadley is nearly the southern mirror image of the Lewis to the north. The Continental Divide syncline, a doubly plunging, broad, northerly trending open fold that is about 120 km long, is a major fold within the Lewis plate.

  2. Organic tissues, graphite, and hydrocarbons in host rocks of the Rum Jungle Uranium Field, northern Australia

    USGS Publications Warehouse

    Foster, C.B.; Robbins, E.I.; Bone, Y.

    1990-01-01

    The Rum Jungle Uranium field consists of at least six early Proterozoic deposits that have been mined either for uranium and/or the associated base and precious metals. Organic matter in the host rocks of the Whites Formation and Coomalie Dolomite is now predominantly graphite, consistent with the metamorphic history of these rocks. For nine samples, the mean total organic carbon content is high (3.9 wt%) and ranged from 0.33 to 10.44 wt%. Palynological extracts from the host rocks include black, filamentous, stellate (Eoastrion-like), and spherical morphotypes, which are typical of early Proterozoic microbiota. The colour, abundance, and shapes of these morphotypes reflect the thermal history, organic richness, and probable lacustrine biofacies of the host rocks. Routine analysis of rock thin sections and of palynological residues shows that mineral grains in some of the host rocks are coated with graphitized organic matter. The grain coating is presumed to result from ultimate thermal degradation of a petroleum phase that existed prior to metamorphism. Hydrocarbons are, however, still present in fluid inclusions within carbonates of the Coomalie Dolomite and lower Whites Formation. The fluid inclusions fluoresce dull orange in blue-light excitation and their hydrocarbon content is confirmed by gas chromatography of whole-rock extracts. Preliminary analysis of the oil suggests that it is migrated, and because it has escaped graphitization through metamorphism it is probably not of early Proterozoic age. The presence of live oil is consistent with fluid inclusion data that suggest subsequent, low-temperature brine migration through the rocks. The present observations support earlier suggestions that organic matter in the host formations trapped uranium to form protore. Subsequent fluid migrations probably brought additional uranium and other metals to these formations, and the organic matter provided a reducing environment for entrapment. ?? 1990.

  3. Estimating the Wet-Rock P-Wave Velocity from the Dry-Rock P-Wave Velocity for Pyroclastic Rocks

    NASA Astrophysics Data System (ADS)

    Kahraman, Sair; Fener, Mustafa; Kilic, Cumhur Ozcan

    2017-07-01

    Seismic methods are widely used for the geotechnical investigations in volcanic areas or for the determination of the engineering properties of pyroclastic rocks in laboratory. Therefore, developing a relation between the wet- and dry-rock P-wave velocities will be helpful for engineers when evaluating the formation characteristics of pyroclastic rocks. To investigate the predictability of the wet-rock P-wave velocity from the dry-rock P-wave velocity for pyroclastic rocks P-wave velocity measurements were conducted on 27 different pyroclastic rocks. In addition, dry-rock S-wave velocity measurements were conducted. The test results were modeled using Gassmann's and Wood's theories and it was seen that estimates for saturated P-wave velocity from the theories fit well measured data. For samples having values of less and greater than 20%, practical equations were derived for reliably estimating wet-rock P-wave velocity as function of dry-rock P-wave velocity.

  4. U-Pb and K-Ar geochronology in Paleozoic and Mesozoic intrusive rocks of the Coastal Cordillera, Valparaiso, Chile

    USGS Publications Warehouse

    Gana, Paulina; Tosdal, Richard M.

    1996-01-01

    The U-Pb and K-Ar geochronology applied to intrusive rocks from the Coastal Batholith of Central Chile, demonstrates the existence of a basement block of the Mirasol Unit, with a crystallization age of 299??10 Ma, exposed in the northern block of the Melipilla Fault. The age of 214??1 Ma obtained in the 'Dioritas Gne??isicas de Cartagena Unit', indicates that a Late Triassic magmatism took place in this region; it coincides with the end of an extensive crustal melting period, proposed for northern Chile. The ages of the Jurassic plutonic units (Laguna Verde, Sauce, Pen??uelas and Limache) are restricted to the 156-161 Ma interval, showing in certain cases, inherited zircons from an unknown source. The difference between ages obtained using both chronological methods is a few million years, indicating that a short time passed between the crystallization and the cooling of the plutonic bodies, as well as a fast magmatic differentiation process. The Laguna Verde and Sauce Units, experienced a fast uplift, probably as a result of an extensional tectonic process in the magmatic arc, or induced by the magmatic pressure through fracture zones during Middle Jurassic.

  5. Rock Music and the Socialization of Moral Values in Early Adolescence.

    ERIC Educational Resources Information Center

    Leming, James S.

    1987-01-01

    Links between rock music, moral values, and youth behavior are difficult to establish. This study shows that while young people are influenced by the content of songs, they sometimes disagree with and criticize lyrics. Thus the premise of adolescents as passive receptors of negative values portrayed in music is not warranted. (VM)

  6. Extensive crustal melting during craton destruction: Evidence from the Mesozoic magmatic suite of Junan, eastern North China Craton

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Santosh, M.; Tang, Li

    2018-05-01

    The cratonic destruction associated with the Pacific plate subduction beneath the eastern North China Craton (NCC) shows a close relationship with the widespread magmatism during the Late Mesozoic. Here we investigate a suite of intrusive and extrusive magmatic rocks from the Junan region of the eastern NCC in order to evaluate the role of extensive crustal melting related to decratonization. We present petrological, geochemical, zircon U-Pb geochronological and Lu-Hf isotopic data to evaluate the petrogenesis, timing and tectonic significance of the Early Cretaceous magmatism. Zircon grains in the basalt from the extrusive suite of Junan show multiple populations with Neoproterozoic and Early Paleozoic xenocrystic grains ranging in age from 764 Ma to 495 Ma as well as Jurassic grains with an age range of 189-165 Ma. The dominant population of magmatic zircon grains in the syenite defines three major age peaks of 772 Ma, 132 Ma and 126 Ma. Zircons in the granitoids including alkali syenite, monzonite and granodiorite yield a tightly restricted age range of 124-130 Ma representing their emplacement ages. The Neoproterozoic (841-547 Ma) zircon grains from the basalt and the syenite possess εHf(t) values of -22.9 to -8.4 and from -18.8 to -17.3, respectively. The Early Paleozoic (523-494 Ma) zircons from the basalt and the syenite also show markedly negative εHf(t) values of -22.7 to -18.0. The dominant population of Early Cretaceous (134-121 Ma) zircon grains presented in all the samples also displays negative εHf(t) values range from -31.7 to -21.1, with TDM of 1653-2017 Ma and TDMC in the range of 2193-3187 Ma. Accordingly, the Lu-Hf data suggest that the parent magma was sourced through melting of Mesoarchean to Paleoproterozoic basement rocks. Geochemical data on the Junan magmatic suite display features similar to those associated with the arc magmatic rocks involving subduction-related components, with interaction of fluids and melts in the suprasubduction

  7. The structural evolution of the Ghadames and Illizi basins during the Paleozoic, Mesozoic and Cenozoic: Petroleum implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gauthier, F.J.; Boudjema, A.; Lounis, R.

    1995-08-01

    The Ghadames and Illizi basins cover the majority of the eastern Sahara of Algeria. Geologicaly, this part of the Central Saharan platform has been influenced by a series of structural arches and {open_quotes}moles{close_quotes} (continental highs) which controlled sedimentation and structure through geologic time. These features, resulting from and having been affected by nine major tectonic phases ranging from pre-Cambrian to Tertiary, completely bound the Ghadames and Illizi Basins. During the Paleozoic both basins formed one continuous depositional entity with the Ghadames basin being the distal portion of the continental sag basin where facies and thickness variations are observed over largemore » distances. It is during the Mesozoic-Cenozoic that the Ghadames basin starts to evolve differently from the Illizi Basin. Eustatic low-stand periods resulted in continental deposition yielding the major petroleum-bearing reservoir horizons (Cambrian, Ordovician, Siluro-Devonian and Carboniferous). High-stand periods corresponds to the major marine transgressions covering the majority of the Saharan platform. These transgressions deposited the principal source rock intervals of the Silurian and Middle to Upper Devonian. The main reservoirs of the Mesozoic and Cenozoic are Triassic sandstone sequences which are covered by a thick evaporite succession forming a super-seal. Structurally, the principal phases affecting this sequence are the extensional events related to the breakup of Pangea and the Alpine compressional events. The Ghadames and Illizi basins, therefore, have been controlled by a polphase tectonic history influenced by Pan African brittle basement fracturing which resulted in complex structures localized along the major basin bounding trends as well as several subsidiary trends within the basin. These trends, as demonstrated with key seismic data, have been found to contain the majority of hydrocarbons trapped.« less

  8. Late Paleozoic to Jurassic chronostratigraphy of coastal southern Peru: Temporal evolution of sedimentation along an active margin

    NASA Astrophysics Data System (ADS)

    Boekhout, F.; Sempere, T.; Spikings, R.; Schaltegger, U.

    2013-11-01

    We present an integrated geochronological and sedimentological study that significantly revises the basin and magmatic history associated with lithospheric thinning in southern coastal Peru (15-18°S) since the onset of subduction at ˜530 Ma. Until now, estimating the age of the sedimentary and volcanic rocks has heavily relied on paleontologic determinations. Our new geochronological data, combined with numerous field observations, provide the first robust constraints on their chronostratigraphy, which is discussed in the light of biostratigraphical attributions. A detailed review of the existing local units simplifies the current stratigraphic nomenclature and clarifies its absolute chronology using zircon U-Pb ages. We observe that the Late Paleozoic to Jurassic stratigraphy of coastal southern Peru consists of two first-order units, namely (1) the Yamayo Group, a sedimentary succession of variable (0-2 km) thickness, with apparently no nearby volcanic lateral equivalent, and (2) the overlying Yura Group, consisting of a lower, 1-6 km-thick volcanic and volcaniclastic unit, the Chocolate Formation, and an upper, 1-2 km-thick sedimentary succession that are in markedly diachronous contact across the coeval arc and back-arc. We date the local base of the Chocolate Formation, and thus of the Yura Group, to 216 Ma, and show that the underlying Yamayo Group spans a >110 Myr-long time interval, from at least the Late Visean to the Late Triassic, and is apparently devoid of significant internal discontinuities. The age of the top of the Chocolate Formation, i.e. of the volcanic arc pile, varies from ˜194 Ma to less than ˜135 Ma across the study area. We suggest that this simplified and updated stratigraphic framework can be reliably used as a reference for future studies.

  9. Seaweed morphology and ecology during the great animal diversification events of the early Paleozoic: A tale of two floras.

    PubMed

    LoDuca, S T; Bykova, N; Wu, M; Xiao, S; Zhao, Y

    2017-07-01

    Non-calcified marine macroalgae ("seaweeds") play a variety of key roles in the modern Earth system, and it is likely that they were also important players in the geological past, particularly during critical transitions such as the Cambrian Explosion (CE) and the Great Ordovician Biodiversification Event (GOBE). To investigate the morphology and ecology of seaweeds spanning the time frame from the CE through the GOBE, a carefully vetted database was constructed that includes taxonomic and morphometric information for non-calcified macroalgae from 69 fossil deposits. Analysis of the database shows a pattern of seaweed history that can be explained in terms of two floras: the Cambrian Flora and the Ordovician Flora. The Cambrian Flora was dominated by rather simple morphogroups, whereas the Ordovician Flora, which replaced the Cambrian Flora in the Ordovician and extended through the Silurian, mainly comprised comparatively complex morphogroups. In addition to morphogroup representation, the two floras show marked differences in taxonomic composition, morphospace occupation, functional-form group representation, and life habit, thereby pointing to significant morphological and ecological changes for seaweeds roughly concomitant with the GOBE and the transition from the Cambrian to Paleozoic Evolutionary Faunas. Macroalgal changes of a similar nature and magnitude, however, are not evident in concert with the CE, as the Cambrian Flora consists largely of forms established during the Ediacaran. The cause of such a lag in macroalgal morphological diversification remains unclear, but an intriguing possibility is that it signals a previously unknown difference between the CE and GOBE with regard to the introduction of novel grazing pressures. The consequences of the establishment of the Ordovician Flora for shallow marine ecosystems and Earth system dynamics remain to be explored in detail but could have been multifaceted and potentially include impacts on the global

  10. Gravity survey of the Nevada Test Site and vicinity, Nye, Lincoln, and Clark Counties, Nevada--interim report

    USGS Publications Warehouse

    Healy, D.L.; Miller, C.H.

    1962-01-01

    The gravity survey of the Nevada Test Site and contiguous areas of southern Nevada and southeastern California (fig. 1) has been made by the U.S. Geological Survey on behalf of the U.S. Atomic Energy Commission.The objective of this study is to delineate and interpret gravity anomalies and regional trends so that the configuration and depth of the buried erosional surface of the Paleozoic rocks may be determined. This buried surface is of utmost importance in understanding the geologic history of the Nevada Test Site region, the thickness and distribution of the overlying volcanic rocks and alluvium, and the movement of ground water. The Paleozoic rocks cause positive gravity anomalies where they outcrop or occur near the surface and negative anomalies where they are buried in valleys or capped by low-density Tertiary volcanic rocks. Gravity trends which extend over the entire area provide a basis for computing the regional gravity gradient. The regional gravity gradient must be removed from the data for geologic interpretation of the paleotopographic surface in any limited area. Knowledge of the thickness of low-density material overlying the paleotopographic surface is useful in several ways. Proposed underground test sites, such as drill holes and tunnels, may be evaluated in terms of rock unit thickness and alluvial cover requirements. Recent work by the Water Resources Division of the U.S. Geological Survey has demonstrated ground-water movement through the Paleozoic rocks in the vicinity of the Nevada Test Site. Therefore, knowledge of the position of buried Paleozoic rocks is important in evaluating (a) the rate and direction of flow of the ground water, (b) ground-water supplies for domestic and industrial uses, and (c) the possibility of radioactive contamination of ground water. Finally, regional gravity trends and paleotopography are useful in working out the structural history of the area in connection with geologic studies now in progress. The purpose

  11. The Kingak shale of northern Alaska-regional variations in organic geochemical properties and petroleum source rock quality

    USGS Publications Warehouse

    Magoon, L.B.; Claypool, G.E.

    1984-01-01

    The Kingak Shale, a thick widespread rock unit in northern Alaska that ranges in age from Early Jurassic through Early Cretaceous, has adequate to good oil source rock potential. This lenticular-shaped rock unit is as much as 1200 m thick near the Jurassic shelf edge, where its present-day burial depth is about 5000 m. Kingak sediment, transported in a southerly direction, was deposited on the then marine continental shelf. The rock unit is predominantly dark gray Shale with some interbeds of thick sandstone and siltstone. The thermal maturity of organic matter in the Kingak Shale ranges from immature (2.0%R0) in the Colville basin toward the south. Its organic carbon and hydrogen contents are highest in the eastern part of northern Alaska south of and around the Kuparuk and Prudhoe Bay oil fields. Carbon isotope data of oils and rock extracts indicate that the Kingak Shale is a source of some North Slope oil, but is probably not the major source. ?? 1984.

  12. Evaluation of hydrocarbon potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cashman, P.H.; Trexler, J.H. Jr.

    1992-09-30

    Task 8 is responsible for assessing the hydrocarbon potential of the Yucca Mountain vincinity. Our main focus is source rock stratigraphy in the NTS area in southern Nevada. (In addition, Trexler continues to work on a parallel study of source rock stratigraphy in the oil-producing region of east central Nevada, but this work is not funded by Task 8.) As a supplement to the stratigraphic studies, we are studying the geometry and kinematics of deformation at NTS, particularly as these pertain to reconstructing Paleozoic stratigraphy and to predicting the nature of the Late Paleozoic rocks under Yucca Mountain. Our stratigraphicmore » studies continue to support the interpretation that rocks mapped as the {open_quotes}Eleana Formation{close_quotes} are in fact parts of two different Mississippian units. We have made significant progress in determining the basin histories of both units. These place important constraints on regional paleogeographic and tectonic reconstructions. In addition to continued work on the Eleana, we plan to look at the overlying Tippipah Limestone. Preliminary TOC and maturation data indicate that this may be another potential source rock.« less

  13. Detrital zircon U-Pb geochronology, Lu-Hf isotopes and REE geochemistry constrains on the provenance and tectonic setting of Indochina Block in the Paleozoic

    NASA Astrophysics Data System (ADS)

    Wang, Ce; Liang, Xinquan; Foster, David A.; Fu, Jiangang; Jiang, Ying; Dong, Chaoge; Zhou, Yun; Wen, Shunv; Van Quynh, Phan

    2016-05-01

    In situ U-Pb geochronology, Lu-Hf isotopes and REE geochemical analyses of detrital zircons from Cambrian-Devonian sandstones in the Truong Son Belt, central Vietnam, are used to provide the information of provenance and tectonic evolution of the Indochina Block. The combined detrital zircon age spectra of all of the samples ranges from 3699 Ma to 443 Ma and shows with dominant age peaks at ca. 445 Ma and 964 Ma, along with a number of age populations at 618-532 Ma, 1160-1076 Ma, 1454 Ma, 1728 Ma and 2516 Ma. The zircon age populations are similar to those from time equivalent sedimentary sequences in continental blocks disintegrated from the East Gondwana during the Phanerozoic. The younger zircon grains with age peaks at ca. 445 Ma were apparently derived from middle Ordovician-Silurian igneous and metamorphic rocks in Indochina. Zircons with ages older than about 600 Ma were derived from other Gondwana terrains or recycled from the Precambrian basement of the Indochina Block. Similarities in the detrital zircon U-Pb ages suggest that Paleozoic strata in the Indochina, Yangtze, Cathaysia and Tethyan Himalayas has similar provenance. This is consistent with other geological constrains indicating that the Indochina Block was located close to Tethyan Himalaya, northern margin of the India, and northwestern Australia in Gondwana.

  14. Early Carboniferous (˜357 Ma) crust beneath northern Arabia: Tales from Tell Thannoun (southern Syria)

    NASA Astrophysics Data System (ADS)

    Stern, Robert J.; Ren, Minghua; Ali, Kamal; Förster, Hans-Jürgen; Al Safarjalani, Abdulrahman; Nasir, Sobhi; Whitehouse, Martin J.; Leybourne, Matthew I.; Romer, Rolf L.

    2014-05-01

    Continental crust beneath northern Arabia is deeply buried and poorly known. To advance our knowledge of this crust, we studied 8 xenoliths brought to the surface by Neogene eruptions of Tell Thannoun, S. Syria. The xenolith suite consists of two peridotites, one pyroxenite, four mafic granulites, and one charnockite. The four mafic granulites and charnockite are probably samples of the lower crust, and two mafic granulites gave 2-pyroxene equilibration temperatures of 780-800 °C, which we take to reflect temperatures at the time of formation. Peridotite and pyroxenite gave significantly higher temperatures of ∼900 °C, consistent with derivation from the underlying lithospheric mantle. Fe-rich peridotite yielded T∼800 °C, perhaps representing a cumulate layer in the crust. Three samples spanning the lithologic range of the suite (pyroxenite, mafic granulite, and charnockite) yielded indistinguishable concordant U-Pb zircon ages of ∼357 Ma, interpreted to approximate when these magmas crystallized. These igneous rocks are mostly juvenile additions from the mantle, as indicated by low initial 87Sr/86Sr (0.70312 to 0.70510) and strongly positive initial εNd(357 Ma) (+4 to +9.5). Nd model ages range from 0.55 to 0.71 Ga. We were unable to unequivocally infer a tectonic setting where these melts formed: convergent margin, rift, or hotspot. These xenoliths differ from those of Jordan and Saudi Arabia to the south in four principal ways: 1) age, being least 200 Ma younger than the presumed Neoproterozoic (533-1000 Ma) crust beneath Jordan and Saudi Arabia; 2) the presence of charnockite; 3) abundance of Fe-rich mafic and ultramafic lithologies; and 4) the presence of sapphirine. Our studies indicate that northern Arabian plate lithosphere contains a significant proportion of juvenile Late Paleozoic crust, the extent of which remains to be elucidated. This discovery helps explain fission track resetting documented for rocks from Israel and provides insights into

  15. Rb-Sr, K-Ar, and stable isotope evidence for the ages and sources of fluid components of gold-bearing quartz veins in the northern Sierra Nevada foothills metamorphic belt, California

    USGS Publications Warehouse

    Böhlke, John Karl; Kistler, R. W.

    1986-01-01

    Gold-bearing quartz veins occur in and near major fault zones in deformed oceanic and island-arc rocks west of the main outcrop of the Sierra Nevada composite batholith. Veins typically occupy minor reverse faults that crosscut blueschist to amphibolite-grade metamorphic rocks whose metamorphic ages range from early Paleozoic to Jurassic. Vein micas and carbonate-quartz-mica assemblages that formed by hydrothermal metasomatism of ultramafic wall rocks in the Alleghany, Grass Valley, Washington, and Mother Lode districts yield concordant K-Ar and Rb-Sr ages. The dated veins are significantly younger than prograde metamorphism, penetrative deformation, and accretion of their host rocks to the continental margin. New and previously published mineralization ages from 13 localities in the Sierra foothills range from about 140 to 110 m.y. ago, with mean and median between 120 and 115 m.y. The age relations suggest that mineralizing fluids were set in motion by deep magmatic activity related to the resumption of east-dipping subduction along the western margin of North America following the Late Jurassic Nevadan collision event.CO 2 -bearing fluids responsible for metasomatism and much of the vein mica, carbonate, albite, and quartz deposition in several northern mines were isotopically heavy (delta 18 O [asymp] 8-14ppm; delta D between about -10 and -50ppm) and do not resemble seawater, magmatic, or meteoric waters. Metasomatic and vein-filling mica, dolomite, magnesite, and quartz in altered ultramafic rocks generally formed from fluids with similar Sr and O isotope ratios at a given locality. Consistent quartz-mica delta 18 O fractionations (delta 18 O (sub Q-M) = 4.5-4.9ppm) from various localities imply uniform equilibration temperatures, probably between 300 degrees and 350 degrees C. On a local (mine) scale, fluids responsible for both carbonate alteration of mafic and ultramafic wall rocks and albitic alteration of felsic and pelitic rocks had similar Sr isotope

  16. Rocks.

    ERIC Educational Resources Information Center

    Lee, Alice

    This science unit is designed for limited- and non-English speaking students in a Chinese bilingual education program. The unit covers rock material, classification, characteristics of types of rocks, and rock cycles. It is written in Chinese and simple English. At the end of the unit there is a list of main terms in both English and Chinese, and…

  17. SAPHYR: the Swiss Atlas of PHYsical properties of Rocks

    NASA Astrophysics Data System (ADS)

    Wenning, Q. C.; Zappone, A. S.; Kissling, E.

    2015-12-01

    The Swiss Atlas of PHYsical properties of Rocks (SAPHYR) is a multi-year project, aiming to compile a comprehensive data set on physical properties of rocks exposed in Switzerland and surrounding areas. The ultimate goal of SAPHYR is to make these data accessible to an open and wide public, such as industrial, engineering, land and resource planning companies, as well as academic institutions. Since the early sixties worldwide geophysicists, petrologists, and engineers, focused their work on laboratory measurements of rocks physical properties, and their relations with microstructures, mineralogical compositions and other rock parameters, in the effort to constrain the geological interpretation of geophysical surveys. In combination with efforts to investigate deep structure of the continental crust by controlled source seismology, laboratories capable to reproduce pressure and temperature conditions to depth of 50km and more collected measurements of various parameters on a wide variety of rock types. In recent years, the increasing interest on non-traditional energy supply, (deep geothermal energy, shale gas) and CO2 storage renovated the interests in physical characterization of the deep underground. The idea to organize those laboratory data into a geographically referenced database (GIS) is supported by the Swiss Commission for Geophysics. The data refer to density and porosity, seismic, magnetic, thermal properties, permeability and electrical properties. An effort has been placed on collecting samples and measuring the physical properties of lithologies that are poorly documented in literature. The phase of laboratory measurements is still in progress. At present SAPHYR focuses towards developing a 3-D physical properties model of the Swiss subsurface, using the structure of the exposed geology, boreholes data and seismic surveys, combined with lab determined pressure and temperature derivatives. An early version of the final product is presented here.

  18. Quantifying the impact of early calcite cementation on the reservoir quality of carbonate rocks: A 3D process-based model

    NASA Astrophysics Data System (ADS)

    Hosa, Aleksandra; Wood, Rachel

    2017-06-01

    The reservoir properties of carbonate rocks are controlled by both deposition and diagenesis. The latter includes the early precipitation of calcite cements, which can exert a strong control on the evolution of subsequent diagenetic pathways. We quantify the impact of early marine cement growth in grainstones on evolving pore space by examining trends in the relationship between cementation and permeability using a 3D process-based model (Calcite3D). The model assumes varying proportions of polycrystalline and monocrystalline grain types, upon which we grow isopachous and syntaxial calcite cement types, respectively. We model two syntaxial cement shapes, compact and elongated, that approximate the geometries of typical rhombohedral calcite forms. Results demonstrate the effect of cement competition: an increasing proportion of monocrystalline grains creates stronger competition and a reduction in the impact of individual grains on final calcite cement volume and porosity. Isopachous cement is effective in closing pore throats and limiting permeability. We also show that the impact of syntaxial cement on porosity occlusion and therefore flow is highly dependent on monocrystalline grain location and the orientation of crystal axes. This demonstrates the importance of diagenetic overprint in controlling the evolution of rock properties, but also that this process can be essentially random. We also show that diagenesis alone can create notable heterogeneity in the permeability of carbonates. While Calcite3D is successful in modelling realistic changes in cement volumes and pore space morphology, modelled permeabilities (0.01 -30D) are above the range reported in reservoir grainstones due to the very high permeability of the initial synthetic sediment deposit (58.9D). Poroperm data generated by Calcite3D, however, exhibits a linear relationship between the logarithms of porosity and permeability with a high coefficient of determination, as observed in natural media.

  19. Oxygen isotope studies of early Precambrian granitic rocks from the Giants Range batholith, northeastern Minnesota, U.S.A.

    USGS Publications Warehouse

    Viswanathan, S.

    1974-01-01

    Oxygen isotope studies of granitic rocks from the 2.7 b.y.-old composite Giants Range batholith show that: (1) ??(O18)quartz values of 9 to 10 permil characterize relatively uncontaminated Lower Precambrian, magmatic granodiorites and granites; (2) granitic rocks thought to have formed by static granitization have ??(O18)quartz values that are 1 to 2 permil higher than magmatic granitic rocks; (3) satellite leucogranite bodies have values nearly identical to those of the main intrusive phases even where they transect O18-rich metasedimentary wall rocks; (4) oxygen isotopic interaction between the granitic melts and their O18-rich wall rocks was minimal; and (5) O18/O18 ratios of quartz grains in a metasomatic granite are largely inherited from the precursor rock, but during the progression - sedimentary parent ??? partially granitized parent ??? metasomatic granite ??? there is gradual decrease in ??(O18)quartz by 1 to 2 permil. ?? 1974.

  20. Geochronological and geochemical constraints on the petrogenesis of Middle Paleozoic (Kwangsian) massive granites in the eastern South China Block

    NASA Astrophysics Data System (ADS)

    Zhang, Feifei; Wang, Yuejun; Zhang, Aimei; Fan, Weiming; Zhang, Yuzhi; Zi, Jianwei

    2012-10-01

    To achieve a better understanding of the Kwangsian orogenic event of the eastern South China Block, this paper documents a set of new zircon U-Pb geochronological and Hf isotopic data and whole-rock elemental and Sr-Nd isotopic analytical results for the representative massive granite intrusions across the Jiangshan-Shaoxing fault. The studied samples are classified into two groups, representing the rocks from the Cathaysia Block to the east of the Jiangshan-Shaoxing Fault (Group 1) and those from the eastern Yangtze Block between the Anhua-Luocheng and Jiangshan-Shaoxing faults (Group 2). The Group 1 samples gave the zircon U-Pb ages of 405-454 Ma and ɛHf(t) values of - 3.6 to - 15.2 with Hf model ages of 1.6-2.4 Ga. Group 2 yielded the zircon U-Pb ages of 400-432 Ma and ɛHf(t) values of - 0.2 to - 12.7 with Hf model ages of 1.3-2.2 Ga. Geochemically, the Group 1 samples (A/CNK = 1.02-1.43) have relatively lower Al2O3, MgO, CaO, P2O5 and ɛNd(t) but higher K2O + Na2O than those of Group 2 (A/CNK = 0.93-1.44). Both groups show similar chondrite-normalized patterns of rare-earth elements with Eu/Eu* values of 0.15-0.92 and strongly negative Ba, Sr, Nb, P and Ti anomalies in primitive mantle-normalized spider diagrams. Their ɛNd(t) values range from - 11.1 to - 8.0 for Group 1, and - 8.9 to - 5.0 for Group 2, generally similar to those of Precambrian paragneiss and contemporaneous gneissoid granites in the eastern South China Block. Our geochronological results indicate that the Kwangsian massive granites in the eastern South China Block were crystallized between 400 Ma and 454 Ma, synchronous to the Kwangsian gneissoid granites along the Wugong and Wuyi-Baiyun-Yunkai domains in the eastern South China Block. The synthesis of these whole-rock geochemical and in-situ zircon Hf isotopic data suggests that both the Group 1 and 2 granites across the Jiangshan-Shaoxing Fault were predominantly derived from a crustal source with some proportional metapelitic and